Sample records for uranium solution poisoned

  1. Neutralization of Plutonium and Enriched Uranium Solutions Containing Gadolinium as a Neutron Poison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BRONIKOWSKI, MG.

    2004-04-01

    Materials currently being dissolved in the HB-Line Facility will result in an accumulated solution containing an estimated uranium:plutonium (U:Pu) ratio of 4.3:1 and an 235U enrichment estimated at 30 per cent The U:Pu ratio and the enrichment are outside the evaluated concentration range for disposition to high level waste (HLW) using gadolinium (Gd) as a neutron poison. To confirm that the solution generated during the current HB-Line dissolving campaign can be poisoned with Gd, neutralized and discarded to the Savannah River Site (SRS) high level waste (HLW) system without undue nuclear safety concerns the caustic precipitation of surrogate solutions wasmore » examined. Experiments were performed with a U/Pu/Gd solution representative of the HB-Line estimated concentration ratio and also a U/Gd solution. Depleted U was used in the experiments as the enrichment of the U will not affect the chemical behavior during neutralization, but will affect the amount of Gd added to the solution. Settling behavior of the neutralized solutions was found to be comparable to previous studies. The neutralized solutions mixed easily and had expected densities of typical neutralized waste. The neutralized solids were found to be homogeneous and less than 20 microns in size. Partially neutralized solids were more amorphous than the fully neutralized solids. Based on the results of these experiments, Gd was found to be a viable poison for neutralizing a U/Pu/Gd solution with a U:Pu mass ratio of 4.3:1 thus extending the U:Pu mass ratio from the previously investigated 0-3:1 to 4.3:1. However, further work is needed to allow higher U concentrations or U:Pu ratios greater than investigated in this work.« less

  2. Investigation of Plutonium and Uranium Precipitation Behavior with Gadolinium as a Neutron Poison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, A.E.

    2003-07-07

    The neutralization of solutions containing significant quantities of fissile material at the Department of Energy's Savannah River Site and the subsequent transfer of the slurry to the High Level Waste (HLW) system is accomplished with the addition of a neutron poison to ensure nuclear safety. Gd, depleted U, Fe, and Mn have been used as poisons in the caustic precipitation of process solutions prior to discarding to HLW. However, the use of Gd is preferred since only small amounts of Gd are necessary for effective criticality control, smaller volumes of metal hydroxides are produced, and the volume of HLW glassmore » resulting from this process is minimized.« less

  3. Caustic Precipitation of Plutonium and Uranium with Gadolinium as a Neutron Poison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VISSER, ANN E.; BRONIKOWSKI, MICHAEL G.; RUDISILL, TRACY S.

    2005-10-18

    The caustic precipitation of plutonium (Pu) and uranium (U) from Pu and U-containing waste solutions has been investigated to determine whether gadolinium (Gd) could be used as a neutron poison for precipitation with greater than a fissile mass containing both Pu and enriched U. Precipitation experiments were performed using both process solution samples and simulant solutions with a range of 2.6-5.16 g/L U and 0-4.3:1 U:Pu. Analyses were performed on solutions at intermediate pH to determine the partitioning of elements for accident scenarios. When both Pu and U were present in the solution, precipitation began at pH 4.5 and bymore » pH 7, 99% of Pu and U had precipitated. When complete neutralization was achieved at pH > 14 with 1.2 M excess OH{sup -}, greater than 99% of Pu, U, and Gd had precipitated. At pH > 14, the particles sizes were larger and the distribution was a single mode. The ratio of hydrogen:fissile atoms in the precipitate was determined after both settling and centrifuging and indicates that sufficient water was associated with the precipitates to provide the needed neutron moderation for Gd to prevent a criticality in solutions containing up to 4.3:1 U:Pu and up to 5.16 g/L U.« less

  4. Caustic Precipitation of Plutonium and Uranium with Gadolinium as a Neutron Poison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ANN, VISSER

    2005-04-14

    The caustic precipitation of plutonium (Pu) and uranium (U) from Pu and U containing waste solutions has been investigated to determine whether gadolinium (Gd) could be used as a neutron poison for precipitation with greater than a fissile mass containing both Pu and enriched U. Precipitation experiments were performed using both actual samples and simulant solutions with a range of 2.6-5.16 g/L U and 0-4.3 to 1 U to Pu. Analyses were performed on solutions at intermediate pH to determine the partitioning of elements for accident scenarios. When both Pu and U were present in the solution, precipitation began atmore » pH 4.5 and by pH 7, 99 percent of Pu and U had precipitated. When complete neutralization was achieved at pH greater than 14 with 1.2 M excess OH-, greater than 99 percent of Pu, U, and Gd had precipitated. At pH greater than 14, the particles sizes were larger and the distribution was a single mode. The ratio of hydrogen to fissile atoms in the precipitate was determined after both settling and centrifuging and indicates that sufficient water was associated with the precipitates to provide the needed neutron moderation for Gd to prevent a criticality in solutions containing up to 4.3 to 1 U to Pu and up to 5.16 g/L U.« less

  5. Experience with soluble neutron poisons for criticality control at ICPP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, R.E.; Mortimer, S.R.

    1978-01-01

    Soluble neutron poisons assure criticality control in two of the headend fuel reprocessing systems at the Idaho Chemical Processing Plant. Soluble poisons have been used successfully since 1964 and will be employed in the projected new headend processes. The use of soluble poisons (1) greatly increases the process output (2) allows versatility in the size of fuel assemblies processed and (3) allows the practical reprocessing of some fuels. The safety limit for all fluids entering the U-Zr alloy dissolver is 3.6 g/liter boron. To allow for possible deviations in the measurement systems and drift between analytical sampling periods, the standardmore » practice is to use 3.85 g/liter boron as the lower limit. This dissolver has had 4000 successful hours of operation using soluble poisons. The electrolytic dissolution process depends on soluble gadolinium for criticality safety. This system is used to process high enriched uranium clad in stainless steel. Electrolytic dissolution takes advantage of the anodic corrosion that occurs when a large electrical current is passed through the fuel elements in a corrosive environment. Three control methods are used on each headend system. First, the poison is mixed according to standard operating procedures and the measurements are affirmed by the operator's supervisor. Second, the poisoned solution is stirred, sampled, analyzed, and the analysis reported while still in the mix tank. Finally, a Nuclear Poison Detection System (NPDS) must show an acceptable poison concentration before the solution can be transferred. The major disadvantage of using soluble poisons is the need for very sophisticated control systems and procedures, which require extensive checkout. The need for a poisoned primary heating and cooling system means a secondary system is needed as well. Experience has shown, however, that production enhancement more than makes up for the problems.« less

  6. NEUTRALIZATIONS OF HIGH ALUMINUM LOW URANIUM USED NUCLEAR FUEL SOLUTIONS CONTAINING GADOLINIUM AS A NEUTRON POISON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, K.

    2011-06-08

    H-Canyon will begin dissolving High Aluminum - Low Uranium (High Al/Low U) Used Nuclear Fuel (UNF) following approval by DOE which is anticipated in CY2011. High Al/Low U is an aluminum/enriched uranium UNF with small quantities of uranium relative to aluminum. The maximum enrichment level expected is 93% {sup 235}U. The High Al/Low U UNF will be dissolved in H-Canyon in a nitric acid/mercury/gadolinium solution. The resulting solution will be neutralized and transferred to Tank 39H in the Tank Farm. To confirm that the solution generated could be poisoned with Gd, neutralized, and discarded to the Savannah River Site (SRS)more » high level waste (HLW) system without undue nuclear safety concerns the caustic precipitation of simulant solutions was examined. Experiments were performed with three simulant solutions representative of the H-Canyon estimated concentrations in the final solutions after dissolution. The maximum U, Gd, and Al concentration were selected for testing from the range of solution compositions provided. Simulants were prepared in three different nitric acid concentrations, ranging from 0.5 to 1.5 M. The simulant solutions were neutralized to four different endpoints: (1) just before a solid phase was formed (pH 3.5-4), (2) the point where a solid phase was obtained, (3) 0.8 M free hydroxide, and (4) 1.2 M free hydroxide, using 50 wt % sodium hydroxide (NaOH). The settling behavior of the neutralized solutions was found to be slower compared to previous studies, with settling continuing over a one week period. Due to the high concentration of Al in these solutions, precipitation of solids was observed immediately upon addition of NaOH. Precipitation continued as additional NaOH was added, reaching a point where the mixture becomes almost completely solid due to the large amount of precipitate. As additional NaOH was added, some of the precipitate began to redissolve, and the solutions neutralized to the final two endpoints mixed easily and had expected densities of typical neutralized waste. Based on particle size and scanning electron microscopy analyses, the neutralized solids were found to be homogeneous and less than 20 microns in size. The majority of solids were less than 4 microns in size. Compared to previous studies, a larger percentage of the Gd was found to precipitate in the partially neutralized solutions (at pH 3.5-4). In addition the Gd:U mass ratio was found to be at least 1.0 in all of the solids obtained after partial or full neutralization. The hydrogen to U (H:U) molar ratios for two accident scenarios were also determined. The first was for transient neutralization and agitator failure. Experimentally this scenario was determined by measuring the H:U ratio of the settled solids. The minimum H:U molar ratio for solids from fully neutralized solutions was 388:1. The second accident scenario is for the solids drying out in an unagitiated pump box. Experimentally, this scenario was determined by measuring the H:U molar ratio in centrifuged solids. The minimum H:U atom ratios for centrifuged precipitated solids was 250:1. It was determined previously that a 30:1 H:Pu atom ratio was sufficient for a 1:1 Gd:Pu mass ratio. Assuming a 1:1 equivalence with {sup 239}Pu, the results of these experiments show Gd is a viable poison for neutralizing U/Gd solutions with the tested compositions.« less

  7. Investigation of Plutonium and Uranium Precipitation Behavior with Gadolinium as a Neutron Poison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visser, A.E.

    2003-10-17

    The caustic precipitation of plutonium (Pu)-containing solutions has been investigated to determine whether the presence of 3:1 uranium (U):Pu in solutions stored in the H-Canyon Facility at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) would adversely impact the use of gadolinium nitrate (Gd(NO3)3) as a neutron poison. In the past, this disposition strategy has been successfully used to discard solutions containing approximately 100 kg of Pu to the SRS high level waste (HLW) system. In the current experiments, gadolinium (as Gd(NO3)3) was added to samples of a 3:1 U:Pu solution, a surrogate 3 g/L U solution, andmore » a surrogate 3 g/L U with 1 g/L Pu solution. A series of experiments was then performed to observe and characterize the precipitate at selected pH values. Solids formed at pH 4.5 and were found to contain at least 50 percent of the U and 94 percent of the Pu, but only 6 percent of the Gd. As the pH of the solution increased (e.g., pH greater than 14 with 1.2 or 3.6 M sodium hydroxide (NaOH) excess), the precipitate contained greater than 99 percent of the Pu, U, and Gd. After the pH greater than 14 systems were undisturbed for one week, no significant changes were found in the composition of the solid or supernate for each sample. The solids were characterized by X-ray diffraction (XRD) which found sodium diuranate (Na2U2O7) and gadolinium hydroxide (Gd(OH)3) at pH 14. Thermal gravimetric analysis (TGA) indicated sufficient water molecules were present in the solids to thermalize the neutrons, a requirement for the use of Gd as a neutron poison. Scanning electron microscopy (SEM) was also performed and the accompanying back-scattering electron analysis (BSE) found Pu, U, and Gd compounds in all pH greater than 14 precipitate samples. The rheological properties of the slurries at pH greater than 14 were also investigated by performing precipitate settling rate studies and measuring the viscosity and density of the materials. Based on the results of these experiments, poisoning the Pu-U solutions with Gd and subsequent neutralization is a viable process for discarding the Pu to the SRS HLW system.« less

  8. Characterization of uranium surfaces machined with aqueous propylene glycol-borax or perchloroethylene-mineral oil coolants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cristy, S.S.; Bennett, R.K. Jr.; Dillon, J.J.

    1986-12-31

    The use of perchloroethylene (perc) as an ingredient in coolants for machining enriched uranium at the Oak Ridge Y-12 Plant has been discontinued because of environmental concerns. A new coolant was substituted in December 1985, which consists of an aqueous solution of propylene glycol with borax (sodium tetraborate) added as a nuclear poison and with a nitrite added as a corrosion inhibitor. Uranium surfaces machined using the two coolants were compared with respects to residual contamination, corrosion or corrosion potential, and with the aqueous propylene glycol-borax coolant was found to be better than that of enriched uranium machined with themore » perc-mineral oil coolant. The boron residues on the final-finished parts machined with the borax-containing coolant were not sufficient to cause problems in further processing. All evidence indicated that the enriched uranium surfaces machined with the borax-containing coolant will be as satisfactory as those machined with the perc coolant.« less

  9. Using the Time-Correlated Induced Fission Method to Simultaneously Measure the 235U Content and the Burnable Poison Content in LWR Fuel Assemblies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Root, M. A.; Menlove, H. O.; Lanza, R. C.

    The uranium neutron coincidence collar uses thermal neutron interrogation to verify the 235U mass in low-enriched uranium (LEU) fuel assemblies in fuel fabrication facilities. Burnable poisons are commonly added to nuclear fuel to increase the lifetime of the fuel. The high thermal neutron absorption by these poisons reduces the active neutron signal produced by the fuel. Burnable poison correction factors or fast-mode runs with Cd liners can help compensate for this effect, but the correction factors rely on operator declarations of burnable poison content, and fast-mode runs are time-consuming. Finally, this paper describes a new analysis method to measure themore » 235U mass and burnable poison content in LEU nuclear fuel simultaneously in a timely manner, without requiring additional hardware.« less

  10. Using the Time-Correlated Induced Fission Method to Simultaneously Measure the 235U Content and the Burnable Poison Content in LWR Fuel Assemblies

    DOE PAGES

    Root, M. A.; Menlove, H. O.; Lanza, R. C.; ...

    2018-03-21

    The uranium neutron coincidence collar uses thermal neutron interrogation to verify the 235U mass in low-enriched uranium (LEU) fuel assemblies in fuel fabrication facilities. Burnable poisons are commonly added to nuclear fuel to increase the lifetime of the fuel. The high thermal neutron absorption by these poisons reduces the active neutron signal produced by the fuel. Burnable poison correction factors or fast-mode runs with Cd liners can help compensate for this effect, but the correction factors rely on operator declarations of burnable poison content, and fast-mode runs are time-consuming. Finally, this paper describes a new analysis method to measure themore » 235U mass and burnable poison content in LEU nuclear fuel simultaneously in a timely manner, without requiring additional hardware.« less

  11. Uranium in the Wyoming Landscape Conservation Initiative study area, southwestern Wyoming

    USGS Publications Warehouse

    Wilson, Anna B.

    2015-10-20

    In the WLCI study area, all uranium areas except Poison Basin and Ketchum Buttes contain roll-front deposits in Eocene (56–34 Ma) sedimentary rocks. Tabular sandstone-hosted uranium deposits are also recognized within the study area.

  12. STRIPPING OF URANIUM FROM ORGANIC EXTRACTANTS

    DOEpatents

    Crouse, D.J. Jr.

    1962-09-01

    A liquid-liquid extraction method is given for recovering uranium values from uranium-containing solutions. Uranium is removed from a uranium-containing organic solution by contacting said organic solution with an aqueous ammonium carbonate solution substantially saturated in uranium values. A uranium- containing precipitate is thereby formed which is separated from the organic and aqueous phases. Uranium values are recovered from this separated precipitate. (AE C)

  13. URANIUM LEACHING AND RECOVERY PROCESS

    DOEpatents

    McClaine, L.A.

    1959-08-18

    A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.

  14. NEUTRONIC REACTOR FUEL COMPOSITION

    DOEpatents

    Thurber, W.C.

    1961-01-10

    Uranium-aluminum alloys in which boron is homogeneously dispersed by adding it as a nickel boride are described. These compositions have particular utility as fuels for neutronic reactors, boron being present as a burnable poison.

  15. METHOD OF RECOVERING URANIUM COMPOUNDS

    DOEpatents

    Poirier, R.H.

    1957-10-29

    S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.

  16. Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel

    DOEpatents

    Herrmann, Steven Douglas

    2014-05-27

    Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.

  17. Conversion of depleted uranium hexafluoride to a solid uranium compound

    DOEpatents

    Rothman, Alan B.; Graczyk, Donald G.; Essling, Alice M.; Horwitz, E. Philip

    2001-01-01

    A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

  18. Method of precipitating uranium from an aqueous solution and/or sediment

    DOEpatents

    Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin

    2013-08-20

    A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.

  19. Cleaning of uranium vs machine coolant formulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cristy, S.S.; Byrd, V.R.; Simandl, R.F.

    1984-10-01

    This study compares methods for cleaning uranium chips and the residues left on chips from alternate machine coolants based on propylene glycol-water mixtures with either borax, ammonium tetraborate, or triethanolamine tetraborate added as a nuclear poison. Residues left on uranium surfaces machined with perchloroethylene-mineral oil coolant and on surfaces machined with the borax-containing alternate coolant were also compared. In comparing machined surfaces, greater chlorine contamination was found on the surface of the perchloroethylene-mineral oil machined surfaces, but slightly greater oxidation was found on the surfaces machined with the alternate borax-containing coolant. Overall, the differences were small and a change tomore » the alternate coolant does not appear to constitute a significant threat to the integrity of machined uranium parts.« less

  20. Diffusive gradient in thin FILMS (DGT) compared with soil solution and labile uranium fraction for predicting uranium bioavailability to ryegrass.

    PubMed

    Duquène, L; Vandenhove, H; Tack, F; Van Hees, M; Wannijn, J

    2010-02-01

    The usefulness of uranium concentration in soil solution or recovered by selective extraction as unequivocal bioavailability indices for uranium uptake by plants is still unclear. The aim of the present study was to test if the uranium concentration measured by the diffusive gradient in thin films (DGT) technique is a relevant substitute for plant uranium availability in comparison to uranium concentration in the soil solution or uranium recovered by ammonium acetate. Ryegrass (Lolium perenne L. var. Melvina) is grown in greenhouse on a range of uranium spiked soils. The DGT-recovered uranium concentration (C(DGT)) was correlated with uranium concentration in the soil solution or with uranium recovered by ammonium acetate extraction. Plant uptake was better predicted by the summed soil solution concentrations of UO(2)(2+), uranyl carbonate complexes and UO(2)PO(4)(-). The DGT technique did not provide significant advantages over conventional methods to predict uranium uptake by plants. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. URANIUM RECOVERY PROCESS

    DOEpatents

    Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

    1959-02-10

    A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

  2. Thermionic System Evaluation Test: Ya-21U System Topaz International Program

    DTIC Science & Technology

    1996-07-01

    by enriched uranium dioxide (U02) fuel pellets, as illustrated by Figure 5. The work section of the converter contained 34 TFEs that provided power...power system. This feature permitted transportation of the highly enriched uranium oxide fuel in separate containers from the space power system and...by Figure 8. The radial reflector contained three safety and nine control drums. Each drum contained a section of boron carbide (B4C) neutron poison

  3. PROCESS OF RECOVERING URANIUM

    DOEpatents

    Carter, J.M.; Larson, C.E.

    1958-10-01

    A process is presented for recovering uranium values from calutron deposits. The process consists in treating such deposits to produce an oxidlzed acidic solution containing uranium together with the following imparities: Cu, Fe, Cr, Ni, Mn, Zn. The uranium is recovered from such an impurity-bearing solution by adjusting the pH of the solution to the range 1.5 to 3.0 and then treating the solution with hydrogen peroxide. This results in the precipitation of uranium peroxide which is substantially free of the metal impurities in the solution. The peroxide precipitate is then separated from the solution, washed, and calcined to produce uranium trioxide.

  4. PROCESS OF RECOVERING URANIUM

    DOEpatents

    Kilner, S.B.

    1959-12-29

    A method is presented for separating and recovering uranium from a complex mixure of impurities. The uranium is dissolved to produce an aqueous acidic solution including various impurities. In accordance with one method, with the uranium in the uranyl state, hydrogen cyanide is introduced into the solution to complex the impurities. Subsequently, ammonia is added to the solution to precipitate the uraniunn as ammonium diuranate away from the impurities in the solution. Alternatively, the uranium is precipitated by adding an alkaline metal hydroxide. In accordance with the second method, the uranium is reduced to the uranous state in the solution. The reduced solution is then treated with solid alkali metal cyanide sufficient to render the solution about 0.1 to 1.0 N in cyanide ions whereat cyanide complex ions of the metal impurities are produced and the uranium is simultaneously precipituted as uranous hydroxide. Alternatively, hydrogen cyanide may be added to the reduced solution and the uranium precipitated subsequently by adding ammonium hydroxide or an alkali metal hydroxide. Other refinements of the method are also disclosed.

  5. Removal of uranium from aqueous HF solutions

    DOEpatents

    Pulley, Howard; Seltzer, Steven F.

    1980-01-01

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

  6. Chemical treatment of low-grade uranium ores. Extraction of uranium from tricalcium phosphate; TRAITEMENT CHIMIQUE DES MINERAIS PAUVRES D'URANIUM. EXTRACTION DE L'URANIUM DU PHOSPHATE TRICALCIQUE (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mechelynck, Ph.

    1958-07-15

    After an examination of the different processes for the treatment of uranium minerals, it is concluded that the extraction of uranium by ion exchange is not applicable to hydrochloric acid solutions of phosphates. A sulfuric or phosphoric solution can be used. For solvent extraction of uranium, sulfuric or phosphoric solutions are the best, but hydrochloric solutions can be used. The cost of the solvents used would determine the cost of the operation. It is necessary, in the case of liquid-liquid extraction, to filter or decant the solution before extraction. (tr-auth)

  7. RECOVERY OF URANIUM FROM AQUEOUS PHOSPHATE-CONTAINING SOLUTIONS

    DOEpatents

    Igelsrud, I.; Stephen, E.F.

    1959-08-11

    ABS>A method is presented for recovering hexavalent uranium from an acidic phosphaie solution. A high molecular weight amine, such as a mixture of cccoanut oil amines, is added to the solution in such amount as to give a ratio of about 2000 parts by weight of amine to 1 part by weight of uranium. The uranium is precipitated with the amines and the whole filtered from the solution. The uranium is leached from the amine mass by washing with aqueous sodium carbonate solution; and the amine mixture is available for reuse.

  8. METHOD FOR DISSOLVING ZIRCONIUM-URANIUM COMPOSITIONS

    DOEpatents

    Gens, T.A.

    1961-07-18

    A method is descrioed for treating a zirconium-- uranium composition to form a stable solution from which uranium and other values may be extracted by contacting the composition with at least a 4 molar aqueous solution of ammonium fluoride at a temperature of about 100 deg C, adding a peroxide, in incremental amounts, to the heated solution throughout the period of dissolution until all of the uranium is converted to soluble uranyl salt, adding nitric acid to the resultant solution to form a solvent extraction feed solution to convert the uranyl salt to a solvent extractable state, and thereafter recovering the uranium and other desired values from the feed solution by solvent extraction.

  9. PROCESS FOR THE RECOVERY AND PURIFICATION OF URANIUM DEPOSITS

    DOEpatents

    Carter, J.M.; Kamen, M.D.

    1958-10-14

    A process is presented for recovering uranium values from UCl/sub 4/ deposits formed on calutrons. Such deposits are removed from the calutron parts by an aqueous wash solution which then contains the uranium values in addition to the following impurities: Ni, Cu, Fe, and Cr. This impurity bearing wash solution is treated with an oxidizing agent, and the oxidized solution is then treated with ammonia in order to precipitate the uranium as ammonium diuranate. The metal impurities of iron and chromium, which form insoluble hydroxides, are precipitated along with the uranium values. The precipitate is separated from the solution, dissolved in acid, and the solution again treated with ammonia and ammonium carbonate, which results in the precipitation of the metal impurities as hydroxides while the uranium values remain in solution.

  10. Uranium chemistry in stack solutions and leachates of phosphogypsum disposed at a coastal area in Cyprus.

    PubMed

    Lysandrou, M; Pashalidis, I

    2008-02-01

    The effect of the matrix composition (main constituents) on the concentration and chemical behavior of uranium in phosphogypsum stack solutions and leachates has been investigated. Solid and aqueous samples were taken from three different sub-areas of a phosphogypsum stack at a coastal area in Vasilikos (Cyprus). The sub-areas are characterized whether by their acidity (e.g. "aged" and "non-aged" phosphogypsum) or by their salt content, originating from pulping water during wet stacking or (after deposition) from the adjacent sea. Measurements in stack solutions and leachates showed that phosphogypsum characteristics affect both, the concentration and the chemical behavior of uranium in solution. Uranium concentration in solutions of increased salinity is up to three orders of magnitude higher than in solutions of low salinity and this is attributed to the effect of ionic strength on the solubility of phosphogypsum. Modelling showed that uranium in stack solutions is predominantly present in the form of uranium(VI) phosphate complexes (e.g. UO(2)(H(2)PO(4))(2), UO(2)HPO(4)), whereas in leachates uranium(VI) fluoro complexes (e.g. UO(2)F(2), UO(2)F(3)(-)) are predominant in solution. The latter indicates that elution of uranium from phosphogypsum takes places most probably in the form of fluoro complexes. Both, effective elution by saline water and direct migration of uranium to the sea, where it forms very stable uranium(VI) carbonato complexes, indicate that the adjacent sea will be the final receptor of uranium released from Vasilikos phosphogypsum.

  11. GLC analysis of poison ivy and poison oak urushiol components in vegetable oil preparations.

    PubMed

    Elsohly, M A; Turner, C E

    1980-05-01

    A procedure is described for the analysis of urushiol content of pharmaceutical preparations containing extracts of poison ivy (Toxicodendron radicans) and poison oak (T. diversilobum) in vegetable oils. The procedure involves extraction of the urushiols from the oily solutions using 90% methanol in water followed by GLC analysis of the extracts. Recoveries of both poison ivy and poison oak urushiols from solutions in corn oil, olive oil, sesame seed oil, and cottonseed oil were calculated. Correlation coefficients (r2) ranged from 0.97 to 1.00, and the coefficients of variations ranged from 3.08 to 7.90%.

  12. RECOVERY OF URANIUM AND THORIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Calkins, G.D.

    1958-06-10

    >A process is described for the recovery of uranium and thorium from monazite sand, which is frequently processed by treating it with a hot sodium hydroxide solution whereby a precipitate forms consisting mainly of oxides or hydroxides of the rare earths, thorium and uranium. The precipitate is dissolved in mineral acid, and the acid solution is then neutralized to a pH value of between 5.2 and 6.2 whereby both the uranium and thorium precipitate as the hydroxides, while substantially all the rare earth metal values present remain in the solution. The uranium and thoriunn can then be separated by dissolving the precipitate in a solution containing a mixture of alkali carbonate and alkali bicarbonate: and contacting the carbonate solution with a strong-base anion exchange resin whereby the uranium values are adsorbed on the resin while the thorium remains in solution.

  13. PROCESSES OF RECLAIMING URANIUM FROM SOLUTIONS

    DOEpatents

    Zumwalt, L.R.

    1959-02-10

    A process is described for reclaiming residual enriched uranium from calutron wash solutions containing Fe, Cr, Cu, Ni, and Mn as impurities. The solution is adjusted to a pH of between 2 and 4 and is contacted with a metallic reducing agent, such as iron or zinc, in order to reduce the copper to metal and thereby remove it from the solution. At the same time the uranium present is reduced to the uranous state The solution is then contacted with a precipitate of zinc hydroxide or barium carbonate in order to precipitate and carry uranium, iron, and chromium away from the nickel and manganese ions in the solution. The uranium is then recovered fronm this precipitate.

  14. Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies.

    PubMed

    Parab, Harshala; Joshi, Shreeram; Shenoy, Niyoti; Verma, Rakesh; Lali, Arvind; Sudersanan, M

    2005-07-01

    Basic aspects of uranium adsorption by coir pith have been investigated by batch equilibration. The influence of different experimental parameters such as final solution pH, adsorbent dosage, sorption time, temperature and various concentrations of uranium on uptake were evaluated. Maximum uranium adsorption was observed in the pH range 4.0-6.0. The Freundlich and Langmuir adsorption models were used for the mathematical description of the adsorption equilibrium. The equilibrium data fitted well to both the equilibrium models in the studied concentration range of uranium (200-800 mg/l) and temperatures (305-336 K). The coir pith exhibited the highest uptake capacity for uranium at 317 K, at the final solution pH value of 4.3 and at the initial uranium concentration of 800 mg/l. The kinetics of the adsorption process followed a second-order adsorption. The adsorbent used proved to be suitable for removal of uranium from aqueous solutions. 0.2 N HCl was effective in uranium desorption. The results indicated that the naturally abundant coir pith of otherwise nuisance value exhibited considerable potential for application in removal of uranium from aqueous solution.

  15. URANIUM RECOVERY AND PURIFICATION PROCESS AND PRODUCTION OF HIGH PURITY URANIUM TETRAFLUORIDE

    DOEpatents

    Bailes, R.H.; Long, R.S.; Grinstead, R.R.

    1957-09-17

    A process is described wherein an anionic exchange technique is employed to separate uramium from a large variety of impurities. Very efficient and economical purification of contamimated uranium can be achieved by treatment of the contaminated uranium to produce a solution containing a high concentration of chloride. Under these conditions the uranium exists as an aniomic chloride complex. Then the uranium chloride complex is adsorbed from the solution on an aniomic exchange resin, whereby a portion of the impurities remain in the solution and others are retained with the uramium by the resin. The adsorbed impurities are then removed by washing the resin with pure concentrated hydrochloric acid, after which operation the uranium is eluted with pure water yielding an acidic uranyl chloride solution of high purity.

  16. SEPARATION OF THORIUM FROM URANIUM

    DOEpatents

    Bane, R.W.

    1959-09-01

    A description is given for the separation of thorium from uranium by forming an aqueous acidic solution containing ionic species of thorium, uranyl uranium, and hydroxylamine, flowing the solution through a column containing the phenol-formaldehyde type cation exchange resin to selectively adsorb substantially all the thorium values and a portion of the uranium values, flowing a dilute solution of hydrochloric acid through the column to desorb the uranium values, and then flowing a dilute aqueous acidic solution containing an ion, such as bisulfate, which has a complexing effect upon thortum through the column to desorb substantially all of the thorium.

  17. DISSOLUTION OF ZIRCONIUM-CONTAINING FUEL ELEMENTS

    DOEpatents

    Horn, F.L.

    1961-12-12

    Uranium is recovered from spent uranium fuel elements containing or clad with zirconium. These fuel elements are placed in an anhydrous solution of hydrogen fluoride and nitrogen dioxide. Within this system uranium forms a soluble complex and zirconium forms an insoluble complex. The uranium can then be separated, treated, and removed from solution as uranium hexafluoride. (AEC)

  18. Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Dan

    2013-10-01

    An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averagingmore » procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.« less

  19. Role of U(VI) Reduction by Geobacter species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lovely, Derrick

    2008-12-23

    Previous work had suggested that Acholeplasma palmae has a higher capacity for uranium sorption than other bacteria studied. Sorption studies were performed with cells in suspension in various solutions containing uranium, and results were used to generate uranium-biosorption isotherms. Results from this study showed that the U(VI) sorption capacity of G. uraniireducens was relatively similar in simple solutions, such as sodium chloride or bicarbonate. However, this ability to sorb uranium significantly decreased in groundwater. This suggested that certain chemicals present in the groundwater were inhibiting the ability of cell components of Geobacter to adsorb uranium. It was hypothesized that uraniummore » removal would also be diminished in the bicarbonate solution. However, this did not seem to be the case, as uranium was as easily removed in the bicarbonate solution as in the sodium chloride solution.« less

  20. ELECTROLYTIC PRODUCTION OF URANIUM TETRAFLUORIDE

    DOEpatents

    Lofthouse, E.

    1954-08-31

    This patent relates to electrolytic methods for the production of uranium tetrafluoride. According to the present invention a process for the production of uranium tetrafluoride comprises submitting to electrolysis an aqueous solution of uranyl fluoride containing free hydrofluoric acid. Advantageously the aqueous solution of uranyl fluoride is obtained by dissolving uranium hexafluoride in water. On electrolysis, the uranyl ions are reduced to uranous tons at the cathode and immediately combine with the fluoride ions in solution to form the insoluble uranium tetrafluoride which is precipitated.

  1. Conceptual Core Analysis of Long Life PWR Utilizing Thorium-Uranium Fuel Cycle

    NASA Astrophysics Data System (ADS)

    Rouf; Su'ud, Zaki

    2016-08-01

    Conceptual core analysis of long life PWR utilizing thorium-uranium based fuel has conducted. The purpose of this study is to evaluate neutronic behavior of reactor core using combined thorium and enriched uranium fuel. Based on this fuel composition, reactor core have higher conversion ratio rather than conventional fuel which could give longer operation length. This simulation performed using SRAC Code System based on library SRACLIB-JDL32. The calculation carried out for (Th-U)O2 and (Th-U)C fuel with uranium composition 30 - 40% and gadolinium (Gd2O3) as burnable poison 0,0125%. The fuel composition adjusted to obtain burn up length 10 - 15 years under thermal power 600 - 1000 MWt. The key properties such as uranium enrichment, fuel volume fraction, percentage of uranium are evaluated. Core calculation on this study adopted R-Z geometry divided by 3 region, each region have different uranium enrichment. The result show multiplication factor every burn up step for 15 years operation length, power distribution behavior, power peaking factor, and conversion ratio. The optimum core design achieved when thermal power 600 MWt, percentage of uranium 35%, U-235 enrichment 11 - 13%, with 14 years operation length, axial and radial power peaking factor about 1.5 and 1.2 respectively.

  2. ELECTROCHEMICAL DECONTAMINATION AND RECOVERY OF URANIUM VALUES

    DOEpatents

    McLaren, J.A.; Goode, J.H.

    1958-05-13

    An electrochemical process is described for separating uranium from fission products. The method comprises subjecting the mass of uranium to anodic dissolution in an electrolytic cell containing aqueous alkali bicarbonate solution as its electrolyte, thereby promoting a settling from the solution of a solid sludge from about the electrodes and separating the resulting electrolyte solution containing the anodically dissolved uranium from the sludge which contains the rare earth fission products.

  3. SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS

    DOEpatents

    Nicholls, C.M.; Wells, I.; Spence, R.

    1959-10-13

    The separation of uranium and plutonium from neutronirradiated uranium is described. The neutron-irradiated uranium is dissolved in nitric acid to provide an aqueous solution 3N in nitric acid. The fission products of the solution are extruded by treating the solution with dibutyl carbitol substantially 1.8N in nitric acid. The organic solvent phase is separated and neutralized with ammonium hydroxide and the plutonium reduced with hydroxylamine base to the trivalent state. Treatment of the mixture with saturated ammonium nitrate extracts the reduced plutonium and leaves the uranium in the organic solvent.

  4. METHOD OF APPLYING COPPER COATINGS TO URANIUM

    DOEpatents

    Gray, A.G.

    1959-07-14

    A method is presented for protecting metallic uranium, which comprises anodic etching of the uranium in an aqueous phosphoric acid solution containing chloride ions, cleaning the etched uranium in aqueous nitric acid solution, promptly electro-plating the cleaned uranium in a copper electro-plating bath, and then electro-plating thereupon lead, tin, zinc, cadmium, chromium or nickel from an aqueous electro-plating bath.

  5. Immobilization of uranium into magnetite from aqueous solution by electrodepositing approach.

    PubMed

    Lu, Bing-Qing; Li, Mi; Zhang, Xiao-Wen; Huang, Chun-Mei; Wu, Xiao-Yan; Fang, Qi

    2018-02-05

    Immobilization of uranium into magnetite (Fe 3 O 4 ), which was generated from metallic iron by electrochemical method, was proposed to rapidly remove uranium from aqueous solution. The effects of electrochemical parameters such as electrode materials, voltage, electrode gap, reaction time and pH value on the crystallization of Fe 3 O 4 and uranium removal efficiencies were investigated. More than 90% uranium in the solution was precipitated with Fe 3 O 4 under laboratory conditions when uranium concentration range from 0.5mg/L to 10mg/L. The Fe 3 O 4 crystallization mechanism and immobilization of uranium was proved by XPS, XRD, TEM, FTIR and VSM methods. The results indicated that the cationic (including Fe 2+ , Fe 3+ and U(VI)) migrate to cathode side under the electric field and the uranium was incorporated or adsorbed by Fe 3 O 4 which was generated at cathode while the pH ranges between 2-7. The uranium-containing precipitate of Fe 3 O 4 can exist stably at the acid concentration below 60g/L. Furthermore, the precipitate may be used as valuable resources for uranium or iron recycling, which resulted in no secondary pollution in the removal of uranium from aqueous solution. Copyright © 2017. Published by Elsevier B.V.

  6. URANIUM RECOVERY PROCESS

    DOEpatents

    Hyman, H.H.; Dreher, J.L.

    1959-07-01

    The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.

  7. Non-Invasive Acoustic-Based Monitoring of Heavy Water and Uranium Process Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantea, Cristian; Sinha, Dipen N.; Lakis, Rollin Evan

    This presentation includes slides on Project Goals; Heavy Water Production Monitoring: A New Challenge for the IAEA; Noninvasive Measurements in SFAI Cell; Large Scatter in Literature Values; Large Scatter in Literature Values; Highest Precision Sound Speed Data Available: New Standard in H/D; ~400 pts of data; Noninvasive Measurements in SFAI Cell; New funding from NA241 SGTech; Uranium Solution Monitoring: Inspired by IAEA Challenge in Kazakhstan; Non-Invasive Acoustic-Based Monitoring of Uranium in Solutions; Non-Invasive Acoustic-Based Monitoring of Uranium in Solutions; and finally a summary.

  8. Quantification of Kinetic Rate Law Parameters of Uranium Release from Sodium Autunite as a Function of Aqueous Bicarbonate Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn M.

    2013-09-05

    ABSTRACT: Hydrogen carbonate is one of the most significant components within the uranium geochemical cycle. In aqueous solutions, hydrogen carbonate forms strong complexes with uranium. As such, aqueous bicarbonate may significantly increase the rate of uranium release from uranium minerals. Quantifying the relationship of aqueous hydrogen carbonate solutions to the rate of uranium release during dissolution is critical to understanding the long-term fate of uranium within the environment. Single-pass flow-through (SPTF) experiments were conducted to estimate the rate of uranium release from Na meta-autunite as a function of bicarbonate solutions (0.0005-0.003 M) under the pH range of 6-11 and temperaturesmore » of 5-60oC. Consistent with the results of previous investigation, the rate of uranium release from sodium autunite exhibited minimal dependency on temperature; but were strongly dependent on pH and increasing concentrations of bicarbonate solutions. Most notably at pH 7, the rate of uranium release exhibited 370 fold increases relative to the rate of uranium release in the absence of bicarbonate. However, the effect of increasing concentrations of bicarbonate solutions on the release of uranium was significantly less under higher pH conditions. It is postulated that at high pH values, surface sites are saturated with carbonate, thus the addition of more bicarbonate would have less effect on uranium release. Results indicate the activation energies were unaffected by temperature and bicarbonate concentration variations, but were strongly dependent on pH conditions. As pH increased from 6 to 11, activation energy values were observed to decrease from 29.94 kJ mol-1 to 13.07 kJ mol-1. The calculated activation energies suggest a surface controlled dissolution mechanism.« less

  9. Highly Efficient Interception and Precipitation of Uranium(VI) from Aqueous Solution by Iron-Electrocoagulation Combined with Cooperative Chelation by Organic Ligands.

    PubMed

    Li, Peng; Zhun, Bao; Wang, Xuegang; Liao, PingPing; Wang, Guanghui; Wang, Lizhang; Guo, Yadan; Zhang, Weimin

    2017-12-19

    A new strategy combining iron-electrocoagulation and organic ligands (OGLs) cooperative chelation was proposed to screen and precipitate low concentrations (0-18.52 μmol/L) of uranium contaminant in aqueous solution. We hypothesized that OGLs with amino, hydroxyl, and carboxyl groups hydrophobically/hydrophilically would realize precuring of uranyl ion at pH < 3.0, and the following iron-electrocoagulation would achieve faster and more efficient uranium precipitation. Experimentally, the strategy demonstrated highly efficient uranium(VI) precipitation efficiency, especially with hydrophilic macromolecular OGLs. The uranium removal efficiency at optimized experimental condition reached 99.65%. The decrease of zeta potential and the lattice enwrapping between U-OGLs chelates and flocculation precursor were ascribed to the enhanced uranium precipitation activity. Uranium was precipitated as oxides of U(VI) or higher valences that were easily captured in aggregated micelles under low operation current potential. The actual uranium tailing wastewater was treated, and a satisfied uranium removal efficiency of 99.02% was discovered. After elution of the precipitated flocs, a concentrated uranium solution (up to 106.52 μmol/L) with very few other metallic impurities was obtained. Therefore, the proposed strategy could remove uranium and concentrate it concurrently. This work could provide new insights into the purification and recovery of uranium from aqueous solutions in a cost-effective and environmentally friendly process.

  10. PROCESSES OF RECOVERING URANIUM FROM A CALUTRON

    DOEpatents

    Baird, D.O.; Zumwalt, L.R.

    1958-07-15

    An improved process is described for recovering the residue of a uranium compound which has been subjected to treatment in a calutron, from the parts of the calutron disposed in the source region upon which the residue is deposited. The process may be utilized when the uranium compound adheres to a surface containing metals of the group consisting of copper, iron, chromium, and nickel. The steps comprise washing the surface with an aqueous acidic oxidizing solvent for the uranium whereby there is obtained an acidic aqueous Solution containing uranium as uranyl ions and metals of said group as impurities, treating the acidic solution with sodium acetate in the presenee of added sodium nitrate to precipitate the uranium as sodium uranyl acetate away from the impurities in the solution, and separating the sodium uranyl acetate from the solution.

  11. CATALYZED OXIDATION OF URANIUM IN CARBONATE SOLUTIONS

    DOEpatents

    Clifford, W.E.

    1962-05-29

    A process is given wherein carbonate solutions are employed to leach uranium from ores and the like containing lower valent uranium species by utilizing catalytic amounts of copper in the presence of ammonia therein and simultaneously supplying an oxidizing agent thereto. The catalysis accelerates rate of dissolution and increases recovery of uranium from the ore. (AEC)

  12. Biosorption characteristics of Uranium (VI) from aqueous solution by pollen pini.

    PubMed

    Wang, Feihong; Tan, Lichao; Liu, Qi; Li, Rumin; Li, Zhanshuang; Zhang, Hongsen; Hu, Songxia; Liu, Lianhe; Wang, Jun

    2015-12-01

    Uranium biosorption from aqueous solutions by pollen pini (Pinus massoniana pollen) was studied in a bath system. The biosorbent was characterized by Fourier-transform infrared spectroscopy and scanning electron microscope. The influences of pH, contact time and initial uranium concentration at room temperature were investigated and the experimental curves were obtained. The pollen pini exhibited the highest uranium sorption capacity at pH 5.0 after 2 h contact. At pH 2.5 pollen pini also exhibited a good uranium loading capacity (>15%). Therefore biosorption characteristics of uranium from aqueous solution onto pollen pini were examined at pH 2.5 as well. The kinetics followed a pseudo-second-order rate equation and adsorption process was well fitted with the Freundlich isotherm at both pH. The adsorption of uranium by the biosorbent was confirmed by energy dispersive spectroscopy. The present study suggested that pollen pini could be a suitable biosorbent for biosorption uranium (VI) from aqueous solution in a fast, low cost and convenient approach. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. URANIUM SEPARATION PROCESS

    DOEpatents

    McVey, W.H.; Reas, W.H.

    1959-03-10

    The separation of uranium from an aqueous solution containing a water soluble uranyl salt is described. The process involves adding an alkali thiocyanate to the aqueous solution, contacting the resulting solution with methyl isobutyl ketons and separating the resulting aqueous and organic phase. The uranium is extracted in the organic phase as UO/sub 2/(SCN)/sub/.

  14. PROCESS OF PURIFYING URANIUM

    DOEpatents

    Seaborg, G.T.; Orlemann, E.F.; Jensen, L.H.

    1958-12-23

    A method of obtaining substantially pure uranium from a uranium composition contaminated with light element impurities such as sodium, magnesium, beryllium, and the like is described. An acidic aqueous solution containing tetravalent uranium is treated with a soluble molybdate to form insoluble uranous molybdate which is removed. This material after washing is dissolved in concentrated nitric acid to obtaln a uranyl nitrate solution from which highly purified uranium is obtained by extraction with ether.

  15. SOLVENT EXTRACTION PROCESS FOR URANIUM FROM CHLORIDE SOLUTIONS

    DOEpatents

    Blake, C.A. Jr.; Brown, K.B.; Horner, D.E.

    1960-05-24

    An improvement was made in a uranium extraction process wherein the organic extractant is a phosphine oxide. An aqueous solution containing phosphate ions or sulfate ions together with uranium is provided with a source of chloride ions during the extraction step. The presence of the chloride ions enables a phosphine oxide to extract uranium in the presence of strong uranium- complexing ions such as phosphate or sulfate ions.

  16. The Application of U-Np Fuel and {sup 6}Li Burnable Poison for Space Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikitin, Konstantin L.; Saito, Masaki; Artisyuk, Vladimir V.

    2003-11-15

    The possible application of {sup 6}Li as a burnable poison and U-Np nitride as a fuel for space nuclear reactors has been studied. The analysis was performed for an infinite lattice with a leakage in the form of buckling and (U-Np)N fuel with 20% uranium enrichment. The combination of {sup 7}Li as a coolant and {sup 6}Li as a burnable poison results in a favorable criticality behavior during burnup. The parameters taken into consideration include the different fuel and coolant compositions, the form of absorber material, and the various absorber mass and concentrations. It was found that absorption properties ofmore » {sup 6}Li allow reaching the burnup value up to 67 GWd/tHM while reactivity swing is comparable with {beta}{sub eff}. The corresponding reactor lifetime is {approx}10 to 30 yr.« less

  17. Preparation of carbon coated Fe3O4 nanoparticles for magnetic separation of uranium

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofei; Wang, Jun

    2018-01-01

    Uranium(VI) was removed from aqueous solutions using carbon coated Fe3O4 nanoparticles (Fe3O4@C). Batch experiments were conducted to study the effects of initial pH, shaking time and temperature on uranium sorption efficiency. It was found that the maximum adsorption capacity of the Fe3O4@C toward uranium(VI) was ∼120.20 mg g-1 when the initial uranium(VI) concentration was 100 mg L-1, displaying a high efficiency for the removal of uranium(VI) ions. Kinetics of the uranium(VI) removal is found to follow pseudo-second-order rate equation. In addition, the uranium(VI)-loaded Fe3O4@C nanoparticles can be recovered easily from aqueous solution by magnetic separation and regenerated by acid treatment. Present study suggested that magnetic Fe3O4@C composite particles can be used as an effective and recyclable adsorbent for the removal of uranium(VI) from aqueous solutions.

  18. Can we predict uranium bioavailability based on soil parameters? Part 2: soil solution uranium concentration is not a good bioavailability index.

    PubMed

    Vandenhove, H; Van Hees, M; Wannijn, J; Wouters, K; Wang, L

    2007-01-01

    The present study aimed to quantify the influence of soil parameters on uranium uptake by ryegrass. Ryegrass was established on eighteen distinct soils, spiked with (238)U. Uranium soil-to-plant transfer factors (TF) ranged from 0.0003 to 0.0340kgkg(-1). There was no significant relation between the U soil-to-plant transfer (or total U uptake or flux) and the uranium concentration in the soil solution or any other soil factor measured, nor with the U recovered following selective soil extractions. Multiple linear regression analysis resulted in a significant though complex model explaining up to 99% of variation in TF. The influence of uranium speciation on uranium uptake observed was featured: UO(2)(+2), uranyl carbonate complexes and UO(2)PO(4)(-) seem the U species being preferentially taken up by the roots and transferred to the shoots. Improved correlations were obtained when relating the uranium TF with the summed soil solution concentrations of mentioned uranium species.

  19. Method for the recovery of uranium values from uranium tetrafluoride

    DOEpatents

    Kreuzmann, Alvin B.

    1983-01-01

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  20. Method for the recovery of uranium values from uranium tetrafluoride

    DOEpatents

    Kreuzmann, A.B.

    1982-10-27

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  1. PROCESS FOR UTILIZING ORGANIC ORTHOPHOSPHATE EXTRACTANTS

    DOEpatents

    Grinstead, R.R.

    1958-11-11

    A process is presented for recovering uranium from its ores, the steps comprising producing the uranium in solution in the trivalent state, extracting the uranium from solution in an lmmiscible organic solvent extract phase which lncludes mono and dialkyl orthophosphorlc acid esters having a varying number of carbon atoms on the alkyl substituent, amd recovering the uranium from tbe extract phase.

  2. METHOD FOR PURIFYING URANIUM

    DOEpatents

    Kennedy, J.W.; Segre, E.G.

    1958-08-26

    A method is presented for obtaining a compound of uranium in an extremely pure state and in such a condition that it can be used in determinations of the isotopic composition of uranium. Uranium deposited in calutron receivers is removed therefrom by washing with cold nitric acid and the resulting solution, coataining uranium and trace amounts of various impurities, such as Fe, Ag, Zn, Pb, and Ni, is then subjected to various analytical manipulations to obtain an impurity-free uranium containing solution. This solution is then evaporated on a platinum disk and the residue is ignited converting it to U2/sub 3//sub 8/. The platinum disk having such a thin film of pure U/sub 2/O/sub 8/ is suitable for use with isotopic determination techaiques.

  3. QUANTITATIVE DETERMINATION OF THE URANIUM CONTENT OF URANIUM ORES TECHNOLOGICAL PRODUCTS BY ION EXCHANGE-COMPLEXON SEPARATION (in Hungarian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fodor, M.

    An ion exchange-complexion separation meihod was developed for the removal of interfering elements in the determination of the uranium content of recovery solutions. By adding (ethylenediamine)tetraacetic acid to the solution, most of the interfering elements can be brought into an anionic complex. Adjusting the soluiion to pH 7 and letting it pass through an Amberlite IRC-50 type cation exchanger of hydrogen form, the uranium remains on the column whereas the interfering elements pass into the effluent. The method was successfully applied in analyzing the recovery solutions of uranium ores. (auth)

  4. URANIUM RECOVERY PROCESS

    DOEpatents

    Yeager, J.H.

    1958-08-12

    In the prior art processing of uranium ores, the ore is flrst digested with nitric acid and filtered, and the uranium values are then extracted tom the filtrate by contacting with an organic solvent. The insoluble residue has been processed separately in order to recover any uranium which it might contain. The improvement consists in contacting a slurry, composed of both solution and residue, with the organic solvent prior to filtration. Tbe result is that uranium values contained in the residue are extracted along with the uranium values contained th the solution in one step.

  5. Advanced remediation of uranium-contaminated soil.

    PubMed

    Kim, S S; Han, G S; Kim, G N; Koo, D S; Kim, I G; Choi, J W

    2016-11-01

    The existing decontamination method using electrokinetic equipment after acidic washing for uranium-contaminated soil requires a long decontamination time and a significant amount of electric power. However, after soil washing, with a sulfuric acid solution and an oxidant at 65 °C, the removal of the muddy solution using a 100 mesh sieve can decrease the radioactivity of the remaining coarse soil to the clearance level. Therefore, only a small amount of fine soil collected from the muddy solution requires the electrokinetic process for its decontamination. Furthermore, it is found that the selective removal of uranium from the sulfuric washing solution is not obtained using an anion exchanger but rather using a cation exchanger, unexpectedly. More than 90% of the uranium in the soil washing solutions is adsorbed on the S-950 resin, and 87% of the uranium adsorbed on S-950 is desorbed by washing with a 0.5 M Na 2 CO 3 solution at 60 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. FLAME DENITRATION AND REDUCTION OF URANIUM NITRATE TO URANIUM DIOXIDE

    DOEpatents

    Hedley, W.H.; Roehrs, R.J.; Henderson, C.M.

    1962-06-26

    A process is given for converting uranyl nitrate solution to uranium dioxide. The process comprises spraying fine droplets of aqueous uranyl nitrate solution into a hightemperature hydrocarbon flame, said flame being deficient in oxygen approximately 30%, retaining the feed in the flame for a sufficient length of time to reduce the nitrate to the dioxide, and recovering uranium dioxide. (AEC)

  7. Can we predict uranium bioavailability based on soil parameters? Part 1: effect of soil parameters on soil solution uranium concentration.

    PubMed

    Vandenhove, H; Van Hees, M; Wouters, K; Wannijn, J

    2007-01-01

    Present study aims to quantify the influence of soil parameters on soil solution uranium concentration for (238)U spiked soils. Eighteen soils collected under pasture were selected such that they covered a wide range for those parameters hypothesised as being potentially important in determining U sorption. Maximum soil solution uranium concentrations were observed at alkaline pH, high inorganic carbon content and low cation exchange capacity, organic matter content, clay content, amorphous Fe and phosphate levels. Except for the significant correlation between the solid-liquid distribution coefficients (K(d), L kg(-1)) and the organic matter content (R(2)=0.70) and amorphous Fe content (R(2)=0.63), there was no single soil parameter significantly explaining the soil solution uranium concentration (which varied 100-fold). Above pH=6, log(K(d)) was linearly related with pH [log(K(d))=-1.18 pH+10.8, R(2)=0.65]. Multiple linear regression analysis did result in improved predictions of the soil solution uranium concentration but the model was complex.

  8. Recovery of uranium from an irradiated solid target after removal of molybdenum-99 produced from the irradiated target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reilly, Sean Douglas; May, Iain; Copping, Roy

    A process for minimizing waste and maximizing utilization of uranium involves recovering uranium from an irradiated solid target after separating the medical isotope product, molybdenum-99, produced from the irradiated target. The process includes irradiating a solid target comprising uranium to produce fission products comprising molybdenum-99, and thereafter dissolving the target and conditioning the solution to prepare an aqueous nitric acid solution containing irradiated uranium. The acidic solution is then contacted with a solid sorbent whereby molybdenum-99 remains adsorbed to the sorbent for subsequent recovery. The uranium passes through the sorbent. The concentrations of acid and uranium are then adjusted tomore » concentrations suitable for crystallization of uranyl nitrate hydrates. After inducing the crystallization, the uranyl nitrate hydrates are separated from a supernatant. The process results in the purification of uranyl nitrate hydrates from fission products and other contaminants. The uranium is therefore available for reuse, storage, or disposal.« less

  9. Dibutyl Phosphoric Acid Solubility in High-Acid, Uranium-Bearing Solutions at SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.A.

    1998-10-02

    The Savannah River Site has enriched uranium (EU) solution which has been stored for almost 10 years since being purified in the second uranium cycle of the H area solvent extraction process. The concentrations in solution are approximately 6 g/L U and about 0.1 M nitric acid. Residual tributylphosphate in the solutions has slowly hydrolyzed to form dibutyl phosphoric acid (HDBP) at concentrations averaging 50 mg/L. Uranium is known to form compounds with the dibutylphosphate ion (DBP) which have limited solubility. The potential to form uranium-DBP solids raises a nuclear criticality safety issue. Prior SRTC tests (WSRC-TR-98-00188) showed that U-DBPmore » solids precipitate at concentrations potentially attainable during the storage of enriched uranium solutions. Furthermore, evaporation of the existing EUS solution without additional acidification could result in the precipitation of U-DBP solids if the DBP concentration in the resulting solution exceeds 110 mg/L at ambient temperature. The same potential exists for evaporation of unwashed 1CU solutions. As a follow-up to the earlier studies, SRTC studied the solubility limits for solutions containing acid concentrations above 0.5M HNO3. The data obtained in these tests reveals a shift to higher levels of DBP solubility above 0.5M HNO3 for both 6 g/L and 12 g/L uranium solutions. Analysis of U-DBP solids from the tests identified a mixture of different molecular structures for the solids created. The analysis distinguished UO2(DBP)2 as the dominant compound present at low acid concentrations. As the acid concentration increases, the crystalline UO2(DBP)2 shows molecular substitutions and an increase in amorphous content. Further analysis by methods not available at SRS will be needed to better identify the specific compounds present. This data indicates that acidification prior to evaporation can be used to increase the margin of safety for the storage of the EUS solutions. Subsequent experimentation evaluated options for absorbing HDBP from solution using either activated carbon or anion exchange resin. The activated carbon outperformed the anion exchange resin. Activated carbon absorbs DBP rapidly and has demonstrated the capability of absorbing 15 mg of DBP per gram of activated carbon. Analytical results also show that activated carbon absorbs uranium up to 17 mg per gram of carbon. It is speculated that the uranium absorbed is part of a soluble U-DBP complex that has been absorbed. Additional testing must still be performed to 1) establish absorption limits for uranium for anion exchange resin, 2) evaluate desorption characteristics of uranium and DBP, and 3) study the possibility of re-using the absorbent.« less

  10. PROCESSING OF MONAZITE SAND

    DOEpatents

    Calkins, G.D.; Bohlmann, E.G.

    1957-12-01

    A process for the recovery of thorium, uranium, and rare earths from monazite sands is presented. The sands are first digested and dissolved in concentrated NaOH, and the solution is then diluted causing precipitation of uranium, thorium and rare earth hydroxides. The precipitate is collected and dissolved in HCl, and the pH of this solution is adjusted to about 6, precipitating the hydroxides of thorium and uranium but leaving the rare earths in solution. The rare earths are then separated from the solution by precipitation at a still higher pH. The thorium and uranium containing precipitate is redissolved in HNO/sub 3/ and the two elements are separated by extraction into tributyl phosphate and back extraction with a weakly acidic solution to remove the thorium.

  11. URANIUM DECONTAMINATION WITH RESPECT TO ZIRCONIUM

    DOEpatents

    Vogler, S.; Beederman, M.

    1961-05-01

    A process is given for separating uranium values from a nitric acid aqueous solution containing uranyl values, zirconium values and tetravalent plutonium values. The process comprises contacting said solution with a substantially water-immiscible liquid organic solvent containing alkyl phosphate, separating an organic extract phase containing the uranium, zirconium, and tetravalent plutonium values from an aqueous raffinate, contacting said organic extract phase with an aqueous solution 2M to 7M in nitric acid and also containing an oxalate ion-containing substance, and separating a uranium- containing organic raffinate from aqueous zirconium- and plutonium-containing extract phase.

  12. CONTINUOUS PRECIPITATION METHOD FOR CONVERSION OF URANYL NITRATE TO URANIUM HEXAFLUORIDE

    DOEpatents

    Reinhart, G.M.; Collopy, T.J.

    1962-11-13

    A continuous precipitation process is given for converting a uranyl nitrate solution to uranium tetrafluoride. A stream of the uranyl nitrate solution and a stream of an aqueous ammonium hydroxide solution are continuously introduced into an agitated reaction zone maintained at a pH of 5.0 to 6.5. Flow rates are adjusted to provide a mean residence time of the resulting slurry in the reaction zone of at least 30 minutes. After a startup period of two hours the precipitate is recovered from the effluent stream by filtration and is converted to uranium tetrafluoride by reduction to uranium dioxide with hydrogen and reaction of the uranium dioxide with anhydrous hydrogen fluoride. (AEC)

  13. RECOVERY OF THORIUM AND URANIUM VALUES FROM AQUEOUS SOLUTIONS

    DOEpatents

    Calkins, G.D.

    1958-02-18

    This patent deals with the separation and recovery of uranium from monazite sand. After initial treatment of the sand with sodium hydroxide, a precipitate is obtuined which contains the uranium, thorium, rare earths and some phosphorus. This precipitate is then dissolved in nitric acid. The bulk of the rare earths are removed from thls soiution by adding aa excess of alkali carbonate, causing precipitation of the rare earths together with part of the thorium present. The solution still contains a considerable amount of thorium, some rare earths, and practically all of the uranium originally present. Thorium and rare earth values are readily precipitated from such solution, and the uranium values thus isolated, by the addition of an excess hydrogen peroxide. The pH value of the solution is preferably adjusted to at least 9 prior to the addition of the peroxide.

  14. PRECIPITATION OF ZIRCONIUM AND FLUORIDE IONS FROM SOLUTIONS

    DOEpatents

    Newby, B.J.

    1963-06-11

    A process is given for removing zirconium and fluorine ions from aqueous solutions also containing uranium(VI). The precipitation is carried out with sodium formate, and the uranium remains in solution. (AEC)

  15. The separation of uranium ions by natural and modified diatomite from aqueous solution.

    PubMed

    Sprynskyy, Myroslav; Kovalchuk, Iryna; Buszewski, Bogusław

    2010-09-15

    In this work the natural and the surfactant modified diatomite has been tested for ability to remove uranium ions from aqueous solutions. Such controlling factors of the adsorption process as initial uranium concentration, pH, contact time and ionic strength have been investigated. Effect of ionic strength of solution has been examined using the solutions of NaCl, Na(2)CO(3) and K(2)SO(4). The pseudo-first order and the pseudo-second order models have been used to analyze the adsorption kinetic results, whereas the Langmuir and the Freundlich isotherms have been used to the equilibrium adsorption data. The effects of the adsorbent modification as well as uranium adsorption on the diatomite surface have been studied using X-ray powder diffraction, scanning electron microscopy and FTIR spectroscopy. The maximum adsorption capacities of the natural and the modified diatomite towards uranium were 25.63 micromol/g and 667.40 micromol/g, respectively. The desorptive solutions of HCl, NaOH, Na(2)CO(3), K(2)SO(4), CaCO(3), humic acid, cool and hot water have been tested to recover uranium from the adsorbent. The highest values of uranium desorption (86%) have been reached using 0.1M HCl. Copyright 2010 Elsevier B.V. All rights reserved.

  16. The role of chemical reactions in the Chernobyl accident

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grishanin, E. I., E-mail: egrishanin@orexovo.net

    2010-12-15

    It is shown that chemical reactions played an essential role in the Chernobyl accident at all of its stages. It is important that the reactor before the explosion was at maximal xenon poisoning, and its reactivity, apparently, was not destroyed by the explosion. The reactivity release due to decay of Xe-235 on the second day after the explosion led to a reactor power of 80-110 MW. Owing to this power, the chemical reactions of reduction of uranium, plutonium, and other metals at a temperature of about 2000 Degree-Sign C occurred in the core. The yield of fission products thus sharplymore » increased. Uranium and other metals flew down in the bottom water communications and rooms. After reduction of the uranium and its separation from the graphite, the chain reaction stopped, the temperature of the core decreased, and the activity yield stopped.« less

  17. Radium and uranium concentrations and associated hydrogeochemistry in ground water in southwestern Pueblo County, Colorado

    USGS Publications Warehouse

    Felmlee, J. Karen; Cadigan, Robert Allen

    1979-01-01

    Radium and uranium concentrations in water from 37 wells tapping the aquifer system of the Dakota Sandstone and Purgatoire Formation in southwestern Pueblo County, Colorado, have a wide range of values and define several areas of high radioactivity in the ground water. Radium ranges from 0.3 to 420 picocuries per liter and has a median value of 8.8, and uranium ranges from 0.02 to 180 micrograms per liter and has a median value of 2.4. Radon concentrations, measured in 32 of the 37 wells, range from less than 100 picocuries per liter to as much as 27,000 and have a median value of 580. Relationships among the radioactive elements and 28 other geochemical parameters were studied by using correlation coefficients and R-mode factor analysis. Five factor groups were determined to represent major influences on water chemistry: (1) short-term solution reactions, (2) oxidation reactions, (3) hydrolysis reactions, (4) uranium distribution, and (5) long-term solution reactions. Uranium concentrations are most strongly influenced by oxidation reactions but also are affected by solution reactions and distribution of uranium in the rocks of the aquifer system. Radon and radium concentrations are mostly controlled by uranium distribution; radium also shows a moderate negative relationship with oxidation. To explain the statistical and spatial relationships among the parameters, a model was developed involving the selective leaching of uranium-bearing phases and metal sulfides which occur in discontinuous zones in sandstone and shale. When reducing conditions prevail, uranium is immobile, but radium can be taken into solution. When faults and associated fractured rocks allow oxidizing conditions to dominate, uranium can be taken into solution; radium can also be taken into solution, or it may become immobilized by coprecipitation with iron and manganese oxides or with barite. Several areas within the study area are discussed in terms of the model.

  18. Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater.

    PubMed

    Lee, Minhee; Yang, Minjune

    2010-01-15

    The uranium removal efficiencies of rhizofiltration in the remediation of groundwater were investigated in lab-scale experiments. Sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) were cultivated and an artificially uranium contaminated solution and three genuine groundwater samples were used in the experiments. More than 80% of the initial uranium in solution and genuine groundwater, respectively, was removed within 24h by using sunflower and the residual uranium concentration of the treated water was lower than 30 microg/L (USEPA drinking water limit). For bean, the uranium removal efficiency of the rhizofiltration was roughly 60-80%. The maximum uranium removal via rhizofiltration for the two plant cultivars occurred at pH 3-5 of solution and their uranium removal efficiencies exceeded 90%. The lab-scale continuous rhizofiltration clean-up system delivered over 99% uranium removal efficiency, and the results of SEM and EDS analyses indicated that most uranium accumulated in the roots of plants. The present results suggested that the uranium removal capacity of two plants evaluated in the clean-up system was about 25mg/kg of wet plant mass. Notably, the removal capacity of the root parts only was more than 500 mg/kg.

  19. Development of practical decontamination process for the removal of uranium from gravel.

    PubMed

    Kim, Ilgook; Kim, Gye-Nam; Kim, Seung-Soo; Choi, Jong-Won

    2018-01-01

    In this study, a practical decontamination process was developed to remove uranium from gravel using a soil washing method. The effects of critical parameters including particle size, H 2 SO 4 concentration, temperature, and reaction time on uranium removal were evaluated. The optimal condition for two-stage washing of gravel was found to be particle size of 1-2 mm, 1.0 M H 2 SO 4 , temperature of 60°C, and reaction time of 3 h, which satisfied the required uranium concentration for self-disposal. Furthermore, most of the extracted uranium was removed from the waste solution by precipitation, implying that the treated solution can be reused as washing solution. These results clearly demonstrated that our proposed process can be indeed a practical technique to decontaminate uranium-polluted gravel.

  20. Sorption behavior of uranium(VI) on a biotite mineral

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idemitsu, K.; Obata, K.; Furuya, H.

    1995-12-31

    Biotite has the most important role for the sorption of radionuclides in granitic rocks. Experiments on the sorption of uranium(VI) on biotite were conducted to understand the fundamental controls on uranium sorption on biotite mineral, including the effects of pH and uranium concentration in solution. Biotite powder (mesh 32--60) were washed with 1N HCl for a week and were rinsed twice with deionized water for a week. This HCl treatment was necessary to avoid the effects by other minerals. The agreement between surface adsorption coefficient, Ka, of both biotites with and without HCl treatment was within one order of magnitude.more » The peak Ka value was in the range of 0.1 to 0.01 cm{sup 3}/cm{sup 2} around pH 6. A comparison of aqueous uranium speciations and sorption results indicates that neutral uranyl hydroxide could be an important species sorbed on the biotite. Sequential desorption experiments with KCl and HCl solutions were also carried out after sorption experiments to investigate sorption forms of uranium. Approximately 20% of uranium in solution were sorbed on the biotite as an exchangeable ion. The fraction of exchangeable uranium had a little dependence on pH. The other uranium could not be extracted even by 6N HCl solution. It is possible that most of the uranium could be precipitated as U(IV) via Fe(II) reduction on the biotite surface.« less

  1. PROCESS OF PREPARING A FLUORIDE OF TETRAVLENT URANIUM

    DOEpatents

    Wheelwright, E.J.

    1959-02-17

    A method is described for producing a fluoride salt pf tetravalent uranium suitable for bomb reduction to metallic uranium. An aqueous solution of uranyl nitrate is treated with acetic acid and a nitrite-suppressor and then contacted with metallic lead whereby uranium is reduced from the hexavalent to the tetravalent state and soluble lead acetate is formed. Sulfate ions are then added to the solution to precipitate and remove the lead values. Hydrofluoric acid and alkali metal ions are then added causing the formation of an alkali metal uranium double-fluoride in which the uranium is in the tetravalent state. After recovery, this precipitate is suitable for using in the limited production of metallic uranium.

  2. SELECTIVE SEPARATION OF URANIUM FROM THORIUM, PROTACTINIUM AND FISSION PRODUCTS BY PEROXIDE DISSOLUTION METHOD

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1959-08-18

    A method is described for separating U/sup 233/ from thorium and fission products. The separation is effected by forming a thorium-nitric acid solution of about 3 pH, adding hydrogen peroxide to precipitate uranium and thorium peroxide, treating the peroxides with sodium hydroxide to selectively precipitate the uranium peroxide, and reacting the separated solution with nitric acid to re- precipitate the uranium peroxide.

  3. URANIUM EXTRACTION PROCESS

    DOEpatents

    Baldwin, W.H.; Higgins, C.E.

    1958-12-16

    A process is described for recovering uranium values from acidic aqueous solutions containing hexavalent uranium by contacting the solution with an organic solution comprised of a substantially water-immiscible organlc diluent and an organic phosphate to extract the uranlum values into the organic phase. Carbon tetrachloride and a petroleum hydrocarbon fraction, such as kerosene, are sultable diluents to be used in combination with organlc phosphates such as dibutyl butylphosphonate, trlbutyl phosphine oxide, and tributyl phosphate.

  4. SEPARATION OF THORIUM FROM URANIUM BY EXTRACTION

    DOEpatents

    Bohlmann, E.G.

    1959-07-28

    A method is presented for the recovery and separation of uranium and thorium values contained in an aqueous nitric acid solution which is more than 3 M in nitric acid. The uranium and thorium containing solution preferable about 7 M in nitric acid is contacted with tributyl phosphatekerosene mixture. Both U and Th are extracted by the immiscible organic. After phase separation the Th is selectively back extracted by contacting with an aqueous nitric acid solution preferably between 0.1 to 1.5 M in nitric acid. The uranium which is still in the organic extractant phase may be recovered by contacting with water.

  5. PROCESSING OF NEUTRON-IRRADIATED URANIUM

    DOEpatents

    Hopkins, H.H. Jr.

    1960-09-01

    An improved "Purex" process for separating uranium, plutonium, and fission products from nitric acid solutions of neutron-irradiated uranium is offered. Uranium is first extracted into tributyl phosphate (TBP) away from plutonium and fission products after adjustment of the acidity from 0.3 to 0.5 M and heating from 60 to 70 deg C. Coextracted plutonium, ruthenium, and fission products are fractionally removed from the TBP by three scrubbing steps with a 0.5 M nitric acid solution of ferrous sulfamate (FSA), from 3.5 to 5 M nitric acid, and water, respectively, and the purified uranium is finally recovered from the TBP by precipitation with an aqueous solution of oxalic acid. The plutonium in the 0.3 to 0.5 M acid solution is oxidized to the tetravalent state with sodium nitrite and extracted into TBP containing a small amount of dibutyl phosphate (DBP). Plutonium is then back-extracted from the TBP-DBP mixture with a nitric acid solution of FSA, reoxidized with sodium nitrite in the aqueous strip solution obtained, and once more extracted with TBP alone. Finally the plutonium is stripped from the TBP with dilute acid, and a portion of the strip solution thus obtained is recycled into the TBPDBP for further purification.

  6. Development of an extractive spectrophotometric method for estimation of uranium in ore leach solutions using 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) mixture as extractant and 2-(5-bromo-2-pyridylozo)-5-diethyl aminophenol (Br-PADAP) as chromophore

    NASA Astrophysics Data System (ADS)

    Biswas, Sujoy; Pathak, P. N.; Roy, S. B.

    2012-06-01

    An extractive spectrophotometric analytical method has been developed for the determination of uranium in ore leach solution. This technique is based on the selective extraction of uranium from multielement system using a synergistic mixture of 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) in cyclohexane and color development from the organic phase aliquot using 2-(5-Bromo-2-pyridylazo)-5-diethyl aminophenol (Br-PADAP) as chromogenic reagent. The absorption maximum (λmax) for UO22+-Br-PADAP complex in organic phase samples, in 64% (v/v) ethanol containing buffer solution (pH 7.8) and 1,2-cyclohexylenedinitrilotetraacetic acid (CyDTA) complexing agent, has been found to be at 576 nm (molar extinction coefficient, ɛ: 36,750 ± 240 L mol-1 cm-1). Effects of various parameters like stability of complex, ethanol volume, ore matrix, interfering ions etc. on the determination of uranium have also been evaluated. Absorbance measurements as a function of time showed that colored complex is stable up to >24 h. Presence of increased amount of ethanol in colored solution suppresses the absorption of a standard UO22+-Br-PADAP solution. Analyses of synthetic standard as well as ore leach a solution show that for 10 determination relative standard deviation (RSD) is <2%. The accuracy of the developed method has been checked by determining uranium using standard addition method and was found to be accurate with a 98-105% recovery rate. The developed method has been applied for the analysis of a number of uranium samples generated from uranium ore leach solutions and results were compared with standard methods like inductively coupled plasma emission spectrometry (ICPAES). The determined values of uranium concentrations by these methods are within ±2%. This method can be used to determine 2.5-250 μg mL-1 uranium in ore leach solutions with high accuracy and precision.

  7. URANIUM PRECIPITATION PROCESS

    DOEpatents

    Thunaes, A.; Brown, E.A.; Smith, H.W.; Simard, R.

    1957-12-01

    A method for the recovery of uranium from sulfuric acid solutions is described. In the present process, sulfuric acid is added to the uranium bearing solution to bring the pH to between 1 and 1.8, preferably to about 1.4, and aluminum metal is then used as a reducing agent to convert hexavalent uranium to the tetravalent state. As the reaction proceeds, the pH rises amd a selective precipitation of uranium occurs resulting in a high grade precipitate. This process is an improvement over the process using metallic iron, in that metallic aluminum reacts less readily than metallic iron with sulfuric acid, thus avoiding consumption of the reducing agent and a raising of the pH without accomplishing the desired reduction of the hexavalent uranium in the solution. Another disadvantage to the use of iron is that positive ferric ions will precipitate with negative phosphate and arsenate ions at the pH range employed.

  8. Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel: Joint U.S./ Russian Progress Report for Fiscal Year 1997, Volume 4, Part 8 - Neutron Poison Plates in Assemblies Containing Homogeneous Mixtures of Polystyrene-Moderated Plutonium and Uranium Oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yavuz, M.

    1999-05-01

    In the 1970s at the Battelle Pacific Northwest Laboratory (PNL), a series of critical experiments using a remotely operated Split-Table Machine was performed with homogeneous mixtures of (Pu-U)O{sub 2}-polystyrene fuels in the form of square compacts having different heights. The experiments determined the critical geometric configurations of MOX fuel assemblies with and without neutron poison plates. With respect to PuO{sub 2} content and moderation [H/(Pu+U)atomic] ratio (MR), two different homogeneous (Pu-U) O{sub 2}-polystyrene mixtures were considered: Mixture (1) 14.62 wt% PuO{sub 2} with 30.6 MR, and Mixture (2) 30.3 wt% PuO{sub 2} with 2.8 MR. In all mixtures, the uraniummore » was depleted to about O.151 wt% U{sup 235}. Assemblies contained copper, copper-cadmium or aluminum neutron poison plates having thicknesses up to {approximately}2.5 cm. This evaluation contains 22 experiments for Mixture 1, and 10 for Mixture 2 compacts. For Mixture 1, there are 10 configurations with copper plates, 6 with aluminum, and 5 with copper-cadmium. One experiment contained no poison plate. For Mixture 2 compacts, there are 3 configurations with copper, 3 with aluminum, and 3 with copper-cadmium poison plates. One experiment contained no poison plate.« less

  9. FY-15 Progress Report on Cleanup of irradiated SHINE Target Solutions Containing 140g-U/L Uranyl Sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Megan E.; Bowers, Delbert L.; Vandegrift, George F.

    2015-09-01

    During FY 2012 and 2013, a process was developed to convert the SHINE Target Solution (STS) of irradiated uranyl sulfate (140 g U/L) to uranyl nitrate. This process is necessary so that the uranium solution can be processed by the UREX (Uranium Extraction) separation process, which will remove impurities from the uranium so that it can be recycled. The uranyl sulfate solution must contain <0.02 M SO 4 2- so that the uranium will be extractable into the UREXsolvent. In addition, it is desired that the barium content be below 0.0007 M, as this is the limit in the Resourcemore » Conservation and Recovery Act (RCRA).« less

  10. SULFIDE METHOD PLUTONIUM SEPARATION

    DOEpatents

    Duffield, R.B.

    1958-08-12

    A process is described for the recovery of plutonium from neutron irradiated uranium solutions. Such a solution is first treated with a soluble sullide, causing precipitation of the plutoniunn and uraniunn values present, along with those impurities which form insoluble sulfides. The precipitate is then treated with a solution of carbonate ions, which will dissolve the uranium and plutonium present while the fission product sulfides remain unaffected. After separation from the residue, this solution may then be treated by any of the usual methods, such as formation of a lanthanum fluoride precipitate, to effect separation of plutoniunn from uranium.

  11. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    NASA Astrophysics Data System (ADS)

    Syarifah, Ratna Dewi; Suud, Zaki

    2015-09-01

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better.

  12. PEROXIDE PROCESS FOR SEPARATION OF RADIOACTIVE MATERIALS

    DOEpatents

    Seaborg, G.T.; Perlman, I.

    1958-09-16

    reduced state, from hexavalent uranium. It consists in treating an aqueous solution containing such uranium and plutonium ions with sulfate ions in order to form a soluble uranium sulfate complex and then treating the solution with a soluble thorium compound and a soluble peroxide compound in order to ferm a thorium peroxide carrier precipitate which carries down with it the plutonium peroxide present. During this treatment the pH of the solution must be maintained between 2 and 3.

  13. Ammonium hydroxide poisoning

    MedlinePlus

    Ammonium hydroxide is a colorless liquid chemical solution. It is in a class of substances called caustics. Ammonium hydroxide forms when ammonia dissolves in water. This article discusses poisoning from ...

  14. 16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM RECOVERY PROCESSED RELATIVELY PURE MATERIALS AND SOLUTIONS AND SOLID RESIDUES WITH RELATIVELY LOW URANIUM CONTENT. URANIUM RECOVERY INVOLVED BOTH SLOW AND FAST PROCESSES. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  15. SEPARATION OF URANIUM FROM OTHER METALS

    DOEpatents

    Hyman, H.H.

    1959-07-01

    The separation of uranium from other elements, such as ruthenium, zirconium, niobium, cerium, and other rare earth metals is described. According to the invention, this is accomplished by adding hydrazine to an acid aqueous solution containing salts of uranium, preferably hexavalent uranium, and then treating the mixture with a substantially water immiscible ketone, such as hexone. A reaction takes place between the ketone and the hydrazine whereby a complex, a ketazine, is formed; this complex has a greater power of extraction for uranium than the ketone by itself. When contaminating elements are present, they substantially remain in ihe aqueous solution.

  16. Dissolution of uranium oxides from simulated environmental swipes using ammonium bifluoride

    DOE PAGES

    Meyers, Lisa A.; Yoshida, Thomas M.; Chamberlin, Rebecca M.; ...

    2016-11-01

    We developed an analytical chemistry method to quantitatively recover microgram quanties of solid uranium oxides from swipe media using ammonium bifluoride (ABF, NH 4HF 2) solution. Recovery of uranium from surrogate swipe media (filter paper) was demonstrated at initial uranium loading levels between 3 and 20 µg filter -1. Moreover, the optimal conditions for extracting U 3O 8 and UO 2 are using 1 % ABF solution and incubating at 80 °C for one hour. The average uranium recoveries are 100 % for U 3O 8, and 90 % for UO 2. Finally, with this method, uranium concentration as lowmore » as 3 µg filter -1 can be recovered for analysis.« less

  17. Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin.

    PubMed

    Chen, Yanliang; Wei, Yuezhou; He, Linfeng; Tang, Fangdong

    2016-09-30

    To separate thorium and uranium in nitric acid solution using anion exchange process, a strong base silica-based anion exchange resin (SiPyR-N4) was synthesized. Batch experiments were conducted and the separation factor of thorium and uranium in 9M nitric acid was about 10. Ion exchange chromatography was applied to separate thorium and uranium in different ratios. Uranium could be eluted by 9M nitric acid and thorium was eluted by 0.1M nitric acid. It was proved that thorium and uranium can be separated and recovered successfully by this method. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. SOLVENT EXTRACTION OF URANIUM VALUES

    DOEpatents

    Feder, H.M.; Ader, M.; Ross, L.E.

    1959-02-01

    A process is presented for extracting uranium salt from aqueous acidic solutions by organic solvent extraction. It consists in contacting the uranium bearing solution with a water immiscible dialkylacetamide having at least 8 carbon atoms in the molecule. Mentioned as a preferred extractant is dibutylacetamide. The organic solvent is usually used with a diluent such as kerosene or CCl/sub 4/.

  19. Energy dispersive X-ray fluorescence determination of cadmium in uranium matrix using Cd Kα line excited by continuum

    NASA Astrophysics Data System (ADS)

    Dhara, Sangita; Misra, N. L.; Aggarwal, S. K.; Venugopal, V.

    2010-06-01

    An energy dispersive X-ray fluorescence method for determination of cadmium (Cd) in uranium (U) matrix using continuum source of excitation was developed. Calibration and sample solutions of cadmium, with and without uranium were prepared by mixing different volumes of standard solutions of cadmium and uranyl nitrate, both prepared in suprapure nitric acid. The concentration of Cd in calibration solutions and samples was in the range of 6 to 90 µg/mL whereas the concentration of Cd with respect to U ranged from 90 to 700 µg/g of U. From the calibration solutions and samples containing uranium, the major matrix uranium was selectively extracted using 30% tri-n-butyl phosphate in dodecane. Fixed volumes (1.5 mL) of aqueous phases thus obtained were taken directly in specially designed in-house fabricated leak proof Perspex sample cells for the energy dispersive X-ray fluorescence measurements and calibration plots were made by plotting Cd Kα intensity against respective Cd concentration. For the calibration solutions not having uranium, the energy dispersive X-ray fluorescence spectra were measured without any extraction and Cd calibration plots were made accordingly. The results obtained showed a precision of 2% (1 σ) and the results deviated from the expected values by < 4% on average.

  20. Evaluation of Neutron Poison Materials for DOE SNF Disposal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinson, D.W.; Caskey, G.R. Jr.; Sindelar, R.L.

    1998-09-01

    Aluminum-based spent nuclear fuel (Al-SNF) from foreign and domestic research reactors is being consolidated at the Savannah River Site (SRS) for ultimate disposal in the Mined Geologic Disposal System (MGDS). Most of the aluminum-based fuel material contains highly enriched uranium (HEU) (more than 20 percent 235U), which challenges the preclusion of criticality events for disposal periods exceeding 10,000 years. Recent criticality analyses have shown that the addition of neutron absorbing materials (poisons) is needed in waste packages containing DOE SNF canisters fully loaded with Al-SNF under flooded and degraded configurations to demonstrate compliance with the requirement that Keff less thanmore » 0.95. Compatibility of poison matrix materials and the Al-SNF, including their relative degradation rate and solubility, are important to maintain criticality control. An assessment of the viability of poison and matrix materials has been conducted, and an experimental corrosion program has been initiated to provide data on degradation rates of poison and matrix materials and Al-SNF materials under repository relevant vapor and aqueous environments. Initial testing includes Al6061, Type 316L stainless steel, and A516Gr55 in synthesized J-13 water vapor at 50 degrees C, 100 degrees C, and 200 degrees C and in condensate water vapor at 100 degrees C. Preliminary results are presented herein.« less

  1. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments.

    PubMed

    Szecsody, Jim E; Truex, Mike J; Qafoku, Nikolla P; Wellman, Dawn M; Resch, Tom; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH2) resulted in a rapid (<10 h) increase in aqueous carbonate (with Ca(2+), Mg(2+)) and phosphate and a slow (100 s of hours) increase in silica, Al(3+), and K(+), likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH13) resulted in a rapid (<10h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Recovery of uranium values

    DOEpatents

    Brown, K. B.; Crouse, Jr., D. J.; Moore, J. G.

    1959-03-10

    A liquid-liquid extraction method is presented for recovering uranium values from an aqueous acidic solution by means of certain high molecular weight amine fn the amine classes of primary, secondary, heterocyclic secondary, tertiary, or heterocyclic tertiary. The uranium bearing aqueous acidic solution is contacted with the selected anine dissolved in a nonpolar waterimmiscible organfc solvent such as kerosene. The uranium which is substantially completely extracted by the organic phase may be stripped therefrom by water, and recovered from the aqueous phase by treatment into ammonia to precipitate ammonium diuranate.

  3. RECOVERY OF URANIUM VALUES

    DOEpatents

    Brown, K.B.; Crouse, D.J. Jr.; Moore, J.G.

    1959-03-10

    A liquid-liquid extraction method is presented for recovering uranium values from an aqueous acidic solution by means of certain high molecular weight amine in the amine classes of primary, secondary, heterocyclic secondary, tertiary, or heterocyclic tertiary. The uranium bearing aqueous acidic solution is contacted with the selected amine dissolved in a nonpolar water-immiscible organic solvent such as kerosene. The uranium which is substantially completely exiracted by the organic phase may be stripped therefrom by waters and recovered from the aqueous phase by treatment into ammonia to precipitate ammonium diuranate.

  4. Evaluation of PEMFC System Contaminants on the Performance of Pt Catalyst via Cyclic Voltammetry: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.; Macomber, C.; Dinh, H. N.

    2012-07-01

    Using electrochemical cyclic voltammetry as a quick ex-situ screening tool, the impact of the extracted solution and the individual leachable constituents from prospective BOP component materials on the performance and recoverability of the platinum catalyst were evaluated. Taking an extract from Zytel{trademark} HTN51G35HSLR (PPA) as an example, the major leachable organic components are caprolactam and 1,6 hexanediol. While these organic compounds by themselves do poison the Pt catalyst to some extent, such influence is mostly recoverable by means of potential holding and potential cycling. The extracted solution, however, shows a more drastic poisoning effect and it was not recoverable. Thereforemore » the non-recoverable poisoning effect observed for the extracted solution is not from the two organic species studied. This demonstrates the complexity of such a contaminant study. Inorganic compounds that are known poisons like sulfur even in very low concentrations, may have a more dominant effect on the Pt catalyst and the recoverability.« less

  5. PREPARATION OF URANIUM TRIOXIDE

    DOEpatents

    Buckingham, J.S.

    1959-09-01

    The production of uranium trioxide from aqueous solutions of uranyl nitrate is discussed. The uranium trioxide is produced by adding sulfur or a sulfur-containing compound, such as thiourea, sulfamic acid, sulfuric acid, and ammonium sulfate, to the uranyl solution in an amount of about 0.5% by weight of the uranyl nitrate hexahydrate, evaporating the solution to dryness, and calcining the dry residue. The trioxide obtained by this method furnished a dioxide with a considerably higher reactivity with hydrogen fluoride than a trioxide prepared without the sulfur additive.

  6. SEPARATION OF URANIUM FROM ZIRCONIUM AND NIOBIUM BY SOLVENT EXTRACTION

    DOEpatents

    Voiland, E.E.

    1958-05-01

    A process for separation of the uranium from zirconium and/or niobium values contained in 3 to 7M aqueous nitric acid solutions is described. This is accomplished by adding phosphoric acid anions to the nitric acid solution containing the uranium, zirconium, and/or niobium in an amount sufficient to make the solution 0.05 to 0.2M in phosphate ion and contacting the solution with an organic water-immiscible solvent such as MEK, whereby the uranyl values are taken up by the extract phase while the zirconium and niobium preferentially remain in the aqueous raffinate.

  7. A graphene oxide/amidoxime hydrogel for enhanced uranium capture

    PubMed Central

    Wang, Feihong; Li, Hongpeng; Liu, Qi; Li, Zhanshuang; Li, Rumin; Zhang, Hongsen; Liu, Lianhe; Emelchenko, G. A.; Wang, Jun

    2016-01-01

    The efficient development of selective materials for the recovery of uranium from nuclear waste and seawater is necessary for their potential application in nuclear fuel and the mitigation of nuclear pollution. In this work, a graphene oxide/amidoxime hydrogel (AGH) exhibits a promising adsorption performance for uranium from various aqueous solutions, including simulated seawater. We show high adsorption capacities (Qm = 398.4 mg g−1) and high % removals at ppm or ppb levels in aqueous solutions for uranium species. In the presence of high concentrations of competitive ions such as Mg2+, Ca2+, Ba2+ and Sr2+, AGH displays an enhanced selectivity for uranium. For low uranium concentrations in simulated seawater, AGH binds uranium efficiently and selectively. The results presented here reveal that the AGH is a potential adsorbent for remediating nuclear industrial effluent and adsorbing uranium from seawater. PMID:26758649

  8. Development of an extractive spectrophotometric method for estimation of uranium in ore leach solutions using 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) mixture as extractant and 2-(5-bromo-2-pyridylozo)-5-diethyl aminophenol (Br-PADAP) as chromophore.

    PubMed

    Biswas, Sujoy; Pathak, P N; Roy, S B

    2012-06-01

    An extractive spectrophotometric analytical method has been developed for the determination of uranium in ore leach solution. This technique is based on the selective extraction of uranium from multielement system using a synergistic mixture of 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) in cyclohexane and color development from the organic phase aliquot using 2-(5-Bromo-2-pyridylazo)-5-diethyl aminophenol (Br-PADAP) as chromogenic reagent. The absorption maximum (λ(max)) for UO(2)(2+)-Br-PADAP complex in organic phase samples, in 64% (v/v) ethanol containing buffer solution (pH 7.8) and 1,2-cyclohexylenedinitrilotetraacetic acid (CyDTA) complexing agent, has been found to be at 576 nm (molar extinction coefficient, ɛ: 36,750 ± 240 L mol(-1)cm(-1)). Effects of various parameters like stability of complex, ethanol volume, ore matrix, interfering ions etc. on the determination of uranium have also been evaluated. Absorbance measurements as a function of time showed that colored complex is stable up to > 24h. Presence of increased amount of ethanol in colored solution suppresses the absorption of a standard UO(2)(2+)-Br-PADAP solution. Analyses of synthetic standard as well as ore leach a solution show that for 10 determination relative standard deviation (RSD) is < 2%. The accuracy of the developed method has been checked by determining uranium using standard addition method and was found to be accurate with a 98-105% recovery rate. The developed method has been applied for the analysis of a number of uranium samples generated from uranium ore leach solutions and results were compared with standard methods like inductively coupled plasma emission spectrometry (ICPAES). The determined values of uranium concentrations by these methods are within ± 2%. This method can be used to determine 2.5-250 μg mL(-1) uranium in ore leach solutions with high accuracy and precision. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Solubility limits of dibutyl phosphoric acid in uranium-nitric acid solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, R.A.

    2000-01-04

    The Savannah River Site has enriched uranium (EU) solution that has been stored since being purified in its solvent extraction processes. The concentrations in solution are approximately 6 g/L U and 0.1 M nitric acid. Residual tributylphosphate in solution has slowly hydrolyzed to form dibutyl phosphoric acid (HDBP) at concentrations averaging 30--50 mg/L. Dibutyl phosphoric acid, in turn, is in equilibrium with (HDBP){sub 2} and DBP{sup {minus}}. Uranium can form compounds with the dibutylphosphate ion (DBP{sup {minus}}) which have limited solubility, thereby creating a nuclear criticality safety issue. Literature reports and earlier SRTC tests have shown that it is feasiblemore » to precipitate U-DBP solid during the storage and processing of EU solutions. As a result, a series of solubility experiments were run at nitric acid concentrations from 0--4.0 M HNO{sub 3}, uranium at 0--90 g/L, and temperatures from 0--30 C. The data shows temperature and nitric acid concentration dependence consistent with what would be expected. With respect to uranium concentration, U-DBP solubility passes through a minimum between 6 and 12 g/L U at the acid concentrations and temperatures studied. However, the minimum shows a slight shift toward lower uranium concentrations at lower nitric acid concentrations. The shifts in solubility are strongly dependent upon the overall ionic strength of the solution. The data also reveal a shift to higher DBP solubility above 0.5 M HNO{sub 3} for both 6 g/L and 12 g/L uranium solutions. Analysis of U-DBP solids from the tests identified distinct differences between precipitates from less than 0.5 M solutions and those from greater than 4 M acid. Analyses identified UO{sub 2}(DBP){sub 2} as the dominant compound present at low acid concentrations in accordance with literature reports. As the acid concentration increases, the crystalline UO{sub 2}(DBP){sub 2} shows molecular substitutions and an increase in amorphous content.« less

  10. SEPARATION OF URANIUM, PLUTONIUM, AND FISSION PRODUCTS

    DOEpatents

    Spence, R.; Lister, M.W.

    1958-12-16

    Uranium and plutonium can be separated from neutron-lrradiated uranium by a process consisting of dissolvlng the lrradiated material in nitric acid, saturating the solution with a nitrate salt such as ammonium nitrate, rendering the solution substantially neutral with a base such as ammonia, adding a reducing agent such as hydroxylamine to change plutonium to the trivalent state, treating the solution with a substantially water immiscible organic solvent such as dibutoxy diethylether to selectively extract the uranium, maklng the residual aqueous solutlon acid with nitric acid, adding an oxidizing agent such as ammonlum bromate to oxidize the plutonium to the hexavalent state, and selectlvely extracting the plutonium by means of an immlscible solvent, such as dibutoxy dlethyletber.

  11. Recovering and recycling uranium used for production of molybdenum-99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reilly, Sean Douglas; May, Iain; Copping, Roy

    A processes for recycling uranium that has been used for the production of molybdenum-99 involves irradiating a solution of uranium suitable for forming fission products including molybdenum-99, conditioning the irradiated solution to one suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina. Another process involves irradiation of a solid target comprising uranium, forming an acidic solution from the irradiated targetmore » suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina.« less

  12. Light-Water Breeder Reactor

    DOEpatents

    Beaudoin, B. R.; Cohen, J. D.; Jones, D. H.; Marier, Jr, L. J.; Raab, H. F.

    1972-06-20

    Described is a light-water-moderated and -cooled nuclear breeder reactor of the seed-blanket type characterized by core modules comprising loosely packed blanket zones enriched with fissile fuel and axial zoning in the seed and blanket regions within each core module. Reactivity control over lifetime is achieved by axial displacement of movable seed zones without the use of poison rods in the embodiment illustrated. The seed is further characterized by a hydrogen-to-uranium-233 atom ratio in the range 10 to 200 and a uranium-233-to-thorium-232 atom ratio ranging from 0.012 to 0.200. The seed occupies from 10 to 35 percent of the core volume in the form of one or more individual islands or annuli. (NSA 26: 55130)

  13. Light-water breeder reactor (LWBR Development Program)

    DOEpatents

    Beaudoin, B.R.; Cohen, J.D.; Jones, D.H.; Marier, L.J. Jr.; Raab, H.F.

    1972-06-20

    Described is a light-water-moderated and -cooled nuclear breeder reactor of the seed-blanket type characterized by core modules comprising loosely packed blanket zones enriched with fissile fuel and axial zoning in the seed and blanket regions within each core module. Reactivity control over lifetime is achieved by axial displacement of movable seed zones without the use of poison rods in the embodiment illustrated. The seed is further characterized by a hydrogen-to-uranium-233 atom ratio in the range 10 to 200 and a uranium-233-to-thorium-232 atom ratio ranging from 0.012 to 0.200. The seed occupies from 10 to 35 percent of the core volume in the form of one or more individual islands or annuli. (NSA 26: 55130)

  14. PREPARATION OF URANIUM-ALUMINUM ALLOYS

    DOEpatents

    Moore, R.H.

    1962-09-01

    A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)

  15. PROCESS FOR RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS BY REDUCTION-PRECIPITATION

    DOEpatents

    Ellis, D.A.; Lindblom, R.O.

    1957-09-24

    A process employing carbonate leaching of ores and an advantageous methcd of recovering the uranium and vanadium from the leach solution is described. The uranium and vanadium can be precipitated from carbonate leach solutions by reaction with sodium amalgam leaving the leach solution in such a condition that it is economical to replenish for recycling. Such a carbonate leach solution is treated with a dilute sodium amalgam having a sodium concentration within a range of about 0.01 to 0.5% of sodium. Efficiency of the treatment is dependent on at least three additional factors, intimacy of contact of the amalgam with the leach solution, rate of addition of the amalgam and exclusion of oxygen (air).

  16. RERTR-13 Irradiation Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. M. Perez; M. A. Lillo; G. S. Chang

    2012-09-01

    The Reduced Enrichment for Research and Test Reactor (RERTR) experiment RERTR-13 was designed to assess performance of different types of neutron absorbers that can be potentially used as burnable poisons in the low enriched uranium-molybdenum based dispersion and monolithic fuels.1 The following report summarizes the life of the RERTR-13 experiment through end of irradiation, including as-run neutronic analysis results, thermal analysis results and hydraulic testing results.

  17. PROCESSES FOR SEPARATING AND RECOVERING CONSTITUENTS OF NEUTRON IRRADIATED URANIUM

    DOEpatents

    Connick, R.E.; Gofman, J.W.; Pimentel, G.C.

    1959-11-10

    Processes are described for preparing plutonium, particularly processes of separating plutonium from uranium and fission products in neutron-irradiated uraniumcontaining matter. Specifically, plutonium solutions containing uranium, fission products and other impurities are contacted with reducing agents such as sulfur dioxide, uranous ion, hydroxyl ammonium chloride, hydrogen peroxide, and ferrous ion whereby the plutoninm is reduced to its fluoride-insoluble state. The reduced plutonium is then carried out of solution by precipitating niobic oxide therein. Uranium and certain fission products remain behind in the solution. Certain other fission products precipitate along with the plutonium. Subsequently, the plutonium and fission product precipitates are redissolved, and the solution is oxidized with oxidizing agents such as chlorine, peroxydisulfate ion in the presence of silver ion, permanganate ion, dichromate ion, ceric ion, and a bromate ion, whereby plutonium is oxidized to the fluoride-soluble state. The oxidized solution is once again treated with niobic oxide, thus precipitating the contamirant fission products along with the niobic oxide while the oxidized plutonium remains in solution. Plutonium is then recovered from the decontaminated solution.

  18. METHOD OF PROCESSING MONAZITE SAND

    DOEpatents

    Calkins, G.D.

    1957-10-29

    A method is given for the pretreatment of monazite sand with sodium hydroxide. When momazite sand is reacted with sodium hydroxide, the thorium, uranium, and rare earths are converted to water-insoluble hydrous oxides; but in the case of uranium, the precipitate compound may at least partly consist of a slightly soluble uranate. According to the patent, monazite sand is treated with an excess of aqueous sodium hydroxide solution, and the insoluble compounds of thorium, uranium, and the rare earths are separated from the aqueous solution. This solution is then concentrated causing sodium phosphate to crystallize out. The crystals are removed from the remaining solution, and the solution is recycled for reaction with a mew supply of momazite sand.

  19. PROCESS FOR THE SEPARATION OF HEAVY METALS

    DOEpatents

    Gofman, J.W.; Connick, R.E.; Wahl, A.C.

    1959-01-27

    A method is presented for thc separation of plutonium from uranium and the fission products with which it is associated. The method is based on the fact that hexavalent plutonium forms an insoluble complex precipitate with sodium acetate, as does the uranyl ion, while reduced plutonium is not precipitated by sodium acetate. Several embodiments are shown, e.g., a solution containing plutonium and uranium in the hexavalent state may be contacted with sodium acetate causing the formation of a sodium uranyl acetate precipitate which carries the plutonium values while the fission products remain in solution. If the original solution is treated with a reducing agent, so that the plutonium is reduced while the uranium remains in the hexavalent state, and sodium and acetate ions are added, the uranium will precipitutc while the plutonium remains in solution effecting separation of the Pu from urarium.

  20. Uraniferous opal, Virgin Valley, Nevada: conditions of formation and implications for uranium exploration

    USGS Publications Warehouse

    Zielinski, R.A.

    1982-01-01

    Uraniferous, fluorescent opal, which occurs in tuffaceous sedimentary rocks at Virgin Valley, Nevada, records the temperature and composition of uranium-rich solutions as well as the time of uranium-silica coprecipitation. Results are integrated with previous geologic and geochronologic data for the area to produce a model for uranium mobility that may be used to explore for uranium deposits in similar geologic settings. Uraniferous opal occurs as replacements of diatomite, or silicic air-fall ash layers in tuffaceous lakebeds of the Virgin Valley Formation (Miocene) of Merriam (1907). Fission-track radiography shows uranium to be homogeneously dispersed throughout the opal structure, suggesting coprecipitation of dissolved uranium and silica gel. Fluid inclusions preserved within opal replacements of diatomite have homogenization temperatures in the epithermal range and are of low salinity. Four samples of opal from one locality all have U-Pb apparent ages which suggest uraniferous opal precipitation in late Pliocene time. These ages correspond to a period of local, normal faulting, and highangle faults may have served as vertical conduits for transport of deep, thermalized ground water to shallower levels. Lateral migration of rising solutions occurred at intersections of faults with permeable strata. Silica and some uranium were dissolved from silica-rich host strata of 5-20 ppm original uranium content and reprecipitated as the solutions cooled. The model predicts that in similar geologic settings, ore-grade concentrations of uranium will occur in permeable strata that intersect high-angle faults and that contain uranium source rocks as well as efficient reductant traps for uranium. In the absence of sufficient quantities of reductant materials, uranium will be flushed from the system or will accumulate in low-grade disseminated hosts such as uraniferous opal. ?? 1982.

  1. The importance of colloids and mires for the transport of uranium isotopes through the Kalix River watershed and Baltic Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porcelli, D.; Wasserburg, G.J.; Andersson, P.S.

    The importance of colloids and organic deposits for the transport of uranium isotopes from continental source regions and through the estuarine environment was investigated in the mire-rich Kalix River drainage basin in northern Sweden and the Baltic Sea. Ultrafiltration techniques were used to separate uranium and other elements associated with colloids > 10 kD and >3 kD from {open_quotes}solute{close_quotes} uranium and provided consistent results and high recovery rates for uranium as well as for other elements from large volume samples. Uranium concentrations in 0.45 {mu}m-filtered Kalix River water samples increased by a factor of 3 from near the headwaters inmore » the Caledonides to the river mouth while major cation concentrations were relatively constant. {sup 234}U {sup 238}U ratios were high ({delta}{sup 234}U = 770-1500) throughout the basin, without showing any simple pattern, and required a supply of {sup 234}U-rich water. Throughout the Kalix River, a large fraction (30-90%) of the uranium is carried by >10 kD colloids, which is compatible with uranium complexation with humic acids. No isotopic differences were found between colloid-associated and solute uranium. Within the Baltic Sea, about half of the uranium is removed at low salinities. The proportion that is lost is equivalent to that of river-derived colloid-bound uranium, suggesting that while solute uranium behaves conservatively during estuarine mixing, colloid-bound uranium is lost due to rapid flocculation of colloidal material. The association of uranium with colloids therefore may be an important parameter in determining uranium estuarine behavior. Mire peats in the Kalix River highly concentrate uranium and are potentially a significant source of recoil {sup 234}U to the mirewaters and river waters. However, mirewater data clearly demonstrate that only small {sup 234}U/{sup 238}U shifts are generated relative to inflowing groundwater. 63 refs., 8 figs., 3 tabs.« less

  2. Hand lotion poisoning

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/002708.htm Hand lotion poisoning To use the sharing features on ... Duplication for commercial use must be authorized in writing by ADAM Health Solutions. About MedlinePlus Site Map ...

  3. The importance of dissolved free oxygen during formation of sandstone-type uranium deposits

    USGS Publications Warehouse

    Granger, Harry Clifford; Warren, C.G.

    1979-01-01

    One factor which distinguishes t, he genesis of roll-type uranium deposits from the Uravan Mineral Belt and other sandstone-type uranium deposits may be the presence and concentration of dissolved free oxygen in the ore-forming. solutions. Although dissolved oxygen is a necessary prerequisite for the formation of roll-type deposits, it is proposed that a lack of dissolved oxygen is a prerequisite for the Uravan deposits. Solutions that formed both types of deposits probably had a supergene origin and originated as meteoric water in approximate equilibrium with atmospheric oxygen. Roll-type deposits were formed where the Eh dropped abruptly following consumption of the oxygen by iron sulfide minerals and creation of kinetically active sulfur species that could reduce uranium. The solutions that formed the Uravan deposits, on the other hand, probably first equilibrated with sulfide-free ferrous-ferric detrital minerals and fossil organic matter in the host rock. That is, the uraniferous solutions lost their oxygen without lowering their Eh enough to precipitate uranium. Without oxygen, they then. became incapable of oxidizing iron sulfide minerals. Subsequent localization and formation of ore bodies from these oxygen-depleted solutions, therefore, was not necessarily dependent on large reducing capacities.

  4. Actinide removal from spent salts

    DOEpatents

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  5. SOLVENT EXTRACTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM FROM AQUEOUS ACIDIC SOLUTIONS OF NEUTRON IRRADIATED URANIUM

    DOEpatents

    Bruce, F.R.

    1962-07-24

    A solvent extraction process was developed for separating actinide elements including plutonium and uranium from fission products. By this method the ion content of the acidic aqueous solution is adjusted so that it contains more equivalents of total metal ions than equivalents of nitrate ions. Under these conditions the extractability of fission products is greatly decreased. (AEC)

  6. RECOVERY OF URANIUM BY SECONDARY XANTHATE COMPLEXING

    DOEpatents

    Neville, O.K.

    1959-09-01

    A method is described for separating and recovering uranium values contained in an acidic aqueous solution together with thorium or protactinium values. In accordance with the invention, the acidic solution containing uranium in the uranyl form is contacted with an organic xanthate. The xanthate forms a urano-xanthate complex but is substantially non-reactive with thorium and protactinium. The urano-xanthate complex is recovered by organic solvent extraction.

  7. Selective separation of iron from uranium in quantitative determination of traces of uranium by alpha spectrometry in soil/sediment sample.

    PubMed

    Singhal, R K; Narayanan, Usha; Karpe, Rupali; Kumar, Ajay; Ranade, A; Ramachandran, V

    2009-04-01

    During this work, controlled redox potential methodology was adopted for the complete separation of traces of uranium from the host matrix of mixed hydroxide of Iron. Precipitates of Fe(+2) and Fe(+3) along with other transuranic elements were obtained from acid leached solution of soil by raising the pH to 9 with 14N ammonia solution. The concentration of the uranium observed in the soil samples was 200-600 ppb, whereas in sediment samples, the concentration range was 61-400 ppb.

  8. 4. VIEW OF ROOM 103 IN 1980. SIX OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF ROOM 103 IN 1980. SIX OF THE NINE URANIUM NITRATE STORAGE TANKS ARE SHOWN. HIGHLY ENRICHED URANIUM WAS INTRODUCED INTO THE BUILDING IN THE SUMMER OF 1965 AND THE FIRST EXPERIMENTS WERE PERFORMED IN SEPTEMBER OF 1965. EXPERIMENTS WERE PERFORMED ON ENRICHED URANIUM METAL AND SOLUTION, PLUTONIUM METAL, LOW ENRICHED URANIUM OXIDE, AND SEVERAL SPECIAL APPLICATIONS. AFTER 1983, EXPERIMENTS WERE CONDUCTED PRIMARILY WITH URANYL NITRATE SOLUTIONS, AND DID NOT INVOLVE SOLID MATERIALS. - Rocky Flats Plant, Critical Mass Laboratory, Intersection of Central Avenue & 86 Drive, Golden, Jefferson County, CO

  9. PROCESS FOR SEPARATING PLUTONIUM FROM IMPURITIES

    DOEpatents

    Wahl, A.C.

    1957-11-12

    A method is described for separating plutonium from aqueous solutions containing uranium. It has been found that if the plutonium is reduced to its 3+ valence state, and the uranium present is left in its higher valence state, then the differences in solubility between certain salts (e.g., oxalates) of the trivalent plutonium and the hexavalent uranium can be used to separate the metals. This selective reduction of plutonium is accomplished by adding iodide ion to the solution, since iodide possesses an oxidation potential sufficient to reduce plutonium but not sufficient to reduce uranium.

  10. RECOVERY OF URANIUM FROM CARBONATE LEACH LIQUORS

    DOEpatents

    Wilson, H.F.

    1958-07-01

    An improved process is described for the recovery of uranium from vanadifrous ores. In the prior art such ores have been digested with alkali carbonate solutions at a pH of less than 10 and then contacted with a strong base anion exchange resin to separate uranium from vanadium. It has been found that if the exchamge resin feed solution has its pH adjusted to the range 10.8 to 11.8, that vanadium adsorption on the resin is markedly decreased and the separation of uranium from the vanadium is thereby improved.

  11. Innovative Elution Processes for Recovering Uranium and Transition Metals from Amidoxime-based Adsorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wai, Chien M.

    Amidoxime-based polymer fibers are considered one of the most promising materials for sequestering uranium from seawater. The high-surface-area polymer fibers containing amidoxime and carboxylate groups synthesized by Oak Ridge National Lab (ORNL-AF1) show very high uranium adsorption capacities known in the literature. Effective elution of uranium and repeated use of the adsorbent are important factors affecting the cost of producing uranium from seawater using this material. Traditional acid leaching of uranium followed by KOH conditioning of the fiber causes chemical changes and physical damage to the ORNL-AF1 adsorbent. Two alkaline solution leaching methods were developed by this project, one usesmore » a highly concentrated (3 M) potassium bicarbonate solution at pH 8.3 and 40 °C; the other uses a mixture of sodium carbonate and hydrogen peroxide at pH 10.4. Both elution methods do not require KOH conditioning prior to reusing the fiber adsorbent. The conditions of eluting uranium from the amidoxime-based adsorbent using these alkaline solutions are confirmed by thermodynamic calculations. The bicarbonate elution method is selective for uranium recovery compared to other elution methods and causes no chemical change to the fiber material based on FTIR spectroscopy« less

  12. COORDINATION COMPOUND-SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY

    DOEpatents

    Reas, W.H.

    1959-03-10

    A method is presented for the separation of uranium from aqueous solutions containing a uranyl salt and thorium. Thc separation is effected by adding to such solutions an organic complexing agent, and then contacting the solution with an organic solvent in which the organic complexing agent is soluble. By use of the proper complexing agent in the proper concentrations uranium will be complexed and subsequently removed in the organic solvent phase, while the thorium remains in the aqueous phase. Mentioned as suitable organic complexing agents are antipyrine, bromoantipyrine, and pyramidon.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Syarifah, Ratna Dewi, E-mail: syarifah.physics@gmail.com; Suud, Zaki, E-mail: szaki@fi.itb.ac.id

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the additionmore » of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better.« less

  14. BASIC PEROXIDE PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINANTS

    DOEpatents

    Seaborg, G.T.; Perlman, I.

    1959-02-10

    A process is described for the separation from each other of uranyl values, tetravalent plutonium values and fission products contained in an aqueous acidic solution. First the pH of the solution is adjusted to between 2.5 and 8 and hydrogen peroxide is then added to the solution causing precipitation of uranium peroxide which carries any plutonium values present, while the fission products remain in solution. Separation of the uranium and plutonium values is then effected by dissolving the peroxide precipitate in an acidic solution and incorporating a second carrier precipitate, selective for plutonium. The plutonium values are thus carried from the solution while the uranium remains flissolved. The second carrier precipitate may be selected from among the group consisting of rare earth fluorides, and oxalates, zirconium phosphate, and bismuth lihosphate.

  15. METHOD FOR SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS BY SOLVENT EXTRACTION

    DOEpatents

    Seaborg, G.T.; Blaedel, W.J.; Walling, M.T. Jr.

    1960-08-23

    A process is given for separating from each other uranium, plutonium, and fission products in an aqueous nitric acid solution by the so-called Redox process. The plutonium is first oxidized to the hexavalent state, e.g., with a water-soluble dichromate or sodium bismuthate, preferably together with a holding oxidant such as potassium bromate. potassium permanganate, or an excess of the oxidizing agent. The solution is then contacted with a water-immiscible organic solvent, preferably hexone. whereby uranium and plutonium are extracted while the fission products remain in the aqueous solution. The separated organic phase is then contacted with an aqueous solution of a reducing agent, with or without a holding reductant (e.g., with a ferrous salt plus hydrazine or with ferrous sulfamate), whereby plutonium is reduced to the trivalent state and back- extracted into the aqueous solution. The uranium may finally be back-extracted from the organic solvent (e.g., with a 0.1 N nitric acid).

  16. Letter Report: Looking Ahead at Nuclear Fuel Resources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Stephen Herring

    2013-09-01

    The future of nuclear energy and its ability to fulfill part of the world’s energy needs for centuries to come depend on a reliable input of nuclear fuel, either thorium or uranium. Obviously, the present nuclear fuel cycle is completely dependent on uranium. Future thorium cycles will also depend on 235U or fissile isotopes separated from used fuel to breed 232Th into fissile 233U. This letter report discusses several emerging areas of scientific understanding and technology development that will clarify and enable assured supplies of uranium and thorium well into the future. At the most fundamental level, the nuclear energymore » community needs to appreciate the origins of uranium and thorium and the processes of planetary accretion by which those materials have coalesced to form the earth and other planets. Secondly, the studies of geophysics and geochemistry are increasing understanding of the processes by which uranium and thorium are concentrated in various locations in the earth’s crust. Thirdly, the study of neutrinos and particularly geoneutrinos (neutrinos emitted by radioactive materials within the earth) has given an indication of the overall global inventories of uranium and thorium, though little indication for those materials’ locations. Crustal temperature measurements have also given hints of the vertical distribution of radioactive heat sources, primarily 238U and 232Th, within the continental crust. Finally, the evolving technologies for laser isotope separation are indicating methods for reducing the energy input to uranium enrichment but also for tailoring the isotopic vectors of fuels, burnable poisons and structural materials, thereby adding another tool for dealing with long-term waste management.« less

  17. ANIONIC EXCHANGE PROCESS FOR THE RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS

    DOEpatents

    Bailes, R.H.; Ellis, D.A.; Long, R.S.

    1958-12-16

    Uranium and vanadium can be economically purified and recovered from non- salt roast carbonate leach liquors by adsorption on a strongly basic anionic exchange resin and subsequent selective elution by one of three alternative methods. Method 1 comprises selectively eluting uranium from the resin with an ammonium sulfate solution followed by eluting vanadium from the resin with either 5 M NaCl, saturated (NH/sub 4/)/sub 2/CO/sub 3/, saturated NaHCO/sub 3/, 1 M NaOH, or saturated S0/sub 2/ solutions. Method II comprises selectively eluting vanadium from the resin with either concentrated NaCl or S0/sub 2/ solutions subsequent to pretreatment of the column with either S0/sub 2/ gas, 1 N HCl, or 0.1 N H/sub 2/8O/sub 4/ followed by eluting uranium from the resin with solutions containing 0.9 M NH/sub 4/Cl or NaCl and 0.1 Cl. Method III comprises flowing the carbonate leac solutlon through a first column of a strongly basic anlonlc exchange resin untll vanadium breakthrough occurs, so that the effluent solution is enriched ln uranium content and the vanadium is chiefly retalned by the resln, absorbing the uranlum from the enriched effluent solution on a second column of a strongly basic anionic exchange resin, pretreating the first column with either 0.1 N HCl, 0.1 H/sub 2/SO/sub 4/, C0/sub 2/ gas, or ammonium sulfate, selectively eluting the vanadlum from the column with saturated S0/sub 2/ solution, pretreatlng the second column with either 0.1 N HCl or S0/sub 2/ gas, selectively eluting residual vanadium from the column with saturated S0/sub 2/ solution, and then eluting the uranium from the column with either 0.1 N HCl and 1 N NaCl orO.l N HCl and 1 N NH/sub 4/Cl.

  18. Management of thermal peaking factors in CONFU-B PWR assemblies using neutron poisons and tailored enrichment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Visosky, M.; Hejzlar, P.; Kazimi, M.

    2006-07-01

    CONFU-B assemblies are PWR assemblies containing standard Uranium fuel rods and TRU bearing inert material fuel rods and are designed to achieve net TRU destruction over a 4.5-year irradiation. These highly heterogeneous assemblies tend to exhibit large intra-assembly power peaking factors (IAPPF). Neutronic strategies to reduce IAPPF are developed. The IAPPF are calculated at the assembly level using CASMO4, and these are used to calculate the most restrictive thermal margin (the Minimum Departure from Nucleate Boiling Ratio, MDNBR) using a whole-core VIPRE-01 model. This paper examines two strategies to manage the thermal margin of a CONFU-B assembly while retaining themore » TRU destruction performance: use of neutron poisons and tailored enrichment schemes. Burnable poisons can be used to suppress BOL reactivity of fresh CONFU-B assemblies with only minor impact on MDNBR and TRU destruction performance. Tailored enrichment, along with the use of soluble boron, can achieve significant improvements in MDNBR, but at some cost to TRU destruction performance. (authors)« less

  19. PROCESS FOR SEPARATION OF HEAVY METALS

    DOEpatents

    Duffield, R.B.

    1958-04-29

    A method is described for separating plutonium from aqueous acidic solutions of neutron-irradiated uranium and the impurities associated therewith. The separation is effected by adding, to the solution containing hexavalent uranium and plutonium, acetate ions and the ions of an alkali metal and those of a divalent metal and thus forming a complex plutonium acetate salt which is carried by the corresponding complex of uranium, such as sodium magnesium uranyl acetate. The plutonium may be separated from the precipitated salt by taking the same back into solution, reducing the plutonium to a lower valent state on reprecipitating the sodium magnesium uranyl salt, removing the latter, and then carrying the plutonium from ihe solution by means of lanthanum fluoride.

  20. METHOD OF SEPARATION

    DOEpatents

    Boyd, G.E.

    1958-08-26

    A process is presented fer separating uranium, plutonium, and fission products ions from uranyl nitrate solutions having a pH value between 1 and 3 obtained by dissolving neutron irradiated uranium. The method consists in passing such solutions through a bed of cation exchange resin, which may be a sulfonated phenol formaidehyde type. Following the adsorption step the resin is first treated with a solution of 0.2M to 0.3M sulfuric acid to desorb the uranium. Fission product ions are then desorbed by treating the resin in phosphoric acid and 1M in nitric acid. Lastly, the plutonium may be desorbed by treating the resin with a solution approximately 0.8M in phosphoric acid and 1M in nitric acid.

  1. SEPARATION OF URANIUM FROM THORIUM

    DOEpatents

    Hellman, N.N.

    1959-07-01

    A process is presented for separating uranium from thorium wherein the ratio of thorium to uranium is between 100 to 10,000. According to the invention the thoriumuranium mixture is dissolved in nitric acid, and the solution is prepared so as to obtain the desired concentration within a critical range of from 4 to 8 N with regard to the total nitrate due to thorium nitrate, with or without nitric acid or any nitrate salting out agent. The solution is then contacted with an ether, such as diethyl ether, whereby uranium is extracted into ihe organic phase while thorium remains in the aqueous phase.

  2. SEPARATION OF PLUTONIUM VALUES FROM URANIUM AND FISSION PRODUCT VALUES

    DOEpatents

    Maddock, A.G.; Booth, A.H.

    1960-09-13

    Separation of plutonium present in small amounts from neutron irradiated uranium by making use of the phenomenon of chemisorption is described. Plutonium in the tetravalent state is chemically absorbed on a fluoride in solid form. The steps for the separation comprise dissolving the irradiated uranium in nitric acid, oxidizing the plutonium in the resulting solution to the hexavalent state, adding to the solution a soluble calcium salt which by the common ion effect inhibits dissolution of the fluoride by the solution, passing the solution through a bed or column of subdivided calcium fluoride which has been sintered to about 8OO deg C to remove the chemisorbable fission products, reducing the plutonium in the solution thus obtained to the tetravalent state, and again passing the solution through a similar bed or column of calcium fluoride to selectively absorb the plutonium, which may then be recovered by treating the calcium fluoride with a solution of ammonium oxalate.

  3. DISSOLUTION OF URANIUM FUELS BY MONOOR DIFLUOROPHOSPHORIC ACID

    DOEpatents

    Johnson, R.; Horn, F.L.; Strickland, G.

    1963-05-01

    A method of dissolving and separating uranium from a uranium matrix fuel element by dissolving the uraniumcontaining matrix in monofluorophosphoric acid and/or difluorophosphoric acid at temperatures ranging from 150 to 275 un. Concent 85% C, thereafter neutralizing the solution to precipitate uranium solids, and converting the solids to uranium hexafluoride by treatment with a halogen trifluoride is presented. (AEC)

  4. Effects of uranium mining, Puerco River, New Mexico

    USGS Publications Warehouse

    Lopes, Thomas J.

    1991-01-01

    Effluent from uranium-mine dewatering and acidic water released by a tailings-pond dike failure increased radionuclide activities in streamflow in the Puerco River in New Mexico and Arizona. Median dissolved gross-alpha activity in the streamflow was 1,130 picocuries per liter from 1975 to 1986 when mine discharges ceased and 6.2 picocuries per liter from 1986 to 1989. From 1975 to July 1979, major ions in streamflow at the Puerco River at Gallup streamflow-gaging station were sodium, bicarbonate, and sulfate. On July 16, 1979, the day of the tailing spill, major ions in streamflow were magnesium, calcium, and sulfate. From 1979 to 1984, major ions in streamflow had a greater proportion of calcium and sulfate than prior to the spill, indicating flushing of residual tailings solution. Geochemical modeling of mine effluent indicates that uranium was unlikely to precipitate from effluent between the mines and Gallup or when mixed with wastewater downstream from Gallup. Geochemical modeling of acidic-tailings solution indicates that uranium was in solution as far downstream as Gallup. When the acidic-tailings solution mixed with 10- to 40-percent wastewater, uranium may have precipitated from solution as carnotite [K2(UO2)2(VO4)2] and tyuyamunite [Ca(UO2)2(VO4)2].

  5. PROCESS FOR RECOVERY OF URANIUM VALUES FROM IMPURE SOLUTIONS THEREOF

    DOEpatents

    Kilner, S.B.

    1959-11-01

    A process is presented for the recovery of uraninm values from impure solutions which are obtained, for example, by washing residual uranium salt or uranium metal deposits from stainless steel surfaces using an aqueous or certain acidic aqueous solutions. The solutions include uranyl and oxidized iron, chromium, nickel, and copper ions and may contain manganese, zinc, and silver ions. In accordance with one procedure. the uranyl ions are reduced to the uranous state, and the impurity ions are complexed with cyanide under acidic conditions. The solution is then treated with ammonium hydroxide or alkali metal hydroxide to precipitate uranous hydroxide away from the complexed impurity ions in the solution. Alternatively, an excess of alkali metal cyanide is added to the reduced solution until the solution becomes sufficiently alkaline for the uranons hydroxide to precipitate. An essential feature in operating the process is in maintaining the pH of the solution sufficiently acid during the complexing operation to prevent the precipitation of the impurity metal hydroxides.

  6. PROCESS OF ELECTROPLATING METALS WITH ALUMINUM

    DOEpatents

    Schickner, W.C.

    1960-04-26

    A process of electroplating aluminum on metals from a nonaqueous bath and a novel method of pretreating or conditioning the metal prior to electrodeposition of the aluminum are given. The process of this invention, as applied by way of example to the plating of uranium, comprises the steps of plating the uranium with the barrier inetal, immersing the barrier-coated uranium in fatty acid, and electrolyzing a water-free diethyl ether solution of aluminum chloride and lithium hydride while making the uranium the cathode until an aluminum deposit of the desired thickness has been formed. According to another preferred embodiment the barrier-coated uranium is immersed in an isopropyl alcohol solution of sterato chromic chloride prior to the fatty acid treatment of this invention.

  7. PREPARATION OF HIGH PURITY UF$sub 4$

    DOEpatents

    Magner, J.E.; Long, R.S.; Ellis, D.A.; Grinstead, R.R.

    1962-04-17

    S>A process for preparing very highly pure uranous tetrafluoride from impure uranium laden solvent extraction strip solutions, ion exchange process and resin-inpulp process eluate solutions which are at least 8M in hydrochloric acid is described. The process first comprises treating any of the above-mentioned solutions with a reducing agent to reduce the uranium to the + 4 oxidation state, and then contacting the reduced solution with an extractant phase comprising about 10 to 70% of tri-butyl phosphate in an organic solvent-diluent selected from benzene, ethyl-benzene, chlorobenzene, xylene, kerosene, or the like. The uranium is extracted into the extractant phase and is subsequently precipitated by treating the extractant with an aqueous fluoride solution. The highly pure uranous tetrafluoride precipitate is separated from the phases and recovered for subsequent utilization. (AEC)

  8. Separation of uranium from (Th,U)O.sub.2 solid solutions

    DOEpatents

    Chiotti, Premo; Jha, Mahesh Chandra

    1976-09-28

    Uranium is separated from mixed oxides of thorium and uranium by a pyrometallurgical process in which the oxides are mixed with a molten chloride salt containing thorium tetrachloride and thorium metal which reduces the uranium oxide to uranium metal which can then be recovered from the molten salt. The process is particularly useful for the recovery of uranium from generally insoluble high-density sol-gel thoria-urania nuclear reactor fuel pellets.

  9. PROCESS FOR SEGREGATING URANIUM FROM PLUTONIUM AND FISSION-PRODUCT CONTAMINATION

    DOEpatents

    Ellison, C.V.; Runion, T.C.

    1961-06-27

    An aqueous nitric acid solution containing uranium, plutonium, and fission product values is contacted with an organic extractant comprised of a trialkyl phosphate and an organic diluent. The relative amounts of trialkyl phosphate and uranium values are controlled to achieve a concentration of uranium values in the organic extractant of at least 0.35 moles uranium per mole of trialkyl phosphate, thereby preferentially extracting uranium values into the organic extractant.

  10. PROCESS OF RECOVERING URANIUM FROM ITS ORES

    DOEpatents

    Galvanek, P. Jr.

    1959-02-24

    A process is presented for recovering uranium from its ores. The crushed ore is mixed with 5 to 10% of sulfuric acid and added water to about 5 to 30% of the weight of the ore. This pugged material is cured for 2 to 3 hours at 100 to 110 deg C and then cooled. The cooled mass is nitrate-conditioned by mixing with a solution equivalent to 35 pounds of ammunium nitrate and 300 pounds of water per ton of ore. The resulting pulp containing 70% or more solids is treated by upflow percolation with a 5% solution of tributyl phosphate in kerosene at a rate equivalent to a residence time of about one hour to extract the solubilized uranium. The uranium is recovered from the pregnant organic liquid by counter-current washing with water. The organic extractant may be recycled. The uranium is removed from the water solution by treating with ammonia to precipitate ammonium diuranate. The filtrate from the last step may be recycled for the nitrate-conditioning treatment.

  11. Statistical analysis and isotherm study of uranium biosorption by Padina sp. algae biomass.

    PubMed

    Khani, Mohammad Hassan

    2011-06-01

    The application of response surface methodology is presented for optimizing the removal of U ions from aqueous solutions using Padina sp., a brown marine algal biomass. Box-Wilson central composite design was employed to assess individual and interactive effects of the four main parameters (pH and initial uranium concentration in solutions, contact time and temperature) on uranium uptake. Response surface analysis showed that the data were adequately fitted to second-order polynomial model. Analysis of variance showed a high coefficient of determination value (R (2)=0.9746) and satisfactory second-order regression model was derived. The optimum pH and initial uranium concentration in solutions, contact time and temperature were found to be 4.07, 778.48 mg/l, 74.31 min, and 37.47°C, respectively. Maximized uranium uptake was predicted and experimentally validated. The equilibrium data for biosorption of U onto the Padina sp. were well represented by the Langmuir isotherm, giving maximum monolayer adsorption capacity as high as 376.73 mg/g.

  12. Characteristics of uranium biosorption from aqueous solutions on fungus Pleurotus ostreatus.

    PubMed

    Zhao, Changsong; Liu, Jun; Tu, Hong; Li, Feize; Li, Xiyang; Yang, Jijun; Liao, Jiali; Yang, Yuanyou; Liu, Ning; Sun, Qun

    2016-12-01

    Uranium(VI) biosorption from aqueous solutions was investigated in batch studies by using fungus Pleurotus ostreatus biomass. The optimal biosorption conditions were examined by investigating the reaction time, biomass dosage, pH, temperature, and uranium initial concentration. The interaction between fungus biomass and uranium was confirmed using Fourier transformed infrared (FT-IR), scanning electronic microscopy energy dispersive X-ray (SEM-EDX), and X-ray photoelectron spectroscopy (XPS) analysis. Results exhibited that the maximum biosorption capacity of uranium on P. ostreatus was 19.95 ± 1.17 mg/g at pH 4.0. Carboxylic, amine, as well as hydroxyl groups were involved in uranium biosorption according to FT-IR analysis. The pseudo-second-order model properly evaluated the U(VI) biosorption on fungus P. ostreatus biomass. The Langmuir equation provided better fitting in comparison with Freundlich isotherm models. The obtained thermodynamic parameters suggested that biosorption is feasible, endothermic, and spontaneous. SEM-EDX and XPS were additionally conducted to comprehend the biosorption process that could be described as a complex process involving several mechanisms of physical adsorption, chemisorptions, and ion exchange. Results obtained from this work indicated that fungus P. ostreatus biomass can be used as potential biosorbent to eliminate uranium or other radionuclides from aqueous solutions.

  13. Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles.

    PubMed

    Fan, Fang-Li; Qin, Zhi; Bai, Jing; Rong, Wei-Dong; Fan, Fu-You; Tian, Wei; Wu, Xiao-Lei; Wang, Yang; Zhao, Liang

    2012-04-01

    Rapid removal of U(VI) from aqueous solutions was investigated using magnetic Fe(3)O(4)@SiO(2) composite particles as the novel adsorbent. Batch experiments were conducted to study the effects of initial pH, amount of adsorbent, shaking time and initial U(VI) concentrations on uranium sorption efficiency as well as the desorbing of U(VI). The sorption of uranium on Fe(3)O(4)@SiO(2) composite particles was pH-dependent, and the optimal pH was 6.0. In kinetics studies, the sorption equilibrium can be reached within 180 min, and the experimental data were well fitted by the pseudo-second-order model, and the equilibrium sorption capacities calculated by the model were almost the same as those determined by experiments. The Langmuir sorption isotherm model correlates well with the uranium sorption equilibrium data for the concentration range of 20-200 mg/L. The maximum uranium sorption capacity onto magnetic Fe(3)O(4)@SiO(2) composite particles was estimated to be about 52 mg/g at 25 °C. The highest values of uranium desorption (98%) was achieved using 0.01 M HCl as the desorbing agent. Fe(3)O(4)@SiO(2) composite particles showed a good selectivity for uranium from aqueous solution with other interfering cation ions. Present study suggested that magnetic Fe(3)O(4)@SiO(2) composite particles can be used as a potential adsorbent for sorption uranium and also provided a simple, fast separation method for removal of heavy metal ion from aqueous solution. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. PROCESS FOR THE RECOVERY OF URANIUM

    DOEpatents

    Morris, G.O.

    1955-06-21

    This patent relates to a process for the recovery of uranium from impure uranium tetrafluoride. The process consists essentially of the steps of dissolving the impure uranium tetrafluoride in excess dilute sulfuric acid in the presence of excess hydrogen peroxide, precipitating ammonium uranate from the solution so formed by adding an excess of aqueous ammonia, dissolving the precipitate in sulfuric acid and adding hydrogen peroxide to precipitate uranium peroxdde.

  15. Density of Gadolinium Nitrate Solutions for the High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Paul Allen; Lee, Denise L

    2009-05-01

    In late 1992, the High Flux Isotope Reactor (HFIR) was planning to switch the solution contained in the poison injection tank from cadmium nitrate to gadolinium nitrate. The poison injection system is an emergency system used to shut down the reactor by adding a neutron poison to the cooling water. This system must be able to supply a minimum of 69 pounds of gadolinium to the reactor coolant system in order to guarantee that the reactor would become subcritical. A graph of the density of gadolinium nitrate solutions over a concentration range of 5 to 30 wt% and a temperaturemore » range of 15 to 40{sup o}C was prepared. Routine density measurements of the solution in the poison injection tank are made by HFIR personnel, and an adaptation of the original graph is used to determine the gadolinium nitrate concentration. In late 2008, HFIR personnel decided that the heat tracing that was present on the piping for the poison injection system could be removed without any danger of freezing the solution; however, the gadolinium nitrate solution might get as cold as 5{sup o}C. This was outside the range of the current density-concentration correlation, so the range needed to be expanded. This report supplies a new density-concentration correlation that covers the extended temperature range. The correlation is given in new units, which greatly simplifies the calculation that is required to determine the pounds of gadolinium in the tank solution. The procedure for calculating the amount of gadolinium in the HFIR poison injection system is as follows: (1) Calculate the usable volume in the system; (2) Measure the density of the solution; (3) Calculate the gadolinium concentration using the following equation: Gd(lb/ft{sup 3}) = measured density (g/mL) x 34.681 - 34.785; (4) Calculate the amount of gadolinium in the system using the following equation: Amount of Gd(lb) = Gd concentration (lb/ft{sup 3}) x usable volume (ft{sup 3}). The equation in step 3 is exact for a temperature of 5{sup o}C, and overestimates the gadolinium concentration at all higher temperatures. This guarantees that the calculation is conservative, in that the actual concentration will be at least as high as that calculated. If an additional safety factor is desired, it is recommended that an administrative control limit be set that is higher than the required minimum amount of gadolinium.« less

  16. The effect of Si and Al concentrations on the removal of U(VI) in the alkaline conditions created by NH3 gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsenovich, Yelena P.; Cardona, Claudia; Lapierre, Robert

    2016-10-01

    Remediation of uranium in the deep unsaturated zone is a challenging task, especially in the presence of oxygenated, high-carbonate alkalinity soil and pore water composition typical for arid and semi-arid environments of the western regions of the U.S. This study evaluates the effect of various pore water constituencies on changes of uranium concentrations in alkaline conditions, created in the presence of reactive gases such as NH3 to effectively mitigate uranium contamination in the vadose zone sediments. This contaminant is a potential source for groundwater pollution through slow infiltration of soluble and highly mobile uranium species towards the water table. Themore » objective of this research was to evaluate uranium sequestration efficiencies in the alkaline synthetic pore water solutions prepared in a broad range of Si, Al, and bicarbonate concentrations typically present in field systems of the western U.S. regions and identify solid uranium-bearing phases that result from ammonia gas treatment. In previous studies (Szecsody et al. 2012; Zhong et al. 2015), although uranium mobility was greatly decreased, solid phases could not be identified at the low uranium concentrations in field-contaminated sediments. The chemical composition of the synthetic pore water used in the experiments varied for silica (5–250 mM), Al3+ (2.8 or 5 mM), HCO3- (0–100 mM) and U(VI) (0.0021–0.0084 mM) in the solution mixture. Experiment results suggested that solutions with Si concentrations higher than 50 mM exhibited greater removal efficiencies of U(VI). Solutions with higher concentrations of bicarbonate also exhibited greater removal efficiencies for Si, Al, and U(VI). Overall, the silica polymerization reaction leading to the formation of Si gel correlated with the removal of U(VI), Si, and Al from the solution. If no Si polymerization was observed, there was no U removal from the supernatant solution. Speciation modeling indicated that the dominant uranium species in the presence of bicarbonate were anionic uranyl carbonate complexes (UO2(CO3)2-2 and UO2(CO3)3-4) and in the absence of bicarbonate in the solution, U(VI) major species appeared as uranyl-hydroxide (UO2(OH)3- and UO2(OH)4-2) species. The model also predicted the formation of uranium solid phases. Uranyl carbonates as rutherfordine [UO2CO3], cejkaite [Na4(UO2)(CO3)3] and hydrated uranyl silicate phases as Na-boltwoodite [Na(UO2)(SiO4)·1.5H2O] were anticipated for most of the synthetic pore water compositions amended from medium (2.9 mM) to high (100 mM) bicarbonate concentrations.« less

  17. CONTINUOUS CHELATION-EXTRACTION PROCESS FOR THE SEPARATION AND PURIFICATION OF METALS

    DOEpatents

    Thomas, J.R.; Hicks, T.E.; Rubin, B.; Crandall, H.W.

    1959-12-01

    A continuous process is presented for separating metal values and groups of metal values from each other. A complex mixture. e.g., neutron-irradiated uranium, can be resolved into component parts. In the present process the values are dissolved in an acidic solution and adjusted to the proper oxidation state. Thenceforth the solution is contacted with an extractant phase comprising a fluorinated beta -diketone in an organic solvent under centain pH conditions whereupon plutonium and zirconium are extracted. Plutonium is extracted from the foregoing extract with reducing aqueous solutions or under specified acidic conditions and can be recovered from the aqueous solution. Zirconium is then removed with an oxalic acid aqueous phase. The uranium is recovered from the residual original solution using hexone and hexone-diketone extractants leaving residual fission products in the original solution. The uranium is extracted from the hexone solution with dilute nitric acid. Improved separations and purifications are achieved using recycled scrub solutions and the "self-salting" effect of uranyl ions.

  18. ARSENATE CARRIER PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM NEUTRON IRRADIATED URANIUM AND RADIOACTIVE FISSION PRODUCTS

    DOEpatents

    Thompson, S.G.; Miller, D.R.; James, R.A.

    1961-06-20

    A process is described for precipitating Pu from an aqueous solution as the arsenate, either per se or on a bismuth arsenate carrier, whereby a separation from uranium and fission products, if present in solution, is accomplished.

  19. Method for providing uranium articles with a corrosion resistant anodized coating

    DOEpatents

    Waldrop, Forrest B.; Washington, Charles A.

    1982-01-01

    Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75.degree. C. with a current flow of less than about 0.036 A/cm.sup.2 of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.

  20. Separation by solvent extraction

    DOEpatents

    Holt, Jr., Charles H.

    1976-04-06

    17. A process for separating fission product values from uranium and plutonium values contained in an aqueous solution, comprising adding an oxidizing agent to said solution to secure uranium and plutonium in their hexavalent state; contacting said aqueous solution with a substantially water-immiscible organic solvent while agitating and maintaining the temperature at from -1.degree. to -2.degree. C. until the major part of the water present is frozen; continuously separating a solid ice phase as it is formed; separating a remaining aqueous liquid phase containing fission product values and a solvent phase containing plutonium and uranium values from each other; melting at least the last obtained part of said ice phase and adding it to said separated liquid phase; and treating the resulting liquid with a new supply of solvent whereby it is practically depleted of uranium and plutonium.

  1. Recovery of Uranium from Sodium Carbonate Solutions with Dowex I Anion Exchangers; RECUPERACION DEL URANIO DE SOLUCIONES. DE CARBONATO SODICO MEDIANTE INTERCAMBIO ANIONICO CON RESINA DOWEX I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urgell, M.; Bustamante, J.A.P.; Rodriguez, T.B.

    1959-01-01

    Synthetic carbonate solutions were used to study the recovery of uranium with Dowex-1. In the first part of the study the capacity of the resin for uranium fixation is investigated as a function of the solution concentration, and the flow velocity. The ideal thickness of the resin bed is investigated. The optimum conditions for elution with various salts and salt mixtures are established. In the last pant, the interference caused by an excess of carbonate and the presence of aluminate or phosphate is considered. (J.S.R.)

  2. RECONDITIONING FUEL ELEMENTS

    DOEpatents

    Brandt, H.L.

    1962-02-20

    A process is given for decanning fuel elements that consist of a uranium core, an intermediate section either of bronze, silicon, Al-Si, and uranium silicide layers or of lead, Al-Si, and uranium silicide layers around said core, and an aluminum can bonded to said intermediate section. The aluminum can is dissolved in a solution of sodium hydroxide (9 to 20 wt%) and sodium nitrate (35 to 12 wt %), and the layers of the intermediate section are dissolved in a boiling sodium hydroxide solution of a minimum concentration of 50 wt%. (AEC) A method of selectively reducing plutonium oxides and the rare earth oxides but not uranium oxides is described which comprises placing the oxides in a molten solvent of zinc or cadmium and then adding metallic uranium as a reducing agent. (AEC)

  3. METHOD OF APPLYING NICKEL COATINGS ON URANIUM

    DOEpatents

    Gray, A.G.

    1959-07-14

    A method is presented for protectively coating uranium which comprises etching the uranium in an aqueous etching solution containing chloride ions, electroplating a coating of nickel on the etched uranium and heating the nickel plated uranium by immersion thereof in a molten bath composed of a material selected from the group consisting of sodium chloride, potassium chloride, lithium chloride, and mixtures thereof, maintained at a temperature of between 700 and 800 deg C, for a time sufficient to alloy the nickel and uranium and form an integral protective coating of corrosion-resistant uranium-nickel alloy.

  4. Potential Aquifer Vulnerability in Regions Down-Gradient from ...

    EPA Pesticide Factsheets

    Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are instrumental in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of these uranium ores is a process of contacting the uranium mineral deposit with leaching (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality impacts from: 1) potential excursions of leaching solutions away from the injection zone into down-dip, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies

  5. Experiments and Modeling of Uranium Adsorption in the Presence of Other Ions in Simulated Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladshaw, Austin; Das, Sadananda; Liao, Wei-Po

    2015-11-19

    Seawater contains uranium at an average concentration of 3.3 ppb, as well as a variety of other ions at either overwhelmingly higher or similar concentrations, which complicate the recovery of uranium. This report describes an investigation of the effects of various factors such as uranium speciation and presence of salts including sodium, calcium, magnesium, and bicarbonate, as well as trace elements such as vanadium on uranium adsorption kinetics in laboratory experiments. Adsorption models are also developed to describe the experimental data of uranium extraction from seawater. Results show that the presence of calcium and magnesium significantly slows down the uraniummore » adsorption kinetics. Vanadium can replace uranium from amidoxime-based adsorbent in the presence of sodium in the solution. Results also show that bicarbonate in the solution strongly competes with amidoxime for binding uranium, and thus slows down the uranium adsorption kinetics. Developed on the basis of the experimental findings, the model is capable of describing the effects of pH, ionic strength, temperature, and concentration of various species. The results of this work are useful in the understanding of the important factors that control the adsorbent capacity and kinetics of uranium uptake by amidoxime-based adsorbents.« less

  6. THE CALCULATION OF BURNABLE POISON CORRECTION FACTORS FOR PWR FRESH FUEL ACTIVE COLLAR MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croft, Stephen; Favalli, Andrea; Swinhoe, Martyn T.

    2012-06-19

    Verification of commercial low enriched uranium light water reactor fuel takes place at the fuel fabrication facility as part of the overall international nuclear safeguards solution to the civilian use of nuclear technology. The fissile mass per unit length is determined nondestructively by active neutron coincidence counting using a neutron collar. A collar comprises four slabs of high density polyethylene that surround the assembly. Three of the slabs contain {sup 3}He filled proportional counters to detect time correlated fission neutrons induced by an AmLi source placed in the fourth slab. Historically, the response of a particular collar design to amore » particular fuel assembly type has been established by careful cross-calibration to experimental absolute calibrations. Traceability exists to sources and materials held at Los Alamos National Laboratory for over 35 years. This simple yet powerful approach has ensured consistency of application. Since the 1980's there has been a steady improvement in fuel performance. The trend has been to higher burn up. This requires the use of both higher initial enrichment and greater concentrations of burnable poisons. The original analytical relationships to correct for varying fuel composition are consequently being challenged because the experimental basis for them made use of fuels of lower enrichment and lower poison content than is in use today and is envisioned for use in the near term. Thus a reassessment of the correction factors is needed. Experimental reassessment is expensive and time consuming given the great variation between fuel assemblies in circulation. Fortunately current modeling methods enable relative response functions to be calculated with high accuracy. Hence modeling provides a more convenient and cost effective means to derive correction factors which are fit for purpose with confidence. In this work we use the Monte Carlo code MCNPX with neutron coincidence tallies to calculate the influence of Gd{sub 2}O{sub 3} burnable poison on the measurement of fresh pressurized water reactor fuel. To empirically determine the response function over the range of historical and future use we have considered enrichments up to 5 wt% {sup 235}U/{sup tot}U and Gd weight fractions of up to 10 % Gd/UO{sub 2}. Parameterized correction factors are presented.« less

  7. PROCESS OF SEPARATING URANIUM FROM AQUEOUS SOLUTION BY SOLVENT EXTRACTION

    DOEpatents

    Warf, J.C.

    1958-08-19

    A process is described for separating uranium values from aqueous uranyl nitrate solutions. The process consists in contacting the uramium bearing solution with an organic solvent, tributyl phosphate, preferably diluted with a less viscous organic liquida whereby the uranyl nitrate is extracted into the organic solvent phase. The uranvl nitrate may be recovered from the solvent phase bv back extracting with an aqueous mediuin.

  8. PROCESS OF SEPARATING PLUTONIUM FROM URANIUM

    DOEpatents

    Brown, H.S.; Hill, O.F.

    1958-09-01

    A process is presented for recovering plutonium values from aqueous solutions. It comprises forming a uranous hydroxide precipitate in such a plutonium bearing solution, at a pH of at least 5. The plutonium values are precipitated with and carried by the uranium hydroxide. The carrier precipitate is then redissolved in acid solution and the pH is adjusted to about 2.5, causing precipitation of the uranous hydroxide but leaving the still soluble plutonium values in solution.

  9. RECOVERY OF URANIUM BY AROMATIC DITHIOCARBAMATE COMPLEXING

    DOEpatents

    Neville, O.K.

    1959-08-11

    A selective complexing organic solvent extraction process is presented for the separation of uranium values from an aqueous nitric acid solution of neutron irradiated thorium. The process comprises contacting the solution with an organic aromatic dithiccarbamaie and recovering the resulting urancdithiccarbamate complex with an organic solvent such as ethyl acetate.

  10. Method for providing uranium articles with a corrosion-resistant anodized coating

    DOEpatents

    Waldrop, F.B.; Washington, C.A.

    1981-01-07

    Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75/sup 0/C with a current flow of less than about 0.036 A/cm/sup 2/ of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.

  11. Solubility Limits of Dibutyl Phosphoric Acid in Uranium Solutions at SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, M.C.; Pierce, R.A.; Ray, R.J.

    1998-06-01

    The Savannah River Site has enriched uranium (EU) solution which has been stored for almost 10 years since being purified in the second uranium cycle of the H area solvent extraction process. The concentrations in solution are {tilde 6} g/L U and about 0.1 M nitric acid. Residual tributylphosphate in the solutions has slowly hydrolyzed to form dibutyl phosphoric acid (HDBP) at concentrations averaging 50 mg/L. Uranium is known to form compounds with DBP which have limited solubility. The potential to form uranium-DBP solids raises a nuclear criticality safety issue. SRTC tests have shown that U-DBP solids will precipitate atmore » concentrations potentially attainable during storage of enriched uranium solutions. Evaporation of the existing EUS solution without additional acidification could result in the precipitation of U-DBP solids if DBP concentration in the resulting solution exceeds 110 ppm at ambient temperature. The same potential exists for evaporation of unwashed 1CU solutions. The most important variables of interest for present plant operations are HNO{sub 3} and DBP concentrations. Temperature is also an important variable controlling precipitation. The data obtained in these tests can be used to set operating and safety limits for the plant. It is recommended that the data for 0 degrees C with 0.5 M HNO{sub 3} be used for setting the limits. The limit would be 80 mg/L which is 3 standard deviations below the average of 86 observed in the tests. The data shows that super-saturation can occur when the DBP concentration is as much as 50 percent above the solubility limit. However, super-saturation cannot be relied on for maintaining nuclear criticality safety. The analytical method for determining DBP concentration in U solutions was improved so that analyses for a solution are accurate to within 10 percent. However, the overall uncertainty of results for periodic samples of the existing EUS solutions was only reduced slightly. Thus, sampling appears to be the largest portion of the uncertainty for EUS sample results, although the number of samples analyzed here is low which could contribution to higher uncertainty. The analytical method can be transferred to the plant analytical labs for more routine analysis of samples.« less

  12. Spatial Burnout in Water Reactors with Nonuniform Startup Distributions of Uranium and Boron

    NASA Technical Reports Server (NTRS)

    Fox, Thomas A.; Bogart, Donald

    1955-01-01

    Spatial burnout calculations have been made of two types of water moderated cylindrical reactor using boron as a burnable poison to increase reactor life. Specific reactors studied were a version of the Submarine Advanced Reactor (sAR) and a supercritical water reactor (SCW) . Burnout characteristics such as reactivity excursion, neutron-flux and heat-generation distributions, and uranium and boron distributions have been determined for core lives corresponding to a burnup of approximately 7 kilograms of fully enriched uranium. All reactivity calculations have been based on the actual nonuniform distribution of absorbers existing during intervals of core life. Spatial burnout of uranium and boron and spatial build-up of fission products and equilibrium xenon have been- considered. Calculations were performed on the NACA nuclear reactor simulator using two-group diff'usion theory. The following reactor burnout characteristics have been demonstrated: 1. A significantly lower excursion in reactivity during core life may be obtained by nonuniform rather than uniform startup distribution of uranium. Results for SCW with uranium distributed to provide constant radial heat generation and a core life corresponding to a uranium burnup of 7 kilograms indicated a maximum excursion in reactivity of 2.5 percent. This compared to a maximum excursion of 4.2 percent obtained for the same core life when w'anium was uniformly distributed at startup. Boron was incorporated uniformly in these cores at startup. 2. It is possible to approach constant radial heat generation during the life of a cylindrical core by means of startup nonuniform radial and axial distributions of uranium and boron. Results for SCW with nonuniform radial distribution of uranium to provide constant radial heat generation at startup and with boron for longevity indicate relatively small departures from the initially constant radial heat generation distribution during core life. Results for SAR with a sinusoidal distribution rather than uniform axial distributions of boron indicate significant improvements in axial heat generation distribution during the greater part of core life. 3. Uranium investments for cylindrical reactors with nonuniform radial uranium distributions which provide constant radial heat generation per unit core volume are somewhat higher than for reactors with uniform uranium concentration at startup. On the other hand, uranium investments for reactors with axial boron distributions which approach constant axial heat generation are somewhat smaller than for reactors with uniform boron distributions at startup.

  13. A review of Yellow Dirt: A Poisoned Land and the Betrayal of the Navajos.

    PubMed

    Adams, Nicole

    2015-05-01

    Yellow Dirt is a thorough account of the past and present state of the Navajo Nation with regards to uranium mining. Through a journalistic approach Judy Pasternak weaves the story of the betrayal of the Navajo people. This book highlights the impact of environment on health and this review calls all nurses to be aware of these impacts and incorporate this type of knowledge into their practice. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Volumetric determination of uranium using titanous sulfate as reductant before oxidimetric titration

    USGS Publications Warehouse

    Wahlberg, James S.; Skinner, Dwight L.; Rader, Lewis F.

    1956-01-01

    A new method for determining uranium in samples containing 0.05 percent or more U3O8, using titanous sulfate as reducing agent, is much shorter, faster, and has fewer interferences than conventional methods using reductor columns. The sample is dissolved with sulfuric, nitric, perchloric, and hydrofluoric acids. Elements that would otherwise form insoluble fluorides are kept in solution by complexing the fluoride ion with boric acid. A precipitation is made with cupferron to remove interfering elements. The solution is filtered to remove the precipitated cupferrates instead of extracting them with chloroform as is usually done. Filtration is preferred to extraction because any niobium that may be in solution forms an insoluble cupferrate that may be removed by filtering but is very difficult to extract with chloroform. Excess cupferron is destroyed by oxidizing with nitric and perchloric acids, and evaporating to dense fumes of sulfuric acid. The uranium is reduced to U(IV) by the addition of titanous sulfate, with cupric sulfate used as an indicator of the completeness of the reduction. Metallic copper is formed when all the uranium is reduced. The reduced copper is then reoxidized by the addition of mercuric perchlorate, an excess of ferric sulfate added, and the solution titrated immediately with standard ceric sulfate with ferroin as an indicator. Precision of the method compared favorable with methods in common use, both for uranium ores and for most types of uranium-rich materials.

  15. Establishing the traceability of a uranyl nitrate solution to a standard reference material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, C.H.; Clark, J.P.

    1978-01-01

    A uranyl nitrate solution for use as a Working Calibration and Test Material (WCTM) was characterized, using a statistically designed procedure to document traceability to National Bureau of Standards Reference Material (SPM-960). A Reference Calibration and Test Material (PCTM) was prepared from SRM-960 uranium metal to approximate the acid and uranium concentration of the WCTM. This solution was used in the characterization procedure. Details of preparing, handling, and packaging these solutions are covered. Two outside laboratories, each having measurement expertise using a different analytical method, were selected to measure both solutions according to the procedure for characterizing the WCTM. Twomore » different methods were also used for the in-house characterization work. All analytical results were tested for statistical agreement before the WCTM concentration and limit of error values were calculated. A concentration value was determined with a relative limit of error (RLE) of approximately 0.03% which was better than the target RLE of 0.08%. The use of this working material eliminates the expense of using SRMs to fulfill traceability requirements for uranium measurements on this type material. Several years' supply of uranyl nitrate solution with NBS traceability was produced. The cost of this material was less than 10% of an equal quantity of SRM-960 uranium metal.« less

  16. The application of illite supported nanoscale zero valent iron for the treatment of uranium contaminated groundwater.

    PubMed

    Jing, C; Landsberger, S; Li, Y L

    2017-09-01

    In this study, nanoscale zero valent iron I-NZVI was investigated as a remediation strategy for uranium contaminated groundwater from the former Cimarron Fuel Fabrication Site in Oklahoma, USA. The 1 L batch-treatment system was applied in the study. The result shows that 99.9% of uranium in groundwater was removed by I-NZVI within 2 h. Uranium concentration in the groundwater stayed around 27 μg/L, and there was no sign of uranium release into groundwater after seven days of reaction time. Meanwhile the release of iron was significantly decreased compared to NZVI which can reduce the treatment impact on the water environment. To study the influence of background pH of the treatment system on removal efficiency of uranium, the groundwater was adjusted from pH 2-10 before the addition of I-NZVI. The pH of the groundwater was from 2.1 to 10.7 after treatment. The removal efficiency of uranium achieved a maximum in neutral pH of groundwater. The desorption of uranium on the residual solid phase after treatment was investigated in order to discuss the stability of uranium on residual solids. After 2 h of leaching, 0.07% of the total uranium on residual solid phase was leached out in a HNO 3 leaching solution with a pH of 4.03. The concentration of uranium in the acid leachate was under 3.2 μg/L which is below the EPA's maximum contaminant level of 30 μg/L. Otherwise, the concentration of uranium was negligible in distilled water leaching solution (pH = 6.44) and NaOH leaching solution (pH = 8.52). A desorption study shows that an acceptable amount of uranium on the residuals can be released into water system under strong acid conditions in short terms. For long term disposal management of the residual solids, the leachate needs to be monitored and treated before discharge into a hazardous landfill or the water system. For the first time, I-NZVI was applied for the treatment of uranium contaminated groundwater. These results provide proof that I-NZVI has improved performance compared to NZVI and is a promising technology for the restoration of complex uranium contaminated water resources. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Bioremediation of uranium contamination with enzymatic uranium reduction

    USGS Publications Warehouse

    Lovley, D.R.; Phillips, E.J.P.

    1992-01-01

    Enzymatic uranium reduction by Desulfovibrio desulfuricans readily removed uranium from solution in a batch system or when D. desulfuricans was separated from the bulk of the uranium-containing water by a semipermeable membrane. Uranium reduction continued at concentrations as high as 24 mM. Of a variety of potentially inhibiting anions and metals evaluated, only high concentrations of copper inhibited uranium reduction. Freeze-dried cells, stored aerobically, reduced uranium as fast as fresh cells. D. desulfuricans reduced uranium in pH 4 and pH 7.4 mine drainage waters and in uraniumcontaining groundwaters from a contaminated Department of Energy site. Enzymatic uranium reduction has several potential advantages over other bioprocessing techniques for uranium removal, the most important of which are as follows: the ability to precipitate uranium that is in the form of a uranyl carbonate complex; high capacity for uranium removal per cell; the formation of a compact, relatively pure, uranium precipitate.

  18. Calixarene-entrapped nanoemulsion for uranium extraction from contaminated solutions.

    PubMed

    Spagnul, Aurélie; Bouvier-Capely, Céline; Phan, Guillaume; Rebière, François; Fattal, Elias

    2010-03-01

    Accidental cutaneous contamination by actinides such as uranium occurring to nuclear power plant workers can lead to their dissemination in other tissues and induce severe damages. Until now, no specific emergency treatment for such contamination has been developed. The aim of the present work was to formulate a tricarboxylic calix[6]arene molecule, known to exhibit good affinity and selectivity for complexing uranium, within a topical delivery system for the treatment of skin contamination. Since calixarene was shown to reduce oil/water interfacial tension, we have designed an oil-in-water nanoemulsion, taking advantage of the small droplet size offering a high contact surface with the contaminated aqueous medium. Characterization of the calixarene nanoemulsion was performed by determination of the oily droplet size, zeta potential and pH, measured as a function of the calixarene concentration. The obtained results have confirmed the surface localization of calixarene molecules being potentially available to extract uranyl ions from an aqueous contaminated solution. In a preliminary experiments, the calixarene nanoemulsion was used for the removal of free uranium from an aqueous contaminated solution. Results showed that the calixarene nanoemulsion extracted up to 80 +/- 5% of uranium, which demonstrates the potential interest of this delivery system for uranium skin decontamination. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  19. Potential Aquifer Vulnerability in Regions Down-Gradient from Uranium In Situ Recovery (ISR) Sites

    EPA Science Inventory

    Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are instrumental in leaching uranium from source rock...

  20. Role of U(VI) Adsorption in U(VI) Reduction by Geobacter Species.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2009-03-09

    Previous work had suggested that Acholeplasma palmae has a higher capacity for uranium sorption than other bacteria studied. Sorption studies were performed with cells in suspension in various solutions containing uranium and results were used to generate uranium-biosorption isotherms.

  1. SOLVENT EXTRACTION PROCESS FOR THE SEPARATION OF URANIUM AND THORIUM FROM PROTACTINIUM AND FISSION PRODUCTS

    DOEpatents

    Rainey, R.H.; Moore, J.G.

    1962-08-14

    A liquid-liquid extraction process was developed for recovering thorium and uranium values from a neutron irradiated thorium composition. They are separated from a solvent extraction system comprising a first end extraction stage for introducing an aqueous feed containing thorium and uranium into the system consisting of a plurality of intermediate extractiorr stages and a second end extractron stage for introducing an aqueous immiscible selective organic solvent for thorium and uranium in countercurrent contact therein with the aqueous feed. A nitrate iondeficient aqueous feed solution containing thorium and uranium was introduced into the first end extraction stage in countercurrent contact with the organic solvent entering the system from the second end extraction stage while intro ducing an aqueous solution of salting nitric acid into any one of the intermediate extraction stages of the system. The resultant thorium and uranium-laden organic solvent was removed at a point preceding the first end extraction stage of the system. (AEC)

  2. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... designed or prepared electrochemical reduction cells to reduce uranium from one valence state to another for uranium enrichment using the chemical exchange process. The cell materials in contact with process solutions must be corrosion resistant to concentrated hydrochloric acid solutions. The cell cathodic...

  3. PROCESS FOR THE PRODUCTION OF AMMONIUM URANIUM FLUORIDE

    DOEpatents

    Ellis, A.S.; Mooney, R.B.

    1953-08-25

    This patent relates to the preparation of ammonium uranium fluoride. The process comprises adding a water soluble fluoride to an aqueous solution of a uranous compound containing an ammonium salt, and isolating the resulting precipitate. This patent relates to the manufacture of uranium tetnafluoride from ammonium uranium fluoride, NH/sub 4/UF/sub 5/. Uranium tetrafluoride is prepared by heating the ammonium uranium fluoride to a temperature at which dissociation occurs with liberation of ammonium fluoride. Preferably the process is carried out under reduced pressure, or in a current of an inert gas.

  4. Process for alloying uranium and niobium

    DOEpatents

    Holcombe, Cressie E.; Northcutt, Jr., Walter G.; Masters, David R.; Chapman, Lloyd R.

    1991-01-01

    Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.

  5. EXTRACTION METHOD FOR SEPARATING URANIUM, PLUTONIUM, AND FISSION PRODUCTS FROM COMPOSITIONS CONTAINING SAME

    DOEpatents

    Seaborg, G.T.

    1957-10-29

    Methods for separating plutonium from the fission products present in masses of neutron irradiated uranium are reported. The neutron irradiated uranium is first dissolved in an aqueous solution of nitric acid. The plutonium in this solution is present as plutonous nitrate. The aqueous solution is then agitated with an organic solvent, which is not miscible with water, such as diethyl ether. The ether extracts 90% of the uraryl nitrate leaving, substantially all of the plutonium in the aqueous phase. The aqueous solution of plutonous nitrate is then oxidized to the hexavalent state, and agitated with diethyl ether again. In the ether phase there is then obtained 90% of plutonium as a solution of plutonyl nitrate. The ether solution of plutonyl nitrate is then agitated with water containing a reducing agent such as sulfur dioxide, and the plutonium dissolves in the water and is reduced to the plutonous state. The uranyl nitrate remains in the ether. The plutonous nitrate in the water may be recovered by precipitation.

  6. METHOD FOR PREPARING URANIUM MONOCARBIDE-PLUTONIUM MONOCARBIDE SOLID SOLUTION

    DOEpatents

    Ogard, A.E.; Leary, J.A.; Maraman, W.J.

    1963-03-19

    A method is given for preparing solid solutions of uranium monocarbide- plutonium monocarbide. In this method, the powder form of uranium dioxide, plutonium dioxide, and graphite are mixed in a ratio determined by the equation: xUO/sub 2/ + yPuO/sub 2/ + (2+z)C yields UxPu/sub y/C/sub z/ +2CO, where x + y equ al 1.0 and z is greater than 0.9 but less than 1.0. The resulting mixture is compacted and heated in a vacuum at a temperature of 1850 deg C. (AEC)

  7. CMB-8 material balance system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langner, D.; Canada, T.; Ensslin, N.

    1980-08-01

    We describe the automated nondestructive assay (NDA) system installed at the Los Alamos Scientific Laboratory (LASL) Group CMB-8 uranium recovery facility. A random driver (RD) is used to measure the /sup 235/U content of various solids while a uranium solution assay system (USAS) measures the /sup 235/U or total uranium content of solutions over a concentration range of a few ppM to 400 g/l. Both instruments are interfaced to and controlled by a single minicomputer. The measurement principles, mechanical specifications, system software description, and operational instructions are described.

  8. PROCESS OF RECOVERING URANIUM

    DOEpatents

    Price, T.D.; Jeung, N.M.

    1958-06-17

    An improved precipitation method is described for the recovery of uranium from aqueous solutions. After removal of all but small amounts of Ni or Cu, and after complexing any iron present, the uranium is separated as the peroxide by adding H/sub 2/O/sub 2/. The improvement lies in the fact that the addition of H/sub 2/O/sub 2/ and consequent precipitation are carried out at a temperature below the freezing; point of the solution, so that minute crystals of solvent are present as seed crystals for the precipitation.

  9. THE MONITORING OF EFFLUENT FOR ALPHA EMITTERS. PART II. METHODS FOR THE DETERMINATION OF URANIUM, POLONIUM AND OTHER ALPHA EMITTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smales, A.A.; Airey, L.; Woodward, J.

    1950-06-01

    Consideration has been given to the problem of separating and estimating uranium, polonium, and other alpha emitters (in order to provide analytical methods for their routine determination in conformily with the draft agreement on the Harwell effluent). Uranium may be ether extracted from solutions of ammonium nitrate as salting out agent at pHl with an efficiency of 98 to 99%. The deposition of polonium on silver foil is a specific method for this element and under prescribed conditions similar extraction efficiencies may be obtained. An adequate separation from all other alpha emitters'' is obtained and methods for the estimation ofmore » these are discussed. A comprehensive scheme involving a preliminary activity concentration step has been elaborated. Uranium, polonium, and the majority of the other alpha emitters'' are precipitated as their tannin complexes at pH8 using calcium hydroxide, the calcium-tannin complex acting as a carrier. That part of the activity remaining in solution is determined as in the total activity method, previously described. From the solution of the precipitate, polonium is first separated by electrodeposition, and then uranium by ether extraction in the presence of ammonium nitrate. The majority of the other alpha emitters'' still in the aqueous ammonium nitrate solution are collected on a second calcium-tannin precipitate, while the small part remaining in solution after this operation is obtained by direct evaporation. (auth)« less

  10. Surface reactions kinetics between nanocrystalline magnetite and uranyl.

    PubMed

    Missana, Tiziana; Maffiotte, César; García-Gutiérrez, Miguel

    2003-05-01

    Magnetite is the most important end member of iron corrosion products under reducing environment, which is the condition expected in a deep geological high level radioactive waste disposal. Nanocrystalline magnetite was synthesized in the laboratory and its physicochemical properties were analyzed in detail. The kinetics of the adsorption of U(VI) and the kinetics of the actinide reduction to a lower oxidation state, in presence of the oxide, were studied by means of batch sorption techniques and X-ray photoelectron spectroscopy (XPS) analysis. The results showed that the uranium sorption and reduction processes on the magnetite surface have very fast kinetics (hours), the reduction process being triggered by sorption. XPS measurements showed that the speciation of uranium at the surface does not show significant changes with time (from 1 day to 3 months), as well as the quantity of uranium detected at the surface. The surface speciation depended on the initial pH of the contact solution. Considering that the Eh of equilibrium between magnetite and the solution, under our experimental conditions, is slightly positive (50-100 mV), the uranium reduction would also be thermodynamically possible within the liquid phase. However, the kinetics of reduction in the liquid occur at a much slower rate which, in turn, has to depend on the attainment of the magnetite/solution equilibrium. The decrease of uranium in solution, observed after the uranyl adsorption stage, and particularly at acidic pH, is most probably due to the precipitation of U(IV) formed in the solution.

  11. Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites.

    PubMed

    Saunders, James A; Pivetz, Bruce E; Voorhies, Nathan; Wilkin, Richard T

    2016-12-01

    Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are important in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of uranium ores is a process of contacting the uranium mineral deposit with leaching and oxidizing (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality degradation from: 1) potential excursions of leaching solutions away from the injection zone into down-gradient, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential mobilization and migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies data gaps in mitigating these vulnerabilities, and discusses the hydrogeological characterization involved in developing a monitoring program. Published by Elsevier Ltd.

  12. Processing of irradiated, enriched uranium fuels at the Savannah River Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyder, M L; Perkins, W C; Thompson, M C

    Uranium fuels containing /sup 235/U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium byproducts. The fuels to be processed are dissolved in nitric acid. Aluminum-clad fuels are disssolved using a mercury catalyst to give a solution rich in aluminum. Fuels clad in more resistant materials are dissolved in an electrolytic dissolver. The resulting solutions are subjected to head-end treatment, including clarification and adjustment of acid and uranium concentration before being fed to solvent extraction. Uranium, neptunium, and plutonium are separated from fission products and from one another by multistage countercurrent solvent extraction withmore » dilute tri-n-butyl phosphate in kerosene. Nitric acid is used as the salting agent in addition to aluminum or other metal nitrates present in the feed solution. Nuclear safety is maintained through conservative process design and the use of monitoring devices as secondary controls. The enriched uranium is recovered as a dilute solution and shipped off-site for further processing. Neptunium is concentrated and sent to HB-Line for recovery from solution. The relatively small quantities of plutonium present are normally discarded in aqueous waste, unless the content of /sup 238/Pu is high enough to make its recovery desirable. Most of the /sup 238/Pu can be recovered by batch extraction of the waste solution, purified by counter-current solvent extraction, and converted to oxide in HB-Line. By modifying the flowsheet, /sup 239/Pu can be recovered from low-enriched uranium in the extraction cycle; neptunium is then not recovered. The solvent is subjected to an alkaline wash before reuse to remove degraded solvent and fission products. The aqueous waste is concentrated and partially deacidified by evaporation before being neutralized and sent to the waste tanks; nitric acid from the overheads is recovered for reuse.« less

  13. Column bioleaching of uranium embedded in granite porphyry by a mesophilic acidophilic consortium.

    PubMed

    Qiu, Guanzhou; Li, Qian; Yu, Runlan; Sun, Zhanxue; Liu, Yajie; Chen, Miao; Yin, Huaqun; Zhang, Yage; Liang, Yili; Xu, Lingling; Sun, Limin; Liu, Xueduan

    2011-04-01

    A mesophilic acidophilic consortium was enriched from acid mine drainage samples collected from several uranium mines in China. The performance of the consortium in column bioleaching of low-grade uranium embedded in granite porphyry was investigated. The influences of several chemical parameters on uranium extraction in column reactor were also investigated. A uranium recovery of 96.82% was achieved in 97 days column leaching process including 33 days acid pre-leaching stage and 64 days bioleaching stage. It was reflected that indirect leaching mechanism took precedence over direct. Furthermore, the bacterial community structure was analyzed by using Amplified Ribosomal DNA Restriction Analysis. The results showed that microorganisms on the residual surface were more diverse than that in the solution. Acidithiobacillus ferrooxidans was the dominant species in the solution and Leptospirillum ferriphilum on the residual surface. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. PROCESS OF EXTRACTING URANIUM AND RADIUM FROM ORES

    DOEpatents

    Sawyer, C.W.; Handley, R.W.

    1959-07-14

    A process is presented for extracting uranium and radium values from a uranium ore which comprises leaching the ore with a ferric chloride solution at an elevated temperature of above 50 deg C and at a pH less than 4; separating the ore residue from the leaching solution by filtration; precipitating the excess ferric iron present at a pH of less than 5 by adding CaCO/sub 3/ to the filtrate; separating the precipitate by filtration; precipitating the uranium present in the filtrate at a Ph less than 6 by adding BaCO/sub 3/ to the filtrate; separating the precipitate by filtration; and precipitating the radium present in the filtrate by adding H/sub 2/SO/sub 4/ to the filtrate.

  15. 49 CFR 176.84 - Other requirements for stowage and segregation for cargo vessels and passenger vessels.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...” flammable liquids. 29 Stow “away from” ammonium compounds. 30 Stow “away from” animal or vegetable oils. 31... vegetable oils. 55 Stow “separated from” ammonia. 56 Stow “separated from” ammonium compounds. 57 Stow... hexahydrate solution, uranium metal hexahydrate solution, uranium metal pyrophoric and thorium metal...

  16. 49 CFR 176.84 - Other requirements for stowage and segregation for cargo vessels and passenger vessels.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...” flammable liquids. 29 Stow “away from” ammonium compounds. 30 Stow “away from” animal or vegetable oils. 31... vegetable oils. 55 Stow “separated from” ammonia. 56 Stow “separated from” ammonium compounds. 57 Stow... hexahydrate solution, uranium metal hexahydrate solution, uranium metal pyrophoric and thorium metal...

  17. Potentiality of uranium biosorption from nitric acid solutions using shrimp shells.

    PubMed

    Ahmed, S H; El Sheikh, E M; Morsy, A M A

    2014-08-01

    Biosorption has gained important credibility during recent years because of its good performance and low cost. This work is concerned with studying the potentiality of the chitin component of the shrimp shells for uranium biosorption from nitric acid liquid solutions. The structural characteristics of the working chitin have been determined via Fourier Transform Infrared Spectroscopy (FTIR). The surface morphology was examined using Scanning Electron Microscopy (SEM). The adsorption capacity of biomass was investigated experimentally. The influence of contact time, pH, metal ion concentration, solution volume to mass ratio and temperature were evaluated and the results were fitted using adsorption isotherm models. The kinetic of uranium biosorption was also investigated as well as biosorption thermodynamic. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Impact of New Nuclear Data Libraries on Small Sized Long Life CANDLE HTGR Design Parameters

    NASA Astrophysics Data System (ADS)

    Liem, Peng Hong; Hartanto, Donny; Tran, Hoai Nam

    2017-01-01

    The impact of new evaluated nuclear data libraries (JENDL-4.0, ENDF/B-VII.0 and JEFF-3.1) on the core characteristics of small-sized long-life CANDLE High Temperature Gas-Cooled Reactors (HTGRs) with uranium and thorium fuel cycles was investigated. The most important parameters of the CANDLE core characteristics investigated here covered (1) infinite multiplication factor of the fresh fuel containing burnable poison, (2) the effective multiplication factor of the equilibrium core, (3) the moving velocity of the burning region, (4) the attained discharge burnup, and (5) the maximum power density. The reference case was taken from the current JENDL-3.3 results. For the uranium fuel cycle, the impact of the new libraries was small, while significant impact was found for thorium fuel cycle. The findings indicated the needs of more accurate nuclear data libraries for nuclides involved in thorium fuel cycle in the future.

  19. Metal poisons for criticality in waste streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williamson, T.G.; Goslen, A.Q.

    1996-12-31

    Many of the wastes from processing fissile materials contain metals that may serve as neutron poisons. It would be advantageous to the criticality evaluation of these wastes to demonstrate that the poisons remain with the fissile materials and to demonstrate an always safe poison-to-fissile ratio. The first task, demonstrating that the materials stay together, is the job of the chemist; the second, calculating an always safe ratio, is an object of this paper. In an earlier study, the authors demonstrated safe ratios for iron, manganese, and chromium oxides to {sup 235}U. In these studies, the Hansen-Roach 16-group cross sections weremore » used with the Savannah River site code HRXN. Multiplication factors were computed, and safe ratios were defined such that the adjusted neutron multiplication factors (k values) were <0.95. These safe weight ratios were Fe:{sup 235}U - 77:1; Mn:{sup 235}U - 30:1; and Cr:{sup 235}U - 52:1. Palmer has shown that for certain mixtures of aluminum, iron, and zirconium with {sup 235}U, the computed infinite multiplication factors may differ by as much as 20% with different cross sections and processing systems. Parks et al. have further studied these mixtures and state, {open_quotes}...these metal/uranium mixtures are very sensitive to the metal cross-section data in the intermediate-energy range and the processing methods that are used.{close_quotes} They conclude with a call for more experimental data. The purpose of this study is to reexamine earlier work with cross sections and processing codes used at Westinghouse Savannah River Company today. This study will focus on {sup 235}U mixtures with iron, manganese and chromium. Sodium will be included in the list of poisons because it is abundant in many of the waste materials.« less

  20. PROCESS OF MAKING A NEUTRONIC REACTOR FUEL ELEMENT COMPOSITION

    DOEpatents

    Alter, H.W.; Davidson, J.K.; Miller, R.S.; Mewherter, J.L.

    1959-01-13

    A process is presented for making a ceramic-like material suitable for use as a nuclear fuel. The material consists of a solid solution of plutonium dioxide in uranium dioxide and is produced from a uranyl nitrate -plutonium nitrate solution containing uraniunm and plutonium in the desired ratio. The uranium and plutonium are first precipitated from the solution by addition of NH/ sub 4/OH and the dried precipitate is then calcined at 600 C in a hydrogen atmosphere to yield the desired solid solution of PuO/sub 2/ in UO/sub 2/.

  1. The preparation of uranium-adsorbed silica particles as a reference material for the fission track analysis

    NASA Astrophysics Data System (ADS)

    Park, Y. J.; Lee, M. H.; Pyo, H. Y.; Kim, H. A.; Sohn, S. C.; Jee, K. Y.; Kim, W. H.

    2005-06-01

    Uranium-adsorbed silica particles were prepared as a reference material for the fission track analysis (FTA) of swipe samples. A modified instrumental setup for particle generation, based on a commercial vibrating orifice aerosol generator to produce various sizes of droplets from a SiO 2 solution, is described. The droplets were transferred into a weak acidic solution bath to produce spherical solid silica particles. The classification of the silica particles in the range from 5 to 20 μm was carried out by the gravitational sedimentation method. The size distribution and morphology of the classified silica particles were investigated by scanning electron microscopy. The physicochemical properties of the classified silica particles such as the surface area, pore size and pore volume were measured. After an adsorption of 5% 235U on the silica particles in a solution adjusted to pH 4.5, the uranium-adsorbed silica particles were calcined up to 950 °C in a furnace to fix the uranium strongly onto the silica particles. The various sizes of uranium-adsorbed silica particles were applied to the FTA for use as a reference material.

  2. A wet chemical method for the estimation of carbon in uranium carbides.

    PubMed

    Chandramouli, V; Yadav, R B; Rao, P R

    1987-09-01

    A wet chemical method for the estimation of carbon in uranium carbides has been developed, based on oxidation with a saturated solution of sodium dichromate in 9M sulphuric acid, absorption of the evolved carbon dioxide in a known excess of barium hydroxide solution, and titration of the excess of barium hydroxide with standard potassium hydrogen phthalate solution. The carbon content obtained is in good agreement with that obtained by combustion and titration.

  3. URANIUM SEPARATION PROCESS

    DOEpatents

    Hyde, E.K.; Katzin, L.I.; Wolf, M.J.

    1959-07-14

    The separation of uranium from a mixture of uranium and thorium by organic solvent extraction from an aqueous solution is described. The uranium is separrted from an aqueous mixture of uranium and thorium nitrates 3 N in nitric acid and containing salting out agents such as ammonium nitrate, so as to bring ihe total nitrate ion concentration to a maximum of about 8 N by contacting the mixture with an immiscible aliphatic oxygen containing organic solvent such as diethyl carbinol, hexone, n-amyl acetate and the like. The uranium values may be recovered from the organic phase by back extraction with water.

  4. A new formulation containing calixarene molecules as an emergency treatment of uranium skin contamination.

    PubMed

    Spagnul, Aurélie; Bouvier-Capely, Céline; Phan, Guillaume; Rebière, François; Fattal, Elias

    2010-09-01

    Cutaneous contamination represents the second highest contamination pathway in the nuclear industry. Despite that the entry of actinides such as uranium into the body through intact or wounded skin can induce a high internal exposure, no specific emergency treatment for cutaneous contamination exists. In the present work, an innovative formulation dedicated to uranium skin decontamination was developed. The galenic form consists in an oil-in-water nanoemulsion, which contains a tricarboxylic calixarene known for its high uranium affinity and selectivity. The physicochemical characterization of this topical form revealed that calixarene molecules are located at the surface of the dispersed oil droplets of the nanoemulsion, being thus potentially available for uranium chelation. It was demonstrated in preliminary in vitro experiments by using an adapted ultrafiltration method that the calixarene nanoemulsion was able to extract and retain more than 80% of uranium from an aqueous uranyl nitrate contamination solution. First ex vivo experiments carried out in Franz diffusion cells on pig ear skin explants during 24 h showed that the immediate application of the calixarene nanoemulsion on a skin contaminated by a uranyl nitrate solution allowed a uranium transcutaneous diffusion decrease of about 98% through intact and excoriated skins. The calixarene nanoemulsion developed in this study thus seems to be an efficient emergency system for uranium skin decontamination.

  5. Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads.

    PubMed

    Bai, Jing; Fan, Fangli; Wu, Xiaolei; Tian, Wei; Zhao, Liang; Yin, Xiaojie; Fan, Fuyou; Li, Zhan; Tian, Longlong; Wang, Yang; Qin, Zhi; Guo, Junsheng

    2013-12-01

    Calcium alginate beads are potential biosorbent for radionuclides removal as they contain carboxyl groups. However, until now limited information is available concerning the uptake behavior of uranium by this polymer gel, especially when sorption equilibrium, kinetics and thermodynamics are concerned. In present work, batch experiments were carried out to study the equilibrium, kinetics and thermodynamics of uranium sorption by calcium alginate beads. The effects of initial solution pH, sorbent amount, initial uranium concentration and temperature on uranium sorption were also investigated. The determined optimal conditions were: initial solution pH of 3.0, added sorbent amount of 40 mg, and uranium sorption capacity increased with increasing initial uranium concentration and temperature. Equilibrium data obtained under different temperatures were fitted better with Langmuir model than Freundlich model, uranium sorption was dominated by a monolayer way. The kinetic data can be well depicted by the pseudo-second-order kinetic model. The activation energy derived from Arrhenius equation was 30.0 kJ/mol and the sorption process had a chemical nature. Thermodynamic constants such as ΔH(0), ΔS(0) and ΔG(0) were also evaluated, results of thermodynamic study showed that the sorption process was endothermic and spontaneous. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. ADSORPTION METHOD FOR SEPARATING THORIUM VALUES FROM URANIUM VALUES

    DOEpatents

    Boyd, G.E.; Russell, E.R.; Schubert, J.

    1959-08-01

    An improved ion exchange method is described for recovery of uranium and thorium values as separate functions from an aqueous acidic solution containing less than 10/sup -3/ M thorium ions and between 0.1 and 1 M uranyl ions. The solution is passed through a bed of cation exchange resin in the acid form to adsorb all the thorium ions and a portion of the uranyl ions. The uranium is eluted by means of aqueous 0.1 to 0.4 M sulfuric acid. The thorium may then be stripped from the resin by elution with aqueous 0.5 M oxalic acid.

  7. ADSORPTION METHOD FOR SEPARATING THORIUM VALUES FROM URANIUM VALUES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, G.E.; Russell, E.R.; Schubert, J.

    An improved ion exchange method is described for recovery of uranium and thorium values as separate functions from an aqueous acidic solution containing less than 10/sup -3/ M thorium ions and between 0.1 and 1 M uranyl ions. The solution is passed through a bed of cation exchange resin in the acid form to adsorb all the thorium ions and a portion of the uranyl ions. The uranium is eluted by means of aqueous 0.1 to 0.4 M sulfuric acid. The thorium may then be stripped from the resin by elution with aqueous 0.5 M oxalic acid.

  8. A Methodology for Characterizing Potential Uranium Transport in Deep Geological Disposal Sites

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Reimus, P. W.

    2013-12-01

    In order to make safe and reasonable decisions about radioactive waste disposal in deep geologic sites, it is important to understand the fate and potential transport of long half-life transuranic radionuclides over a wide range of time and distance scales. The objective of this study was to evaluate and demonstrate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments involving uranium, as well as other actinides, have already been conducted. Working on this system provides a unique opportunity to compare lab experimental results with field-scale observations. Drilled rock cores and weathered fracture fill material (FFM) from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption/desorption and column breakthrough experiments. Uranium solutions were made by adding uranium to a synthetic Grimsel groundwater that matched the natural water chemistry found in the GTS groundwater. Batch and breakthrough experiments were conducted using solutions between pH 6.9 and 9.0. All column experiments were conducted using syringe pumps at low flow rate (<0.3 ml h-1) in small columns containing 5 g of material with pore volumes of 2-3 ml. These small columns allow rapid and economical evaluation of sorption/desorption behavior under flowing conditions (and in duplicate or triplicate). Solutions were switched to uranium-free synthetic Grimsel groundwater after equilibration in batch experiments or after near-steady uranium breakthrough occurred in column experiments. The measurement of uranium concentrations as a function of time under these conditions allowed interrogation of desorption rates which we believe control uranium fate and transport over long time and distance scales. Uranium transport was conservative and matched tritium breakthrough for pH 9.0; however, retardation increased when pH was reduced to 7.9 and 6.9. We are currently evaluating uranium adsorption/desorption rates as a function of water chemistry (initial focus on pH), with future testing planned to evaluate the influence of carbonate concentrations, flow rates, mineralogy, bentonite colloids and other actinides (e.g., Am). Figure 1. Uranium breakthrough results for (a) 6.5 μM U, (b) U-free solution, (c) flow rate increased from 0.3 to 0.6 mL h-1, (d) pH increased from 6.8 to 7.2, and (e) pH increased from 7.2 to 8.8.

  9. RELATIONSHIP OF URANIUM ORE DEPOSITS TO PETROLEUM AND GAS-BEARING STRUCTURES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, R.T.

    eposits are located on producing or breached oil and gas structures, or in the immediate vicinity of such structures. Individual deposits associated with these structures contain ore reserves which may exceed one million tons. Data derived from a study of the known deposits should be useful in evaluating the potentiality of other areas where similar structural relations and abnormal radioactivity are known to exist. Uranium deposits located in producing oil or gas fields include a deposit of more than one million tons of uranium ore on a single salt dome in Texas, and uranium deposits in the Poison Basin, Wyoming,more » which are situated over a producing naturalgas structure, having a potential of 100,000 to 200,000 tons. Important uranium mining districts are also located near producing oil fields or near structures which may have contained oil at some time in the past. The Gas Hills district to Wyoming is on the flanks of a breached anticline and within one mile of natural-gas seeps. Deposits in the Brown's Park formation near Maybell, Colorado, are witin 10 miles of producing oil wells and natural-gas seeps are known within one mile of some of the uranium mines; and at Morrison, Colorado, uranium ore is associated with tar seeps. On th Colorado Plateau, large ore bodies with total reserves of at least 30 million tons of 0.3% U/sub 3/O/sub 8/ ore in the Ambrosia Lake district near Grants, New Mexico, and produce ore associated with asphaltite.'' The uraniferous asphaltite'' ore at Temple Mountain, Utah has been known for nearly 50 years. At both Circle Cliffs and the Inter- River area in Utah, uranium ore is associated with asphaltic material on anticlinal structures. Many other deposits are on breached strucIn Wyoming, uranium deposits in Tertiary sandstone and arkose generally lack carbon trash, but are located near oil or gas structures that contain hydrocarbons and natural gases capable of precititating uranium. Also, many uranium deposits on the Colorado Plateau have insufficient plant remains present to be the fixing agent for uranium, but petroleum and/or natural gas are proposed as possible extractants. The hydrogen sulfide contaned in natural gas or dissolved in oil-field water has been a factor in the formation of some uranium deposits. Oil-type structural traps must have been effective in localizing both petroleum and uranium ore in some districts. Although petroleum may contain small amounts of uranium, it is doubtful if either oil or natural gas are important transporting agents for uranium. Careful consideration of these various factors will provide a basis upon which to evaluate more effectively many ore producing areas. (auth)« less

  10. SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS BY ADSORPTION

    DOEpatents

    Seaborg, G.T.; Willard, J.E.

    1958-01-01

    A method is presented for the separation of plutonium from solutions containing that element in a valence state not higher than 41 together with uranium ions and fission products. This separation is accomplished by contacting the solutions with diatomaceous earth which preferentially adsorbs the plutonium present. Also mentioned as effective for this adsorbtive separation are silica gel, filler's earth and alumina.

  11. PROCESS FOR REMOVING ALUMINUM COATINGS

    DOEpatents

    Flox, J.

    1959-07-01

    A process is presented for removing aluminum jackets or cans from uranium slugs. This is accomplished by immersing the aluminum coated uranium slugs in an aqueous solution of 9 to 20% sodium hydroxide and 35 to 12% sodium nitrate to selectively dissolve the aluminum coating, the amount of solution being such as to obtain a molar ratio of sodium hydroxide to aluminum of at least

  12. IRON COATED URANIUM AND ITS PRODUCTION

    DOEpatents

    Gray, A.G.

    1960-03-15

    A method of applying a protective coating to a metallic uranium article is given. The method comprises etching the surface of the article with an etchant solution containlng chloride ions, such as a solution of phosphoric acid and hydrochloric acid, cleaning the etched surface, electroplating iron thereon from a ferrous ammonium sulfate electroplating bath, and soldering an aluminum sheath to the resultant iron layer.

  13. The in-plant evaluation of a uranium NDA system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprinkle, J.K. Jr.; Baxman, H.R.; Langner, D.G.

    1979-12-31

    The Los Alamos Scientific Laboratory has an unirradiated enriched uranium reprocessing facility. Various types of solutions are generated in this facility, including distillates and raffinates containing ppm of uranium and concentrated solutions with up to 400 grams U/t. In addition to uranyl nitrate and HNO{sub 3}, the solutions may also contain zirconium, niobium, fluoride, and small amounts of many metals. A uranium solution assay system (USAS) has been installed to allow accurate and more timely process control, accountability, and criticality data to be obtained. The USAS assays are made by a variety of techniques that depend upon state-of-the-art high-resolution Ge(Li)more » gamma-ray spectroscopy integrated with an interactive, user-oriented computer software package. Tight control of the system`s performance is maintained by constantly monitoring the USAS status. Daily measurement control sequences are required, and the user is forced by the software to perform these sequences. Routine assays require 400 or 1000 seconds for a precision of 0.5% over the concentration range of 5--400 g/t. A comparison of the USAS precision and accuracy with that obtained by traditional destructive analytical chemistry techniques (colorimetric and volumetric) is presented.« less

  14. The in-plant evaluation of a uranium NDA system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprinkle, J.K. Jr.; Baxman, H.R.; Langner, D.G.

    1979-01-01

    The Los Alamos Scientific Laboratory has an unirradiated enriched uranium reprocessing facility. Various types of solutions are generated in this facility, including distillates and raffinates containing ppm of uranium and concentrated solutions with up to 400 grams U/t. In addition to uranyl nitrate and HNO{sub 3}, the solutions may also contain zirconium, niobium, fluoride, and small amounts of many metals. A uranium solution assay system (USAS) has been installed to allow accurate and more timely process control, accountability, and criticality data to be obtained. The USAS assays are made by a variety of techniques that depend upon state-of-the-art high-resolution Ge(Li)more » gamma-ray spectroscopy integrated with an interactive, user-oriented computer software package. Tight control of the system's performance is maintained by constantly monitoring the USAS status. Daily measurement control sequences are required, and the user is forced by the software to perform these sequences. Routine assays require 400 or 1000 seconds for a precision of 0.5% over the concentration range of 5--400 g/t. A comparison of the USAS precision and accuracy with that obtained by traditional destructive analytical chemistry techniques (colorimetric and volumetric) is presented.« less

  15. SEPARATION PROCESS FOR TRANSURANIC ELEMENT AND COMPOUNDS THEREOF

    DOEpatents

    Calvin, M.

    1958-10-14

    S> A process is presented for the separation of pluto nium from uranium and fission products in an aqueous acidic solution by use of a chelating agent. The plutonium is maintained in the tetravalent state and the uranium in the hexavalent state, and the acidic concentration is adjusted to about 1 N bar. The aqueous solution is then contacted with a water-immiscible organic solvent solution and the chelating agent. The chelating agents covered by this invention comprise a group of compounds characterized as fluorinated beta-diketones.

  16. Reductive stripping process for the recovery of uranium from wet-process phosphoric acid

    DOEpatents

    Hurst, Fred J.; Crouse, David J.

    1984-01-01

    A reductive stripping flow sheet for recovery of uranium from wet-process phosphoric acid is described. Uranium is stripped from a uranium-loaded organic phase by a redox reaction converting the uranyl to uranous ion. The uranous ion is reoxidized to the uranyl oxidation state to form an aqueous feed solution highly concentrated in uranium. Processing of this feed through a second solvent extraction cycle requires far less stripping reagent as compared to a flow sheet which does not include the reductive stripping reaction.

  17. SEPARATION OF PLUTONIUM

    DOEpatents

    Maddock, A.G.; Smith, F.

    1959-08-25

    A method is described for separating plutonium from uranium and fission products by treating a nitrate solution of fission products, uranium, and hexavalent plutonium with a relatively water-insoluble fluoride to adsorb fission products on the fluoride, treating the residual solution with a reducing agent for plutonium to reduce its valence to four and less, treating the reduced plutonium solution with a relatively insoluble fluoride to adsorb the plutonium on the fluoride, removing the solution, and subsequently treating the fluoride with its adsorbed plutonium with a concentrated aqueous solution of at least one of a group consisting of aluminum nitrate, ferric nitrate, and manganous nitrate to remove the plutonium from the fluoride.

  18. Uranium mobility during interaction of rhyolitic glass with alkaline solutions: dissolution of glass

    USGS Publications Warehouse

    Zielinski, Robert A.

    1977-01-01

    This report concerns investigations designed to identify the important physical and chemical parameters influencing the rate of release of uranium from glass shards of rhyolitic air-fall ash. Oxidizing, silica undersaturated, alkaline solutions are eluted through a column of rhyolitic glass shards at a carefully controlled temperature, pressure, and flow rate. The solutions are monitored for the concentration of uranium and selected additional elements (Si, K, Li, F), and the glass is recovered and examined for physical and/or chemical evidence of attack. The flushing mode is designed to mimic leaching of glass shards by intermittent, near-surface waters with which the glass is not in equilibrium. Reported rates are applicable only to the experimental conditions (120?C, 7,000 psi), but it is assumed that the reaction mechanisms and the relative importance of rate-influencing parameters remain unchanged, at reduced temperature and pressure. Results of the above experiment indicate that silica and uranium are released from glass shards at comparable rates, while lithium and potassium are released faster and fluorine slower than either Si or U. Rates of release of silica and uranium correlate positively with the surface area of the shards. Rhyolitic shards release uranium at faster rates than rhyodacitic shards of comparable surface area. Changes in the shards resulting from experimental treatment and observed in the original glass separates from an Oligocene ash (compared to a Pleistocene ash) include; surface pitting, increased surface area, devitrification rinds (<1l micron wide) and reduced lithium contents. Future investigations will study the effect of temperature, pressure, solution composition, and flow rate on the relative mobility of U, Si, Li, F, and K.

  19. RECOVERY OF URANIUM FROM PITCHBLENDE

    DOEpatents

    Ruehle, A.E.

    1958-06-24

    The decontamination of uranium from molybdenum is described. When acid solutions containing uranyl nitrate are contacted with ether for the purpose of extracting the uranium values, complex molybdenum compounds are coextracted with the uranium and also again back-extracted from the ether with the uranium. This invention provides a process for extracting uranium in which coextraction of molybdenum is avoided. It has been found that polyhydric alcohols form complexes with molybdenum which are preferentially water-soluble are taken up by the ether extractant to only a very minor degree. The preferred embodiment of the process uses mannitol, sorbitol or a mixture of the two as the complexing agent.

  20. PURIFICATION PROCESS

    DOEpatents

    Wibbles, H.L.; Miller, E.I.

    1958-01-14

    This patent deals with the separation of uranium from molybdenum compounds, and in particular with their separation from ether solutions containing the molybdenum in the form of acids, such as silicomolybdic and phosphomolybdic acids. After the nitric acid leach of pitchblende, the molybdenum values present in the ore are found in the leach solution in the form of complex acids. The uranium bearing solution may be purified of this molybdenum content by comtacting it with activated charcoal. The purification is improved when the acidity of the solution is low ad agitation is also beneficial. The molybdenum may subsequently be recovered from the charcosl ad the charcoal reused.

  1. Removing oxygen from a solvent extractant in an uranium recovery process

    DOEpatents

    Hurst, Fred J.; Brown, Gilbert M.; Posey, Franz A.

    1984-01-01

    An improvement in effecting uranium recovery from phosphoric acid solutions is provided by sparging dissolved oxygen contained in solutions and solvents used in a reductive stripping stage with an effective volume of a nonoxidizing gas before the introduction of the solutions and solvents into the stage. Effective volumes of nonoxidizing gases, selected from the group consisting of argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, sulfur dioxide, and mixtures thereof, displace oxygen from the solutions and solvents thereby reduce deleterious effects of oxygen such as excessive consumption of elemental or ferrous and accumulation of complex iron phosphates or cruds.

  2. The power of poison: pesticide poisoning of Africa's wildlife.

    PubMed

    Ogada, Darcy L

    2014-08-01

    Poisons have long been used to kill wildlife throughout the world. An evolution has occurred from the use of plant- and animal-based toxins to synthetic pesticides to kill wildlife, a method that is silent, cheap, easy, and effective. The use of pesticides to poison wildlife began in southern Africa, and predator populations were widely targeted and eliminated. A steep increase has recently been observed in the intensity of wildlife poisonings, with corresponding population declines. However, the majority of poisonings go unreported. Under national laws, it is illegal to hunt wildlife using poisons in 83% of African countries. Pesticide regulations are inadequate, and enforcement of existing legislation is poor. Few countries have forensic field protocols, and most lack storage and testing facilities. Methods used to poison wildlife include baiting carcasses, soaking grains in pesticide solution, mixing pesticides to form salt licks, and tainting waterholes. Carbofuran is the most widely abused pesticide in Africa. Common reasons for poisoning are control of damage-causing animals, harvesting fish and bushmeat, harvesting animals for traditional medicine, poaching for wildlife products, and killing wildlife sentinels (e.g., vultures because their aerial circling alerts authorities to poachers' activities). Populations of scavengers, particularly vultures, have been decimated by poisoning. Recommendations include banning pesticides, improving pesticide regulations and controlling distribution, better enforcement and stiffer penalties for offenders, increasing international support and awareness, and developing regional pesticide centers. © 2014 New York Academy of Sciences.

  3. ELUTION OF URANIUM VALUES FROM ION EXCHANGE RESINS

    DOEpatents

    Kennedy, R.H.

    1959-11-24

    A process is described for eluting complex uranium ions absorbed on ion exchange resins. The resin is subjected to the action of an aqueous eluting solution contuining sulfuric acid and an alkali metal, ammonium, or magnesium chloride or nitrate, the elution being carried out until the desired amount of the uranium is removed from the resin.

  4. Preparation, certification and validation of a stable solid spike of uranium and plutonium coated with a cellulose derivative for the measurement of uranium and plutonium content in dissolved nuclear fuel by isotope dilution mass spectrometry.

    PubMed

    Surugaya, Naoki; Hiyama, Toshiaki; Verbruggen, André; Wellum, Roger

    2008-02-01

    A stable solid spike for the measurement of uranium and plutonium content in nitric acid solutions of spent nuclear fuel by isotope dilution mass spectrometry has been prepared at the European Commission Institute for Reference Materials and Measurements in Belgium. The spike contains about 50 mg of uranium with a 19.838% (235)U enrichment and 2 mg of plutonium with a 97.766% (239)Pu abundance in each individual ampoule. The dried materials were covered with a thin film of cellulose acetate butyrate as a protective organic stabilizer to resist shocks encountered during transportation and to eliminate flaking-off during long-term storage. It was found that the cellulose acetate butyrate has good characteristics, maintaining a thin film for a long time, but readily dissolving on heating with nitric acid solution. The solid spike containing cellulose acetate butyrate was certified as a reference material with certified quantities: (235)U and (239)Pu amounts and uranium and plutonium amount ratios, and was validated by analyzing spent fuel dissolver solutions of the Tokai reprocessing plant in Japan. This paper describes the preparation, certification and validation of the solid spike coated with a cellulose derivative.

  5. Oxygen potential of uranium--plutonium oxide as determined by controlled- atmosphere thermogravimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, Gerald C.

    1975-10-01

    The oxygen-to-metal atom ratio, or O/M, of solid solution uranium- plutonium oxide reactor fuel is a measure of the concentration of crystal defects in the oxide which affect many fuel properties, particularly, fuel oxygen potential. Fabrication of a high-temperature oxygen electrode, employing an electro-active tip of oxygen-deficient solid-state electrolyte, intended to confirm gaseous oxygen potentials is described. Uranium oxide and plutonium oxide O/M reference materials were prepared by in situ oxidation of high purity metals in the thermobalance. A solid solution uranium-plutonium oxide O/M reference material was prepared by alloying the uranium and plutonium metals in a yttrium oxide cruciblemore » at 1200°C and oxidizing with moist He at 250°C. The individual and solid solution oxides were isothermally equilibrated with controlled oxygen potentials between 800 and 1300°C and the equilibrated O/ M ratios calculated with corrections for impurities and buoyancy effects. Use of a reference oxygen potential of -100 kcal/mol to produce an O/M of 2.000 is confirmed by these results. However, because of the lengthy equilibration times required for all oxides, use of the O/M reference materials rather than a reference oxygen potential is recommended for O/M analysis methods calibrations.« less

  6. The application of visible absorption spectroscopy to the analysis of uranium in aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colletti, Lisa Michelle; Copping, Roy; Garduno, Katherine

    Through assay analysis into an excess of 1 M H 2SO 4 at fixed temperature a technique has been developed for uranium concentration analysis by visible absorption spectroscopy over an assay concentration range of 1.8 – 13.4 mgU/g. Once implemented for a particular spectrophotometer and set of spectroscopic cells this technique promises to provide more rapid results than a classical method such as Davies-Gray (DG) titration analysis. While not as accurate and precise as the DG method, a comparative analysis study reveals that the spectroscopic method can analyze for uranium in well characterized uranyl(VI) solution samples to within 0.3% ofmore » the DG results. For unknown uranium solutions in which sample purity is less well defined agreement between the developed spectroscopic method and DG analysis is within 0.5%. The technique can also be used to detect the presence of impurities that impact the colorimetric analysis, as confirmed through the analysis of ruthenium contamination. Finally, extending the technique to other assay solution, 1 M HNO 3, HCl and Na 2CO 3, has also been shown to be viable. As a result, of the four aqueous media the carbonate solution yields the largest molar absorptivity value at the most intensely absorbing band, with the least impact of temperature.« less

  7. The application of visible absorption spectroscopy to the analysis of uranium in aqueous solutions

    DOE PAGES

    Colletti, Lisa Michelle; Copping, Roy; Garduno, Katherine; ...

    2017-07-18

    Through assay analysis into an excess of 1 M H 2SO 4 at fixed temperature a technique has been developed for uranium concentration analysis by visible absorption spectroscopy over an assay concentration range of 1.8 – 13.4 mgU/g. Once implemented for a particular spectrophotometer and set of spectroscopic cells this technique promises to provide more rapid results than a classical method such as Davies-Gray (DG) titration analysis. While not as accurate and precise as the DG method, a comparative analysis study reveals that the spectroscopic method can analyze for uranium in well characterized uranyl(VI) solution samples to within 0.3% ofmore » the DG results. For unknown uranium solutions in which sample purity is less well defined agreement between the developed spectroscopic method and DG analysis is within 0.5%. The technique can also be used to detect the presence of impurities that impact the colorimetric analysis, as confirmed through the analysis of ruthenium contamination. Finally, extending the technique to other assay solution, 1 M HNO 3, HCl and Na 2CO 3, has also been shown to be viable. As a result, of the four aqueous media the carbonate solution yields the largest molar absorptivity value at the most intensely absorbing band, with the least impact of temperature.« less

  8. SEPARATION PROCESS FOR THORIUM SALTS

    DOEpatents

    Bridger, G.L.; Whatley, M.E.; Shaw, K.G.

    1957-12-01

    A process is described for the separation of uranium, thorium, and rare earths extracted from monazite by digesting with sulfuric acid. By carefully increasing the pH of the solution, stepwise, over the range 0.8 to 5.5, a series of selective precipitations will be achieved, with the thorium values coming out at lower pH, the rare earths at intermediate pH and the uranium last. Some mixed precipitates will be obtained, and these may be treated by dissolving in HNO/sub 3/ and contacting with dibutyl phosphate, whereby thorium or uranium are taken up by the organic phase while the rare earths preferentially remain in the aqueous solution.

  9. SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS

    DOEpatents

    Boyd, G.E.; Adamson, A.W.; Schubert, J.; Russell, E.R.

    1958-10-01

    A chromatographic adsorption process is presented for the separation of plutonium from other fission products formed by the irradiation of uranium. The plutonium and the lighter element fission products are adsorbed on a sulfonated phenol-formaldehyde resin bed from a nitric acid solution containing the dissolved uranium. Successive washes of sulfuric, phosphoric, and nitric acids remove the bulk of the fission products, then an eluate of dilute phosphoric and nitric acids removes the remaining plutonium and fission products. The plutonium is selectively removed by passing this solution through zirconium phosphate, from which the plutonium is dissolved with nitric acid. This process provides a convenient and efficient means for isolating plutonium.

  10. Subcellular distribution of uranium in the roots of Spirodela punctata and surface interactions

    NASA Astrophysics Data System (ADS)

    Nie, Xiaoqin; Dong, Faqin; Liu, Ning; Liu, Mingxue; Zhang, Dong; Kang, Wu; Sun, Shiyong; Zhang, Wei; Yang, Jie

    2015-08-01

    The subcellular distribution of uranium in roots of Spirodela punctata (duckweed) and the process of surface interaction were studied upon exposure to U (0, 5-200 mg/L) at pH 5. The concentration of uranium in each subcelluar fraction increased significantly with increasing solution U level, after 200 mg/L uranium solution treatment 120 h, the proportion of uranium concentration approximate as 8:2:1 in the cell wall organelle and cytosol fractions of roots of S. punctata. OM SEM and EDS showed after 5-200 mg/L U treatment 4-24 h, some intracellular fluid released from the root cells, after 100 mg/L U treatment 48 h, the particles including 35% Fe (wt%) and other organic matters such as EPS released from the cells, most of the uranium bound onto the root surface and contacted with phosphorus ligands and formed as nano-scales U-P lamellar crystal, similar crystal has been found in the cell wall and organelle fractions after 50 mg/L U treatment 120 h. FTIR and XPS analyses result indicates the uranium changed the band position and shapes of phosphate group, and the region of characteristic peak belongs to U(VI) and U(IV) were also observed.

  11. [Biosorption of Radionuclide Uranium by Deinococcus radiodurans].

    PubMed

    Yang, Jie; Dong, Fa-qin; Dai, Qun-wei; Liu, Ming-xue; Nie, Xiao-qin; Zhang, Dong; Ma, Jia-lin; Zhou, Xian

    2015-04-01

    As a biological adsorbent, Living Deinococcus radiodurans was used for removing radionuclide uranium in the aqueous solution. The effect factors on biosorption of radionuclide uranium were researched in the present paper, including solution pH values and initial uranium concentration. Meanwhile, the biosorption mechanism was researched by the method of FTIR and SEM/EDS. The results show that the optimum conditions for biosorption are as follows: pH = 5, co = 100 mg · L(-1) and the maximum biosorption capacity is up to 240 mgU · g(-1). According to the SEM results and EDXS analysis, it is indicated that the cell surface is attached by lots of sheet uranium crystals, and the main biosorpiton way of uranium is the ion exchange or surface complexation. Comparing FTIR spectra and FTIR fitting spectra before and after biosorption, we can find that the whole spectra has a certain change, particularly active groups (such as amide groups of the protein, hydroxy, carboxyl and phosphate group) are involved in the biosorption process. Then, there is a new peak at 906 cm(-1) and it is a stretching vibration peak of UO2(2+). Obviously, it is possible that as an anti radiation microorganism, Deinococcus radiodurans could be used for removing radionuclide uranium in radiation environment.

  12. Validation of MCNP: SPERT-D and BORAX-V fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Palmer, B.

    1992-11-01

    This report discusses critical experiments involving SPERT-D{sup 1,2} fuel elements and BORAX-V{sup 3-8} fuel which have been modeled and calculations performed with MCNP. MCNP is a Monte Carlo based transport code. For this study continuous-energy nuclear data from the ENDF/B-V cross section library was used. The SPERT-D experiments consisted of various arrays of fuel elements moderated and reflected with either water or a uranyl nitrate solution. Some SPERT-D experiments used cadmium as a fixed neutron poison, while others were poisoned with various concentrations of boron in the moderating/reflecting solution. ne BORAX-V experiments were arrays of either boiling fuel rod assembliesmore » or superheater assemblies, both types of arrays were moderated and reflected with water. In one boiling fuel experiment, two fuel rods were replaced with borated stainless steel poison rods.« less

  13. Validation of MCNP: SPERT-D and BORAX-V fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Palmer, B.

    1992-11-01

    This report discusses critical experiments involving SPERT-D[sup 1,2] fuel elements and BORAX-V[sup 3-8] fuel which have been modeled and calculations performed with MCNP. MCNP is a Monte Carlo based transport code. For this study continuous-energy nuclear data from the ENDF/B-V cross section library was used. The SPERT-D experiments consisted of various arrays of fuel elements moderated and reflected with either water or a uranyl nitrate solution. Some SPERT-D experiments used cadmium as a fixed neutron poison, while others were poisoned with various concentrations of boron in the moderating/reflecting solution. ne BORAX-V experiments were arrays of either boiling fuel rod assembliesmore » or superheater assemblies, both types of arrays were moderated and reflected with water. In one boiling fuel experiment, two fuel rods were replaced with borated stainless steel poison rods.« less

  14. Uranium Anodic Dissolution under Slightly Alkaline Conditions Progress Report Full-Scale Demonstration with DU Foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelis, A.; Brown, M. A.; Wiedmeyer, S.

    2014-02-18

    Argonne National Laboratory (Argonne) is developing an alternative method for digesting irradiated low enriched uranium (LEU) foil targets to produce 99Mo in neutral/alkaline media. This method consists of the electrolytic dissolution of irradiated uranium foil in sodium bicarbonate solution, followed by precipitation of base-insoluble fission and activation products, and uranyl-carbonate species with CaO. The addition of CaO is vital for the effective anion exchange separation of 99MoO 4 2- from the fission products, since most of the interfering anions (e.g., CO 3 2-) are removed from the solution, while molybdate remains in solution. An anion exchange is used to retainmore » and to purify the 99Mo from the filtrate. The electrochemical dissolver has been designed and fabricated in 304 stainless-steel (SS), and tested for the dissolution of a full-size depleted uranium (DU) target, wrapped in Al foil. Future work will include testing with low-burn-up DU foil at Argonne and later with high-burn-up LEU foils at Oak Ridge National Laboratory.« less

  15. Performance testing accountability measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldham, R.D.; Mitchell, W.G.; Spaletto, M.I.

    The New Brunswick Laboratory (NBL) provides assessment support to the DOE Operations Offices in the area of Material Control and Accountability (MC and A). During surveys of facilities, the Operations Offices have begun to request from NBL either assistance in providing materials for performance testing of accountability measurements or both materials and personnel to do performance testing. To meet these needs, NBL has developed measurement and measurement control performance test procedures and materials. The present NBL repertoire of performance tests include the following: (1) mass measurement performance testing procedures using calibrated and traceable test weights, (2) uranium elemental concentration (assay)more » measurement performance tests which use ampulated solutions of normal uranyl nitrate containing approximately 7 milligrams of uranium per gram of solution, and (3) uranium isotopic measurement performance tests which use ampulated uranyl nitrate solutions with enrichments ranging from 4% to 90% U-235. The preparation, characterization, and packaging of the uranium isotopic and assay performance test materials were done in cooperation with the NBL Safeguards Measurements Evaluation Program since these materials can be used for both purposes.« less

  16. Response of American black ducks to dietary uranium: A proposed substitute for lead shot

    USGS Publications Warehouse

    Haseltine, Susan D.; Sileo, Louis

    1983-01-01

    Lead (Pb) shot has been associated with mortality in waterfowl (Trainer and Hunt 1965, Anderson 1975, Stout and Cornwell 1976) and other avian species (Benson et al. 1974, Kaiser et al. 1980, Pattee et al. 1981). Bellrose (1959) indicated that between 2 and 3% of waterfowl populations may be lost yearly to lead poisoning. Incidence of lead shot in waterfowl and estimates of mortality from lead poisoning have decreased slightly (Trost 1980) or not at all (Longcore et al 1982) in local areas since 1976, when the U.S. Fish and Wildlife Service designated certain wetland areas in 32 states as steel shot zones. Studies in specific areas do not give a complete national picture, but do point to remaining problems. Steel shotshells are more expensive than Pb shotshells when purchased in a retail outlet; they cannot be used in all guns and have not been well received by some hunters who question their performance on ducks and geese (Humburg et al 1982).

  17. A clinical and pharmacoeconomic justification for intravenous acetylcysteine: a US perspective.

    PubMed

    Culley, Colleen M; Krenzelok, Edward P

    2005-01-01

    Paracetamol (acetaminophen) poisoning remains the most common exposure reported to US poison information centres and the leading cause of poisoning-related fatalities, despite the availability of an effective antidote, acetylcysteine. Oral acetylcysteine solution has been approved for the management of acetaminophen poisoning in the US for four decades. Until the recent approval of intravenous acetylcysteine in the US, it was necessary to compound the oral solution for intravenous administration. The effectiveness and tolerability of oral and intravenous acetylcysteine for the prevention of hepatotoxicity induced by paracetamol poisoning are well established in the literature. Intravenous acetylcysteine may be preferred over oral administration based on improved tolerability, ease of administration and the shortened course of therapy (20 hours intravenous vs 72 hours oral). The two intravenous acetylcysteine regimens documented in the literature, 48 hours and 20 hours, have similar efficacy when started within 8-10 hours of ingestion. Although there are no legal concerns with continuing the routine compounding of the oral solution to an intravenous product, new standards for pharmacy compounding of sterile preparations set forth by the US Pharmacopoeia highlight that the risk of compounding products for intravenous use must be assessed carefully. Changing the route of administration of a sterile oral solution to an intravenous preparation, when a commercial sterile and pyrogen-free product is available, may not be advisable. The best cost-containment strategies must be used for introduction of the more costly sterile, pyrogen-free intravenous acetylcysteine formulation by hospitals and healthcare systems. The intravenous acetylcysteine product is more cost effective when given for 20 hours than other treatment protocols based on the costs of acetylcysteine and hospitalisation. If used per protocol, the 20-hour intravenous acetylcysteine regimen may decrease hospital length of stay, thereby, offsetting the increased drug cost. Data conflict on the efficacy and administration of intravenous acetylcysteine for off-label uses, such as radiographic contrast media-induced nephropathy prevention and reperfusion in orthotopic liver transplantation. The costs for the intravenous formulation for these indications is significantly higher than use of the oral formulation for oral administration in radiographic contrast media-induced nephropathy prevention and compounded for intravenous use in orthotopic liver transplantation. The oral solution should be retained by healthcare systems for oral and inhalation applications, such as respiratory conditions, oral administration for radiographic contrast media nephropathy prevention, or the use of the 72-hour oral protocol to treat paracetamol poisoning, when the intravenous preparation cannot be used.

  18. METHOD OF IMPREGNATING A POROUS MATERIAL

    DOEpatents

    Steele, G.N.

    1960-06-01

    A method of impregnating a porous body with an inorganic uranium- containing salt is outlined and comprises dissolving a water-soluble uranium- containing salt in water; saturating the intercommunicating pores of the porous body with the salt solution; infusing ammonia gas into the intercommunicating pores of the body, the ammonia gas in water chemically reacting with the water- soluble uranium-containing salt in the water solvent to form a nonwater-soluble uranium-containing precipitant; and evaporating the volatile unprecipitated products from the intercommunicating pores whereby the uranium-containing precipitate is uniformly distributed in the intercommunicating peres of the porous body.

  19. URANIUM RECOVERY PROCESS

    DOEpatents

    Kaufman, D.

    1958-04-15

    A process of recovering uranium from very low-grade ore residues is described. These low-grade uraniumcontaining hydroxide precipitates, which also contain hydrated silica and iron and aluminum hydroxides, are subjected to multiple leachings with aqueous solutions of sodium carbonate at a pH of at least 9. This leaching serves to selectively extract the uranium from the precipitate, but to leave the greater part of the silica, iron, and aluminum with the residue. The uranium is then separated from the leach liquor by the addition of an acid in sufficient amount to destroy the carbonate followed by the addition of ammonia to precipitate uranium as ammonium diuranate.

  20. SEPARATION OF RUTHENIUM FROM AQUEOUS SOLUTIONS

    DOEpatents

    Callis, C.F.; Moore, R.L.

    1959-09-01

    >The separation of ruthenium from aqueous solutions containing uranium plutonium, ruthenium, and fission products is described. The separation is accomplished by providing a nitric acid solution of plutonium, uranium, ruthenium, and fission products, oxidizing plutonium to the hexavalent state with sodium dichromate, contacting the solution with a water-immiscible organic solvent, such as hexone, to extract plutonyl, uranyl, ruthenium, and fission products, reducing with sodium ferrite the plutonyl in the solvent phase to trivalent plutonium, reextracting from the solvent phase the trivalent plutonium, ruthenium, and some fission products with an aqueous solution containing a salting out agent, introducing ozone into the aqueous acid solution to oxidize plutonium to the hexavalent state and ruthenium to ruthenium tetraoxide, and volatizing off the ruthenium tetraoxide.

  1. SELECTIVE SEPARATION OF URANIUM FROM FERRITIC STAINLESS STEELS

    DOEpatents

    Beaver, R.J.; Cherubini, J.H.

    1963-05-14

    A process is described for separating uranium from a nuclear fuel element comprising a uranium-containing core and a ferritic stainless steel clad by heating said element in a non-carburizing atmosphere at a temperature in the range 850-1050 un. Concent 85% C, rapidly cooling the heated element through the temperature range 815 un. Concent 85% to 650 EC to avoid annealing said steel, and then contacting the cooled element with an aqueous solution of nitric acid to selectively dissolve the uranium. (AEC)

  2. Micro-SHINE Uranyl Sulfate Irradiations at the Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youker, Amanda J.; Kalensky, Michael; Chemerisov, Sergey

    2016-08-01

    Peroxide formation due to water radiolysis in a uranyl sulfate solution is a concern for the SHINE Medical Technologies process in which Mo-99 is generated from the fission of dissolved low enriched uranium. To investigate the effects of power density and fission on peroxide formation and uranyl-peroxide precipitation, uranyl sulfate solutions were irradiated using a 50-MeV electron linac as part of the micro-SHINE experimental setup. Results are given for uranyl sulfate solutions with both high and low enriched uranium irradiated at different linac powers.

  3. Calixarene cleansing formulation for uranium skin contamination.

    PubMed

    Phan, Guillaume; Semili, Naïma; Bouvier-Capely, Céline; Landon, Géraldine; Mekhloufi, Ghozlene; Huang, Nicolas; Rebière, François; Agarande, Michelle; Fattal, Elias

    2013-10-01

    An oil-in-water cleansing emulsion containing calixarene molecule, an actinide specific chelating agent, was formulated in order to improve the decontamination of uranium from the skin. Commonly commercialized cosmetic ingredients such as surfactants, mineral oil, or viscosifying agents were used in preparing the calixarene emulsion. The formulation was characterized in terms of size and apparent viscosity measurements and then was tested for its ability to limit uranyl ion permeation through excoriated pig-ear skin explants in 24-h penetration studies. Calixarene emulsion effectiveness was compared with two other reference treatments consisting of DTPA and EHBP solutions. Application of calixarene emulsion induced the highest decontamination effect with an 87% decrease in uranium diffusion flux. By contrast, EHBP and DTPA solutions only allowed a 50% and 55% reduction of uranium permeation, respectively, and had the same effect as a simple dilution of the contamination by pure water. Uranium diffusion decrease was attributed to uranyl ion-specific chelation by calixarene within the formulation, since no significant effect was obtained after application of the same emulsion without calixarene. Thus, calixarene cleansing emulsion could be considered as a promising treatment in case of accidental contamination of the skin by highly diffusible uranium compounds.

  4. Deep liquid-chromatographic purification of uranium extract from technetium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volk, V.; Dvoeglazov, K; Podrezova, L.

    The recycling of uranium in the nuclear fuel cycle requires the removal of a number of radioactive and stable impurities like {sup 99}Tc from spent fuels. In order to improve the grade of uranium extract purification from technetium the method of liquid chromatography and the apparatus for its performance have been developed. Process of technetium extraction and concentrating in aqueous solution containing reducing agent has been studied on simulated solutions (U-Tc-HNO{sub 3}-30% TBP-isoparM). The dynamic tests of the method have been carried out on the laboratory unit. Solution of diformyl-hydrazine in nitric acid was used as a stationary phase. Silicamore » gel with specific surface of 186 m{sup 2}/g was used as a carrier of the stationary phase. It is shown that the volume of purified extract increases as the solution temperature increases, concentration of reducing agent increases and extract flow rate decreases. It is established that the technetium content in uranium by this method could achieve a value below 0.3 ppm. Some variants of overload and composition of the stationary phase containing the extracted technetium have been offered and tested. It is defined that the method provides reduction of processing medium-active wastes by more than 10 times during finish refining process. (authors)« less

  5. Method for oxygen reduction in a uranium-recovery process. [US DOE patent application

    DOEpatents

    Hurst, F.J.; Brown, G.M.; Posey, F.A.

    1981-11-04

    An improvement in effecting uranium recovery from phosphoric acid solutions is provided by sparging dissolved oxygen contained in solutions and solvents used in a reductive stripping stage with an effective volume of a nonoxidizing gas before the introduction of the solutions and solvents into the stage. Effective volumes of nonoxidizing gases, selected from the group consisting of argon, carbon dioxide, carbon monoxide, helium, hydrogen, nitrogen, sulfur dioxide, and mixtures thereof, displace oxygen from the solutions and solvents thereby reduce deleterious effects of oxygen such as excessive consumption of elemental or ferrous iron and accumulation of complex iron phosphates or cruds.

  6. PROCESS FOR THE PURIFICATION OF URANIUM

    DOEpatents

    Rosenfeld, S.

    1959-01-20

    A proccss is described for reclaiming uranium values from aqueous solutions containing U, Fe, Ni, Cu, and Cr comprising treating the solution with NH/sub 3/ to precipitate the: U, Fc, and Cr and leaving Cu and Ni in solution as ammonia complex ions. The precipitate is chlorinated with CCl/sub 4/ at an elevated temperature to convert the U, Tc, and Cr into their chlorides. The more volatile FeCl/sub 3/ and CrCl/sub 3/ are separated from the UCl/sub 4/. The process is used when U is treated in a calutron, and composite solutions are produccd which contain dissolved products of stainless steel.

  7. Efficient Removal of Uranium from Aqueous Solution by Reduced Graphene Oxide-Zn0.5Ni0.5Fe2O4 Ferrite-Polyaniline Nanocomposite

    NASA Astrophysics Data System (ADS)

    Tran, Dat Quang; Pham, Hung Thanh; Do, Hung Quoc

    2017-06-01

    Reduced graphene oxide-Zn0.5Ni0.5Fe2O4 ferrite-polyaniline nanocomposite (RGO-ZNF-PANI) was synthesized by a three-step method. The prepared samples were characterized by x-ray diffraction, Raman spectroscopy, scanning electron microscopy and vibrating sample magnetometer. In particular, we found that this material is capable of effectively removing uranium from an aquatic environment. This is confirmed by our experimental results using the method of inductively coupled plasma mass spectrometry. Adsorptive behaviour of uranium from an aqueous solution on the RGO-ZNF-PANI nanocomposite was examined as a function of pH, contact time, and equilibrium. Uranium concentration was carried out by batch techniques. The adsorption isotherm agrees well with the Langmuir model, having a maximum sorption capacity of 1885 mg/g, at pH 5 and 25°C.

  8. Caustic Precipitation of Plutonium Using Gadolinium as the Neutron Poison for Disposition to High Level Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bronikowski, M.G.

    2002-06-24

    Nuclear Materials Management Division (NMMD) has proposed that up to 100 kg of the plutonium (Pu) solutions stored in H-Canyon be precipitated with a nuclear poison and dispositioned to H-Area Tank Farm. The use of gadolinium (Gd) as the poison would greatly reduce the number of additional glass logs resulting from this disposition. This report summarizes the characteristics of the precipitation process and addresses criticality concerns in the Nuclear Criticality Safety Evaluation. No problems were found with the nature of the precipitate or the neutralization process.

  9. METHOD OF DISSOLVING REFRACTORY ALLOYS

    DOEpatents

    Helton, D.M.; Savolainen, J.K.

    1963-04-23

    This patent relates to the dissolution of alloys of uranium with zirconium, thorium, molybdenum, or niobium. The alloy is contacted with an anhydrous solution of mercuric chloride in a low-molecular-weight monohydric alcohol to produce a mercury-containing alcohol slurry. The slurry is then converted to an aqueous system by adding water and driving off the alcohol. The resulting aqueous slurry is electrolyzed in the presence of a mercury cathode to remove the mercury and produce a uranium-bearing aqueous solution. This process is useful for dissolving irradiated nuclear reactor fuels for radiochemical reprocessing by solvent extraction. In addition, zirconium-alloy cladding is selectively removed from uranium dioxide fuel compacts by this means. (AEC)

  10. FORMATION OF URANIUM PRECIPITATES

    DOEpatents

    Googin, J.M. Jr.

    1959-03-17

    A method is described for precipitation of uranium peroxide from uranium- containing solutions so as to obtain larger aggregates which facilitates washings decantations filtrations centrifugations and the like. The desired larger aggregate form is obtained by maintaining the pH of the solution in the approximate range of 1 to 3 and the temperature at about 25 deg C or below while carrytng out the precipitation. Then prior to removal of the precipitate a surface active sulfonated bicarboxyacids such as di-octyl sodium sulfo-succinates is incorporated in an anount of the order of 0.01 to 0.05 percent by weights and the slurry is allowed to ripen for about one-half hour at a temperatare below 10 deg C.

  11. Dissolution of Uranium Oxides Under Alkaline Oxidizing Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Steven C.; Peper, Shane M.; Douglas, Matthew

    2009-11-01

    Bench scale experiments were conducted to determine the dissolution characteristics of uranium oxide powders (UO2, U3O8, and UO3) in aqueous peroxide-carbonate solutions. Experimental parameters included H2O2 concentration, carbonate counter cation (NH4+, Na+, K+, and Rb+), and pH. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M. The three uranium oxide powders exhibited different dissolution patterns however, UO3 exhibited prompt complete dissolution. Carbonate counter cation affected the dissolution kinetics. There is minimal impact of solution pH, over the range 8.8 to 10.6, on initial dissolution rate.

  12. SEPARATION OF PLUTONIUM FROM URANIUM AND FISSION PRODUCTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, G.E.; Adamson, A.W.; Schubert, J.

    A chromatographic adsorption process is presented for the separation of plutonium from other fission products formed by the irradiation of uranium. The plutonium and the lighter element fission products are adsorbed on a sulfonated phenol-formaldehyde resin bed from a nitric acid solution containing the dissolved uranium. Successive washes of sulfuric, phosphoric, and nitric acids remove the bulk of the fission products, then an eluate of dilute phosphoric and nitric acids removes the remaining plutonium and fission products. The plutonium is selectively removed by passing this solution through zirconium phosphate, from which the plutonium is dissolved with nitric acid. This processmore » provides a convenient and efficient means for isolating plutonium.« less

  13. PROCESS OF PREPARING URANIUM-IMPREGNATED GRAPHITE BODY

    DOEpatents

    Kanter, M.A.

    1958-05-20

    A method for the fabrication of graphite bodies containing uniformly distributed uranium is described. It consists of impregnating a body of graphite having uniform porosity and low density with an aqueous solution of uranyl nitrate hexahydrate preferably by a vacuum technique, thereafter removing excess aqueous solution from the surface of the graphite, then removing the solvent water from the body under substantially normal atmospheric conditions of temperature and pressure in the presence of a stream of dry inert gas, and finally heating the dry impregnated graphite body in the presence of inert gas at a temperature between 800 and 1400 d C to convert the uranyl nitrate hexahydrate to an oxide of uranium.

  14. Laser induced phosphorescence uranium analysis

    DOEpatents

    Bushaw, B.A.

    1983-06-10

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  15. ANODIC TREATMENT OF URANIUM

    DOEpatents

    Kolodney, M.

    1959-02-01

    A method is presented for effecting eloctrolytic dissolution of a metallic uranium article at a uniform rate. The uranium is made the anode in an aqueous phosphoric acid solution containing nitrate ions furnished by either ammonium nitrate, lithium nitrate, sodium nitrate, or potassium nitrate. A stainless steel cathode is employed and electrolysls carried out at a current density of about 0.1 to 1 ampere per square inch.

  16. Laser induced phosphorescence uranium analysis

    DOEpatents

    Bushaw, Bruce A.

    1986-01-01

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  17. Non-invasive acoustic-based monitoring of uranium in solution and H/D ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantea, Cristian; Beedle, Christopher Craig; Sinha, Dipen N.

    The primary objective of this project is to adapt existing non-invasive acoustic techniques (Swept-Frequency Acoustic Interferometry and Gaussian-pulse acoustic technique) for the purpose of demonstrating the ability to quantify U or H/D ratios in solution. Furthermore, a successful demonstration will provide an easily implemented, low cost, and non-invasive method for remote and unattended uranium mass measurements for International Atomic Energy Agency (IAEA).

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehta, Vrajesh; Maillot, Fabien; Wang, Zheming

    Uranyl phosphate solids are often found with uranium ores, and their low solubility makes them promising target phases for in situ remediation of uranium-contaminated subsurface environments. The products and solubility of uranium(VI) precipitated with phosphate can be affected by the pH, dissolved inorganic carbon (DIC) concentration, and co-solute composition (e.g. Na+/Ca2+) of the groundwater. Batch experiments were performed to study the effect of these parameters on the products and extent of uranium precipitation induced by phosphate addition. In the absence of co-solute cations, chernikovite [H3O(UO2)(PO4)•3H2O] precipitated despite uranyl orthophosphate [(UO2)3(PO4)2•4H2O] being thermodynamically more favorable under certain conditions. As determined usingmore » X-ray diffraction, electron microscopy, and laser induced fluorescence spectroscopy, the presence of Na+ or Ca2+ as a co-solute led to the precipitation of sodium autunite ([Na2(UO2)2(PO4)2] and autunite [Ca(UO2)2(PO4)2]), which are structurally similar to chernikovite. In the presence of sodium, the dissolved U(VI) concentrations were generally in agreement with equilibrium predictions of sodium autunite solubility. However, in the calcium-containing systems, the observed concentrations were below the predicted solubility of autunite, suggesting the possibility of uranium adsorption to or incorporation in a calcium phosphate precipitate in addition to the precipitation of autunite.« less

  19. URANIUM RECOVERY PROCESS

    DOEpatents

    Stevenson, J.W.; Werkema, R.G.

    1959-07-28

    The recovery of uranium from magnesium fluoride slag obtained as a by- product in the production of uranium metal by the bomb reduction prccess is presented. Generally the recovery is accomplished by finely grinding the slag, roasting ihe ground slag air, and leaching the roasted slag with a hot, aqueous solution containing an excess of the sodium bicarbonate stoichiometrically required to form soluble uranium carbonate complex. The roasting is preferably carried out at between 425 and 485 deg C for about three hours. The leaching is preferably done at 70 to 90 deg C and under pressure. After leaching and filtration the uranium may be recovered from the clear leach liquor by any desired method.

  20. The Gas Hills uranium district and some probable controls for ore deposition

    USGS Publications Warehouse

    Zeller, Howard Davis

    1957-01-01

    Uranium deposits occur in the upper coarse-grained facies of the Wind River formation of Eocene age in the Gas Hills district of the southern part of the Wind River Basin. Some of the principal deposits lie below the water table in the unoxidized zone and consist of uraninite and coffinite occurring as interstitial fillings in irregular blanket-like bodies. In the near-surface deposits that lie above the water table, the common yellow uranium minerals consist of uranium phosphates, silicates, and hydrous oxides. The black unoxidized uraninite -coffinite ores show enrichment of molybdenum, arsenic, and selenium when compared to the barren sandstone. Probable geologic controls for ore deposits include: 1) permeable sediments that allowed passage of ore-bearing solutions; 2) numerous faults that acted as impermeable barriers impounding the ore -bearing solutions; 3) locally abundant pyrite, carbonaceous material, and natuial gas containing hydrogen sulfide that might provide a favorable environment for precipitation of uranium. Field and laboratory evidence indicate that the uranium deposits in the Gas Hills district are very young and related to the post-Miocene to Pleistocene regional tilting to the south associated with the collapse of the Granite Mountains fault block. This may have stopped or reversed ground water movement from a northward (basinward) direction and alkaline ground water rich in carbonate could have carried the uranium into the favorable environment that induced precipitation.

  1. Uranium dioxide electrolysis

    DOEpatents

    Willit, James L [Batavia, IL; Ackerman, John P [Prescott, AZ; Williamson, Mark A [Naperville, IL

    2009-12-29

    This is a single stage process for treating spent nuclear fuel from light water reactors. The spent nuclear fuel, uranium oxide, UO.sub.2, is added to a solution of UCl.sub.4 dissolved in molten LiCl. A carbon anode and a metallic cathode is positioned in the molten salt bath. A power source is connected to the electrodes and a voltage greater than or equal to 1.3 volts is applied to the bath. At the anode, the carbon is oxidized to form carbon dioxide and uranium chloride. At the cathode, uranium is electroplated. The uranium chloride at the cathode reacts with more uranium oxide to continue the reaction. The process may also be used with other transuranic oxides and rare earth metal oxides.

  2. In-Situ Atomic Force Microscope Imaging of Calcite Etch Pit Morphology Changes in Undersaturated and 1-Hydroxyethylidene-1,1-diphosphonic Acid Poisoned Solutions

    PubMed Central

    Britt, David W.

    2012-01-01

    Morphology changes in etch pits formed on the (1014) cleavage plane of calcite were induced by varying the ratio of [Ca2+] to [CO32−] in the bulk solution as well as through the addition of the crystal poison 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP). Three distinct morphologies were noted: symmetric rhombic, asymmetric rhombic, and triangular with a rough curved hypotenuse. The latter represents a transient morphology which is only observed during the actual dissolution process, while the former morphologies persist after dissolution is halted. PMID:25125794

  3. Cyanide Antidotes for Mass Casualties: Comparison of Intramuscular Injector by Autoinjector, Intraosseous Injection, and Inhalational Delivery

    DTIC Science & Technology

    2013-10-01

    silicon-based ultrasonic nozzle to produce high- throughput of monodisperse cobinamide antidote solution for detoxification of CN poisoning in a rabbit...model. Keywords- cyanide poisoning and detoxification, cobinamide antidote, Fourier-horn ultrasonic nozzles , monodisperse aerosol inhaler I...distributions. In contrast, the MHz multiple-Fourier horn ultrasonic nozzle reported recently [8-10] has demonstrated its capability of producing high

  4. COLUMBIC OXIDE ADSORPTION PROCESS FOR SEPARATING URANIUM AND PLUTONIUM IONS

    DOEpatents

    Beaton, R.H.

    1959-07-14

    A process is described for separating plutonium ions from a solution of neutron irradiated uranium in which columbic oxide is used as an adsorbert. According to the invention the plutonium ion is selectively adsorbed by Passing a solution containing the plutonium in a valence state not higher than 4 through a porous bed or column of granules of hydrated columbic oxide. The adsorbed plutonium is then desorbed by elution with 3 N nitric acid.

  5. Removal of uranium and fluorine from wastewater by double-functional microsphere adsorbent of SA/CMC loaded with calcium and aluminum

    NASA Astrophysics Data System (ADS)

    Wu, Liping; Lin, Xiaoyan; Zhou, Xingbao; Luo, Xuegang

    2016-10-01

    A novel dual functional microsphere adsorbent of alginate/carboxymethyl cellulose sodium composite loaded with calcium and aluminum (SA/CMC-Ca-Al) is prepared by an injection device to remove fluoride and uranium, respectively, from fluoro-uranium mixed aqueous solution. Batch experiments are performed at different conditions: pH, temperature, initial concentration and contact time. The results show that the maximum adsorption amount for fluoride is 35.98 mg/g at pH 2.0, 298.15 K concentration 100 mg/L, while that for uranium is 101.76 mg/g at pH 4.0, 298.15 K concentration 100 mg/L. Both of the adsorption process could be well described by Langmuir model. The adsorption kinetic data is fitted well with pseudo-first-order model for uranium and pseudo-second-order model for fluoride. Thermodynamic parameters are also evaluated, indicating that the adsorption of uranium on SA/CMC-Ca-Al is a spontaneous and exothermic process, while the removal of fluoride is non-spontaneous and endothermic process. The mechanism of modification and adsorption process on SA/CMC-Ca-Al is characterized by FT-IR, SEM, EDX and XPS. The results show that Ca (II) and Al (III) are loaded on SA/CMC through ion-exchange of sodium of SA/CMC. The coordination reaction and ion-exchange happen during the adsorption process between SA/CMC-Ca-Al and uranium, fluoride. Results suggest that the SA/CMC-Ca-Al adsorbent has a great potential in removing uranium and fluoride from aqueous solution.

  6. Quantitative determination of environmental levels of uranium, thorium and plutonium in bone by solvent extraction and alpha spectrometry

    NASA Astrophysics Data System (ADS)

    Singh, Narayani P.; Zimmerman, Carol J.; Lewis, Laura L.; Wrenn, McDonald E.

    1984-06-01

    Solvent extraction and alpha-spectrometry have been emplyed in the quantitative simultaneous determination of uranium. thorium and plutonium. The bone specimens, spiked with 232U, 229Th and 242Pu tracers, are wet ashed with HNO 3 followed by alternate additions of a new drops of HNO 3 and H 2O 2. Uranium is reduced to the tetravalent state with 200 mg SnCl 2 and 25 ml HI. Uranium, thorium and plutonium are then coprecipitated with calcium as oxalate, heated to 550°C, dissolved in 50 ml HCl, and the acidity adjusted to 10 M. Uranium and plutonium are extracted into a 20% tri-lauryl amine (TLA) solution in xylene, leaving thorium in the aqueous phase. Plutonium is first back-extracted from the TLA phase by shaking with a 1:1.5 volume of 0.05 M NH 4I in 8 M HCl, which reduces Pu(IV) to Pu(III). Uranium is then back-extracted with an equal volume of 0.1 M HCl. Thorium, which was left in the aqueous phase, is evaporated to dryness, dissolved in 4 M HNO 3, and the acidity adjusted to 4 M. Thorium is then extracted into 20% TLA solution in xylene pre-equilibrated with 4 M HNO 3, and back-extracted with 10 M HCl. Uranium, thorium, and plutonium are then electrodeposited separately onto platinum discs and counted by an alpha-spectrometer with a multi-channel analyzer and surface barrier silicon diodes. The mean recoveries of uranium, thorium, and plutonium in bovine, dog, and human bones were over 70%.

  7. METHOD OF ELECTROPLATING ON URANIUM

    DOEpatents

    Rebol, E.W.; Wehrmann, R.F.

    1959-04-28

    This patent relates to a preparation of metallic uranium surfaces for receiving coatings, particularly in order to secure adherent electroplated coatings upon uranium metal. In accordance with the invention the uranium surface is pretreated by degreasing in trichloroethylene, followed by immersion in 25 to 50% nitric acid for several minutes, and then rinsed with running water, prior to pickling in trichloroacetic acid. The last treatment is best accomplished by making the uranium the anode in an aqueous solution of 50 per cent by weight trichloroacetic acid until work-distorted crystals or oxide present on the metal surface have been removed and the basic crystalline structure of the base metal has been exposed. Following these initial steps the metallic uranium is rinsed in dilute nitric acid and then electroplated with nickel. Adnerent firmly-bonded coatings of nickel are obtained.

  8. FLUORIDE VOLATILITY PROCESS FOR THE RECOVERY OF URANIUM

    DOEpatents

    Katz, J.J.; Hyman, H.H.; Sheft, I.

    1958-04-15

    The separation and recovery of uraniunn from contaminants introduced by neutron irradiation by a halogenation and volatilization method are described. The irradiated uranium is dissolved in bromine trifluoride in the liquid phase. The uranium is converted to the BrF/sub 3/ soluble urmium hexafluoride compound whereas the fluorides of certain contaminating elements are insoluble in liquid BrF/sub 3/, and the reaction rate of the BrF/sub 3/ with certain other solid uranium contamirnnts is sufficiently slower than the reaction rate with uranium that substantial portions of these contaminating elements will remain as solids. These solids are then separated from the solution by a distillation, filtration, or centrifugation step. The uranium hexafluoride is then separated from the balance of the impurities and solvent by one or more distillations.

  9. Femtosecond Laser Ablation Multicollector ICPMS Analysis of Uranium Isotopes in NIST Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffin, Andrew M.; Springer, Kellen WE; Ward, Jesse D.

    We have utilized femtosecond laser ablation coupled to multi-collector inductively couple plasma mass spectrometry to measure the uranium isotopic content of NIST 61x (x=0,2,4,6) glasses. The uranium content of these glasses is a linear two-component mixing between isotopically natural uranium and the isotopically depleted spike used in preparing the glasses. Laser ablation results match extremely well, generally within a few ppm, with solution analysis following sample dissolution and chemical separation. In addition to isotopic data, sample utilization efficiency measurements indicate that over 1% of ablated uranium atoms reach a mass spectrometer detector, making this technique extremely efficient. Laser sampling alsomore » allows for spatial analysis and our data indicate that rare uranium concentration inhomogeneities exist in NIST 616 glass.« less

  10. URANIUM RECOVERY FROM COMPOSITE UF$sub 4$ REDUCTION BOMB WASTES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, E R; Doyle, R L; Coleman, J R

    1954-01-28

    A number of techniques have been investigated on a laboratory-scale for separating uranium from fluorides during the recovery of uranium from UF4 reduction bomb wastes (C-oxide) by an HCl leach - NH4OH precipitation process. Among these are included adsorption of fluorides from filtered leach liquors, fractional precipitation of fluorides and uranium, complexing of fluorides into forms soluble in slightly acid solutions, and fluoride volatilization from the uranium concentrate. Solubility studies of CaF2 and MgF2 in aqueous hydrochloric acid at various acidities and temperatures were also conducted. A description of the production-scale processing of C-oxide in the FMPC scrap plant hasmore » been included.« less

  11. THORIUM OXALATE-URANYL ACETATE COUPLED PROCEDURE FOR THE SEPARATION OF RADIOACTIVE MATERIALS

    DOEpatents

    Gofman, J.W.

    1959-08-11

    The recovery of fission products from neutronirradiated uranium is described. The neutron-irradiated uranium is dissolved in acid and thorium oxalate is precipitated in ihe solution formed, whereby the fission products are carried on the thorium oxalate. The separated thorium oxalate precipitate is then dissolved in an aqueous oxalate solution and the solution formed is acidified, limiting ihe excess acidity to a maximum of 2 N, whereby thorium oxalate precipitates and carries lanthanum-rareearth- and alkaline-earth-metal fission products while the zirconium-fission-product remains in solution. This precipitate, too, is dissolved in an aqaeous oxalate solution at elevated temperature, and lanthanum-rare-earth ions are added to the solution whereby lanthanum-rare-earth oxalate forms and the lanthanum-rare-earth-type and alkalineearth-metal-type fission products are carried on the oxalate. The precipitate is separated from the solution.

  12. DISTRIBUTION OF URANIUM, ZIRCONIUM, NIOBIUM, RUTHENIUM AND CERIUM BETWEEN NITRIC ACID SOLUTIONS AND 10% TLA-5% OCTYL ALCOHOL/SHELL SOL-T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Menchero, E.; Centeno, J.; Magni, G.

    1962-03-01

    The extraction of traces of Ru, Zr, Nb, Ce, and U at low concentrations (5 mg/l in aqueous solution) from nitric acid solutions using trilauryl amine (TLA) has been experimentally studied. TLA will eventually be used for final purification of plutonium. Room-temperature data on plutonium contaminant distribution between aqueous solutions of varying nitric acid concentrations and a Shellsol-T solution containing l0% TlA and 5% octyl alcohol are presented. Within the temperature and nitric acid concentration ranges tested, the extractability of uranium increased with increased acid concentrations, although acid concentration in the aqueous phase had no effect on the decontamination factorsmore » for the main fission products. (H.G.G.)« less

  13. Release behavior of uranium in uranium mill tailings under environmental conditions.

    PubMed

    Liu, Bo; Peng, Tongjiang; Sun, Hongjuan; Yue, Huanjuan

    2017-05-01

    Uranium contamination is observed in sedimentary geochemical environments, but the geochemical and mineralogical processes that control uranium release from sediment are not fully appreciated. Identification of how sediments and water influence the release and migration of uranium is critical to improve the prevention of uranium contamination in soil and groundwater. To understand the process of uranium release and migration from uranium mill tailings under water chemistry conditions, uranium mill tailing samples from northwest China were investigated with batch leaching experiments. Results showed that water played an important role in uranium release from the tailing minerals. The uranium release was clearly influenced by contact time, liquid-solid ratio, particle size, and pH under water chemistry conditions. Longer contact time, higher liquid content, and extreme pH were all not conducive to the stabilization of uranium and accelerated the uranium release from the tailing mineral to the solution. The values of pH were found to significantly influence the extent and mechanisms of uranium release from minerals to water. Uranium release was monitored by a number of interactive processes, including dissolution of uranium-bearing minerals, uranium desorption from mineral surfaces, and formation of aqueous uranium complexes. Considering the impact of contact time, liquid-solid ratio, particle size, and pH on uranium release from uranium mill tailings, reducing the water content, decreasing the porosity of tailing dumps and controlling the pH of tailings were the key factors for prevention and management of environmental pollution in areas near uranium mines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The roles of Eu during the growth of eutectic Si in Al-Si alloys

    PubMed Central

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-01-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si. PMID:26328541

  15. The roles of Eu during the growth of eutectic Si in Al-Si alloys

    NASA Astrophysics Data System (ADS)

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-09-01

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si.

  16. The roles of Eu during the growth of eutectic Si in Al-Si alloys.

    PubMed

    Li, Jiehua; Hage, Fredrik; Wiessner, Manfred; Romaner, Lorenz; Scheiber, Daniel; Sartory, Bernhard; Ramasse, Quentin; Schumacher, Peter

    2015-09-02

    Controlling the growth of eutectic Si and thereby modifying the eutectic Si from flake-like to fibrous is a key factor in improving the properties of Al-Si alloys. To date, it is generally accepted that the impurity-induced twinning (IIT) mechanism and the twin plane re-entrant edge (TPRE) mechanism as well as poisoning of the TPRE mechanism are valid under certain conditions. However, IIT, TPRE or poisoning of the TPRE mechanism cannot be used to interpret all observations. Here, we report an atomic-scale experimental and theoretical investigation on the roles of Eu during the growth of eutectic Si in Al-Si alloys. Both experimental and theoretical investigations reveal three different roles: (i) the adsorption at the intersection of Si facets, inducing IIT mechanism, (ii) the adsorption at the twin plane re-entrant edge, inducing TPRE mechanism or poisoning of the TPRE mechanism, and (iii) the segregation ahead of the growing Si twins, inducing a solute entrainment within eutectic Si. This investigation not only demonstrates a direct experimental support to the well-accepted poisoning of the TPRE and IIT mechanisms, but also provides a full picture about the roles of Eu atoms during the growth of eutectic Si, including the solute entrainment within eutectic Si.

  17. Nanostructured Metal Oxide Sorbents for the Collection and Recovery of Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chouyyok, Wilaiwan; Warner, Cynthia L.; Mackie, Katherine E.

    2016-02-07

    The ability to collect uranium from seawater offers the potential for a long-term green fuel supply for nuclear energy. However, extraction of uranium, and other trace minerals, is challenging due to the high ionic strength and low mineral concentrations in seawater. Herein we evaluate the use of nanostructured metal oxide sorbents for the collection and recovery of uranium from seawater. Chemical affinity, chemical adsorption capacity and kinetics of preferred sorbent materials were evaluated. High surface area manganese and iron oxide nanomaterials showed excellent performance for uranium collection from seawater. Inexpensive nontoxic carbonate solutions were demonstrated to be an effective andmore » environmental benign method of stripping the uranium from the metal oxide sorbents. Various formats for the utilization of the nanostructured metals oxide sorbent materials are discussed including traditional and nontraditional methods such as magnetic separation. Keywords: Uranium, nano, manganese, iron, sorbent, seawater, magnetic, separations, nuclear energy« less

  18. Enhancing uranium uptake by amidoxime adsorbent in seawater: An investigation for optimum alkaline conditioning parameters

    DOE PAGES

    Das, Sadananda; Tsouris, Costas; Zhang, Chenxi; ...

    2015-09-07

    A high-surface-area polyethylene-fiber adsorbent (AF160-2) has been developed at the Oak Ridge National Laboratory by radiation-induced graft polymerization of acrylonitrile and itaconic acid. The grafted nitriles were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with potassium hydroxide (KOH) by varying different reaction parameters such as KOH concentration (0.2, 0.44, and 0.6 M), duration (1, 2, and 3 h), and temperature (60, 70, and 80 °C). Adsorbent screening was then performed with simulated seawater solutions containing sodium chloride and sodium bicarbonate, at concentrations found in seawater, and uranium nitrate at a uranium concentration ofmore » ~7–8 ppm and pH 8. Fourier transform infrared spectroscopy and solid-state NMR analyses indicated that a fraction of amidoxime groups was hydrolyzed to carboxylate during KOH conditioning. The uranium adsorption capacity in the simulated seawater screening solution gradually increased with conditioning time and temperature for all KOH concentrations. It was also observed that the adsorption capacity increased with an increase in concentration of KOH for all the conditioning times and temperatures. AF160-2 adsorbent samples were also tested with natural seawater using flow-through experiments to determine uranium adsorption capacity with varying KOH conditioning time and temperature. Based on uranium loading capacity values of several AF160-2 samples, it was observed that changing KOH conditioning time from 3 to 1 h at 60, 70, and 80 °C resulted in an increase of the uranium loading capacity in seawater, which did not follow the trend found in laboratory screening with stimulated solutions. Longer KOH conditioning times lead to significantly higher uptake of divalent metal ions, such as calcium and magnesium, which is a result of amidoxime conversion into less selective carboxylate. The scanning electron microscopy showed that long conditioning times may also lead to adsorbent degradation.« less

  19. Enhancing Uranium Uptake by Amidoxime Adsorbent in Seawater: An investigation for optimum alkaline conditioning parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.; Tsouris, Constantinos; Zhang, C.

    2016-04-20

    A high-surface-area polyethylene-fiber adsorbent (AF160-2) has been developed at the Oak Ridge National Laboratory (ORNL) by radiation-induced graft polymerization of acrylonitrile and itaconic acid. The grafted nitriles were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with potassium hydroxide (KOH) by varying different reaction parameters such as KOH concentration (0.2, 0.44, and 0.6 M), duration (1, 2, and 3 h), and temperature (60, 70, and 80 ºC). Adsorbent screening was then performed with simulated seawater solutions containing sodium chloride and sodium bicarbonate, at concentrations found in seawater, and uranium nitrate at a uranium concentrationmore » of ~ 7-8 ppm and pH 8. FTIR and solid state NMR indicated that a fraction of amidoxime groups was hydrolyzed to carboxylate during KOH conditioning. The uranium adsorption capacity in the simulated seawater screening solution gradually increased with conditioning time and temperature for all KOH concentrations. It was also observed that the adsorption capacity increased with an increase in concentration of KOH for all the conditioning times and temperatures. AF160-2 adsorbent samples were also tested with natural seawater using flow-through experiments to determine uranium adsorption capacity with varying KOH conditioning time and temperature. Based on uranium loading capacity values of several AF160-2 samples, it was observed that changing KOH conditioning time from 3 to 1 h at 60, 70, and 80 ºC resulted in increase of the uranium loading capacity in seawater, which did not follow the trend found in laboratory screening with stimulated solutions. Longer KOH conditioning times lead to significantly higher uptake of divalent metal ions, such as calcium and magnesium, which is a result of amidoxime conversion into less selective carboxylate. Scanning electron microscopy showed that long conditioning times may also lead to adsorbent degradation« less

  20. Supplemental Reactor Physics Calculations and Analysis of ELF Mk 1A Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pope, Michael A.

    2014-10-01

    These calculations supplement previous the reactor physics work evaluating the Enhanced Low Enriched Uranium (LEU) Fuel (ELF) Mk 1A element. This includes various additional comparisons between the current Highly Enriched Uranium (HEU) and LEU along with further characterization of the performance of the ELF fuel. The excess reactivity to be held down at BOC for ELF Mk 1A fuel is estimated to be approximately $2.75 greater than with HEU for a typical cycle. This is a combined effect of the absence of burnable poison in the ELF fuel and the reduced neck shim worth in LEU fuel compared to HEU.more » Burnable poison rods were conceptualized for use in the small B positions containing Gd2O3 absorber. These were shown to provide $2.37 of negative reactivity at BOC and to burn out in less than half of a cycle. The worth of OSCCs is approximately the same between HEU and ELF Mk 1A (LEU) fuels in the representative loading evaluated. This was evaluated by rotating all banks simultaneously. The safety rod worth is relatively unchanged between HEU and ELF Mk 1A (LEU) fuels in the representative loading evaluated. However, this should be reevaluated with different loadings. Neutron flux, both total and fast (>1 MeV), is either the same or reduced upon changing from HEU to ELF Mk 1A (LEU) fuels in the representative loading evaluated. This is consistent with the well-established trend of lower neutron fluxes for a given power in LEU than HEU.The IPT loop void reactivity is approximately the same or less positive with ELF Mk 1A (LEU) fuel than HEU in the representative loading evaluated.« less

  1. NUCLEAR REACTOR FUEL SYSTEMS

    DOEpatents

    Thamer, B.J.; Bidwell, R.M.; Hammond, R.P.

    1959-09-15

    Homogeneous reactor fuel solutions are reported which provide automatic recombination of radiolytic gases and exhibit large thermal expansion characteristics, thereby providing stability at high temperatures and enabling reactor operation without the necessity of apparatus to recombine gases formed by the radiolytic dissociation of water in the fuel and without the necessity of liquid fuel handling outside the reactor vessel except for recovery processes. The fuels consist of phosphoric acid and water solutions of enriched uranium, wherein the uranium is in either the hexavalent or tetravalent state.

  2. REMOVAL OF ALUMINUM COATINGS

    DOEpatents

    Peterson, J.H.

    1959-08-25

    A process is presented for dissolving aluminum jackets from uranium fuel elements without attack of the uranium in a boiling nitric acid-mercuric nitrate solution containing up to 50% by weight of nitrtc acid and mercuric nitrate in a concentration of between 0.05 and 1% by weight.

  3. Processing and fabrication of mixed uranium/refractory metal carbide fuels with liquid-phase sintering

    NASA Astrophysics Data System (ADS)

    Knight, Travis W.; Anghaie, Samim

    2002-11-01

    Optimization of powder processing techniques were sought for the fabrication of single-phase, solid-solution mixed uranium/refractory metal carbide nuclear fuels - namely (U, Zr, Nb)C. These advanced, ultra-high temperature nuclear fuels have great potential for improved performance over graphite matrix, dispersed fuels tested in the Rover/NERVA program of the 1960s and early 1970s. Hypostoichiometric fuel samples with carbon-to-metal ratios of 0.98, uranium metal mole fractions of 5% and 10%, and porosities less than 5% were fabricated. These qualities should provide for the longest life and highest performance capability for these fuels. Study and optimization of processing methods were necessary to provide the quality assurance of samples for meaningful testing and assessment of performance for nuclear thermal propulsion applications. The processing parameters and benefits of enhanced sintering by uranium carbide liquid-phase sintering were established for the rapid and effective consolidation and formation of a solid-solution mixed carbide nuclear fuel.

  4. Sorption of uranium in uranyl nitrate solutions on strong cationic resins and its elution with ammonium sulfate. II. Effects of EDTA on thorium decontamination; Estudos de sorpcao de uranio contido em solucoes de nitrato de uranilo por resina cationica forte e sua eluicao com sulfato de amonio. Parte II: efeito de EDTA na descontaminacao do torio (in Portuguese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribas, Antonio G.S.; Abrao, Alcidio

    1970-05-15

    This paper describes the studies of decontamination of thorium present as impurity in uranyl nitrate solutions, which was carried out through strong cationic resin where the thorium was partially retained. Then, the final decontamination was performed percolating the uranyl solution on a second cationic resin, after complexation of thorium (and other impurities) with EDTA. The thorium decontamination and the uranium retention were studied as a function of EDTA/U ratio, uranium concentration and acidity of the influent uranyl nitrate. The elution conditions were also studied as a function of eluent flow rate, concentration and acidity. Several tables and graphs showing themore » final results are included. (tr-auth)« less

  5. Carbon monoxide poisoning in Florida during the 2004 hurricane season.

    PubMed

    Van Sickle, David; Chertow, Daniel S; Schulte, Joann M; Ferdinands, Jill M; Patel, Prakash S; Johnson, David R; Harduar-Morano, Laurel; Blackmore, Carina; Ourso, Andre C; Cruse, Kelly M; Dunn, Kevin H; Moolenaar, Ronald L

    2007-04-01

    During August-September 2004, four major hurricanes hit Florida, resulting in widespread power outages affecting several million households. Carbon monoxide (CO) poisonings during this period were investigated to identify ways to prevent future poisoning. Medical records from ten hospitals (two with hyperbaric oxygen chambers) were reviewed to identify individuals diagnosed with unintentional CO poisoning between August 13 and October 15, 2004. Multiple attempts were made to interview one person from each nonfatal incident. Medical examiner records and reports of investigations conducted by the U.S. Consumer Product Safety Commission of six fatal poisonings from five additional incidents were also reviewed. A total of 167 people treated for nonfatal CO poisoning were identified, representing 51 incidents. A portable, gasoline-powered generator was implicated in nearly all nonfatal incidents and in all fatal poisonings. Generators were most often located outdoors, followed by inside the garage, and inside the home. Telephone interviews with representatives of 35 (69%) incidents revealed that concerns about theft or exhaust most often influenced the choice of location. Twenty-six (74%) households did not own a generator before the hurricanes, and 86% did not have a CO detector at the time of the poisoning. Twenty-one (67%) households reported reading or hearing CO education messages before the incident. Although exposure to public education messages may have encouraged more appropriate use of generators, a substantial number of people were poisoned even when the devices were operated outdoors. Additional educational efforts and engineering solutions that reduce CO emission from generators should be the focus of public health activities.

  6. Room temperature electrodeposition of actinides from ionic solutions

    DOEpatents

    Hatchett, David W.; Czerwinski, Kenneth R.; Droessler, Janelle; Kinyanjui, John

    2017-04-25

    Uranic and transuranic metals and metal oxides are first dissolved in ozone compositions. The resulting solution in ozone can be further dissolved in ionic liquids to form a second solution. The metals in the second solution are then electrochemically deposited from the second solutions as room temperature ionic liquid (RTIL), tri-methyl-n-butyl ammonium n-bis(trifluoromethansulfonylimide) [Me.sub.3N.sup.nBu][TFSI] providing an alternative non-aqueous system for the extraction and reclamation of actinides from reprocessed fuel materials. Deposition of U metal is achieved using TFSI complexes of U(III) and U(IV) containing the anion common to the RTIL. TFSI complexes of uranium were produced to ensure solubility of the species in the ionic liquid. The methods provide a first measure of the thermodynamic properties of U metal deposition using Uranium complexes with different oxidation states from RTIL solution at room temperature.

  7. Uranium in foraminiferal calcite as a recorder of seawater uranium concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, A.D.; Emerson, S.; Nelson, B.K.

    The authors present results of an investigation of uranium/calcium ratios in cleaned foraminiferal calcite as a recorder of seawater uranium concentrations. For accurate reconstruction of past seawater uranium content, shell calcite must incorporate uranium in proportion to seawater concentration and must preserve its original uranium composition over time. Laboratory culture experiments with live benthic (Amphistegina lobifera) and live planktonic (Globigerinell calida) foraminifera show that the U/Ca ratio of cleaned calcite tests is proportional to the concentration of uranium in solution. After correcting results for the presence of initial calcite, the apparent distribution coefficient D = (U/Ca[sub calcite])/(U/Ca)[sub solution] = 10.6more » [+-] 0.3 (x10[sup [minus]3]) for A. lobifera and D = 7.9 [+-] 0.1 (x10[sup [minus]3]) for G. calida. U/Ca ratios in planktonic foraminifera from core tops collected above 3900 m in the equatorial Atlantic and above 2100 m in the Pacific Ocean show no significant difference among the species analyzed. D estimated form core top samples ranges from 7.6 [+-] 0.4 (x10[sup [minus]3]) for O. universa to 8.4 [+-] 0.5 (x10[sup [minus]3]) for G. ruber. In benthic species C. wuellerstorfi, D = 7.0 [+-] 0.8 (x10[sup [minus]3]). U/Ca and Mg/Ca in G. tumida and G. sacculifer from core tops taken near and below the regional lysocline decrease with water depth. Smaller decreases in U/Ca and Mg/Ca with depth were observed in C. wuellerstorfi. In the planktonic species, the authors believe that U/CA and Mg/Ca are lower in the more dissolution-resistant fraction of calcite, leading to lower U/Ca in more highly dissolved samples.« less

  8. SOLVENT EXTRACTION PROCESS

    DOEpatents

    Jonke, A.A.

    1957-10-01

    In improved solvent extraction process is described for the extraction of metal values from highly dilute aqueous solutions. The process comprises contacting an aqueous solution with an organic substantially water-immiscible solvent, whereby metal values are taken up by a solvent extract phase; scrubbing the solvent extract phase with an aqueous scrubbing solution; separating an aqueous solution from the scrubbed solvent extract phase; and contacting the scrubbed solvent phase with an aqueous medium whereby the extracted metal values are removed from the solvent phase and taken up by said medium to form a strip solution containing said metal values, the aqueous scrubbing solution being a mixture of strip solution and an aqueous solution which contains mineral acids anions and is free of the metal values. The process is particularly effective for purifying uranium, where one starts with impure aqueous uranyl nitrate, extracts with tributyl phosphate dissolved in carbon tetrachloride, scrubs with aqueous nitric acid and employs water to strip the uranium from the scrubbed organic phase.

  9. Effects of surface poisons on the oxidation of binary alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagan, P.S.; Polizzotti, R.S.; Luckman, G.

    1985-10-01

    A system of reaction-diffusion equations describing the oxidation of binary alloys in environments containing small amounts of surface poisons is analyzed. These poisons reduce the oxygen flux into the alloy, which causes the alloy to oxidize in two stages.During the initial stage, the oxidation reaction occurs in a stationary boundary layer at the alloy surface. Consequently, a thin zone containing a very high concentration of the metal oxide is created at the alloy surface. During the second stage, the oxidation reaction occurs in a moving boundary layer. This leads to a Stefan problem, which is analyzed by using asymptotic andmore » numerical techniques. By comparing the solutions to those of alloys in unpoisoned environments, it is concluded that surface poisons can lead to the formation of protective external oxide scales in alloys which would not normally form such scales. 11 references.« less

  10. An accidental case of aconite poisoning due to Kampo herbal medicine ingestion.

    PubMed

    Ono, Takiyoshi; Hayashida, Makiko; Uekusa, Kyoko; Lai, Cui Fan; Hayakawa, Hideyuki; Nihira, Makoto; Ohno, Youkichi

    2009-05-01

    An accidental case of aconite intoxication occurred after a patient took a therapeutic dose of Kampo herbal medicine containing Aconiti tuber, Uzu but had used the wrong decoction procedure. The poisoning was likely caused by an increased level of Aconitum alkaloids in the decoction; the patient developed aconite intoxication due to incomplete decoction. Aconitum alkaloid levels in the leftover solution which the patient had drunk and in the decoction extracted from 3g Uzu were determined. It was found that decoction makes the medicine safer to drink. Older individuals, especially those with dementia, have a higher risk of aconite poisoning because they sometimes do not boil the medicine appropriately.

  11. Processing of solid solution, mixed uranium/refractory metal carbides for advanced space nuclear power and propulsion systems

    NASA Astrophysics Data System (ADS)

    Knight, Travis Warren

    Nuclear thermal propulsion (NTP) and space nuclear power are two enabling technologies for the manned exploration of space and the development of research outposts in space and on other planets such as Mars. Advanced carbide nuclear fuels have been proposed for application in space nuclear power and propulsion systems. This study examined the processing technologies and optimal parameters necessary to fabricate samples of single phase, solid solution, mixed uranium/refractory metal carbides. In particular, the pseudo-ternary carbide, UC-ZrC-NbC, system was examined with uranium metal mole fractions of 5% and 10% and corresponding uranium densities of 0.8 to 1.8 gU/cc. Efforts were directed to those methods that could produce simple geometry fuel elements or wafers such as those used to fabricate a Square Lattice Honeycomb (SLHC) fuel element and reactor core. Methods of cold uniaxial pressing, sintering by induction heating, and hot pressing by self-resistance heating were investigated. Solid solution, high density (low porosity) samples greater than 95% TD were processed by cold pressing at 150 MPa and sintering above 2600 K for times longer than 90 min. Some impurity oxide phases were noted in some samples attributed to residual gases in the furnace during processing. Also, some samples noted secondary phases of carbon and UC2 due to some hyperstoichiometric powder mixtures having carbon-to-metal ratios greater than one. In all, 33 mixed carbide samples were processed and analyzed with half bearing uranium as ternary carbides of UC-ZrC-NbC. Scanning electron microscopy, x-ray diffraction, and density measurements were used to characterize samples. Samples were processed from powders of the refractory mono-carbides and UC/UC 2 or from powders of uranium hydride (UH3), graphite, and refractory metal carbides to produce hypostoichiometric mixed carbides. Samples processed from the constituent carbide powders and sintered at temperatures above the melting point of UC showed signs of liquid phase sintering and were shown to be largely solid solutions. Pre-compaction of mixed carbide powders prior to sintering was shown to be necessary to achieve high densities. Hypostoichiometric, samples processed at 2500 K exhibited only the initial stage of sintering and solid solution formation. Based on these findings, a suggested processing methodology is proposed for producing high density, solid solution, mixed carbide fuels. Pseudo-binary, refractory carbide samples hot pressed at 3100 K and 6 MPa showed comparable densities (approximately 85% of the theoretical value) to samples processed by cold pressing and sintering at temperatures of 2800 K.

  12. Efficacy of a solution-based approach for making sodalite waste forms for an oxide reduction salt utilized in the reprocessing of used uranium oxide fuel

    NASA Astrophysics Data System (ADS)

    Riley, Brian J.; Pierce, David A.; Frank, Steven M.; Matyáš, Josef; Burns, Carolyne A.

    2015-04-01

    This paper describes the various approaches evaluated for making solution-derived sodalite with a LiCl-Li2O oxide reduction salt selected to dissolve used uranium oxide fuel so the uranium can be recovered and recycled. The approaches include modified sol-gel and solution-based synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na2O-B2O3-SiO2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl- to form halite in solution and Li2O and SiO2 to form lithium silicates (e.g., Li2SiO3 or Li2Si2O5) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions in the crystalline product (∼92 mass%) and low porosities using a solution-based approach and this LiCl-Li2O salt but that the incorporation of Li into the sodalite is low.

  13. Detection of cocaine and benzoylecgonine in formalin fixed rat tissues.

    PubMed

    Hilal, Ahmet; Dağlioğlu, Nebīle; Battal, Dīlek; Yener, Fadīle; Dağlioğlu, Kenan

    2009-09-01

    The stability of drugs in formalin solution is an important factor in forensic investigation. Tissues (liver, lung, kidney, brain) taken from rats, which have been poisoned acutely with cocaine, were preserved in two different conditions, analyzed by GC-MS, and then compared. Organs of the first group were preserved and stored at -20 degrees C without adding formalin, whereas the organs of the second group were preserved and stored in formalin solution at room temperature (25 degrees C). Serum samples were taken immediately after poisoning and studied as well. In specimens stored at -20 degrees C, cocaine and its metabolite benzoylecgonine were detected in the tissues. Only benzoylecgonine was detected both in tissues and their formalin solution. It was observed that the distribution of cocaine in tissues had differed depending on the preservation conditions. The formalin solution in which benzoylecgonine was mostly detected was from liver. As a result, cocaine was detected in tissues stored at -20 degrees C. It is recommended that both the formalin-fixed tissues and formalin solution should be analyzed concurrently to assure the accurate results (LOD = 3 ng/ml).

  14. New Technique for Speciation of Uranium in Sediments Following Acetate-Stimulated Bioremediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-06-22

    Acetate-stimulated bioremediation is a promising new technique for sequestering toxic uranium contamination from groundwater. The speciation of uranium in sediments after such bioremediation attempts remains unknown as a result of low uranium concentration, and is important to analyzing the stability of sequestered uranium. A new technique was developed for investigating the oxidation state and local molecular structure of uranium from field site sediments using X-Ray Absorption Spectroscopy (XAS), and was implemented at the site of a former uranium mill in Rifle, CO. Glass columns filled with bioactive Rifle sediments were deployed in wells in the contaminated Rifle aquifer and amendedmore » with a hexavalent uranium (U(VI)) stock solution to increase uranium concentration while maintaining field conditions. This sediment was harvested and XAS was utilized to analyze the oxidation state and local molecular structure of the uranium in sediment samples. Extended X-Ray Absorption Fine Structure (EXAFS) data was collected and compared to known uranium spectra to determine the local molecular structure of the uranium in the sediment. Fitting was used to determine that the field site sediments did not contain uraninite (UO{sub 2}), indicating that models based on bioreduction using pure bacterial cultures are not accurate for bioremediation in the field. Stability tests on the monomeric tetravalent uranium (U(IV)) produced by bioremediation are needed in order to assess the efficacy of acetate-stimulation bioremediation.« less

  15. Factors controlling localization of uranium deposits in the Dakota Sandstone, Gallup and Ambrosia Lake mining districts, McKinley County, New Mexico

    USGS Publications Warehouse

    Pierson, Charles Thomas; Green, Morris W.

    1977-01-01

    Geologic studies were made at all of the uranium mines and prospects in the Dakota Sandstone of Early(?) and Late Cretaceous age in the Gallup mining district, McKinley County, New Mexico. Dakota mines in the adjacent Ambrosia Lake mining district were visited briefly for comparative purposes. Mines in the eastern part of the Gallup district, and in the Ambrosia Lake district, are on the Chaco slope of the southern San Juan Basin in strata which dip gently northward toward the central part of the basin. Mines in the western part of the Gallup district are along the Gallup hogback (Nutria monocline) in strata which dip steeply westward into the Gallup sag. Geologic factors which controlled formation of the uranium deposits in the Dakota Sandstone are: (1) a source of uranium, believed to be uranium deposits of the underlying Morrison Formation of Late Jurassic age; (2) the accessibility to the Dakota of uranium-bearing solutions from the Morrison; (3) the presence in the Dakota of permeable sandstone beds overlain by impermeable carbonaceous shale beds; and (4) the occurrence within the permeable Dakota sandstone beds of carbonaceous reducing material as bedding-plane laminae, or as pockets of carbonaceous trash. Most of the Dakota uranium deposits are found in the lower part of the formation in marginal-marine distributary-channel sandstones which were deposited in the backshore environment. However, the Hogback no. 4 (Hyde) Mine (Gallup district) occurs in sandy paludal shale of the backshore environment, and another deposit, the Silver Spur (Ambrosia Lake district), is found in what is interpreted to be a massive beach or barrier-bar sandstone of the foreshore environment in the upper part of the Dakota. The sedimentary depositional environment most favorable for the accumulation of uranium is that of backshore areas lateral to main distributary channels, where levee, splay, and some distributary-channel sandstones intertongue with gray carbonaceous shales and siltstones of the well-drained swamp environment. Deposits of black carbonaceous shale which were formed in the poorly drained swamp deposits of the interfluve area are not favorable host rocks for uranium. The depositional energy levels of the various environments in which the sandstone and shale beds of the Dakota were deposited govern the relative favorability of the strata as uranium host rocks. In the report area, uranium usually occurs in carbonaceous sandstone deposited under low- to medium-energy fluvial conditions within distributary channels. A prerequisite, however, is that such sandstone be overlain by impermeable carbonaceous shale beds. Low- to medium-energy fluvial conditions result in the deposition of sandstone beds having detrital carbonaceous material distributed in laminae or in trash pockets on bedding planes. The carbonaceous laminae and trash pockets provide the necessary reductant to cause precipitation of uranium from solution. High-energy fluvial conditions result in the deposition of sandstones having little or no carbonaceous material included to provide a reductant. Very low energy swampy conditions result in carbonaceous shale deposits, which are generally barren of uranium because of their relative impermeability to migrating uranium-bearing solutions.

  16. Aggressive electrolyte poisons and multifunctional fluids comprised of diols and diamines for emergency shutdown of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Noelle, Daniel J.; Shi, Yang; Wang, Meng; Le, Anh V.; Qiao, Yu

    2018-04-01

    Electrolyte poisons comprised of diols and diamines are investigated for the intended function of exacerbating internal resistance in lithium-ion batteries upon short circuit failure, to quickly arrest uncontrolled joule heat generation in the earliest stages. The competing dynamics of powerful short circuit currents and electrolyte poisoning interactions are evaluated via simultaneous nail penetration and poison injection of LIR2450 format LiCoO2/graphite 120 mAh coin cells. To forcibly increase electrolyte impedance, diols serve to hinder charge-carrying ion mobility by raising solution viscosity, while diamines disrupt solvent permittivity by rapidly polymerizing the ethylene carbonate solvent. Diamines demonstrate great potency, and are suitable for integration into battery cells within chemically-inert, breakable containers, rigged for release upon mechanical activation. Mixtures of 1,2-ethanediol and 1,2-ethanediamine show synergistic poisoning effects, decreasing peak temperature accrued by 70% when introduced simultaneously upon nail penetration. With the innate presence and abundance of diols and diamines in electric vehicle heat exchangers, they may be employed for multifunctional applications.

  17. PLUTONIUM PURIFICATION PROCESS EMPLOYING THORIUM PYROPHOSPHATE CARRIER

    DOEpatents

    King, E.L.

    1959-04-28

    The separation and purification of plutonium from the radioactive elements of lower atomic weight is described. The process of this invention comprises forming a 0.5 to 2 M aqueous acidffc solution containing plutonium fons in the tetravalent state and elements with which it is normally contaminated in neutron irradiated uranium, treating the solution with a double thorium compound and a soluble pyrophosphate compound (Na/sub 4/P/sub 2/O/sub 7/) whereby a carrier precipitate of thorium A method is presented of reducing neptunium and - trite is advantageous since it destroys any hydrazine f so that they can be removed from solutions in which they are contained is described. In the carrier precipitation process for the separation of plutonium from uranium and fission products including zirconium and columbium, the precipitated blsmuth phosphate carries some zirconium, columbium, and uranium impurities. According to the invention such impurities can be complexed and removed by dissolving the contaminated carrier precipitate in 10M nitric acid, followed by addition of fluosilicic acid to about 1M, diluting the solution to about 1M in nitric acid, and then adding phosphoric acid to re-precipitate bismuth phosphate carrying plutonium.

  18. ALKALINE CARBONATE LEACHING PROCESS FOR URANIUM EXTRACTION

    DOEpatents

    Thunaes, A.; Brown, E.A.; Rabbitts, A.T.

    1957-11-12

    A process for the leaching of uranium from high carbonate ores is presented. According to the process, the ore is leached at a temperature of about 200 deg C and a pressure of about 200 p.s.i.g. with a solution containing alkali carbonate, alkali permanganate, and bicarbonate ion, the bicarbonate ion functionlng to prevent premature formation of alkali hydroxide and consequent precipitation of a diuranate. After the leaching is complete, the uranium present is recovered by precipitation with NaOH.

  19. Carbonate-H2O2 Leaching for Sequestering Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Horng-Bin; Weisheng, Liao; Wai, Chien

    Uranium adsorbed on amidoxime-based polyethylene fiber in simulated seawater can be quantitatively eluted at room temperature using 1M Na2CO3 containing 0.1 M H2O2. This efficient elution process is probably due to formation of an extremely stable uranyl-peroxo-carbonato complex in the carbonate solution. After washing with water, the sorbent can be reused with little loss of uranium loading capacity. Possible existence of this stable uranyl species in ocean water is also discussed.

  20. RECOVERY OF URANIUM FROM TUNGSTEN

    DOEpatents

    Newnam, K.

    1959-02-01

    A method is presented for the rccovery of uranium which has adhered to tungsten parts in electromagnetic isotope separation apparatus. Such a tungsten article is dissolved electrolytically in 20% NaOH by using the tungsten article as the anode. The resulting solution, containing soluble sodium lungstate and an insoluble slime, is then filtered. The slime residue is ignited successively with sodium nitrate and sodium pyrosulfate and leashed, and the resulting filtrates are combined with the original filtrate. Uranium is then recovered from the combined flltrates by diuranate precipitation.

  1. Carbonate-H₂O₂ leaching for sequestering uranium from seawater.

    PubMed

    Pan, Horng-Bin; Liao, Weisheng; Wai, Chien M; Oyola, Yatsandra; Janke, Christopher J; Tian, Guoxin; Rao, Linfeng

    2014-07-28

    Uranium adsorbed on amidoxime-based polyethylene fiber in simulated seawater can be quantitatively eluted at room temperature using 1 M Na2CO3 containing 0.1 M H2O2. This efficient elution process is probably due to the formation of an extremely stable uranyl-peroxo-carbonato complex in the carbonate solution. After washing with water, the sorbent can be reused with minimal loss of uranium loading capacity. Possible existence of this stable uranyl species in ocean water is also discussed.

  2. SEPARATION OF PLUTONIUM FROM FISSION PRODUCTS BY A COLLOID REMOVAL PROCESS

    DOEpatents

    Schubert, J.

    1960-05-24

    A method is given for separating plutonium from uranium fission products. An acidic aqueous solution containing plutonium and uranium fission products is subjected to a process for separating ionic values from colloidal matter suspended therein while the pH of the solution is maintained between 0 and 4. Certain of the fission products, and in particular, zirconium, niobium, lanthanum, and barium are in a colloidal state within this pH range, while plutonium remains in an ionic form, Dialysis, ultracontrifugation, and ultrafiltration are suitable methods of separating plutonium ions from the colloids.

  3. PROCESS FOR DECONTAMINATING THORIUM AND URANIUM WITH RESPECT TO RUTHENIUM

    DOEpatents

    Meservey, A.A.; Rainey, R.H.

    1959-10-20

    The control of ruthenium extraction in solvent-extraction processing of neutron-irradiated thorium is presented. Ruthenium is rendered organic-insoluble by the provision of sulfite or bisulfite ions in the aqueous feed solution. As a result the ruthenium remains in the aqueous phase along with other fission product and protactinium values, thorium and uranium values being extracted into the organic phase. This process is particularly applicable to the use of a nitrate-ion-deficient aqueous feed solution and to the use of tributyl phosphate as the organic extractant.

  4. FISSION PRODUCT REMOVAL FROM ORGANIC SOLUTIONS

    DOEpatents

    Moore, R.H.

    1960-05-10

    The decontamination of organic solvents from fission products and in particular the treatment of solvents that were used for the extraction of uranium and/or plutonium from aqueous acid solutions of neutron-irradiated uranium are treated. The process broadly comprises heating manganese carbonate in air to a temperature of between 300 and 500 deg C whereby manganese dioxide is formed; mixing the manganese dioxide with the fission product-containing organic solvent to be treated whereby the fission products are precipitated on the manganese dioxide; and separating the fission product-containing manganese dioxide from the solvent.

  5. URANIUM PURIFICATION PROCESS

    DOEpatents

    Ruhoff, J.R.; Winters, C.E.

    1957-11-12

    A process is described for the purification of uranyl nitrate by an extraction process. A solution is formed consisting of uranyl nitrate, together with the associated impurities arising from the HNO/sub 3/ leaching of the ore, in an organic solvent such as ether. If this were back extracted with water to remove the impurities, large quantities of uranyl nitrate will also be extracted and lost. To prevent this, the impure organic solution is extracted with small amounts of saturated aqueous solutions of uranyl nitrate thereby effectively accomplishing the removal of impurities while not allowing any further extraction of the uranyl nitrate from the organic solvent. After the impurities have been removed, the uranium values are extracted with large quantities of water.

  6. PRECIPITATION METHOD OF SEPARATING PLUTONIUM FROM CONTAMINATING ELEMENTS

    DOEpatents

    Sutton, J.B.

    1958-02-18

    This patent relates to an improved method for the decontamination of plutonium. The process consists broadly in an improvement in a method for recovering plutonium from radioactive uranium fission products in aqueous solutions by decontamination steps including byproduct carrier precipitation comprising the step of introducing a preformed aqueous slurry of a hydroxide of a metal of group IV B into any aqueous acidic solution which contains the plutonium in the hexavalent state, radioactive uranium fission products contaminant and a by-product carrier precipitate and separating the metal hydroxide and by-product precipitate from the solution. The process of this invention is especially useful in the separation of plutonium from radioactive zirconium and columbium fission products.

  7. Preparation and biosorption evaluation of Bacillus subtilis/alginate–chitosan microcapsule

    PubMed Central

    Tong, Ke

    2017-01-01

    The aim of this study was to assess the effect of alginate–chitosan microcapsule on viability characteristics of Bacillus subtilis and the ability of B. subtilis/alginate–chitosan microcapsule to remove uranium ion from aqueous solution. The effects of particle size, chitosan molecular weight and inoculum density on viability characteristics were studied using alginate–chitosan microcapsule-immobilized B. subtilis experiments. In addition, the effects of pH, immobilized spherule dosage, temperature, initial uranium ion concentration and contact time on removal of uranium ion were studied using batch adsorption experiments. The results showed that alginate–chitosan microcapsule significantly improved the viability characteristics of B. subtilis and that B. subtilis/alginate–chitosan microcapsule strongly promoted uranium ion absorption. Moreover, the optimum values of pH was 6; immobilized spherule dosage was 3.5; temperature was 20°C; initial uranium ion concentration was 150 mg/L; contact time was 3 h of uranium ion absorption and the maximum adsorption capacity of uranium ion was 376.64 mg/g. PMID:28223783

  8. Clinical screening of paraquat in plasma samples using capillary electrophoresis with contactless conductivity detection: Towards rapid diagnosis and therapeutic treatment of acute paraquat poisoning in Vietnam.

    PubMed

    Vu, Anh Phuong; Nguyen, Thi Ngan; Do, Thi Trang; Doan, Thu Ha; Ha, Tran Hung; Ta, Thi Thao; Nguyen, Hung Long; Hauser, Peter C; Nguyen, Thi Anh Huong; Mai, Thanh Duc

    2017-08-15

    The employment of a purpose-made capillary electrophoresis (CE) instrument with capacitively coupled contactless conductivity detection (C 4 D) as a simple and cost-effective solution for clinical screening of paraquat in plasma samples for early-stage diagnosis of acute herbicide poisoning is reported. Paraquat was determined using an electrolyte composed of 10mM histidine adjusted to pH 4 with acetic acid. A detection limit of 0.5mg/L was achieved. Good agreement between results from CE-C 4 D and the confirmation method (HPLC-UV) was obtained, with relative errors for the two pairs of data better than 20% for 31 samples taken from paraquat-intoxicated patients. The results were used by medical doctors for identification and prognosis of acute paraquat poisoning cases. The objective of the work is the deployment of the developed approach in rural areas in Vietnam as a low-cost solution to reduce the mortality rate due to accidental or suicidal ingestion of paraquat. Copyright © 2017. Published by Elsevier B.V.

  9. Chemical Reaction between Boric Acid and Phosphine Indicates Boric Acid as an Antidote for Aluminium Phosphide Poisoning.

    PubMed

    Soltani, Motahareh; Shetab-Boushehri, Seyed F; Shetab-Boushehri, Seyed V

    2016-08-01

    Aluminium phosphide (AlP) is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3), a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Activated charcoal significantly reduced the volume of released gas (P <0.01). Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01). A gaseous adduct was formed in the reaction between pure AlP and boric acid. These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning.

  10. Volumetric determination of uranium titanous sulfate as reductant before oxidimetric titration

    USGS Publications Warehouse

    Wahlberg, J.S.; Skinner, D.L.; Rader, L.F.

    1957-01-01

    Need for a more rapid volumetric method for the routine determination of uranium in uranium-rich materials has led to the development of a method that uses titanous sulfate as a reductant before oxidimetric titration. Separation of the hydrogen sulfide group is not necessary. Interfering elements precipitated by cupferron are removed by automatic filtrations made simultaneously rather than by the longer chloroform extraction method. Uranium is reduced from VI to IV by addition of an excess of titanous sulfate solution, cupric ion serving as an indicator by forming red metallic copper when reduction is complete. The copper is reoxidized by addition of mercuric perchlorate. The reduced uranium is then determined by addition of excess ferric sulfate and titration with ceric sulfate. The method has proved to be rapid, accurate, and economical.

  11. The mechanism of uranium biosorption by Rhizopus arrhizus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsezos, M.; Volesky, B.

    1982-02-01

    Biosorption of elements is a little understood phenomenon exhibited by some types of even nonliving microbial biomass. A common fungus Rhizopus arrhizus has been reportd to take up uranium from adqueous solutions to the extent of 180 mg U/sup 6 +//g. The mechanism of uranium sequestering by this type of biomass was studied by using experimental techniques such as electron microscopy, x-ray energy dispersion analysis, IR spectroscopy, and supporting evidence was obtained for a biosorption mechanism consisting of at least three processes. Uranium coordination and adsorption in the cell-wall chitin structure occur simultaneously and rapidly whereas precipitation of uranylhdroxide withinmore » the chitin microcrystalline cell-wall structure takes place at a lower rate. Interference of Fe/sup 2/ and Zn/sup 2 +/ coions with uranium biosorption is indicated.« less

  12. Uranium(VI) interactions with mackinawite in the presence and absence of bicarbonate and oxygen.

    PubMed

    Gallegos, Tanya J; Fuller, Christopher C; Webb, Samuel M; Betterton, William

    2013-07-02

    Mackinawite, Fe(II)S, samples loaded with uranium (10(-5), 10(-4), and 10(-3) mol U/g FeS) at pH 5, 7, and 9, were characterized using X-ray absorption spectroscopy and X-ray diffraction to determine the effects of pH, bicarbonate, and oxidation on uptake. Under anoxic conditions, a 5 g/L suspension of mackinawite lowered 5 × 10(-5) M uranium(VI) to below 30 ppb (1.26 × 10(-7) M) U. Between 82 and 88% of the uranium removed from solution by mackinawite was U(IV) and was nearly completely reduced to U(IV) when 0.012 M bicarbonate was added. Near-neighbor coordination consisting of uranium-oxygen and uranium-uranium distances indicates the formation of uraninite in the presence and absence of bicarbonate, suggesting reductive precipitation as the dominant removal mechanism. Following equilibration in air, mackinawite was oxidized to mainly goethite and sulfur and about 76% of U(IV) was reoxidized to U(VI) with coordination of uranium to axial and equatorial oxygen, similar to uranyl. Additionally, uranium-iron distances, typical of coprecipitation of uranium with iron oxides, and uranium-sulfur distances indicating bidentate coordination of U(VI) to sulfate were evident. The affinity of mackinawite and its oxidation products for U(VI) provides impetus for further study of mackinawite as a potential reactive medium for remediation of uranium-contaminated water.

  13. Long-term in situ oxidation of biogenic uraninite in an alluvial aquifer: impact of dissolved oxygen and calcium.

    PubMed

    Lezama-Pacheco, Juan S; Cerrato, José M; Veeramani, Harish; Alessi, Daniel S; Suvorova, Elena; Bernier-Latmani, Rizlan; Giammar, Daniel E; Long, Philip E; Williams, Kenneth H; Bargar, John R

    2015-06-16

    Oxidative dissolution controls uranium release to (sub)oxic pore waters from biogenic uraninite produced by natural or engineered processes, such as bioremediation. Laboratory studies show that uraninite dissolution is profoundly influenced by dissolved oxygen (DO), carbonate, and solutes such as Ca(2+). In complex and heterogeneous subsurface environments, the concentrations of these solutes vary in time and space. Knowledge of dissolution processes and kinetics occurring over the long-term under such conditions is needed to predict subsurface uranium behavior and optimize the selection and performance of uraninite-based remediation technologies over multiyear periods. We have assessed dissolution of biogenic uraninite deployed in wells at the Rifle, CO, DOE research site over a 22 month period. Uraninite loss rates were highly sensitive to DO, with near-complete loss at >0.6 mg/L over this period but no measurable loss at lower DO. We conclude that uraninite can be stable over decadal time scales in aquifers under low DO conditions. U(VI) solid products were absent over a wide range of DO values, suggesting that dissolution proceeded through complexation and removal of oxidized surface uranium atoms by carbonate. Moreover, under the groundwater conditions present, Ca(2+) binds strongly to uraninite surfaces at structural uranium sites, impacting uranium fate.

  14. Remanent Activation in the Mini-SHINE Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micklich, Bradley J.

    2015-04-16

    Argonne National Laboratory is assisting SHINE Medical Technologies in developing a domestic source of the medical isotope 99Mo through the fission of low-enrichment uranium in a uranyl sulfate solution. In Phase 2 of these experiments, electrons from a linear accelerator create neutrons by interacting in a depleted uranium target, and these neutrons are used to irradiate the solution. The resulting neutron and photon radiation activates the target, the solution vessels, and a shielded cell that surrounds the experimental apparatus. When the experimental campaign is complete, the target must be removed into a shielding cask, and the experimental components must bemore » disassembled. The radiation transport code MCNPX and the transmutation code CINDER were used to calculate the radionuclide inventories of the solution, the target assembly, and the shielded cell, and to determine the dose rates and shielding requirements for selected removal scenarios for the target assembly and the solution vessels.« less

  15. Thermodynamic properties of selected uranium compounds and aqueous species at 298.15 K and 1 bar and at higher temperatures; preliminary models for the origin of coffinite deposits

    USGS Publications Warehouse

    Hemingway, B.S.

    1982-01-01

    Thermodynamic values for 110 uranium-bearing phases and 28 aqueous uranium solution species (298.15 K and l bar) are tabulated based upon evaluated experimental data (largely from calorimetric experiments) and estimated values. Molar volume data are given for most of the solid phases. Thermodynamic values for 16 uranium-bearing phases are presented for higher temperatures in the form of and as a supplement to U.S. Geological Survey Bulletin 1452 (Robie et al., 1979). The internal consistency of the thermodynamic values reported herein is dependent upon the reliability of the experimental results for several uranium phases that have been used as secondary calorimetric reference phases. The data for the reference phases and for those phases evaluated with respect to the secondary reference phases are discussed. A preliminary model for coffinite formation has been proposed together with an estimate of the free energy of formation of coffinite. Free energy values are estimated for several other uranium-bearing silicate phases that have been reported as secondary uranium phases associated with uranium ore deposits and that could be expected to develop wherever uranium is leached by groundwaters.

  16. ELECTROLYTIC PREPARATION OF UF$sub 4$

    DOEpatents

    Allen, A.L.; Anderson, R.W.; Powell, E.W.

    1958-11-01

    A method is presented for converting hexavalent aranium to uranium tetrafluoride. The method consists of electrolyzing a solution of uranyl fluoride in hydrofluoric acld at about 90 icient laborato C. The uranyl ions are reduced at the cathode and a hydrated uranium tetrafluoride precipitates. The precipitate is separated and subsequently dehydrated to UF/sub 4/.

  17. SEPARATION OF TECHNETIUM FROM AQUEOUS SOLUTIONS BY COPRECIPITATION WITH MAGNETITE

    DOEpatents

    Rimshaw, S.J.

    1961-10-24

    A method of separating technetium in the 4+ oxidation state from an aqueous basic solution containing products of uranium fission is described. The method consists of contacting the solution with finely divided magnetite and recovering a technetium-bearing precipitate. (AEC)

  18. Comparison of the Kinetic Rate Law Parameters for the Dissolution of Natural and Synthetic Autunite in the Presence of Aqueous Bicarbonate Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn M.

    2013-08-02

    Bicarbonate is one of the most significant components within the uranium geochemical cycle. In aqueous solutions, bicarbonate forms strong complexes with uranium. As such, aqueous bicarbonate may significantly increase the rate of uranium release from uranium minerals. Quantifying the relationship of aqueous bicarbonate concentration to the rate of uranium release during dissolution is critical to understanding the long-term fate of uranium within the environment. Single-pass flow-through (SPTF) experiments were conducted to estimate the rate of uranium release from Na meta-autunite as a function of bicarbonate (0.0005-0.003 M) under the pH range of 6-11 and a temperature range of 5-60oC. Consistentmore » with the results of previous investigation, the rate of uranium release exhibited minimal dependency on temperature; but were strongly dependent on pH. Increasing aqueous bicarbonate concentrations afforded comparable increases in the rate of release of uranium. Most notably under low pH conditions the aqueous bicarbonate resulted in up to 370 fold increases in the rate of uranium release in relative to the rate of uranium release in the absence of bicarbonate. However, the effect of aqueous bicarbonate on the release of uranium was significantly less under higher pH conditions. It is postulated that at high pH values, surface sites are saturated with carbonate, thus the addition of more bicarbonate would have less effect on uranium release.« less

  19. Uranium transport in the Walker River Basin, California and Nevada

    USGS Publications Warehouse

    Benson, L.V.; Leach, D.L.

    1979-01-01

    During the summer of 1976 waters from tributaries, rivers, springs and wells were sampled in the Walker River Basin. Snow and sediments from selected sites were also sampled. All samples were analyzed for uranium and other elements. The resulting data provide an understanding of the transport of uranium within a closed hydrologic basin as well as providing a basis for the design of geochemical reconnaissance studies for the Basin and Range Province of the Western United States. Spring and tributary data are useful in locating areas containing anomalous concentrations of uranium. However, agricultural practices obscure the presence of known uranium deposits and render impossible the detection of other known deposits. Uranium is extremely mobile in stream waters and does not appear to sorb or precipitate. Uranium has a long residence time (2500 years) in the open waters of Walker Lake; however, once it crosses the sediment-water interface, it is reduced to the U(IV) state and is lost from solution. Over the past two million years the amount of uranium transported to the terminal point of the Walker River system may have been on the order of 4 ?? 108 kg. This suggests that closed basin termini are sites for significant uranium accumulations and are, therefore, potential sites of uranium ore deposits. ?? 1979.

  20. Comparison of actinide production in traveling wave and pressurized water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborne, A.G.; Smith, T.A.; Deinert, M.R.

    The geopolitical problems associated with civilian nuclear energy production arise in part from the accumulation of transuranics in spent nuclear fuel. A traveling wave reactor is a type of breed-burn reactor that could, if feasible, reduce the overall production of transuranics. In one possible configuration, a cylinder of natural or depleted uranium would be subjected to a fast neutron flux at one end. The neutrons would transmute the uranium, producing plutonium and higher actinides. Under the right conditions, the reactor could become critical, at which point a self-stabilizing fission wave would form and propagate down the length of the reactormore » cylinder. The neutrons from the fission wave would burn the fissile nuclides and transmute uranium ahead of the wave to produce additional fuel. Fission waves in uranium are driven largely by the production and fission of {sup 239}Pu. Simulations have shown that the fuel burnup can reach values greater than 400 MWd/kgIHM, before fission products poison the reaction. In this work we compare the production of plutonium and minor actinides produced in a fission wave to that of a UOX fueled light water reactor, both on an energy normalized basis. The nuclide concentrations in the spent traveling wave reactor fuel are computed using a one-group diffusion model and are verified using Monte Carlo simulations. In the case of the pressurized water reactor, a multi-group collision probability model is used to generate the nuclide quantities. We find that the traveling wave reactor produces about 0.187 g/MWd/kgIHM of transuranics compared to 0.413 g/MWd/kgIHM for a pressurized water reactor running fuel enriched to 4.95 % and burned to 50 MWd/kgIHM. (authors)« less

  1. Investigation of the effects of radiolytic-gas bubbles on the long-term operation of solution reactors for medical-isotope production

    NASA Astrophysics Data System (ADS)

    Souto Mantecon, Francisco Javier

    One of the most common and important medical radioisotopes is 99Mo, which is currently produced using the target irradiation technology in heterogeneous nuclear reactors. The medical isotope 99Mo can also be produced from uranium fission using aqueous homogeneous solution reactors. In solution reactors, 99Mo is generated directly in the fuel solution, resulting in potential advantages when compared with the target irradiation process in heterogeneous reactors, such as lower reactor power, less waste heat, and reduction by a factor of about 100 in the generation of spent fuel. The commercial production of medical isotopes in solution reactors requires steady-state operation at about 200 kW. At this power regime, the formation of radiolytic-gas bubbles creates a void volume in the fuel solution that introduces a negative coefficient of reactivity, resulting in power reduction and instabilities that may impede reactor operation for medical-isotope production. A model has been developed considering that reactivity effects are due to the increase in the fuel-solution temperature and the formation of radiolytic-gas bubbles. The model has been validated against experimental results from the Los Alamos National Laboratory uranyl fluoride Solution High-Energy Burst Assembly (SHEBA), and the SILENE uranyl nitrate solution reactor, commissioned at the Commissariat a l'Energie Atomique, in Valduc, France. The model shows the feasibility of solution reactors for the commercial production of medical isotopes and reveals some of the important parameters to consider in their design, including the fuel-solution type, 235U enrichment, uranium concentration, reactor vessel geometry, and neutron reflectors surrounding the reactor vessel. The work presented herein indicates that steady-state operation at 200 kW can be achieved with a solution reactor consisting of 120 L of uranyl nitrate solution enriched up to 20% with 235U and a uranium concentration of 145 kg/m3 in a graphite-reflected cylindrical geometry.

  2. EXTRACTION OF URANIUM

    DOEpatents

    Kesler, R.D.; Rabb, D.D.

    1959-07-28

    An improved process is presented for recovering uranium from a carnotite ore. In the improved process U/sub 2/O/sub 5/ is added to the comminuted ore along with the usual amount of NaCl prior to roasting. The amount of U/sub 2/O/ sub 5/ is dependent on the amount of free calcium oxide and the uranium in the ore. Specifically, the desirable amount of U/sub 2/O/sub 5/ is 3.2% for each 1% of CaO, and 5 to 6% for each 1% of uranium. The mixture is roasted at about 1560 deg C for about 30 min and then leached with a 3 to 9% aqueous solution of sodium carbonate.

  3. Isotopic analysis of uranium in natural waters by alpha spectrometry

    USGS Publications Warehouse

    Edwards, K.W.

    1968-01-01

    A method is described for the determination of U234/U238 activity ratios for uranium present in natural waters. The uranium is coprecipitated from solution with aluminum phosphate, extracted into ethyl acetate, further purified by ion exchange, and finally electroplated on a titanium disc for counting. The individual isotopes are determined by measurement of the alpha-particle energy spectrum using a high resolution low-background alpha spectrometer. Overall chemical recovery of about 90 percent and a counting efficiency of 25 percent allow analyses of water samples containing as little as 0.10 ?g/l of uranium. The accuracy of the method is limited, on most samples, primarily by counting statistics.

  4. Uranium(VI) interactions with mackinawite in the presence and absence of bicarbonate and oxygen

    USGS Publications Warehouse

    Gallegos, Tanya J.; Fuller, Christopher C.; Webb, Samuel M.; Betterton, William J.

    2013-01-01

    Mackinawite, Fe(II)S, samples loaded with uranium (10-5, 10-4, and 10-3 mol U/g FeS) at pH 5, 7, and 9, were characterized using X-ray absorption spectroscopy and X-ray diffraction to determine the effects of pH, bicarbonate, and oxidation on uptake. Under anoxic conditions, a 5 g/L suspension of mackinawite lowered 5 × 10-5 M uranium(VI) to below 30 ppb (1.26 × 10-7 M) U. Between 82 and 88% of the uranium removed from solution by mackinawite was U(IV) and was nearly completely reduced to U(IV) when 0.012 M bicarbonate was added. Near-neighbor coordination consisting of uranium–oxygen and uranium-uranium distances indicates the formation of uraninite in the presence and absence of bicarbonate, suggesting reductive precipitation as the dominant removal mechanism. Following equilibration in air, mackinawite was oxidized to mainly goethite and sulfur and about 76% of U(IV) was reoxidized to U(VI) with coordination of uranium to axial and equatorial oxygen, similar to uranyl. Additionally, uranium-iron distances, typical of coprecipitation of uranium with iron oxides, and uranium-sulfur distances indicating bidentate coordination of U(VI) to sulfate were evident. The affinity of mackinawite and its oxidation products for U(VI) provides impetus for further study of mackinawite as a potential reactive medium for remediation of uranium-contaminated water.

  5. Recovery of rare earth elements (REEs) from uranium containing solutions using biosorption

    NASA Astrophysics Data System (ADS)

    Botalov, Maxim; Bunkov, Grigory; Rychkov, Vladimir; Kirillov, Evgeny; Kirillov, Sergey; Kuchta, Kerstin; Kücüker, Mehmet Ali; Atamaniuk, Iryna

    2017-09-01

    Batch testing and determination of appropriate biosorbent and experimental procedures for recovery of REEs from artificial solution as well as the efficiency of the process for recovery of REEs from artificial solution via biosorption are given in present research work.

  6. PLUTONIUM-CUPFERRON COMPLEX AND METHOD OF REMOVING PLUTONIUM FROM SOLUTION

    DOEpatents

    Potratz, H.A.

    1959-01-13

    A method is presented for separating plutonium from fission products present in solutions of neutronirradiated uranium. The process consists in treating such acidic solutions with cupferron so that the cupferron reacts with the plutonium present to form an insoluble complex. This plutonium cupferride precipitates and may then be separated from the solution.

  7. The good and the bad of poisonous plants: an introduction to the USDA-ARS Poisonous Plant Research Laboratory.

    PubMed

    Welch, Kevin D; Panter, Kip E; Gardner, Dale R; Stegelmeier, Bryan L

    2012-06-01

    This article provides an overview of the Poisonous Plant Research Laboratory (PPRL), about the unique services and activities of the PPRL and the potential assistance that they can provide to plant poisoning incidences. The PPRL is a federal research laboratory. It is part of the Agricultural Research Service, the in-house research arm of the U.S. Department of Agriculture. The mission of the PPRL is to identify toxic plants and their toxic compounds, determine how the plants poison animals, and develop diagnostic and prognostic procedures for poisoned animals. Furthermore, the PPRL's mission is to identify the conditions under which poisoning occurs and develop management strategies and treatments to reduce losses. Information obtained through research efforts at the PPRL is mostly used by the livestock industry, natural resource managers, veterinarians, chemists, plant and animal scientists, extension personnel, and other state and federal agencies. PPRL currently has 9 scientists and 17 support staff, representing various disciplines consisting of toxicology, reproductive toxicology, veterinary medicine, chemistry, animal science, range science, and plant physiology. This team of scientists provides an interdisciplinary approach to applied and basic research to develop solutions to plant intoxications. While the mission of the PPRL primarily impacts the livestock industry, spinoff benefits such as development of animal models, isolation and characterization of novel compounds, elucidation of biological and molecular mechanisms of action, national and international collaborations, and outreach efforts are significant to biomedical researchers. The staff at the PPRL has extensive knowledge regarding a number of poisonous plants. Although the focus of their knowledge is on plants that affect livestock, oftentimes, these plants are also poisonous to humans, and thus, similar principles could apply for cases of human poisonings. Consequently, the information provided herein could be of benefit to healthcare providers for human cases as well.

  8. Evaluation of kinetic phosphorescence analysis for the determination of uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croatto, P.V.; Frank, I.W.; Johnson, K.D.

    In the past, New Brunswick Laboratory (NBL) has used a fluorometric method for the determination of sub-microgram quantities of uranium. In its continuing effort to upgrade and improve measurement technology, NBL has evaluated the commercially-available KPA-11 kinetic phosphorescence analyzer (Chemchek, Richland, WA). The Chemchek KPA-11 is a bench-top instrument which performs single-measurement, quench-corrected analyses for trace uranium. It incorporates patented kinetic phosphorimetry techniques to measure and analyze sample phosphorescence as a function of time. With laser excitation and time-corrected photon counting, the KPA-11 has a lower detection limit than conventional fluorometric methods. Operated with a personal computer, the state-of-the-art KPA-11more » offers extensive time resolution and phosphorescence lifetime capabilities for additional specificity. Interferences are thereby avoided while obtaining precise measurements. Routine analyses can be easily and effectively accomplished, with the accuracy and precision equivalent to the pulsed-laser fluorometric method presently performed at NBL, without the need for internal standards. Applications of kinetic phosphorimetry at NBL include the measurement of trace level uranium in retention tank, waste samples, and low-level samples. It has also been used to support other experimental activities at NBL by the measuring of nanogram amounts of uranium contamination (in blanks) in isotopic sample preparations, and the determining of elution curves of different ion exchange resins used for uranium purification. In many cases, no pretreatment of samples was necessary except to fume them with nitric acid, and then to redissolve and dilute them to an appropriate concentration with 1 M HNO{sub 3} before measurement. Concentrations were determined on a mass basis ({micro}g U/g of solution), but no density corrections were needed since all the samples (including the samples used for calibration) were in the same density matrix (1 M HNO{sub 3}). A statistical evaluation of the determination of uranium using kinetic phosphorimetry is described in this report, along with a discussion of the method, and an evaluation of the use of plastic versus quartz cuvettes. Measurement with a precision of {+-} 3--4% relative standard deviation (RSD) and an accuracy of better than {+-} 2% relative difference (RD) are obtained in the 0.0006 to 5 {micro}g U/g-solution range. The instrument detection limit is 0.04 ppb (4 x 10{sup {minus}5} {micro}g U/g solution) using quartz cells, and 0.11 ppb (11 x 10{sup {minus}5} {micro}g U/g solution) using disposable methacrylate cuvettes.« less

  9. Isolation and Puification of Uranium Isotopes for Measurement by Mass-Spectrometry (233, 234, 235, 236, 238U) and Alpha Spectrometry (232U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marinelli, R; Hamilton, T; Brown, T

    2006-05-30

    This report describes a standardized methodology used by researchers from the Center for Accelerator Mass Spectrometry (CAMS) (Energy and Environment Directorate) and the Environmental Radiochemistry Group (Chemistry and Materials Science Directorate) at the Lawrence Livermore National Laboratory (LLNL) for the full isotopic analysis of uranium from solution. The methodology has largely been developed for use in characterizing the uranium composition of selected nuclear materials but may also be applicable to environmental studies and assessments of public, military or occupational exposures to uranium using in-vitro bioassay monitoring techniques. Uranium isotope concentrations and isotopic ratios are measured using a combination of Multimore » Collector Inductively Coupled Plasma Mass Spectrometry (MC ICP-MS), Accelerator Mass Spectrometry (AMS) and Alpha Spectrometry.« less

  10. Extractive separation of uranium and zirconium sulfates by amines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroetterova, D.; Nekovar, P.; Mrnka, M.

    1992-04-01

    This paper describes an amine extraction process for zirconium and uranium separation. The behaviour of an extraction system containing uranium (VI) sulfate, zirconium (IV) sulfate, 0.2 and 0.5 M sulfuric acid (as the original aqueous phase), tertiary amine tri-n-lauryl- amine or primary amine Primene JMT in benzene (as the original organic phase) is discussed on the basis of equilibrium data. The measured dependences show that the degree of extraction of zirconium at the sulfuric acid concentration of 0.5 M and above is only slightly affected by a presence of uranium in solution. From this surprising behaviour it follows that zirconiummore » may be employed for the displacement of uranium from the organic phase. This effect is more pronounced with the primary amine Primene JMT than with TLA. 29 refs., 4 figs., 1 tab.« less

  11. The mechanism of thorium biosorption by Rhizopus arrhizus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsezos, M.; Volesky, B.

    1982-04-01

    Inactive cells of Rhizopus arrhizus have been documented to exhibit a high thorium biosorptive uptake (170 mg/g) from aqueous solutions. The mechanism of thorium sequestering by this biomass type was investigated following the same method as for the uranium biosorption emchanism. The thorium sequestering mechanism appeared somewhat different from that of uranium. Experimental evidence is presented which indicates that, at optimum biosorption pH (4), thorium coordinates with the nitroge of the chitin cell wall network and, in addition, more thorium is adsorbed by the external section of the fungal cell wall. At pH 2 the overall thorium uptake is reduced.more » The kinetic study of thorium biosorption revealed a very rapid rate of uptake. Unlike uranium at optimum solution pH, Fe/sup 2 +/ and Zn/sup 2 +/ did not interfere significantly with the thorium biosorptive uptake capacity of R. arrhizus.« less

  12. Powder-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2016-05-03

    A powder-based adsorbent and a related method of manufacture are provided. The powder-based adsorbent includes polymer powder with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the powder-based adsorbent includes irradiating polymer powder, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Powder-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  13. Foam-based adsorbents having high adsorption capacities for recovering dissolved metals and methods thereof

    DOEpatents

    Janke, Christopher J.; Dai, Sheng; Oyola, Yatsandra

    2015-06-02

    Foam-based adsorbents and a related method of manufacture are provided. The foam-based adsorbents include polymer foam with grafted side chains and an increased surface area per unit weight to increase the adsorption of dissolved metals, for example uranium, from aqueous solutions. A method for forming the foam-based adsorbents includes irradiating polymer foam, grafting with polymerizable reactive monomers, reacting with hydroxylamine, and conditioning with an alkaline solution. Foam-based adsorbents formed according to the present method demonstrated a significantly improved uranium adsorption capacity per unit weight over existing adsorbents.

  14. URANIUM EXTRACTION PROCESS USING SYNERGISTIC REAGENTS

    DOEpatents

    Schmitt, J.M.; Blake, C.A. Jr.; Brown, K.B.; Coleman, C.F.

    1958-11-01

    Improved methods are presented for recovering uranium values from aqueous solutions by organic solvent extraction. The improvement lies in the use, in combination, of two classes of organic compounds so that their extracting properties are enhanced synergistically. The two classes of organic compounds are dialkylphosphoric acid and certain neutral organophosphorus compounds such as trialkylphosphates, trialkylphosphonates, trlalkylphosphinates and trialkylphosphine oxides.

  15. URANIUM EXTRACTION

    DOEpatents

    Harrington, C.D.; Opie, J.V.

    1958-07-01

    The recovery of uranium values from uranium ore such as pitchblende is described. The ore is first dissolved in nitric acid, and a water soluble nitrate is added as a salting out agent. The resulting feed solution is then contacted with diethyl ether, whereby the bulk of the uranyl nitrate and a portion of the impurities are taken up by the ether. This acid ether extract is then separated from the aqueous raffinate, and contacted with water causing back extractioa of the uranyl nitrate and impurities into the water to form a crude liquor. After separation from the ether extract, this crude liquor is heated to about 118 deg C to obtain molten uranyl nitrate hexahydratc. After being slightly cooled the uranyl nitrate hexahydrate is contacted with acid free diethyl ether whereby the bulk of the uranyl nitrate is dissolved into the ethcr to form a neutral ether solution while most of the impurities remain in the aqueous waste. After separation from the aqueous waste, the resultant ether solution is washed with about l0% of its volume of water to free it of any dissolved impurities and is then contacted with at least one half its volume of water whereby the uranyl nitrate is extracted into the water to form an aqueous product solution.

  16. Efficacy of a solution-based approach for making sodalite waste forms for an oxide reduction salt utilized in the reprocessing of used uranium oxide fuel

    DOE PAGES

    Riley, Brian J.; Pierce, David A.; Frank, Steven M.; ...

    2015-04-01

    This paper describes the various approaches attempted to make solution-derived sodalite with a LiCl-Li 2O oxide reduction salt used to dissolve used uranium oxide fuel so the uranium can be recovered and recycled. The approaches include modified sol-gel and solutionbased synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na 2O-B 2O 3- SiO 2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl- to formmore » halite in solution and Li 2O and SiO 2 to form lithium silicates (e.g., Li 2SiO 3 or Li 2Si 2O 5) in the calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions in the crystalline product (~92 mass%) and low porosities using a solution-based approach and this LiCl-Li 2O salt but that the incorporation of Li into the sodalite is low.« less

  17. Uranium Detection - Technique Validation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colletti, Lisa Michelle; Garduno, Katherine; Lujan, Elmer J.

    As a LANL activity for DOE/NNSA in support of SHINE Medical Technologies™ ‘Accelerator Technology’ we have been investigating the application of UV-vis spectroscopy for uranium analysis in solution. While the technique has been developed specifically for sulfate solutions, the proposed SHINE target solutions, it can be adapted to a range of different solution matrixes. The FY15 work scope incorporated technical development that would improve accuracy, specificity, linearity & range, precision & ruggedness, and comparative analysis. Significant progress was achieved throughout FY 15 addressing these technical challenges, as is summarized in this report. In addition, comparative analysis of unknown samples usingmore » the Davies-Gray titration technique highlighted the importance of controlling temperature during analysis (impacting both technique accuracy and linearity/range). To fully understand the impact of temperature, additional experimentation and data analyses were performed during FY16. The results from this FY15/FY16 work were presented in a detailed presentation, LA-UR-16-21310, and an update of this presentation is included with this short report summarizing the key findings. The technique is based on analysis of the most intense U(VI) absorbance band in the visible region of the uranium spectra in 1 M H 2SO 4, at λ max = 419.5 nm.« less

  18. A licence to vape: Is it time to trial of a nicotine licensing scheme to allow Australian adults controlled access to electronic cigarettes devices and refill solutions containing nicotine?

    PubMed

    Gartner, Coral; Hall, Wayne

    2015-06-01

    Australia has some of the most restrictive laws concerning use of nicotine in e-cigarettes. The only current legal option for Australians to legally possess and use nicotine for vaping is with a medical prescription and domestic supply is limited to compounding pharmacies that prepare medicines for specific patients. An alternative regulatory option that could be implemented under current drugs and poisons regulations is a 'nicotine licensing' scheme utilising current provisions for 'dangerous poisons'. This commentary discusses how such a scheme could be used to trial access to nicotine solutions for vaping outside of a 'medicines framework' in Australia. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Process for the extraction of technetium from uranium

    DOEpatents

    Gong, Cynthia-May S.; Poineau, Frederic; Czerwinski, Kenneth R.

    2010-12-21

    A spent fuel reprocessing method contacts an aqueous solution containing Technetium(V) and uranyl with an acidic solution comprising hydroxylamine hydrochloride or acetohydroxamic acid to reduce Tc(V) to Tc(II, and then extracts the uranyl with an organic phase, leaving technetium(II) in aqueous solution.

  20. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline Wastes Discharged at the Hanford Site Central Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Szecsody, James E.; Qafoku, Nikolla

    2014-09-01

    Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at amore » substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.« less

  1. Uptake of uranium from seawater by amidoxime-based polymeric adsorbent marine testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsouris, C.; Kim, J.; Oyola, Y.

    2013-07-01

    Amidoxime-based polymer adsorbents in the form of functionalized fibers were prepared at the Oak Ridge National Laboratory (ORNL) and screened in laboratory experiments, in terms of uranium uptake capacity, using spiked uranium solution and seawater samples. Batch laboratory experiments conducted with 5-gallon seawater tanks provided equilibrium information. Based on results from 5-gallon experiments, the best adsorbent was selected for field-testing of uranium adsorption from seawater. Flow-through column tests have been performed at different marine sites to investigate the uranium uptake rate and equilibrium capacity under diverse biogeochemistry. The maximum amount of uranium uptake from seawater tests at Sequim, WA, wasmore » 3.3 mg U/g adsorbent after eight weeks of contact of the adsorbent with seawater. This amount was three times higher than the maximum adsorption capacity achieved in this study by a leading adsorbent developed by the Japan Atomic Energy Agency (JAEA), which was 1.1 mg U/g adsorbent at equilibrium. The initial uranium uptake rate of the ORNL adsorbent was 2.6 times higher than that of the JAEA adsorbent under similar conditions. A mathematical model derived from the mass balance of uranium was employed to describe the data. (authors)« less

  2. Elevated Arsenic and Uranium Concentrations in Unregulated Water Sources on the Navajo Nation, USA.

    PubMed

    Hoover, Joseph; Gonzales, Melissa; Shuey, Chris; Barney, Yolanda; Lewis, Johnnye

    2017-01-01

    Regional water pollution and use of unregulated water sources can be an important mixed metals exposure pathway for rural populations located in areas with limited water infrastructure and an extensive mining history. Using censored data analysis and mapping techniques we analyzed the joint geospatial distribution of arsenic and uranium in unregulated water sources throughout the Navajo Nation, where over 500 abandoned uranium mine sites are located in the rural southwestern United States. Results indicated that arsenic and uranium concentrations exceeded national drinking water standards in 15.1 % (arsenic) and 12.8 % (uranium) of tested water sources. Unregulated sources in close proximity (i.e., within 6 km) to abandoned uranium mines yielded significantly higher concentrations of arsenic or uranium than more distant sources. The demonstrated regional trends for potential co-exposure to these chemicals have implications for public policy and future research. Specifically, to generate solutions that reduce human exposure to water pollution from unregulated sources in rural areas, the potential for co-exposure to arsenic and uranium requires expanded documentation and examination. Recommendations for prioritizing policy and research decisions related to the documentation of existing health exposures and risk reduction strategies are also provided.

  3. Chemical Reaction between Boric Acid and Phosphine Indicates Boric Acid as an Antidote for Aluminium Phosphide Poisoning

    PubMed Central

    Soltani, Motahareh; Shetab-Boushehri, Seyed F.; Shetab-Boushehri, Seyed V.

    2016-01-01

    Objectives: Aluminium phosphide (AlP) is a fumigant pesticide which protects stored grains from insects and rodents. When it comes into contact with moisture, AlP releases phosphine (PH3), a highly toxic gas. No efficient antidote has been found for AlP poisoning so far and most people who are poisoned do not survive. Boric acid is a Lewis acid with an empty p orbital which accepts electrons. This study aimed to investigate the neutralisation of PH3 gas with boric acid. Methods: This study was carried out at the Baharlou Hospital, Tehran University of Medical Sciences, Tehran, Iran, between December 2013 and February 2014. The volume of released gas, rate of gas evolution and changes in pH were measured during reactions of AlP tablets with water, acidified water, saturated boric acid solution, acidified saturated boric acid solution, activated charcoal and acidified activated charcoal. Infrared spectroscopy was used to study the resulting probable adduct between PH3 and boric acid. Results: Activated charcoal significantly reduced the volume of released gas (P <0.01). Although boric acid did not significantly reduce the volume of released gas, it significantly reduced the rate of gas evolution (P <0.01). A gaseous adduct was formed in the reaction between pure AlP and boric acid. Conclusion: These findings indicate that boric acid may be an efficient and non-toxic antidote for PH3 poisoning. PMID:27606109

  4. The East Slope No. 2 uranium prospect, Piute County, Utah

    USGS Publications Warehouse

    Wyant, Donald Gray

    1954-01-01

    The secondary uranium minerals autunite, metatorbernite, uranophane(?), and schroeckingerite occur in altered hornfels at the East Slope No. 9. uranium prospect. The deposit, in sec. 6, T. 9.7 S., R. 3 W., Piute County, Utah, is about 1 mile west of the Bullion Monarch mine which is in the central producing area of the Marysvale uranium district. Hornfels, formed by contact metamorphism of rocks of the Bullion Canyon volcanics borderhug the margin of a quartz monzonite stock, is in fault contact with the later Mount Belknap rhyolite. The hornfels was intensely altered by hydrothermal solutions in pre-Mount Belknap time. Hematite-alunite-quartz-kaolinite rock, the most completely altered hornfels, is surrounded by orange to white argillized hornfels containing beidellite-montmorillonite clay, and secondary uranium minerals. The secondary uranium minerals probably have been derived from pitchblende, the primary ore mineral in other deposits of the Marysvale area. The two uranium-rich zones, 4 feet ad 5 feet thick, have been traced on the surface for 60 feet and 110 feet, respectively. Channel samples from these zones contained as much as 0.047 percent uranium. The deposit is significant because of its position outside the central producing area and because of the association of uranium minerals with alunitic rock in hydrothermally altered hornfels of volcanic rocks of early Tertiary age.

  5. Assessment of a Hydroxyapatite Permeable Reactive Barrier to Remediate Uranium at the Old Rifle Site Colorado.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Robert C.; Szecsody, James; Rigali, Mark J.

    We have performed an initial evaluation and testing program to assess the effectiveness of a hydroxyapatite (Ca10(PO4)6(OH)2) permeable reactive barrier and source area treatment to decrease uranium mobility at the Department of Energy (DOE) former Old Rifle uranium mill processing site in Rifle, western Colorado. Uranium ore was processed at the site from the 1940s to the 1970s. The mill facilities at the site as well as the uranium mill tailings previously stored there have all been removed. Groundwater in the alluvial aquifer beneath the site still contains elevated concentrations of uranium, and is currently used for field tests tomore » study uranium behavior in groundwater and investigate potential uranium remediation technologies. The technology investigated in this work is based on in situ formation of apatite in sediment to create a subsurface apatite PRB and also for source area treatment. The process is based on injecting a solution containing calcium citrate and sodium into the subsurface for constructing the PRB within the uranium plume. As the indigenous sediment micro-organisms biodegrade the injected citrate, the calcium is released and reacts with the phosphate to form hydroxyapatite (precipitate). This paper reports on proof-of-principle column tests with Old Rifle sediment and synthetic groundwater.« less

  6. Removal of uranium (VI) from aqueous systems by nanoscale zero-valent iron particles suspended in carboxy-methyl cellulose

    NASA Astrophysics Data System (ADS)

    Popescu (Hoştuc), Ioana-Carmen; Filip, Petru; Humelnicu, Doina; Humelnicu, Ionel; Scott, Thomas Bligh; Crane, Richard Andrew

    2013-11-01

    Carboxy-methyl-cellulose (CMC), a common "delivery vehicle" for the subsurface deployment of iron nanoparticles (INP) has been tested in the current work for the removal of aqueous uranium from synthetic water samples. A comparison of the removal of aqueous uranium from solutions using carboxy-methyl-cellulose with and without iron nanoparticles (CMC-INP and CMC, respectively) was tested over a 48 h reaction period. Analysis of liquid samples using spectrophotometry determined a maximum sorption capacity of uranium, Qmax, of 185.18 mg/g and 322.58 mg/g for CMC and CMC-INP respectively, providing strong evidence of an independent aqueous uranium removal ability exhibited by CMC. The results point out that CMC provides an additional capacity for aqueous uranium removal. Further tests are required to determine whether similar behaviour will be observed for other aqueous contaminant species and if the presence of CMC within a INP slurry inhibits or aids the reactivity, reductive capacity and affinity of INP for aqueous contaminant removal.

  7. Simultaneous determination of the quantity and isotopic ratios of uranium in individual micro-particles by isotope dilution thermal ionization mass spectrometry (ID-TIMS).

    PubMed

    Park, Jong-Ho; Choi, Eun-Ju

    2016-11-01

    A method to determine the quantity and isotopic ratios of uranium in individual micro-particles simultaneously by isotope dilution thermal ionization mass spectrometry (ID-TIMS) has been developed. This method consists of sequential sample and spike loading, ID-TIMS for isotopic measurement, and application of a series of mathematical procedures to remove the contribution of uranium in the spike. The homogeneity of evaporation and ionization of uranium content was confirmed by the consistent ratio of n((233)U)/n((238)U) determined by TIMS measurements. Verification of the method was performed using U030 solution droplets and U030 particles. Good agreements of resulting uranium quantity, n((235)U)/n((238)U), and n((236)U)/n((238)U) with the estimated or certified values showed the validity of this newly developed method for particle analysis when simultaneous determination of the quantity and isotopic ratios of uranium is required. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Surface Functionalized Nanostructured Ceramic Sorbents for the Effective Collection and Recovery of Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chouyyok, Wilaiwan; Pittman, Jonathan W.; Warner, Marvin G.

    2016-05-02

    The ability to collect uranium from seawater offers the potential for a nearly limitless fuel supply for nuclear energy. We evaluated the use of functionalized nanostructured sorbents for the collection and recovery of uranium from seawater. Extraction of trace minerals from seawater and brines is challenging due to the high ionic strength of seawater, low mineral concentrations, and fouling of surfaces over time. We demonstrate that rationally assembled sorbent materials that integrate high affinity surface chemistry and high surface area nanostructures into an application relevant micro/macro structure enables collection performance that far exceeds typical sorbent materials. High surface area nanostructuredmore » silica with surface chemistries composed of phosphonic acid, phosphonates, 3,4 hydroxypyridinone, and EDTA showed superior performance for uranium collection. A few phosphorous-based commercial resins, specifically Diphonix and Ln Resin, also performed well. We demonstrate an effective and environmentally benign method of stripping the uranium from the high affinity sorbents using inexpensive nontoxic carbonate solutions. The cyclic use of preferred sorbents and acidic reconditioning of materials was shown to improve performance. Composite thin films composed of the nanostructured sorbents and a porous polymer binder are shown to have excellent kinetics and good capacity while providing an effective processing configuration for trace mineral recovery from solutions. Initial work using the composite thin films shows significant improvements in processing capacity over the previously reported sorbent materials.« less

  9. URANOUS IODATE AS A CARRIER FOR PLUTONIUM

    DOEpatents

    Miller, D.R.; Seaborg, G.T.; Thompson, S.G.

    1959-12-15

    A process is described for precipitating plutonium on a uranous iodate carrier from an aqueous acid solution conA plutonium solution more concentrated than the original solution can then be obtained by oxidizing the uranium to the hexavalent state and dissolving the precipitate, after separating the latter from the original solution, by means of warm nitric acid.

  10. Barbiturates

    USGS Publications Warehouse

    Thomas, N.J.

    1999-01-01

    Barbiturate products are commonly used to euthanize domestic animals. The primary active component in euthanasia solutions is sodium pentobarbital, but some products also contain other minor ingredients (Fig. 48.1).Euthanasia solutions are generally injected intravenously in domestic animals; therefore, after death, the solutions will be most concentrated in the blood and the highly vascularized organs, such as the liver or spleen, of the euthanized animal.Euthanized carcasses that are available as carrion pose a hazard to scavenging birds and mammals. Large domestic animal carcasses, such as horses, that are not used for food or rendering but that are sufficiently valuable (monetarily or psychologically) to warrant veterinary services and euthanasia drugs are the most common sources of barbiturate poisoning in scavengers. In one instance in British Columbia, a single cow carcass was responsible for poisoning 29 bald eagles.Circumstances that interfere with burial, such as frozen winter soil or bulky carcasses, result in euthanized carcasses being available for scavenger species. This problem could increase in the future if more stringent air-quality standards restrict carcass incineration.

  11. The origin of the Avram Iancu U-Ni-Co-Bi-As mineralization, Băiţa (Bihor) metallogenic district, Bihor Mts., Romania

    NASA Astrophysics Data System (ADS)

    Zajzon, Norbert; Szentpéteri, Krisztián; Szakáll, Sándor; Kristály, Ferenc

    2015-10-01

    The Băiţa metallogenic district in the Bihor Mountains is a historically important mining area in Romania. Uranium mining took place between 1952 and 1998 from various deposits, but very little is known about the geology and mineralogy of these deposits. In this paper, we describe geology and mineralogy of uranium mineralization of the Avram Iancu uranium mine from waste dump samples collected before complete remediation of the site. Texturally and mineralogically complex assemblages of nickeline, cobaltite-gersdorffite solid solution, native Bi, Bi-sulfosalts, molybdenite, and pyrite-chalcopyrite-sphalerite occur with uraninite, "pitchblende," and brannerite in most of the ore samples. The association of nickel, cobalt, and arsenic with uranium is reminiscent of five-element association of vein type U-Ni-Co-Bi-As deposits; however, the Avram Iancu ores appear to be more replacement-type stratiform/stratabound. Avram Iancu ore samples contain multistage complex, skarn, uranium sulfide, arsenide assemblages that can be interpreted to have been formed in the retrograde cooling stages of the skarn hydrothermal system. This mineralizing system may have built-up along Upper Cretaceous-Paleogene "Banatite" intrusions of diorite-to-granite composition. The intrusions crosscut the underlying uraniferous Permian formations in the stacked NW-verging Biharia Nappe System. The mineralization forms stacked, multilayer replacement horizons, along carbonate-rich lithologies within the metavolcanic (tuffaceous) Muncel Series. Mineral paragenesis and some mineral chemistry suggest moderate-to-high <450, i.e., 350-310 °C, formation temperatures for the uranium sulfide stage along stratigraphically controlled replacement zones and minor veins. Uranium minerals formed abundantly in this early stage and include botryoidal, sooty and euhedral uraninite, brannerite, and coffinite. Later and/or lower-temperature mineral assemblages include heterogeneous, complexly zoned arsenide-sulfarsenide solid solutions associated with minute but abundant uranium minerals. Within the later arsenide-sulfarsenide mineral assemblage, there is great variation in Ni, Co, and S content with generally increasing arsenic content. Uranium minerals in this late-stage assemblage include very fine euhedral uraninite and brannerite inclusions in arsenide-sulfarsenide minerals. Native bismuth and Bi-sulfosalt krupkaite are observed in this As-S-rich assemblage strongly associated with cobaltite.

  12. FUSED SALT METHOD FOR COATING URANIUM WITH A METAL

    DOEpatents

    Eubank, L.D.

    1959-02-01

    A method is presented for coating uranium with a less active metal such as Cr, Ni, or Cu comprising immersing the U in a substantially anhydrous molten solution of a halide of these less active metals in a ternary chloride composition which consists of selected percentages of KCl, NaCl and another chloride such as LiCl or CaCl/sub 2/.

  13. Comparison of abundances of chemical elements in mineralized and unmineralized sandstone of the Brushy Basin Member of the Morrison Formation, Smith Lake District, Grants uranium region, New Mexico

    USGS Publications Warehouse

    Pierson, C.T.; Spirakis, C.S.; Robertson, J.F.

    1983-01-01

    Statistical treatment of analytical data from the Mariano Lake and Ruby uranium deposits in the Smith Lake district, New Mexico, indicates that organic carbon, arsenic, barium, calcium, cobalt, copper, gallium, iron, lead, manganese, molybdenum, nickel, selenium, strontium, sulfur, vanadium, yttrium, and zirconium are concentrated along with uranium in primary ore. Comparison of the Smith Lake data with information from other primary deposits in the Grants uranium region and elsewhere in the Morrison Formation of the Colorado Plateau suggests that these elements, with the possible exceptions of zirconium and gallium and with the probable addition of aluminum and magnesium, are typically associated with primary, tabular uranium deposits. Chemical differences between the Ruby and Mariano Lake deposits are consistent with the interpretation that the Ruby deposit has been more affected by post-mineralization oxidizing solutions than has the Mariano Lake deposit.

  14. Bicarbonate Elution of Uranium from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Horng-Bin; Wai, Chien M.; Kuo, Li-Jung

    Uranium adsorbed on amidoxime-based polyethylene fibers in simulated seawater can be quantitatively eluted using 3 M KHCO3 at 40°C. Thermodynamic calculations are in agreement with the experimental observation that at high bicarbonate concentrations (3 M) uranyl ions bound to amidoxime molecules are converted to uranyl tris-carbonato complex in the aqueous solution. The elution process is basically the reverse reaction of the uranium adsorption process which occurs at a very low bicarbonate concentration (~10-3 M) in seawater. In real seawater experiments, the bicarbonate elution is followed by a NaOH treatment to remove natural organic matter adsorbed on the polymer adsorbent. Usingmore » the sequential bicarbonate and NaOH elution, the adsorbent is reusable after rinsing with deionized water and the recycled adsorbent shows no loss of uranium loading capacity based on real seawater experiments.« less

  15. Bicarbonate Elution of Uranium from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Horng-Bin; Wai, Chien M.; Kuo, Li-Jung

    Uranium adsorbed on amidoxime-based polyethylene fibers in simulated seawater can be quantitatively eluted using 3 M KHCO 3 at 40°C. Thermodynamic calculations are in agreement with the experimental observation that at high bicarbonate concentrations (3 M) uranyl ions bound to amidoxime molecules are converted to uranyl tris-carbonato complex in the aqueous solution. The elution process is basically the reverse reaction of the uranium adsorption process which occurs at a very low bicarbonate concentration (~10 -3 M) in seawater. The bicarbonate elution is followed by a NaOH treatment to remove natural organic matter adsorbed on the polymer adsorbent, in real seawatermore » experiments. Furthermore, by using the sequential bicarbonate and NaOH elution, the adsorbent is reusable after rinsing with deionized water and the recycled adsorbent shows no loss of uranium loading capacity based on real seawater experiments.« less

  16. Bicarbonate Elution of Uranium from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    DOE PAGES

    Pan, Horng-Bin; Wai, Chien M.; Kuo, Li-Jung; ...

    2017-05-02

    Uranium adsorbed on amidoxime-based polyethylene fibers in simulated seawater can be quantitatively eluted using 3 M KHCO 3 at 40°C. Thermodynamic calculations are in agreement with the experimental observation that at high bicarbonate concentrations (3 M) uranyl ions bound to amidoxime molecules are converted to uranyl tris-carbonato complex in the aqueous solution. The elution process is basically the reverse reaction of the uranium adsorption process which occurs at a very low bicarbonate concentration (~10 -3 M) in seawater. The bicarbonate elution is followed by a NaOH treatment to remove natural organic matter adsorbed on the polymer adsorbent, in real seawatermore » experiments. Furthermore, by using the sequential bicarbonate and NaOH elution, the adsorbent is reusable after rinsing with deionized water and the recycled adsorbent shows no loss of uranium loading capacity based on real seawater experiments.« less

  17. Dissolution of Uranium(IV) Oxide in Solutions of Ammonium Carbonate and Hydrogen Peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Steven C.; Peper, Shane M.; Douglas, Matthew

    2009-09-12

    Understanding the dissolution characteristics of uranium oxides is of fundamental scientific interest. Bench scale experiments were conducted to determine the optimal dissolution parameters of uranium(IV) oxide (UO2) powder in solutions of ammonium carbonate [(NH4)2CO3] and hydrogen peroxide (H2O2). Experimental parameters included variable peroxide and carbonate concentrations, and temperature. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M (1:1 to 40:1 mol ratio H2O2:U), with no apparent maximum rate reached under the limited conditions used in our study. Temperature ranging studies show the dissolution rate of UO2 inmore » 1 M (NH4)2CO3 and 0.1 M H2O2 (2:1 mol ratio H2O2:U) increases linearly from 15 °C to 60 °C, again with no apparent maximum rate reached. Dissolution of UO2 in solutions with constant [H2O2] and [(NH4)2CO3] ranging from 0.5 to 2 M showed no difference in rate; however dissolution was significantly reduced in 0.05 M (NH4)2CO3 solution. The results of this study demonstrate the influence of [H2O2], [(NH4)2CO3], and temperature on the dissolution of UO2 in peroxide-containing (NH4)2CO3 solutions. Future studies are planned to elucidate the solution and solid state complexes in these systems.« less

  18. Use of poisons information resources and satisfaction with electronic products by Victorian emergency department staff.

    PubMed

    Luke, Stephen; Fountain, John S; Reith, David M; Braitberg, George; Cruickshank, Jaycen

    2014-10-01

    ED staff use a range of poisons information resources of varying type and quality. The present study aims to identify those resources utilised in the state of Victoria, Australia, and assess opinion of the most used electronic products. A previously validated self-administered survey was conducted in 15 EDs, with 10 questionnaires sent to each. The survey was then repeated following the provision of a 4-month period of access to Toxinz™, an Internet poisons information product novel to the region. The study was conducted from December 2010 to August 2011. There were 117 (78%) and 48 (32%) responses received from the first and second surveys, respectively, a 55% overall response rate. No statistically significant differences in professional group, numbers of poisoned patients seen or resource type accessed were identified between studies. The electronic resource most used in the first survey was Poisindex® (48.68%) and Toxinz™ (64.1%) in the second. There were statistically significant (P < 0.01) improvements in satisfaction in 26 of 42 questions between surveys, and no decrements. Although the majority of responders possessed mobile devices, less than half used them for poisons information but would do so if a reputable product was available. The order of poisons information sources most utilised was: consultation with a colleague, in-house protocols and electronic resources. There was a significant difference in satisfaction with electronic poisons information resources and a movement away from existing sources when choice was provided. Interest in increased use of mobile solutions was identified. © 2014 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  19. TREATMENT OF URANIUM SURFACES

    DOEpatents

    Slunder, C.J.

    1959-02-01

    An improved process is presented for prcparation of uranium surfaces prior to electroplating. The surfacc of the uranium to be electroplated is anodized in a bath comprising a solution of approximately 20 to 602 by weight of phosphoric acid which contains about 20 cc per liter of concentrated hydrochloric acid. Anodization is carried out for approximately 20 minutes at a current density of about 0.5 amperes per square inch at a temperature of about 35 to 45 C. The oxidic film produced by anodization is removed by dipping in strong nitric acid, followed by rinsing with water just prior to electroplating.

  20. Estimation of weekly 99Mo production by AHR 200 kW

    NASA Astrophysics Data System (ADS)

    Siregar, I. H.; Suharyana; Khakim, A.; Siregar, D.; Frida, A. R.

    2016-11-01

    The estimation of weekly 99Mo production by AHR 200 kW fueled with Low Enriched Uranium Uranyl Nitrate solution has been simulated by using MCNPX computer code. We have employed the AHR design of Babcock & Wilcox Medical Isotope Production System with 9Be Reflector and Stainless steel vessel. We found that when the concentration of uranium in the fresh fuel was 108 gr U/L of UO2(NO3)2 fuel solution, the multiplication factor was 1.0517. The 99Mo concentration reached saturated at tenth day operation. The AHR can produce approximately 1.96×103 6-day-Ci weekly.

  1. URANIUM DECONTAMINATION

    DOEpatents

    Buckingham, J.S.; Carroll, J.L.

    1959-12-22

    A process is described for reducing the extractability of ruthenium, zirconium, and niobium values into hexone contained in an aqueous nitric acid uranium-containing solution. The solution is made acid-deficient, heated to between 55 and 70 deg C, and at that temperature a water-soluble inorganic thiosulfate is added. By this, a precipitate is formed which carries the bulk of the ruthenium, and the remainder of the ruthenium as well as the zirconium and niobium are converted to a hexone-nonextractable form. The rutheniumcontaining precipitate can either be removed from the solu tion or it can be dissolved as a hexone-non-extractable compound by the addition of sodium dichromate prior to hexone extraction.

  2. METAL EXTRACTION PROCESS

    DOEpatents

    Lewis, G.W. Jr.; Rhodes, D.E.

    1957-11-01

    An improved method for extracting uranium from aqueous solutions by solvent extraction is presented. A difficulty encountered in solvent extraction operations using an organic extractant (e.g., tributyl phosphate dissolved in kerosene or carbon tetrachloride) is that emulsions sometimes form, and phase separation is difficult or impossible. This difficulty is overcome by dissolving the organic extractant in a molten wax which is a solid at operating temperatures. After cooling, the wax which now contains the extractant, is broken into small particles (preferably flakes) and this wax complex'' is used to contact the uranium bearing solutions and extract the metal therefrom. Microcrystalline petroleum wax and certain ethylene polymers have been found suitable for this purpose.

  3. Raman spectroscopic investigation of thorium dioxide-uranium dioxide (ThO₂-UO₂) fuel materials.

    PubMed

    Rao, Rekha; Bhagat, R K; Salke, Nilesh P; Kumar, Arun

    2014-01-01

    Raman spectroscopic investigations were carried out on proposed nuclear fuel thorium dioxide-uranium dioxide (ThO2-UO2) solid solutions and simulated fuels based on ThO2-UO2. Raman spectra of ThO2-UO2 solid solutions exhibited two-mode behavior in the entire composition range. Variations in mode frequencies and relative intensities of Raman modes enabled estimation of composition, defects, and oxygen stoichiometry in these compounds that are essential for their application. The present study shows that Raman spectroscopy is a simple, promising analytical tool for nondestructive characterization of this important class of nuclear fuel materials.

  4. Quantification of kinetic rate law parameters for the dissolution of natural autunite in the presence of aqueous bicarbonate ions at high concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn

    Uranium is a key contaminant of concern in the groundwater at 91 waste sites at 18 U.S. Department of Energy (DOE) facilities within the United States and is a potential source of groundwater contamination and a risk to human health and the environment through discharges to surface water. Dissolved inorganic carbon (bicarbonate/carbonate) has a high affinity for complexing with uranium that is present as sorbed or unique uranium-bearing mineral phases within the sedimentary matrix. This process can result in the formation of soluble uranyl carbonate aqueous species, which are mobile under circumneutral pH conditions. This study was conducted to quantifymore » the rate of release of uranium from the autunite mineral, (Ca[(UO 2)(PO 4)] 2∙3H 2O), that was formed during polyphosphate injection to remediate uranium; the dissolution of uranium was studied as a function of the aqueous bicarbonate concentration, ranging from 25 to 100 mM. Experiments were carried out in the pH range from 7 to 11 in the temperature range of 23-90°C via single-pass flow-through testing. Consistent with the results of previous studies (Gudavalli et al., 2013 a, b), the rate of uranium release from autunite exhibited minimal dependency on temperature, but was strongly dependent on pH and increasing concentrations of bicarbonate in the solution. Data obtained during these experiments were compared with results of previous experiments conducted using a low-concentration range of bicarbonate solutions (0.5-3.0 mM). An 8- to 30 fold increase in the rate of uranium release was observed in the presence of high bicarbonate concentrations at pH 7-8 compared to low bicarbonate values, while at pH 9-11, there was only a 5-fold increase in uranium rate of release with an increase in bicarbonate concentrations. The rate of uranium release was calculated to be between 5.18 x 10 -8 and 1.69 x 10 -7 mol m -2 s -1. The activation energy values at high and low bicarbonate concentrations were similar, with ratio values in the range of 0.6-1.0.« less

  5. Quantification of kinetic rate law parameters for the dissolution of natural autunite in the presence of aqueous bicarbonate ions at high concentrations.

    PubMed

    Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn

    2018-05-02

    Uranium is a key contaminant of concern in the groundwater at U.S. Department of Energy (DOE) facilities within the United States and is a potential source of groundwater contamination and a risk to human health and the environment through discharges to surface water. Dissolved inorganic carbon (bicarbonate/carbonate) has a high affinity for complexing with uranium that is present as sorbed or unique uranium-bearing mineral phases within the sedimentary matrix. This process can result in the formation of soluble uranyl carbonate aqueous species, which are mobile under circumneutral pH conditions. This study was conducted to quantify the rate of release of uranium from the autunite mineral, (Ca[(UO 2 )(PO 4 )] 2 •3H 2 O), that was formed during polyphosphate injection to remediate uranium; the dissolution of uranium was studied as a function of the aqueous bicarbonate concentration, ranging from 25 to 100 mM. Experiments were carried out in the pH range from 7 to 11 in the temperature range of 23-90 °C via single-pass flow-through testing. Consistent with the results of previous studies (Gudavalli et al., 2013a, 2013b), the rate of uranium release from autunite exhibited minimal dependency on temperature, but was strongly dependent on pH and increasing concentrations of bicarbonate in the solution. Data obtained during these experiments were compared with results of previous experiments conducted using a low-concentration range of bicarbonate solutions (0.5-3.0 mM). An 8- to 30-fold increase in the rate of uranium release was observed in the presence of high bicarbonate concentrations at pH 7-8 compared to low bicarbonate values, while at pH 9-11, there was only a 5-fold increase in uranium rate of release with an increase in bicarbonate concentrations. The rate of uranium release was calculated to be between 5.18 × 10 -8 and 1.69 × 10 -7  mol m -2 s -1 . The activation energy values at high and low bicarbonate concentrations were similar, with ratio values in the range of 0.6-1.0. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Visualizing different uranium oxidation states during the surface alteration of uraninite and uranium tetrachloride.

    PubMed

    Grossmann, Kay; Arnold, Thuro; Steudtner, Robin; Weiss, Stefan; Bernhard, Gert

    2009-08-01

    Low-temperature alteration reactions on uranium phases may lead to the mobilization of uranium and thereby poses a potential threat to humans living close to uranium-contaminated sites. In this study, the surface alteration of uraninite (UO(2)) and uranium tetrachloride (UCl(4)) in air atmosphere was studied by confocal laser scanning microscopy (CLSM) and laser-induced fluorescence spectroscopy using an excitation wavelength of 408 nm. It was found that within minutes the oxidation state on the surface of the uraninite and the uranium tetrachloride changed. During the surface alteration process U(IV) atoms on the uraninite and uranium tetrachloride surface became stepwise oxidized by a one-electron step at first to U(V) and then further to U(VI). These observed changes in the oxidation states of the uraninite surface were microscopically visualized and spectroscopically identified on the basis of their fluorescence emission signal. A fluorescence signal in the wavelength range of 415-475 nm was indicative for metastable uranium(V), and a fluorescence signal in the range of 480-560 nm was identified as uranium(VI). In addition, the oxidation process of tetravalent uranium in aqueous solution at pH 0.3 was visualized by CLSM and U(V) was fluorescence spectroscopically identified. The combination of microscopy and fluorescence spectroscopy provided a very convincing visualization of the brief presence of U(V) as a metastable reaction intermediate and of the simultaneous coexistence of the three states U(IV), U(V), and U(VI). These results have a significant importance for fundamental uranium redox chemistry and should contribute to a better understanding of the geochemical behavior of uranium in nature.

  7. Effect of molybdenum ion implantation of the pitting corrosion of depleted uranium - 0.75 titanium alloy. (Reannouncement with new availability information). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, K.S.; Chang, F.; Levy, M.

    1993-07-01

    Pitting corrosion of molybdenum-ion-implanted, depleted uranium -0 75 Ti (DU -0 75 Ti) has been studied electrochemically in acidic, neutral, and alkaline solutions containing sodium chloride, and the results have been compared to those of the unimplanted DU -0 75 Ti. The data show that Mo implantation shifts the pitting potential of DU -0 75 Ti in the noble direction in acidic and alkaline solutions. In neutral 50 ppm Cl- solution, however, there is no beneficial effect of Mo implantation. Auger analysis studies show that before exposure to the solutions, all the molybdenum is in the oxide, which is approximatelymore » l000 A thick. After electrochemical scans in the acidic and alkaline chloride solutions, most of the Mo disappears from the oxide. However, no decrease in Mo concentration is found after exposure in neutral chloride solution. It is proposed that the implanted molybdenum dissolves in the acidic and alkaline solutions and forms simple or complex molybdates that inhibit pitting corrosion. The implanted molybdenum does not dissolve in the neutral chloride solution and inhibition does not occur.« less

  8. Patents – Melvin Calvin

    Science.gov Websites

    plutonium from uranium and fission products in an aqueous acidic solution by use of a chelating agent. The concentration is adjusted to about 1 N bar. The aqueous solution is then contacted with a water-immiscible organic solvent solution and the chelating agent. The chelating agents covered by this invention comprise

  9. Method for preparing actinide nitrides

    DOEpatents

    Bryan, G.H.; Cleveland, J.M.; Heiple, C.R.

    1975-12-01

    Actinide nitrides, and particularly plutonium and uranium nitrides, are prepared by reacting an ammonia solution of an actinide compound with an ammonia solution of a reactant or reductant metal, to form finely divided actinide nitride precipitate which may then be appropriately separated from the solution. The actinide nitride precipitate is particularly suitable for forming nuclear fuels.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youker, Amanda J.; Krebs, John F.; Quigley, Kevin J.

    With funding from the National Nuclear Security Administrations Material Management and Minimization Office, Argonne National Laboratory (Argonne) is providing technical assistance to help accelerate the U.S. production of Mo-99 using a non-highly enriched uranium (non-HEU) source. A potential Mo-99 production pathway is by accelerator-initiated fissioning in a subcritical uranyl sulfate solution containing low enriched uranium (LEU). As part of the Argonne development effort, we are undertaking the AMORE (Argonne Molybdenum Research Experiment) project, which is essentially a pilot facility for all phases of Mo-99 production, recovery, and purification. Production of Mo-99 and other fission products in the subcritical target solutionmore » is initiated by putting an electron beam on a depleted uranium (DU) target; the fast neutrons produced in the DU target are thermalized and lead to fissioning of U-235. At the end of irradiation, Mo is recovered from the target solution and separated from uranium and most of the fission products by using a titania column. The Mo is stripped from the column with an alkaline solution. After acidification of the Mo product solution from the recovery column, the Mo is concentrated (and further purified) in a second titania column. The strip solution from the concentration column is then purified with the LEU Modified Cintichem process. A full description of the process can be found elsewhere [1–3]. The initial commissioning steps for the AMORE project include performing a Mo-99 spike test with pH 1 sulfuric acid in the target vessel without a beam on the target to demonstrate the initial Mo separation-and-recovery process, followed by the concentration column process. All glovebox operations were tested with cold solutions prior to performing the Mo-99 spike tests. Two Mo-99 spike tests with pH 1 sulfuric acid have been performed to date. Figure 1 shows the flow diagram for the remotely operated Mo-recovery system for the AMORE project. There are two separate pumps and flow paths for the acid and base operations. The system contains three sample ladders with eight sample loops per ladder for target mixing; column loading, including acid and water washes; and column stripping, including the final water wash.« less

  11. ELUTION OF URANIUM FROM RESIN

    DOEpatents

    McLEan, D.C.

    1959-03-10

    A method is described for eluting uranium from anion exchange resins so as to decrease vanadium and iron contamination and permit recycle of the major portion of the eluats after recovery of the uranium. Diminution of vanadium and iron contamination of the major portion of the uranium is accomplished by treating the anion exchange resin, which is saturated with uranium complex by adsorption from a sulfuric acid leach liquor from an ore bearing uranium, vanadium and iron, with one column volume of eluant prepared by passing chlorine into ammonium hydroxide until the chloride content is about 1 N and the pH is about 1. The resin is then eluted with 8 to 9 column volumes of 0.9 N ammonium chloride--0.1 N hydrochloric acid solution. The eluants are collected separately and treated with ammonia to precipitate ammonium diuranate which is filtered therefrom. The uranium salt from the first eluant is contaminated with the major portion of ths vanadium and iron and is reworked, while the uranium recovered from the second eluant is relatively free of the undesirable vanadium and irons. The filtrate from the first eluant portion is discarded. The filtrate from the second eluant portion may be recycled after adding hydrochloric acid to increase the chloride ion concentration and adjust the pH to about 1.

  12. Biosorption and biomineralization of uranium(VI) by Saccharomyces cerevisiae-Crystal formation of chernikovite.

    PubMed

    Zheng, Xin-Yan; Wang, Xiao-Yu; Shen, Yang-Hao; Lu, Xia; Wang, Tie-Shan

    2017-05-01

    Biosorption of heavy metal elements including radionuclides by microorganisms is a promising and effective method for the remediation of the contaminated places. The responses of live Saccharomyces cerevisiae in the toxic uranium solutions during the biosorption process and the mechanism of uranium biomineralization by cells were investigated in the present study. A novel experimental phenomenon that uranium concentrations have negative correlation with pH values and positive correlation with phosphate concentrations in the supernatant was observed, indicating that hydrogen ions, phosphate ions and uranyl ions were involved in the chernikovite precipitation actively. During the biosorption process, live cells desorb deposited uranium within the equilibrium state of biosorption system was reached and the phosphorus concentration increased gradually in the supernatant. These metabolic detoxification behaviours could significantly alleviate uranium toxicity and protect the survival of the cells better in the environment. The results of microscopic and spectroscopic analysis demonstrated that the precipitate on the cell surface was a type of uranium-phosphate compound in the form of a scale-like substance, and S. cerevisiae could transform the uranium precipitate into crystalline state-tetragonal chernikovite [H 2 (UO 2 ) 2 (PO 4 ) 2 ·8H 2 O]. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The Ames Project (1942-1946)

    ScienceCinema

    None

    2018-04-26

    The Ames Laboratory was officially founded on May 17, 1947, following development of a process to purify uranium metal for the historic Manhattan Project. From 1942 to 1946, Ames Lab scientists produced over two-million pounds of uranium metal. A U.S. Department of Energy national research laboratory, the Ames Laboratory creates materials and energy solutions. Iowa State University operates Ames Laboratory under contract with the DOE.

  14. ALKYL PYROPHOSPHATE METAL SOLVENT EXTRACTANTS AND PROCESS

    DOEpatents

    Long, R.L.

    1958-09-30

    A process is presented for the recovery of uranium from aqueous mineral acidic solutions by solvent extraction. The extractant is a synmmetrical dialkyl pyrophosphate in which the alkyl substituents have a chain length of from 4 to 17 carbon atoms. Mentioned as a preferred extractant is dioctyl pyrophosphate. The uranium is precipitated irom the organic extractant phase with an agent such as HF, fluoride salts. alcohol, or ammonia.

  15. Efficacy of hair analysis for monitoring exposure to uranium: a mini-review.

    PubMed

    Joksić, Agnes Šömen; Katz, Sidney A

    2014-01-01

    In spite of the ease with which samples may be collected and the stability of the samples after collection, the use of hair mineral analysis for monitoring environmental exposures and evaluating heavy metal poisonings has remained controversial since its initial applications for these purposes in the early 1950s. Among the major arguments against using hair mineral analysis in general were the absence of biokinetic models and/or metabolic data that adequately described the incorporation of trace elements into the hair, the absence of correlations between the concentrations of trace elements in the hair and their concentrations in other tissues, the inability to distinguish between trace elements that were deposited in the hair endogenously and those that were deposited on the hair exogenously, the absence of reliable reference ranges for interpreting the results of hair mineral analysis and a lack of standard procedures for the collecting, preparing and analyzing the hair samples. The developments of the past two decades addressing these objections are reviewed here, and arguments supporting the use of hair analysis for monitoring environmental and/or occupational exposures to uranium are made on the basis of the information presented in this review.

  16. Bioreduction of U(VI)-Phthalate to a Polymeric U(IV)-Phthalate Colloid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vazquez, G.; Dodge, C; Francis, A

    2009-01-01

    Phthalic acid, a ubiquitous organic ligand, formed soluble mono- and biligand complexes with a uranyl ion that was then reduced to a U(IV)-phthalate by a Clostridium species under anaerobic conditions. We confirmed the reduction of the hexavalent uranium to the tetravalent oxidation state by UV-vis absorption and X-ray absorption near edge structure spectroscopy. Sequential micro- and ultrafiltration of the solution revealed that the bioreduced uranium was present as a colloid with particles between 0.03 and 0.45 {mu}m. Analysis with extended X-ray absorption fine structure revealed the association of the reduced uranium with the phthalic acid as a repeating biligand 1:2more » U(IV):phthalic acid polymer. This is the first report of the formation of a U(IV) complexed to two phthalic acid molecules in the form of a polymeric colloid. Although it was proposed that the bioreduction and the precipitation of uranium might be an invaluable strategy to immobilize uranium in contaminated environments, our results suggest that the organic ligands present there might hinder the precipitation of the bioreduced uranium under anaerobic conditions and, thereby, enhance its environmental mobility as uranium organic complexes or colloids.« less

  17. Biogenic formation and growth of uraninite (UO₂).

    PubMed

    Lee, Seung Yeop; Baik, Min Hoon; Choi, Jong Won

    2010-11-15

    Biogenic UO₂ (uraninite) nanocrystals may be formed as a product of a microbial reduction process in uranium-enriched environments near the Earth's surface. We investigated the size, nanometer-scale structure, and aggregation state of UO₂ formed by iron-reducing bacterium, Shewanella putrefaciens CN32, from a uranium-rich solution. Characterization of biogenic UO₂ precipitates by high-resolution transmission electron microscopy (HRTEM) revealed that the UO₂ nanoparticles formed were highly aggregated by organic polymers. Nearly all of the nanocrystals were networked in more or less 100 nm diameter spherical aggregates that displayed some concentric UO₂ accumulation with heterogeneity. Interestingly, pure UO₂ nanocrystals were piled on one another at several positions via UO₂-UO₂ interactions, which seem to be intimately related to a specific step in the process of growing large single crystals. In the process, calcium that was easily complexed with aqueous uranium(VI) appeared not to be combined with bioreduced uranium(IV), probably due to its lower binding energy. However, when phosphate was added to the system, calcium was found to be easily associated with uranium(IV), forming a new uranium phase, ningyoite. These results will extend the limited knowledge of microbial uraniferous mineralization and may provide new insights into the fate of aqueous uranium complexes.

  18. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsouris, Costas; Mayes, Richard T.; Janke, Christopher James

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater.more » The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous-flow natural seawater at the Pacific Northwest National Laboratory (PNNL). Fourier Transform Infrared (FTIR) spectroscopy, Nuclear Magnetic Resonance (NMR) spectroscopy, Scanning Electron Microscopy (SEM), and elemental analysis were used to characterize the adsorbent at different stages of adsorbent preparation and treatment. The study can be divided into two parts: (A) investigation of optimal parameters for KOH adsorbent conditioning and (B) investigation of other possible agents for alkali conditioning, including cost analysis on the basis of uranium production. In the first part of the study, tests with simulated seawater containing 8 ppm uranium showed that the uranium adsorption capacity increased with an increase in the KOH concentration and conditioning time and temperature at each of the KOH concentrations used. FTIR and solid state NMR studies indicated that KOH conditioning converts the amidoxime functional groups into more hydrophilic carboxylate. The longer the KOH conditioning time, up to three hours, the higher was the loading capacity from the simulated seawater solution which is composed of only uranyl, sodium, chloride, and carbonate ions. Marine testing with natural seawater, on the other hand, showed that the uranium adsorption capacity of the adsorbent increased with KOH conditioning temperature, and gradually decreased with increasing KOH conditioning time from one hour to three hours at 80 C. This behavior is due to the conversion of amidoxime to carboxylate. The carboxylate groups are needed to increase the hydrophilicity of the adsorbent; however, conversion of a significant amount of amidoxime to carboxylate leads to loss in selectivity toward uranyl ions. Thus, there is an optimum KOH conditioning time for each temperature at which an optimum ratio between amidoxime and carboxylate is reached. For the case of base conditioning with 0.44 M KOH at 80 C, the optimal conditioning time is 1 hour, with respect to the highest uranium loading capacity from natural seawater. Uptake of other metal ions such as V, Fe, and Cu follows the same trend as that of uranium. Also, the uptake of Ca, Mg, and Zn ions increased with increasing KOH conditioning time, probably due to formation of more carboxylates, which leads to conversion of uranium-selective binding sites to less selective sites. In the second part of the study, inorganic based reagents such as sodium hydroxide (NaOH), sodium carbonate (Na 2CO 3), cesium hydroxide (CsOH), as well as organic based reagents such as ammonium hydroxide (AOH), tetramethylammonium hydroxide (TMAOH), tetraethylammonium hydroxide (TEAOH), triethylmethylammonium hydroxide (TEMAOH), tetrapropylammonium hydroxide (TPAOH) and tetrabutylammonium hydroxide (TBAOH), in addition to KOH, were used for alkaline conditioning. NaOH has emerged as a better reagent for alkaline conditioning of amidoxime-based adsorbent because of higher uranium uptake capacity, higher uranium uptake selectivity ...« less

  19. Uranium Release from Acidic Weathered Hanford Sediments: Single-Pass Flow-Through and Column Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Guohui; Um, Wooyong; Wang, Zheming

    The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford’s cribs, USA. During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO2)(PO4)·3H2O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K2(UO2)6O4(OH)6·7H2O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitatedmore » as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67E-12 mol g-1 s-1. In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42E-10 mol g-1 s-1. The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.« less

  20. Uranium Release from Acidic Weathered Hanford Sediments: Single-Pass Flow-Through and Column Experiments.

    PubMed

    Wang, Guohui; Um, Wooyong; Wang, Zheming; Reinoso-Maset, Estela; Washton, Nancy M; Mueller, Karl T; Perdrial, Nicolas; O'Day, Peggy A; Chorover, Jon

    2017-10-03

    The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford's cribs (Hanford, WA). During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO 2 )(PO 4 )·3H 2 O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K 2 (UO 2 ) 6 O 4 (OH) 6 ·7H 2 O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitated as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67 × 10 -12 mol g -1 s -1 . In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42 × 10 -10 mol g -1 s -1 . The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for the prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.

  1. Process for recovering uranium

    DOEpatents

    MacWood, G. E.; Wilder, C. D.; Altman, D.

    1959-03-24

    A process useful in recovering uranium from deposits on stainless steel liner surfaces of calutrons is presented. The deposit is removed from the stainless steel surface by washing with aqueous nitric acid. The solution obtained containing uranium, chromium, nickel, copper, and iron is treated with an excess of ammonium hydroxide to precipitnte the uranium, iron, and chromium and convert the nickel and copper to soluble ammonio complexions. The precipitated material is removed, dried and treated with carbon tetrachloride at an elevated temperature of about 500 to 600 deg C to form a vapor mixture of UCl/ sub 4/, UCl/sub 5/, FeCl/sub 3/, and CrCl/sub 4/. The UCl/sub 4/ is separated from this vapor mixture by selective fractional condensation at a temperature of about 500 to 400 deg C.

  2. PROCESS FOR RECOVERING URANIUM

    DOEpatents

    MacWood, G.E.; Wilder, C.D.; Altman, D.

    1959-03-24

    A process is described for recovering uranium from deposits on stainless steel liner surfaces of calutrons. The deposit is removed from the stainless steel surface by washing with aqueous nitric acid. The solution obtained containing uranium, chromium, nickels copper, and iron is treated with excess of ammonium hydroxide to precipitatc the uranium, irons and chromium and convert thc nickel and copper to soluble ammonia complexions. The precipitated material is removed, dried, and treated with carbon tetrachloride at an elevated temperature of about 500 to 600 deg C to form a vapor mixture of UCl/sub 4/, UCl/sub 5/, FeCl/ sub 3/, and CrCl/sub 4/. The UCl/sub 4/ is separated from this vapor mixture by selective fractional condensation at a temprrature of about 300 to400 deg C.

  3. High temperature fuel/emitter system for advanced thermionic fuel elements

    NASA Astrophysics Data System (ADS)

    Moeller, Helen H.; Bremser, Albert H.; Gontar, Alexander; Fiviesky, Evgeny

    1997-01-01

    Specialists in space applications are currently focusing on bimodal power systems designed to provide both electric power and thermal propulsion (Kennedy, 1994 and Houts, 1995). Our work showed that thermionics is a viable technology for nuclear bimodal power systems. We demonstrated that materials for a thermionic fuel-emitter combination capable of performing at operating temperatures of 2473 K are not only possible but available. The objective of this work, funded by the US Department of Energy, Office of Space and Defense Power Systems, was to evaluate the compatibility of fuel material consisting of an uranium carbide/tantalum carbide solid solution with an emitter material consisting of a monocrystalline tungsten-niobium alloy. The uranium loading of the fuel material was 70 mole% uranium carbide. The program was successfully accomplished by a B&W/SIA LUTCH team. Its workscope was integrated with tasks being performed at both Babcock & Wilcox, Lynchburg Research Center, Lynchburg, Virginia, and SIA LUTCH, Podolsk, Russia. Samples were fabricated by LUTCH and seven thermal tests were performed in a hydrogen atmosphere. The first preliminary test was performed at 2273 K by LUTCH, and the remaining six tests were performed At B&W. Three tests were performed at 2273 K, two at 2373 K, and the final test at 2473 K. The results showed that the fuel and emitter materials were compatible in the presence of hydrogen. No evidence of liquid formation, dissolution of the uranium carbide from the uranium carbide/tantalum carbide solid solution, or diffusion of the uranium into the monocrystalline tungsten alloy was observed. Among the highlights of the program was the successful export of the fuel samples from Russia and their import into the US by commercial transport. This paper will discuss the technical aspects of this work.

  4. As-cast uranium-molybdenum based metallic fuel candidates and the effects of carbon addition

    NASA Astrophysics Data System (ADS)

    Blackwood, Van Stephen

    The objective of this research was to develop and recommend a metallic nuclear fuel candidate that lowered the onset temperature of gamma phase formation comparable or better than the uranium-10 wt. pct. molybdenum alloy, offered a solidus temperature as high or higher than uranium-10 wt. pct. zirconium (1250°C), and stabilized the fuel phase against interaction with iron and steel at least as much as uranium-10 wt. pct. zirconium stabilized the fuel phase. Two new as-cast alloy compositions were characterized to assess thermal equilibrium boundaries of the gamma phase field and the effect of carbon addition up to 0.22 wt. pct. The first system investigated was uranium- x wt. pct. M where x ranged between 5-20 wt. pct. M was held at a constant ratio of 50 wt. pct. molybdenum, 43 wt. pct. titanium, and 7 wt. pct. zirconium. The second system investigated was the uranium-molybdenum-tungsten system in the range 90 wt. pct. uranium - 10 wt. pct. molybdenum - 0 wt. pct. tungsten to 80 wt. pct. uranium - 10 wt. pct. molybdenum - 10 wt. pct. tungsten. The results showed that the solidus temperature increased with increased addition of M up to 12.5 wt. pct. for the uranium-M system. Alloy additions of titanium and zirconium were removed from uranium-molybdenum solid solution by carbide formation and segregation. The uranium-molybdenum-tungsten system solidus temperature increased to 1218°C at 2.5 wt. pct. with no significant change in temperature up to 5 wt. pct. tungsten suggesting the solubility limit of tungsten had been reached. Carbides were observed with surrounding areas enriched in both molybdenum and tungsten. The peak solidus temperatures for the alloy systems were roughly the same at 1226°C for the uranium-M system and 1218°C for the uranium-molybdenum-tungsten system. The uranium-molybdenum-tungsten system required less alloy addition to achieve similar solidus temperatures as the uranium-M system.

  5. A literature review of interaction of oxidized uranium species and uranium complexes with soluble organic matter

    USGS Publications Warehouse

    Jennings, Joan K.; Leventhal, J.S.

    1978-01-01

    Organic material is commonly found associated with uranium ores in sandstone-type deposits. This review of the literature summarizes the classes and separations of naturally occurring organic material but the emphasis is on soluble organic species. The main class of materials of interest is humic substances which are high-molecular-weight complex molecules that are soluble in alkaline solution. These humic substances are able to solubilize (make soluble) minerals and also to complex [by ion exchange and (or) chelation] many cations. The natural process of soil formation results in both mineral decomposition and element complexing by organic species. Uranium in solution, such as ground water, can form many species with other elements or complexes present depending on Eh and pH. In natural systems (oxidizing Eh, pH 5-9) the uranium is usually present as a complex with hydroxide or carbonate. Thermodynamic data for these species are presented. Interacting metals and organic materials have been observed in nature and studied in the laboratory by many workers in diverse scientific disciplines. The results are not easily compared. Measurements of the degree of complexation are reported as equilibrium stability constant determinations. This type of research has been done for Mn, Fe, Cu, Zn, Pb, Ni, Co, Mg, Ca, Al, and to a limited degree for U. The use of Conditional Stability Constants has given quantitative results in some cases. The methods utilized in experiments and calculations are reviewed.

  6. Kinetics of dissolution of thorium and uranium doped britholite ceramics

    NASA Astrophysics Data System (ADS)

    Dacheux, N.; Du Fou de Kerdaniel, E.; Clavier, N.; Podor, R.; Aupiais, J.; Szenknect, S.

    2010-09-01

    In the field of immobilization of actinides in phosphate-based ceramics, several thorium and uranium doped britholite samples were submitted to leaching tests. The normalized dissolution rates determined for several pH values, temperatures and acidic media from the calcium release range from 4.7 × 10 -2 g m -2 d -1 to 21.6 g m -2 d -1. Their comparison with that determined for phosphorus, thorium and uranium revealed that the dissolution is clearly incongruent for all the conditions examined. Whatever the leaching solution considered, calcium and phosphorus elements were always released with higher RL values than the other elements (Nd, Th, U). Simultaneously, thorium was found to quickly precipitate as alteration product, leading to diffusion phenomena for uranium. For all the media considered, the uranium release is higher than that of thorium, probably due to its oxidation from tetravalent oxidation state to uranyl. Moreover, the evaluation of the partial order related to proton concentration and the apparent energy of activation suggest that the reaction of dissolution is probably controlled by surface chemical reactions occurring at the solid/liquid interface. Finally, comparative leaching tests performed in sulphuric acid solutions revealed a significant influence of such media on the chemical durability of the leached pellets, leading to higher normalized dissolution rates for all the elements considered. On the basis of the results of chemical speciation, this difference was mainly explained in the light of higher complexion constants by sulfate ions compared to nitrate, chloride and phosphate.

  7. Accelerator Driven Nuclear Energy: The Thorium Option

    ScienceCinema

    Raja, Rajendran

    2018-01-05

    Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.   At the current rate of use, existing sources of Uranium will last for 50-100 years.  We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy.  Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem.  Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality.  

  8. TRANSURANIC ELEMENT, COMPOSITION THEREOF, AND METHODS FOR PRODUCING SEPARATING AND PURIFYING SAME

    DOEpatents

    Wahl, A.C.

    1961-09-19

    A process of separating plutonium from fission products contained in an aqueous solution is described. Plutonium, in the tri- or tetravalent state, and the fission products are coprecipitated on lanthanum fluoride, lanthanum oxalate, cerous fluoride, cerous phosphate, ceric iodate, zirconyl phosphate, thorium iodate, or thorium fluoride. The precipitate is dissolved in acid, and the plutonium is oxidized to the hexavalent state. The fission products are selectively precipitated on a carrier of the above group but different from that used for the coprecipitation. The plutonium in the solution, after removal of the fission product precipitate, is reduced to at least the tetravalent state and precipitated on lanthanum fluoride, lanthanum phosphate, lanthanum oxalate, lanthanum hydroxide, cerous fluoride, cerous phosphate, cerous oxalate, cerous hydroxide, ceric iodate, zirconyl phosphate, zirconyl iodate, zirconium hydroxide, thorium fluoride, thorium oxalate, thorium iodate, thorium peroxide, uranium iodate, uranium oxalate, or uranium peroxide, again using a different carrier than that used for the precipitation of the fission products.

  9. Current approaches of the management of mercury poisoning: need of the hour

    PubMed Central

    2014-01-01

    Mercury poisoning cases have been reported in many parts of the world, resulting in many deaths every year. Mercury compounds are classified in different chemical types such as elemental, inorganic and organic forms. Long term exposure to mercury compounds from different sources e.g. water, food, soil and air lead to toxic effects on cardiovascular, pulmonary, urinary, gastrointestinal, neurological systems and skin. Mercury level can be measured in plasma, urine, feces and hair samples. Urinary concentration is a good indicator of poisoning of elemental and inorganic mercury, but organic mercury (e.g. methyl mercury) can be detected easily in feces. Gold nanoparticles (AuNPs) are a rapid, cheap and sensitive method for detection of thymine bound mercuric ions. Silver nanoparticles are used as a sensitive detector of low concentration Hg2+ ions in homogeneous aqueous solutions. Besides supportive therapy, British anti lewisite, dimercaprol (BAL), 2,3-dimercaptosuccinic acid (DMSA. succimer) and dimercaptopropanesulfoxid acid (DMPS) are currently used as chelating agents in mercury poisoning. Natural biologic scavengers such as algae, azolla and other aquatic plants possess the ability to uptake mercury traces from the environment. PMID:24888360

  10. Effects of aqueous uranyl speciation on the kinetics of microbial uranium reduction

    DOE PAGES

    Belli, Keaton M.; DiChristina, Thomas J.; Van Cappellen, Philippe; ...

    2015-02-16

    The ability to predict the success of the microbial reduction of soluble U(VI) to highly insoluble U(IV) as an in situ bioremediation strategy is complicated by the wide range of geochemical conditions at contaminated sites and the strong influence of aqueous uranyl speciation on the bioavailability and toxicity of U(VI) to metal-reducing bacteria. In order to determine the effects of aqueous uranyl speciation on uranium bioreduction kinetics, incubations and viability assays with Shewanella putrefaciens strain 200 were conducted over a range of pH and dissolved inorganic carbon (DIC), Ca 2+, and Mg 2+ concentrations. A speciation-dependent kinetic model was developedmore » to reproduce the observed time series of total dissolved uranium concentration over the range of geochemical conditions tested. The kinetic model yielded the highest rate constant for the reduction of uranyl non-carbonate species (i.e., the ‘free’ hydrated uranyl ion, uranyl hydroxides, and other minor uranyl complexes), indicating that they represent the most readily reducible fraction of U(VI) despite being the least abundant uranyl species in solution. In the presence of DIC, Ca 2+, and Mg 2+ is suppressed during the formation of more bioavailable uranyl non-carbonate species and resulted in slower bioreduction rates. At high concentrations of bioavailable U(VI), however, uranium toxicity to S. putrefaciens inhibited bioreduction, and viability assays confirmed that the concentration of non-carbonate uranyl species best predicts the degree of toxicity. The effect of uranium toxicity was accounted for by incorporating the free ion activity model of metal toxicity into the bioreduction rate law. These results demonstrate that, in the absence of competing terminal electron acceptors, uranium bioreduction kinetics can be predicted over a wide range of geochemical conditions based on the bioavailability and toxicity imparted on U(VI) by solution composition. Finally, these findings also imply that the concentration of uranyl non-carbonate species, despite being extremely low, is a determining factor controlling uranium bioreduction at contaminated sites.« less

  11. The role of extracellular DNA in uranium precipitation and biomineralisation.

    PubMed

    Hufton, Joseph; Harding, John H; Romero-González, Maria E

    2016-10-26

    Bacterial extra polymeric substances (EPS) have been associated with the extracellular precipitation of uranium. Here we report findings on the biomineralisation of uranium, with extracellular DNA (eDNA) used as a model biomolecule representative of EPS. The complexation and precipitation of eDNA with uranium were investigated as a function of pH, ionic strength and varying concentrations of reactants. The role of phosphate moieties in the biomineralisation mechanism was studied by enzymatically releasing phosphate (ePO 4 ) from eDNA compared to abiotic phosphate (aPO 4 ). The eDNA-uranium precipitates and uranium minerals obtained were characterised by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FT-IR) spectroscopy, Scanning Electron Microscopy-Energy Dispersive X-Ray analysis (SEM-EDX), X-Ray Powder Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS). ATR-FT-IR showed that at pH 5, the eDNA-uranium precipitation mechanism was predominantly mediated by interactions with phosphate moieties from eDNA. At pH 2, the uranium interactions with eDNA occur mainly through phosphate. The solubility equilibrium was dependent on pH with the formation of precipitate reduced as the pH increased. The XRD data confirmed the formation of a uranium phosphate precipitate when synthesised using ePO 4 . XPS and SEM-EDX studies showed the incorporation of carbon and nitrogen groups from the enzymatic orthophosphate hydrolysis on the obtained precipitated. These results suggested that the removal of uranium from solution occurs via two mechanisms: complexation by eDNA molecules and precipitation of a uranium phosphate mineral of the type (UO 2 HPO 4 )·xH 2 O by enzymatic orthophosphate hydrolysis. This demonstrated that eDNA from bacterial EPS is a key contributor to uranium biomineralisation.

  12. Nodal Green’s Function Method Singular Source Term and Burnable Poison Treatment in Hexagonal Geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.A. Bingham; R.M. Ferrer; A.M. ougouag

    2009-09-01

    An accurate and computationally efficient two or three-dimensional neutron diffusion model will be necessary for the development, safety parameters computation, and fuel cycle analysis of a prismatic Very High Temperature Reactor (VHTR) design under Next Generation Nuclear Plant Project (NGNP). For this purpose, an analytical nodal Green’s function solution for the transverse integrated neutron diffusion equation is developed in two and three-dimensional hexagonal geometry. This scheme is incorporated into HEXPEDITE, a code first developed by Fitzpatrick and Ougouag. HEXPEDITE neglects non-physical discontinuity terms that arise in the transverse leakage due to the transverse integration procedure application to hexagonal geometry andmore » cannot account for the effects of burnable poisons across nodal boundaries. The test code being developed for this document accounts for these terms by maintaining an inventory of neutrons by using the nodal balance equation as a constraint of the neutron flux equation. The method developed in this report is intended to restore neutron conservation and increase the accuracy of the code by adding these terms to the transverse integrated flux solution and applying the nodal Green’s function solution to the resulting equation to derive a semi-analytical solution.« less

  13. Origin of coffinite in sedimentary rocks by a sequential adsorption-reduction mechanism.

    USGS Publications Warehouse

    Goldhaber, M.B.; Hemingway, B.S.; Mohagheghi, A.; Reynolds, R.L.; Northrop, H.R.

    1987-01-01

    Coffinite is the dominant ore mineral in the V-U ores of the Tony-M mine in the Henry Mts mineral belt of the Colorado Plateau. This orebody was formed at a density-stratified solution interface between uranyl-ion-bearing meteoric water and a saline fluid which was locally reducing. The localization of U at this solution interface occurred by adsorption onto the surfaces of detrital minerals, this adsorption being related to the pH difference between the two fluids. Experimental evidence is presented showing that the adsorption facilitated the reduction of uranium to U(IV). This adsorbed, reduced uranium bonded with aqueous silica in the ore zone to form coffinite. The high concentration of silica (as a monomeric species) in the ore-forming solution stabilized coffinite in preference to uraninite.-R.A.H.

  14. METHOD OF PROCESSING MONAZITE SAND

    DOEpatents

    Welt, M.A.; Smutz, M.

    1958-08-26

    A process is described for recovering thorium, uranium, and rare earth values from monazite sand. The monazite sand is first digested with sulfuric acid and the resulting "monazite sulfate" solution is adjusted to a pH of between 0.4 and 3.0, and oxalate anions are added causing precipitation of the thorium and the rare earths as the oxalates. The oxalate precipitate is separated from the uranium containing supernatant solution, and is dried and calcined to the oxides. The thorium and rare earth oxides are then dissolved in nitric acid and the solution is contacted with tribntyl phosphate whereby an organic extract phase containing the cerium and thorium values is obtained, together with an aqueous raffinate containing the other rare earth values. The organic phase is then separated from the aqueous raffinate and the cerium and thorium are back extracted with an aqueous medium.

  15. Method for cleaning solution used in nuclear fuel reprocessing

    DOEpatents

    Tallent, O.K.; Crouse, D.J.; Mailen, J.C.

    1980-12-17

    Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.

  16. Method for cleaning solution used in nuclear fuel reprocessing

    DOEpatents

    Tallent, Othar K.; Crouse, David J.; Mailen, James C.

    1982-01-01

    Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.

  17. Fomepizole versus ethanol in the treatment of acute methanol poisoning: Comparison of clinical effectiveness in a mass poisoning outbreak.

    PubMed

    Zakharov, Sergey; Pelclova, Daniela; Navratil, Tomas; Belacek, Jaromir; Komarc, Martin; Eddleston, Michael; Hovda, Knut Erik

    2015-01-01

    Mass or cluster methanol poisonings are frequently reported from around the world. The comparative effectiveness of ethanol and fomepizole as antidotes for methanol poisoning is unknown due to the difficulty of performing a randomized controlled trial. During an outbreak of mass poisonings in the Czech Republic in 2012-2014, we compared the effects of antidotes on the frequency of health sequelae and mortality. The study was designed as a cross-sectional case series and quasi-case-control study. Patients with a diagnosis of methanol poisoning on admission to hospitals were identified for the study. Diagnosis was established when (i) a history of recent ingestion of illicit spirits was available and serum methanol was higher than 6.2 mmol/L (20 mg/dL), or (ii) there was a history/clinical suspicion of methanol poisoning, and serum methanol was above the limit of detection with at least two of the following: pH < 7.3, serum bicarbonate < 20 mmol/L, and anion gap or AG ≥ 20 mmol/L. Fomepizole was given as a bolus dose of 15 mg/kg i.v. diluted in isotonic saline, followed by 10 mg/kg every 12 h (every 4 h during hemodialysis); ethanol was administered both intravenously as a 10% solution in 5% glucose, and per os in boluses of 20% solution. Multivariate regression was applied to determine the effect of antidote on outcome. Additionally, for a retrospective quasi-case-control study, a control group of patients treated with ethanol, matched carefully on severity of poisoning and other key parameters, was selected. Data were obtained from 100 hospitalized patients with confirmed poisoning: 25 patients treated with fomepizole were compared with 68 patients receiving ethanol (seven patients did not receive any antidote). More severely acidotic (p < 0.001) and late-presenting (>12 h; p = 0.028) patients received fomepizole more often than ethanol, as reflected in the higher number of fomepizole-treated patients being intubated (p = 0.009). No association was found between the type of antidote and the survival in either the case series (p = 0.205) or the quasi-control groups (p = 0.705) in which patients were very closely matched to minimize confounding by allocation. In the multivariate analysis, positive serum ethanol (odds ratio [OR], 10.8; 95% confidence interval [CI], 2.9-39.9) and arterial blood pH (OR, 3.7; 95% CI, 1.3-10.5) on admission were the only independent variables for the survival. The median intensive care unit length of stay was 6 (range, 2-22) days in the fomepizole group and 4 (range, 1-33) days in the ethanol group (p = 0.131). There were no differences in the use of elimination techniques between the two groups (neither in the full material (n = 100), nor the case-control groups (n = 50)). This study on antidotes for methanol poisoning did not show any evidence of different clinical effectiveness. Although ethanol is generally associated with a higher incidence of complications, this study suggests that both antidotes are similarly effective and that ethanol should not be avoided on grounds of effectiveness.

  18. Future Scenarios for Fission Based Reactors

    NASA Astrophysics Data System (ADS)

    David, S.

    2005-04-01

    The coming century will see the exhaustion of standard fossil fuels, coal, gas and oil, which today represent 75% of the world energy production. Moreover, their use will have caused large-scale emission of greenhouse gases (GEG), and induced global climate change. This problem is exacerbated by a growing world energy demand. In this context, nuclear power is the only GEG-free energy source available today capable of responding significantly to this demand. Some scenarios consider a nuclear energy production of around 5 Gtoe in 2050, wich would represent a 20% share of the world energy supply. Present reactors generate energy from the fission of U-235 and require around 200 tons of natural Uranium to produce 1GWe.y of energy, equivalent to the fission of one ton of fissile material. In a scenario of a significant increase in nuclear energy generation, these standard reactors will consume the whole of the world's estimated Uranium reserves in a few decades. However, natural Uranium or Thorium ore, wich are not themselves fissile, can produce a fissile material after a neutron capture ( 239Pu and 233U respectively). In a breeder reactor, the mass of fissile material remains constant, and the fertile ore is the only material to be consumed. In this case, only 1 ton of natural ore is needed to produce 1GWe.y. Thus, the breeding concept allows optimal use of fertile ore and development of sustainable nuclear energy production for several thousand years into the future. Different sustainable nuclear reactor concepts are studied in the international forum "generation IV". Different types of coolant (Na, Pb and He) are studied for fast breeder reactors based on the Uranium cycle. The thermal Thorium cycle requires the use of a liquid fuel, which can be reprocessed online in order to extract the neutron poisons. This paper presents these different sustainable reactors, based on the Uranium or Thorium fuel cycles and will compare the different options in term of fissile inventory, capacity to be deployed, induced radiotoxicities, and R&D efforts.

  19. METHOD OF SEPARATING PLUTONIUM

    DOEpatents

    Heal, H.G.

    1960-02-16

    BS>A method of separating plutonium from aqueous nitrate solutions of plutonium, uranium. and high beta activity fission products is given. The pH of the aqueous solution is adjusted between 3.0 to 6.0 with ammonium acetate, ferric nitrate is added, and the solution is heated to 80 to 100 deg C to selectively form a basic ferric plutonium-carrying precipitate.

  20. Resource potential for commodities in addition to Uranium in sandstone-hosted deposits: Chapter 13

    USGS Publications Warehouse

    Breit, George N.

    2016-01-01

    Sandstone-hosted deposits mined primarily for their uranium content also have been a source of vanadium and modest amounts of copper. Processing of these ores has also recovered small amounts of molybdenum, rhenium, rare earth elements, scandium, and selenium. These deposits share a generally common origin, but variations in the source of metals, composition of ore-forming solutions, and geologic history result in complex variability in deposit composition. This heterogeneity is evident regionally within the same host rock, as well as within districts. Future recovery of elements associated with uranium in these deposits will be strongly dependent on mining and ore-processing methods.

  1. IMPROVEMENT OF THE EXTRACTION SEPARATION OF URANIUM AND ZIRCONIUM USING ZIRCONIUM-MASKING REAGENTS (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyrs, M.; Caletka, R.; Selucky, P.

    1963-12-01

    The masking capacities of a series of reagents were studied in the zirconium extraction with tributyl phosphate solution in the presence of nitric acid. It was established that with many reagents an improvement of the separation of uranium from zirconium could be obtained. The efficiency of the reagents increases in the series tannin, oxalic acid, tiron, pyrogallol, and Arsenazo I. (tr-auth)

  2. Uranium minerals in Oligocene gypsum near Chadron, Dawes County, Nebraska

    USGS Publications Warehouse

    Dunham, R.J.

    1955-01-01

    Carnotite, sabugalite [HAI(UO2)4(PO4)4 • 16H2O] and autunite occur in the basal 25 feet of a 270-foot sequence of nonmarine bedded gypsum and gypsiferous clay in the Brule formation of Oligocene age about 12 miles northeast of Chadron in northeastern Dawes County, Nebraska. Uranium minerals are visible at only two localities and are associated with carbonaceous matter. Elsewhere the basal 25 feet of the gypsum sequence is interbedded with carbonate rocks and is weakly but persistently uraniferous. Uranium probably was emplaced from above by uranyl solutions rich in sulfate.

  3. KINETICS OF THE DISSOLUTION OF URANIUM DIOXIDE IN CARBONATE-BICARBONATE SOLUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schortmann, W.E.; DeSesa, M.A.

    The kinetics of the dissolution of uranium dioxide in sodium carbonate- sodium bicarbonate solutions were determined. The study was undertaken in order to obtain fundamental information about the commercial carbonate process for leaching uranium from its ores. A rate equation incorporating the effects of surface area oxygen partial pressure, temperature, and reagent concentrations was empirically developed. A mechanism consisting essentially of two consecutive reactions at steady state is proposed. These reactions are the oxidation of U/ sup 4+/ to U/sup 6+/ and the subsequent formation of the uranyl dicarbonate complexion. Depending on the conditions, either or both of these reactionsmore » can determine the over-all rate. The conversion of uranyl dicarbonate to the uranyl tricarbonate complexion is postulated to be very rapid. In the suggested mechanism, the rate-determining phase of the oxidation is the dissociation of adsorbed molecular oxygen. and both the carbonate and bicarbonate ions play equivalent roles in the formation of the uranyl dicarbonate. As indicated by their high activation energies of about 13 and 14 kcal per mole uranium, both reactions are chemical rather than diffusional processes. A mathematical examination of the proposed mechanism produced a rate equation consistent with the experimental information. The credibility of the mechanism was thereby strengthened. (auth)« less

  4. Challenges dealing with depleted uranium in Germany - Reuse or disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moeller, Kai D.

    2007-07-01

    During enrichment large amounts of depleted Uranium are produced. In Germany every year 2.800 tons of depleted uranium are generated. In Germany depleted uranium is not classified as radioactive waste but a resource for further enrichment. Therefore since 1996 depleted Uranium is sent to ROSATOM in Russia. However it still has to be dealt with the second generation of depleted Uranium. To evaluate the alternative actions in case a solution has to be found in Germany, several studies have been initiated by the Federal Ministry of the Environment. The work that has been carried out evaluated various possibilities to dealmore » with depleted uranium. The international studies on this field and the situation in Germany have been analyzed. In case no further enrichment is planned the depleted uranium has to be stored. In the enrichment process UF{sub 6} is generated. It is an international consensus that for storage it should be converted to U{sub 3}O{sub 8}. The necessary technique is well established. If the depleted Uranium would have to be characterized as radioactive waste, a final disposal would become necessary. For the planned Konrad repository - a repository for non heat generating radioactive waste - the amount of Uranium is limited by the licensing authority. The existing license would not allow the final disposal of large amounts of depleted Uranium in the Konrad repository. The potential effect on the safety case has not been roughly analyzed. As a result it may be necessary to think about alternatives. Several possibilities for the use of depleted uranium in the industry have been identified. Studies indicate that the properties of Uranium would make it useful in some industrial fields. Nevertheless many practical and legal questions are open. One further option may be the use as shielding e.g. in casks for transport or disposal. Possible techniques for using depleted Uranium as shielding are the use of the metallic Uranium as well as the inclusion in concrete. Another possibility could be the use of depleted uranium for the blending of High enriched Uranium (HEU) or with Plutonium to MOX-elements. (authors)« less

  5. ANALYTICAL METHOD FOR THE DETERMINATION OF BORON IN URANYL NITRATE SOLUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1962-01-01

    A method was developed for the determination of boron in uranyl nitrate solutions. The boron is separated from uranium and other impurities by distillation of methyl borate. It is determined absorptiometrically by means of curcumin in the presence of orthochlorophenol, perchloric acid, and acetic anhydride. The limit of detection is judged to be not greater than 0.05 mu g, but is dependent on the purity of the reagents used. The coefficient of variation on 210 results at the 0.2 mu g boron level was 26% with a bias of -25%. The method may be applied to depleted uranyl nitrate solutionsmore » and uranium slag recovery liquors. (auth)« less

  6. METHOD OF SEPARATING FISSION PRODUCTS FROM FUSED BISMUTH-CONTAINING URANIUM

    DOEpatents

    Wiswall, R.H.

    1958-06-24

    A process is described for removing metal selectively from liquid metal compositions. The method effects separation of flssion product metals selectively from dilute solution in fused bismuth, which contains uraniunn in solution without removal of more than 1% of the uranium. The process comprises contacting the fused bismuth with a fused salt composition consisting of sodium, potassium and lithium chlorides, adding to fused bismuth and molten salt a quantity of bismuth chloride which is stoichiometrically required to convert the flssion product metals to be removed to their chlorides which are more stable in the fused salt than in the molten metal and are, therefore, preferentially taken up in the fused salt phase.

  7. Study on kinetics of adsorption of humic acid modified by ferric chloride on U(VI)

    NASA Astrophysics Data System (ADS)

    Zhang, Y. Y.; Lv, J. W.; Song, Y.; Dong, X. J.; Fang, Q.

    2017-11-01

    In order to reveal the adsorption mechanism of the ferric chloride modified humic acid on uranium, the influence of pH value and contact time of adsorption on uranium was studied through a series of batch experiments. Meanwhile, the adsorption kinetics was analyzed with pseudo-first order kinetic model and pseudo-second order kinetic model. The results show that adsorption is affected by the pH value of the solution and by contract time, and the best condition for adsorption on uranium is at pH=5 and the adsorption equilibrium time is about 80 min. Kinetics of HA-Fe adsorption on uranium accords with pseudo-second order kinetic model. The adsorption is mainly chemical adsorption, and complexes were produced by the reaction between uranium ions and the functional groups on the surface of HA-Fe, which can provide reference for further study of humic acid effecting on the migration of U(VI) in soil.

  8. Processes affecting transport of uranium in a suboxic aquifer

    USGS Publications Warehouse

    Davis, J.A.; Curtis, G.P.; Wilkins, M.J.; Kohler, M.; Fox, P.; Naftz, D.L.; Lloyd, J.R.

    2006-01-01

    At the Naturita site in Colorado, USA, groundwaters were sampled and analyzed for chemical composition and by culture and culture-independent microbiological techniques. In addition, sediments were extracted with a dilute sodium carbonate solution to determine quantities of labile uranium within the sediments. Samples from the upgradient portion of the contaminated aquifer, where very little dissolved Fe(II) is found in the groundwater, have uranium content that is controlled by U(VI) adsorption and few metal-reducing bacteria are observed. In the extreme downgradient portion of the aquifer, where dissolved Fe(II) is observed, uranium content of the sediments includes significant quantities of reduced U(IV) and diverse populations of Fe(III)-reducing bacteria were present in the subsurface with the potential of reducing U(VI) to U(IV). ?? 2006 Elsevier Ltd. All rights reserved.

  9. Modeling and experimental examination of water level effects on radon exhalation from fragmented uranium ore.

    PubMed

    Ye, Yong-Jun; Dai, Xin-Tao; Ding, De-Xin; Zhao, Ya-Li

    2016-12-01

    In this study, a one-dimensional steady-state mathematical model of radon transport in fragmented uranium ore was established according to Fick's law and radon transfer theory in an air-water interface. The model was utilized to obtain an analytical solution for radon concentration in the air-water, two-phase system under steady state conditions, as well as a corresponding radon exhalation rate calculation formula. We also designed a one-dimensional experimental apparatus for simulating radon diffusion migration in the uranium ore with various water levels to verify the mathematical model. The predicted results were in close agreement with the measured results, suggesting that the proposed model can be readily used to determine radon concentrations and exhalation rates in fragmented uranium ore with varying water levels. Copyright © 2016. Published by Elsevier Ltd.

  10. Ultraviolet-B radiation mobilizes uranium from uranium-dissolved organic carbon complexes in aquatic systems, demonstrated by asymmetrical flow field-flow fractionation.

    PubMed

    Nehete, Sachin Vilas; Christensen, Terje; Salbu, Brit; Teien, Hans-Christian

    2017-05-05

    Humic substances have a tendency to form complexes with metal ions in aquatic medium, impacting the metal mobility, decreasing bioavailability and toxicity. Ultraviolet-B (UV-B) radiation exposure degrades the humic substance, changes their molecular weight distribution and their metal binding capacity in aquatic medium. In this study, we experimented the effect of UV-B radiation on the uranium complexed with fulvic acids and humic acids in a soft water system at different pH, uranium concentrations and radiant exposure. The concentration and distribution of uranium in a complexed form were investigated by asymmetrical flow field-flow fractionation coupled to multi detection technique (AsFlFFF-UV-ICP-MS). The major concentration of uranium present in complexes was primarily associated with average and higher molecular weight fulvic and humic acids components. The concentration of uranium in a complexed form increased with increasing fulvic and humic acid concentrations as well as pH of the solution. The higher molecular weight fraction of uranium was degraded due to the UV-B exposure, transforming about 50% of the uranium-dissolved organic carbon complexes into low molecular weight uranium species in complex form with organic ligands and/or free form. The result also suggests AsFlFFF-UV-ICP-MS to be an important separation and detection technique for understanding the interaction of radionuclides with dissolved organic matter, tracking size distribution changes during degradation of organic complexes for understanding mobility, bioavailability and ecosystem transfer of radionuclides as well as metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Molecular Simulations of the Diffusion of Uranyl Carbonate Species in Nanosized Mineral Fractures

    NASA Astrophysics Data System (ADS)

    Kerisit, S.; Liu, C.

    2010-12-01

    Uranium is a major groundwater contaminant at uranium processing and mining sites as a result of intentional and accidental discharges of uranium-containing waste products into subsurface environments. Recent characterization has shown that uranium preferentially associates with intragrain and intra-aggregate domains in some of the uranium-contaminated sediments collected from the US Department of Energy Hanford Site [1, 2]. In these sediments, uranium existed as precipitated and/or adsorbed phases in grain micropores with nano- to microscale sizes. Desorption and diffusion characterization studies and continuum-scale modeling indicated that ion diffusion in the microfractures is a major mechanism that led to preferential uranium concentration in the microfracture regions and will control the future mobility of uranium in the subsurface sediments [1, 3-4]. However, the diffusion properties of uranyl species in the intragrain regions, especially at the solid-liquid interface, are still poorly understood. Therefore, a general aim of this work is to provide atomic-level insights into the contribution of microscopic surface effects to the slow diffusion process of uranyl species in porous media with nano- to microsized fractures. In this presentation, we will first present molecular dynamics (MD) simulations of feldspar-water interfaces to investigate their interfacial structure and dynamics and establish a theoretical framework for subsequent simulations of water and ion diffusion at these interfaces [5]. We will then report on MD simulations carried out to probe the effects of confinement and of the presence of the mineral surface on the diffusion of water and electrolyte ions in nanosized feldspar fractures [6]. Several properties of the mineral-water interface were varied, such as the fracture width, the ionic strength of the contacting solution, and the surface charge. Our calculations reveal a 2.0-2.5 nm interfacial region within which the diffusion properties of water and that of the electrolyte ions differ significantly from those in bulk aqueous solutions. We will then present MD simulations of the diffusion of a series of alkaline-earth uranyl carbonate species in aqueous solutions [7]. The MD simulations show that the alkaline-earth uranyl carbonate complexes have distinct water exchange dynamics, which could lead to different reactivities. Finally, we will present recent results on the diffusion and adsorption of uranyl carbonate species in intragrain micropores, modeled with the feldspar-water interfaces mentioned in the above, to help interpret the diffusion behavior of uranium in contaminated sediments. [1] Liu C. et al. Geochim. Cosmochim. Acta 68 4519 (2004) [2] McKinley J. P. et al. Geochim. Cosmochim. Acta 70 1873 (2006) [3] Liu C. et al. Water Resour. Res. 42 W12420 (2006) [4] Ilton E. S. et al. Environ. Sci. Technol. 42 1565 (2009) [5] Kerisit S. et al. Geochim. Cosmochim. Acta 72 1481 (2008) [6] Kerisit S. and Liu C. Environ. Sci. Technol. 43 777 (2009) [7] Kerisit S. and Liu C. Geochim. Cosmochim. Acta 74 4937 (2010)

  12. Validation of gamma-ray detection techniques for safeguards monitoring at natural uranium conversion facilities

    NASA Astrophysics Data System (ADS)

    Dewji, S. A.; Lee, D. L.; Croft, S.; Hertel, N. E.; Chapman, J. A.; McElroy, R. D.; Cleveland, S.

    2016-07-01

    Recent IAEA circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under the revised policy, IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed to develop and validate concepts of nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP). In particular, uranyl nitrate (UO2(NO3)2) solution exiting solvent extraction was identified as a key measurement point (KMP), where gamma-ray spectroscopy was selected as the process monitoring tool. The Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility at Oak Ridge National Laboratory was employed to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in an NUCP. Nondestructive assay techniques using gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely way. This work investigated gamma-ray signatures of uranyl nitrate circulating in the UNCLE facility and evaluated various gamma-ray detector sensitivities to uranyl nitrate. These detector validation activities include assessing detector responses to the uranyl nitrate gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and high-purity germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10-90 g U/L of natural uranyl nitrate are presented. A range of gamma-ray lines is examined, including attenuation for transmission measurement of density and concentration. It was determined that transmission-corrected gamma-ray spectra provide a reliable way to monitor the 235U concentration of uranyl nitrate solution in transfer pipes in NUCPs. Furthermore, existing predictive and analysis methods are adequate to design and realize practical designs. The 137Cs transmission source employed in this work is viable but not optimal for 235U densitometry determination. Validated simulations assessed the viability of 133Ba and 57Co as alternative densitometry sources. All three gamma-ray detectors are viable for monitoring natural uranium feed; although high-purity germanium is easiest to interpret, it is, however, the least attractive as an installation instrument. Overall, for monitoring throughput in a facility such as UNCLE, emulating the uranium concentration and pump speeds of the Springfields conversion facility in the United Kingdom, an uncertainty of less than 0.17% is required in order to detect the diversion of 1 SQ of uranyl nitrate through changes in uranium concentration over an accountancy period of one year with a detection probability of 50%. Although calibrated gamma-ray detection systems are capable of determining the concentration of uranium content in NUCPs, it is only in combination with verifiable operator declarations and supporting data, such as flow rate and enrichment, that safeguards conclusions can be drawn.

  13. Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: arsenic, manganese, fluoride, iron, and uranium.

    PubMed

    Bacquart, Thomas; Frisbie, Seth; Mitchell, Erika; Grigg, Laurie; Cole, Christopher; Small, Colleen; Sarkar, Bibudhendra

    2015-06-01

    In South Asia, the technological and societal shift from drinking surface water to groundwater has resulted in a great reduction of acute diseases due to water borne pathogens. However, arsenic and other naturally occurring inorganic toxic substances present in groundwater in the region have been linked to a variety of chronic diseases, including cancers, heart disease, and neurological problems. Due to the highly specific symptoms of chronic arsenic poisoning, arsenic was the first inorganic toxic substance to be noticed at unsafe levels in the groundwater of West Bengal, India and Bangladesh. Subsequently, other inorganic toxic substances, including manganese, uranium, and fluoride have been found at unsafe levels in groundwater in South Asia. While numerous drinking water wells throughout Myanmar have been tested for arsenic, relatively little is known about the concentrations of other inorganic toxic substances in Myanmar groundwater. In this study, we analyzed samples from 18 drinking water wells (12 in Myingyan City and 6 in nearby Tha Pyay Thar Village) and 2 locations in the Ayeyarwaddy River for arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, fluoride, iron, mercury, manganese, molybdenum, nickel, lead, antimony, selenium, thallium, uranium, vanadium, and zinc. Concentrations of arsenic, manganese, fluoride, iron, or uranium exceeded health-based reference values in most wells. In addition, any given well usually contained more than one toxic substance at unsafe concentrations. While water testing and well sharing could reduce health risks, none of the wells sampled provide water that is entirely safe with respect to inorganic toxic substances. It is imperative that users of these wells, and users of other wells that have not been tested for multiple inorganic toxic substances throughout the region, be informed of the need for drinking water testing and the health consequences of drinking water contaminated with inorganic toxic substances. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Uranium Biominerals Precipitated by an Environmental Isolate of Serratia under Anaerobic Conditions.

    PubMed

    Newsome, Laura; Morris, Katherine; Lloyd, Jonathan R

    2015-01-01

    Stimulating the microbially-mediated precipitation of uranium biominerals may be used to treat groundwater contamination at nuclear sites. The majority of studies to date have focussed on the reductive precipitation of uranium as U(IV) by U(VI)- and Fe(III)-reducing bacteria such as Geobacter and Shewanella species, although other mechanisms of uranium removal from solution can occur, including the precipitation of uranyl phosphates via bacterial phosphatase activity. Here we present the results of uranium biomineralisation experiments using an isolate of Serratia obtained from a sediment sample representative of the Sellafield nuclear site, UK. When supplied with glycerol phosphate, this Serratia strain was able to precipitate 1 mM of soluble U(VI) as uranyl phosphate minerals from the autunite group, under anaerobic and fermentative conditions. Under phosphate-limited anaerobic conditions and with glycerol as the electron donor, non-growing Serratia cells could precipitate 0.5 mM of uranium supplied as soluble U(VI), via reduction to nano-crystalline U(IV) uraninite. Some evidence for the reduction of solid phase uranyl(VI) phosphate was also observed. This study highlights the potential for Serratia and related species to play a role in the bioremediation of uranium contamination, via a range of different metabolic pathways, dependent on culturing or in situ conditions.

  15. Uranium Biominerals Precipitated by an Environmental Isolate of Serratia under Anaerobic Conditions

    PubMed Central

    Newsome, Laura; Morris, Katherine; Lloyd, Jonathan. R.

    2015-01-01

    Stimulating the microbially-mediated precipitation of uranium biominerals may be used to treat groundwater contamination at nuclear sites. The majority of studies to date have focussed on the reductive precipitation of uranium as U(IV) by U(VI)- and Fe(III)-reducing bacteria such as Geobacter and Shewanella species, although other mechanisms of uranium removal from solution can occur, including the precipitation of uranyl phosphates via bacterial phosphatase activity. Here we present the results of uranium biomineralisation experiments using an isolate of Serratia obtained from a sediment sample representative of the Sellafield nuclear site, UK. When supplied with glycerol phosphate, this Serratia strain was able to precipitate 1 mM of soluble U(VI) as uranyl phosphate minerals from the autunite group, under anaerobic and fermentative conditions. Under phosphate-limited anaerobic conditions and with glycerol as the electron donor, non-growing Serratia cells could precipitate 0.5 mM of uranium supplied as soluble U(VI), via reduction to nano-crystalline U(IV) uraninite. Some evidence for the reduction of solid phase uranyl(VI) phosphate was also observed. This study highlights the potential for Serratia and related species to play a role in the bioremediation of uranium contamination, via a range of different metabolic pathways, dependent on culturing or in situ conditions. PMID:26132209

  16. Bioaccumulation characterization of uranium by a novel Streptomyces sporoverrucosus dwc-3.

    PubMed

    Li, Xiaolong; Ding, Congcong; Liao, Jiali; Du, Liang; Sun, Qun; Yang, Jijun; Yang, Yuanyou; Zhang, Dong; Tang, Jun; Liu, Ning

    2016-03-01

    The biosorption mechanisms of uranium on an aerobic bacterial strain Streptomyces sporoverrucosus dwc-3, isolated from a potential disposal site for (ultra-)low uraniferous radioactive waste in Southwest China, were evaluated by using transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), proton induced X-ray emission (PIXE) and enhanced proton backscattering spectrometry (EPBS). Approximately 60% of total uranium at an initial concentration of 10mg/L uranium nitrate solution could be absorbed on 100mg S. sporoverrucosus dwc-3 with an adsorption capacity of more than 3.0mg/g (wet weight) after 12hr at room temperature at pH3.0. The dynamic biosorption process of S. sporoverrucosus dwc-3 for uranyl ions was well described by a pseudo second-order model. S. sporoverrucosus dwc-3 could accumulate uranium on cell walls and within the cell, as revealed by SEM and TEM analysis as well as EDX spectra. XPS and FT-IR analysis further suggested that the absorbed uranium was bound to amino, phosphate and carboxyl groups of the cells. Additionally, PIXE and EPBS results confirmed that ion exchange also contributed to the adsorption process of uranium. Copyright © 2015. Published by Elsevier B.V.

  17. Hospital Performance Indicators and Their Associated Factors in Acute Child Poisoning at a Single Poison Center, Central Saudi Arabia

    PubMed Central

    Alanazi, Menyfah Q.; Al-Jeriasy, Majed I.; Al-Assiri, Mohammed H.; Afesh, Lara Y.; Alhammad, Fahad; Salam, Mahmoud

    2015-01-01

    Abstract Admission rate and length of stay (LOS) are two hospital performance indicators that affect the quality of care, patients’ satisfaction, bed turnover, and health cost expenditures. The aim of the study was to identify factors associated with higher admission rates and extended average LOS among acutely poisoned children at a single poison center, central Saudi Arabia. This is a cross-sectional, poison and medical chart review between 2009 and 2011. Exposures were child characteristics, that is, gender, age, body mass index (BMI), health history, and Canadian 5-level triage scale. Poison incident characteristics were, that is, type, exposure route, amount, form, home remedy, and arrival time to center. Admission status and LOS were obtained from records. Chronic poisoning, plant allergies, and venomous bites were excluded. Bivariate and regression analyses were applied. Significance at P < 0.05. Of the 315 eligible cases, (72%) were toddlers with equal gender distribution, (58%) had normal BMI, and (77%) were previously healthy. Poison substances were pharmaceutical drugs (63%) versus chemical products (37%). Main exposure route was oral (98%). Home remedy was observed in (21.9%), which were fluids, solutes, and/or gag-induced vomiting. Almost (52%) arrived to center >1 h. Triage levels: non-urgent cases (58%), less urgent (11%), urgent (18%), emergency (12%), resuscitative (1%). Admission rate was (20.6%) whereas av. LOS was 13 ± 22 h. After adjusting and controlling for confounders, older children (adj.OR = 1.19) and more critical triage levels (adj.OR = 1.35) were significantly associated with higher admission rates compared to younger children and less critical triage levels (adj.P = 0.006) and (adj.P = 0.042) respectively. Home remedy prior arrival was significantly associated with higher av. LOS (Beta = 9.48, t = 2.99), compared to those who directly visited the center, adj.P = 0.003. Hospital administrators are cautioned that acutely poisoned children who received home remedies prior arrival are more likely to endure an extended LOS. This non-conventional practice is not recommended. PMID:26717371

  18. Use of Sodium Dithionite as Part of a More Efficient Groundwater Restoration Method Following In-situ Recovery of Uranium at the Smith-Ranch Highland Site in Wyoming

    NASA Astrophysics Data System (ADS)

    Harris, R.; Reimus, P. W.; Ware, D.; Williams, K.; Chu, D.; Perkins, G.; Migdissov, A. A.; Bonwell, C.

    2017-12-01

    Uranium is primarily mined for nuclear power production using an aqueous extraction technique called in-situ recovery (ISR). ISR can pollute groundwater with residual uranium and other heavy metals. Reverse osmosis and groundwater sweep are currently used to restore groundwater after ISR mining, but are not permanent solutions. Sodium dithionite is being tested as part of a method to more permanently restore groundwater after ISR mining at the Smith-Ranch Highland site in Wyoming. Sodium dithionite is a chemical reductant that can reduce sediments that were oxidized during ISR. The reduced sediments can reduce soluble uranium (VI) in the groundwater to insoluble uranium (IV). Laboratory studies that use sodium dithionite to treat sediments and waters from the site may help predict how it will behave during a field deployment. An aqueous batch experiment showed that sodium dithionite reduced uranium in post-mined untreated groundwater from 38 ppm to less than 1 ppm after 1 day. A sediment reduction batch experiment showed that sodium dithionite-treated sediments were capable of reducing uranium in post-mined untreated groundwater from 38 ppm to 2 ppm after 7 days. One column experiment is showing post-mined sodium dithionite-treated sediments are capable of reducing uranium in post-mined groundwater for over 30 pore volumes past the initial injection. While these results are promising for field deployments of sodium dithionite, another column experiment with sodium dithionite-treated sediments containing uranium rich organic matter is showing net production of uranium instead of uranium uptake. Sodium dithionite appears to liberate uranium from the organic matter. Another sediment reduction experiment is being conducted to further investigate this hypothesis. These experiments are helping guide plans for field deployments of sodium dithionite at uranium ISR mining sites.

  19. Stay Legal and Safe in Treating for Bed Bugs

    EPA Pesticide Factsheets

    Quick fix solutions may sound appealing, but they may not be legal, safe, or effective. To avoid adverse effects such as poisoning, buy EPA-registered pesticides labeled for bed bug control, and follow all label directions and precautions.

  20. Compositions and methods for treating nuclear fuel

    DOEpatents

    Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K; Hanson, Brady D; Smith, Steven C; Peper, Shane M

    2013-08-13

    Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

  1. Compositions and methods for treating nuclear fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soderquist, Chuck Z; Johnsen, Amanda M; McNamara, Bruce K

    Compositions are provided that include nuclear fuel. Methods for treating nuclear fuel are provided which can include exposing the fuel to a carbonate-peroxide solution. Methods can also include exposing the fuel to an ammonium solution. Methods for acquiring molybdenum from a uranium comprising material are provided.

  2. Fission-Produced 99Mo Without a Nuclear Reactor.

    PubMed

    Youker, Amanda J; Chemerisov, Sergey D; Tkac, Peter; Kalensky, Michael; Heltemes, Thad A; Rotsch, David A; Vandegrift, George F; Krebs, John F; Makarashvili, Vakho; Stepinski, Dominique C

    2017-03-01

    99 Mo, the parent of the widely used medical isotope 99m Tc, is currently produced by irradiation of enriched uranium in nuclear reactors. The supply of this isotope is encumbered by the aging of these reactors and concerns about international transportation and nuclear proliferation. Methods: We report results for the production of 99 Mo from the accelerator-driven subcritical fission of an aqueous solution containing low enriched uranium. The predominately fast neutrons generated by impinging high-energy electrons onto a tantalum convertor are moderated to thermal energies to increase fission processes. The separation, recovery, and purification of 99 Mo were demonstrated using a recycled uranyl sulfate solution. Conclusion: The 99 Mo yield and purity were found to be unaffected by reuse of the previously irradiated and processed uranyl sulfate solution. Results from a 51.8-GBq 99 Mo production run are presented. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  3. 3. VIEW OF THE DEPRESSION PIT IN ROOM 103, IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF THE DEPRESSION PIT IN ROOM 103, IN 1965, WHEREIN FISSILE SOLUTION WAS STORED. THIS PHOTOGRAPH SHOWS THE URANIUM SOLUTION TANKS ON THE LEFT AND THE PLUTONIUM SYSTEM ON THE RIGHT. NO PLUTONIUM SOLUTION WAS EVER STORED IN BUILDING 886. - Rocky Flats Plant, Critical Mass Laboratory, Intersection of Central Avenue & 86 Drive, Golden, Jefferson County, CO

  4. PRETREATING URANIUM FOR METAL PLATING

    DOEpatents

    Wehrmann, R.F.

    1961-05-01

    A process is given for anodically treating the surface of uranium articles, prior to metal plating. The metal is electrolyzed in an aqueous solution of about 10% polycarboxylic acid, preferably oxalic acid, from 1 to 5% by weight of glycerine and from 1 to 5% by weight of hydrochloric acid at from 20 to 75 deg C for from 30 seconds to 15 minutes. A current density of from 60 to 100 amperes per square foot is used.

  5. Biosorption and Biomineralization of U(VI) by the Marine Bacterium Idiomarina loihiensis MAH1: Effect of Background Electrolyte and pH

    PubMed Central

    Morcillo, Fernando; González-Muñoz, María T.; Reitz, Thomas; Romero-González, María E.; Arias, José M.; Merroun, Mohamed L.

    2014-01-01

    The main goal of this study is to compare the effects of pH, uranium concentration, and background electrolyte (seawater and NaClO4 solution) on the speciation of uranium(VI) associated with the marine bacterium Idiomarina loihiensis MAH1. This was done at the molecular level using a multidisciplinary approach combining X-ray Absorption Spectroscopy (XAS), Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS), and High Resolution Transmission Electron Microscopy (HRTEM). We showed that the U(VI)/bacterium interaction mechanism is highly dependent upon pH but also the nature of the used background electrolyte played a role. At neutral conditions and a U concentration ranging from 5·10−4 to 10−5 M (environmentally relevant concentrations), XAS analysis revealed that uranyl phosphate mineral phases, structurally resembling meta-autunite [Ca(UO2)2(PO4)2 2–6H2O] are precipitated at the cell surfaces of the strain MAH1. The formation of this mineral phase is independent of the background solution but U(VI) luminescence lifetime analyses demonstrated that the U(VI) speciation in seawater samples is more intricate, i.e., different complexes were formed under natural conditions. At acidic conditions, pH 2, 3 and 4.3 ([U] = 5·10−4 M, background electrolyte  = 0.1 M NaClO4), the removal of U from solution was due to biosorption to Extracellular Polysaccharides (EPS) and cell wall components as evident from TEM analysis. The L III-edge XAS and TRLFS studies showed that the biosorption process observed is dependent of pH. The bacterial cell forms a complex with U through organic phosphate groups at pH 2 and via phosphate and carboxyl groups at pH 3 and 4.3, respectively. The differences in the complexes formed between uranium and bacteria on seawater compared to NaClO4 solution demonstrates that the actinide/microbe interactions are influenced by the three studied factors, i.e., the pH, the uranium concentration and the chemical composition of the solution. PMID:24618567

  6. Geochemistry and migration of contaminants at the Weldon Spring chemical plant site, St. Charles County, Missouri, 1989-91

    USGS Publications Warehouse

    Schumacher, John G.

    1993-01-01

    The geochemistry of the shallow aquifer and geochemical controls on the migration of uranium and other constituents from raffinate pits were determined at the Weldon Spring chemical plant site. Surface-water samples from the raffinate pits con- tained large concentrations of calcium, magnesium, sodium, potassium, sulfate, nitrite, lithium, moly- bdenum, strontium, vanadium, and uranium. Analyses of interstitial-water samples from raffinate pit 3 indicated that concentrations of most constituents increased with increasing depth below the water- sediment interface. Nitrate and uranium were not chemically reduced and attenuated within the raffinate pits and can be expected to migrate into the overburden. Laboratory sorption experiments were performed to evaluate the effect of pH value on the sorption of several raffinate constituents by the overburden. No sorption of calcium, sodium, sulfate, nitrate, or lithium was observed. Sorption of molybdenum was dependent on solution pH and sorption of uranium was dependent on solution pH and carbonate concentration. The sorption of uranium and molybdenum was consistent with sorption controlled by oxyhydroxides. The quality of water collected in overburden lysimeters near raffinate pit 4 can be modeled as a mixture of water from raffinate pits 3 and 4, and an uncontaminated com- ponent in a system at equilibrium with ferrihydrite and calcite. Increased constituent concentrations in a perennial spring north of the site were the result of a subsurface connection between the spring and several losing stream segments receiving runoff from the site, in addition to seepage from the raffinate pits.

  7. Surface Cleaning Techniques: Ultra-Trace ICP-MS Sample Preparation and Assay of HDPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overman, Nicole R.; Hoppe, Eric W.; Addleman, Raymond S.

    2013-06-01

    The world’s most sensitive radiation detection and assay systems depend upon ultra-low background (ULB) materials to reduce unwanted radiological backgrounds. Herein, we evaluate methods to clean HDPE, a material of interest to ULB systems and the means to provide rapid assay of surface and bulk contamination. ULB level material and ultra-trace level detection of actinide elements is difficult to attain, due to the introduction of contamination from sample preparation equipment such as pipette tips, sample vials, forceps, etc. and airborne particulate. To date, literature available on the cleaning of such polymeric materials and equipment for ULB applications and ultra-trace analysesmore » is limited. For these reasons, a study has been performed to identify an effective way to remove surface contamination from polymers in an effort to provide improved instrumental detection limits. Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) was utilized to assess the effectiveness of a variety of leachate solutions for removal of inorganic uranium and thorium surface contamination from polymers, specifically high density polyethylene (HDPE). HDPE leaching procedures were tested to optimize contaminant removal of thorium and uranium. Calibration curves for thorium and uranium ranged from 15 ppq (fg/mL) to 1 ppt (pg/mL). Detection limits were calculated at 6 ppq for uranium and 7 ppq for thorium. Results showed the most effective leaching reagent to be clean 6 M nitric acid for 72 hour exposures. Contamination levels for uranium and thorium found in the leachate solutions were significant for ultralow level radiation detection applications.« less

  8. Repetitive obidoxime treatment induced increase of red blood cell acetylcholinesterase activity even in a late phase of a severe methamidophos poisoning: A case report.

    PubMed

    Steinritz, Dirk; Eyer, Florian; Worek, Franz; Thiermann, Horst; John, Harald

    2016-02-26

    Accidental self-poisoning or deliberate use in suicidal intent of organophosphorus pesticides (OPP), which are widely used in agriculture, represent a health problem worldwide. Symptoms of poisoning are characterized by acute cholinergic crisis caused by inhibition of acetylcholinesterase. A 75-year-old male patient ingested 20ml of an OPP solution containing 10% methamidophos in suicidal intent. In the course of poisoning typical clinical symptoms of cholinergic crisis (miosis, bradycardia, hypotension, hypersalivation and impairment of neurologic status) were evident. Butyryl (plasma) cholinesterase (BChE) and red blood cell acetylcholinesterase (RBC-AChE) revealed decreased activities, thus specific treatment with the enzyme reactivator obidoxime was started. Inhibitory activity of the patient's plasma indicated significant amounts of persisting methamidophos in the circulation and was still found on day 4 after ingestion. Due to missing spontaneous breathing on day 6, obidoxime was administered again. Afterwards a significant increase of RBC-AChE activity was found. The patient was extubated on day 10 and a restitution ad integrum was achieved. In conclusion, obidoxime is a potent reactivator of OPP-inhibited AChE. A repetitive and prolonged administration of obidoxime should be considered in cases of severe methamidophos poisoning and should be tailored with an advanced analytical biomonitoring. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. HIGHLY ENRICHED URANIUM BLEND DOWN PROGRAM AT THE SAVANNAH RIVER SITE PRESENT AND FUTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magoulas, V; Charles Goergen, C; Ronald Oprea, R

    2008-06-05

    The Department of Energy (DOE) and Tennessee Valley Authority (TVA) entered into an Interagency Agreement to transfer approximately 40 metric tons of highly enriched uranium (HEU) to TVA for conversion to fuel for the Browns Ferry Nuclear Power Plant. Savannah River Site (SRS) inventories included a significant amount of this material, which resulted from processing spent fuel and surplus materials. The HEU is blended with natural uranium (NU) to low enriched uranium (LEU) with a 4.95% 235U isotopic content and shipped as solution to the TVA vendor. The HEU Blend Down Project provided the upgrades needed to achieve the productmore » throughput and purity required and provided loading facilities. The first blending to low enriched uranium (LEU) took place in March 2003 with the initial shipment to the TVA vendor in July 2003. The SRS Shipments have continued on a regular schedule without any major issues for the past 5 years and are due to complete in September 2008. The HEU Blend program is now looking to continue its success by dispositioning an additional approximately 21 MTU of HEU material as part of the SRS Enriched Uranium Disposition Project.« less

  10. Electronic Nicotine Delivery Systems.

    PubMed

    Walley, Susan C; Jenssen, Brian P

    2015-11-01

    Electronic nicotine delivery systems (ENDS) are rapidly growing in popularity among youth. ENDS are handheld devices that produce an aerosolized mixture from a solution typically containing concentrated nicotine, flavoring chemicals, and propylene glycol to be inhaled by the user. ENDS are marketed under a variety of names, most commonly electronic cigarettes and e-cigarettes. In 2014, more youth reported using ENDS than any other tobacco product. ENDS pose health risks to both users and nonusers. Nicotine, the major psychoactive ingredient in ENDS solutions, is both highly addictive and toxic. In addition to nicotine, other toxicants, carcinogens, and metal particles have been detected in solutions and aerosols of ENDS. Nonusers are involuntarily exposed to the emissions of these devices with secondhand and thirdhand aerosol. The concentrated and often flavored nicotine in ENDS solutions poses a poisoning risk for young children. Reports of acute nicotine toxicity from US poison control centers have been increasing, with at least 1 child death reported from unintentional exposure to a nicotine-containing ENDS solution. With flavors, design, and marketing that appeal to youth, ENDS threaten to renormalize and glamorize nicotine and tobacco product use. There is a critical need for ENDS regulation, legislative action, and counter promotion to protect youth. ENDS have the potential to addict a new generation of youth to nicotine and reverse more than 50 years of progress in tobacco control. Copyright © 2015 by the American Academy of Pediatrics.

  11. SEPARATION PROCESS USING COMPLEXING AND ADSORPTION

    DOEpatents

    Spedding, J.H.; Ayers, J.A.

    1958-06-01

    An adsorption process is described for separating plutonium from a solution of neutron-irradiated uranium containing ions of a compound of plutonium and other cations. The method consists of forming a chelate complex compound with plutoniunn ions in the solution by adding a derivative of 8- hydroxyquinoline, which derivative contains a sulfonic acid group, and adsorbing the remaining cations from the solution on a cation exchange resin, while the complexed plutonium remains in the solution.

  12. Dissolution of synthetic uranium dibutyl phosphate deposits in oxidizing and reducing chemical formulations.

    PubMed

    Rufus, A L; Sathyaseelan, V S; Narasimhan, S V; Velmurugan, S

    2013-06-15

    Permanganate and nitrilotriacetic acid (NTA) based dilute chemical formulations were evaluated for the dissolution of uranium dibutyl phosphate (U-DBP), a compound that deposits over the surfaces of nuclear reprocessing plants and waste storage tanks. A combination of an acidic, oxidizing treatment (nitric acid with permanganate) followed by reducing treatment (NTA based formulation) efficiently dissolved the U-DBP deposits. The dissolution isotherm of U-DBP in its as precipitated form followed a logarithmic fit. The same chemical treatment was also effective in dissolving U-DBP coated on the surface of 304-stainless steel, while resulting in minimal corrosion of the stainless steel substrate material. Investigation of uranium recovery from the resulting decontamination solutions by ion exchange with a bed of mixed anion and cation resins showed quantitative removal of uranium. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Simulation of uranium and plutonium oxides compounds obtained in plasma

    NASA Astrophysics Data System (ADS)

    Novoselov, Ivan Yu.; Karengin, Alexander G.; Babaev, Renat G.

    2018-03-01

    The aim of this paper is to carry out thermodynamic simulation of mixed plutonium and uranium oxides compounds obtained after plasma treatment of plutonium and uranium nitrates and to determine optimal water-salt-organic mixture composition as well as conditions for their plasma treatment (temperature, air mass fraction). Authors conclude that it needs to complete the treatment of nitric solutions in form of water-salt-organic mixtures to guarantee energy saving obtainment of oxide compounds for mixed-oxide fuel and explain the choice of chemical composition of water-salt-organic mixture. It has been confirmed that temperature of 1200 °C is optimal to practice the process. Authors have demonstrated that condensed products after plasma treatment of water-salt-organic mixture contains targeted products (uranium and plutonium oxides) and gaseous products are environmental friendly. In conclusion basic operational modes for practicing the process are showed.

  14. Preparation of new nano magnetic material Fe3O4@g-C3N4 and good adsorption performance on uranium ion

    NASA Astrophysics Data System (ADS)

    Long, Wei; Liu, Huijun; Yan, Xueming; Fu, Li

    2018-03-01

    A new nano magnetic material Fe3O4@g-C3N4 was prepared by deposition reduction method, which performed good adsorption performance to uranium ion. Characterization results showed that the g-C3N4 particles were wrapped around the nano magnetic Fe3O4 particles, and the textural properties of this material was improved, so the adsorption performance to uranium ion was good. Adsorption experiments of this material demonstrated that the optimum pH value was 10, the optimum mass of adsorbent was 6.5 mg and the optimum adsorption time was 150 min in the initial concentration of 140 mg/L uranium ion solution system, and the maximum adsorption capacity was up to 352.1 mg/g and the maximum adsorption rate was more than 90%.

  15. Selective separation of zirconium from uranium in carbonate solutions by ion flotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jdid, E.A.; Blazy, P.; Mahamadou, A.

    1990-05-01

    Separation of zirconium from uranium in carbonate media was undertaken by ion flotation. The collector chosen was octylhydroxamic acid (HOHX). It gave a well-flocculated precipitate with zirconium which floated in less than 5 min. The stoichiometry of the reaction is HOHX/Zr = 3.9/1, and the selectivity in the presence of uranium is very high. In fact, for a ratio {Phi} = (HOHX),M/(Zr),M, which is just stoichiometric and is close to 4, the zirconium removal rate reaches 99%, even in industrial media. The loss of uranium is only 0.5% although its concentration is 37.4 g/L. Mechanisms of separation are not affectedmore » by a variation of pH between 6.7 and 9.8, of temperature up to 60{degree}C, and of carbonate concentration within the 15 to 60 g/L Na{sub 2}CO{sub 3} range.« less

  16. First-Principles Integrated Adsorption Modeling for Selective Capture of Uranium from Seawater by Polyamidoxime Sorbent Materials

    DOE PAGES

    Ladshaw, Austin P.; Ivanov, Alexander S.; Das, Sadananda; ...

    2018-03-27

    Nuclear power is a relatively carbon-free energy source that has the capacity to be utilized today in an effort to stem the tides of global warming. The growing demand for nuclear energy, however, could put significant strain on our uranium ore resources, and the mining activities utilized to extract that ore can leave behind long-term environmental damage. A potential solution to enhance the supply of uranium fuel is to recover uranium from seawater using amidoximated adsorbent fibers. This technology has been studied for decades but is currently plagued by the material’s relatively poor selectivity of uranium over its main competitormore » vanadium. In this work, we investigate the binding schemes between uranium, vanadium, and the amidoxime functional groups on the adsorbent surface. Using quantum chemical methods, binding strengths are approximated for a set of complexation reactions between uranium and vanadium with amidoxime functionalities. Those approximations are then coupled with a comprehensive aqueous adsorption model developed in this work to simulate the adsorption of uranium and vanadium under laboratory conditions. Experimental adsorption studies with uranium and vanadium over a wide pH range are performed, and the data collected are compared against simulation results to validate the model. It was found that coupling ab initio calculations with process level adsorption modeling provides accurate predictions of the adsorption capacity and selectivity of the sorbent materials. Furthermore, this work demonstrates that this multiscale modeling paradigm could be utilized to aid in the selection of superior ligands or ligand compositions for the selective capture of metal ions. Furthermore, this first-principles integrated modeling approach opens the door to the in silico design of next-generation adsorbents with potentially superior efficiency and selectivity for uranium over vanadium in seawater.« less

  17. First-Principles Integrated Adsorption Modeling for Selective Capture of Uranium from Seawater by Polyamidoxime Sorbent Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ladshaw, Austin P.; Ivanov, Alexander S.; Das, Sadananda

    Nuclear power is a relatively carbon-free energy source that has the capacity to be utilized today in an effort to stem the tides of global warming. The growing demand for nuclear energy, however, could put significant strain on our uranium ore resources, and the mining activities utilized to extract that ore can leave behind long-term environmental damage. A potential solution to enhance the supply of uranium fuel is to recover uranium from seawater using amidoximated adsorbent fibers. This technology has been studied for decades but is currently plagued by the material’s relatively poor selectivity of uranium over its main competitormore » vanadium. In this work, we investigate the binding schemes between uranium, vanadium, and the amidoxime functional groups on the adsorbent surface. Using quantum chemical methods, binding strengths are approximated for a set of complexation reactions between uranium and vanadium with amidoxime functionalities. Those approximations are then coupled with a comprehensive aqueous adsorption model developed in this work to simulate the adsorption of uranium and vanadium under laboratory conditions. Experimental adsorption studies with uranium and vanadium over a wide pH range are performed, and the data collected are compared against simulation results to validate the model. It was found that coupling ab initio calculations with process level adsorption modeling provides accurate predictions of the adsorption capacity and selectivity of the sorbent materials. Furthermore, this work demonstrates that this multiscale modeling paradigm could be utilized to aid in the selection of superior ligands or ligand compositions for the selective capture of metal ions. Furthermore, this first-principles integrated modeling approach opens the door to the in silico design of next-generation adsorbents with potentially superior efficiency and selectivity for uranium over vanadium in seawater.« less

  18. First-Principles Integrated Adsorption Modeling for Selective Capture of Uranium from Seawater by Polyamidoxime Sorbent Materials.

    PubMed

    Ladshaw, Austin P; Ivanov, Alexander S; Das, Sadananda; Bryantsev, Vyacheslav S; Tsouris, Costas; Yiacoumi, Sotira

    2018-04-18

    Nuclear power is a relatively carbon-free energy source that has the capacity to be utilized today in an effort to stem the tides of global warming. The growing demand for nuclear energy, however, could put significant strain on our uranium ore resources, and the mining activities utilized to extract that ore can leave behind long-term environmental damage. A potential solution to enhance the supply of uranium fuel is to recover uranium from seawater using amidoximated adsorbent fibers. This technology has been studied for decades but is currently plagued by the material's relatively poor selectivity of uranium over its main competitor vanadium. In this work, we investigate the binding schemes between uranium, vanadium, and the amidoxime functional groups on the adsorbent surface. Using quantum chemical methods, binding strengths are approximated for a set of complexation reactions between uranium and vanadium with amidoxime functionalities. Those approximations are then coupled with a comprehensive aqueous adsorption model developed in this work to simulate the adsorption of uranium and vanadium under laboratory conditions. Experimental adsorption studies with uranium and vanadium over a wide pH range are performed, and the data collected are compared against simulation results to validate the model. It was found that coupling ab initio calculations with process level adsorption modeling provides accurate predictions of the adsorption capacity and selectivity of the sorbent materials. Furthermore, this work demonstrates that this multiscale modeling paradigm could be utilized to aid in the selection of superior ligands or ligand compositions for the selective capture of metal ions. Therefore, this first-principles integrated modeling approach opens the door to the in silico design of next-generation adsorbents with potentially superior efficiency and selectivity for uranium over vanadium in seawater.

  19. Kinetic, equilibrium and thermodynamic studies on sorption of uranium and thorium from aqueous solutions by a selective impregnated resin containing carminic acid.

    PubMed

    Rahmani-Sani, Abolfazl; Hosseini-Bandegharaei, Ahmad; Hosseini, Seyyed-Hossein; Kharghani, Keivan; Zarei, Hossein; Rastegar, Ayoob

    2015-04-09

    In this work, the removal of uranium and thorium ions from aqueous solutions was studied by solid-liquid extraction using an advantageous extractant-impregnated resin (EIR) prepared by loading carminic acid (CA) onto Amberlite XAD-16 resin beads. Batch sorption experiments using CA/XAD-16 beads for the removal of U(VI) and Th(IV) ions were carried out as a function of several parameters, like equilibration time, metal ion concentration, etc. The equilibrium data obtained from the sorption experiments were adjusted to the Langmuir isotherm model and the calculated maximum sorption capacities in terms of monolayer sorption were in agreement with those obtained from the experiments. The experimental data on the sorption behavior of both metal ions onto the EIR beads fitted well in both Bangham and intra-particle diffusion kinetic models, indicating that the intra-particle diffusion is the rate-controlling step. The thermodynamic studies at different temperatures revealed the feasibility and the spontaneous nature of the sorption process for both uranium and thorium ions. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Design of a Fission 99 Mo Recovery Process and Implications toward Mo Adsorption Mechanism on Titania and Alumina Sorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepinski, Dominique C.; Youker, Amanda J.; Krahn, Elizabeth O.

    2017-03-01

    Molybdenum-99 is a parent of the most widely used medical isotope technetium-99m. Proliferation concerns have prompted development of alternative Mo production methods utilizing low enriched uranium. Alumina and titania sorbents were evaluated for separation of Mo from concentrated uranyl nitrate solutions. System, mass transfer, and isotherm parameters were determined to enable design of Mo separation processes under a wide range of conditions. A model-based approach was utilized to design representative commercial-scale column processes. The designs and parameters were verified with bench-scale experiments. The results are essential for design of Mo separation processes from irradiated uranium solutions, selection of support materialmore » and process optimization. Mo uptake studies show that adsorption decreases with increasing concentration of uranyl nitrate; howeveL, examination of Mo adsorption as a function of nitrate ion concentration shows no dependency, indicating that uranium competes with Mo for adsorption sites. These results are consistent with reports indicating that Mo forms inner-sphere complexes with titania and alumina surface groups.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Gregory E.

    There is currently a serious shortage of 99Mo, from which to generate the medically significant isotope 99mTc. Most of the world's supply comes from the fission of highly enriched uranium targets--this is a proliferation concern. This document focuses on the technology involved in two alternative methods: electron accelerator production of 99Mo from the 100Mo(γ,n) 99Mo reaction and production of 99Mo as a fission product in a subcritical, DT accelerator-driven low enriched uranium salt solution.

  2. Acute pesticide ingestion managed with yohimbine as a rescue therapy.

    PubMed

    Nasa, Prashant; Juneja, Deven

    2016-12-01

    Amitraz is used as a pesticide in agricultural and veterinary medicine. It is primarily a central α2 adrenergic agonist and known to cause central nervous system depression, convulsions, respiratory depression, and bradycardia on severe intoxication. We report a case of a 3-year-old child who presented with accidental ingestion of amitraz solution with signs of severe poisoning. There is no specific antidote of amitraz poisoning in humans, however, animal experiments with α2 adrenergic antagonists such as yohimbine and atimepazole have been successful. The child was managed besides intensive management with enteral yohimbine, and he regained consciousness in 18 h and was successfully weaned off mechanical ventilation.

  3. Uranium deposits in the Eureka Gulch area, Central City district, Gilpin County, Colorado

    USGS Publications Warehouse

    Sims, P.K.; Osterwald, F.W.; Tooker, E.W.

    1954-01-01

    The Eureka Gulch area of the Central City district, Gilpin County, Colo., was mined for ores of gold, silver, copper, lead, and zinc; but there has been little mining activity in the area since World War I. Between 1951 and 1953 nine radioactive mine dumps were discovered in the area by the U.S. Geological Survey and by prospectors. the importance of the discoveries has not been determined as all but one of the mines are inaccessible, but the distribution, quantity, and grade of the radioactive materials found on the mine dumps indicate that the area is worth of additional exploration as a possible source of uranium ore. The uranium ans other metals are in and near steeply dipping mesothermal veins of Laramide age intrusive rocks. Pitchblende is present in at least four veins, and metatorbernite, associated at places with kosolite, is found along two veins for a linear distance of about 700 feet. The pitchblends and metatorbernite appear to be mutually exclusive and seem to occur in different veins. Colloform grains of pitchblende were deposited in the vein essentially contemporaneously with pyrite. The pitchblende is earlier in the sequence of deposition than galena and sphalerite. The metatorbernite replaces altered biotite-quartz-plagioclase gneiss and altered amphibolite, and to a lesser extent forms coatings on fractures in these rocks adjacent to the veins; the kasolite fills vugs in highly altered material and in altered wall rocks. Much of the pitchblende found on the dumps has been partly leached subsequent to mining and is out of equilibrium. Selected samples of metatorbernite-bearing rock from one mine dump contain as much as 6.11 percent uranium. The pitchblende is a primary vein mineral deposited from uranium-bearing hydrothermal solutions. The metatorbernite probably formed by oxidation, solution, and transportation of uranium from primary pitchblende, but it may be a primary mineral deposited directly from fluids of different composition from these that deposited pitchblende.

  4. Removal of uranium from soil sample digests for ICP-OES analysis of trace metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foust, R.D. Jr.; Bidabad, M.

    1996-10-01

    An analytical procedure has been developed to quantitatively remove uranium from soil sample digests, permitting ICP-OES analysis of trace metals. The procedure involves digesting a soil sample with standard procedures (EPA SW-846, Method 3050), and passing the sample digestate through commercially available resin (U/TEVA{sm_bullet}Spec, Eichrom Industries, Inc.) containing diarryl amylphosphonate as the stationary phase. Quantitative removal of uranium was achieved with soil samples containing up to 60% uranium, and percent recoveries averaged better than 85% for 9 of the 10 metals evaluated (Ag, As, Cd. Cr, Cu, Ni, Pb, Se and Tl). The U/TEVA{sm_bullet}Spec column was regenerated by washing withmore » 200 mL of a 0.01 M oxalic acid/0.02 M nitric acid solution, permitting re-use of the column. GFAAS analysis of a sample spiked with 56.5% uranium, after treatment of the digestate with a U/TEVA{sm_bullet}Spec resin column, resulted in percent recoveries of 97% or better for all target metals.« less

  5. Tuning the Oxidation State, Nuclearity, and Chemistry of Uranium Hydrides with Phenylsilane and Temperature: The Case of the Classic Uranium(III) Hydride Complex [(C 5 Me 5) 2U(μ-H)] 2

    DOE PAGES

    Pagano, Justin K.; Dorhout, Jacquelyn M.; Czerwinski, Kenneth R.; ...

    2016-03-18

    Here, this work demonstrates that the oxidation state and chemistry of uranium hydrides can be tuned with temperature and the stoichiometry of phenylsilane. The trivalent uranium hydride [(C 5Me 5) 2U–H] x (5) was found to be comprised of an equilibrium mixture of U(III) hydrides in solution at ambient temperature. A single U(III) species can be selectively prepared by treating (C 5Me5)2UMe2 (4) with 2 equiv of phenylsilane at 50 °C. The U(III) system is a potent reducing agent and displayed chemistry distinct from the U(IV) system [(C 5Me 5) 2U(H)(μ-H)] 2 (2), which was harnessed to prepare a varietymore » of organometallic complexes, including (C 5Me 5) 2U(dmpe)(H) (6), and the novel uranium(IV) metallacyclopentadiene complex (C 5Me 5) 2U(C 4Me 4) (11).« less

  6. Validation of gamma-ray detection techniques for safeguards monitoring at natural uranium conversion facilities

    DOE PAGES

    Dewji, Shaheen A.; Lee, Denise L.; Croft, Stephen; ...

    2016-03-28

    Recent IAEA circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under the revised policy, IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed to develop and validate concepts of nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP).more » In particular, uranyl nitrate (UO 2(NO 3) 2) solution exiting solvent extraction was identified as a key measurement point (KMP), where gamma-ray spectroscopy was selected as the process monitoring tool. The Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility at Oak Ridge National Laboratory was employed to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in an NUCP. Nondestructive assay techniques using gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely way. This work investigated gamma-ray signatures of uranyl nitrate circulating in the UNCLE facility and evaluated various gamma-ray detector sensitivities to uranyl nitrate. These detector validation activities include assessing detector responses to the uranyl nitrate gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and high-purity germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10–90 g U/L of natural uranyl nitrate are presented. A range of gamma-ray lines is examined, including attenuation for transmission measurement of density and concentration. It was determined that transmission-corrected gamma-ray spectra provide a reliable way to monitor the 235U concentration of uranyl nitrate solution in transfer pipes in NUCPs. Furthermore, existing predictive and analysis methods are adequate to design and realize practical designs. The 137Cs transmission source employed in this work is viable but not optimal for 235U densitometry determination. Validated simulations assessed the viability of 133Ba and 57Co as alternative densitometry sources. All three gamma-ray detectors are viable for monitoring natural uranium feed; although high-purity germanium is easiest to interpret, it is, however, the least attractive as an installation instrument. Overall, for monitoring throughput in a facility such as UNCLE, emulating the uranium concentration and pump speeds of the Springfields conversion facility in the United Kingdom, an uncertainty of less than 0.17% is required in order to detect the diversion of 1 SQ of uranyl nitrate through changes in uranium concentration over an accountancy period of one year with a detection probability of 50%. As a result, calibrated gamma-ray detection systems are capable of determining the concentration of uranium content in NUCPs, it is only in combination with verifiable operator declarations and supporting data, such as flow rate and enrichment, that safeguards conclusions can be drawn.« less

  7. M4FT-15OR03100421: Status Report on Alkaline Conditioning Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsouris, Costas; Brown, Suree; Janke, Christopher James

    2015-05-01

    Significant progress in understanding the role of alkaline conditioning of polyethylene-fiber adsorbent, developed at the Oak Ridge National Laboratory (ORNL), is demonstrated in this report, which is essentially a manuscript prepared for publication in the journal Industrial & Engineering Chemistry Research of the American Chemical Society. The manuscript describes the influence of various parameters involved in adsorbent alkaline conditioning, including base concentration and duration and temperature of conditioning, on the uranium uptake history by the adsorbent. Various solutions have been used to determine the influence of conditioning parameters including (i) a screening solution containing uranyl nitrate at approximately 8 ppmmore » and sodium bicarbonate and sodium chloride at concentrations similar to those found in seawater, (ii) seawater spiked with approximately 75 ppb uranium, and (iii) natural seawater. In addition to concentration measurements by inductively coupled plasma (ICP) spectroscopy to determine the uranium uptake capacity and kinetics, spectroscopic methods such as Fourier transformed infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy were employed to investigate the effect of base treatment on the various chemical bonds of the adsorbent. Scanning electron microscopy (SEM) has also been employed to determine structural effects of the alkali on the adsorbent. The results are summarized as follows: 1. Alkali conditioning is necessary to prepare the adsorbent for uranium uptake. ICP analysis showed that without alkali conditioning, no appreciable uranium adsorption occurs. 2. FTIR showed that the base converts amidoxime to carboxylate groups. 3. FTIR showed that formation of carboxylate groups is irreversible and reduces the selectivity of the adsorbent toward uranium. 4. NMR showed that alkali conditioning leads also to the formation of cyclic imidedioxime, which is suspected to bind uranium, vanadium, iron, copper, and other metals. 5. Uptake of V, Fe, and Cu follows the same trend as that of uranium. Uptake of Ca, Mg, and Zn ions increases with increasing KOH conditioning time due to formation of carboxylate groups. 6. SEM showed that long conditioning times may also lead to adsorbent degradation. 7. The optimal conditioning parameters are: 0.44 M KOH, 70 C, for 1 hour. The results of this study are useful in the selection of optimal values of the parameters involved in preparing amidoxime-based adsorbent for uranium uptake from seawater. Additional work is still ongoing to provide a complete understanding of the chemistry of base conditioning and its role on the functioning of the adsorbent.« less

  8. DISSOLUTION OF ZIRCONIUM AND ALLOYS THEREFOR

    DOEpatents

    Swanson, J.L.

    1961-07-11

    The dissolution of zirconium cladding in a water solution of ammonium fluoride and ammonium nitrate is described. The method finds particular utility in processing spent fuel elements for nuclear reactors. The zirconium cladding is first dissolved in a water solution of ammonium fluoride and ammonium nitrate; insoluble uranium and plutonium fiuorides formed by attack of the solvent on the fuel materiai of the fuel element are then separated from the solution, and the fuel materiai is dissolved in another solution.

  9. SEPARATION PROCESS FOR PROTACTINIUM AND COMPOUNDS THEREOF

    DOEpatents

    Van Winkle, A.

    1959-07-21

    The separation of protactinium from aqueous solutions from its mixtures with thorium, uranium and fission products is described. The process for the separation comprises preparing an ion nitric acid solution containing protactinium in the pentavalent state and contacting the solution with a fluorinated beta diketone, such as trifluoroacetylacetone, either alone or as an organic solvent solution to form a pentavalent protactinium chelate compound. When the organic solvent is present the chelate compound is extracted; otherwise it is separated by filtration.

  10. Analysis of 2H-Evaporator Acid Cleaning Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hay, M.; Diprete, D.; Edwards, T.

    The 2H-Evaporator acid cleaning solution samples were analyzed by SRNL to determine a composition for the scale present in the evaporator before recent acid cleaning. Composite samples were formed from the solution samples from the two acid cleaning cycles. The solution composition was converted to a weight percent scale solids basis under an assumed chemical composition. The scale composition produced from the acid cleaning solution samples indicates a concentration of 6.85 wt% uranium. An upper bound, onesided 95% confidence interval on the weight percent uranium value may be given as 6.9 wt% + 1.645 × 0.596 wt% = 7.9 wt%.more » The comparison of the composition from the current acid cleaning solutions with the composition of recent scale samples along with the thermodynamic modeling results provides reasonable assurance that the sample results provide a good representation of the overall scale composition in the evaporator prior to acid cleaning. The small amount of scale solids dissolved in the 1.5 M nitric acid during the evaporator cleaning process likely produced only a small amount of precipitation based on modeling results and the visual appearance of the samples.« less

  11. Granulated activated carbon modified with hydrophobic silica aerogel-potential composite materials for the removal of uranium from aqueous solutions.

    PubMed

    Coleman, Sabre J; Coronado, Paul R; Maxwell, Robert S; Reynolds, John G

    2003-05-15

    Aqueous solutions of 100 parts per billion (ppb) uranium at pH 7 were treated with granulated activated carbon (GAC) that had been modified with various formulations of hydrophobic aerogels. The composite materials were found to be superior in removing uranium from a stock solution compared to GAC alone evaluated by a modified ASTM D 3860-98 method for batch testing. The testing results were evaluated using a Freundlich adsorption model. The best performing material has parameters of n = 287 and Kf = 1169 compared to n = 1.00, and Kf = 20 for GAC alone. The composite materials were formed by mixing (CH3O)4Si with the hydrophobic sol-gel precursor, (CH3O)3SiCH2CH2CF3 and with specified modifiers, such as H3PO4, Ca(NO3)2, and (C2H5O)3SiCH2CH2P(O)(OC2H5)2, elation catalysts, and GAC in a supercritical reactor system. After gelation, supercritical extraction, and sieving, the composites were tested. Characterization by FTIR and 31P NMR indicate the formation of phosphate in the case of the H3PO4 and Ca(NO3)2 composites and phosphonic acid related compounds in the phosphonate composite. These composite materials have potential application in the clean up of groundwater at DOE and other facilities.

  12. Efficacy of a Solution-Based Approach for Making Sodalite Waste Forms for an Oxide Reduction Salt Utilized in the Reprocessing of Used Uranium Oxide Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Pierce, David A.; Frank, Steven M.

    2015-04-01

    This paper describes various approaches for making sodalite with a LiCl-Li2O oxide reduction salt used to recover uranium from used oxide fuel. The approaches include sol-gel and solution-based synthesis processes. As-made products were mixed with 5 and 10 mass% of a Na2O-B2O3-SiO2 glass binder and these, along with product without a binder, were heated using either a cold-press-and-sinter method or hot uniaxial pressing. The results demonstrate the limitation of sodalite yield due to the fast intermediate reactions between Na+ and Cl- to form halite in solution and Li2O and SiO2 to form lithium silicates (e.g., Li2SiO3 or Li2Si2O5) in themore » calcined and sintered pellets. The results show that pellets can be made with high sodalite fractions (~92 mass%) and low porosities using a solution-based approach and this LiCl-Li2O salt.« less

  13. Residence time distribution measurements in a pilot-scale poison tank using radiotracer technique.

    PubMed

    Pant, H J; Goswami, Sunil; Samantray, J S; Sharma, V K; Maheshwari, N K

    2015-09-01

    Various types of systems are used to control the reactivity and shutting down of a nuclear reactor during emergency and routine shutdown operations. Injection of boron solution (borated water) into the core of a reactor is one of the commonly used methods during emergency operation. A pilot-scale poison tank was designed and fabricated to simulate injection of boron poison into the core of a reactor along with coolant water. In order to design a full-scale poison tank, it was desired to characterize flow of liquid from the tank. Residence time distribution (RTD) measurement and analysis was adopted to characterize the flow dynamics. Radiotracer technique was applied to measure RTD of aqueous phase in the tank using Bromine-82 as a radiotracer. RTD measurements were carried out with two different modes of operation of the tank and at different flow rates. In Mode-1, the radiotracer was instantaneously injected at the inlet and monitored at the outlet, whereas in Mode-2, the tank was filled with radiotracer and its concentration was measured at the outlet. From the measured RTD curves, mean residence times (MRTs), dead volume and fraction of liquid pumped in with time were determined. The treated RTD curves were modeled using suitable mathematical models. An axial dispersion model with high degree of backmixing was found suitable to describe flow when operated in Mode-1, whereas a tanks-in-series model with backmixing was found suitable to describe flow of the poison in the tank when operated in Mode-2. The results were utilized to scale-up and design a full-scale poison tank for a nuclear reactor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Solubility testing of actinides on breathing-zone and area air samples

    NASA Astrophysics Data System (ADS)

    Metzger, Robert Lawrence

    The solubility of inhaled radionuclides in the human lung is an important characteristic of the compounds needed to perform internal dosimetry assessments for exposed workers. A solubility testing method for uranium and several common actinides has been developed with sufficient sensitivity to allow profiles to be determined from routine breathing zone and area air samples in the workplace. Air samples are covered with a clean filter to form a filter-sample-filter sandwich which is immersed in an extracellular lung serum simulant solution. The sample is moved to a fresh beaker of the lung fluid simulant each day for one week, and then weekly until the end of the 28 day test period. The soak solutions are wet ashed with nitric acid and hydrogen peroxide to destroy the organic components of the lung simulant solution prior to extraction of the nuclides of interest directly into an extractive scintillator for subsequent counting on a Photon-Electron Rejecting Alpha Liquid Scintillation (PERALSsp°ler ) spectrometer. Solvent extraction methods utilizing the extractive scintillators have been developed for the isotopes of uranium, plutonium, and curium. The procedures normally produce an isotopic recovery greater than 95% and have been used to develop solubility profiles from air samples with 40 pCi or less of Usb3Osb8. This makes it possible to characterize solubility profiles in every section of operating facilities where airborne nuclides are found using common breathing zone air samples. The new method was evaluated by analyzing uranium compounds from two uranium mills whose product had been previously analyzed by in vitro solubility testing in the laboratory and in vivo solubility testing in rodents. The new technique compared well with the in vivo rodent solubility profiles. The method was then used to evaluate the solubility profiles in all process sections of an operating in situ uranium plant using breathing zone and area air samples collected during routine plant operations. The solubility profiles developed from this work showed excellent agreement with the results of the worker urine bioassay program at the plant and identified a significant error in existing internal dose assessments at this facility.

  15. [Effect of thalidomide in a mouse model of paraquat-induced acute lung injury and the underlying mechanisms].

    PubMed

    Li, Dong; Xu, Li-yan; Chang, Zi-juan; Zhao, Guang-ju; Nan, Chao; Lu, Zhong-qiu

    2013-03-01

    To investigate the intervention effect of thalidomide on paraquat-induced acute lung injury in mice and its mechanism. Male ICR mice were randomly allocated to negative control group (n = 30), thalidomide control group (n = 30), paraquat poisoning group (n = 30), 50 mg/kg thalidomide treatment group (n = 30), 100 mg/kg thalidomide treatment group (n = 30), and 150 mg/kg thalidomide treatment group (n = 30). The negative control group was intraperitoneally injected with the same volume of saline; the thalidomide control group was intraperitoneally injected with thalidomide (150 mg/kg); the paraquat poisoning group was intraperitoneally injected with diluted paraquat solution (22 mg/kg); each thalidomide treatment group was intraperitoneally injected with the same volume of paraquat solution (22 mg/kg) and was injected with thalidomide (50, 100, or 150 mg/kg) 1 h later. All mice were anesthetized and sacrificed at 1, 3, or 7 d after paraquat poisoning, and their lung tissue was collected. The levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in lung tissue were measured by double-antibody sandwich ELISA; the mRNA expression of nuclear factor-kappa B (NF-κB) was measured by RT-PCR; the protein expression of nuclear NF-kgr;B p65 was measured by Western blot. The pathological changes of lung tissue were observed under light microscope; the wet/dry ratio of the lung was calculated. Compared with the negative control group, the paraquat poisoning group had significantly increased levels of TNF-α, IL-1β, IL-6, NF-κB mRNA, and nuclear NF-κB p65 and wet/dry ratio of the lung (P < 0.05). Compared with the paraquat poisoning group, the thalidomide treatment groups had significantly decreased levels of TNF-α, IL-1β, IL-6, NF-κB mRNA, and nuclear NF-κB p65 and wet/dry ratios of the lung (P < 0.05), and the 150 mg/kg thalidomide treatment group showed the most significant decrease in the levels of TNF-α, IL-1β, IL-6, NF-κB mRNA, and nuclear NF-κB p65. The observation of pathological changes showed that the paraquat poisoning group had the most marked lung tissue damage at 3 d after poisoning, and the lung tissue damage was lessened in the thalidomide treatment groups. Thalidomide can reduce paraquat-induced acute lung injury and lung edema. The mechanism may include inhibition of NF-κB activation and expression and downregulation of TNF-α, IL-1β, and IL-6.

  16. Purification of uranium alloys by differential solubility of oxides and production of purified fuel precursors

    DOEpatents

    McLean, II, William; Miller, Philip E.

    1997-01-01

    A method for purifying metallic alloys of uranium for use as nuclear reactor fuels in which the metal alloy is first converted to an oxide and then dissolved in nitric acid. Initial removal of metal oxide impurities not soluble in nitric acid is accomplished by filtration or other physical means. Further purification can be accomplished by carbonate leaching of uranyl ions from the partially purified solution or using traditional methods such as solvent extraction.

  17. Purification of uranium alloys by differential solubility of oxides and production of purified fuel precursors

    DOEpatents

    McLean, W. II; Miller, P.E.

    1997-12-16

    A method is described for purifying metallic alloys of uranium for use as nuclear reactor fuels in which the metal alloy is first converted to an oxide and then dissolved in nitric acid. Initial removal of metal oxide impurities not soluble in nitric acid is accomplished by filtration or other physical means. Further purification can be accomplished by carbonate leaching of uranyl ions from the partially purified solution or using traditional methods such as solvent extraction. 3 figs.

  18. HIGH DENSITY NUCLEAR FUEL COMPOSITION

    DOEpatents

    Litton, F.B.

    1962-07-17

    ABS>A nuclear fuel consisting essentially of uranium monocarbide and containing 2.2 to 4.6 wt% carbon, 0.1 to 2.3 wt% oxygen, 0.05 to 2.5 wt% nitrogen, and the balance uranium was developed. The maximum oxygen content was less than one-half the carbon content by weight and the carbon, oxygen, and nitrogen are present as a single phase substituted solid solution of UC, C, O, and N. A method of preparing the fuel composition is described. (AEC)

  19. ISOTOPE FRACTIONATION PROCESS

    DOEpatents

    Clewett, G.H.; Lee, DeW.A.

    1958-05-20

    A new method is described for isotopic enrichment of uranium. It has been found that when an aqueous acidic solution of ionic tetravalent uraniunn is contacted with chelate complexed tetravalent uranium, the U/sup 238/ preferentially concentrates in the complexed phase while U/sup 235/ concentrates in the ionic phase. The effect is enhanced when the chelate compound is water insoluble and is dissolved in a water-immiscible organic solvent. Cupferron is one of a number of sultable complexing agents, and chloroform is a suitable organic solvent.

  20. Tetravalent uranium extraction by HDEHP in kerosene from phosphate medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daoud, J.A.; Zeid, M.M.; Aly, H.F.

    1997-03-01

    The extraction of U(IV) by di-2-ethylhexyl phosphoric acid (HDEHP) in kerosene from phosphoric acid was measured spectrophotometrically. The effect of extractant, phosphoric acid, uranium, Fe(II) and Fe(III) concentrations on the extraction process were separately investigated. The effect of different reagents and temperature on the stripping of U(IV) were also tested. The results obtained showed that the extraction increases with the increase in HDEHP and Fe(III) concentrations while it decreases with the increase in phosphoric acid, uranium and Fe(II) concentration. The use of high phosphoric acid concentration as strip solutions at low temperature was found to give good stripping results. 11more » refs., 8 figs., 2 tabs.« less

  1. LEACHING OF URANIUM ORES USING ALKALINE CARBONATES AND BICARBONATES AT ATMOSPHERIC PRESSURE

    DOEpatents

    Thunaes, A.; Brown, E.A.; Rabbits, A.T.; Simard, R.; Herbst, H.J.

    1961-07-18

    A method of leaching uranium ores containing sulfides is described. The method consists of adding a leach solution containing alkaline carbonate and alkaline bicarbonate to the ore to form a slurry, passing the slurry through a series of agitators, passing an oxygen containing gas through the slurry in the last agitator in the series, passing the same gas enriched with carbon dioxide formed by the decomposition of bicarbonates in the slurry through the penultimate agitator and in the same manner passing the same gas increasingly enriched with carbon dioxide through the other agitators in the series. The conditions of agitation is such that the extraction of the uranium content will be substantially complete before the slurry reaches the last agitator.

  2. Structural and spectroscopic studies of a rare non-oxido V(v) complex crystallized from aqueous solution

    DOE PAGES

    Leggett, Christina J.; Parker, Bernard F.; Teat, Simon J.; ...

    2016-01-14

    A “bare” V 5+ complex with glutaroimide-dioxime (H 3L), a ligand for uranium recovery from seawater, was synthesized from aqueous solution as Na[V(L) 2]2H 2O and the structure determined by x-ray diffraction. It is the first non-oxo V(v) complex that has been directly synthesized in and crystallized from aqueous solution.

  3. Structural and spectroscopic studies of a rare non-oxido V(v) complex crystallized from aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, Christina J.; Parker, Bernard F.; Teat, Simon J.

    A “bare” V 5+ complex with glutaroimide-dioxime (H 3L), a ligand for uranium recovery from seawater, was synthesized from aqueous solution as Na[V(L) 2]2H 2O and the structure determined by x-ray diffraction. It is the first non-oxo V(v) complex that has been directly synthesized in and crystallized from aqueous solution.

  4. The use of an automated interactive voice response system to manage medication identification calls to a poison center.

    PubMed

    Krenzelok, Edward P; Mrvos, Rita

    2009-05-01

    In 2007, medication identification requests (MIRs) accounted for 26.2% of all calls to U.S. poison centers. MIRs are documented with minimal information, but they still require an inordinate amount of work by specialists in poison information (SPI). An analysis was undertaken to identify options to reduce the impact of MIRs on both human and financial resources. All MIRs (2003-2007) to a certified regional poison information center were analyzed to determine call patterns and staffing. The data were used to justify an efficient and cost-effective solution. MIRs represented 42.3% of the 2007 call volume. Optimal staffing would require hiring an additional four full-time equivalent SPI. An interactive voice response (IVR) system was developed to respond to the MIRs. The IVR was used to develop the Medication Identification System that allowed the diversion of up to 50% of the MIRs, enhancing surge capacity and allowing specialists to address the more emergent poison exposure calls. This technology is an entirely voice-activated response call management system that collects zip code, age, gender and drug data and stores all responses as .csv files for reporting purposes. The query bank includes the 200 most common MIRs, and the system features text-to-voice synthesis that allows easy modification of the drug identification menu. Callers always have the option of engaging a SPI at any time during the IVR call flow. The IVR is an efficient and effective alternative that creates better staff utilization.

  5. Retardation of uranium and thorium by a cementitious backfill developed for radioactive waste disposal.

    PubMed

    Felipe-Sotelo, M; Hinchliff, J; Field, L P; Milodowski, A E; Preedy, O; Read, D

    2017-07-01

    The solubility of uranium and thorium has been measured under the conditions anticipated in a cementitious, geological disposal facility for low and intermediate level radioactive waste. Similar solubilities were obtained for thorium in all media, comprising NaOH, Ca(OH) 2 and water equilibrated with a cement designed as repository backfill (NRVB, Nirex Reference Vault Backfill). In contrast, the solubility of U(VI) was one order of magnitude higher in NaOH than in the remaining solutions. The presence of cellulose degradation products (CDP) results in a comparable solubility increase for both elements. Extended X-ray Absorption Fine Structure (EXAFS) data suggest that the solubility-limiting phase for uranium corresponds to a becquerelite-type solid whereas thermodynamic modelling predicts a poorly crystalline, hydrated calcium uranate phase. The solubility-limiting phase for thorium was ThO 2 of intermediate crystallinity. No breakthrough of either uranium or thorium was observed in diffusion experiments involving NRVB after three years. Nevertheless, backscattering electron microscopy and microfocus X-ray fluorescence confirmed that uranium had penetrated about 40 μm into the cement, implying active diffusion governed by slow dissolution-precipitation kinetics. Precise identification of the uranium solid proved difficult, displaying characteristics of both calcium uranate and becquerelite. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Performance and Mechanism of Uranium Adsorption from Seawater to Poly(dopamine)-Inspired Sorbents.

    PubMed

    Wu, Fengcheng; Pu, Ning; Ye, Gang; Sun, Taoxiang; Wang, Zhe; Song, Yang; Wang, Wenqing; Huo, Xiaomei; Lu, Yuexiang; Chen, Jing

    2017-04-18

    Developing facile and robust technologies for effective enrichment of uranium from seawater is of great significance for resource sustainability and environmental safety. By exploiting mussel-inspired polydopamine (PDA) chemistry, diverse types of PDA-functionalized sorbents including magnetic nanoparticle (MNP), ordered mesoporous carbon (OMC), and glass fiber carpet (GFC) were synthesized. The PDA functional layers with abundant catechol and amine/imine groups provided an excellent platform for binding to uranium. Due to the distinctive structure of PDA, the sorbents exhibited multistage kinetics which was simultaneously controlled by chemisorption and intralayer diffusion. Applying the diverse PDA-modified sorbents for enrichment of low concentration (parts per billion) uranium in laboratory-prepared solutions and unpurified seawater was fully evaluated under different scenarios: that is, by batch adsorption for MNP and OMC and by selective filtration for GFC. Moreover, high-resolution X-ray photoelectron spectroscopic and extended X-ray absorption fine structure studies were performed for probing the underlying coordination mechanism between PDA and U(VI). The catechol hydroxyls of PDA were identified as the main bidentate ligands to coordinate U(VI) at the equatorial plane. This study assessed the potential of versatile PDA chemistry for development of efficient uranium sorbents and provided new insights into the interaction mechanism between PDA and uranium.

  7. Biosorption of heavy metals and uranium from dilute solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, I.A.H.; Misra, M.; Smith, R.W.

    1995-08-01

    Eichhornia crassipes approaches being a scourge in many parts of the world, choking waterways and hindering transport upon them. At the same time it is known to readily abstract heavy metal ions from water and, thus, aids in the removal of heavy metals found in such waters. This paper considers the possibility of using specific parts of the plant as an inexpensive adsorbent for the removal of heavy metals from contaminated chemical and mining industry waste waters. In particular the root of the plant was found to be an excellent accumulator of heavy metal ions including uranium from solution. Itmore » is also suggested that dried roots of the plant might be placed in simple bags and used in a very low cost metal ion removal system.« less

  8. Composition for detecting uranyl

    DOEpatents

    Baylor, L.C.; Stephens, S.M.

    1994-01-01

    The present invention relates to an indicator composition for use in spectrophotometric detection of a substance in a solution, and a method for making the composition. Useful indicators are sensitive to the particular substance being measured, but are unaffected by the fluid and other chemical species that may be present in the fluid. Optical indicators are used to measure the uranium concentration of process solutions in facilities for extracting uranium from ores, production of nuclear fuels, and reprocessing of irradiated fuels. The composition comprises an organohalide covalently bonded to an indicator for the substance, in such a manner that the product is itself an indicator that provides increased spectral resolution for detecting the substance. The indicator is preferably arsenazo III and the organohalide is preferably cyanuric chloride. These form a composition that is ideally suited for detecting uranyl.

  9. A XAS study of the local environments of cations in (U, Ce)O 2

    NASA Astrophysics Data System (ADS)

    Martin, Philippe; Ripert, Michel; Petit, Thierry; Reich, Tobias; Hennig, Christoph; D'Acapito, Francesco; Hazemann, Jean Louis; Proux, Olivier

    2003-01-01

    Mixed oxide (MOX) fuel is usually considered as a solid solution formed by uranium and plutonium dioxides. Nevertheless, some physico-chemical properties of (U 1- y, Pu y)O 2 samples manufactured under industrial conditions showed anomalies in the domain of plutonium contents ranging between 3 and 15 at.%. Cerium is commonly used as an inactive analogue of plutonium in preliminary studies on MOX fuels. Extended X-ray Absorption Fine Structure (EXAFS) measurements performed at the European Synchrotron Radiation Facility (ESRF) at the cerium and uranium edges on (U 1- y, Ce y)O 2 samples are presented and discussed. They confirmed on an atomic scale the formation of an ideal solid solution for cerium concentrations ranging between 0 and 50 at.%.

  10. Non-enzymatic U(VI) interactions with biogenic mackinawite

    NASA Astrophysics Data System (ADS)

    Veeramani, H.; Qafoku, N. P.; Kukkadapu, R. K.; Murayama, M.; Hochella, M. F.

    2011-12-01

    Reductive immobilization of hexavalent uranium [U(VI)] by stimulation of dissimilatory metal and/or sulfate reducing bacteria (DMRB or DSRB) has been extensively researched as a remediation strategy for subsurface U(VI) contamination. These bacteria derive energy by reducing oxidized metals as terminal electron acceptors, often utilizing organic substrates as electron donors. Thus, when evaluating the potential for in-situ uranium remediation in heterogeneous subsurface media, it is important to understand how the presence of alternative electron acceptors such as Fe(III) and sulfate affect U(VI) remediation and the long term behavior and reactivity of reduced uranium. Iron, an abundant subsurface element, represents a substantial sink for electrons from DMRB, and the reduction of Fe(III) leads to the formation of dissolved Fe(II) or to reactive biogenic Fe(II)- and mixed Fe(II)/Fe(III)- mineral phases. Consequently, abiotic U(VI) reduction by reactive forms of biogenic Fe(II) minerals could be a potentially important process for uranium immobilization. In our study, the DMRB Shewanella putrefaciens CN32 was used to synthesize a biogenic Fe(II)-bearing sulfide mineral: mackinawite, that has been characterized by XRD, SEM, HRTEM and Mössbauer spectroscopy. Batch experiments involving treated biogenic mackinawite and uranium (50:1 molar ratio) were carried out at room temperature under strict anoxic conditions. Following complete removal of uranium from solution, the biogenic mackinawite was analyzed by a suite of analytical techniques including XAS, HRTEM and Mössbauer spectroscopy to determine the speciation of uranium and investigate concomitant Fe(II)-phase transformation. Determining the speciation of uranium is critical to success of a remediation strategy. The present work elucidates non-enzymatic/abiotic molecular scale redox interactions between biogenic mackinawite and uranium.

  11. Adsorption property of Br-PADAP-impregnated multiwall carbon nanotubes towards uranium and its performance in the selective separation and determination of uranium in different environmental samples.

    PubMed

    Khamirchi, Ramzanali; Hosseini-Bandegharaei, Ahmad; Alahabadi, Ahmad; Sivamani, Selvaraju; Rahmani-Sani, Abolfazl; Shahryari, Taher; Anastopoulos, Ioannis; Miri, Mohammad; Tran, Hai Nguyen

    2018-04-15

    A newer efficient U(VI) ion adsorbent was synthesized by impregnating Br-PADAP [2-(5-Bromo-2-pyridylazo)-5-(diethylamino)phenol] onto multiwall carbon nanotubes (MWCNTs). The effects of various operation conditions on uranium adsorption (i.e., pH contact time, temperature, and initial uranium concentration) were systematically evaluated using batch experiments. The results indicated that the uranium adsorption on modified MWNCTs (5.571 × 10 -3 g/mg × min) reached faster equilibrium than that on pristine MWNCTs (4.832 × 10 -3 g/mg × min), reflecting the involvement of appropriate functional groups of Br-PADAP on the chelating ion-exchange mechanism of U(VI) adsorption. Modified MWNCTs (83.4mg/g) exhibited significantly higher maximum Langmuir adsorption capacity than pristine MWNCTs (15.1mg/g). Approximately 99% of uranium adsorbed onto modified MWNCTs can be desorbed by 2.5mL of 1M HNO 3 solution. Therefore, Br-PADAP-modified MWNCTs can server as a promising adsorbent for efficient uranium adsorption applications in water treatment. Subsequently, the proposed solid-phase extraction (using a mini-column packed with Br-PADAP/MWCNT) was successfully utilized for analysing trace uranium levels by the ICP-AES method in different environmental samples with a pre-concentration factor of 300-fold. The coexistence of other ions demonstrated an insignificant interference on the separative pre-concentration of uranium. the detection limit was recognized as 0.14μg/L, and the relative standard deviation was approximately 3.3% (n = 7). Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Impact of the uranium (VI) speciation in mineralised urines on its extraction by calix[6]arene bearing hydroxamic groups used in chromatography columns.

    PubMed

    Baghdadi, S; Bouvier-Capely, C; Ritt, A; Peroux, A; Fevrier, L; Rebiere, F; Agarande, M; Cote, G

    2015-11-01

    Actinides determination in urine samples is part of the analyses performed to monitor internal contamination in case of an accident or a terrorist attack involving nuclear matter. Mineralisation is the first step of any of these analyses. It aims at reducing the sample volume and at destroying all organic compounds present. The mineralisation protocol is usually based on a wet ashing step, followed by actinides co-precipitation and a furnace ashing step, before redissolution and the quantification of the actinides by the appropriate techniques. Amongst the existing methods to perform the actinides co-precipitation, alkali-earth (typically calcium) precipitation is widely used. In the present work, the extraction of uranium(VI), plutonium(IV) and americium(III) from the redissolution solutions (called "mineralised urines") on calix[6]arene columns bearing hydroxamic groups was investigated as such an extraction is a necessary step before their determination by ICP-MS or alpha spectrometry. Difficulties were encountered in the transfer of uranium(VI) from raw to mineralised urines, with yield of transfer ranging between 0% and 85%, compared to about 90% for Pu and Am, depending on the starting raw urines. To understand the origin of such a difficulty, the speciation of uranium (VI) in mineralised urines was investigated by computer simulation using the MEDUSA software and the associated HYDRA database, compiled with recently published data. These calculations showed that the presence of phosphates in the "mineralised urines" leads to the formation of strong uranyl-phosphate complexes (such as UO2HPO4) which compete with the uranium (VI) extraction by the calix[6]arene bearing hydroxamic groups. The extraction constant of uranium (VI) by calix[6]arene bearing hydroxamic groups was determined in a 0.04 mol L(-1) sodium nitrate solution (logK=4.86±0.03) and implemented in an extraction model taking into account the speciation in the aqueous phase. This model allowed to simulate satisfactorily the experimental uranium extraction data and to support the preliminary conclusions about the role of the phosphates present in mineralised urines. These calculations also showed that the phosphate/calcium ratio is a key parameter as far as the efficiency of the uranium (VI) extraction by the calix[6]arene columns is concerned. It predicted that the addition of CaCl2 in mineralised urines would release uranium (VI) from phosphates by forming calcium (II)-phosphate complexes and thus facilitate the uranium (VI) extraction on calix[6]arene columns. These predictions were confirmed experimentally as the addition of 0.1 mol L(-1) CaCl2 to a mineralised urine containing naturally a high concentration of phosphate (typically 0.04 mol L(-1)) significantly increased the percentage of uranium (VI) extraction on the calix[6]arene columns. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Delisting toxicity evaluation of HTH and oxone(trade name) decontaminated VX. Final report, July 1989-March 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manthei, J.H.; Heitkamp, D.H.; Buettner, L.C.

    1992-07-01

    The acute percutaneous (bare skin) LD50 was determined for EA 2192 in the rabbit. Also established were the effective doses (ED50s) for the major toxic signs observed. Dermal, Department of Transportation (DOT), tests with rabbits indicated that VX/HTH decontaminated waste is a Class B poison after being aged only 24 hr following initiation of the decontamination procedure. The same reaction, when allowed to age through about 2 half-lives (28-30 days), was no longer a Class B poison and was nonhazardous by Code of Maryland Regulations (COMAR) toxicity criteria. The DOT tests with OXONE decontaminated/neutralized VX showed this solution to bemore » less than a Class B poison by all three routes of administration (rat oral, rat inhalation, and rabbit dermal) after only 24-hr aging and a nonhazardous material by COMAR toxicity criteria.... vx, Rat, Half-life, ED50, EA 2192, Rabbit, COMAR, Decontaminated/Neutralized, HTH, OXONE, LD50.« less

  14. Uranium in granitic magmas: Part 2. Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H 2O-NaX (X = Cl, F) system at 770°C, 2 kbar

    NASA Astrophysics Data System (ADS)

    Peiffert, Chantal; nguyen-Trung, Chinh; Cuney, Michel

    1996-05-01

    The solubility of uranium oxide was investigated in both aqueous halide (Cl, F) fluid and granitic melt in equilibrium in the system uranium oxide-haplogranite-H 2O-NaCl (0.1-5.0 molal), NaF (0.1-0.5 molal) at 770°C, 2 kbar, and fO 2 conditions controlled by Ni-NiO, Fe 3O 4-Fe 2O 3, and Cu 2O- CuO buffers. Three distinct uranium oxides UO (2+ x) with x = 0.01 ± 0.01; 0.12 ± 0.02; and 0.28 ± 0.02, respec- tively, were obtained in both chloride and fluoride systems, under the three fO 2 conditions cited above. Changes in the composition of aqueous solutions and silicate melt were observed after the runs. These changes were more pronounced for the fluoride-bearing experiments. Quench pH decreased from 5.9 to 2.1 with increasing chloride molality from 0.085-4.38 molal. For fluoride solutions, the decrease of pH from 5.4 to 3.4 corresponded to the increase of fluoride molality from 0.02-0.23 molal. The U solubility in chloride solutions was in the range 10-967 ppm. For the same molality, fluoride solutions appeared to dissolve up to twenty times more uranium than chloride solutions. The increase of halide molality and oxidation led to increase the U solubility. The U solubility in silicate glasses was in the range 10-1.8 × 10 4 ppm and increased with increasing oxidation and halide concentration. In addition, increasing agpaicity also increased U solubility in the chloride system. This effect was not observed in the fluoride system. The chloride concentration in the silicate melt increased from 100-790 ppm with increasing initial aqueous chloride concentration from 0.1-5.0 m. The fluoride concentration in the silicate melt increased from 2.8 × 10 3 to 1.1 × 10 4 ppm with increasing initial fluoride concentra- tion from 0.1-0.5 m. In the chloride system, the partition coefficient of U (log D)(U) fluid/melt) increased from -1.2-0 with increasing agpaicity from 0.92-1.36, for increasing chloride concentration from 0.085-4.38 molal and for increasing fO 2 from 10 -15 to 10 -4 bar. In the fluoride system, a linear correlation was established between the partition coefficient of U and the log fO 2. In F-rich system, D(U) fluid/melt values was in the range 2.4 × 10 -2-4.2 × 10 -2 for increasing fluoride concentration from 0.02-0.22 molal and for the same increasing of fO 2. In the chloride system, the partition coefficients of Na ( D (Na) fluid/melt) and K ( D) (K) fluid/melt) are in good agreement up to 1.0 m NaCl with the two linear equations established by Holland (1972) : D (Na) fluid/melt = 0.46 × (Cl)(m) (1) and D(Na) fluid/melt = 0.34 × (Cl)(m) (2). However, in initial 5.0 m NaCl, slopes of Eqns. 1 and 2 decreased to 0.41 and 0.16, respectively. Data obtained in the present study provide useful information for the understanding of the behaviour of U in the fractionation processes of halide rich magmas. Fluid/melt partition coefficients higher than one, favorable for the genesis of magmatic U mineralization, can be reached for peraluminous leucogran- ites in equilibrium with chloride-rich solutions.

  15. Effect of uranium(VI) speciation on simultaneous microbial reduction of uranium(VI) and iron(III).

    PubMed

    Stewart, Brandy D; Amos, Richard T; Fendorf, Scott

    2011-01-01

    Uranium is a pollutant of concern to both human and ecosystem health. Uranium's redox state often dictates whether it will reside in the aqueous or solid phase and thus plays an integral role in the mobility of uranium within the environment. In anaerobic environments, the more oxidized and mobile form of uranium (UO2(2+) and associated species) may be reduced, directly or indirectly, by microorganisms to U(IV) with subsequent precipitation of UO. However, various factors within soils and sediments, such as U(VI) speciation and the presence of competitive electron acceptors, may limit biological reduction of U(VI). Here we examine simultaneous dissimilatory reduction of Fe(III) and U(VI) in batch systems containing dissolved uranyl acetate and ferrihydrite-coated sand. Varying amounts of calcium were added to induce changes in aqueous U(VI) speciation. The amount of uranium removed from solution during 100 h of incubation with S. putrefaciens was 77% in absence of Ca or ferrihydrite, but only 24% (with ferrihydrite) and 14% (without ferrihydrite) were removed for systems with 0.8 mM Ca. Dissimilatory reduction of Fe(III) and U(VI) proceed through different enzyme pathways within one type of organism. We quantified the rate coefficients for simultaneous dissimilatory reduction of Fe(III) and U(VI) in systems varying in Ca concecentration (0-0.8 mM). The mathematical construct, implemented with the reactive transport code MIN3P, reveals predominant factors controlling rates and extent of uranium reduction in complex geochemical systems.

  16. Removing Biostatic Agents From Fermentation Solutions

    NASA Technical Reports Server (NTRS)

    Du Fresne, E. R.

    1984-01-01

    Liquid carbon dioxide inexpensive solvent. Inexpensive process proposed for removing such poisons as furfural and related compounds from fermentation baths of biomass hydrolysates. New process based on use of liquid carbon dioxide as extraction solvent. Liquid CO2 preferable to such other liquid solvents as ether or methylene chloride.

  17. 5. VIEW OF THE INSPECTION PORT ON THE SIDE OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF THE INSPECTION PORT ON THE SIDE OF A TYPICAL URANIUM SOLUTION STORAGE TANK IN 1996. INSIDE THE TANK ARE RASCHIG RINGS, WHICH ACT AS NEUTRON ABSORBERS TO CONTROL FISSION AND KEEP THE SOLUTION AT SUB-CRITICAL. - Rocky Flats Plant, Critical Mass Laboratory, Intersection of Central Avenue & 86 Drive, Golden, Jefferson County, CO

  18. METHOD OF INHIBITING CORROSION IN URANYL SULFATE SOLUTIONS

    DOEpatents

    Bohlmann, E.G.; Griess, J.C. Jr.

    1960-08-23

    A method is given for treating a uranyl sulfate solution to inhibit the corrosiveness of the solution and elevate the phase separation temperature of the solution. Lithium sulfate is added to the solution in an amount ranging from 0.25 to 1.3 times the uranyl sulfate concentration. The corrosiveness of the solution with respect to stainless steel is substantially decreased by this means. This treatment also serves to raise the phase separation temperature of the solution (above 250 deg C), at which time the uranyl sulfate solution separates into two liquid phases of unequal uranium concentration and thus becomes unsuitable as nuclear reactor fuel.

  19. Acute pesticide ingestion managed with yohimbine as a rescue therapy

    PubMed Central

    Nasa, Prashant; Juneja, Deven

    2016-01-01

    Amitraz is used as a pesticide in agricultural and veterinary medicine. It is primarily a central α2 adrenergic agonist and known to cause central nervous system depression, convulsions, respiratory depression, and bradycardia on severe intoxication. We report a case of a 3-year-old child who presented with accidental ingestion of amitraz solution with signs of severe poisoning. There is no specific antidote of amitraz poisoning in humans, however, animal experiments with α2 adrenergic antagonists such as yohimbine and atimepazole have been successful. The child was managed besides intensive management with enteral yohimbine, and he regained consciousness in 18 h and was successfully weaned off mechanical ventilation. PMID:28149034

  20. Uranium in granitic magmas: Part 1. Experimental determination of uranium solubility and fluid-melt partition coefficients in the uranium oxide-haplogranite-H 2O-Na 2CO 3 system at 720-770°C, 2 kbar

    NASA Astrophysics Data System (ADS)

    Peiffert, Chantal; Cuney, Michel; Nguyen-Trung, Chinh

    1994-06-01

    The solubility of uranium was investigated in both carbonated aqueous fluid and granitic melt in equilibrium in the system haplogranite-uranium oxide-H 2O-Na 2CO 3 (0.5-1 molal) at 720-770°C, 2 kbar, andƒo 2 fixed by Ni-NiO, Fe 3O 4-Fe 2O 3, and Cu 2O-CuO buffers. As complete solid solution exists between UO 2.00 and UO 2.25 (i.e., 75 mol% UO 2 + 25 mol% UO 3), three distinct uranium oxides: UO (2.01 ± 0.01), UO (2.1.0 ± 0.02), and UO (2.25 ± 0.02) were, respectively, obtained at equilibrium, under the three ƒo 2 conditions cited above. Thus, the percentage of U (VI) in uranium oxide increased with increasing log ƒo 2. The thermal decomposition of Na 2CO 3 to CO 2 and Na 2O led to the decrease of the sodium carbonate concentration from 0.5-1 molal to ~10 -2 molal in all aqueous fluids and to the dissolution of Na in the silicate melts. Crystal-free silicate glasses with four agpaitic coefficients, α = ( (Na+K)/Al) = 1.1, 1.3, 1.5, and 1.7 were obtained. The uranium solubility in 10 -2 m aqueous carbonated fluid ((8.1 ± 0.1) ≤ quench pH ≤ (8.9 ± 0.1)) was in the range 1-17 ppm and increased linearly with increasing ƒo 2 according to the expression: log (U) (ppm) = 0.09 ·log ƒo 2 (bar) + 1.47 . This equation is valid for the temperature range 720-770°C and 2 kbar. U(IV) carbonate possibly were major species in aqueous solutions under reducing conditions (Ni-NiO buffer) whereas U(VI) carbonate complexes dominated under higher oxidation conditions (Fe 3O 4-Fe 2O 3, Cu 2O-CuO buffers). The uranium content in silicate glasses varied in a large range (10 2-2 × 10 5 ppm) and log (U) (ppm) increases linearly with both ƒo 2, and α in the range 1.1-1.5 according to the equation log (U) (ppm) = 0.04 log ƒo 2 (bar) + 3.80α -1.34 . This equation is valid for (1)ƒ o 2 ranging from Ni-NiO to Cu 2O-CuO, and (2) the temperature range 720-770°C at 2 kbar. The effect of ƒo 2 on the uranium solubility in silicate melt slightly decreased with increasing α from 1.1 to 1.5. For α in the range 1.5-1.7, the effect of both ƒo 2 and agpaicity index on the uranium solubility was considerably reduced. The temperature variation in the range 720-770°C had no significant effect on the uranium solubility in either aqueous fluid or silicate melt. The partition coefficient (D fluid/melt) of uranium was in the range 10 -4.0-10 -1.5 and depended on both ƒo 2 and α according to the equation log D fluid/melt = 0.05 log ƒo 2 (bar) - 3.78α + 2.84 . The validity conditions of this equation are similar to those of the preceding one. Results obtained in the present study could be used to predict the geochemical behaviour of uranium during magma fractionation and to further understanding of the formation of uranium ore deposits related to partial melting or fractional crystallization of felsic magmas. The genesis of the Kvanefjeld (Ilimaussaq, Greenland) uranium deposit is discussed.

  1. A seven-year review of accidental kerosene poisoning in children at Aminu Kano Teaching Hospital, Kano.

    PubMed

    Belonwu, R O; Adeleke, S I

    2008-01-01

    Accidental ingestion of kerosene is a potential source of morbidity and mortality in children. The objectives of the study are to determine to magnitude of the problem and proffer feasible solutions to reduce the frequency of occurrence. The medical records of all cases of kerosene poisoning admitted into Paediatric Medical Ward and Emergency Paediatric Unit were identified and relevant data extracted and analysed. Kerosene poisoning constituted 55 (1.2%) of cases of all paediatric admissions within the period (Jan 1999 Dec 2005). The study showed that children 4 months to 8 years were affected with peak age of 18 months. Thirty-four (61.8%) of the cases were aged below 2 years which conforms to findings in earlier studies in Nigeria. Main clinical feature was cough with difficulty in breathing in 52 (94.5%) of cases. Others features noted were central nervous system involvement (14.5%), vomiting (20%), and fever 16 (29.1%). There were 3 deaths giving the mortality of 5.5%. The study has revealed that kerosene poisoning is a significant cause of morbidity and mortality. Government policies that will enhance the standard of living of people and education of parents/care givers are the identified imperatives for reduction of the problem.

  2. Molecular dynamics simulation of the diffusion of uranium species in clay pores.

    PubMed

    Liu, Xiao-yu; Wang, Lu-hua; Zheng, Zhong; Kang, Ming-liang; Li, Chun; Liu, Chun-li

    2013-01-15

    Molecular dynamics simulations were carried out to investigate the diffusive behavior of aqueous uranium species in montmorillonite pores. Three uranium species (UO(2)(2+), UO(2)CO(3), UO(2)(CO(3))(2)(2-)) were confirmed in both the adsorbed and diffuse layers. UO(2)(CO(3))(3)(4-) was neglected in the subsequent analysis due to its scare occurrence. The species-based diffusion coefficients in montmorillonite pores were then calculated, and compared with the water mobility and their diffusivity in aqueous solution/feldspar nanosized fractures. Three factors were considered that affected the diffusive behavior of the uranium species: the mobility of water, the self-diffusion coefficient of the aqueous species, and the electrostatic forces between the negatively charged surface and charged molecules. The mobility of U species in the adsorbed layer decreased in the following sequence: UO(2)(2+)>UO(2)CO(3)>UO(2)(CO(3))(2)(2-). In the diffuse layer, we obtained the highest diffusion coefficient for UO(2)(CO(3))(2)(2-) with the value of 5.48×10(-10) m(2) s(-1), which was faster than UO(2)(2+). For these two charged species, the influence of electrostatic forces on the diffusion of solutes in the diffuse layer is overwhelming, whereas the influence of self-diffusion and water mobility is minor. Our study demonstrated that the negatively charged uranyl carbonate complex must be addressed in the safety assessment of potential radioactive waste disposal systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. The role of the thermal convection of fluids in the formation of unconformity-type uranium deposits: the Athabasca Basin, Canada

    NASA Astrophysics Data System (ADS)

    Pek, A. A.; Malkovsky, V. I.

    2017-05-01

    In the global production of uranium, 18% belong to the unconformity-type Canadian deposits localized in the Athabasca Basin. These deposits, which are unique in terms of their ore quality, were primarily studied by Canadian and French scientists. They have elaborated the diagenetic-hydrothermal hypothesis of ore formation, which suggests that (1) the deposits were formed within a sedimentary basin near an unconformity surface dividing the folded Archean-Proterozoic metamorphic basement and a gently dipping sedimentary cover, which is not affected by metamorphism; (2) the spatial accommodation of the deposits is controlled by the rejuvenated faults in the basement at their exit into the overlying sedimentary sequence; the ore bodies are localized above and below the unconformity surface; (3) the occurrence of graphite-bearing rocks is an important factor in controlling the local structural mineralization; (4) the ore bodies are the products of uranium precipitation on a reducing barrier. The mechanism that drives the circulation of ore-forming hydrothermal solutions has remained one of the main unclear questions in the general genetic concept. The ore was deposited above the surface of the unconformity due to the upflow discharge of the solution from the fault zones into the overlying conglomerate and sandstone. The ore formation below this surface is a result of the downflow migration of the solutions along the fault zones from sandstone into the basement rocks. A thermal convective system with the conjugated convection cells in the basement and sedimentary fill of the basin may be a possible explanation of why the hydrotherms circulate in the opposite directions. The results of our computations in the model setting of the free thermal convection of fluids are consistent with the conceptual reasoning about the conditions of the formation of unique uranium deposits in the Athabasca Basin. The calculated rates of the focused solution circulation through the fault zones in the upflow and downflow branches of a convection cell allow us to evaluate the time of ore formation up to the first hundreds of thousands years.

  4. Reactivity of uranium(iii) with H2E (E = S, Se, Te): synthesis of a series of mononuclear and dinuclear uranium(iv) hydrochalcogenido complexes.

    PubMed

    Franke, Sebastian M; Rosenzweig, Michael W; Heinemann, Frank W; Meyer, Karsten

    2015-01-01

    We report the syntheses, electronic properties, and molecular structures of a series of mono- and dinuclear uranium(iv) hydrochalcogenido complexes supported by the sterically demanding but very flexible, single N-anchored tris(aryloxide) ligand ( Ad ArO) 3 N) 3- . The mononuclear complexes [(( Ad ArO) 3 N)U(DME)(EH)] (E = S, Se, Te) can be obtained from the reaction of the uranium(iii) starting material [(( Ad ArO) 3 N)U III (DME)] in DME via reduction of H 2 E and the elimination of 0.5 equivalents of H 2 . The dinuclear complexes [{(( Ad ArO) 3 N)U} 2 (μ-EH) 2 ] can be obtained by dissolving their mononuclear counterparts in non-coordinating solvents such as benzene. In order to facilitate the work with the highly toxic gases, we created concentrated THF solutions that can be handled using simple glovebox techniques and can be stored at -35 °C for several weeks.

  5. Mitigation of Hydrogen Gas Generation from the Reaction of Uranium Metal with Water in K Basin Sludge and Sludge Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-08

    Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Testsmore » were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.« less

  6. Validation of Electrochemically Modulated Separations Performed On-Line with MC-ICP-MS for Uranium and Plutonium Isotopic Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liezers, Martin; Olsen, Khris B.; Mitroshkov, Alexandre V.

    2010-08-11

    The most time consuming process in uranium or plutonium isotopic analyses is performing the requisite chromatographic separation of the actinides. Filament preparation for thermal ionization (TIMS) adds further delays, but is generally accepted due to the unmatched performance in trace isotopic analyses. Advances in Multi-Collector Inductively Coupled Plasma Mass Spectrometry (MC-ICP-MS) are beginning to rival the performance of TIMS. Methods, such as Electrochemically Modulated Separations (EMS) can efficiently pre-concentrate U or Pu quite selectively from small solution volumes in a matrix of 0.5 M nitric acid. When performed in-line with ICP-MS, the rapid analyte release from the electrode is fast,more » and large transient analyte signal enhancements of >100 fold can be achieved as compared to more conventional continuous nebulization of the original starting solution. This makes the approach ideal for very low level isotope ratio measurements. In this paper, some aspects of EMS performance are described. These include low level Pu isotope ratio behavior versus concentration by MC-ICP-MS and uranium rejection characteristics that are also important for reliable low level Pu isotope ratio determinations.« less

  7. Wall-rock control of cortain pitchblende deposits in Golden Gate Canyon, Jefferson County, Colorado

    USGS Publications Warehouse

    Adams, John W.; Stugard, Frederick

    1954-01-01

    Carbonate veins cutting pre-Cambrian metamorphic rocks in Golden Gate Canyon contain pitchblende and base-metal sulfides. The veins occupy extensive faults of Laramide age but normally contain pitchblende only where the cut hornblende gneiss. At the Union Pacific prospect, which was studied in detail, pitchblende, hermatite, and some ankerite formed in advance of sulfides, except possibly for minor pyrite. Base-metal sulfides and the bulk of ankerite-calcite vein-filling were deposited after the pitchblende. Chemical analyses show a high ferrous iron content in the hornblende gneiss in contrast to low ferrous iron in the adjacent biotite gneiss. It is hypothesized that ferrous iron released by alteration of hornblende was partly oxidized to hematite by the ore-bearing solutions and, contemporaneously, uranium was reduced and deposited as pitchblende. In other veins, biotite or iron sulfides may have been similarly effective in precipitating pitchblende. Apparently both the ferrous ion and the sulfide ion can serve as reducing agents and control pitchblende deposition. It is suggested that conditions particularly favorable for uranium deposition are present where uranium-bearing solutions had access to rocks rich in ferrous iron or pre-existing sulfides.

  8. Chemical and mineralogical composition of the Mongolian rural soils and their uranium sorption behavior.

    PubMed

    Tserenpil, Sh; Maslov, O D; Norov, N; Liu, Q C; Fillipov, M F; Theng, Benny K G; Belov, A G

    2013-04-01

    Distribution of uranium (VI) between soil solids and solutions is a key parameter in assessing the risk to the biosphere of disposing uranium-rich waste products from nuclear plants as well as uranium (U) ore mining. Both of these topics have recently been brought to public attention in Mongolia. Regional background levels of soil elements are an important dataset for accessing the actual environmental situation and monitoring pollution levels. Little information, however, is available on background concentrations of various elements in Mongolian soils. Thirteen rural soils were sampled from six provinces in Mongolia, and the concentrations of macro-, micro- and trace elements were measured. The values obtained served as a reference (baseline) for uncontaminated soils. The soils were characterized with slightly acidic to strongly alkaline pH values. With the exception of the sample from a western province, all the soils investigated contained little organic matter. The content of soil elements did not vary widely among geographical regions. The concentration of most micro elements was within the range of worldwide soil values but the value for Zn tended to be moderately higher. The U (VI) sorption into the soils was investigated using the batch technique and the (237)U radionuclide tracer, produced by the photo fission reaction (238)U(γ, n) (237)U at an electron accelerator. The (237)U distribution coefficient (K(d)), derived from the sorption isotherms, was related to solution pH and varying from 9 to 2547 mL g(-1) when the pH ranged between 3 and 7.7. The sorption process was interpreted in terms of the formation of different U (VI) species at given concentrations, calculated using the Speciation program with and without carbonate in the system. The U sorption isotherm displayed two general patterns: one where sorption decreased as solution pH increased, showing a maximum at pH 3, and another pattern revealed an adsorption maximum at pH 5 and then decreased up to pH 7.7 (the final solution pH). The observed decrease in K(d) when solution pH increased from 6 to 8 was consistent with the increased formation of soluble UO(2)(OH)(2) species. A linear negative correlation between lgK(d) and the solution pH was observed similarly to that reported for the soils with a pH ≥ 6. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Prototype Stilbene Neutron Collar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, M. K.; Shumaker, D.; Snyderman, N.

    2016-10-26

    A neutron collar using stilbene organic scintillator cells for fast neutron counting is described for the assay of fresh low enriched uranium (LEU) fuel assemblies. The prototype stilbene collar has a form factor similar to standard He-3 based collars and uses an AmLi interrogation neutron source. This report describes the simulation of list mode neutron correlation data on various fuel assemblies including some with neutron absorbers (burnable Gd poisons). Calibration curves (doubles vs 235U linear mass density) are presented for both thermal and fast (with Cd lining) modes of operation. It is shown that the stilbene collar meets or exceedsmore » the current capabilities of He-3 based neutron collars. A self-consistent assay methodology, uniquely suited to the stilbene collar, using triples is described which complements traditional assay based on doubles calibration curves.« less

  10. The nuclear battery

    NASA Astrophysics Data System (ADS)

    Kozier, K. S.; Rosinger, H. E.

    The evolution and present status of an Atomic Energy of Canada Limited program to develop a small, solid-state, passively cooled reactor power supply known as the Nuclear Battery is reviewed. Key technical features of the Nuclear Battery reactor core include a heat-pipe primary heat transport system, graphite neutron moderator, low-enriched uranium TRISO coated-particle fuel and the use of burnable poisons for long-term reactivity control. An external secondary heat transport system extracts useful heat energy, which may be converted into electricity in an organic Rankine cycle engine or used to produce high-pressure steam. The present reference design is capable of producing about 2400 kW(t) (about 600 kW(e) net) for 15 full-power years. Technical and safety features are described along with recent progress in component hardware development programs and market assessment work.

  11. Thermochemistry of rare earth doped uranium oxides LnxU1-xO2-0.5x+y (Ln = La, Y, Nd)

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Navrotsky, Alexandra

    2015-10-01

    Lanthanum, yttrium, and neodymium doped uranium dioxide samples in the fluorite structure have been synthesized, characterized in terms of metal ratio and oxygen content, and their enthalpies of formation measured by high temperature oxide melt solution calorimetry. For oxides doped with 10-50 mol % rare earth (Ln) cations, the formation enthalpies from constituent oxides (LnO1.5, UO2 and UO3 in a reaction not involving oxidation or reduction) become increasingly exothermic with increasing rare earth content, while showing no significant dependence on the varying uranium oxidation state. The oxidation enthalpy of LnxU1-xO2-0.5x+y is similar to that of UO2 to UO3 for all three rare earth doped systems. Though this may suggest that the oxidized uranium in these systems is energetically similar to that in the hexavalent state, thermochemical data alone can not constrain whether the uranium is present as U5+, U6+, or a mixture of oxidation states. The formation enthalpies from elements calculated from the calorimetric data are generally consistent with those from free energy measurements.

  12. Rapid extraction and assay of uranium from environmental surface samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, Christopher A.; Chouyyok, Wilaiwan; Speakman, Robert J.

    Extraction methods enabling faster removal and concentration of uranium compounds for improved trace and low-level assay are demonstrated for standard surface sampling material in support of nuclear safeguards efforts, health monitoring, and other nuclear analysis applications. A key problem with the existing surface sampling swipes is the requirement for complete digestion of sample and sampling matrix. This is a time-consuming and labour-intensive process that limits laboratory throughput, elevates costs, and increases background levels. Various extraction methods are explored for their potential to quickly and efficiently remove different chemical forms of uranium from standard surface sampling material. A combination of carbonatemore » and peroxide solutions is shown to give the most rapid and complete form of uranyl compound extraction and dissolution. This rapid extraction process is demonstrated to be compatible with standard inductive coupled plasma mass spectrometry methods for uranium isotopic assay as well as screening techniques such as x-ray fluorescence. The general approach described has application beyond uranium to other analytes of nuclear forensic interest (e.g., rare earth elements and plutonium) as well as heavy metals for environmental and industrial hygiene monitoring.« less

  13. Simultaneous extraction and preconcentration of uranium and thorium in aqueous samples by new modified mesoporous silica prior to inductively coupled plasma optical emission spectrometry determination.

    PubMed

    Yousefi, Seyed Reza; Ahmadi, Seyed Javad; Shemirani, Farzaneh; Jamali, Mohammad Reza; Salavati-Niasari, Masoud

    2009-11-15

    A new synthesized modified mesoporous silica (MCM-41) using 5-nitro-2-furaldehyde (fural) was applied as an effective sorbent for the solid phase extraction of uranium(VI) and thorium(IV) ions from aqueous solution for the measurement by inductively coupled plasma optical emission spectrometry (ICP OES). The influences of some analytical parameters on the quantitative recoveries of the analyte ions were investigated in batch method. Under optimal conditions, the analyte ions were sorbed by the sorbent at pH 5.5 and then eluted with 1.0 mL of 1.0 mol L(-1) HNO(3). The preconcentration factor was 100 for a 100mL sample volume. The limits of detection (LOD) obtained for uranium(VI) and thorium(IV) were 0.3 microg L(-1). The maximum sorption capacity of the modified MCM-41 was found to be 47 and 49 mg g(-1) for uranium(VI) and thorium(IV), respectively. The sorbent exhibited good stability, reusability, high adsorption capacity and fast rate of equilibrium for sorption/desorption of uranium and thorium ions. The applicability of the synthesized sorbent was examined using CRM and real water samples.

  14. [Determination of 235U/238U isotope ratios in camphor tree bark samples by MC-ICP-MS after separation of uranium from matrix elements].

    PubMed

    Wang, Xiao-Ping; Zhang, Ji-Long

    2007-07-01

    Twelve camphor (cinnamomum camphora) tree bark samples were collected from Hiroshima and Kyoto, and the matrix element composition and morphology of the outer surface of these camphor tree bark samples were studied by EDXS and SEM respectively. After a dry decomposition, DOWEX 1-X8 anion exchange resin was used to separate uranium from matrix elements in these camphor tree bark samples. Finally, 235U/238 U isotope ratios in purified uranium solutions were determined by MC-ICP-MS. It was demonstrated that the outer surface of these camphor tree bark samples is porous and rough, with Al, Ca, Fe, K, Mg, Si, C, O and S as its matrix element composition. Uranium in these camphor tree bark samples can be efficiently separated and quantitatively recovered from the matrix element composition. Compared with those collected from Kyoto, the camphor tree bark samples collected from Hiroshima have significantly higher uranium contents, which may be due to the increased aerosol mass concentration during the city reconstruction. Moreover, the 235 U/23.U isotope ratios in a few camphor tree bark samples collected from Hiroshima are slightly higher than 0.007 25.

  15. Precipitation characteristics of uranyl ions at different pHs depending on the presence of carbonate ions and hydrogen peroxide.

    PubMed

    Kim, Kwang-Wook; Kim, Yeon-Hwa; Lee, Se-yoon; Lee, Jae-Won; Joe, Kih-Soo; Lee, Eil-Hee; Kim, Jong-Seung; Song, Kyuseok; Song, Kee-Chan

    2009-04-01

    This work studied the dissolution of uranium dioxide and precipitation characteristics of uranyl ions in alkaline and acidic solutions depending on the presence of carbonate ions and H2O2 in the solutions at different pHs controlled by adding HNO3 or NaOH in the solution. The chemical structures of the precipitates generated in different conditions were evaluated and compared by using XRD, SEM, TG-DT, and IR analyses together. The sizes and forms of the precipitates in the solutions were evaluated, as well. The uranyl ions were precipitated in the various forms, depending on the solution pH and the presences of hydrogen peroxide and carbonate ions in the solution. In a 0.5 M Na2CO3 solution with H2O2, where the uranyl ions formed mixed uranyl peroxy-carbonato complexes, the uranyl ions were precipitated as a uranium peroxide of UO4(H20)4 at pH 3-4, and precipitated as a clarkeite of Na2U2Ox(OH)y(H2O)z above pH 13. In the same carbonate solution without H2O2, where the uranyl ions formed uranyl tris-carbonato complex, the uranyl ions were observed to be precipitated as a different form of clarkeite above pH 13. The precipitate of uranyl ions in a nitrate solution without carbonate ions and H2O2 at a high pH were studied together to compare the precipitate forms in the carbonate solutions.

  16. The Resin-in-pulp Process and Its Application to Ores from Brosses "BRS 10"; LE PROCEDE "RESIN IN PULP" ET SON APPLICATION AUX MINERAIS DES BROSSES "BRS 10"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kremer, M.

    1959-03-01

    The resin-in-pulp process is a technical variant of the recovery process of uranium in dilute solution by means of ion exchange resins. An anion resin, XE 123, of a welldefined grain size is placed in direct contact with the pulp produced by sulfuric acid attack on ore with a low uranium content. This process is of particular value in the treatment of pulps that cannot be filtered or decanted, such as those obtained with ore from Brosses. The preparation of the pulp, the elution of the uranium, and its fixation, as well as the various factors encountered in these operations,more » are discussed. (auth)« less

  17. Validation of uranium determination in urine by ICP-MS.

    PubMed

    Bouvier-Capely, C; Baglan, N; Montègue, A; Ritt, J; Cossonnet, C

    2003-08-01

    A rapid procedure--dilution of urine+ICP-MS measurement--for the determination of uranium in urine was validated. Large ranges of concentration and isotopic composition were studied on urine samples excreted by occupationally exposed workers. The results were consistent with those obtained by fluorimetry and by alpha spectrometry after a purification procedure, two currently used techniques. However, the proposed procedure is limited for determination of the minor isotope 234U. Thus for worker monitoring, the conversion of 234U mass concentration into activity concentration can lead to an erroneous value of the effective dose, in particular for a contamination at very low level with highly enriched uranium. A solution to avoid this hazard is to perform a chemical purification prior to ICP-MS measurement to lower uncertainty and detection limit for 234U.

  18. NITRIC ACID PICKLING PROCESS

    DOEpatents

    Boller, E.R.; Eubank, L.D.

    1958-08-19

    An improved process is described for the treatment of metallic uranium surfaces preparatory to being given hot dip coatings. The process consists in first pickling the uraniunn surInce with aqueous 50% to 70% nitric acid, at 60 to 70 deg C, for about 5 minutes, rinsing the acid solution from the uranium article, promptly drying and then passing it through a molten alkali-metal halide flux consisting of 42% LiCl, 53% KCla and 5% NaCl into a molten metal bath consisting of 85 parts by weight of zinc and 15 parts by weight of aluminum

  19. Validation of MCNP6 Version 1.0 with the ENDF/B-VII.1 Cross Section Library for Uranium Metal, Oxide, and Solution Systems on the High Performance Computing Platform Moonlight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Bryan Scott; MacQuigg, Michael Robert; Wysong, Andrew Russell

    In this document, the code MCNP is validated with ENDF/B-VII.1 cross section data under the purview of ANSI/ANS-8.24-2007, for use with uranium systems. MCNP is a computer code based on Monte Carlo transport methods. While MCNP has wide reading capability in nuclear transport simulation, this validation is limited to the functionality related to neutron transport and calculation of criticality parameters such as k eff.

  20. Targeting cholinesterase inhibitor poisoning with a novel blocker against both nicotinic and muscarinic receptors.

    PubMed

    Luo, Wangqian; Ge, Xulin; Cui, Wenyu; Wang, Hai

    2010-08-01

    Clinicians have been treating poisoning by acetylcholinesterase inhibitors (ChEI) for more than half a century. However, the current atropine-centered therapy still cannot protect completely against all ChEIs, and poisoning by ChEIs is fatal in more than 20% of cases. Various solutions that try to enhance atropine's antimuscarinic effects have been used, but these fail to increase the antidotal effect, and their too potent muscarinic antagonism may produce incapacitating side effects. We hypothesized that, in the treatment of ChEI poisoning, the high death rate may not be attributed to the insufficient muscarinic antagonism but to the lack of nicotinic antagonism. To test this hypothesis, we designed and synthesized benthiactzine, a drug that blocks both muscarinic acetylcholine receptors (mAChRs) and nicotinic acetylcholine receptors (nAChRs). A specific [(3)H]quinuclidinyl benzilate-binding assay showed that benthiactzine was much weaker than atropine in binding to five different mAChR subtypes or to mAChRs expressed in 14 different tissues. Electrophysiological measures were used to identify and characterize benthiactzine's antinicotinic effect on three typical neuronal nAChRs subtypes, alpha4beta2, alpha4beta4, and alpha7, which are expressed heterogenously in SH-EP1 cells. Finally, benthiactzine afforded better protection than atropine against the most lethal ChEI, VX or sarin, in a mouse model. These results indicate that the antidotal effect may not be directly related to the antidote's antimuscarinic effect and that the antinicotinic effect may provide additional protection against ChEI poisoning. This new drug may benefit future antidote discovery.

Top