Non-enzymatic U(VI) interactions with biogenic mackinawite
NASA Astrophysics Data System (ADS)
Veeramani, H.; Qafoku, N. P.; Kukkadapu, R. K.; Murayama, M.; Hochella, M. F.
2011-12-01
Reductive immobilization of hexavalent uranium [U(VI)] by stimulation of dissimilatory metal and/or sulfate reducing bacteria (DMRB or DSRB) has been extensively researched as a remediation strategy for subsurface U(VI) contamination. These bacteria derive energy by reducing oxidized metals as terminal electron acceptors, often utilizing organic substrates as electron donors. Thus, when evaluating the potential for in-situ uranium remediation in heterogeneous subsurface media, it is important to understand how the presence of alternative electron acceptors such as Fe(III) and sulfate affect U(VI) remediation and the long term behavior and reactivity of reduced uranium. Iron, an abundant subsurface element, represents a substantial sink for electrons from DMRB, and the reduction of Fe(III) leads to the formation of dissolved Fe(II) or to reactive biogenic Fe(II)- and mixed Fe(II)/Fe(III)- mineral phases. Consequently, abiotic U(VI) reduction by reactive forms of biogenic Fe(II) minerals could be a potentially important process for uranium immobilization. In our study, the DMRB Shewanella putrefaciens CN32 was used to synthesize a biogenic Fe(II)-bearing sulfide mineral: mackinawite, that has been characterized by XRD, SEM, HRTEM and Mössbauer spectroscopy. Batch experiments involving treated biogenic mackinawite and uranium (50:1 molar ratio) were carried out at room temperature under strict anoxic conditions. Following complete removal of uranium from solution, the biogenic mackinawite was analyzed by a suite of analytical techniques including XAS, HRTEM and Mössbauer spectroscopy to determine the speciation of uranium and investigate concomitant Fe(II)-phase transformation. Determining the speciation of uranium is critical to success of a remediation strategy. The present work elucidates non-enzymatic/abiotic molecular scale redox interactions between biogenic mackinawite and uranium.
Nevada Test and Training Range Depleted Uranium Target Disposal Environmental Assessment
2005-03-01
to establish the probability and scope of such transport. Long-Term Fate of Depleted Uranium at Aberdeen and Yuma Proving Grounds Phase II: Human...1990. Long-Term Fate of Depleted Uranium at Aberdeen and Yuma Proving Grounds Final Report, Phase 1: Geochemical Transport and Modeling. Los...of Depleted Uranium at Aberdeen and Yuma Proving Grounds , Phase II: Human Health and Ecological Risk Assessments. Los Alamos National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalifa, M.E.
An alizarin red S (ARS)-modified anion exchange resin was prepared by a simple reaction of ARS with the anion exchange Doulite A101 and used for the efficient sorption of uranium from aqueous media. The effect of various parameters on the sorption of U(VI) (pH effect, sorption kinetics, resin capacity and breakthrough curves) was investigated. The modified resin sorbs U(VI) over a wide range of pH (2.8--5) with a maximum sorption capacity of 0.68 mmol/g at pH 3.2 to 4.0. Iron(III), Zr(IV), Ti(IV), Cu(II), and Th(IV) ions are also sorbed to different extents, but Be(II), Bi(III), Ca(II), Mg(II), Pb(II), Hg(II), Zn(II),more » Cd(II), Al(III), Mn(II), Co(II) and Ni(II) are not sorbed; thus, conditions for separating U(VI) from these metal ions have been identified. For eluting U(VI) from the resin, 0.2 mol/L HCl was used and the recovery recorded was as high as 99.9%. The use of ARS is extended to float uranium quantitatively and selectively from aqueous media at pH {approx} 4 by using oleic acid as a surfactant. The different parameters affecting the flotation process have also been investigated. Uranium(VI) has been effectively separated from natural water samples and certified uranium ores using both procedures.« less
Volume II investigates the potential radiogenic risks from abandoned uranium mines and evaluates which may pose the greatest hazards to members of the public and to the environment. The intent of this report is to identify who may be most likely to be exposed to wastes at small a...
10 CFR 71.22 - General license: Fissile material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...
10 CFR 71.22 - General license: Fissile material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...
10 CFR 71.22 - General license: Fissile material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...
10 CFR 71.22 - General license: Fissile material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...
10 CFR 71.22 - General license: Fissile material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...
10 CFR 51.60 - Environmental report-materials licenses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...
10 CFR 51.60 - Environmental report-materials licenses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...
10 CFR 51.60 - Environmental report-materials licenses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...
10 CFR 51.60 - Environmental report-materials licenses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...
10 CFR 51.60 - Environmental report-materials licenses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.
2011-06-08
Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Testsmore » were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false General license for custody and long-term care of uranium... long-term care of uranium or thorium byproduct materials disposal sites. (a) A general license is... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false General license for custody and long-term care of uranium... long-term care of uranium or thorium byproduct materials disposal sites. (a) A general license is... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false General license for custody and long-term care of uranium... long-term care of uranium or thorium byproduct materials disposal sites. (a) A general license is... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false General license for custody and long-term care of uranium... long-term care of uranium or thorium byproduct materials disposal sites. (a) A general license is... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill...
Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface.
Wu, Wei-Min; Carley, Jack; Green, Stefan J; Luo, Jian; Kelly, Shelly D; Van Nostrand, Joy; Lowe, Kenneth; Mehlhorn, Tonia; Carroll, Sue; Boonchayanant, Benjaporn; Löfller, Frank E; Watson, David; Kemner, Kenneth M; Zhou, Jizhong; Kitanidis, Peter K; Kostka, Joel E; Jardine, Philip M; Criddle, Craig S
2010-07-01
The effects of nitrate on the stability of reduced, immobilized uranium were evaluated in field experiments at a U.S. Department of Energy site in Oak Ridge, TN. Nitrate (2.0 mM) was injected into a reduced region of the subsurface containing high levels of previously immobilized U(IV). The nitrate was reduced to nitrite, ammonium, and nitrogen gas; sulfide levels decreased; and Fe(II) levels increased then deceased. Uranium remobilization occurred concomitant with nitrite formation, suggesting nitrate-dependent, iron-accelerated oxidation of U(IV). Bromide tracer results indicated changes in subsurface flowpaths likely due to gas formation and/or precipitate. Desorption-adsorption of uranium by the iron-rich sediment impacted uranium mobilization and sequestration. After rereduction of the subsurface through ethanol additions, background groundwater containing high levels of nitrate was allowed to enter the reduced test zone. Aqueous uranium concentrations increased then decreased. Clone library analyses of sediment samples revealed the presence of denitrifying bacteria that can oxidize elemental sulfur, H(2)S, Fe(II), and U(IV) (e.g., Thiobacillus spp.), and a decrease in relative abundance of bacteria that can reduce Fe(III) and sulfate. XANES analyses of sediment samples confirmed changes in uranium oxidation state. Addition of ethanol restored reduced conditions and triggered a short-term increase in Fe(II) and aqueous uranium, likely due to reductive dissolution of Fe(III) oxides and release of sorbed U(VI). After two months of intermittent ethanol addition, sulfide levels increased, and aqueous uranium concentrations gradually decreased to <0.1 microM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This document presents guidance for implementing the process that the U.S. Department of Energy (DOE) Office of Legacy Management (LM) will use for assuming perpetual responsibility for a closed uranium mill tailings site. The transition process specifically addresses sites regulated under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) but is applicable in principle to the transition of sites under other regulatory structures, such as the Formerly Utilized Sites Remedial Action Program.
Reactivity of Uranium and Ferrous Iron with Natural Iron Oxyhydroxides.
Stewart, Brandy D; Cismasu, A Cristina; Williams, Kenneth H; Peyton, Brent M; Nico, Peter S
2015-09-01
Determining key reaction pathways involving uranium and iron oxyhydroxides under oxic and anoxic conditions is essential for understanding uranium mobility as well as other iron oxyhydroxide mediated processes, particularly near redox boundaries where redox conditions change rapidly in time and space. Here we examine the reactivity of a ferrihydrite-rich sediment from a surface seep adjacent to a redox boundary at the Rifle, Colorado field site. Iron(II)-sediment incubation experiments indicate that the natural ferrihydrite fraction of the sediment is not susceptible to reductive transformation under conditions that trigger significant mineralogical transformations of synthetic ferrihydrite. No measurable Fe(II)-promoted transformation was observed when the Rifle sediment was exposed to 30 mM Fe(II) for up to 2 weeks. Incubation of the Rifle sediment with 3 mM Fe(II) and 0.2 mM U(VI) for 15 days shows no measurable incorporation of U(VI) into the mineral structure or reduction of U(VI) to U(IV). Results indicate a significantly decreased reactivity of naturally occurring Fe oxyhydroxides as compared to synthetic minerals, likely due to the association of impurities (e.g., Si, organic matter), with implications for the mobility and bioavailability of uranium and other associated species in field environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szrom, Fran; Falo, Gerald A.; Lodde, Gordon M.
2009-03-01
Depleted uranium (DU) intake rates and subsequent dose rates were estimated for personnel entering armored combat vehicles perforated with DU penetrators (level II and level III personnel) using data generated during the Capstone Depleted Uranium (DU) Aerosol Study. Inhalation intake rates and associated dose rates were estimated from cascade impactors worn by sample recovery personnel and from cascade impactors that served as area monitors. Ingestion intake rates and associated dose rates were estimated from cotton gloves worn by sample recovery personnel and from wipe test samples from the interior of vehicles perforated with large caliber DU munitions. The mean DUmore » inhalation intake rate for level II personnel ranged from 0.447 mg h-1 based on breathing zone monitor data (in and around a perforated vehicle) to 14.5 mg h-1 based on area monitor data (in a perforated vehicle). The mean DU ingestion intake rate for level II ranged from 4.8 mg h-1 to 38.9 mg h-1 based on the wipe test data including surface to glove transfer factors derived from the Capstone data. Based on glove contamination data, the mean DU ingestion intake rates for level II and level III personnel were 10.6 mg h-1 was and 1.78 mg h-1, respectively. Effective dose rates and peak kidney uranium concentration rates were calculated based on the intake rates. The peak kidney uranium concentration rate cannot be multiplied by the total exposure duration when multiple intakes occur because uranium will clear from the kidney between the exposures.« less
Processes affecting transport of uranium in a suboxic aquifer
Davis, J.A.; Curtis, G.P.; Wilkins, M.J.; Kohler, M.; Fox, P.; Naftz, D.L.; Lloyd, J.R.
2006-01-01
At the Naturita site in Colorado, USA, groundwaters were sampled and analyzed for chemical composition and by culture and culture-independent microbiological techniques. In addition, sediments were extracted with a dilute sodium carbonate solution to determine quantities of labile uranium within the sediments. Samples from the upgradient portion of the contaminated aquifer, where very little dissolved Fe(II) is found in the groundwater, have uranium content that is controlled by U(VI) adsorption and few metal-reducing bacteria are observed. In the extreme downgradient portion of the aquifer, where dissolved Fe(II) is observed, uranium content of the sediments includes significant quantities of reduced U(IV) and diverse populations of Fe(III)-reducing bacteria were present in the subsurface with the potential of reducing U(VI) to U(IV). ?? 2006 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhukovskii, Yu.M.; Luksha, O.P.; Nenarokomov, E.A.
1988-03-01
We have derived a statistical model for the dissolution of uranium dioxide tablets for the 6 to 12 M concentration range and temperatures from 80/sup 0/C to the boiling point. The model differs qualitatively from the dissolution model for ground uranium dioxide. In the indicated range of experimental conditions, the mean-square deviation of the curves for the model from the experimental curves is not greater than 6%.
Fernette, Gregory
2015-01-01
Uranium occurrences are also reported in the Tasiast-Tijirit Terrane of the Archean Rgueïbat Shield, the Mauritanide Belt, and the Coastal Basin. Geologic environments permissive for eight types of uranium deposits are recognized in Mauritania. These deposit types include: calcrete, granite-hosted vein/shear, alkaline intrusive, unconformity-associated, quartz pebble conglomerate, phosphate, sandstone, and red bed-type uranium deposits.
2012-09-01
patrol vehicles. The Department’s Counter-Terror Operations Unit serves as the program coordinator and as the archetypical NIMS Type I Team. The...is defined by Title I of the Atomic Energy Act of 1954 as plutonium, uranium-233, or uranium enriched in the isotopes uranium-233 or uranium...end of World War II. Radioactive Materials—materials that contain radioactive atoms . Radioactive atoms are unstable; that is, they have too much
Depleted uranium startup of spent-fuel treatment operations at ANL-West
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, K.M.; Mariani, R.D.; Bonomo, N.L.
1995-12-31
At Argonne National Laboratory-West (ANL-West) there are several thousand kilograms of Experimental Breeder Reactor II (EBR-II) spent nuclear fuel. This fuel will be treated using an electrometallurgical process in the fuel conditioning facility (FCF) at ANL-West to produce stable waste forms for storage and disposal. The process equipment is undergoing testing with depleted uranium in preparation for irradiated fuel operations during the summer of 1995.
Competing retention pathways of uranium upon reaction with Fe(II)
NASA Astrophysics Data System (ADS)
Massey, Michael S.; Lezama-Pacheco, Juan S.; Jones, Morris E.; Ilton, Eugene S.; Cerrato, José M.; Bargar, John R.; Fendorf, Scott
2014-10-01
Biogeochemical retention processes, including adsorption, reductive precipitation, and incorporation into host minerals, are important in contaminant transport, remediation, and geologic deposition of uranium. Recent work has shown that U can become incorporated into iron (hydr)oxide minerals, with a key pathway arising from Fe(II)-induced transformation of ferrihydrite, (Fe(OH)3·nH2O) to goethite (α-FeO(OH)); this is a possible U retention mechanism in soils and sediments. Several key questions, however, remain unanswered regarding U incorporation into iron (hydr)oxides and this pathway's contribution to U retention, including: (i) the competitiveness of U incorporation versus reduction to U(IV) and subsequent precipitation of UO2; (ii) the oxidation state of incorporated U; (iii) the effects of uranyl aqueous speciation on U incorporation; and, (iv) the mechanism of U incorporation. Here we use a series of batch reactions conducted at pH ∼7, [U(VI)] from 1 to 170 μM, [Fe(II)] from 0 to 3 mM, and [Ca] at 0 or 4 mM coupled with spectroscopic examination of reaction products of Fe(II)-induced ferrihydrite transformation to address these outstanding questions. Uranium retention pathways were identified and quantified using extended X-ray absorption fine structure (EXAFS) spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. Analysis of EXAFS spectra showed that 14-89% of total U was incorporated into goethite, upon reaction with Fe(II) and ferrihydrite. Uranium incorporation was a particularly dominant retention pathway at U concentrations ⩽50 μM when either uranyl-carbonato or calcium-uranyl-carbonato complexes were dominant, accounting for 64-89% of total U. With increasing U(VI) and Fe(II) concentrations, U(VI) reduction to U(IV) became more prevalent, but U incorporation remained a functioning retention pathway. These findings highlight the potential importance of U(V) incorporation within iron oxides as a retention process of U across a wide range of biogeochemical environments and the sensitivity of uranium retention processes to operative (bio)geochemical conditions.
Competing retention pathways of uranium upon reaction with Fe(II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massey, Michael S.; Lezama Pacheco, Juan S.; Jones, Morris
Biogeochemical retention processes, including adsorption, reductive precipitation, and incorporation into host minerals, are important in contaminant transport, remediation, and geologic deposition of uranium. Recent work has shown that U can become incorporated into iron (hydr)oxide minerals, with a key pathway arising from Fe(II)-induced transformation of ferrihydrite, (Fe(OH)3•nH2O) to goethite (α-FeO(OH)); this is a possible U retention mechanism in soils and sediments. Several key questions, however, remain unanswered regarding U incorporation into iron (hydr)oxides and this pathway’s contribution to U retention, including: (i) the competitiveness of U incorporation versus reduction to U(IV) and subsequent precipitation of UO2; (ii) the oxidation statemore » of incorporated U; (iii) the effects of uranyl aqueous speciation on U incorporation; and, (iv) the mechanism of U incorporation. Here we use a series of batch reactions conducted at pH ~7, [U(VI)] from 1 to 170 μM, [Fe(II)] from 0 to 3 mM, and [Ca] at 0 or 4 mM) coupled with spectroscopic examination of reaction products of Fe(II)-induced ferrihydrite transformation to address these outstanding questions. Uranium retention pathways were identified and quantified using extended x-ray absorption fine structure (EXAFS) spectroscopy, x-ray powder diffraction, x-ray photoelectron spectroscopy, and transmission electron microscopy. Analysis of EXAFS spectra showed that 14 to 89% of total U was incorporated into goethite, upon reaction with Fe(II) and ferrihydrite. Uranium incorporation was a particularly dominant retention pathway at U concentrations ≤ 50 μM when either uranyl-carbonato or calcium-uranyl-carbonato complexes were dominant, accounting for 64 to 89% of total U. With increasing U(VI) and Fe(II) concentrations, U(VI) reduction to U(IV) became more prevalent, but U incorporation remained a functioning retention pathway. These findings highlight the potential importance of U(V) incorporation within iron oxides as a retention process of U across a wide range of biogeochemical environments and the sensitivity of uranium retention processes to operative (bio)geochemical conditions.« less
Uranium Reduction by Fe(II) in the Presence of Montmorillonite and Nontronite.
Tsarev, Sergey; Waite, T David; Collins, Richard N
2016-08-02
Uranium(VI) interactions with three smectites (one montmorillonite and two nontronites - NAu1 and NAu2) were examined with 0, 1, and 2 mM aqueous concentrations of Fe(II) over the pH range of 3-9.5 in a background electrolyte of 100 mM NaCl and 1 mM CaCl2 in equilibration with 400 ppmv CO2(g) ([U(VI)] = 4 μM and 0.5 g smectite/L). In the absence of Fe(II), no differences were observed in the U(VI) sorption curves for the three clay minerals. In the presence of 1 or 2 mM Fe(II), under anoxic conditions, U(VI) uptake by the smectites changed slightly between ∼pH 3 and 6; however, uranium uptake increased significantly above ∼pH 6 and was proportional to the concentration of Fe(II) added to the system, particularly at pH values >8. The uptake of Fe(II) showed a sharp edge starting from ∼pH 6.5 with 95%-100% uptake occurring at pH values >7.5, with no difference observed between the iron-rich nontronites and montmorillonite. After 3 days of reaction at pH 7.6 (i.e., above the Fe(II) "sorption" edge), U(VI) was transformed to a mixture of U(IV) and U(VI) sorption complexes, and after 14 days of reaction, 100% of the U was found to be reduced to U(IV) in the form of nanocrystalline uraninite. In contrast, U remained as sorbed species until 14 days of reaction at pH 6.5. Ferrihydrite (NAu1), lepidocrocite, and magnetite (NAu2) were detected as secondary mineralization products upon reaction of the nontronites with Fe(II) but appeared to have no effect on the partitioning or speciation of uranium.
Tetravalent uranium extraction by HDEHP in kerosene from phosphate medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daoud, J.A.; Zeid, M.M.; Aly, H.F.
1997-03-01
The extraction of U(IV) by di-2-ethylhexyl phosphoric acid (HDEHP) in kerosene from phosphoric acid was measured spectrophotometrically. The effect of extractant, phosphoric acid, uranium, Fe(II) and Fe(III) concentrations on the extraction process were separately investigated. The effect of different reagents and temperature on the stripping of U(IV) were also tested. The results obtained showed that the extraction increases with the increase in HDEHP and Fe(III) concentrations while it decreases with the increase in phosphoric acid, uranium and Fe(II) concentration. The use of high phosphoric acid concentration as strip solutions at low temperature was found to give good stripping results. 11more » refs., 8 figs., 2 tabs.« less
Adsorption of uranium composites onto saltrock oxides - experimental and theoretical study.
Ivanova, Bojidarka; Spiteller, Michael
2014-09-01
The study encompassed experimental mass spectrometric and theoretical quantum chemical studies on adsorption of uranium species in different oxidation states of the metal ion, and oxides of UxOy(n+) type, where x = 1 or 3, y = 2 or 8, and n = 0, 1 or 2 onto nanosize-particles of saltrock oxides MO (M = Mg(II), Ca(II), Ni(II), Co(II), Sr(II) or Ba(II)), M2Oy (M = Au(III) or Ag(I), y = 3 or 1) silicates 3Al2O3.2SiO2, natural kaolinite (Al2O2·2SiO2·2H2O), illite (K0.78Ca0.02Na0.02(Mg0.34Al1.69Fe(III)0.02)[Si3.35Al0.65]O10(OH)2·nH2O), CaSiO3, 3MgO·4SiO2,H2O, and M(1)M(2)(SiO4)X2 (M(1) = M(2) = Al or M(1) = K, M(2) = Al, X = F or Cl), respectively. The UV-MALDI-Orbitrap mass spectrometry was utilized in solid-state and semi-liquid colloidal state, involving the laser ablation at λex = 337.2 nm. The theoretical modeling and experimental design was based on chemical-, physico-chemical, physical and biological processes involving uranium species under environmental conditions. Therefore, the results reported are crucial for quality control and monitoring programs for assessment of radionuclide migration. They impact significantly the methodology for evaluation of human health risk from radioactive contamination. The study has importance for understanding the coordination and red-ox chemistry of uranium compounds as well. Due to the double nature of uranium between rare element and superconductivity like materials as well as variety of oxidation states ∈ (+1)-(+6), the there remain challenging areas for theoretical and experimental research, which are of significant importance for management of nuclear fuel cycles and waste storage. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fermentation and Hydrogen Metabolism Affect Uranium Reduction by Clostridia
Gao, Weimin; Francis, Arokiasamy J.
2013-01-01
Previously, it has been shown that not only is uranium reduction under fermentation condition common among clostridia species, but also the strains differed in the extent of their capability and the pH of the culture significantly affected uranium(VI) reduction. In this study, using HPLC and GC techniques, metabolic properties of those clostridial strains active in uranium reduction under fermentation conditions have been characterized and their effects on capability variance of uranium reduction discussed. Then, the relationship between hydrogen metabolism and uranium reduction has been further explored and the important role played by hydrogenase in uranium(VI) and iron(III) reduction by clostridiamore » demonstrated. When hydrogen was provided as the headspace gas, uranium(VI) reduction occurred in the presence of whole cells of clostridia. This is in contrast to that of nitrogen as the headspace gas. Without clostridia cells, hydrogen alone could not result in uranium(VI) reduction. In alignment with this observation, it was also found that either copper(II) addition or iron depletion in the medium could compromise uranium reduction by clostridia. In the end, a comprehensive model was proposed to explain uranium reduction by clostridia and its relationship to the overall metabolism especially hydrogen (H 2 ) production.« less
Incorporation of Uranium: II. Distribution of Uranium Absorbed through the Lungs and the Skin
Walinder, G.; Fries, B.; Billaudelle, U.
1967-01-01
In experiments on mice, rabbits, and piglets the distribution of uranium was studied at different times after exposure. Uranium was administered by inhalation (mice) and through the skin (rabbits and piglets). These investigations show that the uptakes of uranium in different organs of the three species are highly dependent on the amounts administered. There seems to be a saturation effect in the spleen and bone tissue whenever the uranium concentration in the blood exceeds a certain level. The effect in the kidney is completely different. If, in a series of animals, the quantity of uranium is continuously increased, the uptakes by the kidneys increase more rapidly than the quantities administered. This observation seems to be consistent with the toxic effects of uranium on the capillary system in the renal cortex. Polyphloretin phosphate, a compound which reduces permeability, was investigated with respect to its effect on the uptake of uranium deposited in skin wounds in rabbits and piglets. It significantly reduced the absorption of uranium, even from depots in deep wounds. The findings are discussed with reference to the routine screening of persons exposed to uranium at AB Atomenergi. Images PMID:6073090
28 CFR 79.43 - Proof of employment as a miner.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Service (PHS) in the course of any health studies of uranium workers during or including the period 1942...) Records of federally supported, health-related studies of uranium workers, including: (i) Studies conducted by Geno Saccamanno, M.D., St. Mary's Hospital, Grand Junction, Colorado; and (ii) Studies...
28 CFR 79.43 - Proof of employment as a miner.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Service (PHS) in the course of any health studies of uranium workers during or including the period 1942...) Records of federally supported, health-related studies of uranium workers, including: (i) Studies conducted by Geno Saccamanno, M.D., St. Mary's Hospital, Grand Junction, Colorado; and (ii) Studies...
28 CFR 79.43 - Proof of employment as a miner.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Service (PHS) in the course of any health studies of uranium workers during or including the period 1942...) Records of federally supported, health-related studies of uranium workers, including: (i) Studies conducted by Geno Saccamanno, M.D., St. Mary's Hospital, Grand Junction, Colorado; and (ii) Studies...
28 CFR 79.43 - Proof of employment as a miner.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Service (PHS) in the course of any health studies of uranium workers during or including the period 1942...) Records of federally supported, health-related studies of uranium workers, including: (i) Studies conducted by Geno Saccamanno, M.D., St. Mary's Hospital, Grand Junction, Colorado; and (ii) Studies...
28 CFR 79.43 - Proof of employment as a miner.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Service (PHS) in the course of any health studies of uranium workers during or including the period 1942...) Records of federally supported, health-related studies of uranium workers, including: (i) Studies conducted by Geno Saccamanno, M.D., St. Mary's Hospital, Grand Junction, Colorado; and (ii) Studies...
The History of Uranium Mining and the Navajo People
Brugge, Doug; Goble, Rob
2002-01-01
From World War II until 1971, the government was the sole purchaser of uranium ore in the United States. Uranium mining occurred mostly in the southwestern United States and drew many Native Americans and others into work in the mines and mills. Despite a long and well-developed understanding, based on the European experience earlier in the century, that uranium mining led to high rates of lung cancer, few protections were provided for US miners before 1962 and their adoption after that time was slow and incomplete. The resulting high rates of illness among miners led in 1990 to passage of the Radiation Exposure Compensation Act. PMID:12197966
Vanhoudt, Nathalie; Cuypers, Ann; Horemans, Nele; Remans, Tony; Opdenakker, Kelly; Smeets, Karen; Bello, Daniel Martinez; Havaux, Michel; Wannijn, Jean; Van Hees, May; Vangronsveld, Jaco; Vandenhove, Hildegarde
2011-06-01
The cellular redox balance seems an important modulator under heavy metal stress. While for other heavy metals these processes are well studied, oxidative stress related responses are also known to be triggered under uranium stress but information remains limited. This study aimed to further unravel the mechanisms by which plants respond to uranium stress. Seventeen-day-old Arabidopsis thaliana seedlings, grown on a modified Hoagland solution under controlled conditions, were exposed to 0, 0.1, 1, 10 and 100 μM uranium for 1, 3 and 7 days. While in Part I of this study oxidative stress related responses in the roots were discussed, this second Part II discusses oxidative stress related responses in the leaves and general conclusions drawn from the results of the roots and the leaves will be presented. As several responses were already visible following 1 day exposure, when uranium concentrations in the leaves were negligible, a root-to-shoot signaling system was suggested in which plastids could be important sensing sites. While lipid peroxidation, based on the amount of thiobarbituric acid reactive compounds, was observed after exposure to 100 μM uranium, affecting membrane structure and function, a transient concentration dependent response pattern was visible for lipoxygenase initiated lipid peroxidation. This transient character of uranium stress responses in leaves was emphasized by results of lipoxygenase (LOX2) and antioxidative enzyme transcript levels, enzyme capacities and glutathione concentrations both in time as with concentration. The ascorbate redox balance seemed an important modulator of uranium stress responses in the leaves as in addition to the previous transient responses, the total ascorbate concentration and ascorbate/dehydroascorbate redox balance increased in a concentration and time dependent manner. This could represent either a slow transient response or a stable increase with regard to plant acclimation to uranium stress. Copyright © 2011 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conway, R.; Wade, M.; Tharp, T.
1994-12-31
The first remediation of an Environmental Restoration (ER) Project site at Sandia National Laboratories (SNL) was successfully conducted in May and June 1994 at Technical Area II. The removal action involved four Uranium Calibration Pits (UCPs) filled with radioactive or hazardous materials. The concrete culvert pits were used to test and calibrate borehole radiometric logging tools for uranium exploration. The removal action consisted of excavating and containerizing the pit contents and contaminated soil beneath the culverts, removing the four culverts, and backfilling the excavation. Each UCP removal had unique complexities. Sixty 208-L drums of solid radioactive waste and eight 208-Lmore » drums of liquid hazardous waste were generated during the VCM. Two of the concrete culverts will be disposed as radioactive waste and two as solid waste. Uranium-238 was detected in UCP-2 ore material at 746 pci/g, and at 59 pci/g in UCP-1 silica sand. UCP-4 was empty; sludge from UCP-3 contained 122 mg/L (ppm) chromium.« less
Pyroprocessing of Fast Flux Test Facility Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.R. Westphal; G.L. Fredrickson; G.G. Galbreth
Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primarymore » fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.« less
Pyroprocessing of fast flux test facility nuclear fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westphal, B.R.; Wurth, L.A.; Fredrickson, G.L.
Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primarymore » fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electro-refined uranium products exceeded 99%. (authors)« less
Effect of pH and Pressure on Uranium Removal from Drinking Water Using NF/RO Membranes.
Schulte-Herbrüggen, Helfrid M A; Semião, Andrea J C; Chaurand, Perrine; Graham, Margaret C
2016-06-07
Groundwater is becoming an increasingly important drinking water source. However, the use of groundwater for potable purposes can lead to chronic human exposure to geogenic contaminants, for example, uranium. Nanofiltration (NF) and reverse osmosis (RO) processes are used for drinking water purification, and it is important to understand how contaminants interact with membranes since accumulation of contaminants to the membrane surface can lead to fouling, performance decline and possible breakthrough of contaminants. During the current study laboratory experiments were conducted using NF (TFC-SR2) and RO (BW30) membranes to establish the behavior of uranium across pH (3-10) and pressure (5-15 bar) ranges. The results showed that important determinants of uranium-membrane sorption interactions were (i) the uranium speciation (uranium species valence and size in relation to membrane surface charge and pore size) and (ii) concentration polarization, depending on the pH values. The results show that it is important to monitor sorption of uranium to membranes, which is controlled by pH and concentration polarization, and, if necessary, adjust those parameters controlling uranium sorption.
Uranium(VI) interactions with mackinawite in the presence and absence of bicarbonate and oxygen.
Gallegos, Tanya J; Fuller, Christopher C; Webb, Samuel M; Betterton, William
2013-07-02
Mackinawite, Fe(II)S, samples loaded with uranium (10(-5), 10(-4), and 10(-3) mol U/g FeS) at pH 5, 7, and 9, were characterized using X-ray absorption spectroscopy and X-ray diffraction to determine the effects of pH, bicarbonate, and oxidation on uptake. Under anoxic conditions, a 5 g/L suspension of mackinawite lowered 5 × 10(-5) M uranium(VI) to below 30 ppb (1.26 × 10(-7) M) U. Between 82 and 88% of the uranium removed from solution by mackinawite was U(IV) and was nearly completely reduced to U(IV) when 0.012 M bicarbonate was added. Near-neighbor coordination consisting of uranium-oxygen and uranium-uranium distances indicates the formation of uraninite in the presence and absence of bicarbonate, suggesting reductive precipitation as the dominant removal mechanism. Following equilibration in air, mackinawite was oxidized to mainly goethite and sulfur and about 76% of U(IV) was reoxidized to U(VI) with coordination of uranium to axial and equatorial oxygen, similar to uranyl. Additionally, uranium-iron distances, typical of coprecipitation of uranium with iron oxides, and uranium-sulfur distances indicating bidentate coordination of U(VI) to sulfate were evident. The affinity of mackinawite and its oxidation products for U(VI) provides impetus for further study of mackinawite as a potential reactive medium for remediation of uranium-contaminated water.
Why Has It Taken So Long to Address the Problems Created by Uranium Mining in the Navajo Nation?
Brugge, Doug
2016-02-01
Following the start of uranium mining after World War II, progress toward addressing the hazards it created for workers and nearby communities was slow, taking many decades. This essay asks why it took so long and suggests several factors that might have contributed. © The Author(s) 2016.
Operational Range Assessment Program (ORAP) Phase II Overview for Active Installations
2011-05-01
Dissolved Metals by EPA 1638M • Isotopic Uranium by EML A-01-R Mod Sediment Analysis • None Benthic Macroinvertebrates • Diversity Indices...Metals by EPA 200.8 • Dissolved Metals by EPA 200.8 (if turbid) • Isotopic Uranium by EML A-01- R Mod (if total U is > action limit) Groundwater
Uranium nitride fuel fabrication for SP-100 reactors
NASA Technical Reports Server (NTRS)
Mason, Richard E.; Chidester, Kenneth M.; Hoth, Carl W.; Matthews, Bruce R.
1987-01-01
Fuel pins of uranium mononitride clad in Nb-1 percent Zr were fabricated for irradiation tests in EBR-II. Laboratory scale process parameters to synthesize UN powders and fabricate UN pellets were developed. Uranium mononitride was prepared by converting UO2 to UN. Fuel pellets were prepared by communition of UN briquettes, uniaxial pressing, and high temperature sintering. Techniques for machining, cleaning, and welding Nb-1 percent Zr cladding components were developed. End caps were electron beam welded to the tubing. Helium back-fill holes were sealed with a laser weld.
Uranium nitride fuel fabrication for SP-100 reactors
NASA Astrophysics Data System (ADS)
Mason, Richard E.; Chidester, Kenneth M.; Hoth, Carl W.; Matthews, Bruce R.
Fuel pins of uranium mononitride clad in Nb-1 percent Zr were fabricated for irradiation tests in EBR-II. Laboratory scale process parameters to synthesize UN powders and fabricate UN pellets were developed. Uranium mononitride was prepared by converting UO2 to UN. Fuel pellets were prepared by communition of UN briquettes, uniaxial pressing, and high temperature sintering. Techniques for machining, cleaning, and welding Nb-1 percent Zr cladding components were developed. End caps were electron beam welded to the tubing. Helium back-fill holes were sealed with a laser weld.
Uranium in groundwater--Fertilizers versus geogenic sources.
Liesch, Tanja; Hinrichsen, Sören; Goldscheider, Nico
2015-12-01
Due to its radiological and toxicological properties even at low concentration levels, uranium is increasingly recognized as relevant contaminant in drinking water from aquifers. Uranium originates from different sources, including natural or geogenic, mining and industrial activities, and fertilizers in agriculture. The goal of this study was to obtain insights into the origin of uranium in groundwater while differentiating between geogenic sources and fertilizers. A literature review concerning the sources and geochemical processes affecting the occurrence and distribution of uranium in the lithosphere, pedosphere and hydrosphere provided the background for the evaluation of data on uranium in groundwater at regional scale. The state of Baden-Württemberg, Germany, was selected for this study, because of its hydrogeological and land-use diversity, and for reasons of data availability. Uranium and other parameters from N=1935 groundwater monitoring sites were analyzed statistically and geospatially. Results show that (i) 1.6% of all water samples exceed the German legal limit for drinking water (10 μg/L); (ii) The range and spatial distribution of uranium and occasional peak values seem to be related to geogenic sources; (iii) There is a clear relation between agricultural land-use and low-level uranium concentrations, indicating that fertilizers generate a measurable but low background of uranium in groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.
Uranium(VI) interactions with mackinawite in the presence and absence of bicarbonate and oxygen
Gallegos, Tanya J.; Fuller, Christopher C.; Webb, Samuel M.; Betterton, William J.
2013-01-01
Mackinawite, Fe(II)S, samples loaded with uranium (10-5, 10-4, and 10-3 mol U/g FeS) at pH 5, 7, and 9, were characterized using X-ray absorption spectroscopy and X-ray diffraction to determine the effects of pH, bicarbonate, and oxidation on uptake. Under anoxic conditions, a 5 g/L suspension of mackinawite lowered 5 × 10-5 M uranium(VI) to below 30 ppb (1.26 × 10-7 M) U. Between 82 and 88% of the uranium removed from solution by mackinawite was U(IV) and was nearly completely reduced to U(IV) when 0.012 M bicarbonate was added. Near-neighbor coordination consisting of uranium–oxygen and uranium-uranium distances indicates the formation of uraninite in the presence and absence of bicarbonate, suggesting reductive precipitation as the dominant removal mechanism. Following equilibration in air, mackinawite was oxidized to mainly goethite and sulfur and about 76% of U(IV) was reoxidized to U(VI) with coordination of uranium to axial and equatorial oxygen, similar to uranyl. Additionally, uranium-iron distances, typical of coprecipitation of uranium with iron oxides, and uranium-sulfur distances indicating bidentate coordination of U(VI) to sulfate were evident. The affinity of mackinawite and its oxidation products for U(VI) provides impetus for further study of mackinawite as a potential reactive medium for remediation of uranium-contaminated water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan
2013-10-24
Uranium bioremediation has emerged as a potential strategy of cleanup of radionuclear contamination worldwide. An integrated geochemical & microbial community model is a promising approach to predict and provide insights into the bioremediation of a complicated natural subsurface. In this study, an integrated column-scale model of uranium bioremediation was developed, taking into account long-term interactions between biotic and abiotic processes. It is also combined with a comprehensive thermodynamic analysis to track the fate and cycling of biogenic species. As compared with other bioremediation models, the model increases the resolution of the connection of microbial community to geochemistry and establishes directmore » quantitative correlation between overall community evolution and geochemical variation, thereby accurately predicting the community dynamics under different sedimentary conditions. The thermodynamic analysis examined a recently identified homogeneous reduction of U(VI) by Fe(II) under dynamic sedimentary conditions across time and space. It shows that the biogenic Fe(II) from Geobacter metabolism can be removed rapidly by the biogenic sulphide from sulfate reducer metabolism, hence constituting one of the reasons that make the abiotic U(VI) reduction thermodynamically infeasible in the subsurface. Further analysis indicates that much higher influent concentrations of both Fe(II) and U(VI) than normal are required to for abiotic U(VI) reduction to be thermodynamically feasible, suggesting that the abiotic reduction cannot be an alternative to the biotic reduction in the remediation of uranium contaminated groundwater.« less
78 FR 66898 - Low Enriched Uranium From France: Final Results of Changed Circumstances Review
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-07
... in U.S. customs territory, and (ii) are re-exported within eighteen (18) months of entry of the low... extend the deadline for re-exportation of this sole entry of low-enriched uranium. The Department determines that the deadline for re-exportation of this sole entry is November 1, 2015, and that this will be...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1977-11-01
Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Gunnison, Colorado. The Phase II - Title I services include the preparation of topographic measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas release from the 0.5 million tons of tailings at the Gunnison site constitutes the most significant environmental impact, although windblownmore » tailings and external gamma radiation are also factors. The nine alternative actions presented range from millsite decontamination (Option I), to adding various depths of stabilization cover material (Options II and III), to removal of the tailings to long-term storage sites and decontamination of the present site (Options IV through IX). Cost estimates for the nine options range from $480,000 to $5,890,000. Reprocessing the tailings for uranium does not appear to be economically attractive at present.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladshaw, Austin; Kuo, Li-Jung; Strivens, Jonathan
2017-02-08
Passive adsorption using amidoxime-based polymeric adsorbents is being developed for uranium recovery from seawater. The local oceanic current velocity where the adsorbent is deployed is a key variable in determining locations that will maximize uranium adsorption rates. Two independent experimental approaches using flow-through columns and recirculating flumes were used to assess the influence of linear velocity on uranium uptake kinetics by the adsorbent. Little to no difference was observed in the uranium adsorption rate vs. linear velocity for seawater exposure in flow-through columns. In contrast, adsorption results from seawater exposure in a recirculating flume showed a nearly linear trend withmore » current velocity. The difference in adsorbent performance between columns and flume can be attributed to (i) flow resistance provided by the adsorbent braid in the flume and (ii) enhancement in braid movement (fluttering) with increasing linear velocity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladshaw, Austin; Kuo, Li-Jung; Strivens, Jonathan
2017-02-17
Passive adsorption using amidoxime-based polymeric adsorbents is being developed for uranium recovery from seawater. The local oceanic current velocity where the adsorbent is deployed is a key variable in determining locations that will maximize uranium adsorption rates. Two independent experimental approaches using flow-through columns and recirculating flumes were used to assess the influence of linear velocity on uranium uptake kinetics by the adsorbent. Little to no difference was observed in the uranium adsorption rate vs. linear velocity for seawater exposure in flow-through columns. In contrast, adsorption results from seawater exposure in a recirculating flume showed a nearly linear trend withmore » current velocity. The difference in adsorbent performance between columns and flume can be attributed to (i) flow resistance provided by the adsorbent braid in the flume and (ii) enhancement in braid movement (fluttering) with increasing linear velocity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ribas, Antonio G.S.; Abrao, Alcidio
1970-05-15
This paper describes the studies of decontamination of thorium present as impurity in uranyl nitrate solutions, which was carried out through strong cationic resin where the thorium was partially retained. Then, the final decontamination was performed percolating the uranyl solution on a second cationic resin, after complexation of thorium (and other impurities) with EDTA. The thorium decontamination and the uranium retention were studied as a function of EDTA/U ratio, uranium concentration and acidity of the influent uranyl nitrate. The elution conditions were also studied as a function of eluent flow rate, concentration and acidity. Several tables and graphs showing themore » final results are included. (tr-auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements. DOE manages six UMTRCA Title II disposal sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) established at Title 10 Code of Federal Regulations Part 40.28. Reclamationmore » and site transition activities continue at other sites, and DOE ultimately expects to manage approximately 27 Title II disposal sites. Long-term surveillance and maintenance activities and services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective action; and performing administrative, records, stakeholder services, and other regulatory functions. Annual site inspections and monitoring are conducted in accordance with site-specific long-term surveillance plans (LTSPs) and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up inspections, or corrective action. LTSPs and site compliance reports are available online at http://www.lm.doe.gov« less
Swarzenski, P.W.; McKee, B.A.; Skei, J.M.; Todd, J.F.
1999-01-01
During August 1995, the vertical concentration profile of dissolved and particulate uranium exhibited strong non-conservative characteristics in the upper 30 m of Framvaren Fjord. There was a pronounced peak in both particulate (> 0.2 ??m; 1.09 nM) and dissolved (< 0.2 ??m; 17.06 nM) uranium in the finely stratified waters at the O2/H2S interface which is positioned well within the euphotic zone at about 20-21 m. Such concentration maxima at the redox boundary are also observed for dissolved organic carbon (DEC), Sr and Ba. Dissolved U levels seen in the water column from 18 m down to 30 m exceeded the high salinity (salinity = 35) U concentrations (13.63 ?? 0.84 nM; Chen, J.H., Edwards, R.L., Wasserburg, G.L., 1986. 238U, 234U and 232Th in seawater. Earth Planet Sci. Lett. 80, 241-251.) observed uniformly in the open ocean. A prolific population of S microbes (e.g., Chromatium, Chlorobium sp.) flourishes at the O2/H2S interface. The source of elevated U at the redox boundary must be due to microbial uptake and subsequent release processes rather than dilution from oceanic uranium. Uranium oxidation state determinations in waters from 1, 22 and 30 m depth reveal that reduced U(IV) is not present in significant abundance, and that the chemical and/or biological reduction of hexavalent uranium is largely inhibited. Our results suggest that U and other trace constituents such as DOC, Sr, Ba, Fe(II), Mn(II) are greatly modified by direct and indirect microbial transformation reactions which are most concentrated across the redox transition zone in Framvaren Fjord.
Sorption behavior of uranium(VI) on a biotite mineral
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idemitsu, K.; Obata, K.; Furuya, H.
1995-12-31
Biotite has the most important role for the sorption of radionuclides in granitic rocks. Experiments on the sorption of uranium(VI) on biotite were conducted to understand the fundamental controls on uranium sorption on biotite mineral, including the effects of pH and uranium concentration in solution. Biotite powder (mesh 32--60) were washed with 1N HCl for a week and were rinsed twice with deionized water for a week. This HCl treatment was necessary to avoid the effects by other minerals. The agreement between surface adsorption coefficient, Ka, of both biotites with and without HCl treatment was within one order of magnitude.more » The peak Ka value was in the range of 0.1 to 0.01 cm{sup 3}/cm{sup 2} around pH 6. A comparison of aqueous uranium speciations and sorption results indicates that neutral uranyl hydroxide could be an important species sorbed on the biotite. Sequential desorption experiments with KCl and HCl solutions were also carried out after sorption experiments to investigate sorption forms of uranium. Approximately 20% of uranium in solution were sorbed on the biotite as an exchangeable ion. The fraction of exchangeable uranium had a little dependence on pH. The other uranium could not be extracted even by 6N HCl solution. It is possible that most of the uranium could be precipitated as U(IV) via Fe(II) reduction on the biotite surface.« less
Process for the extraction of technetium from uranium
Gong, Cynthia-May S.; Poineau, Frederic; Czerwinski, Kenneth R.
2010-12-21
A spent fuel reprocessing method contacts an aqueous solution containing Technetium(V) and uranyl with an acidic solution comprising hydroxylamine hydrochloride or acetohydroxamic acid to reduce Tc(V) to Tc(II, and then extracts the uranyl with an organic phase, leaving technetium(II) in aqueous solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-11-01
Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Durango, Colorado. The Phase II, Title I services include the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 1.555 million tons of tailings at the Durango site constitutesmore » the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The eight alternative actions presented range from vegetative stabilization (Option I), to contouring and stabilizing in-place with varying depths of cover material (Options II and III), to removal to an isolated long-term disposal site (Options V to VIII). All options include remedial action costs for offsite locations where tailings have been placed. Costs estimated for the eight options range from $4,340,000 to $13,590,000. Reprocessing the tailings for uranium is sufficiently economically attractive to justify reprocessing in conjunction with each of the options.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-11-01
Ford, Bacon and Davis Utah Inc. has performed an engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Durango, Colorado. The Phase II, Title I services include the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and other radium-contaminated materials, the evaluation of resulting radiation exposures of individuals and nearby populations, the investigation of site hydrology and meteorology and the evaluation and costing of alternative corrective actions. Radon gas release from the 1.555 million tons of tailings at the Durango site constitutesmore » the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The eight alternative actions presented range from vegetative stabilization (Option I), to contouring and stabilizing in-place with varying depths of cover material (Options II and III), to removal to an isolated long-term disposal site (Options V to VIII). All options include remedial action costs for offsite locations where tailings have been placed. Costs estimated for the eight options range from $4,340,000 to $13,590,000. Reprocessing the tailings for uranium is sufficiently economically attractive to justify reprocessing in conjunction with each of the options.« less
Scarborough, Robert Bryan; Wilt, Jan Carol
1979-01-01
This study focuses attention on Cenozoic sedimentary rocks in the Basin and Range Province of Arizona. The known occurrences of uranium and anomalous radioactivity in these rocks are associated with sediments that accumulated in a low energy environment characterized by fine-grained clastics, including important tuffaceous materials, and carbonate rocks. Most uranium occurrences, in these rocks appear to be stratabound. Emphasis was placed on those sedimentary materials that pre-date the late Cenozoic Basin and Range disturbance. They are deformed and crop out on pedimented range blocks and along the province interface with the Transition Zone. Three tentative age groups are recognized: Group I - Oligocene, pre-22 m.y., Group II - early Miocene - 22 m.y. - 16 m.y., and Group III - middle Miocene - 16 m.y. to 13--10 m.y. Regionally, these three groups contain both coarse to fine-grained red clastics and low energy lighter colored 'lacustrine' phases. Each of the three groups has been the object of uranium exploration. Group II, the early Miocene strata, embraces the Anderson Mine - Artillery region host rocks and also the New River - Cave Creek early Miocene beds-along the boundary with the Transition Zone. These three groups of rocks have been tectonically deformed to the extent that original basins of deposition cannot yet be reconstructed. However, they were considerably more extensive in size than the late Cenozoic basins the origin of which deformed the former. Group II rocks are judged to be of prime interest because of: (1) the development and preservation of organic matter in varying lithologies, (2) apparent contemporaneity with silicic volcanic centers, (3) influence of Precambrian crystalline rocks, and (4) relative outcrop continuity near the stable Transition Zone. The Transition Zone, especially along its boundary with the Basin and Range Province, needs additional geologic investigation, especially as regards the depositional continuity of Group II sediment s.
Sert, Şenol
2013-07-01
A comparison method for the determination (without sample pre-concentration) of uranium in ore by inductively coupled plasma optical emission spectrometry (ICP-OES) has been performed. The experiments were conducted using three procedures: matrix matching, plasma optimization, and internal standardization for three emission lines of uranium. Three wavelengths of Sm were tested as internal standard for the internal standardization method. The robust conditions were evaluated using applied radiofrequency power, nebulizer argon gas flow rate, and sample uptake flow rate by considering the intensity ratio of the Mg(II) 280.270 nm and Mg(I) 285.213 nm lines. Analytical characterization of method was assessed by limit of detection and relative standard deviation values. The certificated reference soil sample IAEA S-8 was analyzed, and the uranium determination at 367.007 nm with internal standardization using Sm at 359.260 nm has been shown to improve accuracy compared with other methods. The developed method was used for real uranium ore sample analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magoulas, V. E.
Savannah River National Laboratory (SRNL) was requested to evaluate the potential to receive and process the Idaho National Laboratory (INL) uranium (U) recovered from the Experimental Breeder Reactor II (EBR-II) driver fuel through the Savannah River Site’s (SRS) H-Canyon as a way to disposition the material. INL recovers the uranium from the sodium bonded metallic fuel irradiated in the EBR-II reactor using an electrorefining process. There were two compositions of EBR-II driver fuel. The early generation fuel was U-5Fs, which consisted of 95% U metal alloyed with 5% noble metal elements “fissium” (2.5% molybdenum, 2.0% ruthenium, 0.3% rhodium, 0.1% palladium,more » and 0.1% zirconium), while the later generation was U-10Zr which was 90% U metal alloyed with 10% zirconium. A potential concern during the H-Canyon nitric acid dissolution process of the U metal containing zirconium (Zr) is the explosive behavior that has been reported for alloys of these materials. For this reason, this evaluation was focused on the ability to process the lower Zr content materials, the U-5Fs material.« less
Hybrid interferometric/dispersive atomic spectroscopy of laser-induced uranium plasma
Morgan, Phyllis K.; Scott, Jill R.; Jovanovic, Igor
2015-12-19
An established optical emission spectroscopy technique, laser-induced breakdown spectroscopy (LIBS), holds promise for detection and rapid analysis of elements relevant for nuclear safeguards, nonproliferation, and nuclear power, including the measurement of isotope ratios. One such important application of LIBS is the measurement of uranium enrichment ( 235U/ 238U), which requires high spectral resolution (e.g., 25 pm for the 424.4 nm U II line). High-resolution dispersive spectrometers necessary for such measurements are typically bulky and expensive. We demonstrate the use of an alternative measurement approach, which is based on an inexpensive and compact Fabry–Perot etalon integrated with a low to moderatemore » resolution Czerny–Turner spectrometer, to achieve the resolution needed for isotope selectivity of LIBS of uranium in ambient air. Furthermore, spectral line widths of ~ 10 pm have been measured at a center wavelength 424.437 nm, clearly discriminating the natural from the highly enriched uranium.« less
NASA Astrophysics Data System (ADS)
Serezhkin, V. N.; Vologzhanina, A. V.; Pushkin, D. V.; Astashkina, D. A.; Savchenkov, A. V.; Serezhkina, L. B.
2017-09-01
The reaction of aqueous solutions of uranyl perchlorate with selected organic amides was studied in the dark and under the sunlight. The complexes [UVIO2(C3H7NO)5](ClO4)2 ( I) and [UIV(C3H8N2O)4(H2O)4](ClO4)4 ( II), where C3H7NO is N,N-dimethylformamide ( Dmfa) and C3H8N2O is N,N-dimethylcarbamide ( a-Dmur), were studied by X-ray diffraction. Complex II and the complex UIV( s-Dmur)4(H2O)4(ClO4)4 ( III), where s-Dmur is N,N'-dimethylcarbamide, were studied by IR spectroscopy. Crystals I and II are composed of mononuclear [UO2( Dmfa)5]2+ and [U( Dmur)4(H2O)4]4+ groups as uranium-containing structural units belonging to the crystal-chemical groups AM 7 1 ( A = UVI, M 1 = O2- and Dmfa) and AM 8 1 ( A = UIV, M 1 = Dmur and H2O) of uranium complexes, respectively. The mononuclear uranium- containing complexes in the crystals of U(IV) and U(VI) perchlorates were found to obey the 14 neighbors rule.
Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten
2015-12-01
To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.
Milacic, Snezana; Simic, Jadranko
2009-05-01
This study investigated health risks in workers residing and working in terrains contaminated by low ionizing radiation doses which originated from ammunition containing depleted uranium (DU). The studied population was composed of two test groups (T-I, T-II) who were occasionally exposed to DU, and two referent (R-I, R-II) groups not exposed at any time to DU. All of them were evaluated for the following: complete clinical examination and blood count, presence of immature forms and blasts, leukocyte alkaline phosphatase activity and cytogenetic tests. The probability of onset of the characteristic complete biomarkers--chromosomal aberrations, was analyzed using logarithmic function of the Poisson regression. The estimated function of the density of probabilities of Poisson distribution of the chromosomal aberrations in the test group T-II was drastically different from the corresponding distribution of the referent group R-I and to a somewhat lesser extent from the group R-II; Wilcoxon test exactly confirms the presence of a significant difference between the reference group R-II and test group T-II, p < 0.05. The damages to chromosomes and cells were highest in the test group T-II of workers additionally occupationally exposed to DU. The group of workers T-I, who had been exposed to DU working on contaminated terrain, have had certain risks of cell and chromosome damages, and that risk was not greater than the risk to the referent group R-II of workers occupationally exposed to ionizing radiation.
Uranium Biomineralization by Natural Microbial Phosphatase Activities in the Subsurface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobecky, Patricia A.
2015-04-06
In this project, inter-disciplinary research activities were conducted in collaboration among investigators at The University of Alabama (UA), Georgia Institute of Technology (GT), Lawrence Berkeley National Laboratory (LBNL), Brookhaven National Laboratory (BNL), the DOE Joint Genome Institute (JGI), and the Stanford Synchrotron Radiation Light source (SSRL) to: (i) confirm that phosphatase activities of subsurface bacteria in Area 2 and 3 from the Oak Ridge Field Research Center result in solid U-phosphate precipitation in aerobic and anaerobic conditions; (ii) investigate the eventual competition between uranium biomineralization via U-phosphate precipitation and uranium bioreduction; (iii) determine subsurface microbial community structure changes of Areamore » 2 soils following organophosphate amendments; (iv) obtain the complete genome sequences of the Rahnella sp. Y9-602 and the type-strain Rahnella aquatilis ATCC 33071 isolated from these soils; (v) determine if polyphosphate accumulation and phytate hydrolysis can be used to promote U(VI) biomineralization in subsurface sediments; (vi) characterize the effect of uranium on phytate hydrolysis by a new microorganism isolated from uranium-contaminated sediments; (vii) utilize positron-emission tomography to label and track metabolically-active bacteria in soil columns, and (viii) study the stability of the uranium phosphate mineral product. Microarray analyses and mineral precipitation characterizations were conducted in collaboration with DOE SBR-funded investigators at LBNL. Thus, microbial phosphorus metabolism has been shown to have a contributing role to uranium immobilization in the subsurface.« less
NASA Astrophysics Data System (ADS)
Scheibe, T. D.; Fang, Y.; Roden, E. E.; Brooks, S. C.; Chien, Y.; Murray, C. J.
2004-05-01
Uranium is a significant groundwater contaminant at many former mining and processing sites. In its oxidized state, U(VI) is soluble and mobile, although strongly retarded by sorption to natural iron oxide surfaces. It has been demonstrated that commonly occurring subsurface microorganisms can reduce uranium and other metals when provided sufficient carbon as an electron donor. Reduced U(IV) precipitates as a solid phase; therefore biostimulation provides a potential strategy for in situ removal from contaminated groundwater. However, these biogeochemical reactions occur in the context of a complex heterogeneous environment in which flow and transport dynamics and abiotic reactions can have significant impacts. We have constructed a high-resolution numerical model of groundwater flow and multicomponent reactive transport that incorporates heterogeneity in hydraulic conductivity and initial Fe(III) distribution, microbial growth and transport dynamics, and effects of sorption or precipitation of biogenic Fe(II) on availability of Fe(III) as an electron acceptor. The biogeochemical reaction models and their parameters are based on laboratory experiments; the heterogeneous field-scale property distributions are based on interpretations of geophysical and other observations at a highly characterized field site. The model is being run in Monte Carlo mode to examine the controls that these factors exert on 1) the initial distribution of sorbed uranium in an oxic environment and 2) the reduction and immobilization of uranium upon introduction of a soluble electron donor.
Garboś, Sławomir; Święcicka, Dorota
2015-11-01
The random daytime (RDT) sampling method was used for the first time in the assessment of average weekly exposure to uranium through drinking water in a large water supply zone. Data set of uranium concentrations determined in 106 RDT samples collected in three runs from the water supply zone in Wroclaw (Poland), cannot be simply described by normal or log-normal distributions. Therefore, a numerical method designed for the detection and calculation of bimodal distribution was applied. The extracted two distributions containing data from the summer season of 2011 and the winter season of 2012 (nI=72) and from the summer season of 2013 (nII=34) allowed to estimate means of U concentrations in drinking water: 0.947 μg/L and 1.23 μg/L, respectively. As the removal efficiency of uranium during applied treatment process is negligible, the effect of increase in uranium concentration can be explained by higher U concentration in the surface-infiltration water used for the production of drinking water. During the summer season of 2013, heavy rains were observed in Lower Silesia region, causing floods over the territory of the entire region. Fluctuations in uranium concentrations in surface-infiltration water can be attributed to releases of uranium from specific sources - migration from phosphate fertilizers and leaching from mineral deposits. Thus, exposure to uranium through drinking water may increase during extreme rainfall events. The average chronic weekly intakes of uranium through drinking water, estimated on the basis of central values of the extracted normal distributions, accounted for 3.2% and 4.1% of tolerable weekly intake. Copyright © 2015 Elsevier Ltd. All rights reserved.
Subsurface Conditions Controlling Uranium Incorporation in Iron Oxides: A Redox Stable Sink
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fendorf, Scott
2016-04-05
Toxic metals and radionuclides throughout the U.S. Department of Energy Complex pose a serious threat to ecosystems and to human health. Of particular concern is the redox-sensitive radionuclide uranium, which is classified as a priority pollutant in soils and groundwaters at most DOE sites owing to its large inventory, its health risks, and its mobility with respect to primary waste sources. The goal of this research was to contribute to the long-term mission of the Subsurface Biogeochemistry Program by determining reactions of uranium with iron (hydr)oxides that lead to long-term stabilization of this pervasive contaminant. The research objectives of thismore » project were thus to (1) identify the (bio)geochemical conditions, including those of the solid-phase, promoting uranium incorporation in Fe (hydr)oxides, (2) determine the magnitude of uranium incorporation under a variety of relevant subsurface conditions in order to quantify the importance of this pathway when in competition with reduction or adsorption; (3) identify the mechanism(s) of U(VI/V) incorporation in Fe (hydr)oxides; and (4) determine the stability of these phases under different biogeochemical (inclusive of redox) conditions. Our research demonstrates that redox transformations are capable of achieving U incorporation into goethite at ambient temperatures, and that this transformation occurs within days at U and Fe(II) concentrations that are common in subsurface geochemical environments with natural ferrihydrites—inclusive of those with natural impurities. Increasing Fe(II) or U concentration, or initial pH, made U(VI) reduction to U(IV) a more competitive sequestration pathway in this system, presumably by increasing the relative rate of U reduction. Uranium concentrations commonly found in contaminated subsurface environments are often on the order of 1-10 μM, and groundwater Fe(II) concentrations can reach exceed 1 mM in reduced zones of the subsurface. The redox-driven U(V) incorporation mechanism may help to explain U retention in some geologic materials, improving our understanding of U-based geochronology and the redox status of ancient geochemical environments. Additionally, U(VI) may be incorporated within silicate minerals though encapsulation of U-bearing iron oxides, leading to a redox stable solid. Our research detailing previously unrecognized mechanism of U incorporation within sediment minerals may even lead to new approaches for in situ contamination remediation techniques, and will help refine models of U fate and transport in reduced subsurface zones.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houston, R.S.; Karlstrom, K.E.
1979-11-01
Uranium has been discovered in fluvial quartz-pebble conglomerates in most of the Precambrian shield areas of the world, including the Canadian, African, South American, Indian, Baltic, and Australian shields. Occurrences in these and other areas are shown. Two of these occurrences, the Huronian supergroup of Canada and the Witwatersrand deposit of South Africa contain 20 to 30 percent of the planet's known uranium reserves. Thus it is critical that we understand the origin of these deposits and develop exploration models that can aid in finding new deposits. Inasmuch as these uranium-bearing conglomerates are confined almost entirely to rocks of Precambrianmore » age, Part I of this review begins with a discussion of Precambrian geology as it applies to the conglomerates. This is followed by a discussion of genetic concepts, a discussion of unresolved problems, and finally a suggested exploration model. Part II summarizes known and potential occurrences of Precambrian fossil placers in the world and evaluates them in terms of the suggested exploration model. Part III discusses the potential for important Precambrian fossil-placer uranium deposits in the United States and includes suggestions that may be helpful in establishing an exploration program in this country. Part III also brings together new (1975-1978) data on uranium occurrences in the Precambrian of the Wyoming Province. Part IV is a complete bibliography of Precambrian fossil placers, divided according to geographical areas. In total, this paper is designed to be a comprehensive review of Precambrian uranium-bearing fossil placers which will be of use to uranium explorationists and to students of Precambrian geology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, J.; Yuan, B.; Jin, M.
2012-07-01
Three-dimensional neutronics optimization calculations were performed to analyse the parameters of Tritium Breeding Ratio (TBR) and maximum average Power Density (PDmax) in a helium-cooled multi-functional experimental fusion-fission hybrid reactor named FDS (Fusion-Driven hybrid System)-MFX (Multi-Functional experimental) blanket. Three-stage tests will be carried out successively, in which the tritium breeding blanket, uranium-fueled blanket and spent-fuel-fueled blanket will be utilized respectively. In this contribution, the most significant and main goal of the FDS-MFX blanket is to achieve the PDmax of about 100 MW/m3 with self-sustaining tritium (TBR {>=} 1.05) based on the second-stage test with uranium-fueled blanket to check and validate themore » demonstrator reactor blanket relevant technologies based on the viable fusion and fission technologies. Four different enriched uranium materials were taken into account to evaluate PDmax in subcritical blanket: (i) natural uranium, (ii) 3.2% enriched uranium, (iii) 19.75% enriched uranium, and (iv) 64.4% enriched uranium carbide. These calculations and analyses were performed using a home-developed code VisualBUS and Hybrid Evaluated Nuclear Data Library (HENDL). The results showed that the performance of the blanket loaded with 64.4% enriched uranium was the most attractive and it could be promising to effectively obtain tritium self-sufficiency (TBR-1.05) and a high maximum average power density ({approx}100 MW/m{sup 3}) when the blanket was loaded with the mass of {sup 235}U about 1 ton. (authors)« less
NASA Astrophysics Data System (ADS)
Wu, Liping; Lin, Xiaoyan; Zhou, Xingbao; Luo, Xuegang
2016-10-01
A novel dual functional microsphere adsorbent of alginate/carboxymethyl cellulose sodium composite loaded with calcium and aluminum (SA/CMC-Ca-Al) is prepared by an injection device to remove fluoride and uranium, respectively, from fluoro-uranium mixed aqueous solution. Batch experiments are performed at different conditions: pH, temperature, initial concentration and contact time. The results show that the maximum adsorption amount for fluoride is 35.98 mg/g at pH 2.0, 298.15 K concentration 100 mg/L, while that for uranium is 101.76 mg/g at pH 4.0, 298.15 K concentration 100 mg/L. Both of the adsorption process could be well described by Langmuir model. The adsorption kinetic data is fitted well with pseudo-first-order model for uranium and pseudo-second-order model for fluoride. Thermodynamic parameters are also evaluated, indicating that the adsorption of uranium on SA/CMC-Ca-Al is a spontaneous and exothermic process, while the removal of fluoride is non-spontaneous and endothermic process. The mechanism of modification and adsorption process on SA/CMC-Ca-Al is characterized by FT-IR, SEM, EDX and XPS. The results show that Ca (II) and Al (III) are loaded on SA/CMC through ion-exchange of sodium of SA/CMC. The coordination reaction and ion-exchange happen during the adsorption process between SA/CMC-Ca-Al and uranium, fluoride. Results suggest that the SA/CMC-Ca-Al adsorbent has a great potential in removing uranium and fluoride from aqueous solution.
The health effects of depleted uranium munitions: a summary.
2002-06-01
There has been a substantial amount of public discussion on the health effects of the use of depleted uranium (DU) munitions. In response to this concern the Royal Society set up an independent, expert working group to investigate the health effects of DU munitions. The Royal Society has now produced two reports, and this summary covering the key conclusions and recommendations from both reports. The part I report considered the increased risks of radiation-induced cancer from exposures to DU on the battlefield. Part II dealt with the risks from the chemical toxicity of uranium, non-malignant radiation effects from DU intakes, the long-term environmental consequences of the deployment of DU munitions and responses to part I including issues arising at a public meeting to discuss the part I report.
NASA Astrophysics Data System (ADS)
Israelsson, A.; Eriksson, M.; Pettersson, H. B. L.
2015-06-01
In the present study the distribution of uranium in single human hair shafts has been evaluated using two synchrotron radiation (SR) based micro X-ray fluorescence techniques; SR μ-XRF and confocal SR μ-XRF. The hair shafts originated from persons that have been exposed to elevated uranium concentrations. Two different groups have been studied, i) workers at a nuclear fuel fabrication factory, exposed mainly by inhalation and ii) owners of drilled bedrock wells exposed by ingestion of water. The measurements were carried out on the FLUO beamline at the synchrotron radiation facility ANKA, Karlsruhe. The experiment was optimized to detect U with a beam size of 6.8 μm × 3 μm beam focus allowing detection down to ppb levels of U in 10 s (SR μ-XRF setup) and 70 s (SR confocal μ-XRF setup) measurements. It was found that the uranium was present in a 10-15 μm peripheral layer of the hair shafts for both groups studied. Furthermore, potential external hair contamination was studied by scanning of unwashed hair shafts from the workers. Sites of very high uranium signal were identified as particles containing uranium. Such particles, were also seen in complementary analyses using variable pressure electron microscope coupled with energy dispersive X-ray analyzer (ESEM-EDX). However, the particles were not visible in washed hair shafts. These findings can further increase the understanding of uranium excretion in hair and its potential use as a biomonitor.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-02
... in U.S. customs territory, and (ii) are re-exported within eighteen (18) months of entry of the LEU... amend the scope of the order and to extend the deadline for the re-exportation of this sole LEU entry... transporter(s) while in U.S. customs territory, and (ii) are re-exported within eighteen (18) months of entry...
Corrosion Evaluation of RERTR Uranium Molybdenum Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
A K Wertsching
2012-09-01
As part of the National Nuclear Security Agency (NNSA) mandate to replace the use of highly enriched uranium (HEU) fuel for low enriched uranium (LEU) fuel, research into the development of LEU fuel for research reactors has been active since the late 1970’s. Originally referred to as the Reduced Enrichment for Research and Test Reactor (RERTR) program the new effort named Global Threat Reduction Initiative (GTRI) is nearing the goal of replacing the standard aluminum clad dispersion highly enriched uranium aluminide fuel with a new LEU fuel. The five domestic high performance research reactors undergoing this conversion are High Fluxmore » Isotope reactor (HFIR), Advanced Test Reactor (ATR), National Institute of Standards and Technology (NIST) Reactor, Missouri University Research Reactor (MURR) and the Massachusetts Institute of Technology Reactor II (MITR-II). The design of these reactors requires a higher neutron flux than other international research reactors, which to this point has posed unique challenges in the design and development of the new mandated LEU fuel. The new design utilizes a monolithic fuel configuration in order to obtain sufficient 235U within the LEU stoichoimetry to maintain the fission reaction within the domestic test reactors. The change from uranium aluminide dispersion fuel type to uranium molybdenum (UMo) monolithic configuration requires examination of possible corrosion issues associated with the new fuel meat. A focused analysis of the UMo fuel under potential corrosion conditions, within the ATR and under aqueous storage indicates a slow and predictable corrosion rate. Additional corrosion testing is recommended for the highest burn-up fuels to confirm observed corrosion rate trends. This corrosion analysis will focus only on the UMo fuel and will address corrosion of ancillary components such as cladding only in terms of how it affects the fuel. The calculations and corrosion scenarios are weighted with a conservative bias to provide additional confidence with the results. The actual corrosion rates of UMo fuel is very likely to be lower than assumed within this report which can be confirmed with additional testing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-04-01
During the months of August through September 1978, geoMetrics, Inc. flew approximately 9000 line miles of high sensitivity airborne radiometric and magnetic data in eastern Wyoming and southern Montana over three 1/sup 0/ x 2/sup 0/ NTMS quadrangle (Newcastle, Gillette, and Ekalaka) as part of the Department of Energy's National Uranium Resource Evaluation program. All radiometric and magnetic data were fully reduced and interpreted by geoMetrics, and are presented as four volumes (one Volume I and three Volume II's) in this report. The survey area lies entirely within the northern Great Plains Physiographic Province. The deep Powder River Basin andmore » the Black Hills Uplift are the two dominant structures in the area. Both structures strike NNW approximately parallel to each other with the Powder River Basin to the west of the Uplift. The Basin is one of the largest and deepest in the northern Great Plains and contains over 17,000 feet of Phanerozoic sediments at its deepest point. Economic deposits of oil, coal, bentonite and uranium are found in the Tertiary and/or Cretaceous rocks of the Basin. Gold, silver, lead, copper, manganese, rare-earth elements and uranium have been mined in the Uplift. Epigenetic uranium deposits lie primarily in the Monument Hills - Box Creek and Pumpkin Buttes - Turnercrest districts within arkosic sandstones of the Paleocene Fort Union Formation. A total of 368 groups of statistical values in the uranium window meet the criteria for valid anomalies and are discussed in the interpretation sections (83 in Newcastle, 109 in Gillette, and 126 in Ekalaka). Most anomalies lie in the Tertiary sediments of the Powder River Basin, but only a few are clearly related to known uranium mines or prospects. Magnetic data generally delineate the deep Powder River Basin relative to the Black Hills Uplift. Higher frequency anomalies appear related to producing oil fields and mapped sedimentary structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, Zachary C.; Cardenas, Allan Jay P.; Corbey, Jordan F.
2016-01-01
Glutardiamidoxime, a structural motif on sorbents used in uranium extraction from seawater, was discovered to cyclize in situ at room temperature to 2,6-diimino-piperidin-1-ol in the presence of uranyl nitrate. The new diimino motif was also generated when exposed to competing transition metals Cu(II) and Ni(II). Multinuclear μ-O bridged U(VI), Cu(II), and Ni(II) complexes featuring bound diimino ligands were isolated. A Cu(II) complex with the historically relevant cyclic imide dioxime motif is also reported for structural comparison to the reported diimino complexes.
NASA Astrophysics Data System (ADS)
Flores Orozco, AdriáN.; Williams, Kenneth H.; Long, Philip E.; Hubbard, Susan S.; Kemna, Andreas
2011-09-01
Experiments at the Department of Energy's Integrated Field Research Challenge (IFRC) site near Rifle, Colorado, have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally invasive and spatially extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IFRC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate-reducing microorganisms. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer, a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants such as uranium.
Evolution of uranium distribution and speciation in mill tailings, COMINAK Mine, Niger.
Déjeant, Adrien; Galoisy, Laurence; Roy, Régis; Calas, Georges; Boekhout, Flora; Phrommavanh, Vannapha; Descostes, Michael
2016-03-01
This study investigated the evolution of uranium distribution and speciation in mill tailings from the COMINAK mine (Niger), in production since 1978. A multi-scale approach was used, which combined high resolution remote sensing imagery, ICP-MS bulk rock analyses, powder X-ray diffraction, Scanning Electron Microscopy, Focused Ion Beam--Transmission Electron Microscopy and X-ray Absorption Near Edge Spectroscopy. Mineralogical analyses showed that some ore minerals, including residual uraninite and coffinite, undergo alteration and dissolution during tailings storage. The migration of uranium and other contaminants depends on (i) the chemical stability of secondary phases and sorbed species (dissolution and desorption processes), and (ii) the mechanical transport of fine particles bearing these elements. Uranium is stabilized after formation of secondary uranyl sulfates and phosphates, and adsorbed complexes on mineral surfaces (e.g. clay minerals). In particular, the stock of insoluble uranyl phosphates increases with time, thus contributing to the long-term stabilization of uranium. At the surface, a sulfate-cemented duricrust is formed after evaporation of pore water. This duricrust limits water infiltration and dust aerial dispersion, though it is enriched in uranium and many other elements, because of pore water rising from underlying levels by capillary action. Satellite images provided a detailed description of the tailings pile over time and allow monitoring of the chronology of successive tailings deposits. Satellite images suggest that uranium anomalies that occur at deep levels in the pile are most likely former surface duricrusts that have been buried under more recent tailings. Copyright © 2015 Elsevier B.V. All rights reserved.
In Situ Immobilization of Uranium in Structured Porous Media (Invited)
NASA Astrophysics Data System (ADS)
Brooks, S. C.; Gu, B.; Wu, W.; Spalding, B. P.; Watson, D. B.; Jardine, P.
2009-12-01
Defense related activities have resulted in broad areas of uranium contaminated groundwater across the U. S. Department of Energy complex. For example, past waste disposal practices at the DOE’s Y-12 site generated a plume of uranium and nitrate contamination in the underlying vadose and saturated zones which extends more than 120 meters deep and thousands of meters along geologic strike. Several DOE sponsored research programs have enabled the study of multiple biotic and abiotic methods of immobilizing uranium in situ at the site. These include biostimulation of metal reducing bacteria to promote reduction of the more soluble U(VI) to the sparingly soluble U(IV) and pH manipulation to immobilize U(VI) through its interactions (e.g., sorption, coprecipitation) with incipient aluminum oxyhydroxide minerals. The application of laboratory based results to the field site must also account for (i) the structured media which can impose incomplete mixing conditions and (ii) steep geochemical gradients or transition zones which differ significantly from the typically well mixed laboratory conditions. In this presentation results of several of these studies will be reviewed and lessons learned summarized.
Nuclear Fuel Reprocessing: U.S. Policy Development
2006-11-29
to the chemical separation of fissionable uranium and plutonium from irradiated nuclear fuel. The World War II-era Manhattan Project developed...created the Atomic Energy Commission (AEC) and transferred production and control of fissionable materials from the Manhattan Project . As the exclusive
7 CFR 1948.68 - Criteria for designation.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) PROGRAM REGULATIONS (CONTINUED) RURAL DEVELOPMENT Section 601 Energy Impacted Area Development Assistance... (as projected by generally acceptable estimates) will increase by eight percent (of the eligible... increases resulting from coal and uranium development activity based on existing tax laws; (ii) Federal...
NASA Astrophysics Data System (ADS)
Meyer, P. D.; Yabusaki, S.; Curtis, G. P.; Ye, M.; Fang, Y.
2011-12-01
A three-dimensional, variably-saturated flow and multicomponent biogeochemical reactive transport model of uranium bioremediation was used to generate synthetic data . The 3-D model was based on a field experiment at the U.S. Dept. of Energy Rifle Integrated Field Research Challenge site that used acetate biostimulation of indigenous metal reducing bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. A key assumption in past modeling studies at this site was that a comprehensive reaction network could be developed largely through one-dimensional modeling. Sensitivity analyses and parameter estimation were completed for a 1-D reactive transport model abstracted from the 3-D model to test this assumption, to identify parameters with the greatest potential to contribute to model predictive uncertainty, and to evaluate model structure and data limitations. Results showed that sensitivities of key biogeochemical concentrations varied in space and time, that model nonlinearities and/or parameter interactions have a significant impact on calculated sensitivities, and that the complexity of the model's representation of processes affecting Fe(II) in the system may make it difficult to correctly attribute observed Fe(II) behavior to modeled processes. Non-uniformity of the 3-D simulated groundwater flux and averaging of the 3-D synthetic data for use as calibration targets in the 1-D modeling resulted in systematic errors in the 1-D model parameter estimates and outputs. This occurred despite using the same reaction network for 1-D modeling as used in the data-generating 3-D model. Predictive uncertainty of the 1-D model appeared to be significantly underestimated by linear parameter uncertainty estimates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flores-Orozco, Adrian; Williams, Kenneth H.; Long, Philip E.
2011-07-07
Experiments at the Department of Energy’s Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days)more » of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer – a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orozco, A. Flores; Williams, K.H.; Long, P.E.
2011-04-01
Experiments at the Department of Energy's Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days)more » of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer - a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.« less
Commercial Nuclear Steam-Electric Power Plants, Part II
ERIC Educational Resources Information Center
Shore, Ferdinand J.
1974-01-01
Presents the pros and cons of nuclear power systems. Includes a discussion of the institutional status of the AEC, AEC regulatory record, routine low-level radiation hazards, transport of radioactive materials, storage of wastes, and uranium resources and economics of supply. (GS)
Decontamination of TCE- and U-rich waters by granular iron: Role of sorbed Fe(II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charlet, L.; Liger, E.; Gerasimo, P.
1998-01-01
Uranium (UO{sub 2}{sup 2+}) and chlorinated aliphatics [tetrachloroethane (PCE) and trichloroethane (TCE)] can be reduced and thus immobilized or degraded, respectively, by the same abiotic mechanism. In this mechanism the reduction reaction is coupled to the oxidation of Fe(II) sorbed on iron corrosion products such as hematite. This is indicated by the equilibrium E{sub h} values measured during uranium immobilization and PCE degradation reactions of zerovalent iron. These values fit closely with those measured in the Fe(II)-{alpha}Fe{sub 2}O{sub 3}-H{sub 2}O system (in the absence of U or PCE), not those of the Fe(o)/Fe(II) or H{sub 2}(g)/H{sub 2}O couples. Because ironmore » (II) is very unstable in environments that are not strictly anaerobic, Fe(o) serves as a source of Fe(II). The reduction kinetic rate, analyzed in detail for the reduction of U(VI), is found to be a function of the concentration of OH{sup {minus}}, Fe{sup 2+} and reactive surface sites, and is given in terms of sorbed species concentrations by {l_brace}d[U(VI)]{sub ads}{r_brace}/dt = {l_brace}{minus}k{prime}[{triple_bond}FeOFeOH{sup 0}][U(VI)]{sub ads}{r_brace}. This rate law applies to organic pollutants as well, as long as they can be reduced by surface Fe(II): {l_brace}d[Pollutant]{r_brace}/dt = {l_brace}{minus}k{prime}[{triple_bond}FeOFeOH{sup 0}][Pollutant]{r_brace}. This mechanism suggests new possibilities for the improvement of low-cost decontamination techniques for U- and chlorinated aliphatic-rich waters.« less
Sitte, Jana; Akob, Denise M; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E; Scheinost, Andreas C; Büchel, Georg; Küsel, Kirsten
2010-05-01
Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the (35)SO(4)(2-) radiotracer method, was restricted to reduced soil horizons with rates of < or =142 +/- 20 nmol cm(-3) day(-1). Concentrations of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that approximately 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [(13)C]acetate- and [(13)C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined < or =100% during anoxic soil incubations. In contrast to results in other studies, soluble uranium increased in carbon-amended treatments, reaching < or =1,407 nM in solution. Our results suggest that (i) ongoing sulfate reduction in contaminated soil resulted in in situ metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems.
Sitte, Jana; Akob, Denise M.; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E.; Scheinost, Andreas C.; Büchel, Georg; Küsel, Kirsten
2010-01-01
Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the 35SO42− radiotracer method, was restricted to reduced soil horizons with rates of ≤142 ± 20 nmol cm−3 day−1. Concentrations of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that ∼80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [13C]acetate- and [13C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined ≤100% during anoxic soil incubations. In contrast to results in other studies, soluble uranium increased in carbon-amended treatments, reaching ≤1,407 nM in solution. Our results suggest that (i) ongoing sulfate reduction in contaminated soil resulted in in situ metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems. PMID:20363796
Fuller, Christopher C.; Johnson, Kelly J.; Akstin, Katherine; Singer, David M.; Yabusaki, Steven B.; Fang, Yilin; Fuhrmann, M.
2015-01-01
A proposed approach for groundwater remediation of uranium contamination is to generate reducing conditions by stimulating the growth of microbial populations through injection of electron donor compounds into the subsurface. Sufficiently reducing conditions will result in reduction of soluble hexavalent uranium, U(VI), and precipitation of the less soluble +4 oxidation state uranium, U(IV). This process is termed biostimulated reduction. A key issue in the remediation of uranium (U) contamination in aquifers by biostimulated reduction is the long term stability of the sequestered uranium. Three flow-through column experiments using aquifer sediment were used to evaluate the remobilization of bioreduced U sequestered under conditions in which biostimulation extended well into sulfate reduction to enhance precipitation of reduced sulfur phases such as iron sulfides. One column received added ferrous iron, Fe(II), increasing production of iron sulfides, to test their effect on remobilization of the sequestered uranium, either by serving as a redox buffer by competing for dissolved oxygen, or by armoring the reduced uranium. During biostimulation of the ambient microbial population with acetate, dissolved uranium was lowered by a factor of 2.5 or more with continued removal for over 110 days of biostimulation, well after the onset of sulfate reduction at ~30 days. Sequestered uranium was essentially all U(IV) resulting from the formation of nano-particulate uraninite that coated sediment grains to a thickness of a few 10’s of microns, sometimes in association with S and Fe. A multicomponent biogeochemical reactive transport model simulation of column effluents during biostimulation was generally able to describe the acetate oxidation, iron, sulfate, and uranium reduction for all three columns using parameters derived from simulations of field scale biostimulation experiments. Columns were eluted with artificial groundwater at equilibrium with atmospheric oxygen to simulate the upper limit of dissolved oxygen in recharge water. Overall about 9% of total uranium removed from solution during biostimulation was remobilized. Release of U during oxic elution was a continuous process over 140 days with dissolved uranium concentrations about 0.2 and 0.8 aM for columns with and without ferrous iron addition, respectively. Uranium remaining on the sediment was in the reduced form. The prolonged period of biostimulation and concomitant sulfate reduction appears to limit the rate of U(IV) oxidative remobilization in contrast to a large release observed for columns in previous studies that did not undergo sulfate reduction. Although continued sulfate reduction may cause decreased permeability from precipitation of iron sulfide, the greater apparent stability of the sequestered U(IV) provided by the sustained biostimulation should be considered in design of field scale remediation efforts. Remobilization of uranium following biostimulated reduction should be tested further at the field scale.
Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.
2012-07-31
Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed tomore » mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.« less
Nondestructive assay of EBR-II blanket elements using resonance transmission analysis
NASA Astrophysics Data System (ADS)
Klann, Raymond Todd
1998-10-01
Resonance transmission analysis utilizing a filtered reactor beam was examined as a means of determining the 239Pu content in Experimental Breeder Reactor - II depleted uranium blanket elements. The technique uses cadmium and gadolinium filters along with a 239Pu fission chamber to isolate the 0.3 eV resonance in 239Pu. In the energy range of this resonance (0.1 eV to 0.5 eV), the total microscopic cross-section of 239Pu is significantly greater than the cross- sections of 238U and 235U. This large difference allows small changes in the 239Pu content of a sample to result in large changes in the mass signal response. Tests with small stacks of depleted uranium and 239Pu foils indicate a significant change in response based on the 239Pu content of the foil stack. In addition, the tests indicate good agreement between the measured and predicted values of 239Pu up to approximately two weight percent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, G.; Rudisill, T.; Almond, P.
The Idaho National Laboratory (INL) is actively engaged in the development of electrochemical processing technology for the treatment of fast reactor fuels using irradiated fuel from the Experimental Breeder Reactor-II (EBR-II) as the primary test material. The research and development (R&D) activities generate a low enriched uranium (LEU) metal product from the electrorefining of the EBR-II fuel and the subsequent consolidation and removal of chloride salts by the cathode processor. The LEU metal ingots from past R&D activities are currently stored at INL awaiting disposition. One potential disposition pathway is the shipment of the ingots to the Savannah River Sitemore » (SRS) for dissolution in H-Canyon. Carbon steel cans containing the LEU metal would be loaded into reusable charging bundles in the H-Canyon Crane Maintenance Area and charged to the 6.4D or 6.1D dissolver. The LEU dissolution would be accomplished as the final charge in a dissolver batch (following the dissolution of multiple charges of spent nuclear fuel (SNF)). The solution would then be purified and the 235U enrichment downblended to allow use of the U in commercial reactor fuel. To support this potential disposition path, the Savannah River National Laboratory (SRNL) developed a dissolution flowsheet for the LEU using samples of the material received from INL.« less
Understanding Uranium Behavior in a Reduced Aquifer
NASA Astrophysics Data System (ADS)
Janot, N.; Lezama-Pacheco, J. S.; Williams, K. H.; Bernier-Latmani, R.; Long, P. E.; Davis, J. A.; Fox, P. M.; Yang, L.; Giammar, D.; Cerrato, J. M.; Bargar, J.
2012-12-01
Uranium contamination of groundwater is a concern at several US Department of Energy sites, such Old Rifle, CO. Uranium transport in the environment is mainly controlled by its oxidation state, since oxidized U(VI) is relatively mobile, whereas U(IV) is relatively insoluble. Bio-remediation of contaminated aquifers aims at immobilizing uranium in a reduced form. Previous laboratory and field studies have shown that adding electron donor (lactate, acetate, ethanol) to groundwater stimulates the activity of metal- and sulfate-reducing bacteria, which promotes U(VI) reduction in contaminated aquifers. However, obtaining information on chemical and physical forms of U, Fe and S species for sediments biostimulated in the field, as well as kinetic parameters such as U(VI) reduction rate, is challenging due to the low concentration of uranium in the aquifers (typically < 10 ppm) and the expense of collecting large number of cores. An in-situ technique has been developed for studying uranium, iron and sulfur reduction dynamics during such bioremediation episodes. This technique uses in-well columns to obtain direct access to chemical and physical forms of U(IV) produced in the aquifer, evolving microbial communities, and trace and major ion groundwater constituents. While several studies have explored bioreduction of uranium under sulfate-reducing conditions, less attention has been paid to the initial iron-reducing phase, noted as being of particular importance to uranium removal. The aim of this work was to assess the formation of U(IV) during the early stages of a bio-remediation experiment at the Old Rifle site, CO, from early iron-reducing conditions to the transition to sulfate-reducing conditions. Several in-well chromatographic columns packed with sediment were deployed and were sampled at different days after the start of bio-reduction. X-ray absorption spectroscopy and X-ray microscopy were used to obtain information on Fe, S and U speciation and distribution. Chemical extractions of the reduced sediments have also been performed, to determine the rate of Fe(II) and U(IV) accumulation.
Microbially catalyzed nitrate-dependent metal/radionuclide oxidation in shallow subsurface sediments
NASA Astrophysics Data System (ADS)
Weber, K.; Healy, O.; Spanbauer, T. L.; Snow, D. D.
2011-12-01
Anaerobic, microbially catalyzed nitrate-dependent metal/radionuclide oxidation has been demonstrated in a variety of sediments, soils, and groundwater. To date, studies evaluating U bio-oxidation and mobilization have primarily focused on anthropogenically U contaminated sites. In the Platte River Basin U originating from weathering of uranium-rich igneous rocks in the Rocky Mountains was deposited in shallow alluvial sediments as insoluble reduced uranium minerals. These reduced U minerals are subject to reoxidation by available oxidants, such nitrate, in situ. Soluble uranium (U) from natural sources is a recognized contaminant in public water supplies throughout the state of Nebraska and Colorado. Here we evaluate the potential of anaerobic, nitrate-dependent microbially catalyzed metal/radionuclide oxidation in subsurface sediments near Alda, NE. Subsurface sediments and groundwater (20-64ft.) were collected from a shallow aquifer containing nitrate (from fertilizer) and natural iron and uranium. The reduction potential revealed a reduced environment and was confirmed by the presence of Fe(II) and U(IV) in sediments. Although sediments were reduced, nitrate persisted in the groundwater. Nitrate concentrations decreased, 38 mg/L to 30 mg/L, with increasing concentrations of Fe(II) and U(IV). Dissolved U, primarily as U(VI), increased with depth, 30.3 μg/L to 302 μg/L. Analysis of sequentially extracted U(VI) and U(IV) revealed that virtually all U in sediments existed as U(IV). The presence of U(IV) is consistent with reduced Fe (Fe(II)) and low reduction potential. The increase in aqueous U concentrations with depth suggests active U cycling may occur at this site. Tetravalent U (U(IV)) phases are stable in reduced environments, however the input of an oxidant such as oxygen or nitrate into these systems would result in oxidation. Thus co-occurrence of nitrate suggests that nitrate could be used by bacteria as a U(IV) oxidant. Most probable number enumeration of nitrate-dependent U(IV) oxidizing microorganisms demonstrated an abundant community ranging from 1.61x104 to 2.74x104 cells g-1 sediment. Enrichments initiated verified microbial U reduction and U oxidation coupled to nitrate reduction. Sediment slurries were serially diluted and incubated over a period of eight weeks and compared to uninoculated controls. Oxidation (0-4,554 μg/L) and reduction (0-55 μg/L) of U exceeded uninoculated controls further providing evidence of a U biogeochemical cycling in these subsurface sediments. The oxidation of U(IV) could contribute to U mobilization in the groundwater and result in decreased water quality. Not only could nitrate serve as an oxidant, but Fe(III) could also contribute to U mobilization. Nitrate-dependent Fe(II) oxidation is an environmentally ubiquitous process facilitated by a diversity of microorganisms. Additional research is necessary in order to establish a role of biogenic Fe(III) oxides in U geochemical cycling at this site. These microbially mediated processes could also have a confounding effect on uranium mobility in subsurface environments.
Comparison of measured and calculated composition of irradiated EBR-II blanket assemblies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimm, K. N.
1998-07-13
In anticipation of processing irradiated EBR-II depleted uranium blanket subassemblies in the Fuel Conditioning Facility (FCF) at ANL-West, it has been possible to obtain a limited set of destructive chemical analyses of samples from a single EBR-II blanket subassembly. Comparison of calculated values with these measurements is being used to validate a depletion methodology based on a limited number of generic models of EBR-II to simulate the irradiation history of these subassemblies. Initial comparisons indicate these methods are adequate to meet the operations and material control and accountancy (MC and A) requirements for the FCF, but also indicate several shortcomingsmore » which may be corrected or improved.« less
and Cuttings Repository Oil & Gas Oil & Gas (Map-Based) Spills (Environmental Events) Tanks Exploration Notice of Intent Uranium Exploration Permit Oil & Gas Approved Oil & Gas Permits Oil and Gas Maps Undergound Injection Control - Class II Well Production/Injection Report Oil & Gas
and Cuttings Repository Oil & Gas Oil & Gas (Map-Based) Spills (Environmental Events) Tanks Exploration Notice of Intent Uranium Exploration Permit Oil & Gas Approved Oil & Gas Permits Oil and Gas Maps Undergound Injection Control - Class II Well Production/Injection Report Oil & Gas
Chandwadkar, Pallavi; Nayak, Chandrani
2017-01-01
ABSTRACT Reports on interactions between cyanobacteria and uranyl carbonate are rare. Here, we present an interesting succession of the metabolic responses employed by a marine, filamentous, diazotrophic cyanobacterium, Anabaena torulosa for its survival following prolonged exposure to uranyl carbonate extending up to 384 h at pH 7.8 under phosphate-limited conditions. The cells sequestered uranium (U) within polyphosphates on initial exposure to 100 μM uranyl carbonate for 24 to 28 h. Further incubation until 120 h resulted in (i) significant degradation of cellular polyphosphates causing extensive chlorosis and cell lysis, (ii) akinete differentiation followed by (iii) extracellular uranyl precipitation. X-ray diffraction (XRD) analysis, fluorescence spectroscopy, X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopy established the identity of the bioprecipitated uranium as a U(VI) autunite-type mineral, which settled at the bottom of the vessel. Surprisingly, A. torulosa cells resurfaced as small green flakes typical of actively growing colonies on top of the test solutions within 192 to 240 h of U exposure. A consolidated investigation using kinetics, microscopy, and physiological and biochemical analyses suggested a role of inducible alkaline phosphatase activity of cell aggregates/akinetes in facilitating the germination of akinetes leading to substantial regeneration of A. torulosa by 384 h of uranyl incubation. The biomineralized uranium appeared to be stable following cell regeneration. Altogether, our results reveal novel insights into the survival mechanism adopted by A. torulosa to resist sustained uranium toxicity under phosphate-limited oxic conditions. IMPORTANCE Long-term effects of uranyl exposure in cyanobacteria under oxic phosphate-limited conditions have been inadequately explored. We conducted a comprehensive examination of the metabolic responses displayed by a marine cyanobacterium, Anabaena torulosa, to cope with prolonged exposure to uranyl carbonate at pH 7.8 under phosphate limitation. Our results highlight distinct adaptive mechanisms harbored by this cyanobacterium that enabled its natural regeneration following extensive cell lysis and uranium biomineralization under sustained uranium exposure. Such complex interactions between environmental microbes such as Anabaena torulosa and uranium over a broader time range advance our understanding on the impact of microbial processes on uranium biogeochemistry. PMID:28258135
Estimated Marine Residence Times for Drowned Barbadian Paleoreefs
NASA Astrophysics Data System (ADS)
Mey, J. L.
2008-12-01
Fossil corals are used to estimate past sea level and also to calibrate 14C ages with the aid of U-Th and U-Pa dating methods. These coral fossils have often been subaerially exposed and thus are affected by diagenesis during their initial interaction with fresh water. In an effort to understand when such disequilibria in fossil coral reefs occurred, we have quantified our 'dissolution-cum-adsorption' model (Mey, 2008) for the uranium series disequilibria using a geometrical construction, based on the evolution of the activities in a 230Th/238U versus 234U/238U diagram for closed versus open systems. The traditional age equations for the uranium-series with excess daughters have been used to construct a relationship between (i) the angles of the equal age lines in the 230Th/238U versus 234U/238U activity diagrams, and (ii) the quantified angles of the regressed lines of several uranium series disequilibria trends from Barbados. Our results indicate that the severity of the Barbados uranium series disequilibria is not only explained by 234U and 230Th addition, but may also reflect a loss of 238U through dissolution of coral skeletal structure. The net effect is 238U removal, whereas 234U and 230Th remain; thus, the disequilibria for the extant coral increase the excess daughters' ratio. Our results further indicate that the activity of 234U is reduced (compared to 230Th), as would be expected in regard to the lower mobility of trapped 230Th. It is proposed that the major dissolution that caused the uranium series disequilibria occurred during one relatively short-lived event when the paleoreefs experienced the very first freshwater exposure. During this event, the diagenetic potential was at its maximum for redistribution of the uranium series; this then caused the 234U and the 230Th to behave in a systematic way, resulting in linear trends. The linear trends in the open system uranium series were set early, as shown in the 230Th/238U versus 234U/238U activity diagrams. The timing of the first exposure of the freshwater in the reefs is calculated based on the results of our new model. From the relationship between, (i) dissolution, (ii) in-grown 230Th, and (iii) excess 234U, we derived that the 60,000 old Marine Isotope stage 3 (MIS 3) reef was exposed to freshwater 36-38,000 years after growth in the marine environment. We have calculated these 'marine residence times' for the MIS 3 5a, 5c, 5e, 6.0, 7a and 7c reefs; our results correspond with the duration of the sea level high stand in each of the stages. References: Mey, J. L., (2008) The Uranium Series Diagenesis and the Morphology of Drowned Barbadian Paleoreefs, PhD dissertation, 325pp: Graduate Center, City University of New York, New York.
ENERGY FROM THE WEST: IMPACT ANALYSIS REPORT. VOLUME II: SITE-SPECIFIC AND REGIONAL IMPACT ANALYSES
This document reports the results of impact analyses conducted as a part of a three-year technology assessment of the development of six energy resources (coal, geothermal, natural gas, oil, oil shale and uranium) in eight western states (Arizona, Colorado, Montana, New Mexico, N...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-04-01
The Gillette quadrangle in northeastern Wyoming and western South Dakota contains approximately equal portions of the Powder River Basin and the Black Hills Uplift. In these two structures, a relatively thick sequence of Paleozoic and Mesozoic strata represent nearly continuous deposition over the Precambrian basement complex. The Powder River Basin also contains a thick sequence of early Tertiary rocks which cover about 50% of the surface. A stratigraphic sequence from Upper Cretaceous to Precambrian is exposed in the Black Hills Uplift to the east. Magnetic data apparently illustrate the relative depth to the Precambrian crystalline rocks, but only weakly definemore » the boundary between the Powder River Basin and the Black Hills Uplift. The positions of some small isolated Tertiary intrusive bodies in the Black Hills Uplift are relatively well expressed. The Gillette quadrangle has been productive in terms of uranium mining, but its current status is uncertain. The producing uranium deposits occur within the Lower Cretaceous Inyan Kara Group and the Jurassic Morrison Formation in the Black Hills Uplift. Other prospects occur within the Tertiary Wasatch and Fort Union Formations in the Pumpkin Buttes - Turnercrest district, where it extends into the quadrangle from the Newcastle quadrangle to the south. These four formations, all predominantly nonmarine, contain all known uranium deposits in the Gillette quadrangle. A total of 108 groups of sample responses in the uranium window constitute anomalies as defined in Volume I. The anomalies are most frequently found in the Inyan Kara-Morrison, Wasatch and Fort Union Formations. Many anomalies occur over known mines or prospects. Others may result from unmapped uranium mines or areas where material other than uranium is mined. The remainder may relate to natural geologic features.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Kate M.; Kukkadapu, Ravi K.; Qafoku, Nikolla
2012-05-23
Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology, and redox processes that occur in these zones, we examined several cores from a region of naturally occurring reducing conditions in a uranium-contaminated aquifer (Rifle, CO). Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for uranium and iron content, oxidation state, and mineralogy, reduced sulfur phases, and solid phase organic carbon content using a suite ofmore » analytical and spectroscopic techniques on bulk sediment and size fractions. Solid-phase uranium concentrations were higher in the naturally reduced zone, with a high proportion of the uranium present as reduced U(IV). The sediments were also elevated in reduced sulfur phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and sulfate reduction occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentration of solid phase organic carbon and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic carbon concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic carbon for maintaining reducing conditions and uranium immobilization.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smales, A.A.; Airey, L.; Woodward, J.
1950-06-01
Consideration has been given to the problem of separating and estimating uranium, polonium, and other alpha emitters (in order to provide analytical methods for their routine determination in conformily with the draft agreement on the Harwell effluent). Uranium may be ether extracted from solutions of ammonium nitrate as salting out agent at pHl with an efficiency of 98 to 99%. The deposition of polonium on silver foil is a specific method for this element and under prescribed conditions similar extraction efficiencies may be obtained. An adequate separation from all other alpha emitters'' is obtained and methods for the estimation ofmore » these are discussed. A comprehensive scheme involving a preliminary activity concentration step has been elaborated. Uranium, polonium, and the majority of the other alpha emitters'' are precipitated as their tannin complexes at pH8 using calcium hydroxide, the calcium-tannin complex acting as a carrier. That part of the activity remaining in solution is determined as in the total activity method, previously described. From the solution of the precipitate, polonium is first separated by electrodeposition, and then uranium by ether extraction in the presence of ammonium nitrate. The majority of the other alpha emitters'' still in the aqueous ammonium nitrate solution are collected on a second calcium-tannin precipitate, while the small part remaining in solution after this operation is obtained by direct evaporation. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, J.
The ore pitchblende was discovered in the 1750's near Joachimstal in what is now the Czech Republic. Used as a colorant in glazes, uranium was identified in 1789 as the active ingredient by chemist Martin Klaproth. In 1896, French physicist Henri Becquerel studied uranium minerals as part of his investigations into the phenomenon of fluorescence. He discovered a strange energy emanating from the material which he dubbed 'rayons uranique.' Unable to explain the origins of this energy, he set the problem aside. About two years later, a young Polish graduate student was looking for a project for her dissertation. Mariemore » Sklodowska Curie, working with her husband Pierre, picked up on Becquerel's work and, in the course of seeking out more information on uranium, discovered two new elements (polonium and radium) which exhibited the same phenomenon, but were even more powerful. The Curies recognized the energy, which they now called 'radioactivity,' as something very new, requiring a new interpretation, new science. This discovery led to what some view as the 'golden age of nuclear science' (1895-1945) when countries throughout Europe devoted large resources to understand the properties and potential of this material. By World War II, the potential to harness this energy for a destructive device had been recognized and by 1939, Otto Hahn and Fritz Strassman showed that fission not only released a lot of energy but that it also released additional neutrons which could cause fission in other uranium nuclei leading to a self-sustaining chain reaction and an enormous release of energy. This suggestion was soon confirmed experimentally by other scientists and the race to develop an atomic bomb was on. The rest of the development history which lead to the bombing of Hiroshima and Nagasaki in 1945 is well chronicled. After World War II, development of more powerful weapons systems by the United States and the Soviet Union continued to advance nuclear science. It was this defense application that formed the basis for the commercial nuclear power industry.« less
Hybrid Interferometric/Dispersive Atomic Spectroscopy For Nuclear Materials Analysis
NASA Astrophysics Data System (ADS)
Morgan, Phyllis K.
Laser-induced breakdown spectroscopy (LIBS) is an optical emission spectroscopy technique that holds promise for detection and rapid analysis of elements relevant for nuclear safeguards and nonproliferation, including the measurement of isotope ratios. One important application of LIBS is the measurement of uranium enrichment (235U/238U), which requires high spectral resolution (e.g., 25 pm for the 424.437 nm U II line). Measuring uranium enrichment is important in nuclear nonproliferation and safeguards because the uranium highly enriched in the 235U isotope can be used to construct nuclear weapons. High-resolution dispersive spectrometers necessary for such measurements are typically bulky and expensive. A hybrid interferometric/dispersive spectrometer prototype, which consists of an inexpensive, compact Fabry-Perot etalon integrated with a low to moderate resolution Czerny-Turner spectrometer, was assembled for making high-resolution measurements of nuclear materials in a laboratory setting. To more fully take advantage of this low-cost, compact hybrid spectrometer, a mathematical reconstruction technique was developed to accurately reconstruct relative line strengths from complex spectral patterns with high resolution. Measurement of the mercury 313.1555/313.1844 nm doublet from a mercury-argon lamp yielded a spectral line intensity ratio of 0.682, which agrees well with an independent measurement by an echelle spectrometer and previously reported values. The hybrid instrument was used in LIBS measurements and achieved the resolution needed for isotopic selectivity of LIBS of uranium in ambient air. The samples used were a natural uranium foil (0.7% of 235U) and a uranium foil highly enriched in 235U to 93%. Both samples were provided by the Penn State University's Breazeale Nuclear Reactor. The enrichment of the uranium foils was verified using a high-purity germanium detector and dedicated software for multi-group spectral analysis. Uranium spectral line widths of ˜10 pm were measured at a center wavelength 424.437 nm, clearly discriminating the natural from the highly enriched uranium at that wavelength. The 424.167 nm isotope shift (˜6 pm), limited by spectral broadening, was only partially resolved but still discernible. This instrument and reconstruction method could enable the design of significantly smaller, portable high-resolution instruments with isotopic specificity, benefiting nuclear safeguards, treaty verification, nuclear forensics, and a variety of other spectroscopic applications.
Acharya, Celin; Chandwadkar, Pallavi; Nayak, Chandrani
2017-05-01
Reports on interactions between cyanobacteria and uranyl carbonate are rare. Here, we present an interesting succession of the metabolic responses employed by a marine, filamentous, diazotrophic cyanobacterium, Anabaena torulosa for its survival following prolonged exposure to uranyl carbonate extending up to 384 h at pH 7.8 under phosphate-limited conditions. The cells sequestered uranium (U) within polyphosphates on initial exposure to 100 μM uranyl carbonate for 24 to 28 h. Further incubation until 120 h resulted in (i) significant degradation of cellular polyphosphates causing extensive chlorosis and cell lysis, (ii) akinete differentiation followed by (iii) extracellular uranyl precipitation. X-ray diffraction (XRD) analysis, fluorescence spectroscopy, X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopy established the identity of the bioprecipitated uranium as a U(VI) autunite-type mineral, which settled at the bottom of the vessel. Surprisingly, A. torulosa cells resurfaced as small green flakes typical of actively growing colonies on top of the test solutions within 192 to 240 h of U exposure. A consolidated investigation using kinetics, microscopy, and physiological and biochemical analyses suggested a role of inducible alkaline phosphatase activity of cell aggregates/akinetes in facilitating the germination of akinetes leading to substantial regeneration of A. torulosa by 384 h of uranyl incubation. The biomineralized uranium appeared to be stable following cell regeneration. Altogether, our results reveal novel insights into the survival mechanism adopted by A. torulosa to resist sustained uranium toxicity under phosphate-limited oxic conditions. IMPORTANCE Long-term effects of uranyl exposure in cyanobacteria under oxic phosphate-limited conditions have been inadequately explored. We conducted a comprehensive examination of the metabolic responses displayed by a marine cyanobacterium, Anabaena torulosa , to cope with prolonged exposure to uranyl carbonate at pH 7.8 under phosphate limitation. Our results highlight distinct adaptive mechanisms harbored by this cyanobacterium that enabled its natural regeneration following extensive cell lysis and uranium biomineralization under sustained uranium exposure. Such complex interactions between environmental microbes such as Anabaena torulosa and uranium over a broader time range advance our understanding on the impact of microbial processes on uranium biogeochemistry. Copyright © 2017 American Society for Microbiology.
Liquid Thermal Diffusion during the Manhattan Project
NASA Astrophysics Data System (ADS)
Cameron Reed, B.
2011-06-01
On the basis of Manhattan Engineer District documents, a little known Naval Research Laboratory report of 1946, and other sources, I construct a more complete history of the liquid-thermal-diffusion method of uranium enrichment during World War II than is presented in official histories of the Manhattan Project. This method was developed by Philip Abelson (1913-2004) and put into operation at the rapidly-constructed S-50 plant at Oak Ridge, Tennessee, which was responsible for the first stage of uranium enrichment, from 0.72% to 0.85% U-235, producing nearly 45,000 pounds of enriched U-235 by July 1945 at a cost of just under 20 million. I review the history, design, politics, construction, and operation of the S-50 liquid-thermal-diffusion plant.
NASA Astrophysics Data System (ADS)
Yeon, Jeongho; Smith, Mark D.; Tapp, Joshua; Möller, Angela; zur Loye, Hans-Conrad
2016-04-01
Two new uranium(IV) fluorides, Na3.13Mg1.43U6F30 (1) and Na2.50Mn1.75U6F30 (2), were synthesized through an in situ mild hydrothermal route, and were structurally characterized by single crystal X-ray diffraction. The compounds exhibit complex crystal structures composed of corner- or edge-shared UF9 and MF6 (M=Mg, Mn) polyhedra, forming hexagonal channels in the three-dimensional framework, in which ordered or disordered divalent metal and sodium atoms reside. The large hexagonal voids contain the nearly regular M(II)F6 octahedra and sodium ions, whereas the small hexagonal cavities include M(II) and sodium ions on a mixed-occupied site. Magnetic susceptibility measurements yielded effective magnetic moments of 8.36 and 11.6 μB for 1 and 2, respectively, confirming the presence and oxidation states of U(IV) and Mn(II). The large negative Weiss constants indicate the spin gap between a triplet and a singlet state in the U(IV). Magnetization data as a function of applied fields revealed that 2 exhibits paramagnetic behavior due to the nonmagnetic singlet ground state of U(IV) at low temperature. UV-vis diffuse reflectance and X-ray photoelectron spectroscopy data were also analyzed.
26 CFR 1.613-2 - Percentage depletion rates.
Code of Federal Regulations, 2012 CFR
2012-04-01
... minerals are produced: (i) 271/2 percent—Gas wells, oil wells. (ii) 23 percent—Sulfur, uranium. (iii) 15... in the deposit. Example 2. Oil and gas are produced from a single mineral property of a taxpayer who operates a retail outlet for the sale of oil products within the meaning of section 613A(d)(2). The...
26 CFR 1.613-2 - Percentage depletion rates.
Code of Federal Regulations, 2010 CFR
2010-04-01
... minerals are produced: (i) 271/2 percent—Gas wells, oil wells. (ii) 23 percent—Sulfur, uranium. (iii) 15... in the deposit. Example 2. Oil and gas are produced from a single mineral property of a taxpayer who operates a retail outlet for the sale of oil products within the meaning of section 613A(d)(2). The...
26 CFR 1.613-2 - Percentage depletion rates.
Code of Federal Regulations, 2011 CFR
2011-04-01
... minerals are produced: (i) 271/2 percent—Gas wells, oil wells. (ii) 23 percent—Sulfur, uranium. (iii) 15... in the deposit. Example 2. Oil and gas are produced from a single mineral property of a taxpayer who operates a retail outlet for the sale of oil products within the meaning of section 613A(d)(2). The...
26 CFR 1.613-2 - Percentage depletion rates.
Code of Federal Regulations, 2014 CFR
2014-04-01
... minerals are produced: (i) 271/2 percent—Gas wells, oil wells. (ii) 23 percent—Sulfur, uranium. (iii) 15... in the deposit. Example 2. Oil and gas are produced from a single mineral property of a taxpayer who operates a retail outlet for the sale of oil products within the meaning of section 613A(d)(2). The...
26 CFR 1.613-2 - Percentage depletion rates.
Code of Federal Regulations, 2013 CFR
2013-04-01
... minerals are produced: (i) 271/2 percent—Gas wells, oil wells. (ii) 23 percent—Sulfur, uranium. (iii) 15... in the deposit. Example 2. Oil and gas are produced from a single mineral property of a taxpayer who operates a retail outlet for the sale of oil products within the meaning of section 613A(d)(2). The...
Determination of Trace Elements in Uranium by HPLC-ID-ICP-MS: NTNFC Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manard, Benjamin Thomas; Wylie, Ernest Miller II; Xu, Ning
This report covers the FY 16 effort for the HPLC-ID-ICP-MS methodology 1) sub-method validation for the group I&II elements, 2) sub-method stood-up and validation for REE, 3) sub-method development for the transition element, and 4) completion of a comprehensive SOP for three families of elements.
40 CFR 144.80 - What is a Class V injection well?
Code of Federal Regulations, 2013 CFR
2013-07-01
... process; (2) In situ production of uranium or other metals; this category includes only in situ production... described in § 144.6, injection wells are classified as follows: (a) Class I. (1) Wells used by generators...) Class II. Wells which inject fluids: (1) Which are brought to the surface in connection with natural gas...
40 CFR 144.80 - What is a Class V injection well?
Code of Federal Regulations, 2014 CFR
2014-07-01
... process; (2) In situ production of uranium or other metals; this category includes only in situ production... described in § 144.6, injection wells are classified as follows: (a) Class I. (1) Wells used by generators...) Class II. Wells which inject fluids: (1) Which are brought to the surface in connection with natural gas...
40 CFR 144.80 - What is a Class V injection well?
Code of Federal Regulations, 2012 CFR
2012-07-01
... process; (2) In situ production of uranium or other metals; this category includes only in situ production... described in § 144.6, injection wells are classified as follows: (a) Class I. (1) Wells used by generators...) Class II. Wells which inject fluids: (1) Which are brought to the surface in connection with natural gas...
40 CFR 144.80 - What is a Class V injection well?
Code of Federal Regulations, 2011 CFR
2011-07-01
... process; (2) In situ production of uranium or other metals; this category includes only in situ production... described in § 144.6, injection wells are classified as follows: (a) Class I. (1) Wells used by generators...) Class II. Wells which inject fluids: (1) Which are brought to the surface in connection with natural gas...
Teratogenicity of depleted uranium aerosols: A review from an epidemiological perspective
Hindin, Rita; Brugge, Doug; Panikkar, Bindu
2005-01-01
Background Depleted uranium is being used increasingly often as a component of munitions in military conflicts. Military personnel, civilians and the DU munitions producers are being exposed to the DU aerosols that are generated. Methods We reviewed toxicological data on both natural and depleted uranium. We included peer reviewed studies and gray literature on birth malformations due to natural and depleted uranium. Our approach was to assess the "weight of evidence" with respect to teratogenicity of depleted uranium. Results Animal studies firmly support the possibility that DU is a teratogen. While the detailed pathways by which environmental DU can be internalized and reach reproductive cells are not yet fully elucidated, again, the evidence supports plausibility. To date, human epidemiological data include case examples, disease registry records, a case-control study and prospective longitudinal studies. Discussion The two most significant challenges to establishing a causal pathway between (human) parental DU exposure and the birth of offspring with defects are: i) distinguishing the role of DU from that of exposure to other potential teratogens; ii) documentation on the individual level of extent of parental DU exposure. Studies that use biomarkers, none yet reported, can help address the latter challenge. Thoughtful triangulation of the results of multiple studies (epidemiological and other) of DU teratogenicity contributes to disentangling the roles of various potentially teratogenic parental exposures. This paper is just such an endeavor. Conclusion In aggregate the human epidemiological evidence is consistent with increased risk of birth defects in offspring of persons exposed to DU. PMID:16124873
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-04-01
Thick Phanerozoic sediments (greater than 17,000 ft) fill the northwest trending Powder River Basin which is the dominant tectonic structure in the Newcastle quadrangle. Lower Tertiary sediments comprise more than 85% of exposed units at the surface of the Basin. A small portion of the Black Hills Uplift occupies the eastern edge of the quadrangle. Residual magnetics clearly reflect the great depth to crystalline Precambrian basement in the Basin. The Basin/Uplift boundary is not readily observed in the magnetic data. Economic uranium deposits of roll-type configuration are present in the southwest within the Monument Hill-Box Creek District in fluvial sandstonesmore » of the Paleocene Fort Union Formation. Numerous small claims and prospects are found in the Pumpkin Buttes-Turnercrest District in the northwest. Interpretation of the radiometric data resulted in 86 statistical uranium anomalies listed for this quadrangle. Most anomalies are in the eastern-central portion of the map within Tertiary Fort Union and Wasatch Formations. However, several lie in the known uranium districts in the southwest and northwest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alsobrook, Andera N.; Hauser, B. G.; Hupp, Joseph T.
2010-11-01
Four heterobimetallic U(VI)/M(II) (M = Mn, Co, Cd) carboxyphosphonates have been synthesized. M 2[(UO 2) 6(PO 3CH 2CO 2) 3O 3(OH)(H 2O) 2]·16H 2O (M = Mn(II), Co(II), and Cd(II)) adopt cubic three-dimensional network structures with large cavities approximately 16 Å in diameter that are filled with co-crystallized water molecules. [Cd 3(UO 2) 6(PO 3CH 2CO 2) 6(H 2O) 13]·6H 2 O forms a rhombohedral channel structure with hydrated Cd(II) within the channels. The cubic compound (Co) displays differential gas absorption with a surface area for CO 2 uptake of 40 m 2 g -1 at 273 K, and nomore » uptake of N 2 at 77 K.« less
Miller, Andrew W; Rodriguez, Derrick R; Honeyman, Bruce D
2013-05-01
Upscaling from bench scale systems to field scale systems incorporates physical and chemical heterogeneities from atomistic up to field scales. Heterogeneities of intermediate scale (~10(-1) m) are impossible to incorporate in a bench scale experiment. To transcend these scale discrepancies, this second in a pair of papers presents results from an intermediate scale, 3-D tank experiment completed using five different particle sizes of uranium contaminated sediment from a former uranium mill field site. The external dimensions of the tank were 2.44 m×0.61 m×0.61 m (L×H×W). The five particle sizes were packed in a heterogeneous manner using roughly 11 cm cubes. Small groundwater wells were installed for spatial characterization of chemical gradients and flow parameters. An approximately six month long bromide tracer test was used for flow field characterization. Within the flow domain, local uranium breakthrough curves exhibited a wide range of behaviors. However, the global effluent breakthrough curve was smooth, and not unlike breakthrough curves observed in column scale experiments. This paper concludes with an inter-tank comparison of all three experimental systems presented in this pair of papers. Although there is a wide range of chemical and physical variability between the three tanks, major chemical constituent behaviors are often quite similar or even identical. Copyright © 2013 Elsevier B.V. All rights reserved.
The estuarine chemistry and isotope systematics of 234,238U in the Amazon and Fly Rivers
Swarzenski, P.; Campbell, P.; Porcelli, D.; McKee, B.
2004-01-01
Natural concentrations of 238U and ??234U values were determined in estuarine surface waters and pore waters of the Amazon and Fly (Papua New Guinea) Rivers to investigate U transport phenomena across river-dominated land-sea margins. Discharge from large, tropical rivers is a major source of dissolved and solid materials transported to the oceans, and are important in defining not only oceanic mass budgets, but also terrestrial weathering rates. On the Amazon shelf, salinity-property plots of dissolved organic carbon, pH and total suspended matter revealed two vastly contrasting water masses that were energetically mixed. In this mixing zone, the distribution of uranium was highly non-conservative and exhibited extensive removal from the water column. Uranium removal was most pronounced within a salinity range of 0-16.6, and likely the result of scavenging and flocculation reactions with inorganic (i.e., Fe/Mn oxides) and organic colloids/particles. Removal of uranium may also be closely coupled to exchange and resuspension processes at the sediment/water interface. An inner-shelf pore water profile indicated the following diagenetic processes: extensive (???1 m) zones of Fe(III) - and, to a lesser degree, Mn(IV) - reduction in the absence of significant S(II) concentrations appeared to facilitate the formation of various authigenic minerals (e.g., siderite, rhodocrosite and uraninite). The pore water dissolved 238U profile co-varied closely with Mn(II). Isotopic variations as evidenced in ??234U pore waters values from this site revealed information on the origin and history of particulate uranium. Only after a depth of about 1 m did the ??234U value approach unity (secular equilibrium), denoting a residual lattice bound uranium complex that is likely an upper-drainage basin weathering product. This suggests that the enriched ??234U values represent a riverine surface complexation product that is actively involved in Mn-Fe diagenetic cycles and surface complexation reactions. In the Fly River estuary, 238U appears to exhibit a reasonably conservative distribution as a function of salinity. The absence of observed U removal does not necessarily imply non-reactivity, but instead may record an integration of concurrent U removal and release processes. There is not a linear correlation between ??234U vs. 1/ 238U that would imply simple two component mixing. It is likely that resuspension of bottom sediments, prolonged residence times in the lower reaches of the Fly River, and energetic particle-colloid interactions contribute to the observed estuarine U distribution. The supply of uranium discharged from humid, tropical river systems to the sea appears to be foremost influenced by particle/water interactions that are ultimately governed by the particular physiographic and hydrologic characteristics of an estuary. ?? 2004 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Davis, J. A.; Smith, R. L.; Bohlke, J. K.; Jemison, N.; Xiang, H.; Repert, D. A.; Yuan, X.; Williams, K. H.
2015-12-01
The occurrence of naturally reduced zones is common in alluvial aquifers in the western U.S.A. due to the burial of woody debris in flood plains. Such reduced zones are usually heterogeneously dispersed in these aquifers and characterized by high concentrations of organic carbon, reduced mineral phases, and reduced forms of metals, including uranium(IV). The persistence of high concentrations of dissolved uranium(VI) at uranium-contaminated aquifers on the Colorado Plateau has been attributed to slow oxidation of insoluble uranium(IV) mineral phases found in association with these reducing zones, although there is little understanding of the relative importance of various potential oxidants. Four field experiments were conducted within an alluvial aquifer adjacent to the Colorado River near Rifle, CO, wherein groundwater associated with the naturally reduced zones was pumped into a gas-impermeable tank, mixed with a conservative tracer (Br-), bubbled with a gas phase composed of 97% O2 and 3% CO2, and then returned to the subsurface in the same well from which it was withdrawn. Within minutes of re-injection of the oxygenated groundwater, dissolved uranium(VI) concentrations increased from less than 1 μM to greater than 2.5 μM, demonstrating that oxygen can be an important oxidant for uranium in such field systems if supplied to the naturally reduced zones. Dissolved Fe(II) concentrations decreased to the detection limit, but increases in sulfate could not be detected due to high background concentrations. Changes in nitrogen species concentrations were variable. The results contrast with other laboratory and field results in which oxygen was introduced to systems containing high concentrations of mackinawite (FeS), rather than the more crystalline iron sulfides found in aged, naturally reduced zones. The flux of oxygen to the naturally reduced zones in the alluvial aquifers occurs mainly through interactions between groundwater and gas phases at the water table. Seasonal variations of the water table at the Rifle, CO site may play an important role in introducing oxygen into the system. Although oxygen was introduced directly to the naturally reduced zones in these experiments, delivery of oxidants to the system may also be controlled by other oxidative pathways in which oxygen plays an indirect role.
Vanhoudt, Nathalie; Vandenhove, Hildegarde; Horemans, Nele; Remans, Tony; Opdenakker, Kelly; Smeets, Karen; Bello, Daniel Martinez; Wannijn, Jean; Van Hees, May; Vangronsveld, Jaco; Cuypers, Ann
2011-06-01
When aiming to evaluate the environmental impact of uranium contamination, it is important to unravel the mechanisms by which plants respond to uranium stress. As oxidative stress seems an important modulator under other heavy metal stress, this study aimed to investigate oxidative stress related responses in Arabidopsis thaliana exposed to uranium concentrations ranging from 0.1 to 100 μM for 1, 3 and 7 days. Besides analyzing relevant reactive oxygen species-producing and -scavenging enzymes at protein and transcriptional level, the importance of the ascorbate-glutathione cycle under uranium stress was investigated. These results are reported separately for roots and leaves in two papers: Part I dealing with responses in the roots and Part II unraveling responses in the leaves and presenting general conclusions. Results of Part I indicate that oxidative stress related responses in the roots were only triggered following exposure to the highest uranium concentration of 100 μM. A fast oxidative burst was suggested based on the observed enhancement of lipoxygenase (LOX1) and respiratory burst oxydase homolog (RBOHD) transcript levels already after 1 day. The first line of defense was attributed to superoxide dismutase (SOD), also triggered from the first day. The enhanced SOD-capacity observed at protein level corresponded with an enhanced expression of iron SOD (FSD1) located in the plastids. For the detoxification of H(2)O(2), an early increase in catalase (CAT1) transcript levels was observed while peroxidase capacities were enhanced at the later stage of 3 days. Although the ascorbate peroxidase capacity and gene expression (APX1) increased, the ascorbate/dehydroascorbate redox balance was completely disrupted and shifted toward the oxidized form. This disrupted balance could not be inverted by the glutathione part of the cycle although the glutathione redox balance could be maintained. Copyright © 2011 Elsevier Ltd. All rights reserved.
ANIONIC EXCHANGE PROCESS FOR THE RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS
Bailes, R.H.; Ellis, D.A.; Long, R.S.
1958-12-16
Uranium and vanadium can be economically purified and recovered from non- salt roast carbonate leach liquors by adsorption on a strongly basic anionic exchange resin and subsequent selective elution by one of three alternative methods. Method 1 comprises selectively eluting uranium from the resin with an ammonium sulfate solution followed by eluting vanadium from the resin with either 5 M NaCl, saturated (NH/sub 4/)/sub 2/CO/sub 3/, saturated NaHCO/sub 3/, 1 M NaOH, or saturated S0/sub 2/ solutions. Method II comprises selectively eluting vanadium from the resin with either concentrated NaCl or S0/sub 2/ solutions subsequent to pretreatment of the column with either S0/sub 2/ gas, 1 N HCl, or 0.1 N H/sub 2/8O/sub 4/ followed by eluting uranium from the resin with solutions containing 0.9 M NH/sub 4/Cl or NaCl and 0.1 Cl. Method III comprises flowing the carbonate leac solutlon through a first column of a strongly basic anlonlc exchange resin untll vanadium breakthrough occurs, so that the effluent solution is enriched ln uranium content and the vanadium is chiefly retalned by the resln, absorbing the uranlum from the enriched effluent solution on a second column of a strongly basic anionic exchange resin, pretreating the first column with either 0.1 N HCl, 0.1 H/sub 2/SO/sub 4/, C0/sub 2/ gas, or ammonium sulfate, selectively eluting the vanadlum from the column with saturated S0/sub 2/ solution, pretreatlng the second column with either 0.1 N HCl or S0/sub 2/ gas, selectively eluting residual vanadium from the column with saturated S0/sub 2/ solution, and then eluting the uranium from the column with either 0.1 N HCl and 1 N NaCl orO.l N HCl and 1 N NH/sub 4/Cl.
M4FT-15OR03100421: Status Report on Alkaline Conditioning Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsouris, Costas; Brown, Suree; Janke, Christopher James
2015-05-01
Significant progress in understanding the role of alkaline conditioning of polyethylene-fiber adsorbent, developed at the Oak Ridge National Laboratory (ORNL), is demonstrated in this report, which is essentially a manuscript prepared for publication in the journal Industrial & Engineering Chemistry Research of the American Chemical Society. The manuscript describes the influence of various parameters involved in adsorbent alkaline conditioning, including base concentration and duration and temperature of conditioning, on the uranium uptake history by the adsorbent. Various solutions have been used to determine the influence of conditioning parameters including (i) a screening solution containing uranyl nitrate at approximately 8 ppmmore » and sodium bicarbonate and sodium chloride at concentrations similar to those found in seawater, (ii) seawater spiked with approximately 75 ppb uranium, and (iii) natural seawater. In addition to concentration measurements by inductively coupled plasma (ICP) spectroscopy to determine the uranium uptake capacity and kinetics, spectroscopic methods such as Fourier transformed infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy were employed to investigate the effect of base treatment on the various chemical bonds of the adsorbent. Scanning electron microscopy (SEM) has also been employed to determine structural effects of the alkali on the adsorbent. The results are summarized as follows: 1. Alkali conditioning is necessary to prepare the adsorbent for uranium uptake. ICP analysis showed that without alkali conditioning, no appreciable uranium adsorption occurs. 2. FTIR showed that the base converts amidoxime to carboxylate groups. 3. FTIR showed that formation of carboxylate groups is irreversible and reduces the selectivity of the adsorbent toward uranium. 4. NMR showed that alkali conditioning leads also to the formation of cyclic imidedioxime, which is suspected to bind uranium, vanadium, iron, copper, and other metals. 5. Uptake of V, Fe, and Cu follows the same trend as that of uranium. Uptake of Ca, Mg, and Zn ions increases with increasing KOH conditioning time due to formation of carboxylate groups. 6. SEM showed that long conditioning times may also lead to adsorbent degradation. 7. The optimal conditioning parameters are: 0.44 M KOH, 70 C, for 1 hour. The results of this study are useful in the selection of optimal values of the parameters involved in preparing amidoxime-based adsorbent for uranium uptake from seawater. Additional work is still ongoing to provide a complete understanding of the chemistry of base conditioning and its role on the functioning of the adsorbent.« less
Engineering assessment of inactive uranium mill tailings: Maybell Site, Maybell, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1981-09-01
Ford, Bacon and Davis Utah Inc. has reevaluated the Maybell site in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Maybell, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.6 million dry tons of tailings at the Maybell sitemore » constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The two alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to disposal of the tailings in a nearby open pit mine and decontamination of the tailings site (Option II). Cost estimates for the two options are about $11,700,000 for stabilization in-place and about $22,700,000 for disposal within a distance of 2 mi. Three principal alternatives for the reprocessing of the Maybell tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $125 and $165/lb of U/sub 3/O/sub 8/ by heap leach and conventional plant processes, respectively. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present.« less
Engineering assessment of inactive uranium mill tailings: Maybell Site, Maybell, Colorado. Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1981-09-01
Ford, Bacon and Davis Utah Inc. has reevaluated the Maybell site in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Maybell, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.6 million dry tons of tailings at the Maybell sitemore » constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The two alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to disposal of the tailings in a nearby open pit mine and decontamination of the tailings site (Option II). Cost estimates for the two options are about $11,700,000 for stabilization in-place and about $22,700,000 for disposal within a distance of 2 mi. Three principal alternatives for the reprocessing of the Maybell tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $125 and $165/lb of U/sub 3/O/sub 8/ by heap leach and conventional plant processes, respectively. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Yung-Sung; Kenoyer, Judson L.; Guilmette, Raymond A.
2009-03-01
The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing depleted uranium from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluated particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using beta spectrometry, and themore » derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements was quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 um and a large size mode between 2 and 15 um. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 um shortly after perforation to around 1 um at the end of the 2-hr sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles.« less
Baghdadi, S; Bouvier-Capely, C; Ritt, A; Peroux, A; Fevrier, L; Rebiere, F; Agarande, M; Cote, G
2015-11-01
Actinides determination in urine samples is part of the analyses performed to monitor internal contamination in case of an accident or a terrorist attack involving nuclear matter. Mineralisation is the first step of any of these analyses. It aims at reducing the sample volume and at destroying all organic compounds present. The mineralisation protocol is usually based on a wet ashing step, followed by actinides co-precipitation and a furnace ashing step, before redissolution and the quantification of the actinides by the appropriate techniques. Amongst the existing methods to perform the actinides co-precipitation, alkali-earth (typically calcium) precipitation is widely used. In the present work, the extraction of uranium(VI), plutonium(IV) and americium(III) from the redissolution solutions (called "mineralised urines") on calix[6]arene columns bearing hydroxamic groups was investigated as such an extraction is a necessary step before their determination by ICP-MS or alpha spectrometry. Difficulties were encountered in the transfer of uranium(VI) from raw to mineralised urines, with yield of transfer ranging between 0% and 85%, compared to about 90% for Pu and Am, depending on the starting raw urines. To understand the origin of such a difficulty, the speciation of uranium (VI) in mineralised urines was investigated by computer simulation using the MEDUSA software and the associated HYDRA database, compiled with recently published data. These calculations showed that the presence of phosphates in the "mineralised urines" leads to the formation of strong uranyl-phosphate complexes (such as UO2HPO4) which compete with the uranium (VI) extraction by the calix[6]arene bearing hydroxamic groups. The extraction constant of uranium (VI) by calix[6]arene bearing hydroxamic groups was determined in a 0.04 mol L(-1) sodium nitrate solution (logK=4.86±0.03) and implemented in an extraction model taking into account the speciation in the aqueous phase. This model allowed to simulate satisfactorily the experimental uranium extraction data and to support the preliminary conclusions about the role of the phosphates present in mineralised urines. These calculations also showed that the phosphate/calcium ratio is a key parameter as far as the efficiency of the uranium (VI) extraction by the calix[6]arene columns is concerned. It predicted that the addition of CaCl2 in mineralised urines would release uranium (VI) from phosphates by forming calcium (II)-phosphate complexes and thus facilitate the uranium (VI) extraction on calix[6]arene columns. These predictions were confirmed experimentally as the addition of 0.1 mol L(-1) CaCl2 to a mineralised urine containing naturally a high concentration of phosphate (typically 0.04 mol L(-1)) significantly increased the percentage of uranium (VI) extraction on the calix[6]arene columns. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
During the months of September and October, 1979, EG and G geoMetrics collected 8866 line miles of high sensitivity airborne radiometric and magnetic data. Data were gathered primarily within the state of Texas, in three 1 x 2 degree NTMS quadrangles. This project is part of the Department of Energy's National Uranium Resource Evaluation Program. All radiometric and magnetic data were fully corrected and interpreted by geoMetrics and are presented as four Volumes (one Volume I and three Volume II's). The quadrangles are dominated by Cretaceous and Tertiary marine sediments. The cretaceous rocks are largely shallow marine sediments of biogenicmore » origin, whereas the Tertiary sequence represents transgressing shelf and slope deposits. No uranium deposits are known in this area (Schnabel, 1955).« less
Economou, Anastasios; Voulgaropoulos, Anastasios
2003-01-01
The development of a dedicated automated sequential-injection analysis apparatus for anodic stripping voltammetry (ASV) and adsorptive stripping voltammetry (AdSV) is reported. The instrument comprised a peristaltic pump, a multiposition selector valve and a home-made potentiostat and used a mercury-film electrode as the working electrodes in a thin-layer electrochemical detector. Programming of the experimental sequence was performed in LabVIEW 5.1. The sequence of operations included formation of the mercury film, electrolytic or adsorptive accumulation of the analyte on the electrode surface, recording of the voltammetric current-potential response, and cleaning of the electrode. The stripping step was carried out by applying a square-wave (SW) potential-time excitation signal to the working electrode. The instrument allowed unattended operation since multiple-step sequences could be readily implemented through the purpose-built software. The utility of the analyser was tested for the determination of copper(II), cadmium(II), lead(II) and zinc(II) by SWASV and of nickel(II), cobalt(II) and uranium(VI) by SWAdSV.
Economou, Anastasios; Voulgaropoulos, Anastasios
2003-01-01
The development of a dedicated automated sequential-injection analysis apparatus for anodic stripping voltammetry (ASV) and adsorptive stripping voltammetry (AdSV) is reported. The instrument comprised a peristaltic pump, a multiposition selector valve and a home-made potentiostat and used a mercury-film electrode as the working electrodes in a thin-layer electrochemical detector. Programming of the experimental sequence was performed in LabVIEW 5.1. The sequence of operations included formation of the mercury film, electrolytic or adsorptive accumulation of the analyte on the electrode surface, recording of the voltammetric current-potential response, and cleaning of the electrode. The stripping step was carried out by applying a square-wave (SW) potential-time excitation signal to the working electrode. The instrument allowed unattended operation since multiple-step sequences could be readily implemented through the purpose-built software. The utility of the analyser was tested for the determination of copper(II), cadmium(II), lead(II) and zinc(II) by SWASV and of nickel(II), cobalt(II) and uranium(VI) by SWAdSV. PMID:18924623
Radical Responses to Radical Regimes: Evaluating Preemptive Counter-Proliferation
1995-05-01
own Governors, must arm themselves with the power which knowledge gives. JAMES MADISON to W. T. BARRY August 4, 1822 RADICAL RESPONSES TO...War II, leading physicists on all sides were cognizant of the possible revolution in explosive power that might be extracted from a uranium bomb...Phantom jets, part of a larger group of aircraft attacking a conventional electric power plant near Baghdad also bombed the Osirak reactor. Minor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariani, R.D.; Benedict, R.W.; Lell, R.M.
1996-05-01
As part of the termination activities of Experimental Breeder Reactor II (EBR-II) at Argonne National Laboratory (ANL) West, the spent metallic fuel from EBR-II will be treated in the fuel cycle facility (FCF). A key component of the spent-fuel treatment process in the FCF is the electrorefiner (ER) in which the actinide metals are separated from the active metal fission products and the reactive bond sodium. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt, and refined uranium or uranium/plutonium products are deposited at cathodes. The criticality safety strategy and analysis for the ANLmore » West FCF ER is summarized. The FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. To show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOEs) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOEs, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that will verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality.« less
Geochemical control on uranium(IV) mobility in a mining-impacted wetland.
Wang, Yuheng; Bagnoud, Alexandre; Suvorova, Elena; McGivney, Eric; Chesaux, Lydie; Phrommavanh, Vannapha; Descostes, Michael; Bernier-Latmani, Rizlan
2014-09-02
Wetlands often act as sinks for uranium and other trace elements. Our previous work at a mining-impacted wetland in France showed that a labile noncrystalline U(IV) species consisting of U(IV) bound to Al-P-Fe-Si aggregates was predominant in the soil at locations exhibiting a U-containing clay-rich layer within the top 30 cm. Additionally, in the porewater, the association of U(IV) with Fe(II) and organic matter colloids significantly increased U(IV) mobility in the wetland. In the present study, within the same wetland, we further demonstrate that the speciation of U at a location not impacted by the clay-rich layer is a different noncrystalline U(IV) species, consisting of U(IV) bound to organic matter in soil. We also show that the clay-poor location includes an abundant sulfate supply and active microbial sulfate reduction that induce substantial pyrite (FeS2) precipitation. As a result, Fe(II) concentrations in the porewater are much lower than those at clay-impacted zones. U porewater concentrations (0.02-0.26 μM) are also considerably lower than those at the clay-impacted locations (0.21-3.4 μM) resulting in minimal U mobility. In both cases, soil-associated U represents more than 99% of U in the wetland. We conclude that the low U mobility reported at clay-poor locations is due to the limited association of Fe(II) with organic matter colloids in porewater and/or higher stability of the noncrystalline U(IV) species in soil at those locations.
Roadmap for disposal of Electrorefiner Salt as Transuranic Waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rechard, Robert P.; Trone, Janis R.; Kalinina, Elena Arkadievna
The experimental breeder reactor (EBR-II) used fuel with a layer of sodium surrounding the uranium-zirconium fuel to improve heat transfer. Disposing of EBR-II fuel in a geologic repository without treatment is not prudent because of the potentially energetic reaction of the sodium with water. In 2000, the US Department of Energy (DOE) decided to treat the sodium-bonded fuel with an electrorefiner (ER), which produces metallic uranium product, a metallic waste, mostly from the cladding, and the salt waste in the ER, which contains most of the actinides and fission products. Two waste forms were proposed for disposal in a minedmore » repository; the metallic waste, which was to be cast into ingots, and the ER salt waste, which was to be further treated to produce a ceramic waste form. However, alternative disposal pathways for metallic and salt waste streams may reduce the complexity. For example, performance assessments show that geologic repositories can easily accommodate the ER salt waste without treating it to form a ceramic waste form. Because EBR-II was used for atomic energy defense activities, the treated waste likely meets the definition of transuranic waste. Hence, disposal at the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, may be feasible. This report reviews the direct disposal pathway for ER salt waste and describes eleven tasks necessary for implementing disposal at WIPP, provided space is available, DOE decides to use this alternative disposal pathway in an updated environmental impact statement, and the State of New Mexico grants permission.« less
Schierz, A; Zänker, H
2009-04-01
The objective of this study is to obtain information on the behaviour of carbon nanotubes (CNTs) as potential carriers of pollutants in the case of accidental CNT release to the environment and on the properties of CNTs as a potential adsorbent material in water purification. The effects of acid treatment of CNTs on (i) the surface properties, (ii) the colloidal stability and (iii) heavy metal sorption are investigated, the latter being exemplified by uranium(VI) sorption. There is a pronounced influence of surface treatment on the behaviour of the CNTs in aqueous suspension. Results showed that acid treatment increases the amount of acidic surface groups on the CNTs. Therefore, acid treatment has an increasing effect on the colloidal stability of the CNTs and on their adsorption capacity for U(VI). Another way to stabilise colloids of pristine CNTs in aqueous suspension is the addition of humic acid.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, K. M.; Davis, J. A.; Bargar, J.
2011-10-15
Reductive biostimulation is currently being explored as a possible remediation strategy for uranium (U) contaminated groundwater, and is currently being investigated at a field site in Rifle, CO, USA. The long-term stability of the resulting U(IV) phases is a key component of the overall performance and depends upon a variety of factors, including rate and mechanism of reduction, mineral associations in the subsurface, and propensity for oxidation. To address these factors, several approaches were used to evaluate the redox sensitivity of U: measurement of the rate of oxidative dissolution of biogenic uraninite (UO{sub 2(s)}) deployed in groundwater at Rifle, characterizationmore » of a zone of natural bioreduction exhibiting relevant reduced mineral phases, and laboratory studies of the oxidative capacity of Fe(III) and reductive capacity of Fe(II) with regard to U(IV) and U(VI), respectively.« less
Final Environmental Assessment for Proposed Construction II, Buckley Air Force Base, Colorado
2004-06-01
Onopordum acanthium Scotch thistle Salsola sp. Russian thistle Tamarisk ramosissima Saltcedar Verbascum thapsus Mullein 3.7.4 Site-Specific...AFB by the City of Aurora. 3.10 RADON Radon is an odorless, tasteless radioactive gas. It is released by the breakdown of uranium -bearing deposits...such as sterile oats or winter wheat to establish root mass and compete with weeds • Follow sterile oats or winter wheat planting with mixed grass
Alessi, Daniel S; Lezama-Pacheco, Juan S; Janot, Noémie; Suvorova, Elena I; Cerrato, José M; Giammar, Daniel E; Davis, James A; Fox, Patricia M; Williams, Kenneth H; Long, Philip E; Handley, Kim M; Bernier-Latmani, Rizlan; Bargar, John R
2014-11-04
In this study, we report the results of in situ U(VI) bioreduction experiments at the Integrated Field Research Challenge site in Rifle, Colorado, USA. Columns filled with sediments were deployed into a groundwater well at the site and, after a period of conditioning with groundwater, were amended with a mixture of groundwater, soluble U(VI), and acetate to stimulate the growth of indigenous microorganisms. Individual reactors were collected as various redox regimes in the column sediments were achieved: (i) during iron reduction, (ii) just after the onset of sulfate reduction, and (iii) later into sulfate reduction. The speciation of U retained in the sediments was studied using X-ray absorption spectroscopy, electron microscopy, and chemical extractions. Circa 90% of the total uranium was reduced to U(IV) in each reactor. Noncrystalline U(IV) comprised about two-thirds of the U(IV) pool, across large changes in microbial community structure, redox regime, total uranium accumulation, and reaction time. A significant body of recent research has demonstrated that noncrystalline U(IV) species are more suceptible to remobilization and reoxidation than crystalline U(IV) phases such as uraninite. Our results highlight the importance of considering noncrystalline U(IV) formation across a wide range of aquifer parameters when designing in situ remediation plans.
2015-01-01
In this study, we report the results of in situ U(VI) bioreduction experiments at the Integrated Field Research Challenge site in Rifle, Colorado, USA. Columns filled with sediments were deployed into a groundwater well at the site and, after a period of conditioning with groundwater, were amended with a mixture of groundwater, soluble U(VI), and acetate to stimulate the growth of indigenous microorganisms. Individual reactors were collected as various redox regimes in the column sediments were achieved: (i) during iron reduction, (ii) just after the onset of sulfate reduction, and (iii) later into sulfate reduction. The speciation of U retained in the sediments was studied using X-ray absorption spectroscopy, electron microscopy, and chemical extractions. Circa 90% of the total uranium was reduced to U(IV) in each reactor. Noncrystalline U(IV) comprised about two-thirds of the U(IV) pool, across large changes in microbial community structure, redox regime, total uranium accumulation, and reaction time. A significant body of recent research has demonstrated that noncrystalline U(IV) species are more suceptible to remobilization and reoxidation than crystalline U(IV) phases such as uraninite. Our results highlight the importance of considering noncrystalline U(IV) formation across a wide range of aquifer parameters when designing in situ remediation plans. PMID:25265543
Two-stage model of radon-induced malignant lung tumors in rats: effects of cell killing
NASA Technical Reports Server (NTRS)
Luebeck, E. G.; Curtis, S. B.; Cross, F. T.; Moolgavkar, S. H.
1996-01-01
A two-stage stochastic model of carcinogenesis is used to analyze lung tumor incidence in 3750 rats exposed to varying regimens of radon carried on a constant-concentration uranium ore dust aerosol. New to this analysis is the parameterization of the model such that cell killing by the alpha particles could be included. The model contains parameters characterizing the rate of the first mutation, the net proliferation rate of initiated cells, the ratio of the rates of cell loss (cell killing plus differentiation) and cell division, and the lag time between the appearance of the first malignant cell and the tumor. Data analysis was by standard maximum likelihood estimation techniques. Results indicate that the rate of the first mutation is dependent on radon and consistent with in vitro rates measured experimentally, and that the rate of the second mutation is not dependent on radon. An initial sharp rise in the net proliferation rate of initiated cell was found with increasing exposure rate (denoted model I), which leads to an unrealistically high cell-killing coefficient. A second model (model II) was studied, in which the initial rise was attributed to promotion via a step function, implying that it is due not to radon but to the uranium ore dust. This model resulted in values for the cell-killing coefficient consistent with those found for in vitro cells. An "inverse dose-rate" effect is seen, i.e. an increase in the lifetime probability of tumor with a decrease in exposure rate. This is attributed in large part to promotion of intermediate lesions. Since model II is preferable on biological grounds (it yields a plausible cell-killing coefficient), such as uranium ore dust. This analysis presents evidence that a two-stage model describes the data adequately and generates hypotheses regarding the mechanism of radon-induced carcinogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Day, Peggy A.; Asta, Maria P.; Kanematsu, Masakazu
2015-02-27
In this project, we combined molecular genetic, spectroscopic, and microscopic techniques with kinetic and reactive transport studies to describe and quantify biotic and abiotic mechanisms underlying anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, which influences the long-term efficacy of in situ reductive immobilization of uranium at DOE sites. In these studies, Thiobacillus denitrificans, an autotrophic bacterium that catalyzes anaerobic U(IV) and Fe(II) oxidation, was used to examine coupled oxidation-reduction processes under either biotic (enzymatic) or abiotic conditions in batch and column experiments with biogenically produced UIVO2(s). Synthesis and quantitative analysis of coupled chemical and transport processes were done with the reactivemore » transport modeling code Crunchflow. Research focused on identifying the primary redox proteins that catalyze metal oxidation, environmental factors that influence protein expression, and molecular-scale geochemical factors that control the rates of biotic and abiotic oxidation.« less
Yan, Sen; Chen, Yongheng; Xiang, Wu; Bao, Zhengyu; Liu, Chongxuan; Deng, Baolin
2014-12-01
The role of Fe(II) and Fe(III) in U(VI) reduction by nanoscale zerovalent iron (nanoFe0) was investigated using two iron chelators 1,10-phenanthroline and triethanolamine (TEA) under a CO2-free anoxic condition. The results showed that U(VI) reduction was strongly inhibited by 1,10-phenanthroline and TEA in a pH range from 6.9 to 9.0. For instance, at pH 6.9 the observed U(VI) reduction rates decreased by 81% and 82% in the presence of 1,10-phenanthroline and TEA, respectively. The inhibition was attributed to the formation of stable complexes between 1,10-phenanthroline and Fe(II) or TEA and Fe(III). In the absence of iron chelators, U(VI) reduction can be enhanced by surface-bound Fe(II) on nanoFe0. Our results suggested that Fe(III) and Fe(II) possibly acted as an electron shuttle to ferry the electrons from nanoFe0 to U(VI), therefore a combined system with Fe(II), Fe(III) and nanoFe0 could facilitate U(VI) reductive immobilization in the contaminated groundwater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Sen; Chen, Yongheng; Xiang, Wu
2014-12-01
The role of Fe(II) and Fe(III) on U(VI) reduction by nanoscale zerovalent iron (nanoFe0) was investigated using two iron chelators 1,10-phenanthroline and triethanolamine (TEA) under a CO2-free anoxic condition. The results showed U(VI) reduction was strongly inhibited by 1,10-phenanthroline and TEA in a pH range from 6.92 to 9.03. For instance, at pH 6.92 the observed U(VI) reduction rates decreased by 80.7% and 82.3% in the presence of 1,10-phenanthroline and TEA, respectively. The inhibition was attributed to the formation of stable complexes between 1,10-phenanthroline and Fe(II) or TEA and Fe(III). In the absence of iron chelators, U(VI) reduction can bemore » enhanced by surface-bound Fe(II) on nanoFe0. Our results suggested that Fe(III) and Fe(II) probably acted as an electron shuttle to mediate the transfer of electrons from nanoFe0 to U(VI), therefore a combined system with Fe(II), Fe(III) and nanoFe0 can facilitate the U(VI) reductive immobilization in the contaminated groundwater.« less
Aerosolization Characteristics of Hard Impact Testing of Depleted Uranium Penetrators
1982-10-01
meters (8 feet) deep half-cylinder, which is designed to prevent sabot parts from travelling laterally after impaction. The PFT is located about 15...specially designed , cut and perforated collection filter. Configuration I is used for staces one and three while Configuration II is used for stages two...official Department of the Army position, unless so designated by other authorized documents. d0#8 Wt oWnsti~tute indo?.dment of an ome, I producot
The POPOP4 library and codes for preparing secondary gamma-ray production cross sections
NASA Technical Reports Server (NTRS)
Ford, W. E., III
1972-01-01
The POPOP4 code for converting secondary gamma ray yield data to multigroup secondary gamma ray production cross sections and the POPOP4 library of secondary gamma ray yield data are described. Recent results of the testing of uranium and iron data sets from the POPOP4 library are given. The data sets were tested by comparing calculated secondary gamma ray pulse height spectra measured at the ORNL TSR-II reactor.
1977-12-01
Internal Zone Melting, Oxide-Metal Eutectic Structures ABSTRACT (Continue X reverae elde II neceaetrry end Identity by block nwbor* -^>This report...To- Uranium (0/U) Ratio B. Storage of "As-Received" Powders C. Moisture Content D. Oxidation Properties E. Sintering Properties F. Particle Size... Nickel - Vanadium 3.3 Nickel -Al203 3.4 Nickel -Tungsten 3.5 Copper-410 Stainless Steel C. Etching 1. Chemical Etching 2. Thermal Annealing 3. Ion
Nuclear criticality safety evaluation of SRS 9971 shipping package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vescovi, P.J.
1993-02-01
This evaluation is requested to revise the criticality evaluation used to generate Chapter 6 (Criticality Evaluation) of the Safety Analysis Report for Packaging (SARP) for shipment Of UO{sub 3} product from the Uranium Solidification Facility (USF) in the SRS 9971 shipping package. The pertinent document requesting this evaluation is included as Attachment I. The results of the evaluation are given in Attachment II which is written as Chapter 6 of a NRC format SARP.
Identification of Mn(II)-oxidizing bacteria from a low-pH contaminated former uranium mine.
Akob, Denise M; Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten
2014-08-01
Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Identification of Mn(II)-Oxidizing Bacteria from a Low-pH Contaminated Former Uranium Mine
Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A.; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten
2014-01-01
Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments. PMID:24928873
Identification of Mn(II)-oxidizing bacteria from a low-pH contaminated former uranium mine
Akob, Denise M.; Bohu, Tsing; Beyer, Andrea; Schäffner, Franziska; Händel, Matthias; Johnson, Carol A.; Merten, Dirk; Büchel, Georg; Totsche, Kai Uwe; Küsel, Kirsten
2014-01-01
Biological Mn oxidation is responsible for producing highly reactive and abundant Mn oxide phases in the environment that can mitigate metal contamination. However, little is known about Mn oxidation in low-pH environments, where metal contamination often is a problem as the result of mining activities. We isolated two Mn(II)-oxidizing bacteria (MOB) at pH 5.5 (Duganella isolate AB_14 and Albidiferax isolate TB-2) and nine strains at pH 7 from a former uranium mining site. Isolate TB-2 may contribute to Mn oxidation in the acidic Mn-rich subsoil, as a closely related clone represented 16% of the total community. All isolates oxidized Mn over a small pH range, and isolates from low-pH samples only oxidized Mn below pH 6. Two strains with different pH optima differed in their Fe requirements for Mn oxidation, suggesting that Mn oxidation by the strain found at neutral pH was linked to Fe oxidation. Isolates tolerated Ni, Cu, and Cd and produced Mn oxides with similarities to todorokite and birnessite, with the latter being present in subsurface layers where metal enrichment was associated with Mn oxides. This demonstrates that MOB can be involved in the formation of biogenic Mn oxides in both moderately acidic and neutral pH environments.
NASA Astrophysics Data System (ADS)
Burghardt, D.; Simon, E.; Knöller, K.; Kassahun, A.
2007-12-01
The main object of the study was the development of a long-term efficient and inexpensive in-situ immobilization technology for uranium (U) and arsenic (As) in smaller and decentralized groundwater discharges from abandoned mining processing sites. Therefore, corrosion of grey cast iron (gcFe) and nano-scale iron particles (naFe) as well as hydrogen stimulated autotrophic sulphate reduction (aSR) were investigated. Two column experiments with sulphate reducing bacterias (SRB) (biotic gcFe , biotic naFe) and one abiotic gcFe-column experiment were performed. In the biotic naFe column, no particle translocation was observed and a temporary but intensive naFe corrosion indicated by a decrease in Eh, a pH increase and H 2 evolution. Decreasing sulphate concentrations and 34S enrichment in the column effluent indicated aSR. Fe(II) retention could be explained by siderite and consequently FeS precipitation by geochemical modeling (PhreeqC). U and As were completely immobilised within the biotic naFe column. In the biotic gcFe column, particle entrapment in open pore spaces resulted in a heterogeneous distribution of Fe-enriched zones and an increase in permeability due to preferential flow. However, Fe(II) concentrations in the effluent indicated a constant and lasting gcFe corrosion. An efficient immobilization was found for As, but not for U.
31 CFR 540.317 - Uranium feed; natural uranium feed.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Uranium feed; natural uranium feed...) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The term uranium feed or natural uranium feed means natural uranium in the form of UF6 suitable for uranium...
31 CFR 540.317 - Uranium feed; natural uranium feed.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium feed; natural uranium feed...) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The term uranium feed or natural uranium feed means natural uranium in the form of UF6 suitable for uranium...
Process for continuous production of metallic uranium and uranium alloys
Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.
1995-06-06
A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.
Process for continuous production of metallic uranium and uranium alloys
Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.
1995-01-01
A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.
N'Guessan, A Lucie; Vrionis, Helen A; Resch, Charles T; Long, Philip E; Lovley, Derek R
2008-04-15
Previous field studies on in situ bioremediation of uranium-contaminated groundwater in an aquifer in Rifle, Colorado identified two distinct phases following the addition of acetate to stimulate microbial respiration. In phase I, Geobacter species are the predominant organisms, Fe(III) is reduced, and microbial reduction of soluble U(VI) to insoluble U(IV) removes uranium from the groundwater. In phase II, Fe(III) is depleted, sulfate is reduced, and sulfate-reducing bacteria predominate. Long-term monitoring revealed an unexpected third phase during which U(VI) removal continues even after acetate additions are stopped. All three of these phases were successfully reproduced in flow-through sediment columns. When sediments from the third phase were heat sterilized, the capacity for U(VI) removal was lost. In the live sediments U(VI) removed from the groundwater was recovered as U(VI) in the sediments. This contrasts to the recovery of U(IV) in sediments resulting from the reduction of U(VI) to U(IV) during the Fe(III) reduction phase in acetate-amended sediments. Analysis of 16S rRNA gene sequences in the sediments in which U(VI) was being adsorbed indicated that members of the Firmicutes were the predominant organisms whereas no Firmicutes sequences were detected in background sediments which did not have the capacity to sorb U(VI), suggesting that the U(VI) adsorption might be due to the presence of these living organisms or at least their intact cell components. This unexpected enhanced adsorption of U(VI) onto sediments following the stimulation of microbial growth in the subsurface may potentially enhance the cost effectiveness of in situ uranium bioremediation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-05-01
During the months of August through September, 1978, geoMetrics, Inc. flew approximately 1520 line miles of high sensitivity airborne radiometric and magnetic data in Wyoming and southern Montana within four 1/sup 0/ x 2/sup 0/ NTMS quadrangles (Arminto, Sheridan, Hardin and Forsyth), and 1390 lines miles in the detail area in eastern Wyoming, as part of the Department of Energy's National Uranium Resource Evaluation program. All radiometric and magnetic data were fully reduced and interpreted by geoMetrics, and are presented as three volumes (one Volume I and two Volume II's) in this report. The survey area lies largely within themore » northern Great Plains Physiographic Province. The deep Powder River Basin is the dominant structure in the area. Portions of the Casper Arch, Big Horn Uplift, and Porcupine Dome fall within the western limits of the area. The Basin is one of the largest and deepest in the northern Great Plains and contains over 17,000 feet of Phanerozoic sediments at its deepest point. Economic deposits of oil, coal, bentonite and uranium are found in the Tertiary and/or Cretaceous rocks of the Basin. Epigenetic uranium deposits lie primarily in the Pumpkin Buttes - Turnercrest districts within arkosic sandstones of the Paleocene Fort Union Formation. A total of 62 groups of statistical values for the R and D area and 127 for the Arminto Detail in the uranium window meet the criteria for valid anomalies and are discussed in their respective interpretation sections. Most anomalies lie in the Tertiary sediments of the Powder River Basin. Some of the anomalies in the Arminto Detail are clearly related to mines or prospects.« less
Fast Oxidation Processes in a Naturally Reduced Aquifer Zone Caused by Dissolved Oxygen
NASA Astrophysics Data System (ADS)
Davis, J. A.; Jemison, N. E.; Williams, K. H.; Hobson, C.; Bush, R. P.
2014-12-01
The occurrence of naturally reduced zones is quite common in alluvial aquifers in the western U.S.A. due to the burial of woody debris in flood plains. The naturally reduced zones are heterogeneously dispersed in such aquifers and are characterized by high concentrations of organic carbon and reduced phases, including iron sulfides and reduced forms of metals, including uranium(IV). The persistence of high concentrations of dissolved uranium(VI) at uranium-contaminated aquifers on the Colorado Plateau has been attributed to slow oxidation of insoluble uranium(IV) mineral phases that are found in association with these natural reducing zones, although there is little understanding of the relative importance of various potential oxidants. Three field experiments were conducted within an alluvial aquifer adjacent to the Colorado River near Rifle, CO wherein groundwater associated with naturally reduced zones was pumped into a gas-impermeable tank, mixed with a conservative tracer (Br-), bubbled with a gas phase composed of 97% O2 and 3% CO2, and then returned to the subsurface in the same well from which it was withdrawn. Within minutes of re-injection of the oxygenated groundwater, dissolved uranium(VI) concentrations increased from less than 1 μM to greater than 2.5 μM, demonstrating that oxygen can be an important oxidant for uranium in these field systems if supplied to the naturally reduced zones. Small concentrations of nitrate were also observed in the previously nitrate-free groundwater, and Fe(II) decreased to the detection limit. These results contrast with other laboratory and field results in which oxygen was introduced to systems containing high concentrations of mackinawite (FeS) rather than the more crystalline iron sulfides found in aged, naturally reduced zones. The flux of oxygen to the naturally reduced zones in the alluvial aquifers occurs mainly through interactions between groundwater and gas phases at the water table, and seasonal variations of the water table at the Rifle, CO site may play an important role in introducing oxygen into the system. Although oxygen was introduced directly to the naturally reduced zones in these experiments, delivery of oxidants to the system may normally be controlled by other oxidative pathways in which oxygen plays an indirect role.
Method for converting uranium oxides to uranium metal
Duerksen, Walter K.
1988-01-01
A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.
The Manhattan Project; A very brief introduction to the physics of nuclear weapons
NASA Astrophysics Data System (ADS)
Reed, B. Cameron
2017-05-01
The development of nuclear weapons by the Manhattan Project during World War II was one of the most dramatic scientific/technological episodes in human history. This book, prepared by a recognized expert on the Manhattan Project, offers a concise survey of the essential physics concepts underlying fission weapons. The text describes the energetics and timescales of fast-neutron chain reactions, why only certain isotopes of uranium and plutonium are suitable for use in fission weapons, how critical mass and bomb yield can be estimated, how the efficiency of nuclear weapons can be enhanced, how the fissile forms of uranium and plutonium were obtained, some of the design details of the 'Little Boy' and 'Fat Man' bombs, and some of the thermal, shock, and radiation effects of nuclear weapons. Calculation exercises are provided, and a Bibliography lists authoritative print and online sources of information for readers who wish to pursue more detailed study of this fascinating topic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frazier, William; Johnson, Dick
The L-Bar, New Mexico, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title II Disposal Site was inspected on August 18, 2015. The tailings impoundment was in excellent condition. Erosion and vegetation measurements to monitor the condition of the impoundment cover indicated that no erosion is occurring, and perennial vegetation foliar cover at the measurement plots increased substantially compared to previous years due to above-average precipitation for the year. A short segment of the perimeter fence near the site entrance was realigned in spring 2015 because a gully was undermining the fence corner. Loose fence strands at another location were repairedmore » during the inspection, and a section of fence needs to be realigned to avoid areas affected by deep gullies and sediment deposition. Inspectors identified no other maintenance needs or cause for a follow-up inspection. Groundwater monitoring is required every 3 years. The next monitoring event will be in 2016.« less
Reactivity of iron-rich phyllosilicates with uranium and chromium through redox transition zones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burgos, William D.
This project performed thermodynamic, kinetic, and mineral structural studies on the reactivity of phyllosilicate Fe(II/III) with metal-reducing bacteria, and with two important poly-valent DOE contaminants (chromium and uranium) that show high mobility in their oxidized state. We focused on Fe-bearing phyllosilicates because these are important components of the reactive, fines fraction of Hanford, Oak Ridge, and Idaho National Laboratory sediments. Iron-bearing phyllosilicates strongly influence the redox state and mobility of Cr and U because of their limited hydraulic conductivity, high specific surface area, and redox reactivity. This was a collaborative project between Penn State (W.D. Burgos – PI), Miami Universitymore » (H. Dong – Co-PI), and Argonne National Laboratory (K. Kemner and M. Boyanov – Co-PIs). Penn State and Miami University were funded together but separately from ANL. This report summarizes research findings and publications produced by Penn State and Miami University.« less
Sorption of uranyl ions from various acido systems by amphoteric epoxy amine ion-exchange resins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rychkov, V.N.; Radionov, B.K.; Molochnikov, L.S.
1995-03-01
Sorption of uranyl ions by epoxy amine ampholytes with N-monomethylenephosphonic acid groups modified with pyridine or quaternary ammonium groups was studied under dynamic conditions. Heterocyclic nitrogen favors sorption of uranyl ion from fluoride, sulfate, and fluoride-sulfate solutions. The ESR studies of mono- and bimetallic forms of nitrogen-containing ampholytes with copper(II) as paramagnetic marker revealed the characteristics of uranium(VI) interaction with cation- and anion-exchange groups and its dependence on the fluoride content in solution.
Nuclear criticality safety evaluation of SRS 9971 shipping package. [SRS (Savannah River Site)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vescovi, P.J.
1993-02-01
This evaluation is requested to revise the criticality evaluation used to generate Chapter 6 (Criticality Evaluation) of the Safety Analysis Report for Packaging (SARP) for shipment Of UO[sub 3] product from the Uranium Solidification Facility (USF) in the SRS 9971 shipping package. The pertinent document requesting this evaluation is included as Attachment I. The results of the evaluation are given in Attachment II which is written as Chapter 6 of a NRC format SARP.
Dickinson, Michelle; Scott, Thomas B
2010-06-15
Zero-valent iron nanoparticles (INP) were investigated as a remediation strategy for a uranium-contaminated waste effluent from AWE, Aldermaston. Nanoparticles were introduced to the effluent, under both oxic and anoxic conditions, and allowed to react for a 28-d period during which the liquid and nanoparticle solids were periodically sampled. Analysis of the solution indicated that under both conditions U was removed to <1.5% of its initial concentration within 1h of introduction and remained at similar concentrations until approximately 48 h. A rapid release of Fe into solution was also recorded during this initial period; attributed to the limited partial dissolution of the INP. XPS analyses of the reacted nanoparticulate solids between 1 and 48 h showed an increased Fe(III):Fe(II) ratio, consistent with the detection of iron oxidation products (akaganeite and magnetite) by XRD and FIB. XPS analysis also recorded uranium on the recovered particulates indicating the chemical reduction of U(VI) to U(IV) within 1h. Following the initial retention period U-dissolution of U was recorded from 48 h, and attributed to reoxidation. The efficient uptake and retention of U on the INP for periods up to 48 h provide proof that INP may be effectively used for the remediation of complex U-contaminated effluents. Copyright 2010 Elsevier B.V. All rights reserved.
40 CFR 421.320 - Applicability: Description of the secondary uranium subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... secondary uranium subcategory. 421.320 Section 421.320 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Uranium Subcategory § 421.320 Applicability: Description of the secondary uranium... uranium (including depleted uranium) by secondary uranium facilities. ...
40 CFR 421.320 - Applicability: Description of the secondary uranium subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... secondary uranium subcategory. 421.320 Section 421.320 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Uranium Subcategory § 421.320 Applicability: Description of the secondary uranium... uranium (including depleted uranium) by secondary uranium facilities. ...
40 CFR 421.320 - Applicability: Description of the secondary uranium subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... secondary uranium subcategory. 421.320 Section 421.320 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Uranium Subcategory § 421.320 Applicability: Description of the secondary uranium... uranium (including depleted uranium) by secondary uranium facilities. ...
40 CFR 421.320 - Applicability: Description of the secondary uranium subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... secondary uranium subcategory. 421.320 Section 421.320 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Uranium Subcategory § 421.320 Applicability: Description of the secondary uranium... uranium (including depleted uranium) by secondary uranium facilities. ...
40 CFR 421.320 - Applicability: Description of the secondary uranium subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... secondary uranium subcategory. 421.320 Section 421.320 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Uranium Subcategory § 421.320 Applicability: Description of the secondary uranium... uranium (including depleted uranium) by secondary uranium facilities. ...
Bioremediation of uranium contamination with enzymatic uranium reduction
Lovley, D.R.; Phillips, E.J.P.
1992-01-01
Enzymatic uranium reduction by Desulfovibrio desulfuricans readily removed uranium from solution in a batch system or when D. desulfuricans was separated from the bulk of the uranium-containing water by a semipermeable membrane. Uranium reduction continued at concentrations as high as 24 mM. Of a variety of potentially inhibiting anions and metals evaluated, only high concentrations of copper inhibited uranium reduction. Freeze-dried cells, stored aerobically, reduced uranium as fast as fresh cells. D. desulfuricans reduced uranium in pH 4 and pH 7.4 mine drainage waters and in uraniumcontaining groundwaters from a contaminated Department of Energy site. Enzymatic uranium reduction has several potential advantages over other bioprocessing techniques for uranium removal, the most important of which are as follows: the ability to precipitate uranium that is in the form of a uranyl carbonate complex; high capacity for uranium removal per cell; the formation of a compact, relatively pure, uranium precipitate.
Release behavior of uranium in uranium mill tailings under environmental conditions.
Liu, Bo; Peng, Tongjiang; Sun, Hongjuan; Yue, Huanjuan
2017-05-01
Uranium contamination is observed in sedimentary geochemical environments, but the geochemical and mineralogical processes that control uranium release from sediment are not fully appreciated. Identification of how sediments and water influence the release and migration of uranium is critical to improve the prevention of uranium contamination in soil and groundwater. To understand the process of uranium release and migration from uranium mill tailings under water chemistry conditions, uranium mill tailing samples from northwest China were investigated with batch leaching experiments. Results showed that water played an important role in uranium release from the tailing minerals. The uranium release was clearly influenced by contact time, liquid-solid ratio, particle size, and pH under water chemistry conditions. Longer contact time, higher liquid content, and extreme pH were all not conducive to the stabilization of uranium and accelerated the uranium release from the tailing mineral to the solution. The values of pH were found to significantly influence the extent and mechanisms of uranium release from minerals to water. Uranium release was monitored by a number of interactive processes, including dissolution of uranium-bearing minerals, uranium desorption from mineral surfaces, and formation of aqueous uranium complexes. Considering the impact of contact time, liquid-solid ratio, particle size, and pH on uranium release from uranium mill tailings, reducing the water content, decreasing the porosity of tailing dumps and controlling the pH of tailings were the key factors for prevention and management of environmental pollution in areas near uranium mines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Uranium distribution in the coastal waters and pore waters of Tampa Bay, Florida
Swarzenski, P.W.; Baskaran, M.
2006-01-01
The geochemical reactivity of uranium (238U) and dissolved organic carbon (DOC), Fe, Mn, Ba, and V was investigated in the water column, pore waters, and across a river/estuarine mixing zone in Tampa Bay, Florida. This large estuary is impacted both by diverse anthropogenic activity and by extensive U-rich phosphatic deposits. Thus, the estuarine behavior of uranium may be examined relative to such known U enrichments and anthropogenic perturbations. Dissolved (< 0.45??m) uranium exhibited both removal and enrichment processes across the Alafia River/estuarine mixing zone relative to conservative mixing. Such non-conservative U behavior may be attributed to: i) physical mixing processes within the river; ii) U carrier phase reactivity; and/or iii) fluid exchange processes across sediment/water interface. In the bay proper, U concentrations were ?????2 to 3 times greater than those reported for other estuarine systems and are likely a result of erosional inputs from the extensive, underlying U-rich phosphatic deposits. Whereas dissolved U concentrations generally did not approach seawater values (13.6??nM) along the Alafia River salinity transect, water column U concentrations exceeded 16??nM in select regions of the bay. Within the hydrogeological framework of the bay, such enriched U may also be derived from advective fluid transport processes across the sediment/water interface, such as submarine groundwater discharge (SGD) or hyporheic exchange within coastal rivers. Pore water profiles of U in Tampa Bay show both a flux into and out of bottom sediments, and average, diffusive U pore water fluxes (Jdiff) ranged from - 82.0 to 116.6??mol d- 1. It is likely that negative U fluxes imply seawater entrainment or infiltration (i.e., submarine groundwater recharge), which may contribute to the removal of water column uranium. For comparison, a bay-wide, Ra-derived submarine groundwater discharge estimate for Tampa Bay (8??L m- 2 d- 1) yielded an average, advective (JSGD) U flux of 112.9??mol d- 1. In Tampa Bay, the estuarine distribution of U indicates a strong natural, geologic control that may also be influenced by enhanced fluid transport processes across the sediment/water interface. ?? 2006 Elsevier B.V. All rights reserved.
In situ ligand synthesis with the UO{sub 2}{sup 2+} cation under hydrothermal conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frisch, Mark; Cahill, Christopher L.; Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC
A novel uranium (VI) coordination polymer, (UO{sub 2}){sub 2}(C{sub 2}O{sub 4})(C{sub 5}H{sub 6}NO{sub 3}){sub 2} (1), has been prepared under the hydrothermal reaction of uranium nitrate hexahydrate and L-pyroglutamic acid. Compound 1 (monoclinic, C2/c, a=22.541(6) A, b=5.7428(15) A, c=15.815(4) A, {beta}=119.112(4){sup o}, Z=4, R{sub 1}=0.0237, wR{sub 2}=0.0367) consists of uranium pentagonal bipyramids linked via L-pyroglutamate and oxalate anions to form an overall two-dimensional (2D) structure. With the absence of oxalic acid within the starting materials, the oxalate anions are hypothesized to form in situ whereby decarboxylation of L-pyroglutamic acid occurs followed by coupling of CO{sub 2} to form the oxalatemore » linkages as observed in the crystal structure. Addition of copper (II) to this system appears to promote oxalate formation in that synthetic moolooite (Cu(C{sub 2}O{sub 4}).nH{sub 2}O; 0{<=}n{<=}1) and a known uranyl oxalate [(UO{sub 2}){sub 2}(C{sub 2}O{sub 4})(OH){sub 2}(H{sub 2}O){sub 2}.H{sub 2}O], co-crystallize in significant quantity. Compound 1 exhibits the characteristic uranyl emission spectrum upon either direct uranyl excitation or ligand excitation, the latter of which shows an increase in relative intensity. This subsequent increase in the intensity indicates an energy transfer from the ligand to the uranyl cations thus illustrating an example of the antenna effect in the solid state. - Graphical abstract: A novel homometallic coordination polymer (UO{sub 2}){sub 2}(C{sub 2}O{sub 4})(C{sub 5}H{sub 6}NO{sub 3}){sub 2}, in the uranium-L-pyroglutamic acid system has been synthesized under hydrothermal conditions. The title compound consists of uranium pentagonal bipyramids bridged through both L-pyroglutamate and oxalate linkages to produce a 3D crystal structure. The oxalate anions are theorized to result from decarboxylation of L-pyroglutamic acid followed by subsequent coupling of CO{sub 2}.« less
Posttest examination results of recent treat tests on metal fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holland, J.W.; Wright, A.E.; Bauer, T.H.
A series of in-reactor transient tests is underway to study the characteristics of metal-alloy fuel during transient-overpower-without-scam conditions. The initial tests focused on determining the margin to cladding breach and the axial fuel motions that would mitigate the power excursion. The tests were conducted in flowing-sodium loops with uranium - 5% fissium EBR-II Mark-II driver fuel elements in the TREAT facility. Posttest examination of the tests evaluated fuel elongation in intact pins and postfailure fuel motion. Microscopic examination of the intact pins studied the nature and extent of fuel/cladding interaction, fuel melt fraction and mass distribution, and distribution of porosity.more » Eutectic penetration and failure of the cladding were also examined in the failed pins.« less
Mills, Christopher T.; Amano, Yuki; Slater, Gregory F.; Dias, Robert F.; Iwatsuki, Teruki; Mandernack, Kevin W.
2010-01-01
Microorganisms are ubiquitous in deep subsurface environments, but their role in the global carbon cycle is not well-understood. The natural abundance δ13C and Δ14C values of microbial membrane phospholipid fatty acids (PLFAs) were measured and used to assess the carbon sources of bacteria in sedimentary and granitic groundwaters sampled from three boreholes in the vicinity of the Tono Uranium Mine, Gifu, Japan. Sample storage experiments were performed and drill waters analyzed to characterize potential sources of microbial contamination. The most abundant PLFA structures in all waters sampled were 16:0, 16:1ω7c, cy17:0, and 18:1ω7c. A PLFA biomarker for type II methanotrophs, 18:1ω8c, comprised 3% and 18% of total PLFAs in anoxic sedimentary and granitic waters, respectively, sampled from the KNA-6 borehole. The presence of this biomarker was unexpected given that type II methanotrophs are considered obligate aerobes. However, a bacterium that grows aerobically with CH4 as the sole energy source and which also produces 56% of its total PLFAs as 18:1ω8c was isolated from both waters, providing additional evidence for the presence of type II methanotrophs. The Δ14C values determined for type II methanotroph PLFAs in the sedimentary (−861‰) and granite (−867‰) waters were very similar to the Δ14C values of dissolved inorganic carbon (DIC) in each water (∼−850‰). This suggests that type II methanotrophs ultimately derive all their carbon from inorganic sources, whether directly from DIC and/or from CH4 produced by the reduction of DIC. In contrast, δ13C values of type II PLFAs in the sedimentary (−93‰) and granite (−60‰) waters indicate that these organisms use different carbon assimilation schemes in each environment despite very similar δ13CCH4">δ13CCH4 values (∼−95‰) for each water. The δ13CPLFA values (−28‰ to −45‰) of non-methanotrophic bacteria in the KNA-6 LTL water do not clearly distinguish between heterotrophic and autotrophic metabolisms, but Δ14CPLFAvalues indicate that >65% of total bacteria filtered from the KNA-6 LTL water are heterotrophs. Ancient Δ14C values (∼−1000‰) of some PLFAs suggest that many heterotrophs utilize ancient organic matter, perhaps from lignite seams within the sedimentary rocks. The more negative range of δ13CPLFA values determined for the KNA-6 granitic water (−42‰ to −66‰) are likely the result of a microbial ecosystem dominated by chemolithoautotrophy, perhaps fuelled by abiogenic H2. Results of sample storage experiments showed substantial shifts in microbial community composition and δ13CPLFAvalues (as much as 5‰) during 2–4 days of dark, refrigerated, aseptic storage. However, water samples collected and immediately filtered back in the lab from freshly drilled MSB-2 borehole appeared to maintain the same relative relationships between δ13CPLFA values for sedimentary and granitic host rocks as observed for samples directly filtered under artesian flow from the KNA-6 borehole of the Tono Uranium Mine.
PRODUCTION OF URANIUM METAL BY CARBON REDUCTION
Holden, R.B.; Powers, R.M.; Blaber, O.J.
1959-09-22
The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.
The Thermal Neutron Beam Option for NECTAR at MLZ
NASA Astrophysics Data System (ADS)
Mühlbauer, M. J.; Bücherl, T.; Genreith, C.; Knapp, M.; Schulz, M.; Söllradl, S.; Wagner, F. M.; Ehrenberg, H.
The beam port SR10 at the neutron source FRM II of Heinz Maier-Leibnitz Zentrum (MLZ) is equipped with a moveable assembly of two uranium plates, which can be placed in front of the entrance window of the beam tube via remote control. With these plates placed in their operating position the thermal neutron spectrum produced by the neutron source FRM II is converted to fission neutrons with 1.9 MeV of mean energy. This fission neutron spectrum is routinely used for medical applications at the irradiation facility MEDAPP, for neutron radiography and tomography experiments at the facility NECTAR and for materials testing. If, however, the uranium plates are in their stand-by position far off the tip of the beam tube and the so-called permanent filter for thermal neutrons is removed, thermal neutrons originating from the moderator tank enter the beam tube and a thermal spectrum becomes available for irradiation or activation of samples. By installing a temporary flight tube the beam may be used for thermal neutron radiography and tomography experiments at NECTAR. The thermal neutron beam option not only adds a pure thermal neutron spectrum to the energy ranges available for neutron imaging at MLZ instruments but it also is an unique possibility to combine two quite different neutron energy ranges at a single instrument including their respective advantages. The thermal neutron beam option for NECTAR is funded by BMBF in frame of research project 05K16VK3.
STRIPPING OF URANIUM FROM ORGANIC EXTRACTANTS
Crouse, D.J. Jr.
1962-09-01
A liquid-liquid extraction method is given for recovering uranium values from uranium-containing solutions. Uranium is removed from a uranium-containing organic solution by contacting said organic solution with an aqueous ammonium carbonate solution substantially saturated in uranium values. A uranium- containing precipitate is thereby formed which is separated from the organic and aqueous phases. Uranium values are recovered from this separated precipitate. (AE C)
Process for electroslag refining of uranium and uranium alloys
Lewis, P.S. Jr.; Agee, W.A.; Bullock, J.S. IV; Condon, J.B.
1975-07-22
A process is described for electroslag refining of uranium and uranium alloys wherein molten uranium and uranium alloys are melted in a molten layer of a fluoride slag containing up to about 8 weight percent calcium metal. The calcium metal reduces oxides in the uranium and uranium alloys to provide them with an oxygen content of less than 100 parts per million. (auth)
Detection of depleted uranium in urine of veterans from the 1991 Gulf War.
Gwiazda, R H; Squibb, K; McDiarmid, M; Smith, D
2004-01-01
American soldiers involved in "friendly fire" accidents during the 1991 Gulf War were injured with depleted-uranium-containing fragments or possibly exposed to depleted uranium via other routes such as inhalation, ingestion, and/or wound contamination. To evaluate the presence of depleted uranium in these soldiers eight years later, the uranium concentration and depleted uranium content of urine samples were determined by inductively coupled plasma mass spectrometry in (a) depleted uranium exposed soldiers with embedded shrapnel, (b) depleted uranium exposed soldiers with no shrapnel, and (c) a reference group of deployed soldiers not involved in the friendly fire incidents. Uranium isotopic ratios measured in many urine samples injected directly into the inductively coupled plasma mass spectrometer and analyzed at a mass resolution m/delta m of 300 appeared enriched in 235U with respect to natural abundance (0.72%) due to the presence of an interference of a polyatomic molecule of mass 234.81 amu that was resolved at a mass resolution m/delta m of 4,000. The 235U abundance measured on uranium separated from these urines by anion exchange chromatography was clearly natural or depleted. Urine uranium concentrations of soldiers with shrapnel were higher than those of the two other groups, and 16 out of 17 soldiers with shrapnel had detectable depleted uranium in their urine. In depleted uranium exposed soldiers with no shrapnel, depleted uranium was detected in urine samples of 10 out of 28 soldiers. The median uranium concentration of urines with depleted uranium from soldiers without shrapnel was significantly higher than in urines with no depleted uranium, though substantial overlap in urine uranium concentrations existed between the two groups. Accordingly, assessment of depleted uranium exposure using urine must rely on uranium isotopic analyses, since urine uranium concentration is not an unequivocal indicator of depleted uranium presence in soldiers with no embedded shrapnel.
31 CFR 540.317 - Uranium feed; natural uranium feed.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The...
31 CFR 540.317 - Uranium feed; natural uranium feed.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The...
31 CFR 540.317 - Uranium feed; natural uranium feed.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The...
Process for electrolytically preparing uranium metal
Haas, Paul A.
1989-01-01
A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.
Process for electrolytically preparing uranium metal
Haas, Paul A.
1989-08-01
A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.
Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid.
Sung, Jinhyun; Kim, Jungsoo; Lee, Youngbae; Seol, Jeunggun; Ryu, Jaebong; Park, Kwangheon
2011-07-01
The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 °C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined.
Duquène, L; Vandenhove, H; Tack, F; Van Hees, M; Wannijn, J
2010-02-01
The usefulness of uranium concentration in soil solution or recovered by selective extraction as unequivocal bioavailability indices for uranium uptake by plants is still unclear. The aim of the present study was to test if the uranium concentration measured by the diffusive gradient in thin films (DGT) technique is a relevant substitute for plant uranium availability in comparison to uranium concentration in the soil solution or uranium recovered by ammonium acetate. Ryegrass (Lolium perenne L. var. Melvina) is grown in greenhouse on a range of uranium spiked soils. The DGT-recovered uranium concentration (C(DGT)) was correlated with uranium concentration in the soil solution or with uranium recovered by ammonium acetate extraction. Plant uptake was better predicted by the summed soil solution concentrations of UO(2)(2+), uranyl carbonate complexes and UO(2)PO(4)(-). The DGT technique did not provide significant advantages over conventional methods to predict uranium uptake by plants. Copyright 2009 Elsevier Ltd. All rights reserved.
URANIUM LEACHING AND RECOVERY PROCESS
McClaine, L.A.
1959-08-18
A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.
Detailed mineral and chemical relations in two uranium-vanadium ores
Garrels, Robert M.; Larsen, E. S.; Pommer, A.M.; Coleman, R.G.
1956-01-01
Channel samples from two mines on the Colorado Plateau have been studied in detail both mineralogically and chemically. A channel sample from the Mineral Joe No. 1 mine, Montrose County, Colo., extends from unmineralized rock on one side, through a zone of variable mineralization, into only weakly mineralized rock. The unmineralized rock is a fairly clean quartz sand cemented with gypsum and contains only minor amounts of clay minerals. One boundary between unmineralized and mineralized rock is quite sharo and is nearly at right angles to the bedding. Vanadium clay minerals, chiefly mixed layered mica-montmorillonite and chlorite-monmorillonite, are abundant throughout the mineralized zone. Except in the dark "eye" of the channel sample, the vanadium clay minerals are accompanied by hewettite, carnotite, tyuyamunite, and probably unidentified vanadates. In the dark "eye," paramontroseite, pyrite, and marcasite are abundant, and bordered on each side by a zone containing abundant corvusite. No recognizable uranium minerals were seen in the paramontroseite zone although uranium is abundant there. Coaly material is recognizable throughout all of the channel but is most abundant in and near the dark "eye." Detailed chemical studies show a general increase in Fe, Al, U, and V, and a decrease in SO4 toward the "eye" of the channel. Reducing capacity studies indicate that V(IV) and Fe(II) are present in the clay mineral throughout the channel, but only in and near the "eye" are other V(IV) minerals present (paramontroseite and corvusite). The uranium is sexivalent, although its state of combination is conjectural where it is associated with paramontroseite. Where the ore boundary is sharp, the boundary of introduced trace elements is equally sharp. Textural and chemical relations leave no doubt that the "eye: is a partially oxidized remnant of a former lower-valence ore, and the remainder of the channel is a much more fully oxidized remnant. A channel sample from the Virgin No. 3 mine, Montrose County, Colo., extends from weakly mineralized sandstone on both sides through a strongly mineralized central zone. The weakly mineralized zone is a poorly sorted sandstone with common detrital clay partings; chlorite and mixed layer mica-montmorrillonite are abundant interstitial to the quartz grains. No distinct vanadium or uranium minerals are recognizable, although the clay minerals are vanadium bearing. Euherdral pyrite grains and selenian galena are present but rare. The strongly mineralized rock is separated from the weakly mineralized rock by a narrow transition zone which only apporiximates the bedding planes. It contains abundant vanadium-bearing clay minerals (predominantly chlorite) interstitial to the quartz grains, and apparently replacing them. Paramontroseite is common and is intergrown with the clay minerals. Pyrite and marcasite are present, chiefly in or near the abundant blebs and fragments of carbonaceous material. Selenian galena is rarely present, and generally in or near carbonaceous material. Coffinite is the only uranium mineral idenitified; it is extremely fine grained and was identified only in X-ray diffraction patterns of heavy separates. Distribution of trace elements is not clear; some are consistently high in the strongly mineralized rocks, and some are consistently low. The trace element composition of the unmineralized rock is not known. Chemical studies show a very abrupt rise in the total U, V, and Fe from the weakly mineralized to strongly mineralized rock. Reducing-capacity studies indicate that most of the vanadium is present as V(IV), but some is present as V(V); that iron is present as both Fe(II) and Fe(III), the latter believed to have been present in the primary clays of the unmineralized rock; and that come of the uranium is present as U(VI) in addition to the U(IV) in the coffinite. All evidence points to weak oxidation of an ore once having a somewhat lower valence state. The channel samples from both the Mineral Joe No. 1 mine and the Virgin No. 3 mine are believe to have been essentially identical in mineralogy prior to oxidation by weathering: vanadium was present as V(III) in montroseite and V(IV) in the vanadium clays; uranium was present largely as U(IV) in coffinite and/or uraninite. The Mineral Joe No. 1 mine channel sample is now more fully oxidized. Vanadium clays are unquestionably formed abundantly during the primary mineralization, and they persist with a minimum of alteration during much of the weathering. They suggest that the vanadium is carried as V(IV) in the ore-forming fluids; it seems likely too that the uranium is carried as a U(VI) ion.
Plutonium recovery from spent reactor fuel by uranium displacement
Ackerman, John P.
1992-01-01
A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.
Cellular localization of uranium in the renal proximal tubules during acute renal uranium toxicity.
Homma-Takeda, Shino; Kitahara, Keisuke; Suzuki, Kyoko; Blyth, Benjamin J; Suya, Noriyoshi; Konishi, Teruaki; Terada, Yasuko; Shimada, Yoshiya
2015-12-01
Renal toxicity is a hallmark of uranium exposure, with uranium accumulating specifically in the S3 segment of the proximal tubules causing tubular damage. As the distribution, concentration and dynamics of accumulated uranium at the cellular level is not well understood, here, we report on high-resolution quantitative in situ measurements by high-energy synchrotron radiation X-ray fluorescence analysis in renal sections from a rat model of uranium-induced acute renal toxicity. One day after subcutaneous administration of uranium acetate to male Wistar rats at a dose of 0.5 mg uranium kg(-1) body weight, uranium concentration in the S3 segment of the proximal tubules was 64.9 ± 18.2 µg g(-1) , sevenfold higher than the mean renal uranium concentration (9.7 ± 2.4 µg g(-1) ). Uranium distributed into the epithelium of the S3 segment of the proximal tubules and highly concentrated uranium (50-fold above mean renal concentration) in micro-regions was found near the nuclei. These uranium levels were maintained up to 8 days post-administration, despite more rapid reductions in mean renal concentration. Two weeks after uranium administration, damaged areas were filled with regenerating tubules and morphological signs of tissue recovery, but areas of high uranium concentration (100-fold above mean renal concentration) were still found in the epithelium of regenerating tubules. These data indicate that site-specific accumulation of uranium in micro-regions of the S3 segment of the proximal tubules and retention of uranium in concentrated areas during recovery are characteristics of uranium behavior in the kidney. Copyright © 2015 John Wiley & Sons, Ltd.
Wan, Jiamin; Tokunaga, Tetsu K; Kim, Yongman; Brodie, Eoin; Daly, Rebecca; Hazen, Terry C; Firestone, Mary K
2008-10-15
Bioreduction-based strategies for remediating uranium (U)-contaminated sediments face the challenge of maintaining the reduced status of U for long times. Because groundwater influxes continuously bring in oxidizing terminal electron acceptors (O2, NO3(-)), it is necessary to continue supplying organic carbon (OC) to maintain the reducing environment after U bioreduction is achieved. We tested the influence of OC supply rates on mobility of previously microbial reduced uranium U(IV) in contaminated sediments. We found that high degrees of U mobilization occurred when OC supply rates were high, and when the sediment still contained abundant Fe(III). Although 900 days with low levels of OC supply minimized U mobilization, the sediment redox potential increased with time as did extractable U(VI) fractions. Molecular analyses of total microbial activity demonstrated a positive correlation with OC supply and analyses of Geobacteraceae activity (RT-qPCR of 16S rRNA) indicated continued activity even when the effluent Fe(II) became undetectable. These data support our hypothesis on the mechanisms responsible for remobilization of U under reducing conditions; that microbial respiration caused increased (bi)carbonate concentration and formation of stable uranyl carbonate complexes, thereby shifted U(IV)/U(VI) equilibrium to more reducing potentials. The data also suggested that low OC concentrations could not sustain the reducing condition of the sediment for much longer time. Bioreduced U(IV) is not sustainable in an oxidizing environment for a very long time.
In situ ligand synthesis with the UO22+ cation under hydrothermal conditions
NASA Astrophysics Data System (ADS)
Frisch, Mark; Cahill, Christopher L.
2007-09-01
A novel uranium (VI) coordination polymer, (UO 2) 2(C 2O 4)(C 5H 6NO 3) 2 ( 1), has been prepared under the hydrothermal reaction of uranium nitrate hexahydrate and L-pyroglutamic acid. Compound 1 (monoclinic, C2/ c, a=22.541(6) Å, b=5.7428(15) Å, c=15.815(4) Å, β=119.112(4)°, Z=4, R1=0.0237, w R2=0.0367) consists of uranium pentagonal bipyramids linked via L-pyroglutamate and oxalate anions to form an overall two-dimensional (2D) structure. With the absence of oxalic acid within the starting materials, the oxalate anions are hypothesized to form in situ whereby decarboxylation of L-pyroglutamic acid occurs followed by coupling of CO 2 to form the oxalate linkages as observed in the crystal structure. Addition of copper (II) to this system appears to promote oxalate formation in that synthetic moolooite (Cu(C 2O 4)· nH 2O; 0⩽ n⩽1) and a known uranyl oxalate [(UO 2) 2(C 2O 4)(OH) 2(H 2O) 2·H 2O], co-crystallize in significant quantity. Compound 1 exhibits the characteristic uranyl emission spectrum upon either direct uranyl excitation or ligand excitation, the latter of which shows an increase in relative intensity. This subsequent increase in the intensity indicates an energy transfer from the ligand to the uranyl cations thus illustrating an example of the antenna effect in the solid state.
Method of preparation of uranium nitride
Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James
2013-07-09
Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.
1993-01-01
hygiene;and provid- Many agents--including tuberculosis, varicella ,and ing hazard-recognition training.’ rubella-pose significant threats and deserve...Wod War II, abcut 180 scientists from Peenemundeand 300 fir.,ht cars full of V-2 parts werecaptured by UtS ArmyOrdnanceexperts and taken to New Mexico ...detonated in New Mexico . On 6 August an atornic bomb (z gun-assembly. uranium-fueld device code-named Little Boy) was drcpped on HiroshimaJapan.On 11 August a
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Uranium leases on lands controlled by DOE. (Domestic Uranium Program Circular No. 760.1, formerly (AEC) Domestic Uranium Program Circular 8, 10 CFR 60.8). 760.1 Section 760.1 Energy DEPARTMENT OF ENERGY DOMESTIC URANIUM PROGRAM § 760.1 Uranium leases on lands...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Uranium leases on lands controlled by DOE. (Domestic Uranium Program Circular No. 760.1, formerly (AEC) Domestic Uranium Program Circular 8, 10 CFR 60.8). 760.1 Section 760.1 Energy DEPARTMENT OF ENERGY DOMESTIC URANIUM PROGRAM § 760.1 Uranium leases on lands...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Uranium leases on lands controlled by DOE. (Domestic Uranium Program Circular No. 760.1, formerly (AEC) Domestic Uranium Program Circular 8, 10 CFR 60.8). 760.1 Section 760.1 Energy DEPARTMENT OF ENERGY DOMESTIC URANIUM PROGRAM § 760.1 Uranium leases on lands...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Uranium leases on lands controlled by DOE. (Domestic Uranium Program Circular No. 760.1, formerly (AEC) Domestic Uranium Program Circular 8, 10 CFR 60.8). 760.1 Section 760.1 Energy DEPARTMENT OF ENERGY DOMESTIC URANIUM PROGRAM § 760.1 Uranium leases on lands...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Uranium leases on lands controlled by DOE. (Domestic Uranium Program Circular No. 760.1, formerly (AEC) Domestic Uranium Program Circular 8, 10 CFR 60.8). 760.1 Section 760.1 Energy DEPARTMENT OF ENERGY DOMESTIC URANIUM PROGRAM § 760.1 Uranium leases on lands...
PROCESS OF PRODUCING REFRACTORY URANIUM OXIDE ARTICLES
Hamilton, N.E.
1957-12-01
A method is presented for fabricating uranium oxide into a shaped refractory article by introducing a uranium halide fluxing reagent into the uranium oxide, and then mixing and compressing the materials into a shaped composite mass. The shaped mass of uranium oxide and uranium halide is then fired at an elevated temperature so as to form a refractory sintered article. It was found in the present invention that the introduction of a uraninm halide fluxing agent afforded a fluxing action with the uranium oxide particles and that excellent cohesion between these oxide particles was obtained. Approximately 90% of uranium dioxide and 10% of uranium tetrafluoride represent a preferred composition.
31 CFR 540.309 - Natural uranium.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Natural uranium. 540.309 Section 540... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found in...
31 CFR 540.309 - Natural uranium.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Natural uranium. 540.309 Section 540... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found in...
31 CFR 540.309 - Natural uranium.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Natural uranium. 540.309 Section 540... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found in...
Rapid Radiochemical Method for Isotopic Uranium in Building ...
Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Uranium-234, uranium-235, and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of uranium-234, uranium-235, and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.
Plutonium recovery from spent reactor fuel by uranium displacement
Ackerman, J.P.
1992-03-17
A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.
Gilson, Emily R; Huang, Shan; Jaffé, Peter R
2015-11-01
This study investigated the possibility of links between the biological immobilization of uranium (U) and ammonium oxidation under iron (Fe) reducing conditions. The recently-identified Acidimicrobiaceae bacterium A6 (ATCC, PTA-122488) derives energy from ammonium oxidation coupled with Fe reduction. This bacterium has been found in various soil and wetland environments, including U-contaminated wetland sediments. Incubations of Acidimicrobiaceae bacteria A6 with nontronite, an Fe(III)-rich clay, and approximately 10 µM U indicate that these bacteria can use U(VI) in addition to Fe(III) as an electron acceptor in the presence of ammonium. Measurements of Fe(II) production and ammonium oxidation support this interpretation. Concentrations of approximately 100 µM U were found to entirely inhibit Acidimicrobiaceae bacteria A6 activity. These results suggest that natural sites of active ammonium oxidation under Fe reducing conditions by Acidimicrobiaceae bacteria A6 could be hotspots of U immobilization by bioreduction. This is the first report of biological U reduction that is not coupled to carbon oxidation.
16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM ...
16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM RECOVERY PROCESSED RELATIVELY PURE MATERIALS AND SOLUTIONS AND SOLID RESIDUES WITH RELATIVELY LOW URANIUM CONTENT. URANIUM RECOVERY INVOLVED BOTH SLOW AND FAST PROCESSES. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO
77 FR 51579 - Application for a License To Export High-Enriched Uranium
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-24
... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant.... Complex, July 30, 2012, August Uranium (93.35%). uranium-235 high-enriched 1, 2012, XSNM3726, 11006037. contained in 7.5 uranium in the kilograms uranium. form of broken metal to the Atomic Energy of Canada...
Deposit model for volcanogenic uranium deposits
Breit, George N.; Hall, Susan M.
2011-01-01
The International Atomic Energy Agency's tabulation of volcanogenic uranium deposits lists 100 deposits in 20 countries, with major deposits in Russia, Mongolia, and China. Collectively these deposits are estimated to contain uranium resources of approximately 500,000 tons of uranium, which amounts to 6 percent of the known global resources. Prior to the 1990s, these deposits were considered to be small (less than 10,000 tons of uranium) with relatively low to moderate grades (0.05 to 0.2 weight percent of uranium). Recent availability of information on volcanogenic uranium deposits in Asia highlighted the large resource potential of this deposit type. For example, the Streltsovskoye district in eastern Russia produced more than 100,000 tons of uranium as of 2005; with equivalent resources remaining. Known volcanogenic uranium deposits within the United States are located in Idaho, Nevada, Oregon, and Utah. These deposits produced an estimated total of 800 tons of uranium during mining from the 1950s through the 1970s and have known resources of 30,000 tons of uranium. The most recent estimate of speculative resources proposed an endowment of 200,000 tons of uranium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siekhaus, W. J.; Teslich, N. E.; Weber, P. K.
Depleted uranium that included carbide inclusions was sputtered with 30-keV gallium ions or 16-kev cesium ions to depths much greater than the ions’ range, i.e. using steady-state sputtering. The recession of both the uranium’s and uranium carbide’s surfaces and the ion corresponding fluences were used to determine the steady-state target sputtering yields of both uranium and uranium carbide, i.e. 6.3 atoms of uranium and 2.4 units of uranium carbide eroded per gallium ion, and 9.9 uranium atoms and 3.65 units of uranium carbide eroded by cesium ions. The steady state surface composition resulting from the simultaneous gallium or cesium implantationmore » and sputter-erosion of uranium and uranium carbide were calculated to be U₈₆Ga₁₄, (UC)₇₀Ga₃₀ and U₈₁Cs₉, (UC)₇₉Cs₂₁, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, S.J.; Sandoval, W.F.; Gallimore, D.L.
1980-06-01
Water and sediment samples were collected and each water sample was analyzed for U, and each sediment sample was analyzed for 43 elements, including U and Th. Uranium concentrations in water samples range from below the detection limit of 0.02 ppB to 702.26 ppB and have a median of 1.73 ppB and a mean of 11.76 ppB. Water samples containing high uranium concentrations generally are associated with known uranium mining activity or units known to be uranium bearing. About one-third of the water samples containing high uranium concentrations were collected from locations within the Pumpkin Buttes and Turnercrest-Ross Districts. Nearlymore » half of the water samples containing high uranium concentrations were collected from locations just west of the Monument Hill and Highland Flats-Box Creek Districts. Similar anomalous uranium concentrations in this region have been reported updip from Exxon's Highland uranium deposits. High uranium concentrations were also found associated with the Lance Creek-Old Woman Anticline District. Uranium concentrations in sediment samples range from 1.14 to 220.70 ppM and have a median of 3.37 ppM and a mean of 4.03 ppM. Throughout the major uranium mining districts of the Powder River Basin, sediment samples with high uranium concentrations were collected from dry streams located near wells producing water samples with high uranium concentrations. High uranium concentrations were also found associated with the Lance Creek oil field where uranium mineralization is known in the White River formation. High uranium concentrations were also found in sediment samples in areas where uranium mineralization is not known. These samples are from dry streams in areas underlain by the White River formation, the Niobrara formation, and the Pierre, Carlisle, Belle Fourche, and Mowry shales.« less
Influence of uranium hydride oxidation on uranium metal behaviour
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, N.; Hambley, D.; Clarke, S.A.
2013-07-01
This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, ifmore » sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)« less
Szecsody, Jim E; Truex, Mike J; Qafoku, Nikolla P; Wellman, Dawn M; Resch, Tom; Zhong, Lirong
2013-08-01
This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH2) resulted in a rapid (<10 h) increase in aqueous carbonate (with Ca(2+), Mg(2+)) and phosphate and a slow (100 s of hours) increase in silica, Al(3+), and K(+), likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH13) resulted in a rapid (<10h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity. Copyright © 2013 Elsevier B.V. All rights reserved.
Surface catalysis of uranium(VI) reduction by iron(II)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liger, E.; Charlet, L.; Van Cappellen, P.
1999-10-01
Colloidal hematite ({alpha}-Fe{sub 2}O{sub 3}) is used as model solid to investigate the kinetic effect of specific adsorption interactions on the chemical reduction of uranyl (U{sup VI}O{sub 2}{sup 2+}) by ferrous iron. Acid-base titrations and Fe(II) and uranyl adsorption experiments are performed on hematite suspensions, under O{sub 2}- and CO{sub 2}-free conditions. The results are explained in terms of a constant capacitance surface complexation model of the hematite-aqueous solution interface. Two distinct Fe(II) surface complexes are required to reproduce the data: ({equivalent{underscore}to}Fe{sup III}OFe{sup II}){sup +} (or {equivalent{underscore}to}Fe{sup III}OFe{sup II}(OH{sub 2}){sub n}{sup +}) and {equivalent{underscore}to}Fe{sup III}OFe{sup II}OH{sup 0} (or {equivalent{underscore}to}Fe{sup III}OFe{supmore » II}(OH{sub 2}){sub n{minus}1}OH{sup 0}). The latter complex represents a significant fraction of total adsorbed Fe(II) at pH {gt} 6.5. Uranyl binding to the hematite particles is characterized by a sharp adsorption edge between pH 4 and pH 5.5. Because of the absence of competing aqueous carbonate complexes, uranyl remains completely adsorbed at pH {gt} 7. A single mononuclear surface complex accounts for the adsorption of uranyl over the entire range of experimental conditions. Although thermodynamically feasible, no reaction between uranyl and Fe(II) is observed in homogeneous solution at pH 7.5, for periods of up to three days. In hematite suspensions, however, surface-bound uranyl reacts on a time scale of hours. Based on Fourier Transformed Infrared spectra, chemical reduction of U(VI) is inferred to be the mechanism responsible for the disappearance of uranyl. The kinetics of uranyl reduction are quantified by measuring the decrease with time of the concentration of U(VI) extractable from the hematite particles by NaHCO{sub 3}. In the presence of excess Fe(II), the initial rate of U(VI) reduction exhibits a first-order dependence on the concentration of adsorbed uranyl. The pseudo-first-order rate constant varies with pH (range, 6--7.5) and the total (dissolved + adsorbed) concentration of Fe(II) (range, 2--160 {micro}M). When analyzing the rate data in terms of the calculated surface speciation, the variability of the rate constant can be accounted for entirely by changes in the concentration of the Fe(II) monohydroxo surface complex {equivalent{underscore}to}Fe{sup III}OFe{sup II}OH{sup 0}. Therefore, the rate law is derived for the hematite-catalyzed reduction of uranyl by Fe(II), where the bimolecular rate constant {kappa} has a value of 399 {+-} 25 M{sup {minus}1} min{sup {minus}1} at 25 C. The hydroxo surface complex is the rate-controlling reductant species, because it provides the most favorable coordination environment in which electrons are removed from Fe(II). Natural particulate matter collected in the hypolimnion of a seasonally stratified lake also causes the rapid reduction of uranyl by Fe(II), Ferrihydrite, identified in the particulate matter by X-ray diffraction, is one possible mineral phase accelerating the reaction between U(VI) and Fe(II). At near-neutral pH and total Fe(II) levels less than 1 mM, the pseudo-first-order rate constants of chemical U(VI) reduction, measured in the presence of the hematite and lake particles, are of the same order of magnitude as the highest corresponding rate coefficients for enzymatic U(VI) reduction in bacterial cultures. Hence, based on the results of this study, surface-catalyzed U(VI) reduction by Fe(II) is expected to be a major pathway of uranium immobilization in a wide range of redox-stratified environments.« less
Uranium induces oxidative stress in lung epithelial cells
Periyakaruppan, Adaikkappan; Kumar, Felix; Sarkar, Shubhashish; Sharma, Chidananda S.
2009-01-01
Uranium compounds are widely used in the nuclear fuel cycle, antitank weapons, tank armor, and also as a pigment to color ceramics and glass. Effective management of waste uranium compounds is necessary to prevent exposure to avoid adverse health effects on the population. Health risks associated with uranium exposure includes kidney disease and respiratory disorders. In addition, several published results have shown uranium or depleted uranium causes DNA damage, mutagenicity, cancer and neurological defects. In the current study, uranium toxicity was evaluated in rat lung epithelial cells. The study shows uranium induces significant oxidative stress in rat lung epithelial cells followed by concomitant decrease in the antioxidant potential of the cells. Treatment with uranium to rat lung epithelial cells also decreased cell proliferation after 72 h in culture. The decrease in cell proliferation was attributed to loss of total glutathione and superoxide dismutase in the presence of uranium. Thus the results indicate the ineffectiveness of antioxidant system’s response to the oxidative stress induced by uranium in the cells. PMID:17124605
Meinrath, A; Schneider, P; Meinrath, G
2003-01-01
The Erzgebirge ('Ore Mountains') area in the eastern part of Germany was a major source of uranium for Soviet nuclear programs between 1945 and 1989. During this time, the former German Democratic Republic became the third largest uranium producer in the world. The high abundance of uranium in the geological formations of the Erzgebirge are mirrored in the discovery of uranium by M. Klaproth close to Freiberg City in 1789 and the description of the so-called 'Schneeberg' disease, lung cancer caused in miners by the accumulation of the uranium decay product, radon, in the subsurfaces of shafts. Since 1991, remediation and mitigation of uranium at production facilities, rock piles and mill tailings has taken place. In parallel, efforts were initiated to assess the likely adverse effects of uranium mining to humans. The costs of these activities amount to about 6.5 10(9) Euro. A comparison with concentrations of depleted uranium at certain sites is given.
METHOD FOR RECOVERING URANIUM FROM OILS
Gooch, L.H.
1959-07-14
A method is presented for recovering uranium from hydrocarbon oils, wherein the uranium is principally present as UF/sub 4/. According to the invention, substantially complete removal of the uranium from the hydrocarbon oil may be effected by intimately mixing one part of acetone to about 2 to 12 parts of the hydrocarbon oil containing uranium and separating the resulting cake of uranium from the resulting mixture. The uranium in the cake may be readily recovered by burning to the oxide.
High strength and density tungsten-uranium alloys
Sheinberg, Haskell
1993-01-01
Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.
NASA Astrophysics Data System (ADS)
Smirnov, A. Yu; Mustafin, A. R.; Nevinitsa, V. A.; Sulaberidze, G. A.; Dudnikov, A. A.; Gusev, V. E.
2017-01-01
The effect of the uncertainties of the isotopic composition of the reprocessed uranium on its enrichment process in gas centrifuge cascades while diluting it by adding low-enriched uranium (LEU) and waste uranium. It is shown that changing the content of 232U and 236U isotopes in the initial reprocessed uranium within 15% (rel.) can significantly change natural uranium consumption and separative work (up to 2-3%). However, even in case of increase of these parameters is possible to find the ratio of diluents, where the cascade with three feed flows (depleted uranium, LEU and reprocessed uranium) will be more effective than ordinary separation cascade with one feed point for producing LEU from natural uranium.
METHOD OF RECOVERING URANIUM COMPOUNDS
Poirier, R.H.
1957-10-29
S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.
Synthesis and characterization of an N-(2-hydroxyethyl)-ethylenediaminetriacetic acid resin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Yuet Fan
1977-10-01
A chelating ion-exchange resin with N-(2-hydroxyethyl)ethylene-diaminetriacetic acid (HEDTA) used as the ligand chemically bonded to XAD-4 by an ester linkage, HEDTA-4, was synthesized. It is stable under normal experimental conditions with the liquid chromatograph. The structure of the resin was confirmed by an infrared spectrum, and by potentiometric titrations. The capacity of the resin was also obtained by potentiometric titration and by a nitrogen analysis. The resin was used to pack a column of 5 mm internal diameter and 5 cm long. The effect of pH on the retention of different metal ions on the resin was studied. It wasmore » found that the resin was most selective for chromium(III), copper(II), lead(II), mercury(II), uranium(VI), zirconium(IV) and zinc(II) at a pH of less than 3. Furthermore, the resin proves to be functioning with a chelating mechanism rather than ion-exchange, and it can concentrate trace metal ions in the presence of a large excess of calcium and magnesium. This makes the resin potentially useful for purifying and analyzing drinking water.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, Richard Wayne; Eckerman, Keith F; McGinn, Wilson
2012-01-01
This report provides methods for interpreting and applying occupational uranium monitoring data. The methods are based on current international radiation protection guidance, current information on the chemical toxicity of uranium, and best available biokinetic models for uranium. Emphasis is on air monitoring data and three types of bioassay data: the concentration of uranium in urine; the concentration of uranium in feces; and the externally measured content of uranium in the chest. Primary Reference guidance levels for prevention of chemical effects and limitation of radiation effects are selected based on a review of current scientific data and regulatory principles for settingmore » standards. Generic investigation levels and immediate action levels are then defined in terms of these primary guidance levels. The generic investigation and immediate actions levels are stated in terms of radiation dose and concentration of uranium in the kidneys. These are not directly measurable quantities, but models can be used to relate the generic levels to the concentration of uranium in air, urine, or feces, or the total uranium activity in the chest. Default investigation and immediate action levels for uranium in air, urine, feces, and chest are recommended for situations in which there is little information on the form of uranium taken into the body. Methods are prescribed also for deriving case-specific investigation and immediate action levels for uranium in air, urine, feces, and chest when there is sufficient information on the form of uranium to narrow the range of predictions of accumulation of uranium in the main target organs for uranium: kidneys for chemical effects and lungs for radiological effects. In addition, methods for using the information herein for alternative guidance levels, different from the ones selected for this report, are described.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregoire, D.C.; Goltz, D.M.; Chakrabarti, C.L.
Graphite furnace atomic absorption spectrometry (GFAAS) is an insensitive technique for determination of uranium. Experiments were conducted using electrothermal vaporization inductively coupled plasma mass spectrometry to investigate the atomization and vaporization of atomic and molecular uranium species in the graphite furnace. ETV-ICP-MS signals for uranium were observed at temperatures well below the appearance temperature of uranium atoms suggesting the vaporization of molecular uranium oxide at temperatures below 2000{degrees}C. Examination of individual uranium ETV-ICP-MS signals reveals the vaporization of uranium carbide at temperatures above 2600{degrees}C. Chemical modifiers such as 0.2% HF and 0.1% CHF{sub 3} in the argon carrier gas, weremore » ineffective in preventing the formation of uranium carbide at 2700{degrees}C. Vaporization of uranium from a tungsten surface using tungsten foil inserted into the graphite tube prevented the formation of uranium carbide and eliminated the ETV-ICP-MS signal suppression caused by a sodium chloride matrix.« less
PRODUCTION OF PURIFIED URANIUM
Burris, L. Jr.; Knighton, J.B.; Feder, H.M.
1960-01-26
A pyrometallurgical method for processing nuclear reactor fuel elements containing uranium and fission products and for reducing uranium compound; to metallic uranium is reported. If the material proccssed is essentially metallic uranium, it is dissolved in zinc, the sulution is cooled to crystallize UZn/sub 9/ , and the UZn/sub 9/ is distilled to obtain uranium free of fission products. If the material processed is a uranium compound, the sollvent is an alloy of zinc and magnesium and the remaining steps are the same.
METHOD OF SEPARATING URANIUM VALUES, PLUTONIUM VALUES AND FISSION PRODUCTS BY CHLORINATION
Brown, H.S.; Seaborg, G.T.
1959-02-24
The separation of plutonium and uranium from each other and from other substances is described. In general, the method comprises the steps of contacting the uranium with chlorine in the presence of a holdback material selected from the group consisting of lanthanum oxide and thorium oxide to form a uranium chloride higher than uranium tetrachloride, and thereafter heating the uranium chloride thus formed to a temperature at which the uranium chloride is volatilized off but below the volatilizalion temperature of plutonium chloride.
SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY
Clark, H.M.; Duffey, D.
1958-06-17
A process is described for extracting uranium from uranium ore, wherein the uranium is substantially free from molybdenum contamination. In a solvent extraction process for recovering uranium, uranium and molybdenum ions are extracted from the ore with ether under high acidity conditions. The ether phase is then stripped with water at a lower controiled acidity, resaturated with salting materials such as sodium nitrate, and reextracted with the separation of the molybdenum from the uranium without interference from other metals that have been previously extracted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amber Wright; Edward Mausolf; Keri Campbell
2010-05-01
Acetohydroxamic acid (AHA) is an organic ligand planned for use in the Uranium Extraction (UREX) process. It reduces neptunium and plutonium, and the resultant hydrophilic complexes are separated from uranium by extraction with tributyl phosphate (TBP) in a hydrocarbon diluent. AHA undergoes hydrolysis to acetic acid which will impede the recycling of nitric acid. During recent discussions of the UREX process, it has been proposed to replace AHA by formohydroxamic acid (FHA). FHA will undergo hydrolysis to formic acid which is volatile, thus allowing the recycling of nitric acid. The reported reduction potentials of AHA and pertechnetate (TcO{sub 4}{sup -})more » indicated that it may be possible for AHA to reduce technetium, altering its fate in the fuel cycle. At UNLV, it has been demonstrated that TcO{sub 4}{sup -} undergoes reductive nitrosylation by AHA under a variety of conditions. The resulting divalent technetium is complexed by AHA to form the pseudo-octahedral trans-aquonitrosyl (diacetohydroxamic)-technetium(II) complex ([Tc{sup II}(NO)(AHA){sub 2}H{sub 2}O]{sup +}). In this paper, we are reporting the synthesis of FHA and its complex formation with technetium along with the characterization of FHA crystals achieved by NMR and IR spectroscopy. Two experiments were conducted to investigate the complexation of FHA with Tc and the results were compared with previous data on AHA. The first experiment involved the elution of Tc from a Reillex HP anion exchange resin, and the second one monitored the complexation of technetium with FHA by UV-visible spectrophotometry.« less
Complexation of uranium(VI) with glutarimidoxioxime: thermodynamic and computational studies.
Endrizzi, Francesco; Melchior, Andrea; Tolazzi, Marilena; Rao, Linfeng
2015-08-21
The complex formation between a cyclic ligand glutarimidoxioxime (denoted as HL(III) in this paper) and UO2(2+) is studied by potentiometry and microcalorimetry. Glutarimidoxioxime (HL(III)), together with glutarimidedioxime (H2L(I)) and glutardiamidoxime (H2L(II)), belongs to a family of amidoxime derivatives with prospective applications as binding agents for the recovery of uranium from seawater. An optimized procedure of synthesis that leads to the preparation of glutarimidoxioxime in the absence of other amidoxime byproducts is described in this paper. Speciation models based on the thermodynamic results from this study indicate that, compared with H2L(I) and H2L(II), HL(III) forms a much weaker complex with UO2(2+), UO2(L(III))(+), and cannot effectively compete with the hydrolysis equilibria of UO2(2+) under neutral or alkaline conditions. DFT computations, taking into account the solvation by including discrete hydration water molecules and bulk solvent effects, were performed to evaluate the structures and energies of the possible isomers of UO2(L(III))(+). Differing from the tridentate or η(2)-coordination modes previously found in the U(vi) complexes with amidoxime-related ligands, a bidentate mode, involving the oxygen of the oxime group and the nitrogen of the imino group, is found to be the most probable mode in UO2(L(III))(+). The bidentate coordination mode seems to be stabilized by the formation of a hydrogen bond between the carbonyl group of HL(III) and a water molecule in the hydration sphere of UO2(2+).
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-21
... License Renewal, Operating License SUA-1341, Uranium One USA, Inc., Willow Creek Uranium In Situ Recovery.... SUA- 1341 to Uranium One USA, Inc. (Uranium One) for its Willow Creek Uranium In Situ Recovery (ISR) Project in Johnson and Campbell Counties, Wyoming. ADDRESSES: Please refer to Docket ID NRC-2009-0036 when...
Johnson, Raymond H.; Tutu, Hlanganani; Brown, Adrian; Figueroa, Linda; Wolkersdorfer, Christian
2013-01-01
Geochemical changes that can occur down gradient from uranium in situ recovery (ISR) sites are important for various stakeholders to understand when evaluating potential effects on surrounding groundwater quality. If down gradient solid-phase material consists of sandstone with iron hydroxide coatings (no pyrite or organic carbon), sorption of uranium on iron hydroxides can control uranium mobility. Using one-dimensional reactive transport models with PHREEQC, two different geochemical databases, and various geochemical parameters, the uncertainties in uranium sorption on iron hydroxides are evaluated, because these oxidized zones create a greater risk for future uranium transport than fully reduced zones where uranium generally precipitates.
Method for the recovery of uranium values from uranium tetrafluoride
Kreuzmann, Alvin B.
1983-01-01
The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.
Method for the recovery of uranium values from uranium tetrafluoride
Kreuzmann, A.B.
1982-10-27
The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.
Fate of Uranium in Wetlands: Impact of Drought Followed by Re-flooding
NASA Astrophysics Data System (ADS)
Gilson, E.; Huang, S.; Koster van Groos, P. G.; Scheckel, K.; Peacock, A. D.; Kaplan, D. I.; Jaffe, P. R.
2014-12-01
Uranium contamination in groundwater can be mitigated in anoxic zones by iron-reducing bacteria that reduce soluble U(VI) to insoluble U(IV) and by uranium immobilization through complexation and sorption. Wetlands often link ground and surface-waters, making them strategic systems for potentially limiting migration of uranium contamination. Little is known about how drought periods that result in the drying of wetland soils, and consequent redox changes, affect uranium fate and transport in wetlands. In order to better understand the fate and stability of immobilized uranium in wetland soils, and how dry periods affect the uranium stability, we dosed saturated wetland mesocosms planted with Scirpus acutus with low levels of uranyl-acetate for 5 months before imposing a 9-day drying period followed by a 13-day rewetting period. Concentrations of uranium in mesocosm effluent increased after rewetting, but the cumulative amount of uranium released in the 13 days following the drying constituted less than 1% of the uranium immobilized in the soil during the 5 months prior to the drought. This low level of remobilization suggests that the uranium immobilized in these soils was not primarily bioreduced U(IV), which could have been oxidized to soluble U(VI) during the drought and released in the effluent during the subsequent flood. XANES analyses confirm that most of the uranium immobilized in the mesocosms was U(VI) sorbed to iron oxides. Compared to mesocosms that did not experience drying or rewetting, mesocosms that were sacrificed immediately after drying and after 13 days of rewetting had less uranium in soil near roots and more uranium on root surfaces. Metal-reducing bacteria only dominated the bacterial community after 13 days of rewetting and not immediately after drying, indicating that these bacteria are not responsible for this redistribution of uranium after the drying and rewetting. Results show that short periods of drought conditions in a wetland may impact uranium distribution, but these conditions may not cause large losses of immobilized uranium from the wetland.
McNeal, J.M.; Lee, D.E.; Millard, H.T.
1981-01-01
Some secondary uranium deposits are thought to have formed from uranium derived by the weathering of silicic igneous rocks such as granites, rhyolites, and tuffs. A regional geochemical survey was made to determine the distribution of uranium and thorium in granitic rocks of the Basin and Range province in order to evaluate the potential for secondary uranium occurrences in the area. The resulting geochemical maps of uranium, thorium, and the Th:U ratio may be useful in locating target areas for uranium exploration. The granites were sampled according to a five-level, nested, analysis-of-variance design, permitting estimates to be made of the variance due to differences between:(1) two-degree cells; (2) one-degree cells; (3) plutons; (4) samples; and (5) analyses. The cells are areas described in units of degrees of latitude and longitude. The results show that individual plutons tend to differ in uranium and thorium concentrations, but that each pluton tends to be relatively homogeneous. Only small amounts of variance occur at the two degree and the between-analyses levels. The three geochemical maps that were prepared are based on one-degree cell means. The reproducibility of the maps is U > Th ??? Th:U. These geochemical maps may be used in three methods of locating target areas for uranium exploration. The first method uses the concept that plutons containing the greatest amounts of uranium may supply the greatest amounts of uranium for the formation of secondary uranium occurrences. The second method is to examine areas with high thorium contents, because thorium and uranium are initially highly correlated but much uranium could be lost by weathering. The third method is to locate areas in which the plutons have particularly high Th:U ratios. Because uranium, but not thorium, is leached by chemical weathering, high Th:U ratios suggest a possible loss of uranium and possibly a greater potential for secondary uranium occurrences to be found in the area. ?? 1981.
NASA Astrophysics Data System (ADS)
Roycroft, S. J.; Noel, V.; Boye, K.; Besancon, C.; Weaver, K. L.; Johnson, R. H.; Dam, W. L.; Fendorf, S. E.; Bargar, J.
2016-12-01
Uranium contaminated groundwater in Riverton, Wyoming persists despite anticipated natural attenuation outside of a former uranium ore processing facility. The inability of natural flushing to dilute the uranium below the regulatory threshold indicates that sediments act as secondary sources likely (re)supplying uranium to groundwater. Throughout the contaminated floodplain, uranium rich-evaporites are readily abundant in the upper 2 m of sediments and are spatially coincident with the location of the plume, which suggests a likely link between evaporites and increased uranium levels. Knowledge of where and how uranium is stored within evaporite-associated sediments is required to understand processes controlling the mobility of uranium. We expect that flooding and seasonal changes in hydrologic conditions will affect U phase partitioning, and thus largely control U mobility. The primary questions we are addressing in this project are: What is the relative abundance of uranium incorporated in various mineral complexes throughout the evaporite sediments? How do the factors of depth, location, and seasonality influence the relative incorporation, mobility and speciation of uranium?We have systematically sampled from two soil columns over three dates in Riverton. The sampling dates span before and after a significant flooding event, providing insight into the flood's impact on local uranium mobility. Sequential chemical extractions are used to decipher the reactivity of uranium and approximate U operationally defined within reactants targeting carbonate, silicate, organic, and metal oxide bound or water and exchangeable phases. Extractions throughout the entirety of the sediment cores provide a high-resolution vertical profile of the distribution of uranium in various extracted phases. Throughout the profile, the majority (50-60%) of uranium is bound within carbonate-targeted extracts, a direct effect of the carbonate-rich evaporite sediments. The sum of our analyses provide a dynamic model of uranium incorporation within evaporite sediments holding implications for the fate of uranium throughout contaminated sites across the Colorado River Basin.
Inherently safe in situ uranium recovery
Krumhansl, James L; Brady, Patrick V
2014-04-29
An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.
Uranium concentrations in groundwater, northeastern Washington
Kahle, Sue C.; Welch, Wendy B.; Tecca, Alison E.; Eliason, Devin M.
2018-04-18
A study of uranium in groundwater in northeastern Washington was conducted to make a preliminary assessment of naturally occurring uranium in groundwater relying on existing information and limited reconnaissance sampling. Naturally occurring uranium is associated with granitic and metasedimentary rocks, as well as younger sedimentary deposits, that occur in this region. The occurrence and distribution of uranium in groundwater is poorly understood. U.S. Environmental Protection Agency (EPA) regulates uranium in Group A community water systems at a maximum contaminant level (MCL) of 30 μg/L in order to reduce uranium exposure, protect from toxic kidney effects of uranium, and reduce the risk of cancer. However, most existing private wells in the study area, generally for single family use, have not been sampled for uranium. This document presents available uranium concentration data from throughout a multi-county region, identifies data gaps, and suggests further study aimed at understanding the occurrence of uranium in groundwater.The study encompasses about 13,000 square miles (mi2) in the northeastern part of Washington with a 2010 population of about 563,000. Other than the City of Spokane, most of the study area is rural with small towns interspersed throughout the region. The study area also includes three Indian Reservations with small towns and scattered population. The area has a history of uranium exploration and mining, with two inactive uranium mines on the Spokane Indian Reservation and one smaller inactive mine on the outskirts of Spokane. Historical (1977–2016) uranium in groundwater concentration data were used to describe and illustrate the general occurrence and distribution of uranium in groundwater, as well as to identify data deficiencies. Uranium concentrations were detected at greater than 1 microgram per liter (μg/L) in 60 percent of the 2,382 historical samples (from wells and springs). Uranium concentrations ranged from less than 1 to 88,600 μg/L, and the median concentration of uranium in groundwater for all sites was 1.4 μg/L.New (2017) uranium in groundwater concentration data were obtained by sampling 13 private domestic wells for uranium in areas without recent (2000s) water-quality data. Uranium was detected in all 13 wells sampled for this study; concentrations ranged from 1.03 to 1,180 μg/L with a median of 22 μg/L. Uranium concentrations of groundwater samples from 6 of the 13 wells exceeded the MCL for uranium. Uranium concentrations in water samples from two wells were 1,130 and 1,180 μg/L, respectively; nearly 40 times the MCL.Additional data collection and analysis are needed in rural areas where self-supplied groundwater withdrawals are the primary source of water for human consumption. Of the roughly 43,000 existing water wells in the study area, only 1,755 wells, as summarized in this document, have available uranium concentration data, and some of those data are decades old. Furthermore, analysis of area groundwater quality would benefit from a more extensive chemical-analysis suite including general chemistry in order to better understand local geochemical conditions that largely govern the mobility of uranium. Although the focus of the present study is uranium, it also is important to recognize that there are other radionuclides of concern that may be present in area groundwater.
DYNAMIC PROPERTIES OF SHOCK LOADED THIN URANIUM FOILS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robbins, D. L.; Kelly, A. M.; Alexander, D. J.
A series of spall experiments has been completed with thin depleted uranium targets, nominally 0.1 mm thick. The first set of uranium spall targets was cut and ground to final thickness from electro-refined, high-purity, cast uranium. The second set was rolled to final thickness from low purity uranium. The impactors for these experiments were laser-launched 0.05-mm thick copper flyers, 3 mm in diameter. Laser energies were varied to yield a range of flyer impact velocities. This resulted in varying degrees of damage to the uranium spall targets, from deformation to complete spall or separation at the higher velocities. Dynamic measurementsmore » of the uranium target free surface velocities were obtained with dual velocity interferometers. Uranium targets were recovered and sectioned after testing. Free surface velocity profiles were similar for the two types of uranium, but spall strengths (estimated from the magnitude of the pull-back signal) are higher for the high-purity cast uranium. Velocity profiles and microstructural evidence of spall from the sectioned uranium targets are presented.« less
Aftermath of Uranium Ore Processing on Floodplains: Lasting Effects of Uranium on Soil and Microbes
NASA Astrophysics Data System (ADS)
Tang, H.; Boye, K.; Bargar, J.; Fendorf, S. E.
2016-12-01
A former uranium ore processing site located between the Wind River and the Little Wind River near the city of Riverton, Wyoming, has generated a uranium plume in the groundwater within the floodplain. Uranium is toxic and poses a threat to human health. Thus, controlling and containing the spread of uranium will benefit the human population. The primary source of uranium was removed from the processing site, but a uranium plume still exists in the groundwater. Uranium in its reduced form is relatively insoluble in water and therefore is retained in organic rich, anoxic layers in the subsurface. However, with the aid of microbes uranium becomes soluble in water which could expose people and the environment to this toxin, if it enters the groundwater and ultimately the river. In order to better understand the mechanisms controlling uranium behavior in the floodplains, we examined sediments from three sediment cores (soil surface to aquifer). We determined the soil elemental concentrations and measured microbial activity through the use of several instruments (e.g. Elemental Analyzer, X-ray Fluorescence, MicroResp System). Through the data collected, we aim to obtain a better understanding of how the interaction of geochemical factors and microbial metabolism affect uranium mobility. This knowledge will inform models used to predict uranium behavior in response to land use or climate change in floodplain environments.
New Technique for Speciation of Uranium in Sediments Following Acetate-Stimulated Bioremediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-06-22
Acetate-stimulated bioremediation is a promising new technique for sequestering toxic uranium contamination from groundwater. The speciation of uranium in sediments after such bioremediation attempts remains unknown as a result of low uranium concentration, and is important to analyzing the stability of sequestered uranium. A new technique was developed for investigating the oxidation state and local molecular structure of uranium from field site sediments using X-Ray Absorption Spectroscopy (XAS), and was implemented at the site of a former uranium mill in Rifle, CO. Glass columns filled with bioactive Rifle sediments were deployed in wells in the contaminated Rifle aquifer and amendedmore » with a hexavalent uranium (U(VI)) stock solution to increase uranium concentration while maintaining field conditions. This sediment was harvested and XAS was utilized to analyze the oxidation state and local molecular structure of the uranium in sediment samples. Extended X-Ray Absorption Fine Structure (EXAFS) data was collected and compared to known uranium spectra to determine the local molecular structure of the uranium in the sediment. Fitting was used to determine that the field site sediments did not contain uraninite (UO{sub 2}), indicating that models based on bioreduction using pure bacterial cultures are not accurate for bioremediation in the field. Stability tests on the monomeric tetravalent uranium (U(IV)) produced by bioremediation are needed in order to assess the efficacy of acetate-stimulation bioremediation.« less
Health effects of uranium: new research findings.
Brugge, Doug; Buchner, Virginia
2011-01-01
Recent plans for a nuclear renaissance in both established and emerging economies have prompted increased interest in uranium mining. With the potential for more uranium mining worldwide and a growth in the literature on the toxicology and epidemiology of uranium and uranium mining, we found it timely to review the current state of knowledge. Here, we present a review of the health effects of uranium mining, with an emphasis on newer findings (2005-2011). Uranium mining can contaminate air, water, and soil. The chemical toxicity of the metal constitutes the primary environmental health hazard, with the radioactivity of uranium a secondary concern. The update of the toxicologic evidence on uranium adds to the established findings regarding nephrotoxicity, genotoxicity, and developmental defects. Additional novel toxicologic findings, including some at the molecular level, are now emerging that raise the biological plausibility of adverse effects on the brain, on reproduction, including estrogenic effects, on gene expression, and on uranium metabolism. Historically, most epidemiology on uranium mining has focused on mine workers and radon exposure. Although that situation is still overwhelmingly true, a smaller emerging literature has begun to form around environmental exposure in residential areas near uranium mining and processing facilities. We present and critique such studies. Clearly, more epidemiologic research is needed to contribute to causal inference. As much damage is irreversible, and possibly cumulative, present efforts must be vigorous to limit environmental uranium contamination and exposure.
METHOD OF APPLYING NICKEL COATINGS ON URANIUM
Gray, A.G.
1959-07-14
A method is presented for protectively coating uranium which comprises etching the uranium in an aqueous etching solution containing chloride ions, electroplating a coating of nickel on the etched uranium and heating the nickel plated uranium by immersion thereof in a molten bath composed of a material selected from the group consisting of sodium chloride, potassium chloride, lithium chloride, and mixtures thereof, maintained at a temperature of between 700 and 800 deg C, for a time sufficient to alloy the nickel and uranium and form an integral protective coating of corrosion-resistant uranium-nickel alloy.
Uranium-bearing lignite in southwestern North Dakota
Moore, George W.; Melin, Robert E.; Kepferle, Roy C.
1954-01-01
Uranium-bearing lignite was mapped and sampled in the Bullion Butte, Sentinel Butte, HT Butte, and Chalky Buttes areas in southwestern North Dakota. The uraniferous lignite occurs at several stratigraphic positions in the Sentinel Butte member of the Fort Union formation of Paleocene age. A total of 261 samples were collected for uranium analysis from 85 localities, Lignite contained as much as 0.045 percent uranium, 10.0 percent ash, and 0.45 percent uranium in the ash was found although the average is lower. Inferred reserves for the four areas examined are estimated to be about 27 million tons of lignite in beds about 2 feet thick and containing more than 3000 tons of uranium. The lignite in beds about 2 feet thick and containing more than 3000 tons of uranium. The lignite averages more than 30 percent ash in the surface samples. The principal factor that seems to influence the uranium content of lignite beds is their stratigraphic position below the overlying rocks of the White River group of Oligocene age. All of the uranium-bearing beds closely underlie the base of the White River group. Although this relationship seems to be the controlling factor, the relative concentration of uranium may be modified by other conditions. Beds enclosed in permeable rocks are more uraniferous than beds in impermeable rocks, and thin beds have higher content of uranium than thick beds. In addition, thick lignite beds commonly have a top=preferential distribution of uranium. These and other factors suggest that the uranium is secondary and this it was introduced by ground water which had leached uranium from volcanic ash in the overlying rocks of the White River group. It is thought that the uranium is held in the lignite as part of a metallo-organic compound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Haeyeon; G. Eggert, Roderick; W. Carlsen, Brett
Phosphate rock contains significant amounts of uranium, although in low concentrations. Recovery of uranium as a by-product from phosphoric acid, an intermediate product produced during the recovery of phosphorus from phosphate rock, is not unprecedented. Phosphoric acid plants ceased to produce uranium as a by-product in the early 1990s with the fall of uranium prices. In the last decade, this topic has regained attention due to higher uranium prices and expected increase in demand for uranium. Our study revisits the topic and estimates how much uranium might be recoverable from current phosphoric acid production in the United States and whatmore » the associated costs might be considering two different recovery processes: solvent extraction and ion exchange. Based on U.S. phosphoric acid production in 2014, 5.5 million pounds of U 3O 8 could have been recovered, more than domestic U.S. mine production of uranium in the same year. Annualized costs for a hypothetical uranium recovery plant are US$48-66 per pound U 3O 8 for solvent extraction, the process used historically in the United States to recover uranium from phosphoric acid. For ion exchange, not yet proven at a commercial scale for uranium recovery, the estimated costs are US$33-54 per pound U 3O 8. Our results suggest that it is technically possible for the United States to recover significant quantities of uranium from current phosphoric acid production. And for this type of uranium production to be economically attractive on a large scale, either recovery costs must fall or uranium prices rise.« less
Kim, Haeyeon; G. Eggert, Roderick; W. Carlsen, Brett; ...
2016-06-16
Phosphate rock contains significant amounts of uranium, although in low concentrations. Recovery of uranium as a by-product from phosphoric acid, an intermediate product produced during the recovery of phosphorus from phosphate rock, is not unprecedented. Phosphoric acid plants ceased to produce uranium as a by-product in the early 1990s with the fall of uranium prices. In the last decade, this topic has regained attention due to higher uranium prices and expected increase in demand for uranium. Our study revisits the topic and estimates how much uranium might be recoverable from current phosphoric acid production in the United States and whatmore » the associated costs might be considering two different recovery processes: solvent extraction and ion exchange. Based on U.S. phosphoric acid production in 2014, 5.5 million pounds of U 3O 8 could have been recovered, more than domestic U.S. mine production of uranium in the same year. Annualized costs for a hypothetical uranium recovery plant are US$48-66 per pound U 3O 8 for solvent extraction, the process used historically in the United States to recover uranium from phosphoric acid. For ion exchange, not yet proven at a commercial scale for uranium recovery, the estimated costs are US$33-54 per pound U 3O 8. Our results suggest that it is technically possible for the United States to recover significant quantities of uranium from current phosphoric acid production. And for this type of uranium production to be economically attractive on a large scale, either recovery costs must fall or uranium prices rise.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.R. Westphal; J.C. Price; R.D. Mariani
The pyroprocessing of used nuclear fuel via electrorefining requires the continued addition of uranium trichloride to sustain operations. Uranium trichloride is utilized as an oxidant in the system to allow separation of uranium metal from the minor actinides and fission products. The inventory of uranium trichloride had diminished to a point that production was necessary to continue electrorefiner operations. Following initial experimentation, cupric chloride was chosen as a reactant with uranium metal to synthesize uranium trichloride. Despite the variability in equipment and charge characteristics, uranium trichloride was produced in sufficient quantities to maintain operations in the electrorefiner. The results andmore » conclusions from several experiments are presented along with a set of optimized operating conditions for the synthesis of uranium trichloride.« less
PYROCHEMICAL DECONTAMINATION METHOD FOR REACTOR FUEL
Buyers, A.G.
1959-06-30
A pyro-chemical method is presented for decontaminating neutron irradiated uranium and separating plutonium therefrom by contact in the molten state with a metal chloride salt. Uranium trichloride and uranium tetrachloride either alone or in admixture with alkaline metal and alkaline eanth metal fluorides under specified temperature and specified phase ratio conditions extract substantially all of the uranium from the irradiated uranium fuel together with certain fission products. The phases are then separated leaving purified uranium metal. The uranium and plutonium in the salt phase can be reduced to forin a highly decontaminated uraniumplutonium alloy. The present method possesses advantages for economically decontaminating irradiated nuclear fuel elements since irradiated fuel may be proccessed immediately after withdrawal from the reactor and the uranium need not be dissolved and later reduced to the metallic form. Accordingly, the uranium may be economically refabricated and reinserted into the reactor.
Carbon diffusion in molten uranium: an ab initio molecular dynamics study
NASA Astrophysics Data System (ADS)
Garrett, Kerry E.; Abrecht, David G.; Kessler, Sean H.; Henson, Neil J.; Devanathan, Ram; Schwantes, Jon M.; Reilly, Dallas D.
2018-04-01
In this work we used ab initio molecular dynamics within the framework of density functional theory and the projector-augmented wave method to study carbon diffusion in liquid uranium at temperatures above 1600 K. The electronic interactions of carbon and uranium were described using the local density approximation (LDA). The self-diffusion of uranium based on this approach is compared with literature computational and experimental results for liquid uranium. The temperature dependence of carbon and uranium diffusion in the melt was evaluated by fitting the resulting diffusion coefficients to an Arrhenius relationship. We found that the LDA calculated activation energy for carbon was nearly twice that of uranium: 0.55 ± 0.03 eV for carbon compared to 0.32 ± 0.04 eV for uranium. Structural analysis of the liquid uranium-carbon system is also discussed.
40 CFR 471.70 - Applicability; description of the uranium forming subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... uranium forming subcategory. 471.70 Section 471.70 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Uranium Forming Subcategory § 471.70 Applicability; description of the uranium forming... introductions of pollutants into publicly owned treatment works from the process operations of the uranium...
40 CFR 471.70 - Applicability; description of the uranium forming subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... uranium forming subcategory. 471.70 Section 471.70 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Uranium Forming Subcategory § 471.70 Applicability; description of the uranium forming... introductions of pollutants into publicly owned treatment works from the process operations of the uranium...
The Toxicity of Depleted Uranium
Briner, Wayne
2010-01-01
Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed. PMID:20195447
Electrochemical method of producing eutectic uranium alloy and apparatus
Horton, James A.; Hayden, H. Wayne
1995-01-01
An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.
Geological and geochemical aspects of uranium deposits. A selected, annotated bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garland, P.A.; Thomas, J.M.; Brock, M.L.
1980-06-01
A bibliography of 479 references encompassing the fields of uranium and thorium geochemistry and mineralogy, geology of uranium deposits, uranium mining, and uranium exploration techniques has been compiled by the Ecological Sciences Information Center of Oak Ridge National Laboratory. The bibliography was produced for the National Uranium Resource Evaluation Program, which is funded by the Grand Junction Office of the Department of Energy. The references contained in the bibliography have been divided into the following eight subject categories: (1) geology of deposits, (2) geochemistry, (3) genesis O deposits, (4) exploration, (5) mineralogy, (6) uranium industry, (7) reserves and resources, andmore » (8) geology of potential uranium-bearing areas. All categories specifically refer to uranium and thorium; the last category contains basic geologic information concerning areas which the Grand Junction Office feels are particularly favorable for uranium deposition. The references are indexed by author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword.« less
Electrochemical method of producing eutectic uranium alloy and apparatus
Horton, J.A.; Hayden, H.W.
1995-01-10
An apparatus and method are disclosed for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode. 2 figures.
Conversion of depleted uranium hexafluoride to a solid uranium compound
Rothman, Alan B.; Graczyk, Donald G.; Essling, Alice M.; Horwitz, E. Philip
2001-01-01
A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.
NASA Astrophysics Data System (ADS)
Dillard, J. G.; Moers, H.; Klewe-Nebenius, H.; Kirch, G.; Pfennig, G.; Ache, H. J.
1984-09-01
The adsorption of methyl iodide on uranium and on uranium dioxide has been studied at 25 °C. Surfaces of the substrates were characterized before and after adsorption by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The XPS binding energy results indicate that CH 3I adsorption on uranium yields a carbide-type carbon, UC, and uranium iodide, UI 3. On uranium dioxide the carbon electron binding energy measurements are consistent with the formation of a hydrocarbon, —CH 3-type moiety. The interpretation of XPS and AES spectral features for CH 3I adsorption on uranium suggest that a complex dissociative adsorption reaction takes place. Adsorption of CH 3I on UO 2 occurs via a dissociative process. Saturation coverage occurs on uranium at approximately two langmuir (1 L = 10 -6 Torr s) exposure whereas saturation coverage on uranium dioxide is found at about five langmuir.
Maps showing the distribution of uranium-deposit clusters in the Colorado Plateau uranium province
Finch, Warren I.
1991-01-01
The Colorado Palteau Uranium Province (CPUP) is defined by the distribution of uranium deposits, chiefly the sandstone-type, in upper Paleozoic and Mesozoic sedimentary rocks within the Colorado Plateau physiographic province (Granger and others, 1986). The uranium province is bordered by widely distributed and mostly minor uranium deposits in Precambrian and Tertiary rocks and by outcrops of Tertiary extrusive and intrusive igneous rocks.
Uranium in bone: metabolic and autoradiographic studies in the rat.
Priest, N D; Howells, G R; Green, D; Haines, J W
1982-03-01
The distribution and retention of intravenously injected hexavalent uranium-233 in the skeleton of the female rat has been investigated using a variety of autoradiographic and radiochemical techniques. These showed that approximately one third of the injected uranium is deposited in the skeleton where it is retained with an initial biological half-time of approximately 40 days. The studies also showed that: 1 Uranium is initially deposited onto all types of bone surface, but preferentially onto those that are accreting. 2 Uranium is deposited in the calcifying zones of skeletal cartilage. 3 Bone accretion results in the burial of surface deposits of uranium. 4 Bone resorption causes the removal of uranium from surfaces. 5 Resorbed uranium is not retained by osteoclasts and macrophages in the bone marrow. 6 Uranium removed from bone surfaces enters the bloodstream where most is either redeposited in bone or excreted via the kidneys. 7 The recycling of resorbed uranium within the skeleton tends to produce a uniform level of uranium contamination throughout mineralized bone. These results are taken to indicate that uranium deposition in bone shares characteristics in common with both the 'volume-seeking radionuclides' typified by the alkaline earth elements and with the 'bone surface-seeking radionuclides' typified by plutonium.
Nejdl, Lukas; Kynicky, Jindrich; Brtnicky, Martin; Vaculovicova, Marketa; Adam, Vojtech
2017-01-01
Toxic metal contamination of the environment is a global issue. In this paper, we present a low-cost and rapid production of amalgam electrodes used for determination of Cd(II) and Pb(II) in environmental samples (soils and wastewaters) by on-site analysis using difference pulse voltammetry. Changes in the electrochemical signals were recorded with a miniaturized potentiostat (width: 80 mm, depth: 54 mm, height: 23 mm) and a portable computer. The limit of detection (LOD) was calculated for the geometric surface of the working electrode 15 mm2 that can be varied as required for analysis. The LODs were 80 ng·mL−1 for Cd(II) and 50 ng·mL−1 for Pb(II), relative standard deviation, RSD ≤ 8% (n = 3). The area of interest (Dolni Rozinka, Czech Republic) was selected because there is a deposit of uranium ore and extreme anthropogenic activity. Environmental samples were taken directly on-site and immediately analysed. Duration of a single analysis was approximately two minutes. The average concentrations of Cd(II) and Pb(II) in this area were below the global average. The obtained values were verified (correlated) by standard electrochemical methods based on hanging drop electrodes and were in good agreement. The advantages of this method are its cost and time effectivity (approximately two minutes per one sample) with direct analysis of turbid samples (soil leach) in a 2 M HNO3 environment. This type of sample cannot be analyzed using the classical analytical methods without pretreatment. PMID:28792458
Biological low pH Mn(II) oxidation in a manganese deposit influenced by metal-rich groundwater
Bohu, Tsing; Akob, Denise M.; Abratis, Michael; Lazar, Cassandre S.; Küsel, Kirsten
2016-01-01
The mechanisms, key organisms, and geochemical significance of biological low-pH Mn(II) oxidation are largely unexplored. Here, we investigated the structure of indigenous Mn(II)-oxidizing microbial communities in a secondary subsurface Mn oxide deposit influenced by acidic (pH 4.8) metal-rich groundwater in a former uranium mining area. Microbial diversity was highest in the Mn deposit compared to the adjacent soil layers and included the majority of known Mn(II)-oxidizing bacteria (MOB) and two genera of known Mn(II)-oxidizing fungi (MOF). Electron X-ray microanalysis showed that romanechite [(Ba,H2O)2(Mn4+,Mn3+)5O10] was conspicuously enriched in the deposit. Canonical correspondence analysis revealed that certain fungal, bacterial, and archaeal groups were firmly associated with the autochthonous Mn oxides. Eight MOB within the Proteobacteria, Actinobacteria, and Bacteroidetes and one MOF strain belonging to Ascomycota were isolated at pH 5.5 or 7.2 from the acidic Mn deposit. Soil-groundwater microcosms demonstrated 2.5-fold-faster Mn(II) depletion in the Mn deposit than adjacent soil layers. No depletion was observed in the abiotic controls, suggesting that biological contribution is the main driver for Mn(II) oxidation at low pH. The composition and species specificity of the native low-pH Mn(II) oxidizers were highly adapted to in situ conditions, and these organisms may play a central role in the fundamental biogeochemical processes (e.g., metal natural attenuation) occurring in the acidic, oligotrophic, and metalliferous subsoil ecosystems.
Horton, James A.; Hayden, Jr., Howard W.
1995-01-01
An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.
Horton, J.A.; Hayden, H.W. Jr.
1995-05-30
An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porcelli, D.; Wasserburg, G.J.; Andersson, P.S.
The importance of colloids and organic deposits for the transport of uranium isotopes from continental source regions and through the estuarine environment was investigated in the mire-rich Kalix River drainage basin in northern Sweden and the Baltic Sea. Ultrafiltration techniques were used to separate uranium and other elements associated with colloids > 10 kD and >3 kD from {open_quotes}solute{close_quotes} uranium and provided consistent results and high recovery rates for uranium as well as for other elements from large volume samples. Uranium concentrations in 0.45 {mu}m-filtered Kalix River water samples increased by a factor of 3 from near the headwaters inmore » the Caledonides to the river mouth while major cation concentrations were relatively constant. {sup 234}U {sup 238}U ratios were high ({delta}{sup 234}U = 770-1500) throughout the basin, without showing any simple pattern, and required a supply of {sup 234}U-rich water. Throughout the Kalix River, a large fraction (30-90%) of the uranium is carried by >10 kD colloids, which is compatible with uranium complexation with humic acids. No isotopic differences were found between colloid-associated and solute uranium. Within the Baltic Sea, about half of the uranium is removed at low salinities. The proportion that is lost is equivalent to that of river-derived colloid-bound uranium, suggesting that while solute uranium behaves conservatively during estuarine mixing, colloid-bound uranium is lost due to rapid flocculation of colloidal material. The association of uranium with colloids therefore may be an important parameter in determining uranium estuarine behavior. Mire peats in the Kalix River highly concentrate uranium and are potentially a significant source of recoil {sup 234}U to the mirewaters and river waters. However, mirewater data clearly demonstrate that only small {sup 234}U/{sup 238}U shifts are generated relative to inflowing groundwater. 63 refs., 8 figs., 3 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maassen, L.W.; Bolivar, S.L.
1979-06-01
The Los Alamos Scientific Laboratory conducted a hydrogeochemical and stream sediment reconnaissance for uranium. Totals of 408 water and 1538 sediment samples were collected from 1802 locations over a 20 100-km/sup 2/ area at an average density of one location per 11 km/sup 2/. Water samples were collected from springs, wells, and streams; sediments samples were collected predominantly from streams, but also from springs. All water samples were analyzed for uranium and 12 other elements. Sediment samples were analyzed for uranium and 42 additional elements. The uranium concentrations in water samples range from below the detection limit of 0.02 ppBmore » to 194.06 ppB. The mean uranium concentration for all water types containing < 40 ppB uranium is 1.98 ppB. Six samples contained uranium concentrations > 40.00 ppB. Well waters have the highest mean uranium concentration; spring waters have the lowest. Clusters of water samples that contain anomalous uranium concentrations are delineated in nine areas. Sediments collected from the quadrangle have uranium concentrations that range between 0.63 ppM and 28.52 ppM, with a mean for all sediments of 3.53 ppM. Eight areas containing clusters of sediments with anomalous uranium concentrations are delineated. One cluster contains sample locations within the Ambrosia Lake uranium district. Five clusters of sediment samples with anomalous uranium concentrations were collected from streams that drain the Jemez volcanic field. Another cluster defines an area just northeast of Albuquerque where streams drain Precambrian rocks, predominantly granites, of the Sandia Mountains. The last cluster, consisting of spring sediments from Mesa Portales, was collected near the contact of the Tertiary Ojo Alamo sandstone with underlying Cretaceous sediments. Sediments from these springs exhibit some of the highest uranium values reported and are associated with high uranium/thorium ratios.« less
31 CFR 540.318 - Uranium Hexafluoride (UF6).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Uranium Hexafluoride (UF6). 540.318... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.318 Uranium Hexafluoride (UF6). The term uranium...
49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.
Code of Federal Regulations, 2013 CFR
2013-10-01
... uranium or thorium. 173.426 Section 173.426 Transportation Other Regulations Relating to Transportation....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...
31 CFR 540.318 - Uranium Hexafluoride (UF6).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Uranium Hexafluoride (UF6). 540.318... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.318 Uranium Hexafluoride (UF6). The term uranium...
31 CFR 540.318 - Uranium Hexafluoride (UF6).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Uranium Hexafluoride (UF6). 540.318... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.318 Uranium Hexafluoride (UF6). The term uranium...
31 CFR 540.316 - Uranium enrichment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Uranium enrichment. 540.316 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of...
31 CFR 540.318 - Uranium Hexafluoride (UF6).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Uranium Hexafluoride (UF6). 540.318... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.318 Uranium Hexafluoride (UF6). The term uranium...
31 CFR 540.316 - Uranium enrichment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Uranium enrichment. 540.316 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of...
31 CFR 540.316 - Uranium enrichment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Uranium enrichment. 540.316 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of...
49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.
Code of Federal Regulations, 2014 CFR
2014-10-01
... uranium or thorium. 173.426 Section 173.426 Transportation Other Regulations Relating to Transportation....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...
31 CFR 540.316 - Uranium enrichment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Uranium enrichment. 540.316 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of...
49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.
Code of Federal Regulations, 2012 CFR
2012-10-01
... uranium or thorium. 173.426 Section 173.426 Transportation Other Regulations Relating to Transportation....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...
31 CFR 540.318 - Uranium Hexafluoride (UF6).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium Hexafluoride (UF6). 540.318... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.318 Uranium Hexafluoride (UF6). The term uranium...
31 CFR 540.309 - Natural uranium.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Natural uranium. 540.309 Section 540.309 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF... REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found in...
31 CFR 540.309 - Natural uranium.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Natural uranium. 540.309 Section 540.309 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF... REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found in...
Study of uranium oxidation states in geological material.
Pidchenko, I; Salminen-Paatero, S; Rothe, J; Suksi, J
2013-10-01
A wet chemical method to determine uranium (U) oxidation states in geological material has been developed and tested. The problem faced in oxidation state determinations with wet chemical methods is that U redox state may change when extracted from the sample material, thereby leading to erroneous results. In order to quantify and monitor U redox behavior during the acidic extraction in the procedure, an analysis of added isotopic redox tracers, (236)U(VI) and (232)U(IV), and of variations in natural uranium isotope ratio ((234)U/(238)U) of indigenous U(IV) and U(VI) fractions was performed. Two sample materials with varying redox activity, U bearing rock and U-rich clayey lignite sediment, were used for the tests. The Fe(II)/Fe(III) redox-pair of the mineral phases was postulated as a potentially disturbing redox agent. The impact of Fe(III) on U was studied by reducing Fe(III) with ascorbic acid, which was added to the extraction solution. We observed that ascorbic acid protected most of the U from oxidation. The measured (234)U/(238)U ratio in U(IV) and U(VI) fractions in the sediment samples provided a unique tool to quantify U oxidation caused by Fe(III). Annealing (sample heating) to temperatures above 500 °C was supposed to heal ionizing radiation induced defects in the material that can disturb U redox state during extraction. Good agreement between two independent methods was obtained for DL-1a material: an average 38% of U(IV) determined by redox tracer corrected wet chemistry and 45% for XANES. Copyright © 2013 Elsevier Ltd. All rights reserved.
Engineering assessment of inactive uranium mill tailings, Durango Site, Durango, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-06-01
Ford, Bacon and Davis Utah Inc. has reevaluated the Durango site in order to revise the November 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Durango, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the nearly 1.6 million tons of tailings at the Durango sitemore » constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through IV). Cost estimates for the seven options range from about $10,700,000 for stabilization in-place, to about $21,800,000 for disposal at a distance of about 10 mi. Three principal alternatives for the reprocessing of the Durango tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $30/lb U/sub 3/O/sub 8/ by either heap leach or conventional plant processes.« less
THE RECOVERY OF URANIUM FROM GAS MIXTURE
Jury, S.H.
1964-03-17
A method of separating uranium from a mixture of uranium hexafluoride and other gases is described that comprises bringing the mixture into contact with anhydrous calcium sulfate to preferentially absorb the uranium hexafluoride on the sulfate. The calcium sulfate is then leached with a selective solvent for the adsorbed uranium. (AEC)
PREPARATION OF URANIUM-ALUMINUM ALLOYS
Moore, R.H.
1962-09-01
A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)
Separation of uranium from (Th,U)O.sub.2 solid solutions
Chiotti, Premo; Jha, Mahesh Chandra
1976-09-28
Uranium is separated from mixed oxides of thorium and uranium by a pyrometallurgical process in which the oxides are mixed with a molten chloride salt containing thorium tetrachloride and thorium metal which reduces the uranium oxide to uranium metal which can then be recovered from the molten salt. The process is particularly useful for the recovery of uranium from generally insoluble high-density sol-gel thoria-urania nuclear reactor fuel pellets.
PROCESS FOR SEGREGATING URANIUM FROM PLUTONIUM AND FISSION-PRODUCT CONTAMINATION
Ellison, C.V.; Runion, T.C.
1961-06-27
An aqueous nitric acid solution containing uranium, plutonium, and fission product values is contacted with an organic extractant comprised of a trialkyl phosphate and an organic diluent. The relative amounts of trialkyl phosphate and uranium values are controlled to achieve a concentration of uranium values in the organic extractant of at least 0.35 moles uranium per mole of trialkyl phosphate, thereby preferentially extracting uranium values into the organic extractant.
Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.
1959-02-10
A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.
Carbon diffusion in molten uranium: an ab initio molecular dynamics study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, Kerry E.; Abrecht, David G.; Kessler, Sean H.
In this work we used ab initio molecular dynamics (AIMD) within the framework of density functional theory (DFT) and the projector-augmented wave (PAW) method to study carbon diffusion in liquid uranium at temperatures above 1600 K. The electronic interactions of carbon and uranium were described using the local density approximation (LDA). The self-diffusion of uranium based on this approach is compared with literature computational and experimental results for liquid uranium. The temperature dependence of carbon and uranium diffusion in the melt was evaluated by fitting the resulting diffusion coefficients to an Arrhenius relationship. We found that the LDA calculated activationmore » energy for carbon was nearly twice that of uranium: 0.55±0.03 eV for carbon compared to 0.32±0.04 eV for uranium. Structural analysis of the liquid uranium-carbon system is also discussed.« less
Absorption of Thermal Neutrons in Uranium
DOE R&D Accomplishments Database
Creutz, E. C.; Wilson, R. R.; Wigner, E. P.
1941-09-26
A knowledge of the absorption processes for neutrons in uranium is important for planning a chain reaction experiment. The absorption of thermal neutrons in uranium and uranium oxide has been studied. Neutrons from the cyclotron were slowed down by passage through a graphite block. A uranium or uranium oxide sphere was placed at various positions in the block. The neutron intensity at different points in the sphere and in the graphite was measured by observing the activity induced in detectors or uranium oxide or manganese. It was found that both the fission activity in the uranium oxide and the activity induced in manganese was affected by non-thermal neutrons. An experimental correction for such effects was made by making measurements with the detectors surrounded by cadmium. After such corrections the results from three methods of procedure with the uranium oxide detectors and from the manganese detectors were consistent to within a few per cent.
Process for producing an aggregate suitable for inclusion into a radiation shielding product
Lessing, Paul A.; Kong, Peter C.
2000-01-01
The present invention is directed to methods for converting depleted uranium hexafluoride to a stable depleted uranium silicide in a one-step reaction. Uranium silicide provides a stable aggregate material that can be added to concrete to increase the density of the concrete and, consequently, shield gamma radiation. As used herein, the term "uranium silicide" is defined as a compound generically having the formula U.sub.x Si.sub.y, wherein the x represents the molecules of uranium and the y represent the molecules of silicon. In accordance with the present invention, uranium hexafluoride is converted to a uranium silicide by contacting the uranium hexafluoride with a silicon-containing material at a temperature in a range between about 1450.degree. C. and about 1750.degree. C. The stable depleted uranium silicide is included as an aggregate in a radiation shielding product, such as a concrete product.
Rapid Dissolution of Soluble Uranyl Phases in Arid, Mine-Impacted Catchments Near Church Rock, NM
DOE Office of Scientific and Technical Information (OSTI.GOV)
deLemos, J.L.; Bostick, B.C.; Quicksall, A.N.
2009-05-14
We tested the hypothesis that runoff of uranium-bearing particles from mining waste disposal areas was a significant mechanism for redistribution of uranium in the northeastern part of the Upper Puerco River watershed (New Mexico). However, our results were not consistent with this hypothesis. Analysis of >100 sediment and suspended sediment samples collected adjacent to and downstream from uranium source areas indicated that uranium levels in the majority of the samples were not elevated above background. Samples collected within 50 m of a known waste disposal site were subjected to detailed geochemical characterization. Uranium in these samples was found to bemore » highly soluble; treatment with synthetic pore water for 24 h caused dissolution of 10-50% of total uranium in the samples. Equilibrium uranium concentrations in pore water were >4.0 mg/L and were sustained in repeated wetting events, effectively depleting soluble uranium from the solid phase. The dissolution rate of uranium appeared to be controlled by solid-phase diffusion of uranium from within uranium-bearing mineral particles. X-ray adsorption spectroscopy indicated the presence of a soluble uranyl silicate, and possibly a uranyl phosphate. These phases were exhausted in transported sediment suggesting that uranium was readily mobilized from sediments in the Upper Puerco watershed and transported in the dissolved load. These results could have significance for uranium risk assessment as well as mining waste management and cleanup efforts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn M.
2013-08-02
Bicarbonate is one of the most significant components within the uranium geochemical cycle. In aqueous solutions, bicarbonate forms strong complexes with uranium. As such, aqueous bicarbonate may significantly increase the rate of uranium release from uranium minerals. Quantifying the relationship of aqueous bicarbonate concentration to the rate of uranium release during dissolution is critical to understanding the long-term fate of uranium within the environment. Single-pass flow-through (SPTF) experiments were conducted to estimate the rate of uranium release from Na meta-autunite as a function of bicarbonate (0.0005-0.003 M) under the pH range of 6-11 and a temperature range of 5-60oC. Consistentmore » with the results of previous investigation, the rate of uranium release exhibited minimal dependency on temperature; but were strongly dependent on pH. Increasing aqueous bicarbonate concentrations afforded comparable increases in the rate of release of uranium. Most notably under low pH conditions the aqueous bicarbonate resulted in up to 370 fold increases in the rate of uranium release in relative to the rate of uranium release in the absence of bicarbonate. However, the effect of aqueous bicarbonate on the release of uranium was significantly less under higher pH conditions. It is postulated that at high pH values, surface sites are saturated with carbonate, thus the addition of more bicarbonate would have less effect on uranium release.« less
Rapid Dissolution of Soluble Uranyl Phases in Arid, Mine-Impacted Catchments near Church Rock, NM
DELEMOS, JAMIE L.; BOSTICK, BENJAMIN C.; QUICKSALL, ANDREW N.; LANDIS, JOSHUA D.; GEORGE, CHRISTINE C.; SLAGOWSKI, NAOMI L.; ROCK, TOMMY; BRUGGE, DOUG; LEWIS, JOHNNYE; DURANT, JOHN L.
2008-01-01
We tested the hypothesis that runoff of uranium-bearing particles from mining waste disposal areas was a significant mechanism for redistribution of uranium in the northeastern part of the Upper Puerco River watershed (New Mexico). However, our results were not consistent with this hypothesis. Analysis of >100 sediment and suspended sediment samples collected adjacent to and downstream from uranium source areas indicated that uranium levels in the majority of the samples were not elevated above background. Samples collected within 50 m of a known waste disposal site were subjected to detailed geochemical characterization. Uranium in these samples was found to be highly soluble; treatment with synthetic pore water for 24 h caused dissolution of 10–50% of total uranium in the samples. Equilibrium uranium concentrations in pore water were >4.0 mg/L and were sustained in repeated wetting events, effectively depleting soluble uranium from the solid phase. The dissolution rate of uranium appeared to be controlled by solid-phase diffusion of uranium from within uranium-bearing mineral particles. X-ray adsorption spectroscopy indicated the presence of a soluble uranyl silicate, and possibly a uranyl phosphate. These phases were exhausted in transported sediment suggesting that uranium was readily mobilized from sediments in the Upper Puerco watershed and transported in the dissolved load. These results could have significance for uranium risk assessment as well as mining waste management and cleanup efforts. PMID:18589950
Biosorption of uranium by Pseudomonas aeruginosa strain CSU: Characterization and comparison studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, M.Z.C.; Norman, J.M.; Faison, B.D.
1996-07-20
Pseudomonas aeruginosa strain CSU, a nongenetically engineered bacterial strain known to bind dissolved hexavalent uranium (as UO{sub 2}{sup 2+} and/or its cationic hydroxo complexes) was characterized with respect to its sorptive activity. The uranium biosorption equilibrium could be described by the Langmuir isotherm. The rate of uranium adsorption increased following permeabilization of the outer and/or cytoplasmic membrane by organic solvents such as acetone. P. aeruginosa CSU biomass was significantly more sorptive toward uranium than certain novel, patented biosorbents derived from algal or fungal biomass sources. P. aeruginosa CSU biomass was also competitive with commercial cation-exchange resins, particularly in the presencemore » of dissolved transition metals. Uranium binding by P. aeruginosa CSU was clearly pH dependent. Uranium loading capacity increased with increasing pH under acidic conditions, presumably as a function of uranium speciation and due to the H{sup +} competition at some binding sites. Nevertheless, preliminary evidence suggests that this microorganism is also capable of binding anionic hexavalent uranium complexes. Ferric iron was a strong inhibitor of uranium binding to P. aeruginosa CSU biomass, and the presence of uranium also decreased the Fe{sup 3+} loading when the biomass was not saturated with Fe{sup 3+}. Thus, a two-state process in which iron and uranium are removed in consecutive steps was proposed for efficient use of the biomass as a biosorbent in uranium removal from mine wastewater, especially acidic leachates.« less
Urinary excretion of uranium in adult inhabitants of the Czech Republic.
Malátová, Irena; Bečková, Věra; Kotík, Lukáš
2016-02-01
The main aim of this study was to determine and evaluate urinary excretion of uranium in the general public of the Czech Republic. This value should serve as a baseline for distinguishing possible increase in uranium content in population living near legacy sites of mining and processing uranium ores and also to help to distinguish the proportion of the uranium content in urine among uranium miners resulting from inhaled dust. The geometric mean of the uranium concentration in urine of 74 inhabitants of the Czech Republic was 0.091 mBq/L (7.4 ng/L) with the 95% confidence interval 0.071-0.12 mBq/L (5.7-9.6 ng/L) respectively. The geometric mean of the daily excretion was 0.15 mBq/d (12.4 ng/d) with the 95% confidence interval 0.12-0.20 mBq/d (9.5-16.1 ng/d) respectively. Despite the legacy of uranium mines and plants processing uranium ore in the Czech Republic, the levels of uranium in urine and therefore, also human body content of uranium, is similar to other countries, esp. Germany, Slovenia and USA. Significant difference in the daily urinary excretion of uranium was found between individuals using public supply and private water wells as a source of drinking water. Age dependence of daily urinary excretion of uranium was not found. Mean values and their range are comparable to other countries, esp. Germany, Slovenia and USA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Challenges dealing with depleted uranium in Germany - Reuse or disposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moeller, Kai D.
2007-07-01
During enrichment large amounts of depleted Uranium are produced. In Germany every year 2.800 tons of depleted uranium are generated. In Germany depleted uranium is not classified as radioactive waste but a resource for further enrichment. Therefore since 1996 depleted Uranium is sent to ROSATOM in Russia. However it still has to be dealt with the second generation of depleted Uranium. To evaluate the alternative actions in case a solution has to be found in Germany, several studies have been initiated by the Federal Ministry of the Environment. The work that has been carried out evaluated various possibilities to dealmore » with depleted uranium. The international studies on this field and the situation in Germany have been analyzed. In case no further enrichment is planned the depleted uranium has to be stored. In the enrichment process UF{sub 6} is generated. It is an international consensus that for storage it should be converted to U{sub 3}O{sub 8}. The necessary technique is well established. If the depleted Uranium would have to be characterized as radioactive waste, a final disposal would become necessary. For the planned Konrad repository - a repository for non heat generating radioactive waste - the amount of Uranium is limited by the licensing authority. The existing license would not allow the final disposal of large amounts of depleted Uranium in the Konrad repository. The potential effect on the safety case has not been roughly analyzed. As a result it may be necessary to think about alternatives. Several possibilities for the use of depleted uranium in the industry have been identified. Studies indicate that the properties of Uranium would make it useful in some industrial fields. Nevertheless many practical and legal questions are open. One further option may be the use as shielding e.g. in casks for transport or disposal. Possible techniques for using depleted Uranium as shielding are the use of the metallic Uranium as well as the inclusion in concrete. Another possibility could be the use of depleted uranium for the blending of High enriched Uranium (HEU) or with Plutonium to MOX-elements. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. D. Herrmann; L. A. Wurth; N. J. Gese
An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electrometallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li2O at 650 °C with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide. The experimentalmore » study illustrated how zirconium oxide and sodium oxide present different challenges to a lithium-based electrolytic reduction system for conversion of select metal oxides to metal.« less
Supernova Explosions, Nucleosynthesis, and Cosmic Chemical Evolution
NASA Astrophysics Data System (ADS)
Truran, James W.
2006-08-01
The Universe emerged from its first three minutes with a composition consisting of hydrogen, deuterium, 3He, 4He, and 7Li. These isotopes constitute the primordial compositions of galaxies. Within galaxies, the synthesis of heavier elements from carbon through uranium is understood to occur during the normal evolution of stars and in supernova explosions of Types I and II. This history is written in the compositions of the stars and gas in our Milky Way Galaxy and other galaxies. The contributions both from massive stars (M>10 Msolar) and associated Type II supernovae and from Type Ia (thermonuclear) supernovae are particularly noteworthy. We review both the nuclear processes by which this occurs and the compositions of the stellar components of our Galaxy as a function of time which reflect these nucleosynthesis processes. We then discuss how such observations inform us of the nature of the earliest stellar populations and of the abundance history of the Cosmos.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, V.S.
1980-06-01
This bibliography contains 2702 citations, most of which are annotated. They are arranged by author in numerical order with a geographical index following the listing. The work is international in scope and covers the early geological literature, continuing through 1979 with a few 1980 citations in Addendum II. Addendum I contains a listing of the reports, well logs and symposiums of the Unconventional Gas Recovery Program (UGR) through August 1979. There is an author-subject index for these publications following the listing. The second part of Addendum I is a listing of the UGR maps which also has a subject-author indexmore » following the map listing. Addendum II includes several important new titles on the Devonian shale as well as a few older citations which were not found until after the bibliography had been numbered and essentially completed. A geographic index for these citations follows this listing.« less
The role of Shewanella oneidensis MR-1 outer surface structures in extracellular electron transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouhenni, Rachida; Vora, Gary J.; Biffinger, Justin C.
2010-04-20
Shewanella oneidensis is a facultative anaerobe that uses more than 14 different terminal electron acceptors for respiration. These include metal oxides and hydroxyoxides, and toxic metals such as uranium and chromium. Mutants deficient in metal reduction were isolated using the mariner transposon derivative, minihimar RB1. These included mutants with transposon insertions in the prepilin peptidase and type II secretion system genes. All mutants were deficient in Fe(III) and Mn(IV) reduction, and exhibited slow growth when DMSO was used as the electron acceptor. The genome sequence of S. oneidensis contains one prepilin peptidase gene, pilD. A similar prepilin peptidase that maymore » function in the processing of type II secretion prepilins was not found. Single and multiple chromosomal deletions of four putative type IV pilin genes did not affect Fe(III) and Mn(IV) reduction. These results indicate that PilD in S. oneidensis is responsible for processing both type IV and type II secretion prepilin proteins. Type IV pili do not appear to be required for Fe(III) and Mn(IV) reduction.« less
Fabrication of Natural Uranium UO 2 Disks (Phase II): Texas A&M Work for Others Summary Document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerczak, Tyler J.; Baldwin, Charles A.; Schmidlin, Joshua E.
The steps to fabricate natural UO 2 disks for an irradiation campaign led by Texas A&M University are outlined. The process was initiated with stoichiometry adjustment of parent, U 3O 8 powder. The next stage of sample preparation involved exploratory pellet pressing and sintering to achieve the desired natural UO 2 pellet densities. Ideal densities were achieved through the use of a bimodal powder size blend. The steps involved with disk fabrication are also presented, describing the coring and thinning process executed to achieve final dimensionality.
Centrifugation and the Manhattan Project
NASA Astrophysics Data System (ADS)
Reed, Cameron
2009-05-01
A study of U. S. Army Manhattan Engineer District documents reveals that consideration of centrifugation as a means of uranium enrichment during World War II was considerably more extensive than is commonly appreciated. By the time the centrifuge project was abandoned in early 1944 a full-scale prototype unit had been fabricated and tested at near-production speeds, enrichments of close to theoretically-expected levels had been demonstrated with pilot-plant units, and plans for production plants had been developed. This paper will review the history of this little-known aspect of the Project and examine the circumstances of how it came to be discontinued.
Centrifugation and the Manhattan Project
NASA Astrophysics Data System (ADS)
Reed, Cameron
2009-04-01
A study of U. S. Army Manhattan Engineer District documents reveals that consideration of centrifugation as a means of uranium enrichment during World War II was considerably more extensive than is commonly appreciated. By the time the centrifuge project was abandoned in early 1944 a full-scale prototype unit had been fabricated and tested at near-production speeds, enrichments of close to theoretically-expected levels had been demonstrated with pilot-plant units, and plans for production plants had been developed. This paper will review the history of this little-known aspect of the Project and examine the circumstances of how it came to be discontinued.
NASA Astrophysics Data System (ADS)
Markwitz, Vanessa; Porwal, Alok; Campbell McCuaig, T.; Kreuzer, Oliver P.
2010-05-01
Uranium deposits are usually classified based on the characteristics of their host rocks and geological environments (Dahlkamp, 1993; OECD/NEA Red Book and IAEA, 2000; Cuney, 2009). The traditional unconformity-related deposit types are the most economical deposits in the world, with the highest grades amongst all uranium deposit types. In order to predict undiscovered uranium deposits, there is a need to understand the spatial association of uranium mineralization with structures and unconformities. Hydrothermal uranium deposits develop by uranium enriched fluids from source rocks, transported along permeable pathways to their depositional environment. Unconformities are not only separating competent from incompetent sequences, but provide the physico-chemical gradient in the depositional environment. They acted as important fluid flow pathways for uranium to migrate not only for surface-derived oxygenated fluids, but also for high oxidized metamorphic and magmatic fluids, dominated by their geological environment in which the unconformities occur. We have carried out comprehensive empirical spatial analyses of various types of uranium deposits in Australia, and first results indicate that there is a strong spatial correlation between unconformities and uranium deposits, not only for traditional unconformity-related deposits but also for other styles. As a start we analysed uranium deposits in Queensland and in particular Proterozoic metasomatic-related deposits in the Mount Isa Inlier and Late Carboniferous to Early Permian volcanic-hosted uranium occurrences in Georgetown and Charters Towers Regions show strong spatial associations with contemporary and older unconformities. The Georgetown Inlier in northern Queensland consists of a diverse range of rocks, including Proterozoic and early Palaeozoic metamorphic rocks and granites and late Palaeozoic volcanic rocks and related granites. Uranium-molybdenum (+/- fluorine) mineralization in the Georgetown inlier varies from strata- to structure-bound and occurs above regional unconformities. The Proterozoic basins in the Mount Isa Inlier rest unconformably on Palaeoproterozoic basement accompanied by volcanic and igneous rocks, which were deformed and metamorphosed in the Mesoproterozoic. Uranium occurrences in the Western Succession of Mount Isa are either hosted in clastic metasediments or mafic volcanics that belong to the Palaeoproterozoic Eastern Creek Volcanics. Uranium and vanadium mineralization occur in metasomatised and hematite-magnetite-carbonate alteration zones, bounded by major faults and regional unconformities. The results of this study highlight the importance of unconformities in uranium minerals systems as possible fluid pathways and/or surfaces of physico-chemical contrast that could have facilitated the precipitation of uranium, not only in classical unconformity style uranium deposits but in several other styles of uranium mineralization as well. References Cuney, M., 2009. The extreme diversity of uranium deposits. Mineralium Deposita, 44, 3-9. Dahlkamp, F. J., 1993. Uranium ore deposits. Springer, Berlin, p 460. OECD / NEA Red Book & IAEA, 2000. Uranium 1999: Resources, Production and Demand. OECD Nuclear Energy Agency and International Atomic Energy Agency, Paris.
Natural uranium impairs the differentiation and the resorbing function of osteoclasts.
Gritsaenko, Tatiana; Pierrefite-Carle, Valérie; Lorivel, Thomas; Breuil, Véronique; Carle, Georges F; Santucci-Darmanin, Sabine
2017-04-01
Uranium is a naturally occurring radionuclide ubiquitously present in the environment. The skeleton is the main site of uranium long-term accumulation. While it has been shown that natural uranium is able to perturb bone metabolism through its chemical toxicity, its impact on bone resorption by osteoclasts has been poorly explored. Here, we examined for the first time in vitro effects of natural uranium on osteoclasts. The effects of uranium on the RAW 264.7 monocyte/macrophage mouse cell line and primary murine osteoclastic cells were characterized by biochemical, molecular and functional analyses. We observed a cytotoxicity effect of uranium on osteoclast precursors. Uranium concentrations in the μM range are able to inhibit osteoclast formation, mature osteoclast survival and mineral resorption but don't affect the expression of the osteoclast gene markers Nfatc1, Dc-stamp, Ctsk, Acp5, Atp6v0a3 or Atp6v0d2 in RAW 274.7 cells. Instead, we observed that uranium induces a dose-dependent accumulation of SQSTM1/p62 during osteoclastogenesis. We show here that uranium impairs osteoclast formation and function in vitro. The decrease in available precursor cells, as well as the reduced viability of mature osteoclasts appears to account for these effects of uranium. The SQSTM1/p62 level increase observed in response to uranium exposure is of particular interest since this protein is a known regulator of osteoclast formation. A tempting hypothesis discussed herein is that SQSTM1/p62 dysregulation contributes to uranium effects on osteoclastogenesis. We describe cellular and molecular effects of uranium that potentially affect bone homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.
Bone as a Possible Target of Chemical Toxicity of Natural Uranium in Drinking Water
Kurttio, Päivi; Komulainen, Hannu; Leino, Aila; Salonen, Laina; Auvinen, Anssi; Saha, Heikki
2005-01-01
Uranium accumulates in bone, affects bone metabolism in laboratory animals, and when ingested in drinking water increases urinary excretion of calcium and phosphate, important components in the bone structure. However, little is known about bone effects of ingested natural uranium in humans. We studied 146 men and 142 women 26–83 years of age who for an average of 13 years had used drinking water originating from wells drilled in bedrock, in areas with naturally high uranium content. Biochemical indicators of bone formation were serum osteocalcin and amino-terminal propeptide of type I procollagen, and a marker for bone resorption was serum type I collagen carboxy-terminal telopeptide (CTx). The primary measure of uranium exposure was uranium concentration in drinking water, with additional information on uranium intake and uranium concentration in urine. The data were analyzed separately for men and women with robust regression (which suppresses contributions of potential influential observations) models with adjustment for age, smoking, and estrogen use. The median uranium concentration in drinking water was 27 μg/L (interquartile range, 6–116 μg/L). The median of daily uranium intake was 36 μg (7–207 μg) and of cumulative intake 0.12 g (0.02–0.66 g). There was some suggestion that elevation of CTx (p = 0.05) as well as osteocalcin (p = 0.19) could be associated with increased uranium exposure (uranium in water and intakes) in men, but no similar relationship was found in women. Accordingly, bone may be a target of chemical toxicity of uranium in humans, and more detailed evaluation of bone effects of natural uranium is warranted. PMID:15626650
NASA Astrophysics Data System (ADS)
Sharma, S. P.; Biswas, A.
2012-12-01
South Purulia Shear Zone (SPSZ) is an important region for prospecting of uranium mineralization. Geological studies and hydro-uranium anomaly suggest the presence of Uranium deposit around Raghunathpur village which lies about 8 km north of SPSZ. However, detailed geophysical investigations have not been carried out in this region for investigation of uranium mineralization. Since surface signature of uranium mineralization is not depicted near the location, a deeper subsurface source is expected for hydro uranium anomaly. To delineate the subsurface structure and to investigate the origin of hydro-uranium anomaly present in the area, Vertical Electrical Sounding (VES) using Schlumberger array and Gradient Resistivity Profiling (GRP) were performed at different locations along a profile perpendicular to the South Purulia Shear Zone. Apparent resistivity computed from the measured sounding data at various locations shows a continuously increasing trend. As a result, conventional apparent resistivity data is not able to detect the possible source of hydro uranium anomaly. An innovative approach is applied which depicts the apparent conductivity in the subsurface revealed a possible connection from SPSZ to Raghunathpur. On the other hand resistivity profiling data suggests a low resistive zone which is also characterized by low Self-Potential (SP) anomaly zone. Since SPSZ is characterized by the source of uranium mineralization; hydro-uranium anomaly at Raghunathpur is connected with the SPSZ. The conducting zone has been delineated from SPSZ to Raghunathpur at deeper depths which could be uranium bearing. Since the location is also characterized by a low gravity and high magnetic anomaly zone, this conducting zone is likely to be mineralized zone. Keywords: Apparent resistivity; apparent conductivity; Self Potential; Uranium mineralization; shear zone; hydro-uranium anomaly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, L.G.; Cellini, R.F.
1959-01-01
The thermal decomposition of some intermediate compounds in the metallurgy of uranium such as uranium peroxide, ammonium uranate, ammonium uranium pentafluoride, uranium tetrafluoride, and UO/sub 2/, were studied using Chevenard's thermobalance. Some data on the pyrolysis of synthetic mixtures of intermediate compounds which may appear during the industrial processing are given. Thermogravimetric methods of control are suggested for use in uranium metallurgy. (tr-auth)
Feder, H.M.; Chellew, N.R.
1958-02-01
This patent deals with the separation of rare earth and other fission products from neutron bombarded uranium. This is accomplished by melting the uranium in contact with either thorium oxide, maguesium oxide, alumnum oxide, beryllium oxide, or uranium dioxide. The melting is preferably carried out at from 1150 deg to 1400 deg C in an inert atmosphere, such as argon or helium. During this treatment a scale of uranium dioxide forms on the uranium whtch contains most of the fission products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-09-30
Results of a reconnaissance geochemical survey of the Brownsville-McAllen Quadrangles, Texas are reported. Field and laboratory data are presented for 427 groundwater and 171 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. Pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate the most promising area for potential uranium mineralization occurs in the northwestern section of the quadrangles (Jim Hogg, Starr, and Zapata Counties), where waters are derived from the Catahoula Formation. These groundwaters have high concentrations of uranium, uranium associated elements,more » and low values for specific conductance. Another area with high uranium concentrations is in the southeastern portion of the survey area (Hidalgo, Cameron, and Willacy Counties). Shallow wells <10 m (30 ft) are numerous in this area and high specific conductance values may indicate contamination from extensive fertilization. Stream sediment data for the survey does not indicate an area favorable for uranium mineralization. Anomalous acid soluble uranium values in the southeastern area (Hidalgo, Cameron, and Willacy Counties) can be attributed to phosphate fertilizer contamination. Four samples in the western part of the area (western Starr County) have anomalously high total uranium values and low acid soluble uranium values, indicating the uranium may be contained in resistate minerals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, S.J.; Sandoval, W.F.; Gallimore, D.L.
1980-06-01
During the summer and fall of 1977, 533 water and 1226 sediment samples were collected from 1740 locations within the 18,000 km/sup 2/ area of the Newcastle quadrangle, Wyoming. Water samples were collected from wells and springs; sediment samples were collected from stream channels and from springs. Each water sample was analyzed for uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit of 0.02 ppB to 702.26 ppB and have a median of 1.73 ppB and a mean of 11.76 ppB. Water samples containingmore » high uranium concentrations (>20 ppB) generally are associated with known uranium mining activity or units known to be uranium bearing. About one-third of the water samples containing high uranium concentrations were collected from locations within the Pumpkin Buttes and Turnercrest-Ross Districts. Nearly half of the water samples containing high uranium concentrations were collected from locations just west of the Monument Hill and Highland Flats-Box Creek Districts. Similar anomalous uranium concentrations in this region have been reported updip from Exxon's Highland uranium deposits. High uranium concentrations were also found associated with the Lance Creek-Old Woman Anticline District.« less
Li, Peng; Zhun, Bao; Wang, Xuegang; Liao, PingPing; Wang, Guanghui; Wang, Lizhang; Guo, Yadan; Zhang, Weimin
2017-12-19
A new strategy combining iron-electrocoagulation and organic ligands (OGLs) cooperative chelation was proposed to screen and precipitate low concentrations (0-18.52 μmol/L) of uranium contaminant in aqueous solution. We hypothesized that OGLs with amino, hydroxyl, and carboxyl groups hydrophobically/hydrophilically would realize precuring of uranyl ion at pH < 3.0, and the following iron-electrocoagulation would achieve faster and more efficient uranium precipitation. Experimentally, the strategy demonstrated highly efficient uranium(VI) precipitation efficiency, especially with hydrophilic macromolecular OGLs. The uranium removal efficiency at optimized experimental condition reached 99.65%. The decrease of zeta potential and the lattice enwrapping between U-OGLs chelates and flocculation precursor were ascribed to the enhanced uranium precipitation activity. Uranium was precipitated as oxides of U(VI) or higher valences that were easily captured in aggregated micelles under low operation current potential. The actual uranium tailing wastewater was treated, and a satisfied uranium removal efficiency of 99.02% was discovered. After elution of the precipitated flocs, a concentrated uranium solution (up to 106.52 μmol/L) with very few other metallic impurities was obtained. Therefore, the proposed strategy could remove uranium and concentrate it concurrently. This work could provide new insights into the purification and recovery of uranium from aqueous solutions in a cost-effective and environmentally friendly process.
31 CFR 540.315 - Uranium-235 (U235).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Uranium-235 (U235). 540.315 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.315 Uranium-235 (U235). The term uranium-235 or U235 means the fissile...
31 CFR 540.315 - Uranium-235 (U235).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Uranium-235 (U235). 540.315 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.315 Uranium-235 (U235). The term uranium-235 or U235 means the fissile...
49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Activity-mass relationships for uranium and....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U present...
49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Activity-mass relationships for uranium and....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U present...
49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Activity-mass relationships for uranium and....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U present...
31 CFR 540.315 - Uranium-235 (U235).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Uranium-235 (U235). 540.315 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.315 Uranium-235 (U235). The term uranium-235 or U235 means the fissile...
31 CFR 540.315 - Uranium-235 (U235).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Uranium-235 (U235). 540.315 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.315 Uranium-235 (U235). The term uranium-235 or U235 means the fissile...
SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS FROM NEUTRON- BOMBARDED URANIUM
Martin, A.E.; Johnson, I.; Burris, L. Jr.; Winsch, I.O.; Feder, H.M.
1962-11-13
A process is given for removing plutonium and/or fission products from uranium fuel. The fuel is dissolved in molten zinc--magnesium (10 to 18% Mg) alloy, more magnesium is added to obtain eutectic composition whereby uranium precipitates, and the uranium are separated from the Plutoniumand fission-product- containing eutectic. (AEC)
31 CFR 540.315 - Uranium-235 (U235).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium-235 (U235). 540.315 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.315 Uranium-235 (U235). The term uranium-235 or U235 means the fissile...
DISSOLUTION OF ZIRCONIUM-CONTAINING FUEL ELEMENTS
Horn, F.L.
1961-12-12
Uranium is recovered from spent uranium fuel elements containing or clad with zirconium. These fuel elements are placed in an anhydrous solution of hydrogen fluoride and nitrogen dioxide. Within this system uranium forms a soluble complex and zirconium forms an insoluble complex. The uranium can then be separated, treated, and removed from solution as uranium hexafluoride. (AEC)
The role of uranium-arene bonding in H2O reduction catalysis
NASA Astrophysics Data System (ADS)
Halter, Dominik P.; Heinemann, Frank W.; Maron, Laurent; Meyer, Karsten
2018-03-01
The reactivity of uranium compounds towards small molecules typically occurs through stoichiometric rather than catalytic processes. Examples of uranium catalysts reacting with water are particularly scarce, because stable uranyl groups form that preclude the recovery of the uranium compound. Recently, however, an arene-anchored, electron-rich uranium complex has been shown to facilitate the electrocatalytic formation of H2 from H2O. Here, we present the precise role of uranium-arene δ bonding in intermediates of the catalytic cycle, as well as details of the atypical two-electron oxidative addition of H2O to the trivalent uranium catalyst. Both aspects were explored by synthesizing mid- and high-valent uranium-oxo intermediates and by performing comparative studies with a structurally related complex that cannot engage in δ bonding. The redox activity of the arene anchor and a covalent δ-bonding interaction with the uranium ion during H2 formation were supported by density functional theory analysis. Detailed insight into this catalytic system may inspire the design of ligands for new uranium catalysts.
Ramie (Boehmeria nivea)'s uranium bioconcentration and tolerance attributes.
Wang, Wei-Hong; Luo, Xue-Gang; Liu, Lai; Zhang, Yan; Zhao, Hao-Zhou
2018-04-01
The authors sampled and analyzed 15 species of dominant wild plants in Huanan uranium tailings pond in China, whose tailings' uranium contents were 3.21-120.52 μg/g. Among the 15 species of wild plants, ramie (Boehmeria nivea) had the strongest uranium bioconcentration and transfer capacities. In order to study the uranium bioconcentration and tolerance attributes of ramie in detail, and provide a reference for the screening remediation plants to phytoremedy on a large scale in uranium tailings pond, a ramie cultivar Xiangzhu No. 7 pot experiment was carried out. We found that both wild ramie and Xiangzhu No. 7 could bioconcentrate uranium, but there were two differences. One was wild ramie's shoots bioconcentrated uranium up to 20 μg/g (which can be regarded as the critical content value of the shoot of uranium hyperaccumulator) even the soil uranium content was as low as 5.874 μg/g while Xiangzhu No. 7's shoots could reach 20 μg/g only when the uranium treatment concentrations were 275 μg/g or more; the other was that all the transfer factors of 3 wild samples were >1, and the transfer factors of 27 out of 28 pot experiment samples were <1. Probably wild ramie was a uranium hyperaccumulator. Xiangzhu No. 7 satisfied the needs of uranium hyperaccumulator on accumulation capability, tolerance capability, bioconcentration factor, but not transfer capability, so Xiangzhu No. 7 was not a uranium hyperaccumulator. We analyzed the possible reasons why there were differences in the uranium bioconcentration and transfer attributes between wild ramie and Xiangzhu No. 7., and proposed the direction for further research. In our opinion, both the plants which bioconcentrate contaminants in the shoots and roots can act as phytoextractors. Although Xiangzhu No. 7's biomass and accumulation of uranium were concentrated on the roots, the roots were small in volume and easy to harvest. And Xiangzhu No. 7's cultivating skills and protection measures had been developed very well. Xiangzhu No. 7's whole bioconcentration factors and the roots' bioconcentration factors, which were 1.200-1.834 and 1.460-2.341, respectively, increased with the increases of uranium contents of pot soil when the soil's uranium contents are 25-175 μg/g, so it can act as a potential phytoextractor when Huanan uranium tailings pond is phytoremediated. Copyright © 2018. Published by Elsevier Ltd.
Baumann, Nils; Arnold, Thuro; Haferburg, Götz
2014-01-01
Uranium concentrations in cultivated (sunflower, sunchoke, potato) and native plants, plant compartment specimens, and mushrooms, grown on a test site within a uranium-contaminated area in Eastern Thuringia, were analyzed and compared. This test site belongs to the Friedrich-Schiller University Jena and is situated on the ground of a former but now removed uranium mine waste leaching heap. For determination of the U concentrations in the biomaterials, the saps of the samples were squeezed out by using an ultracentrifuge, after that, the uranium concentrations in the saps and the remaining residue were measured, using ICP-MS. The study further showed that uranium concentrations observed in plant compartment and mushroom fruiting bodies sap samples were always higher than their associated solid residue sample. Also, it was found that the detected uranium concentration in the root samples were always higher than were observed in their associated above ground biomass, e.g., in shoots, leaves, blossoms etc. The highest uranium concentration was measured with almost 40 ppb U in a fruiting body of a mushroom and in roots of butterbur. However, the detected uranium concentrations in plants and mushrooms collected in this study were always lower than in the associated surface and soil water of the test site, indicating that under the encountered natural conditions, none of the studied plant and mushroom species turned out to be a hyperaccumulator for uranium, which could have extracted uranium in sufficient amounts out of the uranium-contaminated soil. In addition, it was found that the detected uranium concentrations in the sap samples, despite being above the sensitivity limit, proved to be too low-in combination with the presence of fluorescence quenching substances, e.g., iron and manganese ions, and/or organic quenchers-to extract a useful fluorescence signal, which could have helped to identify the uranium speciation in plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camper, Larry W.; Michalak, Paul; Cohen, Stephen
Community Water Systems (CWSs) are required to remove uranium from drinking water to meet EPA standards. Similarly, mining operations are required to remove uranium from their dewatering discharges to meet permitted surface water discharge limits. Ion exchange (IX) is the primary treatment strategy used by these operations, which loads uranium onto resin beads. Presently, uranium-loaded resin from CWSs and mining operations can be disposed as a waste product or processed by NRC- or Agreement State-licensed uranium recovery facilities if that licensed facility has applied for and received permission to process 'alternate feed'. The disposal of uranium-loaded resin is costly andmore » the cost to amend a uranium recovery license to accept alternate feed can be a strong disincentive to commercial uranium recovery facilities. In response to this issue, the NRC issued a Regulatory Issue Summary (RIS) to clarify the agency's policy that uranium-loaded resin from CWSs and mining operations can be processed by NRC- or Agreement State-licensed uranium recovery facilities without the need for an alternate feed license amendment when these resins are essentially the same, chemically and physically, to resins that licensed uranium recovery facilities currently use (i.e., equivalent feed). NRC staff is clarifying its current alternate feed policy to declare IX resins as equivalent feed. This clarification is necessary to alleviate a regulatory and financial burden on facilities that filter uranium using IX resin, such as CWSs and mine dewatering operations. Disposing of those resins in a licensed facility could be 40 to 50 percent of the total operations and maintenance (O and M) cost for a CWS. Allowing uranium recovery facilities to treat these resins without requiring a license amendment lowers O and M costs and captures a valuable natural resource. (authors)« less
As-cast uranium-molybdenum based metallic fuel candidates and the effects of carbon addition
NASA Astrophysics Data System (ADS)
Blackwood, Van Stephen
The objective of this research was to develop and recommend a metallic nuclear fuel candidate that lowered the onset temperature of gamma phase formation comparable or better than the uranium-10 wt. pct. molybdenum alloy, offered a solidus temperature as high or higher than uranium-10 wt. pct. zirconium (1250°C), and stabilized the fuel phase against interaction with iron and steel at least as much as uranium-10 wt. pct. zirconium stabilized the fuel phase. Two new as-cast alloy compositions were characterized to assess thermal equilibrium boundaries of the gamma phase field and the effect of carbon addition up to 0.22 wt. pct. The first system investigated was uranium- x wt. pct. M where x ranged between 5-20 wt. pct. M was held at a constant ratio of 50 wt. pct. molybdenum, 43 wt. pct. titanium, and 7 wt. pct. zirconium. The second system investigated was the uranium-molybdenum-tungsten system in the range 90 wt. pct. uranium - 10 wt. pct. molybdenum - 0 wt. pct. tungsten to 80 wt. pct. uranium - 10 wt. pct. molybdenum - 10 wt. pct. tungsten. The results showed that the solidus temperature increased with increased addition of M up to 12.5 wt. pct. for the uranium-M system. Alloy additions of titanium and zirconium were removed from uranium-molybdenum solid solution by carbide formation and segregation. The uranium-molybdenum-tungsten system solidus temperature increased to 1218°C at 2.5 wt. pct. with no significant change in temperature up to 5 wt. pct. tungsten suggesting the solubility limit of tungsten had been reached. Carbides were observed with surrounding areas enriched in both molybdenum and tungsten. The peak solidus temperatures for the alloy systems were roughly the same at 1226°C for the uranium-M system and 1218°C for the uranium-molybdenum-tungsten system. The uranium-molybdenum-tungsten system required less alloy addition to achieve similar solidus temperatures as the uranium-M system.
URANIUM IN ROCK MINERALS OF THE INTRUSION OF KYZL-OMPUL MOUNTAINS (NORTH KIRGISIA) (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonova, L.L.; Pogiblova, L.S.
1961-01-01
The uranium distribution in rock minerals (syenites, granosyenites, and alaskite granites) of the Kyzyl-Ompul raassif is studied. Alaskite granites are characterized by the granite type of uranium distribution in minerals, about 50 percent of this element being connected with rockforming and about 50 percent with accessory uranium minerals. ln syenites uranium (about 70 percent) is bound to rockforming minerals. The same minerals from syenites and granites strongly differ by their uranium content and are constant in the ranges of each of those rock types. Granosyenites have aa intermediate (between syenites and granites) type of uranium distribution in minerals. (auth)
Removal of uranium from soil samples for ICP-OES analysis of RCRA metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wero, M.; Lederer-Cano, A.; Billy, C.
1995-12-01
Soil samples containing high levels of uranium present unique analytical problems when analyzed for toxic metals (Ag, As, Ba, Cd, Cr, Cu, Ni, Pb, Se and Tl) because of the spectral interference of uranium in the ICP-OES emission spectrometer. Methods to remove uranium from the digestates of soil samples, known to be high in uranium, have been developed that reduce the initial uranium concentration (1-3%) to less than 500 ppm. UTEVA ion exchange columns, used as an ICP-OES analytical pre-treatment, reduces uranium to acceptable levels, permitting good analytical results of the RCRA metals by ICP-OES.
Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.
1958-04-15
The production of uranium metal by the reduction of uranium tetrafluoride is described. Massive uranium metal of high purily is produced by reacting uranium tetrafluoride with 2 to 20% stoichiometric excess of magnesium at a temperature sufficient to promote the reaction and then mantaining the reaction mass in a sealed vessel at temperature in the range of 1150 to 2000 d C, under a superatomospheric pressure of magnesium for a period of time sufficient 10 allow separation of liquid uranium and liquid magnesium fluoride into separate layers.
Depleted Uranium Program: Repository and Chemical Analysis of Biological Samples
2010-11-01
Chemical Samples • Chemical Pathology and Analytical Assessment of U and DU in: • Tissues • Urine • Whole blood • Semen • Embedded fragments...preparation for determination of total uranium and isotopic uranium ratios Semen – Total Uranium – dry ashed by concentrated nitric acid in muffle...Total uranium and DU measurements in blood 0.0 50.0 100.0 150.0 200.0 250.0 ng U in s am pl e Sample Number Semen Measured U Theortical U Uranium
Method of precipitating uranium from an aqueous solution and/or sediment
Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin
2013-08-20
A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.
Method for fabricating uranium foils and uranium alloy foils
Hofman, Gerard L [Downers Grove, IL; Meyer, Mitchell K [Idaho Falls, ID; Knighton, Gaven C [Moore, ID; Clark, Curtis R [Idaho Falls, ID
2006-09-05
A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.
RECOVERY OF URANIUM FROM ZIRCONIUM-URANIUM NUCLEAR FUELS
Gens, T.A.
1962-07-10
An improvement was made in a process of recovering uranium from a uranium-zirconium composition which was hydrochlorinated with gsseous hydrogen chloride at a temperature of from 350 to 800 deg C resulting in volatilization of the zirconium, as zirconium tetrachloride, and the formation of a uranium containing nitric acid insoluble residue. The improvement consists of reacting the nitric acid insoluble hydrochlorination residue with gaseous carbon tetrachloride at a temperature in the range 550 to 600 deg C, and thereafter recovering the resulting uranium chloride vapors. (AEC)
Lee, Minhee; Yang, Minjune
2010-01-15
The uranium removal efficiencies of rhizofiltration in the remediation of groundwater were investigated in lab-scale experiments. Sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) were cultivated and an artificially uranium contaminated solution and three genuine groundwater samples were used in the experiments. More than 80% of the initial uranium in solution and genuine groundwater, respectively, was removed within 24h by using sunflower and the residual uranium concentration of the treated water was lower than 30 microg/L (USEPA drinking water limit). For bean, the uranium removal efficiency of the rhizofiltration was roughly 60-80%. The maximum uranium removal via rhizofiltration for the two plant cultivars occurred at pH 3-5 of solution and their uranium removal efficiencies exceeded 90%. The lab-scale continuous rhizofiltration clean-up system delivered over 99% uranium removal efficiency, and the results of SEM and EDS analyses indicated that most uranium accumulated in the roots of plants. The present results suggested that the uranium removal capacity of two plants evaluated in the clean-up system was about 25mg/kg of wet plant mass. Notably, the removal capacity of the root parts only was more than 500 mg/kg.
Organic geochemical analysis of sedimentary organic matter associated with uranium
Leventhal, J.S.; Daws, T.A.; Frye, J.S.
1986-01-01
Samples of sedimentary organic matter from several geologic environments and ages which are enriched in uranium (56 ppm to 12%) have been characterized. The three analytical techniqyes used to study the samples were Rock-Eval pyrolysis, pyrolysis-gas chromatography-mass spectrometry, and solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy. In samples with low uranium content, the pyrolysis-gas chromatography products contain oxygenated functional groups (as hydroxyl) and molecules with both aliphatic and aromatic carbon atoms. These samples with low uranium content give measurable Rock-Eval hydrocarbon and organic-CO2 yields, and C-13 NMR values of > 30% aliphatic carbon. In contrast, uranium-rich samples have few hydrocarbon pyrolysis products, increased Rock-Eval organic-CO2 contents and > 70% aromatic carbon contents from C-13 NMR. The increase in aromaticity and decrease in hydrocarbon pyrolysis yield are related to the amount of uranium and the age of the uranium minerals, which correspond to the degree of radiation damage. The three analytical techniques give complementary results. Increase in Rock-Eval organic-CO2 yield correlates with uranium content for samples from the Grants uranium region. Calculations show that the amount of organic-CO2 corresponds to the quantity of uranium chemically reduced by the organic matter for the Grants uranium region samples. ?? 1986.
Large decadal-scale changes in uranium and bicarbonate in groundwater of the irrigated western U.S
Burow, Karen R.; Belitz, Kenneth; Dubrovsky, Neil M.; Jurgens, Bryant C.
2017-01-01
Samples collected about one decade apart from 1105 wells from across the U.S. were compiled to assess whether uranium concentrations in the arid climate are linked to changing bicarbonate concentrations in the irrigated western U.S. Uranium concentrations in groundwater were high in the arid climate in the western U.S, where uranium sources are abundant. Sixty-four wells (6%) were above the U.S. EPA MCL of 30 μg/L; all but one are in the arid west. Concentrations were low to non-detectable in the humid climate. Large uranium and bicarbonate increases (differences are greater than the uncertainty in concentrations) occur in 109 wells between decade 1 and decade 2. Similarly, large uranium and bicarbonate decreases occur in 76 wells between the two decades. Significantly more wells are concordant (uranium and bicarbonate are both going the same direction) than discordant (uranium and bicarbonate are going opposite directions) (p < 0.001; Chi-square test). The largest percent difference in uranium concentrations occur in wells where uranium is increasing and bicarbonate is also increasing. These large differences occur mostly in the arid climate. Results are consistent with the hypothesis that changing uranium concentrations are linked to changes in bicarbonate in irrigated areas of the western U.S.
Immobilization of uranium into magnetite from aqueous solution by electrodepositing approach.
Lu, Bing-Qing; Li, Mi; Zhang, Xiao-Wen; Huang, Chun-Mei; Wu, Xiao-Yan; Fang, Qi
2018-02-05
Immobilization of uranium into magnetite (Fe 3 O 4 ), which was generated from metallic iron by electrochemical method, was proposed to rapidly remove uranium from aqueous solution. The effects of electrochemical parameters such as electrode materials, voltage, electrode gap, reaction time and pH value on the crystallization of Fe 3 O 4 and uranium removal efficiencies were investigated. More than 90% uranium in the solution was precipitated with Fe 3 O 4 under laboratory conditions when uranium concentration range from 0.5mg/L to 10mg/L. The Fe 3 O 4 crystallization mechanism and immobilization of uranium was proved by XPS, XRD, TEM, FTIR and VSM methods. The results indicated that the cationic (including Fe 2+ , Fe 3+ and U(VI)) migrate to cathode side under the electric field and the uranium was incorporated or adsorbed by Fe 3 O 4 which was generated at cathode while the pH ranges between 2-7. The uranium-containing precipitate of Fe 3 O 4 can exist stably at the acid concentration below 60g/L. Furthermore, the precipitate may be used as valuable resources for uranium or iron recycling, which resulted in no secondary pollution in the removal of uranium from aqueous solution. Copyright © 2017. Published by Elsevier B.V.
Uranium provinces of North America; their definition, distribution, and models
Finch, Warren Irvin
1996-01-01
Uranium resources in North America are principally in unconformity-related, quartz-pebble conglomerate, sandstone, volcanic, and phosphorite types of uranium deposits. Most are concentrated in separate, well-defined metallogenic provinces. Proterozoic quartz-pebble conglomerate and unconformity-related deposits are, respectively, in the Blind River–Elliot Lake (BRELUP) and the Athabasca Basin (ABUP) Uranium Provinces in Canada. Sandstone uranium deposits are of two principal subtypes, tabular and roll-front. Tabular sandstone uranium deposits are mainly in upper Paleozoic and Mesozoic rocks in the Colorado Plateau Uranium Province (CPUP). Roll-front sandstone uranium deposits are in Tertiary rocks of the Rocky Mountain and Intermontane Basins Uranium Province (RMIBUP), and in a narrow belt of Tertiary rocks that form the Gulf Coastal Uranium Province (GCUP) in south Texas and adjacent Mexico. Volcanic uranium deposits are concentrated in the Basin and Range Uranium Province (BRUP) stretching from the McDermitt caldera at the Oregon-Nevada border through the Marysvale district of Utah and Date Creek Basin in Arizona and south into the Sierra de Peña Blanca District, Chihuahua, Mexico. Uraniferous phosphorite occurs in Tertiary sediments in Florida, Georgia, and North and South Carolina and in the Lower Permian Phosphoria Formation in Idaho and adjacent States, but only in Florida has economic recovery been successful. The Florida Phosphorite Uranium Province (FPUP) has yielded large quantities of uranium as a byproduct of the production of phosphoric acid fertilizer. Economically recoverable quantities of copper, gold, molybdenum, nickel, silver, thorium, and vanadium occur with the uranium deposits in some provinces.Many major epochs of uranium mineralization occurred in North America. In the BRELUP, uranium minerals were concentrated in placers during the Early Proterozoic (2,500–2,250 Ma). In the ABUP, the unconformity-related deposits were most likely formed initially by hot saline formational water related to diagenesis (»1,400 to 1,330 Ma) and later reconcentrated by hydrothermal events at »1,280–»1,000, »575, and »225 Ma. Subsequently in North America, only minor uranium mineralization occurred until after continental collision in Permian time (255 Ma). Three principal epochs of uranium mineralization occurred in the CPUP: (1) » 210–200 Ma, shortly after Late Triassic sedimentation; (2) »155–150 Ma, in Late Jurassic time; and (3) » 135 Ma, after sedimentation of the Upper Jurassic Morrison Formation. The most likely source of the uranium was silicic volcaniclastics for the three epochs derived from a volcanic island arc at the west edge of the North American continent. Uranium mineralization occurred during Eocene, Miocene, and Pliocene times in the RMIBUP, GCUP, and BRUP. Volcanic activity took place near the west edge of the continent during and shortly after sedimentation of the host rocks in these three provinces. Some volcanic centers in the Sierra de Peña Blanca district within the BRUP may have provided uranium-rich ash to host rocks in the GCUP.Most of the uranium provinces in North America appear to have a common theme of close associations to volcanic activity related to the development of the western margin of the North American plate. The south and west margin of the Canadian Shield formed the leading edge of the progress of uranium source development and mineralization from the Proterozoic to the present. The development of favorable hosts and sources of uranium is related to various tectonic elements developed over time. Periods of major uranium mineralization in North America were Early Proterozoic, Middle Proterozoic, Late Triassic–Early Jurassic, Early Cretaceous, Oligocene, and Miocene. Tertiary mineralization was the most pervasive, covering most of Western and Southern North America.
Behavior of uranium under conditions of interaction of rocks and ores with subsurface water
NASA Astrophysics Data System (ADS)
Omel'Yanenko, B. I.; Petrov, V. A.; Poluektov, V. V.
2007-10-01
The behavior of uranium during interaction of subsurface water with crystalline rocks and uranium ores is considered in connection with the problem of safe underground insulation of spent nuclear fuel (SNF). Since subsurface water interacts with crystalline rocks formed at a high temperature, the mineral composition of these rocks and uranium species therein are thermodynamically unstable. Therefore, reactions directed toward the establishment of equilibrium proceed in the water-rock system. At great depths that are characterized by hindered water exchange, where subsurface water acquires near-neutral and reducing properties, the interaction is extremely sluggish and is expressed in the formation of micro- and nanoparticles of secondary minerals. Under such conditions, the slow diffusion redistribution of uranium with enrichment in absorbed forms relative to all other uranium species is realized as well. The products of secondary alteration of Fe- and Ti-bearing minerals serve as the main sorbents of uranium. The rate of alteration of minerals and conversion of uranium species into absorbed forms is slow, and the results of these processes are insignificant, so that the rocks and uranium species therein may be regarded as unaltered. Under reducing conditions, subsurface water is always saturated with uranium. Whether water interacts with rock or uranium ore, the equilibrium uranium concentration in water is only ≤10-8 mol/l. Uraninite ore under such conditions always remains stable irrespective of its age. The stability conditions of uranium ore are quite suitable for safe insulation of SNF, which consists of 95% uraninite (UO2) and is a confinement matrix for all other radionuclides. The disposal of SNF in massifs of crystalline rocks at depths below 500 m, where reducing conditions are predominant, is a reliable guarantee of high SNF stability. Under oxidizing conditions of the upper hydrodynamic zone, the rate of interaction of rocks with subsurface water increases by orders of magnitude and subsurface water is commonly undersaturated with uranium. Uranium absorbed by secondary minerals, particularly by iron hydroxides and leucoxene, is its single stable species under oxidizing conditions. The impact of oxygen-bearing water leads to destruction of uranium ore. This process is realized simultaneously at different hypsometric levels even if the permeability of the medium is variable in both the lateral and vertical directions. As a result, intervals containing uranyl minerals and relics of primary uranium ore are combined in ore-bearing zones with intervals of completely dissolved uranium minerals. A wide halo of elevated uranium contents caused by sorption is always retained at the location of uranium ore entirely destroyed by weathering. Uranium ore commonly finds itself in the aeration zone due to technogenic subsidence of the groundwater table caused by open-pit mining or pumping out of water from underground mines. The capillary and film waters that interact with rocks and ores in this zone are supplemented by free water filtering along fractures when rain falls or snow is thawing. The interaction of uranium ore with capillary water results in oxidation of uraninite, accompanied by loosening of the mineral surface, formation of microfractures, and an increase in solubility with enrichment of capillary water in uranium up to 10-4 mol/l. Secondary U(VI) minerals, first of all, uranyl hydroxides and silicates, replace uraninite, and uranium undergoes local diffusion redistribution with its sorption by secondary minerals of host rocks. The influx of free water facilitates the complete dissolution of primary and secondary uranium minerals, the removal of uranium at the sites of groundwater discharge, and its redeposition under reducing conditions at a greater depth. It is evident that the conditions of the upper hydrodynamic zone and the aeration zone are unfit for long-term insulation of SNF and high-level wastes because, after the failure of containers, the leakage of radionuclides into the environment becomes inevitable.
Process for removing carbon from uranium
Powell, George L.; Holcombe, Jr., Cressie E.
1976-01-01
Carbon contamination is removed from uranium and uranium alloys by heating in inert atmosphere to 700.degree.-1900.degree.C in effective contact with yttrium to cause carbon in the uranium to react with the yttrium. The yttrium is either in direct contact with the contaminated uranium or in indirect contact by means of an intermediate transport medium.
PRODUCTION OF URANIUM TETRACHLORIDE
Calkins, V.P.
1958-12-16
A process is descrlbed for the production of uranium tetrachloride by contacting uranlum values such as uranium hexafluoride, uranlum tetrafluoride, or uranium oxides with either aluminum chloride, boron chloride, or sodium alumlnum chloride under substantially anhydrous condltlons at such a temperature and pressure that the chlorldes are maintained in the molten form and until the uranium values are completely converted to uranlum tetrachloride.
PRODUCTION OF URANIUM MONOCARBIDE
Powers, R.M.
1962-07-24
A method of making essentially stoichiometric uranium monocarbide by pelletizing a mixture of uranium tetrafluoride, silicon, and carbon and reacting the mixture at a temperature of approximately 1500 to 1700 deg C until the reaction goes to completion, forming uranium monocarbide powder and volatile silicon tetrafluoride, is described. The powder is then melted to produce uranium monocarbide in massive form. (AEC)
Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate
Travelli, A.
1985-10-25
A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.
Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate
Travelli, Armando
1988-01-01
A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.
High temperature UF6 RF plasma experiments applicable to uranium plasma core reactors
NASA Technical Reports Server (NTRS)
Roman, W. C.
1979-01-01
An investigation was conducted using a 1.2 MW RF induction heater facility to aid in developing the technology necessary for designing a self critical fissioning uranium plasma core reactor. Pure, high temperature uranium hexafluoride (UF6) was injected into an argon fluid mechanically confined, steady state, RF heated plasma while employing different exhaust systems and diagnostic techniques to simulate and investigate some potential characteristics of uranium plasma core nuclear reactors. The development of techniques and equipment for fluid mechanical confinement of RF heated uranium plasmas with a high density of uranium vapor within the plasma, while simultaneously minimizing deposition of uranium and uranium compounds on the test chamber peripheral wall, endwall surfaces, and primary exhaust ducts, is discussed. The material tests and handling techniques suitable for use with high temperature, high pressure, gaseous UF6 are described and the development of complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma, effluent exhaust gases, and residue deposited on the test chamber and exhaust system components is reported.
Preparation of carbon coated Fe3O4 nanoparticles for magnetic separation of uranium
NASA Astrophysics Data System (ADS)
Zhang, Xiaofei; Wang, Jun
2018-01-01
Uranium(VI) was removed from aqueous solutions using carbon coated Fe3O4 nanoparticles (Fe3O4@C). Batch experiments were conducted to study the effects of initial pH, shaking time and temperature on uranium sorption efficiency. It was found that the maximum adsorption capacity of the Fe3O4@C toward uranium(VI) was ∼120.20 mg g-1 when the initial uranium(VI) concentration was 100 mg L-1, displaying a high efficiency for the removal of uranium(VI) ions. Kinetics of the uranium(VI) removal is found to follow pseudo-second-order rate equation. In addition, the uranium(VI)-loaded Fe3O4@C nanoparticles can be recovered easily from aqueous solution by magnetic separation and regenerated by acid treatment. Present study suggested that magnetic Fe3O4@C composite particles can be used as an effective and recyclable adsorbent for the removal of uranium(VI) from aqueous solutions.
Vandenhove, H; Van Hees, M; Wannijn, J; Wouters, K; Wang, L
2007-01-01
The present study aimed to quantify the influence of soil parameters on uranium uptake by ryegrass. Ryegrass was established on eighteen distinct soils, spiked with (238)U. Uranium soil-to-plant transfer factors (TF) ranged from 0.0003 to 0.0340kgkg(-1). There was no significant relation between the U soil-to-plant transfer (or total U uptake or flux) and the uranium concentration in the soil solution or any other soil factor measured, nor with the U recovered following selective soil extractions. Multiple linear regression analysis resulted in a significant though complex model explaining up to 99% of variation in TF. The influence of uranium speciation on uranium uptake observed was featured: UO(2)(+2), uranyl carbonate complexes and UO(2)PO(4)(-) seem the U species being preferentially taken up by the roots and transferred to the shoots. Improved correlations were obtained when relating the uranium TF with the summed soil solution concentrations of mentioned uranium species.
Effect of pH and Fe/U ratio on the U(VI) removal rate by the synergistic effect of Fe(II) and O2
NASA Astrophysics Data System (ADS)
Fu, Yukui; Luo, Yingfeng; Fang, Qi; Xie, Yanpei; Wang, Zhihong; Zhu, Xiangyu
2018-02-01
As for the decommissioned uranium deposits of acid in-situ leaching, both of the concentrations of U(VI) and Fe(II) are relatively high in groundwater. In the presence of O2, the oxidation of Fe(II) into Fe(III) that forms Fe-hydroxides could effectively remove U(VI) in the forms of sorption or co-precipitation. In this process, pH condition and Fe content will have a significant effect on the U(VI) removal rate by the synergistic effect of Fe(II) and O2. In the present work, a series of batch experiments were carried out to investigate the effect of pH values and Fe/U mass ratio on the U(VI) removal rate by the synergistic effect of Fe(II) and O2. Experiment results show that the removal rate of U(VI) is mainly controlled by pH and secondly by Fe/U mass ratio. In the neutral conditions with pH at 7 and 8, the removal rate of U(VI) reaches up to 90% for all solutions with different initial Fe(II) concentrations. The optimal pH for the removal rate of U(VI) is above 7. In the acidic conditions with pH below 6, the effect of Fe/U mass ratio on the removal rate of U(VI) becomes more obvious and the optimal Fe/U mass ratio for U(VI) removal is 1:2.
Bao, Yi-zhong; Wang, Dan; Hu, Yu-xing; Xu, Ai-hong; Sun, Mei-zhen; Chen, Hong-hong
2011-11-01
This study is to assess the efficacy of BPCBG on the decorporation of uranium (VI) and protecting human renal proximal tubular epithelial cells (HK-2) against uranium-induced damage. BPCBG at different doses was injected intramuscularly to male SD rats immediately after a single intraperitoneal injection of UO2(CH3COO)2. Twenty-four hours later uranium contents in urine, kidneys and femurs were measured by ICP-MS. After HK-2 cells were exposed to UO2(CH3COO)2 immediately or for 24 h followed by BPCBG treatment at different doses for another 24 or 48 h, the uranium contents in HK-2 cells were measured by ICP-MS, the cell survival was assayed by cell counting kit-8 assay, formation of micronuclei was determined by the cytokinesis-block (CB) micronucleus assay and the production of intracellular reactive oxygen species (ROS) was detected by 2',7'-dichlorofluorescin diacetate (DCFH-DA) oxidation. DTPA-CaNa3 was used as control. It was found that BPCBG at dosages of 60, 120, and 600 micromol kg(-1) resulted in 37%-61% increase in 24 h-urinary uranium excretion, and significantly decreased the amount of uranium retention in kidney and bone to 41%-31% and 86%-42% of uranium-treated group, respectively. After HK-2 cells that had been pre-treated with UO2(CH3COO)2 for 24 h were treated with the chelators for another 24 h, 55%-60% of the intracellular uranium was removed by 10-250 micromol L(-1) of BPCBG. Treatment of uranium-treated HK-2 cells with BPCBG significantly enhanced the cell survival, decreased the formation of micronuclei and inhibited the production of intracellular ROS. Although DTPA-CaNa3 markedly reduced the uranium retention in kidney of rats and HK-2 cells, its efficacy of uranium removal from body was significantly lower than that of BPCBG and it could not protect uranium-induced cell damage. It can be concluded that BPCBG effectively decorporated the uranium from UO2(CH3COO)2-treated rats and HK-2 cells, which was better than DTPA-CaNa3. It could also scavenge the uranium-induced intracellular ROS and protect against the uranium-induced cell damage. BPCBG is worth further investigation.
[Uranium exposure and cancer risk: a review of epidemiological studies].
Tirmarche, M; Baysson, H; Telle-Lamberton, M
2004-02-01
At the end of 2000, certain diseases including leukemia were reported among soldiers who participated in the Balkan and in the Gulf wars. Depleted uranium used during these conflicts was considered as a possible cause. Its radiotoxicity is close to that of natural uranium. This paper reviews the epidemiological knowledge of uranium, the means of exposure and the associated risk of cancer. The only available epidemiological data concerns nuclear workers exposed to uranium. A review of the international literature is proposed by distinguishing between uranium miners and other workers of the nuclear industry. French studies are described in details. In ionizing radiation epidemiology, contamination by uranium is often cited as a risk factor, but the dose-effect relationship is rarely studied. Retrospective assessment of individual exposure is generally insufficient. Moreover, it is difficult to distinguish between uranium radiotoxicity, its chemical toxicity and the radiotoxicity of its progeny. A causal relation between lung cancer and radon exposure, a gas derived from the decay of uranium, has been demonstrated in epidemiological studies of miners. Among other nuclear workers exposed to uranium, there is a mortality deficit from all causes (healthy worker effect). No cancer site appears systematically in excess compared to the national population; very few studies describe a dose-response relationship. Only studies with a precise reconstruction of doses and sufficient numbers of workers will allow a better assessment of risks associated with uranium exposure at levels encountered in industry or during conflicts using depleted uranium weapons.
Enhanced uranium immobilization and reduction by Geobacter sulfurreducens biofilms.
Cologgi, Dena L; Speers, Allison M; Bullard, Blair A; Kelly, Shelly D; Reguera, Gemma
2014-11-01
Biofilms formed by dissimilatory metal reducers are of interest to develop permeable biobarriers for the immobilization of soluble contaminants such as uranium. Here we show that biofilms of the model uranium-reducing bacterium Geobacter sulfurreducens immobilized substantially more U(VI) than planktonic cells and did so for longer periods of time, reductively precipitating it to a mononuclear U(IV) phase involving carbon ligands. The biofilms also tolerated high and otherwise toxic concentrations (up to 5 mM) of uranium, consistent with a respiratory strategy that also protected the cells from uranium toxicity. The enhanced ability of the biofilms to immobilize uranium correlated only partially with the biofilm biomass and thickness and depended greatly on the area of the biofilm exposed to the soluble contaminant. In contrast, uranium reduction depended on the expression of Geobacter conductive pili and, to a lesser extent, on the presence of the c cytochrome OmcZ in the biofilm matrix. The results support a model in which the electroactive biofilm matrix immobilizes and reduces the uranium in the top stratum. This mechanism prevents the permeation and mineralization of uranium in the cell envelope, thereby preserving essential cellular functions and enhancing the catalytic capacity of Geobacter cells to reduce uranium. Hence, the biofilms provide cells with a physically and chemically protected environment for the sustained immobilization and reduction of uranium that is of interest for the development of improved strategies for the in situ bioremediation of environments impacted by uranium contamination. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Enhanced Uranium Immobilization and Reduction by Geobacter sulfurreducens Biofilms
Cologgi, Dena L.; Speers, Allison M.; Bullard, Blair A.; Kelly, Shelly D.
2014-01-01
Biofilms formed by dissimilatory metal reducers are of interest to develop permeable biobarriers for the immobilization of soluble contaminants such as uranium. Here we show that biofilms of the model uranium-reducing bacterium Geobacter sulfurreducens immobilized substantially more U(VI) than planktonic cells and did so for longer periods of time, reductively precipitating it to a mononuclear U(IV) phase involving carbon ligands. The biofilms also tolerated high and otherwise toxic concentrations (up to 5 mM) of uranium, consistent with a respiratory strategy that also protected the cells from uranium toxicity. The enhanced ability of the biofilms to immobilize uranium correlated only partially with the biofilm biomass and thickness and depended greatly on the area of the biofilm exposed to the soluble contaminant. In contrast, uranium reduction depended on the expression of Geobacter conductive pili and, to a lesser extent, on the presence of the c cytochrome OmcZ in the biofilm matrix. The results support a model in which the electroactive biofilm matrix immobilizes and reduces the uranium in the top stratum. This mechanism prevents the permeation and mineralization of uranium in the cell envelope, thereby preserving essential cellular functions and enhancing the catalytic capacity of Geobacter cells to reduce uranium. Hence, the biofilms provide cells with a physically and chemically protected environment for the sustained immobilization and reduction of uranium that is of interest for the development of improved strategies for the in situ bioremediation of environments impacted by uranium contamination. PMID:25128347
NASA Astrophysics Data System (ADS)
Kalashnyk, Anna
2015-04-01
During exploration works we discovered the spatial association and proximity time formation of kimberlite dykes (ages are 1,815 and 1,900 Ga for phlogopite) and major industrial uranium deposits in carbonate-sodium metasomatites (age of the main uranium ore of an albititic formation is 1,85-1,70 Ga according to U-Pb method) in Kirovogradsky, Krivorozhsky and Alekseevsko-Lysogorskiy uranium ore regions of the Ukrainian Shield (UkrSh) [1]. In kimberlites of Kirovogradsky ore region uranium content reaches 18-20 g/t. Carbon dioxide is a major component in the formation of hydrothermal uranium deposits and the formation of the sodium in the process of generating the spectrum of alkaline ultrabasic magmas in the range from picritic to kimberlite and this is the connection between these disparate geochemical processes. For industrial uranium deposits in carbonate-sodium metasomatitics of the Kirovogradsky and Krivorozhsky uranium ore regions are characteristic of uranyl carbonate introduction of uranium, which causes correlation between CO2 content and U in range of "poor - ordinary - rich" uranium ore. In productive areas of uranium-ore fields of the Kirovogradsky ore region for phlogopite-carbonate veinlets of uranium ore albitites deep δ13C values (from -7.9 to -6.9o/oo) are characteristic. Isotope-geochemical investigation of albitites from Novokonstantynovskoe, Dokuchaevskoe, Partyzanskoe uranium deposits allowed obtaining direct evidence of the involvement of mantle material during formation of uranium albitites in Kirovogradsky ore region [2]. Petrological characteristics of kimberlites from uranium ore regions of the UkrSh (presence of nodules of dunite and harzburgite garnet in kimberlites, diamonds of peridotite paragenesis, chemical composition of indicator minerals of kimberlite, in particular Gruzskoy areas pyropes (Cr2O3 = 6,1-7,1%, MgO = 19,33-20,01%, CaO = 4,14-4,38 %, the content of knorringite component of most grains > 50mol%), chromites (Cr2O3 = 45,32-62,17%, MgO = 7,3-12,5%) allow us to estimate the depth of generation of kimberlite magmas more than 170-200 km. Ilmenites show two groups according to MgO, Cr2O3 and TiO2 content. Reconstructions of the mantle sections show also two intervals of pressures divided at 4.5 GPa, the upper part is highly metasomatized This high degree metasomatism is determined for almost all mantle columns. It is suggested that large-scale of uranium-bearing mantle fluids may be associated with the ancient degasation during the subduction which is highly enriched in U component . Analysis of the reasons for the marked association kimberlitic dykes and major industrial uranium deposits in carbonate-sodium metasomatic in the UkrSh led to the conclusion that hydrothermal uranium deposits are confined to the supply mantle fluid systems of mantle fault zones exercising brings sodium carbonate solutions enriched uranium from mantle sources. References: 1. Kalashnik A.A. New prognostic-evaluation criteria in technology prognosis of forming industrial endogenous uranium deposits of the Ukrainian Shield, 2014. Scientific proceedings of UkrSGRI, № 2, p. 27-54 (in Russian) 2. Stepanjuk L.M., Bondarenko S.V., Somka V.O. and other, 2012. Source of uranium and uranium-bearing sodium albitites for example of Dokuchaievskogo field of the Ingulsky megablock of the UkrSh: Abstracts of scientific conference "Theoretical issues and research practice metasomatic rocks and ores" (Kyiv, 14-16 March 2012), IGMOF, p.78-80. (in Ukrainian)
PROCESS OF PREPARING A FLUORIDE OF TETRAVLENT URANIUM
Wheelwright, E.J.
1959-02-17
A method is described for producing a fluoride salt pf tetravalent uranium suitable for bomb reduction to metallic uranium. An aqueous solution of uranyl nitrate is treated with acetic acid and a nitrite-suppressor and then contacted with metallic lead whereby uranium is reduced from the hexavalent to the tetravalent state and soluble lead acetate is formed. Sulfate ions are then added to the solution to precipitate and remove the lead values. Hydrofluoric acid and alkali metal ions are then added causing the formation of an alkali metal uranium double-fluoride in which the uranium is in the tetravalent state. After recovery, this precipitate is suitable for using in the limited production of metallic uranium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mechelynck, Ph.
1958-07-15
After an examination of the different processes for the treatment of uranium minerals, it is concluded that the extraction of uranium by ion exchange is not applicable to hydrochloric acid solutions of phosphates. A sulfuric or phosphoric solution can be used. For solvent extraction of uranium, sulfuric or phosphoric solutions are the best, but hydrochloric solutions can be used. The cost of the solvents used would determine the cost of the operation. It is necessary, in the case of liquid-liquid extraction, to filter or decant the solution before extraction. (tr-auth)
PROCESS FOR PRODUCING URANIUM TETRAFLUORIDE
Harvey, B.G.
1954-09-14
>This patent relates to improvements in the method for producing uranium tetrafluoride by treating an aqueous solutlon of a uranyl salt at an elevated temperature with a reducing agent effective in acld solutlon in the presence of hydrofluoric acid. Uranium tetrafluoride produced this way frequentiy contains impurities in the raw material serving as the source of uranium. Uranium tetrafluoride much less contaminated with impurities than when prepared by the above method can be prepared from materials containing such impurities by first adding a small proportion of reducing agent so as to cause a small fraction, for example 1 to 5% of the uranium tetrafluoride to be precipitated, rejecting such precipitate, and then precipitating and recovering the remainder of the uranium tetrafluoride.
Exposure assessment of natural uranium from drinking water.
Jakhu, Rajan; Mehra, Rohit; Mittal, H M
2016-12-08
The uranium concentration in the drinking water of the residents of the Jaipur and Ajmer districts of Rajasthan has been measured for exposure assessment. The daily intake of uranium from the drinking water for the residents of the study area is found to vary from 0.4 to 123.9 μg per day. For the average uranium ingestion rate of 35.2 μg per day for a long term exposure period of 60 years, estimations have been made for the retention of uranium in different body organs and its excretion with time using ICRP's biokinetic model of uranium. Radioactive and chemical toxicity of uranium has been reported and discussed in detail in the present manuscript.
METHOD OF APPLYING COPPER COATINGS TO URANIUM
Gray, A.G.
1959-07-14
A method is presented for protecting metallic uranium, which comprises anodic etching of the uranium in an aqueous phosphoric acid solution containing chloride ions, cleaning the etched uranium in aqueous nitric acid solution, promptly electro-plating the cleaned uranium in a copper electro-plating bath, and then electro-plating thereupon lead, tin, zinc, cadmium, chromium or nickel from an aqueous electro-plating bath.
Reconnaissance for uranium in asphalt-bearing rocks in the western states
Hail, William James
1955-01-01
Evaluation of field data indicates that naturally occurring asphalts with a relatively high uranium content probably originated in, or migrated through, rocks that contain more than average amounts of uranium. It is believed that some of the uranium was present as an original constituent of the oil but that some uranium may have been introduced during migration of the oil.
DISSOLUTION OF URANIUM FUELS BY MONOOR DIFLUOROPHOSPHORIC ACID
Johnson, R.; Horn, F.L.; Strickland, G.
1963-05-01
A method of dissolving and separating uranium from a uranium matrix fuel element by dissolving the uraniumcontaining matrix in monofluorophosphoric acid and/or difluorophosphoric acid at temperatures ranging from 150 to 275 un. Concent 85% C, thereafter neutralizing the solution to precipitate uranium solids, and converting the solids to uranium hexafluoride by treatment with a halogen trifluoride is presented. (AEC)
Biogeochemical behaviour and bioremediation of uranium in waters of abandoned mines.
Mkandawire, Martin
2013-11-01
The discharges of uranium and associated radionuclides as well as heavy metals and metalloids from waste and tailing dumps in abandoned uranium mining and processing sites pose contamination risks to surface and groundwater. Although many more are being planned for nuclear energy purposes, most of the abandoned uranium mines are a legacy of uranium production that fuelled arms race during the cold war of the last century. Since the end of cold war, there have been efforts to rehabilitate the mining sites, initially, using classical remediation techniques based on high chemical and civil engineering. Recently, bioremediation technology has been sought as alternatives to the classical approach due to reasons, which include: (a) high demand of sites requiring remediation; (b) the economic implication of running and maintaining the facilities due to high energy and work force demand; and (c) the pattern and characteristics of contaminant discharges in most of the former uranium mining and processing sites prevents the use of classical methods. This review discusses risks of uranium contamination from abandoned uranium mines from the biogeochemical point of view and the potential and limitation of uranium bioremediation technique as alternative to classical approach in abandoned uranium mining and processing sites.
Plant-uptake of uranium: Hydroponic and soil system studies
Ramaswami, A.; Carr, P.; Burkhardt, M.
2001-01-01
Limited information is available on screening and selection of terrestrial plants for uptake and translocation of uranium from soil. This article evaluates the removal of uranium from water and soil by selected plants, comparing plant performance in hydroponic systems with that in two soil systems (a sandy-loam soil and an organic-rich soil). Plants selected for this study were Sunflower (Helianthus giganteus), Spring Vetch (Vicia sativa), Hairy Vetch (Vicia villosa), Juniper (Juniperus monosperma), Indian Mustard (Brassica juncea), and Bush Bean (Phaseolus nanus). Plant performance was evaluated both in terms of the percent uranium extracted from the three systems, as well as the biological absorption coefficient (BAC) that normalized uranium uptake to plant biomass. Study results indicate that uranium extraction efficiency decreased sharply across hydroponic, sandy and organic soil systems, indicating that soil organic matter sequestered uranium, rendering it largely unavailable for plant uptake. These results indicate that site-specific soils must be used to screen plants for uranium extraction capability; plant behavior in hydroponic systems does not correlate well with that in soil systems. One plant species, Juniper, exhibited consistent uranium extraction efficiencies and BACs in both sandy and organic soils, suggesting unique uranium extraction capabilities.
Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies.
Parab, Harshala; Joshi, Shreeram; Shenoy, Niyoti; Verma, Rakesh; Lali, Arvind; Sudersanan, M
2005-07-01
Basic aspects of uranium adsorption by coir pith have been investigated by batch equilibration. The influence of different experimental parameters such as final solution pH, adsorbent dosage, sorption time, temperature and various concentrations of uranium on uptake were evaluated. Maximum uranium adsorption was observed in the pH range 4.0-6.0. The Freundlich and Langmuir adsorption models were used for the mathematical description of the adsorption equilibrium. The equilibrium data fitted well to both the equilibrium models in the studied concentration range of uranium (200-800 mg/l) and temperatures (305-336 K). The coir pith exhibited the highest uptake capacity for uranium at 317 K, at the final solution pH value of 4.3 and at the initial uranium concentration of 800 mg/l. The kinetics of the adsorption process followed a second-order adsorption. The adsorbent used proved to be suitable for removal of uranium from aqueous solutions. 0.2 N HCl was effective in uranium desorption. The results indicated that the naturally abundant coir pith of otherwise nuisance value exhibited considerable potential for application in removal of uranium from aqueous solution.
Deng, Qin-Wen; Wang, Yong-Dong; Ding, De-Xin; Hu, Nan; Sun, Jing; He, Jia-Dong; Xu, Fei
2017-02-01
The endophyte Pseudomonas sp. XNN8 was separated from Typha orientalis which can secrete indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminase and siderophores and has strong resistance to uranium it was then colonized in the Syngonium podophyllum; and the S. podophyllum-Pseudomonas sp. XNN8 symbiotic purification system (SPPSPS) for uranium-containing wastewater was constructed. Afterwards, the hydroponic experiments to remove uranium from uranium-containing wastewater by the SPPSPS were conducted. After 24 days of treatment, the uranium concentrations of the wastewater samples with uranium concentrations between 0.5 and 5.0 mg/L were lowered to below 0.05 mg/L. Furthermore, the uranium in the plants was assayed using Fourier transform infrared spectroscopy (FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The Pseudomonas sp. XNN8 was found to generate substantial organic groups in the roots of the Syngonium podophyllum, which could improve the complexing capability of S. podophyllum for uranium. The uranium in the roots of S. podophyllum was found to be the uranyl phosphate (47.4 %) and uranyl acetate (52.6 %).
Polovov, Ilya B; Volkovich, Vladimir A; Charnock, John M; Kralj, Brett; Lewin, Robert G; Kinoshita, Hajime; May, Iain; Sharrad, Clint A
2008-09-01
Soluble uranium chloride species, in the oxidation states of III+, IV+, V+, and VI+, have been chemically generated in high-temperature alkali chloride melts. These reactions were monitored by in situ electronic absorption spectroscopy. In situ X-ray absorption spectroscopy of uranium(VI) in a molten LiCl-KCl eutectic was used to determine the immediate coordination environment about the uranium. The dominant species in the melt was [UO 2Cl 4] (2-). Further analysis of the extended X-ray absorption fine structure data and Raman spectroscopy of the melts quenched back to room temperature indicated the possibility of ordering beyond the first coordination sphere of [UO 2Cl 4] (2-). The electrolytic generation of uranium(III) in a molten LiCl-KCl eutectic was also investigated. Anodic dissolution of uranium metal was found to be more efficient at producing uranium(III) in high-temperature melts than the cathodic reduction of uranium(IV). These high-temperature electrolytic processes were studied by in situ electronic absorption spectroelectrochemistry, and we have also developed in situ X-ray absorption spectroelectrochemistry techniques to probe both the uranium oxidation state and the uranium coordination environment in these melts.
Bohu, Tsing; Santelli, Cara M; Akob, Denise M.; Neu, Thomas R; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten
2015-01-01
Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling.
Bohu, Tsing; Santelli, Cara M; Akob, Denise M; Neu, Thomas R; Ciobota, Valerian; Rösch, Petra; Popp, Jürgen; Nietzsche, Sándor; Küsel, Kirsten
2015-01-01
Despite the ubiquity of Mn oxides in natural environments, there are only a few observations of biological Mn(II) oxidation at pH < 6. The lack of low pH Mn-oxidizing bacteria (MOB) isolates limits our understanding of how pH influences biological Mn(II) oxidation in extreme environments. Here, we report that a novel MOB isolate, Mesorhizobium australicum strain T-G1, isolated from an acidic and metalliferous uranium mining area, can oxidize Mn(II) at both acidic and neutral pH using different enzymatic pathways. X-ray diffraction, Raman spectroscopy, and scanning electron microscopy with energy dispersive X-ray spectroscopy revealed that T-G1 initiated bixbyite-like Mn oxide formation at pH 5.5 which coincided with multi-copper oxidase expression from early exponential phase to late stationary phase. In contrast, reactive oxygen species (ROS), particularly superoxide, appeared to be more important for T-G1 mediated Mn(II) oxidation at neutral pH. ROS was produced in parallel with the occurrence of Mn(II) oxidation at pH 7.2 from early stationary phase. Solid phase Mn oxides did not precipitate, which is consistent with the presence of a high amount of H2O2 and lower activity of catalase in the liquid culture at pH 7.2. Our results show that M. australicum T-G1, an acid tolerant MOB, can initiate Mn(II) oxidation by varying its oxidation mechanisms depending on the pH and may play an important role in low pH manganese biogeochemical cycling.
Zielinski, R.A.
1982-01-01
Uraniferous, fluorescent opal, which occurs in tuffaceous sedimentary rocks at Virgin Valley, Nevada, records the temperature and composition of uranium-rich solutions as well as the time of uranium-silica coprecipitation. Results are integrated with previous geologic and geochronologic data for the area to produce a model for uranium mobility that may be used to explore for uranium deposits in similar geologic settings. Uraniferous opal occurs as replacements of diatomite, or silicic air-fall ash layers in tuffaceous lakebeds of the Virgin Valley Formation (Miocene) of Merriam (1907). Fission-track radiography shows uranium to be homogeneously dispersed throughout the opal structure, suggesting coprecipitation of dissolved uranium and silica gel. Fluid inclusions preserved within opal replacements of diatomite have homogenization temperatures in the epithermal range and are of low salinity. Four samples of opal from one locality all have U-Pb apparent ages which suggest uraniferous opal precipitation in late Pliocene time. These ages correspond to a period of local, normal faulting, and highangle faults may have served as vertical conduits for transport of deep, thermalized ground water to shallower levels. Lateral migration of rising solutions occurred at intersections of faults with permeable strata. Silica and some uranium were dissolved from silica-rich host strata of 5-20 ppm original uranium content and reprecipitated as the solutions cooled. The model predicts that in similar geologic settings, ore-grade concentrations of uranium will occur in permeable strata that intersect high-angle faults and that contain uranium source rocks as well as efficient reductant traps for uranium. In the absence of sufficient quantities of reductant materials, uranium will be flushed from the system or will accumulate in low-grade disseminated hosts such as uraniferous opal. ?? 1982.
Grossmann, Kay; Arnold, Thuro; Steudtner, Robin; Weiss, Stefan; Bernhard, Gert
2009-08-01
Low-temperature alteration reactions on uranium phases may lead to the mobilization of uranium and thereby poses a potential threat to humans living close to uranium-contaminated sites. In this study, the surface alteration of uraninite (UO(2)) and uranium tetrachloride (UCl(4)) in air atmosphere was studied by confocal laser scanning microscopy (CLSM) and laser-induced fluorescence spectroscopy using an excitation wavelength of 408 nm. It was found that within minutes the oxidation state on the surface of the uraninite and the uranium tetrachloride changed. During the surface alteration process U(IV) atoms on the uraninite and uranium tetrachloride surface became stepwise oxidized by a one-electron step at first to U(V) and then further to U(VI). These observed changes in the oxidation states of the uraninite surface were microscopically visualized and spectroscopically identified on the basis of their fluorescence emission signal. A fluorescence signal in the wavelength range of 415-475 nm was indicative for metastable uranium(V), and a fluorescence signal in the range of 480-560 nm was identified as uranium(VI). In addition, the oxidation process of tetravalent uranium in aqueous solution at pH 0.3 was visualized by CLSM and U(V) was fluorescence spectroscopically identified. The combination of microscopy and fluorescence spectroscopy provided a very convincing visualization of the brief presence of U(V) as a metastable reaction intermediate and of the simultaneous coexistence of the three states U(IV), U(V), and U(VI). These results have a significant importance for fundamental uranium redox chemistry and should contribute to a better understanding of the geochemical behavior of uranium in nature.
NASA Astrophysics Data System (ADS)
Ayling, Bridget F.; Eggins, Stephen; McCulloch, Malcolm T.; Chappell, John; Grün, Rainer; Mortimer, Graham
2017-09-01
Molluscs incorporate negligible uranium into their skeleton while they are living, with any uranium uptake occurring post-mortem. As such, closed-system U-series dating of molluscs is unlikely to provide reliable age constraints for marine deposits. Even the application of open-system U-series modelling is challenging, because uranium uptake and loss histories can affect time-integrated uranium distributions and are difficult to constrain. We investigate the chemical and isotopic distribution of uranium in fossil Tridacna gigas (giant clams) from Marine Isotope Stage (MIS) 5e (128-116 ka) and MIS 11 (424-374 ka) reefs at Huon Peninsula in Papua New Guinea. The large size of the clams enables detailed chemical and isotopic mapping of uranium using LA-ICPMS and LA-MC-ICPMS techniques. Within each fossil Tridacna specimen, marked differences in uranium concentrations are observed across the three Tridacna growth zones (outer, inner, hinge), with the outer and hinge zones being relatively enriched. In MIS 5e and MIS 11 Tridacna, the outer and hinge zones contain approximately 1 ppm and 5 ppm uranium respectively. In addition to uptake of uranium, loss of uranium appears prevalent, especially in the MIS 11 specimens. The effect of uranium loss is to elevate measured [230Th/238U] values with little effect on [234U/238U] values. Closed-system age estimates are on average 50% too young for the MIS 5e Tridacna, and 25% too young for the MIS 11 Tridacna. A complex, multi-stage uptake and loss history is interpreted for the fossil Tridacna and we demonstrate that they cannot provide independent, reliable geochronological controls on the timing of past reef growth at Huon Peninsula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn M.
2013-09-05
ABSTRACT: Hydrogen carbonate is one of the most significant components within the uranium geochemical cycle. In aqueous solutions, hydrogen carbonate forms strong complexes with uranium. As such, aqueous bicarbonate may significantly increase the rate of uranium release from uranium minerals. Quantifying the relationship of aqueous hydrogen carbonate solutions to the rate of uranium release during dissolution is critical to understanding the long-term fate of uranium within the environment. Single-pass flow-through (SPTF) experiments were conducted to estimate the rate of uranium release from Na meta-autunite as a function of bicarbonate solutions (0.0005-0.003 M) under the pH range of 6-11 and temperaturesmore » of 5-60oC. Consistent with the results of previous investigation, the rate of uranium release from sodium autunite exhibited minimal dependency on temperature; but were strongly dependent on pH and increasing concentrations of bicarbonate solutions. Most notably at pH 7, the rate of uranium release exhibited 370 fold increases relative to the rate of uranium release in the absence of bicarbonate. However, the effect of increasing concentrations of bicarbonate solutions on the release of uranium was significantly less under higher pH conditions. It is postulated that at high pH values, surface sites are saturated with carbonate, thus the addition of more bicarbonate would have less effect on uranium release. Results indicate the activation energies were unaffected by temperature and bicarbonate concentration variations, but were strongly dependent on pH conditions. As pH increased from 6 to 11, activation energy values were observed to decrease from 29.94 kJ mol-1 to 13.07 kJ mol-1. The calculated activation energies suggest a surface controlled dissolution mechanism.« less
Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Karen L.; Dashner, Erica J.; Tsosie, Ranalda
Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; < 10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein.more » Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. - Highlights: • Low micromolar concentration of uranium inhibits polymerase-1 (PARP-1) activity. • Uranium causes zinc loss from multiple DNA repair proteins. • Uranium enhances retention of DNA damage caused by ultraviolet radiation. • Zinc reverses the effects of uranium on PARP activity and DNA damage repair.« less
PROCESS FOR REMOVING NOBLE METALS FROM URANIUM
Knighton, J.B.
1961-01-31
A pyrometallurgical method is given for purifying uranium containing ruthenium and palladium. The uranium is disintegrated and oxidized by exposure to air and then the ruthenium and palladium are extracted from the uranium with molten zinc.
Method for producing uranium atomic beam source
Krikorian, Oscar H.
1976-06-15
A method for producing a beam of neutral uranium atoms is obtained by vaporizing uranium from a compound UM.sub.x heated to produce U vapor from an M boat or from some other suitable refractory container such as a tungsten boat, where M is a metal whose vapor pressure is negligible compared to that of uranium at the vaporization temperature. The compound, for example, may be the uranium-rhenium compound, URe.sub.2. An evaporation rate in excess of about 10 times that of conventional uranium beam sources is produced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Raymond; Dam, William; Campbell, Sam
2016-08-01
• Evaporites occur in an unsaturated silt layer, which is underlain by a sand and gravel aquifer. • These evaporites are rich in chloride across the site. • Uranium concentrations are higher in the evaporites that overlie the uranium contaminant plume. • Flooding can solubilize the evaporites in the silt layer and release chloride, sulfate (not shown), and uranium into the underlyingsand and gravel aquifer. • The uranium-rich evaporites can delay natural flushing, creating plume persistence near the Little Wind River.
Rapid Method for Sodium Hydroxide Fusion of Concrete and ...
Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.
Yeager, J.H.
1958-08-12
In the prior art processing of uranium ores, the ore is flrst digested with nitric acid and filtered, and the uranium values are then extracted tom the filtrate by contacting with an organic solvent. The insoluble residue has been processed separately in order to recover any uranium which it might contain. The improvement consists in contacting a slurry, composed of both solution and residue, with the organic solvent prior to filtration. Tbe result is that uranium values contained in the residue are extracted along with the uranium values contained th the solution in one step.
PROCESS FOR THE PRODUCTION OF AMMONIUM URANIUM FLUORIDE
Ellis, A.S.; Mooney, R.B.
1953-08-25
This patent relates to the preparation of ammonium uranium fluoride. The process comprises adding a water soluble fluoride to an aqueous solution of a uranous compound containing an ammonium salt, and isolating the resulting precipitate. This patent relates to the manufacture of uranium tetnafluoride from ammonium uranium fluoride, NH/sub 4/UF/sub 5/. Uranium tetrafluoride is prepared by heating the ammonium uranium fluoride to a temperature at which dissociation occurs with liberation of ammonium fluoride. Preferably the process is carried out under reduced pressure, or in a current of an inert gas.
Process for alloying uranium and niobium
Holcombe, Cressie E.; Northcutt, Jr., Walter G.; Masters, David R.; Chapman, Lloyd R.
1991-01-01
Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.
METHOD OF OPERATING A CALUTRON
Davidson, P.H.
1960-01-12
A method of operating an electromagnetic isotope separator of the calutron class is reported whereby uranium tetrachloride is produced at a controlled rate within the source rather than betng introduced therein as was formerly practiced. This is accomplished by placing a uranium-bearing material, such as uranium metal, uranium trichloride, or uranium carbide in the charge receptacle of the calutron, heating this material to about to produce uranium tetrachloride vapor at a rate controlled by the chlorine gas flow into the source. The vapor is subsequently ionized by an electric arc and mass separated by conventional calutron methods.
Uranium hexafluoride public risk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, D.R.; Hui, T.E.; Yurconic, M.
1994-08-01
The limiting value for uranium toxicity in a human being should be based on the concentration of uranium (U) in the kidneys. The threshold for nephrotoxicity appears to lie very near 3 {mu}g U per gram kidney tissue. There does not appear to be strong scientific support for any other improved estimate, either higher or lower than this, of the threshold for uranium nephrotoxicity in a human being. The value 3 {mu}g U per gram kidney is the concentration that results from a single intake of about 30 mg soluble uranium by inhalation (assuming the metabolism of a standard person).more » The concentration of uranium continues to increase in the kidneys after long-term, continuous (or chronic) exposure. After chronic intakes of soluble uranium by workers at the rate of 10 mg U per week, the concentration of uranium in the kidneys approaches and may even exceed the nephrotoxic limit of 3 {mu}g U per gram kidney tissue. Precise values of the kidney concentration depend on the biokinetic model and model parameters assumed for such a calculation. Since it is possible for the concentration of uranium in the kidneys to exceed 3 {mu}g per gram tissue at an intake rate of 10 mg U per week over long periods of time, we believe that the kidneys are protected from injury when intakes of soluble uranium at the rate of 10 mg U per week do not continue for more than two consecutive weeks. For long-term, continuous occupational exposure to low-level, soluble uranium, we recommend a reduced weekly intake limit of 5 mg uranium to prevent nephrotoxicity in workers. Our analysis shows that the nephrotoxic limit of 3 {mu}g U per gram kidney tissues is not exceeded after long-term, continuous uranium intake at the intake rate of 5 mg soluble uranium per week.« less
Van Gosen, Bradley S.; Hall, Susan M.
2017-12-18
This report describes the discovery and geology of two near-surface uranium deposits within calcareous lacustrine strata of Pleistocene age in west Texas, United States. Calcrete uranium deposits have not been previously reported in the United States. The west Texas uranium deposits share characteristics with some calcrete uranium deposits in Western Australia—uranium-vanadium minerals hosted by nonpedogenic calcretes deposited in saline lacustrine environments.In the mid-1970s, Kerr-McGee Corporation conducted a regional uranium exploration program in the Southern High Plains province of the United States, which led to the discovery of two shallow uranium deposits (that were not publicly reported). With extensive drilling, Kerr-McGee delineated one deposit of about 2.1 million metric tons of ore with an average grade of 0.037 percent U3O8 and another deposit of about 0.93 million metric tons of ore averaging 0.047 percent U3O8.The west-Texas calcrete uranium-vanadium deposits occur in calcareous, fine-grained sediments interpreted to be deposited in saline lakes formed during dry interglacial periods of the Pleistocene. The lakes were associated with drainages upstream of a large Pleistocene lake. Age determinations of tephra in strata adjacent to one deposit indicate the host strata is middle Pleistocene in age.Examination of the uranium-vanadium mineralization by scanning-electron microscopy indicated at least two generations of uranium-vanadium deposition in the lacustrine strata identified as carnotite and a strontium-uranium-vanadium mineral. Preliminary uranium-series results indicate a two-component system in the host calcrete, with early lacustrine carbonate that was deposited (or recrystallized) about 190 kilo-annum, followed much later by carnotite-rich crusts and strontium-uranium-vanadium mineralization in the Holocene (about 5 kilo-annum). Differences in initial 234U/238U activity ratios indicate two separate, distinct fluid sources.
Fernette, Gregory; Horton, John D.
2012-01-01
This report contains the USGS results of the PRISM-II Mauritania Minerals Project and is presented in cooperation with the Ministry of Petroleum, Energy, and Mines of the Islamic Republic of Mauritania. The Report is composed of separate chapters consisting of multidisciplinary interpretive reports with accompanying plates on the geology, structure, geochronology, geophysics, hydrogeology, geochemistry, remote sensing (Landsat TM and ASTER), and SRTM and ASTER digital elevation models of Mauritania. The syntheses of these multidisciplinary data formed the basis for additional chapters containing interpretive reports on 12 different commodities and deposit types known to occur in Mauritania, accompanied by countrywide mineral resource potential maps of each commodity/deposit type. The commodities and deposit types represented include: (1) Ni, Cu, PGE, and Cr deposits hosted in ultramafic rocks; (2) orogenic, Carlin-like, and epithermal gold deposits; (3) polymetallic Pb-Zn-Cu vein deposits; (4) sediment-hosted Pb-Zn-Ag deposits of the SEDEX and Mississippi Valley-type; (5) sediment-hosted copper deposits; ( 6) volcanogenic massive sulfide deposits; (7) iron oxide copper-gold deposits; (8) uranium deposits; (9) Algoma-, Superior-, and oolitic-type iron deposits; (10) shoreline Ti-Zr placer deposits; (11) incompatible element deposits hosted in pegmatites, alkaline rocks, and carbonatites, and; (12) industrial mineral deposits. Additional chapters include the Mauritanian National Mineral Deposits Database are accompanied by an explanatory text and the Mauritania Minerals Project GIS that contains all of the interpretive layers created by USGS scientists. Raw data not in the public domain may be obtained from the Ministry of Petroleum, Energy, and Mines in Nouakchott, Mauritania.
Synthesis and X-ray diffraction study of new uranyl malonate and oxalate complexes with carbamide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medvedkov, Ya. A.; Serezhkina, L. B., E-mail: Lserezh@samsu.ru; Grigor’ev, M. S.
2016-05-15
Two new malonate-containing uranyl complexes with carbamide of the formulas [UO{sub 2}(C{sub 3}H{sub 2}O{sub 4})(Urea){sub 2}] (I) and [UO{sub 2}(C{sub 3}H{sub 2}O{sub 4})(Urea){sub 3}] (II), where Urea is carbamide, and one uranyl oxalate complex of the formula [UO{sub 2}(C{sub 2}O{sub 4})(Urea){sub 3}] (III) were synthesized, and their crystals were studied by X-ray diffraction. The main structural units in crystals I are the electroneutral chains [UO{sub 2}(C{sub 3}H{sub 2}O{sub 4})(Urea){sub 2}]{sub ∞} belonging to the crystal-chemical group AT{sup 11}M{sub 2}{sup 1} (A = UO{sub 2}{sup 2+}, T{sup 11} = C{sub 3}H{sub 2}O{sub 4}{sup 2-}, M{sup 1} = Urea) of uranyl complexes.more » Crystals II and III are composed of the molecular complexes [UO{sub 2}(L)(Urea){sub 3}], where L = C{sub 3}H{sub 2}O{sub 4}{sup 2-} or C{sub 2}O{sub 4}{sup 2-}, belonging to the crystal-chemical group AB{sup 01}M{sub 3}{sup 1} (A = UO{sub 2}{sup 2+}, B{sup 01} = C{sub 3}H{sub 2}O{sub 4}{sup 2-} or C{sub 2}O{sub 4}{sup 2-}, M{sup 1} = Urea). The characteristic features of the packing of the uranium-containing complexes are discussed in terms of molecular Voronoi–Dirichlet polyhedra. The effect of the Urea: U ratio on the structure of uranium-containing structural units is considered.« less
Taha, Elham Anwer; Hassan, Nagiba Yehya; Aal, Fahima Abdel; Fattah, Laila El-Sayed Abdel
2007-05-01
Two simple, sensitive and specific fluorimetric methods have been developed for the determination of some sulphur containing compounds namely, Acetylcysteine (Ac), Carbocisteine (Cc) and Thioctic acid (Th) using terbium Tb+3 and uranium U+3 ions as fluorescent probes. The proposed methods involve the formation of a ternary complex with Tb+3 in presence of Tris-buffer method (I) and a binary complex with aqueous uranyl acetate solution method (II). The fluorescence quenching of Tb+3 at 510, 488 and 540 nm (lambda(ex) 250, 241 and 268 nm) and of uranyl acetate at 512 nm (lambda(ex) 240 nm) due to the complex formation was quantitatively measured for Ac, Cc and Th, respectively. The reaction conditions and the fluorescence spectral properties of the complexes have been investigated. Under the described conditions, the proposed methods were applicable over the concentration range (0.2-2.5 microg ml(-1)), (1-4 microg ml(-1)) and (0.5-3.5 microg ml(-1)) with mean percentage recoveries 99.74+/-0.36, 99.70+/-0.52 and 99.43+/-0.23 for method (I) and (0.5-6 microg ml(-1)), (0.5-5 microg ml(-1)), and (1-6 microg ml(-1)) with mean percentage recoveries 99.38+/-0.20, 99.82+/-0.28 and 99.93+/-0.32 for method (II), for the three cited drugs, respectively. The proposed methods were successfully applied for the determination of the studied compounds in bulk powders and in pharmaceutical formulations, as well as in presence of their related substances. The results obtained were found to be in agree statistically with those obtained by official and reported ones. The two methods were validated according to USP guidelines and also assessed by applying the standard addition technique.
Uranium Associations with Kidney Outcomes Vary by Urine Concentration Adjustment Method
Shelley, Rebecca; Kim, Nam-Soo; Parsons, Patrick J.; Lee, Byung-Kook; Agnew, Jacqueline; Jaar, Bernard G.; Steuerwald, Amy J.; Matanoski, Genevieve; Fadrowski, Jeffrey; Schwartz, Brian S.; Todd, Andrew C.; Simon, David; Weaver, Virginia M.
2017-01-01
Uranium is a ubiquitous metal that is nephrotoxic at high doses. Few epidemiologic studies have examined the kidney filtration impact of chronic environmental exposure. In 684 lead workers environmentally exposed to uranium, multiple linear regression was used to examine associations of uranium measured in a four-hour urine collection with measured creatinine clearance, serum creatinine- and cystatin-C-based estimated glomerular filtration rates, and N-acetyl-β-D-glucosaminidase (NAG). Three methods were utilized, in separate models, to adjust uranium levels for urine concentration - μg uranium/g creatinine; μg uranium/L and urine creatinine as separate covariates; and μg uranium/4 hr. Median urine uranium levels were 0.07 μg/g creatinine and 0.02 μg/4 hr and were highly correlated (rs =0.95). After adjustment, higher ln-urine uranium was associated with lower measured creatinine clearance and higher NAG in models that used urine creatinine to adjust for urine concentration but not in models that used total uranium excreted (μg/4 hr). These results suggest that, in some instances, associations between urine toxicants and kidney outcomes may be statistical, due to the use of urine creatinine in both exposure and outcome metrics, rather than nephrotoxic. These findings support consideration of non-creatinine-based methods of adjustment for urine concentration in nephrotoxicant research. PMID:23591699
Jha, V N; Tripathi, R M; Sethy, N K; Sahoo, S K
2016-01-01
Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r=0.86, p<0.003). For sediment rooted plants significant correlation was found between uranium concentration in plant and the substrate (r=0.88, p<0.001). Both for other free floating species and sediment rooted plants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p<0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Reed, B. Cameron
2014-10-01
The Manhattan Project was the United States Army’s program to develop and deploy nuclear weapons during World War II. In these devices, which are known popularly as ‘atomic bombs’, energy is released not by a chemical explosion but by the much more violent process of fission of nuclei of heavy elements via a neutron-mediated chain-reaction. Three years after taking on this project in mid-1942, the Army’s Manhattan Engineer District produced three nuclear bombs of two different designs. Two of these devices were fueled with the 239 isotope of the synthetic element plutonium, while the third employed the rare 235 isotope of uranium. One of the plutonium devices, code-named Trinity, was detonated in a test in southern New Mexico on 16 July 1945; this was the world’s first nuclear explosion. Three weeks later, on 6 August, the uranium bomb, Little Boy, was dropped on the Japanese city of Hiroshima. On 9 August the second plutonium device, Fat Man, was dropped on Nagasaki. Together, the two bombings killed over 100 000 people and were at least partially responsible for the Japanese government’s 14 August decision to surrender. This article surveys, at an undergraduate level, the science and history of the Manhattan Project.
Elliptical superconducting RF cavities for FRIB energy upgrade
NASA Astrophysics Data System (ADS)
Ostroumov, P. N.; Contreras, C.; Plastun, A. S.; Rathke, J.; Schultheiss, T.; Taylor, A.; Wei, J.; Xu, M.; Xu, T.; Zhao, Q.; Gonin, I. V.; Khabiboulline, T.; Pischalnikov, Y.; Yakovlev, V. P.
2018-04-01
The multi-physics design of a five cell, βG = 0 . 61, 644 MHz superconducting elliptical cavity being developed for an energy upgrade in the Facility for Rare Isotope Beams (FRIB) is presented. The FRIB energy upgrade from 200 MeV/u to 400 MeV/u for heaviest uranium ions will increase the intensities of rare isotope beams by nearly an order of magnitude. After studying three different frequencies, 1288 MHz, 805 MHz, and 644 MHz, the 644 MHz cavity was shown to provide the highest energy gain per cavity for both uranium and protons. The FRIB upgrade will include 11 cryomodules containing 5 cavities each and installed in 80-meter available space in the tunnel. The cavity development included extensive multi-physics optimization, mechanical and engineering analysis. The development of a niobium cavity is complete and two cavities are being fabricated in industry. The detailed design of the cavity sub-systems such as fundamental power coupler and dynamic tuner are currently being pursued. In the overall design of the cavity and its sub-systems we extensively applied experience gained during the development of 650 MHz low-beta cavities at Fermi National Accelerator Laboratory (FNAL) for the Proton Improvement Plan (PIP) II.
NASA Astrophysics Data System (ADS)
Hoover, Robert O.; Yoon, Dalsung; Phongikaroon, Supathorn
2016-08-01
Experimental studies were performed to provide measurement and analysis of zirconium (Zr) electrochemistry in LiClsbnd KCl eutectic salt at different temperatures and concentrations using cyclic voltammetry (CV). An additional experimental set with uranium chloride added into the system forming UCl3sbnd ZrCl4sbnd LiClsbnd KCl was performed to explore the general behavior of these two species together. Results of CV experiments with ZrCl4 show complicated cathodic and anodic peaks, which were identified along with the Zr reactions. The CV results reveal that diffusion coefficients (D) of ZrCl4 and ZrCl2 as the function of temperature can be expressed as DZr(IV) = 0.00046exp(-3716/T) and DZr(II) = 0.027exp(-5617/T), respectively. The standard rate constants and apparent standard potentials of ZrCl4 at different temperatures were calculated. Furthermore, the results from the mixture of UCl3 and ZrCl4 indicate that high concentrations of UCl3 hide the features of the smaller concentration of ZrCl4 while Zr peaks become prominent as the concentration of ZrCl4 increases.
Determining Pu-239 content by resonance transmission analysis using a filtered reactor beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klann, R. T.
A novel technique has been developed at Argonne National Laboratory to determine the {sup 239}Pu content in EBR-II blanket elements using resonance transmission analysis (RTA) with a filtered reactor beam. The technique uses cadmium and gadolinium filters along with a {sup 239}Pu fission chamber to isolate the 0.3 eV resonance in {sup 239}Pu. In the energy range from 0.1 to 0.5 eV, the total microscopic cross-section of {sup 239}Pu is significantly larger than the cross-sections of {sup 238}U and {sup 235}U. This large difference in cross-section allows small amounts of {sup 239}Pu to be detected in uranium samples. Tests usingmore » a direct beam from a 250 kW TRIGA reactor have been performed with stacks of depleted uranium and {sup 239}Pu foils. Preliminary measurement results are in good agreement with the predicted results up to about two weight percent of {sup 239}Pu in the sample. In addition, measured {sup 239}Pu masses were in agreement with actual sample masses with uncertainties less than 3.8 percent.« less
NASA Astrophysics Data System (ADS)
Karunakara, N.; Yashodhara, I.; Sudeep Kumara, K.; Tripathi, R. M.; Menon, S. N.; Kadam, S.; Chougaonkar, M. P.
Indoor and outdoor gamma dose rates were evaluated around a prospective uranium mining region - Gogi, South India through (i) direct measurements using a GM based gamma dose survey meter, (ii) integrated measurement days using CaSO4:Dy based thermo luminescent dosimeters (TLDs), and (iii) analyses of 273 soil samples for 226Ra, 232Th, and 40K activity concentration using HPGe gamma spectrometry. The geometric mean values of indoor and outdoor gamma dose rates were 104 nGy h-1 and 97 nGy h-1, respectively with an indoor to outdoor dose ratio of 1.09. The gamma dose rates and activity concentrations of 226Ra, 232Th, and 40K varied significantly within a small area due to the highly localized mineralization of the elements. Correlation study showed that the dose estimated from the soil radioactivity is better correlated with that measured directly using the portable survey meter, when compared to that obtained from TLDs. This study showed that in a region having localized mineralization in situ measurements using dose survey meter provide better representative values of gamma dose rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Small, Jack A.; Bunn, Amoret L.; McKinstry, Craig A.
2008-04-01
Periphyton communities can be used as monitors of ecosystem health and as indicators of contamination in lotic systems. Measures of biomass, community structure and genetic diversity were used to investigate impacts of uranium exposure on periphyton. Laboratory exposures of periphyton in river water amended with uranium were performed for 5 days, followed by 2 days of uranium depuration in unamended river water. Productivity as measured by biomass was not affected by concentrations up to 100 µg L-1 uranium. Phospholipid fatty acid (PLFA) profiles and denaturing gradient gel electrophoresis (DGGE) banding patterns found no changes in community or genetic structure relatedmore » to uranium exposure. We suggest that the periphyton community as a whole is not impacted by exposures of uranium up to a dose of 100 µg L-1. These findings have significance for the assessment and prediction of uranium impacts on aquatic ecosystems.« less
METHOD OF OPERATING NUCLEAR REACTORS
Untermyer, S.
1958-10-14
A method is presented for obtaining enhanced utilization of natural uranium in heavy water moderated nuclear reactors by charging the reactor with an equal number of fuel elements formed of natural uranium and of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction. The reactor is operated until the rate of burnup of plutonium equals its rate of production, the fuel elements are processed to recover plutonium, the depleted uranium is discarded, and the remaining uranium is formed into fuel elements. These fuel elements are charged into a reactor along with an equal number of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction, and reuse of the uranium is continued as aforesaid until it wlll no longer support a chain reaction when combined with an equal quantity of natural uranium.
A graphene oxide/amidoxime hydrogel for enhanced uranium capture
Wang, Feihong; Li, Hongpeng; Liu, Qi; Li, Zhanshuang; Li, Rumin; Zhang, Hongsen; Liu, Lianhe; Emelchenko, G. A.; Wang, Jun
2016-01-01
The efficient development of selective materials for the recovery of uranium from nuclear waste and seawater is necessary for their potential application in nuclear fuel and the mitigation of nuclear pollution. In this work, a graphene oxide/amidoxime hydrogel (AGH) exhibits a promising adsorption performance for uranium from various aqueous solutions, including simulated seawater. We show high adsorption capacities (Qm = 398.4 mg g−1) and high % removals at ppm or ppb levels in aqueous solutions for uranium species. In the presence of high concentrations of competitive ions such as Mg2+, Ca2+, Ba2+ and Sr2+, AGH displays an enhanced selectivity for uranium. For low uranium concentrations in simulated seawater, AGH binds uranium efficiently and selectively. The results presented here reveal that the AGH is a potential adsorbent for remediating nuclear industrial effluent and adsorbing uranium from seawater. PMID:26758649
Applied technology for mine waste water decontamination in the uranium ores extraction from Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bejenaru, C.; Filip, G.; Vacariu, V.T.
1996-12-31
The exploitation of uranium ores in Romania is carried out in underground mines. In all exploited uranium deposits, mine waste waters results and will still result after the closure of uranium ore extraction activity. The mine waters are radioactively contaminated with uranium and its decay products being a hazard both for underground waters as for the environment. This paper present the results of research work carried out by authors for uranium elimination from waste waters as the problems involved during the exploitation process of the existent equipment as its maintenance in good experimental conditions. The main waste water characteristics aremore » discussed: solids as suspension, uranium, radium, mineral salts, pH, etc. The moist suitable way to eliminate uranium from mine waste waters is the ion exchange process based on ion exchangers in fluidized bed. A flowsheet is given with main advantages resulted.« less
Determination of uranium in clinical and environmental samples by FIAS-ICPMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpas, Z.; Lorber, A.; Halicz, L.
Uranium may enter the human body through ingestion or inhalation. Ingestion of uranium compounds through the diet, mainly drinking water, is a common occurrence, as these compounds are present in the biosphere. Inhalation of uranium-containing particles is mainly an occupational safety problem, but may also take place in areas where uranium compounds are abundant. The uranium concentration in urine samples may serve as an indication of the total uranium body content. A method based on flow injection and inductively coupled plasma mass spectrometry (FIAS-ICPMS) was found to be most suitable for determination of uranium in clinical samples (urine and serum),more » environmental samples (seawater, wells and carbonate rocks) and in liquids consumed by humans (drinking water and commercial beverages). Some examples of the application of the FIAS-ICPMS method are reviewed and presented here.« less
PREPARATION OF URANIUM HEXAFLUORIDE
Lawroski, S.; Jonke, A.A.; Steunenberg, R.K.
1959-10-01
A process is described for preparing uranium hexafluoride from carbonate- leach uranium ore concentrate. The briquetted, crushed, and screened concentrate is reacted with hydrogen fluoride in a fluidized bed, and the uranium tetrafluoride formed is mixed with a solid diluent, such as calcium fluoride. This mixture is fluorinated with fluorine and an inert diluent gas, also in a fluidized bed, and the uranium hexafluoride obtained is finally purified by fractional distillation.
PROCESS FOR THE RECOVERY OF URANIUM
Morris, G.O.
1955-06-21
This patent relates to a process for the recovery of uranium from impure uranium tetrafluoride. The process consists essentially of the steps of dissolving the impure uranium tetrafluoride in excess dilute sulfuric acid in the presence of excess hydrogen peroxide, precipitating ammonium uranate from the solution so formed by adding an excess of aqueous ammonia, dissolving the precipitate in sulfuric acid and adding hydrogen peroxide to precipitate uranium peroxdde.
Uranium speciation and stability after reductive immobilization in aquifer sediments
NASA Astrophysics Data System (ADS)
Sharp, Jonathan O.; Lezama-Pacheco, Juan S.; Schofield, Eleanor J.; Junier, Pilar; Ulrich, Kai-Uwe; Chinni, Satya; Veeramani, Harish; Margot-Roquier, Camille; Webb, Samuel M.; Tebo, Bradley M.; Giammar, Daniel E.; Bargar, John R.; Bernier-Latmani, Rizlan
2011-11-01
It has generally been assumed that the bioreduction of hexavalent uranium in groundwater systems will result in the precipitation of immobile uraninite (UO 2). In order to explore the form and stability of uranium immobilized under these conditions, we introduced lactate (15 mM for 3 months) into flow-through columns containing sediments derived from a former uranium-processing site at Old Rifle, CO. This resulted in metal-reducing conditions as evidenced by concurrent uranium uptake and iron release. Despite initial augmentation with Shewanella oneidensis, bacteria belonging to the phylum Firmicutes dominated the biostimulated columns. The immobilization of uranium (˜1 mmol U per kg sediment) enabled analysis by X-ray absorption spectroscopy (XAS). Tetravalent uranium associated with these sediments did not have spectroscopic signatures representative of U-U shells or crystalline UO 2. Analysis by microfocused XAS revealed concentrated micrometer regions of solid U(IV) that had spectroscopic signatures consistent with bulk analyses and a poor proximal correlation (μm scale resolution) between U and Fe. A plausible explanation, supported by biogeochemical conditions and spectral interpretations, is uranium association with phosphoryl moieties found in biomass; hence implicating direct enzymatic uranium reduction. After the immobilization phase, two months of in situ exposure to oxic influent did not result in substantial uranium remobilization. Ex situ flow-through experiments demonstrated more rapid uranium mobilization than observed in column oxidation studies and indicated that sediment-associated U(IV) is more mobile than biogenic UO 2. This work suggests that in situ uranium bioimmobilization studies and subsurface modeling parameters should be expanded to account for non-uraninite U(IV) species associated with biomass.
Wufuer, Rehemanjiang; Song, Wenjuan; Zhang, Daoyong; Pan, Xiangliang; Gadd, Geoffrey Michael
2018-09-01
Recent reports have drawn attention to the uranium contamination arising from coal mining activities in the Yili region of Xinjiang, China due to the mixed distribution of uranium and coal mines, and some of the coal mines being associated with a high uranium content. In this study, we have collected water samples, solid samples such as soil, mud, coal, and coal ash, and hair and urine samples from local populations in order to evaluate the uranium level in this environment and its implications for humans in this high uranium coal mining area. Our results showed that uranium concentrations were 8.71-10.91 μg L -1 in underground water, whereas lower levels of uranium occurred in river water. Among the solid samples, coal ash contained fairly high concentrations of uranium (33.1 μg g -1 ) due to enrichment from coal burning. In addition, uranium levels in the other solid samples were around 2.8 μg g -1 (the Earth's average background value). Uranium concentrations in hair and urine samples were 22.2-634.5 ng g -1 (mean: 156.2 ng g -1 ) and 8.44-761.6 ng L -1 (mean: 202.6 ng L -1 ), respectively, which are significantly higher than reference values reported for unexposed subjects in other areas. Therefore, these results indicate that people living in this coal mining area have been subjected to uranium exposure for long periods of time. Copyright © 2018. Published by Elsevier Ltd.
Raymond-Whish, Stefanie; Mayer, Loretta P.; O’Neal, Tamara; Martinez, Alisyn; Sellers, Marilee A.; Christian, Patricia J.; Marion, Samuel L.; Begay, Carlyle; Propper, Catherine R.; Hoyer, Patricia B.; Dyer, Cheryl A.
2007-01-01
Background The deleterious impact of uranium on human health has been linked to its radioactive and heavy metal–chemical properties. Decades of research has defined the causal relationship between uranium mining/milling and onset of kidney and respiratory diseases 25 years later. Objective We investigated the hypothesis that uranium, similar to other heavy metals such as cadmium, acts like estrogen. Methods In several experiments, we exposed intact, ovariectomized, or pregnant mice to depleted uranium in drinking water [ranging from 0.5 μg/L (0.001 μM) to 28 mg/L (120 μM). Results Mice that drank uranium-containing water exhibited estrogenic responses including selective reduction of primary follicles, increased uterine weight, greater uterine luminal epithelial cell height, accelerated vaginal opening, and persistent presence of cornified vaginal cells. Coincident treatment with the antiestrogen ICI 182,780 blocked these responses to uranium or the synthetic estrogen diethylstilbestrol. In addition, mouse dams that drank uranium-containing water delivered grossly normal pups, but they had significantly fewer primordial follicles than pups whose dams drank control tap water. Conclusions Because of the decades of uranium mining/milling in the Colorado plateau in the Four Corners region of the American Southwest, the uranium concentration and the route of exposure used in these studies are environmentally relevant. Our data support the conclusion that uranium is an endocrine-disrupting chemical and populations exposed to environmental uranium should be followed for increased risk of fertility problems and reproductive cancers. PMID:18087588
He, Jia-dong; Wang, Yong-dong; Hu, Nan; Ding, Dexin; Sun, Jing; Deng, Qin-wen; Li, Chang-wu; Xu, Fei
2015-12-01
Aspergillus niger was inoculated to the roots of five plants, and the Syngonium podophyllum-A. niger combinate system (SPANCS) was found to be the most effective in removing uranium from hydroponic liquid with initial uranium concentration of 5 mg L(-1). Furthermore, the hydroponic experiments on the removal of uranium from the hydroponic liquids with initial uranium concentrations of 0.5, 1.0, and 3.0 mg L(-1) by the SPANCS were conducted, the inhibitory effect of A. niger on the growth of S. podophyllum in the SPANCS was studied, the accumulation characteristics of uranium by S. podophyllum in the SPANCS were analyzed, and the Fourier transform infrared (FT-IR) and extended X-ray absorption fine structure (EXAFS) spectra were measured. The results show that the removal of uranium by the SPANCS from the hydroponic liquids with initial uranium concentrations of 0.5, 1.0, and 3.0 mg L(-1) reached 98.20, 97.90, and 98.50%, respectively, after 37 days of accumulation of uranium; that the uranium concentrations in the hydroponic liquids decreased to 0.009, 0.021, and 0.045 mg L(-1), respectively, which are lower than the stipulated concentration for discharge of 0.050 mg L(-1) by the People's Republic of China; that A. niger helped to generate more groups in the root of S. podophyllum which can improve the complexing capability of S. podophyllum for uranium; and that the uranium accumulated in the root of S. podophyllum was in the form of phosphate uranyl and carboxylic uranyl.
Occurrences of uranium at Clinton, Hunterdon County, New Jersey
McKeown, F.A.; Klemic, H.; Choquette, P.W.
1954-01-01
An occurrence of uranium at Clinton, Hunterdon County, N. J. was first brought to the attention of the U.S. Geological Survey when Mr. Thomas L. Eak of Avenel, N. J. submitted to the Survey a sample containing 0.068 percent uranium. Subsequent examinations of the area around Clinton indicated that detailed mapping and study were warranted. The uranium occurrences at Clinton are in or associated with fault zones in the Kittatinny limestone of Cambro-Ordovician age. The limestone generally light gray, thick bedded, and dolomitic; chert is common but not abundant. Regionally and locally, faults are the most significant structural features. The local faults at Clinton are the loci for most of the uranium. The largest fault can be traced for about 700 feet and is radioactive everywhere it crops out. Samples from this fault contain as much as 0.038 percent uranium; the average content is about 0.010 percent uranium. Uranium also occurs disseminated in two 4-inch layers of black feldspathic dolomite and in several zones of residual soil derived from the Kittatinny limestone. The black layers contain as much as 0.046 percent uranium and can be traced only about 20 feet along strike. They are cut by a small fault that is also radioactive. The radioactive soil zones are roughly elongated parallel to bedding. Soil from them contains up to 0.008 percent uranium. The uranium occurrences are best explained by a supergene origin. The sampling, mapping, and radioactivity testing of uranium occurrences at Clinton indicate they are too low grade to be of current economic interest.
Uranium Bioreduction and Biomineralization.
Wufuer, Rehemanjiang; Wei, Yongyang; Lin, Qinghua; Wang, Huawei; Song, Wenjuan; Liu, Wen; Zhang, Daoyong; Pan, Xiangliang; Gadd, Geoffrey Michael
2017-01-01
Following the development of nuclear science and technology, uranium contamination has been an ever increasing concern worldwide because of its potential for migration from the waste repositories and long-term contaminated environments. Physical and chemical techniques for uranium pollution are expensive and challenging. An alternative to these technologies is microbially mediated uranium bioremediation in contaminated water and soil environments due to its reduced cost and environmental friendliness. To date, four basic mechanisms of uranium bioremediation-uranium bioreduction, biosorption, biomineralization, and bioaccumulation-have been established, of which uranium bioreduction and biomineralization have been studied extensively. The objective of this review is to provide an understanding of recent developments in these two fields in relation to relevant microorganisms, mechanisms, influential factors, and obstacles. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillet, H.
1959-02-01
A description is given of direct fluorination of preconcentrated uranium ores in order to obtain the hexafluoride. After normal sulfuric acid treatment of the ore to eliminate silica, the uranium is precipitated by lime to obtain either impure calcium uranate of medium grade, or containing around 10% of uranium. This concentrate is dried in an inert atmosphere and then treated with a current of elementary fluorine. The uranium hexafluoride formed is condensed at the outlet of the reaction vessel and may be used either for reduction to tetrafluoride and the subsequent manufacture of uranium metal or as the initial productmore » in a diffusion plant. (auth)« less
PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS
Moore, R.H.
1962-10-01
A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)
METHOD AND FLUX COMPOSITION FOR TREATING URANIUM
Foote, F.
1958-08-23
ABS>A flux composition is described fer use with molten uranium or uranium alloys. The flux consists of about 46 weight per cent calcium fiuoride, 46 weight per cent magnesium fluoride and about 8 weight per cent of uranium tetrafiuoride.
High Useful Yield and Isotopic Analysis of Uranium by Resonance Ionization Mass Spectrometry
Savina, Michael R.; Isselhardt, Brett H.; Kucher, Andrew; ...
2017-05-09
Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. Here, we demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar + and Ga + sputtering. The useful yieldmore » for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We also demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.« less
High Useful Yield and Isotopic Analysis of Uranium by Resonance Ionization Mass Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savina, Michael R.; Isselhardt, Brett H.; Kucher, Andrew
Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. Here, we demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar + and Ga + sputtering. The useful yieldmore » for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We also demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.« less
Isotopic Analysis of Uranium in NIST SRM Glass by Femtosecond Laser Ablation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffin, Andrew M.; Hart, Garret L.; Hanlen, Richard C.
We employed femtosecond Laser Ablation Multicollector Inductively Coupled Mass Spectrometry for the 11 determination of uranium isotope ratios in a series of standard reference material glasses (NIST 610, 612, 614, and 12 616). This uranium concentration in this series of SRM glasses is a combination of isotopically natural uranium in 13 the materials used to make the glass matrix and isotopically depleted uranium added to increase the uranium 14 elemental concentration across the series. Results for NIST 610 are in excellent agreement with literature values. 15 However, other than atom percent 235U, little information is available for the remaining glasses.more » We present atom 16 percent and isotope ratios for 234U, 235U, 236U, and 238U for all four glasses. Our results show deviations from the 17 certificate values for the atom percent 235U, indicating the need for further examination of the uranium isotopes in 18 NIST 610-616. Our results are fully consistent with a two isotopic component mixing between the depleted 19 uranium spike and natural uranium in the bulk glass.« less
Reconnaissance for uranium in black shale, Northern Rocky Mountains and Great Plains, 1953
Mapel, W.J.
1954-01-01
Reconnaissance examinations for uranium in 22 formations containing black shale were conducted in parts of Montana, North Dakota, Utah, Idaho, and Oregon during 1953. About 150 samples from 80 outcrop localities and 5 oil and gas wells were submitted for uranium determinations. Most of the black shale deposits examined contain less than 0.003 percent uranium; however, thin beds of black shale at the base of the Mississippian system contain 0.005 percent uranium at 2 outcrop localities in southwestern Montana and as much as 0.007 percent uranium in a well in northeastern Montana. An eight-foot bed of phosphatic black shale at the base of the Brazer limestone of Late Mississippian age in Rich County, Utah, contains as much as 0.009 percent uranium. Commercial gamma ray logs of oil and gas wells drilled in Montana and adjacent parts of the Dakotas indicate that locally the Heath shale of Late Mississippian age contains as much as 0.01 percent equivalent uranium, and black shales of Late Cretaceous age contain as much as 0.008 percent equivalent uranium.
NUCLEAR REACTOR FUEL ELEMENTS AND METHOD OF PREPARATION
Kingston, W.E.; Kopelman, B.; Hausner, H.H.
1963-07-01
A fuel element consisting of uranium nitride and uranium carbide in the form of discrete particles in a solid coherent matrix of a metal such as steel, beryllium, uranium, or zirconium and clad with a metal such as steel, aluminum, zirconium, or beryllium is described. The element is made by mixing powdered uranium nitride and uranium carbide with powdered matrix metal, then compacting and sintering the mixture. (AEC)
Seaborg, G.T.; Orlemann, E.F.; Jensen, L.H.
1958-12-23
A method of obtaining substantially pure uranium from a uranium composition contaminated with light element impurities such as sodium, magnesium, beryllium, and the like is described. An acidic aqueous solution containing tetravalent uranium is treated with a soluble molybdate to form insoluble uranous molybdate which is removed. This material after washing is dissolved in concentrated nitric acid to obtaln a uranyl nitrate solution from which highly purified uranium is obtained by extraction with ether.
SOLVENT EXTRACTION PROCESS FOR URANIUM FROM CHLORIDE SOLUTIONS
Blake, C.A. Jr.; Brown, K.B.; Horner, D.E.
1960-05-24
An improvement was made in a uranium extraction process wherein the organic extractant is a phosphine oxide. An aqueous solution containing phosphate ions or sulfate ions together with uranium is provided with a source of chloride ions during the extraction step. The presence of the chloride ions enables a phosphine oxide to extract uranium in the presence of strong uranium- complexing ions such as phosphate or sulfate ions.
Conrad, M.C.; Getz, P.A.; Hickman, J.E.; Payne, L.D.
1982-06-29
The invention is a process for the recovery of uranium from uranium-bearing hydrocarbon oils containing carboxylic acid as a degradation product. In one aspect, the invention comprises providing an emulsion of water and the oil, heating the same to a temperature effecting conversion of the emulsion to an organic phase and to an acidic aqueous phase containing uranium carboxylate, and recovering the uranium from the aqueous phase. The process is effective, simple and comparatively inexpensive. It avoids the use of toxic reagents and the formation of undesirable intermediates.
Carter, J.M.; Larson, C.E.
1958-10-01
A process is presented for recovering uranium values from calutron deposits. The process consists in treating such deposits to produce an oxidlzed acidic solution containing uranium together with the following imparities: Cu, Fe, Cr, Ni, Mn, Zn. The uranium is recovered from such an impurity-bearing solution by adjusting the pH of the solution to the range 1.5 to 3.0 and then treating the solution with hydrogen peroxide. This results in the precipitation of uranium peroxide which is substantially free of the metal impurities in the solution. The peroxide precipitate is then separated from the solution, washed, and calcined to produce uranium trioxide.
High loading uranium fuel plate
Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry R.
1990-01-01
Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.
Hyde, E.K.; Katzin, L.I.; Wolf, M.J.
1959-07-14
The separation of uranium from a mixture of uranium and thorium by organic solvent extraction from an aqueous solution is described. The uranium is separrted from an aqueous mixture of uranium and thorium nitrates 3 N in nitric acid and containing salting out agents such as ammonium nitrate, so as to bring ihe total nitrate ion concentration to a maximum of about 8 N by contacting the mixture with an immiscible aliphatic oxygen containing organic solvent such as diethyl carbinol, hexone, n-amyl acetate and the like. The uranium values may be recovered from the organic phase by back extraction with water.
Safeguards on uranium ore concentrate? the impact of modern mining and milling process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, Stephen
2013-07-01
Increased purity in uranium ore concentrate not only raises the question as to whether Safeguards should be applied to the entirety of uranium conversion facilities, but also as to whether some degree of coverage should be moved back to uranium ore concentrate production at uranium mining and milling facilities. This paper looks at uranium ore concentrate production across the globe and explores the extent to which increased purity is evident and the underlying reasons. Potential issues this increase in purity raises for IAEA's strategy on the Starting Point of Safeguards are also discussed.
Uranium transport in the Walker River Basin, California and Nevada
Benson, L.V.; Leach, D.L.
1979-01-01
During the summer of 1976 waters from tributaries, rivers, springs and wells were sampled in the Walker River Basin. Snow and sediments from selected sites were also sampled. All samples were analyzed for uranium and other elements. The resulting data provide an understanding of the transport of uranium within a closed hydrologic basin as well as providing a basis for the design of geochemical reconnaissance studies for the Basin and Range Province of the Western United States. Spring and tributary data are useful in locating areas containing anomalous concentrations of uranium. However, agricultural practices obscure the presence of known uranium deposits and render impossible the detection of other known deposits. Uranium is extremely mobile in stream waters and does not appear to sorb or precipitate. Uranium has a long residence time (2500 years) in the open waters of Walker Lake; however, once it crosses the sediment-water interface, it is reduced to the U(IV) state and is lost from solution. Over the past two million years the amount of uranium transported to the terminal point of the Walker River system may have been on the order of 4 ?? 108 kg. This suggests that closed basin termini are sites for significant uranium accumulations and are, therefore, potential sites of uranium ore deposits. ?? 1979.
Potential Aquifer Vulnerability in Regions Down-Gradient from ...
Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are instrumental in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of these uranium ores is a process of contacting the uranium mineral deposit with leaching (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality impacts from: 1) potential excursions of leaching solutions away from the injection zone into down-dip, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies
Laurent, Olivier; Gomolka, Maria; Haylock, Richard; Blanchardon, Eric; Giussani, Augusto; Atkinson, Will; Baatout, Sarah; Bingham, Derek; Cardis, Elisabeth; Hall, Janet; Tomasek, Ladislav; Ancelet, Sophie; Badie, Christophe; Bethel, Gary; Bertho, Jean-Marc; Bouet, Ségolène; Bull, Richard; Challeton-de Vathaire, Cécile; Cockerill, Rupert; Davesne, Estelle; Ebrahimian, Teni; Engels, Hilde; Gillies, Michael; Grellier, James; Grison, Stephane; Gueguen, Yann; Hornhardt, Sabine; Ibanez, Chrystelle; Kabacik, Sylwia; Kotik, Lukas; Kreuzer, Michaela; Lebacq, Anne Laure; Marsh, James; Nosske, Dietmar; O'Hagan, Jackie; Pernot, Eileen; Puncher, Matthew; Rage, Estelle; Riddell, Tony; Roy, Laurence; Samson, Eric; Souidi, Maamar; Turner, Michelle C; Zhivin, Sergey; Laurier, Dominique
2016-06-01
The potential health impacts of chronic exposures to uranium, as they occur in occupational settings, are not well characterized. Most epidemiological studies have been limited by small sample sizes, and a lack of harmonization of methods used to quantify radiation doses resulting from uranium exposure. Experimental studies have shown that uranium has biological effects, but their implications for human health are not clear. New studies that would combine the strengths of large, well-designed epidemiological datasets with those of state-of-the-art biological methods would help improve the characterization of the biological and health effects of occupational uranium exposure. The aim of the European Commission concerted action CURE (Concerted Uranium Research in Europe) was to develop protocols for such a future collaborative research project, in which dosimetry, epidemiology and biology would be integrated to better characterize the effects of occupational uranium exposure. These protocols were developed from existing European cohorts of workers exposed to uranium together with expertise in epidemiology, biology and dosimetry of CURE partner institutions. The preparatory work of CURE should allow a large scale collaborative project to be launched, in order to better characterize the effects of uranium exposure and more generally of alpha particles and low doses of ionizing radiation.
Experiments and Modeling of Uranium Adsorption in the Presence of Other Ions in Simulated Seawater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladshaw, Austin; Das, Sadananda; Liao, Wei-Po
2015-11-19
Seawater contains uranium at an average concentration of 3.3 ppb, as well as a variety of other ions at either overwhelmingly higher or similar concentrations, which complicate the recovery of uranium. This report describes an investigation of the effects of various factors such as uranium speciation and presence of salts including sodium, calcium, magnesium, and bicarbonate, as well as trace elements such as vanadium on uranium adsorption kinetics in laboratory experiments. Adsorption models are also developed to describe the experimental data of uranium extraction from seawater. Results show that the presence of calcium and magnesium significantly slows down the uraniummore » adsorption kinetics. Vanadium can replace uranium from amidoxime-based adsorbent in the presence of sodium in the solution. Results also show that bicarbonate in the solution strongly competes with amidoxime for binding uranium, and thus slows down the uranium adsorption kinetics. Developed on the basis of the experimental findings, the model is capable of describing the effects of pH, ionic strength, temperature, and concentration of various species. The results of this work are useful in the understanding of the important factors that control the adsorbent capacity and kinetics of uranium uptake by amidoxime-based adsorbents.« less
Uranium quantification in semen by inductively coupled plasma mass spectrometry
Todorov, Todor I.; Ejnik, John W.; Guandalini, Gustavo S.; Xu, Hanna; Hoover, Dennis; Anderson, Larry W.; Squibb, Katherine; McDiarmid, Melissa A.; Centeno, Jose A.
2013-01-01
In this study we report uranium analysis for human semen samples. Uranium quantification was performed by inductively coupled plasma mass spectrometry. No additives, such as chymotrypsin or bovine serum albumin, were used for semen liquefaction, as they showed significant uranium content. For method validation we spiked 2 g aliquots of pooled control semen at three different levels of uranium: low at 5 pg/g, medium at 50 pg/g, and high at 1000 pg/g. The detection limit was determined to be 0.8 pg/g uranium in human semen. The data reproduced within 1.4–7% RSD and spike recoveries were 97–100%. The uranium level of the unspiked, pooled control semen was 2.9 pg/g of semen (n = 10). In addition six semen samples from a cohort of Veterans exposed to depleted uranium (DU) in the 1991 Gulf War were analyzed with no knowledge of their exposure history. Uranium levels in the Veterans’ semen samples ranged from undetectable (<0.8 pg/g) to 3350 pg/g. This wide concentration range for uranium in semen is consistent with known differences in current DU body burdens in these individuals, some of whom have retained embedded DU fragments.
Caulobacter crescentus as a Whole-Cell Uranium Biosensor▿ †
Hillson, Nathan J.; Hu, Ping; Andersen, Gary L.; Shapiro, Lucy
2007-01-01
We engineered a strain of the bacterium Caulobacter crescentus to fluoresce in the presence of micromolar levels of uranium at ambient temperatures when it is exposed to a hand-held UV lamp. Previous microarray experiments revealed that several Caulobacter genes are significantly upregulated in response to uranium but not in response to other heavy metals. We designated one of these genes urcA (for uranium response in caulobacter). We constructed a reporter that utilizes the urcA promoter to produce a UV-excitable green fluorescent protein in the presence of the uranyl cation, a soluble form of uranium. This reporter is specific for uranium and has little cross specificity for nitrate (<400 μM), lead (<150 μM), cadmium (<48 μM), or chromium (<41.6 μM). The uranium reporter construct was effective for discriminating contaminated groundwater samples (4.2 μM uranium) from uncontaminated groundwater samples (<0.1 μM uranium) collected at the Oak Ridge Field Research Center. In contrast to other uranium detection methodologies, the Caulobacter reporter strain can provide on-demand usability in the field; it requires minimal sample processing and no equipment other than a hand-held UV lamp, and it may be sprayed directly on soil, groundwater, or industrial surfaces. PMID:17905881
Depleted uranium analysis in blood by inductively coupled plasma mass spectrometry
Todorov, T.I.; Xu, H.; Ejnik, J.W.; Mullick, F.G.; Squibb, K.; McDiarmid, M.A.; Centeno, J.A.
2009-01-01
In this study we report depleted uranium (DU) analysis in whole blood samples. Internal exposure to DU causes increased uranium levels as well as change in the uranium isotopic composition in blood specimen. For identification of DU exposure we used the 235U/238U ratio in blood samples, which ranges from 0.00725 for natural uranium to 0.002 for depleted uranium. Uranium quantification and isotopic composition analysis were performed by inductively coupled plasma mass spectrometry. For method validation we used eight spiked blood samples with known uranium concentrations and isotopic composition. The detection limit for quantification was determined to be 4 ng L-1 uranium in whole blood. The data reproduced within 1-5% RSD and an accuracy of 1-4%. In order to achieve a 235U/238U ratio range of 0.00698-0.00752% with 99.7% confidence limit a minimum whole blood uranium concentration of 60 ng L??1 was required. An additional 10 samples from a cohort of veterans exposed to DU in Gulf War I were analyzed with no knowledge of their medical history. The measured 235U/ 238U ratios in the blood samples were used to identify the presence or absence of DU exposure within this patient group. ?? 2009 The Royal Society of Chemistry.
Jain, Rohan; Peräniemi, Sirpa; Jordan, Norbert; Vogel, Manja; Weiss, Stephan; Foerstendorf, Harald; Lakaniemi, Aino-Maija
2018-05-24
This study demonstrated the removal and recovery of uranium(VI) in a fed-batch stirred tank reactor (STR) using waste digested activated sludge (WDAS). The batch adsorption experiments showed that WDAS can adsorb 200 (±9.0) mg of uranium(VI) per g of WDAS. The maximum adsorption of uranium(VI) was achieved even at an acidic initial pH of 2.7 which increased to a pH of 4.0 in the equilibrium state. Desorption of uranium(VI) from WDAS was successfully demonstrated from the release of more than 95% of uranium(VI) using both acidic (0.5 M HCl) and alkaline (1.0 M Na 2 CO 3 ) eluents. Due to the fast kinetics of uranium(VI) adsorption onto WDAS, the fed-batch STR was successfully operated at a mixing time of 15 min. Twelve consecutive uranium(VI) adsorption steps with an average adsorption efficiency of 91.5% required only two desorption steps to elute more than 95% of uranium(VI) from WDAS. Uranium(VI) was shown to interact predominantly with the phosphoryl and carboxyl groups of the WDAS, as revealed by in situ infrared spectroscopy and time-resolved laser-induced fluorescence spectroscopy studies. This study provides a proof-of-concept of the use of fed-batch STR process based on WDAS for the removal and recovery of uranium(VI). Copyright © 2018 Elsevier Ltd. All rights reserved.
Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites.
Saunders, James A; Pivetz, Bruce E; Voorhies, Nathan; Wilkin, Richard T
2016-12-01
Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are important in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of uranium ores is a process of contacting the uranium mineral deposit with leaching and oxidizing (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality degradation from: 1) potential excursions of leaching solutions away from the injection zone into down-gradient, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential mobilization and migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies data gaps in mitigating these vulnerabilities, and discusses the hydrogeological characterization involved in developing a monitoring program. Published by Elsevier Ltd.
Disposition of fuel elements from the Aberdeen and Sandia pulse reactor (SPR-II) assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mckerley, Bill; Bustamante, Jacqueline M; Costa, David A
2010-01-01
We describe the disposition of fuel from the Aberdeen (APR) and the Sandia Pulse Reactors (SPR-II) which were used to provide intense neutron bursts for radiation effects testing. The enriched Uranium - 10% Molybdenum fuel from these reactors was shipped to the Los Alamos National Laboratory (LANL) for size reduction prior to shipment to the Savannah River Site (SRS) for final disposition in the H Canyon facility. The Shipper/Receiver Agreements (SRA), intra-DOE interfaces, criticality safety evaluations, safety and quality requirements and key materials management issues required for the successful completion of this project will be presented. This work is inmore » support of the DOE Consolidation and Disposition program. Sandia National Laboratories (SNL) has operated pulse nuclear reactor research facilities for the Department of Energy since 1961. The Sandia Pulse Reactor (SPR-II) was a bare metal Godiva-type reactor. The reactor facilities have been used for research and development of nuclear and non-nuclear weapon systems, advanced nuclear reactors, reactor safety, simulation sources and energy related programs. The SPR-II was a fast burst reactor, designed and constructed by SNL that became operational in 1967. The SPR-ll core was a solid-metal fuel enriched to 93% {sup 235}U. The uranium was alloyed with 10 weight percent molybdenum to ensure the phase stabilization of the fuel. The core consisted of six fuel plates divided into two assemblies of three plates each. Figure 1 shows a cutaway diagram of the SPR-II Reactor with its decoupling shroud. NNSA charged Sandia with removing its category 1 and 2 special nuclear material by the end of 2008. The main impetus for this activity was based on NNSA Administrator Tom D'Agostino's six focus areas to reenergize NNSA's nuclear material consolidation and disposition efforts. For example, the removal of SPR-II from SNL to DAF was part of this undertaking. This project was in support of NNSA's efforts to consolidate the locations of special nuclear material (SNM) to reduce the cost of securing many SNM facilities. The removal of SPR-II from SNL was a significant accomplishment in SNL's de-inventory efforts and played a key role in reducing the number of locations requiring the expensive security measures required for category 1 and 2 SNM facilities. A similar pulse reactor was fabricated at the Y-12 National Security Complex beginning in the late 1960's. This Aberdeen Pulse Reactor (APR) was operated at the Army Pulse Radiation Facility (APRF) located at the Aberdeen Test Center (ATC) in Maryland. When the APRF was shut down in 2003, a portion of the DOE-owned Special Nuclear Material (SNM) was shipped to an interim facility for storage. Subsequently, the DOE determined that the material from both the SPR-II and the APR would be processed in the H-Canyon at the Savannah River Site (SRS). Because of the SRS receipt requirements some of the material was sent to the Los Alamos National Laboratory (LANL) for size-reduction prior to shipment to the SRS for final disposition.« less
12. VIEW OF DEPLETED URANIUM INGOT AND MOLDS. DEPLETED URANIUM ...
12. VIEW OF DEPLETED URANIUM INGOT AND MOLDS. DEPLETED URANIUM CASTING OPERATIONS CEASED IN 1988. (11/14/57) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO
Stitt, C A; Harker, N J; Hallam, K R; Paraskevoulakos, C; Banos, A; Rennie, S; Jowsey, J; Scott, T B
2015-01-01
Synchrotron X-rays have been used to study the oxidation of uranium and uranium hydride when encapsulated in grout and stored in de-ionised water for 10 months. Periodic synchrotron X-ray tomography and X-ray powder diffraction have allowed measurement and identification of the arising corrosion products and the rates of corrosion. The oxidation rates of the uranium metal and uranium hydride were slower than empirically derived rates previously reported for each reactant in an anoxic water system, but without encapsulation in grout. This was attributed to the grout acting as a physical barrier limiting the access of oxidising species to the uranium surface. Uranium hydride was observed to persist throughout the 10 month storage period and industrial consequences of this observed persistence are discussed.
URANIUM RECOVERY AND PURIFICATION PROCESS AND PRODUCTION OF HIGH PURITY URANIUM TETRAFLUORIDE
Bailes, R.H.; Long, R.S.; Grinstead, R.R.
1957-09-17
A process is described wherein an anionic exchange technique is employed to separate uramium from a large variety of impurities. Very efficient and economical purification of contamimated uranium can be achieved by treatment of the contaminated uranium to produce a solution containing a high concentration of chloride. Under these conditions the uranium exists as an aniomic chloride complex. Then the uranium chloride complex is adsorbed from the solution on an aniomic exchange resin, whereby a portion of the impurities remain in the solution and others are retained with the uramium by the resin. The adsorbed impurities are then removed by washing the resin with pure concentrated hydrochloric acid, after which operation the uranium is eluted with pure water yielding an acidic uranyl chloride solution of high purity.
Ackerman, John P.; Miller, William E.
1989-01-01
An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuel using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuel, and two cathodes, the first cathode composed of either a solid alloy or molten cadmium and the second cathode composed of molten cadmium. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then substantially pure uranium is electrolytically transported and deposited on the first alloy or molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on the second molten cadmium cathode.
Ackerman, J.P.; Miller, W.E.
1987-11-05
An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuels is disclosed using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuels, two cathodes and electrical power means connected to the anode basket, cathodes and lower molten cadmium pool for providing electrical power to the cell. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then purified uranium is electrolytically transported and deposited on a first molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on a second cathode. 3 figs.
Characterization of low concentration uranium glass working materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eppich, G. R.; Wimpenny, J. B.; Leever, M. E.
A series of uranium-doped silicate glasses were created at (Lawrence Livermore National Laboratory) LLNL, to be used as working reference material analogs for low uranium concentration research. Specifically, the aim of this effort was the generation of well-characterized glasses spanning a range of concentrations and compositions, and of sufficient homogeneity in uranium concentration and isotopic composition, for instrumentation research and development purposes. While the glasses produced here are not intended to replace or become standard materials for uranium concentration or uranium isotopic composition, it is hoped that they will help fill a current gap, providing low-level uranium glasses sufficient formore » methods development and method comparisons within the limitations of the produced glass suite. Glasses are available for research use by request.« less
SLURRY SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM SOLID MATERIALS
Grinstead, R.R.
1959-01-20
A solvent extraction process is described for recovering uranium from low grade uranium bearing minerals such as carnotit or shale. The finely communited ore is made up as an aqueous slurry containing the necessary amount of acid to solubilize the uranium and simultaneously or subsequently contacted with an organic solvent extractant such as the alkyl ortho-, or pyro phosphoric acids, alkyl phosphites or alkyl phosphonates in combination with a diluent such as kerosene or carbon tetrachlorids. The extractant phase is separated from the slurry and treated by any suitable process to recover the uranium therefrom. One method for recovering the uranium comprises treating the extract with aqueous HF containing a reducing agent such as ferrous sulfate, which reduces the uranium and causes it to be precipitated as uranium tetrafluoride.
ELECTROLYSIS OF THORIUM AND URANIUM
Hansen, W.N.
1960-09-01
An electrolytic method is given for obtaining pure thorium, uranium, and thorium-uranium alloys. The electrolytic cell comprises a cathode composed of a metal selected from the class consisting of zinc, cadmium, tin, lead, antimony, and bismuth, an anode composed of at least one of the metals selected from the group consisting of thorium and uranium in an impure state, and an electrolyte composed of a fused salt containing at least one of the salts of the metals selected from the class consisting of thorium, uranium. zinc, cadmium, tin, lead, antimony, and bismuth. Electrolysis of the fused salt while the cathode is maintained in the molten condition deposits thorium, uranium, or thorium-uranium alloys in pure form in the molten cathode which thereafter may be separated from the molten cathode product by distillation.
Harker, N. J.; Hallam, K. R.; Paraskevoulakos, C.; Banos, A.; Rennie, S.; Jowsey, J.
2015-01-01
Synchrotron X-rays have been used to study the oxidation of uranium and uranium hydride when encapsulated in grout and stored in de-ionised water for 10 months. Periodic synchrotron X-ray tomography and X-ray powder diffraction have allowed measurement and identification of the arising corrosion products and the rates of corrosion. The oxidation rates of the uranium metal and uranium hydride were slower than empirically derived rates previously reported for each reactant in an anoxic water system, but without encapsulation in grout. This was attributed to the grout acting as a physical barrier limiting the access of oxidising species to the uranium surface. Uranium hydride was observed to persist throughout the 10 month storage period and industrial consequences of this observed persistence are discussed. PMID:26176551
Hinck, Jo E.; Linder, Greg L.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.; Kuhne, Wendy
2010-01-01
This chapter compiles available chemical and radiation toxicity information for plants and animals from the scientific literature on naturally occurring uranium and associated radionuclides. Specifically, chemical and radiation hazards associated with radionuclides in the uranium decay series including uranium, thallium, thorium, bismuth, radium, radon, protactinium, polonium, actinium, and francium were the focus of the literature compilation. In addition, exposure pathways and a food web specific to the segregation areas were developed. Major biological exposure pathways considered were ingestion, inhalation, absorption, and bioaccumulation, and biota categories included microbes, invertebrates, plants, fishes, amphibians, reptiles, birds, and mammals. These data were developed for incorporation into a risk assessment to be conducted as part of an environmental impact statement for the Bureau of Land Management, which would identify representative plants and animals and their relative sensitivities to exposure of uranium and associated radionuclides. This chapter provides pertinent information to aid in the development of such an ecological risk assessment but does not estimate or derive guidance thresholds for radionuclides associated with uranium. Previous studies have not attempted to quantify the risks to biota caused directly by the chemical or radiation releases at uranium mining sites, although some information is available for uranium mill tailings and uranium mine closure activities. Research into the biological impacts of uranium exposure is strongly biased towards human health and exposure related to enriched or depleted uranium associated with the nuclear energy industry rather than naturally occurring uranium associated with uranium mining. Nevertheless, studies have reported that uranium and other radionuclides can affect the survival, growth, and reproduction of plants and animals. Exposure to chemical and radiation hazards is influenced by a plant’s or an animal’s life history and surrounding environment. Various species of plants, invertebrates, fishes, amphibians, reptiles, birds, and mammals found in the segregation areas that are considered species of concern by State and Federal agencies were included in the development of the site-specific food web. The utilization of subterranean habitats (burrows in uranium-rich areas, burrows in waste rock piles or reclaimed mining areas, mine tunnels) in the seasonally variable but consistently hot, arid environment is of particular concern in the segregation areas. Certain species of reptiles, amphibians, birds, and mammals in the segregation areas spend significant amounts of time in burrows where they can inhale or ingest uranium and other radionuclides through digging, eating, preening, and hibernating. Herbivores may also be exposed though the ingestion of radionuclides that have been aerially deposited on vegetation. Measured tissues concentrations of uranium and other radionuclides are not available for any species of concern in the segregation areas. The sensitivity of these animals to uranium exposure is unknown based on the existing scientific literature, and species-specific uranium presumptive effects levels were only available for two endangered fish species known to inhabit the segregation areas. Overall, the chemical toxicity data available for biological receptors of concern were limited, although chemical and radiation toxicity guidance values are available from several sources. However, caution should be used when directly applying these values to northern Arizona given the unique habitat and life history strategies of biological receptors in the segregation areas and the fact that some guidance values are based on models rather than empirical (laboratory or field) data. No chemical toxicity information based on empirical data is available for reptiles, birds, or wild mammals; therefore, the risks associated with uranium and other radionuclides are unknown for these biota.
Characterization of Uranium Ore Concentrate Chemical Composition via Raman Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Yin-Fong; Tonkyn, Russell G.; Sweet, Lucas E.
Uranium Ore Concentrate (UOC, often called yellowcake) is a generic term that describes the initial product resulting from the mining and subsequent milling of uranium ores en route to production of the U-compounds used in the fuel cycle. Depending on the mine, the ore, the chemical process, and the treatment parameters, UOC composition can vary greatly. With the recent advent of handheld spectrometers, we have chosen to investigate whether either commercial off-the-shelf (COTS) handheld devices or laboratory-grade Raman instruments might be able to i) identify UOC materials, and ii) differentiate UOC samples based on chemical composition and thus suggest themore » mining or milling process. Twenty-eight UOC samples were analyzed via FT-Raman spectroscopy using both 1064 nm and 785 nm excitation wavelengths. These data were also compared with results from a newly developed handheld COTS Raman spectrometer using a technique that lowers background fluorescence signal. Initial chemometric analysis was able to differentiate UOC samples based on mine location. Additional compositional information was obtained from the samples by performing XRD analysis on a subset of samples. The compositional information was integrated with chemometric analysis of the spectroscopic dataset allowing confirmation that class identification is possible based on compositional differences between the UOC samples, typically involving species such as U3O8, α-UO2(OH)2, UO4•2H2O (metastudtite), K(UO2)2O3, etc. While there are clearly excitation λ sensitivities, especially for dark samples, Raman analysis coupled with chemometric data treatment can nicely differentiate UOC samples based on composition and even mine origin.« less
Egypt/United States cooperative energy assessment. Volume II, Annex 1. Energy resources of Egypt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-04-01
This report contains the findings and recommendations of the US Geological Survey geologists assigned to survey Egypts indigenous energy resources. Data on oil and gas, coal and oil shale, uranium and thorium, geothermal energy, water resources, and energy related minerals are presented. Thirty-nine oil and gas fields have been discovered in Egypt, proven reserves of oil were estimated to be 1,559,000,000 barrels in 1976. The Egyptian government hopes to attain a production rate of 1 million barrels a day in 1982. While the Gulf of Suez basin holds the most immediate prospects, the most promising frontier regions are the unexploredmore » broad expanses of the Western Desert, the Nile Basin and the Northern Sinai while oil shales have been found in Egypt, they are only 10 to 15 feet thick and their hydrocarbon content is low. Recovery would not be economic. Coal deposits contain reserves estimated at 95 to 112 million tons. Only 1 deposit is deemed workable under present conditions of technology and economy. No uranium and thorium are being produced however geological conditions appear favorable for finding uranium deposits using appropriate programs of prospecting, exploration and development. The potential for development of low-level sources of geothermal energy in Egypt is good; there is no evidence of a high-temperature source or a vapor-dominated system. The Nile is the primary source of water. In the western desert, the Nubian aquifer supplies water for irrigation. Energy related minerals are generally found in uneconomic concentrations or not at all. However, deposits of material used in cement making and some iron ore for steel making are available. Deposits of manganese may become available upon return of the Sinai to Egypt. 44 figures, 24 tables. (DMC)« less
NASA Astrophysics Data System (ADS)
Antonov, V. N.; Shpak, A. P.; Yaresko, A. N.
2008-02-01
The present state of theoretical understanding of the x-ray magnetic circular dichroism (XMCD) of 4f and 5f compounds is reviewed. Energy band theory based upon the local spin-density approximation (LSDA) describes the XMCD spectra of transition metal compounds with high accuracy. However, the LSDA does not suffice for lanthanide compounds which have a correlated 4f shell. A satisfactory description of the XMCD spectra could be obtained by using a generalization of the LSDA, in which explicitly f electron Coulomb correlations are taken into account (LSDA +U approach). As examples of this group we consider the compound GdN. We also consider uranium 5f compounds. In those compounds where the 5f electrons are rather delocalized, the LSDA describes the XMCD spectra reasonably well. As an example of this group we consider UFe2. Particular differences occur for uranium compounds in which the 5f electrons are neither delocalized nor localized, but more or less semilocalized. Typical examples are UXAl (X =Co, Rh, and Pt), and UX (X =S, Se, Te). However, the semilocalized 5f's are not inert, but their interaction with conduction electrons plays an important role. We also consider the electronic structure and XMCD spectra of the heavy-fermion compounds UPt3, URu2Si2, UPd2Al3, UNi2Al3, and UBe13, where the degree of the 5f localization is increased in comparison with other uranium compounds. The electronic structure and XMCD spectra of UGe2 which possesses simultaneously ferromagnetism and superconductivity also presented. Recently achieved improvements for describing 5f compounds are discussed.
Combined effects of alpha particles and depleted uranium on Zebrafish (Danio rerio) embryos
Ng, Candy Y.P.; Pereira, Sandrine; Cheng, Shuk Han; Adam-Guillermin, Christelle; Garnier-Laplace, Jacqueline; Yu, Kwan Ngok
2016-01-01
The combined effects of low-dose or high-dose alpha particles and depleted uranium (DU) in Zebrafish (Danio rerio) embryos were studied. Three schemes were examined—(i) [ILUL]: 0.44 mGy alpha-particle dose + 10 µg/l DU exposure, (ii) [IHUH]: 4.4 mGy alpha-particle dose + 100 µg/l DU exposure and (iii) [IHUL]: 4.4 mGy alpha-particle dose + 10 µg/l DU exposure—in which Zebrafish embryos were irradiated with alpha particles at 5 h post fertilization (hpf) and/or exposed to uranium at 5–6 hpf. The results were also compared with our previous work, which studied the effects of [ILUH]: 0.44 mGy alpha-particle dose + 100 µg/l DU exposure. When the Zebrafish embryos developed to 24 hpf, the apoptotic signals in the entire embryos, used as the biological endpoint for this study, were quantified. Our results showed that [ILUL] and [IHUL] led to antagonistic effects, whereas [IHUH] led to an additive effect. The effect found for the previously studied case of [ILUH] was difficult to define because it was synergistic with reference to the 100 µg/l DU exposure, but it was antagonistic with reference to the 0.44 mGy alpha-particle dose. All the findings regarding the four different schemes showed that the combined effects critically depended on the dose response to each individual stressor. We also qualitatively explained these findings in terms of promotion of early death of cells predisposed to spontaneous transformation by alpha particles, interacting with the delay in cell death resulting from various concentrations of DU exposure. PMID:26937024
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Kaichao; Hu, Lin-wen; Newton, Thomas
2017-05-01
The Massachusetts Institute of Technology Reactor (MITR-II) is a research reactor in Cambridge, Massachusetts designed primarily for experiments using neutron beam and in-core irradiation facilities. At 6 MW, it delivers neutron flux and energy spectrum comparable to light water reactor (LWR) power reactors in a compact core using highly enriched uranium (HEU) fuel. In the framework of nonproliferation policy, the international community aims to minimize the use of HEU in civilian facilities. Within this context, research and test reactors have started a program to convert HEU fuel to low enriched uranium (LEU) fuel. A new type of LEU fuel basedmore » on a high density alloy of uranium and molybdenum (U-10Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MITR. The current study focuses on the impacts of MITR Maximum Hypothetical Accident (MHA), which is also the Design Basis Accident (DBA), with LEU fuel. The MHA for the MITR is postulated to be a coolant flow blockage in the fuel element that contains the hottest fuel plate. It is assumed that the entire active portion of five fuel plates melts. The analysis shows that, within a 2-h period and by considering all the possible radiation sources and dose pathways, the overall off-site dose is 302.1 mrem (1 rem ¼ 0.01 Sv) Total Effective Dose Equivalent (TEDE) at 8 m exclusion area boundary (EAB) and a higher dose of 392.8 mrem TEDE is found at 21 m EAB. In all cases the dose remains below the 500 mrem total TEDE limit goal based on NUREG-1537 guidelines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsarev, Sergey; Collins, Richard N.; Ilton, Eugene S.
Nanoscale zero-valent iron (nZVI) is a potential remediation agent for uranium-contaminated groundwaters, however, a complete mechanistic understanding of the processes that lead to uranium immobilization has yet to be achieved. In this study, the short-term anoxic reaction of U(VI) with fresh, (anoxic) aged and corroded nZVI particles was investigated under aqueous conditions conducive to the formation of thermodynamically stable U(VI)-Ca-CO3 ternary aqueous complexes. The first stage of the reaction between U(VI) and nZVI was assigned to sorption processes with the formation of surface U(VI)-carbonate complexes. Aged nZVI removed U(VI) faster than either fresh or corroded nZVI and it is hypothesizedmore » that U reduction initially occurs through the transfer of one electron from Fe(II) in the nZVI surface oxide layer. Evidence for reduction to U(V) was obtained through X-ray photoelectron spectroscopy and by determination of U-O bond distances of ~2.05 Å and 2.27 Å by U LIII-edge X-ray absorption spectroscopy detection of U-O bond distances at ~2.05 Å and 2.27 Å with these distances , similar to thoseat observed for the U(V) site in the mixed U(V)/U(VI) carbonate mineral wyartite. Scanning transmission electron microscopy also demonstrated that U was present as a nanoparticulate phase after one day of reaction, rather than a surface complex. Further reduction to U(IV), as observed in previous studies, would appear to be rate-limiting and coincident with the transformation of this meta-stable U-carbonate phase to uraninite (UO2).« less
Post, V E A; Vassolo, S I; Tiberghien, C; Baranyikwa, D; Miburo, D
2017-12-31
The potential use of groundwater for potable water supply can be severely compromised by natural contaminants such as uranium. The environmental mobility of uranium depends on a suite of factors including aquifer lithology, redox conditions, complexing agents, and hydrological processes. Uranium concentrations of up to 734μg/L are found in groundwater in northern Burundi, and the objective of the present study was to identify the causes for these elevated concentrations. Based on a comprehensive data set of groundwater chemistry, geology, and hydrological measurements, it was found that the highest dissolved uranium concentrations in groundwater occur near the shores of Lake Tshohoha South and other smaller lakes nearby. A model is proposed in which weathering and evapotranspiration during groundwater recharge, flow and discharge exert the dominant controls on the groundwater chemical composition. Results of PHREEQC simulations quantitatively confirm this conceptual model and show that uranium mobilization followed by evapo-concentration is the most likely explanation for the high dissolved uranium concentrations observed. The uranium source is the granitic sand, which was found to have a mean elemental uranium content of 14ppm, but the exact mobilization process could not be established. Uranium concentrations may further be controlled by adsorption, especially where calcium-uranyl‑carbonate complexes are present. Water and uranium mass balance calculations for Lake Tshohoha South are consistent with the inferred fluxes and show that high‑uranium groundwater represents only a minor fraction of the overall water input to the lake. These findings highlight that the evaporation effects that cause radionuclide concentrations to rise to harmful levels in groundwater discharge areas are not only confined to arid regions, and that this should be considered when selecting suitable locations for water supply wells. Copyright © 2017 Elsevier B.V. All rights reserved.
The role of extracellular DNA in uranium precipitation and biomineralisation.
Hufton, Joseph; Harding, John H; Romero-González, Maria E
2016-10-26
Bacterial extra polymeric substances (EPS) have been associated with the extracellular precipitation of uranium. Here we report findings on the biomineralisation of uranium, with extracellular DNA (eDNA) used as a model biomolecule representative of EPS. The complexation and precipitation of eDNA with uranium were investigated as a function of pH, ionic strength and varying concentrations of reactants. The role of phosphate moieties in the biomineralisation mechanism was studied by enzymatically releasing phosphate (ePO 4 ) from eDNA compared to abiotic phosphate (aPO 4 ). The eDNA-uranium precipitates and uranium minerals obtained were characterised by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FT-IR) spectroscopy, Scanning Electron Microscopy-Energy Dispersive X-Ray analysis (SEM-EDX), X-Ray Powder Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS). ATR-FT-IR showed that at pH 5, the eDNA-uranium precipitation mechanism was predominantly mediated by interactions with phosphate moieties from eDNA. At pH 2, the uranium interactions with eDNA occur mainly through phosphate. The solubility equilibrium was dependent on pH with the formation of precipitate reduced as the pH increased. The XRD data confirmed the formation of a uranium phosphate precipitate when synthesised using ePO 4 . XPS and SEM-EDX studies showed the incorporation of carbon and nitrogen groups from the enzymatic orthophosphate hydrolysis on the obtained precipitated. These results suggested that the removal of uranium from solution occurs via two mechanisms: complexation by eDNA molecules and precipitation of a uranium phosphate mineral of the type (UO 2 HPO 4 )·xH 2 O by enzymatic orthophosphate hydrolysis. This demonstrated that eDNA from bacterial EPS is a key contributor to uranium biomineralisation.
Meta-analysis of depleted uranium levels in the Balkan region.
Besic, Larisa; Muhovic, Imer; Asic, Adna; Kurtovic-Kozaric, Amina
2017-06-01
In recent years, contradicting data has been published on the connection between the presence of depleted uranium and an increased cancer incidence among military personnel deployed in the Balkans during the 1992-1999 wars. This has led to numerous research articles investigating possible depleted uranium contamination of the afflicted regions of the Balkan Peninsula, namely Bosnia & Herzegovina, Serbia, Kosovo and Montenegro. The aim of this study was to collect data from previously published reports investigating the levels of depleted uranium in the Balkans and to present the data in the form of a meta-analysis. This would provide a clear image of the extent of depleted uranium contamination after the Balkan conflict. In addition, we tested the hypothesis that there is a correlation between the levels of depleted uranium and the assumed depleted uranium-related health effects. Our results suggest that the majority of the examined sites contain natural uranium, while the area of Kosovo appears to be most heavily afflicted by depleted uranium pollution, followed by Bosnia & Herzegovina. Furthermore, the results indicate that it is not possible to make a valid correlation between the health effects and depleted uranium-contaminated areas. We therefore suggest a structured collaborative plan of action where long-term monitoring of the residents of depleted uranium-afflicted areas would be performed. In conclusion, while the possibility of depleted uranium toxicity in post-conflict regions appears to exist, there currently exists no definitive proof of such effects, due to insufficient studies of potentially afflicted populations, in addition to the lack of a common epidemiological approach in the reviewed literature. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhivin, Sergey; Guseva Canu, Irina; Samson, Eric; Laurent, Olivier; Grellier, James; Collomb, Philippe; Zablotska, Lydia B; Laurier, Dominique
2016-03-01
Until recently, enrichment of uranium for civil and military purposes in France was carried out by gaseous diffusion using rapidly soluble uranium compounds. We analysed the relationship between exposure to soluble uranium compounds and exposure to external γ-radiation and mortality in a cohort of 4688 French uranium enrichment workers who were employed between 1964 and 2006. Data on individual annual exposure to radiological and non-radiological hazards were collected for workers of the AREVA NC, CEA and Eurodif uranium enrichment plants from job-exposure matrixes and external dosimetry records, differentiating between natural, enriched and depleted uranium. Cause-specific mortality was compared with the French general population via standardised mortality ratios (SMR), and was analysed via Poisson regression using log-linear and linear excess relative risk models. Over the period of follow-up, 131 161 person-years at risk were accrued and 21% of the subjects had died. A strong healthy worker effect was observed: all causes SMR=0.69, 95% CI 0.65 to 0.74. SMR for pleural cancer was significantly increased (2.3, 95% CI 1.06 to 4.4), but was only based on nine cases. Internal uranium and external γ-radiation exposures were not significantly associated with any cause of mortality. This is the first study of French uranium enrichment workers. Although limited in statistical power, further follow-up of this cohort, estimation of internal uranium doses and pooling with similar cohorts should elucidate potential risks associated with exposure to soluble uranium compounds. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Kulkarni, Sayali; Misra, Chitra Seetharam; Gupta, Alka; Ballal, Anand; Apte, Shree Kumar
2016-08-15
Deinococcus radiodurans and Escherichia coli expressing either PhoN, a periplasmic acid phosphatase, or PhoK, an extracellular alkaline phosphatase, were evaluated for uranium (U) bioprecipitation under two specific geochemical conditions (GCs): (i) a carbonate-deficient condition at near-neutral pH (GC1), and (ii) a carbonate-abundant condition at alkaline pH (GC2). Transmission electron microscopy revealed that recombinant cells expressing PhoN/PhoK formed cell-associated uranyl phosphate precipitate under GC1, whereas the same cells displayed extracellular precipitation under GC2. These results implied that the cell-bound or extracellular location of the precipitate was governed by the uranyl species prevalent at that particular GC, rather than the location of phosphatase. MINTEQ modeling predicted the formation of predominantly positively charged uranium hydroxide ions under GC1 and negatively charged uranyl carbonate-hydroxide complexes under GC2. Both microbes adsorbed 6- to 10-fold more U under GC1 than under GC2, suggesting that higher biosorption of U to the bacterial cell surface under GC1 may lead to cell-associated U precipitation. In contrast, at alkaline pH and in the presence of excess carbonate under GC2, poor biosorption of negatively charged uranyl carbonate complexes on the cell surface might have resulted in extracellular precipitation. The toxicity of U observed under GC1 being higher than that under GC2 could also be attributed to the preferential adsorption of U on cell surfaces under GC1. This work provides a vivid description of the interaction of U complexes with bacterial cells. The findings have implications for the toxicity of various U species and for developing biological aqueous effluent waste treatment strategies. The present study provides illustrative insights into the interaction of uranium (U) complexes with recombinant bacterial cells overexpressing phosphatases. This work demonstrates the effects of aqueous speciation of U on the biosorption of U and the localization pattern of uranyl phosphate precipitated as a result of phosphatase action. Transmission electron microscopy revealed that location of uranyl phosphate (cell associated or extracellular) was primarily influenced by aqueous uranyl species present under the given geochemical conditions. The data would be useful for understanding the toxicity of U under different geochemical conditions. Since cell-associated precipitation of metal facilitates easy downstream processing by simple gravity-based settling down of metal-loaded cells, compared to cumbersome separation techniques, the results from this study are of considerable relevance to effluent treatment using such cells. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Kulkarni, Sayali; Misra, Chitra Seetharam; Gupta, Alka; Ballal, Anand
2016-01-01
ABSTRACT Deinococcus radiodurans and Escherichia coli expressing either PhoN, a periplasmic acid phosphatase, or PhoK, an extracellular alkaline phosphatase, were evaluated for uranium (U) bioprecipitation under two specific geochemical conditions (GCs): (i) a carbonate-deficient condition at near-neutral pH (GC1), and (ii) a carbonate-abundant condition at alkaline pH (GC2). Transmission electron microscopy revealed that recombinant cells expressing PhoN/PhoK formed cell-associated uranyl phosphate precipitate under GC1, whereas the same cells displayed extracellular precipitation under GC2. These results implied that the cell-bound or extracellular location of the precipitate was governed by the uranyl species prevalent at that particular GC, rather than the location of phosphatase. MINTEQ modeling predicted the formation of predominantly positively charged uranium hydroxide ions under GC1 and negatively charged uranyl carbonate-hydroxide complexes under GC2. Both microbes adsorbed 6- to 10-fold more U under GC1 than under GC2, suggesting that higher biosorption of U to the bacterial cell surface under GC1 may lead to cell-associated U precipitation. In contrast, at alkaline pH and in the presence of excess carbonate under GC2, poor biosorption of negatively charged uranyl carbonate complexes on the cell surface might have resulted in extracellular precipitation. The toxicity of U observed under GC1 being higher than that under GC2 could also be attributed to the preferential adsorption of U on cell surfaces under GC1. This work provides a vivid description of the interaction of U complexes with bacterial cells. The findings have implications for the toxicity of various U species and for developing biological aqueous effluent waste treatment strategies. IMPORTANCE The present study provides illustrative insights into the interaction of uranium (U) complexes with recombinant bacterial cells overexpressing phosphatases. This work demonstrates the effects of aqueous speciation of U on the biosorption of U and the localization pattern of uranyl phosphate precipitated as a result of phosphatase action. Transmission electron microscopy revealed that location of uranyl phosphate (cell associated or extracellular) was primarily influenced by aqueous uranyl species present under the given geochemical conditions. The data would be useful for understanding the toxicity of U under different geochemical conditions. Since cell-associated precipitation of metal facilitates easy downstream processing by simple gravity-based settling down of metal-loaded cells, compared to cumbersome separation techniques, the results from this study are of considerable relevance to effluent treatment using such cells. PMID:27287317
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-12-01
This article reviews uranium production in Romania. Geological aspects of the country are discussed, and known uranium deposits are noted. Uranium mining and milling activities are also covered. Utilization of Romania`s uranium production industry will primarily be to supply the country`s nuclear power program, and with the present adequate supplies and the operation of their recently revamped fuel production facility, Romania should be self-reliant in the front end of the nuclear fuel cycle.
Method of preparing uranium nitride or uranium carbonitride bodies
Wilhelm, Harley A.; McClusky, James K.
1976-04-27
Sintered uranium nitride or uranium carbonitride bodies having a controlled final carbon-to-uranium ratio are prepared, in an essentially continuous process, from U.sub.3 O.sub.8 and carbon by varying the weight ratio of carbon to U.sub.3 O.sub.8 in the feed mixture, which is compressed into a green body and sintered in a continuous heating process under various controlled atmospheric conditions to prepare the sintered bodies.
URANIUM BISMUTHIDE DISPERSION IN MOLTEN METAL
Teitel, R.J.
1959-10-27
The formation of intermetallic bismuth compounds of thorium or uranium dispersed in a liquid media containing bismuth and lead is described. A bismuthide of uranium dispersed in a liquid metal medium is formed by dissolving uranium in composition of lead and bismuth containing less than 80% lead and lowering the temperature of the composition to a temperature below the point at which the solubility of uranium is exceeded and above the melting point of the composition.
Uranium Fate and Transport Modeling, Guterl Specialty Steel Site, New York - 13545
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frederick, Bill; Tandon, Vikas
2013-07-01
The Former Guterl Specialty Steel Corporation Site (Guterl Site) is located 32 kilometers (20 miles) northeast of Buffalo, New York, in Lockport, Niagara County, New York. Between 1948 and 1952, up to 15,875 metric tons (35 million pounds) of natural uranium metal (U) were processed at the former Guterl Specialty Steel Corporation site in Lockport, New York. The resulting dust, thermal scale, mill shavings and associated land disposal contaminated both the facility and on-site soils. Uranium subsequently impacted groundwater and a fully developed plume exists below the site. Uranium transport from the site involves legacy on-site pickling fluid handling, themore » leaching of uranium from soil to groundwater, and the groundwater transport of dissolved uranium to the Erie Canal. Groundwater fate and transport modeling was performed to assess the transfer of dissolved uranium from the contaminated soils and buildings to groundwater and subsequently to the nearby Erie Canal. The modeling provides a tool to determine if the uranium contamination could potentially affect human receptors in the vicinity of the site. Groundwater underlying the site and in the surrounding area generally flows southeasterly towards the Erie Canal; locally, groundwater is not used as a drinking water resource. The risk to human health was evaluated outside the Guterl Site boundary from the possibility of impacted groundwater discharging to and mixing with the Erie Canal waters. This condition was evaluated because canal water is infrequently used as an emergency water supply for the City of Lockport via an intake located approximately 122 meters (m) (400 feet [ft]) southeast of the Guterl Site. Modeling was performed to assess whether mixing of groundwater with surface water in the Erie Canal could result in levels of uranium exceeding the U.S. Environmental Protection Agency (USEPA) established drinking water standard for total uranium; the Maximum Concentration Limit (MCL). Geotechnical test data indicate that the major portion of uranium in the soil will adsorb or remain bound to soil, yet leaching to groundwater appears as an on-site source. Soil leaching was modeled using low adsorption factors to replicate worst-case conditions where the uranium leaches to the groundwater. Results indicate that even after several decades, which is the period of time since uranium was processed at the Guterl Site, leaching from soil does not fully account for the currently observed levels of groundwater contamination. Modeling results suggest that there were historic releases of uranium from processing operations directly to the shallow fractured rock and possibly other geochemical conditions that have produced the current groundwater contamination. Groundwater data collected at the site between 1997 and 2011 do not indicate an increasing level of uranium in the main plume, thus the uranium adsorbed to the soil is in equilibrium with the groundwater geochemistry and transport conditions. Consequently, increases in the overall plume concentration or size are not expected. Groundwater flowing through fractures under the Guterl Site transports dissolved uranium from the site to the Erie Canal, where the groundwater has been observed to seep from the northern canal wall at some locations. The seeps discharge uranium at concentrations near or below the MCL to the Erie Canal. Conservative mixing calculations were performed using two worst-case assumptions: 1) the seeps were calculated as contiguous discharges from the Erie Canal wall and 2) the uranium concentration of the seepage is 274 micrograms per liter (μg/L) of uranium, which is the highest on-site uranium concentration in groundwater and nearly ten-fold the actual seep concentrations. The results indicate that uranium concentrations in the seep water would have to be more than 200 times greater than the highest observed on-site groundwater concentrations (or nearly 55,000 μg/L) to potentially exceed the drinking water standard (the MCL) for total uranium in the Erie Canal. (authors)« less
Spectroscopic studies of uranium species for environmental decontamination applications
NASA Astrophysics Data System (ADS)
Eng, Charlotte
After the Cold War, Department of Energy began to concentrate its efforts on cleanup of former nuclear material processing facilities, especially uranium-contaminated groundwater and soil. This research aims to study uranium association to both organic and inorganic compounds found in the contaminated environment in the hopes that the information gathered can be applied to the development and optimization of cost-effective remediation techniques. Spectroscopic and electrochemical methods will be employed to examine the behavior of uranium in given conditions to further our understanding of its impact on the environment. Uranium found in groundwater and soil bind with various ligands, especially organic ligands present in the environment due to natural sources (e.g. metabolic by-products or degradation of plants and animals) or man-made sources (e.g. chelating agents used in operating or cleanup of uranium processing facilities). We selected reasonable analogs of naturally occurring matter and studied their structure, chemical and electrochemical behavior and found that the structure of uranyl complexes depends heavily on the nature of the ligand and environmental factors such as pH. Association of uranium-organic complexes with anaerobic bacteria, Clostridium sp. was studied to establish if the bacteria can effectively bioreduce uranium while going through normal bacterial activity. It was found that the nature of the organic ligand affected the bioavailability and toxicity of the uranium on the bacteria. In addition, we have found that the type of iron corrosion products and uranyl species present on the surface of corroded steel depended on various environmental factors, which subsequently affected the removal rate of uranium by a citric acid/hydrogen peroxide/deionized water cleaning process. The method was found to remove uranium from only the topmost corrosion layers and residual uranium could be found (a) deeper in the corrosion layers where it is occluded by the steel corrosion products or (b) in areas where the dissolved uranium/iron species, the products generated by the dissolution power of citric acid, was not properly rinsed away.
Gott, Garland B.; Erickson, Ralph L.
1952-01-01
Because of the common association of uranium and copper in several of the commercial uranium deposits in the Colorado Plateau Province, a reconnaissance was made of several known deposits of copper disseminated through sandstone to determine whether they might be a source of uranium. In order to obtain more information regarding the relationship between copper, uranium and carbonaceous materials, some of the uraniferious asphaltrite deposits in the Shinarump conglomerate along the west flank of the San Rafael Swell were also investigated briefly. During this reconnaissance 18 deposits were examined in New Mexico, eight in Utah, two in Idaho, and one each in Wyoming and Colorado. No uranium deposits of commercial grade are associated with the copper deposits that were examined. The uraniferous asphaltites in the Shinarump conglomerate of Triassic age on the west flank of the San Rafael Swell, however, are promising from the standpoint of commercial uranium production. Spectrographic analyses of crude oil, asphalt, and bituminous shales show a rather consistent suite of trace metals including vanadium, nickel, copper, cobalt, chromium, lead zinc, and molybdenum. The similarity of the metal assemblage, including uranium of the San Rafael Swell asphaltites, to the metal assemblage in crude oil and other bituminous materials suggests that these metals were concentrated in the asphaltites from petroleum. However, the hypothesis that uranium minerals were already present before the hydrocarbons were introduced and that some sort of replacement or uranium minerals by carbon compounds was effected after the petroleum migrated into the uranium deposit should not be disregarded. The widespread association of uranium with asphaltic material suggests that it also may have been concentrated by some agency connected with the formation of petroleum. The problem of the association of uranium and other trace metals with hydrocarbons should be studied further both in the field and in the laboratory.
NASA Astrophysics Data System (ADS)
Harris, R.; Reimus, P. W.; Ware, D.; Williams, K.; Chu, D.; Perkins, G.; Migdissov, A. A.; Bonwell, C.
2017-12-01
Uranium is primarily mined for nuclear power production using an aqueous extraction technique called in-situ recovery (ISR). ISR can pollute groundwater with residual uranium and other heavy metals. Reverse osmosis and groundwater sweep are currently used to restore groundwater after ISR mining, but are not permanent solutions. Sodium dithionite is being tested as part of a method to more permanently restore groundwater after ISR mining at the Smith-Ranch Highland site in Wyoming. Sodium dithionite is a chemical reductant that can reduce sediments that were oxidized during ISR. The reduced sediments can reduce soluble uranium (VI) in the groundwater to insoluble uranium (IV). Laboratory studies that use sodium dithionite to treat sediments and waters from the site may help predict how it will behave during a field deployment. An aqueous batch experiment showed that sodium dithionite reduced uranium in post-mined untreated groundwater from 38 ppm to less than 1 ppm after 1 day. A sediment reduction batch experiment showed that sodium dithionite-treated sediments were capable of reducing uranium in post-mined untreated groundwater from 38 ppm to 2 ppm after 7 days. One column experiment is showing post-mined sodium dithionite-treated sediments are capable of reducing uranium in post-mined groundwater for over 30 pore volumes past the initial injection. While these results are promising for field deployments of sodium dithionite, another column experiment with sodium dithionite-treated sediments containing uranium rich organic matter is showing net production of uranium instead of uranium uptake. Sodium dithionite appears to liberate uranium from the organic matter. Another sediment reduction experiment is being conducted to further investigate this hypothesis. These experiments are helping guide plans for field deployments of sodium dithionite at uranium ISR mining sites.
Dangelmayr, Martin A.; Reimus, Paul W.; Wasserman, Naomi L.; ...
2017-05-01
The purpose of this study was to determine the attenuation potential and retardation of uranium in sediments taken from boreholes at the Smith-Ranch Highland in-situ recovery (ISR) site. Five column experiments with four different sediments were conducted to study the effects of variable mineralogy and alkalinity on uranium breakthrough. Uranium transport was modeled with PHREEQC using a generalized composite surface complexation model (GC SCM) with one, two, and, three generic surfaces, respectively. Reactive surface areas were approximated with PEST using BET derived surface areas to constrain fitting parameters. Uranium breakthrough was delayed by a factor of 1.68, 1.69 and 1.47more » relative to the non-reactive tracer for three of the 5 experiments at an alkalinity of 540 mg/l. A sediment containing smectite and kaolinite retained uranium by a factor of 2.80 despite a lower measured BET surface area. Decreasing alkalinity to 360 mg/l from 540 mg/l increased retardation by a factor of 4.26. Model fits correlated well to overall BET surface area in the three columns where clay content was less than 1%. For the sediment with clay, models consistently understated uranium retardation when reactive surface sites were restricted by BET results. Calcite saturation was shown to be a controlling factor for uranium desorption as the pH of the system changes. A pH of 6 during a secondary background water flush remobilized previously sorbed uranium resulting in a secondary uranium peak at twice the influent concentrations. Furthermore, this study demonstrates the potential of GC SCM models to predict uranium transport in sediments with homogenous mineral composition, but highlights the need for further research to understand the role of sediment clay composition and calcite saturation in uranium transport.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dangelmayr, Martin A.; Reimus, Paul W.; Wasserman, Naomi L.
The purpose of this study was to determine the attenuation potential and retardation of uranium in sediments taken from boreholes at the Smith-Ranch Highland in-situ recovery (ISR) site. Five column experiments with four different sediments were conducted to study the effects of variable mineralogy and alkalinity on uranium breakthrough. Uranium transport was modeled with PHREEQC using a generalized composite surface complexation model (GC SCM) with one, two, and, three generic surfaces, respectively. Reactive surface areas were approximated with PEST using BET derived surface areas to constrain fitting parameters. Uranium breakthrough was delayed by a factor of 1.68, 1.69 and 1.47more » relative to the non-reactive tracer for three of the 5 experiments at an alkalinity of 540 mg/l. A sediment containing smectite and kaolinite retained uranium by a factor of 2.80 despite a lower measured BET surface area. Decreasing alkalinity to 360 mg/l from 540 mg/l increased retardation by a factor of 4.26. Model fits correlated well to overall BET surface area in the three columns where clay content was less than 1%. For the sediment with clay, models consistently understated uranium retardation when reactive surface sites were restricted by BET results. Calcite saturation was shown to be a controlling factor for uranium desorption as the pH of the system changes. A pH of 6 during a secondary background water flush remobilized previously sorbed uranium resulting in a secondary uranium peak at twice the influent concentrations. Furthermore, this study demonstrates the potential of GC SCM models to predict uranium transport in sediments with homogenous mineral composition, but highlights the need for further research to understand the role of sediment clay composition and calcite saturation in uranium transport.« less
Miller, Andrew W; Rodriguez, Derrick R; Honeyman, Bruce D
2013-05-01
Intermediate scale tank studies were conducted to examine the effects of physical heterogeneity of aquifer material on uranium desorption and subsequent transport in order to bridge the scaling gap between bench and field scale systems. Uranium contaminated sediment from a former uranium mill field site was packed into two 2-D tanks with internal dimensions of 2.44×1.22×0.076 m (tank 1) and 2.44×0.61×0.076 m (tank 2). Tank 1 was packed in a physically homogenous manner, and tank 2 was packed with long lenses of high and low conductivities resulting in different flow fields within the tanks. Chemical gradients within the flow domain were altered by temporal changes in influent water chemistry. The uranium source was desorption from the sediment. Despite the physical differences in the flow fields, there were minimal differences in global uranium leaching behavior between the two tanks. The dominant uranium species in both tanks over time and space was Ca2UO2(CO3)3(0). However, the uranium/alkalinity relationships varied as a function of time in tank 1 and were independent of time in tank 2. After planned stop-flow events, small, short-lived rebounds were observed in tank 1 while no rebound of uranium concentrations was observed in tank 2. Despite appearing to be in local equilibrium with respect to uranium desorption, a previously derived surface complexation model was insufficient to describe uranium partitioning within the flow domain. This is the first in a pair of papers; the companion paper presents an intermediate scale 3-D tank experiment and inter-tank comparisons. For these systems, physical heterogeneity at or above the decimeter scale does not affect global scale uranium desorption and transport. Instead, uranium fluxes are controlled by chemistry dependent desorption patterns induced by changing the influent ionic composition. Published by Elsevier B.V.
Hydrogeochemical and stream sediment detailed geochemical survey for Edgemont, South Dakota; Wyoming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butz, T.R.; Dean, N.E.; Bard, C.S.
1980-05-31
Results of the Edgemont detailed geochemical survey are reported. Field and laboratory data are presented for 109 groundwater and 419 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwaters containing greater than or equal to 7.35 ppB uranium are present in scattered clusters throughout the area sampled. Most of these groundwaters are from wells drilled where the Inyan Kara Group is exposed at themore » surface. The exceptions are a group of samples in the northwestern part of the area sampled and south of the Dewey Terrace. These groundwaters are also produced from the Inyan Kara Group where it is overlain by the Graneros Group and alluvium. The high uranium groundwaters along and to the south of the terrace are characterized by high molybdenum, uranium/specific conductance, and uranium/sulfate values. Many of the groundwaters sampled along the outcrop of the Inyan Kara Group are near uranium mines. Groundwaters have high amounts of uranium and molybdenum. Samples taken downdip are sulfide waters with low values of uranium and high values of arsenic, molybdenum, selenium, and vanadium. Stream sediments containing greater than or equal to 5.50 ppM soluble uranium are concentrated in basins draining the Graneros and Inyan Kara Groups. These values are associated with high values for arsenic, selenium, and vanadium in samples from both groups. Anomalous values for these elements in the Graneros Group may be caused by bentonite beds contained in the rock units. As shown on the geochemical distribution plot, high uranium values that are located in the Inyan Kara Group are almost exclusively draining open-pit uranium mines.« less
Mironov, Vladislav P; Matusevich, Janna L; Kudrjashov, Vladimir P; Boulyga, Sergei F; Becker, J Sabine
2002-12-01
This work presents experimental results on the distribution of irradiated reactor uranium from fallout after the accident at Chernobyl Nuclear Power Plant (NPP) in comparison to natural uranium distribution in different soil types. Oxidation processes and vertical migration of irradiated uranium in soils typical of the 30 km relocation area around Chernobyl NPP were studied using 236U as the tracer for irradiated reactor uranium and inductively coupled plasma mass spectrometry as the analytical method for uranium isotope ratio measurements. Measurements of natural uranium yielded significant variations of its concentration in upper soil layers from 2 x 10(-7) g g(-1) to 3.4 x 10(-6) g g(-1). Concentrations of irradiated uranium in the upper 0-10 cm soil layers at the investigated sampling sites varied from 5 x 10(-12) g g(-1) to 2 x 10(-6) g g(-1) depending on the distance from Chernobyl NPP. In the majority of investigated soil profiles 78% to 97% of irradiated "Chernobyl" uranium is still contained in the upper 0-10 cm soil layers. The physical and chemical characteristics of the soil do not have any significant influence on processes of fuel particle destruction. Results obtained using carbonate leaching of 236U confirmed that more than 60% of irradiated "Chernobyl" uranium is still in a tetravalent form, ie. it is included in the fuel matrix (non-oxidized fuel UO2). The average value of the destruction rate of fuel particles determined for the Western radioactive trace (k = 0.030 +/- 0.005 yr(-1)) and for the Northern radioactive trace (k = 0.035 + 0.009 yr(-1)) coincide within experimental errors. Use of leaching of fission products in comparison to leaching of uranium for study of the destruction rate of fuel particles yielded poor coincidence due to the fact that use of fission products does not take into account differences in the chemical properties of fission products and fuel matrix (uranium).
NASA Astrophysics Data System (ADS)
Miller, Andrew W.; Rodriguez, Derrick R.; Honeyman, Bruce D.
2013-05-01
Intermediate scale tank studies were conducted to examine the effects of physical heterogeneity of aquifer material on uranium desorption and subsequent transport in order to bridge the scaling gap between bench and field scale systems. Uranium contaminated sediment from a former uranium mill field site was packed into two 2-D tanks with internal dimensions of 2.44 × 1.22 × 0.076 m (tank 1) and 2.44 × 0.61 × 0.076 m (tank 2). Tank 1 was packed in a physically homogenous manner, and tank 2 was packed with long lenses of high and low conductivities resulting in different flow fields within the tanks. Chemical gradients within the flow domain were altered by temporal changes in influent water chemistry. The uranium source was desorption from the sediment. Despite the physical differences in the flow fields, there were minimal differences in global uranium leaching behavior between the two tanks. The dominant uranium species in both tanks over time and space was Ca2UO2(CO3)30. However, the uranium/alkalinity relationships varied as a function of time in tank 1 and were independent of time in tank 2. After planned stop-flow events, small, short-lived rebounds were observed in tank 1 while no rebound of uranium concentrations was observed in tank 2. Despite appearing to be in local equilibrium with respect to uranium desorption, a previously derived surface complexation model was insufficient to describe uranium partitioning within the flow domain. This is the first in a pair of papers; the companion paper presents an intermediate scale 3-D tank experiment and inter-tank comparisons. For these systems, physical heterogeneity at or above the decimeter scale does not affect global scale uranium desorption and transport. Instead, uranium fluxes are controlled by chemistry dependent desorption patterns induced by changing the influent ionic composition.
The roles of organic matter in the formation of uranium deposits in sedimentary rocks
Spirakis, C.S.
1996-01-01
Because reduced uranium species have a much smaller solubility than oxidized uranium species and because of the strong association of organic matter (a powerful reductant) with many uranium ores, reduction has long been considered to be the precipitation mechanism for many types of uranium deposits. Organic matter may also be involved in the alterations in and around tabular uranium deposits, including dolomite precipitation, formation of silicified layers, iron-titanium oxide destruction, dissolution of quartz grains, and precipitation of clay minerals. The diagenetic processes that produced these alterations also consumed organic matter. Consequently, those tabular deposits that underwent the more advanced stages of diagenesis, including methanogenesis and organic acid generation, display the greatest range of alterations and contain the smallest amount of organic matter. Because of certain similarities between tabular uranium deposits and Precambrian unconformity-related deposits, some of the same processes might have been involved in the genesis of Precambrian unconformity-related deposits. Hydrologic studies place important constraints on genetic models of various types of uranium deposits. In roll-front deposits, oxidized waters carried uranium to reductants (organic matter and pyrite derived from sulfate reduction by organic matter). After these reductants were oxidized at any point in the host sandstone, uranium minerals were reoxidized and transported further down the flow path to react with additional reductants. In this manner, the uranium ore migrated through the sandstone at a rate slower than the mineralizing ground water. In the case of tabular uranium deposits, the recharge of surface water into the ground water during flooding of lakes carried soluble humic material to the water table or to an interface where humate precipitated in tabular layers. These humate layers then established the chemical conditions for mineralization and related alterations. In the case of Precambrian unconformity-related deposits, free thermal convection in the thick sandstones overlying the basement rocks carried uranium to concentrations of organic matter in the basement rocks.
High strength uranium-tungsten alloys
Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.
1991-01-01
Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.
High strength uranium-tungsten alloy process
Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.
1990-01-01
Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.
40 CFR 471.70 - Applicability; description of the uranium forming subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... uranium forming subcategory. 471.70 Section 471.70 Protection of Environment ENVIRONMENTAL PROTECTION... POWDERS POINT SOURCE CATEGORY Uranium Forming Subcategory § 471.70 Applicability; description of the uranium forming subcategory. This subpart applies to discharges of pollutants to waters of the United...
40 CFR 471.70 - Applicability; description of the uranium forming subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... uranium forming subcategory. 471.70 Section 471.70 Protection of Environment ENVIRONMENTAL PROTECTION... POWDERS POINT SOURCE CATEGORY Uranium Forming Subcategory § 471.70 Applicability; description of the uranium forming subcategory. This subpart applies to discharges of pollutants to waters of the United...
40 CFR 471.70 - Applicability; description of the uranium forming subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... uranium forming subcategory. 471.70 Section 471.70 Protection of Environment ENVIRONMENTAL PROTECTION... POWDERS POINT SOURCE CATEGORY Uranium Forming Subcategory § 471.70 Applicability; description of the uranium forming subcategory. This subpart applies to discharges of pollutants to waters of the United...
75 FR 48305 - Kaibab National Forest; Arizona; Uranium Exploratory Drilling Project
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-10
... DEPARTMENT OF AGRICULTURE Forest Service Kaibab National Forest; Arizona; Uranium Exploratory... a notice of intent to prepare an Environmental Impact Statement for the Uranium Exploratory Drilling... this notice may be mailed or hand-delivered to Kaibab National Forest, Attn: VANE Minerals Uranium...
PROCESS OF PREPARING URANIUM CARBIDE
Miller, W.E.; Stethers, H.L.; Johnson, T.R.
1964-03-24
A process of preparing uranium monocarbide is de scribed. Uranium metal is dissolved in cadmium, zinc, cadmium-- zinc, or magnesium-- zinc alloy and a small quantity of alkali metal is added. Addition of stoichiometric amounts of carbon at 500 to 820 deg C then precipitates uranium monocarbide. (AEC)
NASA Astrophysics Data System (ADS)
Nxumalo, V.; Kramers, J.; Mongwaketsi, N.; Przybyłowicz, W. J.
2017-08-01
Uranium occurrence and characterisation in the coal samples of the upper coal zones of the Vryheid Formation and mudstones of the Volksrust Formation was investigated using micro-PIXE (Proton-Induced X-ray Emission) and proton backscattering spectrometry (BS) in conjunction with the nuclear microprobe. Two styles of uranium mineralisation in the Springbok Flats Basin were found: syngenetic mineralisation in which uranium occurs organically bound with coal matrix, with no discrete uranium minerals formed, and epigenetic mineralisation in which uranium occurs in veins that are filled with coffinite with botryoidal texture in the mudstones of the Volksrust Formation, overlying the coal zones. Micro-PIXE analysis made it possible to map out trace elements (including uranium) associated with the coals at low levels of detection, which other techniques such as SEM-EDS and ore microscopy failed. This information will help in better understanding of the best extraction methods to be employed to recover uranium from the coals of the Springbok Flats Basin.
Biogeochemical prospecting for uranium with conifers: results from the Midnite Mine area, Washington
Nash, J. Thomas; Ward, Frederick Norville
1977-01-01
The ash of needles, cones, and duff from Ponderosa pine (Pinus ponderosa Laws) growing near uranium deposits of the Midnite mine, Stevens County, Wash., contain as much as 200 parts per million (ppm) uranium. Needle samples containing more than 10 ppm uranium define zones that correlate well with known uranium deposits or dumps. Dispersion is as much as 300 m but generally is less. Background is about 1 ppm. Tree roots are judged to be sampling ore, low-grade uranium halo, or ground water to a depth of about 15 m. Uptake of uranium by Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) needles appears to be about the same as by Ponderosa pine needles. Cones and duff are generally enriched in uranium relate to needles. Needles, cones, and duff are recommended as easily collected, uncomplicated sample media for geochemical surveys. Samples can be analyzed by standard methods and total cost per sample kept to about $6.
Ostendorp, G
2015-04-01
In this study the drinking water of 212 small-scale water supplies, mainly situated in areas with intensive agriculture or fruit-growing, was analysed for uranium. The median uranium concentration amounted to 0.04 µg/lL, the 95(th) percentile was 2.5 µg/L. The maximum level was 14 µg/L. This sample exceeded the guideline value for uranium in drinking water. The uranium concentration in small-scale water supplies was found to be slightly higher than that in central water works in Schleswig-Holstein. Water containing more than 10 mg/L nitrate showed significantly higher uranium contents. The results indicate that the uranium burden in drinking water from small wells is mainly determined by geological factors. An additional anthropogenic effect of soil management cannot be excluded. Overall uranium concentrations were low and not causing health concerns. However, in specific cases higher concentrations may occur. © Georg Thieme Verlag KG Stuttgart · New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reilly, Sean Douglas; May, Iain; Copping, Roy
A process for minimizing waste and maximizing utilization of uranium involves recovering uranium from an irradiated solid target after separating the medical isotope product, molybdenum-99, produced from the irradiated target. The process includes irradiating a solid target comprising uranium to produce fission products comprising molybdenum-99, and thereafter dissolving the target and conditioning the solution to prepare an aqueous nitric acid solution containing irradiated uranium. The acidic solution is then contacted with a solid sorbent whereby molybdenum-99 remains adsorbed to the sorbent for subsequent recovery. The uranium passes through the sorbent. The concentrations of acid and uranium are then adjusted tomore » concentrations suitable for crystallization of uranyl nitrate hydrates. After inducing the crystallization, the uranyl nitrate hydrates are separated from a supernatant. The process results in the purification of uranyl nitrate hydrates from fission products and other contaminants. The uranium is therefore available for reuse, storage, or disposal.« less
Molecular dynamics analysis of diffusion of uranium and oxygen ions in uranium dioxide
NASA Astrophysics Data System (ADS)
Arima, T.; Yoshida, K.; Idemitsu, K.; Inagaki, Y.; Sato, I.
2010-03-01
Diffusion behaviours of oxygen and uranium were evaluated for bulk and grain-boundaries of uranium dioxide using the molecular dynamics (MD) simulation. It elucidated that oxygen behaved like liquid in superionic state at high temperatures and migrated on sub-lattice sites accompanying formation of lattice defects such as Frenkel defects at middle temperatures. Formation energies of Frenkel and Shottky defects were compared to literature data, and migration energies of oxygen and uranium were estimated by introducing vacancies into the supercell. For grain-boundaries (GB) modelled by the coincidence-site lattice theory, MD calculations showed that GB energy and diffusivities of oxygen and uranium increased with the misorientation angle. By analysing GB structures such as pair-correlation functions, it also showed that the disordered phase was observed for uranium as well as oxygen in GBs especially for a large misorientation angle such as S5 GB. Hence, GB diffusion was much larger than bulk diffusion for oxygen and uranium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mujaini, M., E-mail: madihah@uniten.edu.my; Chankow, N.; Yusoff, M. Z.
2016-01-22
Uranium ore can be easily detected due to various gamma-ray energies emitted from uranium daughters particularly from {sup 238}U daughters such as {sup 214}Bi, {sup 214}Pb and {sup 226}Ra. After uranium is extracted from uranium ore, only low energy gamma-rays emitted from {sup 235}U may be detected if the detector is placed in close contact to the specimen. In this research, identification and characterization of uranium bearing materials is experimentally investigated using direct measurement of gamma-rays from {sup 235}U in combination with the x-ray fluorescence (XRF) technique. Measurement of gamma-rays can be conducted by using high purity germanium (HPGe) detectormore » or cadmium telluride (CdTe) detector while a {sup 57}Coradioisotope-excited XRF spectrometer using CdTe detector is used for elemental analysis. The proposed technique was tested with various uranium bearing specimens containing natural, depleted and enriched uranium in both metallic and powder forms.« less
Uranium XAFS analysis of kidney from rats exposed to uranium
Kitahara, Keisuke; Numako, Chiya; Terada, Yasuko; Nitta, Kiyohumi; Homma-Takeda, Shino
2017-01-01
The kidney is the critical target of uranium exposure because uranium accumulates in the proximal tubules and causes tubular damage, but the chemical nature of uranium in kidney, such as its chemical status in the toxic target site, is poorly understood. Micro-X-ray absorption fine-structure (µXAFS) analysis was used to examine renal thin sections of rats exposed to uranyl acetate. The U L III-edge X-ray absorption near-edge structure spectra of bulk renal specimens obtained at various toxicological phases were similar to that of uranyl acetate: their edge position did not shift compared with that of uranyl acetate (17.175 keV) although the peak widths for some kidney specimens were slightly narrowed. µXAFS measurements of spots of concentrated uranium in the micro-regions of the proximal tubules showed that the edge jump slightly shifted to lower energy. The results suggest that most uranium accumulated in kidney was uranium (VI) but a portion might have been biotransformed in rats exposed to uranyl acetate. PMID:28244440
Uranium XAFS analysis of kidney from rats exposed to uranium.
Kitahara, Keisuke; Numako, Chiya; Terada, Yasuko; Nitta, Kiyohumi; Shimada, Yoshiya; Homma-Takeda, Shino
2017-03-01
The kidney is the critical target of uranium exposure because uranium accumulates in the proximal tubules and causes tubular damage, but the chemical nature of uranium in kidney, such as its chemical status in the toxic target site, is poorly understood. Micro-X-ray absorption fine-structure (µXAFS) analysis was used to examine renal thin sections of rats exposed to uranyl acetate. The U L III -edge X-ray absorption near-edge structure spectra of bulk renal specimens obtained at various toxicological phases were similar to that of uranyl acetate: their edge position did not shift compared with that of uranyl acetate (17.175 keV) although the peak widths for some kidney specimens were slightly narrowed. µXAFS measurements of spots of concentrated uranium in the micro-regions of the proximal tubules showed that the edge jump slightly shifted to lower energy. The results suggest that most uranium accumulated in kidney was uranium (VI) but a portion might have been biotransformed in rats exposed to uranyl acetate.
Kilner, S.B.
1959-12-29
A method is presented for separating and recovering uranium from a complex mixure of impurities. The uranium is dissolved to produce an aqueous acidic solution including various impurities. In accordance with one method, with the uranium in the uranyl state, hydrogen cyanide is introduced into the solution to complex the impurities. Subsequently, ammonia is added to the solution to precipitate the uraniunn as ammonium diuranate away from the impurities in the solution. Alternatively, the uranium is precipitated by adding an alkaline metal hydroxide. In accordance with the second method, the uranium is reduced to the uranous state in the solution. The reduced solution is then treated with solid alkali metal cyanide sufficient to render the solution about 0.1 to 1.0 N in cyanide ions whereat cyanide complex ions of the metal impurities are produced and the uranium is simultaneously precipituted as uranous hydroxide. Alternatively, hydrogen cyanide may be added to the reduced solution and the uranium precipitated subsequently by adding ammonium hydroxide or an alkali metal hydroxide. Other refinements of the method are also disclosed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermann, S.D.; Gese, N.J.; Wurth, L.A.
An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electro-metallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li{sub 2}O at 650 C. degrees with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide.more » In the absence of zirconium or sodium oxide, the electrolytic reduction of MnO showed nearly complete conversion to metal. The electrolytic reduction of a blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O showed substantial reduction of manganese, but only 8.5% of the zirconium was found in the metal phase. The electrolytic reduction of the same blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O - 6.2 wt% Na{sub 2}O showed substantial reduction of manganese, but zirconium reduction was even less at 2.4%. This study concluded that ZrO{sub 2} cannot be substantially reduced to metal in an electrolytic reduction system with LiCl - 1 wt% Li{sub 2}O at 650 C. degrees due to the perceived preferential formation of lithium zirconate. This study also identified a possible interference that sodium oxide may have on the same system by introducing a parasitic and cyclic reaction of dissolved sodium metal between oxidation at the anode and reduction at the cathode. When applied to oxidized sodium-bonded EBR-II fuel (e.g., U-10Zr), the prescribed electrolytic reduction system would not be expected to substantially reduce zirconium oxide, and the accumulation of sodium in the electrolyte could interfere with the reduction of uranium oxide, or at least render it less efficient.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shafer, David S.; Vanek, Tim; Ribeiro, Tracy
By the end of fiscal year 2025, the U.S. Department of Energy (DOE) Office of Legacy Management (LM) is anticipating adding 17 sites remediated under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) to the current inventory of 90 sites that it manages. Among the new sites are ones where federal public lands occur within the proposed long-term care boundary, the boundary determined by the Nuclear Regulatory Commission and LM as necessary to maintain site protectiveness for the entombed uranium mill tailings and residual groundwater contamination. For these sites, public land withdrawals for land and minerals willmore » need to be established. LM’s primary mission at UMTRCA sites is to protect the public and the environment from exposure to contamination at the sites. For the sites with public lands or federally controlled minerals that will be transferring to LM, the Office will apply to the Department of the Interior (DOI) Bureau of Land Management (BLM) for new, public land and mineral withdrawals. At most current LM UMTRCA sites that involved public lands and minerals, DOI granted DOE “full administrative jurisdiction” and permanent withdrawals. Hence, these withdrawals are, permanently, no longer subject to public land, mining, and mineral-leasing laws and regulations. LM is coordinating with DOI/BLM in Wyoming to permanently withdraw full and partial jurisdiction at future UMTRCA Title II sites in that state. This approach would allow LM to fully administer surface lands and minerals, where necessary, and DOI and LM to administer surface lands and leasable minerals where it would not jeopardize sites’ radiological safety and long-term public and environmental protection. This “shared-jurisdiction approach” will meet LM’s strategic goal of protecting human health and the environment but also allow BLM to fulfill their mission to “manage and conserve the lands under the mandate of multiple-use and sustained yield.” In addition, LM could also fulfill the fourth goal of its Strategic Plan, to optimize land use and assets.« less
RECOVERY OF URANIUM FROM PITCHBLENDE
Ruehle, A.E.
1958-06-24
The decontamination of uranium from molybdenum is described. When acid solutions containing uranyl nitrate are contacted with ether for the purpose of extracting the uranium values, complex molybdenum compounds are coextracted with the uranium and also again back-extracted from the ether with the uranium. This invention provides a process for extracting uranium in which coextraction of molybdenum is avoided. It has been found that polyhydric alcohols form complexes with molybdenum which are preferentially water-soluble are taken up by the ether extractant to only a very minor degree. The preferred embodiment of the process uses mannitol, sorbitol or a mixture of the two as the complexing agent.
Removal of uranium from aqueous HF solutions
Pulley, Howard; Seltzer, Steven F.
1980-01-01
This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.