Thorium and Uranium in the Rock Raw Materials Used For the Production of Building Materials
NASA Astrophysics Data System (ADS)
Pękala, Agnieszka
2017-10-01
Thorium and uranium are constant components of all soils and most minerals thereby rock raw materials. They belong to the particularly dangerous elements because of their natural radioactivity. Evaluation of the content of the radioactive elements in the rock raw materials seems to be necessary in the early stage of the raw material evaluation. The rock formations operated from deposits often are accumulated in landfills and slag heaps where the concentration of the radioactive elements can be many times higher than under natural conditions. In addition, this phenomenon may refer to buildings where rock raw materials are often the main components of the construction materials. The global control system of construction products draws particular attention to the elimination of used construction products containing excessive quantities of the natural radioactive elements. In the presented study were determined the content of thorium and uranium in rock raw materials coming from the Bełachatów lignite deposit. The Bełchatów lignite deposit extracts mainly lignite and secondary numerous accompanying minerals with the raw material importance. In the course of the field works within the framework of the carried out work has been tested 92 samples of rocks of varied petrographic composition. There were carried out analyses of the content of the radioactive elements for 50 samples of limestone of the Jurassic age, 18 samples of kaolinite clays, and 24 samples of siliceous raw materials, represented by opoka-rocks, diatomites, gaizes and clastic rocks. The measurement of content of the natural radioactive elements thorium and uranium based on measuring the frequency counts of gamma quantum, recorded separately in measuring channels. At the same time performed measurements on volume patterns radioactive: thorium and uranium. The studies were carried out in Mazar spectrometer on the powdered material. Standardly performed ten measuring cycles, after which were calculated the concentration of radioactive elements in the sample. The highest concentration of thorium and uranium has been found in the clayey raw material. Their value was respectively from 8 to 12 mg/kg for thorium and from 2.3 to 3.5 mg/kg for uranium. In carbonate sediments the content of thorium was at the level from 0.5 to 2.1 mg/kg and uranium from 0.5-2.2 mg/kg. From a group of the siliceous raw materials the diatomite had a highest concentrations of radioactive elements where the content of thorium was from 1.5 to 1.8 mg/kg and uranium from 1.3 to 1.7 mg/kg.
RECOVERY OF URANIUM VALUES FROM URANIUM BEARING RAW MATERIALS
Michal, E.J.; Porter, R.R.
1959-06-16
Uranium leaching from ground uranium-bearing raw materials using MnO/sub 2/ in H/sub 2/SO/sub 4/ is described. The MnO/sub 2/ oxidizes U to the leachable hexavalent state. The MnO/sub 2/ does not replace Fe normally added, because the Fe complexes P and catalyzes the MnO/sub 2/ reaction. Three examples of continuous processes are given, but batch operation is also possible. The use of MnO/sub 2/ makes possible recovery of very low U values. (T.R.H.)
PROCESS FOR PRODUCING URANIUM TETRAFLUORIDE
Harvey, B.G.
1954-09-14
>This patent relates to improvements in the method for producing uranium tetrafluoride by treating an aqueous solutlon of a uranyl salt at an elevated temperature with a reducing agent effective in acld solutlon in the presence of hydrofluoric acid. Uranium tetrafluoride produced this way frequentiy contains impurities in the raw material serving as the source of uranium. Uranium tetrafluoride much less contaminated with impurities than when prepared by the above method can be prepared from materials containing such impurities by first adding a small proportion of reducing agent so as to cause a small fraction, for example 1 to 5% of the uranium tetrafluoride to be precipitated, rejecting such precipitate, and then precipitating and recovering the remainder of the uranium tetrafluoride.
NASA Astrophysics Data System (ADS)
Reed, B. Cameron
2014-12-01
The feed materials program of the Manhattan Project was responsible for procuring uranium-bearing ores and materials and processing them into forms suitable for use as source materials for the Project's uranium-enrichment factories and plutonium-producing reactors. This aspect of the Manhattan Project has tended to be overlooked in comparison with the Project's more dramatic accomplishments, but was absolutely vital to the success of those endeavors: without appropriate raw materials and the means to process them, nuclear weapons and much of the subsequent cold war would never have come to pass. Drawing from information available in Manhattan Engineer District Documents, this paper examines the sources and processing of uranium-bearing materials used in making the first nuclear weapons and how the feed materials program became a central foundational component of the postwar nuclear weapons complex.
Uranium Mining and Norm in North America-Some Perspectives on Occupational Radiation Exposure.
Brown, Steven H; Chambers, Douglas B
2017-07-01
All soils and rocks contain naturally occurring radioactive materials (NORM). Many ores and raw materials contain relatively elevated levels of natural radionuclides, and processing such materials can further increase the concentrations of naturally occurring radionuclides. In the U.S., these materials are sometimes referred to as technologically-enhanced naturally occurring radioactive materials (TENORM). Examples of NORM minerals include uranium ores, monazite (a source of rare earth minerals), and phosphate rock used to produce phosphate fertilizer. The processing of these materials has the potential to result in above-background radiation exposure to workers. Following a brief review of the sources and potential for worker exposure from NORM in these varied industries, this paper will then present an overview of uranium mining and recovery in North America, including discussion on the mining methods currently being used for both conventional (underground, open pit) and in situ leach (ISL), also referred to as In Situ Recovery (ISR), and the production of NORM materials and wastes associated with these uranium recovery methods. The radiological composition of the NORM products and wastes produced and recent data on radiological exposures received by workers in the North American uranium recovery industry are then described. The paper also identifies the responsible government agencies in the U.S. and Canada assigned the authority to regulate and control occupational exposure from these NORM materials.
NASA Astrophysics Data System (ADS)
Alnour, I. A.; Wagiran, H.; Ibrahim, N.; Hamzah, S.; Elias, M. S.
2017-01-01
Amang or tin tailing is processed into concentrated ores and other economical valuable minerals such as monazite, zircon, xenotime, ilmenite etc. Besides that, the tailings from these ores may have a significant potential source of radiation exposure to amang plants' workers. This study was conducted to determine the elemental concentration of uranium and thorium in mineral samples collected from five amang tailing factories. The concentration of uranium and thorium was carried out by using instrumental neutron activation analysis (INAA) relative technique. The concentration of uranium and thorium in ppm obtained in this study are as follows: raw (189-1064) and (622-4965); monazite (1076-1988) and (3467-33578); xenotime 4053 and 5540; zircon (309-3090) and (387-6339); ilmenite (104-583) and (88-1205); rutile (212-889) and (44-1119); pyrite (7-43) and (9-132); and waste (5-338) and (9-1218) respectively. The analysis results shows that the monazite, xenotime and zircon have high content of uranium and thorium, whereas ilmenite, rutile, pyrite and waste have lower concentration compare with raw materials after tailing process. The highest values of uranium and thorium concentrations (4053 ± 428 ppm and 33578 ± 873 ppm, respectively) were observed in xenotime and monazite; whereas the lowest value was 5.48 ± 0.86 ppm of uranium recorded in waste (sand) and 9 ± 0.32 ppm of thorium for waste (sand) and pyrite.
Detection of tiny amounts of fissile materials in large-sized containers with radioactive waste
NASA Astrophysics Data System (ADS)
Batyaev, V. F.; Skliarov, S. V.
2018-01-01
The paper is devoted to non-destructive control of tiny amounts of fissile materials in large-sized containers filled with radioactive waste (RAW). The aim of this work is to model an active neutron interrogation facility for detection of fissile ma-terials inside NZK type containers with RAW and determine the minimal detectable mass of U-235 as a function of various param-eters: matrix type, nonuniformity of container filling, neutron gen-erator parameters (flux, pulse frequency, pulse duration), meas-urement time. As a result the dependence of minimal detectable mass on fissile materials location inside container is shown. Nonu-niformity of the thermal neutron flux inside a container is the main reason of the space-heterogeneity of minimal detectable mass in-side a large-sized container. Our experiments with tiny amounts of uranium-235 (<1 g) confirm the detection of fissile materials in NZK containers by using active neutron interrogation technique.
Li, Juan; Yang, Xiaodan; Bai, Chiyao; Tian, Yin; Li, Bo; Zhang, Shuang; Yang, Xiaoyu; Ding, Songdong; Xia, Chuanqin; Tan, Xinyu; Ma, Lijian; Li, Shoujian
2015-01-01
A novel COF-based material (COF-COOH) containing large amounts of carboxylic groups was prepared for the first time by using a simple and effective one-step synthetic method, in which the cheap and commercially available raw materials, trimesoyl chloride and p-phenylenediamine, were used. The as-synthesized COF-COOH was modified with previously synthesized 2-(2,4-dihydroxyphenyl)-benzimidazole (HBI) by "grafting to" method, and a new solid-phase extractant (COF-HBI) with highly efficient sorption performance for uranium(VI) was consequently obtained. A series of characterizations demonstrated that COF-COOH and COF-HBI exhibited great thermostabilities and irradiation stabilities. Sorption behavior of the COF-based materials toward U(VI) was compared in simulated nuclear industrial effluent containing UO2(2+) and 11 undesired ions, and the UO2(2+) sorption amount of COF-HBI was 81 mg g(-1), accounting for approximately 58% of the total sorption amount, which was much higher than the sorption selectivity of COF-COOH to UO2(2+) (39%). Batch sorption experiment results indicated that the uranium(VI) sorption on COF-HBI was a pH dependent, rapid (sorption equilibrium was reached in 30 min), endothermic and spontaneous process. In the most favorable conditions, the equilibrium sorption capacity of the adsorbent for uranium could reach 211 mg g(-1). Copyright © 2014 Elsevier Inc. All rights reserved.
Balboni, Enrica; Jones, Nina; Spano, Tyler; ...
2016-08-31
This study reports major, minor, and trace element data and Sr isotope ratios for 11 uranium ore (uraninite, UO 2+x) samples and one processed uranium ore concentrate (UOC) from various U.S. deposits. The uraninite investigated represent ores formed via different modes of mineralization (e.g., high- and low-temperature) and within various geological contexts, which include magmatic pegmatites, metamorphic rocks, sandstone-hosted, and roll front deposits. In situ trace element data obtained by laser ablation-ICP-MS and bulk sample Sr isotopic ratios for uraninite samples investigated here indicate distinct signatures that are highly dependent on the mode of mineralization and host rock geology. Relativemore » to their high-temperature counterparts, low-temperature uranium ores record high U/Th ratios (>1000), low total rare earth element (REE) abundances (<1 wt%), high contents (>300 ppm) of first row transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), and radiogenic 87Sr/ 86Sr ratios (>0.7200). Comparison of chondrite normalized REE patterns between uraninite and corresponding processed UOC from the same locality indicates identical patterns at different absolute concentrations. Lastly, this result ultimately confirms the importance of establishing geochemical signatures of raw, uranium ore materials for attribution purposes in the forensic analysis of intercepted nuclear materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balboni, Enrica; Jones, Nina; Spano, Tyler
This study reports major, minor, and trace element data and Sr isotope ratios for 11 uranium ore (uraninite, UO 2+x) samples and one processed uranium ore concentrate (UOC) from various U.S. deposits. The uraninite investigated represent ores formed via different modes of mineralization (e.g., high- and low-temperature) and within various geological contexts, which include magmatic pegmatites, metamorphic rocks, sandstone-hosted, and roll front deposits. In situ trace element data obtained by laser ablation-ICP-MS and bulk sample Sr isotopic ratios for uraninite samples investigated here indicate distinct signatures that are highly dependent on the mode of mineralization and host rock geology. Relativemore » to their high-temperature counterparts, low-temperature uranium ores record high U/Th ratios (>1000), low total rare earth element (REE) abundances (<1 wt%), high contents (>300 ppm) of first row transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), and radiogenic 87Sr/ 86Sr ratios (>0.7200). Comparison of chondrite normalized REE patterns between uraninite and corresponding processed UOC from the same locality indicates identical patterns at different absolute concentrations. Lastly, this result ultimately confirms the importance of establishing geochemical signatures of raw, uranium ore materials for attribution purposes in the forensic analysis of intercepted nuclear materials.« less
NASA Astrophysics Data System (ADS)
Streicher, Michael; Brown, Steven; Zhu, Yuefeng; Goodman, David; He, Zhong
2016-10-01
To accurately characterize shielded special nuclear materials (SNM) using passive gamma-ray spectroscopy measurement techniques, the effective atomic number and the thickness of shielding materials must be measured. Intervening materials between the source and detector may affect the estimated source isotopics (uranium enrichment and plutonium grade) for techniques which rely on raw count rates or photopeak ratios of gamma-ray lines separated in energy. Furthermore, knowledge of the surrounding materials can provide insight regarding the configuration of a device containing SNM. The described method was developed using spectra recorded using high energy resolution CdZnTe detectors, but can be expanded to any gamma-ray spectrometers with energy resolution of better than 1% FWHM at 662 keV. The effective atomic number, Z, and mass thickness of the intervening shielding material are identified by comparing the relative attenuation of different gamma-ray lines and estimating the proportion of Compton scattering interactions to photoelectric absorptions within the shield. While characteristic Kα x-rays can be used to identify shielding materials made of high Z elements, this method can be applied to all shielding materials. This algorithm has adequately estimated the effective atomic number for shields made of iron, aluminum, and polyethylene surrounding uranium samples using experimental data. The mass thicknesses of shielding materials have been estimated with a standard error of less than 1.3 g/cm2 for iron shields up to 2.5 cm thick. The effective atomic number was accurately estimated to 26 ± 5 for all iron thicknesses.
A METHOD OF PREPARING URANIUM DIOXIDE
Scott, F.A.; Mudge, L.K.
1963-12-17
A process of purifying raw, in particular plutonium- and fission- products-containing, uranium dioxide is described. The uranium dioxide is dissolved in a molten chloride mixture containing potassium chloride plus sodium, lithium, magnesium, or lead chloride under anhydrous conditions; an electric current and a chlorinating gas are passed through the mixture whereby pure uranium dioxide is deposited on and at the same time partially redissolved from the cathode. (AEC)
Einian, Mohammad Reza; Aghamiri, Seyed Mahmood Reza; Ghaderi, Reza
2015-11-01
Applying Artificial Neural Network to an alpha spectrometry system is a good idea to discriminate the composition of environmental and non-environmental materials by the estimation of the (234)U/(238)U activity ratio. Because it eliminates limitations of classical approaches by the extraction the desired information from the average of a partial uranium raw spectrum. The network was trained by an alpha spectrum library which was developed in this work. The results indicated that there was a small difference between the target values and the predictions. These results were acceptable, because the thickness of samples and the inferring elements were different in the real library. Copyright © 2015 Elsevier Ltd. All rights reserved.
Technological pretreatment of the synchysite non-oxidized ore
NASA Astrophysics Data System (ADS)
Munkhtsetseg, B.; Burmaa, G.
2013-06-01
Mongolia has rich deposits of rare, precious, and poly-metallic ores. Nowadays, it is important to research separation of rare earth elements oxides concentrates from the ores, analyze their unique physical chemical characteristics, and purified it. Our investigation on raw materials focuses on rare earth non-oxidized ores. Main mineral in this rock sample is Synchysite (LnCa(CO3)2F. We did technological and thermal pretreatment: direct sulphurization (H2SO4), sulphurization with subsequent roasting (800°C+H2SO4), sulphurization prior to roasting (H2SO4+650°C). Sulphurization method based on dissolution of rare earth mineral into sulfuric acid (93%) according to the reaction. The amount of rare earth element oxides is almost 10 times greater (29.16%) after direct sulphurization process, almost 8 times greater (21.14%) after sulphurization with subsequent roasting, and almost 20 times greater (44.62%) after sulphurization prior to roasting process. After those technological pretreatment raw material's micro elements Thorium and Uranium contents are reduced as follows: H2SO4>800°C+H2SO4>H2SO4+650°C. These results show that cerium group rare earth elements have very good solubility in water at +2°C temperature and decreasing micro elements content uranium and thorium good pretreatment condition is prior to roasting (H2SO4+650°C) of synchysite non-oxidized ore.
Natural uranium impairs the differentiation and the resorbing function of osteoclasts.
Gritsaenko, Tatiana; Pierrefite-Carle, Valérie; Lorivel, Thomas; Breuil, Véronique; Carle, Georges F; Santucci-Darmanin, Sabine
2017-04-01
Uranium is a naturally occurring radionuclide ubiquitously present in the environment. The skeleton is the main site of uranium long-term accumulation. While it has been shown that natural uranium is able to perturb bone metabolism through its chemical toxicity, its impact on bone resorption by osteoclasts has been poorly explored. Here, we examined for the first time in vitro effects of natural uranium on osteoclasts. The effects of uranium on the RAW 264.7 monocyte/macrophage mouse cell line and primary murine osteoclastic cells were characterized by biochemical, molecular and functional analyses. We observed a cytotoxicity effect of uranium on osteoclast precursors. Uranium concentrations in the μM range are able to inhibit osteoclast formation, mature osteoclast survival and mineral resorption but don't affect the expression of the osteoclast gene markers Nfatc1, Dc-stamp, Ctsk, Acp5, Atp6v0a3 or Atp6v0d2 in RAW 274.7 cells. Instead, we observed that uranium induces a dose-dependent accumulation of SQSTM1/p62 during osteoclastogenesis. We show here that uranium impairs osteoclast formation and function in vitro. The decrease in available precursor cells, as well as the reduced viability of mature osteoclasts appears to account for these effects of uranium. The SQSTM1/p62 level increase observed in response to uranium exposure is of particular interest since this protein is a known regulator of osteoclast formation. A tempting hypothesis discussed herein is that SQSTM1/p62 dysregulation contributes to uranium effects on osteoclastogenesis. We describe cellular and molecular effects of uranium that potentially affect bone homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.
Possibilities and limits concerning the substitution of oil by nuclear energy and coal
NASA Astrophysics Data System (ADS)
Penczynski, P.
1981-05-01
The energy situation in West Germany is discussed. About 96% of the crude oil consumed has to be imported. It is pointed out that this situation together with general developments concerning the diminishing petroleum resources of the world will make it necessary to replace the oil with other energy carriers. Coal resources in West Germany are large enough to last for a few hundred years. However, the consumption of coal as energy carrier should not exceed certain limits in connection with ecological considerations. Uranium as raw material for nuclear energy must also be imported. However, the quantities involved are very small, in connection with the high-energy density of the material. Consequently, a storage of uranium corresponding to a large amount of energy does not present any problems. Various approaches for replacing oil are discussed, taking into account the heat pump, possibilities for storing electric energy generated during the night, automobiles operated with electric energy, energy carriers obtained from coal, and the direct use of coal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James
The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing at Woods Hole Oceanographic Institution with the ORNL AF1 adsorbent produced 15% and 55% higher adsorption capacities than observed at PNNL for column and flume testing, respectively. Variations in competing ions may be the explanation for the regional differences. In addition to marine testing, a number of other efforts are underway to characterize adsorbents and impacts of deployment on the marine environment. Highlights include: Hydrodynamic modelling predicts that a farm of adsorbent materials will likely have minimal effect on ocean currents and removal of uranium and other elements from seawater when densities are < 1800 braids/km 2. A decrease in U adsorption capacity of up to 30% was observed after 42 days of exposure due to biofouling when the ORNL braided adsorbent AI8 was exposed to raw seawater in a flume in the presence of light. An identical raw seawater exposure with no light exposure showed little or no impact to adsorption capacity from biofouling. No toxicity was observed with column effluents of any absorbent materials tested to date. Toxicity could be induced with some non amidoxime-based absorbents only when the ratio of solid absorbent to test media was increased to highly unrealistic levels. Thermodynamic modeling of the seawater-amidoxime adsorbent was performed using the geochemical modeling program PHREEQC. Modeling of the binding of Ca, Mg, Fe, Ni, Cu, U, and V from batch interactions with seawater across a variety of concentrations of the amidoxime binding group reveal that when binding sites are limited (1 x 10 -8 binding sites/kg seawater), vanadium heavily out-competes other ions for the amidoxime sites. In contrast, when binding sites are abundant magnesium and calcium dominate the total percentage of metals bound to the sorbent.« less
Gill, Gary A.; Kuo, Li -Jung; Janke, Christopher James; ...
2016-02-07
The Pacific Northwest National Laboratory's (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage. Marine testing at Woods Hole Oceanographic Institution with the ORNL AF1 adsorbent produced 15% and 55% higher adsorption capacities than observed at PNNL for column and flume testing, respectively. Variations in competing ions may be the explanation for the regional differences. In addition to marine testing, a number of other efforts are underway to characterize adsorbents and impacts of deployment on the marine environment. Highlights include: Hydrodynamic modelling predicts that a farm of adsorbent materials will likely have minimal effect on ocean currents and removal of uranium and other elements from seawater when densities are < 1800 braids/km 2. A decrease in U adsorption capacity of up to 30% was observed after 42 days of exposure due to biofouling when the ORNL braided adsorbent AI8 was exposed to raw seawater in a flume in the presence of light. An identical raw seawater exposure with no light exposure showed little or no impact to adsorption capacity from biofouling. No toxicity was observed with column effluents of any absorbent materials tested to date. Toxicity could be induced with some non amidoxime-based absorbents only when the ratio of solid absorbent to test media was increased to highly unrealistic levels. Thermodynamic modeling of the seawater-amidoxime adsorbent was performed using the geochemical modeling program PHREEQC. Modeling of the binding of Ca, Mg, Fe, Ni, Cu, U, and V from batch interactions with seawater across a variety of concentrations of the amidoxime binding group reveal that when binding sites are limited (1 x 10 -8 binding sites/kg seawater), vanadium heavily out-competes other ions for the amidoxime sites. In contrast, when binding sites are abundant magnesium and calcium dominate the total percentage of metals bound to the sorbent.« less
Reconnaissance for uranium in the coal of Sao Paulo, Santa Catarina, and Rio Grande do Sul, Brazil
Haynes, Donald D.; Pierson, Charles T.; White, Max G.
1958-01-01
Uranium-bearing coal and carbonaceous shale of the Rio Bonito formation of Pennsylvanian age have been found in the States of Sao Paulo, Santa Catarlna and Rio Grande do Sul, Brazil. The uranium oxide content of the samples collected in the State of Sao Paulo ranges from 0.001 percent to 0.082 percent. The samples collected in Santa Catarina averaged about 0.002 percent uranium oxide; those collected in Rio Grande do Sul, about 0.003 percent uranium oxide. Since the field and laboratory investigations are still in their initial stages, only raw data on the radioactivity and uranium content of Brazilian coals are given in this report.
Adamson, Matthew
2016-03-01
This study explores the origins and consequences of a unique, secret, French-American collaboration to prospect for uranium in 1950s Morocco. This collaboration permitted mediation between the United States and France. The appearance of France in an American-supported project for raw nuclear materials signalled American willingness to accept a new nuclear global order in which the French assumed a new, higher position as regional nuclear ally as opposed to suspicious rival. This collaboration also permitted France and the United States to agree tacitly to the same geopolitical status for the French Moroccan Protectorate, a status under dispute both in Morocco and outside it. The secret scientific effort reassured the French that, whatever the Americans might say publicly, they stood behind the maintenance of French hegemony in the centuries-old kingdom. But Moroccan independence proved impossible to deny. With its foreseeable arrival, the collaboration went from seductive to dangerous, and the priority of American and French geologists shifted from finding a major uranium lode to making sure that nothing was readily available to whatever post-independence interests might prove most powerful. Ultimately, the Kingdom of Morocco took a page out of the French book, using uranium exploration to assert sovereignty over a different disputed territory, its de facto colony of the Western Sahara.
Impact craters - Are they useful?
NASA Astrophysics Data System (ADS)
Masaitis, V. L.
1992-03-01
Terrestrial impact craters are important geological and geomorphological objects that are significant not only for scientific research but for industrial and commercial purposes. The structures may contain commercial minerals produced directly by thermodynamic transformation of target rocks (including primary forming ores) controlled by some morphological, structural or lithological factors and exposed in the crater. Iron and uranium ores, nonferrous metals, diamonds, coals, oil shales, hydrocarbons, mineral waters and other raw materials occur in impact craters. Impact morphostructures may be used for underground storage of gases or liquid waste material. Surface craters may serve as reservoirs for hydropower. These ring structures may be of value to society in other ways. Scientific investigation of them is especially important in comparative planetology, terrestrial geology and in other divisions of the natural sciences.
Monte carlo simulations of Yttrium reaction rates in Quinta uranium target
NASA Astrophysics Data System (ADS)
Suchopár, M.; Wagner, V.; Svoboda, O.; Vrzalová, J.; Chudoba, P.; Tichý, P.; Kugler, A.; Adam, J.; Závorka, L.; Baldin, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Solnyshkin, A.; Tsoupko-Sitnikov, V.; Tyutyunnikov, S.; Bielewicz, M.; Kilim, S.; Strugalska-Gola, E.; Szuta, M.
2017-03-01
The international collaboration Energy and Transmutation of Radioactive Waste (E&T RAW) performed intensive studies of several simple accelerator-driven system (ADS) setups consisting of lead, uranium and graphite which were irradiated by relativistic proton and deuteron beams in the past years at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. The most recent setup called Quinta, consisting of natural uranium target-blanket and lead shielding, was irradiated by deuteron beams in the energy range between 1 and 8 GeV in three accelerator runs at JINR Nuclotron in 2011 and 2012 with yttrium samples among others inserted inside the setup to measure the neutron flux in various places. Suitable activation detectors serve as one of possible tools for monitoring of proton and deuteron beams and for measurements of neutron field distribution in ADS studies. Yttrium is one of such suitable materials for monitoring of high energy neutrons. Various threshold reactions can be observed in yttrium samples. The yields of isotopes produced in the samples were determined using the activation method. Monte Carlo simulations of the reaction rates leading to production of different isotopes were performed in the MCNPX transport code and compared with the experimental results obtained from the yttrium samples.
Hall, Marlene Louise; Butler, Arthur Pierce
1952-01-01
In 1942 the Geological Survey began to collect, in response to a request made by the War Production Board, samples of mine, mill, and smelter products. About 1,400 such samples were collected and analyzed spectrographically for about 20 elements that were of strategic importance, in order to determine whether any of the products analyzed might be possible sources of some of the needed elements. When attention was directed to radioactive elements in 1943, most of the samples were scanned for radioactivity. Part of the work was done on behalf of the Division of Raw Materials of the Atomic Energy Commission. The sources, mine mill, smelter, or prospect, from which these samples were collected, the kind of material sampled, i.e. ores, concentrates, middlings, tailings, flue dusts, and so forth, and the radioactivity of the samples are listed in this report. Samples of the materials collected in the course of the Geological Survey’s investigations for uranium are excluded, but about 500 such samples were analyzed spectrographically for some or all of the same 20 elements sought in the samples that are the subject of this report. Most of the samples were tested only for their radioactivity, but a few were analyzed chemically for uranium. The radioactivity of many of the samples tested in the early screening was determined only qualitatively. Several samples were tested at one time, and if the count obtained did not exceed a predetermined minimum above background, the samples were not tested individually. If the count was more than this minimum, the samples were tested individually to identify the radioactive sample or samples and to obtain a quantitative value for the radioactivity. In general, the rough screening served as a basis for separating samples in which the radioactivity amount to less than 0.003 percent equivalent uranium from those in which it exceeded that amount. Some aspects of various phases of the investigation of radioactivity in these samples have been reported in various other reports, as follows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacomino, V.M.; Canut, M.; Magalhaes Gomes, A.
NORM stands for 'naturally occurring radioactive material', which is a material that naturally contains one or more radionuclides, mainly, uranium, thorium and potassium-40, and their radioactive decay products, such as radium and radon. An example of this material is the Phosphogypsum (PG), which results from the processing of phosphate ore into phosphoric acid for fertilizer production. In order to support regulation of the reuse of phosphogypsum as a raw material of the Brazilian civil construction industry, a characterization study was performed. The physical and chemical properties of PG and natural gypsum were determinate by evaluating the results of thermal (DTAmore » and TG), X-ray fluorescence (XRF), X-ray diffraction (XRD) and laser granulometric analyses. The radioactivity concentration of each sample was measured by gamma spectrometry analyses. The results of thermal analyses demonstrated that phosphogypsum must be treated (initially heated in an electrical oven at 60 deg. C for 24 hours, then sieved and heated again at 160 deg. C for one hour) to obtain the same mineralogical properties of the gypsum used in the civil construction industry. The X- ray fluorescence analysis showed that PG and natural gypsum are similar with both being composed mainly of S, O, Ca, P and small quantities of trace elements (Ce, Ti, La, Sr, Zr, and Pr). The main crystalline compounds found in PG samples were gypsita (CaSO{sub 4}.2H{sub 2}O) and in natural gypsum were bassanite (CaSO{sub 4}.0.5H{sub 2}O). The concentration of Ra-226, Ra-228 and Pb-210 present in PG samples was 467 Bq/kg, 224 Bq/kg and 395 Bq/kg, respectively. The levels of radioactivity in natural gypsum samples were much lower (around 3 Bq/kg). The same behavior was observed for the uranium and thorium content. The results of all the analyses showed that phosphogypsum can be a viable substitute for gypsum, after certain, beneficial processes. (authors)« less
Butler, A.P.; Stead, F.W.
1947-01-01
The Geological Survey's program of investigation of radioactive raw materials is presented herewith under present investigations, plans for future investigations, plan of operation, and cost of operation. This report was prepared at the request of the Atomic Energy Commission. Present investigations are summarized to show the scope of the present Trace Elements program, grouping individual projects into related types of investigations. Plans for future investigations on an expanded scale are outlined. These should provide sufficient data and knowledge of the occurrence and availability of uranium, thorium, and related elements, to permit a more complete evaluation of domestic resources. Reconnaissance projects are designed to discover possible new sources of uranium and thorium and to select areas and materials warranting further investigation. Typical projects leading to the estimation of reserves are the investigation of the carnotite ores of the Colorado Plateau by geologic mapping, exploratory drilling, and related research, and investigation of asphaltic sandstone in Emery County, Utah. Extensive research will be undertaken to establish the principles governing the geological and geochemical relations of uranium, thorium, and associated elements as an essential guide in appraising domestic resources. Particular emphasis will be placed on phosphatic rocks and black shales which offer ultimate resources of uranium far greater than carnotite ores. All the foregoing investigations will be accompanied by chemical, gephysical, and mineralogical research and analytical work. Under plan of operation is discussed the organization of the Trace Elements Unit, space requirements for laboratory and office, the scheduling of investigations, and other related problems. The proposed scheduling of work calls for approximately 109, 173, and 203 man years in fiscal years 1948, 1949, and 1950 respectively. Definite plans have been formulated only for the next three fiscal years, by which time it is assumed the program will reach stable proportions or can be altered as experience dictates. Under cost of operation is set forth the funds available in fiscal year 1947, the status of funds transferred from Atomic Services (14-217/80920), and funds necessary in succeeding fiscal years. The estimate for fiscal year 1948 inclues a non-recurring item of $1,025,000 for establishing adequate laboratories for chemical, physical, spectrographic and mineralogic research and analytical work. The total funds required in fiscal years 1948, 1949, and 1950 to support the proposed program will be $2,440,000, $2,161,000 and $2,198,000 respectively. The Geological survey anticipates contributing from its appropriation in fiscal years 1948, 1949 and 1950 approximately $243,000, $350,000, and $400,000 respectively; the balance of the necessary funds to be contributed by the Atomic Energy Commission in fiscal years 1948, 1949, and 1950 will be approximately $2,196,900, $1,811,000, and $1,798,000 respectively.
Manickum, T; John, W; Terry, S; Hodgson, K
2014-11-01
Raw and potable water sample sources, from the Umgeni Water catchment areas (rivers, dams, boreholes) in central KwaZulu-Natal (South Africa), were screened for Uranium concentration and alpha and beta radioactivity. Test methods used were gas flow proportional counting for alpha-beta radioactivity, and kinetic phosphorescence analysis (KPA), for Uranium. The uranium levels (median = 0.525 μg/L, range = <0.050-5.010) were well below the international World Health Organization (WHO) (2011) guideline for drinking-water quality (≤15 μg/L). The corresponding alpha and beta radioactivity was ≤0.5 Bq/L (median = 0.084, Interquartile Range (IR) = 0.038, range = 0.018-0.094), and ≤1.0 Bq/L (median = 0.114, IR = 0.096, range = 0.024-0.734), respectively, in compliance with the international WHO limits. For uranium radionuclide, the average dose level, at uranium level of ±0.525 μg/L, was 0.06 μSv/a, which complies with the WHO reference dose level for drinking water (<0.1 mSv/a). There was a distinct trend of cluster of relatively higher Uranium levels of some sources that were found to be associated with the geology/geography and groundwater sources. Overall, the radiological water quality classification, with respect to WHO, is "Blue" - ideal; additional physicochemical analyses indicated good water quality. The analytical test methods employed were found to be suitable for preliminary screening for potential radioactive "hot spots". The observed Uranium levels, and the alpha/beta radioactivity, indicate contribution largely from Naturally Occurring Radioactive Material (NORM), with no significant health risk to humans, or to the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.
Method of preparation of uranium nitride
Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James
2013-07-09
Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.
Recent analytical developments for powder characterization
NASA Astrophysics Data System (ADS)
Brackx, E.; Pages, S.; Dugne, O.; Podor, R.
2015-07-01
Powders and divided solid materials are widely represented as finished or intermediary products in industries as widely varied as foodstuffs, cosmetics, construction, pharmaceuticals, electronic transmission, and energy. Their optimal use requires a mastery of the transformation process based on knowledge of the different phenomena concerned (sintering, chemical reactivity, purity, etc.). Their modelling and understanding need a prior acquisition of sets of data and characteristics which are more or less challenging to obtain. The goal of this study is to present the use of different physico-chemical characterization techniques adapted to uranium-containing powders analyzed either in a raw state or after a specific preparation (ionic polishing). The new developments touched on concern dimensional characterization techniques for grains and pores by image analysis, chemical surface characterization and powder chemical reactivity characterization. The examples discussed are from fabrication process materials used in the nuclear fuel cycle.
Radiation shielding materials and containers incorporating same
Mirsky, Steven M.; Krill, Stephen J.; Murray, Alexander P.
2005-11-01
An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound ("PYRUC") shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.
Radiation Shielding Materials and Containers Incorporating Same
Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.
2005-11-01
An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.
Correlation between electron spin resonance spectra and oil yield in eastern oil shales
Choudhury, M.; Rheams, K.F.; Harrell, J.W.
1986-01-01
Organic free radical spin concentrations were measured in 60 raw oil shale samples from north Alabama and south Tennessee and compared with Fischer assays and uranium concentrations. No correlation was found between spin concentration and oil yield for the complete set of samples. However, for a 13 sample set taken from a single core hole, a linear correlation was obtained. No correlation between spin concentration and uranium concentration was found. ?? 1986.
Mantero, J; Gazquez, M J; Bolivar, J P; Garcia-Tenorio, R; Vaca, F
2013-06-01
A study about the distribution of several radionuclides from the uranium and the thorium series radionuclides along the production process of a typical NORM industry devoted to the production of titanium dioxide has been performed. With this end the activity concentrations in raw materials, final product, co-products, and wastes of the production process have been determined by both gamma-ray and alpha-particle spectrometry. The main raw material used in the studied process (ilmenite) presents activity concentrations of around 300 Bq kg(-1) for Th-series radionuclides and 100 Bq kg(-1) for the U-series ones. These radionuclides in the industrial process are distributed in the different steps of the production process according mostly to the chemical behaviour of each radioelement, following different routes. As an example, most of the radium remains associated with the un-dissolved material waste, with activity concentrations around 3 kBq kg(-1) of (228)Ra and around 1 kBq kg(-1) of (226)Ra, while the final commercial products (TiO2 pigments and co-products) contain negligible amounts of radioactivity. The obtained results have allowed assessing the possible public radiological impact associated with the use of the products and co-products obtained in this type of industry, as well as the environmental radiological impact associated with the solid residues and liquid generated discharges. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Curreri, Peter A.
2009-01-01
An ideal method of construction in space would utilize some form of the Universal Differentiator and Universal Constructor as described by Von Neumann (1). The Universal Differentiator is an idealized non ore specific extractive device which is capable of breaking any ore into its constituent elements, and the Universal Constructor can utilize these elements to build any device with controllability to the nanometer scale. During the Human Exploration Initiative program in the early 1990s a conceptual study was done (2) to understand whether such devices were feasible with near term technology for the utilization of space resources and energy. A candidate system was proposed which would utilize electronically enhanced sputtering as the differentiator. Highly ionized ions would be accelerated to a kinetic energy at which the interaction between them and the lattice elections in the ore would be at a maximum. Experiments have shown that the maximum disintegration of raw material occurs at an ion kinetic energy of about 5 MeV, regardless of the composition and structure of the raw material. Devices that could produce charged ion beams in this energy range in space were being tested in the early 1990s. At this energy, for example an ion in a beam of fluorine ions yields about 8 uranium ions from uranium fluoride, 1,400 hydrogen and oxygen atoms from ice, or 7,000 atoms from sulfur dioxide ice. The ions from the disintegrated ore would then be driven by an electrical field into a discriminator in the form of a mass spectrometer, where the magnetic field would divert the ions into collectors for future use or used directly in molecular beam construction techniques. The process would require 10-7 Torr vacuum which would be available in space or on the moon. If the process were used to make thin film silicon solar cells (ignoring any energy inefficiency for beam production), then energy break even for solar cells in space would occur after 14 days.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
..., Inc., Ross In Situ Recovery Uranium Project, Crook County, WY; Notice of Materials License Application...-4737, or by e-mail to [email protected] . The Ross In Situ Recovery Uranium Project License... source and byproduct materials license at its Ross In Situ Recovery Uranium Project site located in Crook...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rogers, Robin
Ensuring a domestic supply of uranium is a key issue facing the wider implementation of nuclear power. Uranium is mostly mined in Kazakhstan, Australia, and Canada, and there are few high-grade uranium reserves left worldwide. Therefore, one of the most appealing potential sources of uranium is the vast quantity dissolved in the oceans (estimated to be 4.4 billion tons worldwide). There have been research efforts centered on finding a means to extract uranium from seawater for decades, but so far none have resulted in an economically viable product, due in part to the fact that the materials that have beenmore » successfully demonstrated to date are too costly (in terms of money and energy) to produce on the necessary scale. Ionic Liquids (salts which melt below 100{degrees}C) can completely dissolve raw crustacean shells, leading to recovery of a high purity, high molecular weight chitin powder and to fibers and films which can be spun directly from the extract solution suggesting that continuous processing might be feasible. The work proposed here will utilize the unprecedented control this makes possible over the chitin fiber a) to prepare electrospun nanofibers of very high surface area and in specific architectures, b) to modify the fiber surfaces chemically with selective extractant capacity, and c) to demonstrate their utility in the direct extraction and recovery of uranium from seawater. This approach will 1) provide direct extraction of chitin from shellfish waste thus saving energy over the current industrial process for obtaining chitin; 2) allow continuous processing of nanofibers for very high surface area fibers in an economical operation; 3) provide a unique high molecular weight chitin not available from the current industrial process, leading to stronger, more durable fibers; and 4) allow easy chemical modification of the large surface areas of the fibers for appending uranyl selective functionality providing selectivity and ease of stripping. The resulting sorbent should prove economically feasible, as well as providing an overall net energy gain.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toth, James J.; Wall, Donald; Wittman, Richard S.
Target assemblies are provided that can include a uranium-comprising annulus. The assemblies can include target material consisting essentially of non-uranium material within the volume of the annulus. Reactors are disclosed that can include one or more discrete zones configured to receive target material. At least one uranium-comprising annulus can be within one or more of the zones. Methods for producing isotopes within target material are also disclosed, with the methods including providing neutrons to target material within a uranium-comprising annulus. Methods for modifying materials within target material are disclosed as well as are methods for characterizing material within a targetmore » material.« less
Bacterial leaching of waste uranium materials.
Barbic, F F; Bracilović, D M; Krajincanić, B V; Lucić, J L
1976-01-01
The effect of ferrobacteria and thiobacteria on the leaching of waste uranium materials from which 70-80% of uranium was previously leached by classical chemical hydrometallurgical procedure has been investigated. The bacteria used are found in the ore and the mine water of Zletovska River locality, Yugoslavia. Parameters of biological leaching were examined in the laboratory. Leaching conditions were changed with the aim of increasing the amount of uranium leached. The effect of pyrite added to the waste materials before the beginning of leaching has also been examined. Uranium leaching is directly proportional to the composition and number of ferrobacteria and thiobacteria, and increased by almost twice the value obtained from the same starting materials without using bacteria. Increased sulphuric acid concentrations stimulate considerably the rate of leaching. Uranium leaching is increased up to 20% while sulphuric acid consumption is simultaneously decreased by the addition of pyrite. Uranium concentrations in starting waste materials used for leaching were extremely low (0.0278 and 0.372% U) but about 60% recovery of uranium was obtained, with relatively low consumption of sulphuric acid.
PRODUCTION OF PURIFIED URANIUM
Burris, L. Jr.; Knighton, J.B.; Feder, H.M.
1960-01-26
A pyrometallurgical method for processing nuclear reactor fuel elements containing uranium and fission products and for reducing uranium compound; to metallic uranium is reported. If the material proccssed is essentially metallic uranium, it is dissolved in zinc, the sulution is cooled to crystallize UZn/sub 9/ , and the UZn/sub 9/ is distilled to obtain uranium free of fission products. If the material processed is a uranium compound, the sollvent is an alloy of zinc and magnesium and the remaining steps are the same.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-03
... Accounting for Uranium Enrichment Facilities Authorized To Produce Special Nuclear Material of Low Strategic... Accounting for Uranium Enrichment Facilities Authorized to Produce Special Nuclear Material of Low Strategic... INFORMATION CONTACT: Glenn Tuttle, Office of Nuclear Material Safety and Safeguards, Division of Fuel Cycle...
Host rocks and their alterations as related to uranium-bearing veins in the United States
Walker, George W.
1956-01-01
This paper, dealing with the different kinds of host rocks and their alterations associated with uranium-bearing veins in the United States, is a chapter of a comprehensive report entitled , "Geology of uranium-bearing vein deposits in the United States," in preparation by George W. Walker, Frank W. Osterwald, and others. The comprehensive report will include detailed information on tectonic and structural setting, kinds of host rocks, wall-rock alteration, mineralogy, physical characteristics, processes of deposition, and concepts of origin of uraniferous veins; but, because it will not be completed until sometime in the future, some chapters of the report are being transmitted as they are finished. Part of an introductory chapter to the comprehensive report entitled, "Classification and distribution of uranium-bearing veins in the United States" (Walker and Osterwald, 1956) has already been transmitted; several of the terms used herein are defined in the introductory chapter. Data included in this chapter demonstrate that uranium-bearing veins are: 1) in rocks of nearly all textural, chemical, and mineralogic types; 2) most abundant in holocrystalline, commonly equigranular, igeneous and metamorphic rocks characterized by a moderate to high silica content and and by similar physical properties. Although some of the physiochemical properties of the host rocks are discussed in terms of favorability or nonfavoribility for uranium deposition, the principal purpose of this chapter is to establish the petroloic environment in which uranium-bearing veins have been found. Because favorability or nonfavorability of host rocks is related complexly to the chemistry of ore solutions and to methods or uranium transport and deposition, several hypothetical processes of transport and deposition have been referred to briefly; these and other hypotheses will be outlines and discussed in greater detail in a subsequent chapter. The compilation of data leading to this report and its preparation by a member of the Uranium Research and Resource Section, U.S. Geological Survey, was done on behalf of the Division of Raw Materials, U.S. Atomic Energy Commission. The report is based on both published and unpublished information collected principally by personnel of the U.S. Geological Survey, the U.S. Atomic Energy Commission or its predecessor organization, the Manhattan Engineer District, and to a lesser extent by staff members of other Federal or State agencies and by geologists in private industry. Information concerning foreign uranium-bearing vein deposits has been extracted almost exclusively from published reports; references to these and other data are included at appropriate places.
Development of Novel Sorbents for Uranium Extraction from Seawater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Wenbin; Taylor-Pashow, Kathryn
2014-01-08
As the uranium resource in terrestrial ores is limited, it is difficult to ensure a long-term sustainable nuclear energy technology. The oceans contain approximately 4.5 billion tons of uranium, which is one thousand times the amount of uranium in terrestrial ores. Development of technologies to recover the uranium from seawater would greatly improve the uranium resource availability, sustaining the fuel supply for nuclear energy. Several methods have been previously evaluated including solvent extraction, ion exchange, flotation, biomass collection, and adsorption; however, none have been found to be suitable for reasons such as cost effectiveness, long term stability, and selectivity. Recentmore » research has focused on the amidoxime functional group as a promising candidate for uranium sorption. Polymer beads and fibers have been functionalized with amidoxime functional groups, and uranium adsorption capacities as high as 1.5 g U/kg adsorbent have recently been reported with these types of materials. As uranium concentration in seawater is only ~3 ppb, great improvements to uranium collection systems must be made in order to make uranium extraction from seawater economically feasible. This proposed research intends to develop transformative technologies for economic uranium extraction from seawater. The Lin group will design advanced porous supports by taking advantage of recent breakthroughs in nanoscience and nanotechnology and incorporate high densities of well-designed chelators into such nanoporous supports to allow selective and efficient binding of uranyl ions from seawater. Several classes of nanoporous materials, including mesoporous silica nanoparticles (MSNs), mesoporous carbon nanoparticles (MCNs), meta-organic frameworks (MOFs), and covalent-organic frameworks (COFs), will be synthesized. Selective uranium-binding liagnds such as amidoxime will be incorporated into the nanoporous materials to afford a new generation of sorbent materials that will be evaluated for their uranium extraction efficiency. The initial testing of these materials for uranium binding will be carried out in the Lin group, but more detailed sorption studies will be carried out by Dr. Taylor-Pashow of Savannah River National Laboratory in order to obtain quantitative uranyl sorption selectivity and kinetics data for the proposed materials. The proposed nanostructured sorbent materials are expected to have higher binding capacities, enhanced extraction kinetics, optimal stripping efficiency for uranyl ions, and enhanced mechanical and chemical stabilities. This transformative research will significantly impact uranium extraction from seawater as well as benefit DOE’s efforts on environmental remediation by developing new materials and providing knowledge for enriching and sequestering ultralow concentrations of other metals.« less
Illicit Trafficking of Natural Radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedrich, Steinhaeusler; Lyudmila, Zaitseva
2008-08-07
Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from anmore » operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.« less
Illicit Trafficking of Natural Radionuclides
NASA Astrophysics Data System (ADS)
Friedrich, Steinhäusler; Lyudmila, Zaitseva
2008-08-01
Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.
System simulation application for determining the size of daily raw material purchases at PT XY
NASA Astrophysics Data System (ADS)
Napitupulu, H. L.
2018-02-01
Every manufacturing company needs to implement green production, including PT XY as a marine catchment processing industry in Sumatera Utara Province. The company is engaged in the processing of squid for export purposes. The company’s problem relates to the absence of a decision on the daily purchase amount of the squid. The purchase of daily raw materials in varying quantities has caused companies to face the problem of excess raw materials or otherwise the lack of raw materials. The low purchase of raw materials will result in reduced productivity, while large purchases will lead to increased cooling costs for storage of excess raw materials, as well as possible loss of damage raw material. Therefore it is necessary to determine the optimal amount of raw material purchases every day. This can be determined by applying simulation. Application of system simulations can provide the expected optimal amount of raw material purchases.
Knighton, J.B.; Feder, H.M.
1960-04-26
A process is given for purifying a uranium-base nuclear material. The nuclear material is dissolved in zinc or a zinc-magnesium alloy and the concentration of magnesium is increased until uranium precipitates.
10 CFR 51.60 - Environmental report-materials licenses.
Code of Federal Regulations, 2011 CFR
2011-01-01
... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...
10 CFR 51.60 - Environmental report-materials licenses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...
10 CFR 51.60 - Environmental report-materials licenses.
Code of Federal Regulations, 2013 CFR
2013-01-01
... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...
10 CFR 51.60 - Environmental report-materials licenses.
Code of Federal Regulations, 2014 CFR
2014-01-01
... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...
10 CFR 51.60 - Environmental report-materials licenses.
Code of Federal Regulations, 2012 CFR
2012-01-01
... oil and gas recovery. (vii) Construction and operation of a uranium enrichment facility. (2) Issuance... conversion of uranium hexafluoride pursuant to part 70 of this chapter. (ii) Possession and use of source material for uranium milling or production of uranium hexafluoride pursuant to part 40 of this chapter...
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false General license for custody and long-term care of uranium... long-term care of uranium or thorium byproduct materials disposal sites. (a) A general license is... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false General license for custody and long-term care of uranium... long-term care of uranium or thorium byproduct materials disposal sites. (a) A general license is... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false General license for custody and long-term care of uranium... long-term care of uranium or thorium byproduct materials disposal sites. (a) A general license is... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false General license for custody and long-term care of uranium... long-term care of uranium or thorium byproduct materials disposal sites. (a) A general license is... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill...
Code of Federal Regulations, 2010 CFR
2010-07-01
... than kilns; in-line kiln/raw mills; clinker coolers; new and reconstructed raw material dryers; and raw...; in-line kiln/raw mills; clinker coolers; new and reconstructed raw material dryers; and raw and finish mills. The owner or operator of each new or existing raw material, clinker, or finished product...
Characterization of low concentration uranium glass working materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eppich, G. R.; Wimpenny, J. B.; Leever, M. E.
A series of uranium-doped silicate glasses were created at (Lawrence Livermore National Laboratory) LLNL, to be used as working reference material analogs for low uranium concentration research. Specifically, the aim of this effort was the generation of well-characterized glasses spanning a range of concentrations and compositions, and of sufficient homogeneity in uranium concentration and isotopic composition, for instrumentation research and development purposes. While the glasses produced here are not intended to replace or become standard materials for uranium concentration or uranium isotopic composition, it is hoped that they will help fill a current gap, providing low-level uranium glasses sufficient formore » methods development and method comparisons within the limitations of the produced glass suite. Glasses are available for research use by request.« less
Distribution of naturally occurring radionuclides (U, Th) in Timahdit black shale (Morocco).
Galindo, C; Mougin, L; Fakhi, S; Nourreddine, A; Lamghari, A; Hannache, H
2007-01-01
Attention has been focused recently on the use of Moroccan black oil shale as the raw material for production of a new type of adsorbent and its application to U and Th removal from contaminated wastewaters. The purpose of the present work is to provide a better understanding of the composition and structure of this shale and to determine its natural content in uranium and thorium. A black shale collected from Timahdit (Morocco) was analyzed by powder X-ray diffraction and SEM techniques. It was found that calcite, dolomite, quartz and clays constitute the main composition of the inorganic matrix. Pyrite crystals are also present. A selective leaching procedure, followed by radiochemical purification and alpha-counting, was performed to assess the distribution of naturally occurring radionuclides. Leaching results indicate that 238U, 235U, 234U, 232Th, 230Th and 228Th have multiple modes of occurrence in the shale. U is interpreted to have been concentrated under anaerobic conditions. An integrated isotopic approach showed the preferential mobilization of uranium carried by humic acids to carbonate and apatite phases. Th is partitioned between silicate minerals and pyrite.
[Maria Skłodowska-Curie and Piotr Curie an epoch-makingin year 1898].
Wielogórski, Zbigniew
2012-01-01
For many reasons the year 1898 was unusual for Maria Skłodowska-Curie and her husband. After defining the subject of the doctoral thesis and choosing Henri Becqerel as thesis supervisor, Maria started intensive experimental work. In the allotted room called storeroom, in conditions that were far too inadequate, they managed to put up a unique measuring equipment composed of instruments whose originator was Pierre Curie. In the ionization chamber and in the piezoelectric quartz charges formed, whose mutual neutralization was shown by the quadrant electrometer. Ionization current, which was measured quantitatively, was proportional to the radiation of the sample. Studying many elements, their compounds and minerals enabled Maria to state that uranium is not the only element endowed with the power of radiation; the second one turned out to be thorium. Anomaly detected in the radiation of uranium minerals made it possible for Maria to draw an extremely important conclusion: radioactive uranium and thorium are not the only elements endowed with such an attribute. Pitchblende, which was studied by the Curie couple, had to contain also other radioactive substances. Gustave Bémont also participated in the chemical analysis of the uranium ore and it is worth reminding that he was involved in the discovery of polonium and uranium. The phenomenon of radioactivity couldn't have been explained if it was not for the sources of strong radioactivity. Those sources undoubtedly could have been the discovered elements but their scanty content in the uranium ore made their isolation very difficult and laborious. Access to industrial remains after procession of pitchblende from Jachymov (Sankt Joachimstahl), obtained owing to the mediation of Eduard Suess, provided the source of this raw material. From it, in a shack also called le hangar, the Curie couple isolated the first samples of the radium salt. This element, later extracted by discoverers on a grand scale and handed over in a various forms to researchers and institutions, became a foundation of physics and chemistry of radioactive elements.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-07
... Commission Issuance of Materials License SUA-1596 for Uranium One Americas, Inc. Moore Ranch In Situ Recovery..., Inc. (Uranium One) for its Moore Ranch uranium in situ recovery (ISR) facility in Campbell County... discussed in detail were the applicant's proposal as described in its license application to conduct in situ...
Investigation of the radiological impact on the coastal environment surrounding a fertilizer plant.
El Samad, O; Aoun, M; Nsouli, B; Khalaf, G; Hamze, M
2014-07-01
This investigation was carried out in order to assess the marine environmental radioactive pollution and the radiological impact caused by a large production plant of phosphate fertilizer, located in the Lebanese coastal zone. Natural radionuclides ((238)U, (235)U, (232)Th, (226)Ra, (210)Po, (210)Pb, (40)K) and anthropogenic (137)Cs were measured by alpha and gamma spectrometry in seawater, sediment, biota and coastal soil samples collected from the area impacted by this industry. The limited environmental monitoring program within 2 km of the plant indicates localized contamination with radionuclides of the uranium decay chain mainly due to the transport, the storage of raw materials and the free release of phosphogypsum waste. Copyright © 2013 Elsevier Ltd. All rights reserved.
METHOD OF OPERATING A CALUTRON
Davidson, P.H.
1960-01-12
A method of operating an electromagnetic isotope separator of the calutron class is reported whereby uranium tetrachloride is produced at a controlled rate within the source rather than betng introduced therein as was formerly practiced. This is accomplished by placing a uranium-bearing material, such as uranium metal, uranium trichloride, or uranium carbide in the charge receptacle of the calutron, heating this material to about to produce uranium tetrachloride vapor at a rate controlled by the chlorine gas flow into the source. The vapor is subsequently ionized by an electric arc and mass separated by conventional calutron methods.
METHOD OF SEPARATING ISOTOPES OF URANIUM IN A CALUTRON
Jenkins, F.A.
1958-05-01
Mass separation devices of the calutron type and the use of uranium hexachloride as a charge material in the calutron ion source are described. The method for using this material in a mass separator includes heating the uranium hexachloride to a temperature in the range of 60 to 100 d C in a vacuum and thereby forming a vapor of the material. The vaporized uranium hexachloride is then ionized in a vapor ionizing device for subsequent mass separation processing.
Amidoxime Polymers for Uranium Adsorption: Influence of Comonomers and Temperature
Wiechert, Alexander I.; Das, Sadananda; Yiacoumi, Sotira
2017-01-01
Recovering uranium from seawater has been the subject of many studies for decades, and has recently seen significant progress in materials development since the U.S. Department of Energy (DOE) has become involved. With DOE direction, the uranium uptake for amidoxime-based polymer adsorbents has more than tripled in capacity. In an effort to better understand how these new adsorbent materials behave under different environmental stimuli, several experimental and modeling based studies have been employed to investigate impacts of competing ions, salinity, pH, and other factors on uranium uptake. For this study, the effect of temperature and type of comonomer on uranium adsorption by three different amidoxime adsorbents (AF1, 38H, AI8) was examined. Experimental measurements of uranium uptake were taken in 1−L batch reactors from 10 to 40 °C. A chemisorption model was developed and applied in order to estimate unknown system parameters through optimization. Experimental results demonstrated that the overall uranium chemisorption process for all three materials is endothermic, which was also mirrored in the model results. Model simulations show very good agreement with the data and were able to predict the temperature effect on uranium adsorption as experimental conditions changed. This model may be used for predicting uranium uptake by other amidoxime materials. PMID:29113060
Code of Federal Regulations, 2012 CFR
2012-01-01
... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material. (a) Each licensee authorized to import natural uranium, other than in the form of ore or ore residue...
Code of Federal Regulations, 2014 CFR
2014-01-01
... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material. (a) Each licensee authorized to import natural uranium, other than in the form of ore or ore residue...
Code of Federal Regulations, 2011 CFR
2011-01-01
... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material. (a) Each licensee authorized to import natural uranium, other than in the form of ore or ore residue...
Code of Federal Regulations, 2013 CFR
2013-01-01
... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material... uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material. (a) Each licensee authorized to import natural uranium, other than in the form of ore or ore residue...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piechowicz, Marek; Abney, Carter W.; Thacker, Nathan C.
The amidoxime group (-RNH2NOH) has long been used to extract uranium from seawater on account of its high affinity toward uranium. The development of tunable sorbent materials for uranium sequestration remains a research priority as well as a significant challenge. Herein, we report the design, synthesis, and uranium sorption properties of bis-amidoxime-functionalized polymeric materials (BAP 1–3). Bifunctional amidoxime monomers were copolymerized with an acrylamide cross-linker to obtain bis-amidoxime incorporation as high as 2 mmol g–1 after five synthetic steps. The resulting sorbents were able to uptake nearly 600 mg of uranium per gram of polymer after 37 days of contactmore » with a seawater simulant containing 8 ppm uranium. Moreover, the polymeric materials exhibited low vanadium uptake with a maximum capacity of 128 mg of vanadium per gram of polymer. This computationally predicted and experimentally realized selectivity of uranium over vanadium, nearly 5 to 1 w/w, is one of the highest reported to date and represents an advancement in the rational design of sorbent materials with high uptake capacity and selectivity.« less
40 CFR 192.10 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Cleanup of Land and Buildings Contaminated with Residual Radioactive Materials from Inactive Uranium Processing... radioactive materials at which all or substantially all of the uranium was produced for sale to any Federal...
40 CFR 192.10 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Cleanup of Land and Buildings Contaminated with Residual Radioactive Materials from Inactive Uranium Processing... radioactive materials at which all or substantially all of the uranium was produced for sale to any Federal...
Materials for the Recovery of Uranium from Seawater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abney, Carter W.; Mayes, Richard T.; Saito, Tomonori
More than 1000× uranium exists in the oceans than exists in terrestrial ores. With nuclear power generation expected to increase over the coming decades, access to this unconventional reserve is a matter of energy security. With origins in the mid-1950’s, materials have been developed for the selective recovery of seawater uranium for more than six decades, with a renewed interest in particular since 2010. This review comprehensively surveys materials developed from 2000 – 2016 for recovery of seawater uranium, in particular including recent developments in inorganic materials, polymer adsorbents and related research pertaining to amidoxime, and nanostructured materials such asmore » metal-organic frameworks, porous-organic polymers, and mesoporous carbons. In conclusion, challenges of performing reliable and reproducible uranium adsorption studies are also discussed, as well as the standardization of parameters necessary to ensure valid comparisons between different adsorbents.« less
Materials for the Recovery of Uranium from Seawater
Abney, Carter W.; Mayes, Richard T.; Saito, Tomonori; ...
2017-11-22
More than 1000× uranium exists in the oceans than exists in terrestrial ores. With nuclear power generation expected to increase over the coming decades, access to this unconventional reserve is a matter of energy security. With origins in the mid-1950’s, materials have been developed for the selective recovery of seawater uranium for more than six decades, with a renewed interest in particular since 2010. This review comprehensively surveys materials developed from 2000 – 2016 for recovery of seawater uranium, in particular including recent developments in inorganic materials, polymer adsorbents and related research pertaining to amidoxime, and nanostructured materials such asmore » metal-organic frameworks, porous-organic polymers, and mesoporous carbons. In conclusion, challenges of performing reliable and reproducible uranium adsorption studies are also discussed, as well as the standardization of parameters necessary to ensure valid comparisons between different adsorbents.« less
Al Alfy, Ibrahim Mohammad
2013-12-01
A set of ten radioactive well-logging calibration pads were constructed in one of the premises of the Nuclear Materials Authority (NMA), Egypt, at 6th October city. These pads were built for calibrating geophysical well-logging instruments. This calibration facility was conducted through technical assistance and practical support of the International Atomic Energy Agency (IAEA) and (ARCN). There are five uranium pads with three different uranium concentrations and borehole diameters. The other five calibration pads include one from each of the following: blank, potassium, thorium, multi layers and mixed. More than 22 t of various selected Egyptian raw materials were gathered for pad construction from different locations in Egypt. Pad's site and the surrounding area were spectrometrically surveyed before excavation for the construction process of pad-basin floor. They yielded negligible radiation values which are very near to the detected general background. After pad's construction, spectrometric measurements were carried out again in the same locations when the exposed bore holes of the pads were closed. No radioactivity leakage was noticed from the pads. Meanwhile, dose rate values were found to range from 0.12 to 1.26 mS/y. They were measured during the opening of bore holes of the pads. These values depend mainly upon the type and concentration of the pads as well as their borehole diameters. The results of radiospectrometric survey illustrate that the specification of top layers of the pads were constructed according to international standards. © 2013 Elsevier Ltd. All rights reserved.
Baghdadi, S; Bouvier-Capely, C; Ritt, A; Peroux, A; Fevrier, L; Rebiere, F; Agarande, M; Cote, G
2015-11-01
Actinides determination in urine samples is part of the analyses performed to monitor internal contamination in case of an accident or a terrorist attack involving nuclear matter. Mineralisation is the first step of any of these analyses. It aims at reducing the sample volume and at destroying all organic compounds present. The mineralisation protocol is usually based on a wet ashing step, followed by actinides co-precipitation and a furnace ashing step, before redissolution and the quantification of the actinides by the appropriate techniques. Amongst the existing methods to perform the actinides co-precipitation, alkali-earth (typically calcium) precipitation is widely used. In the present work, the extraction of uranium(VI), plutonium(IV) and americium(III) from the redissolution solutions (called "mineralised urines") on calix[6]arene columns bearing hydroxamic groups was investigated as such an extraction is a necessary step before their determination by ICP-MS or alpha spectrometry. Difficulties were encountered in the transfer of uranium(VI) from raw to mineralised urines, with yield of transfer ranging between 0% and 85%, compared to about 90% for Pu and Am, depending on the starting raw urines. To understand the origin of such a difficulty, the speciation of uranium (VI) in mineralised urines was investigated by computer simulation using the MEDUSA software and the associated HYDRA database, compiled with recently published data. These calculations showed that the presence of phosphates in the "mineralised urines" leads to the formation of strong uranyl-phosphate complexes (such as UO2HPO4) which compete with the uranium (VI) extraction by the calix[6]arene bearing hydroxamic groups. The extraction constant of uranium (VI) by calix[6]arene bearing hydroxamic groups was determined in a 0.04 mol L(-1) sodium nitrate solution (logK=4.86±0.03) and implemented in an extraction model taking into account the speciation in the aqueous phase. This model allowed to simulate satisfactorily the experimental uranium extraction data and to support the preliminary conclusions about the role of the phosphates present in mineralised urines. These calculations also showed that the phosphate/calcium ratio is a key parameter as far as the efficiency of the uranium (VI) extraction by the calix[6]arene columns is concerned. It predicted that the addition of CaCl2 in mineralised urines would release uranium (VI) from phosphates by forming calcium (II)-phosphate complexes and thus facilitate the uranium (VI) extraction on calix[6]arene columns. These predictions were confirmed experimentally as the addition of 0.1 mol L(-1) CaCl2 to a mineralised urine containing naturally a high concentration of phosphate (typically 0.04 mol L(-1)) significantly increased the percentage of uranium (VI) extraction on the calix[6]arene columns. Copyright © 2015 Elsevier B.V. All rights reserved.
31 CFR 560.407 - Transactions related to Iranian-origin goods.
Code of Federal Regulations, 2011 CFR
2011-07-01
... from third countries of goods containing Iranian-origin raw materials or components is not prohibited if those raw materials or components have been incorporated into manufactured products or... Iranian-origin raw materials or components are not prohibited if those raw materials or components have...
31 CFR 560.407 - Transactions related to Iranian-origin goods.
Code of Federal Regulations, 2010 CFR
2010-07-01
... United States from third countries of goods containing Iranian-origin raw materials or components is not prohibited if those raw materials or components have been incorporated into manufactured products or... Iranian-origin raw materials or components are not prohibited if those raw materials or components have...
Amidoxime Polymers for Uranium Adsorption: Influence of Comonomers and Temperature
Ladshaw, Austin P.; Wiechert, Alexander I.; Das, Sadananda; ...
2017-11-04
Recovering uranium from seawater has been the subject of many studies for decades, and has recently seen significant progress in materials development since the U.S. Department of Energy (DOE) has become involved. With DOE direction, the uranium uptake for amidoxime-based polymer adsorbents has more than tripled in capacity. In an effort to better understand how these new adsorbent materials behave under different environmental stimuli, several experimental and modeling based studies have been employed to investigate impacts of competing ions, salinity, pH, and other factors on uranium uptake. For this study, the effect of temperature and type of comonomer on uraniummore » adsorption by three different amidoxime adsorbents (AF1, 38H, AI8) was examined. Experimental measurements of uranium uptake were taken in 1–L batch reactors from 10 to 40 °C. A chemisorption model was developed and applied in order to estimate unknown system parameters through optimization. Experimental results demonstrated that the overall uranium chemisorption process for all three materials is endothermic, which was also mirrored in the model results. Model simulations show very good agreement with the data and were able to predict the temperature effect on uranium adsorption as experimental conditions changed. Here, this model may be used for predicting uranium uptake by other amidoxime materials.« less
Amidoxime Polymers for Uranium Adsorption: Influence of Comonomers and Temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladshaw, Austin P.; Wiechert, Alexander I.; Das, Sadananda
Recovering uranium from seawater has been the subject of many studies for decades, and has recently seen significant progress in materials development since the U.S. Department of Energy (DOE) has become involved. With DOE direction, the uranium uptake for amidoxime-based polymer adsorbents has more than tripled in capacity. In an effort to better understand how these new adsorbent materials behave under different environmental stimuli, several experimental and modeling based studies have been employed to investigate impacts of competing ions, salinity, pH, and other factors on uranium uptake. For this study, the effect of temperature and type of comonomer on uraniummore » adsorption by three different amidoxime adsorbents (AF1, 38H, AI8) was examined. Experimental measurements of uranium uptake were taken in 1–L batch reactors from 10 to 40 °C. A chemisorption model was developed and applied in order to estimate unknown system parameters through optimization. Experimental results demonstrated that the overall uranium chemisorption process for all three materials is endothermic, which was also mirrored in the model results. Model simulations show very good agreement with the data and were able to predict the temperature effect on uranium adsorption as experimental conditions changed. Here, this model may be used for predicting uranium uptake by other amidoxime materials.« less
10 CFR 40.65 - Effluent monitoring reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Effluent monitoring reporting requirements. 40.65 Section 40.65 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL Records, Reports... possess and use source material in uranium milling, in production of uranium hexafluoride, or in a uranium...
Uranium content and leachable fraction of fluorspars
Landa, E.R.; Councell, T.B.
2000-01-01
Much attention in the radiological health community has recently focused on the management and regulation of naturally occurring radioactive materials. Although uranium-bearing minerals are present in a variety of fluorspar deposits, their potential consideration as naturally occurring radioactive materials has received only limited recognition. The uranium content of 28 samples of acid- and cryolite-grade (>97% CaF2) fluorspar from the National Defense Stockpile was found to range from 120 to 24,200 ??g kg-1, with a mean of 2,145 ??g kg-1. As a point of comparison, the average concentration of uranium in the upper crust of the earth is about 2,500 ??g kg-1. Leachability of this uranium was assessed by means of the Toxicity Characteristic Leaching Procedure (TCLP). The TCLP extractable fraction ranged from 1 to 98%, with a mean of 24% of the total uranium. The typically low concentrations of uranium seen in these materials probably reflects the removal of uranium-bearing mineral phases during the beneficiation of the crude fluorspar ore to achieve industrial specifications. Future NORM studies should examine crude fluorspar ores and flotation tailings.
Process for producing an aggregate suitable for inclusion into a radiation shielding product
Lessing, Paul A.; Kong, Peter C.
2000-01-01
The present invention is directed to methods for converting depleted uranium hexafluoride to a stable depleted uranium silicide in a one-step reaction. Uranium silicide provides a stable aggregate material that can be added to concrete to increase the density of the concrete and, consequently, shield gamma radiation. As used herein, the term "uranium silicide" is defined as a compound generically having the formula U.sub.x Si.sub.y, wherein the x represents the molecules of uranium and the y represent the molecules of silicon. In accordance with the present invention, uranium hexafluoride is converted to a uranium silicide by contacting the uranium hexafluoride with a silicon-containing material at a temperature in a range between about 1450.degree. C. and about 1750.degree. C. The stable depleted uranium silicide is included as an aggregate in a radiation shielding product, such as a concrete product.
16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM ...
16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM RECOVERY PROCESSED RELATIVELY PURE MATERIALS AND SOLUTIONS AND SOLID RESIDUES WITH RELATIVELY LOW URANIUM CONTENT. URANIUM RECOVERY INVOLVED BOTH SLOW AND FAST PROCESSES. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO
Toxicity of Uranium Adsorbent Materials using the Microtox Toxicity Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jiyeon; Jeters, Robert T.; Gill, Gary A.
2015-10-01
The Marine Sciences Laboratory at the Pacific Northwest National Laboratory evaluated the toxicity of a diverse range of natural and synthetic materials used to extract uranium from seawater. The uranium adsorbent materials are being developed as part of the U. S. Department of Energy, Office of Nuclear Energy, Fuel Resources Program. The goal of this effort was to identify whether deployment of a farm of these materials into the marine environment would have any toxic effects on marine organisms.
Tags to Track Illicit Uranium and Plutonium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haire, M. Jonathan; Forsberg, Charles W.
2007-07-01
With the expansion of nuclear power, it is essential to avoid nuclear materials from falling into the hands of rogue nations, terrorists, and other opportunists. This paper examines the idea of detection and attribution tags for nuclear materials. For a detection tag, it is proposed to add small amounts [about one part per billion (ppb)] of {sup 232}U to enriched uranium to brighten its radioactive signature. Enriched uranium would then be as detectable as plutonium and thus increase the likelihood of intercepting illicit enriched uranium. The use of rare earth oxide elements is proposed as a new type of 'attribution'more » tag for uranium and thorium from mills, uranium and plutonium fuels, and other nuclear materials. Rare earth oxides are chosen because they are chemically compatible with the fuel cycle, can survive high-temperature processing operations in fuel fabrication, and can be chosen to have minimal neutronic impact within the nuclear reactor core. The mixture of rare earths and/or rare earth isotopes provides a unique 'bar code' for each tag. If illicit nuclear materials are recovered, the attribution tag can identify the source and lot of nuclear material, and thus help police reduce the possible number of suspects in the diversion of nuclear materials based on who had access. (authors)« less
49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.
Code of Federal Regulations, 2013 CFR
2013-10-01
... uranium or thorium. 173.426 Section 173.426 Transportation Other Regulations Relating to Transportation....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...
49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.
Code of Federal Regulations, 2014 CFR
2014-10-01
... uranium or thorium. 173.426 Section 173.426 Transportation Other Regulations Relating to Transportation....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...
49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.
Code of Federal Regulations, 2012 CFR
2012-10-01
... uranium or thorium. 173.426 Section 173.426 Transportation Other Regulations Relating to Transportation....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., clinker coolers, raw material dryers, and open clinker piles? 63.1343 Section 63.1343 Protection of... What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker piles? (a..., clinker cooler, and raw material dryer. All dioxin D/F, HCl, and total hydrocarbon (THC) emission limits...
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2011 CFR
2011-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., clinker coolers, raw material dryers, and open clinker storage piles? 63.1343 Section 63.1343 Protection... Limits § 63.1343 What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker... associated with that kiln, clinker cooler, raw material dryer, and open clinker storage pile. All D/F, HCl...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., clinker coolers, raw material dryers, and open clinker storage piles? 63.1343 Section 63.1343 Protection... Limits § 63.1343 What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker... associated with that kiln, clinker cooler, raw material dryer, and open clinker storage pile. All D/F, HCl...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., clinker coolers, raw material dryers, and open clinker piles? 63.1343 Section 63.1343 Protection of... What standards apply to my kilns, clinker coolers, raw material dryers, and open clinker piles? (a..., clinker cooler, and raw material dryer. All dioxin D/F, HCl, and total hydrocarbon (THC) emission limits...
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2014 CFR
2014-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2013 CFR
2013-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
26 CFR 1.472-1 - Last-in, first-out inventories.
Code of Federal Regulations, 2012 CFR
2012-04-01
... may elect to have such method apply to the raw materials only (including those included in goods in... adjustments are confined to costs of the raw material in the inventory and the cost of the raw material in... that the opening inventory had 10 units of raw material, 10 units of goods in process, and 10 units of...
Zhong, Wen; Chen, Sha; Zhang, Jun; Wang, Yu-Sheng; Liu, An
2016-03-01
To investigate the effect of Chinese medicine raw materials and production technology on quality consistency of Chinese patent medicines with Gegen Qinlian decoction as an example, and establish a suitable method for the quality consistency control of Chinese patent medicines. The results showed that the effect of production technology on the quality consistency was generally not more than 5%, while the effect of raw materials was even more than 30%, indicating that the effect of raw materials was much greater than that of the production technology. In this study, blend technology was used to improve the quality consistency of raw materials. As a result, the difference between the product produced by raw materials and reference groups was less than 5%, thus increasing the quality consistence of finished products. The results showed that under the current circumstances, the main factor affecting the quality consistency of Chinese patent medicines was raw materials, so we shall pay more attention to the quality of Chinese medicine's raw materials. Finally, a blend technology can improve the quality consistency of Chinese patent medicines. Copyright© by the Chinese Pharmaceutical Association.
77 FR 39899 - Technical Corrections
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-06
..., Nuclear material, Oil and gas exploration--well logging, Reporting and recordkeeping requirements... recordkeeping requirements, Source material, Uranium. 10 CFR Part 50 Antitrust, Classified information, Criminal... measures, Special nuclear material, Uranium enrichment by gaseous diffusion. 10 CFR Part 81 Administrative...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schutt, Stephen M.; Hochstein, Ron F.; Frydenlund, David C.
2003-02-27
Throughout the United States Department of Energy (DOE) complex, there are a number of streams of low enriched uranium (LEU) that contain various trace contaminants. These surplus nuclear materials require processing in order to meet commercial fuel cycle specifications. To date, they have not been designated as waste for disposal at the DOE's Nevada Test Site (NTS). Currently, with no commercial outlet available, the DOE is evaluating treatment and disposal as the ultimate disposition path for these materials. This paper will describe an innovative program that will provide a solution to DOE that will allow disposition of these materials atmore » a cost that will be competitive with treatment and disposal at the NTS, while at the same time recycling the material to recover a valuable energy resource (yellowcake) for reintroduction into the commercial nuclear fuel cycle. International Uranium (USA) Corporation (IUSA) and Nuclear Fuel Services, Inc. (NFS) have entered into a commercial relationship to pursue the development of this program. The program involves the design of a process and construction of a plant at NFS' site in Erwin, Tennessee, for the blending of contaminated LEU with depleted uranium (DU) to produce a uranium source material ore (USM Ore{trademark}). The USM Ore{trademark} will then be further processed at IUC's White Mesa Mill, located near Blanding, Utah, to produce conventional yellowcake, which can be delivered to conversion facilities, in the same manner as yellowcake that is produced from natural ores or other alternate feed materials. The primary source of feed for the business will be the significant sources of trace contaminated materials within the DOE complex. NFS has developed a dry blending process (DRYSM Process) to blend the surplus LEU material with DU at its Part 70 licensed facility, to produce USM Ore{trademark} with a U235 content within the range of U235 concentrations for source material. By reducing the U235 content to source material levels in this manner, the material will be suitable for processing at a conventional uranium mill under its existing Part 40 license to remove contaminants and enable the product to re-enter the commercial fuel cycle. The tailings from processing the USM Ore{trademark} at the mill will be permanently disposed of in the mill's tailings impoundment as 11e.(2) byproduct material. Blending LEU with DU to make a uranium source material ore that can be returned to the nuclear fuel cycle for processing to produce yellowcake, has never been accomplished before. This program will allow DOE to disposition its surplus LEU and DU in a cost effective manner, and at the same time provide for the recovery of valuable energy resources that would be lost through processing and disposal of the materials. This paper will discuss the nature of the surplus LEU and DU materials, the manner in which the LEU will be blended with DU to form a uranium source material ore, and the legal means by which this blending can be accomplished at a facility licensed under 10 CFR Part 70 to produce ore that can be processed at a conventional uranium mill licensed under 10 CFR Part 40.« less
21 CFR 1304.31 - Reports from manufacturers importing narcotic raw material.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Reports from manufacturers importing narcotic raw... RECORDS AND REPORTS OF REGISTRANTS Reports § 1304.31 Reports from manufacturers importing narcotic raw material. (a) Every manufacturer which imports or manufactures from narcotic raw material (opium, poppy...
21 CFR 1304.31 - Reports from manufacturers importing narcotic raw material.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Reports from manufacturers importing narcotic raw... RECORDS AND REPORTS OF REGISTRANTS Reports § 1304.31 Reports from manufacturers importing narcotic raw material. (a) Every manufacturer which imports or manufactures from narcotic raw material (opium, poppy...
Rapid Radiochemical Method for Isotopic Uranium in Building ...
Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Uranium-234, uranium-235, and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of uranium-234, uranium-235, and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-21
... License Renewal, Operating License SUA-1341, Uranium One USA, Inc., Willow Creek Uranium In Situ Recovery.... SUA- 1341 to Uranium One USA, Inc. (Uranium One) for its Willow Creek Uranium In Situ Recovery (ISR) Project in Johnson and Campbell Counties, Wyoming. ADDRESSES: Please refer to Docket ID NRC-2009-0036 when...
Landis, Edwin R.
1955-01-01
As a part of the Geological Survey's program of investigating uranium-bearing carbonaceous rocks on behalf of the Division of Raw Materials of the U.S. Atomic Energy Commission, a reconnaissance of the Sharon Springs member of the Pierre shale in western Kansas and eastern Colorado was conducted during 1954. The Sharon Springs member of the Pierre shale and its lateral equivalents ranges from 155 to about 500 feet in thickness and generally contains about 0.001 percent uranium, but some beds contain larger amounts. A 6-foot thick shale bed in Cheyenne County, Colo., contains about 0.006 percent uranium, a 4 1/2-foot thick sequence of beds in Crowley County, Colo., is estimated to contain between 0.004 and 0.005 percent uranium, and a 3 1/2-foot thick sequence of beds in Kiowa County, Colo., contains about 0.004 percent uranium. At several outcrop localities, sequences of beds as much as 9 1/2 feet thick contain about 0.003 percent uranium. Data from wells indicate that the 4 1/2-foot thick sequence of beds in Crowley County, Colo., may have a lateral extent of at least 5 1/2 miles. A gamma-ray log of a well in Yuma County, Colo., indicates the presence of a sequence of beds 66 feet thick which contains 0.005 to 0.010 percent equivalent uranium. No definite pattern of areal distribution of radioactivity and uranium content in the Sharon Springs is indicated by available data. Lateral variation in uranium content of individual beds was not noted in outcrops, which seldom extend more than 150 feet, but subsurface data from gamma-ray logs of wells indicate that both the maximum radioactivity and the thickness of radioactive beds are variable within distances of a few miles. Vertical variation in radioactivity and uranium content of the more radioactive beds is usually abrupt, but in the rocks as a whole the range of uranium content is so small that large variations in content are absent. In most of the gamma-ray logs examined there is only part of the sequence of rocks comprising the Pierre shale and Niobrara formation that exhibits radioactivity in excess of the average radioactivity of the two formations. Comparison of features of gamma-ray logs of wells in north-eastern Colorado suggests that the most radioactive part referred to above is a laterally correlatable sequence of beds. The stratigraphic position of the radioactive unit relative to the Pierre shale-Niobrara formation contact in oil industry scout reports, as identified from electric logs and wells, is variable within short distances. This may indicate that some of the Pierre-Niobrara contacts picked from electric logs may not correspond to the boundary that would be selected by examination of the rocks themselves, or may indicate that there is a facies relationship between teh lowermost part of the Pierre shale and the uppermost part of the Niobrara formation.
29 CFR 779.333 - Goods sold for use as raw materials in other products.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 3 2011-07-01 2011-07-01 false Goods sold for use as raw materials in other products. 779... Service Establishments Sales Not Made for Resale § 779.333 Goods sold for use as raw materials in other products. Goods are sold for resale where they are sold for use as a raw material in the production of a...
29 CFR 779.333 - Goods sold for use as raw materials in other products.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 3 2010-07-01 2010-07-01 false Goods sold for use as raw materials in other products. 779... Service Establishments Sales Not Made for Resale § 779.333 Goods sold for use as raw materials in other products. Goods are sold for resale where they are sold for use as a raw material in the production of a...
40 CFR Table N-1 to Subpart N of... - CO2 Emission Factors for Carbonate-Based Raw Materials
Code of Federal Regulations, 2011 CFR
2011-07-01
...-Based Raw Materials N Table N-1 to Subpart N of Part 98 Protection of Environment ENVIRONMENTAL... Raw Materials Carbonate-basedraw material—mineral CO2 emission factor a Limestone—CaCO3 0.440 Dolomite... in units of metric tons of CO2 emitted per metric ton of carbonate-based raw material charged to the...
METHOD OF PRODUCING URANIUM METAL BY ELECTROLYSIS
Piper, R.D.
1962-09-01
A process is given for making uranium metal from oxidic material by electrolytic deposition on the cathode. The oxidic material admixed with two moles of carbon per one mole of uranium dioxide forms the anode, and the electrolyte is a mixture of from 40 to 75% of calcium fluoride or barium fluoride, 15 to 45% of uranium tetrafluoride, and from 10 to 20% of lithium fluoride or magnesium fluoride; the temperature of the electrolyte is between 1150 and 1175 deg C. (AEC)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-07
... Ranch in situ recovery (ISR) project in Johnson and Campbell Counties, Wyoming. The project is currently in operating status, but is not producing uranium at this time. Materials License SUA-1569 authorizes Uranium One Americas, Inc., to possess uranium and byproduct material at its Moore Ranch ISR Project in...
40 CFR 63.1346 - Standards for new or reconstructed raw material dryers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Standards for new or reconstructed raw... Industry Emission Standards and Operating Limits § 63.1346 Standards for new or reconstructed raw material dryers. (a) New or reconstructed raw material dryers located at facilities that are major sources can not...
Leveraging “Raw Materials” as Building Blocks and Bioactive Signals in Regenerative Medicine
Renth, Amanda N.
2012-01-01
Components found within the extracellular matrix (ECM) have emerged as an essential subset of biomaterials for tissue engineering scaffolds. Collagen, glycosaminoglycans, bioceramics, and ECM-based matrices are the main categories of “raw materials” used in a wide variety of tissue engineering strategies. The advantages of raw materials include their inherent ability to create a microenvironment that contains physical, chemical, and mechanical cues similar to native tissue, which prove unmatched by synthetic biomaterials alone. Moreover, these raw materials provide a head start in the regeneration of tissues by providing building blocks to be bioresorbed and incorporated into the tissue as opposed to being biodegraded into waste products and removed. This article reviews the strategies and applications of employing raw materials as components of tissue engineering constructs. Utilizing raw materials holds the potential to provide both a scaffold and a signal, perhaps even without the addition of exogenous growth factors or cytokines. Raw materials contain endogenous proteins that may also help to improve the translational success of tissue engineering solutions to progress from laboratory bench to clinical therapies. Traditionally, the tissue engineering triad has included cells, signals, and materials. Whether raw materials represent their own new paradigm or are categorized as a bridge between signals and materials, it is clear that they have emerged as a leading strategy in regenerative medicine. The common use of raw materials in commercial products as well as their growing presence in the research community speak to their potential. However, there has heretofore not been a coordinated or organized effort to classify these approaches, and as such we recommend that the use of raw materials be introduced into the collective consciousness of our field as a recognized classification of regenerative medicine strategies. PMID:22462759
Varga, Z.; Mayer, K.; Bonamici, C. E.; ...
2015-05-11
The results of a joint effort by expert nuclear forensic laboratories in the area of age dating of uranium, i.e. the elapsed time since the last chemical purification of the material are presented and discussed. Completely separated uranium materials of known production date were distributed among the laboratories, and the samples were dated according to routine laboratory procedures by the measurement of the ²²⁰Th/²³⁴U ratio. The measurement results were in good agreement with the known production date showing that the concept for preparing uranium age dating reference material based on complete separation is valid. Detailed knowledge of the laboratory proceduresmore » used for uranium age dating allows the identification of possible improvements in the current protocols and the development of improved practice in the future. The availability of age dating reference materials as well as the evolvement of the age dating best-practice protocol will increase the relevance and applicability of age dating as part of the tool-kit available for nuclear forensic investigations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varga, Z.; Mayer, K.; Bonamici, C. E.
The results of a joint effort by expert nuclear forensic laboratories in the area of age dating of uranium, i.e. the elapsed time since the last chemical purification of the material are presented and discussed. Completely separated uranium materials of known production date were distributed among the laboratories, and the samples were dated according to routine laboratory procedures by the measurement of the ²²⁰Th/²³⁴U ratio. The measurement results were in good agreement with the known production date showing that the concept for preparing uranium age dating reference material based on complete separation is valid. Detailed knowledge of the laboratory proceduresmore » used for uranium age dating allows the identification of possible improvements in the current protocols and the development of improved practice in the future. The availability of age dating reference materials as well as the evolvement of the age dating best-practice protocol will increase the relevance and applicability of age dating as part of the tool-kit available for nuclear forensic investigations.« less
Scoping Future Policy Dynamics in Raw Materials Through Scenarios Testing
NASA Astrophysics Data System (ADS)
Correia, Vitor; Keane, Christopher; Sturm, Flavius; Schimpf, Sven; Bodo, Balazs
2017-04-01
The International Raw Materials Observatory (INTRAW) project is working towards a sustainable future for the European Union in access to raw materials, from an availability, economical, and environmental framework. One of the major exercises for the INTRAW project is the evaluation of potential future scenarios for 2050 to frame economic, research, and environmental policy towards a sustainable raw materials supply. The INTRAW consortium developed three possible future scenarios that encompass defined regimes of political, economic, and technological norms. The first scenario, "Unlimited Trade," reflects a world in which free trade continues to dominate the global political and economic environment, with expectations of a growing demand for raw materials from widely distributed global growth. The "National Walls" scenario reflects a world where nationalism and economic protectionism begins to dominate, leading to stagnating economic growth and uneven dynamics in raw materials supply and demand. The final scenario, "Sustainability Alliance," examines the dynamics of a global political and economic climate that is focused on environmental and economic sustainability, leading towards increasingly towards a circular raw materials economy. These scenarios were reviewed, tested, and provided simulations of impacts with members of the Consortium and a panel of global experts on international raw materials issues which led to expected end conditions for 2050. Given the current uncertainty in global politics, these scenarios are informative to identifying likely opportunities and crises. The details of these simulations and expected responses to the research demand, technology investments, and economic components of raw materials system will be discussed.
77 FR 26149 - Access Authorization Fees
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-03
... Regulatory Affairs of OMB. List of Subjects 10 CFR Part 11 Hazardous materials--transportation... licensees for work performed under the Material Access Authorization Program (MAAP) and the Information... assigned duties which require access to special nuclear material (plutonium, uranium-233, and uranium...
40 CFR 428.75 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.26 0.093 TSS 0.50 0.25 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.26 0...— Metric units (kg/kkg of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead...
40 CFR 428.75 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.26 0.093 TSS 0.50 0.25 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.26 0...— Metric units (kg/kkg of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead...
Study on optimum length of raw material in stainless steel high-lock nuts forging
NASA Astrophysics Data System (ADS)
Cheng, Meiwen; Liu, Fenglei; Zhao, Qingyun; Wang, Lidong
2018-04-01
Taking 302 stainless steel (1Cr18Ni9) high-lock nuts for research objects, adjusting the length of raw material, then using DEFORM software to simulate the isothermal forging process of each station and conducting the corresponding field tests to study the effects of raw material size on the stainless steel high-lock nuts forming performance. The tests show that the samples of each raw material length is basically the same as the results of the DEFORM software. When the length of the raw material is 10mm, the appearance size of the parts can meet the design requirements.
NASA Astrophysics Data System (ADS)
Tartaglione, A.; Di Lorenzo, F.; Mayer, R. E.
2009-07-01
Cargo interrogation in search for special nuclear materials like highly-enriched uranium or 239Pu is a first priority issue of international borders security. In this work we present a thermal-pulsed neutron-based approach to a technique which combines the time-of-flight method and demonstrates a capability to detect small quantities of highly-enriched uranium shielded with high or low Z materials providing, in addition, a manner to know the approximate position of the searched material.
10 CFR 71.22 - General license: Fissile material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...
10 CFR 71.22 - General license: Fissile material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...
10 CFR 71.22 - General license: Fissile material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...
10 CFR 71.22 - General license: Fissile material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...
10 CFR 71.22 - General license: Fissile material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...
40 CFR 428.55 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.70 0.25 TSS 1.28 0.64 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.70 0.25...— Metric units (kg/kkg of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead...
40 CFR 428.55 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.70 0.25 TSS 1.28 0.64 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.70 0.25...— Metric units (kg/kkg of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead...
40 CFR 428.65 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.42 0.15 TSS 0.80 0.40 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.42 0.0...— Metric units (kg/kkg of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead...
40 CFR 428.65 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.42 0.15 TSS 0.80 0.40 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.42 0.0...— Metric units (kg/kkg of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wai, Chien M.
Amidoxime-based polymer fibers are considered one of the most promising materials for sequestering uranium from seawater. The high-surface-area polymer fibers containing amidoxime and carboxylate groups synthesized by Oak Ridge National Lab (ORNL-AF1) show very high uranium adsorption capacities known in the literature. Effective elution of uranium and repeated use of the adsorbent are important factors affecting the cost of producing uranium from seawater using this material. Traditional acid leaching of uranium followed by KOH conditioning of the fiber causes chemical changes and physical damage to the ORNL-AF1 adsorbent. Two alkaline solution leaching methods were developed by this project, one usesmore » a highly concentrated (3 M) potassium bicarbonate solution at pH 8.3 and 40 °C; the other uses a mixture of sodium carbonate and hydrogen peroxide at pH 10.4. Both elution methods do not require KOH conditioning prior to reusing the fiber adsorbent. The conditions of eluting uranium from the amidoxime-based adsorbent using these alkaline solutions are confirmed by thermodynamic calculations. The bicarbonate elution method is selective for uranium recovery compared to other elution methods and causes no chemical change to the fiber material based on FTIR spectroscopy« less
Nanostructured Metal Oxide Sorbents for the Collection and Recovery of Uranium from Seawater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chouyyok, Wilaiwan; Warner, Cynthia L.; Mackie, Katherine E.
2016-02-07
The ability to collect uranium from seawater offers the potential for a long-term green fuel supply for nuclear energy. However, extraction of uranium, and other trace minerals, is challenging due to the high ionic strength and low mineral concentrations in seawater. Herein we evaluate the use of nanostructured metal oxide sorbents for the collection and recovery of uranium from seawater. Chemical affinity, chemical adsorption capacity and kinetics of preferred sorbent materials were evaluated. High surface area manganese and iron oxide nanomaterials showed excellent performance for uranium collection from seawater. Inexpensive nontoxic carbonate solutions were demonstrated to be an effective andmore » environmental benign method of stripping the uranium from the metal oxide sorbents. Various formats for the utilization of the nanostructured metals oxide sorbent materials are discussed including traditional and nontraditional methods such as magnetic separation. Keywords: Uranium, nano, manganese, iron, sorbent, seawater, magnetic, separations, nuclear energy« less
Code of Federal Regulations, 2010 CFR
2010-01-01
... and special nuclear material in the accounting records are based on measured values; (3) A measurement... 10 Energy 2 2010-01-01 2010-01-01 false Nuclear material control and accounting for uranium... Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...
46 CFR 148.04-1 - Radioactive material, Low Specific Activity (LSA).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Radioactive material, Low Specific Activity (LSA). 148... § 148.04-1 Radioactive material, Low Specific Activity (LSA). (a) Authorized materials are limited to: (1) Uranium or thorium ores and physical or chemical concentrates of such ores; (2) Uranium metal...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Nuclear material control and accounting for uranium enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33 Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Nuclear material control and accounting for uranium enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33 Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Nuclear material control and accounting for uranium enrichment facilities authorized to produce special nuclear material of low strategic significance. 74.33 Section 74.33 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mujaini, M., E-mail: madihah@uniten.edu.my; Chankow, N.; Yusoff, M. Z.
2016-01-22
Uranium ore can be easily detected due to various gamma-ray energies emitted from uranium daughters particularly from {sup 238}U daughters such as {sup 214}Bi, {sup 214}Pb and {sup 226}Ra. After uranium is extracted from uranium ore, only low energy gamma-rays emitted from {sup 235}U may be detected if the detector is placed in close contact to the specimen. In this research, identification and characterization of uranium bearing materials is experimentally investigated using direct measurement of gamma-rays from {sup 235}U in combination with the x-ray fluorescence (XRF) technique. Measurement of gamma-rays can be conducted by using high purity germanium (HPGe) detectormore » or cadmium telluride (CdTe) detector while a {sup 57}Coradioisotope-excited XRF spectrometer using CdTe detector is used for elemental analysis. The proposed technique was tested with various uranium bearing specimens containing natural, depleted and enriched uranium in both metallic and powder forms.« less
Sauer, Nancy N.; Watkin, John G.
1992-01-01
A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.
Sauer, N.N.; Watkin, J.G.
1992-03-24
A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.
NASA Astrophysics Data System (ADS)
Correia, Victor; Allington, Ruth; Keane, Christopher
2016-04-01
A secure supply of raw materials is a European priority that extends beyond country borders and national policies. Recent European initiatives have pioneered the development of an EU strategy on raw materials emphasizing the concept of the "added value chain", which continues to pursue the three pillar strategy to: (1) ensure the fair and sustainable supply of raw materials from international markets, promoting international cooperation with developed and developing countries; (2) foster sustainable supply of raw materials from European sources, and (3) reduce consumption of primary raw materials by increasing resource efficiency and promoting recycling. This contribution presents the Horizon 2020 funded project INTRAW, the objective of which is to establish the European Union's International Observatory for Raw Materials. The creation and maintenance of the European Union's International Observatory for Raw Materials is designed to have a strong impact in two dimensions: 1. To narrow the existing gap in aspects of the raw materials knowledge infrastructure in the EU by providing a link with the same knowledge infrastructure in technologically advanced reference countries. This should contribute to the harmonization of mineral policies all over the EU, by providing data that enables evidence-based policies and appropriate, cost-effective management, planning and adaptation decisions by the public sector. This will benefit businesses, industry and society. The Observatory will also provide to policy makers in the EU and its Member States the data they need to facilitate discussion in multilateral forums. 2. To enable a better alignment of the R&I activities among the individual EU members and international cooperation countries AND between the European Union and international cooperation countries by boosting synergies with international research and innovation programmes. This way the EU's role and scientific capabilities in the raw materials area will be reinforced in the mid-term, and the conditions for sustainable access and supply of raw materials in the EU will benefit from the international cooperation. The authors will describe the key stages of the INTRAW project and explain how it aims to establish (and promote the continuation of) international cooperation at every stage of the raw materials value chain and to build a repository of information and analysis to support the development and strengthening of EU raw materials strategies. Key elements of the value chain upon which the project focuses are: industry and trade; education and outreach; and research and innovation. The roles of geoscientists in delivering the aims and objectives of INTRAW will be emphasised.
Radiological protection in North American naturally occurring radioactive material industries.
Chambers, D B
2015-06-01
All soils and rocks contain naturally occurring radioactive material (NORM). Many ores and raw materials contain relatively high levels of natural radionuclides, and processing such materials can further increase the concentrations of natural radionuclides, sometimes referred to as 'technologically enhanced naturally occurring radioactive material' (TENORM). Examples of NORM minerals include uranium ores, monazite (a source of rare earth minerals), and phosphate rock used to produce phosphate fertiliser. Such activities have the potential to result in above background radiation exposure to workers and the public. The objective of this paper is to review the sources and exposure from NORM in North American industries, and provide a perspective on the potential radiological hazards to workers and the environment. Proper consideration of NORM issues is important and needs to be integrated in the assessment of these projects. Concerns over radioactivity and radiation amongst non-governmental organisations and the local public have resulted in the cancellation of NORM mining and mineral extraction projects, as well as inhibition of the safe use of by-product materials from various NORM industries. This paper also briefly comments on the current regulatory framework for NORM (TENORM) in Canada and the USA, as well as the potential implications of the recent activities of the International Commission on Radiological Protection for NORM industries. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Methodology for Evaluating Raw Material Changes to RSRM Elastomeric Insulation Materials
NASA Technical Reports Server (NTRS)
Mildenhall, Scott D.; McCool, Alex (Technical Monitor)
2001-01-01
The Reusable Solid Rocket Motor (RSRM) uses asbestos and silicon dioxide filled acrylonitrile butadiene rubber (AS-NBR) as the primary internal insulation to protect the case from heat. During the course of the RSRM Program, several changes have been made to the raw materials and processing of the AS-NBR elastomeric insulation material. These changes have been primarily caused by raw materials becoming obsolete. In addition, some process changes have been implemented that were deemed necessary to improve the quality and consistency of the AS-NBR insulation material. Each change has been evaluated using unique test efforts customized to determine the potential impacts of the specific raw material or process change. Following the evaluations, the various raw material and process changes were successfully implemented with no detectable effect on the performance of the AS-NBR insulation. This paper will discuss some of the raw material and process changes evaluated, the methodology used in designing the unique test plans, and the general evaluation results. A summary of the change history of RSRM AS-NBR internal insulation is also presented.
Process to create simulated lunar agglutinate particles
NASA Technical Reports Server (NTRS)
Gustafson, Robert J. (Inventor); Gustafson, Marty A. (Inventor); White, Brant C. (Inventor)
2011-01-01
A method of creating simulated agglutinate particles by applying a heat source sufficient to partially melt a raw material is provided. The raw material is preferably any lunar soil simulant, crushed mineral, mixture of crushed minerals, or similar material, and the heat source creates localized heating of the raw material.
Isotopic Analysis of Uranium in NIST SRM Glass by Femtosecond Laser Ablation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffin, Andrew M.; Hart, Garret L.; Hanlen, Richard C.
We employed femtosecond Laser Ablation Multicollector Inductively Coupled Mass Spectrometry for the 11 determination of uranium isotope ratios in a series of standard reference material glasses (NIST 610, 612, 614, and 12 616). This uranium concentration in this series of SRM glasses is a combination of isotopically natural uranium in 13 the materials used to make the glass matrix and isotopically depleted uranium added to increase the uranium 14 elemental concentration across the series. Results for NIST 610 are in excellent agreement with literature values. 15 However, other than atom percent 235U, little information is available for the remaining glasses.more » We present atom 16 percent and isotope ratios for 234U, 235U, 236U, and 238U for all four glasses. Our results show deviations from the 17 certificate values for the atom percent 235U, indicating the need for further examination of the uranium isotopes in 18 NIST 610-616. Our results are fully consistent with a two isotopic component mixing between the depleted 19 uranium spike and natural uranium in the bulk glass.« less
METHOD OF SEPARATING URANIUM VALUES, PLUTONIUM VALUES AND FISSION PRODUCTS BY CHLORINATION
Brown, H.S.; Seaborg, G.T.
1959-02-24
The separation of plutonium and uranium from each other and from other substances is described. In general, the method comprises the steps of contacting the uranium with chlorine in the presence of a holdback material selected from the group consisting of lanthanum oxide and thorium oxide to form a uranium chloride higher than uranium tetrachloride, and thereafter heating the uranium chloride thus formed to a temperature at which the uranium chloride is volatilized off but below the volatilizalion temperature of plutonium chloride.
SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY
Clark, H.M.; Duffey, D.
1958-06-17
A process is described for extracting uranium from uranium ore, wherein the uranium is substantially free from molybdenum contamination. In a solvent extraction process for recovering uranium, uranium and molybdenum ions are extracted from the ore with ether under high acidity conditions. The ether phase is then stripped with water at a lower controiled acidity, resaturated with salting materials such as sodium nitrate, and reextracted with the separation of the molybdenum from the uranium without interference from other metals that have been previously extracted.
Code of Federal Regulations, 2010 CFR
2010-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.26 0.093 TSS 0.50 0.25 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.26 0.../kkg of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead 0.0017 0.0007...
Code of Federal Regulations, 2010 CFR
2010-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.70 0.25 TSS 1.28 0.64 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.70 0.25... of raw material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead 0.0017 0.0007 (c...
Composition and method for brazing graphite to graphite
Taylor, A.J.; Dykes, N.L.
1982-08-10
A brazing material is described for joining graphite structures that can be used up to 2800/sup 0/C. The brazing material is formed of a paste-like composition of hafnium carbide and uranium oxide with a thermosetting resin. The uranium oxide is converted to uranium dicarbide during the brazing operation and then the hafnium carbide and uranium dicarbide form a liquid phase at a temperature about 2600/sup 0/C with the uranium diffusing and vaporizing from the joint area as the temperature is increased to about 2800/sup 0/C so as to provide a brazed joint consisting essentially of hafnium carbide. The resulting brazed joint is chemically and thermally compatible with the graphite structures.
VERAM - Vision and Roadmap for European Raw Materials
NASA Astrophysics Data System (ADS)
Baumgarten, Wibke; Vashev, Boris
2017-04-01
The overall objective of VERAM project is to produce a Vision and Roadmap for European Raw Materials in 2050 based on raw materials research and innovation (R&I) coordination. Two leading European Technology Platforms (ETPs): ETP SMR (Sustainable Minerals Resources) and FTP (Forest Technology Platform) are joining forces to develop a common vison and roadmap with the support of ECTP (European Construction Technology Platform), represented by UNIVPM, SusChem (ETP for Sustainable Chemistry), represented by Cefic, EuMaT (Advanced Materials ETP), represented by VITO, ERAMIN 2, represented by Research Centre JUELICH and WoodWisdom Network Plus represented by the Agency for Renewable Resources (FNR). This partnership provides VERAM with expertise from downstream applications and additional knowledge on non-biotic and biotic raw materials. The project encourages capacity building as well as transfer of knowledge. It expects to provide an innovation reference point for the European Institute of Innovation & Technology (EIT) Raw Materials (formerly the KIC Raw MatTERS), to coordinate the network involved in the European Innovation Partnership (EIP) on Raw Materials Commitments and relevant proposals funded under Horizon 2020. It provides a platform for identifying gaps and complementarities and enables their bridging. VERAM will be able to advise the European Commission and Member States on future research needs and policies to stimulate innovation and assist in overcoming fragmentation in the implementing the EIP Raw Materials Strategic Implementation Plan. VERAM looks for mutually beneficial information exchange, encourages cross-fertilization between actions undertaken by different raw material industries, and expects to accelerate exploitation of breakthrough innovations. One of the main outcomes of the project is the presentation of a common long term 2050 Vision and Roadmap for relevant raw materials including metals, industrial minerals and aggregates and wood. The Vision and Roadmap have the objective of highlighting the path to achieving the European Commission's ambitious target of 80% reduction in CO2 emissions by 2050.
Special nuclear material simulation device
Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.
2014-08-12
An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.
10 CFR 70.23a - Hearing required for uranium enrichment facility.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Hearing required for uranium enrichment facility. 70.23a... MATERIAL License Applications § 70.23a Hearing required for uranium enrichment facility. The Commission... license for construction and operation of a uranium enrichment facility. The Commission will publish...
10 CFR 70.23a - Hearing required for uranium enrichment facility.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Hearing required for uranium enrichment facility. 70.23a... MATERIAL License Applications § 70.23a Hearing required for uranium enrichment facility. The Commission... license for construction and operation of a uranium enrichment facility. The Commission will publish...
10 CFR 70.23a - Hearing required for uranium enrichment facility.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Hearing required for uranium enrichment facility. 70.23a... MATERIAL License Applications § 70.23a Hearing required for uranium enrichment facility. The Commission... license for construction and operation of a uranium enrichment facility. The Commission will publish...
10 CFR 70.23a - Hearing required for uranium enrichment facility.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Hearing required for uranium enrichment facility. 70.23a... MATERIAL License Applications § 70.23a Hearing required for uranium enrichment facility. The Commission... license for construction and operation of a uranium enrichment facility. The Commission will publish...
10 CFR 70.23a - Hearing required for uranium enrichment facility.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Hearing required for uranium enrichment facility. 70.23a... MATERIAL License Applications § 70.23a Hearing required for uranium enrichment facility. The Commission... license for construction and operation of a uranium enrichment facility. The Commission will publish...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-02
... Uranium Enrichment Fuel Cycle Facility's Inspection Reports Regarding Louisiana Energy Services, National..., Uranium Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety... Commission. Brian W. Smith, Chief, Uranium Enrichment Branch, Division of Fuel Cycle Safety and Safeguards...
49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Excepted packages for articles containing natural....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...
49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 2 2011-10-01 2011-10-01 false Excepted packages for articles containing natural....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...
Gott, Garland B.; Erickson, Ralph L.
1952-01-01
Because of the common association of uranium and copper in several of the commercial uranium deposits in the Colorado Plateau Province, a reconnaissance was made of several known deposits of copper disseminated through sandstone to determine whether they might be a source of uranium. In order to obtain more information regarding the relationship between copper, uranium and carbonaceous materials, some of the uraniferious asphaltrite deposits in the Shinarump conglomerate along the west flank of the San Rafael Swell were also investigated briefly. During this reconnaissance 18 deposits were examined in New Mexico, eight in Utah, two in Idaho, and one each in Wyoming and Colorado. No uranium deposits of commercial grade are associated with the copper deposits that were examined. The uraniferous asphaltites in the Shinarump conglomerate of Triassic age on the west flank of the San Rafael Swell, however, are promising from the standpoint of commercial uranium production. Spectrographic analyses of crude oil, asphalt, and bituminous shales show a rather consistent suite of trace metals including vanadium, nickel, copper, cobalt, chromium, lead zinc, and molybdenum. The similarity of the metal assemblage, including uranium of the San Rafael Swell asphaltites, to the metal assemblage in crude oil and other bituminous materials suggests that these metals were concentrated in the asphaltites from petroleum. However, the hypothesis that uranium minerals were already present before the hydrocarbons were introduced and that some sort of replacement or uranium minerals by carbon compounds was effected after the petroleum migrated into the uranium deposit should not be disregarded. The widespread association of uranium with asphaltic material suggests that it also may have been concentrated by some agency connected with the formation of petroleum. The problem of the association of uranium and other trace metals with hydrocarbons should be studied further both in the field and in the laboratory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... not exceed— Metric units (kg/kkg of raw material) Oil and grease 2.0 0.73 BOD5 3.72 2.20 TSS 6.96 2.90 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 2.0 0.73 BOD5 3.72 2.20 TSS 6... raw material) Chromium 0.0086 0.0036 English units (lb/1,000 lb of raw material) Chromium 0.0086 0...
Code of Federal Regulations, 2011 CFR
2011-07-01
... not exceed— Metric units (kg/kkg of raw material) Oil and grease 2.0 0.73 BOD5 3.72 2.20 TSS 6.96 2.90 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 2.0 0.73 BOD5 3.72 2.20 TSS 6... raw material) Chromium 0.0086 0.0036 English units (lb/1,000 lb of raw material) Chromium 0.0086 0...
Code of Federal Regulations, 2010 CFR
2010-07-01
... consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 2.0 0.73 BOD5 3.72 2.20 TSS 6.96 2.90 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 2.0 0.73 BOD5... units (kg/kkg of raw material) Chromium 0.0086 0.0036 English units (lb/1,000 lb of raw material...
NASA Astrophysics Data System (ADS)
Lestariningsih, Titik; Ratri, Christin Rina; Wigayati, Etty Marty; Sabrina, Qolby
2016-02-01
Characterization of pore structure and crystal structure of the LiB(C2O4)2H2O or LIBOB compound has been performed in this study. These recent years, research regarding LiBOB electrolyte salt have been performed using analytical-grade raw materials, therefore this research was aimed to synthesized LiBOB electrolyte salt using the cheaper and abundant technical-grade raw materials. Lithium hydroxide (LiOH), oxalic acid dihydrate (H2C2O4.2H2O), and boric acid (H3BO3) both in technical-grade and analytical-grade quality were used as raw materials for the synthesis of LiBOB. Crystal structure characterization results of synthesized LiBOB from both technical-grade and analytical-grade raw materials have shown the existence of LiBOB and LiBOB hydrate phase with orthorombic structure. These results were also confirmed by FT-IR analysis, which showed the functional groups of LiBOB compounds. SEM analysis results showed that synthesized LiBOB has spherical structure, while commercial LiBOB has cylindrical structure. Synthesized LiBOB has a similar pore size of commercial LiBOB, i.e. 19 nm (mesoporous material). Surface area of synthesized LiBOB from analytical-grade raw materials and technical-grade materials as well as commercial LIBOB were 88.556 m2/g, 41.524 m2/g, and 108.776 m2/g, respectively. EIS analysis results showed that synthesized LiBOB from technical-grade raw materials has lower conductivity than synthesized LiBOB from analytical-grade raw materials.
Krajkó, Judit; Varga, Zsolt; Yalcintas, Ezgi; Wallenius, Maria; Mayer, Klaus
2014-11-01
A novel procedure has been developed for the measurement of (143)Nd/(144)Nd isotope ratio in various uranium-bearing materials, such as uranium ores and ore concentrates (UOC) in order to evaluate the usefulness and applicability of variations of (143)Nd/(144)Nd isotope ratio for provenance assessment in nuclear forensics. Neodymium was separated and pre-concentrated by extraction chromatography and then the isotope ratios were measured by multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The method was validated by the measurement of standard reference materials (La Jolla, JB-2 and BCR-2) and the applicability of the procedure was demonstrated by the analysis of uranium samples of world-wide origin. The investigated samples show distinct (143)Nd/(144)Nd ratio depending on the ore type, deposit age and Sm/Nd ratio. Together with other characteristics of the material in question, the Nd isotope ratio is a promising signature for nuclear forensics and suggests being indicative of the source material, the uranium ore. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
PROCESS OF PRODUCING REFRACTORY URANIUM OXIDE ARTICLES
Hamilton, N.E.
1957-12-01
A method is presented for fabricating uranium oxide into a shaped refractory article by introducing a uranium halide fluxing reagent into the uranium oxide, and then mixing and compressing the materials into a shaped composite mass. The shaped mass of uranium oxide and uranium halide is then fired at an elevated temperature so as to form a refractory sintered article. It was found in the present invention that the introduction of a uraninm halide fluxing agent afforded a fluxing action with the uranium oxide particles and that excellent cohesion between these oxide particles was obtained. Approximately 90% of uranium dioxide and 10% of uranium tetrafluoride represent a preferred composition.
Wojtowicz, Elżbieta; Zawirska-Wojtasiak, Renata; Przygoński, Krzysztof; Mildner-Szkudlarz, Sylwia
2015-05-15
The β-carboline compounds norharman and harman exhibit neuroactive activity in the human body. Chicory coffee has proved to be a source of β-carboline compounds. This study assessed the norharman and harman contents of traditional and novel raw materials for the production of chicory coffee, as well as in samples of chicory coffee with novel additives. The highest content of the β-carbolines among the traditional raw materials was recorded in roasted sugar beet (2.26 μg/g), while roasting the chicory caused a 25-fold increase in the content of norharman in this raw material (from 0.05 to 1.25 μg/g). In novel raw materials not subjected to the action of high temperature, β-carboline was not detected. Among the roasted novel raw materials, the highest contents of harman and norharman were found in artichokes. High harman levels were also recorded in roasted chokeberry. Copyright © 2014 Elsevier Ltd. All rights reserved.
Origin of the Mariano Lake uranium deposit, McKinley County, New Mexico
Fishman, Neil S.; Reynolds, Richard L.
1982-01-01
The Mariano Lake uranium deposit, hosted by the Brushy Basin Member of the Jurassic Morrison Formation, occurs in the trough of an east-west trending syncline at the western end of the Smith Lake-Mariano Lake group of uranium deposits near Crownpoint, New Mexico. The orebody, which contains abundant amorphous organic material, is situated on the reduced side of a regional reduction-oxidation (redox) interface. The presence of amorphous organic material suggests the orebody may represent a tabular (primary) deposit, whereas the close proximity of the orebody to the redox interface is suggestive that uranium was secondarily redistributed by oxidative processes from pre-existing tabular orebodies. Uranium contents correlate positively with both organic carbon and vanadium contents. Petrographic evidence and scanning electron microscope-energy dispersive analyses point to uranium residence in the epigentically introduced amorphous organic material, which coats detrital grains and fills voids. Uranium mineralization was preceded by the following diagenetic alterations: precipitation of pyrite (d34S values ranging from-11.0 to-38.2 per mil); precipitation of mixed-layer smectite-illite clays; partial dissolution of some of the detrital feldspar population; and precipitation of quartz and adularia overgrowths. Alterations associated with uranium mineralization include emplacement of amorphous organic material (possibly uranium bearing); destruction of detrital iron-titanium oxide grains; coprecipitation of chlorite and microcrystalline quartz, and precipitation of pyrite and marcasite (d34S values for these sulfides ranging from -29.4 to -41.6 per mil). After mineralization, calcite, dolomite, barite, and kaolinite precipitated, and authigenic iron disulfides were replaced by ferric oxides and hydroxides. Geochemical data (primarily the positive correlation of uranium content to both organic carbon and vanadium contents) and petrographic observations (epigentically introduced amorphous organic matter and uranium residence in this organic matter) indicate that the Mariano Lake orebody is a tabular-type uranium deposit. Oxidative processes have not noticeably redistributed and reconcentrated primary uranium in the immediate vicinity of the deposit nor have they greatly modified geochemical characteristics in the ore. Preservation of the Mariano Lake deposit may not only be related to its position along the synclinal trough, where oxidative destruction of the orebody has been inhibited by stagnation of oxidizing ground waters by the structure, but also due to the deflection of ground waters (resulting from low orebody porosity) around the orebody.
NASA Astrophysics Data System (ADS)
Long, Wei; Liu, Huijun; Yan, Xueming; Fu, Li
2018-03-01
A new nano magnetic material Fe3O4@g-C3N4 was prepared by deposition reduction method, which performed good adsorption performance to uranium ion. Characterization results showed that the g-C3N4 particles were wrapped around the nano magnetic Fe3O4 particles, and the textural properties of this material was improved, so the adsorption performance to uranium ion was good. Adsorption experiments of this material demonstrated that the optimum pH value was 10, the optimum mass of adsorbent was 6.5 mg and the optimum adsorption time was 150 min in the initial concentration of 140 mg/L uranium ion solution system, and the maximum adsorption capacity was up to 352.1 mg/g and the maximum adsorption rate was more than 90%.
TRACE ELEMENT ANALYSES OF URANIUM MATERIALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beals, D; Charles Shick, C
The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a seriesmore » of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.« less
Casterton, P L; Potts, L F; Klein, B D
1994-08-01
11 surfactant raw materials with potential applications in light-duty liquid cleaning products were evaluated in vitro using a human skin analogue (ATS SKIN(2) Model ZK1100) for predicting cytotoxicity (MTT reduction) and inflammation [prostaglandin E(2) (PGE(2)) release]. Two of the 11 raw materials, both in the same compound family, were selected to be individually combined with each of the other nine in a 90:10 (raw:selected raw) mixture. Selection criteria were based on desired performance characteristics and low irritation potential as suggested from the individual surfactant assay data. To determine whether irritation potential was mitigated, MTT and PGE(2) scores were again determined for each of the 18 combinations with the resulting data being compared with the untreated raw material data. A plot of the data indicated that one of two selected materials may have an 'anti-irritant' effect. For raw materials with intrinsic MTT scores of less than 50 mug/ml and with the original data corrected for possible dilution effects, a statistical comparison between individual raw materials and the two sets of combinations was done using a one-sample analysis. Both cytotoxicity (MTT) and inflammation (PGE(2)) were significantly decreased by the milder of the two selected raw materials. By factoring the data into future new product decisions, this methodology has become a useful and practical tool for Amway product development.
Qualification and initial characterization of a high-purity 233U spike for use in uranium analyses
Mathew, K. J.; Canaan, R. D.; Hexel, C.; ...
2015-08-20
Several high-purity 233U items potentially useful as isotope dilution mass spectrometry standards for safeguards, non-proliferation, and nuclear forensics measurements are identified and rescued from downblending. By preserving the supply of 233U materials of different pedigree for use as source materials for certified reference materials (CRMs), it is ensured that the safeguards community has high quality uranium isotopic standards required for calibration of the analytical instruments. One of the items identified as a source material for a high-purity CRM is characterized for the uranium isotope-amount ratios using thermal ionization mass spectrometry (TIMS). Additional verification measurements on this material using quadrupole inductivelymore » coupled plasma mass spectrometry (ICPMS) are also performed. As a result, the comparison of the ICPMS uranium isotope-amount ratios with the TIMS data, with much smaller uncertainties, validated the ICPMS measurement practices. ICPMS is proposed for the initial screening of the purity of items in the rescue campaign.« less
Synopsis of utilization research on SRIC raw materials
John B. Crist
1983-01-01
The take-home message of this paper is this: Raw materials produced using SRIC are suitable for many reconstituted end products. Juvenility, rapid growth, and bark contents do not greatly hinder the usefulness of the raw materials. In the future, increased industrial acceptance of SRIC methods and materials should be a major thrust and is discussed.
METHOD OF APPLYING NICKEL COATINGS ON URANIUM
Gray, A.G.
1959-07-14
A method is presented for protectively coating uranium which comprises etching the uranium in an aqueous etching solution containing chloride ions, electroplating a coating of nickel on the etched uranium and heating the nickel plated uranium by immersion thereof in a molten bath composed of a material selected from the group consisting of sodium chloride, potassium chloride, lithium chloride, and mixtures thereof, maintained at a temperature of between 700 and 800 deg C, for a time sufficient to alloy the nickel and uranium and form an integral protective coating of corrosion-resistant uranium-nickel alloy.
Processing of U-2.5Zr-7.5Nb and U-3Zr-9Nb alloys by sintering process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dos Santos, A. M. M.; Ferraz, W. B.; Lameiras, F. S.
2012-07-01
To minimize the risk of nuclear proliferation, there is worldwide interest in reducing fuel enrichment of research and test reactors. To achieve this objective while still guaranteeing criticality and cycle length requirements, there is need of developing high density uranium metallic fuels. Alloying elements such as Zr, Nb and Mo are added to uranium to improve fuel performance in reactors. In this context, the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN) is developing the U-2.5Zr-7.5Nb and U-3Zr-9Nb (weight %) alloys by the innovative process of sintering that utilizes raw materials in the form of powders. The powders were pressed atmore » 400 MPa and then sintered under a vacuum of about 1x10{sup -4} Torr at temperatures ranging from 1050 deg. to 1500 deg.C. The densities of the alloys were measured geometrically and by hydrostatic method and the phases identified by X ray diffraction (XRD). The microstructures of the pellets were observed by scanning electron microscopy (SEM) and the alloying elements were analyzed by energy dispersive X-ray spectroscopy (EDS). The results obtained showed the fuel density to slightly increase with the sintering temperature. The highest density achieved was approximately 80% of theoretical density. It was observed in the pellets a superficial oxide layer formed during the sintering process. (authors)« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-26
... DEPARTMENT OF ENERGY Reimbursement for Costs of Remedial Action at Active Uranium and Thorium...) acceptance of claims in FY 2011 from eligible active uranium and thorium processing site licensees for... incurred by licensees at active uranium and thorium processing sites to remediate byproduct material...
26 CFR 1.993-3 - Definition of export property.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Application of 50 percent test. The 50 percent test described in subparagraph (1) of this paragraph is applied... uranium concentrates (known in the industry as “yellow cake”), and nuclear fuel materials derived from the refining of uranium ore and uranium concentrates, or produced in a nuclear reaction, including— (a) Uranium...
26 CFR 1.993-3 - Definition of export property.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Application of 50 percent test. The 50 percent test described in subparagraph (1) of this paragraph is applied... uranium concentrates (known in the industry as “yellow cake”), and nuclear fuel materials derived from the refining of uranium ore and uranium concentrates, or produced in a nuclear reaction, including— (a) Uranium...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-17
... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-539-C; Third Review] Uranium From Russia; Scheduling of an Expedited Five-Year Review Concerning the Suspended Investigation on Uranium From Russia... on uranium from Russia would be likely to lead to continuation or recurrence of material injury...
Depleted Uranium | RadTown USA | US EPA
2018-01-12
Depleted uranium is the material left after most of the highly radioactive uranium-235 is removed from uranium ore for nuclear power and weapons. DU is used for tank armor, armor-piercing bullets and as weights to help balance aircraft. DU is both a toxic chemical and radiation health hazard when inside the body.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-03
... ISR, LLC, Lost Creek Uranium In-Situ Recovery Project, Sweetwater County, Wyoming AGENCY: Nuclear... to Source Materials License SUA-1598 for continued uranium production operations and in-situ recovery... identified in NUREG-1910, ``Generic Environmental Impact Statement for In-Situ Leach Uranium Milling...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-29
... Ross In-Situ Uranium Recovery Project in Crook County, Wyoming AGENCY: Nuclear Regulatory Commission... Commission (NRC) for a new source materials license for the proposed Ross In-Situ Uranium Recovery (ISR... SEIS is Supplement 5 to NUREG-1910, ``Generic Environmental Impact Statement for In-Situ Leach Uranium...
7 CFR 58.735 - Quality specifications for raw materials.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Quality specifications for raw materials. 58.735 Section 58.735 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING... specifications for raw materials. (a) Cheddar colby, washed or soaked curd, granular or stirred curd cheese...
Future Sources of Organic Raw Materials.
ERIC Educational Resources Information Center
Shapiro, Irving S.
1978-01-01
Examines the need for industrial organization, academic institutions, and national governments to agree on cooperative roles in planning the future raw materials demands of the chemical industry. Political and social concerns, as well as technical and economic considerations, are important to the raw material future of the industry. (MA)
US Transuranium and Uranium Registries case study on accidental exposure to uranium hexafluoride.
Avtandilashvili, Maia; Puncher, Matthew; McComish, Stacey L; Tolmachev, Sergei Y
2015-03-01
The United States Transuranium and Uranium Registries' (USTUR) whole-body donor (Case 1031) was exposed to an acute inhalation of uranium hexafluoride (UF6) produced from an explosion at a uranium processing plant 65 years prior to his death. The USTUR measurements of tissue samples collected at the autopsy indicated long-term retention of inhaled slightly enriched uranium material (0.85% (235)U) in the deep lungs and thoracic lymph nodes. In the present study, the authors combined the tissue measurement results with historical bioassay data, and analysed them with International Commission on Radiological Protection (ICRP) respiratory tract models and the ICRP Publication 69 systemic model for uranium using maximum likelihood and Bayesian statistical methods. The purpose of the analysis was to estimate intakes and model parameter values that best describe the data, and evaluate their effect on dose assessment. The maximum likelihood analysis, which used the ICRP Publication 66 human respiratory tract model, resulted in a point estimate of 79 mg of uranium for the occupational intake composed of 86% soluble, type F material and 14% insoluble, type S material. For the Bayesian approach, the authors applied the Markov Chain Monte Carlo method, but this time used the revised human respiratory tract model, which is currently being used by ICRP to calculate new dose coefficients for workers. The Bayesian analysis estimated that the mean uranium intake was 160 mg, and calculated the case-specific lung dissolution parameters with their associated uncertainties. The parameters were consistent with the inhaled uranium material being predominantly soluble with a small but significant insoluble component. The 95% posterior range of the rapid dissolution fraction (the fraction of deposited material that is absorbed to blood rapidly) was 0.12 to 0.91 with a median of 0.37. The remaining fraction was absorbed slowly, with a 95% range of 0.000 22 d(-1) to 0.000 36 d(-1) and a median of 0.000 31 d(-1). The effective dose per unit intake calculated using the dissolution parameters derived from the maximum likelihood and the Bayesian analyses was higher than the current ICRP dose coefficient for type F uranium by a factor of 2 or 7, respectively; the higher value of the latter was due to use of the revised respiratory tract model. The dissolution parameter values obtained here may be more appropriate to use for radiation protection purposes when individuals are exposed to a UF6 mixture that contains an insoluble uranium component.
Interlaboratory comparison program for nondestructive assay of prototype uranium reference materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trahey, N.M.; Smith, M.M.; Voeks, A.M.
The US Department of Energy (DOE), New Brunswick Laboratory (NBS), designed and administered an interlaboratory comparison program based on the measurement of NBL-produced prototype uranium nondestructive assay (NDA) reference materials for scrap and waste. The objectives of the program were to evaluate the reliability of NDA techniques as applied to nuclear safeguards materials control and accountability needs and to investigate the feasibility of providing practical NDA scrap and waste reference materials for use throughout the nuclear safeguards community. Fourteen facilities representing seven DOE contractors, four US Nuclear Regulatory Commission (NRC) licensees, one EURATOM Laboratory, and NBL, participated in this program.more » Three stable, well-characterized uranium reference materials were developed and certified for this program. Synthetic calcined ash, cellulose fiber, and ion-exchange resin simulate selected uranium scrap and waste forms which are often encountered in fabrication and recovery operations. The synthetic calcined ash represents an intermediate density inorganic matrix while the cellulose fiber and ion-exchange resin are representative of low-density organic matrices. The materials, containing from 0 to 13% uranium enriched at 93% /sup 235/U, were sealed in specially selected containers. Nineteen prototype reference samples, plus three empty containers, one to accompany each set, was circulated to the participants between August 1979 and May 1984. Triplicate measurements for /sup 235/U on each of the 19 filled containers were required. In addition, participants could opt to perform modular configuration measurements using containers from Sets IIA and IIB to simulate non-homogeneously dispersed uranium in waste containers. All data were reported to NBL for evaluation.« less
Denton, J. S.; Goldstein, S. J.; Paviet, P.; ...
2016-04-10
Studies of uranium-series (U-series) disequilibria within and around ore deposits provide valuable information on the extent and timing of actinide mobility, via mineral-fluid interaction, over a range of spatial and temporal scales. Such information is useful in studies of analogs of high-level nuclear-waste repositories, as well as for mining and mineral extraction sites, locations of previous nuclear weapons testing, and legacy nuclear waste contamination. In this study we present isotope dilution mass spectrometry U-series measurements for fracture-fill materials (hematite, goethite, kaolinite, calcite, dolomite and quartz) from one such analog; the Nopal I uranium ore deposit situated at Peña Blanca inmore » the Chihuahua region of northern Mexico. The ore deposit is located in fractured, unsaturated volcanic tuff and fracture-fill materials from surface fractures as well as fractures in a vertical drill core have been analyzed. High uranium concentrations in the fracture-fill materials (between 12 and 7700 ppm) indicate uranium mobility and transport from the deposit. Furthermore, uranium concentrations generally decrease with horizontal distance away from the deposit but in this deposit there is no trend with depth below the surface.« less
Performance testing accountability measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldham, R.D.; Mitchell, W.G.; Spaletto, M.I.
The New Brunswick Laboratory (NBL) provides assessment support to the DOE Operations Offices in the area of Material Control and Accountability (MC and A). During surveys of facilities, the Operations Offices have begun to request from NBL either assistance in providing materials for performance testing of accountability measurements or both materials and personnel to do performance testing. To meet these needs, NBL has developed measurement and measurement control performance test procedures and materials. The present NBL repertoire of performance tests include the following: (1) mass measurement performance testing procedures using calibrated and traceable test weights, (2) uranium elemental concentration (assay)more » measurement performance tests which use ampulated solutions of normal uranyl nitrate containing approximately 7 milligrams of uranium per gram of solution, and (3) uranium isotopic measurement performance tests which use ampulated uranyl nitrate solutions with enrichments ranging from 4% to 90% U-235. The preparation, characterization, and packaging of the uranium isotopic and assay performance test materials were done in cooperation with the NBL Safeguards Measurements Evaluation Program since these materials can be used for both purposes.« less
Seaborg, G.T.; Orlemann, E.F.; Jensen, L.H.
1958-12-23
A method of obtaining substantially pure uranium from a uranium composition contaminated with light element impurities such as sodium, magnesium, beryllium, and the like is described. An acidic aqueous solution containing tetravalent uranium is treated with a soluble molybdate to form insoluble uranous molybdate which is removed. This material after washing is dissolved in concentrated nitric acid to obtaln a uranyl nitrate solution from which highly purified uranium is obtained by extraction with ether.
7 CFR 58.332 - Segregation of raw material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 3 2010-01-01 2010-01-01 false Segregation of raw material. 58.332 Section 58.332 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.332 Segregation of raw material. The milk and cream received at the dairy plant shall meet...
7 CFR 58.332 - Segregation of raw material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 3 2011-01-01 2011-01-01 false Segregation of raw material. 58.332 Section 58.332 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Procedures § 58.332 Segregation of raw material. The milk and cream received at the dairy plant shall meet...
77 FR 2662 - Airworthiness Directives; Bombardier, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
... to batches of raw material that did not meet required tensile strength. This proposed AD would..., Avox Systems Inc., revealed that the deformation was attributed to two (2) batches of raw material that... regulator on the oxygen cylinder, which was attributed to batches of raw material that did not meet required...
77 FR 31174 - Airworthiness Directives; Bombardier, Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-25
..., which was attributed to batches of raw material that did not meet required tensile strength. This AD... the deformation was attributed to two (2) batches of raw material that did not meet the required... deformation of the pressure regulator on the oxygen cylinder, which was attributed to batches of raw material...
Ladshaw, Austin P; Ivanov, Alexander S; Das, Sadananda; Bryantsev, Vyacheslav S; Tsouris, Costas; Yiacoumi, Sotira
2018-04-18
Nuclear power is a relatively carbon-free energy source that has the capacity to be utilized today in an effort to stem the tides of global warming. The growing demand for nuclear energy, however, could put significant strain on our uranium ore resources, and the mining activities utilized to extract that ore can leave behind long-term environmental damage. A potential solution to enhance the supply of uranium fuel is to recover uranium from seawater using amidoximated adsorbent fibers. This technology has been studied for decades but is currently plagued by the material's relatively poor selectivity of uranium over its main competitor vanadium. In this work, we investigate the binding schemes between uranium, vanadium, and the amidoxime functional groups on the adsorbent surface. Using quantum chemical methods, binding strengths are approximated for a set of complexation reactions between uranium and vanadium with amidoxime functionalities. Those approximations are then coupled with a comprehensive aqueous adsorption model developed in this work to simulate the adsorption of uranium and vanadium under laboratory conditions. Experimental adsorption studies with uranium and vanadium over a wide pH range are performed, and the data collected are compared against simulation results to validate the model. It was found that coupling ab initio calculations with process level adsorption modeling provides accurate predictions of the adsorption capacity and selectivity of the sorbent materials. Furthermore, this work demonstrates that this multiscale modeling paradigm could be utilized to aid in the selection of superior ligands or ligand compositions for the selective capture of metal ions. Therefore, this first-principles integrated modeling approach opens the door to the in silico design of next-generation adsorbents with potentially superior efficiency and selectivity for uranium over vanadium in seawater.
NASA Astrophysics Data System (ADS)
Volodchenko, A. A.; Lesovik, V. S.; Stoletov, A. A.; Glagolev, E. S.; Volodchenko, A. N.; Magomedov, Z. G.
2018-03-01
It has been identified that man-made aluminosilicate raw materials represented by clay rock of varied genesis can be used as energy-efficient raw materials to obtain efficient highly-hollow non-autoclaved silicate materials. A technique of structure formation in the conditions of pressureless steam treatment has been offered. Cementing compounds of non- autoclaved silicate materials based on man-made aluminosilicate raw materials possess hydraulic properties that are conditioned by the process of further formation and recrystallization of calcium silicate hydrates, which optimizes the ratio between gellike and crystalline components and densifies the cementing compound structure, which leads to improvement of performance characteristics. Increasing the performance characteristics of the obtained products is possible by changing the molding conditions. For this reason, in order to create high-density material packaging and, as a result, to increase the strength properties of the products, it is reasonable to use higher pressure, under which raw brick is formed, which will facilitate the increase of quality of highly-hollow products.
Johnson, Raymond H.; Tutu, Hlanganani; Brown, Adrian; Figueroa, Linda; Wolkersdorfer, Christian
2013-01-01
Geochemical changes that can occur down gradient from uranium in situ recovery (ISR) sites are important for various stakeholders to understand when evaluating potential effects on surrounding groundwater quality. If down gradient solid-phase material consists of sandstone with iron hydroxide coatings (no pyrite or organic carbon), sorption of uranium on iron hydroxides can control uranium mobility. Using one-dimensional reactive transport models with PHREEQC, two different geochemical databases, and various geochemical parameters, the uncertainties in uranium sorption on iron hydroxides are evaluated, because these oxidized zones create a greater risk for future uranium transport than fully reduced zones where uranium generally precipitates.
10 CFR 140.13b - Amount of liability insurance required for uranium enrichment facilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Amount of liability insurance required for uranium... required for uranium enrichment facilities. Each holder of a license issued under Parts 40 or 70 of this chapter for a uranium enrichment facility that involves the use of source material or special nuclear...
10 CFR 140.13b - Amount of liability insurance required for uranium enrichment facilities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Amount of liability insurance required for uranium... required for uranium enrichment facilities. Each holder of a license issued under Parts 40 or 70 of this chapter for a uranium enrichment facility that involves the use of source material or special nuclear...
10 CFR 140.13b - Amount of liability insurance required for uranium enrichment facilities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Amount of liability insurance required for uranium... required for uranium enrichment facilities. Each holder of a license issued under Parts 40 or 70 of this chapter for a uranium enrichment facility that involves the use of source material or special nuclear...
10 CFR 140.13b - Amount of liability insurance required for uranium enrichment facilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Amount of liability insurance required for uranium... required for uranium enrichment facilities. Each holder of a license issued under Parts 40 or 70 of this chapter for a uranium enrichment facility that involves the use of source material or special nuclear...
NASA Astrophysics Data System (ADS)
Fassett, J. D.; Kelly, W. R.
1992-07-01
The application of isotope dilution thermal ionization mass spectrometry to the determination of both uranium and thorium in four different target materials used or proposed for electronic neutrino detectors is described. Isotope dilution analysis is done using highly enriched 233U and 230Th separated isotopes. Sensitivity of the technique is such that sub-picogram amounts of material are readily measured. The overall limit to measurement is caused by contamination of these elements during the measurement process. Uranium is more easily measured than thorium because both the instrumental sensitivity is higher and contamination is better controlled. The materials analyzed were light and heavy water, pseudocumene, and mineral oil.
76 FR 62447 - Importer of Controlled Substances; Notice of Registration
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
... narcotic raw material are not appropriate. With regard to all non-Narcotic Raw Material drugs on this...-phenethyl-4-piperidine (8333)... II Phenylacetone (8501) II Opium, raw (9600) II Poppy Straw Concentrate...
HIGHLY ENRICHED URANIUM BLEND DOWN PROGRAM AT THE SAVANNAH RIVER SITE PRESENT AND FUTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magoulas, V; Charles Goergen, C; Ronald Oprea, R
2008-06-05
The Department of Energy (DOE) and Tennessee Valley Authority (TVA) entered into an Interagency Agreement to transfer approximately 40 metric tons of highly enriched uranium (HEU) to TVA for conversion to fuel for the Browns Ferry Nuclear Power Plant. Savannah River Site (SRS) inventories included a significant amount of this material, which resulted from processing spent fuel and surplus materials. The HEU is blended with natural uranium (NU) to low enriched uranium (LEU) with a 4.95% 235U isotopic content and shipped as solution to the TVA vendor. The HEU Blend Down Project provided the upgrades needed to achieve the productmore » throughput and purity required and provided loading facilities. The first blending to low enriched uranium (LEU) took place in March 2003 with the initial shipment to the TVA vendor in July 2003. The SRS Shipments have continued on a regular schedule without any major issues for the past 5 years and are due to complete in September 2008. The HEU Blend program is now looking to continue its success by dispositioning an additional approximately 21 MTU of HEU material as part of the SRS Enriched Uranium Disposition Project.« less
Qin, Kunming; Liu, Qidi; Cai, Hao; Cao, Gang; Lu, Tulin; Shen, Baojia; Shu, Yachun; Cai, Baochang
2014-01-01
Background: In traditional Chinese medicine (TCM), raw and processed herbs are used to treat the different diseases. Fructus Arctii, the dried fruits of Arctium lappa l. (Compositae), is widely used in the TCM. Stir-frying is the most common processing method, which might modify the chemical compositions in Fructus Arctii. Materials and Methods: To test this hypothesis, we focused on analysis and identification of the main chemical constituents in raw and processed Fructus Arctii (PFA) by high-performance liquid chromatography/diode array detection-electrospray ionization-mass spectrometry. Results: The results indicated that there was less arctiin in stir-fried materials than in raw materials. however, there were higher levels of arctigenin in stir-fried materials than in raw materials. Conclusion: We suggest that arctiin reduced significantly following the thermal conversion of arctiin to arctigenin. In conclusion, this finding may shed some light on understanding the differences in the therapeutic values of raw versus PFA in TCM. PMID:25422559
Raw materials in the manufacture of biotechnology products: regulatory considerations.
Cordoba-Rodriguez, Ruth
2010-01-01
The Food and Drug Administration's Pharmaceutical cGMPs for the 21st Century initiative emphasizes science and risk-based approaches in the manufacture of drugs. These approaches are reflected in the International Conference on Harmonization (ICH) guidances ICH Q8, Q9, and Q10 and encourage a comprehensive assessment of the manufacture of a biologic, including all aspects of manufacture that have the potential to affect the finished drug product. Appropriate assessment and management of raw materials are an important part of this initiative. Ideally, a raw materials program should strive to assess and minimize the risk to product quality. With this in mind, risk-assessment concepts and control strategies will be discussed and illustrated by examples, with an emphasis on the impact of raw materials on cell substrates. Finally, the life cycle of the raw material will be considered, including its potential to affect the drug product life cycle. In this framework, the supply chain and the vendor-manufacturer relationship will be explored as important parts of an adequate raw materials control strategy.
Worldwide Mycotoxins Exposure in Pig and Poultry Feed Formulations
Guerre, Philippe
2016-01-01
The purpose of this review is to present information about raw materials that can be used in pig and poultry diets and the factors responsible for variations in their mycotoxin contents. The levels of mycotoxins in pig and poultry feeds are calculated based on mycotoxin contamination levels of the raw materials with different diet formulations, to highlight the important role the stage of production and the raw materials used can have on mycotoxins levels in diets. Our analysis focuses on mycotoxins for which maximum tolerated levels or regulatory guidelines exist, and for which sufficient contamination data are available. Raw materials used in feed formulation vary considerably depending on the species of animal, and the stage of production. Mycotoxins are secondary fungal metabolites whose frequency and levels also vary considerably depending on the raw materials used and on the geographic location where they were produced. Although several reviews of existing data and of the literature on worldwide mycotoxin contamination of food and feed are available, the impact of the different raw materials used on feed formulation has not been widely studied. PMID:27886128
Raw material ‘criticality’—sense or nonsense?
NASA Astrophysics Data System (ADS)
Frenzel, M.; Kullik, J.; Reuter, M. A.; Gutzmer, J.
2017-03-01
The past decade has seen a resurgence of interest in the supply security of mineral raw materials. A key to the current debate is the concept of ‘criticality’. The present article reviews the criticality concept, as well as the methodologies used in its assessment, including a critical evaluation of their validity in view of classical risk theory. Furthermore, it discusses a number of risks present in global raw materials markets that are not captured by most criticality assessments. Proposed measures for the alleviation of these risks are also presented. We find that current assessments of raw material criticality are fundamentally flawed in several ways. This is mostly due to a lack of adherence to risk theory, and highly limits their applicability. Many of the raw materials generally identified as critical are probably not critical. Still, the flaws of current assessments do not mean that the general issue of supply security can simply be ignored. Rather, it implies that new assessments are required. While the basic theoretical framework for such assessments is outlined in this review, detailed method development will require a major collaborative effort between different disciplines along the raw materials value chain. In the opinion of the authors, the greatest longer-term challenge in the raw materials sector is to stop, or counteract the effects of, the escalation of unit energy costs of production. This issue is particularly pressing due to its close link with the renewable energy transition, requiring more metal and mineral raw materials per unit energy produced. The solution to this problem will require coordinated policy action, as well as the collaboration of scientists from many different fields—with physics, as well as the materials and earth sciences in the lead.
Influence of uranium hydride oxidation on uranium metal behaviour
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, N.; Hambley, D.; Clarke, S.A.
2013-07-01
This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, ifmore » sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)« less
IRIS Assessment Plan for Uranium (Scoping and Problem Formulation Materials)
In January 2018, EPA released the IRIS Assessment Plan for Uranium (Oral Reference Dose) (Scoping and Problem Formulation Materials). An IRIS Assessment Plan (IAP) communicates to the public the plan for assessing each individual chemical and includes summary informatio...
40 CFR 192.00 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.00 Applicability. This... sites under section 108 of the Uranium Mill Tailings Radiation Control Act of 1978 (henceforth...
40 CFR 192.00 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.00 Applicability. This... sites under section 108 of the Uranium Mill Tailings Radiation Control Act of 1978 (henceforth...
40 CFR 192.00 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.00 Applicability. This... sites under section 108 of the Uranium Mill Tailings Radiation Control Act of 1978 (henceforth...
Federal Guidance Report No. 8: Guidance for the Control of Radiation Hazards in Uranium Mining
This report contains background material used in the development of guidance concerning radiation protection in the mining of uranium ore, and seeks to provide guidance for long-term radiation protection in uranium mining.
40 CFR 192.00 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.00 Applicability. This... sites under section 108 of the Uranium Mill Tailings Radiation Control Act of 1978 (henceforth...
Rolison, John M.; Treinen, Kerri C.; McHugh, Kelly C.; ...
2017-11-06
Uranium certified reference materials (CRM) issued by New Brunswick Laboratory were subjected to dating using four independent uranium-series radiochronometers. In all cases, there was acceptable agreement between the model ages calculated using the 231Pa– 235U, 230Th– 234U, 227Ac– 235U or 226Ra– 234U radiochronometers and either the certified 230Th– 234U model date (CRM 125-A and CRM U630), or the known purification date (CRM U050 and CRM U100). Finally, the agreement between the four independent radiochronometers establishes these uranium certified reference materials as ideal informal standards for validating dating techniques utilized in nuclear forensic investigations in the absence of standards with certifiedmore » model ages for multiple radiochronometers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rolison, John M.; Treinen, Kerri C.; McHugh, Kelly C.
Uranium certified reference materials (CRM) issued by New Brunswick Laboratory were subjected to dating using four independent uranium-series radiochronometers. In all cases, there was acceptable agreement between the model ages calculated using the 231Pa– 235U, 230Th– 234U, 227Ac– 235U or 226Ra– 234U radiochronometers and either the certified 230Th– 234U model date (CRM 125-A and CRM U630), or the known purification date (CRM U050 and CRM U100). Finally, the agreement between the four independent radiochronometers establishes these uranium certified reference materials as ideal informal standards for validating dating techniques utilized in nuclear forensic investigations in the absence of standards with certifiedmore » model ages for multiple radiochronometers.« less
Rapid Method for Sodium Hydroxide Fusion of Concrete and ...
Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.
Evaluation of residual uranium contamination in the dirt floor of an abandoned metal rolling mill.
Glassford, Eric; Spitz, Henry; Lobaugh, Megan; Spitler, Grant; Succop, Paul; Rice, Carol
2013-02-01
A single, large, bulk sample of uranium-contaminated material from the dirt floor of an abandoned metal rolling mill was separated into different types and sizes of aliquots to simulate samples that would be collected during site remediation. The facility rolled approximately 11,000 tons of hot-forged ingots of uranium metal approximately 60 y ago, and it has not been used since that time. Thirty small mass (≈ 0.7 g) and 15 large mass (≈ 70 g) samples were prepared from the heterogeneously contaminated bulk material to determine how measurements of the uranium contamination vary with sample size. Aliquots of bulk material were also resuspended in an exposure chamber to produce six samples of respirable particles that were obtained using a cascade impactor. Samples of removable surface contamination were collected by wiping 100 cm of the interior surfaces of the exposure chamber with 47-mm-diameter fiber filters. Uranium contamination in each of the samples was measured directly using high-resolution gamma ray spectrometry. As expected, results for isotopic uranium (i.e., U and U) measured with the large-mass and small-mass samples are significantly different (p < 0.001), and the coefficient of variation (COV) for the small-mass samples was greater than for the large-mass samples. The uranium isotopic concentrations measured in the air and on the wipe samples were not significantly different and were also not significantly different (p > 0.05) from results for the large- or small-mass samples. Large-mass samples are more reliable for characterizing heterogeneously distributed radiological contamination than small-mass samples since they exhibit the least variation compared to the mean. Thus, samples should be sufficiently large in mass to insure that the results are truly representative of the heterogeneously distributed uranium contamination present at the facility. Monitoring exposure of workers and the public as a result of uranium contamination resuspended during site remediation should be evaluated using samples of sufficient size and type to accommodate the heterogeneous distribution of uranium in the bulk material.
Renewable resources in the chemical industry--breaking away from oil?
Nordhoff, Stefan; Höcker, Hans; Gebhardt, Henrike
2007-12-01
Rising prices for fossil-based raw materials suggest that sooner or later renewable raw materials will, in principle, become economically viable. This paper examines this widespread paradigm. Price linkages like those seen for decades particularly in connection with petrochemical raw materials are now increasingly affecting renewable raw materials. The main driving force is the competing utilisation as an energy source because both fossil-based and renewable raw materials are used primarily for heat, electrical power and mobility. As a result, prices are determined by energy utilisation. Simple observations show how prices for renewable carbon sources are becoming linked to the crude oil price. Whether the application calls for sugar, starch, virgin oils or lignocellulose, the price for the raw material rises with the oil price. Consequently, expectations regarding price trends for fossil-based energy sources can also be utilised for the valuation of alternative processes. However, this seriously calls into question the assumption that a rising crude oil price will favour the economic viability of alternative products and processes based on renewable raw materials. Conversely, it follows that these products and processes must demonstrate economic viability today. Especially in connection with new approaches in white biotechnology, it is evident that, under realistic assumptions, particularly in terms of achievable yields and the optimisation potential of the underlying processes, the route to utilisation is economically viable. This makes the paradigm mentioned at the outset at least very questionable.
Use of raw materials in the United States from 1900 through 2014
Matos, Grecia R.
2017-08-22
The economic growth of an industrialized nation such as the United States requires raw materials for construction (buildings, bridges, highways, and so forth), defense, and processing and manufacture of goods and services. Since the beginning of the 20th century, the types and quantities of raw materials used have increased and changed significantly. This fact sheet quantifies the amounts of raw materials (other than food and fuel) that have been used in the U.S. economy annually for a period of 115 years, from 1900 through 2014. It provides a broad overview of the quantity (weight) of nonfood and nonfuel materials used in the economy and illustrates the use and significance of raw nonfuel minerals in particular as building blocks of society.These data have been compiled to help the public and policymakers understand the changing annual flow of raw materials put into use in the United States. Such information can be helpful in assessing the potential effects of materials use on the environment, assessing materials’ intensity of use, and examining the role that these materials play in the economy. The data presented indicate the substitution and shift in materials usage from renewable to nonrenewable materials during the 20th century. The disaggregated quantities by commodity (not shown in this fact sheet) may be tested against supply adequacy and end of life issues.
Preparation of uranium compounds
Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E
2013-02-19
UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.
IRIS Assessment Plan for Uranium (Scoping and Problem Formulation Materials)
In January 2018, EPA released the IRIS Assessment Plan for Uranium (Oral Reference Dose) (Scoping and Problem Formulation Materials). An IRIS Assessment Plan , or IAP communicates to the public the plan for assessing each individual chemical and includes summary informat...
Contamination of the cement raw material in a quarry site by seawater intrusion, Darica-Turkey
NASA Astrophysics Data System (ADS)
Camur, M. Zeki; Doyuran, Vedat
2008-02-01
The open pit mining nearby shoreline is planned to be extended into below sea level in order to use additional reserves of the cement raw material (marl). The raw material is currently contaminated by seawater intrusion below a depth of 20 m up to the distance of 90 m from shoreline. Seawater intrusion related contamination of the material used for the cement production was investigated by means of diffusion process for the future two below sea level mining scenarios covering 43 years of period. According to the results, chloride concentrations higher than the tolerable limit of a cement raw material would be present in the material about 10-25 cm inward from each discontinuity surface, controlling groundwater flow, located between 170 and 300 m landward from the shoreline at below sea level mining depths of 0-30 m. The estimations suggest that total amounts of dilution required for the contaminated raw material to reduce its concentration level to the tolerance limit with uncontaminated raw material are about 113- to 124-fold for scenario I (13 years of below sea level mining after 30 years of above sea level mining) and about 126- to 138-fold for scenario II (43 years of simultaneous above and below sea level minings).
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-10
... because it is producing glycine from raw materials of Indian origin and exporting such merchandise to the... find that there is no record evidence that AICO self produces glycine from Indian raw materials... exported to the United States glycine that it produced only from Indian raw materials. For a complete...
78 FR 69130 - Importer of Controlled Substances; Notice of Application: Johnson Matthey, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-18
... Concentrate (9670) II The company plans to import the listed controlled substances as raw materials, to be... requests for hearings on applications to import narcotic raw material are not appropriate. 72 FR 3417 (2007). In reference to the non-narcotic raw material, the company plans to import gram amounts to be used as...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false General license for custody and long-term care of uranium or thorium byproduct materials disposal sites. 40.28 Section 40.28 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL General Licenses § 40.28 General license for custody and...
Keegan, Elizabeth; Kristo, Michael J.; Colella, Michael; ...
2014-04-13
In early 2009, a state policing agency raided a clandestine drug laboratory in a suburb of a major city in Australia. While searching the laboratory, they discovered a small glass jar labelled “Gamma Source” and containing a green powder. The powder was radioactive. This paper documents the detailed nuclear forensic analysis undertaken to characterize and identify the material and determine its provenance. Isotopic and impurity content, phase composition, microstructure and other characteristics were measured on the seized sample, and the results were compared with similar material obtained from the suspected source (ore and ore concentrate material). While an extensive rangemore » of parameters were measured, the key ‘nuclear forensic signatures’ used to identify the material were the U isotopic composition, Pb and Sr isotope ratios, and the rare earth element pattern. These measurements, in combination with statistical analysis of the elemental and isotopic content of the material against a database of uranium ore concentrates sourced from mines located worldwide, led to the conclusion that the seized material (a uranium ore concentrate of natural isotopic abundance) most likely originated from Mary Kathleen, a former Australian uranium mine.« less
Keegan, Elizabeth; Kristo, Michael J; Colella, Michael; Robel, Martin; Williams, Ross; Lindvall, Rachel; Eppich, Gary; Roberts, Sarah; Borg, Lars; Gaffney, Amy; Plaue, Jonathan; Wong, Henri; Davis, Joel; Loi, Elaine; Reinhard, Mark; Hutcheon, Ian
2014-07-01
Early in 2009, a state policing agency raided a clandestine drug laboratory in a suburb of a major city in Australia. During the search of the laboratory, a small glass jar labelled "Gamma Source" and containing a green powder was discovered. The powder was radioactive. This paper documents the detailed nuclear forensic analysis undertaken to characterise and identify the material and determine its provenance. Isotopic and impurity content, phase composition, microstructure and other characteristics were measured on the seized sample, and the results were compared with similar material obtained from the suspected source (ore and ore concentrate material). While an extensive range of parameters were measured, the key 'nuclear forensic signatures' used to identify the material were the U isotopic composition, Pb and Sr isotope ratios, and the rare earth element pattern. These measurements, in combination with statistical analysis of the elemental and isotopic content of the material against a database of uranium ore concentrates sourced from mines located worldwide, led to the conclusion that the seized material (a uranium ore concentrate of natural isotopic abundance) most likely originated from Mary Kathleen, a former Australian uranium mine. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keegan, Elizabeth; Kristo, Michael J.; Colella, Michael
In early 2009, a state policing agency raided a clandestine drug laboratory in a suburb of a major city in Australia. While searching the laboratory, they discovered a small glass jar labelled “Gamma Source” and containing a green powder. The powder was radioactive. This paper documents the detailed nuclear forensic analysis undertaken to characterize and identify the material and determine its provenance. Isotopic and impurity content, phase composition, microstructure and other characteristics were measured on the seized sample, and the results were compared with similar material obtained from the suspected source (ore and ore concentrate material). While an extensive rangemore » of parameters were measured, the key ‘nuclear forensic signatures’ used to identify the material were the U isotopic composition, Pb and Sr isotope ratios, and the rare earth element pattern. These measurements, in combination with statistical analysis of the elemental and isotopic content of the material against a database of uranium ore concentrates sourced from mines located worldwide, led to the conclusion that the seized material (a uranium ore concentrate of natural isotopic abundance) most likely originated from Mary Kathleen, a former Australian uranium mine.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinelli, R; Hamilton, T; Brown, T
2006-05-30
This report describes a standardized methodology used by researchers from the Center for Accelerator Mass Spectrometry (CAMS) (Energy and Environment Directorate) and the Environmental Radiochemistry Group (Chemistry and Materials Science Directorate) at the Lawrence Livermore National Laboratory (LLNL) for the full isotopic analysis of uranium from solution. The methodology has largely been developed for use in characterizing the uranium composition of selected nuclear materials but may also be applicable to environmental studies and assessments of public, military or occupational exposures to uranium using in-vitro bioassay monitoring techniques. Uranium isotope concentrations and isotopic ratios are measured using a combination of Multimore » Collector Inductively Coupled Plasma Mass Spectrometry (MC ICP-MS), Accelerator Mass Spectrometry (AMS) and Alpha Spectrometry.« less
Tamasi, Alison L.; Boland, Kevin S.; Czerwinski, Kenneth; ...
2015-03-18
Chemical signatures correlated with uranium oxide processing are of interest to forensic science for inferring sample provenance. Identification of temporal changes in chemical structures of process uranium materials as a function of controlled temperatures and relative humidities may provide additional information regarding sample history. In our study, a high-purity α-U 3O 8 sample and three other uranium oxide samples synthesized from reaction routes used in nuclear conversion processes were stored under controlled conditions over 2–3.5 years, and powder X-ray diffraction analysis and X-ray absorption spectroscopy were employed to characterize chemical speciation. We measured signatures from the α-U 3O 8 samplemore » indicated that the material oxidized and hydrated after storage under high humidity conditions over time. Impurities, such as uranyl fluoride or schoepites, were initially detectable in the other uranium oxide samples. After storage under controlled conditions, the analyses of the samples revealed oxidation over time, although the signature of the uranyl fluoride impurity diminished. The presence of schoepite phases in older uranium oxide material is likely indicative of storage under high humidity and should be taken into account for assessing sample history. Finally, the absence of a signature from a chemical impurity, such as uranyl fluoride hydrate, in an older material may not preclude its presence at the initial time of production.« less
Tamasi, Alison L.; Boland, Kevin S.; Czerwinski, Kenneth; ...
2015-03-18
Chemical signatures correlated with uranium oxide processing are of interest to forensic science for inferring sample provenance. Identification of temporal changes in chemical structures of process uranium materials as a function of controlled temperatures and relative humidities may provide additional information regarding sample history. In our study, a high-purity α-U 3O 8 sample and three other uranium oxide samples synthesized from reaction routes used in nuclear conversion processes were stored under controlled conditions over 2–3.5 years, and powder X-ray diffraction analysis and X-ray absorption spectroscopy were employed to characterize chemical speciation. We measured signatures from the α-U 3O 8 samplemore » indicated that the material oxidized and hydrated after storage under high humidity conditions over time. Impurities, such as uranyl fluoride or schoepites, were initially detectable in the other uranium oxide samples. After storage under controlled conditions, the analyses of the samples revealed oxidation over time, although the signature of the uranyl fluoride impurity diminished. The presence of schoepite phases in older uranium oxide material is likely indicative of storage under high humidity and should be taken into account for assessing sample history. Finally, the absence of a signature from a chemical impurity, such as uranyl fluoride hydrate, in an older material may not preclude its presence at the initial time of production. LA-UR-15-21495.« less
Mimitsuka, Takashi; Na, Kyungsu; Morita, Ken; Sawai, Hideki; Minegishi, Shinichi; Henmi, Masahiro; Yamada, Katsushige; Shimizu, Sakayu; Yonehara, Tetsu
2012-01-01
Continuous fermentation by retaining cells with a membrane-integrated fermentation reactor (MFR) system was found to reduce the amount of supplied sub-raw material. If the amount of sub-raw material can be reduced, continuous fermentation with the MFR system should become a more attractive process for industrialization, due to decreased material costs and loads during the refinement process. Our findings indicate that the production rate decreased when the amount of the sub-raw material was reduced in batch fermentation, but did not decrease during continuous fermentation with Sporolactobacillus laevolacticus. Moreover, continuous fermentation with a reduced amount of sub-raw material resulted in a productivity of 11.2 g/L/h over 800 h. In addition, the index of industrial process applicability used in the MFR system increased by 6.3-fold as compared with the conventional membrane-based fermentation reactor previously reported, suggesting a potential for the industrialization of this D-lactic acid continuous fermentation process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denton, J. S.; Goldstein, S. J.; Paviet, P.
Studies of uranium-series (U-series) disequilibria within and around ore deposits provide valuable information on the extent and timing of actinide mobility, via mineral-fluid interaction, over a range of spatial and temporal scales. Such information is useful in studies of analogs of high-level nuclear-waste repositories, as well as for mining and mineral extraction sites, locations of previous nuclear weapons testing, and legacy nuclear waste contamination. In this study we present isotope dilution mass spectrometry U-series measurements for fracture-fill materials (hematite, goethite, kaolinite, calcite, dolomite and quartz) from one such analog; the Nopal I uranium ore deposit situated at Peña Blanca inmore » the Chihuahua region of northern Mexico. The ore deposit is located in fractured, unsaturated volcanic tuff and fracture-fill materials from surface fractures as well as fractures in a vertical drill core have been analyzed. High uranium concentrations in the fracture-fill materials (between 12 and 7700 ppm) indicate uranium mobility and transport from the deposit. Furthermore, uranium concentrations generally decrease with horizontal distance away from the deposit but in this deposit there is no trend with depth below the surface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eppich, Gary R.; Williams, Ross W.; Gaffney, Amy M.
Here, age dating of nuclear material can provide insight into source and suspected use in nuclear forensic investigations. We report here a method for the determination of the date of most recent chemical purification for uranium materials using the 235U- 231Pa chronometer. Protactinium is separated from uranium and neptunium matrices using anion exchange resin, followed by sorption of Pa to an SiO 2 medium. The concentration of 231Pa is measured by isotope dilution mass spectrometry using 233Pa spikes prepared from an aliquot of 237Np and calibrated in-house using the rock standard Table Mountain Latite and the uranium isotopic standard U100.more » Combined uncertainties of age dates using this method are 1.5 to 3.5 %, an improvement over alpha spectrometry measurement methods. Model ages of five uranium standard reference materials are presented; all standards have concordant 235U- 231Pa and 234U- 230Th model ages.« less
Holcombe, Cressie E.; Masters, David R.; Pfeiler, William A.
1985-01-01
An induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of carbon free materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloy. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an RF induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650.degree. C. for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.
Holcombe, C.E.; Masters, D.R.; Pfeiler, W.A.
1984-01-06
The present invention is directed to an induction furnace for melting and casting highly pure metals and alloys such as uranium and uranium alloys in such a manner as to minimize contamination of the melt by carbon derived from the materials and the environment within the furnace. The subject furnace is constructed of non-carbon materials and is housed within a conventional vacuum chamber. The furnace comprises a ceramic oxide crucible for holding the charge of metal or alloys. The heating of the crucible is achieved by a plasma-sprayed tungsten susceptor surrounding the crucible which, in turn, is heated by an rf induction coil separated from the susceptor by a cylinder of inorganic insulation. The furnace of the present invention is capable of being rapidly cycled from ambient temperatures to about 1650/sup 0/C for effectively melting uranium and uranium alloys without the attendant carbon contamination problems previously encountered when using carbon-bearing furnace materials.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-03
... Business Plan is to Purchase and Stockpile Raw Materials or Other Commodities In the case of a Company... stockpile quantities of a raw material or other commodity (``commodity stockpiling companies'' or ``CSCs... invest at least 85% of the net proceeds of the initial public offering in the raw material or other...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Through a series of material transfers and sales agreements over the past 6 to 8 years, the Fernald Environmental Management Project (FEMP) has reduced its nuclear material inventory from 14,500 to approximately 6,800 metric tons of uranium (MTU). This effort is part of the US Department of energy`s (DOE`s) decision to change the mission of the FEMP site; it is currently shut down and the site is being remediated. This EA focuses on the receipt and storage of uranium materials at various DOE-ORO sites. The packaging and transportation of FEMP uranium material has been evaluated in previous NEPA and othermore » environmental evaluations. A summary of these evaluation efforts is included as Appendix A. The material would be packaged in US Department of Transportation-approved shipping containers and removed from the FEMP site and transported to another site for storage. The Ohio Field Office will assume responsibility for environmental analyses and documentation for packaging and transport of the material as part of the remediation of the site, and ORO is preparing this EA for receipt and storage at one or more sites.« less
Establishing the traceability of a uranyl nitrate solution to a standard reference material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, C.H.; Clark, J.P.
1978-01-01
A uranyl nitrate solution for use as a Working Calibration and Test Material (WCTM) was characterized, using a statistically designed procedure to document traceability to National Bureau of Standards Reference Material (SPM-960). A Reference Calibration and Test Material (PCTM) was prepared from SRM-960 uranium metal to approximate the acid and uranium concentration of the WCTM. This solution was used in the characterization procedure. Details of preparing, handling, and packaging these solutions are covered. Two outside laboratories, each having measurement expertise using a different analytical method, were selected to measure both solutions according to the procedure for characterizing the WCTM. Twomore » different methods were also used for the in-house characterization work. All analytical results were tested for statistical agreement before the WCTM concentration and limit of error values were calculated. A concentration value was determined with a relative limit of error (RLE) of approximately 0.03% which was better than the target RLE of 0.08%. The use of this working material eliminates the expense of using SRMs to fulfill traceability requirements for uranium measurements on this type material. Several years' supply of uranyl nitrate solution with NBS traceability was produced. The cost of this material was less than 10% of an equal quantity of SRM-960 uranium metal.« less
Peculiarities of non-autoclaved lime wall materials production using clays
NASA Astrophysics Data System (ADS)
Volodchenko, A. A.; Lesovik, V. S.; Cherepanova, I. A.; Volodchenko, A. N.; Zagorodnjuk, L. H.; Elistratkin, M. Y.
2018-03-01
At present, the development and implementation of energy saving technologies for building materials production, which correspond to modern trends of «green» technologies, become ever more popular. One of the most widely spread wall materials today is a lime brick and stones. The primary raw goods used in production of such materials are quarziferous rocks. However, they have some disadvantages, including low strength index at the intermediate phase of their production, especially in case with a raw brick, which is an issue in the production of high-hollow goods due to low strength index of raw materials and the nonoptimal matrix structure. The conducted experiments confirmed the possibility to control structurization of building composites due to application of nonconventional argillous raw materials. Besides, the material and mineral composition of nonconventional clay rocks ensures the optimal microstructure thus providing for the production of efficient wall building materials via energy saving technology.
Recovery of fissile materials from nuclear wastes
Forsberg, Charles W.
1999-01-01
A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-29
... Uranium Enrichment Fuel Cycle Facility Inspection Reports Regarding Louisiana Energy Services, National... Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and... Enrichment Branch, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material Safety and...
40 CFR 190.10 - Standards for normal operations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards for the Uranium Fuel Cycle § 190.10 Standards for normal operations. Operations covered by this... radioactive materials, radon and its daughters excepted, to the general environment from uranium fuel cycle... the general environment from the entire uranium fuel cycle, per gigawatt-year of electrical energy...
NASA Astrophysics Data System (ADS)
Maxwell, J. L.; Webb, N. D.; Espinoza, M.; Cook, S.; Houts, M.; Kim, T.
Nuclear Thermal Propulsion (NTP) is an indispensable technology for the manned exploration of the solar system. By using Hyperbaric Pressure Laser Chemical Vapor Deposition (HP-LCVD), the authors propose to design and build a promising next-generation fuel element composed of uranium carbide UC embedded in a latticed matrix of highly refractory Ta4HfC5 for an NTP rocket capable of sustaining temperatures up to 4000 K, enabling an Isp of up to 1250 s. Furthermore, HP-LCVD technology can also be harnessed to enable 3D rapid prototyping of a variety of materials including metals, ceramics and composites, opening up the possibility of in-space fabrication of components, replacement parts, difficult-to-launch solar sails and panels and a variety of other space structures. Additionally, rapid prototyping with HP-LCVD makes a feasible "live off the land" strategy of interplanetary and interstellar exploration  the precursors commonly used in the technology are found, often in abundance, on other solar system bodies either as readily harvestable gas (e.g. methane) or as a raw material that could be converted into a suitable precursor (e.g. iron oxide into ferrocene on Mars).
One step sintering of homogenized bauxite raw material and kinetic study
NASA Astrophysics Data System (ADS)
Gao, Chang-he; Jiang, Peng; Li, Yong; Sun, Jia-lin; Zhang, Jun-jie; Yang, Huan-ying
2016-10-01
A one-step sintering process of bauxite raw material from direct mining was completed, and the kinetics of this process was analyzed thoroughly. The results show that the sintering kinetics of bauxite raw material exhibits the liquid-phase sintering behavior. A small portion of impurities existed in the raw material act as a liquid phase. After X-ray diffraction analyses, scanning electron microscopy observations, and kinetics calculations, sintering temperature and heating duration were determined as the two major factors contributing to the sintering process and densification of bauxite ore. An elevated heating temperature and longer duration favor the densification process. The major obstacle for the densification of bauxite material is attributed to the formation of the enclosed blowhole during liquid-phase sintering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beals, D.
2011-12-06
Uranium-233 (t{sub 1/2} {approx} 1.59E5 years) is an artificial, fissile isotope of uranium that has significant importance in nuclear forensics. The isotope provides a unique signature in determining the origin and provenance of uranium-bearing materials and is valuable as a mass spectrometric tracer. Alpha spectrometry was employed in the critical evaluation of a {sup 233}U standard reference material (SRM-995) as a dual tracer system based on the in-growth of {sup 229}Th (t{sub 1/2} {approx} 7.34E3 years) for {approx}35 years following radiochemical purification. Preliminary investigations focused on the isotopic analysis of standards and unmodified fractions of SRM-995; all samples were separatedmore » and purified using a multi-column anion-exchange scheme. The {sup 229}Th/{sup 233}U atom ratio for SRM-995 was found to be 1.598E-4 ({+-} 4.50%) using recovery-corrected radiochemical methods. Using the Bateman equations and relevant half-lives, this ratio reflects a material that was purified {approx} 36.8 years prior to this analysis. The calculated age is discussed in contrast with both the date of certification and the recorded date of last purification.« less
Tracing and control of raw materials sourcing for vaccine manufacturers.
Faretra Peysson, Laurence
2010-05-01
The control of the raw materials used to manufacture vaccines is mandatory; therefore, a very clear process must be in place to guarantee that raw materials are traced. Those who make products or supplies used in vaccine manufacture (suppliers of culture media, diagnostic tests, etc.) must apply quality systems proving that they adhere to certain standards. ISO certification, Good Manufacturing Practices for production sites and the registration of culture media with a 'Certificate of Suitability' from the European Directorate for the Quality of Medicines and Healthcare are reliable quality systems pertaining to vaccine production. Suppliers must assure that each lot of raw materials used in a product that will be used in vaccine manufacture adheres to the level of safety and traceability required. Incoming materials must be controlled in a single 'Enterprise Resource Planning' system which is used to document important information, such as the assignment of lot number, expiration date, etc. Ingredients for culture media in particular must conform to certain specifications. The specifications that need to be checked vary according to the ingredient, based on the level of risk. The way a raw material is produced is also important, and any aspect relative to cross-contamination, such as the sanitary measures used in producing and storing the raw material must be checked as well. In addition, suppliers can reduce the risk of viral contamination of raw materials by avoiding purchases in countries where a relevant outbreak is currently declared. 2010 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eppich, G.; Kips, R.; Lindvall, R.
The CUP-2 uranium ore concentrate (UOC) standard reference material, a powder, was produced at the Blind River uranium refinery of Eldorado Resources Ltd. in Canada in 1986. This material was produced as part of a joint effort by the Canadian Certified Reference Materials Project and the Canadian Uranium Producers Metallurgical Committee to develop a certified reference material for uranium concentration and the concentration of several impurity constituents. This standard was developed to satisfy the requirements of the UOC mining and milling industry, and was characterized with this purpose in mind. To produce CUP-2, approximately 25 kg of UOC derived frommore » the Blind River uranium refinery was blended, homogenized, and assessed for homogeneity by X-ray fluorescence (XRF) analysis. The homogenized material was then packaged into bottles, containing 50 g of material each, and distributed for analysis to laboratories in 1986. The CUP-2 UOC standard was characterized by an interlaboratory analysis program involving eight member laboratories, six commercial laboratories, and three additional volunteer laboratories. Each laboratory provided five replicate results on up to 17 analytes, including total uranium concentration, and moisture content. The selection of analytical technique was left to each participating laboratory. Uranium was reported on an “as-received” basis; all other analytes (besides moisture content) were reported on a “dry-weight” basis. A bottle of 25g of CUP-2 UOC standard as described above was purchased by LLNL and characterized by the LLNL Nuclear Forensics Group. Non-destructive and destructive analytical techniques were applied to the UOC sample. Information obtained from short-term techniques such as photography, gamma spectrometry, and scanning electron microscopy were used to guide the performance of longer-term techniques such as ICP-MS. Some techniques, such as XRF and ICP-MS, provided complementary types of data. The results indicate that the CUP-2 standard has a natural isotopic ratio, and does not appear to have been isotopically enriched or depleted in any way, and was not contaminated by a source of uranium with a non-natural isotopic composition. Furthermore, the lack of 233U and 236U above the instrumental detection limit indicates that this sample was not exposed to a neutron flux, which would have generated one or both of these isotopes in measurable concentrations.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.42 0.15 TSS 0.80 0.40 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.42 0.15... material) Lead 0.0017 0.0007 English units (lb/1,000 lb of raw material) Lead 0.0017 0.0007 (c) The...
Oat raw materials and bakery products - amino acid composition and celiac immunoreactivity.
Mickowska, Barbara; Litwinek, Dorota; Gambuś, Halina
2016-01-01
The aim of this study was to compare the biochemical and immunochemical properties of avenins in some special oat raw materials and additionally the possibility of using them as a raw material for the gluten-free bakery products. The compared oat raw materials were - oat flakes, commercial oat flours (including gluten-free oat flour) and residual oat flour, which is by-product of β-glucan preparation. Biochemical characteristic included amino acid compositions and SDS-PAGE profiles of extracted avenins. The immunochemical reactivity with polyclonal anti-gluten and monoclonal anti-gliadin antibodies was evaluated qualitatively and quantitatively by immunoblotting and ELISA methods. Additionally, experimental bakery products made of examined raw materials were assessed according to their suitability for the celiac patients' diet. The highest protein content was measured in the β-glucan preparation "Betaven" and gluten-free oat flour. Proteins of all materials are rich in glutamic and aspartic acid, leucine and arginine. Proportions of amino acids in avenins extracted from most of oat raw materials are similar, excluding gluten-free oat flour, which has a very low avenin content and proportions of individual amino acids are different. The SDS-PAGE protein pattern consisted of proteins with molecular weight of about 25-35 kDa. Polyclonal anti-gluten anti-body recognized all protein fractions of molecular weight higher than 20 kDa. Quantitative ELISA analysis shows that the majority of samples has a gliadin-like protein content within the range of 80-260 mg/kg, excluding gluten-free flours and corresponding bakery products. Altogether, β-glucan preparation has extremely high level of gliadin-like proteins. In the examined oat raw materials and foods the contents of immunoreactive amino acid sequences exceeded the limit of 20 mg/kg (considered as gluten-free) except for gluten-free flours (oat and the prepared mixture) and the bakery products based on gluten-free flours. Unfortunately, the rest of oat raw materials and products cannot be considered gluten-free.
Uranium carbide fission target R&D for RIA - an update
NASA Astrophysics Data System (ADS)
Greene, J. P.; Levand, A.; Nolen, J.; Burtseva, T.
2004-12-01
For the Rare Isotope Accelerator (RIA) facility, ISOL targets employing refractory compounds of uranium are being developed to produce radioactive ions for post-acceleration. The availability of refractory uranium compounds in forms that have good thermal conductivity, relatively high density, and adequate release properties for short-lived isotopes remains an important issue. Investigations using commercially obtained uranium carbide material and prepared into targets involving various binder materials have been carried out at ANL. Thin sample pellets have been produced for measurements of thermal conductivity using a new method based on electron bombardment with the thermal radiation observed using a two-color optical pyrometer and performed on samples as a function of grain size, pressing pressure and sintering temperature. Manufacture of uranium carbide powder has now been achieved at ANL. Simulations have been carried out on the thermal behavior of the secondary target assembly incorporating various heat shield configurations.
High temperature fuel/emitter system for advanced thermionic fuel elements
NASA Astrophysics Data System (ADS)
Moeller, Helen H.; Bremser, Albert H.; Gontar, Alexander; Fiviesky, Evgeny
1997-01-01
Specialists in space applications are currently focusing on bimodal power systems designed to provide both electric power and thermal propulsion (Kennedy, 1994 and Houts, 1995). Our work showed that thermionics is a viable technology for nuclear bimodal power systems. We demonstrated that materials for a thermionic fuel-emitter combination capable of performing at operating temperatures of 2473 K are not only possible but available. The objective of this work, funded by the US Department of Energy, Office of Space and Defense Power Systems, was to evaluate the compatibility of fuel material consisting of an uranium carbide/tantalum carbide solid solution with an emitter material consisting of a monocrystalline tungsten-niobium alloy. The uranium loading of the fuel material was 70 mole% uranium carbide. The program was successfully accomplished by a B&W/SIA LUTCH team. Its workscope was integrated with tasks being performed at both Babcock & Wilcox, Lynchburg Research Center, Lynchburg, Virginia, and SIA LUTCH, Podolsk, Russia. Samples were fabricated by LUTCH and seven thermal tests were performed in a hydrogen atmosphere. The first preliminary test was performed at 2273 K by LUTCH, and the remaining six tests were performed At B&W. Three tests were performed at 2273 K, two at 2373 K, and the final test at 2473 K. The results showed that the fuel and emitter materials were compatible in the presence of hydrogen. No evidence of liquid formation, dissolution of the uranium carbide from the uranium carbide/tantalum carbide solid solution, or diffusion of the uranium into the monocrystalline tungsten alloy was observed. Among the highlights of the program was the successful export of the fuel samples from Russia and their import into the US by commercial transport. This paper will discuss the technical aspects of this work.
Detection of uranium using laser-induced breakdown spectroscopy.
Chinni, Rosemarie C; Cremers, David A; Radziemski, Leon J; Bostian, Melissa; Navarro-Northrup, Claudia
2009-11-01
The goal of this work is a detailed study of uranium detection by laser-induced breakdown spectroscopy (LIBS) for application to activities associated with environmental surveillance and detecting weapons of mass destruction (WMD). The study was used to assist development of LIBS instruments for standoff detection of bulk radiological and nuclear materials and these materials distributed as contaminants on surfaces. Uranium spectra were analyzed under a variety of different conditions at room pressure, reduced pressures, and in an argon atmosphere. All spectra displayed a high apparent background due to the high density of uranium lines. Time decay curves of selected uranium lines were monitored and compared to other elements in an attempt to maximize detection capabilities for each species in the complicated uranium spectrum. A survey of the LIBS uranium spectra was conducted and relative emission line strengths were determined over the range of 260 to 800 nm. These spectra provide a guide for selection of the strongest LIBS analytical lines for uranium detection in different spectral regions. A detection limit for uranium in soil of 0.26% w/w was obtained at close range and 0.5% w/w was achieved at a distance of 30 m. Surface detection limits were substrate dependent and ranged from 13 to 150 microg/cm2. Double-pulse experiments (both collinear and orthogonal arrangements) were shown to enhance the uranium signal in some cases. Based on the results of this work, a short critique is given of the applicability of LIBS for the detection of uranium residues on surfaces for environmental monitoring and WMD surveillance.
10 CFR 765.2 - Scope and applicability.
Code of Federal Regulations, 2014 CFR
2014-01-01
... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium or thorium processing sites as a result of byproduct material generated as an incident of sales to the United States. (b) Costs of remedial action at active uranium or thorium processing sites are...
10 CFR 765.2 - Scope and applicability.
Code of Federal Regulations, 2011 CFR
2011-01-01
... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium or thorium processing sites as a result of byproduct material generated as an incident of sales to the United States. (b) Costs of remedial action at active uranium or thorium processing sites are...
10 CFR 765.2 - Scope and applicability.
Code of Federal Regulations, 2013 CFR
2013-01-01
... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium or thorium processing sites as a result of byproduct material generated as an incident of sales to the United States. (b) Costs of remedial action at active uranium or thorium processing sites are...
10 CFR 765.2 - Scope and applicability.
Code of Federal Regulations, 2012 CFR
2012-01-01
... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium or thorium processing sites as a result of byproduct material generated as an incident of sales to the United States. (b) Costs of remedial action at active uranium or thorium processing sites are...
78 FR 75579 - Low Enriched Uranium From France
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-12
... From France Determination On the basis of the record \\1\\ developed in the subject five-year review, the... uranium from France would be likely to lead to continuation or recurrence of material injury to an... Commission are contained in USITC Publication 4436 (December 2013), entitled Low Enriched Uranium from France...
10 CFR 765.2 - Scope and applicability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... DEPARTMENT OF ENERGY REIMBURSEMENT FOR COSTS OF REMEDIAL ACTION AT ACTIVE URANIUM AND THORIUM PROCESSING... uranium or thorium processing sites as a result of byproduct material generated as an incident of sales to the United States. (b) Costs of remedial action at active uranium or thorium processing sites are...
Fluorescence of aqueous solutions of commercial humic products
NASA Astrophysics Data System (ADS)
Gosteva, O. Yu.; Izosimov, A. A.; Patsaeva, S. V.; Yuzhakov, V. I.; Yakimenko, O. S.
2012-01-01
We have studied the spectral luminescence characteristics of aqueous solutions of humic products obtained from different raw material sources, and their behavior as the excitation wavelength increases from 270 nm to 355 nm. We have identified differences in the spectral properties of industrial humic products from coalified materials, lignin-containing organic waste, and humic products from plant raw material (peat, sapropel, vermicompost). We have shown that humic products from plant raw material have spectral properties closer to those for humic substances in natural water or soil than humic products from coalified materials.
Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid.
Sung, Jinhyun; Kim, Jungsoo; Lee, Youngbae; Seol, Jeunggun; Ryu, Jaebong; Park, Kwangheon
2011-07-01
The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 °C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined.
Loading blended, low-enriched uranium fuel in browns ferry units 2 and 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, C.; Eichenberg, T.; Haun, J.
2006-07-01
This paper summarizes fuel and cycle design results for the Tennessee Valley Authority (TVA) / Dept. of Energy (DOE) program to burn blended, low-enriched uranium (BLEU) material in the Browns Ferry Nuclear Units 2 and 3. The BLEU material typically has about 60 times the allowed limit of U-236 in what would be defined as commercial, i.e., virgin, uranium. U-236 in particular is a strong neutron absorber. Also included is a comparison of cycles using commercial uranium versus BLEU to determine the impact on key core design parameters of the high U-236 content in the BLEU. Finally, there is amore » short discussion of the economic advantages of BLEU fuel. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dougherty, D.; Fainberg, A.; Sanborn, J.
On 27 September 1993, President Clinton proposed {open_quotes}... a multilateral convention prohibiting the production of highly enriched uranium or plutonium for nuclear explosives purposes or outside of international safeguards.{close_quotes} The UN General Assembly subsequently adopted a resolution recommending negotiation of a non-discriminatory, multilateral, and internationally and effectively verifiable treaty (hereinafter referred to as {open_quotes}the Cutoff Convention{close_quotes}) banning the production of fissile material for nuclear weapons. The matter is now on the agenda of the Conference on Disarmament, although not yet under negotiation. This accord would, in effect, place all fissile material (defined as highly enriched uranium and plutonium) produced aftermore » entry into force (EIF) of the accord under international safeguards. {open_quotes}Production{close_quotes} would mean separation of the material in question from radioactive fission products, as in spent fuel reprocessing, or enrichment of uranium above the 20% level, which defines highly enriched uranium (HEU). Facilities where such production could occur would be safeguarded to verify that either such production is not occurring or that all material produced at these facilities is maintained under safeguards.« less
Microbiological Spoilage of Spices, Nuts, Cocoa, and Coffee
NASA Astrophysics Data System (ADS)
Pinkas, Joan M.; Battista, Karen; Morille-Hinds, Theodora
Spices, nuts, cocoa, and coffee are raw materials that may be used alone or as ingredients in the manufacture of processed food products. The control of microbiological spoilage of these raw materials at the ingredient stage will enable the food processor to better assure the production of high-quality foods with an acceptable shelf life. While this chapter is limited to four materials, many of the spoilage control procedures recommended can also be applied to other raw materials of a similar nature.
Seidel, Kathrin; Kahl, Johannes; Paoletti, Flavio; Birlouez, Ines; Busscher, Nicolaas; Kretzschmar, Ursula; Särkkä-Tirkkonen, Marjo; Seljåsen, Randi; Sinesio, Fiorella; Torp, Torfinn; Baiamonte, Irene
2015-02-01
The market for processed food is rapidly growing. The industry needs methods for "processing with care" leading to high quality products in order to meet consumers' expectations. Processing influences the quality of the finished product through various factors. In carrot baby food, these are the raw material, the pre-processing and storage treatments as well as the processing conditions. In this study, a quality assessment was performed on baby food made from different pre-processed raw materials. The experiments were carried out under industrial conditions using fresh, frozen and stored organic carrots as raw material. Statistically significant differences were found for sensory attributes among the three autoclaved puree samples (e.g. overall odour F = 90.72, p < 0.001). Samples processed from frozen carrots show increased moisture content and decrease of several chemical constituents. Biocrystallization identified changes between replications of the cooking. Pre-treatment of raw material has a significant influence on the final quality of the baby food.
Source Correlated Prompt Neutron Activation Analysis for Material Identification and Localization
NASA Astrophysics Data System (ADS)
Canion, Bonnie; McConchie, Seth; Landsberger, Sheldon
2017-07-01
This paper investigates the energy spectrum of photon signatures from an associated particle imaging deuterium tritium (API-DT) neutron generator interrogating shielded uranium. The goal is to investigate if signatures within the energy spectrum could be used to indirectly characterize shielded uranium when the neutron signature is attenuated. By utilizing the correlated neutron cone associated with each pixel of the API-DT neutron generator, certain materials can be identified and located via source correlated spectrometry of prompt neutron activation gamma rays. An investigation is done to determine if fission neutrons induce a significant enough signature within the prompt neutron-induced gamma-ray energy spectrum in shielding material to be useful for indirect nuclear material characterization. The signature deriving from the induced fission neutrons interacting with the shielding material was slightly elevated in polyethylene-shielding depleted uranium (DU), but was more evident in some characteristic peaks from the aluminum shielding surrounding DU.
Tomczuk, Zygmunt; Miller, William E.; Wolson, Raymond D.; Gay, Eddie C.
1991-01-01
An electrochemical process and apparatus for the recovery of uranium and plutonium from spent metal clad fuel pins is disclosed. The process uses secondary reactions between U.sup.+4 cations and elemental uranium at the anode to increase reaction rates and improve anodic efficiency compared to prior art processes. In another embodiment of the process, secondary reactions between Cd.sup.+2 cations and elemental uranium to form uranium cations and elemental cadmium also assists in oxidizing the uranium at the anode.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.03 Monitoring. A...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.03 Monitoring. A...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.03 Monitoring. A...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for the Control of Residual Radioactive Materials from Inactive Uranium Processing Sites § 192.03 Monitoring. A...
John B. Grantham; Eldon Estep; John M. Pierovich; Harold Tarkow; Thomas C. Adams
1974-01-01
Results are reported of a preliminary investigation of feasibility of using wood residue to meet energy and raw material needs in the Pacific Coast States. Magnitude of needs was examined and volume of logging-residue and unused mill residue was estimated. Costs of obtaining and preprocessing logging residue for energy and pulp and particle board raw material were...
1999-09-01
Harrington , showed that with respect to mixed water analysis containing TDS at greater 1,000 ppm, the performance of the AS-5 column is not as robust...to note, these raw test materials were heterogeneous. Regardless of mixing time and mesh quality, dividing the raw test materials for laboratory...raw test material was prepared and shipped to seven laboratories for blind analysis. The suspension was prepared by 4 mixing the solid sample with
Occurrences of uranium-bearing minerals in the St. Kevin District, Lake County, Colorado
Pierson, C.T.; Singewald, Q.D.
1953-01-01
None of the uranium occurrences are of commercial importance. They are for the most part in non-glaciated terrane, which has been subjected to a very long period of weathering. Thus, chemical leaching within the zone of weathering may have greatly reduced the uranium content of material near the surface, and occurrences of even small quantities of secondary uranium minerals might be related to stronger, primary concentrations at depth.
Indonesian CPO availability analysis to support food and energy security: a system dynamic approach
NASA Astrophysics Data System (ADS)
Rahman, T.; Arkeman, Y.; Setyaningsih, D.; Saparita, R.
2017-05-01
The development of biofuels could be a solution to overcome the energy problem. One of biofuel that has the potential to be developed, namely palm oil biodiesel that is also the raw material for food. As a provider of CPO raw materials, the production of palm biodiesel could trigger competitions, from biofuels demand growth and utilization of agricultural resources. Thus, it needs to be analyzed to determine the adequency of CPO supply to fulfill the need of food and policy recomendation which sets the development of palm oil biodiesel can be synergies with food need especially for the supply of raw material CPO. To obtain the optimal policy in the synergy between the raw material of CPO for food and energy is a need to establish some policy scenarios that allow to be applied and then chosen the best policy alternative of all scenarios. The purpose of this research were to : 1) analysis the availability of CPO to meet the needs of food and energy, 2) provide policy recommendation with regard biodiesel development of food security. The model made used system dynamic method. Several scenarios that used in the model are: 1) existing condition, 2) The scenario increase biodiesel production capacity and increase land productivity, 3) reduction scenario CPO export by 30%, 4) scenario use othe raw material for biodiesel by 20%. The simulation results showed the availability of CPO raw materials would answer all needs of both food and biodiesel when there was an increase in productivity, diversification of raw materials, and also a reduction in palm oil exports. It was needed an integrated policy from upstream to downstream along with the consistency of implementation. Policy suggestions that could be considered were increased productivity through agricultural intensification, enforcement disincentive policies of CPO to exports, and development of non-CPO biodiesel raw materials and development of renewable energy.
Preetha, Chandrika Ravindran; Gladis, Joseph Mary; Rao, Talasila Prasada; Venkateswaran, Gopala
2006-05-01
Major quantities of uranium find use as nuclear fuel in nuclear power reactors. In view of the extreme toxicity of uranium and consequent stringent limits fixed by WHO and various national governments, it is essential to remove uranium from nuclear power reactor effluents before discharge into environment. Ion imprinted polymer (IIP) materials have traditionally been used for the recovery of uranium from dilute aqueous solutions prior to detection or from seawater. We now describe the use of IIP materials for selective removal of uranium from a typical synthetic nuclear power reactor effluent. The IIP materials were prepared for uranyl ion (imprint ion) by forming binary salicylaldoxime (SALO) or 4-vinylpyridine (VP) or ternary SALO-VP complexes in 2-methoxyethanol (porogen) and copolymerizing in the presence of styrene (monomer), divinylbenzene (cross-linking monomer), and 2,2'-azobisisobutyronitrile (initiator). The resulting materials were then ground and sieved to obtain unleached polymer particles. Leached IIP particles were obtained by leaching the imprint ions with 6.0 M HCl. Control polymer particles were also prepared analogously without the imprint ion. The IIP particles obtained with ternary complex alone gave quantitative removal of uranyl ion in the pH range 3.5-5.0 with as low as 0.08 g. The retention capacity of uranyl IIP particles was found to be 98.50 mg/g of polymer. The present study successfully demonstrates the feasibility of removing uranyl ions selectively in the range 5 microg - 300 mg present in 500 mL of synthetic nuclear power reactor effluent containing a host of other inorganic species.
10 CFR 40.33 - Issuance of a license for a uranium enrichment facility.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Issuance of a license for a uranium enrichment facility. 40.33 Section 40.33 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL License Applications § 40.33 Issuance of a license for a uranium enrichment facility. (a) The Commission...
Rapid Method for Sodium Hydroxide Fusion of Asphalt ...
Technical Brief--Addendum to Selected Analytical Methods (SAM) 2012 Rapid method developed for analysis of Americium-241 (241Am), plutonium-238 (238Pu), plutonium-239 (239Pu), radium-226 (226Ra), strontium-90 (90Sr), uranium-234 (234U), uranium-235 (235U) and uranium-238 (238U) in asphalt roofing material samples
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
... DEPARTMENT OF ENERGY Update on Reimbursement for Costs of Remedial Action at Active Uranium and Thorium Processing Sites AGENCY: Department of Energy. ACTION: Notice of the Title X claims during fiscal... at active uranium and thorium processing sites to remediate byproduct material generated as an...
40 CFR Table A to Subpart D of... - Table A to Subpart D of Part 192
Code of Federal Regulations, 2013 CFR
2013-07-01
...) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management of Uranium Byproduct Materials Pursuant to Section 84 of the Atomic... Combined radium-226 and radium-228 5 Gross alpha-particle activity (excluding radon and uranium) 15 ...
40 CFR Table A to Subpart D of... - Table A to Subpart D of Part 192
Code of Federal Regulations, 2014 CFR
2014-07-01
...) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management of Uranium Byproduct Materials Pursuant to Section 84 of the Atomic... Combined radium-226 and radium-228 5 Gross alpha-particle activity (excluding radon and uranium) 15 ...
10 CFR 140.13b - Amount of liability insurance required for uranium enrichment facilities.
Code of Federal Regulations, 2010 CFR
2010-01-01
... enrichment facilities. 140.13b Section 140.13b Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) FINANCIAL... required for uranium enrichment facilities. Each holder of a license issued under Parts 40 or 70 of this chapter for a uranium enrichment facility that involves the use of source material or special nuclear...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-08
... (``Russia'') would likely lead to continuation or recurrence of material injury to an industry in the United... the Suspension Agreement on uranium from Russia. DATES: Effective Date: March 8, 2012. FOR FURTHER.... 731-TA-539-C (Third Review), Uranium from Russia Russia; Institution of a Five-Year Review Concerning...
NASA Astrophysics Data System (ADS)
Park, Y. J.; Lee, M. H.; Pyo, H. Y.; Kim, H. A.; Sohn, S. C.; Jee, K. Y.; Kim, W. H.
2005-06-01
Uranium-adsorbed silica particles were prepared as a reference material for the fission track analysis (FTA) of swipe samples. A modified instrumental setup for particle generation, based on a commercial vibrating orifice aerosol generator to produce various sizes of droplets from a SiO 2 solution, is described. The droplets were transferred into a weak acidic solution bath to produce spherical solid silica particles. The classification of the silica particles in the range from 5 to 20 μm was carried out by the gravitational sedimentation method. The size distribution and morphology of the classified silica particles were investigated by scanning electron microscopy. The physicochemical properties of the classified silica particles such as the surface area, pore size and pore volume were measured. After an adsorption of 5% 235U on the silica particles in a solution adjusted to pH 4.5, the uranium-adsorbed silica particles were calcined up to 950 °C in a furnace to fix the uranium strongly onto the silica particles. The various sizes of uranium-adsorbed silica particles were applied to the FTA for use as a reference material.
Germanium and uranium in coalified wood bom upper Devonian black shale
Breger, I.A.; Schopf, J.M.
1955-01-01
Microscopic study of black, vitreous, carbonaceous material occurring in the Chattanooga shale in Tennessee and in the Cleveland member of the Ohio shale in Ohio has revealed coalified woody plant tissue. Some samples have shown sufficient detail to be identified with the genus Cauixylon. Similar material has been reported in the literature as "bituminous" or "asphaltic" stringers. Spectrographic analyses of the ash from the coalified wood have shown unusually high percentages of germanium, uranium, vanadium, and nickel. The inverse relationship between uranium and germanium in the ash and the ash content of various samples shows an association of these elements with the organic constituents of the coal. On the basis of geochemical considerations, it seems most probable that the wood or coalified wood was germanium-bearing at the time logs or woody fragmenta were floated into the basins of deposition of the Chattanooga shale and the Cleveland member of the Ohio shale. Once within the marine environment, the material probably absorbed uranium with the formation of organo-uranium compounds such as exist in coals. It is suggested that a more systematic search for germaniferous coals in the vicinity of the Chattanooga shale and the Cleveland member of the Ohio shale might be rewarding. ?? 1955.
New Fiber Materials with Sorption Capacity at 5.0 g-U/kg Adsorbent under Marine Testing Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, Tomonori; Brown, S.; Das, Sadananda
The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) has focused on assuring that nuclear fuel resources are available in the United States for a long term. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. Extraction of the uranium resource in seawater can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uraniummore » recovery from seawater. The goal is to develop advanced adsorbents to make the seawater uranium recovery technology a cost competitive, viable technology. Under this program, Oak Ridge National Laboratory (ORNL) has developed several novel adsorbents, which enhanced the uranium capacity 4-5 times from the state-of-the art Japanese adsorbents. Uranium exists uniformly at a concentration of ~3.3 ppb in seawater. Because of the vast volume of the oceans, the total estimated amount of uranium in seawater is approximately 1000 times larger than its amount in terrestrial resources. However, due to the low concentration, a significant challenge remains for making the extraction of uranium from seawater a commercially viable alternative technology. The biggest challenge for this technology to overcome to efficiently reduce the extraction cost is to develop adsorbents with increased uranium adsorption capacity. Two major approaches were investigated for synthesizing novel adsorbents with enhanced uranium adsorption capacity. One method utilized conventional radiation induced graft polymerization (RIGP) to synthesize adsorbents on high-surface area trunk fibers and the other method utilized a chemical grafting technique, atom-transfer radical polymerization (ATRP). Both approaches have shown promising uranium extraction capacities: RIGP adsorbent achieved 5.00 ± 0.15 g U/kg-ads., while ATRP adsorbent achieved 6.56 ± 0.33 g U/kg-ads., after 56 days of seawater exposure. These achieved values are the highest adsorption capacities ever reported for uranium extraction from seawater. The study successfully demonstrated new fiber materials with sorption capacity at 5.0 g-U/kg adsorbent under marine testing conditions. Further optimization, investigation of other new materials as well as deepening our understanding will develop adsorbents that have even higher uranium adsorption capacity, increased selectivity, and faster kinetics.« less
77 FR 31388 - Importer of Controlled Substances; Notice of Application; Noramco, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-25
... material are not appropriate. 72 FR 3417 (2007). In regard to the non-narcotic raw material, any bulk... following basic classes of controlled substances: Drug Schedule Phenylacetone (8501) II Opium, raw (9600) II Poppy Straw Concentrate (9670) II Tapentadol (9780) II The company plans to import the raw Opium (9600...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chouyyok, Wilaiwan; Pittman, Jonathan W.; Warner, Marvin G.
2016-05-02
The ability to collect uranium from seawater offers the potential for a nearly limitless fuel supply for nuclear energy. We evaluated the use of functionalized nanostructured sorbents for the collection and recovery of uranium from seawater. Extraction of trace minerals from seawater and brines is challenging due to the high ionic strength of seawater, low mineral concentrations, and fouling of surfaces over time. We demonstrate that rationally assembled sorbent materials that integrate high affinity surface chemistry and high surface area nanostructures into an application relevant micro/macro structure enables collection performance that far exceeds typical sorbent materials. High surface area nanostructuredmore » silica with surface chemistries composed of phosphonic acid, phosphonates, 3,4 hydroxypyridinone, and EDTA showed superior performance for uranium collection. A few phosphorous-based commercial resins, specifically Diphonix and Ln Resin, also performed well. We demonstrate an effective and environmentally benign method of stripping the uranium from the high affinity sorbents using inexpensive nontoxic carbonate solutions. The cyclic use of preferred sorbents and acidic reconditioning of materials was shown to improve performance. Composite thin films composed of the nanostructured sorbents and a porous polymer binder are shown to have excellent kinetics and good capacity while providing an effective processing configuration for trace mineral recovery from solutions. Initial work using the composite thin films shows significant improvements in processing capacity over the previously reported sorbent materials.« less
40 CFR 428.105 - Standards of performance for new sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 2.0 0.73 BOD5 3.72 2.20 TSS 6.96 2.90 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 2.0 0.73 BOD5... daily values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Chromium 0...
40 CFR 428.105 - Standards of performance for new sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 2.0 0.73 BOD5 3.72 2.20 TSS 6.96 2.90 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 2.0 0.73 BOD5... daily values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material) Chromium 0...
Checking the possibility of controlling fuel element by X-ray computerized tomography
NASA Astrophysics Data System (ADS)
Trinh, V. B.; Zhong, Y.; Osipov, S. P.; Batranin, A. V.
2017-08-01
The article considers the possibility of checking fuel elements by X-ray computerized tomography. The checking tasks are based on the detection of particles of active material, evaluation of the heterogeneity of the distribution of uranium salts and the detection of clusters of uranium particles. First of all, scheme of scanning improve the performance and quality of the resulting three-dimensional images of the internal structure is determined. Further, the possibility of detecting clusters of uranium particles having the size of 1 mm3 and measuring the coordinates of clusters of uranium particles in the middle layer with the accuracy of within a voxel size (for the considered experiments of about 80 μm) is experimentally proved in the main part. The problem of estimating the heterogeneity of the distribution of the active material in the middle layer and the detection of particles of active material with a nominal diameter of 0.1 mm in the “blank” is solved.
Characterization of Thallium Bromide Detectors Made From Material Purified by the Filter Method
NASA Astrophysics Data System (ADS)
Onodera, Toshiyuki; Hitomi, Keitaro; Tada, Tsutomu; Shoji, Tadayoshi; Mochizuki, Katsumi
2013-10-01
Thallium bromide (TlBr) has been regarded as candidate detector materials for the gamma-ray spectrometers operating at room temperature. In this study, a simple and rapid method, the filter method, was performed to purify a raw TlBr material used for fabrication of TlBr detectors. The material was loaded on shards of crashed quartz and installed in a Pyrex tube, and was melted using a furnace. A purified material passing through interspaces of the shards of quartz was collected in a quartz ampoule located at the outlet of the Pyrex tube. After the purification, impurities colored black extracted from the raw material remained. TlBr crystals were then grown by the travelling molten zone method both from the raw material and the purified material. TlBr detectors were fabricated from the grown crystals, and were characterized by measuring mobility-lifetime products (μτ) for carriers and gamma-ray spectra ( 137Cs) at room temperature. μτ for electrons of a TlBr detector fabricated from the purified material was around 5 times higher than that of a detector fabricated from the raw material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Requirement for advance notice for importation of natural uranium from countries that are not party to the Convention on the Physical Protection of Nuclear Material. 40.67 Section 40.67 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF SOURCE MATERIAL...
Letter Report: Looking Ahead at Nuclear Fuel Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Stephen Herring
2013-09-01
The future of nuclear energy and its ability to fulfill part of the world’s energy needs for centuries to come depend on a reliable input of nuclear fuel, either thorium or uranium. Obviously, the present nuclear fuel cycle is completely dependent on uranium. Future thorium cycles will also depend on 235U or fissile isotopes separated from used fuel to breed 232Th into fissile 233U. This letter report discusses several emerging areas of scientific understanding and technology development that will clarify and enable assured supplies of uranium and thorium well into the future. At the most fundamental level, the nuclear energymore » community needs to appreciate the origins of uranium and thorium and the processes of planetary accretion by which those materials have coalesced to form the earth and other planets. Secondly, the studies of geophysics and geochemistry are increasing understanding of the processes by which uranium and thorium are concentrated in various locations in the earth’s crust. Thirdly, the study of neutrinos and particularly geoneutrinos (neutrinos emitted by radioactive materials within the earth) has given an indication of the overall global inventories of uranium and thorium, though little indication for those materials’ locations. Crustal temperature measurements have also given hints of the vertical distribution of radioactive heat sources, primarily 238U and 232Th, within the continental crust. Finally, the evolving technologies for laser isotope separation are indicating methods for reducing the energy input to uranium enrichment but also for tailoring the isotopic vectors of fuels, burnable poisons and structural materials, thereby adding another tool for dealing with long-term waste management.« less
Proteogenomic insights into uranium tolerance of a Chernobyl's Microbacterium bacterial isolate.
Gallois, Nicolas; Alpha-Bazin, Béatrice; Ortet, Philippe; Barakat, Mohamed; Piette, Laurie; Long, Justine; Berthomieu, Catherine; Armengaud, Jean; Chapon, Virginie
2018-04-15
Microbacterium oleivorans A9 is a uranium-tolerant actinobacteria isolated from the trench T22 located near the Chernobyl nuclear power plant. This site is contaminated with different radionuclides including uranium. To observe the molecular changes at the proteome level occurring in this strain upon uranyl exposure and understand molecular mechanisms explaining its uranium tolerance, we established its draft genome and used this raw information to perform an in-depth proteogenomics study. High-throughput proteomics were performed on cells exposed or not to 10μM uranyl nitrate sampled at three previously identified phases of uranyl tolerance. We experimentally detected and annotated 1532 proteins and highlighted a total of 591 proteins for which abundances were significantly differing between conditions. Notably, proteins involved in phosphate and iron metabolisms show high dynamics. A large ratio of proteins more abundant upon uranyl stress, are distant from functionally-annotated known proteins, highlighting the lack of fundamental knowledge regarding numerous key molecular players from soil bacteria. Microbacterium oleivorans A9 is an interesting environmental model to understand biological processes engaged in tolerance to radionuclides. Using an innovative proteogenomics approach, we explored its molecular mechanisms involved in uranium tolerance. We sequenced its genome, interpreted high-throughput proteomic data against a six-reading frame ORF database deduced from the draft genome, annotated the identified proteins and compared protein abundances from cells exposed or not to uranyl stress after a cascade search. These data show that a complex cellular response to uranium occurs in Microbacterium oleivorans A9, where one third of the experimental proteome is modified. In particular, the uranyl stress perturbed the phosphate and iron metabolic pathways. Furthermore, several transporters have been identified to be specifically associated to uranyl stress, paving the way to the development of biotechnological tools for uranium decontamination. Copyright © 2017. Published by Elsevier B.V.
40 CFR 192.34 - Effective date.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management of Uranium Byproduct Materials Pursuant to Section 84 of the Atomic Energy Act of 1954, as Amended...
40 CFR 192.34 - Effective date.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management of Uranium Byproduct Materials Pursuant to Section 84 of the Atomic Energy Act of 1954, as Amended...
Ethanol Production from Traditional and Emerging Raw Materials
NASA Astrophysics Data System (ADS)
Rudolf, Andreas; Karhumaa, Kaisa; Hahn-Hägerdal, Bärbel
The ethanol industry of today utilizes raw materials rich in saccharides, such as sugar cane or sugar beets, and raw materials rich in starch, such as corn and wheat. The concern about supply of liquid transportation fuels, which has brought the crude oil price above 100 /barrel during 2006, together with the concern about global warming, have turned the interest towards large-scale ethanol production from lignocellulosic materials, such as agriculture and forestry residues. Baker's yeast Saccharomyces cerevisiae is the preferred fermenting microorganism for ethanol production because of its superior and well-documented industrial performance. Extensive work has been made to genetically improve S. cerevisiae to enable fermentation of lignocellulosic raw materials. Ethanolic fermentation processes are conducted in batch, fed-batch, or continuous mode, with or without cell recycling, the relative merit of which will be discussed.
Shield materials recommended for space power nuclear reactors
NASA Technical Reports Server (NTRS)
Kaszubinski, L. J.
1973-01-01
Lithium hydride is recommended for neutron attenuation and depleted uranium is recommended for gamma ray attenuation. For minimum shield weights these materials must be arranged in alternate layers to attenuate the secondary gamma rays efficiently. In the regions of the shield near the reactor, where excessive fissioning occurs in the uranium, a tungsten alloy is used instead. Alloys of uranium such as either the U-0.5Ti or U-8Mo are available to accommodate structural requirements. The zone-cooled casting process is recommended for lithium hydride fabrication. Internal honeycomb reinforcement to control cracks in the lithium hydride is recommended.
Solutions for Critical Raw Materials under Extreme Conditions: A Review
Grilli, Maria Luisa; Bellezze, Tiziano; Gamsjäger, Ernst; Rinaldi, Antonio; Novak, Pavel; Balos, Sebastian; Piticescu, Radu Robert; Ruello, Maria Letizia
2017-01-01
In Europe, many technologies with high socio-economic benefits face materials requirements that are often affected by demand-supply disruption. This paper offers an overview of critical raw materials in high value alloys and metal-matrix composites used in critical applications, such as energy, transportation and machinery manufacturing associated with extreme working conditions in terms of temperature, loading, friction, wear and corrosion. The goal is to provide perspectives about the reduction and/or substitution of selected critical raw materials: Co, W, Cr, Nb and Mg. PMID:28772645
X-ray powder data for uranium and thorium minerals
Frondel, Clifford; Riska, Daphne; Frondel, Judith Weiss
1956-01-01
The U.S. Geological Survey has in preparation a comprehensive volume on the mineralogy of uranium and thorium. This work has been done as part of a continuing systematic survey of data on uranium and thorium minerals on behalf of the Division of Raw Materials, U.S. Atomic Energy Commission. Pending publication of this volume and in response to a widespread demand among workers in uranium and thorium mineralogy, the X-ray powder diffraction data for the known minerals that contain uranium or thorium as an essential constituent are presented here. The coverage is complete except for a few minerals for which there are no reliable data owing to lack of authentic specimens. With the exception of that for ianthinite, the new data either originated in the Geological Survey or in the Mineralogical Laboratory of Harvard University. Data from the literature or other sources were cross-checked against the files of standard patterns of these laboratories; the sources are indicated in the references. Data not accompanied by a reference were obtained from films in the Harvard Standard File and cross-checked as to the identity of the film with the Geological Survey's file. Minor differences can be expected in the d-spacings reported for the same specimens by different investigators because of the manner of preparation of the mount, the conditions of X-ray irradiation, and the method of photography and measurement of the film or chart. The Harvard and Geological Survey data all were obtained from films taken in 114-mm diameter cameras, using either ethyl cellulose and toluene or collodion spindle mounts and Straumanis-type film mounting. Unless otherwise indicated all patterns were taken with copper radiation (Kα 1.5418 A.) and nickel filter and data are given in Angstrom units. The d-spacings are not corrected for film shrinkage. The correction ordinarily is small and in general is less than either the variation in spacing arising from differences in experimental technique of different investigators, including the varying absorption of samples of different thickness and concentration, or the variation attending slight changes in the chemical composition of the mineral. Some uranium minerals give poor diffraction patterns. The best results are generally obtained by using relatively small diameter spindles and long exposures, with a take-off angle from teh X-ray tube of about 4°. It is sometimes advantageous to shield the film from fluorescence in the visible region excited by X-ray irradiation. Copper radiation is preferable. The patterns of a few uranium minerals are greatly impaired by heavy grinding of the sample. Light crushing of the coarse sample after mixing with about one-third its volume of coarsely powdered low-absorption glass is helpful. Many uranium minerals, such as the members of the torbernite group, readily lose zeolithic water or transform to lower hydrates at or near ordinary conditions of temperature and humidity and care should be taken to control this in the manner of preservation and preparation of the sample.
TERNARY ALLOYS OF URANIUM, COLUMBIUM, AND ZIRCONIUM
Foote, F.G.
1960-08-01
Ternary alloys of uranium are described which are useful as neutron- reflecting materials in a fast neutron reactor. They are especially resistant to corrosion caused by oxidative processes of gascous or aqueous origin and comprise uranium as the predominant metal with zirconiunn and niobium wherein the total content of the minor alloying elements is between 2 and 8% by weight.
Uranium Glass: A Glowing Alternative to Conventional Sources of Radioactivity
ERIC Educational Resources Information Center
Boot, Roeland
2017-01-01
There is a relatively simple way of using radioactive material in classroom experiments: uranium glass, which provides teachers with a suitable substance. By using the right computer software and a radiation sensor, it can be demonstrated that uranium glass emits radiation at a greater rate than the background radiation and with the aid of UV…
A physical model for evaluating uranium nitride specific heat
NASA Astrophysics Data System (ADS)
Baranov, V. G.; Devyatko, Yu. N.; Tenishev, A. V.; Khlunov, A. V.; Khomyakov, O. V.
2013-03-01
Nitride fuel is one of perspective materials for the nuclear industry. But unlike the oxide and carbide uranium and mixed uranium-plutonium fuel, the nitride fuel is less studied. The present article is devoted to the development of a model for calculating UN specific heat on the basis of phonon spectrum data within the solid state theory.
Hydrogenated cottonseed oil as raw material for biobased materials
USDA-ARS?s Scientific Manuscript database
There has been a lot of recent interest in using vegetable oils as biodegradable and renewable raw materials for the syntheses of various biobased materials. Although most of the attention has been paid to soybean oil thus far, cottonseed oil is a viable alternative. An advantage of cottonseed oil...
Uranium Hydride Nucleation and Growth Model FY'16 ESC Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Mary Ann; Richards, Andrew Walter; Holby, Edward F.
2016-12-20
Uranium hydride corrosion is of great interest to the nuclear industry. Uranium reacts with water and/or hydrogen to form uranium hydride which adversely affects material performance. Hydride nucleation is influenced by thermal history, mechanical defects, oxide thickness, and chemical defects. Information has been gathered from past hydride experiments to formulate a uranium hydride model to be used in a Canned Subassembly (CSA) lifetime prediction model. This multi-scale computer modeling effort started in FY’13, and the fourth generation model is now complete. Additional high-resolution experiments will be run to further test the model.
METHOD OF IMPREGNATING A POROUS MATERIAL
Steele, G.N.
1960-06-01
A method of impregnating a porous body with an inorganic uranium- containing salt is outlined and comprises dissolving a water-soluble uranium- containing salt in water; saturating the intercommunicating pores of the porous body with the salt solution; infusing ammonia gas into the intercommunicating pores of the body, the ammonia gas in water chemically reacting with the water- soluble uranium-containing salt in the water solvent to form a nonwater-soluble uranium-containing precipitant; and evaporating the volatile unprecipitated products from the intercommunicating pores whereby the uranium-containing precipitate is uniformly distributed in the intercommunicating peres of the porous body.
Identification of Particles in Parenteral Drug Raw Materials.
Lee, Kathryn; Lankers, Markus; Valet, Oliver
2018-04-18
Particles in drug products are not good and are therefore regulated. These particles can come from the very beginning of the manufacturing process, from the raw materials. To prevent particles, it is important to understand what they are and where they come from so the raw material quality, processing, and shipping can be improved. Thus, it is important to correctly identify particles seen in raw materials. Raw materials need to be of a certain quality with respect to physical and chemical composition, and need to have no contaminants in the form of particles which could contaminate the product or indicate the raw materials are not pure enough to make a good quality product. Particles are often seen when handling raw materials due to color, size, or shape characteristics different from those in the raw materials. Particles may appear to the eye to be very different things than they actually are, so microscope, chemical, and elemental analyses are required for accuracy in proper identification. This paper shows how using three different spectroscopy tools correctly and together can be used to identify particles from extrinsic, intrinsic, and inherent particles. Sources of materials can be humans and the environment (extrinsic), from within the process (intrinsic), and part of the formulation (inherent). Microscope versions of Raman spectroscopy, laser-induced breakdown spectroscopy (LIBS), and IR spectroscopy are excellent tools for identifying particles because they are fast and accurate techniques needing minimal sample preparation that can provide chemical composition as well as images that can be used for identification. The micro analysis capabilities allow for easy analysis of different portions of samples so multiple components can be identified and sample preparation can be reduced. Using just one of these techniques may not be sufficient to give adequate identification results so that the source of contamination can be adequately identified. The complementarity of the techniques provides the advantage of identifying various chemical and molecular components, as well as elemental and image analyses. Correct interpretation of the results from these techniques is also very important. Copyright © 2018, Parenteral Drug Association.
Code of Federal Regulations, 2011 CFR
2011-07-01
... consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.26 0.093 TSS 0.50 0.25 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.26 0.093 TSS 0.50 0.25 pH... Average of daily values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material...
Code of Federal Regulations, 2010 CFR
2010-07-01
... consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.70 0.25 TSS 1.28 0.64 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.70 0.25 TSS 1.28 0.64 pH... Average of daily values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material...
Code of Federal Regulations, 2010 CFR
2010-07-01
... consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.42 0.15 TSS 0.80 0.40 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.42 0.15 TSS 0.80 0.40 pH... Average of daily values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material...
Code of Federal Regulations, 2011 CFR
2011-07-01
... consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.70 0.25 TSS 1.28 0.64 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.70 0.25 TSS 1.28 0.64 pH... Average of daily values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material...
Code of Federal Regulations, 2010 CFR
2010-07-01
... consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.26 0.093 TSS 0.50 0.25 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.26 0.093 TSS 0.50 0.25 pH... Average of daily values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material...
Code of Federal Regulations, 2011 CFR
2011-07-01
... consecutive days shall not exceed— Metric units (kg/kkg of raw material) Oil and grease 0.42 0.15 TSS 0.80 0.40 pH (1) (1) English units (lb/1,000 lb of raw material) Oil and grease 0.42 0.15 TSS 0.80 0.40 pH... Average of daily values for 30 consecutive days shall not exceed— Metric units (kg/kkg of raw material...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.517 General. Raw materials used for manufacturing cottage cheese shall meet the following quality...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.517 General. Raw materials used for manufacturing cottage cheese shall meet the following quality...
Code of Federal Regulations, 2012 CFR
2012-07-01
... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...
Code of Federal Regulations, 2013 CFR
2013-07-01
... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...
Code of Federal Regulations, 2011 CFR
2011-07-01
... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...
Code of Federal Regulations, 2014 CFR
2014-07-01
... with any raw materials, products, or byproducts including manure, litter, feed, milk, eggs or bedding... manure handling system). (5) The term manure is defined to include manure, bedding, compost and raw... storage area, the raw materials storage area, and the waste containment areas. The animal confinement area...
Bietti, Amilcare; Boschian, Giovanni; Crisci, Gino Mirocle; Danese, Ermanno; De Francesco, Anna Maria; Dini, Mario; Fontana, Federica; Giampietri, Alessandra; Grifoni, Renata; Guerreschi, Antonio; Liagre, Jérémie; Negrino, Fabio; Radi, Giovanna; Tozzi, Carlo; Tykot, Robert
2004-06-01
An opportunistic and local choice of raw materials is typically attested in the Lower and Middle Paleolithic industries throughout Italy. The quality of the raw material usually affected the flaking technology and quality of the products. In the Upper Paleolithic and the Mesolithic, raw material procurement strategies were more complex. Flint was exploited both locally, in areas where abundant outcrops of raw materials were available (such as the Lessini mountains), and in distant localities, after which it was transported or exchanged over medium/long distances. Different routes of exchange were thus followed in the various periods; good reconstruction of these routes have been provided by a study of the Garfagnana sites in Northern Tuscany, and the Mesolithic deposit of Mondeval de Sora (Dolomites). An interesting example of a Late Upper Paleolithic flint quarry and workshop were found in Abruzzo, in the San Bartolomeo shelter. The extended trade of obsidian from Lipari, Palmarola and Sardinia to the Italian Peninsula is attested in the Neolithic, with some differences concerning the age and different areas.
SLURRY SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM SOLID MATERIALS
Grinstead, R.R.
1959-01-20
A solvent extraction process is described for recovering uranium from low grade uranium bearing minerals such as carnotit or shale. The finely communited ore is made up as an aqueous slurry containing the necessary amount of acid to solubilize the uranium and simultaneously or subsequently contacted with an organic solvent extractant such as the alkyl ortho-, or pyro phosphoric acids, alkyl phosphites or alkyl phosphonates in combination with a diluent such as kerosene or carbon tetrachlorids. The extractant phase is separated from the slurry and treated by any suitable process to recover the uranium therefrom. One method for recovering the uranium comprises treating the extract with aqueous HF containing a reducing agent such as ferrous sulfate, which reduces the uranium and causes it to be precipitated as uranium tetrafluoride.
Optimization of ISOCS Parameters for Quantitative Non-Destructive Analysis of Uranium in Bulk Form
NASA Astrophysics Data System (ADS)
Kutniy, D.; Vanzha, S.; Mikhaylov, V.; Belkin, F.
2011-12-01
Quantitative calculation of the isotopic masses of fissionable U and Pu is important for forensic analysis of nuclear materials. γ-spectrometry is the most commonly applied tool for qualitative detection and analysis of key radionuclides in nuclear materials. Relative isotopic measurement of U and Pu may be obtained from γ-spectra through application of special software such as MGAU (Multi-Group Analysis for Uranium, LLNL) or FRAM (Fixed-Energy Response Function Analysis with Multiple Efficiency, LANL). If the concentration of U/Pu in the matrix is unknown, however, isotopic masses cannot be calculated. At present, active neutron interrogation is the only practical alternative for non-destructive quantification of fissionable isotopes of U and Pu. An active well coincidence counter (AWCC), an alternative for analyses of uranium materials, has the following disadvantages: 1) The detection of small quantities (≤100 g) of 235U is not possible in many models; 2) Representative standards that capture the geometry, density and chemical composition of the analyzed unknown are required for precise analysis; and 3) Specimen size is severely restricted by the size of the measuring chamber. These problems may be addressed using modified γ-spectrometry techniques based on a coaxial HPGe-detector and ISOCS software (In Situ Object Counting System software, Canberra). We present data testing a new gamma-spectrometry method uniting actinide detection with commonly utilized software, modified for application in determining the masses of the fissionable isotopes in unknown samples of nuclear materials. The ISOCS software, widely used in radiation monitoring, calculates the detector efficiency curve in a specified geometry and range of photon energies. In describing the geometry of the source-detector, it is necessary to clearly describe the distance between the source and the detector, the material and the thickness of the walls of the container, as well as material, density and chemical composition of the matrix of the specimen. Obviously, not all parameters can be characterized when measuring samples of unknown composition or uranium in bulk form. Because of this, and especially for uranium materials, the IAEA developed an ISOCS optimization procedure. The target values for the optimization are Μmatrixfixed, the matrix mass determined by weighing with a known mass container, and Εfixed, the 235U enrichment, determined by MGAU. Target values are fitted by varying the matrix density (ρ), and the concentration of uranium in the matrix of the unknown (w). For each (ρi, wi), an efficiency curve is generated, and the masses of uranium isotopes, Μ235Ui and Μ238Ui, determined using spectral activity data and known specific activities for U. Finally, fitted parameters are obtained for Μmatrixi = Μmatrixfixed ± 1σ, Εi = Εfixed ± 1σ, as well as important parameters (ρi, wi, Μ235Ui, Μ238Ui, ΜUi). We examined multiple forms of uranium (powdered, pressed, and scrap UO2 and U3O8) to test this method for its utility in accurately identifying the mass and enrichment of uranium materials, and will present the results of this research.
2012-09-01
patrol vehicles. The Department’s Counter-Terror Operations Unit serves as the program coordinator and as the archetypical NIMS Type I Team. The...is defined by Title I of the Atomic Energy Act of 1954 as plutonium, uranium-233, or uranium enriched in the isotopes uranium-233 or uranium...end of World War II. Radioactive Materials—materials that contain radioactive atoms . Radioactive atoms are unstable; that is, they have too much
Code of Federal Regulations, 2011 CFR
2011-01-01
... Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Materials § 58.231 General. All raw materials received at the drying plant shall meet the following quality...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Materials § 58.231 General. All raw materials received at the drying plant shall meet the following quality...
ALD coating of nuclear fuel actinides materials
Yacout, A. M.; Pellin, Michael J.; Yun, Di; Billone, Mike
2017-09-05
The invention provides a method of forming a nuclear fuel pellet of a uranium containing fuel alternative to UO.sub.2, with the steps of obtaining a fuel form in a powdered state; coating the fuel form in a powdered state with at least one layer of a material; and sintering the powdered fuel form into a fuel pellet. Also provided is a sintered nuclear fuel pellet of a uranium containing fuel alternative to UO.sub.2, wherein the pellet is made from particles of fuel, wherein the particles of fuel are particles of a uranium containing moiety, and wherein the fuel particles are coated with at least one layer between about 1 nm to about 4 nm thick of a material using atomic layer deposition, and wherein the at least one layer of the material substantially surrounds each interfacial grain barrier after the powdered fuel form has been sintered.
40 CFR 192.33 - Corrective action programs.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management of Uranium Byproduct Materials Pursuant to Section 84 of the Atomic Energy Act of 1954, as Amended...
40 CFR 192.33 - Corrective action programs.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management of Uranium Byproduct Materials Pursuant to Section 84 of the Atomic Energy Act of 1954, as Amended...
Uranium distribution in pseudowollastonite slag from a phosphorus furnace
Young, Edward; Altschuler, Zalman S.
1956-01-01
Silicate slag from the Victor Chemical Company phosphorus furnace at Tarpon Springs, Fla., has been found to consist essentially of pseudowollastonite, α-CaSiO3. The first-formed crystals are euhedral laths which form a mesh making up most of the slag. As the slag continues to solidify, its composition changes slightly and more equant, subhedral crystals of pseudowollastonite are deposited within the framework of the earlier material. Finally, anherdral masses of fibrous, poorly crystallized material are deposited in the remaining pore spaces which are not always completely filled. Spherules of iron phosphide, Fe2P, occur very sparsely in the slag as inclusions from the immiscible iron phosphide melt. Uranium content increases in the later crystal products of the slag, and by heavy-liquid fractionation it has been possible to segregate partially the phases and to obtain a fourfold concentration of uranium in 5 percent of the material and a twofold concentration in 30 percent of the material. Nuclear-emulsion studies indicate that the last phases of the silicate slag are actually eight times as radioactive as the early phases. In addition, the iron phosphide spherules are comparably enriches in uranium.
Alternative Anodes for the Electrolytic Reduction of Uranium Dioxide
NASA Astrophysics Data System (ADS)
Merwin, Augustus
Reprocessing of spent nuclear fuel is an essential step in closing the nuclear fuel cycle. In order to consume current stockpiles, ceramic uranium dioxide spent nuclear fuel will be subjected to an electrolytic reduction process. The current reduction process employs a platinum anode and a stainless steel alloy 316 cathode in a molten salt bath consisting of LiCl-2wt% Li 2O and occurs at 700°C. A major shortcoming of the existing process is the degradation of the platinum anode under the severely oxidizing conditions encountered during electrolytic reduction. This work investigates alternative anode materials for the electrolytic reduction of uranium oxide. The high temperature and extreme oxidizing conditions encountered in these studies necessitated a unique set of design constraints on the system. Thus, a customized experimental apparatus was designed and constructed. The electrochemical experiments were performed in an electrochemical reactor placed inside a furnace. This entire setup was housed inside a glove box, in order to maintain an inert atmosphere. This study investigates alternative anode materials through accelerated corrosion testing. Surface morphology was studied using scanning electron microscopy. Surface chemistry was characterized using energy dispersive spectroscopy and Raman spectroscopy. Electrochemical behavior of candidate materials was evaluated using potentiodynamic polarization characteristics. After narrowing the number of candidate electrode materials, ferrous stainless steel alloy 316, nickel based Inconel 718 and elemental tungsten were chosen for further investigation. Of these materials only tungsten was found to be sufficiently stable at the anodic potential required for electrolysis of uranium dioxide in molten salt. The tungsten anode and stainless steel alloy 316 cathode electrode system was studied at the required reduction potential for UO2 with varying lithium oxide concentrations. Electrochemical impedance spectroscopy showed mixed (kinetic and diffusion) control and an overall low impedance due to extreme corrosion. It was observed that tungsten is sufficiently stable in LiCl - 2wt% Li 2O at 700°C at the required anodic potential for the reduction of uranium oxide. This study identifies tungsten to be a superior anode material to platinum for the electrolytic reduction of uranium oxide, both in terms of superior corrosion behavior and reduced cost, and thus recommends that tungsten be further investigated as an alternative anode for the electrolytic reduction of uranium dioxide.
21 CFR 113.81 - Product preparation.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Production and Process Controls § 113.81 Product preparation. (a) Before using raw materials and ingredients susceptible to microbiological contamination, the processor shall ensure that those materials and ingredients... by receiving the raw materials and ingredients under a supplier's guarantee that they are suitable...
NASA Astrophysics Data System (ADS)
Yang, Hua; Zhang, Wenzheng; Wu, Kai; Li, Shanpeng; Peng, Ping'an; Qin, Yan
2010-09-01
The oil source rocks of the Chang 7 member of the Yanchang Formation in the Erdos Basin were deposited during maximum lake extension during the Late Triassic and show a remarkable positive uranium anomaly, with an average uranium content as high as 51.1 μg/g. Uranium is enriched together with organic matter and elements such as Fe, S, Cu, V and Mo in the rocks. The detailed biological markers determined in the Chang 7 member indicate that the lake water column was oxidizing during deposition of the Chang 7 member. However, redox indicators for sediments such as S 2- content, V/Sc and V/(V + Ni) ratios demonstrate that it was a typical anoxic diagenetic setting. The contrasted redox conditions between the water column and the sediment with a very high content of organic matter provided favorable physical and chemical conditions for syngenetic uranium enrichment in the oil source rocks of the Chang 7 member. Possible uranium sources may be the extensive U-rich volcanic ash that resulted from contemporaneous volcanic eruption and uranium material transported by hydrothermal conduits into the basin. The uranium from terrestrial clastics was unlike because uranium concentration was not higher in the margin area of basin where the terrestrial material input was high. As indicated by correlative analysis, the oil source rocks of the Chang 7 member show high gamma-ray values for radioactive well log data that reflect a positive uranium anomaly and are characterized by high resistance, low electric potential and low density. As a result, well log data can be used to identify positive uranium anomalies and spatial distribution of the oil source rocks in the Erdos Basin. The estimation of the total uranium reserves in the Chang 7 member attain 0.8 × 10 8 t.
Ladshaw, Austin P.; Ivanov, Alexander S.; Das, Sadananda; ...
2018-03-27
Nuclear power is a relatively carbon-free energy source that has the capacity to be utilized today in an effort to stem the tides of global warming. The growing demand for nuclear energy, however, could put significant strain on our uranium ore resources, and the mining activities utilized to extract that ore can leave behind long-term environmental damage. A potential solution to enhance the supply of uranium fuel is to recover uranium from seawater using amidoximated adsorbent fibers. This technology has been studied for decades but is currently plagued by the material’s relatively poor selectivity of uranium over its main competitormore » vanadium. In this work, we investigate the binding schemes between uranium, vanadium, and the amidoxime functional groups on the adsorbent surface. Using quantum chemical methods, binding strengths are approximated for a set of complexation reactions between uranium and vanadium with amidoxime functionalities. Those approximations are then coupled with a comprehensive aqueous adsorption model developed in this work to simulate the adsorption of uranium and vanadium under laboratory conditions. Experimental adsorption studies with uranium and vanadium over a wide pH range are performed, and the data collected are compared against simulation results to validate the model. It was found that coupling ab initio calculations with process level adsorption modeling provides accurate predictions of the adsorption capacity and selectivity of the sorbent materials. Furthermore, this work demonstrates that this multiscale modeling paradigm could be utilized to aid in the selection of superior ligands or ligand compositions for the selective capture of metal ions. Furthermore, this first-principles integrated modeling approach opens the door to the in silico design of next-generation adsorbents with potentially superior efficiency and selectivity for uranium over vanadium in seawater.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladshaw, Austin P.; Ivanov, Alexander S.; Das, Sadananda
Nuclear power is a relatively carbon-free energy source that has the capacity to be utilized today in an effort to stem the tides of global warming. The growing demand for nuclear energy, however, could put significant strain on our uranium ore resources, and the mining activities utilized to extract that ore can leave behind long-term environmental damage. A potential solution to enhance the supply of uranium fuel is to recover uranium from seawater using amidoximated adsorbent fibers. This technology has been studied for decades but is currently plagued by the material’s relatively poor selectivity of uranium over its main competitormore » vanadium. In this work, we investigate the binding schemes between uranium, vanadium, and the amidoxime functional groups on the adsorbent surface. Using quantum chemical methods, binding strengths are approximated for a set of complexation reactions between uranium and vanadium with amidoxime functionalities. Those approximations are then coupled with a comprehensive aqueous adsorption model developed in this work to simulate the adsorption of uranium and vanadium under laboratory conditions. Experimental adsorption studies with uranium and vanadium over a wide pH range are performed, and the data collected are compared against simulation results to validate the model. It was found that coupling ab initio calculations with process level adsorption modeling provides accurate predictions of the adsorption capacity and selectivity of the sorbent materials. Furthermore, this work demonstrates that this multiscale modeling paradigm could be utilized to aid in the selection of superior ligands or ligand compositions for the selective capture of metal ions. Furthermore, this first-principles integrated modeling approach opens the door to the in silico design of next-generation adsorbents with potentially superior efficiency and selectivity for uranium over vanadium in seawater.« less
Improving gross count gamma-ray logging in uranium mining with the NGRS probe
NASA Astrophysics Data System (ADS)
Carasco, C.; Pérot, B.; Ma, J.-L.; Toubon, H.; Dubille-Auchère, A.
2018-01-01
AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration measurement by means of gamma ray logging. The determination of uranium concentration in boreholes is performed with the Natural Gamma Ray Sonde (NGRS) based on a NaI(Tl) scintillation detector. The total gamma count rate is converted into uranium concentration using a calibration coefficient measured in concrete blocks with known uranium concentration in the AREVA Mines calibration facility located in Bessines, France. Until now, to take into account gamma attenuation in a variety of boreholes diameters, tubing materials, diameters and thicknesses, filling fluid densities and compositions, a semi-empirical formula was used to correct the calibration coefficient measured in Bessines facility. In this work, we propose to use Monte Carlo simulations to improve gamma attenuation corrections. To this purpose, the NGRS probe and the calibration measurements in the standard concrete blocks have been modeled with MCNP computer code. The calibration coefficient determined by simulation, 5.3 s-1.ppmU-1 ± 10%, is in good agreement with the one measured in Bessines, 5.2 s-1.ppmU-1. Based on the validated MCNP model, several parametric studies have been performed. For instance, the rock density and chemical composition proved to have a limited impact on the calibration coefficient. However, gamma self-absorption in uranium leads to a nonlinear relationship between count rate and uranium concentration beyond approximately 1% of uranium weight fraction, the underestimation of the uranium content reaching more than a factor 2.5 for a 50 % uranium weight fraction. Next steps will concern parametric studies with different tubing materials, diameters and thicknesses, as well as different borehole filling fluids representative of real measurement conditions.
A graphene oxide/amidoxime hydrogel for enhanced uranium capture
Wang, Feihong; Li, Hongpeng; Liu, Qi; Li, Zhanshuang; Li, Rumin; Zhang, Hongsen; Liu, Lianhe; Emelchenko, G. A.; Wang, Jun
2016-01-01
The efficient development of selective materials for the recovery of uranium from nuclear waste and seawater is necessary for their potential application in nuclear fuel and the mitigation of nuclear pollution. In this work, a graphene oxide/amidoxime hydrogel (AGH) exhibits a promising adsorption performance for uranium from various aqueous solutions, including simulated seawater. We show high adsorption capacities (Qm = 398.4 mg g−1) and high % removals at ppm or ppb levels in aqueous solutions for uranium species. In the presence of high concentrations of competitive ions such as Mg2+, Ca2+, Ba2+ and Sr2+, AGH displays an enhanced selectivity for uranium. For low uranium concentrations in simulated seawater, AGH binds uranium efficiently and selectively. The results presented here reveal that the AGH is a potential adsorbent for remediating nuclear industrial effluent and adsorbing uranium from seawater. PMID:26758649
Szabo, Zoltan; Zapecza, Otto S.; Oden, Jeannette H.; Rice, Donald E.
2005-01-01
A field sampling experiment was designed using low-flow purging with a portable pump and sample-collection equipment for the collection of water and sediment samples from observation wells screened in the Kirkwood-Cohansey aquifer system to determine radionuclide or trace-element concentrations for various size fractions. Selected chemical and physical characteristics were determined for water samples from observation wells that had not been purged for years. The sampling was designed to define any particulate, colloidal, and solution-phase associations of radionuclides or trace elements in ground water by means of filtration and ultrafiltration techniques. Turbidity was monitored and allowed to stabilize before samples were collected by means of the low-flow purging technique rather than by the traditional method of purging a fixed volume of water at high-flow rates from the observation well. A minimum of four water samples was collected from each observation well. The samples of water from each well were collected in the following sequence. (1) A raw unfiltered sample was collected within the first minutes of pumping. (2) A raw unfiltered sample was collected after at least three casing volumes of water were removed and turbidity stabilized. (3) A sample was collected after the water was filtered with a 0.45-micron filter. (4) A sample was collected after the water passed through a 0.45-micron filter and a 0.003-micron tangential-flow ultrafilter in sequence. In some cases, a fifth sample was collected after the water passed through a 0.45-micron filter and a 0.05-micron filter in sequence to test for colloids of 0.003 microns to 0.05 microns in size. The samples were analyzed for the concentration of manmade radionuclides plutonium-238 and -239 plus -240, and americium-241. The samples also were analyzed for concentrations of uranium-234, -235, and -238 to determine whether uranium-234 isotope enrichment (resulting from industrial processing) is present. A subset of samples was analyzed for concentrations of thorium-232, -230, and -228 to determine if thorium-228 isotope enrichment, also likely to result from industrial processing, is present. Concentrations of plutonium isotopes and americium-241 in the water samples were less than 0.1 picocurie per liter, the laboratory reporting level for these manmade radionuclides, with the exception of one americium-241 concentration from a filtered sample. A sequential split sample from the same well did not contain a detectable concentration of americium-241, however. Other filtered and unfiltered samples of water from the same well did not contain quantities of americium-241 nearly as high as 0.1 pCi/L. Therefore, the presence of americium-241 in a quantifiable concentration in water samples from this well could not be confirmed. Neither plutonium nor americium was detected in samples of settled sediment collected from the bottom of the wells. Concentrations of uranium isotopes (maximum of 0.05 and 0.08 picocuries per liter of uranium-238 and uranium-234, respectively) were measurable in unfiltered samples of turbid water from one well and in the settled bottom sediment from 6 wells (maximum concentrations of 0.25 and 0.20 picocuries per gram of uranium-238 and uranium-234, respectively). The uranium-234/uranium-238 isotopic ratio was near 1:1, which indicates natural uranium. The analytical results, therefore, indicate that no manmade radionuclide contamination is present in any of the well-bottom sediments, or unfiltered or filtered water samples from any of the sampled wells. No evidence of manmade radionuclide contamination was observed in the aquifer as settled or suspended particulates, colloids, or in the dissolved phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gracheva, A. Yu.; Zav’yalov, M. A.; Ilyukhina, N. V.
The work is dedicated to improvement of efficiency of storage and processing of food raw materials using radiation technologies. International practice of radiation processing of food raw materials is presented and an increase in the consumption of irradiated food products is shown. The prospects of using radiation technologies for the processing of food products in Russia are discussed. The results of studies of radiation effects on various food products and packaging film by γ radiation and accelerated electrons are presented.
Tendall, Danielle M; Binder, Claudia R
2011-03-15
The European nuclear fuel cycle (covering the EU-27, Switzerland and Ukraine) was modeled using material flow analysis (MFA).The analysis was based on publicly available data from nuclear energy agencies and industries, national trade offices, and nongovernmental organizations. Military uranium was not considered due to lack of accessible data. Nuclear fuel cycle scenarios varying spent fuel reprocessing, depleted uranium re-enrichment, enrichment assays, and use of fast neutron reactors, were established. They were then assessed according to environmental, economic and social criteria such as resource depletion, waste production, chemical and radiation emissions, costs, and proliferation risks. The most preferable scenario in the short term is a combination of reduced tails assay and enrichment grade, allowing a 17.9% reduction of uranium demand without significantly increasing environmental, economic, or social risks. In the long term, fast reactors could theoretically achieve a 99.4% decrease in uranium demand and nuclear waste production. However, this involves important costs and proliferation risks. Increasing material efficiency is not systematically correlated with the reduction of other risks. This suggests that an overall optimization of the nuclear fuel cycle is difficult to obtain. Therefore, criteria must be weighted according to stakeholder interests in order to determine the most sustainable solution. This paper models the flows of uranium and associated materials in Europe, and provides a decision support tool for identifying the trade-offs of the alternative nuclear fuel cycles considered.
NASA Astrophysics Data System (ADS)
Aldabsheh, Islam; Garcia-Valles, Maite; Martinez, Salvador
2014-05-01
Environmental preservation has become a driving force behind the search for new sustainable and environmentally friendly composites to replace conventional concrete produced from ordinary Portland cement (OPC). Current researches concentrate on developing building products (geopolymers) through geopolymerization. The goal is to produce low cost construction materials for green housing. Geopolymerization is the process of polymerizing minerals with high silica and alumina at low temperature by the use of alkali solutions. Dissolution is the most important process for supplying the high initial Al and Si concentrations to produce the gel phase that is responsible for geopolymerization. This study has been focused on the influence of different micrometric particle sizes of three Jordanian raw materials on their dissolution behavior in sodium hydroxide solution. The samples are kaolinite, volcanic tuff and silica sand. The dissolution properties of each material, alone and mixed with the other two materials were studied in different concentrations (5 and 10 M) using (NaOH) at 25ºC, and shaking time for 24 and 168 h. To better understand the dissolution process, the alkaline solution was renewed after the desired time in order to know if the Al-Si raw material is completely dissolved or not. Different analytical techniques were used to characterize raw materials physically, mineralogically, chemically and thermally. All processed samples either centrifuged solutions or solid residues were fully characterized. The leached concentrations of Al and Si were determined by inductively coupled plasma (ICP). X-ray Diffraction Technique (XRD), Scanning Electron Microscopy (SEM), and Thermo Gravimetric Analysis (TGA) were used to evaluate the solid residue characterization compared with the original ones. The three aluminosilicate raw materials have indicated variable degrees of solubility under highly alkaline conditions. The method for the size reduction of the used raw materials achieved by using a ball mill increased the dissolution rate owing to the increased surface area of the material or particle exposed to the solvent. The used Jordanian raw materials are potential to be used for geopolymerization. This work was partly financed by SGR 2009SGR-00444
PRODUCTION OF URANIUM AND THORIUM COMPOUNDS
Arden, T.V.; Burstall, F.H.; Linstead, R.P.; Wells, R.A.
1955-12-27
Compounds of Th and U are extracted with an organic solvent in the presence of an adsorbent substance which has greater retentivity for impurities present than for the uranium and/or thorium. The preferred adsorbent material is noted as being cellulose. The uranium and thoriumcontaining substances treated are preferably in the form of dissolved nitrates, and the preferred organic solvent is diethyl ether.
Germanium and uranium in coalified wood from Upper Devonian black shale
Breger, Irving A.; Schopf, James M.
1954-01-01
Microscopic study of black, vitreous, carbonaceous material occurring in the Chattanooga shale in Tennessee and in the Cleveland member of the Ohio shale in Ohio has revealed coalified woody plant tissue. Some samples have shown sufficient detail to be identified with the genus Callixylon. Similar material has been reported in the literature as "bituminous" or "asphaltic" stringers. Spectrographic analyses of the ash from the coalified wood have shown unusually high percentages of germanium, uranium, vanadium, and nickel. The inverse relationship between uranium and germanium in the ash and the ash content of various samples shows an association of these elements with the organic constituents of the coal. On the basis of geochemical considerations, it seems most probable that the wood or coalified wood was germanium-bearing at the time logs or woody fragments were floated into the basins of deposition of the Chattanooga shale and the Cleveland member of the Ohio shale. Once within the marine environment, the material probably absorbed uranium with the formation of organo-uranium compounds such as have been found to exist in coals. It is suggested that a more systematic search for germaniferous coals in the vicinity of the Chattanooga shale and the Cleveland member of the Ohio shale might be rewarding.
Surugaya, Naoki; Hiyama, Toshiaki; Verbruggen, André; Wellum, Roger
2008-02-01
A stable solid spike for the measurement of uranium and plutonium content in nitric acid solutions of spent nuclear fuel by isotope dilution mass spectrometry has been prepared at the European Commission Institute for Reference Materials and Measurements in Belgium. The spike contains about 50 mg of uranium with a 19.838% (235)U enrichment and 2 mg of plutonium with a 97.766% (239)Pu abundance in each individual ampoule. The dried materials were covered with a thin film of cellulose acetate butyrate as a protective organic stabilizer to resist shocks encountered during transportation and to eliminate flaking-off during long-term storage. It was found that the cellulose acetate butyrate has good characteristics, maintaining a thin film for a long time, but readily dissolving on heating with nitric acid solution. The solid spike containing cellulose acetate butyrate was certified as a reference material with certified quantities: (235)U and (239)Pu amounts and uranium and plutonium amount ratios, and was validated by analyzing spent fuel dissolver solutions of the Tokai reprocessing plant in Japan. This paper describes the preparation, certification and validation of the solid spike coated with a cellulose derivative.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, Gerald C.
1975-10-01
The oxygen-to-metal atom ratio, or O/M, of solid solution uranium- plutonium oxide reactor fuel is a measure of the concentration of crystal defects in the oxide which affect many fuel properties, particularly, fuel oxygen potential. Fabrication of a high-temperature oxygen electrode, employing an electro-active tip of oxygen-deficient solid-state electrolyte, intended to confirm gaseous oxygen potentials is described. Uranium oxide and plutonium oxide O/M reference materials were prepared by in situ oxidation of high purity metals in the thermobalance. A solid solution uranium-plutonium oxide O/M reference material was prepared by alloying the uranium and plutonium metals in a yttrium oxide cruciblemore » at 1200°C and oxidizing with moist He at 250°C. The individual and solid solution oxides were isothermally equilibrated with controlled oxygen potentials between 800 and 1300°C and the equilibrated O/ M ratios calculated with corrections for impurities and buoyancy effects. Use of a reference oxygen potential of -100 kcal/mol to produce an O/M of 2.000 is confirmed by these results. However, because of the lengthy equilibration times required for all oxides, use of the O/M reference materials rather than a reference oxygen potential is recommended for O/M analysis methods calibrations.« less
Jennings, Joan K.; Leventhal, J.S.
1978-01-01
Organic material is commonly found associated with uranium ores in sandstone-type deposits. This review of the literature summarizes the classes and separations of naturally occurring organic material but the emphasis is on soluble organic species. The main class of materials of interest is humic substances which are high-molecular-weight complex molecules that are soluble in alkaline solution. These humic substances are able to solubilize (make soluble) minerals and also to complex [by ion exchange and (or) chelation] many cations. The natural process of soil formation results in both mineral decomposition and element complexing by organic species. Uranium in solution, such as ground water, can form many species with other elements or complexes present depending on Eh and pH. In natural systems (oxidizing Eh, pH 5-9) the uranium is usually present as a complex with hydroxide or carbonate. Thermodynamic data for these species are presented. Interacting metals and organic materials have been observed in nature and studied in the laboratory by many workers in diverse scientific disciplines. The results are not easily compared. Measurements of the degree of complexation are reported as equilibrium stability constant determinations. This type of research has been done for Mn, Fe, Cu, Zn, Pb, Ni, Co, Mg, Ca, Al, and to a limited degree for U. The use of Conditional Stability Constants has given quantitative results in some cases. The methods utilized in experiments and calculations are reviewed.
Material Characterization of Microsphere-Based Scaffolds with Encapsulated Raw Materials
Sridharan, BanuPriya; Mohan, Neethu; Berkland, Cory J.; Detamore, Michael S.
2016-01-01
“Raw materials,” or materials capable of serving both as building blocks and as signals, which are often but not always natural materials, are taking center stage in biomaterials for contemporary regenerative medicine. In osteochondral tissue engineering, a field leveraging the underlying bone to facilitate cartilage regeneration, common raw materials include chondroitin sulfate (CS) for cartilage and β-tricalcium phosphate (TCP) for bone. Building on our previous work with gradient scaffolds based on microspheres, here we delved deeper into the characterization of individual components. In the current study, the release of CS and TCP from poly(D,L-lactic-co-glycolic acid) (PLGA) microsphere-based scaffolds was evaluated over a time period of 4 weeks. Raw material encapsulated groups were compared to ‘blank’ groups and evaluated for surface topology, molecular weight, and mechanical performance as a function of time. The CS group may have led to increased surface porosity, and the addition of CS improved the mechanical performance of the scaffold. The finding that CS was completely released into the surrounding media by 4 weeks has a significant impact on future in vivo studies, given rapid bioavailability. The addition of TCP seemed to contribute to the rough external appearance of the scaffold. The current study provides an introduction to degradation patterns of homogenous raw material encapsulated scaffolds, providing characterization data to advance the field of microsphere-based scaffolds in tissue engineering. PMID:27040236
Rapid bacteriological screening of cosmetic raw materials by using bioluminescence.
Nielsen, P; Van Dellen, E
1989-01-01
Incoming cosmetic raw materials are routinely tested for microbial content. Standard plate count methods require up to 72 h. A rapid, sensitive, and inexpensive raw material screening method was developed that detects the presence of bacteria by means of ATP (bioluminescence). With a 24-h broth enrichment, the minimum bacterial ATP detection threshold of 1 cfu/g sample can be achieved using purified firefly luciferin-luciferase and an ATP releasing reagent. By using this rapid screen, microbiologically free material may be released for production within 24 h, while contaminated material undergoes further quantitative and identification testing. In order for a raw material to be validated for this method it must be evaluated for (1) a potential nonmicrobial light-contributing reaction resulting in a false positive or, (2) degradation of the ATP giving a false negative, and (3) confirmation that the raw material has not overwhelmed the buffering capacity of the enrichment broth. The key criteria for a rapid screen was the sensitivity to detect less than one colony forming unit per g product, the speed to do this within 24 h, and cost efficiency. Bioluminescence meets these criteria. With an enrichment step, it can detect less than one cfu/g sample. After the enrichment step, analysis time per sample is approximately 2 min and the cost for material and reagents is less than one dollar per sample.
Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate
Travelli, A.
1985-10-25
A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.
Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate
Travelli, Armando
1988-01-01
A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.
High temperature UF6 RF plasma experiments applicable to uranium plasma core reactors
NASA Technical Reports Server (NTRS)
Roman, W. C.
1979-01-01
An investigation was conducted using a 1.2 MW RF induction heater facility to aid in developing the technology necessary for designing a self critical fissioning uranium plasma core reactor. Pure, high temperature uranium hexafluoride (UF6) was injected into an argon fluid mechanically confined, steady state, RF heated plasma while employing different exhaust systems and diagnostic techniques to simulate and investigate some potential characteristics of uranium plasma core nuclear reactors. The development of techniques and equipment for fluid mechanical confinement of RF heated uranium plasmas with a high density of uranium vapor within the plasma, while simultaneously minimizing deposition of uranium and uranium compounds on the test chamber peripheral wall, endwall surfaces, and primary exhaust ducts, is discussed. The material tests and handling techniques suitable for use with high temperature, high pressure, gaseous UF6 are described and the development of complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma, effluent exhaust gases, and residue deposited on the test chamber and exhaust system components is reported.
Nuclear fuel element with axially aligned fuel pellets and fuel microspheres therein
Sease, J.D.; Harrington, F.E.
1973-12-11
Elongated single- and multi-region fuel elements are prepared by replacing within a cladding container a coarse fraction of fuel material which includes plutonium and uranium in the appropriate regions of the fuel element and then infiltrating with vibration a fine-sized fraction of uranium-containing microspheres throughout all interstices in the coarse material in a single loading. The fine, rigid material defines a thin annular layer between the coarse fraction and the cladding to reduce adverse mechanical and chemical interactions. (Official Gazette)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marsh, S.F.; Spall, W.D.; Abernathey, R.M.
1976-11-01
Relationships are provided to compute the decreasing plutonium content and changing isotopic distribution of plutonium materials for the radioactive decay of /sup 238/Pu, /sup 239/Pu, /sup 240/Pu and /sup 242/Pu to long-lived uranium daughters and of /sup 241/Pu to /sup 241/Am. This computation is important to the use of plutonium reference materials to calibrate destructive and nondestructive methods for assay and isotopic measurements, as well as to accountability inventory calculations.
Landa, E.R.
2003-01-01
Specific extraction studies in our laboratory have shown that iron and manganese oxide- and alkaline earth sulfate minerals are important hosts of radium in uranium mill tailings. Iron- and sulfate-reducing bacteria may enhance the release of radium (and its analog barium) from uranium mill tailings, oil field pipe scale [a major technologically enhanced naturally occurring radioactive material (TENORM) waste], and jarosite (a common mineral in sulfuric acid processed-tailings). These research findings are reviewed and discussed in the context of nuclear waste forms (such as barium sulfate matrices), radioactive waste management practices, and geochemical environments in the Earth's surficial and shallow subsurface regions.
Uranium from German Nuclear Power Projects of the 1940s— A Nuclear Forensic Investigation
Mayer, Klaus; Wallenius, Maria; Lützenkirchen, Klaus; Horta, Joan; Nicholl, Adrian; Rasmussen, Gert; van Belle, Pieter; Varga, Zsolt; Buda, Razvan; Erdmann, Nicole; Kratz, Jens-Volker; Trautmann, Norbert; Fifield, L Keith; Tims, Stephen G; Fröhlich, Michaela B; Steier, Peter
2015-01-01
Here we present a nuclear forensic study of uranium from German nuclear projects which used different geometries of metallic uranium fuel.3b,d, 4 Through measurement of the 230Th/234U ratio, we could determine that the material had been produced in the period from 1940 to 1943. To determine the geographical origin of the uranium, the rare-earth-element content and the 87Sr/86Sr ratio were measured. The results provide evidence that the uranium was mined in the Czech Republic. Trace amounts of 236U and 239Pu were detected at the level of their natural abundance, which indicates that the uranium fuel was not exposed to any major neutron fluence. PMID:26501922
31 CFR 545.413 - Importation of goods from third countries; transshipments.
Code of Federal Regulations, 2010 CFR
2010-07-01
...; transshipments. (a) Importation into the United States from third countries of goods containing raw materials or... raw materials or components have been incorporated into manufactured products or otherwise...
Colorimetric detection of uranium in water
DeVol, Timothy A [Clemson, SC; Hixon, Amy E [Piedmont, SC; DiPrete, David P [Evans, GA
2012-03-13
Disclosed are methods, materials and systems that can be used to determine qualitatively or quantitatively the level of uranium contamination in water samples. Beneficially, disclosed systems are relatively simple and cost-effective. For example, disclosed systems can be utilized by consumers having little or no training in chemical analysis techniques. Methods generally include a concentration step and a complexation step. Uranium concentration can be carried out according to an extraction chromatographic process and complexation can chemically bind uranium with a detectable substance such that the formed substance is visually detectable. Methods can detect uranium contamination down to levels even below the MCL as established by the EPA.
PHYSICAL BENEFICATION OF LOW-GRADE URANIUM ORES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butler, J.N.
1958-07-30
Investigations are presented of methods for the physi cal beneficiation of low-grade and other uranium ores. The investlgations which have been in progress since September 1952 cover work done on a variety of natural ores, as well as a certain amount of basic research on mixtures of synthetic or high-grade natural uranium minerais with various gangues. Methods of beneficlation investigated include flotation, wet and dry attroftioning, magnetic separation. electresiatie separation, and misceilaneous minor methods. A rapid, routine method oicolorimeiric determlnation of uranium was also developed in order to facilitaie analyzing of low-grade materials for uranium. This proeedure is presenied inmore » condensed form. (auth)« less
Method of fabricating a uranium-bearing foil
Gooch, Jackie G [Seymour, TN; DeMint, Amy L [Kingston, TN
2012-04-24
Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.
Potential impact of seawater uranium extraction on marine life
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jiyeon; Jeters, Robert T.; Kuo, Li-Jung
A variety of adsorbent materials have been developed to extract uranium from seawater as an alternative traditional terrestrial mining. A large-scale deployment of these adsorbents would be necessary to recover useful quantities of uranium and this raises a number of concerns regarding potential impacts on the surrounding marine environment. Two concerns are whether or not the adsorbent materials are toxic and any potentially harmful effects that may result from depleting uranium or vanadium (also highly concentrated by the adsorbents) from the local environment. To test the potential toxicity of the adsorbent with or without bound metals, Microtox assays were usedmore » to test both direct contact toxicity and the toxicity of any leachate in the seawater. The Microtox assay was chosen because it the detection of non-specific mechanisms of toxicity. Toxicity was not observed with leachates from any of 68 adsorbent materials that were tested, but direct contact with some adsorbents at very high adsorbent con-centrations exhibited toxicity. These concentrations are, however, very unlikely to be seen in the actual marine deployment. Adsor-bents that accumulated uranium and trace metals were also tested for toxicity, and no toxic effect was observed. Biofouling on the adsorbents and in columns or flumes containing the adsorbents also indicates that the adsorbents are not toxic and that there may not be an obvious deleterious effect resulting from removing uranium and vanadium from seawater. An extensive literature search was also performed to examine the potential impact of uranium and vanadium extraction from seawater on marine life using the Pacific Northwest National Laboratory’s (PNNL’s) document analysis tool, IN-SPIRE™. Although other potential environmental effects must also be considered, results from both the Microtox assay and the literature search provide preliminary evidence that uranium extraction from seawater could be performed with minimal impact on marine fauna.« less
Deploying Nuclear Detection Systems: A Proposed Strategy for Combating Nuclear Terrorism
2007-07-01
lower cost than other gamma radiation detectors (if increased count rate is all one is looking for). Low cost makes plastic scintillation detectors...material, particularly enriched uranium and plutonium, the basic fuel for nuclear bombs. • Measures to strengthen international institutions to... uranium to specifications required for a nuclear weapon.1 This illicit shipment of centrifuges was part of an international nuclear materials
Competitive Advantage Market Analysis | Energy Analysis | NREL
Study An NREL market assessment of raw and intermediate materials, equipment, and products for equipment for c-Si PV Abundant raw materials for production of moisture barrier films, glass, aluminum
Code of Federal Regulations, 2011 CFR
2011-01-01
... Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58... derived from raw material meeting the requirements as listed under §§ 58.132 through 58.138 of this...
Code of Federal Regulations, 2010 CFR
2010-01-01
... Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58... derived from raw material meeting the requirements as listed under §§ 58.132 through 58.138 of this...
NASA Astrophysics Data System (ADS)
Larijani, Cyrus Kouroush
This thesis is based on the development of a radiochemical separation scheme capable of separating both 236gNp and 236Pu from a uranium target of natural isotopic composition ( 1 g uranium) and 200 MBq of fission decay products. The isobaric distribution of fission residues produced following the bombardment of a natural uranium target with a beam of 25 MeV protons has been evaluated. Decay analysis of thirteen isobarically distinct fission residues were carried out using high-resolution gamma-ray spectrometry at the UK National Physical Laboratory. Stoichiometric abundances were calculated via the determination of absolute activity concentrations associated with the longest-lived members of each isobaric chain. This technique was validated by computational modelling of likely sequential decay processes through an isobaric decay chain. The results were largely in agreement with previously published values for neutron bombardments on natural uranium at energies of 14 MeV. Higher relative yields of products with mass numbers A 110-130 were found, consistent with the increasing yield of these radionuclides as the bombarding energy is increased. Using literature values for the production cross-section for fusion of protons with uranium targets, it is estimated that an upper limit of approximately 250 Bq of activity from the 236Np ground state was produced in this experiment. Using a radiochemical separation scheme, Np and Pu fractions were separated from the produced fission decay products, with analyses of the target-based final reaction products made using Inductively Couple Plasma Mass Spectrometry (ICP-MS) and high-resolution alpha and gamma-ray spectrometry. In a separate research theme, reliable measurement of Naturally Occurring Radioactive Materials is of significance in order to comply with environmental regulations and for radiological protection purposes. The thesis describes the standardisation of three reference materials, namely Sand, Tuff and TiO2 which can serve as quality control materials to achieve traceability, method validation and instrument calibration. The sample preparation, material characterization via gamma, alpha and Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and the assignment of values for both the 4n Thorium and 4n + 2 Uranium decay series are presented.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ingredient means any material that is intended to furnish pharmacological activity or other direct effect in... this section. Consumption means the quantity of all HAP raw materials entering a process in excess of... as added as a raw material, consumption includes the quantity generated in the process. Container, as...
Code of Federal Regulations, 2010 CFR
2010-07-01
... ingredient means any material that is intended to furnish pharmacological activity or other direct effect in... this section. Consumption means the quantity of all HAP raw materials entering a process in excess of... as added as a raw material, consumption includes the quantity generated in the process. Container, as...
Code of Federal Regulations, 2011 CFR
2011-07-01
... ingredient means any material that is intended to furnish pharmacological activity or other direct effect in... this section. Consumption means the quantity of all HAP raw materials entering a process in excess of... as added as a raw material, consumption includes the quantity generated in the process. Container, as...
EVALUATION OF AUSTRALIAN RUM JUNGLE URANIUM CONCENTRATE FOR USE AS NLO REFINERY FEED
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collopy, T.J.; Huntington, C.W.; Blum, J.F.
1956-01-20
A laboratory evaluation of Australian Rum Jungle uranium concentrate showed that the uracium can be satisfactorily extracted by 33.5% TBP-kerosene from an aqueous acid slurry of the material, and that impurities in the aqueous uranyl nitrate product obtained by re-extraetion from the organic phase approach NL0 tolerance specifications. The uranium values in the organic product were not completely re-extracted at room temperatare (l0th stage organic, 1.6 g/l U); however, it was assumed that reextraction will be complete under pulse column conditions (150 deg F). The results of the Pilot Plant evaluation of Rum Jungle uranium concentrate (Lot No. 1) indicatedmore » that this material can be processed employing NLO refinery conditions. The aqueous uranyl nitrate product from the test met all impurity specifications except those for manganese and nickel. The high chloride content of this lot of concentrate will mske blending necessary in order to meet NLO feed material specifications. The blending will alan lessen the tendencies toward metallic contamination of the OK liquor observed in these tests. (auth)« less
NASA Astrophysics Data System (ADS)
Halavska, L.; Batrak, O.
2016-07-01
A new trend in the world is the clothing production using the new types of ecological raw materials application - milk, pineapple, coconut, hemp, banana, eucalyptus, clams, corn, bamboo, soya, nettle yarn. This makes it possible to create textile materials of new generation with unique antibacterial and antiseptic properties. Such materials have a positive preventive and sometimes therapeutic effect on people, and their health. Eco-raw materials clothing is able to protect the human body from the environment harmful effects: cold, heat, rain, dust, opportunely remove from underclothing layer the steam and gases, sweat; maintain in underclothing layer the necessary microclimate for normal organism functioning. Study of knitwear consumer properties, produced with eco-materials, is an urgent task of the world vector, directed on ecological environmental protection. This paper presents the research results of hygroscopicity and capillarity weft knitted fabrics, what knitted from different types of eco-raw materials: bamboo yarn, yarn containing soybean and nettle yarn. Character of influence of the liquid raising level changes depending on the experiment time and the knitting structure is revealed.
Sandstone type uranium deposits in the Ordos Basin, Northwest China: A case study and an overview
NASA Astrophysics Data System (ADS)
Akhtar, Shamim; Yang, Xiaoyong; Pirajno, Franco
2017-09-01
This paper provides a comprehensive review on studies of sandstone type uranium deposits in the Ordos Basin, Northwest China. As the second largest sedimentary basin, the Ordos Basin has great potential for targeting sandstone type U mineralization. The newly found and explored Dongsheng and Diantou sandstone type uranium deposits are hosted in the Middle Jurassic Zhilou Formation. A large number of investigations have been conducted to trace the source rock compositions and relationship between lithic subarkose sandstone host rock and uranium mineralization. An optical microscopy study reveals two types of alteration associated with the U mineralization: chloritization and sericitization. Some unusual mineral structures, with compositional similarity to coffinite, have been identified in a secondary pyrite by SEM These mineral phases are proposed to be of bacterial origin, following high resolution mapping of uranium minerals and trace element determinations in situ. Moreover, geochemical studies of REE and trace elements constrained the mechanism of uranium enrichment, displaying LREE enrichment relative to HREE. Trace elements such as Pb, Mo and Ba have a direct relationship with uranium enrichment and can be used as index for mineralization. The source of uranium ore forming fluids and related geological processes have been studied using H, O and C isotope systematics of fluid inclusions in quartz veins and the calcite cement of sandstone rocks hosting U mineralization. Both H and O isotopic compositions of fluid inclusions reveal that ore forming fluids are a mixture of meteoric water and magmatic water. The C and S isotopes of the cementing material of sandstone suggest organic origin and bacterial sulfate reduction (BSR), providing an important clue for U mineralization. Discussion of the ore genesis shows that the greenish gray sandstone plays a crucial role during processes leading to uranium mineralization. Consequently, an oxidation-reduction model for sandstone-type uranium deposit is proposed, which can elucidate the source of uranium in the deposits of the Ordos Basin, based on the role of organic materials and sulfate reducing bacteria. We discuss the mechanism of uranium deposition responsible for the genesis of these large sandstone type uranium deposits in this unique sedimentary basin.
Volume II investigates the potential radiogenic risks from abandoned uranium mines and evaluates which may pose the greatest hazards to members of the public and to the environment. The intent of this report is to identify who may be most likely to be exposed to wastes at small a...
Code of Federal Regulations, 2011 CFR
2011-01-01
... come into direct contact with uranium metal vapor or liquid or with process gas consisting of UF6 or a mixture of UF6 and other gases: (1) Uranium vaporization systems (AVLIS). Especially designed or prepared... laser-based enrichment items, the materials resistant to corrosion by the vapor or liquid of uranium...
Code of Federal Regulations, 2014 CFR
2014-01-01
... come into direct contact with uranium metal vapor or liquid or with process gas consisting of UF6 or a mixture of UF6 and other gases: (1) Uranium vaporization systems (AVLIS). Especially designed or prepared... laser-based enrichment items, the materials resistant to corrosion by the vapor or liquid of uranium...
Code of Federal Regulations, 2013 CFR
2013-01-01
... come into direct contact with uranium metal vapor or liquid or with process gas consisting of UF6 or a mixture of UF6 and other gases: (1) Uranium vaporization systems (AVLIS). Especially designed or prepared... laser-based enrichment items, the materials resistant to corrosion by the vapor or liquid of uranium...
Code of Federal Regulations, 2012 CFR
2012-01-01
... come into direct contact with uranium metal vapor or liquid or with process gas consisting of UF6 or a mixture of UF6 and other gases: (1) Uranium vaporization systems (AVLIS). Especially designed or prepared... laser-based enrichment items, the materials resistant to corrosion by the vapor or liquid of uranium...
Code of Federal Regulations, 2010 CFR
2010-01-01
... come into direct contact with uranium metal vapor or liquid or with process gas consisting of UF6 or a mixture of UF6 and other gases: (1) Uranium vaporization systems (AVLIS). Especially designed or prepared... laser-based enrichment items, the materials resistant to corrosion by the vapor or liquid of uranium...
Soft-Templating Synthesis of Mesoporous Silica-Based Materials for Environmental Applications
NASA Astrophysics Data System (ADS)
Gunathilake, Chamila Asanka
Dissertation research is mainly focus on: 1) the development of mesoporous silica materials with organic pendant and bridging groups (isocyanurate, amidoxime, benzene) and incorporated metal (aluminum, zirconium, calcium, and magnesium) species for high temperature carbon dioxide (CO2) sorption, 2) phosphorous-hydroxy functionalized mesoporous silica materials for water treatment, and 3) amidoxime-modified ordered mesoporous silica materials for uranium sorption under seawater conditions. The goal is to design composite materials for environmental applications with desired porosity, surface area, and functionality by selecting proper metal oxide precursors, organosilanes, tetraethylorthosilicate, (TEOS), and block copolymer templates and by adjusting synthesis conditions. The first part of dissertation presents experimental studies on the merge of aluminum, zirconium, calcium, and magnesium oxides with mesoporous silica materials containing organic pendant (amidoxime) and bridging groups (isocyanurate, benzene) to obtain composite sorbents for CO2 sorption at ambient (0-25 °C) and elevated (60-120 °C) temperatures. These studies indicate that the aforementioned composite sorbents are fairly good for CO2 capture at 25 °C via physisorption mechanism and show a remarkably high affinity toward CO2 chemisorption at 60-120 °C. The second part of dissertation is devoted to silica-based materials with organic functionalities for removal of heavy metal ions such as lead from contaminated water and for recovery of metal ions such as uranium from seawater. First, ordered mesoporous organosilica (OMO) materials with diethylphosphatoethyl and hydroxyphosphatoethyl surface groups were examined for Pb2+ adsorption and showed unprecedented adsorption capacities up to 272 mg/g and 202 mg/g, respectively However, the amidoxime-modified OMO materials were explored for uranium extraction under seawater conditions and showed remarkable capacities reaching 57 mg of uranium per gram of adsorbent.
Fonteyne, Margot; Wickström, Henrika; Peeters, Elisabeth; Vercruysse, Jurgen; Ehlers, Henrik; Peters, Björn-Hendrik; Remon, Jean Paul; Vervaet, Chris; Ketolainen, Jarkko; Sandler, Niklas; Rantanen, Jukka; Naelapää, Kaisa; De Beer, Thomas
2014-07-01
Continuous manufacturing gains more and more interest within the pharmaceutical industry. The International Conference of Harmonisation (ICH) states in its Q8 'Pharmaceutical Development' guideline that the manufacturer of pharmaceuticals should have an enhanced knowledge of the product performance over a range of raw material attributes, manufacturing process options and process parameters. This fits further into the Process Analytical Technology (PAT) and Quality by Design (QbD) framework. The present study evaluates the effect of variation in critical raw material properties on the critical quality attributes of granules and tablets, produced by a continuous from-powder-to-tablet wet granulation line. The granulation process parameters were kept constant to examine the differences in the end product quality caused by the variability of the raw materials properties only. Theophylline-Lactose-PVP (30-67.5-2.5%) was used as model formulation. Seven different grades of theophylline were granulated. Afterward, the obtained granules were tableted. Both the characteristics of granules and tablets were determined. The results show that differences in raw material properties both affect their processability and several critical quality attributes of the resulting granules and tablets. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fauza, G.; Prasetyo, H.; Amanto, B. S.
2018-05-01
Studies on an integrated production-inventory model for deteriorating items have been done extensively. Most of the studies define deterioration as physical depletion of some inventories over time. This definition may not represent the deterioration characteristics of food products. The quality of food production decreases over time while the quantity remains the same. Further, in the existing models, the raw material is replenished several times (or at least once) within one production cycle. In food industries, however, a food company, for several reasons (e.g., the seasonal raw materials, discounted price, etc.) sometimes will get more benefit if it orders raw materials in a large quantity. Considering this fact, this research, therefore, is aimed at developing a more representative inventory model by (i) considering the quality losses in food and (ii) adopting a general raw material procurement policy. A mathematical model is established to represent the proposed policy in which the total profit of the system is the objective function. To evaluate the performance of the model, a numerical test was conducted. The numerical test indicates that the developed model has better performance, i.e., the total profit is 2.3% higher compared to the existing model.
The 1995 Medical Device Technology raw materials survey.
Pearson, L S
1995-09-01
Using information supplied by manufacturers, this article reports on the use of raw materials and compounding and conversion practices in the European medical device manufacturing industry. The findings of the survey provide an indication of which materials are being used and how frequently, and the process of selecting suppliers.
Active-Interrogation Measurements of Fast Neutrons from Induced Fission in Low-Enriched Uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. L. Dolan; M. J. Marcath; M. Flaska
2014-02-01
A detection system was designed with MCNPX-PoliMi to measure induced-fission neutrons from U-235 and U-238 using active interrogation. Measurements were then performed with this system at the Joint Research Centre (JRC) in Ispra, Italy on low-enriched uranium samples. Liquid scintillators measured induced fission neutron to characterize the samples in terms of their uranium mass and enrichment. Results are presented to investigate and support the use of organic liquid scintillators with active interrogation techniques to characterize uranium containing materials.
4. VIEW OF ROOM 103 IN 1980. SIX OF THE ...
4. VIEW OF ROOM 103 IN 1980. SIX OF THE NINE URANIUM NITRATE STORAGE TANKS ARE SHOWN. HIGHLY ENRICHED URANIUM WAS INTRODUCED INTO THE BUILDING IN THE SUMMER OF 1965 AND THE FIRST EXPERIMENTS WERE PERFORMED IN SEPTEMBER OF 1965. EXPERIMENTS WERE PERFORMED ON ENRICHED URANIUM METAL AND SOLUTION, PLUTONIUM METAL, LOW ENRICHED URANIUM OXIDE, AND SEVERAL SPECIAL APPLICATIONS. AFTER 1983, EXPERIMENTS WERE CONDUCTED PRIMARILY WITH URANYL NITRATE SOLUTIONS, AND DID NOT INVOLVE SOLID MATERIALS. - Rocky Flats Plant, Critical Mass Laboratory, Intersection of Central Avenue & 86 Drive, Golden, Jefferson County, CO
Creating a Learning-Friendly Curriculum.
ERIC Educational Resources Information Center
Donovan, Michael P.
1997-01-01
Argues against a type of program evaluation of undergraduate institutions that assumes students are products. Proposes that if students are products, then students are raw materials. Discusses the philosophical problems of considering students as raw materials. (DDR)
60. INTERIOR VIEW OF THE RAW MATERIALS BUILDING, LOOKING AT ...
60. INTERIOR VIEW OF THE RAW MATERIALS BUILDING, LOOKING AT THE POIDOMETER AND WEIGHING MACHINE. MAY 5, 1919. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL
NUCLEAR REACTOR FUEL ELEMENT AND METHOD OF MANUFACTURE
Brooks, H.
1960-04-26
A description is given for a fuel element comprising a body of uranium metal or an uranium compound dispersed in a matrix material made from magnesium, calcium, or barium and a stainless steel jacket enclosing the body.
Depleted uranium as a backfill for nuclear fuel waste package
Forsberg, Charles W.
1998-01-01
A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.
Depleted uranium as a backfill for nuclear fuel waste package
Forsberg, C.W.
1998-11-03
A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shields, A. E.; Ruiz Hernandez, S. E.; Leeuw, N. H. de, E-mail: DeLeeuwN@Cardiff.ac.uk
2015-08-15
Thorium dioxide is used industrially in high temperature applications, but more insight is needed into the behavior of the material as part of a mixed-oxide (MOX) nuclear fuel, incorporating uranium. We have developed a new interatomic potential model including polarizability via a shell model, and commensurate with a prominent existing UO{sub 2} potential, to conduct configurational analyses and to investigate the thermophysical properties of uranium-doped ThO{sub 2}. Using the GULP and Site Occupancy Disorder (SOD) computational codes, we have analyzed the distribution of low concentrations of uranium in the bulk material, where we have not observed the formation of uraniummore » clusters or the dominance of a single preferred configuration. We have calculated thermophysical properties of pure thorium dioxide and Th{sub (1−x)}U{sub x}O{sub 2} which generated values in very good agreement with experimental data.« less
Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems
NASA Technical Reports Server (NTRS)
Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.
2012-01-01
With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].
Almeida-Warren, Katarina; Sommer, Volker; Piel, Alex K; Pascual-Garrido, Alejandra
2017-10-01
Chimpanzee termite fishing has been studied for decades, yet the selective processes preceding the manufacture of fishing tools remain largely unexplored. We investigate raw material selection and potential evidence of forward planning in the chimpanzees of Issa valley, western Tanzania. Using traditional archaeological methods, we surveyed the location of plants from where chimpanzees sourced raw material to manufacture termite fishing tools, relative to targeted mounds. We measured raw material abundance to test for availability and selection. Statistics included Chi-Squared, two-tailed Wilcoxon, and Kruskall-Wallace tests. Issa chimpanzees manufactured extraction tools only from bark, despite availability of other suitable materials (e.g., twigs), and selected particular plant species as raw material sources, which they often also exploit for food. Most plants were sourced 1-16 m away from the mound, with a maximum of 33 m. The line of sight from the targeted mound was obscured for a quarter of these plants. The exclusive use of bark tools despite availability of other suitable materials indicates a possible cultural preference. The fact that Issa chimpanzees select specific plant species and travel some distance to source them suggests some degree of selectivity and, potentially, forward planning. Our results have implications for the reconstruction of early hominin behaviors, particularly with regard to the use of perishable tools, which remain archaeologically invisible. © 2017 Wiley Periodicals, Inc.
Kim, Taeil; Harbaruk, Dzmitry; Gerardi, Craig; ...
2017-07-10
Experiments dropping molten uranium into test sections of single fuel pin geometry filled with sodium were conducted to investigate relocation behavior of metallic fuel in the core structures of sodium-cooled fast reactors during a hypothetical core disruptive accident. Metallic uranium was used as a fuel material and HT-9M was used as a fuel cladding material in the experiment in order to accurately mock-up the thermo-physical behavior of the relocation. The fuel cladding failed due to eutectic formation between the uranium and HT-9M for all experiments. The extent of the eutectic formation increased with increasing molten uranium temperature. Voids in themore » relocated fuel were observed for all experiments and were likely formed by sodium boiling in contact with the fuel. In one experiment, numerous fragments of the relocated fuel were found. In conclusion, it could be concluded that the injected metallic uranium fuel was fragmented and dispersed in the narrow coolant channel by sodium boiling« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Taeil; Harbaruk, Dzmitry; Gerardi, Craig
Experiments dropping molten uranium into test sections of single fuel pin geometry filled with sodium were conducted to investigate relocation behavior of metallic fuel in the core structures of sodium-cooled fast reactors during a hypothetical core disruptive accident. Metallic uranium was used as a fuel material and HT-9M was used as a fuel cladding material in the experiment in order to accurately mock-up the thermo-physical behavior of the relocation. The fuel cladding failed due to eutectic formation between the uranium and HT-9M for all experiments. The extent of the eutectic formation increased with increasing molten uranium temperature. Voids in themore » relocated fuel were observed for all experiments and were likely formed by sodium boiling in contact with the fuel. In one experiment, numerous fragments of the relocated fuel were found. In conclusion, it could be concluded that the injected metallic uranium fuel was fragmented and dispersed in the narrow coolant channel by sodium boiling« less
Experience of on-site disposal of production uranium-graphite nuclear reactor.
Pavliuk, Alexander O; Kotlyarevskiy, Sergey G; Bespala, Evgeny V; Zakharova, Elena V; Ermolaev, Vyacheslav M; Volkova, Anna G
2018-04-01
The paper reported the experience gained in the course of decommissioning EI-2 Production Uranium-Graphite Nuclear Reactor. EI-2 was a production Uranium-Graphite Nuclear Reactor located on the Production and Demonstration Center for Uranium-Graphite Reactors JSC (PDC UGR JSC) site of Seversk City, Tomsk Region, Russia. EI-2 commenced its operation in 1958, and was shut down on December 28, 1990, having operated for the period of 33 years all together. The extra pure grade graphite for the moderator, water for the coolant, and uranium metal for the fuel were used in the reactor. During the operation nitrogen gas was passed through the graphite stack of the reactor. In the process of decommissioning the PDC UGR JSC site the cavities in the reactor space were filled with clay-based materials. A specific composite barrier material based on clays and minerals of Siberian Region was developed for the purpose. Numerical modeling demonstrated the developed clay composite would make efficient geological barriers preventing release of radionuclides into the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Amin, Maisa M; Elaassy, Ibrahim E; El-Feky, Mohamed G; Sallam, Abdel Sattar M; Talaat, Mona S; Kawady, Nilly A
2014-08-01
Bioleaching, like Biotechnology uses microorganisms to extract metals from their ore materials, whereas microbial activity has an appreciable effect on the dissolution of toxic metals and radionuclides. Bioleaching of uranium was carried out with isolated fungi from uraniferous sedimentary rocks from Southwestern Sinai, Egypt. Eight fungal species were isolated from different grades of uraniferous samples. The bio-dissolution experiments showed that Aspergillus niger and Aspergillus terreus exhibited the highest leaching efficiencies of uranium from the studied samples. Through monitoring the bio-dissolution process, the uranium grade and mineralogic constituents of the ore material proved to play an important role in the bioleaching process. The tested samples asserted that the optimum conditions of uranium leaching are: 7 days incubation time, 3% pulp density, 30 °C incubation temperature and pH 3. Both fungi produced the organic acids, namely; oxalic, acetic, citric, formic, malonic, galic and ascorbic in the culture filtrate, indicating an important role in the bioleaching processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Stauffer, F; Vanhoorne, V; Pilcer, G; Chavez, P-F; Rome, S; Schubert, M A; Aerts, L; De Beer, T
2018-06-01
Active Pharmaceutical Ingredients (API) raw material variability is not always thoroughly considered during pharmaceutical process development, mainly due to low quantities of drug substance available. However, synthesis, crystallization routes and production sites evolve during product development and product life cycle leading to changes in physical material attributes which can potentially affect their processability. Recent literature highlights the need for a global approach to understand the link between material synthesis, material variability, process and product quality. The study described in this article aims at explaining the raw material variability of an API using extensive material characterization on a restricted number of representative batches using multivariate data analysis. It is part of a larger investigation trying to link the API drug substance manufacturing process, the resulting physical API raw material attributes and the drug product continuous manufacturing process. Eight API batches produced using different synthetic routes, crystallization, drying, delumping processes and processing equipment were characterized, extensively. Seventeen properties from seven characterization techniques were retained for further analysis using Principal Component Analysis (PCA). Three principal components (PCs) were sufficient to explain 92.9% of the API raw material variability. The first PC was related to crystal length, agglomerate size and fraction, flowability and electrostatic charging. The second PC was driven by the span of the particle size distribution and the agglomerates strength. The third PC was related to surface energy. Additionally, the PCA allowed to summarize the API batch-to-batch variability in only three PCs which can be used in future drug product development studies to quantitatively evaluate the impact of the API raw material variability upon the drug product process. The approach described in this article could be applied to any other compound which is prone to batch-to-batch variability. Copyright © 2018 Elsevier B.V. All rights reserved.
Uranium from German Nuclear Power Projects of the 1940s--A Nuclear Forensic Investigation.
Mayer, Klaus; Wallenius, Maria; Lützenkirchen, Klaus; Horta, Joan; Nicholl, Adrian; Rasmussen, Gert; van Belle, Pieter; Varga, Zsolt; Buda, Razvan; Erdmann, Nicole; Kratz, Jens-Volker; Trautmann, Norbert; Fifield, L Keith; Tims, Stephen G; Fröhlich, Michaela B; Steier, Peter
2015-11-02
Here we present a nuclear forensic study of uranium from German nuclear projects which used different geometries of metallic uranium fuel. Through measurement of the (230)Th/(234)U ratio, we could determine that the material had been produced in the period from 1940 to 1943. To determine the geographical origin of the uranium, the rare-earth-element content and the (87)Sr/(86)Sr ratio were measured. The results provide evidence that the uranium was mined in the Czech Republic. Trace amounts of (236)U and (239)Pu were detected at the level of their natural abundance, which indicates that the uranium fuel was not exposed to any major neutron fluence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Remediation of uranium contaminated soils with bicarbonate extraction and microbial U(VI) reduction
Philips , Elizabeth J.P.; Landa, Edward R.; Lovely, Derek R.
1995-01-01
A process for concentrating uranium from contaminated soils in which the uranium is first extracted with bicarbonate and then the extracted uranium is precipitated with U(VI)-reducing microorganisms was evaluated for a variety of uranuum-contaminated soils. Bicarbonate (100 mM) extracted 20–94% of the uranium that was extracted with nitric acid. The U(VI)-reducing microorganism,Desulfovibrio desulfuricans reduced the U(VI) to U(IV) in the bicarbonate extracts. In some instances unidentified dissolved extracted components, presumably organics, gave the extract a yellow color and inhibited U(VI) reduction and/or the precipitation of U(IV). Removal of the dissolved yellow material with the addition of hydrogen peroxide alleviated this inhibition. These results demonstrate that bicarbonate extraction of uranium from soil followed by microbial U(VI) reduction might be an effective mechanism for concentrating uranium from some contaminated soils.
Apparatus to recover tritium from tritiated molecules
Swansiger, William A.
1988-01-01
An apparatus for recovering tritium from tritiated compounds is provided, including a preheater for heating tritiated water and other co-injected tritiated compounds to temperatures of about 600.degree. C. and a reactor charged with a mixture of uranium and uranium dioxide for receiving the preheated mixture. The reactor vessel is preferably stainless steel of sufficient mass so as to function as a heat sink preventing the reactor side walls from approaching high temperatures. A disposable copper liner extends between the reaction chamber and stainless steel outer vessel to prevent alloying of the uranium with the outer vessel. The uranium dioxide functions as an insulating material and heat sink preventing the reactor side walls from attaining reaction temperatures to thereby minimize tritium permeation rates. The uranium dioxide also functions as a diluent to allow for volumetric expansion of the uranium as it is converted to uranium dioxide.
NASA Astrophysics Data System (ADS)
Tkaczyk, A. H.; Bartl, A.; Amato, A.; Lapkovskis, V.; Petranikova, M.
2018-05-01
The criticality of raw materials has become an important issue in recent years. As the supply of certain raw materials is essential for technologically-advanced economies, the European Commission and other international counterparts have started several initiatives to secure reliable and unhindered access to raw materials. Such efforts include the EU Raw Materials Initiative, European Innovation Partnership on Raw Materials, US Critical Materials Institute, and others. In this paper, the authors present a multi-faceted and multi-national review of the essentials for the critical raw materials (CRMs) Co, Nb, W, and rare earth elements (REEs). The selected CRMs are of specific interest as they are considered relevant for emerging technologies and will thus continue to be of increasing major economic importance. This paper presents a ‘sustainability evaluation’ for each element, including essential data about markets, applications and recycling, and possibilities for substitution have been summarized and analysed. All the presented elements are vital for the advanced materials and processes upon which modern societies rely. These elements exhibit superior importance in ‘green’ applications and products subject to severe conditions. The annual production quantities are quite low compared to common industrial metals. Of the considered CRMs, only Co and REE gross production exceed 100 000 t. At the same time, the prices are quite high, with W and Nb being in the range of 60 USD kg‑1 and some rare earth compounds costing almost 4000 USD kg‑1. Despite valiant effort, in practice some of the considered elements are de facto irreplaceable for many specialized applications, at today’s technological level. Often, substitution causes a significant loss of quality and performance. Furthermore, possible candidates for substitution may be critical themselves or available in considerably low quantities. It can be concluded that one preferred approach for the investigated elements could be the use of secondary resources derived from recycling. W exhibits the highest recycling rate (37%), whereas Co (16%), Nb (11%) and rare earths (~0%) lag behind. In order to promote recycling of these essential elements, financial incentives as well as an improvement of recycling technologies would be required.
Incentivizing secondary raw material markets for sustainable waste management.
Schreck, Maximilian; Wagner, Jeffrey
2017-09-01
Notwithstanding several policy initiatives in many countries over a number of years, there remains a general sense that too much municipal solid waste is generated and that too much of the waste that is generated is landfilled. There is an emerging consensus that a sustainable approach to waste management requires further development of secondary raw material markets. The purpose of this paper is to propose a theoretical economic model that focuses upon this stage of a sustainable waste management program and explores policy options that could motivate efficiency in secondary raw material markets. In particular, we show how firm profit and social welfare optimizing objectives can be reconciled in a two-product market of waste management processes: landfilling and material reclamation. Our results provide theoretical support for building out recent Circular Economy initiatives as well as for the relatively recent emergence of landfill mining as a means for procuring secondary raw materials. Copyright © 2017 Elsevier Ltd. All rights reserved.
31 CFR 538.410 - Imports of Sudanese goods from third countries; transshipments.
Code of Federal Regulations, 2010 CFR
2010-07-01
...; transshipments. (a) Importation into the United States from third countries of goods containing raw materials or components of Sudanese origin is not prohibited if those raw materials or components have been incorporated...
78 FR 69132 - Importer of Controlled Substances; Notice of Registration; Noramco, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-18
... on applications to import narcotic raw material are not appropriate. 72 FR 3417(2007). In reference to the non-narcotic raw material, any bulk manufacturer who is presently, or is applying to be...
31 CFR 538.410 - Imports of Sudanese goods from third countries; transshipments.
Code of Federal Regulations, 2011 CFR
2011-07-01
...; transshipments. (a) Importation into the United States from third countries of goods containing raw materials or components of Sudanese origin is not prohibited if those raw materials or components have been incorporated...
78 FR 51747 - Importer of Controlled Substances; Notice of Application; NORAMCO, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-21
... on applications to import narcotic raw material are not appropriate. 72 FR 3417 (2007). In reference to the non-narcotic raw material, any bulk manufacturer who is presently, or is applying to be...
The U.S. Chemical Industry, the Raw Materials It Uses
ERIC Educational Resources Information Center
Chemical and Engineering News, 1972
1972-01-01
The raw materials used by the industry are considered in this section of the annual chemical industry report, including data covering: natural gas, lead, mercury, phosphate rock, potash, salt, petroleum products including petrochemical feedstocks. (PR)
Cellulose acetate fibers prepared from different raw materials with rapid synthesis method.
Chen, Jinghuan; Xu, Jikun; Wang, Kun; Cao, Xuefei; Sun, Runcang
2016-02-10
Transesterification is a mild process to prepare cellulose acetate (CA) as compared with the traditional method. In this study, CA fibers were produced from six cellulose raw materials based on a simple and rapid transesterification method. The properties of the CA solutions and the obtained CA fibers were investigated in detail. Results showed that all of the cellulose raw materials were esterified within 15 min, and spinning dopes could be obtained by concentrating the CA solutions via vacuum distillation. The XRD, FT-IR, (1)H, (13)C and HSQC NMR analysis confirmed the successful synthesis of CA. The degree of substitution (DS) of the obtained CA was significantly affected by the degree of polymerization (DP) of cellulose raw materials, which further influenced the viscosity of CA solutions as well as the structural, thermal and mechanical properties of the CA fibers. Copyright © 2015 Elsevier Ltd. All rights reserved.
Method of fabricating a honeycomb structure
Holleran, Louis M.; Lipp, G. Daniel
1999-01-01
A method of fabricating a monolithic honeycomb structure product involves shaping a first mixture of raw materials and a binder into a green honeycomb, extruding a second mixture of raw materials and a binder into one or more green members that each define an opening extending longitudinally therethrough. The raw materials of the second mixture are compatible with the raw materials of the first mixture. The green honeycomb and member(s) are dried. The binders of the green honeycomb and member(s) are softened at the surfaces that are to be bonded. The green member(s) is inserted into the honeycomb and bonded to the honeycomb to form an assembly thereof, which is then dried and fired to form a unified monolithic honeycomb structure. The insertion is best carried out by mounting a member in the shape of a tube on a mandrel, and inserting the mandrel into the honeycomb opening to bond the tube to the honeycomb.
Method of fabricating a honeycomb structure
Holleran, L.M.; Lipp, G.D.
1999-08-03
A method of fabricating a monolithic honeycomb structure product involves shaping a first mixture of raw materials and a binder into a green honeycomb, extruding a second mixture of raw materials and a binder into one or more green members that each define an opening extending longitudinally therethrough. The raw materials of the second mixture are compatible with the raw materials of the first mixture. The green honeycomb and member(s) are dried. The binders of the green honeycomb and member(s) are softened at the surfaces that are to be bonded. The green member(s) is inserted into the honeycomb and bonded to the honeycomb to form an assembly thereof, which is then dried and fired to form a unified monolithic honeycomb structure. The insertion is best carried out by mounting a member in the shape of a tube on a mandrel, and inserting the mandrel into the honeycomb opening to bond the tube to the honeycomb. 7 figs.
Theoretical backgrounds of non-tempered materials production based on new raw materials
NASA Astrophysics Data System (ADS)
Lesovik, V. S.; Volodchenko, A. A.; Glagolev, E. S.; Chernysheva, N. V.; Lashina, I. V.; Feduk, R. S.
2018-03-01
One of the trends in construction material science is development and implementation of highly effective finish materials which improve architectural exterior of cities. Silicate materials widely-used in the construction today have rather low decorative properties. Different coloring agents are used in order to produce competitive materials, but due to the peculiarities of the production, process very strict specifications are applied to them. The use of industrial wastes or variety of rock materials as coloring agents is of great interest nowadays. The article shows that clay rock can be used as raw material in production of finish materials of non-autoclaved solidification. This raw material due to its material composition actively interacts with cementing component in steam treatment at 90–95 °C with formation of cementing joints that form a firm coagulative-cristalized and crystallization structure of material providing high physic-mechanical properties of silicate goods. It is determined that energy-saving, colored finish materials with compression strength up to 16 MPa can be produced from clay rocks.
Code of Federal Regulations, 2011 CFR
2011-07-01
... other than kilns; in-line kiln/raw mills; clinker coolers; new and reconstructed raw material dryers; and raw and finish mills, and open clinker piles. 63.1345 Section 63.1345 Protection of Environment... for affected sources other than kilns; in-line kiln/raw mills; clinker coolers; new and reconstructed...
Developing uranium dicarbide-graphite porous materials for the SPES project
NASA Astrophysics Data System (ADS)
Biasetto, L.; Zanonato, P.; Carturan, S.; Di Bernardo, P.; Colombo, P.; Andrighetto, A.; Prete, G.
2010-09-01
Uranium carbide dispersed in graphite was produced under vacuum by means of carbothermic reduction of different uranium oxides (UO 2, U 3O 8 and UO 3), using graphite as the source of carbon. The thermal process was monitored by mass spectrometry and the gas evolution confirmed the reduction of the U 3O 8 and UO 3 oxides to UO 2 before the carbothermic reaction, that started to occur at T > 1000 °C. XRD analysis confirmed the formation of α-UC 2 and of a minor amount of UC. The morphology of the produced uranium carbide was not affected by the oxides employed as the source of uranium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haghighi, M. H.; Kring, C. T.; McGehee, J. T.
2002-02-26
The Molten Salt Reactor Experiment (MSRE) site is located in Tennessee, on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). The MSRE was run by Oak Ridge National Laboratory (ORNL) to demonstrate the desirable features of the molten-salt concept in a practical reactor that could be operated safely and reliably. It introduced the idea of a homogeneous reactor using fuel salt media and graphite moderation for power and breeder reactors. The MSRE reactor and associated components are located in cells beneath the floor in the high-bay area of Building 7503. The reactor was operated from June 1965 tomore » December 1969. When the reactor was shut down, fuel salt was drained from the reactor circuit to two drain tanks. A ''clean'' salt was then circulated through the reactor as a decontamination measure and drained to a third drain tank. When operations ceased, the fuel and flush salts were allowed to cool and solidify in the drain tanks. At shutdown, the MSRE facility complex was placed in a surveillance and maintenance program. Beginning in 1987, it was discovered that gaseous uranium (U-233/U-232) hexafluoride (UF6) had moved throughout the MSRE process systems. The UF6 had been generated when radiolysis in the fluorine salts caused the individual constituents to dissociate to their component atoms, including free fluorine. Some of the free fluorine combined with uranium fluorides (UF4) in the salt to produce UF6. UF6 is gaseous at slightly above ambient temperatures; thus, periodic heating of the fuel salts (which was intended to remedy the radiolysis problems) and simple diffusion had allowed the UF6 to move out of the salt and into the process systems of MSRE. One of the systems that UF6 migrated into due to this process was the offgas system which is vented to the MSRE main charcoal beds and MSRE auxiliary charcoal bed (ACB). Recently, the majority of the uranium laden-charcoal material residing within the ACB was safely and successfully removed using the uranium deposit removal system and equipment. After removal a series of NDA measurements was performed to determine the amount of uranium material remaining in the ACB, the amount of uranium material removed from the ACB, and the amount of uranium material remaining in the uranium removal equipment due to removal activities.« less
NASA Astrophysics Data System (ADS)
Mayo, John Thomas
Arsenic and uranium in the environment are hazardous to human health and require better methods for detection and remediation. Nanocrystalline iron oxides offer a number of advantages as sorbents for water purification and environmental remediation. First, highly uniform and crystalline iron oxide nanocrystals (nMAG) were prepared using thermal decomposition of iron salts in organic solutions; for the applications of interest in this thesis, a central challenge was the adaptation of these conventional synthetic methods to the needs of low infrastructure and economically disadvantaged settings. We show here that it is possible to form highly uniform and magnetically responsive nanomaterials using starting reagents and equipment that are readily available and economical. The products of this approach, termed the 'Kitchen Synthesis', are of comparable quality and effectiveness to laboratory materials. The narrow size distributions of the iron oxides produced in the laboratory synthesis made it possible to study the size-dependence of the magnetic separation efficiency of nanocrystals; generally as the diameter of particles increased they could be removed under lower applied magnetic fields. In this work we take advantage of this size-dependence to use magnetic separation as a tool to separate broadly distributed populations of magnetic materials. Such work makes it possible to use these materials in multiplexed separation and sensing schemes. With the synthesis and magnetic separation studies of these materials completed, it was possible to optimize their applications in water purification and environmental remediation. These materials removed both uranium and arsenic from contaminated samples, and had remarkably high sorption capacities --- up to 12 wt% for arsenic and 30 wt% for uranium. The contaminated nMAG is removed from the drinking water by either retention in a sand column, filter, or by magnetic separation. The uranium adsorption process was also utilized for the enhanced detection of uranium in environmental matrices. By relying on alpha-particle detection in well-formed and dense nMAG films, it was possible to improve soil detection of uranium by more than ten-thousand-fold. Central for this work was a detailed understanding of the chemistry at the iron oxide interface, and the role of the organic coatings in mediating the sorption process.
NASA Astrophysics Data System (ADS)
Hartono, Rachmad; Raharno, Sri; Yuwana Martawirya, Yatna; Arthaya, Bagus
2018-03-01
This paper described a methodology to monitor the availability of products in a production unit in the automotive component industry. Automotive components made are automotive components made through sheet metal working. Raw material coming into production unit in the form of pieces of plates that have a certain size. Raw materials that come stored in the warehouse. Data of raw each material in the warehouse are recorded and stored in a data base system. The material will then undergo several production processes in the production unit. When the material is taken from the warehouse, material data are also recorded and stored in a data base. The data recorded are the amount of material, material type, and date when the material is out of the warehouse. The material coming out of the warehouse is labeled with information related to the production processes that the material must pass. Material out of the warehouse is a product will be made. The products have been completed, are stored in the warehouse products. When the product is entered into the product warehouse, product data is also recorded by scanning the barcode contained on the label. By recording the condition of the product at each stage of production, we can know the availability of the product in a production unit in the form of a raw material, the product being processed and the finished product.
Distribution of uranium in the Bisbee district, Cochise County, Arizona
Wallace, Stewart R.
1956-01-01
The Bisbee district has been an important source of copper for many years, and substantial amounts of lead and zinc ore and minor amounts of manganese ore have been mined during certain periods. The copper deposits occur both as low-grade disseminated ore in the Sacramento Hill stock and as massive sulfide (and secondary oxide and carbonate) replacement bodies in Paleozoic limestones that are intruded by the stock and related igneous bodies. The lead-zinc production has come almost entirely from limestone replacement bodies. The disseminated ore exhibits no anomalous radioactivity, and samples from the Lavender pit contain from 0.002 to less than 0.001 percent equivalent uranium. The limestone replacement ores are distinctly radioactive and stoping areas can be readily distinguished from from unmineralized ground on the basis of radioactivity alone. The equivalent uranium content of the copper replacement ores ranges from 0.002 to 0.014 percent and averages about 0.005 percent; the lead-zinc replacement ores average more than 0.007 percent equivalent uranium. Most of the uranium in the copper ores of the district is retained in the smelter slag of a residual concentrate; the slag contains about 0.009 percent equivalent uranium. Uranium carried off each day by acid mine drainage is roughly equal to 1 percent of that being added to the slag dump. Although the total amount of uranium in the district is large, no minable concentrations of ore-grade material are known; samples of relatively high-grade material represent only small fractions of tons at any one locality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.R.; McClung, R.W.; Janney, M.A.
1987-08-01
A needs assessment was performed for nondestructive testing and materials characterization to achieve improved reliability in ceramic materials for heat engine applications. Raw materials, green state bodies, and sintered ceramics were considered. The overall approach taken to improve reliability of structural ceramics requires key inspections throughout the fabrication flowsheet, including raw materials, greed state, and dense parts. The applications of nondestructive inspection and characterization techniques to ceramic powders and other raw materials, green ceramics, and sintered ceramics are discussed. The current state of inspection technology is reviewed for all identified attributes and stages of a generalized flowsheet for advanced structuralmore » ceramics, and research and development requirements are identified and listed in priority order. 164 refs., 3 figs.« less
Wigner, E.P.; Szilard, L.; Creutz, E.C.
1959-02-01
These fuel elements are comprised of a homogeneous metallic uranium body completely enclosed and sealed in an aluminum cover. The uranium body and aluminum cover are bonded together by a layer of zinc located between them. The bonding layer serves to improve transfer of heat, provides an additional protection against corrosion of the uranium by the coolant, and also localizes any possible corrosion by preventing travel of corrosive material along the surface of the fuel element.
Reconnaissance for radioactive materials in northeastern United States during 1952
McKeown, Francis A.; Klemic, Harry
1953-01-01
Reconnaissance for radioactive materials was made in parts of Maine, New York, New Jersey, and Pennsylvania. The primary objective was to examine the iron ore deposits and associated rocks in the Adirondack Mountains of New York and the Highlands of New Jersey. In addition, several deposits known or reported to contain radioactive minerals were examined to delimit their extent. Most of the deposits examined are not significant as possible sources of radioactive elements and the data pertaining to them are summarized in table form. Deposits that do warrant more description than can be given in table form are: Benson Mines, St. Lawrence County, N. Y.; Rutgers mine, Clinton County, N. Y.; Mineville Mines, Essex County, N. Y.l Canfield phosphate mine, Morris County, N. J.; Mullgan quarry, Hunterdon County, N. J.; and the Chestnut Hill-Marble Mountain area, Pennsylvania and New Jersey. The Old Bed in the Mineville district is the only deposit that may be economically significant. Apatite from Old Bed ore contains as much as 4.9 percent total rare earth. 0.04 percent thorium, and 0.018 percent uranium. Magnetite ore at the Rutgers mine contains radioactive zircon and apatite. Radioactivity measurements of outcrops and dump material show that the ore contains from 0.005 to 0.010 percent equivalent uranium. One sample of lean magnetite ore contains 0.006 percent equivalent uranium. Garnet-rich zones in the Benson Mines magnetite deposit contain as much as 0.017 equivalent uranium. Most of the rock and ore, however, contains about 0.005 percent equivalent uranium. Available data indicate that the garnet-rich zones are enriched in radioactive allanite. A shear zone in the Kittatinny limestone of Cambrian age at the Mulligan quarry contains uraniferous material. Radioactivity anomalies elsewhere in the quarry and in adjacent fields indicate that there may be other uraniferous shear zones. Assays of samples and measurements of outcrop radioactivity indicate that the uranium content of these zones is low; samples contain from 0.008 to 0.068 percent equivalent uranium. The anomalies, however, may indicate greater concentrations of uranium below surficial leached zones. The Chestnut Hill-Marble Mountain area contains radioactivity anomalies for about 2 miles along the strike of the contact of pre-Cambrian Pickering gneiss and Franklin limestone formations. In places this contact is injected with pegmatite, which probably was the source of the radioelements. The most favorable area for further study is at Marble Mountain, where a nearly continuous anomaly extends for about 1500 feet. Samples from part of this area contain as much as 0.044 percent equivalent uranium and 0.005 percent uranium. Radioactive hematite and florencite, in which thorium may have substituted for cerium, are the only radioactive minerals observed in the Marble Mountain area.
Rapid and efficient uranium(VI) capture by phytic acid/polyaniline/FeOOH composites.
Wei, Xintao; Liu, Qi; Zhang, Hongsen; Liu, Jingyuan; Chen, Rongrong; Li, Rumin; Li, Zhangshuang; Liu, Peili; Wang, Jun
2018-02-01
Uranium plays an indispensable role in nuclear energy, but there are limited land resources to meet the ever growing demand; therefore, a need exists to develop efficient materials for capturing uranium from water. Herein, we synthesize a promising adsorbent of phytic acid/polyaniline/FeOOH composites (PA/PANI/FeOOH) by oxidative polymerization. Phytic acid, acting asa gelator and dopant, plays an important role in the formation of polyaniline (PANI). The PA/PANI/FeOOH exhibites high adsorption capacity (q m =555.8mgg -1 , T=298K), rapid adsorption rate (within 5min), excellent selectivity and cyclic stability. In addition, the results show that the adsorption isotherm is well fitted to the Langmuir isotherm model, and the adsorption kinetics agree with a pseudo-second order model. XPS analysis indicates that the removal of uranium is mainly attributed to abundant amine and imine groups on the surface of PA/PANI/FeOOH. Importantly, the removal of uranium from low concentrations of simulated seawater is highly efficient with a removal rate exceeding 92%. From our study, superior adsorption capacities, along with a low-cost, environmentally friendly and facile synthesis, reveal PA/PANI/FeOOH asa promising material for uranium capture. Copyright © 2017. Published by Elsevier Inc.
Surface Cleaning Techniques: Ultra-Trace ICP-MS Sample Preparation and Assay of HDPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Overman, Nicole R.; Hoppe, Eric W.; Addleman, Raymond S.
2013-06-01
The world’s most sensitive radiation detection and assay systems depend upon ultra-low background (ULB) materials to reduce unwanted radiological backgrounds. Herein, we evaluate methods to clean HDPE, a material of interest to ULB systems and the means to provide rapid assay of surface and bulk contamination. ULB level material and ultra-trace level detection of actinide elements is difficult to attain, due to the introduction of contamination from sample preparation equipment such as pipette tips, sample vials, forceps, etc. and airborne particulate. To date, literature available on the cleaning of such polymeric materials and equipment for ULB applications and ultra-trace analysesmore » is limited. For these reasons, a study has been performed to identify an effective way to remove surface contamination from polymers in an effort to provide improved instrumental detection limits. Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) was utilized to assess the effectiveness of a variety of leachate solutions for removal of inorganic uranium and thorium surface contamination from polymers, specifically high density polyethylene (HDPE). HDPE leaching procedures were tested to optimize contaminant removal of thorium and uranium. Calibration curves for thorium and uranium ranged from 15 ppq (fg/mL) to 1 ppt (pg/mL). Detection limits were calculated at 6 ppq for uranium and 7 ppq for thorium. Results showed the most effective leaching reagent to be clean 6 M nitric acid for 72 hour exposures. Contamination levels for uranium and thorium found in the leachate solutions were significant for ultralow level radiation detection applications.« less
75 FR 65658 - Importer of Controlled Substances; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-26
... Raw Opium (9600) II Concentrate of Poppy Straw (9670) II The company plans to import narcotic raw... a manufacturer of several controlled substances that are manufactured from raw opium, poppy straw... narcotic raw material are not appropriate. As noted in a previous notice published in the Federal Register...
7 CFR 58.519 - Dairy products.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Specifications for Dairy Plants Approved for USDA Inspection and Grading Service 1 Quality Specifications for Raw Material § 58.519 Dairy products. (a) Raw skim milk. All raw skim milk obtained from a secondary source... used, shall be prepared from raw milk or skim milk that meets the same quality requirements outlined...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grate, Jay W.; Bliss, Mary; Farmer, Orville T.
Ultra low-background radiation measurements are essential to several large-scale physics investigations, such as those involving neutrinoless double-beta decay, dark matter detection (such as SuperCDMS), and solar neutrino detection. There is a need for electrically and thermally insulating dielectric materials with extremely low-background radioactivity for detector construction. This need is best met with plastics. Most currently available structural plastics have milliBecquerel-per-kilogram total intrinsic radioactivity. Modern low-level detection systems require a large variety of plastics with low microBecquerel-per-kilogram levels. However, the assay of polymer materials for extremely low levels of radioactive elements, uranium and thorium in particular, presents new challenges. It ismore » only recently that any certified reference materials (CRMs) for toxic metals such as lead or cadmium in plastics have become available. However, there are no CRMs for uranium or thorium in thermoplastics. This paper discusses our assessment of the use of laser ablation (LA) for sampling and inductively coupled plasma mass spectrometry (ICP-MS) for analysis of polyethylene (PE) samples, with an emphasis on uranium determination. Using a CRM for lead in PE, we examine LA and ICP-MS parameters that determine whether the total atom efficiencies for uranium and lead are similar, and explore methods to use the lead content in a plastic as part of the process of estimating or determining the uranium content by LA-ICP-MS.« less
Investigation of residual anode material after electrorefining uranium in molten chloride salt
NASA Astrophysics Data System (ADS)
Rose, M. A.; Williamson, M. A.; Willit, J.
2015-12-01
A buildup of material at uranium anodes during uranium electrorefining in molten chloride salts has been observed. Potentiodynamic testing has been conducted using a three electrode cell, with a uranium working electrode in both LiCl/KCl eutectic and LiCl each containing ∼5 mol% UCl3. The anodic current response was observed at 50° intervals between 450 °C and 650 °C in the eutectic salt. These tests revealed a buildup of material at the anode in LiCl/KCl salt, which was sampled at room temperature, and analyzed using ICP-MS, XRD and SEM techniques. Examination of the analytical data, current response curves and published phase diagrams has established that as the uranium anode dissolves, the U3+ ion concentration in the diffusion layer surrounding the electrode rises precipitously to levels, which may at low temperatures exceed the solubility limit for UCl3 or in the case of the eutectic salt for K2UCl5. The reduction in current response observed at low temperature in eutectic salt is eliminated at 650 °C, where K2UCl5 is absent due to its congruent melting and only simple concentration polarization effects are seen. In LiCl similar concentration effects are seen though significantly longer time at applied potential is required to effect a reduction in the current response as compared to the eutectic salt.
Hardwood pallet cant quality and pallet part yields
Hal L. Mitchell; Marshall White; Philip Araman; Peter Hamner
2005-01-01
Raw materials are the largest cost component in pallet manufacturing. The primary raw material used to produce pallet parts are pallet cants. Therefore, pallet cant quality directly impacts pallet part processing and material costs. By knowing the quality of the cants being processed, pallet manufacturers can predict these costs and improve manufacturing efficiency....
Methodology for the Assessment of the Ecotoxicological Potential of Construction Materials
Rodrigues, Patrícia; Silvestre, José D.; Flores-Colen, Inês; Viegas, Cristina A.; de Brito, Jorge; Kurad, Rawaz; Demertzi, Martha
2017-01-01
Innovation in construction materials (CM) implies changing their composition by incorporating raw materials, usually non-traditional ones, which confer the desired characteristics. However, this practice may have unknown risks. This paper discusses the ecotoxicological potential associated with raw and construction materials, and proposes and applies a methodology for the assessment of their ecotoxicological potential. This methodology is based on existing laws, such as Regulation (European Commission) No. 1907/2006 (REACH—Registration, Evaluation, Authorization and Restriction of Chemicals) and Regulation (European Commission) No. 1272/2008 (CLP—Classification, Labelling and Packaging). Its application and validation showed that raw material without clear evidence of ecotoxicological potential, but with some ability to release chemicals, can lead to the formulation of a CM with a slightly lower hazardousness in terms of chemical characterization despite a slightly higher ecotoxicological potential than the raw materials. The proposed methodology can be a useful tool for the development and manufacturing of products and the design choice of the most appropriate CM, aiming at the reduction of their environmental impact and contributing to construction sustainability. PMID:28773011
Highly Enriched Uranium Metal Cylinders Surrounded by Various Reflector Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernard Jones; J. Blair Briggs; Leland Monteirth
A series of experiments was performed at Los Alamos Scientific Laboratory in 1958 to determine critical masses of cylinders of Oralloy (Oy) reflected by a number of materials. The experiments were all performed on the Comet Universal Critical Assembly Machine, and consisted of discs of highly enriched uranium (93.3 wt.% 235U) reflected by half-inch and one-inch-thick cylindrical shells of various reflector materials. The experiments were performed by members of Group N-2, particularly K. W. Gallup, G. E. Hansen, H. C. Paxton, and R. H. White. This experiment was intended to ascertain critical masses for criticality safety purposes, as well asmore » to compare neutron transport cross sections to those obtained from danger coefficient measurements with the Topsy Oralloy-Tuballoy reflected and Godiva unreflected critical assemblies. The reflector materials examined in this series of experiments are as follows: magnesium, titanium, aluminum, graphite, mild steel, nickel, copper, cobalt, molybdenum, natural uranium, tungsten, beryllium, aluminum oxide, molybdenum carbide, and polythene (polyethylene). Also included are two special configurations of composite beryllium and iron reflectors. Analyses were performed in which uncertainty associated with six different parameters was evaluated; namely, extrapolation to the uranium critical mass, uranium density, 235U enrichment, reflector density, reflector thickness, and reflector impurities. In addition to the idealizations made by the experimenters (removal of the platen and diaphragm), two simplifications were also made to the benchmark models that resulted in a small bias and additional uncertainty. First of all, since impurities in core and reflector materials are only estimated, they are not included in the benchmark models. Secondly, the room, support structure, and other possible surrounding equipment were not included in the model. Bias values that result from these two simplifications were determined and associated uncertainty in the bias values were included in the overall uncertainty in benchmark keff values. Bias values were very small, ranging from 0.0004 ?k low to 0.0007 ?k low. Overall uncertainties range from ? 0.0018 to ? 0.0030. Major contributors to the overall uncertainty include uncertainty in the extrapolation to the uranium critical mass and the uranium density. Results are summarized in Figure 1. Figure 1. Experimental, Benchmark-Model, and MCNP/KENO Calculated Results The 32 configurations described and evaluated under ICSBEP Identifier HEU-MET-FAST-084 are judged to be acceptable for use as criticality safety benchmark experiments and should be valuable integral benchmarks for nuclear data testing of the various reflector materials. Details of the benchmark models, uncertainty analyses, and final results are given in this paper.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ninh, Giang Nguyen; Phongphaeth, Pengvanich, E-mail: phongphaeth.p@chula.ac.th; Nares, Chankow
Gamma-ray signal can be used as a fingerprint for radioisotope identification. In the context of radioactive and nuclear materials security at the border control point, the detection task can present a significant challenge due to various constraints such as the limited measurement time, the shielding conditions, and the noise interference. This study proposes a novel method to identify the signal of one or several radioisotopes from a poorly resolved gamma-ray spectrum. In this method, the noise component in the raw spectrum is reduced by the wavelet decomposition approach, and the removal of the continuum background is performed using the baselinemore » determination algorithm. Finally, the identification of radioisotope is completed using the matrix linear regression method. The proposed method has been verified by experiments using the poorly resolved gamma-ray signals from various scenarios including single source, mixing of natural uranium with five of the most common industrial radioactive sources (57Co, 60Co, 133Ba, 137Cs, and 241Am). The preliminary results show that the proposed algorithm is comparable with the commercial method.« less
NASA Astrophysics Data System (ADS)
Gwak, Raekeun; Kim, Hongki; Yoo, Seung Min; Lee, Sang Yup; Lee, Gyoung-Ja; Lee, Min-Ku; Rhee, Chang-Kyu; Kang, Taejoon; Kim, Bongsoo
2016-01-01
Uranium is an essential raw material in nuclear energy generation; however, its use raises concerns about the possibility of severe damage to human health and the natural environment. In this work, we report an ultrasensitive uranyl ion (UO22+) detection method in natural water that uses a plasmonic nanowire interstice (PNI) sensor combined with a DNAzyme-cleaved reaction. UO22+ induces the cleavage of DNAzymes into enzyme strands and released strands, which include Raman-active molecules. A PNI sensor can capture the released strands, providing strong surface-enhanced Raman scattering signal. The combination of a PNI sensor and a DNAzyme-cleaved reaction significantly improves the UO22+ detection performance, resulting in a detection limit of 1 pM and high selectivity. More importantly, the PNI sensor operates perfectly, even in UO22+-contaminated natural water samples. This suggests the potential usefulness of a PNI sensor in practical UO22+-sensing applications. We anticipate that diverse toxic metal ions can be detected by applying various ion-specific DNA-based ligands to PNI sensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Gary A.; Kuo, Li-Jung; Janke, Chris J.
The Pacific Northwest National Laboratory’s (PNNL) Marine Science Laboratory (MSL) located along the coast of Washington State is evaluating the performance of uranium adsorption materials being developed for seawater extraction under realistic marine conditions with natural seawater. Two types of exposure systems were employed in this program: flow-through columns for testing of fixed beds of individual fibers and pellets and a recirculating water flume for testing of braided adsorbent material. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time, typically 42 to 56 day exposures, to determine the adsorbent capacitymore » and adsorption rate (kinetics). Analysis of uranium and other trace elements collected by the adsorbents was conducted following strong acid digestion of the adsorbent with 50% aqua regia using either Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Inductively Coupled Plasma Mass Spectrometer (ICP-MS). The ORNL 38H adsorbent had a 56 day adsorption capacity of 3.30 ± 0.68 g U/ kg adsorbent (normalized to a salinity of 35 psu), a saturation adsorption capacity of 4.89 ± 0.83 g U/kg of adsorbent material (normalized to a salinity of 35 psu) and a half-saturation time of 28 ± 10 days. The AF1 adsorbent material had a 56 day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu), a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material (normalized to a salinity of 35 psu) and a half saturation time of 23 ± 2 days. The ORNL amidoxime-based adsorbent materials are not specific for uranium, but also adsorb other elements from seawater. The major doubly charged cations in seawater (Ca and Mg) account for a majority of the cations adsorbed (61% by mass and 74% by molar percent). For the ORNL AF1 adsorbent material, U is the 4th most abundant element adsorbed by mass and 7th most abundant by molar percentage« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-10
... the Order because it is producing glycine from raw materials of Indian origin and exporting such... Order because it produced glycine from raw materials of Indian origin and exported such merchandise to...
Critical thinking: assessing the risks to the future security of supply of critical metals
NASA Astrophysics Data System (ADS)
Gunn, Gus
2015-04-01
Increasing world population, the spread of prosperity across the globe and the demands of new technologies have led to a revival of concerns about the availability of raw materials needed by society. Despite scare stories about resource depletion, physical exhaustion of minerals is considered to be unlikely. However, we do need to know which materials might be of concern so that we can develop strategies to secure adequate supplies and to mitigate the effects of supply disruption. This requirement has led to renewed interest in criticality, a term that is generally used to refer to metals and minerals of high economic importance that have a relatively high likelihood of supply disruption. The European Union (EU) developed a quantitative methodology for the assessment of criticality which led to the definition of 14 raw materials as critical to the EU economy (EC, 2010). This has succeeded in raising awareness of potential supply issues and in helping to prioritise requirements for new policies and supporting research. The EU has recently assessed a larger number of candidate materials of which 20 are now identified as critical to the EU (EC, 2014). These include metals such as indium, mostly used in flat-screen displays, antimony for flame retardants and cobalt for rechargeable batteries, alloys and a host of other products. Although there is no consensus on the methodology for criticality assessments and broad analyses at this scale are inevitably imperfect, they can, nevertheless, provide early warning of supply problems. However, in order to develop more rigorous and dynamic assessments of future availability detailed analysis of the whole life-cycle of individual metals to identify specific problems and develop appropriate solutions is required. New policies, such as the Raw Materials Initiative (2008) and the European Innovation Partnership on Raw Materials (2013), have been developed by the European Commission (EC) and are aimed at securing sustainable supplies of raw materials. These have led to major new programmes of research throughout the minerals value chain, in order to improve the raw materials knowledge base, to develop best practices and promote international collaboration. Although recycling will make an increasingly important contribution to supply, it can never meet the total requirement when demand is increasing. Therefore, new resources of primary materials, identified through geological research, will continue to be required. The availability of regional baseline datasets, comprising geological, geophysical and geochemical data, is fundamental to the identification of exploration targets. However, in order to focus exploration we also require robust mineral deposit models for the critical metals which hitherto these have been largely neglected because of their limited economic importance. For commodities such as the platinum-group metals (PGM), cobalt, niobium, indium, rare earth elements (REE) and cobalt we have some knowledge of the processes controlling their mobilisation and concentration under certain conditions although we have little understanding of the mechanisms of deposit formation elsewhere. We also need effective techniques to explore for these metals. This may involve the development of new geophysical techniques to explore on the sea-floor or beneath thick cover, or new analytical methods for the determination of these elements in exploration samples. Improved metallurgical techniques are also required for effective and energy-efficient recovery of critical metals from ores and concentrates. References European Commission (2010). Critical raw materials for the EU. Report of the Ad-hoc Working Group on Defining Critical Raw Materials. European Commission (2014). Report on Critical raw materials for the EU. Report of the Ad-hoc Working Group on Defining Critical Raw Materials.
Krupka, Kenneth M; Parkhurst, Mary Ann; Gold, Kenneth; Arey, Bruce W; Jenson, Evan D; Guilmette, Raymond A
2009-03-01
The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using x-ray diffraction (XRD), and particle morphologies were examined using scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). The oxidation state of a DU aerosol is important as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles were spherical, occasionally with dendritic or lobed surface structures. Others appear to have fractures that perhaps resulted from abrasion and comminution, or shear bands that developed from plastic deformation of the DU material. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small bits of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of Health Physics to interpret the results of lung solubility studies and in selecting input parameters for dose assessments.
Certification of the Uranium Isotopic Ratios in Nbl Crm 112-A, Uranium Assay Standard (Invited)
NASA Astrophysics Data System (ADS)
Mathew, K. J.; Mason, P.; Narayanan, U.
2010-12-01
Isotopic reference materials are needed to validate measurement procedures and to calibrate multi-collector ion counting detector systems. New Brunswick Laboratory (NBL) provides a suite of certified isotopic and assay standards for the US and international nuclear safeguards community. NBL Certified Reference Material (CRM) 112-A Uranium Metal Assay Standard with a consensus value of 137.88 for the 238U/235U ratio [National Bureau of Standards -- NBS, currently named National Institute for Standards and Technology, Standard Reference Material (SRM) 960 had been renamed CRM 112-A] is commonly used as a natural uranium isotopic reference material within the earth science community. We have completed the analytical work for characterizing the isotopic composition of NBL CRM 112-A Uranium Assay Standard and NBL CRM 145 (uranyl nitrate solution prepared from CRM 112-A). The 235U/238U isotopic ratios were characterized using the total evaporation (TE) and the modified total evaporation (MTE) methods. The 234U/238U isotope ratios were characterized using a conventional analysis technique and verified using the ratios measured in the MTE analytical technique. The analysis plan for the characterization work was developed such that isotopic ratios that are traceable to NBL CRM U030-A are obtained. NBL is preparing a certificate of Analysis and will issue a certificate for Uranium Assay and Isotopics. The results of the CRM 112-A certification measurements will be discussed. These results will be compared with the average values from Richter et al (2010). A comparison of the precision and accuracy of the measurement methods (TE, MTE and Conventional) employed in the certification will be presented. The uncertainties in the 235U/238U and 234U/238U ratios, calculated according to the Guide to the Expression of Uncertainty in Measurements (GUM) and the dominant contributors to the combined standard uncertainty will be discussed.
Pakistan’s Nuclear Weapons: Proliferation and Security Issues
2009-12-09
Nuclear Terrorism in Pakistan: Sabotage of a Spent Fuel Cask or a Commercial Irradiation Source in Transport ,” in Pakistan’s Nuclear Future, 2008...gave additional urgency to the program. Pakistan produced fissile material for its nuclear weapons using gas-centrifuge-based uranium enrichment...technology, which it mastered by the mid-1980s. Highly-enriched uranium (HEU) is one of two types of fissile material used in nuclear weapons; the other
quantifying and Predicting Reactive Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter C. Burns, Department of Civil Engineering and Geological Sciences, University of Notre Dame
2009-12-04
This project was led by Dr. Jiamin Wan at Lawrence Berkeley National Laboratory. Peter Burns provided expertise in uranium mineralogy and in identification of uranium minerals in test materials. Dr. Wan conducted column tests regarding uranium transport at LBNL, and samples of the resulting columns were sent to Dr. Burns for analysis. Samples were analyzed for uranium mineralogy by X-ray powder diffraction and by scanning electron microscopy, and results were provided to Dr. Wan for inclusion in the modeling effort. Full details of the project can be found in Dr. Wan's final reports for the associated effort at LBNL.
Floquet Topological Insulators in Uranium Compounds
NASA Astrophysics Data System (ADS)
Pi, Shu-Ting; Savrasov, Sergey
2014-03-01
A major issue regarding the Uranium based nuclear fuels is to conduct the heat from the core area to its outer area. Unfortunately, those materials are notorious for their extremely low thermal conductivity due to the phonon-dominated-heat-transport properties in insulating states. Although metallic Uranium compounds are helpful in increasing the thermal conductivity, their low melting point still make those efforts in vain. In this report, we will figure out potential Uranium based Floquet topological insulators where the insulating bulk states accompanied with metallic surface states is achieved by applying periodic electrical fields which makes the coexistence of both benefits possible.
77 FR 34069 - Importer of Controlled Substances; Notice of Application; Research Triangle Institute
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-08
... activities. Comments and requests for hearings on applications to import narcotic raw material are not appropriate. 72 FR 3417 (2007). In regard to the non-narcotic raw material, any bulk manufacturer who is... [[Page 34072
Anacleto, Sara da Silva; Borges, Marcella Matos Cordeiro; de Oliveira, Hanna Leijoto; Vicente, Andressa Reis; de Figueiredo, Eduardo Costa; de Oliveira, Marcone Augusto Leal; Borges, Bárbara Juliana Pinheiro; de Oliveira, Marcelo Antonio; Borges, Warley de Souza; Borges, Keyller Bastos
2018-06-01
This study aimed to show that the physicochemical proprieties obtained by Fourier transform infrared spectroscopy (FTIR), thermogravimetry (TG), and scanning electronic microscopy (SEM) can be useful tools for evaluating the quality of active pharmaceutical ingredients (APIs) and pharmaceutical products. In addition, a simple, sensitive, and efficient method employing HPLC-DAD was developed for simultaneous determination of lidocaine (LID), ciprofloxacin (CFX) and enrofloxacin (EFX) in raw materials and in veterinary pharmaceutical formulations. Compounds were separated using a Gemini C 18 (250 mm × 4.6 mm, 5 µm) Phenomenex ® column, at a temperature of 25 °C, with a mobile phase containing 10 mM of phosphoric acid (pH 3.29): acetonitrile (85.7:14.3, v/v) and a flow rate of 1.5 mL/min. Physicochemical characterization by TG, FTIR, and SEM of raw materials of LID, CFX, and EFX provided information useful for the evaluation, differentiation, and qualification of raw materials. Finally, the HPLC method was proved to be useful for evaluation of raw material and finished products, besides satisfying the need for an analytical method that allows simultaneous determination of EFX, CFX, and LID, which can also be extended to other matrices and applications.
Sørheim, O; Westad, F; Larsen, H; Alvseike, O
2009-03-01
The study aimed at examining the effects of freezing of raw materials, holding time for fresh raw materials post mortem and addition of 0.5-1.0% NaCl on the colour of ground beef under low oxygen (O2) modified atmosphere storage. The samples were exposed to 0.1-3.0% O2 at 4°C for up to 10 days, and analysed for O2 concentrations, instrumental and visual colour. Residual O2 in the headspace of the packages oxidizes myoglobin and discolours the meat. Meat may have the ability to scavenge residual O2, and ground beef differs from intact muscles by having a much higher capacity for O2 consumption. In this experiment, the use of frozen/thawed raw materials and addition of NaCl both decreased the rate of O2 consumption and increased discolouration. Using raw materials from 2 days rather than 7 days post mortem greatly increased the rate of removal of O2 and improved redness. In low O2 packaging, ground beef preferably should be stored for at least 2 days in an atmosphere with less than 0.1% residual O2 to produce a purple pigment predominantly consisting of deoxymyoglobin.
Igne, Benoit; Shi, Zhenqi; Drennen, James K; Anderson, Carl A
2014-02-01
The impact of raw material variability on the prediction ability of a near-infrared calibration model was studied. Calibrations, developed from a quaternary mixture design comprising theophylline anhydrous, lactose monohydrate, microcrystalline cellulose, and soluble starch, were challenged by intentional variation of raw material properties. A design with two theophylline physical forms, three lactose particle sizes, and two starch manufacturers was created to test model robustness. Further challenges to the models were accomplished through environmental conditions. Along with full-spectrum partial least squares (PLS) modeling, variable selection by dynamic backward PLS and genetic algorithms was utilized in an effort to mitigate the effects of raw material variability. In addition to evaluating models based on their prediction statistics, prediction residuals were analyzed by analyses of variance and model diagnostics (Hotelling's T(2) and Q residuals). Full-spectrum models were significantly affected by lactose particle size. Models developed by selecting variables gave lower prediction errors and proved to be a good approach to limit the effect of changing raw material characteristics. Hotelling's T(2) and Q residuals provided valuable information that was not detectable when studying only prediction trends. Diagnostic statistics were demonstrated to be critical in the appropriate interpretation of the prediction of quality parameters. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
1969-12-01
a five-year supply of enriched uranium for reactor fuel . Nevertheless, it seems clear that some foreign enrichment developments are approaching a...produc- tion of fissile material could powerfully influence the assessment of risks and benefits of a nuclear weapons development program . Since... program is likely to include the production of its own relatively pure fissile plutonium. This would involve more rapid cycling and reprocessing of fuel
Roake, W.E.
1960-09-13
A process is given for producing uranium dioxide material of great density by preparing a compacted mixture of uranium dioxide and from 1 to 3 wt.% of calcium hydride, heating the mixture to at least 675 deg C for decomposition of the hydride and then for sintering, preferably in a vacuum, at from 1550 to 2000 deg C. Calcium metal is formed, some uranium is reduced by the calcium to the metal and a product of high density is obtained.
1993-12-30
projectile fragments from target materials, principally sand. Phase I activities included (1) literature review of separations technology , (2) site visits, (3...the current operation, evaluation of alternative means for separation of DU from sand, a review of uranium mining technology for v possible...the current operation, evaluation of alternative means for separation of DU from sand, a review of uranium mining technology for possible
Immobilization of uranium into magnetite from aqueous solution by electrodepositing approach.
Lu, Bing-Qing; Li, Mi; Zhang, Xiao-Wen; Huang, Chun-Mei; Wu, Xiao-Yan; Fang, Qi
2018-02-05
Immobilization of uranium into magnetite (Fe 3 O 4 ), which was generated from metallic iron by electrochemical method, was proposed to rapidly remove uranium from aqueous solution. The effects of electrochemical parameters such as electrode materials, voltage, electrode gap, reaction time and pH value on the crystallization of Fe 3 O 4 and uranium removal efficiencies were investigated. More than 90% uranium in the solution was precipitated with Fe 3 O 4 under laboratory conditions when uranium concentration range from 0.5mg/L to 10mg/L. The Fe 3 O 4 crystallization mechanism and immobilization of uranium was proved by XPS, XRD, TEM, FTIR and VSM methods. The results indicated that the cationic (including Fe 2+ , Fe 3+ and U(VI)) migrate to cathode side under the electric field and the uranium was incorporated or adsorbed by Fe 3 O 4 which was generated at cathode while the pH ranges between 2-7. The uranium-containing precipitate of Fe 3 O 4 can exist stably at the acid concentration below 60g/L. Furthermore, the precipitate may be used as valuable resources for uranium or iron recycling, which resulted in no secondary pollution in the removal of uranium from aqueous solution. Copyright © 2017. Published by Elsevier B.V.
Materials, critical materials and clean-energy technologies
NASA Astrophysics Data System (ADS)
Eggert, R.
2017-07-01
Modern engineered materials, components and systems depend on raw materials whose properties provide essential functionality to these technologies. Some of these raw materials are subject to supply-chain risks, and such materials are known as critical materials. This paper reviews corporate, national and world perspectives on material criticality. It then narrows its focus to studies that assess "what is critical" to clean-energy technologies. The focus on supply-chain risks is not meant to be alarmist but rather to encourage attention to monitoring these risks and pursuing technological innovation to mitigate the risks.
230Th-234U Model-Ages of Some Uranium Standard Reference Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, R W; Gaffney, A M; Kristo, M J
The 'age' of a sample of uranium is an important aspect of a nuclear forensic investigation and of the attribution of the material to its source. To the extent that the sample obeys the standard rules of radiochronometry, then the production ages of even very recent material can be determined using the {sup 230}Th-{sup 234}U chronometer. These standard rules may be summarized as (a) the daughter/parent ratio at time=zero must be known, and (b) there has been no daughter/parent fractionation since production. For most samples of uranium, the 'ages' determined using this chronometer are semantically 'model-ages' because (a) some assumptionmore » of the initial {sup 230}Th content in the sample is required and (b) closed-system behavior is assumed. The uranium standard reference materials originally prepared and distributed by the former US National Bureau of Standards and now distributed by New Brunswick Laboratory as certified reference materials (NBS SRM = NBL CRM) are good candidates for samples where both rules are met. The U isotopic standards have known purification and production dates, and closed-system behavior in the solid form (U{sub 3}O{sub 8}) may be assumed with confidence. We present here {sup 230}Th-{sup 234}U model-ages for several of these standards, determined by isotope dilution mass spectrometry using a multicollector ICP-MS, and compare these ages with their known production history.« less
Raw liquid waste treatment process
NASA Technical Reports Server (NTRS)
Humphrey, Marshall F. (Inventor)
1980-01-01
A raw sewage treatment process is disclosed in which substantially all the non-dissolved matter, which is suspended in the sewage water is first separated from the water, in which at least organic matter is dissolved. The non-dissolved material is pyrolyzed to form an activated carbon and ash material without the addition of any conditioning agents. The activated carbon and ash material is added to the water from which the non-dissolved matter was removed. The activated carbon and ash material absorbs organic matter and heavy metal ions, it is believed, are dissolved in the water and is thereafter supplied in a counter current flow direction and combined with the incoming raw sewage to facilitate the separation of the non-dissolved settleable materials from the sewage water. The used carbon and ash material together with the non-dissolved matter which was separated from the sewage water are pyrolyzed to form the activated carbon and ash material.
Raw Liquid Waste Treatment System and Process
NASA Technical Reports Server (NTRS)
Humphrey, M. F. (Inventor)
1974-01-01
A raw sewage treatment process is disclosed in which substantially all the non-dissolved matter, suspended in the sewage water is first separated from the water, in which at least organic matter remains dissolved. The non-dissolved material is pyrolyzed to form an activated carbon and ash material without the addition of any conditioning agents. The activated carbon and ash material is added to the water from which the non-dissolved matter was removed. The activated carbon and ash material adsorbs the organic matter dissolved in the water and is thereafter supplied in a counter flow direction and combined with the incoming raw sewage to at least facilitate the separation of the non-dissolved settleable materials from the sewage water. Carbon and ash material together with the non-dissolved matter which was separated from the sewage water are pyrolyzed to form the activated carbon and ash material.
Depleted uranium: an overview of its properties and health effects.
Shawky, S
2002-01-01
There has been much debate about the use of depleted uranium in the Gulf War and its health effects on United States and European war veterans. However, studies on the impact of this radioactive substance on the residents of the surrounding Gulf region are far from adequate. Depleted uranium introduces large quantities of radioactive material that is hazardous to biological organisms, continues to decay for millennia and is able to travel tens of kilometres in air. If depleted uranium were used in the Gulf War, its impact on the health of people in the area would have been considerable. This review of depleted uranium--its origin, properties, uses and effects on the human environment and health--aims to trigger further research on this subject.
Popov, L
2016-09-01
Method for determination of uranium isotopes in various environmental samples is presented. The major advantages of the method are the low cost of the analysis, high radiochemical yields and good decontamination factors from the matrix elements, natural and man-made radionuclides. The separation and purification of uranium is attained by adsorption with strong base anion exchange resin in sulfuric and hydrochloric acid media. Uranium is electrodeposited on a stainless steel disk and measured by alpha spectrometry. The analytical method has been applied for the determination of concentrations of uranium isotopes in mineral, spring and tap waters from Bulgaria. The analytical quality was checked by analyzing reference materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
21 CFR 1303.23 - Procedure for fixing individual manufacturing quotas.
Code of Federal Regulations, 2010 CFR
2010-04-01
... economic and physical availability of raw materials for use in manufacturing and for inventory purposes, yield and stability problems, potential disruptions to production (including possible labor strikes... current inventory position, the economic and physical availability of raw materials for use in...
Use of outer planet satellites and asteroids as sources of raw materials for life support systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molton, P.M.; Divine, T.E.
1977-01-01
Industrialization of space and other space activities depend entirely on supply of materials from the Earth. This is a high cost route for materials supply. Space industrialization will require life support systems for maintenance and operation staff and these will of necessity be of a sophisticated nature. Use of raw materials obtained by an unmanned space shuttle, initially, and by manned shuttles later could significantly reduce the cost of life support in space. These raw materials could be obtained from small asteroids and satellites, and would consist of primary nutrients. Future development of such sources is discussed, including food productionmore » in automated asteroid-based facilities. The level of technology required is available now, and should become economical within a century.« less
Rare earth elements and select actinoids in the Canadian House Dust Study.
Rasmussen, P E; Levesque, C; Chénier, M; Gardner, H D
2017-09-01
Nationally representative baseline data are presented for rare earth elements (REE), thorium (Th) and uranium (U) in house dust sampled from 1025 urban homes, in units of concentrations (μg g -1 ), loadings (μg m -2 ), and loading rates (ng m -2 d -1 ). Spearman rank correlations indicate that, in addition to outdoor sources, consumer products and building materials can influence indoor dust concentrations of REE, Th, and U. Correlations (P<.01) with numbers of occupants, dogs, and cats suggest soil track-in. Correlations (P<.01) with hardwood floors suggest release of REE additives used in pigments and coatings during daily wear and tear. Concentrations of light REE are elevated in smokers' homes compared to non-smokers' homes (P<.001), suggesting that a key source is "mischmetal," the REE alloy used in cigarette-lighter flints. Indoor sources include geological impurities in raw materials used in consumer products, such as U and Th impurities in bentonite clay used in cat litter, and REE impurities in phosphates used for a variety of applications including dog food and building materials. Median gastric bioaccessibility (pH 1.5) of most REE in dust ranges from about 20% to 29%. Household vacuum samples correlate with fresh dust samples from the same homes (P<.001 for all investigated elements). © 2017 Her Majesty the Queen in Right of Canada Indoor Air © 2017 John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Gary A.; Kuo, Li-Jung; Strivens, Jonathan E.
2015-12-01
The Fuel Resources Program at the U.S. Department of Energy’s (DOE), Office of Nuclear Energy (DOE-NE) is developing adsorbent technology to extract uranium from seawater. This technology is being developed to provide a sustainable and economically viable supply of uranium fuel for nuclear reactors (DOE, 2010). Among the key environmental variables to understand for adsorbent deployment in the coastal ocean is what effect flow-rates or linear velocity has on uranium adsorption capacity. The goal is to find a flow conditions that optimize uranium adsorption capacity in the shortest exposure time. Understanding these criteria will be critical in choosing a locationmore » for deployment of a marine adsorbent farm. The objective of this study was to identify at what linear velocity the adsorption kinetics for uranium extraction starts to drop off due to limitations in mass transport of uranium to the surface of the adsorbent fibers. Two independent laboratory-based experimental approaches using flow-through columns and recirculating flumes for adsorbent exposure were used to assess the effect of flow-rate (linear velocity) on the kinetic uptake of uranium on amidoxime-based polymeric adsorbent material. Time series observations over a 56 day period were conducted with flow-through columns over a 35-fold range in linear velocity from 0.29 to 10.2 cm/s, while the flume study was conducted over a narrower 11-fold range, from 0.48 to 5.52 cm/s. These ranges were specifically chosen to focus on the lower end of oceanic currents and expand above and below the linear velocity of ~ 2.5 cm/s adopted for marine testing of adsorbent material at PNNL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eller, P. G.; Stakebake, J. L.; Cooper, T. D.
2001-01-01
This paper evaluates potential analytical bias in application of the Loss on Ignition (LOI) technique for moisture measurement to relatively pure (plutonium assay of 80 wt.% or higher) oxides containing uranium that have been stabilized according to stabilization and storage standard DOE-STD-3013-2000 (STD-3013). An immediate application is to Rocky Flats (RF) materials derived from highgrade metal hydriding separations subsequently treated by multiple calcination cycles. Specifically evaluated are weight changes due to oxidatiodreduction of multivalent impurity oxides that could mask true moisture equivalent content measurement. Process knowledge and characterization of materials representing complex-wide materials to be stabilized and packaged according tomore » STD-3013, and particularly for the immediate RF target stream, indicate that oxides of uranium, iron and gallium are the only potential multivalent constituents expected to be present above 0.5 wt.%. The evaluation shows that of these constituents, with few exceptions, only uranium oxides can be present at a sufficient level to produce weight gain biases significant with respect to the LO1 stability test. In general, these formerly high-value, high-actinide content materials are reliably identifiable by process knowledge and measurement. Si&icant bias also requires that UO1 components remain largely unoxidized after calcination and are largely converted to U30s clsning LO1 testing at only slightly higher temperatures. Based on wellestablished literature, it is judged unlikely that this set of conditions will be realized in practice. We conclude that it is very likely that LO1 weight gain bias will be small for the immediate target RF oxide materials containing greater than 80 wt.% plutonium plus a much smaller uranium content. Recommended tests are in progress to confum these expectations and to provide a more authoritative basis for bounding LO1 oxidatiodreduction biases. LO1 bias evaluation is more difficult for lower purity materials and for fuel-type uranium-plutonium oxides. However, even in these cases testing may show that bias effects are manageable.« less
Rapid extraction and assay of uranium from environmental surface samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, Christopher A.; Chouyyok, Wilaiwan; Speakman, Robert J.
Extraction methods enabling faster removal and concentration of uranium compounds for improved trace and low-level assay are demonstrated for standard surface sampling material in support of nuclear safeguards efforts, health monitoring, and other nuclear analysis applications. A key problem with the existing surface sampling swipes is the requirement for complete digestion of sample and sampling matrix. This is a time-consuming and labour-intensive process that limits laboratory throughput, elevates costs, and increases background levels. Various extraction methods are explored for their potential to quickly and efficiently remove different chemical forms of uranium from standard surface sampling material. A combination of carbonatemore » and peroxide solutions is shown to give the most rapid and complete form of uranyl compound extraction and dissolution. This rapid extraction process is demonstrated to be compatible with standard inductive coupled plasma mass spectrometry methods for uranium isotopic assay as well as screening techniques such as x-ray fluorescence. The general approach described has application beyond uranium to other analytes of nuclear forensic interest (e.g., rare earth elements and plutonium) as well as heavy metals for environmental and industrial hygiene monitoring.« less
Leventhal, Joel S.
1979-01-01
Organic matter seems to play an important role in the genesis of uranium deposits in sandstones in the western United States. Organic materials associated with ore from the Texas coastal plain, Tertiary basins of Wyoming, Grants mineral belt of New Mexico, and the Uravan mineral belt of Utah and Colorado vary widely in physical appearance and chemical composition. Partial characterization of organic materials is achieved by chemical analyses to determine atomic hydrogen-to-carbon (H/C) ratios and by gas chromatographic analyses to determine the molecular fragments evolved during stepwise pyrolysis. From the pyrolysis experiments the organic materials can be classified and grouped: (a) lignites from Texas and Wyoming and (b) hydrogen poor materials, from Grants and Uravan mineral belts and Wyoming; (c) naphthalene-containing materials from Grants mineral belt and Wyoming; and (d) complex and aromatic materials from Uravan, Grants and Wyoming. The organic materials analyzed have atomic H/C ratios that range from approximately 0.3 to at least 1.5. The samples with higher H/C ratios yield pyrolysis products that contain as many as 30 carbon atoms per molecule. Samples with low H/C ratios are commonly more uraniferous and yield mostly methane and low-molecular-weight gases during pyrolysis.
NASA Astrophysics Data System (ADS)
Wahini, M.; Miranti, M. G.; Lukitasari, F.; Novela, L.
2018-02-01
Rambutan (Nephelium Lappaceum L.) is a plant that identical with Southeast Asian countries, in some areas of Indonesia no exception, but rambutan seed is considered as a waste. Therefore, it needs to be optimized into raw materials of food and processed with high nutritional value and has economic value. The purpose of this research were: 1) to find the best rambutan seed immersion formula; 2) to know the nutritional value of the best immersed rambutan seed; 3) to produce raw material and various processed of rambutan seed product. The research method was quasi experiment with 6 treatments and 2 factorial design, materials for immersion was NaCl and Ca(OH)2. The results showed that: 1) the best rambutan seed immersion formula was using Ca(OH)2; 2) the best rambutan seed contains 1,6 ash, 31,2 protein, 26,9 fat; 3) the best rambutan seed produce flour and processed of seasoned nuts. This research indicates that rambutan seed is very potential to be an alternative high-value raw materials.
THE ATTRACTIVENESS OF MATERIAS ASSOCIATED WITH THORIUM-BASED NUCLEAR FUEL CYCLES FOR PHWRS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prichard, Andrew W.; Niehus, Mark T.; Collins, Brian A.
2011-07-17
This paper reports the continued evaluation of the attractiveness of materials mixtures containing special nuclear materials (SNM) associated with thorium based nuclear fuel cycles. Specifically, this paper examines a thorium fuel cycle in which a pressurized heavy water reactor (PHWR) is fueled with mixtures of natural uranium/233U/thorium. This paper uses a PHWR fueled with natural uranium as a base fuel cycle, and then compares material attractiveness of fuel cycles that use 233U/thorium salted with natural uranium. The results include the material attractiveness of fuel at beginning of life (BoL), end of life (EoL), and the number of fuel assemblies requiredmore » to collect a bare critical mass of plutonium or uranium. This study indicates what is required to render the uranium as having low utility for use in nuclear weapons; in addition, this study estimates the increased number of assemblies required to accumulate a bare critical mass of plutonium that has a higher utility for use in nuclear weapons. This approach identifies that some fuel cycles may be easier to implement the International Atomic Energy Agency (IAEA) safeguards approach and have a more effective safeguards by design outcome. For this study, approximately one year of fuel is required to be reprocessed to obtain one bare critical mass of plutonium. Nevertheless, the result of this paper suggests that all spent fuel needs to be rigorously safeguarded and provided with high levels of physical protection. This study was performed at the request of the United States Department of Energy /National Nuclear Security Administration (DOE/NNSA). The methodology and key findings will be presented.« less
Modeling of U-series Radionuclide Transport Through Soil at Pena Blanca, Chihuahua, Mexico
NASA Astrophysics Data System (ADS)
Pekar, K. E.; Goodell, P. C.; Walton, J. C.; Anthony, E. Y.; Ren, M.
2007-05-01
The Nopal I uranium deposit is located at Pena Blanca in Chihuahua, Mexico. Mining of high-grade uranium ore occurred in the early 1980s, with the ore stockpiled nearby. The stockpile was mostly cleared in the 1990s; however, some of the high-grade boulders have remained there, creating localized sources of radioactivity for a period of 25-30 years. This provides a unique opportunity to study radionuclide transport, because the study area did not have any uranium contamination predating the stockpile in the 1980s. One high-grade boulder was selected for study based upon its shape, location, and high activity. The presumed drip-line off of the boulder was marked, samples from the boulder surface were taken, and then the boulder was moved several feet away. Soil samples were taken from directly beneath the boulder, around the drip-line, and down slope. Eight of these samples were collected in a vertical profile directly beneath the boulder. Visible flakes of boulder material were removed from the surficial soil samples, because they would have higher concentrations of U-series radionuclides and cause the activities in the soil samples to be excessively high. The vertical sampling profile used 2-inch thicknesses for each sample. The soil samples were packaged into thin plastic containers to minimize the attenuation and to standardize sample geometry, and then they were analyzed by gamma-ray spectroscopy with a Ge(Li) detector for Th-234, Pa-234, U-234, Th-230, Ra-226, Pb-214, Bi-214, and Pb-210. The raw counts were corrected for self-attenuation and normalized using BL-5, a uranium standard from Beaverlodge, Saskatchewan. BL-5 allowed the counts obtained on the Ge(Li) to be referenced to a known concentration or activity, which was then applied to the soil unknowns for a reliable calculation of their concentrations. Gamma ray spectra of five soil samples from the vertical profile exhibit decreasing activities with increasing depth for the selected radionuclides. Independent multi-element analyses of three samples by ICP-MS show decreasing uranium concentration with depth as well. The transport of the radionuclides is evaluated using STANMOD, a Windows-based software package for evaluating solute transport in porous media using analytical solutions of the advection-dispersion solute transport equation. The package allows various one-dimensional, advection-dispersion parameters to be determined by fitting mathematical solutions of theoretical transport models to observed data. The results are promising for future work on the release rate of radionuclides from the boulder, the dominant mode of transport (e.g., particulate or dissolution), and the movement of radionuclides through porous media. The measured subsurface transport rates provide modelers with a model validation dataset.
Nickel container of highly-enriched uranium bodies and sodium
Zinn, Walter H.
1976-01-01
A fuel element comprises highly a enriched uranium bodies coated with a nonfissionable, corrosion resistant material. A plurality of these bodies are disposed in layers, with sodium filling the interstices therebetween. The entire assembly is enclosed in a fluid-tight container of nickel.
Laboratory-scale uranium RF plasma confinement experiments
NASA Technical Reports Server (NTRS)
Roman, W. C.
1976-01-01
An experimental investigation was conducted using 80 kW and 1.2 MW RF induction heater facilities to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor. Pure uranium hexafluoride (UF6) was injected into argon-confined, steady-state, RF-heated plasmas in different uranium plasma confinement tests to investigate the characteristics of plamas core nuclear reactors. The objectives were: (1) to confine as high a density of uranium vapor as possible within the plasma while simultaneously minimizing the uranium compound wall deposition; (2) to develop and test materials and handling techniques suitable for use with high-temperature, high-pressure gaseous UF6; and (3) to develop complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma and residue deposited on the test chamber components. In all tests, the plasma was a fluid-mechanically-confined vortex-type contained within a fused-silica cylindrical test chamber. The test chamber peripheral wall was 5.7 cm ID by 10 cm long.
Radiochronological Age of a Uranium Metal Sample from an Abandoned Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, L A; Williams, R W; Glover, S E
2012-03-16
A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940s and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metalmore » bar was last purified can be determined by the in-growth of the isotope {sup 230}Th from the decay of {sup 234}U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 {+-} 1.5 years.« less
21 CFR 1315.23 - Procedure for fixing individual manufacturing quotas.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) The economic and physical availability of raw materials for use in manufacturing and for inventory purposes, (iv) Yield and stability problems, (v) Potential disruptions to production (including possible... cycle and current inventory position. (iii) The economic and physical availability of raw materials for...
Code of Federal Regulations, 2014 CFR
2014-07-01
... other direct effect in the diagnosis, cure, mitigation, treatment, or prevention of disease, or to... this section. Consumption means the quantity of all HAP raw materials entering a process in excess of... as added as a raw material, consumption includes the quantity generated in the process. Container, as...
Code of Federal Regulations, 2013 CFR
2013-07-01
... other direct effect in the diagnosis, cure, mitigation, treatment, or prevention of disease, or to... this section. Consumption means the quantity of all HAP raw materials entering a process in excess of... as added as a raw material, consumption includes the quantity generated in the process. Container, as...
VIEW ALONG RAW MATERIAL CONVEYOR AT RIGHT WITH CRUSHED SHELL ...
VIEW ALONG RAW MATERIAL CONVEYOR AT RIGHT WITH CRUSHED SHELL CONVEYOR ABOVE. ENGINE AND RADIATOR AT LOWER LEFT. - F. & H. Benning Company Oyster Mill, 14430 Solomons Island Road (moved from 1014 Benning Road, Galesville, Anne Arundel County, Maryland), Solomons, Calvert County, MD
40 CFR 415.91 - Specialized definitions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of any raw material, intermediate product, finished product, by-product, or waste product. The term... contact with any raw material, intermediate product, finished product, by-product or waste product by... this subpart. (b) The term product shall mean hydrogen peroxide as a one hundred percent hydrogen...
Deng, Gui-Fang; Li, Ke; Ma, Jing; Liu, Fen; Dai, Jing-Jing; Li, Hua-Bin
2011-01-01
The level of aluminium in 178 processed food samples from Shenzhen city in China was evaluated using inductively coupled plasma-mass spectrometry. Some processed foods contained a concentration of up to 1226 mg/kg, which is about 12 times the Chinese food standard. To establish the main source in these foods, Al levels in the raw materials were determined. However, aluminium concentrations in raw materials were low (0.10-451.5 mg/kg). Therefore, aluminium levels in food additives used in these foods was determined and it was found that some food additives contained a high concentration of aluminium (0.005-57.4 g/kg). The results suggested that, in the interest of public health, food additives containing high concentrations of aluminium should be replaced by those containing less. This study has provided new information on aluminium levels in Chinese processed foods, raw materials and a selection of food additives.
PEROXIDE PROCESS FOR SEPARATION OF RADIOACTIVE MATERIALS
Seaborg, G.T.; Perlman, I.
1958-09-16
reduced state, from hexavalent uranium. It consists in treating an aqueous solution containing such uranium and plutonium ions with sulfate ions in order to form a soluble uranium sulfate complex and then treating the solution with a soluble thorium compound and a soluble peroxide compound in order to ferm a thorium peroxide carrier precipitate which carries down with it the plutonium peroxide present. During this treatment the pH of the solution must be maintained between 2 and 3.
Source identification of uranium-containing materials at mine legacy sites in Portugal.
Keatley, A C; Martin, P G; Hallam, K R; Payton, O D; Awbery, R; Carvalho, F P; Oliveira, J M; Silva, L; Malta, M; Scott, T B
2018-03-01
Whilst prior nuclear forensic studies have focused on identifying signatures to distinguish between different uranium deposit types, this paper focuses on providing a scientific basis for source identification of materials from different uranium mine sites within a single region, which can then be potentially used within nuclear forensics. A number of different tools, including gamma spectrometry, alpha spectrometry, mineralogy and major and minor elemental analysis, have been utilised to determine the provenance of uranium mineral samples collected at eight mine sites, located within three different uranium provinces, in Portugal. A radiation survey was initially conducted by foot and/or unmanned aerial vehicle at each site to assist sample collection. The results from each mine site were then compared to determine if individual mine sites could be distinguished based on characteristic elemental and isotopic signatures. Gamma and alpha spectrometry were used to differentiate between samples from different sites and also give an indication of past milling and mining activities. Ore samples from the different mine sites were found to be very similar in terms of gangue and uranium mineralogy. However, rarer minerals or specific impurity elements, such as calcium and copper, did permit some separation of the sites examined. In addition, classification rates using linear discriminant analysis were comparable to those in the literature. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
Recovery of tritium from tritiated molecules
Swansiger, William A.
1987-01-01
A method of recovering tritium from tritiated compounds comprises the steps of heating tritiated water and other co-injected tritiated compounds in a preheater to temperatures of about 600.degree. C. The mixture is injected into a reactor charged with a mixture of uranium and uranium dioxide. The injected mixture undergoes highly exothermic reactions with the uranium causing reaction temperatures to occur in excess of the melting point of uranium, and complete decomposition of the tritiated compounds to remove tritium therefrom. The uranium dioxide functions as an insulating material and heat sink preventing the reactor side walls from attaining reaction temperatures to thereby minimize tritium permeation rates. The uranium dioxide also functions as a diluent to allow for volumetric expansion of the uranium as it is converted to uranium dioxide. The reactor vessel is preferably stainless steel of sufficient mass so as to function as a heat sink preventing the reactor side walls from approaching high temperatures. A disposable copper liner extends between the reaction chamber and stainless steel outer vessel to prevent alloying of the uranium with the outer vessel. Apparatus used to carry out the method of the invention is also disclosed.
Pyroprocessing of Fast Flux Test Facility Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.R. Westphal; G.L. Fredrickson; G.G. Galbreth
Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primarymore » fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.« less
Pyroprocessing of fast flux test facility nuclear fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westphal, B.R.; Wurth, L.A.; Fredrickson, G.L.
Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primarymore » fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electro-refined uranium products exceeded 99%. (authors)« less
Raw materials exploitation in Prehistory of Georgia: sourcing, processing and distribution
NASA Astrophysics Data System (ADS)
Tushabramishvili, Nikoloz; Oqrostsvaridze, Avthandil
2016-04-01
Study of raw materials has a big importance to understand the ecology, cognition, behavior, technology, culture of the Paleolithic human populations. Unfortunately, explorations of the sourcing, processing and distribution of stone raw materials had a less attention until the present days. The reasons of that were: incomplete knowledge of the archaeologists who are doing the late period archaeology (Bronze Age-Medieval) and who are little bit far from the Paleolithic technology and typology; Ignorance of the stone artifacts made on different kind of raw-materials, except flint and obsidians. Studies on the origin of the stone raw materials are becoming increasingly important since in our days. Interesting picture and situation have been detected on the different sites and in different regions of Georgia. In earlier stages of Middle Paleolithic of Djruchula Basin caves the number of basalt, andesite, argillite etc. raw materials are quite big. Since 130 000 a percent of the flint raw-material is increasing dramatically. Flint is an almost lonely dominated raw-material in Western Georgia during thousand years. Since approximately 50 000 ago the first obsidians brought from the South Georgia, appeared in Western Georgia. Similar situation has been detected by us in Eastern Georgia during our excavations of Ziari and Pkhoveli open-air sites. The early Lower Paleolithic layers are extremely rich by limestone artifacts while the flint raw-materials are dominated in the Middle Paleolithic layers. Study of these issues is possible to achieve across chronologies, the origins of the sources of raw-materials, the sites and regions. By merging archaeology with anthropology, geology and geography we are able to acquire outstanding insights about those populations. New approach to the Paleolithic stone materials, newly found Paleolithic quarries gave us an opportunities to try to achieve some results for understanding of the behavior of Paleolithic populations, geology and geomorphology of different regions of Georgia. References: 1. 2015. Tushabramishvili N. Ziari. Online Archaeology 8. Tbilisi, Georgia. Pp. 41-43 2. 2012. M François-Xavier Le Bourdonnec, Sébastien Nomade, Gérard Poupeau, Hervé Guillou, Nikolos Tushabramishvili, Marie-Hélène Moncel, David Pleurdeau, Tamar Agapishvili, Pierre Voinchet, Ana Mgeladze, David Lordkipanidze). Multiple origins of Bondi Cave and Ortvale Klde (NW Georgia) obsidians and human mobility in Transcaucasia during the Middle and Upper Palaeolithic. Journal of Archaeological Science xxx (2012) 1-14 3. 2011. Mercier N., Valladas H., Meignen L., Joron J. L., Tushabramishvili N., Adler D.S., Bar Yosef O. Dating the early Middle Palaeolithic Laminar Industry from Djruchula cave, Republic of Georgia. Paléorient Volume 36. Issue 36-2, pp. 163-173 4. 2010. L. Meignen&Nicholas Tushabramishvili. Djruchula Cave, on the Southern Slopes of the Great Caucasus: An Extension of the Near Eastern Middle Paleolithic Blady Phenomenon to the North. Journal of The Israel Prehistoric Society 40 (2010), 35-61 5. 2007. Tushabramishvili N.,Pleurdeau D., Moncel M.-H., Mgeladze A. Le complexe Djruchula-Koudaro au sud Caucase (Géorgie). Remarques sur les assemblages lithiques pléistocenes de Koudaro I, Tsona et Djruchula . Anthropologie • 45/1 • pp. 1-18 6. Tushabramishvili, D., 1984. Paleolit Gruzii. (Palaeolithic of Georgia). Newsletter of the Georgian State Museum 37B, 5e27
Pierson, Charles Thomas; Green, Morris W.
1977-01-01
Geologic studies were made at all of the uranium mines and prospects in the Dakota Sandstone of Early(?) and Late Cretaceous age in the Gallup mining district, McKinley County, New Mexico. Dakota mines in the adjacent Ambrosia Lake mining district were visited briefly for comparative purposes. Mines in the eastern part of the Gallup district, and in the Ambrosia Lake district, are on the Chaco slope of the southern San Juan Basin in strata which dip gently northward toward the central part of the basin. Mines in the western part of the Gallup district are along the Gallup hogback (Nutria monocline) in strata which dip steeply westward into the Gallup sag. Geologic factors which controlled formation of the uranium deposits in the Dakota Sandstone are: (1) a source of uranium, believed to be uranium deposits of the underlying Morrison Formation of Late Jurassic age; (2) the accessibility to the Dakota of uranium-bearing solutions from the Morrison; (3) the presence in the Dakota of permeable sandstone beds overlain by impermeable carbonaceous shale beds; and (4) the occurrence within the permeable Dakota sandstone beds of carbonaceous reducing material as bedding-plane laminae, or as pockets of carbonaceous trash. Most of the Dakota uranium deposits are found in the lower part of the formation in marginal-marine distributary-channel sandstones which were deposited in the backshore environment. However, the Hogback no. 4 (Hyde) Mine (Gallup district) occurs in sandy paludal shale of the backshore environment, and another deposit, the Silver Spur (Ambrosia Lake district), is found in what is interpreted to be a massive beach or barrier-bar sandstone of the foreshore environment in the upper part of the Dakota. The sedimentary depositional environment most favorable for the accumulation of uranium is that of backshore areas lateral to main distributary channels, where levee, splay, and some distributary-channel sandstones intertongue with gray carbonaceous shales and siltstones of the well-drained swamp environment. Deposits of black carbonaceous shale which were formed in the poorly drained swamp deposits of the interfluve area are not favorable host rocks for uranium. The depositional energy levels of the various environments in which the sandstone and shale beds of the Dakota were deposited govern the relative favorability of the strata as uranium host rocks. In the report area, uranium usually occurs in carbonaceous sandstone deposited under low- to medium-energy fluvial conditions within distributary channels. A prerequisite, however, is that such sandstone be overlain by impermeable carbonaceous shale beds. Low- to medium-energy fluvial conditions result in the deposition of sandstone beds having detrital carbonaceous material distributed in laminae or in trash pockets on bedding planes. The carbonaceous laminae and trash pockets provide the necessary reductant to cause precipitation of uranium from solution. High-energy fluvial conditions result in the deposition of sandstones having little or no carbonaceous material included to provide a reductant. Very low energy swampy conditions result in carbonaceous shale deposits, which are generally barren of uranium because of their relative impermeability to migrating uranium-bearing solutions.
Alternative of raw material’s suppliers using TOPSIS method in chicken slaughterhouse industry
NASA Astrophysics Data System (ADS)
Sari, R. M.; Rizkya, I.; Syahputri, K.; Anizar; Siregar, I.
2018-02-01
Chicken slaughterhouse industry is one of the fastest growing industries that depends on the freshness of raw materials. The raw materials quality arrive at the company depends heavily on the suppliers. Fresh chicken and frozen chicken meat are the main raw materials for this industry. Problems occurred by the suppliers are catering the amount of raw material needs that are not appropriate and also delay during delivery process. This condition causes disruption of the production process in the company. Therefore, it is necessary to determine the best suppliers to supply the main raw materials of fresh and frozen chicken meat on the slaughterhouse chicken industry. This study analyze the supplier’s capability by using TOPSIS method. This method use to find out the best supplier. The TOPSIS method is performed using the principle that chosen alternative must have the shortest distance from the positive solution and furthest from the ideal solution of the geometric point by using the Euclidean distance to determine the relative proximity of the optimum solution alternative. TOPSIS method found the rank of best supplier’s order is supplier A followed by supplier D, supplier B, supplier C, supplier E, supplier F, and supplier G. Based on the rank order obtained from each company, it will assist the company in prioritizing the order to the supplier with the best rank. Total supply from All suppliers are 885,994 kg per month. Based on the results of research, the top five suppliers have been sufficient to meet the needs of the company.
Development of an Assessment Method for Building Materials Under Euratom Scope.
de With, Govert
2017-11-01
In 2013, the European Commission published its basic safety standards for protection against the dangers arising from exposure to ionizing radiation (Council Directive 2013/59/Euratom)-also known as EU-BSS. As a result, the use of raw materials with potentially elevated activity concentrations such as fly ash, phosphogypsum, and slags will now fall under EU-BSS scope when applied in building materials. In light of this new policy, a variety of tools are available to assess compliance with the 1-mSv y reference level for building materials. At the heart of these tools is a gamma-spectrometric determination of the naturally occurring radionuclides Ra, Th, and K in the material of concern. As a large number of construction products contain a certain amount of the raw material that falls under the scope of the EU regulation, this policy will lead to substantial measurement of building materials that pose little radiation risk. For this reason, a method is developed to enable assessment against the 1-mSv value not on the basis of gamma-spectrometric analysis but rather based on the product's material composition. The proposed method prescribes a maximum permitted content of raw materials with potentially elevated activity concentrations in terms of a weight percentage of the end product, where the raw materials of concern are defined as those listed in Annex XIII of the EU-BSS. The permitted content is a function of the product's surface density. Therefore, a product with a low surface density of up to 25 kg m can consist of nearly 100% raw materials with potentially elevated activity concentrations, and this percentage drops to around 15% for products with a surface density of around 500 kg m. Building materials that comply with these requirements on product composition are exempt from testing, while products that do not comply must perform regular gamma-spectrometric analysis. A full validation and testing of the method is provided. In addition, the paper discusses issues relevant for regulatory implementation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Sanchez, Danyl
As a result of a pilot project developed at the old Spanish 'Junta de Energia Nuclear' to extract uranium from ores, tailings materials were generated. Most of these residual materials were sent back to different uranium mines, but a small amount of it was mixed with conventional building materials and deposited near the old plant until the surrounding ground was flattened. The affected land is included in an area under institutional control and used as recreational area. At the time of processing, uranium isotopes were separated but other radionuclides of the uranium decay series as Th-230, Ra-226 and daughters remainmore » in the residue. Recently, the analyses of samples taken at different ground's depths confirmed their presence. This paper presents the methodology used to calculate the derived concentration level to ensure that the reference dose level of 0.1 mSv y-1 used as radiological criteria. In this study, a radiological impact assessment was performed modeling the area as recreational scenario. The modelization study was carried out with the code RESRAD considering as exposure pathways, external irradiation, inadvertent ingestion of soil, inhalation of resuspended particles, and inhalation of radon (Rn-222). As result was concluded that, if the concentration of Ra-226 in the first 15 cm of soil is lower than, 0.34 Bq g{sup -1}, the dose would not exceed the reference dose. Applying this value as a derived concentration level and comparing with the results of measurements on the ground, some areas with a concentration of activity slightly higher than latter were found. In these zones the remediation proposal has been to cover with a layer of 15 cm of clean material. This action represents a reduction of 85% of the dose and ensures compliance with the reference dose. (authors)« less
NASA Astrophysics Data System (ADS)
Salaun, A.; Hubert, A.; Pointurier, F.; Aupiais, J.; Pili, E.; Richon, P.; Fauré, A.; Diallo, S.
2012-12-01
First events of illicit trafficking of nuclear and radiological materials occurred 50 years ago. Nuclear forensics expertise are aiming at determining the use of seized material, its industrial history and provenance (geographical area, place of production or processing), at assisting in the identification and dismantling of illicit trafficking networks. This information is also valuable in the context of inspections of declared facilities to verify the consistency of operator's declaration. Several characteristics can be used to determine the origin of uranium ore concentrates such as trace elemental impurity patterns (Keegan et al., 2008 ; Varga et al., 2010a, 2010b) or uranium, oxygen and lead isotopic compositions (Tamborini et al., 2002a, 2002b ; Wallenius et al., 2006; Varga et al., 2009). We developed analytical procedures for measuring the isotopic compositions of uranium (234U/238U and 235U/238U) and oxygen (18O/16O) and levels of elemental impurities (e.g. REE, Th) from very small amounts of uranium ore concentrates (or yellow cakes). Micrometer particles and few milligrams of material are used for oxygen isotope measurements and REE determination, respectively. Reference materials were analyzed by mass spectrometry (TIMS, SF-ICP-MS and SIMS) to validate testing protocols. Finally, materials of unknown origin were analyzed to highlight significant differences and determine whether these differences allow identifying the origin of these ore concentrates. References: Keegan, E., et al. (2008). Applied Geochemistry 23, 765-777. Tamborini, G., et al. (2002a). Analytical Chemistry 74, 6098-6101. Tamborini, G., et al. (2002b). Microchimica Acta 139, 185-188. Varga, Z., et al. (2009). Analytical Chemistry 81, 8327-8334. Varga, Z., et al. (2010a). Talanta 80, 1744-1749. Varga, Z., et al. (2010b). Radiochimica Acta 98, 771-778 Wallenius, M., et al. (2006). Forensic Science International 156, 55-62.
Bioengineered Chimeric Spider Silk-Uranium Binding Proteins
Krishnaji, Sreevidhya Tarakkad; Kaplan, David L.
2014-01-01
Heavy metals constitute a source of environmental pollution. Here, novel functional hybrid biomaterials for specific interactions with heavy metals are designed by bioengineering consensus sequence repeats from spider silk of Nephila clavipes with repeats of a uranium peptide recognition motif from a mutated 33-residue of calmodulin protein from Paramecium tetraurelia. The self-assembly features of the silk to control nanoscale organic/inorganic material interfaces provides new biomaterials for uranium recovery. With subsequent enzymatic digestion of the silk to concentrate the sequestered metals, options can be envisaged to use these new chimeric protein systems in environmental engineering, including to remediate environments contaminated by uranium. PMID:23212989
Determination of impurities in uranium matrices by time-of-flight ICP-MS using matrix-matched method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buerger, Stefan; Riciputi, Lee R; Bostick, Debra A
2007-01-01
The analysis of impurities in uranium matrices is performed in a variety of fields, e.g. for quality control in the production stream converting uranium ores to fuels, as element signatures in nuclear forensics and safeguards, and for non-proliferation control. We have investigated the capabilities of time-of-flight ICP-MS for the analysis of impurities in uranium matrices using a matrix-matched method. The method was applied to the New Brunswick Laboratory CRM 124(1-7) series. For the seven certified reference materials, an overall precision and accuracy of approximately 5% and 14%, respectively, were obtained for 18 analyzed elements.
Dupoly process for treatment of depleted uranium and production of beneficial end products
Kalb, Paul D.; Adams, Jay W.; Lageraaen, Paul R.; Cooley, Carl R.
2000-02-29
The present invention provides a process of encapsulating depleted uranium by forming a homogenous mixture of depleted uranium and molten virgin or recycled thermoplastic polymer into desired shapes. Separate streams of depleted uranium and virgin or recycled thermoplastic polymer are simultaneously subjected to heating and mixing conditions. The heating and mixing conditions are provided by a thermokinetic mixer, continuous mixer or an extruder and preferably by a thermokinetic mixer or continuous mixer followed by an extruder. The resulting DUPoly shapes can be molded into radiation shielding material or can be used as counter weights for use in airplanes, helicopters, ships, missiles, armor or projectiles.
Hennebel, Tom; Boon, Nico; Maes, Synthia; Lenz, Markus
2015-01-25
Europe is confronted with an increasing supply risk of critical raw materials. These can be defined as materials of which the risks of supply shortage and their impacts on the economy are higher compared to most of other raw materials. Within the framework of the EU Innovation Partnership on raw materials Initiative, a list of 14 critical materials was defined, including some bulk metals, industrial minerals, the platinum group metals and rare earth elements. To tackle the supply risk challenge, innovation is required with respect to sustainable primary mining, substitution of critical metals, and urban mining. In these three categories, biometallurgy can play a crucial role. Indeed, microbe-metal interactions have been successfully applied on full scale to win materials from primary sources, but are not sufficiently explored for metal recovery or recycling. On the one hand, this article gives an overview of the microbial strategies that are currently applied on full scale for biomining; on the other hand it identifies technologies, currently developed in the laboratory, which have a perspective for large scale metal recovery and the needs and challenges on which bio-metallurgical research should focus to achieve this ambitious goal. Copyright © 2013. Published by Elsevier B.V.
Biviano, Marilyn B.; Wagner, Lorie A.; Sullivan, Daniel E.
1999-01-01
Materials consumption estimates, such as apparent consumption of raw materials, can be important indicators of sustainability. Apparent consumption of raw materials does not account for material contained in manufactured products that are imported or exported and may thus under- or over-estimate total consumption of materials in the domestic economy. This report demonstrates a methodology to measure the amount of materials contained in net imports (imports minus exports), using lead as an example. The analysis presents illustrations of differences between apparent and total consumption of lead and distributes these differences into individual lead-consuming sectors.
Optimization of Uranium-Doped Americium Oxide Synthesis for Space Application.
Vigier, Jean-François; Freis, Daniel; Pöml, Philipp; Prieur, Damien; Lajarge, Patrick; Gardeur, Sébastien; Guiot, Antony; Bouëxière, Daniel; Konings, Rudy J M
2018-04-16
Americium 241 is a potential alternative to plutonium 238 as an energy source for missions into deep space or to the dark side of planetary bodies. In order to use the 241 Am isotope for radioisotope thermoelectric generator or radioisotope heating unit (RHU) production, americium materials need to be developed. This study focuses on the stabilization of a cubic americium oxide phase using uranium as the dopant. After optimization of the material preparation, (Am 0.80 U 0.12 Np 0.06 Pu 0.02 )O 1.8 has been successfully synthesized to prepare a 2.96 g pellet containing 2.13 g of 241 Am for fabrication of a small scale RHU prototype. Compared to the use of pure americium oxide, the use of uranium-doped americium oxide leads to a number of improvements from a material properties and safety point of view, such as good behavior under sintering conditions or under alpha self-irradiation. The mixed oxide is a good host for neptunium (i.e., the 241 Am daughter element), and it has improved safety against radioactive material dispersion in the case of accidental conditions.
Marshall, Margaret A.
2014-11-04
In the early 1970s Dr. John T. Mihalczo (team leader), J.J. Lynn, and J.R. Taylor performed experiments at the Oak Ridge Critical Experiments Facility (ORCEF) with highly enriched uranium (HEU) metal (called Oak Ridge Alloy or ORALLOY) in an effort to recreate GODIVA I results with greater accuracy than those performed at Los Alamos National Laboratory in the 1950s. The purpose of the Oak Ridge ORALLOY Sphere (ORSphere) experiments was to estimate the unreflected and unmoderated critical mass of an idealized sphere of uranium metal corrected to a density, purity, and enrichment such that it could be compared with themore » GODIVA I experiments. Additionally, various material reactivity worths, the surface material worth coefficient, the delayed neutron fraction, the prompt neutron decay constant, relative fission density, and relative neutron importance were all measured. The critical assembly, material reactivity worths, the surface material worth coefficient, and the delayed neutron fraction were all evaluated as benchmark experiment measurements. The reactor physics measurements are the focus of this paper; although for clarity the critical assembly benchmark specifications are briefly discussed.« less
Volumetric determination of uranium titanous sulfate as reductant before oxidimetric titration
Wahlberg, J.S.; Skinner, D.L.; Rader, L.F.
1957-01-01
Need for a more rapid volumetric method for the routine determination of uranium in uranium-rich materials has led to the development of a method that uses titanous sulfate as a reductant before oxidimetric titration. Separation of the hydrogen sulfide group is not necessary. Interfering elements precipitated by cupferron are removed by automatic filtrations made simultaneously rather than by the longer chloroform extraction method. Uranium is reduced from VI to IV by addition of an excess of titanous sulfate solution, cupric ion serving as an indicator by forming red metallic copper when reduction is complete. The copper is reoxidized by addition of mercuric perchlorate. The reduced uranium is then determined by addition of excess ferric sulfate and titration with ceric sulfate. The method has proved to be rapid, accurate, and economical.
Wilmarth, V.R.; Vickers, R.C.
1953-01-01
Uranium deposits that contain uraniferous pyrobitumen of possible hydrothermal origin occur at the Weatherly and Robinson properties near Placerville, San Miguel County, Colo. These deposits were mined for copper, silver, and gold more than 50 years ago and were developed for uranium in 1950. The Robinson property, half a mile east of Placerville, consists of the White Spar, New Discovery Lode, and Barbara Jo claims. The rocks in this area are nearly horizontal sandstones, shales, limestones, and conglomerates of the Cutler formation of Permian age and the Dolores formation of Triassic and Jurassic (?) age. These rocks have been faulted extensively and intruded by a Tertiary (?) andesite porphyry dike. Uranium-bearing pyrobitumen associated with tennantite, tetrahedrite, galena, sphalerite, chalcopyrite, bornite, azurite, malachite, calcite, barite, and quartz occurs in a lenticular body as much as 40 feet long and 6 feet wide along a northwest-trending, steeply dipping normal fault. The uranium content of eleven samples from the uranium deposit ranges from 0.001 to 0.045 percent uranium and averages about 0.02 percent uranium. The Weatherly property, about a mile northwest of Placerville, consists of the Black King claims nos. 1, 4, and 5. The rocks in this area include the complexly faulted Cutler formation of Permian age and the Dolores formation of Triassic and Jurassic (?) age. Uranium-bearing pyrobitumen arid uranophane occur, along a northwest-trending, steeply dipping normal fault and in the sedimentary rocks on the hanging wall of the fault. Lens-shaped deposits in the fault zone are as much as 6 feet long and 2 feet wide and contain as much as 9 percent uranium; whereas channel samples across the fault zone contain from 0.001 to 0.014 percent uranium. Tetrahedrite, chalcopyrite, galena, sphalerite, fuchsite, malachite, azurite, erythrite, bornite, and molybdite in a gangue of pyrite, calcite, barite, and quartz are associated with the uraniferous material. In the sedimentary rocks on the hanging wall, uranium-bearing pyrobitumen occurs in replacement lenses as much as,8 inches wide and 6 feet long, and in nodules as much as 6 inches in diameter for approximately 100 feet away from the fault. Pyrite and calcite are closely associated with the uraniferous material in the sedimentary rocks. Samples from the replacement bodies contain from 0. 007 to 1.4 percent uranium.
NASA Astrophysics Data System (ADS)
Ravisankar, R.; Naseerutheen, A.; Rajalakshmi, A.; Raja Annamalai, G.; Chandrasekaran, A.
2014-08-01
The characterization of archeological ceramic and pottery can be studied for the determination of firing temperature and the presence of raw materials by thermal analysis. Clay minerals are the main material for the production of ceramic and pottery and show some characteristic reactions such as dehydration, dehydroxylation and transformation. This is key point of criteria for the elucidation of firing temperature and raw material analysis. In the present work, DTA-TG, XRD and EDXRF technique are applied on representative potsherds from Vellore dist., Tamilnadu, India to derive the information about the production technology, raw materials and firing temperature. From the analysis, all the samples were considered to be fired from 800 °C to 900 °C and organic material might be added intestinally as a binder in the preparation of pottery.
TOF-SIMS for Rapid Nuclear Forensics Evaluation of Uranium Oxide Particles
2011-03-01
Fraction U-238 nU U metal CRM 112-A NBL Metal Assay and Isotopic .000052458 .0072017 --- .9927458 nUO2 UO2 --- NBL Commercial material...0 .992745 dU U metal CRM 115 NBL Uranium Assay .0000076 .0020291 .0000322 .9979311 dUO2 UO2 --- IBI Labs Commercial material --- .002- .0035...U500* U3O8 CRM U500 NBL Isotopic .005181 .49696 .000755 .49711 U900* U3O8 CRM U900 NBL Isotopic .007777 .90196 .003327 .08693 *Sample
Evaluation of isotopic composition of fast reactor core in closed nuclear fuel cycle
NASA Astrophysics Data System (ADS)
Tikhomirov, Georgy; Ternovykh, Mikhail; Saldikov, Ivan; Fomichenko, Peter; Gerasimov, Alexander
2017-09-01
The strategy of the development of nuclear power in Russia provides for use of fast power reactors in closed nuclear fuel cycle. The PRORYV (i.e. «Breakthrough» in Russian) project is currently under development. Within the framework of this project, fast reactors BN-1200 and BREST-OD-300 should be built to, inter alia, demonstrate possibility of the closed nuclear fuel cycle technologies with plutonium as a main source of energy. Russia has a large inventory of plutonium which was accumulated in the result of reprocessing of spent fuel of thermal power reactors and conversion of nuclear weapons. This kind of plutonium will be used for development of initial fuel assemblies for fast reactors. The closed nuclear fuel cycle concept of the PRORYV assumes self-supplied mode of operation with fuel regeneration by neutron capture reaction in non-enriched uranium, which is used as a raw material. Operating modes of reactors and its characteristics should be chosen so as to provide the self-sufficient mode by using of fissile isotopes while refueling by depleted uranium and to support this state during the entire period of reactor operation. Thus, the actual issue is modeling fuel handling processes. To solve these problems, the code REPRORYV (Recycle for PRORYV) has been developed. It simulates nuclide streams in non-reactor stages of the closed fuel cycle. At the same time various verified codes can be used to evaluate in-core characteristics of a reactor. By using this approach various options for nuclide streams and assess the impact of different plutonium content in the fuel, fuel processing conditions, losses during fuel processing, as well as the impact of initial uncertainties on neutron-physical characteristics of reactor are considered in this study.
NASA Astrophysics Data System (ADS)
Flores Orozco, AdriáN.; Williams, Kenneth H.; Long, Philip E.; Hubbard, Susan S.; Kemna, Andreas
2011-09-01
Experiments at the Department of Energy's Integrated Field Research Challenge (IFRC) site near Rifle, Colorado, have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally invasive and spatially extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IFRC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate-reducing microorganisms. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer, a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants such as uranium.
Uranium Conversion & Enrichment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpius, Peter Joseph
2017-02-06
The isotopes of uranium that are found in nature, and hence in ‘fresh’ Yellowcake’, are not in relative proportions that are suitable for power or weapons applications. The goal of conversion then is to transform the U 3O 8 yellowcake into UF 6. Conversion and enrichment of uranium is usually required to obtain material with enough 235U to be usable as fuel in a reactor or weapon. The cost, size, and complexity of practical conversion and enrichment facilities aid in nonproliferation by design.
Volatile fluoride process for separating plutonium from other materials
Spedding, F. H.; Newton, A. S.
1959-04-14
The separation of plutonium from uranium and/or fission products by formation of the higher fluorides off uranium and/or plutonium is described. Neutronirradiated uranium metal is first converted to the hydride. This hydrided product is then treated with fluorine at about 315 deg C to form and volatilize UF/sub 6/ leaving plutonium behind. Thc plutonium may then be separated by reacting the residue with fluorine at about 5004DEC and collecting the volatile plutonium fluoride thus formed.
VOLATILE FLUORIDE PROCESS FOR SEPARATING PLUTONIUM FROM OTHER MATERIALS
Spedding, F.H.; Newton, A.S.
1959-04-14
The separation of plutonium from uranium and/or tission products by formation of the higher fluorides of uranium and/or plutonium is discussed. Neutronirradiated uranium metal is first convcrted to the hydride. This hydrided product is then treatced with fluorine at about 315 deg C to form and volatilize UF/sup 6/ leaving plutonium behind. The plutonium may then be separated by reacting the residue with fluorine at about 500 deg C and collecting the volatile plutonium fluoride thus formed.
COUPLED FAST-THERMAL POWER BREEDER REACTOR
Avery, R.
1961-07-18
A nuclear reactor having a region operating predominantly on fast neutrons and another region operating predominantly on slow neutrons is described. The fast region is a plutonium core and the slow region is a natural uranium blanket around the core. Both of these regions are free of moderator. A moderating reflector surrounds the uranium blanket. The moderating material and thickness of the reflector are selected so that fissions in the uranium blanket make a substantial contribution to the reactivity of the reactor.
Pulpwood production in the Northeast 1968
James T. Bones; Neal P. Kingsley
1969-01-01
This report is based on a canvass of all pulpmills in the Northeast that use wood-either round wood or chips-as a basic raw material for a variety of products. Mills that use woodpulp as a raw material for insulation board and hardboard were also included in the canvass. However, the canvass did not include mills that use waste paper, rags, or pulping material other...
77 FR 5846 - Importer of Controlled Substances; Notice of Registration
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-06
... import narcotic raw material are not appropriate, in accordance with 72 FR 3417 (2007). DEA has... basic classes of controlled substances: Drug Schedule Phenylacetone (8501) II Opium, raw (9600) II Poppy... to use it as a base material in the bulk manufacture of another controlled substance. No comments or...