NASA Astrophysics Data System (ADS)
2001-02-01
First Reading of a Basic Cosmic Chronometer with UVES and the VLT Summary Most astronomers would agree that the age of the Universe - the time elapsed since the "Big Bang" - is one of the " holy grails of cosmology ". Despite great efforts during recent years, the various estimates of this basic number have resulted in rather diverse values. When derived from current cosmological models, it depends on a number of theoretical assumptions that are not very well constrained by the incomplete available observational data. At present, a value in the range of 10-16 billion years [1] is considered most likely. But now, an international team of astronomers [2] has used the powerful ESO Very Large Telescope (VLT) and its very efficient spectrograph UVES to perform a unique measurement that paves the way for a new and more accurate determination of the age of the Universe. They measured for the first time the amount of the radioactive isotope Uranium-238 in a star that was born when the Milky Way, the galaxy in which we live, was still forming. It is the first measurement ever of uranium outside the Solar System . This method works in a way similar to the well-known Carbon-14 dating in archaeology, but over much longer times. Ever since the star was born, the Uranium "clock" has ticked away over the eons, unaffected by the turbulent history of the Milky Way. It now reads 12.5 billion years . Since the star obviously cannot be older than the Universe, it means that the Universe must be older than that . Although the stated uncertainty is still about 25% or about ±3 billion years, this is only to a minor extent due to the astronomical observation. The main problem is the current absence of accurate knowledge of some of the basic atomic and nuclear properties of the elements involved. However, further laboratory work will greatly improve this situation and a more accurate value for the age of the star and implicitly, for the Universe, should therefore be forthcoming before long . This important result is reported in the international research journal Nature in the issue of February 8, 2001. PR Photo 05a/01 : The 12.5-billion-year old star CS 31082-001. PR Photo 05b/01 : The telltale spectral line in CS 31082-001 - the first detection of uranium outside the Solar System . Heavy elements in stars While hydrogen, helium and lithium were produced during the Big Bang, all heavier elements result from nuclear reactions in the interiors of stars. When stars die, heavy-element enriched matter is dispersed into surrounding space and will later be incorporated in the next generations of stars. In fact, the gold in the ring on your finger was produced in an exploding star and deposited in the interstellar cloud from which the Sun and its planets were later formed. Thus, the older a star is, the lower is generally its content of heavy elements like iron and other metals. Measurements have shown that old stars that are members of large agglomerations known as globular clusters are normally quite "metal-poor"- their metal-content ranges down to about 1/200 of that of the Sun, in which these metals constitute only 2% of the total mass, the rest being still in the form of hydrogen and helium. Very old stars in the Milky Way galaxy After decades of mostly fruitless efforts, a large spectral survey by American astronomer Timothy C. Beers and his collaborators has recently uncovered hundreds of stars with much lower metal content than even the globular clusters, in some cases only 1/10,000 of the solar value. It is evident that these extremely metal-poor stars must have formed during the very infancy of the Milky Way, an important, but still poorly understood phase in the life of our galaxy. These particular stars exhibit a great variety of element abundances that may ultimately throw more light on the processes at work during this early period. As a step in this direction, an international team of astronomers [2] decided to study these stars in much more detail. They were awarded observing time for a Large Programme in 2000-2001 with the powerful combination of the ESO VLT and its very efficient high-dispersion spectrograph UVES. The first observations have been carried out and, not unexpectedly, have already proven to be a true gold mine of new information. Cosmochronology with radioactive isotopes It is possible to make a fundamental determination of the age of a star that is quite independent of stellar evolution models, provided it contains a suitable long-lived radioactive isotope [3]. The use of a "radioactive chronometer" depends on the measurement of the abundance of the radioactive isotope, as compared to a stable one. This technique is analogous to the Carbon-14 dating method that has been so successful in archaeology over time spans of up to a few tens of thousands of years. In astronomy, however, this technique must obviously be applied to vastly longer time scales. For the method to work well, the right choice of radioactive isotope is very critical. Contrary to stable elements that formed at the same time, the abundance of a radioactive (unstable) isotope decreases all the time. The faster the decay, the less there will be left of the radioactive isotope after a certain time, the greater will be the abundance difference when compared to a stable isotope, and the more accurate is the resulting age. Yet, for the clock to remain useful, the radioactive element must not decay too fast - there must still be enough left of it to allow an accurate measurement, even after several billion years. Thorium and Uranium clocks This leaves only two possible isotopes for astronomical measurements, thorium ( 232 Th or Thorium-232, with a half-life of 14.05 billion years [4]) and uranium ( 238 U or Uranium-238, half-life 4.47 billion years). Several age determinations have been made by means of the Thorium-232 isotope. Its strongest spectral line is measurable with current telescopes in a handful of comparatively bright stars, including the Sun. However, the decay is really too slow to provide sufficiently accurate time measurements. It takes around 47 billion years for this isotope to decay by a factor of 10, and with a typical measuring uncertainty of 25%, the resulting age uncertainty is about 4-5 billion years, or approx. one third of the age of the Universe. This slow-moving clock runs forever, but is hard to read accurately! The faster decay of Uranium-238 would make it a much more precise cosmic clock. However, because uranium is the rarest of all normal elements, its spectral lines in stars are always very weak; if visible at all, they normally drown entirely in a vast ocean of stronger spectral lines from more abundant elements. Nevertheless, this is exactly where the low abundance of heavier elements in very old stars comes to the rescue. In the stars that were studied by the present team at the VLT, with typically 1000 times less of the common elements than in the Sun, the predominance of the maze of atomic and molecular lines in the spectrum is greatly reduced. The lines of rare elements like uranium therefore stand a real chance of being measurable. This is particularly so, if for some reason uranium atoms were preferentially retained in the debris of those early supernova explosions that also created the iron-group elements we see in the stars today. The uranium line in CS 31082-001 ESO PR Photo 05a/01 ESO PR Photo 05a/01 [Preview - JPEG: 337 x 400 pix - 32k] [Normal - JPEG: 674 x 800 pix - 120k] Caption : PR Photo 05a/01 displays the Milky Way star field around CS 31082-001 , the 12th-magnitude star at the centre. The "cross" is caused by reflections in the telescope optics, a typical effect for relatively bright stars. Technical information about this photo is available below. ESO PR Photo 05b/01 ESO PR Photo 05b/01 [Preview - JPEG: 501 x 400 pix - 42k] [Normal - JPEG: 1001 x 800 pix - 128k] [Full-Res - JPEG: 1502 x 1200 pix - 200k] Caption : PR Photo 05b/01 The observed spectrum (dots) of the old star CS 31082-001 in the region of the uranium (U II) line at 385.96 nm. The origin of some of the other spectral lines in the region is also indicated (e.g. iron, neodymium). The synthetic spectrum (thin line) was computed for the adopted abundances of the stable elements and for four different values of the abundance (by number) of uranium atoms in the atmosphere of the star. The uppermost line (corresponding to no uranium at all) clearly does not fit the observed spectrum at all. The best fit is provided by the middle (red) line, representing a uranium abundance of approximately 6% of the solar value - see also the text. Technical information about this diagramme is available below. The excitement of the astronomers was great when they inspected the first spectrum of the 12th-magnitude programme star CS 31082-001 ! It showed what is probably the richest spectrum of rare, heavy elements ever seen. In particular, the faint lines of these elements were unusually free of interference from the lines of the iron-group elements which are indeed only 1/800 as abundant in this star as in the Sun, and by molecular lines (of CH and CN), often quite numerous even in such low-metallicity stars. While only one or at most two thorium lines have ever been measured in any other stars, no less than 14 thorium lines are seen in the spectrum of CS 31082-001 . Indeed, there is such a wealth of lines of other rare and precious metals that this spectrum is a real astronomers' treasure box. And best of all, the long sought-after line of singly ionized uranium is clearly detected at its rest wavelength of 389.59 nm in the near-ultraviolet region of the spectrum, cf. PR Photo 05b/01 ! Not surprisingly, the uranium line is still quite weak. After all, uranium is the rarest of elements to begin with and it has further decayed by a factor of eight since this star was born. Moreover, even in this low metal-abundance star, the near-UV spectrum remains rather rich in other lines. The accurate measurement of this faint spectral line therefore places extreme demands on the acuity (resolving power) and efficiency of the spectrograph and the light-gathering power of the telescope. The VLT and UVES have been built as the world-leading combination of these observational assets, and the spectra obtained of this comparatively faint star (magnitude 12, i.e. 500 times fainter than what can be seen with the unaided eye) are absolutely superb - indeed of a quality which until recently was reserved for naked-eye stars only. Despite its faintness, the uranium line can therefore be measured with very good accuracy. The age of CS 31082-001 A detailed analysis, using model atmospheres and synthetic spectrum calculations, shows that all the heaviest stable elements follow closely the abundance pattern seen in the Sun, but at a level of about 12% of the corresponding solar abundances [5]. The measurements also show that the thorium and uranium abundances are somewhat lower than this - of the order of 9% and 6% of the solar values, respectively. Since these two elements were formed by the same atomic processes as their stable neighbours in the periodic table, this means that radioactive decay has progressed further in CS 31082-001 than in the Sun. Different models of the element production in supernova explosions predict somewhat different production ratios between the stable and radioactive isotopes, leading to age estimates for this star in the range 11-16 billion years. The most likely age of CS 31082-001 is 12.5 billion years . The Universe is older than the star, hence it must be older than 12.5 billion years. Improved age determination soon possible Given the faster decay rate of Uranium-238, the measuring uncertainty for the stellar uranium line corresponds to an age uncertainty of only ±1.5 Gyr. This can be further reduced with even better spectra of CS 31082-001 and/or with the discovery and observation of other similar stars. However, for the immediate future, the accuracy of this age determination does not really depend on the VLT spectrum. For the time being, the real problems are the present uncertainties in the available laboratory data for uranium by means of which the measured line strengths are converted into element abundances. In addition, the nuclear-physics calculations of the initial isotope production ratios introduce errors that are larger than those of the spectral observation. Thus, improved measurements of those physical data are necessary in order to read more accurately the cosmic clock in CS 31082-001 from the existing observational data. The relevant laboratory measurements are now underway at the CEA, Saclay, France, and the University of Lund, Sweden. In the meantime, the team is trying to find other stars like CS 31082-001 . There may not be many, but if the uranium line can be seen and measured in more spectra, it will also become possible to judge whether those very old stars, as surmised, are all of about the same age, i.e. that of our Milky Way galaxy. More information The research described in this Press Release is reported in a research article ("Measurement of stellar age from uranium decay"), that appears in the international research journal Nature on Thursday, February 8, 2001. Notes [1]: 1 billion = 1,000 million. [2]: The team members are: Roger Cayrel (P.I.), Francois Spite and Monique Spite (all Observatoire de Paris, France), Vanessa Hill and Francesca Primas (ESO), Johannes Andersen and Birgitta Nordström (Copenhagen and Lund Observatories, Denmark and Sweden), Timothy C. Beers (Michigan State Univ., USA), Piercarlo Bonifacio and Paolo Molaro (Trieste, Italy), Bertrand Plez (Montpellier, France), and Beatriz Barbuy (Univ. of Sao Paulo, Brazil). [3]: Isotopes of a natural element contain different numbers of neutrons in the nuclei, in addition to a certain number of protons that characterize that particular element. Some isotopes are "radioactive", i.e. with time they are transformed into other elements or isotopes. Other isotopes are stable over exceedingly long periods of time. Uranium-238 contains 92 protons and 146 neutrons. [4]: The "half-life" of an isotope indicates the time after which half the atoms have decayed. After another time interval of this length has passed, only 25% of the original isotope is left, etc. [5]: As the iron abundance in CS 31082-001 is only 0.12% (1/800) of that in the Sun, this means that, relative to iron and similar, lighter elements, the heaviest elements in that star are approximately 100 times "overabundant". Their spectral lines, again in relative terms, are correspondingly stronger - this is of crucial importance for the present, difficult measurements. Technical information about the photos PR Photo 05a/01 is reproduced from the STScI Digitized Sky Survey (© 1993, 1994, AURA, Inc. - original plate material by Royal Observatory Edinburgh and the Anglo-Australian Observatory - All Rights Reserved) and based on blue-sensitive photographic data obtained using the UK Schmidt Telescope at Siding Spring (Australia). The comparatively empty sky field is located at high southern (-76°) galactic latitude and measures 7 x 7 arcmin 2 and. PR Photo 05b/01 is reproduced from a spectrum of CS 31082-001 , obtained in October 2000 with the UVES high-dispersion spectrograph at the VLT 8.2-m KUEYEN telescope at Paranal. The exposure lasted 4 hours, at a spectral resolution of approx. 75,000 and with a S/N-ratio of about 300. The lines are identified and three synthetic spectra, with different U-abundances, are drawn to illustrate the fit.
Abundances in the Uranium-rich Star CS 31082-001
NASA Astrophysics Data System (ADS)
Qian, Y.-Z.; Wasserburg, G. J.
2001-05-01
The recent discovery by Cayrel et al. of U in CS 31082-001 along with Os and Ir at greatly enhanced abundances but with [Fe/H]=-2.9 strongly reinforces the argument that there are at least two kinds of Type II supernova (SN II) sources for r-nuclei. One source is the high-frequency H events responsible for heavy r-nuclei (A>135) but not Fe. The H-yields calculated from data on other ultra-metal-poor stars and the Sun provide a template for quantitatively predicting the abundances of all other r-elements. In CS 31082-001 these should show a significant deficiency at A<135 relative to the solar r-pattern. It is proposed that CS 31082-001 should have had a companion that exploded as an SN II H event. If the binary survived the explosion, this star should now have a compact companion, most likely a stellar-mass black hole. Comparison of abundance data with predicted values and a search for a compact companion should provide a stringent test of the proposed r-process model. The U-Th age determined by Cayrel et al. for CS 31082-001 is, to within substantial uncertainties, in accord with the r-process age determined from solar system data. The time gap between the big bang and the onset of normal star formation allows r-process chronometers to provide only a lower limit on the age of the universe.
The Age of the First Nucleosynthesis in the Galaxy
NASA Astrophysics Data System (ADS)
Cayrel, R.; Hill, V.; Spite, M.; Spite, F.; François, P.; Depagne, E.; Nordström, B.; Andersen, J.; Plez, B.; Barbuy, B.; Beers, T.; Bonifacio, P.; Molaro, P.; Primas, F.
The observation of extremely metal-poor stars makes possible to obtain the epoch of formation of the first elements produced by massive supernovae, or hypernovae. The classical way of obtaining stellar ages (isochrone fitting) is unfortunately not applicable at present, as the distances of these stars are not known with enough accuracy. Dating by decay of radio-elements is another path, which has been renewed by the observation of uranium in the yellow giant CS 31082-001. We discuss the prospects opened by this discovery, and recent theoretical works triggered by this new opportunity.
NASA Astrophysics Data System (ADS)
Hill, V.; Christlieb, N.; Beers, T. C.; Barklem, P. S.; Kratz, K.-L.; Nordström, B.; Pfeiffer, B.; Farouqi, K.
2017-11-01
We report an abundance analysis for the highly r-process-enhanced (r-II) star CS 29497-004, a very metal-poor giant with solar system Teff = 5013 K and [Fe/H] = -2.85, whose nature was initially discovered in the course of the HERES project. Our analysis is based on high signal-to-noise ratio, high-resolution (R 75 000) VLT/UVES spectra and MARCS model atmospheres under the assumption of local thermodynamic equilibrium, and obtains abundance measurements for a total of 46 elements, 31 of which are neutron-capture elements. As is the case for the other 25 r-II stars currently known, the heavy-element abundance pattern of CS 29497-004 well-matches a scaled solar system second peak r-process-element abundance pattern. We confirm our previous detection of Th, and demonstrate that this star does not exhibit an "actinide boost". Uranium is also detected (log ɛ(U) = -2.20 ± 0.30), albeit with a large measurement error that hampers its use as a precision cosmo-chronometer. Combining the various elemental chronometer pairs that are available for this star, we derive a mean age of 12.2 ± 3.7 Gyr using the theoretical production ratios from published waiting-point approximation models. We further explore the high-entropy wind model (Farouqi et al. 2010, ApJ, 712, 1359) production ratios arising from different neutron richness of the ejecta (Ye), and derive an age of 13.7 ± 4.4 Gyr for a best-fitting Ye = 0.447. The U/Th nuclei-chronometer is confirmed to be the most resilient to theoretical production ratios and yields an age of 16.5 ± 6.6 Gyr. Lead (Pb) is also tentatively detected in CS 29497-004, at a level compatible with a scaled solar r-process, or with the theoretical expectations for a pure r-process in this star. Based on observations collected at the European Southern Observatory, Paranal, Chile (Proposal Number 170.D-0010).Table B.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A91
Neutron-Capture Elements in Very Metal-Poor Halo Stars
NASA Astrophysics Data System (ADS)
French, R. S.; Sneden, C.; Cowan, J. J.; Lawler, J. E.; Primas, F.; Beers, T. C.; Truran, J. W.
2000-05-01
Abundances of the most massive stable elements (Os -> Pb or 76 <= Z <= 82) in metal-poor stars can provide crucial information about the so-called ``third neutron-capture peak,'' and are critical to the radioactive-dating technique that uses unstable thorium and uranium as chronometers. As the relevant transitions occur in the UV and are inaccessable to ground-based telescopes, we have obtained high resolution (R ~= 30,000) UV spectra of 10 very metal-poor (--3.0 <= [Fe/H] <= --1.4) halo giants using the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope. Using iterative spectrum synthesis techniques, we derive abundances for some of these heavy elements. We compare our abundances to those predicted for very metal-poor stars based on a scaled solar system rapid-process (production in rapid neutron-capture synthesis events, such as occurs during supernovae explosions). This research is supported by NASA STScI grant GO-08342 and NSF grants AST-9618364 to C.S. and AST-9618332 to J.J.C.
Exploratory Solid-State Synthesis of Uranium Chalcogenides and Mixed Anion Uranium Chalcogenides
NASA Astrophysics Data System (ADS)
Ward, Matthew David
Several uranium chalcogenides and mixed anion uranium chalcogenides have been synthesized by solid-state synthetic methods. Structural determinations were carried out via single-crystal X-ray diffraction. Some of these compounds have been further characterized by magnetic measurements, optical properties measurements, Raman spectroscopy, resistivity measurements, XANES and XPS. Eight compounds of the composition MU8Q17 were synthesized and characterized by single-crystal X-ray diffraction. All of these compounds crystallize in the CrU8S17 structure type. XANES measurements indicate that ScU8S17 contains Sc3+ and must be charge balanced with some amount of U 3+. Two compounds of the composition ATiU3Te9 crystallize as black rectangular plates. From single-crystal magnetic measurements, CsTiU 3Te9 is consistent with antiferromagnetic coupling between magnetic U atoms. The uranium chalcogenide compounds NiUS3 and Cr4US 8 were synthesized from reaction of the elements in various fluxes. NiUS3 crystallizes in the GdFeO3 structure type. Cr 4US8 crystallizes in the orthorhombic space group D - Pnma and its structure is related to that of Li4UF 8. The compounds Rh2U6S15, Cs 2Ti2U6Se15, and Cs2Cr 2U6Se15 crystallize as black prisms in the cubic space group O-Im3m. Magnetic measurements on Cs 2Cr2U6Se15 give a value for the Weiss temperature, θWeiss, of 57.59 K, indicative of ferromagnetic coupling. Black plates of CsScU(Se2)Se3 were synthesized from the reaction of the elements in a CsCl flux. CsScU(Se2)Se 3 crystallizes in the orthorhombic space group D- Cmcm . Magnetic susceptibility measurements on CsScU(Se2)Se 3 indicate three regions of magnetic response. The uranium double salt Cs5[U2(μ-S 2)2Cl8]I crystallizes as red plates. Cs 5[U2(μ-S2)2Cl 8]I displays optical anisotropy with band gap energies of 1.99 eV and 2.08 eV along the [001] and [100] polarizations. The uranium oxychalcogenides U7O2Se12 and Na2Ba2(UO2)S4 were synthesized by intentional oxygen contamination. The structure of U7O 2Se12 is related to the previously reported U7Q 12. Na2Ba2(UO2)S4 contains isolated uranyl polyhedra in which each uranium atom may be assigned an oxidation state of +6. The four uranium(IV) chlorophosphates, UCl4(POCl3), [U2Cl9][PCl4], UCl3(PO2Cl 2), and U2Cl8(POCl3) were synthesized in an effort to synthesize new novel uranyl sulfides. All are unstable, but UCl4(POCl3) is the thermodynamically favorable phase.
Facile CO Cleavage by a Multimetallic CsU2 Nitride Complex.
Falcone, Marta; Kefalidis, Christos E; Scopelliti, Rosario; Maron, Laurent; Mazzanti, Marinella
2016-09-26
Uranium nitrides are important materials with potential for application as fuels for nuclear power generation, and as highly active catalysts. Molecular nitride compounds could provide important insight into the nature of the uranium-nitride bond, but currently little is known about their reactivity. In this study, we found that a complex containing a nitride bridging two uranium centers and a cesium cation readily cleaved the C≡O bond (one of the strongest bonds in nature) under ambient conditions. The product formed has a [CsU2 (μ-CN)(μ-O)] core, thus indicating that the three cations cooperate to cleave CO. Moreover, the addition of MeOTf to the nitride complex led to an exceptional valence disproportionation of the CsU(IV) -N-U(IV) core to yield CsU(III) (OTf) and [MeN=U(V) ] fragments. The important role of multimetallic cooperativity in both reactions is illustrated by the computed reaction mechanisms. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Uranium lines in the spectra of peculiar A stars - A search for recent r-process events
NASA Technical Reports Server (NTRS)
Cowley, C. R.; Adelman, S. J.
1975-01-01
Uranium wavelengths in the spectra of Ap stars are studied to see if they give any indication of a recent r-process event. It is concluded that there is no credible evidence for an admixture of uranium-235 in these stars, which would imply such an event. The evidence, though negative, is badly confused by blending of lines, and a final judgement must wait for an observational clarification of the situation.
Margaritasite: a new mineral of hydrothermal origin from the Pena Blanca uranium district, Mexico.
Wenrich, K.J.; Modreski, P.J.; Zielinski, R.A.; Seeley, J.L.
1982-01-01
Margaritasite, (Cs,K,H3O)2(UO2)2V2O8.nH2O (where Cs > K, H3O and n approx 1), a 10.514, b 8.425, c 7.25 A, beta 106.01o, P21/a, Z = 2, is a newly recognized uranium ore mineral named for the Margaritas deposit, Pena Blanca uranium district, Chihuahua, Mexico, at which it was discovered. A Cs-rich analogue of carnotite, margaritasite is the natural equivalent of synthetic Cs-uranyl vanadate (A.M. 43- 799, 50-825). A fine-grained yellow mineral, it is most easily distinguished from carnotite by XRD; X-ray powder patterns (CuKalpha radiation) show that the (001) reflection of margaritasite lies at 12.7o (2theta ), while that of carnotite is found at 13.8o (2theta ). The shift of the (001) reflection in margaritasite reflects the structural changes caused when Cs occupies the sites filled by K in carnotite. Synthesis experiments indicate that margaritasite also differs from carnotite in a higher-T hydrothermal origin. Chemical analyses and XRD data for margaritasite and synthetic Cs- carnotite, and chemical analyses for rocks from Sierra Pena Blanca and vicinity, are tabulated.-J.A.Z.
A theoretical study of alpha star populations in loaded nuclear emulsions
Senftle, F.E.; Farley, T.A.; Stieff, L.R.
1954-01-01
This theoretical study of the alpha star populations in loaded emulsions was undertaken in an effort to find a quantitative method for the analysis of less than microgram amounts of thorium in the presence of larger amounts of uranium. Analytical expressions for each type of star from each of the significantly contributing members of the uranium and thorium series as well as summation formulas for the whole series have been computed. The analysis for thorium may be made by determining the abundance of five-branched stars in a loaded nuclear emulsion and comparing of observed and predicted star populations. The comparison may also be used to check the half-lives of several members of the uranium and thorium series. ?? 1954.
The r-Process in the Neutrino Winds of Core-Collapse Supernovae and U-Th Cosmochronology
NASA Astrophysics Data System (ADS)
Wanajo, Shinya; Itoh, Naoki; Ishimaru, Yuhri; Nozawa, Satoshi; Beers, Timothy C.
2002-10-01
The discovery of the second highly r-process-enhanced, extremely metal poor star, CS 31082-001 ([Fe/H]=-2.9) has provided a powerful new tool for age determination by virtue of the detection and measurement of the radioactive species uranium and thorium. Because the half-life of 238U is one-third that of 232Th, the U-Th pair can, in principle, provide a far more precise cosmochronometer than the Th-Eu pair that has been used in previous investigations. In the application of this chronometer, the age of (the progenitor of) CS 31082-001 can be regarded as the minimum age of the Galaxy, and hence of the universe. One of the serious limitations of this approach, however, is that predictions of the production ratio of U and Th have not been made in the context of a realistic astrophysical model of the r-process. We have endeavored to produce such a model, based on the ``neutrino winds'' that are expected to arise from the nascent neutron star of a core-collapse supernova. In this model, the proto-neutron star mass and the (asymptotic) neutrino sphere radius are assumed to be 2.0 Msolar and 10 km, respectively. Recent hydrodynamic studies indicate that there may exist difficulties in obtaining such a compact (massive and/or small in radius) remnant. Nevertheless, we utilize this set of parameter choices since previous work suggests that the third r-process peak (and thus U and Th) is hardly reached when one adopts a less compact proto-neutron star in the framework of the neutrino-wind scenario. The temperature and density histories of the material involved in the neutron-capture processes are obtained with the assumption of a steady flow of the neutrino-powered winds, with general relativistic effects taken into account. The electron fraction is taken to be a free parameter, constant with time. The r-process nucleosynthesis in these trajectories is calculated with a nuclear reaction network code including actinides up to Z=100. The mass-integrated r-process yields, obtained by assuming a simple time evolution of the neutrino luminosity, are compared to the available spectroscopic elemental abundance data of CS 31082-001. As a result, the ``age'' of this star is determined to be 14.1+/-2.5 Gyr, in excellent agreement with lower limits on the age of the universe estimated by other dating techniques, as well as with other stellar radioactive age estimates. Future measurements of Pt and Pb in this star, as well as expansion of searches for additional r-process-enhanced, metal-poor stars (especially those in which both U and Th are measurable), are of special importance to constrain the current astrophysical models for the r-process.
Distribution of uranium and some selected trace metals in human scalp hair from Balkans.
Zunic, Z S; Tokonami, S; Mishra, S; Arae, H; Kritsananuwat, R; Sahoo, S K
2012-11-01
The possible consequences of the use of depleted uranium (DU) used in Balkan conflicts in 1995 and 1999 for the people and the environment of this reason need attention. The heavy metal content in human hair may serve as a good indicator of dietary, environmental and occupational exposures to the metal compounds. The present work summarises the distribution of uranium and some selected trace metals such as Mn, Ni, Cu, Zn, Sr, Cd and Cs in the scalp hair of inhabitants from Balkans exposed to DU directly and indirectly, i.e. Han Pijesak, Bratoselce and Gornja Stubla areas. Except U and Cs, all other metals were compared with the worldwide reported values of occupationally unexposed persons. Uranium concentrations show a wide variation ranging from 0.9 ± 0.05 to 449 ± 12 µg kg(-1). Although hair samples were collected from Balkan conflict zones, uranium isotopic measurement ((235)U/(238)U) shows a natural origin rather than DU.
Thomas, P A; Gates, T E
1999-01-01
The richest uranium ore bodies ever discovered (Cigar Lake and McArthur River) are presently under development in northeastern Saskatchewan. This subarctic region is also home to several operating uranium mines and aboriginal communities, partly dependent upon caribou for subsistence. Because of concerns over mining impacts and the efficient transfer of airborne radionuclides through the lichen-caribou-human food chain, radionuclides were analyzed in tissues from 18 barren-ground caribou (Rangifer tarandus groenlandicus). Radionuclides included uranium (U), radium (226Ra), lead (210Pb), and polonium (210Po) from the uranium decay series; the fission product (137Cs) from fallout; and naturally occurring potassium (40K). Natural background radiation doses average 2-4 mSv/year from cosmic rays, external gamma rays, radon inhalation, and ingestion of food items. The ingestion of 210Po and 137Cs when caribou are consumed adds to these background doses. The dose increment was 0.85 mSv/year for adults who consumed 100 g of caribou meat per day and up to 1.7 mSv/year if one liver and 10 kidneys per year were also consumed. We discuss the cancer risk from these doses. Concentration ratios (CRs), relating caribou tissues to lichens or rumen (stomach) contents, were calculated to estimate food chain transfer. The CRs for caribou muscle ranged from 1 to 16% for U, 6 to 25% for 226Ra, 1 to 2% for 210Pb, 6 to 26% for 210Po, 260 to 370% for 137Cs, and 76 to 130% for 40K, with 137Cs biomagnifying by a factor of 3-4. These CRs are useful in predicting caribou meat concentrations from the lichens, measured in monitoring programs, for the future evaluation of uranium mining impacts on this critical food chain. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:10378999
The binary fraction of planetary nebula central stars - III. the promise of VPHAS+
NASA Astrophysics Data System (ADS)
Barker, Helen; Zijlstra, Albert; De Marco, Orsola; Frew, David J.; Drew, Janet E.; Corradi, Romano L. M.; Eislöffel, Jochen; Parker, Quentin A.
2018-04-01
The majority of planetary nebulae (PNe) are not spherical, and current single-star models cannot adequately explain all the morphologies we observe. This has led to the Binary Hypothesis, which states that PNe are preferentially formed by binary systems. This hypothesis can be corroborated or disproved by comparing the estimated binary fraction of all PNe central stars (CS) to that of the supposed progenitor population. One way to quantify the rate of CS binarity is to detect near infrared excess indicative of a low-mass main-sequence companion. In this paper, a sample of known PNe within data release 2 of the ongoing VPHAS+ is investigated. We give details of the method used to calibrate VPHAS+ photometry, and present the expected colours of CS and main-sequence stars within the survey. Objects were scrutinized to remove PN mimics from our sample and identify true CS. Within our final sample of seven CS, six had previously either not been identified or confirmed. We detected an i-band excess indicative of a low-mass companion star in three CS, including one known binary, leading us to conclude that VPHAS+ provides the precise photometry required for the IR excess method presented here, and will likely improve as the survey completes and the calibration process finalized. Given the promising results from this trial sample, the entire VPHAS+ catalogue should be used to study PNe and extend the IR excess-tested CS sample.
Abundance patterns of the light neutron-capture elements in very and extremely metal-poor stars
NASA Astrophysics Data System (ADS)
Spite, F.; Spite, M.; Barbuy, B.; Bonifacio, P.; Caffau, E.; François, P.
2018-03-01
Aims: The abundance patterns of the neutron-capture elements in metal-poor stars provide a unique record of the nucleosynthesis products of the earlier massive primitive objects. Methods: We measured new abundances of so-called light neutron-capture of first peak elements using local thermodynamic equilibrium (LTE) 1D analysis; this analysis resulted in a sample of 11 very metal-poor stars, from [Fe/H] = -2.5 to [Fe/H] = -3.4, and one carbon-rich star, CS 22949-037 with [Fe/H] = -4.0. The abundances were compared to those observed in two classical metal-poor stars: the typical r-rich star CS 31082-001 ([Eu/Fe] > +1.0) and the r-poor star HD 122563 ([Eu/Fe] < 0.0), which are known to present a strong enrichment of the first peak neutron-capture elements relative to the second peak. Results: Within the first peak, the abundances are well correlated in analogy to the well-known correlation inside the abundances of the second-peak elements. In contrast, there is no correlation between any first peak element with any second peak element. We show that the scatter of the ratio of the first peak abundance over second peak abundance increases when the mean abundance of the second peak elements decreases from r-rich to r-poor stars. We found two new r-poor stars that are very similar to HD 122563. A third r-poor star, CS 22897-008, is even more extreme; this star shows the most extreme example of first peak elements enrichment to date. On the contrary, another r-poor star (BD-18 5550) has a pattern of first peak elements that is similar to the typical r-rich stars CS 31082-001, however this star has some Mo enrichment. Conclusions: The distribution of the neutron-capture elements in our very metal-poor stars can be understood as the combination of at least two mechanisms: one that enriches the forming stars cloud homogeneously through the main r-process and leads to an element pattern similar to the r-rich stars, such as CS 31082-001; and another that forms mainly lighter, first peak elements. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 165.N-0276(A), (PI R.Cayrel).
Innocent Bystanders: Carbon Stars from the Sloan Digital Sky Survey
NASA Astrophysics Data System (ADS)
Green, Paul
2013-03-01
Among stars showing carbon molecular bands (C stars), the main-sequence dwarfs, likely in post-mass transfer binaries, are numerically dominant in the Galaxy. Via spectroscopic selection from the Sloan Digital Sky Survey, we retrieve 1220 high galactic latitude C stars, ~5 times more than previously known, including a wider variety than past techniques such as color or grism selection have netted, and additionally yielding 167 DQ white dwarfs. Of the C stars with proper motion measurements, we identify 69% clearly as dwarfs (dCs), while ~7% are giants. The dCs likely span absolute magnitudes Mi from ~6.5 to 10.5. "G-type" dC stars with weak CN and relatively blue colors are probably the most massive dCs still cool enough to show C2 bands. We report Balmer emission in 22 dCs, none of which are G-types. We find 8 new DA/dC stars in composite spectrum binaries, quadrupling the total sample of these "smoking guns" for AGB binary mass transfer. Eleven very red C stars with strong red CN bands appear to be "N"-type AGB stars at large Galactocentric distances, one likely a new discovery in the dIrr galaxy Leo A. Two such stars within 30' of each other may trace a previously unidentified dwarf galaxy or tidal stream at ~40 kpc. We explore the multiwavelength properties of the sample and report the first X-ray detection of a dC star, which shows strong Balmer emission. Our own spectroscopic survey additionally provides the dC surface density from a complete sample of dwarfs limited by magnitude, color, and proper motion.
Matson, Ellen M; Breshears, Andrew T; Kiernicki, John J; Newell, Brian S; Fanwick, Phillip E; Shores, Matthew P; Walensky, Justin R; Bart, Suzanne C
2014-12-15
The trivalent uranium phenylchalcogenide series, Tp*2UEPh (Tp* = hydrotris(3,5-dimethylpyrazolyl)borate, E = O (1), S (2), Se (3), Te (4)), has been synthesized to investigate the nature of the U-E bond. All compounds have been characterized by (1)H NMR, infrared and electronic absorption spectroscopies, and in the case of 4, X-ray crystallography. Compound 4 was also studied by SQUID magnetometry. Computational studies establish Mulliken spin densities for the uranium centers ranging from 3.005 to 3.027 (B3LYP), consistent for uranium-chalcogenide bonds that are primarily ionic in nature, with a small covalent contribution. The reactivity of 2-4 toward carbon disulfide was also investigated and showed reversible CS2 insertion into the U(III)-E bond, forming Tp*2U(κ(2)-S2CEPh) (E = S (5), Se (6), Te (7)). Compound 5 was characterized crystallographically.
VizieR Online Data Catalog: Rotating Wolf-Rayet stars in post RSG/LBV phase (Graefener+, 2012)
NASA Astrophysics Data System (ADS)
Graefener, G.; Vink, J. S.; Harries, T. J.; Langer, N.
2013-01-01
Wolf-Rayet (WR) stars with fast rotating cores are thought to be the direct progenitors of long-duration gamma-ray bursts (LGRBs). A well accepted evolutionary channel towards LGRBs is chemically-homogeneous evolution at low metallicities, which completely avoids a red supergiant (RSG), or luminous blue variable (LBV) phase. On the other hand, strong absorption features with velocities of several hundred km/s have been found in some LGRB afterglow spectra (GRB 020813 and GRB 021004), which have been attributed to dense circumstellar (CS) material that has been ejected in a previous RSG or LBV phase, and is interacting with a fast WR-type stellar wind. Here we investigate the properties of Galactic WR stars and their environment to identify similar evolutionary channels that may lead to the formation of LGRBs. We compile available information on the spectropolarimetric properties of 29 WR stars, the presence of CS ejecta for 172 WR stars, and the CS velocities in the environment of 34 WR stars in the Galaxy. We use linear line-depolarization as an indicator of rotation, nebular morphology as an indicator of stellar ejecta, and velocity patterns in UV absorption features as an indicator of increased velocities in the CS environment. (2 data files).
Innocent Bystanders and Smoking Guns: Dwarf Carbon Stars
NASA Astrophysics Data System (ADS)
Green, Paul J.
2014-01-01
As far as we know, most carbon throughout the Universe is created and dispersed by AGB stars. So it was at first surprising to find that the carbon stars most prevalent in the Galaxy are in fact dwarfs. We suspect that dC stars are most likely innocent bystanders in post-mass transfer binaries, and may be predominantly metal-poor. Among 1200 C stars found in the SDSS (Green 2013), we confirm 724 dCs, of which a dozen are DA/dC stars in composite spectrum binaries, quadrupling the total sample of these "smoking guns" for AGB binary mass transfer. The dCs likely span absolute magnitudes M_i from about 6.5 to 10.5. G-type dC stars with weak CN and relatively blue colors are probably the most massive dCs still cool enough to show C_2 bands. Eleven very red C stars with strong red CN bands appear to be N-type AGB stars at large Galactocentric distances, one likely a new discovery in the dIrr galaxy Le A. Two such stars within 30arcmin of each other may trace a previously unidentified dwarf galaxy or tidal stream at ~40 kpc. We describe follow-up projects to study the spatial, kinematic, and binary properties of these C-enriched dwarfs.
Cs(2)K(UO)(2)Si(4)O(12): a mixed-valence uranium(IV,V) silicate.
Lee, Cheng-Shiuan; Wang, Sue-Lein; Lii, Kwang-Hwa
2009-10-28
The first mixed-valence uranium(IV,V) silicate is synthesized under high-temperature, high-pressure hydrothermal conditions. The structure contains chains of corner-sharing U(IV,V)O(6) octahedra which are interconnected by Si(4)O(12) four-membered rings to form a 3-D framework. XPS and XANES spectra were measured to identify the valence state of uranium.
β-decay Rates for Exotic Nuclei and r-process Nucleosynthesis up to Thorium and Uranium
NASA Astrophysics Data System (ADS)
Suzuki, Toshio; Shibagaki, Shota; Yoshida, Takashi; Kajino, Toshitaka; Otsuka, Takaharu
2018-06-01
Beta-decay rates for exotic nuclei with neutron magic number of N = 126 relevant to r-process nucleosynthesis are studied up to Z = 78 by shell-model calculations. The half-lives for the waiting-point nuclei obtained, which are short compared to a standard finite-range-droplet model, are used to study r-process nucleosynthesis in core-collapse supernova (CCSN) explosions and binary neutron star mergers. The element abundances are obtained up to the third peak as well as beyond the peak region up to thorium and uranium. The position of the third peak is found to be shifted toward a higher mass region in both CCSN explosions and neutron star mergers. We find that thorium and uranium elements are produced more with the shorter shell-model half-lives and their abundances come close to the observed values in CCSN explosions. In the case of binary neutron star mergers, thorium and uranium are produced consistently with the observed values independent of the half-lives.
X-Ray Emission from "Uranium" Stars
NASA Technical Reports Server (NTRS)
Schlegel, Eric; Mushotzky, Richard (Technical Monitor)
2005-01-01
The project aims to secure XMM observations of two targets with extremely low abundances of the majority of heavy elements (e.g., log[Fe/H] $\\sim$-4), but that show absorption lines of uranium. The presence of an r-process element such as uranium requires a binary star system in which the companion underwent a supernova explosion. A binary star system raises the distinct possibility of the existence of a compact object, most likely a neutron star, in the binary, assuming it survived the supernova blast. The presence of a compact object then suggests X-ray emission if sufficient matter accretes to the compact object. The observations were completed less than one year ago following a series of reobservations to correct for significant flaring that occurred during the original observations. The ROSAT all-sky survey was used to report on the initial assessment of X-ray emission from these objects; only upper limits were reported. These upper limits were used to justify the XMM observing time, but with the expectation that upper limits would merely be pushed lower. The data analysis hinges critically on the quality and degree of precision with which the background is handled. During the past year, I have spent some time learning the ins and outs of XMM data analysis. In the coming year, I can apply that learning to the analysis of the 'uranium' stars.
Working Group on Circumstellar/Interstellar Relationships
NASA Technical Reports Server (NTRS)
Glassgold, A. E.
1986-01-01
Stars of various types are believed to be the main source of interstellar (IS) dust grans. The most important confirmed source is evolved giant and supergiant stars. Supernovae also contribute to the mass loss. The differences between circumstellar (CS) and IS dust were reviewed using the following topics: alteration of CS dust grains, size distribution, space observation of CS and IS dust, comparison of infrared spectra, isotopic signatures, Magellanic clouds and nearby galaxies, life cycles of dust grains, and physical and chemical data.
Mukherjee, Arpan; Wheaton, Garrett H; Counts, James A; Ijeomah, Brenda; Desai, Jigar; Kelly, Robert M
2017-07-01
When abruptly exposed to toxic levels of hexavalent uranium, the extremely thermoacidophilic archaeon Metallosphaera prunae, originally isolated from an abandoned uranium mine, ceased to grow, and concomitantly exhibited heightened levels of cytosolic ribonuclease activity that corresponded to substantial degradation of cellular RNA. The M. prunae transcriptome during 'uranium-shock' implicated VapC toxins as possible causative agents of the observed RNA degradation. Identifiable VapC toxins and PIN-domain proteins encoded in the M. prunae genome were produced and characterized, three of which (VapC4, VapC7, VapC8) substantially degraded M. prunae rRNA in vitro. RNA cleavage specificity for these VapCs mapped to motifs within M. prunae rRNA. Furthermore, based on frequency of cleavage sequences, putative target mRNAs for these VapCs were identified; these were closely associated with translation, transcription, and replication. It is interesting to note that Metallosphaera sedula, a member of the same genus and which has a nearly identical genome sequence but not isolated from a uranium-rich biotope, showed no evidence of dormancy when exposed to this metal. M. prunae utilizes VapC toxins for post-transcriptional regulation under uranium stress to enter a cellular dormant state, thereby providing an adaptive response to what would otherwise be a deleterious environmental perturbation. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacoby, George H.; Marco, Orsola De; Davies, James
The globular cluster (GC) system of our Galaxy contains four planetary nebulae (PNe): K 648 (or Ps 1) in M15, IRAS 18333-2357 in M22, JaFu 1 in Pal 6, and JaFu 2 in NGC 6441. Because single-star evolution at the low stellar mass of present-epoch GCs was considered incapable of producing visible PNe, their origin presented a puzzle. We imaged the PN JaFu 1 with the Hubble Space Telescope (HST) to obtain photometry of its central star (CS) and high-resolution morphological information. We imaged IRAS 18333-2357 with better depth and resolution, and we analyzed its archival HST spectra to constrainmore » its CS temperature and luminosity. All PNe in Galactic GCs now have quality HST data, allowing us to improve CS mass estimates. We find reasonably consistent masses between 0.53 and 0.58 M {sub ⊙} for all four objects, though estimates vary when adopting different stellar evolutionary calculations. The CS mass of IRAS 18333-2357, though, depends strongly on its temperature, which remains elusive due to reddening uncertainties. For all four objects, we consider their CS and nebula masses, their morphologies, and other incongruities to assess the likelihood that these objects formed from binary stars. Although generally limited by uncertainties (∼0.02 M {sub ⊙}) in post-AGB tracks and core mass versus luminosity relations, the high-mass CS in K 648 indicates a binary origin. The CS of JaFu 1 exhibits compact, bright [O iii] and H α emission, like EGB 6, suggesting a binary companion or disk. Evidence is weaker for a binary origin of JaFu 2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Law, A.G.; Serkowski, J.A.; Schatz, A.L.
The Separations Area ground-water monitoring network consisted of 137 wells. Samples from wells in the monitoring network were collected on a monthly, quarterly, or semiannual schedule, depending on the history of the liquid waste disposal site. Samples were analyzed selectively for total alpha, total beta, tritium, /sup 90/Sr, /sup 137/Cs, /sup 60/Co, /sup 106/Ru, total uranium and nitrate. Average concentrations of contaminants in most wells were essentially the same in 1986 as in 1985. The DCG for tritium was exceeded at two PUREX cribs. The ACL specified for /sup 90/Sr was exceeded in three wells near the 216-A-25 Pond. Disposalmore » of effluents to the pond decreased as the main pond was reduced in width to a ditch leading the overflow pond. The ACL guidelines for uranium were exceeded although concentrations were below the DCG; the source of this uranium is probably the inactive 216-B-12 crib. Uranium concentrations above the ACL but below the DCG were also observed at the 216-U-14 ditch and the source is under evaluation. The inactive 216-B-5 reverse well exceeded the DCG for /sup 90/Sr and the ACL for /sup 137/Cs and uranium. Inactive facilities exceeding Rockwell guidelines were the 216-S-1/2 cribs, 216-U-1/2 cribs, the 216-U-10 pond, and the 216-U-6 crib. The 216-S-1/2 cribs have historically had high /sup 137/Cs concentrations because of localized contamination but are below the DCG. Uranium concentrations, which are above the DCG, have stabilized at the 216-U-1/2 cribs after the remedial pumping and uranium removal conducted in 1985. Possible additional action is currently being evaluated. Disposal of the effluent from the ion exchange column to the 216-S-25 crib resulted in ground-water concentrations that exceeded Rockwell guidelines but below the DCG. Ground water near the 216-U-10 pond remains elevated but below the DCG due to past disposal to the pond, which was deactivated in 1984. 23 refs., 25 figs., 26 tabs.« less
2014-01-01
Deprotonation of [U(TrenTIPS)(NH2)] (1) [TrenTIPS = N(CH2CH2NSiPri3)3] with organoalkali metal reagents MR (M = Li, R = But; M = Na–Cs, R = CH2C6H5) afforded the imido-bridged dimers [{U(TrenTIPS)(μ-N[H]M)}2] [M = Li–Cs (2a–e)]. Treatment of 2c (M = K) with 2 equiv of 15-crown-5 ether (15C5) afforded the uranium terminal parent imido complex [U(TrenTIPS)(NH)][K(15C5)2] (3c), which can also be viewed as a masked uranium(IV) nitride. The uranium–imido linkage was found to be essentially linear, and theoretical calculations suggested σ2π4 polarized U–N multiple bonding. Attempts to oxidize 3c to afford the neutral uranium terminal parent imido complex [U(TrenTIPS)(NH)] (4) resulted in spontaneous disproportionation to give 1 and the uranium–nitride complex [U(TrenTIPS)(N)] (5); this reaction is a new way to prepare the terminal uranium–nitride linkage and was calculated to be exothermic by −3.25 kcal mol–1. PMID:24697157
Searching For Infrared Excesses Around White Dwarf Stars
NASA Astrophysics Data System (ADS)
Deeb Wilson, Elin; Rebull, Luisa M.; Debes, John H.; Stark, Chris
2017-01-01
Many WDs have been found to be “polluted,” meaning they contain heavier elements in their atmospheres. Either an active process that counters gravitational settling is taking place, or an external mechanism is the cause. One proposed external mechanism for atmospheric pollution of WDs is the disintegration and accretion of rocky bodies, which would result in a circumstellar (CS) disk. As CS disks are heated, they emit excess infrared (IR) emission. WDs with IR excesses indicative of a CS disk are known as dusty WDs. Statistical studies are still needed to determine how numerous dusty, polluted WDs are, along with trends and correlations regarding rate of planetary accretion, the lifetimes of CS disks, and the structure and evolution of CS disks. These findings will allow for a better understanding of the fates of planets along with potential habitability of surviving planets.In this work, we are trying to confirm IR excesses around a sample of 69 WD stars selected as part of the WISE InfraRed Excesses around Degenerates (WIRED) Survey (Debes et al. 2011). We have archival data from WISE, Spitzer, 2MASS, DENIS, and SDSS. The targets were initially selected from the Sloan Digital Sky Survey (SDSS), and identified as containing IR excesses based on WISE data. We also have data from the Four Star Infrared Camera array, which is part of Carnegie Institution’s Magellan 6.5 meter Baade Telescope located at Las Campanas Observatory in Chile. These Four Star data are much higher spatial resolution than the WISE data that were used to determine if each WD has an IR excess. There are often not many bands delineating the IR excess portion of the SED; therefore, we are using the Four Star data to check if there is another source in the WISE beam affecting the IR excess.
Thomas, Patricia; Irvine, James; Lyster, Jane; Beaulieu, Rhys
2005-05-01
Tissues from 45 moose and 4 cattle were collected to assess the health of country foods near uranium mines in northern Saskatchewan. Bone, liver, kidney, muscle and rumen contents were analyzed for uranium, radium-226 (226Ra), lead-210 (210Pb), and polonium-210 (210Po). Cesium-137 (137Cs), potassium-40 (40K), and 27 trace metals were also measured in some tissues. Within the most active mining area, Po in liver and muscle declined significantly with distance from tailings, possibly influenced by nearby natural uranium outcrops. Moose from this area had significantly higher 226Ra, 210Pb, 210Po, and 137Cs in some edible soft tissues vs. one control area. However, soil type and diet may influence concentrations as much as uranium mining activities, given that a) liver levels of uranium, 226Ra, and 210Po were similar to a second positive control area with mineral-rich shale hills and b) 210Po was higher in cattle kidneys than in all moose. Enhanced food chain transfer from rumen contents to liver was found for selenium in the main mining area and for copper, molybdenum and cadmium in moose vs. cattle. Although radiological doses to moose in the main mining area were 2.6 times higher than doses to control moose or cattle, low moose intakes yielded low human doses (0.0068 mSv y(-1)), a mere 0.3% of the dose from intake of caribou (2.4 mSv y(-1)), the dietary staple in the area.
Production of fissioning uranium plasma to approximate gas-core reactor conditions
NASA Technical Reports Server (NTRS)
Lee, J. H.; Mcfarland, D. R.; Hohl, F.; Kim, K. H.
1974-01-01
The intense burst of neutrons from the d-d reaction in a plasma-focus apparatus is exploited to produce a fissioning uranium plasma. The plasma-focus apparatus consists of a pair of coaxial electrodes and is energized by a 25 kJ capacitor bank. A 15-g rod of 93% enriched U-235 is placed in the end of the center electrode where an intense electron beam impinges during the plasma-focus formation. The resulting uranium plasma is heated to about 5 eV. Fission reactions are induced in the uranium plasma by neutrons from the d-d reaction which were moderated by the polyethylene walls. The fission yield is determined by evaluating the gamma peaks of I-134, Cs-138, and other fission products, and it is found that more than 1,000,000 fissions are induced in the uranium for each focus formation, with at least 1% of these occurring in the uranium plasma.
NASA Astrophysics Data System (ADS)
Ivans, Inese I.; Sneden, Christopher; Gallino, Roberto; Cowan, John J.; Preston, George W.
2005-07-01
Employing spectra obtained with the new Keck I HIRES near-UV-sensitive detector, we have performed a comprehensive chemical composition analysis of the binary blue metal-poor star CS 29497-030. Abundances for 29 elements and upper limits for an additional seven have been derived, concentrating on elements largely produced by means of neutron-capture nucleosynthesis. Included in our analysis are the two elements that define the termination point of the slow neutron-capture process, lead and bismuth. We determine an extremely high value of [Pb/Fe]=+3.65+/-0.07 (σ=0.13) from three features, supporting the single-feature result obtained in previous studies. We detect Bi for the first time in a metal-poor star. Our derived Bi/Pb ratio is in accord with those predicted from the most recent FRANEC calculations of the slow neutron-capture process in low-mass asymptotic giant branch (AGB) stars. We find that the neutron-capture elemental abundances of CS 29497-030 are best explained by an AGB model that also includes very significant amounts of pre-enrichment of rapid neutron-capture process material in the protostellar cloud out of which the CS 29497-030 binary system formed. Mass transfer is consistent with the observed [Nb/Zr]~0. Thus, CS 29497-030 is both an r+s and ``extrinsic AGB'' star. Furthermore, we find that the mass of the AGB model can be further constrained by the abundance of the light odd-element Na. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Compact stars in Eddington-inspired Born-Infeld gravity: Anomalies associated with phase transitions
NASA Astrophysics Data System (ADS)
Sham, Y.-H.; Leung, P. T.; Lin, L.-M.
2013-03-01
We study how generic phase transitions taking place in compact stars constructed in the framework of the Eddington-inspired Born-Infeld (EiBI) gravity can lead to anomalous behavior of these stars. For the case with first-order phase transitions, compact stars in EiBI gravity with a positive coupling parameter κ exhibit a finite region with constant pressure, which is absent in general relativity. However, for the case with a negative κ, an equilibrium stellar configuration cannot be constructed. Hence EiBI gravity seems to impose stricter constraints on the microphysics of stellar matter. Besides, in the presence of spatial discontinuities in the sound speed cs due to phase transitions, the Ricci scalar is spatially discontinuous and contains δ-function singularities proportional to the jump in cs2 acquired in the associated phase transition.
Rejuvenation of the Innocent Bystander: Testing Spin-Up in Dwarf Carbon Stars
NASA Astrophysics Data System (ADS)
Green, Paul
2013-09-01
Carbon stars (C>O) were long assumed to all be giants, because only AGB stars dredge up significant carbon into their atmospheres. We now know that dwarf carbon (dC) stars are actually far more common than C giants. These dCs are hypothesized to have accreted C-rich envelope material from an AGB companion, in systems that have likely undergone a planetary nebula phase, eventually yielding a white dwarf and a dC that has gained both significant mass and angular momentum. To test whether the X-ray emission strength and spectral properties are consistent with a rejuvenated dynamo, we propose a Chandra pilot study of dCs selected from the SDSS; some have hot white dwarf companions (indicating more recent mass transfer), and all show Balmer emission lines (a sign of activity).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roederer, Ian U., E-mail: iur@umich.edu
The heaviest metals found in stars in most ultra-faint dwarf (UFD) galaxies in the Milky Way halo are generally underabundant by an order of magnitude or more when compared with stars in the halo field. Among the heavy elements produced by n -capture reactions, only Sr and Ba can be detected in red giant stars in most UFD galaxies. This limited chemical information is unable to identify the nucleosynthesis process(es) responsible for producing the heavy elements in UFD galaxies. Similar [Sr/Ba] and [Ba/Fe] ratios are found in three bright halo field stars, BD−18°5550, CS 22185–007, and CS 22891–200. Previous studiesmore » of high-quality spectra of these stars report detections of additional n -capture elements, including Eu. The [Eu/Ba] ratios in these stars span +0.41 to +0.86. These ratios and others among elements in the rare Earth domain indicate an r -process origin. These stars have some of the lowest levels of r -process enhancement known, with [Eu/H] spanning −3.95 to −3.32, and they may be considered nearby proxies for faint stars in UFD galaxies. Direct confirmation, however, must await future observations of additional heavy elements in stars in the UFD galaxies themselves.« less
The removal of uranium onto carbon-supported nanoscale zero-valent iron particles
NASA Astrophysics Data System (ADS)
Crane, Richard A.; Scott, Thomas
2014-12-01
In the current work carbon-supported nanoscale zero-valent iron particles (CS nZVI), synthesised by the vacuum heat treatment of ferric citrate trihydrate absorbed onto carbon black, have been tested for the removal of uranium (U) from natural and synthetic waters. Two types of CS nZVI were tested, one vacuum annealed at 600 °C for 4 h and the other vacuum annealed at 700 °C for 4 h, with their U removal behaviour compared to nZVI synthesised via the reduction of ferrous iron using sodium borohydride. The batch systems were analysed over a 28-day reaction period during which the liquid and nanoparticulate solids were periodically analysed to determine chemical evolution of the solutions and particulates. Results demonstrate a well-defined difference between the two types of CS nZVI, with greater U removal exhibited by the nanomaterial synthesised at 700 °C. The mechanism has been attributed to the CS nZVI synthesised at 700 °C exhibiting (i) a greater proportion of surface oxide Fe2+ to Fe3+ (0.34 compared to 0.28); (ii) a greater conversion of ferric citrate trihydrate [2Fe(C6H5O7)·H2O] to Fe0; and (iii) a larger surface area (108.67 compared to 88.61 m2 g-1). Lower maximum U uptake was recorded for both types of CS nZVI in comparison with the borohydride-reduced nZVI. A lower decrease in solution Eh and DO was also recorded, indicating that less chemical reduction of U was achieved by the CS nZVI. Despite this, lower U desorption in the latter stages of the experiment (>7 days) was recorded for the CS nZVI synthesised at 700 °C, indicating that carbon black in the CS nZVI is likely to have contributed towards U sorption and retention. Overall, it can be stated that the borohydride-reduced nZVI were significantly more effective than CS nZVI for U removal over relatively short timescales (e.g. <48 h), however, they were more susceptible to U desorption over extended time periods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, Y.; Friedman, G. M.; Miller, D. S.
1978-12-31
Results of the analysis of uranium concentrations in the 8 coral heads sampled from the Bikini and Enewetak lagoons lead to the following conclusions: (1) no parallel increase in uranium concentration was found in the corals contaminated by Pu and Am; (2) in the noncontaminated corals, the fission track analysis shows wider ranges of uranium concentrations (1.8 to 3.1). Thus, in the corals not contaminated by Pu and Am, uranium concentrations similar to the uranium concentration in the contaminated corals were found; (3) uranium content in all corals analyzed was rather homogeneously distributed, i.e., no hot spots, stars, or areasmore » differing in concentration by more than a few percent were detected by the fission track analyses.« less
Fission Product Inventory and Burnup Evaluation of the AGR-2 Irradiation by Gamma Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harp, Jason Michael; Stempien, John Dennis; Demkowicz, Paul Andrew
Gamma spectrometry has been used to evaluate the burnup and fission product inventory of different components from the US Advanced Gas Reactor Fuel Development and Qualification Program's second TRISO-coated particle fuel irradiation test (AGR-2). TRISO fuel in this irradiation included both uranium carbide / uranium oxide (UCO) kernels and uranium oxide (UO 2) kernels. Four of the 6 capsules contained fuel from the US Advanced Gas Reactor program, and only those capsules will be discussed in this work. The inventories of gamma-emitting fission products from the fuel compacts, graphite compact holders, graphite spacers and test capsule shell were evaluated. Thesemore » data were used to measure the fractional release of fission products such as Cs-137, Cs-134, Eu-154, Ce-144, and Ag-110m from the compacts. The fraction of Ag-110m retained in the compacts ranged from 1.8% to full retention. Additionally, the activities of the radioactive cesium isotopes (Cs-134 and Cs-137) have been used to evaluate the burnup of all US TRISO fuel compacts in the irradiation. The experimental burnup evaluations compare favorably with burnups predicted from physics simulations. Predicted burnups for UCO compacts range from 7.26 to 13.15 % fission per initial metal atom (FIMA) and 9.01 to 10.69 % FIMA for UO 2 compacts. Measured burnup ranged from 7.3 to 13.1 % FIMA for UCO compacts and 8.5 to 10.6 % FIMA for UO 2 compacts. Results from gamma emission computed tomography performed on compacts and graphite holders that reveal the distribution of different fission products in a component will also be discussed. Gamma tomography of graphite holders was also used to locate the position of TRISO fuel particles suspected of having silicon carbide layer failures that lead to in-pile cesium release.« less
Fission Product Inventory and Burnup Evaluation of the AGR-2 Irradiation by Gamma Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harp, Jason M.; Demkowicz, Paul A.; Stempien, John D.
Gamma spectrometry has been used to evaluate the burnup and fission product inventory of different components from the US Advanced Gas Reactor Fuel Development and Qualification Program's second TRISO-coated particle fuel irradiation test (AGR-2). TRISO fuel in this irradiation included both uranium carbide / uranium oxide (UCO) kernels and uranium oxide (UO2) kernels. Four of the 6 capsules contained fuel from the US Advanced Gas Reactor program, and only those capsules will be discussed in this work. The inventories of gamma-emitting fission products from the fuel compacts, graphite compact holders, graphite spacers and test capsule shell were evaluated. These datamore » were used to measure the fractional release of fission products such as Cs-137, Cs-134, Eu-154, Ce-144, and Ag-110m from the compacts. The fraction of Ag-110m retained in the compacts ranged from 1.8% to full retention. Additionally, the activities of the radioactive cesium isotopes (Cs-134 and Cs-137) have been used to evaluate the burnup of all US TRISO fuel compacts in the irradiation. The experimental burnup evaluations compare favorably with burnups predicted from physics simulations. Predicted burnups for UCO compacts range from 7.26 to 13.15 % fission per initial metal atom (FIMA) and 9.01 to 10.69 % FIMA for UO2 compacts. Measured burnup ranged from 7.3 to 13.1 % FIMA for UCO compacts and 8.5 to 10.6 % FIMA for UO2 compacts. Results from gamma emission computed tomography performed on compacts and graphite holders that reveal the distribution of different fission products in a component will also be discussed. Gamma tomography of graphite holders was also used to locate the position of TRISO fuel particles suspected of having silicon carbide layer failures that lead to in-pile cesium release.« less
E5 M7+ (E=C-Pb, M=Li-Cs): A Source of Viable Star-Shaped Clusters.
Vásquez-Espinal, Alejandro; Palacio-Rodríguez, Karen; Ravell, Estefanía; Orozco-Ic, Mesías; Barroso, Jorge; Pan, Sudip; Tiznado, William; Merino, Gabriel
2018-06-19
Herein we report the systematic exploration of the potential energy surfaces of a series of clusters with formula E 5 M 7 + (E=C-Pb and M=Li-Cs). Fifteen of these combinations adopt a D 5h three-dimensional seven-pointed star-like structure in a singlet state, where M atoms interact electrostatically with the E 5 ring. The determining factors in the relative preference of having the D 5h structure over the most competitive isomer or vice-versa are analyzed. These star-shaped systems satisfy the 4n+2 Hückel's rule and exhibit a strong diatropic (σ and π) response to an external magnetic field. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M.; Coleman, C.; Diprete, D.
SRNL analyzed samples from Tank 38H and Tank 43H to support ECP and CCP. The total uranium in the Tank 38H surface sample was 41.3 mg/L while the sub-surface sample was 43.5 mg/L. The Tank 43H samples contained total uranium concentrations of 28.5 mg/L in the surface sample and 28.1 mg/L in the sub-surface sample. The U-235 percentage ranged from 0.62% to 0.63% for the Tank 38H samples and Tank 43H samples. The total uranium and percent U-235 results in the table appear slightly lower than recent Tank 38H and Tank 43H uranium measurements. The plutonium results in the tablemore » show a large difference between the surface and sub-surface sample concentrations for Tank 38H. The Tank 43H plutonium results closely match the range of values measured on previous samples. The Cs-137 results for the Tank 38H surface and sub-surface samples show similar concentrations slightly higher than the concentrations measured in recent samples. The Cs-137 results for the two Tank 43H samples also show similar concentrations within the range of values measured on previous samples. The four samples show silicon concentrations somewhat lower than the previous samples with values ranging from 124 to 168 mg/L.« less
Abundances in the Very Metal Poor s-Process-rich Star CS 22183-015
NASA Astrophysics Data System (ADS)
Johnson, Jennifer A.; Bolte, Michael
2002-11-01
We report on the abundances for 13 elements in CS 22183-015, the most metal-poor, s-process-rich star yet discovered. We measure [Fe/H]=-3.12 and large overabundances compared to scaled solar values for 11 heavy elements with s-process origin. The low luminosity of the star suggests that it is a CH star, a giant that has accreted s-processed material from an evolved, very metal poor companion. We find a [Pb/Ba] value of 1.1 dex and, more generally, that the ratio of heavy to light s-process elements is larger than seen in the solar system. This result is consistent with theoretical expectations for the s-process in metal-poor stars. [Eu/La] is higher than predicted from the solar system s-process abundance ratios. We argue that the s-process in metal-poor stars is more efficient at producing Eu that in asymptotic giant branch stars of solar metallicity. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Mini-STAR as bail-out strategy for percutaneous coronary intervention of chronic total occlusion.
Galassi, Alfredo Ruggero; Tomasello, Salvatore Davide; Costanzo, Luca; Campisano, Maria Barbara; Barrano, Giombattista; Ueno, Masafumi; Tello-Montoliu, Antonio; Tamburino, Corrado
2012-01-01
Although the advancement of the equipment and the presence of innovative techniques, percutaneous coronary intervention (PCI) for chronic total occlusion (CTO) continues to be affected by lower procedural success in comparison with non occluded vessel PCI. We describe a new technique for the treatment of coronary CTO which utilizes a new generation of polymeric wires. From March 2009 to June 2010 different strategies were adopted as "bail out" after an initial attempt failed in 117 consecutive CTO lesions. Among these, conventional strategies (CS) such as parallel wire, sub-intimal tracking and re-entry (STAR), microchannel technique, intracoronary ultrasound guided revascularization and anchor balloon, were used in 75 cases (64.1%), while in the remaining a new technique, the "mini-STAR," was used (39.9%). Although no substantial differences were observed regarding the distribution of clinical features and angiographic lesions characteristics between the populations, mini-STAR was able to achieve a higher rate of procedural success in comparison with other CS (97.6% vs. 52%, P < 0.001) with lower contrast agent use (442 ± 259 cm(3) vs. 561 ± 243 cm(3), P = 0.01) and shorter procedural and fluoroscopy times (122 ± 61 vs. 157 ± 74 min, P = 0.009 and 60 ± 31 min vs. 75 ± 38 min, P = 0.03, respectively). No differences were observed in term of peri-procedural complications such as procedural myocardial infarction, coronary perforations, and contrast-induced nephropathy between mini-STAR and CS. The mini-STAR technique is a promising strategy for the treatment of CTO lesions, achieving a high procedural success rate and low occurrence of procedural adverse events. Copyright © 2011 Wiley Periodicals, Inc.
Survey for C-Band High Spectral Lines with the Arecibo Telescope
NASA Astrophysics Data System (ADS)
Tan, Wei Siang
High-mass stars have masses greater than 8 solar masses and are the main source of heavy elements such as iron in the interstellar medium. This type of stars form in giant molecular clouds. Studying the molecular environment in star-forming regions is crucial to understand the physical structure and conditions that lead to the formation of high-mass stars. This thesis presents observations conducted with the 305m Arecibo Telescope in Puerto Rico of twelve high-mass star forming regions. Every source was observed in multiple transitions of molecular species including CH, CH3OH, H2CS, and OH lines, and a radio recombination line. The observations were conducted with the C-Band High receiver of the Arecibo Telescope in the frequency range of 6.0 to 7.4GHz. The goals of the observations were to investigate the detectability of different molecular species (including new possible molecular masers) and obtain high sensitivity observations of the 6.7GHz CH3OH line to detect absorption and use it as a probe of the kinematics of the molecular material with respect to the ionized gas. Among the results of the observations, we report detection of 6.7GHz CH3OH masers toward nine regions, OH masers toward five sources, 6.7GHz CH3OH absorption toward four sources (including tentative detections), and detection of H2CS toward the star forming region G34.26+0.15. We also found a variable and recurrent 6.7GHz CH3OH maser in G45.12+0.13. The 6.7GHz CH 3OH and 6278.65MHz H2CS absorption lines were modeled using the radiative transfer code RADEX to investigate the physical conditions of the molecular clouds responsible for the absorption lines. Our analysis of the absorption lines supports the interpretation that the spectral lines are tracing molecular envelopes of HII regions. In the case of 6.7GHz CH 3OH absorption, our results and data from an extensive literature review indicate that absorption is rare, but that a population of 6.7GHz CH 3OH absorbers may be present at levels below ˜ 100mJy. In the case of the 6278.65MHz H2CS absorption in G34.26+0.15, the data are consistent with infalling gas onto the HII region, which supports the key principle of gravitational collapse of molecular clouds during the process of star formation. However, high angular resolution observations of the H 2CS line are needed to confirm the infall hypothesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaschke, David; Instytut Fizyki Teoretycznej, Uniwersytet Wroclawski, 50-204 Wroclaw; Alvarez-Castillo, David E.
2016-01-22
We aim at contributing to the resolution of three of the fundamental puzzles related to the still unsolved problem of the structure of the dense core of compact stars (CS): (i) the hyperon puzzle: how to reconcile pulsar masses of 2 M{sub ⊙} with the hyperon softening of the equation of state (EoS); (ii) the masquerade problem: modern EoS for cold, high density hadronic and quark matter are almost identical; and (iii) the reconfinement puzzle: what to do when after a deconfinement transition the hadronic EoS becomes favorable again? We show that taking into account the compositeness of baryons (bymore » excluded volume and/or quark Pauli blocking) on the hadronic side and confining and stiffening effects on the quark matter side results in an early phase transition to quark matter with sufficient stiffening at high densities which removes all three present-day puzzles of CS interiors. Moreover, in this new class of EoS for hybrid CS falls the interesting case of a strong first order phase transition which results in the observable high mass twin star phenomenon, an astrophysical observation of a critical endpoint in the QCD phase diagram.« less
NASA Astrophysics Data System (ADS)
Groenewegen, M. A. T.; Jurkovic, M. I.
2017-07-01
Context. Type II Cepheids (T2Cs) and anomalous Cepheids (ACs) are pulsating stars that follow separate period-luminosity relations. Aims: We study the period-luminosity (PL) and period-radius (PR) relations for T2Cs and ACs in the Magellanic Clouds. Methods: In an accompanying paper we determined the luminosities and effective temperatures for the 335 T2Cs and ACs in the LMC and SMC discovered in the OGLE-III survey, by constructing the spectral energy distribution (SED) and fitting this with model atmospheres and a dust radiative transfer model (in the case of dust excess). Building on these results we studied the PL and PR relations of these sources. Using existing pulsation models for RR Lyrae and classical Cepheids we derive the period-luminosity-mass-temperature-metallicity relations and then estimate the pulsation mass. Results: The PL relation for the T2Cs does not appear to depend on metallicity and is Mbol = + 0.12-1.78log P (for P < 50 days), excluding the dusty RV Tau stars. Relations for fundamental and first overtone LMC ACs are also presented. The PR relation for T2C also shows little or no dependence on metallicity or period. Our preferred relation combines SMC and LMC stars and all T2C subclasses and is log R = 0.846 + 0.521log P. Relations for fundamental and first overtone LMC ACs are also presented. The pulsation masses from the RR Lyrae and classical Cepheid pulsation models agree well for the short period T2Cs, the BL Her subtype, and ACs, and are consistent with estimates in the literature, I.e. MBLH 0.49M⊙ and MAC 1.3M⊙, respectively. The masses of the W Vir appear similar to the BL Her. The situation for the pWVir and RV Tau stars is less clear. For many RV Tau the masses are in conflict with the standard picture of (single-star) post-AGB evolution, where the masses are either too large (≳1 M⊙) or too small (≲0.4 M⊙). Full Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A29
Nash, J. Thomas; Frishman, David
1983-01-01
Analytical results for 61 elements in 370 samples from the Ranger Mine area are reported. Most of the rocks come from drill core in the Ranger No. 1 and Ranger No. 3 deposits, but 20 samples are from unmineralized drill core more than 1 km from ore. Statistical tests show that the elements Mg, Fe, F, Be, Co, Li, Ni, Pb, Sc, Th, Ti, V, CI, As, Br, Au, Ce, Dy, La Sc, Eu, Tb, Yb, and Tb have positive association with uranium, and Si, Ca, Na, K, Sr, Ba, Ce, and Cs have negative association. For most lithologic subsets Mg, Fe, Li, Cr, Ni, Pb, V, Y, Sm, Sc, Eu, and Yb are significantly enriched in ore-bearing rocks, whereas Ca, Na, K, Sr, Ba, Mn, Ce, and Cs are significantly depleted. These results are consistent with petrographic observations on altered rocks. Lithogeochemistry can aid exploration, but for these rocks requires methods that are expensive and not amenable to routine use.
NASA Astrophysics Data System (ADS)
Barzakh, A. E.; Lhersonneau, G.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Mezilev, K. A.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Panteleev, V. N.; Volkov, Yu. M.; Alyakrinskiy, O.; Barbui, M.; Stroe, L.; Tecchio, L. B.
2011-05-01
The diffusion-effusion model has been used to analyse the release and yields of Fr and Cs isotopes from uranium carbide targets of very different thicknesses (6.3 and 148 g/cm2) bombarded by a 1 GeV proton beam. Release curves of several isotopes of the same element and production efficiency versus decay half-life are well fitted with the same set of parameters. Comparison of efficiencies for neutron-rich and neutron-deficient Cs isotopes enables separation of the contributions from the primary ( p + 238U) and secondary (n + 238U) reactions to the production of neutron-rich Cs isotopes. A rather simple calculation of the neutron contribution describes these data fairly well. The FLUKA code describes the primary and secondary-reaction contributions to the Cs isotopes production efficiencies for different targets quite well.
Externally fed star formation: a numerical study
NASA Astrophysics Data System (ADS)
Mohammadpour, Motahareh; Stahler, Steven W.
2013-08-01
We investigate, through a series of numerical calculations, the evolution of dense cores that are accreting external gas up to and beyond the point of star formation. Our model clouds are spherical, unmagnetized configurations with fixed outer boundaries, across which gas enters subsonically. When we start with any near-equilibrium state, we find that the cloud's internal velocity also remains subsonic for an extended period, in agreement with observations. However, the velocity becomes supersonic shortly before the star forms. Consequently, the accretion rate building up the protostar is much greater than the benchmark value c_s^3/G, where cs is the sound speed in the dense core. This accretion spike would generate a higher luminosity than those seen in even the most embedded young stars. Moreover, we find that the region of supersonic infall surrounding the protostar races out to engulf much of the cloud, again in violation of the observations, which show infall to be spatially confined. Similar problematic results have been obtained by all other hydrodynamic simulations to date, regardless of the specific infall geometry or boundary conditions adopted. Low-mass star formation is evidently a quasi-static process, in which cloud gas moves inward subsonically until the birth of the star itself. We speculate that magnetic tension in the cloud's deep interior helps restrain the infall prior to this event.
The end of the White Dwarf Cooling Sequence of NGC 6752
NASA Astrophysics Data System (ADS)
Bedin, Luigi
2017-08-01
We propose to study the last HST-accessible white dwarf (WD) cooling sequence (CS) for a nearby globular cluster (GC), the chemically complex, extreme blue horizontal branch cluster NGC 6752. Over 97% of stars end their lives as WDs, and the WD CS provides constraints not only on the age, but also potentially the star formation history of a GC. The CS of WDs also lies in the least-explored region of the color-magnitude diagram of old stellar populations. Recent deep imaging with HST has successfully reached the end of the WD CS in only three classical old GCs, M4, NGC 6397 and 47 Tuc, and reveals an unexpectedly complex, and double-peaked, WD CS in the metal rich old open cluster NGC 6791. One more investigation is in progress on the massive globular Omega Centauri, where over 14 sub-populations are known to exist.While almost every cluster is known to host multiple populations, every single cluster is unique. NGC 6752 is a bridge between the relatively simple globular clusters, and Omega Cen, the most complex globular cluster known. NGC 6752 has an extended blue horizontal branch, a collapsed core and 3 chemically distinct populations. It is our last chance to add diversity to our very limited sample of WD CS, so far containing only 3 globular clusters, one old open cluster, and the complex Omega Cen system. We need to undertake this investigation while HST is still operational, as there is no foreseeable opportunity in the post-HST era to have one extra WD CS in the homogeneus optical photometric system of HST.
NASA Astrophysics Data System (ADS)
Watson, C.; Devine, Kathryn; Quintanar, N.; Candelaria, T.
2016-02-01
We survey 44 young stellar objects located near the edges of mid-IR-identified bubbles in CS (1-0) using the Green Bank Telescope. We detect emission in 18 sources, indicating young protostars that are good candidates for being triggered by the expansion of the bubble. We calculate CS column densities and abundances. Three sources show evidence of infall through non-Gaussian line-shapes. Two of these sources are associated with dark clouds and are promising candidates for further exploration of potential triggered star formation. We obtained on-the-fly maps in CS (1-0) of three sources, showing evidence of significant interactions between the sources and the surrounding environment.
Variation of Nb-Ta, Zr-Hf, Th-U and K-Cs in two diabase-granophyre suites
Gottfried, D.; Greenland, L.P.; Campbell, E.Y.
1968-01-01
Concentrations of Nb, Ta, Zr, Hf, Th, U and Cs have been determined in samples of igneous rocks representing the diabase-granophyre suites from Dillsburg, Pennsylvania, and Great Lake, Tasmania. Niobium and tantalum have a three to fourfold increase with differentiation in each of the suites. The chilled margin of the Great Lake intrusion contains half the niobium and tantalum content (5.3 ppm and 0.4 ppm, respectively) of the chilled basalt from Dillsburg (10 ppm and 0.9 ppm, respectively). The twofold difference between the suites is correlated with differences in their titanium content. The average Nb Ta ratios for each suite are similar: 13.5 for the Great Lake suite, and 14.4 for the Dillsburg suite. The zirconium content of the two suites is essentially the same and increases from 50 to 60 ppm in the chilled margins to 240-300 ppm in the granophyres. Hafnium is low in the early formed rocks (0.5 -1.5 ppm and achieves a maximum in the granophyres (5-8 ppm). The Zr Hfratio decreases from 68 to 33 with progressive differentiation. In the Dillsburg suite thorium and uranium increase from 2.6 ppm and 0.6 ppm, respectively, in the chilled samples to 11.8 ppm and 3.1 ppm in the granophyres. The chilled margin of the Great Lake suite contains 3.2 ppm thorium and 9.8 ppm uranium; the granophyre contains 11.2 ppm thorium and 2.8 ppm uranium. The average Th U ratios of the Dillsburg and Great Lake suites are nearly the same-4.1 and 4.4, respectively. Within each suite the Th U ratio remains quite constant. Cesium and the K Cs ratio do not vary systematically in the Dillsburg suite possibly because of redistribution or loss of cesium by complex geologic processes. Except for the chilled margin of the Great Lake suite, the variation of Cs and the K Cs ratio are in accord with theoretical considerations. Cesium increases from about 0.6 ppm in the lower zone to 3.5 ppm in the granophyre; the K Cs ratio varies from 10 ?? 103 in the lower zone to 6 ?? 103 in the granophyre. A comparison of the abundance of some of these elements is made with those reported on oceanic tholeiites from the Atlantic and Pacific oceans. Trace elements with large ionic radii (Th, U, Cs) are present in significantly greater concentrations in the two continental tholeiitic series than in the oceanic tholeiites. However, this does not seem to be true for lithophilic elements of smaller ionic radii (Zr and Nb). These trace element distribution patterns, when considered with other minor element and isotopic studies, indicate that 1. (1) crustal contamination does not entirely account for differences between continental and oceanic tholeiites, and 2. (2) the oceanic tholeiites do not necessarily delimit the geochemical characteristics of the mantle. ?? 1968.
H2CS abundances and ortho-to-para ratios in interstellar clouds
NASA Technical Reports Server (NTRS)
Minh, Y. C.; Irvine, W. M.; Brewer, M. K.
1991-01-01
Several H2CS ortho and para transitions have been observed toward interstellar molecular clouds, including cold, dark clouds and star-forming regions. H2CS fractional abundances f(H2CS) about 1-2 10 to the -9th relative to molecular hydrogen toward TMC-1, Orion A, and NGC 7538, and about 5 10 to the -10th for L134N are derived. The H2CS ortho-to-para ratios in TMC-1 are about 1.8 toward the cyanopolyyne peak and the ammonia peak, which may indicate the thermalization of H2CS on 10 K grains. A ratio of about 3, the statistical value, for Orion (3N, 1E) and NGC 7538 is derived, while a value of about 2 for Orion (KL) is found.
NASA Astrophysics Data System (ADS)
Hansen, C. J.; Jofré, P.; Koch, A.; McWilliam, A.; Sneden, C. S.
2017-02-01
Blue metal-poor (BMP) stars are main sequence stars that appear bluer and more luminous than normal turnoff stars. They were originally singled out by using B-V and U-B colour cuts.Early studies found that a larger fraction of field BMP stars were binaries compared to normal halo stars. Thus, BMP stars are ideal field blue straggler candidates for investigating internal stellar evolution processes and binary interaction. In particular, the presence or depletion in lithium in their spectra is a powerful indicator of their origin. They are either old, halo blue stragglers experiencing internal mixing processes or mass transfer (Li-depletion), or intermediate-age, single stars of possibly extragalactic origin (2.2 dex halo plateau Li). However, we note that internal mixing processes can lead to an increased level of Li. Hence, this study combines photometry and spectroscopy to unveil the origin of various BMP stars. We first show how to separate binaries from young blue stars using photometry, metallicity and lithium. Using a sample of 80 BMP stars (T > 6300 K), we find that 97% of the BMP binaries have V-Ks0 < 1.08 ± 0.03, while BMP stars that are not binaries lie above this cut in two thirds of the cases. This cut can help classify stars that lack radial velocities from follow-up observations. We then trace the origin of two BMP stars from the photometric sample by conducting a full chemical analysis using new high-resolution and high signal-to-noise spectra. Based on their radial velocities, Li, α and s- and r-process abundances we show that BPS CS22874-042 is a single star (A(Li) = 2.38 ± 0.10 dex) while with A(Li)= 2.23 ± 0.07 dex CD-48 2445 is a binary, contrary to earlier findings. Our analysis emphasises that field blue stragglers can be segregated from single metal-poor stars, using (V-Ks) colours with a fraction of single stars polluting the binary sample, but not vice versa. These two groups can only be properly separated by using information from stellar spectra, illustrating the need for accurate and precise stellar parameters and high-resolution, high-S/N spectra in order to fully understand and classify this intriguing class of stars. Our high-resolution spectrum analysis confirms the findings from the colour cuts and shows that CS 22874-042 is single, while CD -48 2445 is most likely a binary. Moreover, the stellar abundances show that both stars formed in situ; CS 22874-042 carries traces of massive star enrichment and CD -48 2445 shows indications of AGB mass transfer mixed with gases ejected possibly from neutron star mergers. Based on UVES archive data 077.B-0507 and 090.B-0605. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. Full Table 4 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A54
NASA Astrophysics Data System (ADS)
Chevychelov, A. P.; Sobakin, P. I.
2017-12-01
The concentrations and distribution of 137Cs in alluvial soils (Fluvisols) of the upper and middle reaches of the Markha River in the northwest of Yakutia and 226Ra and 238U in alluvial soils within the El'kon uranium ore deposit in the south of Yakutia have been studied. It is shown that the migration of radiocesium in the permafrost-affected soils of Yakutia owing to alluviation processes extends to more than 600 km from the source of the radioactive contamination. The migration of 137Cs with water flows is accompanied by its deposition in the buried horizons of alluvial soils during extremely high floods caused by ice jams. In the technogenic landscapes of southern Yakutia, active water migration of 238U and 226Ra from radioactive dump rocks. The leaching of 238U with surface waters from the rocks is more intense than the leaching of 226Ra. The vertical distribution patterns of 238U and 226Ra in the profiles of alluvial soils are complex. Uranium tends to accumulate in the surface humus horizon and in the buried soil horizons, whereas radium does not display any definite regularities of its distribution in the soil profiles. At present, the migration of 238U and 226Ra with river water and their accumulation in the alluvial soils extend to about 30 km from the source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowley, C. R.; Ayres, T. R.; Castelli, F.
2016-08-01
We determine abundances or upper limits for all of the 55 stable elements from copper to uranium for the A1 Vm star Sirius. The purpose of the study is to assemble the most complete picture of elemental abundances with the hope of revealing the chemical history of the brightest star in the sky, apart from the Sun. We also explore the relationship of this hot metallic-line (Am) star to its cooler congeners, as well as the hotter, weakly- or non-magnetic Mercury-manganese (HgMn) stars. Our primary observational material consists of Hubble Space Telescope ( HST ) spectra taken with the Spacemore » Telescope Imaging Spectrograph in the ASTRAL project. We have also used archival material from the COPERNICUS satellite, and from the HST Goddard High-Resolution Spectrograph, as well as ground-based spectra from Furenlid, Westin, Kurucz, Wahlgren, and their coworkers, ESO spectra from the UVESPOP project, and NARVAL spectra retrieved from PolarBase. Our analysis has been primarily by spectral synthesis, and in this work we have had the great advantage of extensive atomic data unavailable to earlier workers. We find most abundances as well as upper limits range from 10 to 100 times above solar values. We see no indication of the huge abundance excesses of 1000 or more that occur among many chemically peculiar stars of the upper main sequence. The picture of Sirius as a hot Am star is reinforced.« less
NASA Astrophysics Data System (ADS)
Edwards, Jessica Louise
High mass loss rates in evolved stars make them the major contributors to recycling processed material back into the interstellar medium. This mass loss creates large circumstellar shells, rich in molecular material. This dissertation presents millimeter and submillimeter studies of the end stages of low mass and high mass stars in order to probe their molecular content in more detail. In low mass stars, the molecular material is carried on into the planetary nebula (PN) stage. Observations of CS, HCO+, and CO in planetary nebulae (PNe) of various post-asymptotic giant branch ages have shown that molecular abundances in these objects do not significantly vary with age, as previously thought. More detailed observations of the slightly oxygen-rich PN NGC 6537 resulted in the detection of CN, HCN, HNC, CCH, CS, SO, H 2CO, HCO+ and N2H+, as well as numerous 13C isotopologues. Observations of the middle-aged PN M2-48 showed the presence of CN, HCN, HNC, CS, SO, SO2, SiO, HCO+, N2H+, and several 13C isotopologues. These observations represent the first detections of CS, SO, SO2, and SiO in any planetary nebula. The implications of these observations are discussed. A 1 mm spectral survey of the supergiant star NML Cygni has been carried out with the Arizona Radio Observatory Submillimeter Telescope resulting in the observation of 102 emission features arising from 17 different molecules and 4 unidentified features. The line profiles observed in this circumstellar shell are asymmetric and vary between different molecules, akin to what has been seen in another supergiant, VY Canis Majoris. The non-LTE radiative transfer code ESCAPADE has been used to model molecular abundances in the various asymmetric outflows of VY Canis Majoris, showing just how chemically and kinematically complex these supergiant circumstellar envelopes really are.
SEEDisCs: How Clusters Form and Galaxies Transform in the Cosmic Web
NASA Astrophysics Data System (ADS)
Jablonka, P.
2017-08-01
This presentation introduces a new survey, the Spatial Extended EDisCS Survey (SEEDisCS), which aims at understanding how clusters assemble and the level at which galaxies are preprocessed before falling on the cluster cores. I focus on the changes in galaxy properties in the cluster large scale environments, and how we can get constraints on the timescale of star formation quenching. I also discuss new ALMA CO observations, which trace the fate of the galaxy cold gas content along the infalling paths towards the cluster cores.
NASA Technical Reports Server (NTRS)
Glassgold, Alfred E.; Huggins, Patrick J.
1987-01-01
The study of the outer envelopes of cool evolved stars has become an active area of research. The physical properties of CS envelopes are presented. Observations of many wavelengths bands are relevant. A summary of observations and a discussion of theoretical considerations concerning the chemistry are summarized. Recent theoretical considerations show that the thermal equilibrium model is of limited use for understanding the chemistry of the outer CS envelopes. The theoretical modeling of the chemistry of CS envelopes provides a quantitive test of chemical concepts which have a broader interest than the envelopes themselves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M. S.; Coleman, C. J.; Diprete, D. P.
SRNL analyzed samples from Tank 38H and Tank 43H to support ECP and CCP. The total uranium in the Tank 38H samples ranged from 53.7 mg/L for the surface sample to 57.0 mg/L in the sub-surface sample. The Tank 43H samples showed uranium concentrations of 46.2 mg/L for the surface sample and 45.7 mg/L in the sub-surface sample. The U-235 percentage was 0.63% in the Tank 38H samples and 0.62% in the Tank 43H samples. The total uranium and percent U-235 results appear consistent with recent Tank 38H and Tank 43H uranium measurements. The plutonium results for the Tank 38Hmore » surface sample are slightly higher than recent sample results, while the Tank 43H plutonium results are within the range of values measured on previous samples. The Cs-137 results for the Tank 38H surface and subsurface samples are slightly higher than the concentrations measured in recent samples. The Cs-137 results for the two Tank 43H samples are within the range of values measured on previous samples. The comparison of the sum of the cations in each sample versus the sum of the anions shows a difference of 23% for the Tank 38H surface sample and 18% for the Tank 43H surface sample. The four samples show silicon concentrations somewhat lower than the previous samples with values ranging from 80.2 to 105 mg/L.« less
Clay-based matrices incorporating radioactive silts: A case study of sediments from spent fuel pool
NASA Astrophysics Data System (ADS)
Antonenko, Mikhail; Myshkin, Vyacheslav; Grigoriev, Alexander; Chubreev, Dmitry
2018-03-01
Radioactive silt sediments from uranium reactors may be effectively and safely included by ceramic compounds. The purpose of the paper is to determine the influence of composition and preparation conditions on physicochemical and mechanical properties of clay-based matrices containing radioactive silt. Clay matrices were prepared from four minerals, took from Siberian regions, as kaolin, loan, bentonite and red clay, and they included radioactive silt sediments collected from Spent Fuel Pool of a Uranium-graphite Reactor. The rate of 137Cs leaching from the matrices of different compositions was studied. The results of the studies allowed determining the optimal compositions and the preparation conditions of the matrices. It has been shown that red clay from "Zykovskaya" career (Krasnoyarsk region, Russia) is preferable for use as a matrix for incorporating the silt sediments compared to kaolin, loam and bentonite due to the maximum values tensile strength and minimal change in ultimate strength for compression after irradiation, freezing and water exposure. Nevertheless, 137Cs leaching rate of all studied composites did not exceed 10-3 g/cm2.day.
Emergence of Uranium as a Distinct Metal Center for Building Intrinsic X-ray Scintillators.
Wang, Yaxing; Yin, Xuemiao; Liu, Wei; Xie, Jian; Chen, Junfeng; Silver, Mark A; Sheng, Daopeng; Chen, Lanhua; Diwu, Juan; Liu, Ning; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao
2018-06-25
The combination of high atomic number and high oxidation state in U VI materials gives rise to both high X-ray attenuation efficiency and intense green luminescence originating from ligand-to-metal charge transfer. These two features suggest that U VI materials might act as superior X-ray scintillators, but this postulate has remained substantially untested. Now the first observation of intense X-ray scintillation in a uranyl-organic framework (SCU-9) that is observable by the naked eye is reported. Combining the advantage in minimizing the non-radiative relaxation during the X-ray excitation process over those of inorganic salts of uranium, SCU-9 exhibits a very efficient X-ray to green light luminescence conversion. The luminescence intensity shows an essentially linear correlation with the received X-ray intensity, and is comparable with that of commercially available CsI:Tl. SCU-9 possesses an improved X-ray attenuation efficiency (E>20 keV) as well as enhanced radiation resistance and decreased hygroscopy compared to CsI:Tl. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhao, Jing-Lu; Zhao, Yu-Yun; Zhu, Wei-Jie
2017-10-01
The interaction between obesity and chronic inflammation has been studied. Diet-induced obesity or chronic inflammation could reduce the testicular functions of males. However, the mechanism underlying the reproductive effects of fattening foods in males with or without chronic inflammation still needs further discussion. This study was aimed to investigate the effects of high-fat, high-protein diet on testicular steroidogenesis and sperm parameters in adult mice under physiological and chronic inflammatory conditions. Because casein can trigger a non-infectious systemic inflammatory response, we used casein injection to induce chronic inflammation in male adult Kunming mice. Twenty-four mice were randomly and equally divided into four groups: (i) normal diet+saline (Control); (ii) normal diet+casein (ND+CS); (iii) high-fat, high-protein diet+saline (HFPD+SI); (iv) high-fat, high-protein diet+casein (HFPD+CS). After 8weeks, there was a significant increase in body weight for groups HFPD+SI and HFPD+CS and a decrease in group ND+CS compared with the control. The serum levels of tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10) and lipid profiles were increased markedly in groups ND+CS, HFPD+SI and HFPD+CS compared with the control. A remarkable reduction of serum adiponectin level occurred in group HFPD+CS compared with group ND+CS. Sperm parameters (sperm count, viability and abnormality) were also adversely affected in groups ND+CS and HFPD+SI. Groups ND+CS and HFPD+SI showed severe pathological changes in testicular tissues. Semiquantitative RT-PCR, Western blot and immunohistochemical staining also showed significant reductions in both testicular mRNA and protein levels of steroidogenic acute regulatory (StAR) and cytochrome P450scc (CYP11A1) in groups HFPD+SI and HFPD+CS compared with the control, whereas testicular mRNA and protein levels of 3β-hydroxysteroid dehydrogenase (3β-HSD) in groups HFPD+SI and HFPD+CS significantly increased. The mRNA and protein levels of the StAR and 3β-HSD in group HFPD+CS were both higher than those of in group ND+CS. These results indicated that Kunming male mice with high-fat, high-protein diet and casein injection for 8weeks can be used to establish a diet-induced obesity and chronic systemic inflammation. The sperm parameters in groups ND+CS and HFPD+SI decreased accompanied by pathological changes of testicular tissue. This resultant effect of reduced serum testosterone levels was associated with the overproduction of TNF-α and IL-10 and down-regulation of StAR and CYP11A1. Under the same casein-induced chronic inflammation condition, the mice with high-fat, high-protein diet had better testicular steroidogenesis activity and sperm parameters compared with the mice in normal diet, indicating that the mice with casein-induced inflammatory injury consuming a high-fat, high-protein diet gained weight normally, reduced serum adiponectin level and increased testosterone production by an upregulation of 3β-HSD expression. High-fat, high-protein diet attenuated the negative impact of casein-induced chronic inflammation on testicular steroidogenesis and sperm parameters. Copyright © 2017 Elsevier Inc. All rights reserved.
Sokolik, G A; Ovsiannikova, S V; Voinikava, K V; Ivanova, T G; Papenia, M V
2014-01-01
This work is devoted to investigation of behavior of (234)U, (238)U and (226)Ra by determining the soil to plant transfer under different natural conditions such as forest or swamped areas and meadow lands with different soil types. The paper summarizes the data on investigation of uranium and radium uptake by wild berries and natural meadow grasses in the typical conditions of Belarus. Parameters characterizing the biological availability of (234)U, (238)U and (226)Ra for bilberry (Vaccinium myrtillus), lingonberry (Vaccinium viti-idaea), blueberry (Vaccinium iliginosum) and cranberry (Vaccinium oxycoccus palustris) as well as for widely occurring mixed meadow vegetation, which belongs to the sedge-grass or grass-sedge associations and forbs, have been established. In the sites under investigation, the deposition levels of (238+239+240)Pu were less than 0.37 kBq m(-2) and (137)Cs deposition ranged between less than 0.37 and 37 kBq m(-2). It was found that activity concentrations of radionuclides in berries varied in the ranges of 0.037-0.11 for (234)U, 0.036-0.10 for (238)U and 0.11-0.43 Bq kg(-1) for (226)Ra, but in the mixed meadow grasses they were 0.32-4.4, 0.24-3.9 and 0.14-6.9 Bq kg(-1) accordingly. The (234)U/(238)U activity ratios were 1.02 ± 0.01 for wild berries, 1.20 ± 0.09 for underground meadow grasses and 1.02 ± 0.02 for proper soils. The concentration ratios (CRs, dry weight basis) of (234)U and (238)U for mixed meadow grasses were 0.036-0.42 and 0.041-0.46 respectively. The correspondent geometric means (GM) were 0.13 and 0.15 with geometric standard deviations (GSD) of 2.4. The CRs of (226)Ra for meadow grasses were 0.031-1.0 with GM 0.20 and GSD 2.6. The CRs of (234)U, (238)U and (226)Ra for wild berries ranged within 0.0018-0.008 (GM is 0.0034, GSD is 1.8), 0.0018-0.008 (GM is 0.0035, GSD is 1.8) and 0.005-0.033 (GM is 0.016, GSD is 2.1) accordingly. The highest CR values of uranium for mixed meadow grasses were found in the sites with high-moor peat and sandy soils. The lowest CRs for grasses were common to loamy and peat-gley soils. The CRs for the same berry species in the sites with sandy soils exceeded the appropriate CR values in the sites with loamy soils by factors of 3-4 for uranium and 4-6 for radium. The data obtained on radionuclide accumulation by plants were used to estimate the average annual effective doses to the population from radionuclide intake through the "soil - wild berries - man" and "soil - meadow vegetation - animal - cow milk-beef - man" trophic chains. The effective doses resulting from (234)U, (238)U and (226)Ra intake with the wild berries for adults were estimated as 0.02-0.09 μSv y(-1) (GM is 0.044, GSD is 1.6). It was established that only in the territory with (137)Cs deposition of ∼1.0-1.5 kBq m(-2) the doses resulting from (234)U, (238)U and (226)Ra intake with wild berries can be comparable with corresponding doses from (137)Cs. In the territories with higher levels of (137)Cs deposition the doses resulting from its intake with the wild berries are usually over the summarized doses of uranium and (226)Ra. The total doses for adults resulting from uranium and (226)Ra intake with cow milk and beef ranged between 0.2 and 7.2 μSv y(-1) (GM is 2.0; GSD is 2.9) and the doses from (226)Ra usually exceeded the appropriate doses of uranium with a factor of 3-37. In the sites with (137)Cs deposition less than 3.7 kBq m(-2), the doses from (234)U, (238)U and (226)Ra intake with cow milk and beef were assessing as 1.1-7.2 μSv y(-1) and they were usually higher than the doses from (137)Cs, which were assessing as 0.4-3.2 μSv y(-1) for its deposition 2 kBq m(-2). In the territory with (137)Cs deposition 10-20 kBq m(-2) and higher, the internal doses resulting from (137)Cs intake with cow milk and beef (10-50 μSv y(-1)) exceeded the proper doses from natural (234)U, (238)U and (226)Ra. Copyright © 2013 Elsevier Ltd. All rights reserved.
Montgomery, D; Barber, K; Edayilam, N; Oqujiuba, K; Young, S; Biotidara, T; Gathers, A; Danjaji, M; Tharayil, N; Martinez, N; Powell, B
2017-06-01
Batch sorption experiments were conducted with 0.5-50 ppb 99 Tc, 133 Cs, 237 Np and U in the presence and absence of citrate and/or oxalate in a 25 g/L Savannah River Site (SRS) soil suspension. Citrate and oxalate were the ligands of choice due to their relevancy to plant exudates, the nuclides were selected for their wide range of biogeochemical behavior, and the soil from SRS was selected as a model Department of Energy (DOE) site soil. Batch samples were continually mixed on a rotary shaker and maintained at a pH of approximately 5. Analysis via ICP-MS indicated that sorption of 237 Np increased with ligand concentration compared to baseline studies, as did sorption of 99 Tc although to a lesser extent. The increased sorption of 237 Np is proposed to be due to a combination of factors that are dependent on the ligand(s) present in the specific system including, ligand dissolution of the soil by citrate and formation of tertiary soil-oxalate-Np complexes. The increased 99 Tc sorption is attributed to the dissolution of the soil by the ligands, leading to an increase in the number of available sorption sites for 99 Tc. Uranium sorption decreased and dissolution of native uranium was also observed with increasing ligand concentration, thought to be a result of the formation of strong U-ligand complexes remaining in the aqueous phase. The majority of these effects were observed at the highest ligand concentrations of 50 mg C /L. No notable changes were observed for the 133 Cs system which is ascribed to the minimal interaction of Cs + with these organic ligands. Copyright © 2017 Elsevier Ltd. All rights reserved.
Investigation of molybdate melts as an alternative method of reprocessing used nuclear fuel
Hames, Amber L.; Tkac, Peter; Paulenova, Alena; ...
2017-01-17
Here, an investigation of molybdate melts containing sodium molybdate (Na 2MoO 4) and molybdenum trioxide (MoO 3) to achieve the separation of uranium from fission products by crystallization has been performed. The separation is based on the difference in solubility of the fission product metal oxides compared to the uranium oxide or molybdate in the molybdate melt. The molybdate melt dissolves uranium dioxide at high temperatures, and upon cooling, uranium precipitates as uranium dioxide or molybdate, whereas the fission product metals remain soluble in the melt. Small-scale experiments using gram quantities of uranium dioxide have been performed to investigate themore » feasibility of UO 2 purification from the fission products. The composition of the uranium precipitate as well as data for partitioning of several fission product surrogates between the uranium precipitate and molybdate melt for various melt compositions are presented and discussed. The fission products Cs, Sr, Ru and Rh all displayed very large distribution ratios. The fission products Zr, Pd, and the lanthanides also displayed good distribution ratios (D > 10). A melt consisting of 20 wt% MoO 3-50 wt% Na 2MoO 4-30 wt% UO 2 heated to 1313 K and cooled to 1123 K for the physical separation of the UO 2 product from the melt, and washed once with Na 2MoO 4 displays optimum conditions for separation of the UO 2 from the fission products.« less
Imoto, Junpei; Ochiai, Asumi; Furuki, Genki; Suetake, Mizuki; Ikehara, Ryohei; Horie, Kenji; Takehara, Mami; Yamasaki, Shinya; Nanba, Kenji; Ohnuki, Toshihiko; Law, Gareth T W; Grambow, Bernd; Ewing, Rodney C; Utsunomiya, Satoshi
2017-07-14
Highly radioactive cesium-rich microparticles (CsMPs) released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) provide nano-scale chemical fingerprints of the 2011 tragedy. U, Cs, Ba, Rb, K, and Ca isotopic ratios were determined on three CsMPs (3.79-780 Bq) collected within ~10 km from the FDNPP to determine the CsMPs' origin and mechanism of formation. Apart from crystalline Fe-pollucite, CsFeSi 2 O 6 · nH 2 O, CsMPs are comprised mainly of Zn-Fe-oxide nanoparticles in a SiO 2 glass matrix (up to ~30 wt% of Cs and ~1 wt% of U mainly associated with Zn-Fe-oxide). The 235 U/ 238 U values in two CsMPs: 0.030 (±0.005) and 0.029 (±0.003), are consistent with that of enriched nuclear fuel. The values are higher than the average burnup estimated by the ORIGEN code and lower than non-irradiated fuel, suggesting non-uniform volatilization of U from melted fuels with different levels of burnup, followed by sorption onto Zn-Fe-oxides. The nano-scale texture and isotopic analyses provide a partial record of the chemical reactions that occurred in the fuel during meltdown. Also, the CsMPs were an important medium of transport for the released radionuclides in a respirable form.
NASA Astrophysics Data System (ADS)
Sims, D. J.
Soil samples have been taken in 2001 from the area of a 1951 release from an underground storage tank of 6.7 L of an aqueous solution of irradiated uranium (360 GBq). A simulation of the dispersion of the actinides and fission products was conducted in the laboratory using irradiated natural uranium, non-irradiated natural uranium and metal standards dissolved in acidic aqueous solutions and added to soil columns containing uncontaminated prairie soil. The lab soil columns were allowed 12 to 14 months for contaminant transport. Soil samples were analyzed using gamma-ray spectroscopy, neutron activation analysis (NAA) and liquid scintillation counting (LSC) to determine the elemental concentrations of U, Cs and Sr. Diffusion coefficients from the 50 year soil samples and the lab soil samples were determined. The measured diffusion coefficients from the field samples were 3.0 x 10-4 cm2 s-1 (Cs-137), 1.8 x 10-5 cm2 s-1 (U-238) and 2.6 x 10-3 cm2 s-1 (Sr-90) and the values determined from lab simulation were 5 x 10-6 cm 2 s-1 (Cs-137), 3 x 10-5 cm2 s-1 (U-238) and 1.9 x 10-5 cm 2 s-1 (Sr-90). The differences between the sets of diffusion coefficients can be attributed to differences in retardation effects, weather effects and changes in the soil characteristics when transporting, such as porosity. The analytical work showed that Cs-137 content of soil can be determined effectively using gamma-ray spectroscopy; U-238 content can be measured using NAA; and Sr-90 content can be measured using LSC. For non- and low-radioactive species, it was shown that both flame atomic absorption spectrometry (FAAS) and inductively-coupled plasma-mass spectrometry (ICP-MS) gave comparable results for Sr, Cs and Sm, with the average values ranging from 0.5 to 4.5 ppm of each other. The U-238 content results from NAA and from ICP-MS showed general agreement with an average difference of 81.3 ppm on samples having concentrations up to 988.2 ppm. The difference may have been due to matrix interference. It was determined through finite element modeling that 250 years after the 1951 release, the soil concentration of the three contaminant of U-238, Sr-90 and Cs-137 will be less than their respective soil clearance level values and therefore will not pose a long term environmental hazard. The fastest nuclide to reach the water table, at a depth of 45 m below the surface, at Suffield Site 27 was calculated to be Sr-90 after a period of 15,000 years. Therefore, it is not necessary to remove the subsurface soil at Site 27 for site decontamination but it is recommended that a "no-digging" policy, except for scientific research, be enforced at this site.
New Pulse Timing Measurements of the sdBV Star CS 1246
NASA Astrophysics Data System (ADS)
Hutchens, Zackary L.; Barlow, Brad N.; Soto, Alan Vasquez; Reichart, Dan E.; Haislip, Josh B.; Kouprianov, Vladimir V.; Linder, Tyler R.; Moore, Justin P.
2017-12-01
CS 1246 is a hot subdwarf B star discovered in 2009 to exhibit a single, large-amplitude radial pulsation. An O-C diagram constructed from this mode revealed reflex motion due to the presence of a low-mass M dwarf, as well as a long-term trend consistent with a decrease in the pulsational period. The orbital reflex motion was later confirmed with radial velocity measurements. Using eight years of data collected with the Skynet Robotic Telescope Network, we show that the pulsation amplitude of CS 1246 is decaying nonlinearly. We also present an updated O-C diagram, which might now indicate a positive Ṗ and a new 2.09 ± 0.05 yr oscillation consistent with orbital reflex motion of the entire inner sdB+dM binary, possibly due to the gravitational influence of a circumbinary planet with minimum mass. However, unlike the presence of the M dwarf, we hesistate to claim this object as a definitive detection since intrinsic variability of the pulsation phase could theoretically produce a similar effect.
Molecular Cloud Structures and Massive Star Formation in N159
NASA Astrophysics Data System (ADS)
Nayak, O.; Meixner, M.; Fukui, Y.; Tachihara, K.; Onishi, T.; Saigo, K.; Tokuda, K.; Harada, R.
2018-02-01
The N159 star-forming region is one of the most massive giant molecular clouds (GMCs) in the Large Magellanic Cloud (LMC). We show the 12CO, 13CO, CS molecular gas lines observed with ALMA in N159 west (N159W) and N159 east (N159E). We relate the structure of the gas clumps to the properties of 24 massive young stellar objects (YSOs) that include 10 newly identified YSOs based on our search. We use dendrogram analysis to identify properties of the molecular clumps, such as flux, mass, linewidth, size, and virial parameter. We relate the YSO properties to the molecular gas properties. We find that the CS gas clumps have a steeper size–linewidth relation than the 12CO or 13CO gas clumps. This larger slope could potentially occur if the CS gas is tracing shocks. The virial parameters of the 13CO gas clumps in N159W and N159E are low (<1). The threshold for massive star formation in N159W is 501 M ⊙ pc‑2, and the threshold for massive star formation in N159E is 794 M ⊙ pc‑2. We find that 13CO is more photodissociated in N159E than N159W. The most massive YSO in N159E has cleared out a molecular gas hole in its vicinity. All the massive YSO candidates in N159E have a more evolved spectral energy distribution type in comparison to the YSO candidates in N159W. These differences lead us to conclude that the giant molecular cloud complex in N159E is more evolved than the giant molecular cloud complex in N159W.
Beta-Decay Rates for Exotic Nuclei and R-Process Nucleosynthesis up to Th and U
NASA Astrophysics Data System (ADS)
Suzuki, Toshio; Yoshida, Takashi; Shibagaki, Shota; Kajino, Toshitaka; Otsuka, Takaharu
Beta-decay rates for exotic nuclei with N = 126 relevant to r-process nucleosynthesis are studied up to Z = 78 by shell-model calculations. The half-lives for the waiting-point nuclei obtained, which are short compared to a standard FRDM, are used to study r-process nucleosynthesis in neutrino-driven winds and magneto-hydrodynamic jets of core-collapse supernova explosions as well as in binary neutron star mergers. The element abundances are obtained up to the third peak as well as beyond the peak region up to thorium and uranium. Thorium and uranium are found to be produced more with the shorter shell-model half-lives and their abundances come closer to the observed values in core-collapse supernova explosions, while in case of binary neutron star mergers they are produced as much as the observed values rather independent of the half-lives.
Computer Code Gives Astrophysicists First Full Simulation of Star's Final Hours
Applin, Bradford; Almgren, Ann S.; Nonaka, Andy
2018-05-11
The precise conditions inside a white dwarf star in the hours leading up to its explosive end as a Type Ia supernova are one of the mysteries confronting astrophysicists studying these massive stellar explosions. But now, a team of researchers, composed of three applied mathematicians at the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory and two astrophysicists, has created the first full-star simulation of the hours preceding the largest thermonuclear explosions in the universe. http://www.lbl.gov/cs/Archive/news091509.html
Radioactivity of the soil in Vojvodina (northern province of Serbia and Montenegro).
Bikit, I; Slivka, J; Conkić, Lj; Krmar, M; Vesković, M; Zikić-Todorović, N; Varga, E; Curcić, S; Mrdja, D
2005-01-01
The widespread public belief that during the bombardment of Vojvodina (Yugoslavia) this region was contaminated by depleted uranium has recently raised public concern with respect to the potential contamination of agricultural products due to soil radioactivity. Based on the gamma-spectrometric analysis of 50 soil samples taken from the region of Vojvodina we concluded that there is no increase of radioactivity that could endanger the food production. Taking into account the transfer factors of 137Cs to plants, the measured activity concentrations of this isotope should not endanger the health safety of the produced food. No traces of depleted uranium have been found. The natural radioactivity levels are compared with the results form other countries.
Solid phase extraction of uranium(VI) onto benzoylthiourea-anchored activated carbon.
Zhao, Yongsheng; Liu, Chunxia; Feng, Miao; Chen, Zhen; Li, Shuqiong; Tian, Gan; Wang, Li; Huang, Jingbo; Li, Shoujian
2010-04-15
A new solid phase extractant selective for uranium(VI) based on benzoylthiourea anchored to activated carbon was developed via hydroxylation, amidation and reaction with benzoyl isothiocyanate in sequence. Fourier transform infrared spectroscopy and total element analysis proved that benzoylthiourea had been successfully grafted to the surface of the activated carbon, with a loading capacity of 1.2 mmol benzoylthiourea per gram of activated carbon. The parameters that affect the uranium(VI) sorption, such as contact time, solution pH, initial uranium(VI) concentration, adsorbent dose and temperature, have been investigated. Results have been analyzed by Langmuir and Freundlich isotherm; the former was more suitable to describe the sorption process. The maximum sorption capacity (82 mg/g) for uranium(VI) was obtained at experimental conditions. The rate constant for the uranium sorption by the as-synthesized extractant was 0.441 min(-1) from the first order rate equation. Thermodynamic parameters (DeltaH(0)=-46.2 kJ/mol; DeltaS(0)=-98.0 J/mol K; DeltaG(0)=-17.5 kJ/mol) showed the adsorption of an exothermic process and spontaneous nature, respectively. Additional studies indicated that the benzoylthiourea-anchored activated carbon (BT-AC) selectively sorbed uranyl ions in the presence of competing ions, Na(+), Co(2+), Sr(2+), Cs(+) and La(3+). 2009 Elsevier B.V. All rights reserved.
ALMA Reveals Sequential High-mass Star Formation in the G9.62+0.19 Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Tie; Kim, Kee-Tae; Lacy, John
Stellar feedback from high-mass stars (e.g., H ii regions) can strongly influence the surrounding interstellar medium and regulate star formation. Our new ALMA observations reveal sequential high-mass star formation taking place within one subvirial filamentary clump (the G9.62 clump) in the G9.62+0.19 complex. The 12 dense cores (MM1–MM12) detected by ALMA are at very different evolutionary stages, from the starless core phase to the UC H ii region phase. Three dense cores (MM6, MM7/G, MM8/F) are associated with outflows. The mass–velocity diagrams of the outflows associated with MM7/G and MM8/F can be well-fit by broken power laws. The mass–velocity diagrammore » of the SiO outflow associated with MM8/F breaks much earlier than other outflow tracers (e.g., CO, SO, CS, HCN), suggesting that SiO traces newly shocked gas, while the other molecular lines (e.g., CO, SO, CS, HCN) mainly trace the ambient gas continuously entrained by outflow jets. Five cores (MM1, MM3, MM5, MM9, MM10) are massive starless core candidates whose masses are estimated to be larger than 25 M {sub ☉}, assuming a dust temperature of ≤20 K. The shocks from the expanding H ii regions (“B” and “C”) to the west may have a great impact on the G9.62 clump by compressing it into a filament and inducing core collapse successively, leading to sequential star formation. Our findings suggest that stellar feedback from H ii regions may enhance the star formation efficiency and suppress low-mass star formation in adjacent pre-existing massive clumps.« less
Liu, Jie; Li, Fanfan; Shu, Kuangyi; Chen, Tao; Wang, Xiaoou; Xie, Yaoqi; Li, Shanshan; Zhang, Zhaohua; Jin, Susu; Jiang, Minghua
2018-05-13
To investigate the effect of C-reactive protein on the activated partial thromboplastin time (APTT) (different activators) in different detecting systems. The C-reactive protein and coagulation test of 112 patients with the infectious disease were determined by automation protein analyzer IMMAG 800 and automation coagulation analyzer STA-R Evolution, respectively. The pooled plasma APTT with different concentrations of C-reactive protein was measured by different detecting system: STA-R Evolution (activator: silica, kaolin), Sysmex CS-2000i (activator: ellagic acid), and ACL TOP 700 (activator: colloidal silica). In addition, the self-made platelet lysate (phospholipid) was added to correct the APTT prolonged by C-reactive protein (150 mg/L) on STA-R Evolution (activator: silica) system. The good correlation between C-reactive protein and APTT was found on the STA-R Evolution (activator: silica) system. The APTT on the STA-R Evolution (activator: silica) system was prolonged by 24.6 second, along with increasing C-reactive protein concentration. And the APTT of plasma containing 150 mg/L C-reactive protein was shortened by 3.4-6.9 second when the plasma was mixed with self-made platelet lysate. However, the APTT was prolonged unobviously on other detecting systems including STA-R Evolution (activator: kaolin), Sysmex CS-2000i, and ACL TOP 700. C-reactive protein interferes with the detection of APTT, especially in STA-R Evolution (activator: silica) system. The increasing in C-reactive protein results in a false prolongation of the APTT (activator: silica), and it is most likely that C-reactive protein interferes the coagulable factor binding of phospholipid. © 2018 Wiley Periodicals, Inc.
Two-photon production of dilepton pairs in peripheral heavy ion collisions
NASA Astrophysics Data System (ADS)
Klein, Spencer R.
2018-05-01
The STAR collaboration has observed an excess production of e+e- pairs in relativistic heavy ion collisions, over the expectations from hadronic production models. The excess pairs have transverse momenta pT<150 MeV /c and are most prominent in peripheral gold-gold and uranium-uranium collisions. The pairs exhibit a peak at the J /ψ mass, but include a wide continuum, with pair invariant masses from 400 MeV/c 2 up to 2.6 GeV/c 2 . The ALICE Collaboration observes a similar excess in peripheral lead-lead collisions, but only at the J /ψ mass, without a corresponding continuum. This paper presents a calculation of the cross section and kinematic for two-photon production of e+e- pairs, and find general agreement with the STAR data. The calculation is based on the starlight simulation code, which is based on the Weizsäcker-Williams virtual photon approach. The STAR continuum observations are compatible with two-photon production of e+e- pairs. The ALICE analysis required individual muon pT be greater than 1 GeV/c; this eliminated almost all of the pairs from two-photon interactions, while leaving most of the J /ψ decays.
NASA Astrophysics Data System (ADS)
Tran, E. L.; Teutsch, N.; Klein-BenDavid, O.; Weisbrod, N.
2017-12-01
When radionuclides are leaked into the subsurface due to engineered waste disposal container failure, the ultimate barrier to migration of radionuclides into local aquifers is sorption to the surrounding rock matrix and sediments, which often includes a bentonite backfill. The extent of this sorption is dependent on pH, ionic strength, surface area availability, radionuclide concentration, surface mineral composition, and solution chemistry. Colloidal-sized bentonite particles eroded from the backfill have been shown to facilitate the transport of radionuclides sorbed to them away from their source. Thus, sorption of radionuclides such as uranium and cesium to bentonite surfaces can be both a mobilization or retardation factor. Though numerous studies have been conducted to-date on sorption of radionuclides under low ionic strength and carbonate-poor conditions, there has been little research conducted on the behavior of radionuclides in high salinities and carbonate rich conditions typical of aquifers in the vicinity of some potential nuclear repositories. This study attempts to characterize the sorption properties of U(VI) and Cs to bentonite colloids under these conditions using controlled batch experiments. Results indicated that U(VI) undergoes little to no sorption to bentonite colloids in a high-salinity (TDS= 9000 mg/L) artificial groundwater. This lack of sorption was attributed to the formation of CaUO2(CO3)22- and Ca2UO2(CO3)3 aqueous ions which stabilize the UO22+ ions in solution. In contrast, Cs exhibited greater sorption, the extent to which was influenced greatly by the matrix water's ionic strength and the colloid concentration used. Surprisingly, when both U and Cs were together, the presence of U(VI) in solution decreased Cs sorption, possibly due to the formation of stabilizing CaUO2(CO3)22- anions. The implications of this research are that rather than undergoing colloid-facilitated transport, U(VI) is expected to migrate similarly to a conservative dissolved species under these conditions, and little retardation through sorption onto the surrounding rock matrix is predicted. Cs is expected to undergo more sorption, though U(VI) presence may have a mobilizing effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barlow, B. N.; Dunlap, B. H.; Clemens, J. C., E-mail: bbarlow@physics.unc.edu
A periodic variation in the pulse timings of the pulsating hot subdwarf B (sdB) star CS 1246 was recently discovered via the observed minus calculated (O-C) diagram and suggests the presence of a binary companion with an orbital period of two weeks. Fits to this phase variation, when interpreted as orbital reflex motion, imply CS 1246 orbits a barycenter 11 lt-s away with a velocity of 16.6 km s{sup -1}. Using the Goodman spectrograph on the SOAR telescope, we decided to confirm this hypothesis by obtaining radial velocity measurements of the system over several months. Our spectra reveal a velocitymore » variation with amplitude, period, and phase in accordance with the O-C diagram predictions. This corroboration demonstrates that the rapid pulsations of hot sdB stars can be adequate clocks for the discovery of binary companions via the pulse timing method.« less
NASA Astrophysics Data System (ADS)
Méndez-García, C.; Renteria-Villalobos, M.; García-Tenorio, R.; Montero-Cabrera, M. E.
2014-07-01
Spatial and temporal distribution of the radioisotopes concentrations were determined in sediments near the surface and core samples extracted from two reservoirs located in an arid region close to Chihuahua City, Mexico. At San Marcos reservoir one core was studied, while from Luis L. Leon reservoir one core from the entrance and another one close to the wall were investigated. 232Th-series, 238U-series, 40K and 137Cs activity concentrations (AC, Bq kg-1) were determined by gamma spectrometry with a high purity Ge detector. 238U and 234U ACs were obtained by liquid scintillation and alpha spectrometry with a surface barrier detector. Dating of core sediments was performed applying CRS method to 210Pb activities. Results were verified by 137Cs AC. Resulting activity concentrations were compared among corresponding surface and core sediments. High 238U-series AC values were found in sediments from San Marcos reservoir, because this site is located close to the Victorino uranium deposit. Low AC values found in Luis L. Leon reservoir suggest that the uranium present in the source of the Sacramento - Chuviscar Rivers is not transported up to the Conchos River. Activity ratios (AR) 234U/overflow="scroll">238U and 238U/overflow="scroll">226Ra in sediments have values between 0.9-1.2, showing a behavior close to radioactive equilibrium in the entire basin. 232Th/overflow="scroll">238U, 228Ra/overflow="scroll">226Ra ARs are witnesses of the different geological origin of sediments from San Marcos and Luis L. Leon reservoirs.
Rejuvenation of the Innocent Bystander: Testing Spin-Up in a Dwarf Carbon Star Sample
NASA Astrophysics Data System (ADS)
Green, Paul
2014-09-01
Carbon stars (C>O) were long assumed to all be giants, because only AGB stars dredge up significant carbon into their atmospheres. We now know that dwarf carbon (dC) stars are actually far more common than C giants. These dC stars are hypothesized to have accreted C-rich envelope material from an AGB companion, in systems that have likely undergone a planetary nebula phase, eventually yielding a white dwarf and a dC star that has gained both significant mass and angular momentum. To test whether the X-ray emission strength and spectral properties are consistent with a rejuvenated dynamo, we propose a Chandra pilot study of dCs selected from the SDSS; some have hot white dwarf companions (indicating more recent mass transfer), and all show Balmer emission lines (a sign of activity).
Shinonaga, Taeko; Steier, Peter; Lagos, Markus; Ohkura, Takehisa
2014-04-01
Plutonium (Pu) and non-natural uranium (U) originating from the Fukushima Daiichi Nuclear Power Plant (FDNPP) were identified in the atmosphere at 120 km distance from the FDNPP analyzing the ratio of number of atoms, following written as n(isotope)/n(isotope), of Pu and U. The n((240)Pu)/n((239)Pu), n((241)Pu)/n((239)Pu), n((234)U)/n((238)U), n((235)U)/n((238)U) and n((236)U)/n((238)U) in aerosol samples collected before and after the FDNPP incident were analyzed by accelerator mass spectrometry (AMS) and inductively coupled plasma mass spectrometry (ICPMS). The activity concentrations of (137)Cs and (134)Cs in the same samples were also analyzed by gamma spectrometry before the destructive analysis. Comparing the time series of analytical data on Pu and U obtained in this study with previously reported data on Pu, U, and radioactive Cs, we concluded that Pu and non-natural U from the FDNPP were transported in the atmosphere directly over a 120 km distance by aerosol and wind within a few days after the reactor hydrogen explosions. Effective dose of Pu were calculated using the data of Pu: (130 ± 21) nBq/m(3), obtained in this study. We found that the airborne Pu contributes only negligibly to the total dose at the time of the incident. However the analytical results show that the amount of Pu and non-natural U certainly increased in the environment after the incident.
r-process enhanched metal-poor stars
NASA Astrophysics Data System (ADS)
Cowan, John; Sneden, Christopher; Lawler, James E.; Den Hartog, Elizabeth A.
Abundance observations indicate the presence of rapid-neutron capture (i.e., r-process) elements in old Galactic halo and globular cluster stars. These observations provide insight into the nature of the earliest generations of stars in the Galaxy - the progenitors of the halo stars - responsible for neutron-capture synthesis of the heavy elements. The large star-to-star scatter observed in the abundances of neutron-capture element/iron ratios at low metallicities - which diminishes with in- creasing metallicity or [Fe/H] - suggests the formation of these heavy elements (presumably from certain types of supernovae) was rare in the early Galaxy. The stellar abundances also indicate a change from the r-process to the slow neutron capture (i.e., s-) process at higher metallicities in the Galaxy and provide insight into Galactic chemical evolution. Finally, the detection of thorium and uranium in halo and globular cluster stars offers an independent age-dating technique that can put lower limits on the age of the Galaxy, and hence the Universe.
Hashem, Emtithal; Platts, James A; Hartl, František; Lorusso, Giulia; Evangelisti, Marco; Schulzke, Carola; Baker, Robert J
2014-08-18
A comprehensive study of the complexes A4[U(NCS)8] (A = Cs, Et4N, (n)Bu4N) and A3[UO2(NCS)5] (A = Cs, Et4N) is described, with the crystal structures of [(n)Bu4N]4[U(NCS)8]·2MeCN and Cs3[UO2(NCS)5]·O0.5 reported. The magnetic properties of square antiprismatic Cs4[U(NCS)8] and cubic [Et4N]4[U(NCS)8] have been probed by SQUID magnetometry. The geometry has an important impact on the low-temperature magnetic moments: at 2 K, μeff = 1.21 μB and 0.53 μB, respectively. Electronic absorption and photoluminescence spectra of the uranium(IV) compounds have been measured. The redox chemistry of [Et4N]4[U(NCS)8] has been explored using IR and UV-vis spectroelectrochemical methods. Reversible 1-electron oxidation of one of the coordinated thiocyanate ligands occurs at +0.22 V vs Fc/Fc(+), followed by an irreversible oxidation to form dithiocyanogen (NCS)2 which upon back reduction regenerates thiocyanate anions coordinating to UO2(2+). NBO calculations agree with the experimental spectra, suggesting that the initial electron loss of [U(NCS)8](4-) is delocalized over all NCS(-) ligands. Reduction of the uranyl(VI) complex [Et4N]3[UO2(NCS)5] to uranyl(V) is accompanied by immediate disproportionation and has only been studied by DFT methods. The bonding in [An(NCS)8](4-) (An = Th, U) and [UO2(NCS)5](3-) has been explored by a combination of DFT and QTAIM analysis, and the U-N bonds are predominantly ionic, with the uranyl(V) species more ionic that the uranyl(VI) ion. Additionally, the U(IV)-NCS ion is more ionic than what was found for U(IV)-Cl complexes.
The co-existence of hot and cold gas in debris discs
NASA Astrophysics Data System (ADS)
Rebollido, I.; Eiroa, C.; Montesinos, B.; Maldonado, J.; Villaver, E.; Absil, O.; Bayo, A.; Canovas, H.; Carmona, A.; Chen, Ch.; Ertel, S.; Garufi, A.; Henning, Th.; Iglesias, D. P.; Launhardt, R.; Liseau, R.; Meeus, G.; Moór, A.; Mora, A.; Olofsson, J.; Rauw, G.; Riviere-Marichalar, P.
2018-06-01
Context. Debris discs have often been described as gas-poor discs as the gas-to-dust ratio is expected to be considerably lower than in primordial, protoplanetary discs. However, recent observations have confirmed the presence of a non-negligible amount of cold gas in the circumstellar (CS) debris discs around young main-sequence stars. This cold gas has been suggested to be related to the outgassing of planetesimals and cometary-like objects. Aims: The goal of this paper is to investigate the presence of hot gas in the immediate surroundings of the cold-gas-bearing debris-disc central stars. Methods: High-resolution optical spectra of all currently known cold-gas-bearing debris-disc systems, with the exception of β Pic and Fomalhaut, have been obtained from La Palma (Spain), La Silla (Chile), and La Luz (Mexico) observatories. To verify the presence of hot gas around the sample of stars, we have analysed the Ca II H&K and the Na I D lines searching for non-photospheric absorptions of CS origin, usually attributed to cometary-like activity. Results: Narrow, stable Ca II and/or Na I absorption features have been detected superimposed to the photospheric lines in 10 out of the 15 observed cold-gas-bearing debris-disc stars. Features are found at the radial velocity of the stars, or slightly blue- or red-shifted, and/or at the velocity of the local interstellar medium (ISM). Some stars also present transient variable events or absorptions extended towards red wavelengths (red wings). These are the first detections of such Ca II features in 7 out of the 15 observed stars. Although an ISM origin cannot categorically be excluded, the results suggest that the stable and variable absorptions arise from relatively hot gas located in the CS close-in environment of the stars. This hot gas is detected in at least 80%, of edge-on cold-gas-bearing debris discs, while in only 10% of the discs seen close to face-on. We interpret this result as a geometrical effect, and suggest that the non-detection of hot gas absorptions in some face-on systems is due to the disc inclination and likely not to the absence of the hot-gas component. This gas is likely released in physical processes related in some way to the evaporation of exocomets, evaporation of dust grains, or grain-grain collisions close to the central star. The reduced spectra are only available at the CDS (ascii files) and at the FEROS archive (FITS files) via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/614/A3
Prospecting for Precious Metals in Ultra-Metal-Poor Stars
NASA Astrophysics Data System (ADS)
French, R. S.
2000-05-01
The chemical compositions of the most metal-poor halo stars are living records of the very early nucleosynthetic history of the Galaxy. Only a few prior generations, if not a single one, of element-donating supernovae could have been responsible for the heavy elements observed in ultra-metal-poor (UMP; [Fe/H] < --2.5) stars. Abundances of the heavy neutron-capture elements (Z > 30) can yield direct information about the supernova progenitors to UMP stars, and abundances of unstable thorium and uranium (Z = 90, 92) can potentially provide age estimates for the Galactic halo. Already, many studies have demonstrated that abundances of rare-earth elements (56 <= Z <= 72) in UMP stars are completely consistent with their production in rapid neutron-capture synthesis (r-process) events, usually believed to occur during supernovae explosions. Therefore, mapping the entire abundance pattern of UMP stars is of significant interest. In particular, abundances of the most massive stable elements (Os -> Pb or 76 <= Z <= 82) could provide crucial information about the so-called ``third r-process peak,'' and are critical to the radioactive-dating technique that uses unstable thorium as a chronometer. Until recently, abundance determinations for these elements have been virtually non-existent, as the strongest relevant transitions lay in the vacuum UV, inaccessible to ground-based observation. The availability of high-resolution space-based spectrometers has opened up new regions of spectral coverage, including precisely the range in wavelength needed to make these sensitive measurements. We have undertaken a study of about 10 metal-poor halo giants to determine the abundances of several of the heaviest neutron-capture elements including platinum, osmium, lead, and gold. Preliminary results indicate that the abundance pattern of heavy neutron-capture elements (56 <= Z <= 82) in UMP stars does mimic a scaled solar system r-process. Thus, the ability to estimate the initial abundances of thorium and uranium is greatly reinforced.
Galaxy Transformations In The Cosmic Web
NASA Astrophysics Data System (ADS)
Jablonka, Pascale
2017-06-01
In this talk, I present a new survey, the Spatial Extended EDisCS Survey (SEEDisCS), that aims at understanding how clusters assemble and the level at which galaxies are preprocessed before falling on the cluster cores. SEEDisCS therefore focusses on the changes in galaxy properties along the large scale structures surrounding a couple of z 0.5 medium mass clusters, I first describe how spiral disc stellar populations are affected by the environment,and how we can get constraints on the timescale of star formation quenching. I then present new NOEMA and ALMA CO observations that trace the fate of the galaxy cold gas content along the infalling paths towards the cluster cores.
Chemical Evolution of Binary Stars
NASA Astrophysics Data System (ADS)
Izzard, R. G.
2013-02-01
Energy generation by nuclear fusion is the fundamental process that prevents stars from collapsing under their own gravity. Fusion in the core of a star converts hydrogen to heavier elements from helium to uranium. The signature of this nucleosynthesis is often visible in a single star only for a very short time, for example while the star is a red giant or, in massive stars, when it explodes. Contrarily, in a binary system nuclear-processed matter can captured by a secondary star which remains chemically polluted long after its more massive companion star has evolved and died. By probing old, low-mass stars we gain vital insight into the complex nucleosynthesis that occurred when our Galaxy was much younger than it is today. Stellar evolution itself is also affected by the presence of a companion star. Thermonuclear novae and type Ia supernovae result from mass transfer in binary stars, but big questions still surround the nature of their progenitors. Stars may even merge and one of the challenges for the future of stellar astrophysics is to quantitatively understand what happens in such extreme systems. Binary stars offer unique insights into stellar, galactic and extragalactic astrophysics through their plethora of exciting phenomena. Understanding the chemical evolution of binary stars is thus of high priority in modern astrophysics.
Dynamic leaching studies of 48 MWd/kgU UO2 commercial spent nuclear fuel under oxic conditions
NASA Astrophysics Data System (ADS)
Serrano-Purroy, D.; Casas, I.; González-Robles, E.; Glatz, J. P.; Wegen, D. H.; Clarens, F.; Giménez, J.; de Pablo, J.; Martínez-Esparza, A.
2013-03-01
The leaching of a high-burn-up spent nuclear fuel (48 MWd/KgU) has been studied in a carbonate-containing solution and under oxic conditions using a Continuously Stirred Tank Flow-Through Reactor (CSTR). Two samples of the fuel, one prepared from the centre of the pellet (labelled CORE) and another one from the fuel pellet periphery, enriched with the so-called High Burn-Up Structure (HBS, labelled OUT) have been used.For uranium and actinides, the results showed that U, Np, Am and Cm gave very similar normalized dissolution rates, while Pu showed slower dissolution rates for both samples. In addition, dissolution rates were consistently two to four times lower for OUT sample compared to CORE sample.Considering the fission products release the main results are that Y, Tc, La and Nd dissolved very similar to uranium; while Cs, Sr, Mo and Rb have up to 10 times higher dissolution rates. Rh, Ru and Zr seemed to have lower dissolution rates than uranium. The lowest dissolution rates were found for OUT sample.Three different contributions were detected on uranium release, modelled and attributed to oxidation layer, fines and matrix release.
Flux-limited sample of Galactic carbon stars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claussen, M.J.; Kleinmann, S.G.; Joyce, R.R.
Published observational data (including IRAS observations) for a flux-limited sample of 215 Galactic carbon stars (CSs) selected from the 2-micron sky survey of Neugebauer and Leighton (1969) are compiled in extensive tables and graphs and analyzed statistically. The sample is found to penetrate a volume of radius 1.5 kpc, and the local CS space density and surface density are calculated as log rho0 (per cu kpc) = 2.0 + or - 0.4 and log N (per sq kpc) = 1.6 + or - 0.2, respectively. The total Galactic mass-return rate from these CSs is estimated as 0.013 solar mass/yr, implyingmore » a time scale of 0.1-1 Myr for the CS evolutionary phase and a mass of 1.2-1.6 solar mass for the (probably F-type) main-seqence progenitors of CSs. 81 references.« less
The NGC 281 west cluster. I. Star formation in photoevaporating clumps.
NASA Astrophysics Data System (ADS)
Megeath, S. T.; Wilson, T. L.
1997-09-01
The NGC281 West molecular cloud is an excellent test case for studying star formation in the clumpy interface between a \\hii region and a giant molecular cloud. We present here a study based on new high resolution radio and near-infrared data. Using the IRAM 30-meter telescope, we have mapped the interface in the \\cotwo, \\coone, and \\cs transitions with FWHP beamwidths <= 22''. We have imaged the same region with the VLA in the 20, 6 and 2 cm continuum bands to obtain complementary maps of the ionized gas distribution with angular resolutions <= 13''. In addition, we have obtained near-infrared J and K'-band images to detect young stars in the interface. The 30-meter data shows the molecular gas is concentrated into three clumps with masses of 570, > 210, and 300 \\msun and average volume densities of 1.4, >1, and 2 x 10(4) \\cm. We detect \\cs emission in two of the clumps, indicating peak densities in excess of 5x 10(5) \\cm are attained in the clumps. A comparison of the \\co line data with the 20 cm continuum image suggests that the molecular clumps are being photoevaporated through their direct exposure to the UV radiation from neighboring OB stars. The luminosity and extent of the observed 20 cm emission is in good agreement with theoretical predictions. We use models of photoevaporative flows to estimate the pressure exerted on the clumps by the ionized gas and find that it exceeds the internal, turbulent pressure of the clumps by a factor of a 2.5. Although a pressure equilibrium is not excluded given the uncertainties inherent in determining the pressures of the ionized and molecular gases, our best estimates of the clumps and flow parameters favor the the existence of low velocity shocks (1.5 \\kms) in the clumps. The clumps exhibit broad, non-gaussian lineshapes and complex kinematical structures suggestive of shocks. Further evidence for shocks is found in a comparison of position-velocity diagrams with published numerical simulations of imploding spherical clumps. We discuss the possibility that the knots of \\cs emission may trace gas compressed by converging shock waves. The K'-band observations show a rich cluster of primarily low mass stars in the \\hii/molecular interface, which we argue is divided into two distinct sub-clusters. We associate one sub-cluster with the two clumps nearest the OB stars, and the second sub-cluster with the third clump. The two clumps nearest the OB stars contain an embedded population, suggesting that star formation is ongoing. We discuss the impact photoevaporation is having on star formation in these two clumps. We find that photoevaporation is dispersing the molecular gas from which the cluster is forming and estimate that the molecular gas will be completely evaporated in 5 Myr. Deep K'-band imaging of the two clumps show that the stars are detected primarily on the sides of the clumps facing the OB stars and in the adjoining \\hii region. We examine three explanations for this asymmetry: displacement of the clump centers from the cluster center by the acceleration of the molecular gas through photoevaporation (i.e. the rocket effect), unveiling of young, embedded stars by ionization-shock fronts, and the triggered formation of stars by shocks advancing into the clumps. If shock compression is indeed ongoing in the clumps, then we argue that there is a good case for shock triggered star formation.
Preparation and evaluation of a novel star-shaped polyacid-constructed dental glass-ionomer system.
Howard, Leah; Weng, Yiming; Xie, Dong
2014-06-01
The objective of this study was to synthesize and characterize novel star-shaped poly(acrylic acid-co-itaconic acid)s via chain-transfer radical polymerization technique, use these polyacids to formulate the resin-modified glass-ionomer cements, and evaluate the mechanical strengths of the formed cements The star-shaped poly(acrylic acid-co-itaconic acid)s were synthesized via a chain-transfer radical polymerization reaction using a newly synthesized star-shaped chain-transfer agent. The effects of MW, GM-tethering ratio, P/L ratio and aging on the compressive properties of the formed experimental cements were studied. Compressive, diametral tensile as well as flexural strengths were evaluated and compared to those of Fuji II and Fuji II LC cements. The star-shaped polyacids showed significantly lower viscosities in water as compared to their linear counterparts. The cements formulated with these novel polyacids showed significantly improved mechanical strengths i.e., 49% in yield strength, 41% in modulus, 25% in CS, 20% in DTS and 36% in FS, higher than commercial Fuji II LC. After aging in water for 30 days, the compressive strengths of the experimental cements were significantly changed with an increase of 29% in YS, 19% in modulus as well as 23% in CS and a decrease of 5% in toughness, indicating that aging in water enhances the salt-bridge formation and increases brittleness. A novel light-cured glass-ionomer cement system composed of the star-shaped poly(carboxylic acid)s has been developed via a cost-effective and time-efficient chain-transfer radical polymerization. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
UV Spectroscopy of Star-Grazing Comets Within the 49 Ceti Debris Disk
NASA Technical Reports Server (NTRS)
Miles, Brittany E.; Roberge, Aki; Welsh, Barry
2016-01-01
We present the analysis of time-variable Doppler-shifted absorption features in far-UV spectra of the unusual 49 Ceti debris disk. This nearly edge-on disk is one of the brightest known and is one of the very few containing detectable amounts of circumstellar (CS) gas as well as dust. In our two visits of Hubble Space Telescope STIS spectra, variable absorption features are seen on the wings of lines arising from CII and CIV but not for any of the other CS absorption lines. Similar variable features have long been seen in spectra of the well-studied Beta Pictoris debris disk and attributed to the transits of star-grazing comets. We calculated the velocity ranges and apparent column densities of the 49 Cet variable gas, which appears to have been moving at velocities of tens to hundreds of kms(-1) relative to the central star. The velocities in the redshifted variable event seen in the second visit show that the maximum distances of the in falling gas at the time of transit were about 0.050.2 au from the central star. A preliminary attempt at a composition analysis of the redshifted event suggests that the C/O ratio in the in falling gas is super-solar, as it is in the bulk of the stable disk gas.
The Role Of Gender In Asking Questions At Cool Stars 18 And 19
NASA Astrophysics Data System (ADS)
Schmidt, Sarah J.; Douglas, Stephanie; Gosnell, Natalie M.; Muirhead, Philip S.; Booth, Rachel S.; Davenport, James R. A.; Mace, Gregory N.
2016-12-01
We examine the gender balance of the 18th and 19th meetings of the Cambridge Workshop on Cool Stellar Systems and the Sun (CS18 and CS19). The percent of female attendees at both meetings (31% at CS18 and 37% at CS19) was higher than the percent of women in the American Astronomical Society (25%) and the International Astronomical Union (18%). The representation of women in Cool Stars as SOC members, invited speakers, and contributed speakers was similar to or exceeded the percent of women attending the meetings. We requested that conference attendees assist in a project to collect data on the gender of astronomers asking questions after talks. Using this data, we found that men were over-represented (and women were under-represented) in the question sessions after each talk. Men asked 79% of the questions at CS18 and 75% of the questions at CS19, but were 69% and 63% of the attendees respectively. Contrary to findings from previous conferences, we did not find that the gender balance of questions was strongly affected by the session chair gender, the speaker gender, or the length of the question period. We also found that female and male speakers were asked a comparable number of questions after each talk. The contrast of these results from previous incarnations of the gender questions survey indicate that more data would be useful in understanding the factors that contribute to the gender balance of question askers. We include a preliminary set of recommendations based on this and other work on related topics, but also advocate for additional research on the demographics of conference participants. Additional data on the intersection of gender with race, seniority, sexual orientation, ability and other marginalized identities is necessary to fully address the role of gender in asking questions at conferences.
High wettability of liquid caesium iodine with solid uranium dioxide.
Kurosaki, Ken; Suzuki, Masanori; Uno, Masayoshi; Ishii, Hiroto; Kumagai, Masaya; Anada, Keito; Murakami, Yukihiro; Ohishi, Yuji; Muta, Hiroaki; Tanaka, Toshihiro; Yamanaka, Shinsuke
2017-09-13
In March 2011, the Fukushima Daiichi Nuclear Power Plant accident caused nuclear fuel to melt and the release of high-volatility fission products into the environment. Caesium and iodine caused environmental contamination and public exposure. Certain fission-product behaviours remain unclear. We found experimentally that liquid CsI disperses extremely favourably toward solid UO 2 , exhibiting a contact angle approaching zero. We further observed the presence of CsI several tens of micrometres below the surface of the solid UO 2 sample, which would be caused by the infiltration of pores network by liquid CsI. Thus, volatile fission products released from molten nuclear fuels with complex internal composition and external structure migrate or evaporate to varying extents, depending on the nature of the solid-liquid interface and the fuel material surface, which becomes the pathway for the released fission products. Introducing the concept of the wettability of liquid chemical species of fission products in contact with solid fuels enabled developing accurate behavioural assessments of volatile fission products released by nuclear fuel.
Baeza, A; Guillén, J; Ontalba Salamanca, M A; Rodríguez, A; Ager, F J
2009-10-01
The Proserpina dam was built in Roman times to provide drinking water to Emerita Augusta (today's Mérida in SW Spain). During maintenance work, a sediment core was extracted, offering an excellent opportunity to analyze the historical environmental impacts of the dam and its reservoir over the 2000 years since Roman times. In order to establish an accurate chronology, (14)C ages were determined by accelerator mass spectrometry (AMS). Core samples were assayed for their content in uranium and thorium series isotopes, (40)K, and the anthropogenic radionuclides (137)Cs, (90)Sr, and (239+240)Pu. Potassium-40 presented the highest activity level and was not constant with depth. The uranium and thorium series were generally in equilibrium, suggesting there had been no additional input of natural radionuclides. The presence of (137)Cs was only found in relation with the global fallout in the early 1960s. Multi-element assays were performed using the PIXE and PIGE techniques. Some variations in the multi-element concentrations were observed with depth, but the sediment core could be considered as clean, and no presumptive anthropogenic pollutants were found. Nevertheless, an unusually high Zn content was detected at depths corresponding to pre-Roman times, due to geological anomalies in the area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Méndez-García, C.; Montero-Cabrera, M. E., E-mail: elena.montero@cimav.edu.mx; Renteria-Villalobos, M.
2008-01-01
Spatial and temporal distribution of the radioisotopes concentrations were determined in sediments near the surface and core samples extracted from two reservoirs located in an arid region close to Chihuahua City, Mexico. At San Marcos reservoir one core was studied, while from Luis L. Leon reservoir one core from the entrance and another one close to the wall were investigated. ²³²Th-series, ²³⁸U-series, ⁴⁰K and ¹³⁷Cs activity concentrations (AC, Bq kg⁻¹) were determined by gamma spectrometry with a high purity Ge detector. ²³⁸U and ²³⁴U ACs were obtained by liquid scintillation and alpha spectrometry with a surface barrier detector. Dating ofmore » core sediments was performed applying CRS method to ²¹⁰Pb activities. Results were verified by ¹³⁷Cs AC. Resulting activity concentrations were compared among corresponding surface and core sediments. High ²³⁸U-series AC values were found in sediments from San Marcos reservoir, because this site is located close to the Victorino uranium deposit. Low AC values found in Luis L. Leon reservoir suggest that the uranium present in the source of the Sacramento – Chuviscar Rivers is not transported up to the Conchos River. Activity ratios (AR) ²³⁴U/²³⁸U and ²³⁸U/²²⁶Ra in sediments have values between 0.9–1.2, showing a behavior close to radioactive equilibrium in the entire basin. ²³²Th/²³⁸U, ²²⁸Ra/²²⁶Ra ARs are witnesses of the different geological origin of sediments from San Marcos and Luis L. Leon reservoirs.« less
MALT-45: A 7 mm survey of the southern Galaxy
NASA Astrophysics Data System (ADS)
Jordan, Christopher Harry
2015-09-01
The last decade has seen vast improvement in the knowledge of star formation within our Galaxy, largely owing to improvements in instrumentation, allowing astronomers to compile more data. However, despite the advances of technology, the quest for understanding high-mass star formation (HMSF) continues. As we go on, breakthroughs have occurred; a prime example is the discovery of the class II methanol maser, which exclusively signposts on-going sites of HMSF, but still lacks the detail necessary to identify HMSF in all forms. Once we have understood where, why and how HMSF can occur, we will be able to diagnose Galactic structure and evolution. Untargeted, large area surveys of molecular gas are ideal for identifying HMSF regions across a broad range of evolutionary phases. For example, searches for molecular species with a high critical density can highlight dense gases, which can then be used to probe Galactic structure and star formation. Because HMSF occurs in regions of dense molecular gas, mapping high-density tracers serves well to identify regions for study. The (1,1), (2,2) and (3,3) inversion transitions of ammonia (NH3) have been successfully mapped by the H2O Southern Galactic Plane Survey (HOPS), identifying previously unknown sites of star formation, as well as probing the structure of the Milky Way's spiral arms. Fortunately, HMSF can be identified by bright spectral lines in maser emission; HOPS also mapped the Galactic plane for water (H2O) masers and, perhaps more importantly, the Methanol MultiBeam survey identities class II methanol (CH3OH) masers, which are exclusively associated with HMSF. While class II CH3OH masers always signpost HMSF, they appear only in a specific evolutionary stage, and therefore other species (such as H2O masers) are required to identify other stages. Another, even higher density gas tracer useful for detecting HMSF and mapping the structure of our Galaxy is carbon monosulfide (CS). The ground state transition J = 1-0 for CS lies within the 7mm waveband, which also contains the poorly understood class I CH3OH maser. Unlike the class II variant, class I masers are not exclusively associated with HMSF, but do appear in star-forming regions across a wide range of evolutionary stages. A large problem for class I CH3OH maser studies is the bias in the targeted searches which have been used to find them; they have only been identified towards other masing regions (such as class II CH3OH), and therefore the properties of these masers are somewhat unclear. In this thesis, results focus on the MALT-45 survey using the Australia Telescope Compact Array (ATCA) in auto-correlation ('single-dish' mode). To date, MALT-45 has mapped the Galactic plane within 330° *lt; < l < 335°, jbj< 0:5°, which contains several known star-forming regions, including the G333 giant molecular cloud. MALT-45 surveys 12 spectral lines, but primarily CS (1-0), class I CH3OH masers and SiO (1-0) v = 0; 1; 2; 3. Bright, extended CS emission is detected across the survey region, and highlight two distinct velocities, due to different spiral arms of the Galaxy. In addition to the previously known 19 class I CH3OH masers, 58 new masers were detected. SiO masers were detected towards 47 regions, in various combinations of vibrational mode v = 1; 2; 3, all towards evolved infrared stars. Thermal SiO v = 0 emission is also detected across the survey region. Major science results from MALT-45 include: (i) A CS to NH3 comparison, which highlights cold, dense clumps as well as hot, evolved clumps. The cold and dense clumps appear to have self-absorption of CS emission in their centres and a relative over-abundance of NH3, while evolved clumps appear to have very little NH3 emission, despite being a dense gas tracer; (ii) Almost all (94 per cent) of ATLASGAL 870 um dust emission point sources are associated with at least a 3σ peak of CS emission; (iii) By comparing with peak CS velocities, class I CH3OH masers are good indicators of the systemic velocities of clouds; (iv) More than half (55 per cent) of the detected class I CH3OH masers are not associated with any other kind of maser; (v) Class II CH3OH, H2O and hydroxyl (OH) masers associate well with class I CH3OH masers, confirming that class I CH3OH masers occur towards a wide range of evolutionary stages in HMSF; (vi) Class I CH3OH masers appear to have no correlation in intensity or luminosity with other maser species; (vii) Class I CH3OH masers have typical projected linear distances from other masers associated with star formation, peaks of CS and 870 μm point sources within 0.5 pc; (viii) Class I CH3OH masers are spread over a larger area when also associated with class II CH3OH or OH masers, perhaps due to their more evolved state; (ix) Almost all (95 per cent) of class I CH3OH masers are associated with an ATLASGAL source; (x) Using ATLASGAL source parameters, a clump mass is calculated. The population of class I CH3OH masers has a broad range of associated masses (10^1.5 to 10^4.5M⊙), but peaks between 10^3.0 and 10^3.5M⊙. Higher masses tend to be associated with evolved regions of star formation, while lower masses tend to be non-evolved regions; (xi) SiO masers typically decrease in intensity with vibrational mode (v = 1; 2; 3), but eleven cases of stronger v = 2 than v = 1 emission were found, and two regions of only v = 2 emission were found; (xii) The relatively rare v = 3 vibrational mode of SiO (1-0) was detected towards three evolved infrared stars.
The R-Process Alliance: 2MASS J09544277+5246414, the Most Actinide-enhanced R-II Star Known
NASA Astrophysics Data System (ADS)
Holmbeck, Erika M.; Beers, Timothy C.; Roederer, Ian U.; Placco, Vinicius M.; Hansen, Terese T.; Sakari, Charli M.; Sneden, Christopher; Liu, Chao; Lee, Young Sun; Cowan, John J.; Frebel, Anna
2018-06-01
We report the discovery of a new actinide-boost star, 2MASS J09544277+5246414, originally identified as a very bright (V = 10.1), extremely metal-poor ([Fe/H] = ‑2.99) K giant in the LAMOST survey, and found to be highly r-process-enhanced (r-II; [Eu/Fe] = +1.28]), during the snapshot phase of the R-Process Alliance (RPA). Based on a high signal-to-noise ratio (S/N), high-resolution spectrum obtained with the Harlan J. Smith 2.7 m telescope, this star is the first confirmed actinide-boost star found by RPA efforts. With an enhancement of [Th/Eu] = +0.37, 2MASS J09544277+5246414 is also the most actinide-enhanced r-II star yet discovered, and only the sixth metal-poor star with a measured uranium abundance ([U/Fe] = +1.40). Using the Th/U chronometer, we estimate an age of 13.0 ± 4.7 Gyr for this star. The unambiguous actinide-boost signature of this extremely metal-poor star, combined with additional r-process-enhanced and actinide-boost stars identified by the RPA, will provide strong constraints on the nature and origin of the r-process at early times.
Stellar Archaeology: New Science with Old Stars
NASA Astrophysics Data System (ADS)
Frebel, Anna
2011-01-01
The early chemical evolution of the Galaxy and the Universe is vital to our understanding of a host of astrophysical phenomena. Since the most metal-poor Galactic stars are relics from the high-redshift Universe, they probe the chemical and dynamical conditions as the Milky Way began to form, the origin and evolution of the elements, and the physics of nucleosynthesis. They also provide constraints on the nature of the first stars, their associated supernovae and initial mass function, and early star and galaxy formation. I will present exemplary metal-poor stars with which these different topics can be addressed. Those are the most metal-poor stars in the Galaxy ([Fe/H] < -5.0), and metal-poor stars with strong overabundances of heavy elements, in particular uranium and thorium, which can be used to radioactively date the stars to be 13 Gyr old. I will then transition to recent discoveries of metal-poor ([Fe/H] -3.0) stars in the least luminous dwarf satellites orbiting the Milky Way. Their stellar chemical signatures support the concept that small systems, analogous to the surviving dwarf galaxies, were the building blocks of the Milky Way's low-metallicity halo. This opens a new window for studying galaxy formation through stellar chemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erdal, B.R.; Aguilar, R.D.; Bayhurst, B.P.
Distribution ratios were determined for sorption--desorption of radioactive tracers between the Climax Stock granite (quartz monzonite porphyry) obtained at Nevada Test Site and a water prepared to be resonably representative of the natural composition of water in equilibrium with the Climax Stock granite. The measurements were performed at 22 and 70{sup 0}C under atmospheric oxygen conditions. Elements given in order of increasing distribution coefficient at ambient temperature are: U(VI), Sr, Tc(VII), Ba, Ce(III), Cs, Eu(III), Pu, and Am. At 70{sup 0}C the order is: Tc(VII), Sr, Ce(III), Eu(III), Ba, Cs, Pu, and Am. The effects of surface area and mineralogymore » on sorption were also investigated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finn, Susanna C.; Jackson, James M.; Rathborne, Jill M.
Infrared dark clouds (IRDCs) are believed to host the earliest stages of high-mass star and cluster formation. Because O stars typically travel short distances over their lifetimes, if IRDCs host the earliest stages of high-mass star formation then these cold, dense molecular clouds should be located in or near the spiral arms in the Galaxy. The Galactic distribution of a large sample of IRDCs should therefore provide information on Galactic structure. Moreover, determination of distances enables mass and luminosity calculations. We have observed a large sample of IRDC candidates in the first Galactic quadrant in the dense gas tracer CSmore » (2-1) using the Mopra telescope in order to determine kinematic distances from the molecular line velocities. We find that the IRDCs are concentrated around a Galactocentric distance of {approx}4.5 kpc, agreeing with the results of Simon et al. This distribution is consistent with the location of the Scutum-Centaurus spiral arm. The group of IRDCs near the Sun in the first quadrant detected in {sup 13}CO (1-0) in Simon et al. is not detected in the CS data. This discrepancy arises from the differences in the critical densities between the {sup 13}CO (1-0) and CS (2-1) lines. We determine that the Midcourse Space Experiment selected IRDCs are not a homogeneous population, and {sup 13}CO (1-0) traces a population of IRDCs with lower column densities and lower 1.1 mm flux densities in addition to more dense IRDCs detected in CS. Masses of the first quadrant IRDCs are calculated from {sup 13}CO (1-0) maps. We find a strong peak in the Galactocentric IRDC mass surface density distribution at R {sub Gal} {approx} 4.5 kpc.« less
Photometric Variability of the mCP Star CS Vir: Evolution of the Rotation Period
NASA Astrophysics Data System (ADS)
Ozuyar, D.; Sener, H. T.; Stevens, I. R.
2018-01-01
The aim of this study is to accurately calculate the rotational period of CS Vir by using STEREO observations and investigate a possible period variation of the star with the help of all accessible data. The STEREO data that cover 5-yr time interval between 2007 and 2011 are analysed by means of the Lomb-Scargle and Phase Dispersion Minimization methods. In order to obtain a reliable rotation period and its error value, computational algorithms such as the Levenberg-Marquardt and Monte Carlo simulation algorithms are applied to the data sets. Thus, the rotation period of CS Vir is improved to be 9.29572(12) d by using the 5-yr of combined data set. Also, the light elements are calculated as HJD max = 2454715.975(11) + 9d . 29572(12) × E + 9d . 78(1.13) × 10 - 8 × E 2 by means of the extremum times derived from the STEREO light curves and archives. Moreover, with this study, a period variation is revealed for the first time, and it is found that the period has lengthened by 0.66(8) s y-1, equivalent to 66 s per century. Additionally, a time-scale for a possible spin-down is calculated around τSD 106 yr. The differential rotation and magnetic braking are thought to be responsible of the mentioned rotational deceleration. It is deduced that the spin-down time-scale of the star is nearly three orders of magnitude shorter than its main-sequence lifetime (τMS 109 yr). It is, in return, suggested that the process of increase in the period might be reversible.
NASA Astrophysics Data System (ADS)
Gordon, Michael Scott; Humphreys, Roberta; Jones, Terry J.; Gehrz, Robert D.
2018-01-01
To what extent mass loss and periods of enhanced stellar outflow can influence the terminal state of the most massive stars remains an outstanding question in the fields of stellar physics, chemical enrichment of the Local Universe, andsupernova research. For my dissertation, I focus on characterizing the stellar ejecta around supergiants through a combination of observing techniques. Using the LBT, MMT, IRTF, VLT, and SOFIA observatories, I have performed high-resolution imaging, spectroscopy, and polarimetry—methods that provide us with keen insight on mass-loss histories and 3D morphology of the Local Group's most fascinating stars.Based on spectroscopic evidence for mass loss in the optical and the presence ofcircumstellar (CS) dust in infrared SEDs, we find that 30%–40% of observed yellow supergiants in M31 and M33 are likely in a post-RSG state. We also presentnear-IR spectra from IRTF/SPeX of optically-obscured RSGs in M33. These IR-bright sources likely have some of the highest mass-loss rates and are self-obscured in the optical by their own CS ejecta. For Galactic red supergiants (RSGs), we are able to observe the gas and CS dust ejecta both close in to the central star and at larger distances. The resulting radial profiles are valuable probes on timescale for the ejecta when combined with radiative-transfer models. We find evidence for both variable/high mass-loss events and constant mass loss over the last few thousand years. Finally, we discuss the use of high-resolution imaging polarimetry with VLT/NACO of two co-eval RSG clusters toward the Galactic center. The resulting polarized intensity images in the near-infrared provide unprecedented spatial and contrast resolution of the scattered light from extended nebular material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, Michael S.; Humphreys, Roberta M.; Jones, Terry J., E-mail: gordon@astro.umn.edu, E-mail: roberta@umn.edu, E-mail: tjj@astro.umn.edu
Recent supernova (SN) and transient surveys have revealed an increasing number of non-terminal stellar eruptions. Though the progenitor class of these eruptions includes the most luminous stars, little is known of the pre-SN mechanics of massive stars in their most evolved state, thus motivating a census of possible progenitors. From surveys of evolved and unstable luminous star populations in nearby galaxies, we select a sample of yellow and red supergiant (RSG) candidates in M31 and M33 for review of their spectral characteristics and spectral energy distributions (SEDs). Since the position of intermediate- and late-type supergiants on the color–magnitude diagram canmore » be heavily contaminated by foreground dwarfs, we employ spectral classification and multi-band photometry from optical and near-infrared surveys to confirm membership. Based on spectroscopic evidence for mass loss and the presence of circumstellar (CS) dust in their SEDs, we find that 30%–40% of the yellow supergiants are likely in a post-RSG state. Comparison with evolutionary tracks shows that these mass-losing, post-RSGs have initial masses between 20 and 40 M {sub ⊙}. More than half of the observed RSGs in M31 and M33 are producing dusty CS ejecta. We also identify two new warm hypergiants in M31, J004621.05+421308.06 and J004051.59+403303.00, both of which are likely in a post-RSG state.« less
NASA Astrophysics Data System (ADS)
Griffiths, Trevor R.; Volkovich, Vladimir A.
An extensive review of the literature on the high temperature reactions (both in melts and in the solid state) of uranium oxides (UO 2, U 3O 8 and UO 3) resulting in the formation of insoluble alkali metal (Li to Cs) uranates is presented. Their uranate(VI) and uranate(V) compounds are examined, together with mixed and oxygen-deficient uranates. The reactions of uranium oxides with carbonates, oxides, per- and superoxides, chlorides, sulfates, nitrates and nitrites under both oxidising and non-oxidising conditions are critically examined and systematised, and the established compositions of a range of uranate(VI) and (V) compounds formed are discussed. Alkali metal uranates(VI) are examined in detail and their structural, physical, thermodynamic and spectroscopic properties considered. Chemical properties of alkali metal uranates(VI), including various methods for their reduction, are also reported. Errors in the current theoretical treatment of uranate(VI) spectra are identified and the need to develop routes for the preparation of single crystals is stressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durkee, Jr., Joe W.
A three-part study is conducted using the MCNP6 Monte Carlo radiation-transport code to calculate delayed-neutron (DN) and delayed-gamma (DG) emission signatures for nondestructive assay (NDA) metal-fuel pyroprocessing. In Part 1, MCNP6 is used to produce irradiation-induced used nuclear fuel (UNF) isotopic inventories for an Argonne National Laboratory (ANL) Advanced Burner Test Reactor (ABTR) preconceptual design fuel assembly (FA) model. The initial fuel inventory consists of uranium mixed with light-water-reactor transuranic (TRU) waste and 10 wt% zirconium (U-LWR-SFTRU-10%Zr). To facilitate understanding, parametric evaluation is done using models for 3% and 5% initial 235U a% enrichments, burnups of 5, 10, 15, 20,more » 30, …, 120 GWd/MTIHM, and 3-, 5-, 10-, 20-, and 30- year cooling times. Detailed delayed-particle radioisotope source terms for the irradiate FA are created using BAMF-DRT and SOURCES3A. Using simulation tallies, DG activity ratios (DGARs) are developed for 134Cs/ 137Cs 134Cs/ 154Eu, and 154Eu/ 137Cs markers as a function of (1) burnup and (2) actinide mass, including elemental uranium, neptunium, plutonium, americium, and curium. Spectral-integrated DN emission is also tallied. The study reveals a rich assortment of DGAR behavior as a function of DGAR type, enrichment, burnup, and cooling time. Similarly, DN emission plots show variation as a function of burnup and of actinide mass. Sensitivity of DGAR and DN signatures to initial 235U enrichment, burnup, and cooling time is evident. Comparisons of the ABTR radiation signatures and radiation signatures previously reported for a generic Westinghouse oxide-fuel assembly indicate that there are pronounced differences in the ABTR and Westinghouse oxide-fuel DN and DG signatures. These differences are largely attributable to the initial TRU inventory in the ABTR fuel. The actinide and nonactinide inventories for the FA models serve as source materials for the pre- and postelectrorefining models to be reported in Parts 2 and 3.« less
Geologic report on the San Rafael Swell Drilling Project, San Rafael Swell, Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bluhm, C.T.; Rundle, J.G.
1981-08-01
Twenty-two holes totaling 34,874 feet (10,629.6 meters) were rotary and core drilled on the northern and western flanks of the San Rafael Swell to test fluvial-lacustrine sequences of the Morrison Formation and the lower part of the Chinle Formation. The objective of the project was to obtain subsurface data so that improved uranium resource estimates could be determined for the area. Although the Brushy Basin and the Salt Wash Members of the Morrison Formation are not considered favorable in this area for the occurrence of significant uranium deposits, uranium minerals were encountered in several of the holes. Some spotty ormore » very low-grade mineralization was also encountered in the White Star Trunk area. The lower part of the Chinle Formation is considered to be favorable for potentially significant uranium deposits along the west flank of the San Rafael Swell. One hole (SR-202) east of Ferron, Utah, intersected uranium, silver, molybdenum, and copper mineralization. More exploratory drilling in the vicinity of this hole is recommended. As a result of the study of many geochemical analyses and a careful determination of the lithology shown by drilling, a sabkha environment is suggested for the concentration of uranium, zinc, iron, lead, copper, silver, and perhaps other elements in parts of the Moody Canyon Member of the Moenkopi Formation.« less
Studies of uranium carbide targets of a high density
NASA Astrophysics Data System (ADS)
Panteleev, V. N.; Alyakrinskiy, O.; Barbui, M.; Barzakh, A. E.; Dubois, M.; Eleon, C.; Essabaa, S.; Fedorov, D. V.; Gaubert, G.; Ionan, A. M.; Ivanov, V. S.; Jardin, P.; Lau, C.; Leroy, R.; Lhersonneau, G.; Mezilev, K. A.; Mhamed, C.; Molkanov, P. L.; Moroz, F. V.; Orlov, S. Yu.; Saint Laurent, M. G.; Stroe, L.; Tecchio, L. B.; Tonezzer, M.; Villari, A. C. C.; Volkov, Yu. M.
2008-10-01
Production of Cs and Fr isotopes from uranium carbide targets of a high density has been investigated at IRIS (Investigation Radioactive Isotopes at Synchrocyclotron), Gatchina. The UC target material with a density of 12 g/cm3 was prepared in a form of pellets. Two targets were tested on-line under the same temperature conditions: (a) a reference small target with a thickness of 4.5 g/cm2; (b) a heavier (so called intermediate) target with a thickness of 91 g/cm2. Yields and release efficiencies of nuclides with half-lives from some minutes to some milliseconds produced by 1 GeV protons in these targets are presented. It is remarkable that yields, even those of very short-lived isotopes such as 214Fr (T1/2 = 5 ms) and 219Fr (T1/2 = 20 ms), increase proportionally to the target thickness. A one month off-line heating test of the 91 g/cm2 target at a temperature of 2000 °C has been carried out successfully. The yields and release efficiencies of Cs and Fr measured on-line before and after the heating test coincided within the limits of measurement errors, thereby demonstrating the conservation of the target unit parameters. Based on these very promising results, a heavier target with a mass about 0.7 kg is prepared presently at IRIS.
Hua, Yilong; Wang, Wei; Huang, Xiaoyue; Gu, Tianhang; Ding, Dexin; Ling, Lan; Zhang, Wei-Xian
2018-06-01
Bicarbonate, ubiquitous in natural and waste waters is an important factor regulating the rate and efficiency of pollutant separation and transformation. For example, it can form complexes with U(VI) in the aqueous phase and at the solid-water interface. In this work, we investigated the effect of bicarbonate on the aging of nanoscale zero-valent (nZVI) in the context of U(VI) reduction and removal from wastewater. For fresh nZVI, over 99% aqueous uranium was separated in less than 10 min, of which 83% was reduced from U(VI) to U(IV). When nZVI was aged in water, its activity for U(VI) sequestration and reduction was significantly reduced. Batch experiments showed that for nZVI aged in the presence of 10 mM bicarbonate, only 20.3% uranium was reduced to U(IV) after 6 h reactions. Characterizations of the iron nanoparticles with spherical aberration corrected scanning transmission electron microscopy (Cs-STEM) suggest that in fresh nZVI, uranium was concentrated at the nanoparticle center; whereas in nZVI aged in bicarbonate, uranium was largely deposited on the outer surface of the nanoparticles. Furthermore, aged nZVI without bicarbonate contained more lepidocrocite (γ-FeOOH) while aged nZVI in the presence of bicarbonate had more magnetite/maghemite (Fe 3 O 4 /γ-Fe 2 O 3 ). This could be attributed to the formation of carbonate green rust and pH buffer effect of . Primary mechanisms for U(VI) removal with nZVI include reduction, sorption and/or precipitation. Results demonstrate that bicarbonate alter the aging products of nZVI, and reduces the separation efficiency and reduction capability for uranium removal. Copyright © 2018. Published by Elsevier Ltd.
ChromaStarPy: A Stellar Atmosphere and Spectrum Modeling and Visualization Lab in Python
NASA Astrophysics Data System (ADS)
Short, C. Ian; Bayer, Jason H. T.; Burns, Lindsey M.
2018-02-01
We announce ChromaStarPy, an integrated general stellar atmospheric modeling and spectrum synthesis code written entirely in python V. 3. ChromaStarPy is a direct port of the ChromaStarServer (CSServ) Java modeling code described in earlier papers in this series, and many of the associated JavaScript (JS) post-processing procedures have been ported and incorporated into CSPy so that students have access to ready-made data products. A python integrated development environment (IDE) allows a student in a more advanced course to experiment with the code and to graphically visualize intermediate and final results, ad hoc, as they are running it. CSPy allows students and researchers to compare modeled to observed spectra in the same IDE in which they are processing observational data, while having complete control over the stellar parameters affecting the synthetic spectra. We also take the opportunity to describe improvements that have been made to the related codes, ChromaStar (CS), CSServ, and ChromaStarDB (CSDB), that, where relevant, have also been incorporated into CSPy. The application may be found at the home page of the OpenStars project: http://www.ap.smu.ca/OpenStars/.
Abell 48 - a rare WN-type central star of a planetary nebula
NASA Astrophysics Data System (ADS)
Todt, H.; Kniazev, A. Y.; Gvaramadze, V. V.; Hamann, W.-R.; Buckley, D.; Crause, L.; Crawford, S. M.; Gulbis, A. A. S.; Hettlage, C.; Hooper, E.; Husser, T.-O.; Kotze, P.; Loaring, N.; Nordsieck, K. H.; O'Donoghue, D.; Pickering, T.; Potter, S.; Romero-Colmenero, E.; Vaisanen, P.; Williams, T.; Wolf, M.
2013-04-01
A considerable fraction of the central stars of planetary nebulae (CSPNe) are hydrogen-deficient. Almost all of these H-deficient central stars (CSs) display spectra with strong carbon and helium lines. Most of them exhibit emission-line spectra resembling those of massive WC stars. Therefore these stars are classed as CSPNe of spectral type [WC]. Recently, quantitative spectral analysis of two emission-line CSs, PB 8 and IC 4663, revealed that these stars do not belong to the [WC] class. Instead PB 8 has been classified as [WN/WC] type and IC 4663 as [WN] type. In this work we report the spectroscopic identification of another rare [WN] star, the CS of Abell 48. We performed a spectral analysis of Abell 48 with the Potsdam Wolf-Rayet (PoWR) models for expanding atmospheres. We find that the expanding atmosphere of Abell 48 is mainly composed of helium (85 per cent by mass), hydrogen (10 per cent) and nitrogen (5 per cent). The residual hydrogen and the enhanced nitrogen abundance make this object different from the other [WN] star IC 4663. We discuss the possible origin of this atmospheric composition.
Elucidating bonding preferences in tetrakis(imido)uranate(VI) dianions
NASA Astrophysics Data System (ADS)
Anderson, Nickolas H.; Xie, Jing; Ray, Debmalya; Zeller, Matthias; Gagliardi, Laura; Bart, Suzanne C.
2017-09-01
Actinyl species, [AnO2]2+, are well-known derivatives of the f-block because of their natural occurrence and essential roles in the nuclear fuel cycle. Along with their nitrogen analogues, [An(NR)2]2+, actinyls are characterized by their two strong trans-An-element multiple bonds, a consequence of the inverse trans influence. We report that these robust bonds can be weakened significantly by increasing the number of multiple bonds to uranium, as demonstrated by a family of uranium(VI) dianions bearing four U-N multiple bonds, [M]2[U(NR)4] (M = Li, Na, K, Rb, Cs). Their geometry is dictated by cation coordination and sterics rather than by electronic factors. Multiple bond weakening by the addition of strong π donors has the potential for applications in the processing of high-valent actinyls, commonly found in environmental pollutants and spent nuclear fuels.
Chemical reactivity of CVC and CVD SiC with UO2 at high temperatures
NASA Astrophysics Data System (ADS)
Silva, Chinthaka M.; Katoh, Yutai; Voit, Stewart L.; Snead, Lance L.
2015-05-01
Two types of silicon carbide (SiC) synthesized using two different vapor deposition processes were embedded in UO2 pellets and evaluated for their potential chemical reaction with UO2. While minor reactivity between chemical-vapor-composited (CVC) SiC and UO2 was observed at comparatively low temperatures of 1100 and 1300 °C, chemical-vapor-deposited (CVD) SiC did not show any such reactivity. However, both CVD and CVC SiCs showed some reaction with UO2 at a higher temperature (1500 °C). Elemental maps supported by phase maps obtained using electron backscatter diffraction indicated that CVC SiC was more reactive than CVD SiC at 1500 °C. Furthermore, this investigation indicated the formation of uranium carbides and uranium silicide chemical phases such as UC, USi2, and U3Si2 as a result of SiC reaction with UO2.
Uranium and Its Decay Products in Floodplain Sediments from the River Fal
NASA Astrophysics Data System (ADS)
Millward, G. E.; Blake, W. H.; Little, R.; Couldrick, L.
2012-04-01
European river basins are subject to longer-term storage of legacy contaminants in sedimentary sinks and their potential release presents a credible risk to achieving water quality targets required by the EU Water Framework Directive. The catchment of the River Fal, south west England, is extensively mineralised and has been greatly impacted by heavy metal mining. Uranium and radium were extracted and processed between 1870 and 1930 and spoil tips along the channel banks are assumed to have been a source of radionuclides into the river. Radionuclides were determined in five cores obtained from the river floodplain, including a reference core positioned upstream of the uranium mine enabling evaluation of its impact on past and contemporary sediment quality. The core was sectioned into 1 cm thick slices and they were analysed by gamma spectrometry for products of the U-238 decay series, i.e. Th-234 (a surrogate for U-238), Pb-214 (a surrogate for Ra-226), Pb-210 and fallout Am-241 and Cs-137. Peak Cs-137 concentrations at mid-depth were associated with fallout after atmospheric nuclear tests in 1963 and were used to estimate sedimentation rates. However, the activity concentrations of Pb-210 were elevated at all depths and the result indicated a significant input of unsupported Pb-210 (linked to processed spoil material) throughout the period of deposition. At some sites, peak activity concentrations of Th-234 suggested inputs from mining activity during major release and/or flood events. The cores downstream of the mine all had higher radionuclide inventories, of the order 105 Bq m-2, compared to the reference core due to the presences of products from the U-238 decay series. In addition, the inventories did not decrease systematically downstream indicating storage regions within the river channel. Storage of such legacy contaminants at levels in excess of contemporary environmental quality guidelines raises important questions and challenges for floodplain use and management.
Evolution of the early-type galaxy fraction in clusters since z = 0.8
NASA Astrophysics Data System (ADS)
Simard, L.; Clowe, D.; Desai, V.; Dalcanton, J. J.; von der Linden, A.; Poggianti, B. M.; White, S. D. M.; Aragón-Salamanca, A.; De Lucia, G.; Halliday, C.; Jablonka, P.; Milvang-Jensen, B.; Saglia, R. P.; Pelló, R.; Rudnick, G. H.; Zaritsky, D.
2009-12-01
We study the morphological content of a large sample of high-redshift clusters to determine its dependence on cluster mass and redshift. Quantitative morphologies are based on PSF-convolved, 2D bulge+disk decompositions of cluster and field galaxies on deep Very Large Telescope FORS2 images of eighteen, optically-selected galaxy clusters at 0.45 < z < 0.80 observed as part of the ESO Distant Cluster Survey (“EDisCS”). Morphological content is characterized by the early-type galaxy fraction f_et, and early-type galaxies are objectively selected based on their bulge fraction and image smoothness. This quantitative selection is equivalent to selecting galaxies visually classified as E or S0. Changes in early-type fractions as a function of cluster velocity dispersion, redshift and star-formation activity are studied. A set of 158 clusters extracted from the Sloan Digital Sky Survey is analyzed exactly as the distant EDisCS sample to provide a robust local comparison. We also compare our results to a set of clusters from the Millennium Simulation. Our main results are: (1) the early-type fractions of the SDSS and EDisCS clusters exhibit no clear trend as a function of cluster velocity dispersion. (2) Mid-z EDisCS clusters around σ = 500 km s-1 have f_et ≃ 0.5 whereas high-z EDisCS clusters have f_et ≃ 0.4. This represents a ~25% increase over a time interval of 2 Gyr. (3) There is a marked difference in the morphological content of EDisCS and SDSS clusters. None of the EDisCS clusters have early-type galaxy fractions greater than 0.6 whereas half of the SDSS clusters lie above this value. This difference is seen in clusters of all velocity dispersions. (4) There is a strong and clear correlation between morphology and star formation activity in SDSS and EDisCS clusters in the sense that decreasing fractions of [OII] emitters are tracked by increasing early-type fractions. This correlation holds independent of cluster velocity dispersion and redshift even though the fraction of [OII] emitters decreases from z ˜0.8 to z ˜ 0.06 in all environments. Our results pose an interesting challenge to structural transformation and star formation quenching processes that strongly depend on the global cluster environment (e.g., a dense ICM) and suggest that cluster membership may be of lesser importance than other variables in determining galaxy properties. Based on observations obtained in visitor and service modes at the ESO Very Large Telescope (VLT) as part of the Large Programme 166.A-0162 (the ESO Distant Cluster Survey). Also based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with proposal 9476. Support for this proposal was provided by NASA through a grant from the Space Telescope Science Institute. Table [see full textsee full textsee full textsee full textsee full text] is only available in electronic form at http://www.aanda.org
Precise Millimeter-Wave Laboratory Frequencies for CS and C34S
NASA Astrophysics Data System (ADS)
Gottlieb, C. A.; Myers, P. C.; Thaddeus, P.
2003-05-01
Nine successive rotational lines in the ground vibrational state of CS and C34S between 96 GHz (J=2-1) and 500 GHz (10-9) were measured in the laboratory to an accuracy of a few kHz. When our measurements are combined with the submillimeter-wave measurements of Ahrens & Winnewisser, the entire rotational spectrum of both isotopic species is predicted to an accuracy of about 1 part in 108 up to 500 GHz and 5 parts in 108 near 1000 GHz. These frequencies should be useful for quantitative studies of cloud core collapse and star formation in the millimeter- and submillimeter-wave bands.
The Ubiquity of the Rapid Neutron-capture Process
NASA Astrophysics Data System (ADS)
Roederer, Ian U.; Cowan, John J.; Karakas, Amanda I.; Kratz, Karl-Ludwig; Lugaro, Maria; Simmerer, Jennifer; Farouqi, Khalil; Sneden, Christopher
2010-12-01
To better characterize the abundance patterns produced by the r-process, we have derived new abundances or upper limits for the heavy elements zinc (Zn, Z= 30), yttrium (Y, Z= 39), lanthanum (La, Z= 57), europium (Eu, Z= 63), and lead (Pb, Z= 82). Our sample of 161 metal-poor stars includes new measurements from 88 high-resolution and high signal-to-noise spectra obtained with the Tull Spectrograph on the 2.7 m Smith Telescope at the McDonald Observatory, and other abundances are adopted from the literature. We use models of the s-process in asymptotic giant branch stars to characterize the high Pb/Eu ratios produced in the s-process at low metallicity, and our new observations then allow us to identify a sample of stars with no detectable s-process material. In these stars, we find no significant increase in the Pb/Eu ratios with increasing metallicity. This suggests that s-process material was not widely dispersed until the overall Galactic metallicity grew considerably, perhaps even as high as [Fe/H] =-1.4, in contrast with earlier studies that suggested a much lower mean metallicity. We identify a dispersion of at least 0.5 dex in [La/Eu] in metal-poor stars with [Eu/Fe] <+0.6 attributable to the r-process, suggesting that there is no unique "pure" r-process elemental ratio among pairs of rare earth elements. We confirm earlier detections of an anti-correlation between Y/Eu and Eu/Fe bookended by stars strongly enriched in the r-process (e.g., CS 22892-052) and those with deficiencies of the heavy elements (e.g., HD 122563). We can reproduce the range of Y/Eu ratios using simulations of high-entropy neutrino winds of core-collapse supernovae that include charged-particle and neutron-capture components of r-process nucleosynthesis. The heavy element abundance patterns in most metal-poor stars do not resemble that of CS 22892-052, but the presence of heavy elements such as Ba in nearly all metal-poor stars without s-process enrichment suggests that the r-process is a common phenomenon. This paper includes data taken at The McDonald Observatory of The University of Texas at Austin.
Wetherbee, Gregory A.; Debey, Timothy M.; Nilles, Mark A.; Lehmann, Christopher M.B.; Gay, David A.
2012-01-01
Radioactive isotopes I-131, Cs-134, or Cs-137, products of uranium fission, were measured at approximately 20 percent of 167 sampled National Atmospheric Deposition Program monitoring sites in North America (primarily in the contiguous United States and Alaska) after the Fukushima Dai-Ichi Nuclear Power Plant incident on March 12, 2011. Samples from the National Atmospheric Deposition Program were analyzed for the period of March 8-April 5, 2011. Calculated 1- or 2-week radionuclide deposition fluxes at 35 sites from Alaska to Vermont ranged from 0.47 to 5,100 Becquerels per square meter during the sampling period of March 15-April 5, 2011. No fission-product isotopes were measured in National Atmospheric Deposition Program samples obtained during March 8-15, 2011, prior to the arrival of contaminated air in North America.
THE KINEMATICS OF THE NEBULAR SHELLS AROUND LOW MASS PROGENITORS OF PNe WITH LOW METALLICITY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereyra, Margarita; López, José Alberto; Richer, Michael G., E-mail: mally@astrosen.unam.mx, E-mail: jal@astrosen.unam.mx, E-mail: richer@astrosen.unam.mx
2016-03-15
We analyze the internal kinematics of 26 planetary nebulae (PNe) with low metallicity that appear to derive from progenitor stars of the lowest masses, including the halo PN population. Based upon spatially resolved, long-slit, echelle spectroscopy drawn from the San Pedro Mártir Kinematic Catalog of PNe, we characterize the kinematics of these PNe measuring their global expansion velocities based upon the largest sample used to date for this purpose. We find kinematics that follow the trends observed and predicted in other studies, but also find that most of the PNe studied here tend to have expansion velocities less than 20more » km s{sup −1} in all of the emission lines considered. The low expansion velocities that we observe in this sample of low metallicity PNe with low mass progenitors are most likely a consequence of a weak central star (CS) wind driving the kinematics of the nebular shell. This study complements previous results that link the expansion velocities of the PN shells with the characteristics of the CS.« less
NASA Astrophysics Data System (ADS)
Yushchenko, A.; Gopka, V.; Goriely, S.; Lambert, D.; Shavrina, A.; Kang, Y. W.; Rostopchin, S.; Valyavin, G.; Lee, B.-C.; Kim, C.
2007-06-01
The abundance anomalies in chemically peculiar B-F stars are usually explained by diffusion of chemical elements in the stable atmospheres of these stars. But it is well known that peculiar stars with similar temperatures and gravities show very different chemical compositions. We show that the abundance patterns of several stars can be influenced by accretion and (or) nuclear reactions in stellar atmospheres. The first case is one of the hottest Am stars - Sirius. We determined the abundances of more than 50 chemical elements in the atmosphere of Sirius A and show that Sirius A was contaminated by s-process enriched matter from Sirius B (now a white dwarf). The second case is the well known Przybylski's star. The abundance pattern of this star is the second most studied one after the Sun with abundances determined for about 60 chemical elements. Spectral lines of radioactive elements with short decay times were found in the spectrum of this star. We report the results of our investigation on the stratification of chemical elements in the atmosphere of Przybylski's star and the new identification of lines corresponding to short-lived actinides in its spectrum. Possible explanations of the abundances pattern of Przybylski's star (as well as HR465 and HD965) can be the natural radioactive decays of thorium and uranium, the explosion of a companion as a supernova or the spallation reactions. These three hypotheses and (or) diffusion can possibly explain the abundance pattern of Przybylski's star and several similar objects such as HR465 and HD965.
Beta-Decay Rates for Exotic Nuclei and R-Process Nucleosynthesis
NASA Astrophysics Data System (ADS)
Suzuki, Toshio; Yoshida, Takashi; Wanajo, Shinya; Kajino, Toshitaka; Otsuka, Takaharu
Beta-decay rates for exotic nuclei at N = 126 relevant to r-process nucleosynthesis are studied by shell-model calculations. The half-lives obtained are used to study r-process nucleosynthesis in core-collapse supernova explosions and binary neutron star mergers. The element abundances are obtained up to the third peak as well as beyond the peak region up to uranium.
ALMA view of the massive dense clump in the Galactic center 50 km s-1 molecular cloud .
NASA Astrophysics Data System (ADS)
Uehara, K.; Tsuboi, M.; Kitamura, Y.; Miyawaki, R.; Miyazaki, A.
We observed the 50 km s-1 molecular cloud with a high angular resolution (˜1.5 arcsec) using ALMA in the H13CO+ J=1-0, C34S J=2-1, CS J=2-1 and SiO v=0 J=2-1 emission lines. This cloud is a candidate for the massive star forming region induced by cloud-cloud collision (CCC). We newly found a massive dense clump (DC1) with a size of ˜0.3 pc in the CCC region of the cloud in the H13CO+ J=1-0 map. The DC1 seems to be located on a line where the four HII regions line up. Furthermore, the DC1 has a broad velocity width covering ˜30 km s-1 and ˜60 km s-1 components in the CS J=2-1 map; the 30 km s-1 component has filamentary structures and the 60 km s-1 one a sheet-like structure. From the position-velocity diagrams of the H13CO+ J=1-0 and CS J=2-1 lines and the intensity ratio of T(SiO v=0 J=2-1)/T(H13CO+ J=1-0), i.e., a shock tracer, we consider that the DC1 has formed by the CCC between the filaments and the sheet-like gas. The LTE mass and virial parameter of the DC1 is estimated to be ˜1.3×104 M_ȯ and ˜5, respectively. These facts suggest that the DC1 is likely in a gravitationally bound state and may start massive star formation. We propose a scenario that the CCC induced the massive star formation in the HII region A ˜105 years ago and now causes the formation and collapse of the DC1; the clump would evolve to an HII region within ˜105 years.
VERTICAL MIGRATION OF RADIONUCLIDES IN THE VICINITY OF THE CHERNOBYL CONFINEMENT SHELTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farfan, E.; Jannik, T.; Marra, J.
2011-10-01
Studies on vertical migration of Chernobyl-origin radionuclides in the 5-km zone of the Chernobyl Nuclear Power Plant (ChNPP) in the area of the Red Forest experimental site were completed. Measurements were made by gamma spectrometric methods using high purity germanium (HPGe) detectors with beryllium windows. Alpha-emitting isotopes of plutonium were determined by the measurement of the x-rays from their uranium progeny. The presence of {sup 60}Co, {sup 134,137}Cs, {sup 154,155}Eu, and {sup 241}Am in all soil layers down to a depth of 30 cm was observed. The presence of {sup 137}Cs and {sup 241}Am were noted in the area containingmore » automorphous soils to a depth of 60 cm. In addition, the upper soil layers at the test site were found to contain {sup 243}Am and {sup 243}Cm. Over the past ten years, the {sup 241}Am/{sup 137}Cs ratio in soil at the experimental site has increased by a factor of 3.4, nearly twice as much as would be predicted based solely on radioactive decay. This may be due to 'fresh' fallout emanating from the ChNPP Confinement Shelter.« less
Radionuclide concentrations in honey bees from Area G at TA-54 during 1997. Progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haarmann, T.K.; Fresquez, P.R.
Honey bees were collected from two colonies located at Los Alamos National Laboratory`s Area G, Technical Area 54, and from one control (background) colony located near Jamez Springs, NM. Samples were analyzed for the following: cesium ({sup 137}Cs), americium ({sup 241}Am), plutonium ({sup 238}Pu and {sup 239,240}Pu), tritium ({sup 3}H), total uranium, and gross gamma activity. Area G sample results from both colonies were higher than the upper (95%) level background concentration for {sup 238}Pu and {sup 3}H.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demuth, Scott F.; Trahan, Alexis Chanel
2017-06-26
DIV of facility layout, material flows, and other information provided in the DIQ. Material accountancy through an annual PIV and a number of interim inventory verifications, including UF6 cylinder identification and counting, NDA of cylinders, and DA on a sample collection of UF6. Application of C/S technologies utilizing seals and tamper-indicating devices (TIDs) on cylinders, containers, storage rooms, and IAEA instrumentation to provide continuity of knowledge between inspection. Verification of the absence of undeclared material and operations, especially HEU production, through SNRIs, LFUA of cascade halls, and environmental swipe sampling
Pham, Mai Khanh; Chamizo, Elena; Mas Balbuena, José Luis; Miquel, Juan-Carlos; Martín, Jacobo; Osvath, Iolanda; Povinec, Pavel P
2017-01-01
Characterization of atmospheric aerosols collected in Monaco (2004-2008) and in sediment traps at 200 m and 1000 m water depths at the DYFAMED (Dynamics of Atmospheric Fluxes in the Mediterranean Sea) station (2004) was carried out to improve our understanding of the impact of Saharan dust on ground-level air and on the water column. Activity concentrations of natural ( 210 Pb, 210 Po, uranium and radium isotopes) and anthropogenic ( 137 Cs, 239 Pu, 240 Pu, and 239+240 Pu) radionuclides and their isotopic ratios confirmed a Saharan impact on the investigated samples. In association with a large particulate matter deposition event in Monaco on 20 February 2004, the 137 Cs (∼40 Bq kg -1 ) and 239+240 Pu (∼1 Bq kg -1 ) activities were almost a factor of two higher than other Saharan deposition dust events. This single-day particle flux represented 72% of the annual atmospheric deposition in Monaco. The annual deposition of Saharan dust on the sea was 232-407 mBq m -2 for 137 Cs and 6.8-9.8 mBq m -2 for 239+240 Pu and contributed significantly (28-37% for 137 Cs and 34-45% for 239+240 Pu) to the total annual atmospheric input to the northwest Mediterranean Sea. The 137 Cs/ 239+240 Pu activity ratios in dust samples collected during different Saharan dust events confirmed their global fallout origin or mixing with local re-suspended soil particles. In the sediment trap samples the 137 Cs activity varied by a factor of two, while the 239+240 Pu activity was constant, confirming the different behaviors of Cs (dissolved) and Pu (particle reactive) in the water column. The 137 Cs and 239+240 Pu activities of sinking particles during the period of the highest mass flux collected in 20 February 2004 at the 200 m and 1000 m water depths represented about 10% and 15%, respectively, of annual deposition from Saharan dust events. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sarma, Debajit; Malliakas, Christos D.; Subrahmanyam, K. S.; ...
2015-10-27
The fission of uranium produces radionuclides, 137Cs and 90Sr, which are major constituents of spent nuclear fuel. The half-life of 137Cs and 90Sr is nearly 30 years and thus that makes them harmful to human life and the environment. The selective removal of these radionuclides in the presence of high salt concentrations from industrial nuclear waste is necessary for safe storage. We report the synthesis and crystal structure of K 2xSn 4-xS 8-x (x = 0.65–1, KTS-3) a material which exhibits excellent Cs +, Sr 2+ and UO 2 2+ ion exchange properties in varying conditions. Furthermore, the compound adoptsmore » a layered structure which consists of exchangeable potassium ions sandwiched between infinite layers of octahedral and tetrahedral tin centers. K 2xSn 4-xS 8-x (x = 0.65–1, KTS-3) crystallizes in the monoclinic space group P2 1/c with cell parameters a = 13.092(3) Å, b = 16.882(2) Å, c = 7.375(1) Å and β = 98.10(1)°. Refinement of the single crystal diffraction data revealed the presence of Sn vacancies in the tetrahedra that are long range ordered. The interlayer potassium ions of KTS-3 can be exchanged for Cs +, Sr 2+ and UO 2 2+. KTS-3 exhibits rapid and efficient ion exchange behavior in a broad pH range. The distribution coefficients (K d) for KTS-3 are high for Cs + (5.5 × 10 4), Sr 2+ (3.9 × 10 5) and UO 2 2+ (2.7 × 10 4) at neutral pH (7.4, 6.9, 5.7 ppm Cs +, Sr 2+ and UO 2 2+, respectively; V/m ~ 1000 mL g -1). KTS-3 exhibits impressive Cs +, Sr 2+ and UO 2 2+ ion exchange properties in high salt concentration and over a broad pH range, which coupled with the low cost, environmentally friendly nature and facile synthesis underscores its potential in treating nuclear waste.« less
Supernova Explosions, Nucleosynthesis, and Cosmic Chemical Evolution
NASA Astrophysics Data System (ADS)
Truran, James W.
2006-08-01
The Universe emerged from its first three minutes with a composition consisting of hydrogen, deuterium, 3He, 4He, and 7Li. These isotopes constitute the primordial compositions of galaxies. Within galaxies, the synthesis of heavier elements from carbon through uranium is understood to occur during the normal evolution of stars and in supernova explosions of Types I and II. This history is written in the compositions of the stars and gas in our Milky Way Galaxy and other galaxies. The contributions both from massive stars (M>10 Msolar) and associated Type II supernovae and from Type Ia (thermonuclear) supernovae are particularly noteworthy. We review both the nuclear processes by which this occurs and the compositions of the stellar components of our Galaxy as a function of time which reflect these nucleosynthesis processes. We then discuss how such observations inform us of the nature of the earliest stellar populations and of the abundance history of the Cosmos.
Superstars: How stellar explosions shape the destiny of our universe
NASA Astrophysics Data System (ADS)
Clark, D. H.
Research into the nature of supernovae and their influence on the Galaxy are discussed. Historical records of Chinese and European astronomers are also examined. Topics considered include the generation of the solar system, the influence of nearby novae on earth's biological and climatic evolutions, the formation of heavy elements such as gold and uranium, the ice age, the Star of Bethlehem, and pulsars.
What the Most Metal-poor Stars Tell Us About the Early Universe
NASA Astrophysics Data System (ADS)
Frebel, Anna
2008-05-01
The chemical evolution of the Galaxy and the early Universe is a key topic in modern astrophysics. The most metal-poor Galactic halo stars are now frequently used in an attempt to reconstruct the onset of the chemical and dynamical formation processes of the Galaxy. These stars are an easily-accessible local equivalent of the high-redshift Universe, and can thus be used to carry out field-field cosmology. The discovery of two astrophysically very important metal-poor objects has recently lead to a significant advance in the field. One object is the most iron-poor star yet found (with [Fe/H]=-5.4). The other stars displays the strongest known overabundances of heavy neutron-capture elements, such as uranium, and nucleo-chronometry yields a stellar age of 13 Gyr. Both stars already serve as benchmark objects for various theoretical studies with regard to nucleosynthesis processes in the early Galaxy. I will discuss how the abundance patterns of these and other metal-poor stars solidify and advance our understanding of the early Universe, and provide constraints on the nature of the first stars, as well as their explosion mechanisms and corresponding supernova nucleosynthesis yields. Large samples of these old objects are also employed to test theoretical predictions about the formation of the very first low-mass stars. In the near future, the combined power of near-field cosmology results with those of the next-generation facilities (e.g., MWA, JWST, GMT) may yield exceptional details about the formation processes of the first generations of stars and galaxies.
Spectroscopic Peculiarity of the Herbig Be Star HD 259431
NASA Astrophysics Data System (ADS)
Pogodin, M. A.; Pavlovskij, S. E.; Drake, N. A.; Beskrovnaya, N. G.; Kozlova, O. V.; Alekseev, I. Yu.; Borges Fernandes, M.; Pereira, C. B.; Valyavin, G.
2017-06-01
High-resolution spectra of the Herbig Be star HD 259431 obtained in 2010-2016 at three observatories (Crimean AO, ESO in Chile, and OAN SPN in Mexico) are analysed. The object demonstrates a very rich emission line profile spectrum. The bulk of the lines exhibit double-peaked emission profiles and originate in the gaseous disk. The atmospheric lines are unusually shallow, and majority of them are distorted by the circumstellar (CS) contribution. Moreover, we have revealed that they are overlapped with an additional continuum emission. Using the observed ratio of the equivalent widths of two He I λ 4009 and 4026 lines, we estimated the spectral type of the object as B5 V. We also constructed the spectral energy distribution of the additional continuum using wide wings of the atmospheric Hβ-Hɛ lines free of the CS contribution. The continuum corresponds to the blue part of the black body spectrum. The Hβ - Hɛ Balmer emission lines show very variable profiles looking as either of P Cyg-type or a double-peaked emission line with a depression of the red wing. We found the period of this variability P = 2.630d and interpreted it as a sign of a rotating magnetosphere of the star with the magnetic axis inclined to the rotation axis. At different phases of rotation, the observer can see either an accretion flow at high magnetic latitudes or a wind zone at lower latitudes. We also estimated the inclination of the rotation axis i = 52°±1°.
Stellar Abundance Observations and Heavy Element Formation
NASA Astrophysics Data System (ADS)
Cowan, J. J.
2005-05-01
Abundance observations indicate the presence of rapid-neutron capture (i.e., r-process) elements in old Galactic halo and globular cluster stars. These observations provide insight into the nature of the earliest generations of stars in the Galaxy -- the progenitors of the halo stars -- responsible for neutron-capture synthesis of the heavy elements. Abundance comparisons among the r-process-rich halo stars show that the heaviest neutron-capture elements (i.e., Ba and above) are consistent with a scaled solar system r-process abundance distribution, while the lighter neutron-capture elements do not conform to the solar pattern. These comparisons suggest the possibility of two r-process sites in stars. The large star-to-star scatter observed in the abundances of neutron-capture element/iron ratios at low metallicities -- which disappears with increasing metallicity or [Fe/H] -- suggests the formation of these heavy elements (presumably from certain types of supernovae) was rare in the early Galaxy. The stellar abundances also indicate a change from the r-process to the slow neutron capture (i.e., s-) process at higher metallicities in the Galaxy and provide insight into Galactic chemical evolution. Finally, the detection of thorium and uranium in halo and globular cluster stars offers an independent age-dating technique that can put lower limits on the age of the Galaxy, and hence the Universe. This work has been supported in part by NSF grant AST 03-07279 (J.J.C.) and by STScI grants GO-8111, GO-8342 and GO-9359.
Chemistry and structure of giant molecular clouds in energetic environments
NASA Astrophysics Data System (ADS)
Anderson, Crystal Nicole
2016-09-01
Throughout the years many studies on Galactic star formation have been conducted. This resulted in the idea that giant molecular clouds (GMCs) are hierarchical in nature with substructures spanning a large range of sizes. The physical processes that determine how molecular clouds fragment, form clumps/cores and then stars depends strongly on both recent radiative and mechanical feed- back from massive stars and, on longer term, from enhanced cooling due to the buildup of metals. Radiative and mechanical energy input from stellar populations can alter subsequent star formation over a large part of a galaxy and hence is relevant to the evolution of galaxies. Much of our knowledge of star formation on galaxy wide scales is based on scaling laws and other parametric descriptions. But to understand the overall evolution of star formation in galaxies we need to watch the feedback processes at work on giant molecular cloud (GMC) scales. By doing this we can begin to answer how strong feedback environments change the properties of the substructure in GMCs. Tests of Galactic star formation theory to other galaxies has been a challenging process due to the lack of resolution with current instruments. Thus, only the nearest galaxies allow us to resolve GMCs and their substructures. The Large Magellanic Cloud (LMC), is one of the closest low metallicity dwarf galaxies (D˜ 50 kpc) and is close enough that current instruments can resolve the sub- structure of its GMCs to <1pc. The LMC has a star cluster located near the GMC, 30Doradus, producing high levels of far ultra violet (FUV) radiation in the inter- stellar medium (ISM). The dwarf galaxy, NGC 5253, is also a close low metallicity galaxy (3.8 Mpc) with a super star cluster, which appears to be composed of several newborn globular clusters, located within the center of the galaxy. These huge, compact collections of massive stars and their supernovae have the potential to dump large amounts of FUV radiation and momentum into the ISM. Under such hostile conditions, we cannot expect star formation to evolve in the same fashion as it does across much of the Galaxy. With the advancement of radio interferometry instruments like ALMA and the ATCA, we are able to observe nearby dwarf galaxies at 1.5-40 pc scales. Also, with the advancement of the instruments, astrochemistry is becoming an exciting and dominant field in studying star forming regions at varying densities and evolutionary stages outside the Galaxy. In this dissertation, I discuss observations of molecular gas tracers (e.g. HCO+, HCN, HNC, CS, C2H, N2H+) detected in the LMC at 1.5-40 pc scales and in NGC 5253 at 40 pc scales. I then compare the molecular gas detections to the Central Molecular Zone in our Galaxy. Dense molecular gas was detected in all of the sources. For the regions in the LMC, molecular lines of CS, N2H+, C 2H, HNC, HCO+ and HCN were all detected in N159W and N113 while only HCN, HCO+, HNC, and C2H were detected in 30Dor-10. Toward NGC 5253 only HCO+, HCN, C2H and CS were detected. I observe anomalously large HCO+/HCN line ratios of >5 for the NGC 5253 SSC, 30Dor-10 and N159W clumps. However the ratio is <2 for N113, the least energetic source, on clump scales. NGC 5253, 30Dor-10 and N159W have anomalously faint HCN. The CMZ however, does not have anomalously faint HCN it actually has HCO+/HCN common of high metallicity environments, active galactic nuclei and ultra luminous infrared galaxies. These observations suggest the reason HCN has fainter emission than HCO+ must be a combination of low metallicity and energetics contributing to the change in the HCO+/HCN ratio. I find that the impact of the massive star forming regions on surrounding gas in different galaxies from small to large scales changes the chemistry within these regions. A more energetic region's chemistry seems to be different from a less energetic region. There is a richer chemistry within a less energetic region; which may suggest that the chemistry in an energetic environment is quenched due to increased photodissociation.
Uddin, Saif; Behbehani, Montaha
2018-02-01
This study focuses on creating a baseline for 40 K, 210 Pb, 137 Cs, 90 Sr, 226 Ra, 228 Ra, 238 U, 235 U, 234 U, 239+240 Pu and 238 Pu in marine sediments in the northwestern Gulf. The respective measured concentration ranges were 386-489, 32.3-48.8, 1.5-2.9, 4.53-5.42, 18.3-23.1, 18.8-23.0, 22.3-30.5, 0.99-1.33, 25.6-34.8, 0.30-0.93, and 0.0008-0.00018Bqkg -1 . The levels of these radionuclides are generally comparable to values reported for other marine waters in the northern hemisphere. The 137 Cs activity in the Gulf sediments offshore Kuwait is an order of magnitude lower compared to sediments from northeastern Iran. Other than that finding, no hot spots were observed in sediments adjacent to power and desalination plants, oil and gas industrial activities or wastewater treatment facilities. These data will serve as a baseline to gauge possible future inputs of radionuclides in the northern Gulf. The calculated average ratio of 235 U/ 238 U activity in the area is in agreement with the reported figure of the natural uranium ratio, suggesting the absence of depleted uranium (DU) at all the stations. The low concentration of 239+240 Pu suggests that there is no significant source of plutonium except that from atmospheric fallout from weapon testing and possible dry deposition via long-range dust transport. Copyright © 2017 Elsevier Ltd. All rights reserved.
Absorption spectra analysis of hydrated uranium(III) complex chlorides
NASA Astrophysics Data System (ADS)
Karbowiak, M.; Gajek, Z.; Drożdżyński, J.
2000-11-01
Absorption spectra of powdered samples of hydrated uranium(III) complex chlorides of the formulas NH 4UCl 4 · 4H 2O and CsUCl 4 · 3H 2O have been recorded at 4.2 K in the 4000-26 000 cm -1 range. The analysis of the spectra enabled the determination of crystal-field parameters and assignment of 83 and 77 crystal-field levels for the tetrahydrate and trihydrate, respectively. The energies of the levels were computed by applying a simplified angular overlap model as well as a semiempirical Hamiltonian representing the combined atomic and crystal-field interactions. Ab initio calculations have enabled the application of a simplified parameterization and the determination of the starting values of the AOM parameters. The received results have proved that the AOM approach can quite well predict both the structure of the ground multiplet and the positions of the crystal-field levels in the 17 000-25 000 cm -1 range, usually obscured by strong f-d bands.
Chemical reactivity of CVC and CVD SiC with UO 2 at high temperatures
Silva, Chinthaka M.; Katoh, Yutai; Voit, Stewart L.; ...
2015-02-11
Two types of silicon carbide (SiC) synthesized using two different vapor deposition processes were embedded in UO 2 pellets and evaluated for their potential chemical reaction with UO 2. While minor reactivity between chemical-vapor-composited (CVC) SiC and UO 2 was observed at comparatively low temperatures of 1100 and 1300 C, chemical-vapor-deposited (CVD) SiC did not show any such reactivity, according to microstructural investigations. But, both CVD and CVC SiCs showed some reaction with UO 2 at a higher temperature (1500 C). Elemental maps supported by phase maps obtained using electron backscatter diffraction indicated that CVC SiC was more reactive thanmore » CVD SiC at 1500 C. Moreover, this investigation indicated the formation of uranium carbides and uranium silicide chemical phases such as UC, USi 2, and U 3Si 2 as a result of SiC reaction with UO 2.« less
Legendre, Audrey; Elie, Christelle; Ramambason, Camille; Manens, Line; Souidi, Maamar; Froment, Pascal; Tack, Karine
2016-08-10
Environmental toxicant exposure can induce disorders in sex steroidogenesis during fetal gonad development. Our previous study demonstrated that chronic adult exposure to a supra environmental concentration of depleted uranium (DU) does not impair testicular steroidogenesis in rats. In this study, we investigated the effects of lifelong exposure (embryo - adult) to low-dose DU (40 or 120mgL -1 ) on adult rat testicular steroidogenesis and spermatogenesis. A significant content of uranium was detected in testis and epididymis in the DU 120mgL -1 group and the assay in epididymal spermatozoa showed a significant content in both groups. No major defect was observed in testicular histology except a decrease in the number of basal vacuoles in the DU groups. Moreover, plasma Follicle-Stimuling Hormone [FSH] and Luteinizing Hormone [LH] levels were increased only in the DU 120mgL -1 group and intratesticular estradiol was decreased in both groups. Testosterone level was reduced in plasma and testis in the DU 40mgL -1 group. These modulations could be explained by an observed decrease in gene expression of luteinizing hormone receptor (LHR), and enzymes involved in steroid production and associated signal transduction (StAR, cyp11a1, cyp17a1, 3βhsd, 17βhsd, TGFβ1, AR). Several genes specific to germ cells and cell junctions of the blood-testis barrier were also modulated. In conclusion, these data show that fetal life is a critical window for chronic uranium exposure and that the endocrine activities of low-dose uranium could disrupt steroidogenesis through the hypothalamic-pituitary-testicular axis. Further investigation should be so useful in subsequent generations to improve risk assessment of uranium exposure. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Takeda, Akira; Tsukada, Hirofumi; Takaku, Yuichi; Akata, Naofumi; Hisamatsu, Shun'ichi
2008-06-01
For a better understanding of the soil-to-plant transfer of radionuclides, their behavior in the soil solution should be elucidated, especially at the interface between plant roots and soil particles, where conditions differ greatly from the bulk soil because of plant activity. This study determined the concentration of stable Cs and Sr, and U in the soil solution, under plant growing conditions. The leafy vegetable komatsuna (Brassica rapa L.) was cultivated for 26 days in pots, where the rhizosphere soil was separated from the non-rhizosphere soil by a nylon net screen. The concentrations of Cs and Sr in the rhizosphere soil solution decreased with time, and were controlled by K+NH(4)(+) and Ca, respectively. On the other hand, the concentration of U in the rhizosphere soil solution increased with time, and was related to the changes of DOC; however, this relationship was different between the rhizosphere and non-rhizosphere soil.
Smetana, Volodymyr; Steinberg, Simon; Mudring, Anja-Verena
2016-12-27
Gold intermetallics are known for their unusual structures and bonding patterns. Two new compounds have been discovered in the cation-poor part of the Cs–Au–Ga system. We obtained both compounds directly by heating the elements at elevated temperatures. Structure determinations based on single-crystal X-ray diffraction analyses revealed two structurally and compositionally related formations: CsAu 1.4Ga 2.8 (I) and CsAu 2Ga 2.6 (II) crystallize in their own structure types (I: Rmore » $$\\bar{3}$$, a = 11.160(2) Å, c = 21.706(4) Å, Z = 18; II: R$$\\bar{3}$$, a = 11.106(1) Å, Å, c = 77.243(9) Å, Z = 54) and contain hexagonal cationic layers of cesium. Furthermore, this is a unique structural motif, which has never been observed for the other (lighter) alkali metals in combination with Au and post transition elements. The polyanionic part is characterized in contrast by Au/Ga tetrahedral stars, a structural feature that is characteristic for light alkali metal representatives, and disordered sites with mixed Au/Ga occupancies that occur in both structures with a more significant disorder in the polyanionic component of CsAu 2Ga 2.6. Examinations of the electronic band structure for a model approximating the composition of CsAu 1.4Ga 2.8 have been completed using density-functional-theory-based methods and reveal a deep pseudogap at E F. Bonding analysis by evaluating the crystal orbital Hamilton populations show dominant heteroatomic Au–Ga bonds and only a negligible contribution from Cs pairs.« less
Measurements of plutonium, 237Np, and 137Cs in the BCR 482 lichen reference material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavelle, Kevin B.; Miller, Jeffrey L.; Hanson, Susan K.
Select anthropogenic radionuclides were measured in lichen reference material, BCR 482. This material was originally collected in Axalp, Switzerland in 1991 and is composed of the epiphytic lichen Pseudevernia furfuracea. Samples from three separate bottles of BCR 482 were analyzed for uranium, neptunium, and plutonium isotopes by inductively coupled plasma mass spectrometry (ICP-MS) and analyzed for cesium-137 by gamma-ray spectrometry. The isotopic composition of the radionuclides measured in BCR 482 suggests contributions from both global fallout resulting from historical nuclear weapons testing and more volatile materials released following the Chernobyl accident.
Measurements of plutonium, 237Np, and 137Cs in the BCR 482 lichen reference material
Lavelle, Kevin B.; Miller, Jeffrey L.; Hanson, Susan K.; ...
2015-10-01
Select anthropogenic radionuclides were measured in lichen reference material, BCR 482. This material was originally collected in Axalp, Switzerland in 1991 and is composed of the epiphytic lichen Pseudevernia furfuracea. Samples from three separate bottles of BCR 482 were analyzed for uranium, neptunium, and plutonium isotopes by inductively coupled plasma mass spectrometry (ICP-MS) and analyzed for cesium-137 by gamma-ray spectrometry. The isotopic composition of the radionuclides measured in BCR 482 suggests contributions from both global fallout resulting from historical nuclear weapons testing and more volatile materials released following the Chernobyl accident.
LUNA, an underground nuclear astrophysics laboratory: recent results and future perspectives
NASA Astrophysics Data System (ADS)
Corvisiero, P.
2005-05-01
It is known that the chemical elements and their isotopes were created by nuclear fusion reactions in the hot interiors of remote and long-vanished stars over many billions of years. The present picture is that all elements from carbon to uranium have been produced entirely within stars during their fiery lifetimes and explosive deaths. The detailed understanding of the origin of the chemical elements and their isotopes combines astrophysics and nuclear physics, and forms what is called nuclear astrophysics. In turn, nuclear reactions are at the heart of nuclear astrophysics: they influence sensitively the nucleosynthesis of the elements in the earliest stages of the universe and in all the objects formed thereafter, and control the associated energy generation, neutrino luminosity, and evolution of stars. A good knowledge of the rates of these fusion reactions is essential to understanding this broad picture. Some of the most important experimental techniques to measure the corresponding cross sections, based both on direct and indirect methods, will be described in this paper.
NASA Astrophysics Data System (ADS)
Gordon, Michael S.; Humphreys, Roberta M.; Jones, Terry J.
2016-07-01
Recent supernova (SN) and transient surveys have revealed an increasing number of non-terminal stellar eruptions. Though the progenitor class of these eruptions includes the most luminous stars, little is known of the pre-SN mechanics of massive stars in their most evolved state, thus motivating a census of possible progenitors. From surveys of evolved and unstable luminous star populations in nearby galaxies, we select a sample of yellow and red supergiant (RSG) candidates in M31 and M33 for review of their spectral characteristics and spectral energy distributions (SEDs). Since the position of intermediate- and late-type supergiants on the color-magnitude diagram can be heavily contaminated by foreground dwarfs, we employ spectral classification and multi-band photometry from optical and near-infrared surveys to confirm membership. Based on spectroscopic evidence for mass loss and the presence of circumstellar (CS) dust in their SEDs, we find that 30%-40% of the yellow supergiants are likely in a post-RSG state. Comparison with evolutionary tracks shows that these mass-losing, post-RSGs have initial masses between 20 and 40 M ⊙. More than half of the observed RSGs in M31 and M33 are producing dusty CS ejecta. We also identify two new warm hypergiants in M31, J004621.05+421308.06 and J004051.59+403303.00, both of which are likely in a post-RSG state. Based on observations obtained with the Large Binocular Telescope (LBT), an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.
Cloud-cloud collision in the Galactic center 50 km s-1 molecular cloud
NASA Astrophysics Data System (ADS)
Tsuboi, Masato; Miyazaki, Atsushi; Uehara, Kenta
2015-12-01
We performed a search of star-forming sites influenced by external factors, such as SNRs, H II regions, and cloud-cloud collisions (CCCs), to understand the star-forming activity in the Galactic center region using the NRO Galactic Center Survey in SiO v = 0, J = 2-1, H13CO+J = 1-0, and CS J = 1-0 emission lines obtained with the Nobeyama 45 m telescope. We found a half-shell-like feature (HSF) with a high integrated line intensity ratio of ∫TB(SiO v = 0, J = 2-1)dv/∫TB(H13CO+J = 1-0)dv ˜ 6-8 in the 50 km s-1 molecular cloud; the HSF is a most conspicuous molecular cloud in the region and harbors an active star-forming site where several compact H II regions can be seen. The high ratio in the HSF indicates that the cloud contains huge shocked molecular gas. The HSF can be also seen as a half-shell feature in the position-velocity diagram. A hypothesis explaining the chemical and kinetic properties of the HSF is that the feature originates from a CCC. We analyzed the CS J = 1-0 emission line data obtained with the Nobeyama Millimeter Array to reveal the relation between the HSF and the molecular cloud cores in the cloud. We made a cumulative core mass function (CMF) of the molecular cloud cores within the HSF. The CMF in the CCC region is not truncated at least up to ˜2500 M⊙, although the CMF of the non-CCC region reaches the upper limit of ˜1500 M⊙. Most massive molecular cores with Mgas > 750 M⊙ are located only around the ridge of the HSF and adjoin the compact H II region. These may be a sign of massive star formation induced by CCCs in the Galactic center region.
Abe, Yoshinari; Iizawa, Yushin; Terada, Yasuko; Adachi, Kouji; Igarashi, Yasuhito; Nakai, Izumi
2014-09-02
Synchrotron radiation (SR) X-ray microbeam analyses revealed the detailed chemical nature of radioactive aerosol microparticles emitted during the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, resulting in better understanding of what occurred in the plant during the early stages of the accident. Three spherical microparticles (∼2 μm, diameter) containing radioactive Cs were found in aerosol samples collected on March 14th and 15th, 2011, in Tsukuba, 172 km southwest of the FDNPP. SR-μ-X-ray fluorescence analysis detected the following 10 heavy elements in all three particles: Fe, Zn, Rb, Zr, Mo, Sn, Sb, Te, Cs, and Ba. In addition, U was found for the first time in two of the particles, further confirmed by U L-edge X-ray absorption near-edge structure (XANES) spectra, implying that U fuel and its fission products were contained in these particles along with radioactive Cs. These results strongly suggest that the FDNPP was damaged sufficiently to emit U fuel and fission products outside the containment vessel as aerosol particles. SR-μ-XANES spectra of Fe, Zn, Mo, and Sn K-edges for the individual particles revealed that they were present at high oxidation states, i.e., Fe(3+), Zn(2+), Mo(6+), and Sn(4+) in the glass matrix, confirmed by SR-μ-X-ray diffraction analysis. These radioactive materials in a glassy state may remain in the environment longer than those emitted as water-soluble radioactive Cs aerosol particles.
Infrared dust bubble CS51 and its interaction with the surrounding interstellar medium
NASA Astrophysics Data System (ADS)
Das, Swagat R.; Tej, Anandmayee; Vig, Sarita; Liu, Hong-Li; Liu, Tie; Ishwara Chandra, C. H.; Ghosh, Swarna K.
2017-12-01
A multiwavelength investigation of the southern infrared dust bubble CS51 is presented in this paper. We probe the associated ionized, cold dust, molecular and stellar components. Radio continuum emission mapped at 610 and 1300 MHz, using the Giant Metrewave Radio Telescope, India, reveals the presence of three compact emission components (A, B, and C) apart from large-scale diffuse emission within the bubble interior. Radio spectral index map shows the co-existence of thermal and non-thermal emission components. Modified blackbody fits to the thermal dust emission using Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver data is performed to generate dust temperature and column density maps. We identify five dust clumps associated with CS51 with masses and radius in the range 810-4600 M⊙ and 1.0-1.9 pc, respectively. We further construct the column density probability distribution functions of the surrounding cold dust which display the impact of ionization feedback from high-mass stars. The estimated dynamical and fragmentation time-scales indicate the possibility of collect and collapse mechanism in play at the bubble border. Molecular line emission from the Millimeter Astronomy Legacy Team 90 GHz survey is used to understand the nature of two clumps which show signatures of expansion of CS51.
Effects of dispersible MoS2 nanosheets and Nano-silver coexistence on the metabolome of yeast.
Yang, Qi; Zhang, Lei; Ben, Ailing; Wu, Na; Yi, Yanliang; Jiang, Ling; Huang, He; Yu, Yadong
2018-05-01
As a new rising star in the post-graphene two-dimensional materials (2DMs), molybdenum disulfide (MoS 2 ) attracts increasing attentions and is widely applied. However, the chemical and toxicological interaction between MoS 2 and other co-contaminants is still poorly understood. Nano-silver (N-Ag) is the most commonly used nanomaterial in commercial products and distributed widely in the environment. Herein, we investigated the effects of chitosan functionalized MoS 2 (CS-MoS 2 ) nanosheets, a water-dispersible form of MoS 2 , on the microbial toxicity of N-Ag. We found that the incorporation of CS-MoS 2 nanosheets attenuated the oxidative stress induced by N-Ag on yeast cells, while caused more membrane stress. In addition, the inhibition of N-Ag on the metabolic activities of yeast cells could be attenuated by CS-MoS 2 nanosheets as well. The coexistence of N-Ag and CS-MoS 2 nanosheets mainly perturbed the amino acid-related metabolic pathways in yeast cells, and phosphoric acid was a potential nanotoxicity biomarker. We further found that CS-MoS 2 nanosheets dramatically absorbed the Ag ion released from N-Ag, which might be responsible for its attenuation effect on the microbial toxicity of N-Ag. Our findings provide more new insights for the ecotoxicity evaluation of MoS 2 and other 2DMs. Copyright © 2018 Elsevier Ltd. All rights reserved.
SPATIALLY RESOLVED HCN J = 4-3 AND CS J = 7-6 EMISSION FROM THE DISK AROUND HD 142527
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van der Plas, G.; Casassus, S.; Perez, S.
2014-09-10
The disk around HD 142527 attracts a great amount of attention compared to others because of its resolved (sub-)millimeter dust continuum that is concentrated into the shape of a horseshoe toward the north of the star. In this Letter we present spatially resolved ALMA detections of the HCN J = 4-3 and CS J = 7-6 emission lines. These lines give us a deeper view into the disk compared to the (optically thicker) CO isotopes. This is the first detection of CS J = 7-6 coming from a protoplanetary disk. Both emission lines are azimuthally asymmetric and are suppressed under the horseshoe-shapedmore » continuum emission peak. A possible mechanism for explaining the decrease under the horseshoe-shaped continuum is the increased opacity coming from the higher dust concentration at the continuum peak. Lower dust and/or gas temperatures and an optically thick radio-continuum reduce line emission by freezing out and shielding emission from the far side of the disk.« less
Michel, H; Levent, D; Barci, V; Barci-Funel, G; Hurel, C
2008-02-15
A new sequential method for the determination of both natural (U, Th) and anthropogenic (Sr, Cs, Pu, Am) radionuclides has been developed for application to soil and sediment samples. The procedure was optimised using a reference sediment (IAEA-368) and reference soils (IAEA-375 and IAEA-326). Reference materials were first digested using acids (leaching), 'total' acids on hot plate, and acids in microwave in order to compare the different digestion technique. Then, the separation and purification were made by anion exchange resin and selective extraction chromatography: transuranic (TRU) and strontium (SR) resins. Natural and anthropogenic alpha radionuclides were separated by uranium and tetravalent actinide (UTEVA) resin, considering different acid elution medium. Finally, alpha and gamma semiconductor spectrometer and liquid scintillation spectrometer were used to measure radionuclide activities. The results obtained for strontium-90, cesium-137, thorium-232, uranium-238, plutonium-239+240 and americium-241 isotopes by the proposed method for the reference materials provided excellent agreement with the recommended values and good chemical recoveries. Plutonium isotopes in alpha spectrometry planchet deposits could be also analysed by ICPMS.
Ochiai, Asumi; Imoto, Junpei; Suetake, Mizuki; Komiya, Tatsuki; Furuki, Genki; Ikehara, Ryohei; Yamasaki, Shinya; Law, Gareth T W; Ohnuki, Toshihiko; Grambow, Bernd; Ewing, Rodney C; Utsunomiya, Satoshi
2018-03-06
Trace U was released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) during the meltdowns, but the speciation of the released components of the nuclear fuel remains unknown. We report, for the first time, the atomic-scale characteristics of nanofragments of the nuclear fuels that were released from the FDNPP into the environment. Nanofragments of an intrinsic U-phase were discovered to be closely associated with radioactive cesium-rich microparticles (CsMPs) in paddy soils collected ∼4 km from the FDNPP. The nanoscale fuel fragments were either encapsulated by or attached to CsMPs and occurred in two different forms: (i) UO 2+X nanocrystals of ∼70 nm size, which are embedded into magnetite associated with Tc and Mo on the surface and (ii) Isometric (U,Zr)O 2+X nanocrystals of ∼200 nm size, with the U/(U+Zr) molar ratio ranging from 0.14 to 0.91, with intrinsic pores (∼6 nm), indicating the entrapment of vapors or fission-product gases during crystallization. These results document the heterogeneous physical and chemical properties of debris at the nanoscale, which is a mixture of melted fuel and reactor materials, reflecting the complex thermal processes within the FDNPP reactor during meltdown. Still CsMPs are an important medium for the transport of debris fragments into the environment in a respirable form.
Duan, Wuhua; Chen, Jing; Wang, Jianchen; Wang, Shuwei; Feng, Xiaogui; Wang, Xinghai; Li, Shaowei; Xu, Chao
2014-08-15
High level liquid waste (HLLW) produced from the reprocessing of the spent nuclear fuel still contains moderate amounts of uranium, transuranium (TRU) actinides, (90)Sr, (137)Cs, etc., and thus constitutes a permanent hazard to the environment. The partitioning and transmutation (P&T) strategy has increasingly attracted interest for the safe treatment and disposal of HLLW, in which the partitioning of HLLW is one of the critical technical issues. An improved total partitioning process, including a TRPO (tri-alkylphosphine oxide) process for the removal of actinides, a CESE (crown ether strontium extraction) process for the removal of Sr, and a CECE (calixcrown ether cesium extraction) process for the removal of Cs, has been developed to treat Chinese HLLW. A 160-hour hot test of the improved total partitioning process was carried out using 72-stage 10-mm-dia annular centrifugal contactors (ACCs) and genuine HLLW. The hot test results showed that the average DFs of total α activity, Sr and Cs were 3.57 × 10(3), 2.25 × 10(4) and 1.68 × 10(4) after the hot test reached equilibrium, respectively. During the hot test, 72-stage 10-mm-dia ACCs worked stable, continuously with no stage failing or interruption of the operation. Copyright © 2014 Elsevier B.V. All rights reserved.
The Odd Isotope Fractions of Barium in the Strongly r-process-enhanced (r-II) Stars
NASA Astrophysics Data System (ADS)
Wenyuan, Cui; Xiaohua, Jiang; Jianrong, Shi; Gang, Zhao; Bo, Zhang
2018-02-01
We determined the f odd,Ba values, 0.46 ± 0.08, 0.51 ± 0.09, 0.50 ± 0.13, and 0.48 ± 0.12, that correspond to the r-contribution 100% for four r-II stars, CS 29491-069, HE 1219-0312, HE 2327-5642, and HE 2252-4225, respectively. Our results suggest that almost all of the heavy elements (in the range from Ba to Pb) in r-II stars have a common origin, that is, from a single r-process (the main r-process). We found that the f odd,Ba has an intrinsic nature, and should keep a constant value of about 0.46 in the main r-process yields, which is responsible for the heavy element enhancement of r-II stars and of our Galaxy chemical enhancement. In addition, except for the abundance ratio [Ba/Eu] the f odd,Ba is also an important indicator, which can be used to study the relative contributions of the r- and s-processes during the chemical evolution history of the Milky Way and the enhancement mechanism in stars with peculiar abundances of heavy elements. Based on observations carried out at the European Southern Observatory, Paranal, Chile (Proposal number 170.D-0010 and 280.D-5011).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yagoubi, S., E-mail: said.yagoubi@cea.fr; Renard, C.; Abraham, F.
2013-04-15
The reaction of triuranyl diphosphate tetrahydrate precursor (UO{sub 2}){sub 3}(PO{sub 4}){sub 2}(H{sub 2}O){sub 4} with a CsI flux at 750 °C yields a yellow single crystals of new compound Cs{sub 3}(UO{sub 2}){sub 2}(PO{sub 4})O{sub 2}. The crystal structure (monoclinic, space group C2/c, a=13.6261 (13) Å, b=8.1081(8) Å, c=12.3983(12) Å, β=114.61(12)°, V=1245.41(20) Å{sup 3} with Z=4) has been solved using direct methods and Fourier difference techniques. A full-matrix least-squares refinement on the basis of F{sup 2} yielded R1=0.028 and wR2=0.071 for 79 parameters and 1352 independent reflections with I≥2σ(I) collected on a BRUKER AXS diffractometer with MoKα radiation and a charge-coupledmore » device detector. The crystal structure is built by two independent uranium atoms in square bipyramidal coordination, connected by two opposite corners to form infinite chains {sup 1}{sub ∞}[UO{sub 5}] and by one phosphorus atom in a tetrahedral environment PO{sub 4}. The two last entities {sup 1}{sub ∞}[UO{sub 5}] and PO{sub 4} are linked by sharing corners to form a three-dimensional structure presenting different types of channels occupied by Cs{sup +} alkaline cations. Their mobility within the tunnels were studied between 280 and 800 °C and compared with other tunneled uranyl minerals. The infrared spectrum shows a good agreement with the values inferred from the single crystal structure analysis of uranyl phosphate compound. - Graphical abstract: Arrhenius plot of the electrical conductivity of tunneled compounds Cs{sub 3}U{sub 2}PO{sub 10} and CsU{sub 2}Nb{sub 2}O{sub 11.5}. Highlights: ► The reaction of (UO{sub 2}){sub 3}(PO{sub 4}){sub 2}(H{sub 2}O){sub 4} in excess of molten CsI leads to single-crystals of new tunneled compound Cs{sub 3}(UO{sub 2}){sub 2}(PO{sub 4})O{sub 2}. ► Ionic conductivity measurements and crystal structure analysis indicate a strong connection of the Cs{sup +} cations to the tunnels. ► A low symmetry in Cs{sub 3}(UO{sub 2}){sub 2}(PO{sub 4})O{sub 2} is the cause of IR activation and splitting of the bands in the IR spectrum.« less
Radioactive deposits in California
Walker, George W.; Lovering, Tom G.
1954-01-01
Reconnaissance examination by Government geologists of many areas, mine properties, and prospects in California during the period between 1948 and 1953 has confirmed the presence of radioactive materials in place at more than 40 localities. Abnormal radioactivity at these localities is due to concentrations of primary and secondary uranium minerals, to radon gas, radium (?), and to thorium minerals. Of the known occurrences only three were thought to contain uranium oxide (uranitite or pitchblende), 4 contained uranium-bearing columbate, tantalate, or titanate minerals, 12 contained secondary uranium minerals, such as autunite, carnotite, and torbernite, one contained radon gas, 7 contained thorium minerals, and, at the remaining 16 localities, the source of the anomalous radiation was not positively determined. The occurrences in which uranium oxide has been tentatively identified include the Rathgeb mine (Calaveras County), the Yerih group of claims (San Bernardino County), and the Rainbow claim (Madera County). Occurrences of secondary uranium minerals are largely confined to the arid desert regions of south-eastern California including deposits in San Bernardino, Kern, Inyo, and Imperial Counties. Uranium-bearing columbate, tantalate, or titanate minerals have been reported from pegmatite and granitic rock in southeastern and eastern California. Thorium minerals have been found in vein deposits in eastern San Bernardino County and from pegmatites and granitic rocks in various parts of southeastern California; placer concentrations of thorium minerals are known from nearly all areas in the State that are underlain, in part, by plutonic crystalline rocks. The primary uranium minerals occur principally as minute accessory crystals in pegmatite or granitic rock, or with base-metal sulfide minerals in veins. Thorium minerals also occur as accessory crystals in pegmatite or granitic rock, in placer deposits derived from such rock, and, at Mountain Pass, in veins containing rare earths. Secondary uranium minerals have been found as fracture coatings and as disseminations in various types of wall rock, although they are largely confined to areas of Tertiary volcanic rocks. Probably the uranium in the uraniferous deposits in California is related genetically to felsic crystalline rocks and felsic volcanic rocks; the present distribution of the secondary uranium minerals has been controlled, in part, by circulating ground waters and probably, in part, by magmatic waters related to the Tertiary volcanic activity. The thorium minerals are genetically related to the intrusion of pegmatite and plutonic crystalline rocks. None of the known deposits of radioactive minerals in California contain marketable reserves of uranium or thorium ore under economic conditions existing in 1952. With a favorable local market small lots of uranium ore may be available in the following places: the Rosamund prospect, the Rafferty and Chilson properties, the Lucky Star claim, and the Yerih group. The commercial production of thorium minerals will be possible, in the near future, only if these minerals can be recovered cheaply as a byproduct either from the mining of rare earths minerals at Mountain Pass or as a byproduct of placer mining for gold.
Goudarzi, Maryam; Weber, Waylon; Mak, Tytus D.; Chung, Juijung; Doyle-Eisele, Melanie; Melo, Dunstana; Brenner, David J.; Guilmette, Raymond A.; Fornace, Albert J.
2014-01-01
Cesium-137 is a fission product of uranium and plutonium in nuclear reactors and is released in large quantities during nuclear explosions or detonation of an improvised device containing this isotope. This environmentally persistent radionuclide undergoes radioactive decay with the emission of beta particles as well as gamma radiation. Exposure to 137Cs at high doses can cause acute radiation sickness and increase risk for cancer and death. The serious health risks associated with 137Cs exposure makes it critical to understand how it affects human metabolism and whether minimally invasive and easily accessible samples such as urine and serum can be used to triage patients in case of a nuclear disaster or a radiologic event. In this study, we have focused on establishing a time-dependent metabolomic profile for urine collected from mice injected with 137CsCl. The samples were collected from control and exposed mice on days 2, 5, 20 and 30 after injection. The samples were then analyzed by ultra-performance liquid chromatography coupled to time-of-flight mass spectrometry (UPLC/TOFMS) and processed by an array of informatics and statistical tools. A total of 1,412 features were identified in ESI+ and ESI− modes from which 200 were determined to contribute significantly to the separation of metabolomic profiles of controls from those of the different treatment time points. The results of this study highlight the ease of use of the UPLC/TOFMS platform in finding urinary biomarkers for 137Cs exposure. Pathway analysis of the statistically significant metabolites suggests perturbations in several amino acid and fatty acid metabolism pathways. The results also indicate that 137Cs exposure causes: similar changes in the urinary excretion levels of taurine and citrate as seen with external-beam gamma radiation; causes no attenuation in the levels of hexanoylglycine and N-acetylspermidine; and has unique effects on the levels of isovalerylglycine and tiglylglycine. PMID:24377719
Guidotti, Laura; Carini, Franca; Rossi, Riccardo; Gatti, Marina; Cenci, Roberto M; Beone, Gian Maria
2015-04-01
This work is part of a wider monitoring project of the agricultural soils in Lombardia, which aims to build a database of topsoil properties and the potentially toxic elements, organic pollutants and gamma emitting radionuclides that the topsoils contain. A total of 156 agricultural soils were sampled according to the LUCAS (Land Use/Cover Area frame statistical Survey) standard procedure. The aim was to provide a baseline to document the conditions present at the time of sampling. The results of the project concerning soil radioactivity are presented here. The aim was to assess the content of (238)U, (232)Th, (137)Cs and (40)K by measuring soil samples by gamma spectrometry. (238)U, (232)Th and (40)K activities range 24-231, 20-70, and 242-1434 Bq kg(-1) respectively. The geographic distribution of (238)U reflects the geophysical framework of the Lombardia region: the soils with high content of uranium are distributed for the most part in the South Alpine belt, where the presence of magmatic rocks is widespread. These soils show an higher activity of (238)U than of (232)Th. The (238)U activities become lower than (232)Th when soils are located in the plain, originating from basic sedimentary rocks. (137)Cs activity ranges 0.4-86.8 kBq m(-2). The lowest activity of (137)Cs is in the plain, whereas the highest is in the North on soils kept as lawn or pasture. The (137)Cs activity of some samples suggests the presence of accumulation processes that lead to (137)Cs enriched soils. This is the first survey of gamma emitting radionuclides in Lombardia that is based on the LUCAS standard sampling. The results from this monitoring campaign are important for the human radiation exposure and provide the zero point, which will be useful for assessing future effects due to external factors such as human activities. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Food safety regulations: what we learned from the Fukushima nuclear accident.
Hamada, Nobuyuki; Ogino, Haruyuki
2012-09-01
On 11 March 2011, the magnitude-9.0 earthquake and a substantial tsunami struck off the northeast coast of Japan. The Fukushima nuclear power plants were inundated and stricken, followed by radionuclide releases outside the crippled reactors. Provisional regulation values for radioactivity in food and drink were set on 17 March and were adopted from the preset index values, except that for radioiodines in water and milk ingested by infants. For radiocesiums, uranium, plutonium and transuranic α emitters, index values were defined in all food and drink not to exceed a committed effective dose of 5 mSv/year. Index values for radioiodines were defined not to exceed a committed equivalent dose to the thyroid of 50 mSv/year, and set in water, milk and some vegetables, but not in other foodstuffs. Index values were calculated as radioactive concentrations of indicator radionuclides ((131)I for radioiodines, (134)Cs and (137)Cs for radiocesiums) by postulating the relative radioactive concentration of coexisting radionuclides (e.g., (132)I, (133)I, (134)I, (135)I and (132)Te for (131)I). Surveys were thence conducted to monitor levels of (131)I, (134)Cs and (137)Cs. Provisional regulation values were exceeded in tap water, raw milk and some vegetables, and restrictions on distribution and consumption began on 21 March. Fish contaminated with radioiodines at levels of concern were then detected, so that the provisional regulation value for radioiodines in seafood adopted from that in vegetables were additionally set on 5 April. Overall, restrictions started within 25 days after the first excess in each food or drink item, and maximum levels were detected in leafy vegetables (54,100 Bq/kg for (131)I, and a total of 82,000 Bq/kg for (134)Cs and (137)Cs). This paper focuses on the logic behind such food safety regulations, and discusses its underlying issues. The outlines of the food monitoring results for 24,685 samples and the enforced restrictions will also be described. Copyright © 2011 Elsevier Ltd. All rights reserved.
Processing liquid organic wastes at the NNL Preston laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coppersthwaite, Duncan; Greenwood, Howard; Docrat, Tahera
2013-07-01
Organic compounds of various kinds have been used in the nuclear industry for numerous duties in uranium chemical, metal and ceramic processing plants. In the course of the various operations undertaken, these organic compounds have become contaminated with uranic material, either accidentally or as an inevitable part of the process. Typically, the chemical/physical form and/or concentration of the uranic content of the organics has prevented disposal. In order to address the issue of contaminated liquid organic wastes, the National Nuclear Laboratory (NNL) has developed a suite of treatments designed to recover uranium and to render the waste suitable for disposal.more » The developed processes are operated at industrial scale via the NNL Preston Laboratory Residue Processing Plant. The Oil Waste Leaching (OWL) Process is a fully industrialised process used for the treatment of contaminated oils with approximately 200 tonnes of uranium contaminated oil being treated to date. The process was originally developed for the treatment of contaminated tributyl phosphate and odourless kerosene which had been adsorbed onto sawdust. However, over the years, the OWL process has been refined for a range of oils including 'water emulsifiable' cutting oils, lubricating oils, hydraulic oils/fluids and 'Fomblin' (fully fluorinated) oils. Chemically, the OWL process has proved capable of treating solvents as well as oils but the highly volatile/flammable nature of many solvents has required additional precautions compared with those required for oil treatment. These additional precautions led to the development of the Solvent Treatment Advanced Rig (STAR), an installation operated under an inert atmosphere. STAR is a small 'module' (100 dm{sup 3} volume) which allows the treatment of both water miscible and immiscible solvents. This paper discusses the challenges associated with the treatment of liquid organic wastes and the process developments which have allowed a wide range of materials to be successfully treated. (authors)« less
Zhu, Minrong; Li, Yanhu; Cao, Xiaosong; Jiang, Bei; Wu, Hongbin; Qin, Jingui; Cao, Yong; Yang, Chuluo
2014-12-01
A series of new star-shaped polymers with a triphenylamine-based iridium(III) dendritic complex as the orange-emitting core and poly(9,9-dihexylfluorene) (PFH) chains as the blue-emitting arms is developed towards white polymer light-emitting diodes (WPLEDs). By fine-tuning the content of the orange phosphor, partial energy transfer and charge trapping from the blue backbone to the orange core is realized to achieve white light emission. Single-layer WPLEDs with the configuration of ITO (indium-tin oxide)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/polymer/CsF/Al exhibit a maximum current efficiency of 1.69 cd A(-1) and CIE coordinates of (0.35, 0.33), which is very close to the pure white-light point of (0.33, 0.33). To the best of our knowledge, this is the first report on star-shaped white-emitting single polymers that simultaneously consist of fluorescent and phosphorescent species. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Study of evaporating the irradiated graphite in equilibrium low-temperature plasma
NASA Astrophysics Data System (ADS)
Bespala, E. V.; Novoselov, I. Yu.; Pavlyuk, A. O.; Kotlyarevskiy, S. G.
2018-01-01
The paper describes a problem of accumulation of irradiated graphite due to operation of uranium-graphite nuclear reactors. The main noncarbon contaminants that contribute to the overall activity of graphite elements are iso-topes 137Cs, 60Co, 90Sr, 36Cl, and 3H. A method was developed for processing of irradiated graphite ensuring the volu-metric decontamination of samples. The calculation results are presented for equilibrium composition of plasma-chemical reactions in systems "irradiated graphite-argon" and "irradiated graphite-helium" for a wide range of tem-peratures. The paper describes a developed mathematical model for the process of purification of a porous graphite surface treated by equilibrium low-temperature plasma. The simulation results are presented for the rate of sublimation of radioactive contaminants as a function of plasma temperature and plasma flow velocity when different plasma-forming gases are used. The extraction coefficient for the contaminant 137Cs from the outer side of graphite pores was calculated. The calculations demonstrated the advantages of using a lighter plasma forming gas, i.e., helium.
Origin of the biologically important elements.
Trimble, V
1997-06-01
The chemical elements most widely distributed in terrestrial living creatures are the ones (apart from inert helium and neon) that are commonest in the Universe--hydrogen, oxygen, carbon, and nitrogen. A chemically different Universe would clearly have different biology, if any. We explore here the nuclear processes in stars, the early Universe, and elsewhere that have produced these common elements, and, while we are at it, also encounter the production of lithium, gold, uranium, and other elements of sociological, if not biological, importance. The relevant processes are, for the most part, well understood. Much less well understood is the overall history of chemical evolution of the Galaxy, from pure hydrogen and helium to the mix of elements we see today. One implication is that we cannot do a very good job of estimating how many stars and which ones might be orbited by habitable planets.
Irradiation performance of AGR-1 high temperature reactor fuel
Demkowicz, Paul A.; Hunn, John D.; Ploger, Scott A.; ...
2015-10-23
The AGR-1 experiment contained 72 low-enriched uranium oxide/uranium carbide TRISO coated particle fuel compacts in six capsules irradiated to burnups of 11.2 to 19.6% FIMA, with zero TRISO coating failures detected during the irradiation. The irradiation performance of the fuel including the extent of fission product release and the evolution of kernel and coating microstructures was evaluated based on detailed examination of the irradiation capsules, the fuel compacts, and individual particles. Fractional release of 110mAg from the fuel compacts was often significant, with capsule-average values ranging from 0.01 to 0.38. Analysis of silver release from individual compacts indicated that itmore » was primarily dependent on fuel temperature history. Europium and strontium were released in small amounts through intact coatings, but were found to be significantly retained in the outer pyrocarbon and compact matrix. The capsule-average fractional release from the compacts was 1 × 10 –4 to 5 × 10 –4 for 154Eu and 8 × 10 –7 to 3 × 10 –5 for 90Sr. The average 134Cs fractional release from compacts was <3 × 10 –6 when all particles maintained intact SiC. An estimated four particles out of 2.98 × 10 5 in the experiment experienced partial cesium release due to SiC failure during the irradiation, driving 134Cs fractional release in two capsules to approximately 10 –5. Identification and characterization of these particles has provided unprecedented insight into the nature and causes of SiC coating failure in high-quality TRISO fuel. In general, changes in coating morphology were found to be dominated by the behavior of the buffer and inner pyrolytic carbon (IPyC), and infrequently observed SiC layer damage was usually related to cracks in the IPyC. Palladium attack of the SiC layer was relatively minor, except for the particles that released cesium during irradiation, where SiC corrosion was found adjacent to IPyC cracks. In conclusion, palladium, silver, and uranium were found in the SiC layer of irradiated particles, and characterization of these elements within the SiC microstructure is the subject of ongoing focused study.« less
Sarma, Debajit; Malliakas, Christos D.; Subrahmanyam, K. S.; Islam, Saiful M.
2016-01-01
The fission of uranium produces radionuclides, 137Cs and 90Sr, which are major constituents of spent nuclear fuel. The half-life of 137Cs and 90Sr is nearly 30 years and thus that makes them harmful to human life and the environment. The selective removal of these radionuclides in the presence of high salt concentrations from industrial nuclear waste is necessary for safe storage. Here we report the synthesis and crystal structure of K2xSn4–xS8–x (x = 0.65–1, KTS-3) a material which exhibits excellent Cs+, Sr2+ and UO22+ ion exchange properties in varying conditions. The compound adopts a layered structure which consists of exchangeable potassium ions sandwiched between infinite layers of octahedral and tetrahedral tin centers. K2xSn4–xS8–x (x = 0.65–1, KTS-3) crystallizes in the monoclinic space group P21/c with cell parameters a = 13.092(3) Å, b = 16.882(2) Å, c = 7.375(1) Å and β = 98.10(1)°. Refinement of the single crystal diffraction data revealed the presence of Sn vacancies in the tetrahedra that are long range ordered. The interlayer potassium ions of KTS-3 can be exchanged for Cs+, Sr2+ and UO22+. KTS-3 exhibits rapid and efficient ion exchange behavior in a broad pH range. The distribution coefficients (Kd) for KTS-3 are high for Cs+ (5.5 × 104), Sr2+ (3.9 × 105) and UO22+ (2.7 × 104) at neutral pH (7.4, 6.9, 5.7 ppm Cs+, Sr2+ and UO22+, respectively; V/m ∼ 1000 mL g–1). KTS-3 exhibits impressive Cs+, Sr2+ and UO22+ ion exchange properties in high salt concentration and over a broad pH range, which coupled with the low cost, environmentally friendly nature and facile synthesis underscores its potential in treating nuclear waste. PMID:29910868
Low energy cross sections and underground laboratories
NASA Astrophysics Data System (ADS)
Corvisiero, P.; LUNA Collaboration
2005-04-01
It is known that the chemical elements and their isotopes were created by nuclear fusion reactions in the hot interiors of remote and long-vanished stars over many billions of years [C. Rolfs, W.S. Rodney, Cauldrons in the cosmos, University of Ghicago Press, Chicago (1988)]. The present picture is that all elements from carbon to uranium have been produced entirely within stars during their fiery lifetimes and explosive deaths. The detailed understanding of the origin of the chemical elements and their isotopes combines astrophysics and nuclear physics, and forms what is called nuclear astrophysics. In turn, nuclear reactions are at the heart of nuclear astrophysics: they influence sensitively the nucleosynthesis of the elements in the earliest stages of the universe and in all the objects formed thereafter, and control the associated energy generation, neutrino luminosity, and evolution of stars. A good knowledge of the rates of these fusion reactions is essential to understanding this broad picture. Some of the most important experimental techniques to measure the corresponding cross sections, based both on direct and indirect methods, will be described in this paper.
Molecular Gas in Starburts: Understanding Mergers using High Density Gas Tracers
NASA Astrophysics Data System (ADS)
Manohar, Swarnima; Scoville, N.; Walter, F.; Sheth, K.
2014-01-01
NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging allows multilevel excitation analysis of HCN, HCO+ and CS transitions which will constrain the properties of the gas as a function of position and velocity (across line profiles). We are doing an extensive multilevel excitation analysis of the merger as a function of radius which enables in depth understanding of the gas dynamics and gas properties such as temperature and density. This in turn probes the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will assemble a more integrated picture of the merger process. We are probing the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present preliminary observations of Arp 220 and NGC 6240 from ALMA and CARMA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsouris, Costas; Mayes, Richard T.; Janke, Christopher James
The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater.more » The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous-flow natural seawater at the Pacific Northwest National Laboratory (PNNL). Fourier Transform Infrared (FTIR) spectroscopy, Nuclear Magnetic Resonance (NMR) spectroscopy, Scanning Electron Microscopy (SEM), and elemental analysis were used to characterize the adsorbent at different stages of adsorbent preparation and treatment. The study can be divided into two parts: (A) investigation of optimal parameters for KOH adsorbent conditioning and (B) investigation of other possible agents for alkali conditioning, including cost analysis on the basis of uranium production. In the first part of the study, tests with simulated seawater containing 8 ppm uranium showed that the uranium adsorption capacity increased with an increase in the KOH concentration and conditioning time and temperature at each of the KOH concentrations used. FTIR and solid state NMR studies indicated that KOH conditioning converts the amidoxime functional groups into more hydrophilic carboxylate. The longer the KOH conditioning time, up to three hours, the higher was the loading capacity from the simulated seawater solution which is composed of only uranyl, sodium, chloride, and carbonate ions. Marine testing with natural seawater, on the other hand, showed that the uranium adsorption capacity of the adsorbent increased with KOH conditioning temperature, and gradually decreased with increasing KOH conditioning time from one hour to three hours at 80 C. This behavior is due to the conversion of amidoxime to carboxylate. The carboxylate groups are needed to increase the hydrophilicity of the adsorbent; however, conversion of a significant amount of amidoxime to carboxylate leads to loss in selectivity toward uranyl ions. Thus, there is an optimum KOH conditioning time for each temperature at which an optimum ratio between amidoxime and carboxylate is reached. For the case of base conditioning with 0.44 M KOH at 80 C, the optimal conditioning time is 1 hour, with respect to the highest uranium loading capacity from natural seawater. Uptake of other metal ions such as V, Fe, and Cu follows the same trend as that of uranium. Also, the uptake of Ca, Mg, and Zn ions increased with increasing KOH conditioning time, probably due to formation of more carboxylates, which leads to conversion of uranium-selective binding sites to less selective sites. In the second part of the study, inorganic based reagents such as sodium hydroxide (NaOH), sodium carbonate (Na 2CO 3), cesium hydroxide (CsOH), as well as organic based reagents such as ammonium hydroxide (AOH), tetramethylammonium hydroxide (TMAOH), tetraethylammonium hydroxide (TEAOH), triethylmethylammonium hydroxide (TEMAOH), tetrapropylammonium hydroxide (TPAOH) and tetrabutylammonium hydroxide (TBAOH), in addition to KOH, were used for alkaline conditioning. NaOH has emerged as a better reagent for alkaline conditioning of amidoxime-based adsorbent because of higher uranium uptake capacity, higher uranium uptake selectivity ...« less
Detrending Algorithms in Large Time Series: Application to TFRM-PSES Data
NASA Astrophysics Data System (ADS)
del Ser, D.; Fors, O.; Núñez, J.; Voss, H.; Rosich, A.; Kouprianov, V.
2015-07-01
Certain instrumental effects and data reduction anomalies introduce systematic errors in photometric time series. Detrending algorithms such as the Trend Filtering Algorithm (TFA; Kovács et al. 2004) have played a key role in minimizing the effects caused by these systematics. Here we present the results obtained after applying the TFA, Savitzky & Golay (1964) detrending algorithms, and the Box Least Square phase-folding algorithm (Kovács et al. 2002) to the TFRM-PSES data (Fors et al. 2013). Tests performed on these data show that by applying these two filtering methods together the photometric RMS is on average improved by a factor of 3-4, with better efficiency towards brighter magnitudes, while applying TFA alone yields an improvement of a factor 1-2. As a result of this improvement, we are able to detect and analyze a large number of stars per TFRM-PSES field which present some kind of variability. Also, after porting these algorithms to Python and parallelizing them, we have improved, even for large data samples, the computational performance of the overall detrending+BLS algorithm by a factor of ˜10 with respect to Kovács et al. (2004).
Sakaguchi, Aya; Yamamoto, Masayoshi; Hoshi, Masaharu; Imanaka, Tetsuji; Apsalikov, Kazbek N; Gusev, Boris I
2006-02-01
The present situation of radioactive contamination at the village of Dolon and nearby villages such as Mostik, Cheremushka and Budene was investigated to serve as an aid to resolve dose discrepancy between model calculations and TL measurements made for external gamma-ray dose in air in Dolon. The paper was focused on the reevaluation of the accumulated levels and distribution of long-lived radionuclides 137Cs and Pu isotopes in soil using long core samples up to a depth of 30 and 100 cm. The inventories of 137Cs and 239,240Pu found were in the wide range of 140-10,310 and 140-14,320 Bq/m2, respectively. Most of the Pu in soil was tightly incorporated into various sizes of fused particles. Both 137Cs and 239,240Pu in soil were accumulated in the smaller soil size fraction of <125 microm, and the presence of hot particles, probably due to Pu, was clearly observed by star-like patterns from alpha-tracks. The obtained data will be helpful for evaluating the current and future radiation risks to the people living around there.
Non-Destructive Analysis of Natural Uranium Pellet
NASA Astrophysics Data System (ADS)
Wigley, Samantha; Glennon, Kevin; Kitcher, Evans; Folden, Cody
2017-09-01
As part of ongoing nuclear forensics research, samples of natUO2 have been irradiated in a thermal neutron spectrum at the University of Missouri Research Reactor (MURR) with the goal of simulating a pressurized heavy water reactor. Non-destructive gamma ray analysis has been performed on the samples to assay various nuclides in order to determine the burnup and time since irradiation. The quantity of 137Cs was used to determine the burnup directly, and a maximum likelihood method has been used to estimate both the burnup and the time since irradiation. This poster will discuss the most recent results of these analyses. National Science Foundation (PHY-1659847), Department of Energy (DE-FG02-93ER40773).
Interferometric observations of M42 at 1. 3 cm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohashi, N.; Mizuno, A.; Tatematsu, K.
1989-02-01
New interferometric observations of the central 4.5 deg of M42 have been made at 1.3 cm with the NRO Millimeter-Wave Array. Distribution of the radio source consists of two known components. One is centered on the Trapezium stars, and the other corresponds to the bright bar. The present map is compared with the distribution of the CS molecular gas (Hayashi et al., 1989), and it is found that the boundary of the ionized gas is well delineated by the CS ridge. This indicates that the ionized gas is distributed in a cavity of the molecular gas, as suggested by Sugitanimore » et al. (1986). A comparison of the map with a 6-cm radio-continuum map (Johnston et al., 1983) indicates that the 6 cm distribution is more extended than the 1.3 cm distribution, except in the southern part of the bright bar. 9 references.« less
NASA Astrophysics Data System (ADS)
Dewji, S. A.; Lee, D. L.; Croft, S.; Hertel, N. E.; Chapman, J. A.; McElroy, R. D.; Cleveland, S.
2016-07-01
Recent IAEA circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under the revised policy, IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed to develop and validate concepts of nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP). In particular, uranyl nitrate (UO2(NO3)2) solution exiting solvent extraction was identified as a key measurement point (KMP), where gamma-ray spectroscopy was selected as the process monitoring tool. The Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility at Oak Ridge National Laboratory was employed to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in an NUCP. Nondestructive assay techniques using gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely way. This work investigated gamma-ray signatures of uranyl nitrate circulating in the UNCLE facility and evaluated various gamma-ray detector sensitivities to uranyl nitrate. These detector validation activities include assessing detector responses to the uranyl nitrate gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and high-purity germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10-90 g U/L of natural uranyl nitrate are presented. A range of gamma-ray lines is examined, including attenuation for transmission measurement of density and concentration. It was determined that transmission-corrected gamma-ray spectra provide a reliable way to monitor the 235U concentration of uranyl nitrate solution in transfer pipes in NUCPs. Furthermore, existing predictive and analysis methods are adequate to design and realize practical designs. The 137Cs transmission source employed in this work is viable but not optimal for 235U densitometry determination. Validated simulations assessed the viability of 133Ba and 57Co as alternative densitometry sources. All three gamma-ray detectors are viable for monitoring natural uranium feed; although high-purity germanium is easiest to interpret, it is, however, the least attractive as an installation instrument. Overall, for monitoring throughput in a facility such as UNCLE, emulating the uranium concentration and pump speeds of the Springfields conversion facility in the United Kingdom, an uncertainty of less than 0.17% is required in order to detect the diversion of 1 SQ of uranyl nitrate through changes in uranium concentration over an accountancy period of one year with a detection probability of 50%. Although calibrated gamma-ray detection systems are capable of determining the concentration of uranium content in NUCPs, it is only in combination with verifiable operator declarations and supporting data, such as flow rate and enrichment, that safeguards conclusions can be drawn.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Yuri; Watanabe, Yoshimasa; Yamamoto, Satoshi
To study a molecular-cloud-scale chemical composition, we conducted a mapping spectral line survey toward the Galactic molecular cloud W3(OH), which is one of the most active star-forming regions in the Perseus arm. We conducted our survey through the use of the Nobeyama Radio Observatory 45 m telescope, and observed the area of 16′ × 16′, which corresponds to 9.0 pc × 9.0 pc. The observed frequency ranges are 87–91, 96–103, and 108–112 GHz. We prepared the spectrum averaged over the observed area, in which eight molecular species (CCH, HCN, HCO{sup +}, HNC, CS, SO, C{sup 18}O, and {sup 13}CO) aremore » identified. On the other hand, the spectrum of the W3(OH) hot core observed at a 0.17 pc resolution shows the lines of various molecules such as OCS, H{sub 2}CS CH{sub 3}CCH, and CH{sub 3}CN in addition to the above species. In the spatially averaged spectrum, emission of the species concentrated just around the star-forming core, such as CH{sub 3}OH and HC{sub 3}N, is fainter than in the hot core spectrum, whereas emission of the species widely extended over the cloud such as CCH is relatively brighter. We classified the observed area into five subregions according to the integrated intensity of {sup 13}CO, and evaluated the contribution to the averaged spectrum from each subregion. The CCH, HCN, HCO{sup +}, and CS lines can be seen even in the spectrum of the subregion with the lowest {sup 13}CO integrated intensity range (<10 K km s{sup −1}). Thus, the contributions of the spatially extended emission is confirmed to be dominant in the spatially averaged spectrum.« less
On the Distribution of Dust in the ``Born-again'' Planetary Nebula A 30
NASA Astrophysics Data System (ADS)
Kerber, F.; Roth, M.; Rauch, T.; Ageorges, N.; Clayton, G. C.; De Marco, O.; Koller, J.
2009-09-01
The planetary nebula (PN) A30 consists of two nebular shells, one old, spherical, hydrogen-rich PN and a second, younger, H-poor, and dust-rich nebula which is the result of a very late thermal pulse (VLTP), a helium shell flash that occurred long after the central star (CS) had left the asymptotic giant branch (AGB). During the VLTP the CS returned to the AGB and became a ``born-again'' giant for a few years. During this extremely fast episode of stellar evolution a final mass-loss phase created the second, dusty PN a few thousand years ago. Such a VLTP should occur in 20% of all post-AGB stars according to theory but only a handful of ``born-again'' PNe are known, a discrepancy that remains unexplained so far. Moreover, the knots in A30 have been reported to be O-rich in clear disagreement with the C-rich composition predicted for a VLTP. In the case of A30 the ``born-again'' PN is highly filamentary and the individual knots clearly show signs of erosion from the fast wind of the -- yet again -- hot CS, such as ``cometary'' tails. While optical imaging (gas emission) obtained with the HST has provided excellent spatial resolution, near infrared imaging (dust emission) had been very limited in resolution so far. Our new PANIC/Magellan data quite literally shows the other side of the coin and as a consequence, for the first time we are able to shed light on the complex interplay between gas and dust in this PN. A30 forms an evolutionary sequence with V4334 Sgr (10 yrs after the flash) and V605 Aql (100 yrs) and, hence, provides valuable insight into the physics of the still poorly understood ``born-again'' PNe. This paper includes data gathered with the 6.5 meter Magellan Telescopes located at Las Campanas Observatory, Chile.
Dense Gas, Dynamical Equilibrium Pressure, and Star Formation in Nearby Star-forming Galaxies
NASA Astrophysics Data System (ADS)
Gallagher, Molly J.; Leroy, Adam K.; Bigiel, Frank; Cormier, Diane; Jiménez-Donaire, María J.; Ostriker, Eve; Usero, Antonio; Bolatto, Alberto D.; García-Burillo, Santiago; Hughes, Annie; Kepley, Amanda A.; Krumholz, Mark; Meidt, Sharon E.; Meier, David S.; Murphy, Eric J.; Pety, Jérôme; Rosolowsky, Erik; Schinnerer, Eva; Schruba, Andreas; Walter, Fabian
2018-05-01
We use new ALMA observations to investigate the connection between dense gas fraction, star formation rate (SFR), and local environment across the inner region of four local galaxies showing a wide range of molecular gas depletion times. We map HCN (1–0), HCO+ (1–0), CS (2–1), 13CO (1–0), and C18O (1–0) across the inner few kiloparsecs of each target. We combine these data with short-spacing information from the IRAM large program EMPIRE, archival CO maps, tracers of stellar structure and recent star formation, and recent HCN surveys by Bigiel et al. and Usero et al. We test the degree to which changes in the dense gas fraction drive changes in the SFR. {I}HCN}/{I}CO} (tracing the dense gas fraction) correlates strongly with I CO (tracing molecular gas surface density), stellar surface density, and dynamical equilibrium pressure, P DE. Therefore, {I}HCN}/{I}CO} becomes very low and HCN becomes very faint at large galactocentric radii, where ratios as low as {I}HCN}/{I}CO}∼ 0.01 become common. The apparent ability of dense gas to form stars, {{{Σ }}}SFR}/{{{Σ }}}dense} (where Σdense is traced by the HCN intensity and the star formation rate is traced by a combination of Hα and 24 μm emission), also depends on environment. {{{Σ }}}SFR}/{{{Σ }}}dense} decreases in regions of high gas surface density, high stellar surface density, and high P DE. Statistically, these correlations between environment and both {{{Σ }}}SFR}/{{{Σ }}}dense} and {I}HCN}/{I}CO} are stronger than that between apparent dense gas fraction ({I}HCN}/{I}CO}) and the apparent molecular gas star formation efficiency {{{Σ }}}SFR}/{{{Σ }}}mol}. We show that these results are not specific to HCN.
Detection of Dust Condensations in the Orion Bar Photon-dominated Region
NASA Astrophysics Data System (ADS)
Qiu, Keping; Xie, Zeqiang; Zhang, Qizhou
2018-03-01
We report Submillimeter Array dust continuum and molecular spectral line observations toward the Orion Bar photon-dominated region (PDR). The 1.2 mm continuum map reveals, for the first time, a total of nine compact (r < 0.01 pc) dust condensations located within a distance of ∼0.03 pc from the dissociation front of the PDR. Part of the dust condensations are also seen in spectral line emissions of CS (5–4) and H2CS (71,7–61,6), though the CS map also reveals dense gas further away from the dissociation front. We also detect compact emissions in H2CS (60,6–50,5), (62,4–52,3) and C34S, C33S (4–3) toward bright dust condensations. The line ratio of H2CS (60,6–50,5)/(62,4–52,3) suggests a temperature of 73 ± 58 K. A nonthermal velocity dispersion of ∼0.25–0.50 km s‑1 is derived from the high spectral resolution C34S data and indicates a subsonic to transonic turbulence in the condensations. The masses of the condensations are estimated from the dust emission, and range from 0.03 to 0.3 M ⊙, all significantly lower than any critical mass that is required for self-gravity to play a crucial role. Thus the condensations are not gravitationally bound, and could not collapse to form stars. In cooperating with recent high-resolution observations of the compressed surface layers of the molecular cloud in the Bar, we speculate that the condensations are produced as a high-pressure wave induced by the expansion of the H II region compresses and enters the cloud. A velocity gradient along a direction perpendicular to the major axis of the Bar is seen in H2CS (71,7–61,6), and is consistent with the scenario that the molecular gas behind the dissociation front is being compressed.
La Asociación OB Bochum7 combinando datos IR y ópticos
NASA Astrophysics Data System (ADS)
Corti, M. A.; Bosch, G. L.; Niemela, V. S.
We present the results of an analysis of IR data in the region of the galactic OB association Bo7, obtained from the archives of the IRAS satellite mission and the 2MASS survey. Bo7 is located at the end of Perseus spiral arm. Distances of possible members of the Bo7 association were determined calculating the absorption from the E(V-K) colour excess. These members had been previously selected according to their UBV colours and spectra. The distance values obtained with IR excess have a smaller error than those obtained considering the E(B-V) excess. An extended interstellar dust cloud (detected in IRAS maps) is found to be probably associated with the members of Bo7. Two IRAS point sources observed in the region have characteristics of star formation sites. One of these point sources has been observed in CS(2-1) by Bronfman et al. (1996), who determined a value of (LSR) velocity of 44 km/s, close to the velocity of stars in Bo7 (Corti et al. 2003). A group of main sequence O - B0.5 stars appear near the location of the aforementioned IRAS point source, suggesting sequential star formation in the Bo7 region.
Chemical complexity in the winds of the oxygen-rich supergiant star VY Canis Majoris
NASA Astrophysics Data System (ADS)
Ziurys, L. M.; Milam, S. N.; Apponi, A. J.; Woolf, N. J.
2007-06-01
The interstellar medium is enriched primarily by matter ejected from old, evolved stars. The outflows from these stars create spherical envelopes, which foster gas-phase chemistry. The chemical complexity in circumstellar shells was originally thought to be dominated by the elemental carbon to oxygen ratio. Observations have suggested that envelopes with more carbon than oxygen have a significantly greater abundance of molecules than their oxygen-rich analogues. Here we report observations of molecules in the oxygen-rich shell of the red supergiant star VY Canis Majoris (VY CMa). A variety of unexpected chemical compounds have been identified, including NaCl, PN, HNC and HCO+. From the spectral line profiles, the molecules can be distinguished as arising from three distinct kinematic regions: a spherical outflow, a tightly collimated, blue-shifted expansion, and a directed, red-shifted flow. Certain species (SiO, PN and NaCl) exclusively trace the spherical flow, whereas HNC and sulphur-bearing molecules (amongst others) are selectively created in the two expansions, perhaps arising from shock waves. CO, HCN, CS and HCO+ exist in all three components. Despite the oxygen-rich environment, HCN seems to be as abundant as CO. These results suggest that oxygen-rich shells may be as chemically diverse as their carbon counterparts.
Chemical complexity in the winds of the oxygen-rich supergiant star VY Canis Majoris.
Ziurys, L M; Milam, S N; Apponi, A J; Woolf, N J
2007-06-28
The interstellar medium is enriched primarily by matter ejected from old, evolved stars. The outflows from these stars create spherical envelopes, which foster gas-phase chemistry. The chemical complexity in circumstellar shells was originally thought to be dominated by the elemental carbon to oxygen ratio. Observations have suggested that envelopes with more carbon than oxygen have a significantly greater abundance of molecules than their oxygen-rich analogues. Here we report observations of molecules in the oxygen-rich shell of the red supergiant star VY Canis Majoris (VY CMa). A variety of unexpected chemical compounds have been identified, including NaCl, PN, HNC and HCO+. From the spectral line profiles, the molecules can be distinguished as arising from three distinct kinematic regions: a spherical outflow, a tightly collimated, blue-shifted expansion, and a directed, red-shifted flow. Certain species (SiO, PN and NaCl) exclusively trace the spherical flow, whereas HNC and sulphur-bearing molecules (amongst others) are selectively created in the two expansions, perhaps arising from shock waves. CO, HCN, CS and HCO+ exist in all three components. Despite the oxygen-rich environment, HCN seems to be as abundant as CO. These results suggest that oxygen-rich shells may be as chemically diverse as their carbon counterparts.
A novel star-shaped poly(carboxylic acid) for resin-modified glass-ionomer restoratives.
Weng, Y; Howard, L; Xie, D
2014-07-01
We have developed a novel glass-ionomer cement (GIC) system composed of photo-curable star-shaped poly(acrylic acid-co-itaconic acid)s. These polyacids were synthesized via a chain-transfer radical polymerization using a newly synthesized multi-arm chain-transfer agent. The star-shaped polyacids showed significantly lower viscosities in water as compared to the linear polyacids. Due to the lower viscosities, the molecular weight (MW) of the polyacids can be significantly increased for enhancing the mechanical strengths while keeping the ease of mixing and handling. The effects of MW, GM-tethering ratio, P/L ratio, and aging on the compressive properties of the experimental cements were significant. The light-cured experimental cements showed significantly improved mechanical strengths i.e. 49% in yield strength, 41% in modulus, 25% in CS, 20% in DTS, and 36% in FS, higher than commercial Fuji II LC. After aging in water for 1 month, the compressive strength of the novel light-cured experimental cement reached 343 MPa, which was 34% and 42% higher than Fuji II and Fuji II LC, respectively. This one-month aged experimental cement was also 23% higher than itself after one day aging, indicating that aging in water can significantly enhance salt-bridge formation for this novel star-shaped polyacid-comprised GIC.
Kuu, Wei Y; Nail, Steven L; Sacha, Gregory
2009-03-01
The purpose of this study was to perform a rapid determination of vial heat transfer parameters, that is, the contact parameter K(cs) and the separation distance l(v), using the sublimation rate profiles measured by tunable diode laser absorption spectroscopy (TDLAS). In this study, each size of vial was filled with pure water followed by a freeze-drying cycle using a LyoStar II dryer (FTS Systems) with step-changes of the chamber pressure set-point at to 25, 50, 100, 200, 300, and 400 mTorr. K(cs) was independently determined by nonlinear parameter estimation using the sublimation rates measured at the pressure set-point of 25 mTorr. After obtaining K(cs), the l(v) value for each vial size was determined by nonlinear parameter estimation using the pooled sublimation rate profiles obtained at 25 to 400 mTorr. The vial heat transfer coefficient K(v), as a function of the chamber pressure, was readily calculated, using the obtained K(cs) and l(v) values. It is interesting to note the significant difference in K(v) of two similar types of 10 mL Schott tubing vials, primary due to the geometry of the vial-bottom, as demonstrated by the images of the contact areas of the vial-bottom. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salko, Robert K; Sung, Yixing; Kucukboyaci, Vefa
The Virtual Environment for Reactor Applications core simulator (VERA-CS) being developed by the Consortium for the Advanced Simulation of Light Water Reactors (CASL) includes coupled neutronics, thermal-hydraulics, and fuel temperature components with an isotopic depletion capability. The neutronics capability employed is based on MPACT, a three-dimensional (3-D) whole core transport code. The thermal-hydraulics and fuel temperature models are provided by the COBRA-TF (CTF) subchannel code. As part of the CASL development program, the VERA-CS (MPACT/CTF) code system was applied to model and simulate reactor core response with respect to departure from nucleate boiling ratio (DNBR) at the limiting time stepmore » of a postulated pressurized water reactor (PWR) main steamline break (MSLB) event initiated at the hot zero power (HZP), either with offsite power available and the reactor coolant pumps in operation (high-flow case) or without offsite power where the reactor core is cooled through natural circulation (low-flow case). The VERA-CS simulation was based on core boundary conditions from the RETRAN-02 system transient calculations and STAR-CCM+ computational fluid dynamics (CFD) core inlet distribution calculations. The evaluation indicated that the VERA-CS code system is capable of modeling and simulating quasi-steady state reactor core response under the steamline break (SLB) accident condition, the results are insensitive to uncertainties in the inlet flow distributions from the CFD simulations, and the high-flow case is more DNB limiting than the low-flow case.« less
Initial results from safety testing of US AGR-2 irradiation test fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, Robert Noel; Hunn, John D.; Baldwin, Charles A.
Two cylindrical compacts containing tristructural isotropic (TRISO)-coated particles with kernels that contained a mixture of uranium carbide and uranium oxide (UCO) and two compacts with UO 2-kernel TRISO particles have undergone 1600°C safety testing. These compacts were irradiated in the US Advanced Gas Reactor Fuel Development and Qualification Program's second irradiation test (AGR-2). The time-dependent releases of several radioisotopes ( 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr) were monitored while heating the fuel specimens to 1600°C in flowing helium for 300 h. The UCO compacts behaved similarly to previously reported 1600°C-safety-tested UCO compacts from the AGR-1 irradiation. No failedmore » TRISO or failed SiC were detected (based on krypton and cesium release), and cesium release through intact SiC was very low. Release behavior of silver, europium, and strontium appeared to be dominated by inventory originally released through intact coating layers during irradiation but retained in the compact matrix until it was released during safety testing. Both UO 2 compacts exhibited cesium release from multiple particles whose SiC failed during the safety test. Europium and strontium release from these two UO 2 compacts appeared to be dominated by release from the particles with failed SiC. Silver release was characteristically like the release from the UCO compacts in that an initial release of the majority of silver trapped in the matrix occurred during ramping to 1600°C. However, additional silver release was observed later in the safety testing due to the UO 2 TRISO with failed SiC. Failure of the SiC layer in the UO 2 fuel appears to have been dominated by CO corrosion, as opposed to the palladium degradation observed in AGR-1 UCO fuel.« less
Initial results from safety testing of US AGR-2 irradiation test fuel
Morris, Robert Noel; Hunn, John D.; Baldwin, Charles A.; ...
2017-08-18
Two cylindrical compacts containing tristructural isotropic (TRISO)-coated particles with kernels that contained a mixture of uranium carbide and uranium oxide (UCO) and two compacts with UO 2-kernel TRISO particles have undergone 1600°C safety testing. These compacts were irradiated in the US Advanced Gas Reactor Fuel Development and Qualification Program's second irradiation test (AGR-2). The time-dependent releases of several radioisotopes ( 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr) were monitored while heating the fuel specimens to 1600°C in flowing helium for 300 h. The UCO compacts behaved similarly to previously reported 1600°C-safety-tested UCO compacts from the AGR-1 irradiation. No failedmore » TRISO or failed SiC were detected (based on krypton and cesium release), and cesium release through intact SiC was very low. Release behavior of silver, europium, and strontium appeared to be dominated by inventory originally released through intact coating layers during irradiation but retained in the compact matrix until it was released during safety testing. Both UO 2 compacts exhibited cesium release from multiple particles whose SiC failed during the safety test. Europium and strontium release from these two UO 2 compacts appeared to be dominated by release from the particles with failed SiC. Silver release was characteristically like the release from the UCO compacts in that an initial release of the majority of silver trapped in the matrix occurred during ramping to 1600°C. However, additional silver release was observed later in the safety testing due to the UO 2 TRISO with failed SiC. Failure of the SiC layer in the UO 2 fuel appears to have been dominated by CO corrosion, as opposed to the palladium degradation observed in AGR-1 UCO fuel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsujimoto, Takuji; Shigeyama, Toshikazu, E-mail: taku.tsujimoto@nao.ac.jp
Growing interests in neutron star (NS) mergers as the origin of r-process elements have sprouted since the discovery of evidence for the ejection of these elements from a short-duration γ-ray burst. The hypothesis of a NS merger origin is reinforced by a theoretical update of nucleosynthesis in NS mergers successful in yielding r-process nuclides with A > 130. On the other hand, whether the origin of light r-process elements are associated with nucleosynthesis in NS merger events remains unclear. We find a signature of nucleosynthesis in NS mergers from peculiar chemical abundances of stars belonging to the Galactic globular cluster M15.more » This finding combined with the recent nucleosynthesis results implies a potential diversity of nucleosynthesis in NS mergers. Based on these considerations, we are successful in the interpretation of an observed correlation between [light r-process/Eu] and [Eu/Fe] among Galactic halo stars and accordingly narrow down the role of supernova nucleosynthesis in the r-process production site. We conclude that the tight correlation by a large fraction of halo stars is attributable to the fact that core-collapse supernovae produce light r-process elements while heavy r-process elements such as Eu and Ba are produced by NS mergers. On the other hand, stars in the outlier, composed of r-enhanced stars ([Eu/Fe] ≳ +1) such as CS22892-052, were exclusively enriched by matter ejected by a subclass of NS mergers that is inclined to be massive and consist of both light and heavy r-process nuclides.« less
Modelling the activity of 129I in the primary coolant of a CANDU reactor
NASA Astrophysics Data System (ADS)
Lewis, Brent J.; Husain, Aamir
2003-01-01
A mathematical treatment has been developed to describe the activity levels of 129I as a function of time in the primary heat transport system during constant power operation and for a reactor shutdown situation. The model accounts for a release of fission-product iodine from defective fuel rods and tramp uranium contamination on in-core surfaces. The physical transport constants of the model are derived from a coolant activity analysis of the short-lived radioiodine species. An estimate of 3×10 -9 has been determined for the coolant activity ratio of 129I/ 131I in a CANDU Nuclear Generating Station (NGS), which is in reasonable agreement with that observed in the primary coolant and for plant test resin columns from pressurized and boiling water reactor plants. The model has been further applied to a CANDU NGS, by fitting it to the observed short-lived iodine and long-lived cesium data, to yield a coolant activity ratio of ˜2×10 -8 for 129I/ 137Cs. This ratio can be used to estimate the levels of 129I in reactor waste based on a measurement of the activity of 137Cs.
AQUO-OXALATO-SULFATE COMPOUNDS OF URANIUM (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chernyaev, I.I.; Golovnya, V.A.; Shchelokov, R.N.
1960-07-01
The following mixed aquo-acido complex uranyl compounds containing an oxalate and a sulfate group were synthesized for the first time: K/sub 2/STAUO/ sub 2/(C/sub 2/O/sub 4/) (SO/sub 4/ (H/sub 2/O)/sub 2/!. H/sub 2/O, Rb/sub 2/ STAUO/sub 2/(C/sub 2/O/sub 4/)(SO/sub 4/)(H/sub 2/O)/sub 2/!, Cs/sub 2/STAUO/sub 2/(C/sub 2/O/sub 4/)(SO/sub 4/)(H/sub 2/O)/sub 2/)!, and Cs(NH/sub 4/) (UO/sub 2/ (C/sub 2/O/sub 4/) (SO/sub 4/)(H/sub 2/O)/sub 2/!. T he molecular conductivity and pH were determined in dilute solutions, and it was concluded that the decrease in stability of these complexes in aqueous solution is as follows: STAUO/ sub 2/(C/sub 2/O/sub 4/)/sub 2/(H/sub 2/O)/sub 2/!/sup 2-/more » > STAUO/sub 2/(C/su b 2/O/sub 4/)(SO/sub 4)(H/sub 2/O)/sub 2/!/sup 2-/ > STAUO/sub 2/(SO/sub 4/)/sub 2/ (H/sub 2O)/sub 2/!/sup 2-. (TTT)« less
Paterson-Beedle, M; Jeong, B C; Lee, C H; Jee, K Y; Kim, W H; Renshaw, J C; Macaskie, L E
2012-08-01
Aqueous wastes from nuclear fuel reprocessing present special problems of radiotoxicity of the active species. Cells of Serratia sp. were found previously to accumulate high levels of hydrogen uranyl phosphate (HUP) via the activity of a phosphatase enzyme. Uranium is of relatively low radiotoxicity whereas radionuclide fission products such as (90)Sr and (137)Cs are highly radiotoxic. These radionuclides can be co-crystallized, held within the bio-HUP "host" lattice on the bacterial cells and thereby removed from contaminated solution, depending on continued phosphatase activity. Radiostability tests using a commercial (60)Co γ-source showed that while cell viability and activity of purified phosphatase were lost within a few hours on irradiation, whole-cell phosphatase retained 80% of the initial activity, even after loss of cell culturability, which was increased to 100% by the incorporation of mercaptoethanol as an example radioprotectant, beyond an accumulated dose of >1.3 MGy. Using this co-crystallization approach (without mercaptoethanol) (137)Cs(+) and (85)Sr(2+) were removed from a simulated waste selectively against a 33-fold excess of Na(+). Copyright © 2012 Wiley Periodicals, Inc.
Distribution of radionuclides in Dardanelle Reservoir sediments.
Forgy, J R; Epperson, C E; Swindle, D L
1984-02-01
Natural and reactor-discharged gamma-ray emitting radionuclides were measured in Dardanelle Reservoir surface sediments taken near the Arkansas Nuclear One Power Plant site. Samples represented several water depths and particle sizes, at 33 locations, in a field survey conducted in early September 1980. Radionuclide contents of dry sediments ranged as follows: natural radioactivity (40K as well as uranium and thorium decay products) 661-1210 Bq/kg; and reactor discharged radioactivity (137Cs, 134Cs, 60Co,, 58Co, 54Mn), no detectable activity to 237 Bq/kg. In general, radionuclide contents were positively correlated with decreasing sediment particle size. The average external whole-body and skin doses from all measurable reactor-discharged radionuclides were calculated according to the mathematical formula for determining external dose from sediment given by the U.S. Nuclear Regulatory Commission (NRC). Inside the discharge embayment near the reactor discharge canal, the doses were 1.7 X 10(-3) mSv/yr to the whole body and 2.0 X 10(-3) mSv/yr to the skin. Outside this area, the doses were 0.15 X 10(-3) and 0.18 X 10(-3) mSv/yr to the whole body and skin, respectively.
Kelly, Rory P.; Falcone, Marta; Lamsfus, Carlos Alvarez; Scopelliti, Rosario; Maron, Laurent; Meyer, Karsten
2017-01-01
Herein, we report the synthesis and characterisation of the first terminal uranium(v) sulfide and a related UV trithiocarbonate complex supported by sterically demanding tris(tert-butoxy)siloxide ligands. The reaction of the potassium-bound UV imido complex, [U(NAd){OSi(OtBu)3}4K] (4), with CS2 led to the isolation of perthiodicarbonate [K(18c6)]2[C2S6] (6), with concomitant formation of the UIV complex, [U{OSi(OtBu)3}4], and S 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 1111111111111111111111111111111111 1111111111111111111111111111111111 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 0000000000000000000000000000000000 CNAd. In contrast, the reaction of the UV imido complex, [K(2.2.2-cryptand)][U(NAd){OSi(OtBu)3}4] (5), with one or two equivalents of CS2 afforded the trithiocarbonate complex, [K(2.2.2-cryptand)][U(CS3){OSi(OtBu)3}4] (7), which was isolated in 57% yield, with concomitant elimination of the admantyl thiocyanate product, SCNAd. Complex 7 is likely formed by fast nucleophilic addition of a UV terminal sulfide intermediate, resulting from the slow metathesis reaction of the imido complex with CS2, to a second CS2 molecule. The addition of a solution of H2S in thf (1.3 eq.) to 4 afforded the first isolable UV terminal sulfide complex, [K(2.2.2-cryptand)][US{OSi(OtBu)3}4] (8), in 41% yield. Based on DFT calculations, triple-bond character with a strong covalent interaction is suggested for the U–S bond in complex 7. PMID:28970911
Outflow and Infall in Star-forming Region L1221
NASA Astrophysics Data System (ADS)
Lee, Chin-Fei; Ho, Paul T. P.
2005-10-01
We have mapped the 3.3 mm continuum, CO, HCO+, N2H+, and CS emission around a nearby Class I source, IRAS 22266+6845, in the L1221 cometary dark cloud. L1221 is a complicated star-forming region. It hosts three infrared sources: a close binary consisting of an east source and a west source around the IRAS source position and a southeast source ~45" to the southeast (T. Bourke 2004, private communication). The east source is identified as the IRAS source. Continuum emission is seen around the east and southeast sources, probably tracing the dust around them. No continuum emission is seen toward the west source, probably indicating that there is not much dust there. An east-west molecular outflow is seen in CO, HCO+, and CS originated from around the binary. It is bipolar with an east lobe and a west lobe, both appearing as a wide-opening outflow shell originated from around the binary. It is likely powered by the east source, which shows a southeast extension along the outflow axis in the K' image. A ringlike envelope is seen in N2H+ around the binary surrounding the outflow waist. It is tilted with the major axis perpendicular to the outflow axis. The kinematics is well reproduced by a thin-disk model with both infall and rotation, and a column density peak in a ring. The ringlike envelope is not rotationally supported, as the rotation velocity is smaller than the infall velocity.
Molecular Gas in Local Mergers: Understanding Mergers using High Density Gas Tracers
NASA Astrophysics Data System (ADS)
Manohar, Swarnima; Scoville, N.; Sheth, K.
2013-01-01
NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging will allow multilevel excitation analysis of HCN, HCO+ and CS transitions which will be used to constrain the properties of the gas as a function of position and velocity (across line profiles). We aim to do an extensive multilevel excitation analysis of the merger as a function of radius which will enable in depth understanding of the gas dynamics and gas properties such as temperature and density. This will in turn probe the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will help assemble a more integrated picture of the merger process. We will probe the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present preliminary observations of Arp 220 and NGC 6240 from ALMA and CARMA.
Molecular Gas in Starburts ARP 220 & NGC 6240: Understanding Mergers using High Density Gas Tracers
NASA Astrophysics Data System (ADS)
Manohar, Swarnima; Scoville, Nicholas; Sheth, Kartik
2015-01-01
NGC 6240 and Arp 220 can be considered the founding members of a very active class of objects called Ultraluminous Infrared Galaxies or ULIRGs. They are in different stages of mergers and hence are excellent case studies to enhance our knowledge about the merging process. We have imaged the dense star-forming regions of these galaxies at sub-arcsec resolution with ALMA and CARMA. Multi-band imaging allows multilevel excitation analysis of HCN, HCO+ and CS transitions which will constrain the properties of the gas as a function of position and velocity (across line profiles). We are doing an extensive multilevel excitation analysis of the merger as a function of radius which enables in depth understanding of the gas dynamics and gas properties such as temperature and density. This in turn probes the homogeneity of the gas in the merging system and hence the regions that facilitate high star formation rates. This tandem use of CARMA with ALMA to map these systems at different merger stages will assemble a more integrated picture of the merger process. We are probing the distribution and dynamics of star forming gas and star formation activity in the dense disk structures to enable new theoretical understanding of the physics, dynamics, star formation activity and associated feedback in the most active and rapidly evolving galactic nuclei. Here we present our observations of Arp 220 and NGC 6240 from ALMA and CARMA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minh, Young Chol; Liu, Hauyu Baobab; Galvań-Madrid, Roberto
2016-06-20
Large chemical diversity was found in the gas clumps associated with the massive star cluster-forming G33.92+0.11 region with sub-arcsecond angular resolution (0.″6–0.″8) observations with ALMA. The most prominent gas clumps are associated with the dust emission peaks A1, A2, and A5. The close correlation between CH{sub 3}OH and OCS in the emission distributions strongly suggests that these species share a common origin of hot core grain mantle evaporation. The latest generation of star clusters are forming in the A5 clump, as indicated by multiple SiO outflows and its rich hot core chemistry. We also found a narrow SiO emission associatedmore » with the outflows, which may trace a cooled component of the outflows. Part of the chemical complexity may have resulted from the accreting gas from the ambient clouds, especially in the northern part of A1 and the southern part of A2. The chemical diversity found in this region is believed to mainly result from the different chemical evolutionary timescales of massive star formation. In particular, the abundance ratio between CH{sub 3}OH and CH{sub 3}CN may be a good chemical clock for the early phase of star formation.« less
NASA Astrophysics Data System (ADS)
Ragan, Sarah E.
2009-09-01
Everything we know about other galaxies is based on light from massive stars, yet, in our own Galaxy, it's the formation of massive stars that is the least understood. Star formation studies to date have focused on nearby, low-mass regions, but the bulk of star formation takes place in massive clusters, which takes place primarily in the inner-Galaxy, where the bulk of the molecular gas resides. To learn about the conditions under which massive clusters form, we seek out their precursors, called infrared-dark clouds (IRDCs). We present the results of a high-resolution multi-wavelength observational study of IRDCs, which vastly improves our knowledge of the initial conditions of cluster formation. Beginning with IRDC candidates identified with Midcourse Science Experiment (MSX) survey data, we map 41 IRDCs in the N 2 H + 1 [arrow right] 0, CS 2 [arrow right] 1 and C 18 O 1 [arrow right] 0 molecular transitions using the Five College Radio Astronomy Observatory. We examine the stellar content and absorption structure with Spitzer Space Telescope observations of eleven IRDCs, and we use Very Large Array NH 3 observations to probe the kinematics and chemistry of six IRDCs. Our comprehensive high-resolution study of IRDCs confirms that these objects are cold and dense precursors to massive stars and clusters. For the first time. we quantify IRDC sub-structure on sub-parsec scales and show the kinematic structure of IRDCs is diverse and depends on associated local star- formation activity. Overall, IRDCs exhibit non-thermal dynamics, suggesting that turbulence and systematic motions dominate. IRDC temperatures are between 8 and 16 K and are mostly flat with hints of a rise near the edges due to external heating. This study shows that IRDCs are a unique star-forming environment, one that dominates the star formation in the Milky Way. Using high-resolution observations, we have quantified the structure, star formation, kinematics, and chemistry of infrared-dark clouds. Our study of sub- structure in particular shows that IRDCs are undergoing fragmentation and are the precursors to star clusters, and thus we have placed IRDCs in context with Galactic star formation. The characterization presented here offers new constraints on theories of molecular cloud fragmentation and clustered star formation.
NASA Astrophysics Data System (ADS)
Satou, Yukihiko
2017-04-01
In the early stage of the Fukushima Dai-ichi Nuclear Power Station (F1NPS) accident, number of spot type contamination has been observed in computed autoradiography (Kashimura 2013, Shibata 2013, Satou 2014). It's means presence of radioactive particles, however, insoluble cesium particle was overlooked because cesium, which is dominant radioactive element in the accident, becomes ionized in the environment. Adachi et al. (2013) showed presence of cesium (Cs)-bearing particles within air dust sample collected at Tsukuba, 170 km south from the Fukushima site, in midnight of 14 to morning of 15 March 2011. These particles were micrometer order small particles and Cs was could be detectable as element using an energy dispersive X-ray spectroscopy (EDX). However, other radioactive elements such as Co-60, Ru-103 and uranium, which were dominant element of radioactive particles delivered from Chernobyl accident, could not detected. Abe et al. (2014) employed a synchrotron radiation (SR)-micro(μ)-X-ray analysis to the Cs-bearing particles, and they were concluded that (1) contained elements derived from nuclear fission processes and from nuclear reactor and fuel materials; (2) were amorphous; (3) were highly oxidized; and (4) consisted of glassy spherules formed from a molten mixture of nuclear fuel and reactor material. In addition, Satou et al. (2016) and Yamaguchi et al. (2016) disclosed that silicate is main component of Cs-bearing particles. Satou et al. (2015) discovered two types of radioactive particles from soil samples collected in the vicinity of the F1NPS. These particles were remained in the natural environment more than four years, silicate is main component in common of each group particles. Group A particles were very similar to Cs-bearing particles reported by Adachi et al. except particle shape. On the other hand, group B is big particles found in north area from the F1NPS, and the strongest particles contained 20 kBq of Cs-137 within a particle. Radioactive ratio of Cs-134/Cs-137 of group A and B is completely different. Group B particles shown 0.92 (mean value) of Cs ratio, and specific radioactivity are much lowers than group A particles. In contrast, activity ratio in group A particles shown 1.0 (mean value), and it was consistent with previous studies by Adachi (2013). The location of soil samples, which was containing group B particles, has been contaminated with radioactive materials from Unit 1 with hydrogen explosion on 12 March (Satou et al. 2014, Chino et al. 2016). More than 300 um of diameter particles has been transported from the Unit 1 of F1NPS. This result shown that the insoluble radioactive cesium particles are emitted from not only Units 2 and/or 3 on 15 March but also Unit 1 on 12 March. The insoluble radioactive Cs particles were spread widely, and it is require to evaluation for particulate percentage of contribution in total emitted radioactive cesium, and long term monitoring of these behaviors.
Dewji, Shaheen A.; Lee, Denise L.; Croft, Stephen; ...
2016-03-28
Recent IAEA circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under the revised policy, IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed to develop and validate concepts of nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP).more » In particular, uranyl nitrate (UO 2(NO 3) 2) solution exiting solvent extraction was identified as a key measurement point (KMP), where gamma-ray spectroscopy was selected as the process monitoring tool. The Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility at Oak Ridge National Laboratory was employed to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in an NUCP. Nondestructive assay techniques using gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely way. This work investigated gamma-ray signatures of uranyl nitrate circulating in the UNCLE facility and evaluated various gamma-ray detector sensitivities to uranyl nitrate. These detector validation activities include assessing detector responses to the uranyl nitrate gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and high-purity germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10–90 g U/L of natural uranyl nitrate are presented. A range of gamma-ray lines is examined, including attenuation for transmission measurement of density and concentration. It was determined that transmission-corrected gamma-ray spectra provide a reliable way to monitor the 235U concentration of uranyl nitrate solution in transfer pipes in NUCPs. Furthermore, existing predictive and analysis methods are adequate to design and realize practical designs. The 137Cs transmission source employed in this work is viable but not optimal for 235U densitometry determination. Validated simulations assessed the viability of 133Ba and 57Co as alternative densitometry sources. All three gamma-ray detectors are viable for monitoring natural uranium feed; although high-purity germanium is easiest to interpret, it is, however, the least attractive as an installation instrument. Overall, for monitoring throughput in a facility such as UNCLE, emulating the uranium concentration and pump speeds of the Springfields conversion facility in the United Kingdom, an uncertainty of less than 0.17% is required in order to detect the diversion of 1 SQ of uranyl nitrate through changes in uranium concentration over an accountancy period of one year with a detection probability of 50%. As a result, calibrated gamma-ray detection systems are capable of determining the concentration of uranium content in NUCPs, it is only in combination with verifiable operator declarations and supporting data, such as flow rate and enrichment, that safeguards conclusions can be drawn.« less
CN anomalies in extremely metal-deficient red giants
NASA Technical Reports Server (NTRS)
Anthony-Twarog, Barbara J.; Shawl, Stephen J.; Twarog, Bruce A.
1992-01-01
New photometric and UV spectroscopic data for the metal-deficient red giants CD -38 deg 245 and BD -18 deg 5550 are presented and discussed in light of recently noted photometric anomalies. From the IUE spectra it is aparent that the UV excess found in BD -18 deg 5550 is not the result of a hot companion. The IUE spectra, in conjunction with other observations, point to anomalous nitrogen abundances as the source of the discrepancies between the photometric and spectroscopic abundances for these stars. CD -38 deg 245 appears to be exceptionally nitrogen-rich while BD -18 deg 5550 is anomalously nitrogen-poor with respect to stars of comparable metallicities. While BD -18 deg 5550 appears to be an exception to the rule for its metallicity, the confirmation of a similar photometric pattern for CS 22885-96 may be an indication that the nitrogen overabundance in CD -38 deg 245 is typical for giants of extreme metal-deficiency.
NASA Technical Reports Server (NTRS)
Serabyn, E.; Guesten, R.; Mundy, L.
1993-01-01
The density and temperature structure of the bright-rimmed cometary globule IC 1396E is estimated, and the possibility that recent internal star formation was triggered by the ionization front in its southern surface is assessed. On the basis of NH3 data, gas temperatures in the globule are found to increase outward from the center, from a minimum of 17 K in its tail to a maximum of 26 K on the surface most directly facing the stars ionizing IC 1396. On the basis of a microturbulent radiative transfer code to model the radial dependence of the CS line intensities, and also the intensities of the optically thin 2-1 and 5-4 lines toward the cloud center, a radial density dependence of r exp -1.55 to r exp -1.75 is found.
Detection of HCN and C2H2 in ISO Spectra of Oxygen-Rich AGB Stars
NASA Technical Reports Server (NTRS)
Carbon, Duane F.; Chiar, Jean; Goorvitch, David; Kwak, Dochan (Technical Monitor)
2002-01-01
Cool oxygen-rich AGB stars were not expected to have organic molecules like HCN in either their photospheres or circumstellar envelopes (CSEs). The discovery of HCN and CS microwave emission from the shallowest CSE layers of these stars was a considerable surprise and much theoretical effort has been expended in explaining the presence of such organics. To further explore this problem, we have undertaken a systematic search of oxygen-rich AGB stellar spectra in the Infrared Space Observatory (ISO) data archive. Our purposes are to find evidence regarding critical molecular species that could be of value in choosing among the proposed theoretical models, to locate spectral features which might give clues to conditions deeper in the CSEs, and to lay the groundwork for future SIRTF (Space Infrared Telescope Facility) and SOFIA (Stratospheric Observatory for Infrared Astronomy) observations. Using carefully reduced observations, we have detected weak absorption features arising from HCN and possibly C2H2 in a small number of oxygen-rich AGB stars. The most compelling case is NML Cyg which shows both HCN (14 microns) and CO2 (15 microns). VY CMa, a similar star, shows evidence for HCN, but not CO2. Two S-type stars show evidence for the C-H bending transitions: W Aql at 14 microns (HCN) and both W Aql and S Cas at 13.7 microns (C2H2). Both W Aql and S Cas as well as S Lyr, a SC-type star, show 3 micron absorption which may arise from the C-H stretch of HCN and C2H2. In the case of NML Cyg, we show that the HCN and CO2 spectral features are formed in the CSE at temperatures well above those of the outermost CSE layers and derive approximate column densities. In the case of the S-stars, we discuss the evidence for the organic features and their photospheric origin.
Lenka, Pradyumna; Sahoo, S K; Mohapatra, S; Patra, A C; Dubey, J S; Vidyasagar, D; Tripathi, R M; Puranik, V D
2013-03-01
A natural high background radiation area is located in Chhatrapur, Odisha in the eastern part of India. The inhabitants of this area are exposed to external radiation levels higher than the global average background values, due to the presence of uranium, thorium and its decay products in the monazite sands bearing placer deposits in its beaches. The concentrations of (232)Th, (238)U, (226)Ra, (40)K and (137)Cs were determined in cereals (rice and wheat), pulses and drinking water consumed by the population residing around this region and the corresponding annual ingestion dose was calculated. The annual ingestion doses from cereals, pulses and drinking water varied in the range of 109.4-936.8, 10.2-307.5 and 0.5-2.8 µSv y(-1), respectively. The estimated total annual average effective dose due to the ingestion of these radionuclides in cereals, pulses and drinking water was 530 µSv y(-1). The ingestion dose from cereals was the highest mainly due to a high consumption rate. The highest contribution of dose was found to be from (226)Ra for cereals and drinking water and (40)K was the major dose contributor from the intake of pulses. The contribution of man-made radionuclide (137)Cs to the total dose was found to be minimum. (226)Ra was found to be the largest contributor to ingestion dose from all sources.
VizieR Online Data Catalog: GUViCS. Ultraviolet Source Catalogs (Voyer+, 2014)
NASA Astrophysics Data System (ADS)
Voyer, E. N.; Boselli, A.; Boissier, S.; Heinis, S.; Cortese, L.; Ferrarese, L.; Cote, P.; Cuillandre, J.-C.; Gwyn, S. D. J.; Peng, E. W.; Zhang, H.; Liu, C.
2014-07-01
These catalogs are based on GALEX NUV and FUV source detections in and behind the Virgo Cluster. The detections are split into catalogs of extended sources and point-like sources. The UV Virgo Cluster Extended Source catalog (UV_VES.fit) provides the deepest and most extensive UV photometric data of extended galaxies in Virgo to date. If certain data is not available for a given source then a null value is entered (e.g. -999, -99). UV point-like sources are matched with SDSS, NGVS, and NED and the relevant photometry and further data from these databases/catalogs are provided in this compilation of catalogs. The primary GUViCS UV Virgo Cluster Point-Like Source catalog is UV_VPS.fit. This catalog provides the most useful GALEX pipeline NUV and FUV photometric parameters, and categorizes sources as stars, Virgo members, and background sources, when possible. It also provides identifiers for optical matches in the SDSS and NED, and indicates if a match exists in the NGVS, only if GUViCS-optical matches are one-to-one. NED spectroscopic redshifts are also listed for GUViCS-NED one-to-one matches. If certain data is not available for a given source a null value is entered. Additionally, the catalog is useful for quick access to optical data on one-to-one GUViCS-SDSS matches.The only parameter available in the catalog for UV sources that have multiple SDSS matches is the total number of multiple matches, i.e. SDSSNUMMTCHS. Multiple GUViCS sources matched to the same SDSS source are also flagged given a total number of matches, SDSSNUMMTCHS, of one. All other fields for multiple matches are set to a null value of -99. In order to obtain full optical SDSS data for multiply matched UV sources in both scenarios, the user can cross-correlate the GUViCS ID of the sources of interest with the full GUViCS-SDSS matched catalog in GUV_SDSS.fit. The GUViCS-SDSS matched catalog, GUV_SDSS.fit, provides the most relevant SDSS data on all GUViCS-SDSS matches, including one-to-one matches and multiply matched sources. The catalog gives full SDSS identification information, complete SDSS photometric measurements in multiple aperture types, and complete redshift information (photometric and spectroscopic). It is ideal for large statistical studies of galaxy populations at multiple wavelengths in the background of the Virgo Cluster. The catalog can also be used as a starting point to study and search for previously unknown UV-bright point-like objects within the Virgo Cluster. If certain data is not available for a given source that field is given a null value. (6 data files).
Detection of the Spectrum of the Suspected Hot Subdwarf Companion to the Be Star 59 Cygni
NASA Astrophysics Data System (ADS)
Peters, Geraldine J.; Gies, D. R.; Pewett, T.; Touhami, Y.
2013-01-01
One method through which Be stars can acquire their circumstellar (CS) disks and large angular momentum is through binary mass transfer. We thus expect that some Be stars will have hot subdwarf companions, not visible in the optical region, that are the stripped down remnants of the mass donor. From the analysis of IUE HIRES spectra in the MAST Archive we confirm that the bright Be star 59 Cygni has an O subdwarf companion. About ten years ago Harmanec et al. (2002, A&A, 387, 580) and later Maintz et al. (2005, Pub.Astr.Inst.Cz, 93, 21) presented evidence for a binary system of this nature from optical spectra but the photospheric spectrum of the secondary was not detected. We find a spectral signature of the secondary by cross-correlating the IUE spectra with model spectra and confirm the period of 28.2 days reported by Harmanec et al. and Maintz et al. The individual spectra were extracted using a Doppler tomography algorithm. The hot subdwarf contributes only 4% of the light in the FUV and resembles the sdO star BD+75o325. We find the following primary/secondary parameters: Teff = 21.8 ± 0.7 and 52.1±4.8 kK, M = 6.3-9.4 and 0.62-0.91 Msun , and R = 5.8-7.0 and 0.36-0.43 Rsun . 59 Cygni joins φ Persei and FY Canis Majoris as the third bright Be star with a confirmed sdO companion. We are grateful for support from NASA/ADAP grant NNX10AD60G (GJP), NSF grant AST-1009080 (DRG) and the USC WiSE program (GJP) .
Neutron capture and stellar synthesis of heavy elements.
Gibbons, J H; Macklin, R L
1967-05-26
The neutron buildup processes of heavy-element synthesis in stars have left us a number of tantalizing nuclear clues to the early history of solarsystem material. Considerable illumination of our past history has been achieved through studying the correlations between abundance and neutroncapture cross section. Measurement of these cross sections required the development of new techniques for measuring time of flight of pulsed neutron beams. A clear conclusion is that many of our heavy elements were produced inside stars, which can be thought of as giant fast reactors. Extensions of these capture studies have given a clearer picture of additional. violent processes which produced some heavy elements, particularly thorium and uranium. In addition, the correlations have been used for obtaining an independent measure of the time that has elapsed since the solar-system material was synthesized. Finally, data on capture cross section relative to abundance will enable us to determine rather accurately the solar-system abundances of gaseous, volatile, and highly segregated elements.
A Near-Infrared Surface Compositional Analysis of Blue Straggler Stars in Open Cluster M67
NASA Astrophysics Data System (ADS)
Seifert, Richard; Gosnell, Natalie M.; Sneden, Chris
2017-06-01
Blue straggler stars (BSSs) are stars whose evolutions have been directly impacted by binary system interactions. By obtaining additional mass from a companion, BSSs are able to live prolonged lives on the main sequence. BSSs bring confusions to studies that rely on a standard stellar evolutionary track when modeling stellar populations, since the presence of BSSs can make a population appear younger than it actually is. It is important to have a better understanding of the mechanisms that drive BSS formation so that BSSs may be correctly accounted for in future studies.Blue stagglers in clusters primarily form in one of two ways; either from a close binary system in which one star accretes mass from its companion star or from a hierarchical trinary system in which a close inner binary merges as a result of perturbations from a farther-orbiting third star. In order to investigate the nature of this mass transfer, We obtained IGRINS H-band high resolution spectra of 6 BSSs and 12 red giant stars in open cluster M67. Using a grid of synthetic spectra obtained from the line analysis code MOOG, we identified and fit abundances for absorption lines of iron, silicon, and carbon. Depending on the evolutionary stage of the donor star, the abundance of carbon in the resulting BSS can be affected by mixing during the mass transfer. By analyzing the abundance of carbon in our targets, we find that [Fe/H] ~= 0 and [C/H] ~= 0. We see no evidence of depletion of carbon from RGB-phase mass transfer or enhancement of carbon from AGB-phase mass transfer, implying that the mass transfer occured earlier in the donar star's evolution.Funding for this research comes from the John W. Cox endowment for the Advanced Studies in Astronomy. For support of this work we acknowledge NSF grants AST-1211585 and AST-1616040 to CS. The successful development of the IGRINS spectrograph has resulted from the combined efforts of teams at the University of Texas at Austin and the Korea Astronomy and Space Science Institute; their work is gratefully acknowledged.
Toward Gas Chemistry in Low Metallicity Starburst Galaxies
NASA Astrophysics Data System (ADS)
Meier, David S.; Anderson, Crystal N.; Turner, Jean; Ott, Juergen; Beck, Sara C.
2017-01-01
Dense gas, which is intimately connected with star formation, is key to understanding star formation. Though challenging to study, dense gas in low metallicity starbursts is important given these system's often extreme star formation and their potential implications for high redshift analogs. High spatial resolution (~50 pc) ALMA observations of several key probes of gas chemistry, including HCN(1-0), HCO+(1-0), CS(2-1), CCH(1-0;3/2-1/2) and SiO(2-1), towards the nearby super star-cluster (SSC) forming, sub-solar metallicity galaxy NGC 5253 are discussed. Dense gas is observed to be extended well beyond the current compact starburst, reaching into the apparently infalling molecular streamer. The faintness of HCN, the standard dense gas tracer, is extreme both in an absolute sense relative to high metallicity starbursts of a similar intensity and in a relative sense, with the HCO+/HCN ratio being one of the most elevated observed. UV-irradiated molecular gas, traced by CCH, is also extended over the mapped region, not being strongly correlated with the SSC. Despite the accretion of molecular gas from the halo and the intense burst of star formation, chemical signatures of shocked gas, traced by SiO (and HNCO), are not obvious. By placing NGC 5253 in context with other local starbursts, like 30 Doradus in the Large Magellanic Clouds and the high metallicity proto-typical starburst NGC 253, it is suggested that a combination of gas excitation and abundance changes associated with the sub solar metallicity may explain these anomalous dense gas properties.
Constraints on the yields of the first supernovae in the Universe
NASA Astrophysics Data System (ADS)
Cayrel, Roger
The study of the chemical composition of the most primitive stars of the galactic halo has been made possible with the help of large surveys aimed at finding such stars, and by powerful new instruments, as the Keck telescopes, the Subaru telescope, and the ESO Very Large Telescope. The atmospheres of these primitive stars possess, per hydrogen atom, from 1/1000th to 1/10000th less supernovae-made elements than the Sun, and reflect the yields of the first supernovae. It was once expected that these yields would show a larger scatter than those in the more metal-rich Population II stars, which have been enriched by many more supernovae explosions than the earlier generations. If we leave aside one class of objects, the Carbon-Enhanced Metal-Poor (CEMP) stars, which is the topic of another talk at this conference, a rather well-defined set of abundance ratios emerge for C to Zn amongst the most primitive population, with a scatter that is surprisingly small. The quality of the high-resolution spectroscopic data is such that the observed level of scatter in the measured elemental abundances for these species is no longer limited by accuracy of the observations, nor by other errors inherent to the analysis of the data. By way of contrast, amongst the neutron-capture elements produced by the r-process, at a given metallicity a spread reaching a factor of over 1000 exists for elements such as Ba. The stable portion of the r-process pattern observed in such stars is the second peak (Z = 56 to 72), in which the relative abundances of these elements in very metal-poor stars are almost indistinguishable from their inferred proportions in solar-system material. Recent observations have permitted the determination of the abundances of uranium, tho- rium, and lead produced by the r-process in extremely metal-poor stars, and indicate that lead is mainly produced by radioactive decay of the actinides (as opposed to other direct channels). In addition, the observed U/Th ratio has been shown to be the best available radioactive cosmic chronometer, on timescales of interest to cosmology.
PLANTS AS BIO-MONITORS FOR 137CS, 238PU, 239, 240PU AND 40K AT THE SAVANNAH RIVER SITE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caldwell, E.; Duff, M.; Ferguson, C.
2010-12-16
The nuclear fuel cycle generates a considerable amount of radioactive waste, which often includes nuclear fission products, such as strontium-90 ({sup 90}Sr) and cesium-137 ({sup 137}Cs), and actinides such as uranium (U) and plutonium (Pu). When released into the environment, large quantities of these radionuclides can present considerable problems to man and biota due to their radioactive nature and, in some cases as with the actinides, their chemical toxicity. Radionuclides are expected to decay at a known rate. Yet, research has shown the rate of elimination from an ecosystem to differ from the decay rate due to physical, chemical andmore » biological processes that remove the contaminant or reduce its biological availability. Knowledge regarding the rate by which a contaminant is eliminated from an ecosystem (ecological half-life) is important for evaluating the duration and potential severity of risk. To better understand a contaminants impact on an environment, consideration should be given to plants. As primary producers, they represent an important mode of contamination transfer from sediments and soils into the food chain. Contaminants that are chemically and/or physically sequestered in a media are less likely to be bio-available to plants and therefore an ecosystem.« less
Artificial neural network modelling of uncertainty in gamma-ray spectrometry
NASA Astrophysics Data System (ADS)
Dragović, S.; Onjia, A.; Stanković, S.; Aničin, I.; Bačić, G.
2005-03-01
An artificial neural network (ANN) model for the prediction of measuring uncertainties in gamma-ray spectrometry was developed and optimized. A three-layer feed-forward ANN with back-propagation learning algorithm was used to model uncertainties of measurement of activity levels of eight radionuclides ( 226Ra, 238U, 235U, 40K, 232Th, 134Cs, 137Cs and 7Be) in soil samples as a function of measurement time. It was shown that the neural network provides useful data even from small experimental databases. The performance of the optimized neural network was found to be very good, with correlation coefficients ( R2) between measured and predicted uncertainties ranging from 0.9050 to 0.9915. The correlation coefficients did not significantly deteriorate when the network was tested on samples with greatly different uranium-to-thorium ( 238U/ 232Th) ratios. The differences between measured and predicted uncertainties were not influenced by the absolute values of uncertainties of measured radionuclide activities. Once the ANN is trained, it could be employed in analyzing soil samples regardless of the 238U/ 232Th ratio. It was concluded that a considerable saving in time could be obtained using the trained neural network model for predicting the measurement times needed to attain the desired statistical accuracy.
Investigation of the radiological impact on the coastal environment surrounding a fertilizer plant.
El Samad, O; Aoun, M; Nsouli, B; Khalaf, G; Hamze, M
2014-07-01
This investigation was carried out in order to assess the marine environmental radioactive pollution and the radiological impact caused by a large production plant of phosphate fertilizer, located in the Lebanese coastal zone. Natural radionuclides ((238)U, (235)U, (232)Th, (226)Ra, (210)Po, (210)Pb, (40)K) and anthropogenic (137)Cs were measured by alpha and gamma spectrometry in seawater, sediment, biota and coastal soil samples collected from the area impacted by this industry. The limited environmental monitoring program within 2 km of the plant indicates localized contamination with radionuclides of the uranium decay chain mainly due to the transport, the storage of raw materials and the free release of phosphogypsum waste. Copyright © 2013 Elsevier Ltd. All rights reserved.
The U/Th production ratio and the age of the Milky Way from meteorites and Galactic halo stars
NASA Astrophysics Data System (ADS)
Dauphas, Nicolas
2005-06-01
Some heavy elements (with atomic number A > 69) are produced by the `rapid' (r)-process of nucleosynthesis, where lighter elements are bombarded with a massive flux of neutrons. Although this is characteristic of supernovae and neutron star mergers, uncertainties in where the r-process occurs persist because stellar models are too crude to allow precise quantification of this phenomenon. As a result, there are many uncertainties and assumptions in the models used to calculate the production ratios of actinides (like uranium-238 and thorium-232). Current estimates of the U/Th production ratio range from ~0.4 to 0.7. Here I show that the U/Th abundance ratio in meteorites can be used, in conjunction with observations of low-metallicity stars in the halo of the Milky Way, to determine the U/Th production ratio very precisely . This value can be used in future studies to constrain the possible nuclear mass formulae used in r-process calculations, to help determine the source of Galactic cosmic rays, and to date circumstellar grains. I also estimate the age of the Milky Way ( in a way that is independent of the uncertainties associated with fluctuations in the microwave background or models of stellar evolution.
Abundances in 54 Chemical Elements in Przybylski's Star: HD 101065
NASA Astrophysics Data System (ADS)
Cowley, Charles R.; et al.
We report abundances from carbon through uranium, based on ESO observations: SN >= 200, resolution 80,000. Light elements, through the iron group scatter with respect to the standard abundance distribution (SAD). Carbon and oxygen are mildly depleted, as are iron and nickel, while titanium and cobalt are enhanced. Calcium is depleted, but silicon, sulfur, and scandium are solar. The heavier elements including some 4d and REE's are generally enhanced by 3 to 4 dex. This is not extreme for an Ap star. The truly bizarre appearance of the spectrum is an an ionization phenomena. Some hotter Ap stars have comparable lanthanide abundances, but their second spectra are weaker due to double ionization. Our adopted model has a Te of 6600K, and log(g) = 4.2. Because of the high line opacity, the photospheric pressure is low, and convection is ineffective. Chemical separation has distorted the third r-process peak only slightly. The overall coherence of the heavier elements is remarkable. Additional information is available from http://www.astro.lsa.umich.edu/users/cowley/przyb.html. This abstract is based on a paper submitted to MNRAS, by CRC, and coauthors: T. A. Ryabchikova (Moscow & Vienna), F. Kupka (Vienna), D. Bord (Michigan), G. Mathys (ESO), and W. P. Bidelman (Case-Western Reserve).
Ultra-Rapid UV Spectroscopy of an Interacting Supernova Discovered by K2
NASA Astrophysics Data System (ADS)
Foley, Ryan
2017-08-01
The supernova (SN) community is preparing for an extraordinary experiment. For 5 months, the Kepler telescope (K2) will perform a SN survey. Monitoring 20,000 galaxies with a 30-minute cadence, K2 will detect 50 SNe within hours - perhaps even minutes - of explosion. Such data have proven to be a unique window to the details of the SN explosion, progenitor, and circumstellar (CS) environment. We are devoting significant ground-based telescopic resources to search for and follow these SNe.We propose to take advantage of these emergent SNe and exquisite K2 light curves to study 1 SN in detail with HST. For the first few days after a SN explosion, one can potentially see signs of the SN interacting with its CS environment (e.g., a wind, accretion disk, companion star) that are not present later in its evolution. For instance, the large UV flux from a SN shock breakout will ionize CS gas. As the gas recombines over the following days, it produces excess broad-band flux and reveals the CSM (and thus progenitor) composition through emission lines. While early optical data can be illuminating, its utility is limited. However, UV spectra can greatly enhance our understanding of SN progenitor systems, including progenitor composition, CS environment, and the existence of a binary companion. Our program will observe a single K2 SN that shows signs of early interaction.Because of the ephemeral nature of the interaction signatures, this program requires an ultra-rapid ToO. The combination of K2 photometry, ground-based data, and HST UV spectra will be a completely unique and defining data set. As Kepler will soon be retired, this is our only opportunity for such a program.
Galaxy evolution in clusters since z~1
NASA Astrophysics Data System (ADS)
Aragon-Salamanca, Alfonso
2010-09-01
Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature" vs. "nurture" in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the universe was half its present age. Many of the results presented here have been obtained within the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.
Galaxy Evolution in Clusters Since z ~ 1
NASA Astrophysics Data System (ADS)
Aragón-Salamanca, A.
Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature" vs. "nurture" in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the Universe was half its present age. Many of the results presented here have been obtained within the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.
Performance of AGR-1 high-temperature reactor fuel during post-irradiation heating tests
Morris, Robert N.; Baldwin, Charles A.; Demkowicz, Paul A.; ...
2016-05-18
The fission product retention of irradiated low-enriched uranium oxide/uranium carbide tri-structural isotropic (TRISO) fuel compacts from the Advanced Gas-Cooled Reactor 1 (AGR-1) experiment has been evaluated at temperatures of 1600–1800 °C during post-irradiation safety tests. Fourteen compacts (a total of ~58,000 particles) with a burnup ranging from 13.4% to 19.1% fissions per initial metal atom (FIMA) have been tested using dedicated furnace systems at Idaho National Laboratory and Oak Ridge National Laboratory. The release of fission products 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr was monitored while heating the fuel specimens in flowing helium. The behavior of silver, europium,more » and strontium appears to be dominated by inventory that was originally released through intact SiC coating layers during irradiation, but was retained in the compact at the end of irradiation and subsequently released during the safety tests. However, at a test temperature of 1800 °C, the data suggest that release of these elements through intact coatings may become significant after ~100 h. Cesium was very well retained by intact SiC layers, with a fractional release <5 × 10–6 after 300 h at 1600 °C or 100 h at 1800 °C. However, it was rapidly released from individual particles if the SiC layer failed, and therefore the overall cesium release fraction was dominated by the SiC defect and failure fractions in the fuel compacts. No complete TRISO coating layer failures were observed after 300 h at 1600 or 1700 °C, and 85Kr release was very low during the tests (particles with failed SiC, but intact outer pyrocarbon, retained most of their krypton). Krypton release from TRISO failures was only observed after ~210 h at 1800 °C in one compact. As a result, post-safety-test examination of fuel compacts and particles has focused on identifying specific particles from each compact with notable fission product release and detailed analysis of the coating layers to understand particle behavior.« less
Performance of AGR-1 high-temperature reactor fuel during post-irradiation heating tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, Robert N.; Baldwin, Charles A.; Demkowicz, Paul A.
The fission product retention of irradiated low-enriched uranium oxide/uranium carbide tri-structural isotropic (TRISO) fuel compacts from the Advanced Gas-Cooled Reactor 1 (AGR-1) experiment has been evaluated at temperatures of 1600–1800 °C during post-irradiation safety tests. Fourteen compacts (a total of ~58,000 particles) with a burnup ranging from 13.4% to 19.1% fissions per initial metal atom (FIMA) have been tested using dedicated furnace systems at Idaho National Laboratory and Oak Ridge National Laboratory. The release of fission products 110mAg, 134Cs, 137Cs, 154Eu, 155Eu, 90Sr, and 85Kr was monitored while heating the fuel specimens in flowing helium. The behavior of silver, europium,more » and strontium appears to be dominated by inventory that was originally released through intact SiC coating layers during irradiation, but was retained in the compact at the end of irradiation and subsequently released during the safety tests. However, at a test temperature of 1800 °C, the data suggest that release of these elements through intact coatings may become significant after ~100 h. Cesium was very well retained by intact SiC layers, with a fractional release <5 × 10–6 after 300 h at 1600 °C or 100 h at 1800 °C. However, it was rapidly released from individual particles if the SiC layer failed, and therefore the overall cesium release fraction was dominated by the SiC defect and failure fractions in the fuel compacts. No complete TRISO coating layer failures were observed after 300 h at 1600 or 1700 °C, and 85Kr release was very low during the tests (particles with failed SiC, but intact outer pyrocarbon, retained most of their krypton). Krypton release from TRISO failures was only observed after ~210 h at 1800 °C in one compact. As a result, post-safety-test examination of fuel compacts and particles has focused on identifying specific particles from each compact with notable fission product release and detailed analysis of the coating layers to understand particle behavior.« less
An Optically Stimulated Luminescence Uranium Enrichment Monitor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Steven D.; Tanner, Jennifer E.; Simmons, Kevin L.
The Pacific Northwest National Laboratory (PNNL) has pioneered the use of Optically Stimulated Luminescence (OSL) technology for use in personnel dosimetry and high dose radiation processing dosimetry. PNNL has developed and patented an alumina-based OSL dosimeter that is being used by the majority of medical X-ray and imaging technicians worldwide. PNNL has conceived of using OSL technology to passively measure the level of UF6 enrichment by attaching the prototype OSL monitor to pipes containing UF6 gas within an enrichment facility. The prototype OSL UF6 monitor utilizes a two-element approach with the first element open and unfiltered to measure both themore » low energy and high energy gammas from the UF6, while the second element utilizes a 3-mm thick tungsten filter to eliminate the low energy gammas and pass only the high energy gammas from the UF6. By placing a control monitor in the room away from the UF6 pipes and other ionizing radiation sources, the control readings can be subtracted from the UF6 pipe monitor measurements. The ratio of the shielded to the unshielded net measurements provides a means to estimate the level of uranium enrichment. PNNL has replaced the commercially available MicroStar alumina-based dosimeter elements with a composite of polyethylene plastic, high-Z glass powder, and BaFBr:Eu OSL phosphor powder at various concentrations. The high-Z glass was added in an attempt to raise the average “Z” of the composite dosimeter and increase the response. Additionally, since BaFBr:Eu OSL phosphor is optimally excited and emits light at different wavelengths compared to alumina, the commercially available MicroStar reader was modified for reading BaFBr:Eu in a parallel effort to increase reader sensitivity. PNNL will present the design and performance of our novel OSL uranium enrichment monitor based on a combination of laboratory and UF6 test loop measurements. PNNL will also report on the optimization effort to achieve the highest possible performance from both the OSL enrichment monitor and the new custom OSL reader modified for this application. This project has been supported by the US Department of Energy’s National Nuclear Security Administration’s Office of Dismantlement and Transparency (DOE/NNSA/NA-241).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pereira, Maria E.S.; Soares-Santos, Marcelle; Makler, Martin
2017-08-10
We present the first weak lensing calibration ofmore » $$\\mu_{\\star}$$, a new galaxy cluster mass proxy corresponding to the total stellar mass of red and blue members, in two cluster samples selected from the SDSS Stripe 82 data: 230 redMaPPer clusters at redshift $$0.1\\leq z<0.33$$ and 136 Voronoi Tessellation (VT) clusters at $$0.1 \\leq z < 0.6$$. We use the CS82 shear catalog and stack the clusters in $$\\mu_{\\star}$$ bins to measure a mass-observable power law relation. For redMaPPer clusters we obtain $$M_0 = (1.77 \\pm 0.36) \\times 10^{14}h^{-1} M_{\\odot}$$, $$\\alpha = 1.74 \\pm 0.62$$. For VT clusters, we find $$M_0 = (4.31 \\pm 0.89) \\times 10^{14}h^{-1} M_{\\odot}$$, $$\\alpha = 0.59 \\pm 0.54$$ and $$M_0 = (3.67 \\pm 0.56) \\times 10^{14}h^{-1} M_{\\odot}$$, $$\\alpha = 0.68 \\pm 0.49$$ for a low and a high redshift bin, respectively. Our results are consistent, internally and with the literature, indicating that our method can be applied to any cluster finding algorithm. In particular, we recommend that $$\\mu_{\\star}$$ be used as the mass proxy for VT clusters. Catalogs including $$\\mu_{\\star}$$ measurements will enable its use in studies of galaxy evolution in clusters and cluster cosmology.« less
Unveiling the inner morphology and gas kinematics of NGC 5135 with ALMA
NASA Astrophysics Data System (ADS)
Sabatini, G.; Gruppioni, C.; Massardi, M.; Giannetti, A.; Burkutean, S.; Cimatti, A.; Pozzi, F.; Talia, M.
2018-06-01
The local Seyfert 2 galaxy NGC 5135, thanks to its almost face-on appearance, a bulge overdensity of stars, the presence of a large-scale bar, an active galactic nucleus (AGN) and a supernova remnant, is an excellent target to investigate the dynamics of inflows, outflows, star formation, and AGN feedback. Here, we present a reconstruction of the gas morphology and kinematics in the inner regions of this galaxy, based on the analysis of Atacama Large Millimeter Array (ALMA) archival data. For this purpose, we combine the available ˜100 pc resolution ALMA 1.3 and 0.45 mm observations of dust continuum emission, the spectroscopic maps of two transitions of the CO molecule (tracer of molecular gas mass in star-forming and nuclear regions), and of the CS molecule (tracer of the dense star-forming regions) with the outcome of the spectral energy distribution decomposition. By applying the 3DBAROLO software (3D-Based Analysis of Rotating Objects from Line Observations), we have been able to fit the galaxy rotation curve using a 3D tilted-ring model of the disc. Most of the observed emitting features are described by our kinematic model. We also attempt an interpretation for the emission in a few regions that the axisymmetric model fails to reproduce. The most relevant of these is a region at the northern edge of the inner bar, where multiple velocity components overlap, as a possible consequence of the expansion of a superbubble.
Precise Laboratory Measurement of Line Frequencies Useful to Studies of Star and Planet Formation
NASA Technical Reports Server (NTRS)
Myers, Philip C.; Gottlieb, Carl A.
2005-01-01
In March 2002, we began a program in laboratory spectroscopy to provide accurate molecular line frequencies essential to studies of the motions and abundance in star-forming dense cores and planet-forming circumstellar disks. Summarized here is the progress that has been made in Year 3 of this grant. Work included measurement of 10 successive rotational lines in the ground vibrational state of SiO between 86 and 500 GHz, and two lines near 800 GHz to an accuracy of a few kHz; conducting pilot experiments on molecular ions in collision-free supersonic beams, including HCO+, N2H+, and H2D+; measurement of 22 lines of CN between 113 and 340 GHz; and setting up an experiment that would allow us to refine earlier measurements of the neutral species such as C3H2, CCS, H2CS, and SO by observing the very narrow sub-Doppler (Lamb dip) features in the millimeter-wave spectra of these species.
The Aro 1 mm Survey of the Oxygen-Rich Envelope of Supergiant Star NML Cygnus
NASA Astrophysics Data System (ADS)
Edwards, Jessica L.; Ziurys, L. M.; Woolf, N. J.
2011-06-01
Although a number of molecular line surveys of carbon-rich circumstellar envelopes (CSE) have been performed, only one oxygen-rich CSE, that of VY Canis Majoris (VY CMa), has been studied in depth. The Arizona Radio Observatory (ARO) 1 mm survey of VY CMa showed a very different and interesting chemistry dominated by sulfur- and silicon-bearing compounds as well as a number of more exotic species. A similar survey of the oxygen rich star NML Cygnus (NML Cyg) from 215 to 285 GHz is currently under way using the ARO Sub-millimeter Telescope. Initial observations show that this circumstellar envelope appears to be as chemically rich as that of VY CMa. Molecules including 12CO, 13CO, 12CN, 13CN, HCN, HCO+, CS, SO{_2}, SiO and 30SiO have been observed in NML Cyg. Line profiles of this source also suggest that there may be multiple outflows and that the circumstellar envelope is not spherically symmetric. Current results will be presented.
The SN 393-SNR RX J1713.7-3946 (G347.3-0.5) Connection
NASA Astrophysics Data System (ADS)
Fesen, Robert A.; Kremer, Richard; Patnaude, Daniel; Milisavljevic, Dan
2012-02-01
Although the connection of the Chinese "guest" star of 393 AD with the Galactic supernova remnant RX J1713.7-3946 (G347.3-0.5) made by Wang et al. in 1997 is consistent with the remnant's relatively young properties and the guest star's projected position within the "tail" of the constellation Scorpius, there are difficulties with such an association. The brief Chinese texts concerning the 393 AD guest star make no comment about its apparent brightness, stating only that it disappeared after eight months. However, at the remnant's current estimated 1-1.3 kpc distance and A V ~= 3, its supernova (SN) should have been a visually bright object at maximum light (-3.5 to -5.0 mag) if MV = - 17 to -18 and would have remained visible for over a year. The peak brightness sime0 mag adopted by Wang et al. and others would require the RX J1713.7-3946 supernova to have been a very subluminous event similar to or fainter than SN 2005cs in M51. We also note problems connecting SN 393 with a European record in which the Roman poet Claudian describes a visually brilliant star in the heavens around 393 AD that could be readily seen even in midday. Although several authors have suggested this account may be a reference to the Chinese supernova of 393, Scorpius would not be visible near midday in March when the Chinese first reported the 393 guest star. We review both the Chinese and Roman accounts and calculate probable visual brightnesses for a range of SN subtypes and conclude that neither the Chinese nor the Roman descriptions are easily reconciled with an expected RX J1713.7-3946 supernova brightness and duration.
The resolved stellar populations around 12 Type IIP supernovae
NASA Astrophysics Data System (ADS)
Maund, Justyn R.
2017-08-01
Core-collapse supernovae (SNe) are found in regions associated with recent massive star formation. The stellar population observed around the location of a SN can be used as a probe of the origins of the progenitor star. We apply a Bayesian mixture model to fit isochrones to the massive star population around 12 Type IIP SNe, for which constraints on the progenitors are also available from fortuitous pre-explosion images. Using the high-resolution Hubble Space Telescope Advanced Camera for Surveys and Wide Field Camera 3, we study the massive star population found within 100 pc of each of our target SNe. For most of the SNe in our sample, we find that there are multiple age components in the surrounding stellar populations. In the cases of SNe 2003gd and 2005cs, we find that the progenitor does not come from the youngest stellar population component and, in fact, these relatively low mass progenitors (˜8 M⊙) are found in close proximity to stars as massive as 15 and 50-60 M⊙, respectively. Overall, the field extinction (Galactic and host) derived for these populations is ˜0.3 mag higher than the extinction that was generally applied in previously reported progenitor analyses. We also find evidence, in particular for SN 2004dj, for significant levels of differential extinction. Our analysis for SN 2008bk suggests a significantly lower extinction for the population than the progenitor, but the lifetime of the population and mass determined from pre-explosion images agree. Overall, assuming that the appropriate age component can be suitably identified from the multiple stellar population components present, we find that our Bayesian approach to studying resolved stellar populations can match progenitor masses determined from direct imaging to within ±3 M⊙.
CO near the Pleiades: Encounter of a star cluster with a small molecular cloud
NASA Technical Reports Server (NTRS)
Bally, J.; White, R. E.
1986-01-01
Although there is a large amount of interstellar matter near the Pleiades star cluster, the observed dust and gas is not a remnant of the placental molecular cloud from which the star cluster was formed. Carbon monoxide (CO) associated with the visible reflection nebulae was discovered by Cohen (1975). Its radial velocity differs from that of the cluster by many times the cluster escape velocity, which implies that the cloud-cluster association is the result of a chance encounter. This circumstance and the proximity of the Pleiades to the sun creates an unique opportunity for study of interstellar processes at high spatial resolution. To study the molecular component of the gas, a 1.7 square degree field was mapped with the AT&T Bell Laboratories 7-meter antenna (1.7' beam) on a 1' grid in the J=1.0 C(12)O line, obtaining over 6,000 spectra with 50 kHz resolution. The cloud core was mapped in the J=1-0 line of C(13)O. Further observations include an unsuccessful search for CS (J=2-1) at AT&T BL, and some C(12)O J=2-1 spectra obtained at the Millimeter Wave Observatory of the University of Texas.
Characterizing Protoplanetary Disks in a Young Binary in Orion
NASA Astrophysics Data System (ADS)
Powell, Jonas; Hughes, A. Meredith; Mann, Rita; Flaherty, Kevin; Di Francesco, James; Williams, Jonathan
2018-01-01
Planetary systems form in circumstellar disks of gas and dust surrounding young stars. One open question in the study of planet formation involves understanding how different environments affect the properties of the disks and planets they generate. Understanding the properties of disks in high-mass star forming regions (SFRs) is critical since most stars - probably including our Sun - form in those regions. By comparing the disks in high-mass SFRs to those in better-studied low-mass SFRs we can learn about the role environment plays in planet formation. Here we present 0.5" resolution observations of the young two-disk binary system V2434 Ori in the Orion Nebula from the Atacama Large Millimeter/submillimeter Array (ALMA) in molecular line tracers of CO(3-2), HCN(4-3), HCO+(4-3) and CS(7-6). We model each disk’s mass, radius, temperature structure, and molecular abundances, by creating synthetic images using an LTE ray-tracing code and comparing simulated observations with the ALMA data in the visibility domain. We then compare our results to a previous study of molecular line emission from a single Orion proplyd, modeled using similar methods, and to previously characterized disks in low-mass SFRs to investigate the role of environment in disk chemistry and planetary system formation.
ALMA Observations of a Misaligned Binary Protoplanetary Disk System in Orion
NASA Astrophysics Data System (ADS)
Williams, Jonathan P.; Mann, Rita K.; Di Francesco, James; Andrews, Sean M.; Hughes, A. Meredith; Ricci, Luca; Bally, John; Johnstone, Doug; Matthews, Brenda
2014-12-01
We present Atacama Large Millimeter/Submillimeter Array (ALMA) observations of a wide binary system in Orion, with projected separation 440 AU, in which we detect submillimeter emission from the protoplanetary disks around each star. Both disks appear moderately massive and have strong line emission in CO 3-2, HCO+ 4-3, and HCN 3-2. In addition, CS 7-6 is detected in one disk. The line-to-continuum ratios are similar for the two disks in each of the lines. From the resolved velocity gradients across each disk, we constrain the masses of the central stars, and show consistency with optical-infrared spectroscopy, both indicative of a high mass ratio ~9. The small difference between the systemic velocities indicates that the binary orbital plane is close to face-on. The angle between the projected disk rotation axes is very high, ~72°, showing that the system did not form from a single massive disk or a rigidly rotating cloud core. This finding, which adds to related evidence from disk geometries in other systems, protostellar outflows, stellar rotation, and similar recent ALMA results, demonstrates that turbulence or dynamical interactions act on small scales well below that of molecular cores during the early stages of star formation.
High-resolution Observations of the Massive Protostar in IRAS 18566+0408
NASA Astrophysics Data System (ADS)
Hofner, P.; Cesaroni, R.; Kurtz, S.; Rosero, V.; Anderson, C.; Furuya, R. S.; Araya, E. D.; Molinari, S.
2017-07-01
We report 3 mm continuum, CH3CN(5-4) and 13CS(2-1) line observations with CARMA (Combined Array for Research in Millimeter-wave Astronomy), in conjunction with 6 and 1.3 cm continuum VLA data, and 12 and 25 μm broadband data from the Subaru Telescope toward the massive proto-star IRAS 18566+0408. The VLA data resolve the ionized jet into four components aligned in the E-W direction. Radio components A, C, and D have flat centimeter SEDs indicative of optically thin emission from ionized gas, and component B has a spectral index α = 1.0, and a decreasing size with frequency \\propto {ν }-0.5. Emission from the CARMA 3 mm continuum and from the 13CS(2-1) and CH3CN(5-4) spectral lines is compact (I.e., < 6700 {au}) and peaks near the position of the VLA centimeter source, component B. Analysis of these lines indicates hot and dense molecular gas, which is typical for HMCs. Our Subaru telescope observations detect a single compact source, coincident with radio component B, demonstrating that most of the energy in IRAS 18566+0408 originates from a region of size < 2400 {au}. We also present UKIRT near-infrared archival data for IRAS 18566+0408, which show extended K-band emission along the jet direction. We detect an E-W velocity shift of about 10 km s-1 over the HMC in the CH3CN lines possibly tracing the interface of the ionized jet with the surrounding core gas. Our data demonstrate the presence of an ionized jet at the base of the molecular outflow and support the hypothesis that massive protostars with O-type luminosity form with a mechanism similar to lower mass stars.
NASA Astrophysics Data System (ADS)
Jerkstrand, A.; Ertl, T.; Janka, H.-T.; Müller, E.; Sukhbold, T.; Woosley, S. E.
2018-03-01
A large fraction of core-collapse supernovae (CCSNe), 30-50 per cent, are expected to originate from the low-mass end of progenitors with MZAMS = 8-12 M⊙. However, degeneracy effects make stellar evolution modelling of such stars challenging, and few predictions for their supernova light curves and spectra have been presented. Here, we calculate synthetic nebular spectra of a 9 M⊙ Fe CCSN model exploded with the neutrino mechanism. The model predicts emission lines with FWHM ˜ 1000 km s-1, including signatures from each deep layer in the metal core. We compare this model to the observations of the three subluminous IIP SNe with published nebular spectra; SN 1997D, SN 2005cs and SN 2008bk. The predictions of both line profiles and luminosities are in good agreement with SN 1997D and SN 2008bk. The close fit of a model with no tuning parameters provides strong evidence for an association of these objects with low-mass Fe CCSNe. For SN 2005cs, the interpretation is less clear, as the observational coverage ended before key diagnostic lines from the core had emerged. We perform a parametrized study of the amount of explosively made stable nickel, and find that none of these three SNe show the high 58Ni/56Ni ratio predicted by current models of electron capture SNe (ECSNe) and ECSN-like explosions. Combined with clear detection of lines from O and He shell material, these SNe rather originate from Fe core progenitors. We argue that the outcome of self-consistent explosion simulations of low-mass stars, which gives fits to many key observables, strongly suggests that the class of subluminous Type IIP SNe is the observational counterpart of the lowest mass CCSNe.
Brown Dwarfs: Discovery and Detailed Studies
NASA Technical Reports Server (NTRS)
Kulkarni, Shrinivas R.
2001-01-01
We obtained the optical and IR spectra of Gliese 229B and identified Cs, I, and CO features - as expected in theoretical models. Our optical IR spectrum showed that most of the refractory metals have condensed out of the atmosphere and the presence of Cs, I and CO shows evidence for disequilibrium chemistry. We reported orbital evidence for Gliese 229B. The HST measured optical magnitudes provide additional evidence for the absence of dust in the atmosphere of this cool object. The luminosity of brown dwarfs depend on their masses and ages and in order to interpret the results of the survey we have carried out an extensive Monte Carlo analysis. Our conclusion is that warm brown dwarfs are rare, as companions in the orbital period range beyond approximately 30 - 50 AU. The Palomer survey poses no constraint for brown dwarfs in planetary orbits similar to those of the outer planets. We have just started a program of imaging nearby stars with the newly commissioned AO system at Palomar and Keck and have already found a brown dwarf candidate.
Chemical characterization of gas- and oil-bearing shales by instrumental neutron activation analysis
Frost, J.K.; Koszykowski, R.F.; Klemm, R.C.
1982-01-01
The concentration of As, Ba, Ca, Co, Cr, Cs, Dy, Eu, Fe, Ga, Hf, K, La, Lu, Mn, Mo, Na, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Th, U, Yb, and Zn were determined by instrumental neutron activation analysis in block shale samples of the New Albany Group (Devonian-Mississippian) in the in the Illinois Basin. Uranium content of the samples was as high as 75 ppm and interfered in the determination of samarium, molybdenum, barium and cerium. In the determination of selenium a correction was made for interference from tantalum. U, As, Co, Mo, Ni and Sb as well as Cu, V and pyritic sulphur which were determined by other methods, were found to correlate positively with the organic carbon content of the samples. ?? 1982 Akade??miai Kiado??.
Azimuthal anisotropy in U+U collisions at STAR
Wang, Hui; Sorensen, Paul
2014-10-06
The azimuthal anisotropy of particle production is commonly used in high-energy nuclear collisions to study the early evolution of the expanding system. The prolate shape of uranium nuclei makes it possible to study how the geometry of the colliding nuclei affects final state anisotropies. It also provides a unique opportunity to understand how entropy is produced in heavy ion collisions. In this paper, the two- and four- particle cumulant v 2 (v 2{2} and v 2{4}) from U+U collisions at √ sNN = 193 GeV and Au+Au collisions at √ sNN = 200 GeV for inclusive charged hadrons will bemore » presented. The STAR Zero Degree Calorimeters are used to select very central collisions. Differences were observed between the multiplicity dependence of v 2{2} for most central Au+Au and U+U collisions. The multiplicity dependence of v 2{2} in central collisions were compared to Monte Carlo Glauber model predictions and it was seen that this model cannot explain the present results. (auth)« less
NASA Astrophysics Data System (ADS)
Cummings, Mary Anne; Johnson, Rolland
Acceptable capital and operating costs of high-power proton accelerators suitable for profitable commercial electric-power and process-heat applications have been demonstrated. However, studies have pointed out that even a few hundred trips of an accelerator lasting a few seconds would lead to unacceptable thermal stresses as each trip causes fission to be turned off in solid fuel structures found in conventional reactors. The newest designs based on the GEM*STAR concept take such trips in stride by using molten-salt fuel, where fuel pin fatigue is not an issue. Other aspects of the GEM*STAR concept which address all historical reactor failures include an internal spallation neutron target and high temperature molten salt fuel with continuous purging of volatile radioactive fission products such that the reactor contains less than a critical mass and almost a million times fewer volatile radioactive fission products than conventional reactors. GEM*STAR is a reactor that without redesign will burn spent nuclear fuel, natural uranium, thorium, or surplus weapons material. It will operate without the need for a critical core, fuel enrichment, or reprocessing making it an excellent candidate for export. As a first application, the design for a pilot plant is described for the profitable disposition of surplus weapons-grade plutonium by using process heat to produce green diesel fuel for the Department of Defense (DOD) from natural gas and renewable carbon.
The U/Th production ratio and the age of the Milky Way from meteorites and Galactic halo stars.
Dauphas, Nicolas
2005-06-30
Some heavy elements (with atomic number A > 69) are produced by the 'rapid' (r)-process of nucleosynthesis, where lighter elements are bombarded with a massive flux of neutrons. Although this is characteristic of supernovae and neutron star mergers, uncertainties in where the r-process occurs persist because stellar models are too crude to allow precise quantification of this phenomenon. As a result, there are many uncertainties and assumptions in the models used to calculate the production ratios of actinides (like uranium-238 and thorium-232). Current estimates of the U/Th production ratio range from approximately 0.4 to 0.7. Here I show that the U/Th abundance ratio in meteorites can be used, in conjunction with observations of low-metallicity stars in the halo of the Milky Way, to determine the U/Th production ratio very precisely (0.57(+0.037)(-0.031). This value can be used in future studies to constrain the possible nuclear mass formulae used in r-process calculations, to help determine the source of Galactic cosmic rays, and to date circumstellar grains. I also estimate the age of the Milky Way (14.5(+2.8)(-2.2)Gyr in a way that is independent of the uncertainties associated with fluctuations in the microwave background or models of stellar evolution.
Characteristics of solidified products containing radioactive molten salt waste.
Park, Hwan-Seo; Kim, In-Tae; Cho, Yong-Zun; Eun, Hee-Chul; Kim, Joon-Hyung
2007-11-01
The molten salt waste from a pyroprocess to recover uranium and transuranic elements is one of the problematic radioactive wastes to be solidified into a durable wasteform for its final disposal. By using a novel method, named as the GRSS (gel-route stabilization/solidification) method, a molten salt waste was treated to produce a unique wasteform. A borosilicate glass as a chemical binder dissolves the silicate compounds in the gel products to produce one amorphous phase while most of the phosphates are encapsulated by the vitrified phase. Also, Cs in the gel product is preferentially situated in the silicate phase, and it is vitrified into a glassy phase after a heat treatment. The Sr-containing phase is mainly phosphate compounds and encapsulated by the glassy phase. These phenomena could be identified by the static and dynamic leaching test that revealed a high leach resistance of radionuclides. The leach rates were about 10(-3) - 10(-2) g/m2 x day for Cs and 10(-4) - 10(-3) g/m2 x day for Sr, and the leached fractions of them were predicted to be 0.89% and 0.39% at 900 days, respectively. This paper describes the characteristics of a unique wasteform containing a molten salt waste and provides important information on a newly developed immobilization technology for salt wastes, the GRSS method.
Observation of the Earth liquid core resonance by extensometers
NASA Astrophysics Data System (ADS)
Bán, Dóra; Mentes, Gyula
2016-04-01
The axis of the fluid outer core of the Earth and the rotation axis of the mantle do not coincide therefore restoring forces are set up at the core-mantle boundary which try to realign the two axes causing a resonance effect. In celestial reference system it is called the "Free Core Nutation" (FCN), which can be characterized by a period of 432 days while in the Earth reference system it is called the "Nearly Diurnal Free Wobble" (NDFW). The frequency of this phenomenon is near to the diurnal tidal frequencies, especially to P1 and K1 waves. Due to its resonance effect this phenomenon can be detected also by quartz tube extensometers suitable for Earth tides recording. In this study data series measured in several extensometric stations were used to reveal the presence of the FCN resonance. In the Pannonian Basin there are five observatories where extensometric measurements were carried out in different lengths of time. Four stations in Hungary: Sopronbánfalva Geodynamical Observatory (2000-2014), Budapest Mátyáshegy Gravity and Geodynamic Observatory (2005-2012), Pécs uranium mine (1991-1999), Bakonya, near to Pécs (2004-2005) and in Slovakia: Vyhne Earth Tide Observatory (2001-2013). Identical instrumentation in different observatories provides the opportunity to compare measurements with various topography, geology and environmental parameters. The results are also compared to values inferred from extensometric measurements in other stations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bürger, Stefan; Riciputi, Lee R; Bostick, Debra A
A ThermoFisher 'Triton' multi-collector thermal ionization mass spectrometer (MC-TIMS) was evaluated for trace and ultra-trace level isotoperatioanalysis of actinides (uranium, plutonium, and americium), fission products and geolocators (strontium, cesium, and neodymium). Total efficiencies (atoms loaded to ions detected) of up to 0.5-2% for U, Pu, and Am, and 1-30% for Sr, Cs, and Nd can be reported employing resin bead load techniques onto flat ribbon Re filaments or resin beads loaded into a millimeter-sized cavity drilled into a Re rod. This results in detection limits of <0.1 fg (10{sup 4} atoms to 10{sup 5} atoms) for {sup 239-242+244}Pu, {sup 233+236}U,more » {sup 241-243}Am, {sup 89,90}Sr, and {sup 134,135,137}Cs, and {le} 1 pg for natural Nd isotopes (limited by the chemical processing blank) using a secondary electron multiplier (SEM) or multiple-ion counters (MICs). Relative standard deviations (RSD) as small as 0.1% and abundance sensitivities of 1 x 10{sup 6} or better using a SEM are reported here. Precisions of RSD {approx} 0.01-0.001% using a multi-collector Faraday cup array can be achieved at sub-nanogram concentrations for strontium and neodymium and are suitable to gain crucial geolocation information. The analytical protocols reported herein are of particular value for nuclear forensic and nuclear safeguard applications.« less
Morpho-z: improving photometric redshifts with galaxy morphology
NASA Astrophysics Data System (ADS)
Soo, John Y. H.; Moraes, Bruno; Joachimi, Benjamin; Hartley, William; Lahav, Ofer; Charbonnier, Aldée; Makler, Martín; Pereira, Maria E. S.; Comparat, Johan; Erben, Thomas; Leauthaud, Alexie; Shan, Huanyuan; Van Waerbeke, Ludovic
2018-04-01
We conduct a comprehensive study of the effects of incorporating galaxy morphology information in photometric redshift estimation. Using machine learning methods, we assess the changes in the scatter and outlier fraction of photometric redshifts when galaxy size, ellipticity, Sérsic index, and surface brightness are included in training on galaxy samples from the SDSS and the CFHT Stripe-82 Survey (CS82). We show that by adding galaxy morphological parameters to full ugriz photometry, only mild improvements are obtained, while the gains are substantial in cases where fewer passbands are available. For instance, the combination of grz photometry and morphological parameters almost fully recovers the metrics of 5-band photometric redshifts. We demonstrate that with morphology it is possible to determine useful redshift distribution N(z) of galaxy samples without any colour information. We also find that the inclusion of quasar redshifts and associated object sizes in training improves the quality of photometric redshift catalogues, compensating for the lack of a good star-galaxy separator. We further show that morphological information can mitigate biases and scatter due to bad photometry. As an application, we derive both point estimates and posterior distributions of redshifts for the official CS82 catalogue, training on morphology and SDSS Stripe-82 ugriz bands when available. Our redshifts yield a 68th percentile error of 0.058(1 + z), and a outlier fraction of 5.2 per cent. We further include a deep extension trained on morphology and single i-band CS82 photometry.
A near-infrared surface compositional analysis of blue straggler stars in open cluster M67.
NASA Astrophysics Data System (ADS)
Seifert, Richard; Gosnell, Natalie M.; Sneden, Chris
2017-01-01
Blue straggler stars (BSSs) are stars whose evolutions have been directly impacted by binary system interactions. By obtaining additional mass from a companion, BSSs are able to live prolonged lives on the main sequence. BSSs bring confusions to studies that rely on a standard stellar evolutionary track when modeling stellar populations, since the presence of BSSs can make a population appear younger than it actually is. It is important to have a better understanding of the mechanisms that drive BSS formation so that BSSs may be correctly accounted for in future studies.What we know about BSS formation is that they form in one of two ways. Either from a close binary system in which one star accretes mass from its companion star or from a hierarchical trinary system in which a close inner binary merges as a result of perturbations from a farther-orbiting third star. What we don’t know are the relative frequencies of these two formation mechanisms. To investigate this problem, We obtained IGRINS near-IR (H- & K-band) high resolution spectra of 6 BSSs and 12 red giant stars in open cluster M67. Using a grid of synthetic spectra obtained from the line analysis code MOOG, we identified and fit abundances for absorption lines of iron, carbon, nitrogen, and oxygen. The latter three elements can be affected by internal hydrogen fusion, mixing, and binary mass transfer. In the BSS mass accretion mechanism, there should be enhanced abundances of these elements on the surfaces of BSSs. By analyzing the abundances of these elements in our BSS spectra, we determine the formation mechanism for each member of our BSS sample.Funding for this research comes from the John W. Cox endowment for the Advanced Studies in Astronomy. For support of this work we acknowledge NSF grants AST-1211585 and AST-1616040 to CS. The successful development of the IGRINS spectrograph has resulted from the combined efforts of teams at the University of Texas at Austin and the Korea Astronomy and Space Science Institute; their work is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Ando, Ryo; Nakanishi, Kouichiro; Kohno, Kotaro; Izumi, Takuma; Martín, Sergio; Harada, Nanase; Takano, Shuro; Kuno, Nario; Nakai, Naomasa; Sugai, Hajime; Sorai, Kazuo; Tosaki, Tomoka; Matsubayashi, Kazuya; Nakajima, Taku; Nishimura, Yuri; Tamura, Yoichi
2017-11-01
We present an 8 pc × 5 pc resolution view of the central ˜200 pc region of the nearby starburst galaxy NGC 253, based on ALMA Band 7 (λ ≃ 0.85 {mm} or ν ˜ 350 GHz) observations covering 11 GHz. We resolve the nuclear starburst of NGC 253 into eight dusty star-forming clumps, 10 pc in scale, for the first time. These clumps, each of which contains (4-10) × {10}4 {M}⊙ of dust (assuming that the dust temperature is 25 K) and up to 6× {10}2 massive (O5V) stars, appear to be aligned in two parallel ridges, while they have been blended in previous studies. Despite the similarities in sizes and dust masses of these clumps, their line spectra vary drastically from clump to clump, although they are separated by only ˜10 pc. Specifically, one of the clumps, Clump 1, exhibits line-confusion-limited spectra with at least 36 emission lines from 19 molecules (including CH3OH, HNCO, H2CO, CH3CCH, H2CS, and H3O+) and a hydrogen recombination line (H26α), while far fewer kinds of molecular lines are detected in some other clumps where fragile species, such as complex organic molecules and HNCO, completely disappear from their spectra. We demonstrate the existence of hot molecular gas ({T}{rot}({{SO}}2)=90+/- 11 K) in the former clump, which suggests that the hot and chemically rich environments are localized within a 10-pc-scale star-forming clump.
Constraining properties of high-density matter in neutron stars with magneto-elastic oscillations
NASA Astrophysics Data System (ADS)
Gabler, Michael; Cerdá-Durán, Pablo; Stergioulas, Nikolaos; Font, José A.; Müller, Ewald
2018-05-01
We discuss torsional oscillations of highly magnetized neutron stars (magnetars) using two-dimensional, magneto-elastic-hydrodynamical simulations. Our model is able to explain both the low- and high-frequency quasi-periodic oscillations (QPOs) observed in magnetars. The analysis of these oscillations provides constraints on the breakout magnetic-field strength, on the fundamental QPO frequency, and on the frequency of a particularly excited overtone. By performing a new set of simulations, we are able to derive for the first time empirical relations for a self consistent model including a superfluid core which describe these constraints quantitatively. We use these relations to generically constrain properties of high-density matter in neutron stars, employing Bayesian analysis. In spite of current uncertainties and computational approximations, our model-dependent Bayesian posterior estimates for SGR 1806-20 yield a magnetic-field strength \\bar{B}˜ 2.1^{+1.3}_{-1.0}× 10^{15} G and a crust thickness of Δ r = 1.6^{+0.7}_{-0.6} km, which are both in remarkable agreement with observational and theoretical expectations, respectively (1σ error bars are indicated). Our posteriors also favour the presence of a superfluid phase in the core, a relatively low stellar compactness, M/R < 0.19, indicating a relatively stiff equation of state and/or low-mass neutron star, and high shear speeds at the base of the crust, cs > 1.4 × 108 cm s-1. Although the procedure laid out here still has large uncertainties, these constraints could become tighter when additional observations become available.
Chemical footprint of star formation feedback in M 82 on scales of ~100 pc
NASA Astrophysics Data System (ADS)
Ginard, D.; Fuente, A.; García-Burillo, S.; Alonso-Albi, T.; Krips, M.; Gerin, M.; Neri, R.; Pilleri, P.; Usero, A.; Treviño-Morales, S. P.
2015-06-01
Context. M 82 is one of the nearest and brightest starburst galaxies. It has been extensively studied in the past decade and by now is considered the prototypical extragalactic photon-dominated region (PDR) and a reference for studying star formation feedback. Aims: Our aim is to characterize the molecular chemistry in M 82 at spatial scales of giant molecular clouds (GMCs), ~100 pc, to investigate the feedback effects of the star formation activity. Methods: We present interferometric observations of the CN 1 → 0 (113.491 GHz), N2H+1 → 0 (93.173 GHz), H(41)α (92.034 GHz), CH3CN (91.987 GHz), CS 3 → 2 (146.969 GHz), c-C3H2 31,2 → 22,1 (145.089 GHz), H2CO 20,2 → 10,1 (145.603 GHz), and HC3N 16 → 15 (145.601 GHz) lines carried out with the IRAM Plateau de Bure Interferometer (PdBI). PDR chemical modeling was used to interpret these observations. Results: Our results show that the abundances of N2H+, CS and H13CO+ remain quite constant across the galaxy, confirming that these species are excellent tracers of the dense molecular gas. In contrast, the abundance of CN increases by a factor of ~3 in the inner x2 bar orbits. The [CN]/[N2H+] ratio is well correlated with the H(41)α emission at all spatial scales down to ~100 pc. Chemical modeling shows that the variations in the [CN]/[N2H+] ratio can be explained as the consequence of differences in the local intestellar UV field and in the average cloud sizes within the nucleus of the galaxy. Conclusions: Our high spatial resolution imaging of the starburst galaxy M 82 shows that the star formation activity has a strong impact on the chemistry of the molecular gas. In particular, the entire nucleus behaves as a giant PDR whose chemistry is determined by the local UV flux. The detection of N2H+ shows the existence of a population of clouds with Av> 20 mag all across the galaxy plane. These clouds constitute the molecular gas reservoir for the formation of new stars and, although it is distributed throughout the nucleus, the highest concentration occurs in the outer x1 bar orbits (R ~ 280 pc). Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain).Appendix A is available in electronic form at http://www.aanda.orgFITS files of the reduced data cubes are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A49
NASA Astrophysics Data System (ADS)
Sakaguchi, A.; Kadokura, A.; Steier, P.; Takahashi, Y.; Shizuma, K.; Yamamoto, M.
2012-04-01
137Cs (T1/2=30.2 y) has been spread all over the world as a fission product of atmospheric nuclear weapons tests in the 1960s. This nuclide has been used as a powerful tool for oceanography due to the well-defined origin and conservative behaviour in water . However, the number of atoms has decayed already to one thirds compared with its initial levels, and it will become more difficult to measure. In this situation, we focus on 236U (T1/2=2.342-107 y) as a candidate for a new isotopic tracer for oceanography. The detection of 236U in the environment has become possible only recently, by the development of measuring techniques with high sensitivity based on AMS. Our group showed that global fallout from bomb tests contains 236U, which might be produced as nuclear reactions of 235U(n,γ) and/or 238U(n,3n). So 236U has been therefore globally distributed in the surface environment. Thus, 236U has a similar potential as a tracer for environmental dynamics as 137Cs, especially for oceanography. In this study, a comprehensive attempt was made to measure the concentration of 236U in marine samples such as water, suspended solid and bottom sediments to clarify the environmental behaviour of this isotope. Furthermore, the discussion of the circulation of deep and bottom water in "Miniature Ocean", the Japan Sea, has been attempted. Bottom sediments (4 sites) and seawater samples (7 sites) were collected from the Japan Sea. The sediment core was cut into 1 cm segments from the surface to 5 cm in depth within a few hours after the sampling. About 20 L of seawater samples were collected from some depths in each site, and immediately after the sampling, the water was filtered with 0.45 μm pore-size membrane-filters. After the appropriate pre-treatment for each sample, uranium isotope and 137Cs were measured with AMS and Ge-detector, respectively. 236U was successfully detected for all seawater samples, and 236U/238U atom ratios in seawater were in the range of (0.19-1.75)-10-9. The dissolved 236U concentration showed a subsurface maximum and decreased steeply with depth. The minimum value was found at a depth of 2500 m and bottom (about 3000 m in depth) in the northern and the southern areas, respectively. These profiles are markedly different from that of natural 238U which is nearly constant over the depth, suggesting that 236U has not yet reached steady state. For the SS sample, 236U could not be detected in significant levels. The total 236U inventory of the water column was estimated at 1012-1013 atom/m2. This value is nearly the same as the global fallout level (17.8-1012 atom/m2). 236U was also found in the bottom sediments, and the inventory was about 1/40 compared with that in water column. All above characters are comparable with 137Cs which is anthropogenic conservative nuclide in ocean. Actually, the diffusion coefficients for both nuclides show the nearly same value. The detail discussion including the circulation of deep-water in the Japan Sea will be given in our presentation.
NASA Astrophysics Data System (ADS)
Wilson, T. L.; Hanson, M. M.; Muders, D.
2003-06-01
We present fully sampled images in the C18O J=2-1 line extending over 13'×23', made with the Heinrich Hertz Telescope (HHT) on Mount Graham, AZ. The HHT has a resolution of 35" at the line frequency. This region includes two molecular clouds. Cloud A, to the north, is more compact, while cloud B is to the west of the H II region M17. Cloud B contains the well-known source M17SW. In C18O we find 13 maxima in cloud A and 39 in cloud B. Sixteen sources in cloud B are in M17SW, mapped previously with higher resolution. In cloud B, sources outside M17SW have line widths comparable to those in M17SW. In comparison, cloud A has lower C18O line intensities and smaller line widths but comparable densities and sizes. Maps of the cores of these clouds were also obtained in the J=5-4 line of CS, which traces higher H2 densities. Our images of the cores of clouds A and B show that for VLSR<=20 km s-1, the peaks of the CS emission are shifted closer to the H II region than the C18O maxima, so higher densities are found toward the H II region. Our CS data give additional support to the already strong evidence that M17SW and nearby regions are heated and compressed by the H II region. Our data show that cloud A has a smaller interaction with the H II region. We surmise that M17SW was an initially denser region, and the turn-on of the H II region will make this the next region of massive star formation. Outside of M17SW, the only other obvious star formation region may be in cloud A, since there is an intense millimeter dust continuum peak found by Henning et al. (1998) but no corresponding C18O maximum. If the CO/H2 ratio is constant, the dust must have a temperature of ~100 K or the H2 density is greater than 106 cm-3 or both to reconcile the C18O and dust data. Alternatively, if the CO/H2 ratio is low, perhaps much of the CO is depleted.
Bai, Haribala; Hu, Bitao; Wang, Chengguo; Bao, Shanhu; Sai, Gerilemandahu; Xu, Xiao; Zhang, Shuai; Li, Yuhong
2017-01-01
The present work is the first systematic and large scale study on radioactive materials and heavy metals in surface soil around the Bayanwula prospective uranium mining area in China. In this work, both natural and anthropogenic radionuclides and heavy metals in 48 surface soil samples were analyzed using High Purity Germanium (HPGe) γ spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). The obtained mean activity concentrations of 238U, 226Ra, 232Th, 40K, and 137Cs were 25.81 ± 9.58, 24.85 ± 2.77, 29.40 ± 3.14, 923.0 ± 47.2, and 5.64 ± 4.56 Bq/kg, respectively. The estimated average absorbed dose rate and annual effective dose rate were 76.7 ± 3.1 nGy/h and 83.1 ± 3.8 μSv, respectively. The radium equivalent activity, external hazard index, and internal hazard index were also calculated, and their mean values were within the acceptable limits. The estimated lifetime cancer risk was 3.2 × 10−4/Sv. The heavy metal contents of Cr, Ni, Cu, Zn, As, Cd, and Pb from the surface soil samples were measured and their health risks were then assessed. The concentrations of all heavy metals were much lower than the average backgrounds in China except for lead which was about three times higher than that of China’s mean. The non-cancer and cancer risks from the heavy metals were estimated, which are all within the acceptable ranges. In addition, the correlations between the radionuclides and the heavy metals in surface soil samples were determined by the Pearson linear coefficient. Strong positive correlations between radionuclides and the heavy metals at the 0.01 significance level were found. In conclusion, the contents of radionuclides and heavy metals in surface soil around the Bayanwula prospective uranium mining area are at a normal level. PMID:28335450
Petrogenetic modeling of a potential uranium source rock, Granite Mountains, Wyoming
Stuckless, J.S.; Miesch, A.T.
1981-01-01
Previous studies of the granite of Lankin Dome have led to the conclusion that this granite was a source for the sandstone-type uranium deposits in the basins that surround the Granite Mountains, Wyo. Q-mode factor analysis of 29 samples of this granite shows that five bulk compositions are required to explain the observed variances of 33 constituents in these samples. Models presented in this paper show that the origin of the granite can be accounted for by the mixing of a starting liquid with two ranges of solid compositions such that all five compositions are granitic. There are several features of the granite of Lankin Dome that suggest derivation by partial melting and, because the proposed source region was inhomogeneous, that more than one of the five end members may have been a liquid. Data for the granite are compatible with derivation from rocks similar to those of the metamorphic complex that the granite intrudes. Evidence for crustal derivation by partial melting includes a strongly peraluminous nature, extremely high differentiation indices, high contents of incompatible elements, generally large negative Eu anomalies, and high initial lead and strontium isotopic ratios. If the granite of Lankin Dome originated by partial melting of a heterogeneous metamorphic complex, the initial magma could reasonably have been composed of a range of granitic liquids. Five variables were not well accounted for by a five-end-member model. Water, CO 2 , and U0 2 contents and the oxidation state of iron are all subject to variations caused by near-surface processes. The Q-mode factor analysis suggests that these four variables have a distribution determined by postmagmatic processes. The reason for failure of Cs0 2 to vary systematically with the other 33 variables is not known. Other granites that have lost large amounts of uranium possibly can be identified by Q-mode factor analysis.
Bai, Haribala; Hu, Bitao; Wang, Chengguo; Bao, Shanhu; Sai, Gerilemandahu; Xu, Xiao; Zhang, Shuai; Li, Yuhong
2017-03-14
The present work is the first systematic and large scale study on radioactive materials and heavy metals in surface soil around the Bayanwula prospective uranium mining area in China. In this work, both natural and anthropogenic radionuclides and heavy metals in 48 surface soil samples were analyzed using High Purity Germanium (HPGe) γ spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). The obtained mean activity concentrations of 238 U, 226 Ra, 232 Th, 40 K, and 137 Cs were 25.81 ± 9.58, 24.85 ± 2.77, 29.40 ± 3.14, 923.0 ± 47.2, and 5.64 ± 4.56 Bq/kg, respectively. The estimated average absorbed dose rate and annual effective dose rate were 76.7 ± 3.1 nGy/h and 83.1 ± 3.8 μ Sv, respectively. The radium equivalent activity, external hazard index, and internal hazard index were also calculated, and their mean values were within the acceptable limits. The estimated lifetime cancer risk was 3.2 × 10 -4 /Sv. The heavy metal contents of Cr, Ni, Cu, Zn, As, Cd, and Pb from the surface soil samples were measured and their health risks were then assessed. The concentrations of all heavy metals were much lower than the average backgrounds in China except for lead which was about three times higher than that of China's mean. The non-cancer and cancer risks from the heavy metals were estimated, which are all within the acceptable ranges. In addition, the correlations between the radionuclides and the heavy metals in surface soil samples were determined by the Pearson linear coefficient. Strong positive correlations between radionuclides and the heavy metals at the 0.01 significance level were found. In conclusion, the contents of radionuclides and heavy metals in surface soil around the Bayanwula prospective uranium mining area are at a normal level.
Studies of the QCD Phase Diagram with Heavy-Ion Collisions at J-PARC
NASA Astrophysics Data System (ADS)
Sako, Hiroyuki
To clarify phase structures in the QCD phase diagram is an ultimate goal of heavy-ion collision experiments. Studies of internal structures of neutron stars are also one of the most important topics of nuclear physics since the discovery of neutron stars with two-solar mass. For these physics goals, J-PARC heavy-ion project (J-PARC-HI) has been proposed, where extremely dense matter with 5-10 times the normal nuclear density will be created. Heavy-ion beams up to Uranium will be accelerated to 1-19 AGeV/c, with the designed world's highest beam rate of 1011 Hz. The acceleration of such high-rate beams can be realized by a new heavy-ion linac and a new booster ring, in addition to the existing 3-GeV and 50-GeV proton synchrotrons. To study the above physics goals, following physics observables will be measured in extremely high statistics expected in J-PARC-HI. To search for the critical point, high-order event-by-event fluctuations of conserved charges such as a net-baryon number, an electric charge number, and a strangeness number will be measured. To study the chiral symmetry restoration, dilepton spectra from light vector meson decays will be measured. Also, collective flows, particle correlations will be measured to study the equation of state and hyperon-hyperon and hyperon-nucleon interactions related to neutron stars. Strange quark matter (strangelet) and multi-strangeness hypernuclei will be searched for which may be related directly to the matter constituting the neutron star core. In this work, the physics goals, the experimental design, and expected physics results of J-PARC-HI will be discussed.
Wester, Dennis W; Steele, Richard T; Rinehart, Donald E; DesChane, Jaquetta R; Carson, Katharine J; Rapko, Brian M; Tenforde, Thomas S
2003-07-01
A major limitation on the supply of the short-lived medical isotope 90Y (t1/2 = 64 h) is the available quantity of highly purified 90Sr generator material. A radiochemical production campaign was therefore undertaken to purify 1,500 Ci of 90Sr that had been isolated from fission waste materials. A series of alkaline precipitation steps removed all detectable traces of 137Cs, alpha emitters, and uranium and transuranic elements. Technical obstacles such as the buildup of gas pressure generated upon mixing large quantities of acid with solid 90Sr carbonate were overcome through safety features incorporated into the custom-built equipment used for 90Sr purification. Methods are described for analyzing the chemical and radiochemical purity of the final product and for accurately determining by gravimetry the quantities of 90Sr immobilized on stainless steel filters for future use.
NASA Astrophysics Data System (ADS)
Kirishima, Akira; Amano, Yuuki; Nihei, Toshifumi; Mitsugashira, Toshiaki; Sato, Nobuaki
2010-03-01
For the recovery of fissile materials from spent nuclear fuel, we have proposed a novel reprocessing process based on selective sulfurization of fission products (FPs). The key concept of this process is utilization of unique chemical property of carbon disulfide (CS2), i.e., it works as a reductant for U3O8 but works as a sulfurizing agent for minor actinides and lanthanides. Sulfurized FPs and minor actinides (MA) are highly soluble to dilute nitric acid while UO2 and PuO2 are hardly soluble, therefore, FPs and MA can be removed from Uranium and Plutonium matrix by selective dissolution. As a feasibility study of this new concept, the sulfurization behaviours of U, Pu, Np, Am and Eu are investigated in this paper by the thermodynamical calculation, phase analysis of chemical analogue elements and tracer experiments.
Molecular Abundances in the Circumstellar Envelope of Oxygen-Rich Supergiant VY Canis Majoris
NASA Astrophysics Data System (ADS)
Edwards, Jessica L.; Ziurys, Lucy
2014-06-01
A complete set of molecular abundances have been established for the Oxygen-rich circumstellar envelope (CSE) surrounding the supergiant star VY Canis Majoris (VY CMa). These data were obtained from The Arizona Radio Observatory (ARO) 1-mm spectral line survey of this object using the ARO Sub-millimeter Telescope (SMT), as well as complimentary transitions taken with the ARO 12-meter. The non-LTE radiative transfer code ESCAPADE has been used to obtain the molecular abundances and distributions in VY CMa, including modeling of the various asymmetric outflow geometries in this source. For example, SO and SO2 were determined to arise from five distinct outflows, four of which are asymmetric with respect to the central star. Abundances of these two sulfur-bearing molecules range from 3 x 10-8 - 2.5 x 10-7 for the various outflows. Similar results will be presented for molecules like CS, SiS, HCN, and SiO, as well as more exotic species like NS, PO, AlO, and AlOH. The molecular abundances between the various outflows will be compared and implications for supergiant chemistry will be discussed.
A 'FIREWORK' OF H{sub 2} KNOTS IN THE PLANETARY NEBULA NGC 7293 (THE HELIX NEBULA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsuura, M.; Speck, A. K.; McHunu, B. M.
2009-08-01
We present a deep and wide field-of-view (4' x 7') image of the planetary nebula (PN) NGC 7293 (the Helix Nebula) in the 2.12 {mu}m H{sub 2} v = 1 {yields} 0 S(1) line. The excellent seeing (0.''4) at the Subaru Telescope, allows the details of cometary knots to be examined. The knots are found at distances of 2.'2-6.'4 from the central star (CS). At the inner edge and in the inner ring (up to 4.'5 from the CS), the knot often show a 'tadpole' shape, an elliptical head with a bright crescent inside and a long tail opposite tomore » the CS. In detail, there are variations in the tadpole shapes, such as narrowing tails, widening tails, meandering tails, or multipeaks within a tail. In the outer ring (4.'5-6.'4 from the CS), the shapes are more fractured, and the tails do not collimate into a single direction. The transition in knot morphology from the inner edge to the outer ring is clearly seen. The number density of knots governs the H{sub 2} surface brightness in the inner ring: H{sub 2} exists only within the knots. Possible mechanisms which contribute to the shaping of the knots are discussed, including photoionization and streaming motions. A plausible interpretation of our images is that inner knots are being overrun by a faster wind, but that this has not (yet) reached the outer knots. Based on H{sub 2} formation and destruction rates, H{sub 2} gas can survive in knots from formation during the late asymptotic giant branch phase throughout the PN phase. These observations provide new constraints on the formation and evolution of knots, and on the physics of molecular gas embedded within ionized gas.« less
A "Firework" of H2 Knots in the Planetary Nebula NGC 7293 (The Helix Nebula)
NASA Astrophysics Data System (ADS)
Matsuura, M.; Speck, A. K.; McHunu, B. M.; Tanaka, I.; Wright, N. J.; Smith, M. D.; Zijlstra, A. A.; Viti, S.; Wesson, R.
2009-08-01
We present a deep and wide field-of-view (4' × 7') image of the planetary nebula (PN) NGC 7293 (the Helix Nebula) in the 2.12 μm H2 v = 1 → 0 S(1) line. The excellent seeing (0farcs4) at the Subaru Telescope, allows the details of cometary knots to be examined. The knots are found at distances of 2farcm2-6farcm4 from the central star (CS). At the inner edge and in the inner ring (up to 4farcm5 from the CS), the knot often show a "tadpole" shape, an elliptical head with a bright crescent inside and a long tail opposite to the CS. In detail, there are variations in the tadpole shapes, such as narrowing tails, widening tails, meandering tails, or multipeaks within a tail. In the outer ring (4farcm5-6farcm4 from the CS), the shapes are more fractured, and the tails do not collimate into a single direction. The transition in knot morphology from the inner edge to the outer ring is clearly seen. The number density of knots governs the H2 surface brightness in the inner ring: H2 exists only within the knots. Possible mechanisms which contribute to the shaping of the knots are discussed, including photoionization and streaming motions. A plausible interpretation of our images is that inner knots are being overrun by a faster wind, but that this has not (yet) reached the outer knots. Based on H2 formation and destruction rates, H2 gas can survive in knots from formation during the late asymptotic giant branch phase throughout the PN phase. These observations provide new constraints on the formation and evolution of knots, and on the physics of molecular gas embedded within ionized gas. Based on data taken with the Subaru Telescope, National Astronomical Observatory of Japan (proposal ID S07B-054).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eleon, Cyrille; Passard, Christian; Hupont, Nicolas
2015-07-01
Nuclear measurements are used at AREVA NC/La Hague for the monitoring of spent fuel reprocessing. The process control is based on gamma-ray spectroscopy, passive neutron counting and active neutron interrogation, and gamma transmission measurements. The main objectives are criticality and safety, online process monitoring, and the determination of the residual fissile mass and activities in the metallic waste remained after fuel shearing and dissolution (empty hulls, grids, end pieces), which are put in radioactive waste drums before compaction. The whole monitoring system is composed of eight measurement stations which will be described in this paper. The main measurement stations no.more » 1, 3 and 7 are needed for criticality control. Before fuel element shearing for dissolution, station no. 1 allows determining the burn-up of the irradiated fuel by gamma-ray spectroscopy with HP Ge (high purity germanium) detectors. The burn-up is correlated to the {sup 137}Cs and {sup 134}Cs gamma emission rates. The fuel maximal mass which can be loaded in one bucket of the dissolver is estimated from the lowest burn-up fraction of the fuel element. Station no. 3 is dedicated to the control of the correct fuel dissolution, which is performed with a {sup 137}Cs gamma ray measurement with a HP Ge detector. Station no. 7 allows estimating the residual fissile mass in the drums filled with the metallic residues, especially in the hulls, from passive neutron counting (spontaneous fission and alpha-n reactions) and active interrogation (fission prompt neutrons induced by a pulsed neutron generator) with proportional {sup 3}He detectors. The measurement stations have been validated for the reprocessing of Uranium Oxide (UOX) fuels with a burn-up rate up to 60 GWd/t. This paper presents a brief overview of the current status of the nuclear measurement stations. (authors)« less
SH Observations In and Toward Sgr B2(N): Linking the Missing Sulfur
NASA Astrophysics Data System (ADS)
McCarthy, Michael
Where is the missing sulfur in the molecular reservoir of the interstellar medium (ISM)? In the warm gas phase ISM, the abundance of sulfur is nearly equivalent to its solar value, but in the cold, diffuse clouds which span the space between stars, sulfur is depleted by several orders of magnitude. Our inability to account for this depletion represents a significant gap in our understanding of the fundamental chemical and physical processes occurring in the primordial reservoirs of gas and dust in the ISM. Central to this chemistry is SH, a radical for which few observations presently exist, and for which SOFIA is uniquely capable of accessing in its ground rotational state. We propose observations of SH in the cold, shocked molecular shell surrounding Sgr B2(N), and, simultaneously, in diffuse and translucent clouds along the line of sight to Sgr B2(N). We will constrain the abundance of SH, and compare it to previous measurements of SO, CS, C_2S, HCS(+) , H_2CS, and H_2S in these sources which span the evolutionary timescale from diffuse clouds to dense, cold shocked regions.
Structures Of Magnetically-Supported Filaments And Their Appearance In The Linear Polarization
NASA Astrophysics Data System (ADS)
Tomisaka, Kohji
2017-10-01
Dust thermal emissions observed with Herschel have revealed that interstellar molecular clouds consist of many filaments. Polarization observation of interstellar extinctions in the optical and near IR wavelengths shows that the dense filaments are extending perpendicular to the interstellar magnetic field. Magnetohydrostatic structures of such filaments are studied. It is well known that a hydrostatic filament without magnetic field has a maximum line mass of ¥lambda_max=2c_s^2/G (c_s:the isothermal sound speed and G: the gravitational constant). On the other hand, the magnetically-supported maximum line mass increases in proportion to the magnetic flux per unit length threading the filament (¥phi), as ¥lambda_max 2c_s^2/G + ¥phi/(2¥pi G^1/2). Comparison is made with 3D clouds. Stability of these magnetized filaments is studied using time-dependent 3D MHD simulations to discuss star formation in the filaments. Polarization pattern expected for the magnetically subcritical filaments is calculated. The distribution function of the angle between B-field and the axis of the filament, which is obtained with Planck Satellite, is compared with this mock observation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leslie A. Hansen; Phil R. Fresquez; Rhonda J. Robinson
1999-11-01
Use of a radioactive liquid waste lagoon by medium-sized mammals and levels of tritium, other selected radionuclides, and metals in biological tissues of the animals were documented at Technical Area 53 (TA-53) of Los Alamos National Laboratory during 1997 and 1998. Rock squirrel (Spermophilus variegates), raccoon (Procyon lotor), striped skunk (Mephitis mephitis), and bobcat (Lynx rufus) were captured at TA-53 and at a control site on the Santa Fe National Forest. Captured animals were anesthetized and marked with radio-frequency identification (RFD) tags and/or ear tags. We collected urine and hair samples for tritium and metals (aluminum, antimony, arsenic, barium, beryllium,more » cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and thallium) analyses, respectively. In addition, muscle and bone samples from two rock squirrels collected from each of TA-53, perimeter, and regional background sites were tested for tritium, {sup 137}Cs, {sup 90}Sr, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, and total uranium. Animals at TA-53 were monitored entering and leaving the lagoon area using a RFID monitor to read identification numbers from the RFID tags of marked animals and a separate camera system to photograph all animals passing through the monitor. Cottontail rabbit (Sylvilagus spp.), rock squirrel, and raccoon were the species most frequently photographed going through the RFID monitor. Less than half of all marked animals in the lagoon area were detected using the lagoon. Male and female rock squirrels from the lagoon area had significantly higher tritium concentrations compared to rock squirrels from the control area. Metals tested were not significantly higher in rock squirrels from TA-53, although there was a trend toward increased levels of lead in some individuals at TA-53. Muscle and bone samples from squirrels in the lagoon area appeared to have higher levels of tritium, total uranium, and {sup 137}Cs than samples collected from perimeter and background locations. However, the committed effective dose equivalent estimated from the potential human consumption of the muscle and bone tissue from these rock squirrels did not suggest any human health risk. Indirect routes of tritium uptake, possibly through consumption of vegetation, are important for animals in the lagoon area.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tkac, Peter; Vandegrift, George F.
2015-08-09
A new recycle process for recovery of enriched 98Mo or 100Mo used for production of 99Mo/ 99mTc medical isotope was developed. In this process, Mo is precipitated from spent NorthStar Mo/Tc generator solution containing ~200 g/L Mo as K 2MoO 4 in 5 M KOH using acetic acid and then washed with nitric acid. High purification factors from potassium were achieved, and typical Mo recovery yields were ~95 %. In conclusion, the recycle process was performed with up to 260 g of Mo per batch and can be easily implemented for processing of up to 400 g of Mo.
NASA Astrophysics Data System (ADS)
Chattopadhyay, T.; Vadawale, S. V.; Goyal, S. K.; Mithun, N. P. S.; Patel, A. R.; Shukla, R.; Ladiya, T.; Shanmugam, M.; Patel, V. R.; Ubale, G. P.
2016-02-01
X-ray polarization measurement of cosmic sources provides two unique parameters namely degree and angle of polarization which can probe the emission mechanism and geometry at close vicinity of the compact objects. Specifically, the hard X-ray polarimetry is more rewarding because the sources are expected to be intrinsically highly polarized at higher energies. With the successful implementation of Hard X-ray optics in NuSTAR, it is now feasible to conceive Compton polarimeters as focal plane detectors. Such a configuration is likely to provide sensitive polarization measurements in hard X-rays with a broad energy band. We are developing a focal plane hard X-ray Compton polarimeter consisting of a plastic scintillator as active scatterer surrounded by a cylindrical array of CsI(Tl) scintillators. The scatterer is 5 mm diameter and 100 mm long plastic scintillator (BC404) viewed by normal PMT. The photons scattered by the plastic scatterer are collected by a cylindrical array of 16 CsI(Tl) scintillators (5 mm × 5 mm × 150 mm) which are read by Si Photomultiplier (SiPM). Use of the new generation SiPMs ensures the compactness of the instrument which is essential for the design of focal plane detectors. The expected sensitivity of such polarimetric configuration and complete characterization of the plastic scatterer, specially at lower energies have been discussed in [11, 13]. In this paper, we characterize the CsI(Tl) absorbers coupled to SiPM. We also present the experimental results from the fully assembled configuration of the Compton polarimeter.
THE SN 393-SNR RX J1713.7-3946 (G347.3-0.5) CONNECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fesen, Robert A.; Milisavljevic, Dan; Kremer, Richard
Although the connection of the Chinese 'guest' star of 393 AD with the Galactic supernova remnant RX J1713.7-3946 (G347.3-0.5) made by Wang et al. in 1997 is consistent with the remnant's relatively young properties and the guest star's projected position within the 'tail' of the constellation Scorpius, there are difficulties with such an association. The brief Chinese texts concerning the 393 AD guest star make no comment about its apparent brightness, stating only that it disappeared after eight months. However, at the remnant's current estimated 1-1.3 kpc distance and A{sub V} {approx_equal} 3, its supernova (SN) should have been amore » visually bright object at maximum light (-3.5 to -5.0 mag) if M{sub V} = - 17 to -18 and would have remained visible for over a year. The peak brightness {approx_equal}0 mag adopted by Wang et al. and others would require the RX J1713.7-3946 supernova to have been a very subluminous event similar to or fainter than SN 2005cs in M51. We also note problems connecting SN 393 with a European record in which the Roman poet Claudian describes a visually brilliant star in the heavens around 393 AD that could be readily seen even in midday. Although several authors have suggested this account may be a reference to the Chinese supernova of 393, Scorpius would not be visible near midday in March when the Chinese first reported the 393 guest star. We review both the Chinese and Roman accounts and calculate probable visual brightnesses for a range of SN subtypes and conclude that neither the Chinese nor the Roman descriptions are easily reconciled with an expected RX J1713.7-3946 supernova brightness and duration.« less
HIGH-RESOLUTION MID-INFRARED IMAGING OF THE CIRCUMSTELLAR DISKS OF HERBIG Ae/Be STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marinas, N.; Telesco, C. M.; Packham, C.
2011-08-20
We have imaged the circumstellar environments of 17 Herbig Ae/Be stars at 12 and 18 {mu}m using MICHELLE on Gemini North and T-ReCS on Gemini South. Our sample contained eight Group I sources, those having large rising near- to far-infrared (IR) fluxes, and nine Group II sources, those having more modest mid-IR fluxes relative to their near-IR flux (in the classification of Meeus et al.). We have resolved extended emission from all Group I sources in our target list. The majority of these sources have radially symmetric mid-IR emission extending from a radius of 10 AU to hundreds of AU.more » Only one of the nine Group II sources is resolved at the FWHM level, with another two Group II sources resolved at fainter levels. Models by Dullemond et al. explain the observed spectral energy distribution of Group II sources using self-shadowed cold disks. If this is the case for all the Group II sources, we do not expect to detect extended emission with this study, since the IR emission measured should arise from a region only a few AU in size, which is smaller than our resolution. The fact that we do resolve some of the Group II sources implies that their disks are not completely flat, and might represent an intermediate stage. We also find that none of the more massive (>3 M{sub sun}) Herbig Ae/Be stars in our sample belongs to Group I, which may point to a relationship between stellar mass and circumstellar dust evolution. Disks around more massive stars might evolve faster so that stars are surrounded by a more evolved flat disk by the time they become optically visible, or they might follow a different evolutionary path altogether.« less
NASA Astrophysics Data System (ADS)
Lawler, James E.; Sneden, Chris; Cowan, John J.
2016-01-01
New emission branching fraction measurements for 898 lines of the first spectrum of cobalt (Co I) from hollow cathode lamp spectra recorded with a 1m Fourier transform spectrometer (FTS) and a high resolution echelle spectrometer are reported. Radiative lifetimes from laser induced fluorescence measurements are combined with the branching fractions to determine accurate log(gf)s for the 898 lines. Selected published hyperfine structure (hfs) constants for levels of neutral Co are used to generate complete hfs component patterns for 195 transitions of Co I. These new laboratory data are applied to determine the Co abundance in the Sun and metal-poor star HD 84937, yielding log eps(Co) = 4.955 ± 0.007 (sigma = 0.059) based on 82 Co I lines and log eps(Co) = 2.785 ± 0.008 (sigma = 0.065) based on 66 Co I lines respectively. A Saha balance test on the photosphere of HD 84937 is performed using 16 UV lines of Co II, and good agreement is found with the Co I result in this metal-poor ([Fe I /H] = -2.32, [Fe II /H] = -2.32) dwarf star. The resulting value of [Co/Fe] = +0.14 supports a rise of Co/Fe at low metallicity that has been suggested in other studies. These new Co I data are part of a continuing effort to explore the limits of 1D/LTE photospheric models in metal-poor stars and to determine the relative abundance of Fe-group elements at low metallicity. This work is supported in part by NASA grant NNX10AN93G (J.E.L.), by NSF grant AST-1211055 (J.E.L.), and by NSF grant AST-1211585 (C.S.).
OT1_dlis_2: Ammonia as a Tracer of the Earliest Stages of Star Formation
NASA Astrophysics Data System (ADS)
Lis, D.
2010-07-01
Stars form in molecular cloud cores, cold and dense regions enshrouded by dust. The initiation of this process is among the least understood steps of star formation. Highresolution heterodyne spectroscopy provides invaluable information about the physical conditions (density, temperature), kinematics (infall, outflows), and chemistry of these regions. Classical molecular tracers, such CO, CS, and many other abundant gasphase species, have been shown to freeze out onto dust grain mantles in prestellar cores. However, Nbearing species, in particular ammonia, are much less affected by depletion and are observed to stay in the gas phase at densities in excess of 1e6 cm3. The molecular freezeout has important consequences for the chemistry of dense gas. In particular, the depletion of abundant gasphase species with heavy atoms drives up abundances of deuterated H3+ isotopologues, which in turn results in spectacular deuteration levels of molecules that do remain in the gas phase. Consequently, lines of deuterated Nbearing species, in particular the fundamental lines of ammonia isotopologues, having very high critical densities, are optimum tracers of innermost regions of dense cores. We propose to study the morphology, density structure and kinematics of cold and dense cloud cores, by mapping the spatial distribution of ammonia isotopologues in isolated dense prestellar cores using Herschel/HIFI. These observations provide optimum probes of the onset of star formation, as well as the physical processes that control gasgrain interaction, freezeout, mantle ejection and deuteration. The sensitive, highresolution spectra acquired within this program will be analyzed using sophisticated radiative transfer models and compared with outputs of stateoftheart 3D MHD simulations and chemical models developed by the members of our team.
OT2_dlis_3: Ammonia as a Tracer of the Earliest Stages of Star Formation
NASA Astrophysics Data System (ADS)
Lis, D.
2011-09-01
Stars form in molecular cloud cores, cold and dense regions enshrouded by dust. The initiation of this process is among the least understood steps of star formation. High!resolution heterodyne spectroscopy provides invaluable information about the physical conditions (density, temperature), kinematics (infall, outflows), and chemistry of these regions. Classical molecular tracers, such CO, CS, and many other abundant gas!phase species, have been shown to freeze out onto dust grain mantles in pre!stellar cores. However, N!bearing species, in particular ammonia, are much less affected by depletion and are observed to stay in the gas phase at densities in excess of 1e6 cm!3. The molecular freeze!out has important consequences for the chemistry of dense gas. In particular, the depletion of abundant gas!phase species with heavy atoms drives up abundances of deuterated H3+ isotopologues, which in turn results in spectacular deuteration levels of molecules that do remain in the gas phase. Consequently, lines of deuterated N!bearing species, in particular the fundamental lines of ammonia isotopologues, having very high critical densities, are optimum tracers of innermost regions of dense cores. We propose to study the morphology, density structure and kinematics of cold and dense cloud cores, by mapping the spatial distribution of ammonia isotopologues in isolated dense pre!stellar cores using Herschel/HIFI. These observations provide optimum probes of the onset of star formation, as well as the physical processes that control gas!grain interaction, freeze!out, mantle ejection and deuteration. The sensitive, high!resolution spectra acquired within this program will be analyzed using sophisticated radiative transfer models and compared with outputs of state!of!the!art 3D MHD simulations and chemical models developed by the members of our team.
The Stellar Population Associated with the IRAS Source 16132-5039
NASA Astrophysics Data System (ADS)
Roman-Lopes, A.; Abraham, Z.
2004-05-01
We report the discovery of a young massive stellar cluster and infrared nebula in the direction of the CS molecular cloud associated with the IRAS point source 16132-5039. Analysis of mid-infrared images from the more accurate Midcourse Space Experiment catalog reveals that there are two independent components associated with the IRAS source. The integral of the spectral energy distribution for these components between 8.28 and 100 μm gives lower limits for the bolometric luminosity of the embedded objects of 8.7×104 and 9×103 Lsolar, which correspond to zero-age main-sequence O8 and B0.5 stars, respectively. The number of Lyman continuum photons expected from the stars that lie along the reddening line for early-type stars is about 1.7×1049 s-1, enough to produce the detected flux densities at 5 GHz. The near-infrared spectrum of the nebula increases with frequency, implying that free-free emission cannot be the main source of the extended luminosity, from which we conclude that the observed emission must be mainly dust-scattered light. A comparison of the cluster described in this paper with the young stellar cluster associated with the IRAS source 16177-5018, which is located at the same distance and in the same direction, shows that the mean visual absorption of the newly discovered cluster is about 10 mag smaller and that it contains less massive stars, suggesting that it was formed from a less massive molecular cloud. Based on observations made at the Laboratório Nacional de Astrofisica, Ministério da Ciência e Tecnologia, Brazil.
DENSE GAS FRACTION AND STAR FORMATION EFFICIENCY VARIATIONS IN THE ANTENNAE GALAXIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bigiel, F.; Leroy, A. K.; Blitz, L.
2015-12-20
We use the Combined Array for Research in Millimeter-wave Astronomy (CARMA) millimeter interferometer to map the Antennae Galaxies (NGC 4038/39), tracing the bulk of the molecular gas via the {sup 12}CO(1–0) line and denser molecular gas via the high density transitions HCN(1–0), HCO{sup +}(1–0), CS(2–1), and HNC(1–0). We detect bright emission from all tracers in both the two nuclei and three locales in the overlap region between the two nuclei. These three overlap region peaks correspond to previously identified “supergiant molecular clouds.” We combine the CARMA data with Herschel infrared (IR) data to compare observational indicators of the star formationmore » efficiency (star formation rate/H{sub 2} ∝ IR/CO), dense gas fraction (HCN/CO), and dense gas star formation efficiency (IR/HCN). Regions within the Antennae show ratios consistent with those seen for entire galaxies, but these ratios vary by up to a factor of six within the galaxy. The five detected regions vary strongly in both their integrated intensities and these ratios. The northern nucleus is the brightest region in millimeter-wave line emission, while the overlap region is the brightest part of the system in the IR. We combine the CARMA and Herschel data with ALMA CO data to report line ratio patterns for each bright point. CO shows a declining spectral line energy distribution, consistent with previous studies. HCO{sup +} (1–0) emission is stronger than HCN (1–0) emission, perhaps indicating either more gas at moderate densities or higher optical depth than is commonly seen in more advanced mergers.« less
Villa-Alfageme, M; Chamizo, E; Santos-Arévalo, F J; López-Gutierrez, J M; Gómez-Martínez, I; Hurtado-Bermúdez, S
2018-06-01
There are very few data available of 236 U in marine sediment cores. In this study we present the results from the first oceanic depth profile of 236 U in a sediment core sampled in the North Atlantic Ocean, at the PAP site (4500 m depth, Porcupine Abyssal Plain (PAP) site, 49°0' N, 16°30' W). Additionally, the sediment core was radiologically characterized through the measurement of anthropogenic 137 Cs, 239 Pu, 240 Pu, 129 I and 14 C and natural 210 Pb, 40 K and 226 Ra. The measured 236 U concentrations decrease from about 90·10 6 at g -1 at the seafloor down to 0.5·10 6 at g -1 at 6 cm depth. They are several orders of magnitude lower than the reported values for soils from the Northern Hemisphere solely influenced by global fallout (i.e. from 2700·10 6 to 7500·10 6 at g -1 ). 236 U/ 238 U atom ratios measured are at least three orders of magnitude above the estimated level for the naturally occurring dissolved uranium. The obtained inventories are 1·10 12 at m -2 for 236 U, 80 Bq m -2 for 137 Cs, 45 Bq m -2 for 239+240 Pu and 2.6·10 12 at m -2 for 129 I. Atomic ratios for 236 U/ 239 Pu, 137 Cs/ 236 U and 129 I/ 236 U, obtained from the inventories are 0.036, 0.11 and 2.5 respectively. Concentration profiles show mobilization probably due to bioturbation from the abundant detritivore holothurian species living at the PAP site sea-floor. The range of 236 U, 137 Cs, 239+240 Pu and 129 I values, inventories and ratios of these anthropogenic radionuclides are more similar to the values due to fall-out than values from a contribution from the Nuclear Fuel Reprocessing Plants dispersed to the south-west of the North Atlantic Ocean. However, signs of an additional source are detected and might be associated to the nuclear wastes dumped on the Eastern North Atlantic Ocean. Copyright © 2017 Elsevier Ltd. All rights reserved.
Radioactivity of Tobacco Leaves and Radiation Dose Induced from Smoking
Papastefanou, Constantin
2009-01-01
The radioactivity in tobacco leaves collected from 15 different regions of Greece and before cigarette production was studied in order to find out any association between the root uptake of radionuclides from soil ground by the tobacco plants and the effective dose induced to smokers from cigarette tobacco due to the naturally occurring primordial radionuclides, such as 226Ra and 210Pb of the uranium series and 228Ra of the thorium series and/or man-made radionuclides, such as 137Cs of Chernobyl origin. Gamma-ray spectrometry was applied using Ge planar and coaxial type detectors of high resolution and high efficiency. It was concluded that the activities of the radioisotopes of radium, 226Ra and 228Ra in the tobacco leaves reflected their origin from the soil by root uptake rather than fertilizers used in the cultivation of tobacco plants. Lead-210 originated from the air and was deposited onto the tobacco leaves and trapped by the trichomes. Potassium-40 in the tobacco leaves was due to root uptake either from soil or from fertilizer. The cesium radioisotopes 137Cs and 134Cs in tobacco leaves were due to root uptake and not due to deposition onto the leaf foliage as they still remained in soil four years after the Chernobyl reactor accident, but were absent from the atmosphere because of the rain washout (precipitation) and gravitational settling. The annual effective dose due to inhalation for adults (smokers) for 226Ra varied from 42.5 to 178.6 μSv/y (average 79.7 μSv/y), while for 228Ra from 19.3 to 116.0 μSv/y (average 67.1 μSv/y) and for 210Pb from 47.0 to 134.9 μSv/y (average 104.7 μSv/y), that is the same order of magnitude for each radionuclide. The sum of the effective doses of the three radionuclides varied from 151.9 to 401.3 μSv/y (average 251.5 μSv/y). The annual effective dose from 137Cs of Chernobyl origin was three orders of magnitude lower as it varied from 70.4 to 410.4 nSv/y (average 199.3 nSv/y). PMID:19440399
AGR-3/4 Irradiation Test Predictions using PARFUME
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skerjanc, William Frances; Collin, Blaise Paul
2016-03-01
PARFUME, a fuel performance modeling code used for high temperature gas reactors, was used to model the AGR-3/4 irradiation test using as-run physics and thermal hydraulics data. The AGR-3/4 test is the combined third and fourth planned irradiations of the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The AGR-3/4 test train consists of twelve separate and independently controlled and monitored capsules. Each capsule contains four compacts filled with both uranium oxycarbide (UCO) unaltered “driver” fuel particles and UCO designed-to-fail (DTF) fuel particles. The DTF fraction was specified to be 1×10-2. This report documents the calculations performed to predictmore » failure probability of TRISO-coated fuel particles during the AGR-3/4 experiment. In addition, this report documents the calculated source term from both the driver fuel and DTF particles. The calculations include the modeling of the AGR-3/4 irradiation that occurred from December 2011 to April 2014 in the Advanced Test Reactor (ATR) over a total of ten ATR cycles including seven normal cycles, one low power cycle, one unplanned outage cycle, and one Power Axial Locator Mechanism cycle. Results show that failure probabilities are predicted to be low, resulting in zero fuel particle failures per capsule. The primary fuel particle failure mechanism occurred as a result of localized stresses induced by the calculated IPyC cracking. Assuming 1,872 driver fuel particles per compact, failure probability calculated by PARFUME leads to no predicted particle failure in the AGR-3/4 driver fuel. In addition, the release fraction of fission products Ag, Cs, and Sr were calculated to vary depending on capsule location and irradiation temperature. The maximum release fraction of Ag occurs in Capsule 7 reaching up to 56% for the driver fuel and 100% for the DTF fuel. The release fraction of the other two fission products, Cs and Sr, are much smaller and in most cases less than 1% for the driver fuel. The notable exception occurs in Capsule 7 where the release fraction for Cs and Sr reach up to 0.73% and 2.4%, respectively, for the driver fuel. For the DTF fuel in Capsule 7, the release fraction for Cs and Sr are estimated to be 100% and 5%, respectively.« less
On the Origin and Evolution of Wolf-Rayet Central Stars of Planetary Nebulae
NASA Astrophysics Data System (ADS)
DePew, K. D.
2011-03-01
The origin of hydrogen-deficiency in the central stars of planetary nebulae (CSPNe) is currently a topic of heated debate. This class of objects is comprised of Wolf-Rayet ([WR]) stars, weak emission-line stars (WELS), and PG 1159 stars, each differentiated by a set of unique spectral characteristics. For some time, there have been questions surrounding the evolutionary status of these rare stars: what environmental conditions, such as chemical abundances, are necessary for their emergence, whether any of them represent different stages of development in the same class of stars, and what the characteristics of their progenitors may be. However, such investigations have been hampered by a lack of a sufficient number of these stars and their various sub-classes until recently. This thesis presents the significant discovery of 22 new [WR] stars and 10 new WELS, many uncovered specifically during this thesis in the course of the MASH survey and through serendipitous fibre placement during follow-up of MASH objects. All examples have been carefully classified as accurately as possible using the best current available data though for many this remains a preliminary assignment pending deeper spectra. This work expands the known sample of H-deficient stars by 30%, allowing a more detailed study of their properties than previously possible and moving us closer to a more complete census of local H-deficient CSPNe. In the course of our classifications, Abell 48 was found to be a particularly interesting object. Further analysis of nebular chemical abundances, modeled temperature, and ionization state as indicated by the chemical species present suggests that the CSPN of Abell 48 is very similar to the CSPN of PB 8, which has recently been re-designated as the founding member of a new and rare [WN/WC] class (Todt et al. 2010). Its similarity to and differences with other oxygen-rich [WO] and carbon-rich [WC] stars as well as previously identified [WN] stars are examined. All these stars have also been studied in the context of a new subclass-dynamical age relationship that we have also discovered. This major finding is the first to show evidence of an evolutionary trend amongst the [WR] population and was made possible by use of the powerful new surface brightness-radius (SB-r) relation of Frew (2008) that can, at last, provide accurate distances to PN (and hence also their central stars). Key data acquired here as well as modeled effective temperatures and excitation classes of other [WR]s, WELS and PG 1159 central stars found in the literature were also utilized in generating this relationship. Finally, continuing with the SB-r relation, the scale heights of the most complete available sample of [WR], WELS and PG 1159 CS populations are determined and compared. These data show that both WELS and PG 1159 stars are found to possess significantly higher Galactic heights than the members of the [WR] class, implying that PG 1159s do not all descend from [WR]s, and that WELS are not evolutionarily related to [WR]s. This is another major finding of this work. It is possible, however, that the WELS class, and perhaps the PG 1159 class as well, are heterogeneous groups.
Spatial distribution of environmental risk associated to a uranium abandoned mine (Central Portugal)
NASA Astrophysics Data System (ADS)
Antunes, I. M.; Ribeiro, A. F.
2012-04-01
The abandoned uranium mine of Canto do Lagar is located at Arcozelo da Serra, central Portugal. The mine was exploited in an open pit and produced about 12430Kg of uranium oxide (U3O8), between 1987 and 1988. The dominant geological unit is the porphyritic coarse-grained two-mica granite, with biotite>muscovite. The uranium deposit consists of two gaps crushing, parallel to the coarse-grained porphyritic granite, with average direction N30°E, silicified, sericitized and reddish jasperized, with a width of approximately 10 meters. These gaps are accompanied by two thin veins of white quartz, 70°-80° WNW, ferruginous and jasperized with chalcedony, red jasper and opal. These veins are about 6 meters away from each other. They contain secondary U-phosphates phases such as autunite and torbernite. Rejected materials (1000000ton) were deposited on two dumps and a lake was formed in the open pit. To assess the environmental risk of the abandoned uranium mine of Canto do Lagar, were collected and analysed 70 samples on stream sediments, soils and mine tailings materials. The relation between samples composition were tested using the Principal Components Analysis (PCA) (multivariate analysis) and spatial distribution using Kriging Indicator. The spatial distribution of stream sediments shows that the probability of expression for principal component 1 (explaining Y, Zr, Nb, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Hf, Th and U contents), decreases along SE-NW direction. This component is explained by the samples located inside mine influence. The probability of expression for principal component 2 (explaining Be, Na, Al, Si, P, K, Ca, Ti, Mn, Fe, Co, Ni, Cu, As, Rb, Sr, Mo, Cs, Ba, Tl and Bi contents), increases to middle stream line. This component is explained by the samples located outside mine influence. The spatial distribution of soils, shows that the probability of expression for principal component 1 (explaining Mg, P, Ca, Ge, Sr, Y, Zr, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, W, Th and U contents) decreases along SE direction and increases along NE and SW directions. The probability of expression for principal component 2 (explaining pH, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr and Pb contents), decreases from central points (inside mine influence) to peripheral points (outside mine influence) and gradually increases along N and SW directions. The spatial distribution of tailing materials did not allowed a consistent spatial distribution. In general, the stream sediments are classified as unpolluted and not polluted or moderately polluted, according to geoaccumulation Müller index with exception of local samples, located inside mine influence. The soils cannot be used for public, private or residential uses according to the Canadian soil legislation. However, almost samples can be used for commercial or industrial occupation. According to the target values and intervention values for soils remediation, these soils need intervention. Tailing materials samples are much polluted in thorium (Th) and uranium (U) and they cannot be used for public, private or residential uses.
Church, Stan E.; Kirschner, Frederick E.; Choate, LaDonna M.; Lamothe, Paul J.; Budahn, James R.; Brown, Zoe Ann
2008-01-01
Geochemical and radionuclide studies of sediment recovered from eight core sites in the Blue Creek flood plain and Blue Creek delta downstream in Lake Roosevelt provided a stratigraphic geochemical record of the contamination from uranium mining at the Midnite Mine. Sediment recovered from cores in a wetland immediately downstream from the mine site as well as from sediment catchments in Blue Creek and from cores in the delta in Blue Creek cove provided sufficient data to determine the premining geochemical background for the Midnite Mine tributary drainage. These data provide a geochemical background that includes material eroded from the Midnite Mine site prior to mine development. Premining geochemical background for the Blue Creek basin has also been determined using stream-sediment samples from parts of the Blue Creek, Oyachen Creek, and Sand Creek drainage basins not immediately impacted by mining. Sediment geochemistry showed that premining uranium concentrations in the Midnite Mine tributary immediately downstream of the mine site were strongly elevated relative to the crustal abundance of uranium (2.3 ppm). Cesium-137 (137Cs) data and public records of production at the Midnite Mine site provided age control to document timelines in the sediment from the core immediately downstream from the mine site. Mining at the Midnite Mine site on the Spokane Indian Reservation between 1956 and 1981 resulted in production of more than 10 million pounds of U3O8. Contamination of the sediment by uranium during the mining period is documented from the Midnite Mine along a small tributary to the confluence of Blue Creek, in Blue Creek, and into the Blue Creek delta. During the period of active mining (1956?1981), enrichment of base metals in the sediment of Blue Creek delta was elevated by as much as 4 times the concentration of those same metals prior to mining. Cadmium concentrations were elevated by a factor of 10 and uranium by factors of 16 to 55 times premining geochemical background determined upstream of the mine site. Postmining metal concentrations in sediment are lower than during the mining period, but remain elevated relative to premining geochemical background. Furthermore, the sediment composition of surface sediment in the Blue Creek delta is contaminated. Base-metal contamination by arsenic, cadmium, lead, and zinc in sediment in the delta in Blue Creek cove is dominated by suspended sediment from the Coeur d?Alene mining district. Uranium contamination in surface sediment in the delta of Blue Creek cove extends at least 500 meters downstream from the mouth of Blue Creek as defined by the 1,290-ft elevation boundary between lands administered by the National Park Service and the Spokane Indian Tribe. Comparisons of the premining geochemical background to sediment sampled during the period the mine was in operation, and to the sediment data from the postmining period, are used to delineate the extent of contaminated sediment in Blue Creek cove along the thalweg of Blue Creek into Lake Roosevelt. The extent of contamination out into Lake Roosevelt by mining remains open.
PEPSI deep spectra. II. Gaia benchmark stars and other M-K standards
NASA Astrophysics Data System (ADS)
Strassmeier, K. G.; Ilyin, I.; Weber, M.
2018-04-01
Context. High-resolution échelle spectra confine many essential stellar parameters once the data reach a quality appropriate to constrain the various physical processes that form these spectra. Aim. We provide a homogeneous library of high-resolution, high-S/N spectra for 48 bright AFGKM stars, some of them approaching the quality of solar-flux spectra. Our sample includes the northern Gaia benchmark stars, some solar analogs, and some other bright Morgan-Keenan (M-K) spectral standards. Methods: Well-exposed deep spectra were created by average-combining individual exposures. The data-reduction process relies on adaptive selection of parameters by using statistical inference and robust estimators. We employed spectrum synthesis techniques and statistics tools in order to characterize the spectra and give a first quick look at some of the science cases possible. Results: With an average spectral resolution of R ≈ 220 000 (1.36 km s-1), a continuous wavelength coverage from 383 nm to 912 nm, and S/N of between 70:1 for the faintest star in the extreme blue and 6000:1 for the brightest star in the red, these spectra are now made public for further data mining and analysis. Preliminary results include new stellar parameters for 70 Vir and α Tau, the detection of the rare-earth element dysprosium and the heavy elements uranium, thorium and neodymium in several RGB stars, and the use of the 12C to 13C isotope ratio for age-related determinations. We also found Arcturus to exhibit few-percent Ca II H&K and Hα residual profile changes with respect to the KPNO atlas taken in 1999. Based on data acquired with PEPSI using the Large Binocular Telescope (LBT) and the Vatican Advanced Technology Telescope (VATT). The LBT is an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are the University of Arizona on behalf of the Arizona university system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Leibniz-Institute for Astrophysics Potsdam (AIP), and Heidelberg University; the Ohio State University; and the Research Corporation, on behalf of the University of Notre Dame, University of Minnesota and University of Virginia.
31 CFR 540.317 - Uranium feed; natural uranium feed.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Uranium feed; natural uranium feed...) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The term uranium feed or natural uranium feed means natural uranium in the form of UF6 suitable for uranium...
31 CFR 540.317 - Uranium feed; natural uranium feed.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium feed; natural uranium feed...) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The term uranium feed or natural uranium feed means natural uranium in the form of UF6 suitable for uranium...
Process for continuous production of metallic uranium and uranium alloys
Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.
1995-06-06
A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.
Process for continuous production of metallic uranium and uranium alloys
Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.
1995-01-01
A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.
No Evidence of Circumstellar Gas Surrounding Type Ia Supernova SN 2017cbv
NASA Astrophysics Data System (ADS)
Ferretti, Raphael; Amanullah, Rahman; Bulla, Mattia; Goobar, Ariel; Johansson, Joel; Lundqvist, Peter
2017-12-01
Nearby type Ia supernovae (SNe Ia), such as SN 2017cbv, are useful events to address the question of what the elusive progenitor systems of the explosions are. Hosseinzadeh et al. suggested that the early blue excess of the light curve of SN 2017cbv could be due to the supernova ejecta interacting with a non-degenerate companion star. Some SN Ia progenitor models suggest the existence of circumstellar (CS) environments in which strong outflows create low-density cavities of different radii. Matter deposited at the edges of the cavities should be at distances at which photoionization due to early ultraviolet (UV) radiation of SNe Ia causes detectable changes to the observable Na I D and Ca II H&K absorption lines. To study possible narrow absorption lines from such material, we obtained a time series of high-resolution spectra of SN 2017cbv at phases between ‑14.8 and +83 days with respect to B-band maximum, covering the time at which photoionization is predicted to occur. Both narrow Na I D and Ca II H&K are detected in all spectra, with no measurable changes between the epochs. We use photoionization models to rule out the presence of Na I and Ca II gas clouds along the line of sight of SN 2017cbv between ∼8 × 1016–2 × 1019 cm and ∼1015–1017 cm, respectively. Assuming typical abundances, the mass of a homogeneous spherical CS gas shell with radius R must be limited to {M}{{H} {{I}}}{CSM}< 3× {10}-4× {(R/{10}17[{cm}])}2 {M}ȯ . The bounds point to progenitor models that deposit little gas in their CS environment.
Haribala; Hu, Bitao; Wang, Chengguo; Gerilemandahu; Xu, Xiao; Zhang, Shuai; Bao, Shanhu; Li, Yuhong
2016-08-01
Natural and artificial radionuclides and heavy metals in the surface soil of the uranium mining area of Tongliao, China, were measured using gamma spectrometry, flame atomic absorption spectrophotometry, graphite furnace atomic absorption spectrophotometry and microwave dissolution atomic fluorescence spectrometry respectively. The estimated average activity concentrations of (238)U, (232)Th, (226)Ra, (40)K and (137)Cs are 27.53±16.01, 15.89±5.20, 12.64±4.27, 746.84±38.24 and 4.23±4.76Bq/kg respectively. The estimated average absorbed dose rate in the air and annual effective dose rate are 46.58±5.26nGy/h and 57.13±6.45μSv, respectively. The radium equivalent activity, external and internal hazard indices were also calculated and their mean values are within the acceptable limits. The heavy metal concentrations of Pb, Cd, Cu, Zn, Hg and As from the surface soil were measured and their health risks were then determined. Although the content of Cd is much higher than the average background in China, its non-cancer and cancer risk indices are all within the acceptable ranges. These calculated hazard indices to estimate the potential radiological health risk in soil and the dose rate are well below their permissible limit. In addition the correlations between the radioactivity concentrations of the radionuclides and the heavy metals in soil were determined by the Pearson linear coefficient. Copyright © 2016 Elsevier Inc. All rights reserved.
The circumstellar environments of dusty main sequence stars
NASA Astrophysics Data System (ADS)
Gebrim, Antonio S. Hales
Our current understanding of the formation of planetary systems is strongly linked to astronomical observations of gas and dust around young stars. This thesis is dedicated to studying the physical conditions acting in the circumstellar environments of pre-main sequence and early main sequence dusty stars. These early stellar ages correspond to the timescales over which planets are thought to be formed. The first part of this work is dedicated to a search for dusty early A-type stars in the northern galactic plane. Data from the IPHAS Ha survey is first used to select a sample of galactic A-type stars. This sample is then correlated with data from the Spitzer Space Telescope in order to search for 8 microns and 24 microns excesses associated with warm dust orbiting the stars. The improved photometric sensitivities of these new galactic surveys allow the list of known galactic 'Vega-like' sources to be extended to unexplored optical magnitude ranges (13.5 < r < 18.5 mags). Only 1.1% of a sample of 3062 A-type stars with available optical to mid-infrared spectral energy distributions showed detectable excesses at 8 microns. Searching over 1860 stars observed at 24 microns yielded similar statistical results (1.2%). Only 10 stars have both 8 and 24 micron excesses. These results support the idea that warm dust located relatively close to the stars is rare in main sequence systems. Follow-up observations of this new sample of dust-excess stars will provide better insights into the properties of the systems. Resolved images are crucial for understanding the dynamics and evolution of proto-planetary disks. Observing the detailed disk structure requires high-contrast, high-spatial resolution imaging very close to the bright central star. As a consequence, only a handful of these systems have yet been resolved. The second part of this work shows how near-infrared Polarimetric Imaging on the 3.8 meter United Kingdom Infrared Telescope can be used to obtain reflected-light images of dust-disks around dust excess stars. This technique allows one to automatically suppress the unpolarised light from the central star, increasing the dynamic range for detecting polarised light scattered by the dust present in circumstellar discs. The detections of extended disks around the classical T Tauri star TW Hya and the Herbig Ac star HD 169142 are reported, as well as the strong but spatially unresolved polarization signals measured toward two other Herbig Ae stars. Monte Carlo scattering simulations are used to fit the J-, H- and K-band polarization images of the disk around TW Hya, providing new constraints on the geometry of TW Hya's disk. The third part of this thesis is dedicated to studying the gas content and dynamics around dust-excess stars. The evolution of circumstellar gas is thought to be strongly linked to the formation of gaseous giant planets similar to Jupiter, Saturn and most currently known extra-solar planets. However, the timescales over which circumstellar gas discs dissipate remains poorly constrained, mainly due to the observational difficulties associated with detecting small amounts of circumstellar gas. An analysis of high-resolution (R 50 000) optical spectroscopic data of a sample of 'Vega-like' candidates from the catalogue of Mannings & Barlow (1998) is presented. Analysis of the stellar spectra allows one to search for narrow absorption features due to circumstellar gas and possible Falling Evaporating Bodies, similar to the ones seen in the (3 Pictoris system. None of the stars from this sample show emission line activity in either Ha, Ca II or Na I, indicating that accretion of material onto the stars has ceased and suggesting they are true main sequence Vega-like stars. Four stars were found to exhibit narrow absorption features near the cores of the photospheric Ca II and Na I D lines, with HD 110058 being the strongest candidate to host a (3 Pictoris-like gas disk. If confirmed, HD 110058 would represent the Vega-like star with the lowest Lir/L* value (3.7 x 10"4) around which a CS gas disk has been detected.
Method for converting uranium oxides to uranium metal
Duerksen, Walter K.
1988-01-01
A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.
Methods and Models of the Hanford Internal Dosimetry Program, PNNL-MA-860
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.
2009-09-30
The Hanford Internal Dosimetry Program (HIDP) provides internal dosimetry support services for operations at the Hanford Site. The HIDP is staffed and managed by the Radiation and Health Technology group, within the Pacific Northwest National Laboratory (PNNL). Operations supported by the HIDP include research and development, the decontamination and decommissioning of facilities formerly used to produce and purify plutonium, and waste management activities. Radioelements of particular interest are plutonium, uranium, americium, tritium, and the fission and activation product radionuclides 137Cs, 90Sr, and 60Co. This manual describes the technical basis for the design of the routine bioassay monitoring program and formore » assessment of internal dose. The purposes of the manual are as follows: • Provide assurance that the HIDP derives from a sound technical base. • Promote the consistency and continuity of routine program activities. • Provide a historical record. • Serve as a technical reference for radiation protection personnel. • Aid in identifying and planning for future needs.« less
Dissolution of Used Nuclear Fuel Using a TBP/N-Paraffin Solvent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudisill, T. S.; Shehee, T. C.; Jones, D. H.
2017-10-02
The dissolution of unirradiated used nuclear fuel (UNF) pellets pretreated for tritium removal was demonstrated using a tributly phosphate (TBP) solvent. Dissolution of pretreated fuel in TBP could potentially combine dissolution with two cycle of solvent extraction required for separating the actinides and lanthanides from other fission products. Dissolutions were performed using UNF surrogates prepared from both uranyl nitrate and uranium trioxide produced from the pretreatment process by adding selected actinide and stable fission product elements. In laboratory-scale experiments, the U dissolution efficiency ranged from 80-99+% for both the nitrate and oxide surrogate fuels. On average, 80% of the Pumore » and 50% of the Np and Am in the nitrate surrogate dissolved; however, little of the transuranic elements dissolved in the oxide form. The majority of the 3+ lanthanide elements dissolved. Only small amounts of Sr (0-1.6%) and Mo (0.1-1.7%) and essentially no Cs, Ru, Zr, or Pd dissolved.« less
Gamma-ray spectroscopy of 131Sn81 via the (9Be, 8Be γ) reaction
NASA Astrophysics Data System (ADS)
Burcher, Sean; Bey, A.; Jones, K.; Ahn, S. H.; Ayres, A.; Schmitt, K. T.; Allmond, J.; Galindo-Urribari, A.; Radford, D. C.; Liang, J. F.; Neseraja, C. D.; Pain, S. D.; Pittman, S. T.; Smith, M. S.; Stracener, D. W.; Varner, R. L.; Bardayan, D. W.; O'Malley, P. D.; Cizewski, J. A.; Howard, M. E.; Manning, B. M.; Garcia Ruiz, R. F.; Kozub, R. L.; Matos, M.; Padilla-Rodal, E.
2016-09-01
Nuclear data in the region of the doubly-magic nucleus 132Sn82 is useful for benchmarking nuclear structure theories due to the clean single-particle nature of the nuclear wavefunction near the closed shells. At the Holifield Radioactive Ion Beam Facility (HRIBF) neutron-rich beams in the 132Sn82 region were produced via proton-induced fission of a Uranium-Carbide target. The CLARION array of HPGe detectors was coupled with the HyBall array of CsI detectors to allow for particle-gamma coincidence measurements. The gamma-ray de-excitation of the four lowest lying single-neutron states has been observed for the first time via the (9Be,8Be γ) reaction. The excitation energy of these states have been measured to higher precision than was possible with the previous charged particle measurement. This work was supported in part by the U.S. Department of Energy and the National Science Foundation.
Glass Ceramic Waste Forms for Combined CS+LN+TM Fission Products Waste Streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.
2010-09-23
In this study, glass ceramics were explored as an alternative waste form for glass, the current baseline, to be used for immobilizing alkaline/alkaline earth + lanthanide (CS+LN) or CS+LN+transition metal (TM) fission-product waste streams generated by a uranium extraction (UREX+) aqueous separations type process. Results from past work on a glass waste form for the combined CS+LN waste streams showed that as waste loading increased, large fractions of crystalline phases precipitated upon slow cooling.[1] The crystalline phases had no noticeable impact on the waste form performance by the 7-day product consistency test (PCT). These results point towards the development ofmore » a glass ceramic waste form for treating CS+LN or CS+LN+TM combined waste streams. Three main benefits for exploring glass ceramics are: (1) Glass ceramics offer increased solubility of troublesome components in crystalline phases as compared to glass, leading to increased waste loading; (2) The crystalline network formed in the glass ceramic results in higher heat tolerance than glass; and (3) These glass ceramics are designed to be processed by the same melter technology as the current baseline glass waste form. It will only require adding controlled canister cooling for crystallization into a glass ceramic waste form. Highly annealed waste form (essentially crack free) with up to 50X lower surface area than a typical High-Level Waste (HLW) glass canister. Lower surface area translates directly into increased durability. This was the first full year of exploring glass ceramics for the Option 1 and 2 combined waste stream options. This work has shown that dramatic increases in waste loading are achievable by designing a glass ceramic waste form as an alternative to glass. Table S1 shows the upper limits for heat, waste loading (based on solubility), and the decay time needed before treatment can occur for glass and glass ceramic waste forms. The improvements are significant for both combined waste stream options in terms of waste loading and/or decay time required before treatment. For Option 1, glass ceramics show an increase in waste loading of 15 mass % and reduction in decay time of 24 years. Decay times of {approx}50 years or longer are close to the expected age of the fuel that will be reprocessed when the modified open or closed fuel cycle is expected to be put into action. Option 2 shows a 2x to 2.5x increase in waste loading with decay times of only 45 years. Note that for Option 2 glass, the required decay time before treatment is only 35 years because of the waste loading limits related to the solubility of MoO{sub 3} in glass. If glass was evaluated for similar waste loadings as those achieved in Option 2 glass ceramics, the decay time would be significantly longer than 45 years. These glass ceramics are not optimized, but already they show the potential to dramatically reduce the amount of waste generated while still utilizing the proven processing technology used for glass production.« less
NASA Astrophysics Data System (ADS)
Hwang, DongKi; Tsukahara, Takehiko; Tanaka, Kosuke; Osaka, Masahiko; Ikeda, Yasuhisa
2015-11-01
In order to develop preparation method of raw metal oxide particles for low decontaminated MOX fuels by supercritical hydrothermal (SH) treatments, we have investigated behavior of aqueous solutions dissolving U(VI), Ln(III) (Ln: lanthanide = Ce, Pr, Nd, Sm, Tb), Cs(I), and Sr(II) nitrate or chloride compounds under SH conditions (temperature = 400-500 °C, pressure = 30-40 MPa). As a result, it was found that Ln(NO3)3 (Ln = Ce, Pr, Tb) compounds produce LnO2, that Ln(NO3)3 (Ln = Nd, Sm) compounds are hardly converted to their oxides, and that LnCl3 (Ln = Ce, Pr, Nd, Sm, Tb), CsNO3, and Sr(NO3)2 do not form their oxide compounds. Furthermore, HNO2 species were detected in the liquid phase obtained after treating HNO3 aqueous solutions containing Ln(NO3)3 (Ln = Ce, Pr, Tb) under SH conditions, and also NO2 and NO compounds were found to be produced by decomposition of HNO3. From these results, it was proposed that the Ln oxide (LnO2) particles are directly formed with oxidation of Ln(III) to Ln(IV) by HNO3 and HNO2 species in the SH systems. Moreover, the uranyl ions were found to form U3O8 and UO3 depending on the concentration of HNO3. From these results, it is expected that the raw metal oxide particles for low decontaminated MOX fuels are efficiently prepared by the SH method.
NASA Astrophysics Data System (ADS)
King, Jeremy R.
1997-06-01
Elemental abundances are presented for the metal-poor ([Fe/H] =-1.50) common proper motion pair HD 134439 and HD 134440. The abundances for the two stars are in very good agreement, with the neutral species showing only a small difference (˜0.05 dex) which is well within the statistical and Teff uncertainties. The essentially identical abundances, kinematics, and parallaxes of the two stars indicate that they share a common history. This history, however, appears to be different than other metal-poor stars. Suggestions, based on kinematic evidence, that these two-stars are representative of a distinct accretion event are corroborated by our abundance ratios, which indicate [Mg/Fe], [Si/Fe], and [Ca/Fe] are consistently some ˜0.3 dex lower than the vast majority of metal-poor field stars. Such underabundances have been predicted in environments like dwarf Spheroidals and the Magellanic Clouds. Moreover, our abundance ratio deficiencies are consistent with those recently observed in the the anomalously young globular clusters Rup 106 and Pal 12, which have been alleged to have been accreted from the Magellanic Clouds. The [Fe/H] and retrograde motion of the common proper motion pair are characteristic of the subset of Galactic globular clusters suggested by Rodgers & Paltoglou [ApJ, 283, L5 (1984)] to have been coalesced from satellite galaxies. We also call attention to the metal-poor subgiant BD+03 740 as another possible representative of an accreted or chaotically formed member of the halo field. If recent Fe analyses of this star are correct, then [Mg/Fe] and [0/Fe] are 0.5 dex lower than in other metal-poor field stars. This star also has a relatively low photometrically inferred age; relative youth has been noted as a possible characteristic of accreted field populations, and is qualitatively consistent with the young ages of the purportedly accreted globular clusters Rup 106, Pal 12, Ter 7, and Arp 2. Additionally, the revised [O/Fe] ratio for BD+03 740 would suggest a large spread, perhaps 0.7 dex, in [0/Fe] of field stars of very low [Fe/H]; this itself might provide strong evidence of some degree of chaotic halo formation in independent fragments. If, on the other hand, earlier Fe analyses of this star are correct, [Mg/Fe] and [O/Fe] for this star are unremarkable; however, the low gravity estimates from earlier studies would then suggest that BD+03 740 is a ≤3 Gyr field star with [Fe/H] ˜-3. Further spectroscopic study of this interesting object is needed to determine if it may be similar to the metal-poor ([Fe/H] = - 3.1) high velocity star CS 22873-139, which Preston [M 108, 2267 (1994)] has argued is ≤8 Gyr in age. Finally, our abundance ratios for RD 134439 and RD 134440 suggest that low [αFe] may be a characteristic of accreted halo systems including the anomalously young globulars. However, as has been noted by others, the low α-element abundances apparently cannot explain differences between photometric and Ca II-based metallicity estimates for these clusters, nor the variation in these differences between Rup 106 and Pal 12.
THE REMARKABLE MOLECULAR CONTENT OF THE RED SPIDER NEBULA (NGC 6537)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, J. L.; Ziurys, L. M., E-mail: lziurys@email.arizona.edu
2013-06-10
Millimeter and sub-millimeter molecular-line observations of planetary nebula (PN) NGC 6537 (Red Spider) have been carried out using the Sub-Millimeter Telescope and the 12 m antenna of the Arizona Radio Observatory in the frequency range 86-692 GHz. CN, HCN, HNC, CCH, CS, SO, H{sub 2}CO, HCO{sup +} and N{sub 2}H{sup +}, along with the J = 3 {yields} 2 and 6 {yields} 5 lines of CO and those of several isotopologues, were detected toward the Red Spider, estimated to be {approx}1600 yr old. This extremely high excitation PN evidently fosters a rich molecular environment. The presence of CS and SOmore » suggest that sulfur may be sequestered in molecular form in such nebulae. A radiative transfer analysis of the CO and CS spectra indicate a kinetic temperature of T{sub K} {approx} 60-80 K and gas densities of n(H{sub 2}) {approx} 1-8 Multiplication-Sign 10{sup 5} cm{sup -3} in NGC 6537. Column densities of the molecules in the nebula and their fractional abundances relative to H{sub 2} ranged from N{sub tot} {approx} 10{sup 16} cm{sup -2} and f {approx} 10{sup -4} for CO, to {approx}7 Multiplication-Sign 10{sup 11} cm{sup -2} and f {approx} 8 Multiplication-Sign 10{sup -9} for the least abundant species, N{sub 2}H{sup +}. For SO and CS, N{sub tot} {approx} 2 Multiplication-Sign 10{sup 12} cm{sup -2} and 10{sup 13} cm{sup -2}, respectively, with f {approx} 10{sup -7} and 2 Multiplication-Sign 10{sup -8}. It was also found that HCN/HNC Almost-Equal-To 2. A low {sup 12}C/{sup 13}C ratio of {approx}4 was measured, indicative of hot-bottom burning. These results, coupled with past observations, suggest that molecular abundances in PNe are governed principally by the physical and chemical properties of the individual object and its progenitor star, rather than nebular age.« less
Modeling and Analysis of Ultrarelativistic Heavy Ion Collisions
NASA Astrophysics Data System (ADS)
McCormack, William; Pratt, Scott
2014-09-01
High-energy collisions of heavy ions, such as gold, copper, or uranium serve as an important means of studying quantum chromodynamic matter. When relativistic nuclei collide, a hot, energetic fireball of dissociated partonic matter is created; this super-hadronic matter is believed to be the quark gluon plasma (QGP), which is theorized to have comprised the universe immediately following the big bang. As the fireball expands and cools, it reaches freeze-out temperatures, and quarks hadronize into baryons and mesons. To characterize this super-hadronic matter, one can use balance functions, a means of studying correlations due to local charge conservation. In particular, the simple model used in this research assumed two waves of localized charge-anticharge production, with an abrupt transition from the QGP stage to hadronization. Balance functions were constructed as the sum of these two charge production components, and four parameters were manipulated to match the model's output with experimental data taken from the STAR Collaboration at RHIC. Results show that the chemical composition of the super-hadronic matter are consistent with that of a thermally equilibrated QGP. High-energy collisions of heavy ions, such as gold, copper, or uranium serve as an important means of studying quantum chromodynamic matter. When relativistic nuclei collide, a hot, energetic fireball of dissociated partonic matter is created; this super-hadronic matter is believed to be the quark gluon plasma (QGP), which is theorized to have comprised the universe immediately following the big bang. As the fireball expands and cools, it reaches freeze-out temperatures, and quarks hadronize into baryons and mesons. To characterize this super-hadronic matter, one can use balance functions, a means of studying correlations due to local charge conservation. In particular, the simple model used in this research assumed two waves of localized charge-anticharge production, with an abrupt transition from the QGP stage to hadronization. Balance functions were constructed as the sum of these two charge production components, and four parameters were manipulated to match the model's output with experimental data taken from the STAR Collaboration at RHIC. Results show that the chemical composition of the super-hadronic matter are consistent with that of a thermally equilibrated QGP. An MSU REU Project.
NASA Astrophysics Data System (ADS)
Nagy, Z.; van der Tak, F. F. S.; Fuller, G. A.; Plume, R.
2015-05-01
Context. The massive and luminous star-forming region W49A is a well-known Galactic candidate to probe the physical conditions and chemistry similar to those expected in external starburst galaxies. Aims: We aim to probe the physical and chemical structure of W49A on a spatial scale of ~0.8 pc based on the JCMT Spectral Legacy Survey, which covers the frequency range between 330 and 373 GHz. Methods: The wide 2 × 2 arcmin field and the high spectral resolution of the HARP instrument on JCMT provides information on the spatial structure and kinematics of the cloud traced by the observed molecular lines. For species where multiple transitions are available, we estimate excitation temperatures and column densities using a population diagram method that takes beam dilution and optical depth corrections into account. Results: We detected 255 transitions corresponding to 63 species in the 330-373 GHz range at the center position of W49A. Excitation conditions can be probed for 14 molecules, including the complex organic molecules CH3CCH, CH3CN, and CH3OH. The chemical composition suggests the importance of shock, photon-dominated region (PDR), and hot core chemistry. Many molecular lines show a significant spatial extent across the maps including CO and its isotopologues, high density tracers (e.g., HCN, HNC, CS, HCO+), and tracers of UV irradiation (e.g., CN and C2H). The spatially extended species reveal a complex velocity-structure of W49A with possible infall and outflow motions. Large variations are seen between the subregions with mostly blue-shifted emission toward the eastern tail, mostly red-shifted emission toward the northern clump, and emission peaking around the expected source velocity toward the southwest clump. Conclusions: A comparison of column density ratios of characteristic species observed toward W49A to Galactic PDRs suggests that while the chemistry toward the W49A center is driven by a combination of UV irradiation and shocks, UV irradiation dominates for the northern clump, eastern tail, and southwest clump regions. A comparison to a starburst galaxy and an active galactic nucleus suggests similar C2H, CN, and H2CO abundances (with respect to the dense gas tracer 34CS) between the ~0.8 pc scale probed for W49A and the >1 kpc regions in external galaxies with global star formation. Appendices are available in electronic form at http://www.aanda.org
40 CFR 421.320 - Applicability: Description of the secondary uranium subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... secondary uranium subcategory. 421.320 Section 421.320 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Uranium Subcategory § 421.320 Applicability: Description of the secondary uranium... uranium (including depleted uranium) by secondary uranium facilities. ...
40 CFR 421.320 - Applicability: Description of the secondary uranium subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... secondary uranium subcategory. 421.320 Section 421.320 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Uranium Subcategory § 421.320 Applicability: Description of the secondary uranium... uranium (including depleted uranium) by secondary uranium facilities. ...
40 CFR 421.320 - Applicability: Description of the secondary uranium subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... secondary uranium subcategory. 421.320 Section 421.320 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Uranium Subcategory § 421.320 Applicability: Description of the secondary uranium... uranium (including depleted uranium) by secondary uranium facilities. ...
40 CFR 421.320 - Applicability: Description of the secondary uranium subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... secondary uranium subcategory. 421.320 Section 421.320 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Uranium Subcategory § 421.320 Applicability: Description of the secondary uranium... uranium (including depleted uranium) by secondary uranium facilities. ...
40 CFR 421.320 - Applicability: Description of the secondary uranium subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... secondary uranium subcategory. 421.320 Section 421.320 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Uranium Subcategory § 421.320 Applicability: Description of the secondary uranium... uranium (including depleted uranium) by secondary uranium facilities. ...
Bioremediation of uranium contamination with enzymatic uranium reduction
Lovley, D.R.; Phillips, E.J.P.
1992-01-01
Enzymatic uranium reduction by Desulfovibrio desulfuricans readily removed uranium from solution in a batch system or when D. desulfuricans was separated from the bulk of the uranium-containing water by a semipermeable membrane. Uranium reduction continued at concentrations as high as 24 mM. Of a variety of potentially inhibiting anions and metals evaluated, only high concentrations of copper inhibited uranium reduction. Freeze-dried cells, stored aerobically, reduced uranium as fast as fresh cells. D. desulfuricans reduced uranium in pH 4 and pH 7.4 mine drainage waters and in uraniumcontaining groundwaters from a contaminated Department of Energy site. Enzymatic uranium reduction has several potential advantages over other bioprocessing techniques for uranium removal, the most important of which are as follows: the ability to precipitate uranium that is in the form of a uranyl carbonate complex; high capacity for uranium removal per cell; the formation of a compact, relatively pure, uranium precipitate.
Release behavior of uranium in uranium mill tailings under environmental conditions.
Liu, Bo; Peng, Tongjiang; Sun, Hongjuan; Yue, Huanjuan
2017-05-01
Uranium contamination is observed in sedimentary geochemical environments, but the geochemical and mineralogical processes that control uranium release from sediment are not fully appreciated. Identification of how sediments and water influence the release and migration of uranium is critical to improve the prevention of uranium contamination in soil and groundwater. To understand the process of uranium release and migration from uranium mill tailings under water chemistry conditions, uranium mill tailing samples from northwest China were investigated with batch leaching experiments. Results showed that water played an important role in uranium release from the tailing minerals. The uranium release was clearly influenced by contact time, liquid-solid ratio, particle size, and pH under water chemistry conditions. Longer contact time, higher liquid content, and extreme pH were all not conducive to the stabilization of uranium and accelerated the uranium release from the tailing mineral to the solution. The values of pH were found to significantly influence the extent and mechanisms of uranium release from minerals to water. Uranium release was monitored by a number of interactive processes, including dissolution of uranium-bearing minerals, uranium desorption from mineral surfaces, and formation of aqueous uranium complexes. Considering the impact of contact time, liquid-solid ratio, particle size, and pH on uranium release from uranium mill tailings, reducing the water content, decreasing the porosity of tailing dumps and controlling the pH of tailings were the key factors for prevention and management of environmental pollution in areas near uranium mines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Montelongo, Michel Y; Herrera, Eduardo F; Ramirez, Elias; Carrillo, Jorge I; Campos, Alfredo; Gomez, Ramón; Montero, Maria E; Rodriguez, Luis M
2015-08-01
The city of Aldama, Chihuahua, Mexico is located 30 km NNE of Chihuahua city. Three high-volume collectors with PM10 heads were placed in specific locations in Aldama during the year 2011 to measure radioisotope concentrations in the air. The city area of 16 km² was divided into 64 squares of 500 × 500 m. At the vertices of the grid, silt samples were taken between January and June 2011, before the rains began. The concentrations of natural, cosmogenic, and anthropogenic radioactive isotopes were calculated in both filters and silts samples. The isotopes selected for the measurement were ²³⁸U, ²³²Th, (7)Be, ¹³⁷Cs, and ⁴⁰K. Measurements of PM10 and silts were performed during 2011, coinciding with the accident at Fukushima, Japan, on March 11. For this reason, we could see the ¹³⁷Cs in PM10 increase between April and July; with the arrival of the rains, the ¹³⁷Cs concentration began to decrease in the air. The concentration of PM10 measured by the equipment located at the Mexican Uranium plant (URAMEX, initials in Spanish) that was processing radioactive ores exceeded the standard values in February and March, when the air velocity increases. At City Hall, the concentration of PM10 surpassed the value of the standard between May and July. This increased concentration is likely due to increased automobile traffic because City Hall is located in the city center. At a private home, the concentration of PM10 surpassed the standard on several days during the year because the home is located on the outskirts of the city, where most of the streets are not paved. Due to the high concentrations of PM10, especially at the collection point located at the private home, it is necessary to start taking steps to mitigate their spread before they cause health problems in the younger population and in older adults.
Periodic trends in hexanuclear actinide clusters.
Diwu, Juan; Wang, Shuao; Albrecht-Schmitt, Thomas E
2012-04-02
Four new Th(IV), U(IV), and Np(IV) hexanuclear clusters with 1,2-phenylenediphosphonate as the bridging ligand have been prepared by self-assembly at room temperature. The structures of Th(6)Tl(3)[C(6)H(4)(PO(3))(PO(3)H)](6)(NO(3))(7)(H(2)O)(6)·(NO(3))(2)·4H(2)O (Th6-3), (NH(4))(8.11)Np(12)Rb(3.89)[C(6)H(4)(PO(3))(PO(3)H)](12)(NO(3))(24)·15H(2)O (Np6-1), (NH(4))(4)U(12)Cs(8)[C(6)H(4)(PO(3))(PO(3)H)](12)(NO(3))(24)·18H(2)O (U6-1), and (NH(4))(4)U(12)Cs(2)[C(6)H(4)(PO(3))(PO(3)H)](12)(NO(3))(18)·40H(2)O (U6-2) are described and compared with other clusters of containing An(IV) or Ce(IV). All of the clusters share the common formula M(6)(H(2)O)(m)[C(6)H(3)(PO(3))(PO(3)H)](6)(NO(3))(n)((6-n)) (M = Ce, Th, U, Np, Pu). The metal centers are normally nine-coordinate, with five oxygen atoms from the ligand and an additional four either occupied by NO(3)(-) or H(2)O. It was found that the Ce, U, and Pu clusters favor both C(3i) and C(i) point groups, while Th only yields in C(i), and Np only C(3i). In the C(3i) clusters, there are two NO(3)(-) anions bonded to the metal centers. In the C(i) clusters, the number of NO(3)(-) anions varies from 0 to 2. The change in the ionic radius of the actinide ions tunes the cavity size of the clusters. The thorium clusters were found to accept larger ions including Cs(+) and Tl(+), whereas with uranium and later elements, only NH(4)(+) and/or Rb(+) reside in the center of the clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babo, Jean-Marie; Department of Civil and Environmental Engineering and Earth Sciences and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556; Albrecht-Schmitt, Thomas E., E-mail: talbrechtschmitt@gmail.com
2013-10-15
Cs(UO{sub 2})Cl(SeO{sub 3}) (1), Rb{sub 2}(UO{sub 2}){sub 3}O{sub 2}(SeO{sub 3}){sub 3} (2), and RbNa{sub 5}U{sub 2}(SO{sub 4}){sub 7} (3) single crystals were synthesized using CsCl, RbCl, and a CuCl/NaCl eutectic mixture as fluxes, respectively. Their lattice parameters and space groups are as follows: P2{sub 1}/n (a=6.548(1) Å, b=11.052(2) Å, c=10.666(2) Å and β=93.897(3)°), P1{sup ¯} (a=7.051(2) Å, b=7.198(2) Å, c=8.314(2) Å, α=107.897(3)°, β=102.687(3)° and γ=100.564(3)°) and C2/c (a=17.862(4) Å, b=6.931(1) Å, c=20.133(4) Å and β=109.737(6)°. The small anionic building units found in these compounds are SeO{sub 3}{sup 2−} and SO{sub 4}{sup 2−} tetrahedra, oxide, and chloride. The crystal structure ofmore » the first compound is composed of [(UO{sub 2}){sub 2}Cl{sub 2}(SeO{sub 3}){sub 2}]{sup 2−} chains separated by Cs{sup +} cations. The structure of (2) is constructed from [(UO{sub 2}){sub 3}O{sub 11}]{sup 16−} chains further connected through selenite units into layers stacked perpendicularly to the [0 1 0] direction, with Rb{sup +} cations intercalating between them. The structure of compound (3) is made of uranyl sulfate layers formed by edge and vertex connections between dimeric [U{sub 2}O{sub 16}] and [SO{sub 4}] polyhedra. These layers contain unusual sulfate–metal connectivity as well as large voids. - Graphical abstract: A new family of uranyl selenites and sulfates has been prepared by high-temperature redox reactions. This compounds display new bonding motifs. Display Omitted - Highlights: • Low-dimensional Uranyl Oxoanion compounds. • Conversion of U(IV) to U(VI) at high temperatures. • Dimensional reduction by both halides and stereochemically active lone-pairs.« less
Absolute parameters of young stars: QZ Carinae
NASA Astrophysics Data System (ADS)
Walker, W. S. G.; Blackford, M.; Butland, R.; Budding, E.
2017-09-01
New high-resolution spectroscopy and BVR photometry together with literature data on the complex massive quaternary star QZ Car are collected and analysed. Absolute parameters are found as follows. System A: M1 = 43 (±3), M2 = 19 (+3 -7), R1 = 28 (±2), R2 = 6 (±2), (⊙); T1 ˜ 28 000, T2 ˜ 33 000 K; System B: M1 = 30 (±3), M2 = 20 (±3), R1 = 10 (±0.5), R2 = 20 (±1), (⊙); T1 ˜ 36 000, T2 ˜ 30 000 K (model dependent temperatures). The wide system AB: Period = 49.5 (±1) yr, Epochs, conjunction = 1984.8 (±1), periastron = 2005.3 (±3) yr, mean separation = 65 (±3), (au); orbital inclination = 85 (+5 -15) deg, photometric distance ˜2700 (±300) pc, age = 4 (±1) Myr. Other new contributions concern: (a) analysis of the timing of minima differences (O - C)s for the eclipsing binary (System B); (b) the width of the eclipses, pointing to relatively large effects of radiation pressure; (c) inferences from the rotational widths of lines for both Systems A and B; and (d) implications for theoretical models of early-type stars. While feeling greater confidence on the quaternary's general parametrization, observational complications arising from strong wind interactions or other, unclear, causes still inhibit precision and call for continued multiwavelength observations. Our high-inclination value for the AB system helps to explain failures to resolve the wide binary in the previous years. The derived young age independently confirms membership of QZ Car to the open cluster Collinder 228.
The dynamical properties of dense filaments in the infrared dark cloud G035.39-00.33
NASA Astrophysics Data System (ADS)
Henshaw, J. D.; Caselli, P.; Fontani, F.; Jiménez-Serra, I.; Tan, J. C.
2014-05-01
Infrared dark clouds (IRDCs) are unique laboratories to study the initial conditions of high-mass star and star cluster formation. We present high-sensitivity and high-angular-resolution Institut de Radioastronomie Millimétrique (IRAM) Plateau de Bure Interferometer observations of N2H+ (1-0) towards IRDC G035.39-00.33. It is found that G035.39-00.33 is a highly complex environment, consisting of several mildly supersonic filaments (σ _NT/cs ˜ 1.5), separated in velocity by <1 km s-1. Where multiple spectral components are evident, moment analysis overestimates the non-thermal contribution to the line-width by a factor of ˜2. Large-scale velocity gradients evident in previous single-dish maps may be explained by the presence of substructure now evident in the interferometric maps. Whilst global velocity gradients are small (<0.7 km s-1 pc-1), there is evidence for dynamic processes on local scales (˜1.5-2.5 km s-1 pc-1). Systematic trends in velocity gradient are observed towards several continuum peaks. This suggests that the kinematics are influenced by dense (and in some cases, starless) cores. These trends are interpreted as either infalling material, with accretion rates ˜(7 ± 4) × 10-5 M⊙ yr-1, or expanding shells with momentum ˜24 ± 12 M⊙ km s-1. These observations highlight the importance of high-sensitivity and high-spectral-resolution data in disentangling the complex kinematic and physical structure of massive star-forming regions.
Confirming the least massive members of the Pleiades star cluster
NASA Astrophysics Data System (ADS)
Zapatero Osorio, M. R.; Béjar, V. J. S.; Lodieu, N.; Manjavacas, E.
2018-03-01
We present optical photometry (i and Z band) and low-resolution spectroscopy (640-1015 nm) of very faint candidate members (J = 20.2-21.2 mag) of the Pleiades star cluster (120 Myr). The main goal is to address their cluster membership via photometric, astrometric, and spectroscopic studies, and to determine the properties of the least massive population of the cluster through the comparison of the data with younger and older spectral counterparts and state-of-the art model atmospheres. We confirm three bona fide Pleiades members that have extremely red optical and infrared colours, effective temperatures of ≈1150 and ≈1350 K, and masses in the interval 11-20 MJup, and one additional likely member that shares the same motion as the cluster but does not appear to be as red as the other members with similar brightness. This latter object requires further near-infrared spectroscopy to fully address its membership in the Pleiades. The optical spectra of two bona fide members were classified as L6-L7 and show features of K I, a tentative detection of Cs I, hydrides, and water vapour with an intensity similar to high-gravity dwarfs of related classification despite their young age. The properties of the Pleiades L6-L7 members clearly indicate that very red colours of L dwarfs are not a direct evidence of ages younger than ≈100 Myr. We also report on the determination of the bolometric corrections for the coolest Pleiades members. These data can be used to interpret the observations of the atmospheres of exoplanets orbiting stars.
PRODUCTION OF URANIUM METAL BY CARBON REDUCTION
Holden, R.B.; Powers, R.M.; Blaber, O.J.
1959-09-22
The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.
STRIPPING OF URANIUM FROM ORGANIC EXTRACTANTS
Crouse, D.J. Jr.
1962-09-01
A liquid-liquid extraction method is given for recovering uranium values from uranium-containing solutions. Uranium is removed from a uranium-containing organic solution by contacting said organic solution with an aqueous ammonium carbonate solution substantially saturated in uranium values. A uranium- containing precipitate is thereby formed which is separated from the organic and aqueous phases. Uranium values are recovered from this separated precipitate. (AE C)
Process for electroslag refining of uranium and uranium alloys
Lewis, P.S. Jr.; Agee, W.A.; Bullock, J.S. IV; Condon, J.B.
1975-07-22
A process is described for electroslag refining of uranium and uranium alloys wherein molten uranium and uranium alloys are melted in a molten layer of a fluoride slag containing up to about 8 weight percent calcium metal. The calcium metal reduces oxides in the uranium and uranium alloys to provide them with an oxygen content of less than 100 parts per million. (auth)
NASA Astrophysics Data System (ADS)
Papadopoulos, Padelis P.; Zhang, Zhi-Yu; Xilouris, E. M.; Weiss, Axel; van der Werf, Paul; Israel, F. P.; Greve, T. R.; Isaak, Kate G.; Gao, Y.
2014-06-01
We used the SPIRE/FTS instrument aboard the Herschel Space Observatory to obtain the Spectral Line Energy Distributions (SLEDs) of CO from J = 4-3 to J = 13-12 of Arp 193 and NGC 6240, two classical merger/starbursts selected from our molecular line survey of local Luminous Infrared Galaxies (L IR >= 1011 L ⊙). The high-J CO SLEDs are then combined with ground-based low-J CO, 13CO, HCN, HCO+, CS line data and used to probe the thermal and dynamical states of their large molecular gas reservoirs. We find the two CO SLEDs strongly diverging from J = 4-3 onward, with NGC 6240 having a much higher CO line excitation than Arp 193, despite their similar low-J CO SLEDs and L FIR/L CO, 1 - 0, L HCN/L CO (J = 1-0) ratios (proxies of star formation efficiency and dense gas mass fraction). In Arp 193, one of the three most extreme starbursts in the local universe, the molecular SLEDs indicate a small amount (~5%-15%) of dense gas (n >= 104 cm-3) unlike NGC 6240 where most of the molecular gas (~60%-70%) is dense (n ~ (104-105) cm-3). Strong star-formation feedback can drive this disparity in their dense gas mass fractions, and also induce extreme thermal and dynamical states for the molecular gas. In NGC 6240, and to a lesser degree in Arp 193, we find large molecular gas masses whose thermal states cannot be maintained by FUV photons from Photon-Dominated Regions. We argue that this may happen often in metal-rich merger/starbursts, strongly altering the initial conditions of star formation. ALMA can now directly probe these conditions across cosmic epoch, and even probe their deeply dust-enshrouded outcome, the stellar initial mass function averaged over galactic evolution.
Detection of depleted uranium in urine of veterans from the 1991 Gulf War.
Gwiazda, R H; Squibb, K; McDiarmid, M; Smith, D
2004-01-01
American soldiers involved in "friendly fire" accidents during the 1991 Gulf War were injured with depleted-uranium-containing fragments or possibly exposed to depleted uranium via other routes such as inhalation, ingestion, and/or wound contamination. To evaluate the presence of depleted uranium in these soldiers eight years later, the uranium concentration and depleted uranium content of urine samples were determined by inductively coupled plasma mass spectrometry in (a) depleted uranium exposed soldiers with embedded shrapnel, (b) depleted uranium exposed soldiers with no shrapnel, and (c) a reference group of deployed soldiers not involved in the friendly fire incidents. Uranium isotopic ratios measured in many urine samples injected directly into the inductively coupled plasma mass spectrometer and analyzed at a mass resolution m/delta m of 300 appeared enriched in 235U with respect to natural abundance (0.72%) due to the presence of an interference of a polyatomic molecule of mass 234.81 amu that was resolved at a mass resolution m/delta m of 4,000. The 235U abundance measured on uranium separated from these urines by anion exchange chromatography was clearly natural or depleted. Urine uranium concentrations of soldiers with shrapnel were higher than those of the two other groups, and 16 out of 17 soldiers with shrapnel had detectable depleted uranium in their urine. In depleted uranium exposed soldiers with no shrapnel, depleted uranium was detected in urine samples of 10 out of 28 soldiers. The median uranium concentration of urines with depleted uranium from soldiers without shrapnel was significantly higher than in urines with no depleted uranium, though substantial overlap in urine uranium concentrations existed between the two groups. Accordingly, assessment of depleted uranium exposure using urine must rely on uranium isotopic analyses, since urine uranium concentration is not an unequivocal indicator of depleted uranium presence in soldiers with no embedded shrapnel.
Analysis Of 2H-Evaporator Scale Wall [HTF-13-82] And Pot Bottom [HTF-13-77] Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oji, L. N.
2013-09-11
Savannah River Remediation (SRR) is planning to remove a buildup of sodium aluminosilicate scale from the 2H-evaporator pot by loading and soaking the pot with heated 1.5 M nitric acid solution. Sampling and analysis of the scale material has been performed so that uranium and plutonium isotopic analysis can be input into a Nuclear Criticality Safety Assessment (NCSA) for scale removal by chemical cleaning. Historically, since the operation of the Defense Waste Processing Facility (DWPF), silicon in the DWPF recycle stream combines with aluminum in the typical tank farm supernate to form sodium aluminosilicate scale mineral deposits in the 2H-evaporatormore » pot and gravity drain line. The 2H-evaporator scale samples analyzed by Savannah River National Laboratory (SRNL) came from two different locations within the evaporator pot; the bottom cone sections of the 2H-evaporator pot [Sample HTF-13-77] and the wall 2H-evaporator [sample HTF-13-82]. X-ray diffraction analysis (XRD) confirmed that both the 2H-evaporator pot scale and the wall samples consist of nitrated cancrinite (a crystalline sodium aluminosilicate solid) and clarkeite (a uranium oxyhydroxide mineral). On ''as received'' basis, the bottom pot section scale sample contained an average of 2.59E+00 {+-} 1.40E-01 wt % total uranium with a U-235 enrichment of 6.12E-01 {+-} 1.48E-02 %, while the wall sample contained an average of 4.03E+00 {+-} 9.79E-01 wt % total uranium with a U-235 enrichment of 6.03E-01% {+-} 1.66E-02 wt %. The bottom pot section scale sample analyses results for Pu-238, Pu-239, and Pu-241 are 3.16E-05 {+-} 5.40E-06 wt %, 3.28E-04 {+-} 1.45E-05 wt %, and <8.80E-07 wt %, respectively. The evaporator wall scale samples analysis values for Pu-238, Pu-239, and Pu-241 averages 3.74E-05 {+-} 6.01E-06 wt %, 4.38E-04 {+-} 5.08E-05 wt %, and <1.38E-06 wt %, respectively. The Pu-241 analyses results, as presented, are upper limit values. For these two evaporator scale samples obtained at two different locations within the evaporator pot the major radioactive components (on a mass basis) in the additional radionuclide analyses were Sr-90, Cs-137 Np-237, Pu-239/240 and Th-232. Small quantities of americium and curium were detected in the blanks used for Am/Cm method for these radionuclides. These trace radionuclide amounts are assumed to come from airborne contamination in the shielded cells drying or digestion oven, which has been replaced. Therefore, the Am/Cm results, as presented, may be higher than the true Am/Cm values for these samples. These results are provided so that SRR can calculate the equivalent uranium-235 concentrations for the NCSA. Results confirm that the uranium contained in the scale remains depleted with respect to natural uranium. SRNL did not calculate an equivalent U-235 enrichment, which takes into account other fissionable isotopes U-233, Pu-239 and Pu-241. The applicable method for calculation of equivalent U-235 will be determined in the NCSA. With a few exceptions, a comparison of select radionuclides measurements from this 2013 2H evaporator scale characterization (pot bottom and wall scale samples) with those measurements for the same radionuclides in the 2010 2H evaporator scale analysis shows that the radionuclide analysis for both years are fairly comparable; the analyses results are about the same order of magnitude.« less
31 CFR 540.317 - Uranium feed; natural uranium feed.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The...
31 CFR 540.317 - Uranium feed; natural uranium feed.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The...
31 CFR 540.317 - Uranium feed; natural uranium feed.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The...
NASA Astrophysics Data System (ADS)
Truran, J. W., Jr.; Heger, A.
2003-12-01
Nucleosynthesis is the study of the nuclear processes responsible for the formation of the elements which constitute the baryonic matter of the Universe. The elements of which the Universe is composed indeed have a quite complicated nucleosynthesis history, which extends from the first three minutes of the Big Bang through to the present. Contemporary nucleosynthesis theory associates the production of certain elements/isotopes or groups of elements with a number of specific astrophysical settings, the most significant of which are: (i) the cosmological Big Bang, (ii) stars, and (iii) supernovae.Cosmological nucleosynthesis studies predict that the conditions characterizing the Big Bang are consistent with the synthesis only of the lightest elements: 1H, 2H, 3He, 4He, and 7Li (Burles et al., 2001; Cyburt et al., 2002). These contributions define the primordial compositions both of galaxies and of the first stars formed therein. Within galaxies, stars and supernovae play the dominant role both in synthesizing the elements from carbon to uranium and in returning heavy-element-enriched matter to the interstellar gas from which new stars are formed. The mass fraction of our solar system (formed ˜4.6 Gyr ago) in the form of heavy elements is ˜1.8%, and stars formed today in our galaxy can be a factor 2 or 3 more enriched (Edvardsson et al., 1993). It is the processes of nucleosynthesis operating in stars and supernovae that we will review in this chapter. We will confine our attention to three broad categories of stellar and supernova site with which specific nucleosynthesis products are understood to be identified: (i) intermediate mass stars, (ii) massive stars and associated type II supernovae, and (iii) type Ia supernovae. The first two of these sites are the straightforward consequence of the evolution of single stars, while type Ia supernovae are understood to result from binary stellar evolution.Stellar nucleosynthesis resulting from the evolution of single stars is a strong function of stellar mass (Woosley et al., 2002). Following phases of hydrogen and helium burning, all stars consist of a carbon-oxygen core. In the mass range of the so-called "intermediate mass" stars (1<˜M/M⊙<˜10), the temperatures realized in their degenerate cores never reach levels at which carbon ignition can occur. Substantial element production occurs in such stars during the asymptotic giant branch (AGB) phase of evolution, accompanied by significant mass loss, and they evolve to white dwarfs of carbon-oxygen (or, less commonly, oxygen-neon) composition. In contrast, the increased pressures that are experienced in the cores of stars of masses M>˜10M⊙ yield higher core temperatures that enable subsequent phases of carbon, neon, oxygen, and silicon burning to proceed. Collapse of an iron core devoid of further nuclear energy then gives rise to a type II supernova and the formation of a neutron star or black hole remnant (Heger et al., 2003). The ejecta of type IIs contain the ashes of nuclear burning of the entire life of the star, but are also modified by the explosion itself. They are the source of most material (by mass) heavier than helium.Observations reveal that binary stellar systems comprise roughly half of all stars in our galaxy. Single star evolution, as noted above, can leave in its wake compact stellar remnants: white dwarfs, neutron stars, and black holes. Indeed, we have evidence for the occurrence of all three types of condensed remnant in binaries. In close binary systems, mass transfer can take place from an evolving companion onto a compact object. This naturally gives rise to a variety of interesting phenomena: classical novae (involving hydrogen thermonuclear runaways in accreted shells on white dwarfs (Gehrz et al., 1998)), X-ray bursts (hydrogen/helium thermonuclear runaways on neutron stars (Strohmayer and Bildsten, 2003)), and X-ray binaries (accretion onto black holes). For some range of conditions, accretion onto carbon-oxygen white dwarfs will permit growth of the CO core to the Chandrasekhar limit MCh=1.4M⊙, and a thermonuclear runaway in to core leads to a type Ia supernova.In this chapter, we will review the characteristics of thermonuclear processing in the three environments we have identified: (i) intermediate-mass stars; (ii) massive stars and type II supernovae; and (iii) type Ia supernovae. This will be followed by a brief discussion of galactic chemical evolution, which illustrates how the contributions from each of these environments are first introduced into the interstellar media of galaxies. Reviews of nucleosynthesis processes include those by Arnett (1995), Trimble (1975), Truran (1984), Wallerstein et al. (1997), and Woosley et al. (2002). An overview of galactic chemical evolution is presented by Tinsley (1980).
Process for electrolytically preparing uranium metal
Haas, Paul A.
1989-01-01
A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.
Process for electrolytically preparing uranium metal
Haas, Paul A.
1989-08-01
A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.
Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid.
Sung, Jinhyun; Kim, Jungsoo; Lee, Youngbae; Seol, Jeunggun; Ryu, Jaebong; Park, Kwangheon
2011-07-01
The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 °C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined.
Duquène, L; Vandenhove, H; Tack, F; Van Hees, M; Wannijn, J
2010-02-01
The usefulness of uranium concentration in soil solution or recovered by selective extraction as unequivocal bioavailability indices for uranium uptake by plants is still unclear. The aim of the present study was to test if the uranium concentration measured by the diffusive gradient in thin films (DGT) technique is a relevant substitute for plant uranium availability in comparison to uranium concentration in the soil solution or uranium recovered by ammonium acetate. Ryegrass (Lolium perenne L. var. Melvina) is grown in greenhouse on a range of uranium spiked soils. The DGT-recovered uranium concentration (C(DGT)) was correlated with uranium concentration in the soil solution or with uranium recovered by ammonium acetate extraction. Plant uptake was better predicted by the summed soil solution concentrations of UO(2)(2+), uranyl carbonate complexes and UO(2)PO(4)(-). The DGT technique did not provide significant advantages over conventional methods to predict uranium uptake by plants. Copyright 2009 Elsevier Ltd. All rights reserved.
Sahoo, S K; Žunić, Z S; Kritsananuwat, R; Zagrodzki, P; Bossew, P; Veselinovic, N; Mishra, S; Yonehara, H; Tokonami, S
2015-07-01
Human hair and nails can be considered as bio-indicators of the public exposure to certain natural radionuclides and other toxic metals over a long period of months or even years. The level of elements in hair and nails usually reflect their levels in other tissues of body. Niška Banja, a spa town located in southern Serbia, with locally high natural background radiation was selected for the study. To assess public exposure to the trace elements, hair and nail samples were collected and analyzed. The concentrations of uranium, thorium and some trace and toxic elements (Mn, Ni, Cu, Sr, Cd, and Cs) were determined using inductively coupled plasma mass spectrometry (ICP-MS). U and Th concentrations in hair varied from 0.0002 to 0.0771 μg/g and from 0.0002 to 0.0276 μg/g, respectively. The concentrations in nails varied from 0.0025 to 0.0447 μg/g and from 0.0023 to 0.0564 μg/g for U and Th, respectively. We found significant correlations between some elements in hair and nails. Also indications of spatial clustering of high values could be found. However, this phenomenon as well as the large variations in concentrations of heavy metals in hair and nail could not be explained. As hypotheses, we propose possible exposure pathways which may explain the findings, but the current data does not allow testing them. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Asymptotic Giant Branch stars as a source of short-lived radioactive nuclei in the solar nebula
NASA Astrophysics Data System (ADS)
Wasserburg, G. J.; Busso, M.; Gallino, R.; Raiteri, C. M.
1994-03-01
We carried out a theoretical evaluation of the contribution of Asymptotic Giant Branch (AGB) stars to some short-lived (106 less than or equal to Tau-bar less than or equal to 2 x 107 yr) isotopes in the Interstellar Medium (ISM) and in the early solar system using stellar model calculations for thermally pulsing evolutionary phases of low-mass stars. The yields of s-process nuclei in the convective He-shell for different neutron exposures tau0 were obtained, and AGB stars were shown to produce several radioactive nuclei (especially Pd-107, Pb-205, Fe-60, Zr-93, Tc-99, Cs-135, and Hf-182) in diferent amounts. Assuming either contamination of the solar nebula from a single AGB star or models for continuous injection and mixing from many stars into the ISM, we calculate the ratios of radioactive to stable nuclei at the epoch of the Sun's formation. The dilution factor between the AGB ejecta and the early solar system matter is obtained by matching the observed Pd-107/Pd-108 and depends on the value of tau0. It is found that small masses MHe of He-shell material (10-4-10-7 solar mass) enriched in s-process nuclei are sufficient to contaminate 1 solar mass of the ISM to produce the Pd-107 found in the early solar system. Predictions are made for all of the other radioactive isotopes. The optimal model to explain several observed radioactive species at different states of the proto-solar nebula involves a single AGB star with a low neutron exposure (tau0 = 0.03 mbarn-1) which contaminated the cloud with a dilution factor of MHe/solar mass approximately 1.5 x 10-4. This will also contribute newly synthesized stable s-process nuclei in the amount of approximately 10-4 of their abundances already present in the proto-solar cloud. Variations in the degree of homogenization (approximately 30%) of the injected material may account for some of the small general isotopic anomalies found in meteorites. It is also found that Fe-60 is produced in small but significant quantities that may be sufficient to explain the observations if the time elapsed delta from the contamination of the ISM to the formation of protoplanetary bodies is not higher than delta = 5 x 106 yr. If delta is longer, up to 10 x 106 yr, this would require the single AGB star to experience enhanced neutron densities (nn approximately 3 x 109n/cu cm) in the s-processing zone in order to compensate for the branching at Fe-59. The alternative model of long-term continuous ejection of matter from many AGB stars does not appear to match the observations. We also estimate the Al-26 production from the H-shell and find that the Al-26 abundance in the early solar system may be readily explained in a self-consistent manner. Moreover, Al-26 from AGB stars may contribute substantially to the galactic Al-26 gamma-source, while no significant gamma-flux from Co-60 (deriving from Fe-60 decay) is to be expected.
URANIUM LEACHING AND RECOVERY PROCESS
McClaine, L.A.
1959-08-18
A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.
Low-mass Stellar and Substellar Companions to sdB Stars
NASA Astrophysics Data System (ADS)
Geier, S.; Classen, L.; Brünner, P.; Nagel, K.; Schaffenroth, V.; Heuser, C.; Heber, U.; Drechsel, H.; Edelmann, H.; Koen, C.; O'Toole, S. J.; Morales-Rueda, L.
2012-03-01
It has been suggested that besides stellar companions, substellar objects in close orbits may be able to trigger mass loss in a common envelope phase and form hot subdwarfs. In an ongoing project we search for close substellar companions combining time resolved high resolution spectroscopy with photometry. We determine the fraction of as yet undetected radial velocity variable systems from a sample of 27 apparently single sdB stars to be ˜eq16%. We discovered low-mass stellar companions to the He-sdB CPD-20circ 1123 and the pulsator KPD 0629-0016. The brown dwarf reported to orbit the eclipsing binary SDSS J0820+0008 could be confirmed by an analysis of high resolution spectra taken with UVES. Reflection effects have been detected in the light curves of the known sdB binaries CPD -64circ 481 and BPS CS 22169-0001. The inclinations of these systems must be much higher than expected and the most likely companion masses are in the substellar regime. Finally, we determined the orbit of the sdB binary PHL 457, which has a very small radial velocity amplitude and may host the lowest mass substellar companion known. The implications of these new results for the open question of sdB formation are discussed.
BurstCube: A CubeSat for Gravitational Wave Counterparts
NASA Astrophysics Data System (ADS)
Perkins, Jeremy S.; Racusin, Judith; Briggs, Michael; de Nolfo, Georgia; Caputo, Regina; Krizmanic, John; McEnery, Julie E.; Shawhan, Peter; Morris, David; Connaughton, Valerie; Kocevski, Dan; Wilson-Hodge, Colleen A.; Hui, Michelle; Mitchell, Lee; McBreen, Sheila
2018-01-01
We present BurstCube, a novel CubeSat that will detect and localize Gamma-ray Bursts (GRBs). BurstCube is a selected mission that will detect long GRBs, attributed to the collapse of massive stars, short GRBs (sGRBs), resulting from binary neutron star mergers, as well as other gamma-ray transients in the energy range 10-1000 keV. sGRBs are of particular interest because they are predicted to be the counterparts of gravitational wave (GW) sources soon to be detectable by LIGO/Virgo. BurstCube contains 4 CsI scintillators coupled with arrays of compact low-power Silicon photomultipliers (SiPMs) on a 6U Dellingr bus, a flagship modular platform that is easily modifiable for a variety of 6U CubeSat architectures. BurstCube will complement existing facilities such as Swift and Fermi in the short term, and provide a means for GRB detection, localization, and characterization in the interim time before the next generation future gamma-ray mission flies, as well as space-qualify SiPMs and test technologies for future use on larger gamma-ray missions. The ultimate configuration of BurstCube is to have a set of ~10 BurstCubes to provide all-sky coverage to GRBs for substantially lower cost than a full-scale mission.
Probing the core of Cepheus A - Millimeter and submillimeter observations
NASA Astrophysics Data System (ADS)
Moriarty-Schieven, G. H.; Snell, R. L.; Hughes, V. A.
1991-06-01
Moderate and high angular resolution (40-7 arcsec) maps are presented of the core of the Cepheus A star-forming region using CS J = 3-2 and J = 7-6 emission, which traces the dense gas component of the cloud core, and using far-infrared (450 and 800 microns) continuum emission tracing the warm dust component. Three regimes in the core are traced by these observations: (1) a small (about 0.14 pc), nearly circular central core of high density (1-10 x 10 to the 6th/cu cm) and temperature (30-100 K) containing at least 25 percent of the mass and which contains the active early-type star formation; (2) an extended (0.5 x 0.25 pc), NE-SW oriented core of mass 200-300 solar masses, temperature 30-40 K, and average density nH2 of about 10 to the 5th/cu cm and which, together with the central core, contains 60-80 percent of the total core mass; and (3) an extended core envelope of dimensions 0.5 x 0.85 pc oriented primarily north-south, and a lower density. The velocity structure of the core suggests that it is being disrupted by the high-velocity winds driving the molecular outflow and is not due to a rotating circumstellar disk.
Plutonium recovery from spent reactor fuel by uranium displacement
Ackerman, John P.
1992-01-01
A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.
Cellular localization of uranium in the renal proximal tubules during acute renal uranium toxicity.
Homma-Takeda, Shino; Kitahara, Keisuke; Suzuki, Kyoko; Blyth, Benjamin J; Suya, Noriyoshi; Konishi, Teruaki; Terada, Yasuko; Shimada, Yoshiya
2015-12-01
Renal toxicity is a hallmark of uranium exposure, with uranium accumulating specifically in the S3 segment of the proximal tubules causing tubular damage. As the distribution, concentration and dynamics of accumulated uranium at the cellular level is not well understood, here, we report on high-resolution quantitative in situ measurements by high-energy synchrotron radiation X-ray fluorescence analysis in renal sections from a rat model of uranium-induced acute renal toxicity. One day after subcutaneous administration of uranium acetate to male Wistar rats at a dose of 0.5 mg uranium kg(-1) body weight, uranium concentration in the S3 segment of the proximal tubules was 64.9 ± 18.2 µg g(-1) , sevenfold higher than the mean renal uranium concentration (9.7 ± 2.4 µg g(-1) ). Uranium distributed into the epithelium of the S3 segment of the proximal tubules and highly concentrated uranium (50-fold above mean renal concentration) in micro-regions was found near the nuclei. These uranium levels were maintained up to 8 days post-administration, despite more rapid reductions in mean renal concentration. Two weeks after uranium administration, damaged areas were filled with regenerating tubules and morphological signs of tissue recovery, but areas of high uranium concentration (100-fold above mean renal concentration) were still found in the epithelium of regenerating tubules. These data indicate that site-specific accumulation of uranium in micro-regions of the S3 segment of the proximal tubules and retention of uranium in concentrated areas during recovery are characteristics of uranium behavior in the kidney. Copyright © 2015 John Wiley & Sons, Ltd.
Carbon Chemistry in the Envelope of VY Canis Majoris: Implications for Oxygen-Rich Evolved Stars
NASA Astrophysics Data System (ADS)
Ziurys, L. M.; Tenenbaum, E. D.; Pulliam, R. L.; Woolf, N. J.; Milam, S. N.
2009-04-01
Observations of the carbon-bearing molecules CO, HCN, CS, HNC, CN, and HCO+ have been conducted toward the circumstellar envelope of the oxygen-rich red supergiant star, VY Canis Majoris (VY CMa), using the Arizona Radio Observatory (ARO). CO and HCN were also observed toward the O-rich shells of NML Cyg, TX Cam, IK Tau, and W Hya. Rotational transitions of these species at 1 mm, 0.8 mm, and 0.4 mm were measured with the ARO Submillimeter Telescope, including the J = 6 → 5 line of CO at 691 GHz toward TX Cam and W Hya. The ARO 12 m was used for 2 mm and 3 mm observations. Four transitions were observed for HCO+ in VY CMa, the first definitive identification of this ion in a circumstellar envelope. Molecular line profiles from VY CMa are complex, indicating three separate outflows: a roughly spherical flow and separate red- and blueshifted winds, as suggested by earlier observations. Spectra from the other sources appear to trace a single outflow component. The line data were modeled with a radiative transfer code to establish molecular abundances relative to H2 and source distributions. Abundances for CO derived for these objects vary over an order of magnitude, f ~ 0.4-5 × 10-4, with the lower values corresponding to the supergiants. For HCN, a similar range in abundance is found (f ~ 0.9-9 × 10-6), with no obvious dependence on the mass-loss rate. In VY CMa, HCO+ is present in all three outflows with f ~ 0.4-1.6 × 10-8 and a spatial extent similar to that of CO. HNC is found only in the red- and blueshifted components with [HCN]/[HNC] ~ 150-190, while [CN]/[HCN] ~ 0.01 in the spherical flow. All three velocity components are traced in CS, which has a confined spatial distribution and f ~ 2-6 × 10-7. These observations suggest that carbon-bearing molecules in O-rich shells are produced by a combination of photospheric shocks and photochemistry. Shocks may play a more prominent role in the supergiants because of their macroturbulent velocities.
Method of preparation of uranium nitride
Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James
2013-07-09
Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.
Sulphur chemistry in the L1544 pre-stellar core
NASA Astrophysics Data System (ADS)
Vastel, Charlotte; Quénard, D.; Le Gal, R.; Wakelam, V.; Andrianasolo, A.; Caselli, P.; Vidal, T.; Ceccarelli, C.; Lefloch, B.; Bachiller, R.
2018-05-01
The L1544 pre-stellar core has been observed as part of the ASAI IRAM 30m Large Program as well as follow-up programs. These observations have revealed the chemical richness of the earliest phases of low-mass star-forming regions. In this paper we focus on the twenty-one sulphur bearing species (ions, isotopomers and deuteration) that have been detected in this spectral-survey through fifty one transitions: CS, CCS, C3S, SO, SO2, H2CS, OCS, HSCN, NS, HCS+, NS+ and H2S. We also report the tentative detection (4 σ level) for methyl mercaptan (CH3SH). LTE and non-LTE radiative transfer modelling have been performed and we used the NAUTILUS chemical code updated with the most recent chemical network for sulphur to explain our observations. From the chemical modelling we expect a strong radial variation for the abundances of these species, which mostly are emitted in the external layer where non thermal desorption of other species has previously been observed. We show that the chemical study cannot be compared to what has been done for the TMC-1 dark cloud, where the abundance is supposed constant along the line of sight, and conclude that a strong sulphur depletion is necessary to fully reproduce our observations of the prototypical pre-stellar core L1544.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Uranium leases on lands controlled by DOE. (Domestic Uranium Program Circular No. 760.1, formerly (AEC) Domestic Uranium Program Circular 8, 10 CFR 60.8). 760.1 Section 760.1 Energy DEPARTMENT OF ENERGY DOMESTIC URANIUM PROGRAM § 760.1 Uranium leases on lands...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Uranium leases on lands controlled by DOE. (Domestic Uranium Program Circular No. 760.1, formerly (AEC) Domestic Uranium Program Circular 8, 10 CFR 60.8). 760.1 Section 760.1 Energy DEPARTMENT OF ENERGY DOMESTIC URANIUM PROGRAM § 760.1 Uranium leases on lands...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Uranium leases on lands controlled by DOE. (Domestic Uranium Program Circular No. 760.1, formerly (AEC) Domestic Uranium Program Circular 8, 10 CFR 60.8). 760.1 Section 760.1 Energy DEPARTMENT OF ENERGY DOMESTIC URANIUM PROGRAM § 760.1 Uranium leases on lands...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Uranium leases on lands controlled by DOE. (Domestic Uranium Program Circular No. 760.1, formerly (AEC) Domestic Uranium Program Circular 8, 10 CFR 60.8). 760.1 Section 760.1 Energy DEPARTMENT OF ENERGY DOMESTIC URANIUM PROGRAM § 760.1 Uranium leases on lands...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Uranium leases on lands controlled by DOE. (Domestic Uranium Program Circular No. 760.1, formerly (AEC) Domestic Uranium Program Circular 8, 10 CFR 60.8). 760.1 Section 760.1 Energy DEPARTMENT OF ENERGY DOMESTIC URANIUM PROGRAM § 760.1 Uranium leases on lands...
PROCESS OF PRODUCING REFRACTORY URANIUM OXIDE ARTICLES
Hamilton, N.E.
1957-12-01
A method is presented for fabricating uranium oxide into a shaped refractory article by introducing a uranium halide fluxing reagent into the uranium oxide, and then mixing and compressing the materials into a shaped composite mass. The shaped mass of uranium oxide and uranium halide is then fired at an elevated temperature so as to form a refractory sintered article. It was found in the present invention that the introduction of a uraninm halide fluxing agent afforded a fluxing action with the uranium oxide particles and that excellent cohesion between these oxide particles was obtained. Approximately 90% of uranium dioxide and 10% of uranium tetrafluoride represent a preferred composition.
31 CFR 540.309 - Natural uranium.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Natural uranium. 540.309 Section 540... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found in...
31 CFR 540.309 - Natural uranium.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Natural uranium. 540.309 Section 540... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found in...
31 CFR 540.309 - Natural uranium.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Natural uranium. 540.309 Section 540... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found in...
NASA Astrophysics Data System (ADS)
Quinto, Francesca; Hrnecek, Erich; Krachler, Michael; Shotyk, William; Steier, Peter; Winkler, Stephan R.
2013-04-01
Plutonium (239Pu, 240Pu, 241Pu, 242Pu) and uranium (236U, 238U) isotopes were analyzed in an ombrotrophic peat core from the Black Forest, Germany, representing the last 80 years of atmospheric deposition. The reliable determination of these isotopes at ultra-trace levels was possible using ultra-clean laboratory procedures and accelerator mass spectrometry. The 240Pu/239Pu isotopic ratios are constant along the core with a mean value of 0.19 ±0.02 (N = 32). This result is consistent with the acknowledged average 240Pu/239Pu isotopic ratio from global fallout in the Northern Hemisphere. The global fallout origin of Pu is confirmed by the corresponding 241Pu/239Pu (0.0012 ±0.0005) and 242Pu/239Pu (0.004 ± 0.001) isotopic ratios. The identification of the Pu isotopic composition characteristic for global fallout in peat layers pre-dating the period of atmospheric atom bomb testing (AD 1956 - AD 1980) is a clear evidence of the migration of Pu downwards the peat profile. The maximum of global fallout derived 236U is detected in correspondence to the age/depth layer of maximum stratospheric fallout (AD 1963). This finding demonstrates that the 236U bomb peak can be successfully used as an independent chronological marker complementing the 210Pb dating of peat cores. The profiles of the global fallout derived 236U and 239Pu are compared with those of 137Cs and 241Am. As typical of ombrothrophic peat, the temporal fallout pattern of 137Cs is poorly retained. Similarly like for Pu, post-depositional migration of 241Am in peat layers preceding the era of atmospheric nuclear tests is observed.
Rapid Radiochemical Method for Isotopic Uranium in Building ...
Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Uranium-234, uranium-235, and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of uranium-234, uranium-235, and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.
Plutonium recovery from spent reactor fuel by uranium displacement
Ackerman, J.P.
1992-03-17
A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.
Chi, Heng; Bøgwald, Jarl; Dalmo, Roy Ambli; Zhang, Wenjie; Hu, Yong-hua
2016-02-01
The RAR-related orphan receptors (RORs) are members of the nuclear receptor family of intracellular transcription factors. In this study, we examined the regulatory properties of RORα (CsRORα) and RORγ (CsRORγ) in tongue sole (Cynoglossus semilaevis). CsRORα and CsRORγ expression was detected in major lymphoid organs and altered to significant extents after bacterial and viral infection. CsRORα enhanced the activities of CsIL-17C, CsIL-17D, and CsIL-17F promoters, which contain CsRORα and CsRORγ binding sites. CsRORγ also upregulated the promoter activities of CsIL-17D and CsIL-17F but not CsIL-17C. CsRORα and CsRORγ proteins were detected in the nucleus, and overexpression of CsRORα in tongue sole significantly increased the expression of CsIL-17C, CsIL-17D, and CsIL-17F, whereas overexpression of CsRORγ significantly increased the expression of CsIL-17C and CsIL-17F but no CsIL-17D. These results indicate that RORα and RORγ in teleost regulate the expression of IL-17 members in different manners. Copyright © 2015 Elsevier Ltd. All rights reserved.
16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM ...
16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM RECOVERY PROCESSED RELATIVELY PURE MATERIALS AND SOLUTIONS AND SOLID RESIDUES WITH RELATIVELY LOW URANIUM CONTENT. URANIUM RECOVERY INVOLVED BOTH SLOW AND FAST PROCESSES. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO
77 FR 51579 - Application for a License To Export High-Enriched Uranium
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-24
... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant.... Complex, July 30, 2012, August Uranium (93.35%). uranium-235 high-enriched 1, 2012, XSNM3726, 11006037. contained in 7.5 uranium in the kilograms uranium. form of broken metal to the Atomic Energy of Canada...
Deposit model for volcanogenic uranium deposits
Breit, George N.; Hall, Susan M.
2011-01-01
The International Atomic Energy Agency's tabulation of volcanogenic uranium deposits lists 100 deposits in 20 countries, with major deposits in Russia, Mongolia, and China. Collectively these deposits are estimated to contain uranium resources of approximately 500,000 tons of uranium, which amounts to 6 percent of the known global resources. Prior to the 1990s, these deposits were considered to be small (less than 10,000 tons of uranium) with relatively low to moderate grades (0.05 to 0.2 weight percent of uranium). Recent availability of information on volcanogenic uranium deposits in Asia highlighted the large resource potential of this deposit type. For example, the Streltsovskoye district in eastern Russia produced more than 100,000 tons of uranium as of 2005; with equivalent resources remaining. Known volcanogenic uranium deposits within the United States are located in Idaho, Nevada, Oregon, and Utah. These deposits produced an estimated total of 800 tons of uranium during mining from the 1950s through the 1970s and have known resources of 30,000 tons of uranium. The most recent estimate of speculative resources proposed an endowment of 200,000 tons of uranium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siekhaus, W. J.; Teslich, N. E.; Weber, P. K.
Depleted uranium that included carbide inclusions was sputtered with 30-keV gallium ions or 16-kev cesium ions to depths much greater than the ions’ range, i.e. using steady-state sputtering. The recession of both the uranium’s and uranium carbide’s surfaces and the ion corresponding fluences were used to determine the steady-state target sputtering yields of both uranium and uranium carbide, i.e. 6.3 atoms of uranium and 2.4 units of uranium carbide eroded per gallium ion, and 9.9 uranium atoms and 3.65 units of uranium carbide eroded by cesium ions. The steady state surface composition resulting from the simultaneous gallium or cesium implantationmore » and sputter-erosion of uranium and uranium carbide were calculated to be U₈₆Ga₁₄, (UC)₇₀Ga₃₀ and U₈₁Cs₉, (UC)₇₉Cs₂₁, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, S.J.; Sandoval, W.F.; Gallimore, D.L.
1980-06-01
Water and sediment samples were collected and each water sample was analyzed for U, and each sediment sample was analyzed for 43 elements, including U and Th. Uranium concentrations in water samples range from below the detection limit of 0.02 ppB to 702.26 ppB and have a median of 1.73 ppB and a mean of 11.76 ppB. Water samples containing high uranium concentrations generally are associated with known uranium mining activity or units known to be uranium bearing. About one-third of the water samples containing high uranium concentrations were collected from locations within the Pumpkin Buttes and Turnercrest-Ross Districts. Nearlymore » half of the water samples containing high uranium concentrations were collected from locations just west of the Monument Hill and Highland Flats-Box Creek Districts. Similar anomalous uranium concentrations in this region have been reported updip from Exxon's Highland uranium deposits. High uranium concentrations were also found associated with the Lance Creek-Old Woman Anticline District. Uranium concentrations in sediment samples range from 1.14 to 220.70 ppM and have a median of 3.37 ppM and a mean of 4.03 ppM. Throughout the major uranium mining districts of the Powder River Basin, sediment samples with high uranium concentrations were collected from dry streams located near wells producing water samples with high uranium concentrations. High uranium concentrations were also found associated with the Lance Creek oil field where uranium mineralization is known in the White River formation. High uranium concentrations were also found in sediment samples in areas where uranium mineralization is not known. These samples are from dry streams in areas underlain by the White River formation, the Niobrara formation, and the Pierre, Carlisle, Belle Fourche, and Mowry shales.« less
Influence of uranium hydride oxidation on uranium metal behaviour
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, N.; Hambley, D.; Clarke, S.A.
2013-07-01
This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, ifmore » sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)« less
Szecsody, Jim E; Truex, Mike J; Qafoku, Nikolla P; Wellman, Dawn M; Resch, Tom; Zhong, Lirong
2013-08-01
This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH2) resulted in a rapid (<10 h) increase in aqueous carbonate (with Ca(2+), Mg(2+)) and phosphate and a slow (100 s of hours) increase in silica, Al(3+), and K(+), likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH13) resulted in a rapid (<10h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tentner, A.; Bojanowski, C.; Feldman, E.
An experimental and computational effort was undertaken in order to evaluate the capability of the fluid-structure interaction (FSI) simulation tools to describe the deflection of a Missouri University Research Reactor (MURR) fuel element plate redesigned for conversion to lowenriched uranium (LEU) fuel due to hydrodynamic forces. Experiments involving both flat plates and curved plates were conducted in a water flow test loop located at the University of Missouri (MU), at conditions and geometries that can be related to the MURR LEU fuel element. A wider channel gap on one side of the test plate, and a narrower on the othermore » represent the differences that could be encountered in a MURR element due to allowed fabrication variability. The difference in the channel gaps leads to a pressure differential across the plate, leading to plate deflection. The induced plate deflection the pressure difference induces in the plate was measured at specified locations using a laser measurement technique. High fidelity 3-D simulations of the experiments were performed at MU using the computational fluid dynamics code STAR-CCM+ coupled with the structural mechanics code ABAQUS. Independent simulations of the experiments were performed at Argonne National Laboratory (ANL) using the STAR-CCM+ code and its built-in structural mechanics solver. The simulation results obtained at MU and ANL were compared with the corresponding measured plate deflections.« less
Uranium induces oxidative stress in lung epithelial cells
Periyakaruppan, Adaikkappan; Kumar, Felix; Sarkar, Shubhashish; Sharma, Chidananda S.
2009-01-01
Uranium compounds are widely used in the nuclear fuel cycle, antitank weapons, tank armor, and also as a pigment to color ceramics and glass. Effective management of waste uranium compounds is necessary to prevent exposure to avoid adverse health effects on the population. Health risks associated with uranium exposure includes kidney disease and respiratory disorders. In addition, several published results have shown uranium or depleted uranium causes DNA damage, mutagenicity, cancer and neurological defects. In the current study, uranium toxicity was evaluated in rat lung epithelial cells. The study shows uranium induces significant oxidative stress in rat lung epithelial cells followed by concomitant decrease in the antioxidant potential of the cells. Treatment with uranium to rat lung epithelial cells also decreased cell proliferation after 72 h in culture. The decrease in cell proliferation was attributed to loss of total glutathione and superoxide dismutase in the presence of uranium. Thus the results indicate the ineffectiveness of antioxidant system’s response to the oxidative stress induced by uranium in the cells. PMID:17124605
Meinrath, A; Schneider, P; Meinrath, G
2003-01-01
The Erzgebirge ('Ore Mountains') area in the eastern part of Germany was a major source of uranium for Soviet nuclear programs between 1945 and 1989. During this time, the former German Democratic Republic became the third largest uranium producer in the world. The high abundance of uranium in the geological formations of the Erzgebirge are mirrored in the discovery of uranium by M. Klaproth close to Freiberg City in 1789 and the description of the so-called 'Schneeberg' disease, lung cancer caused in miners by the accumulation of the uranium decay product, radon, in the subsurfaces of shafts. Since 1991, remediation and mitigation of uranium at production facilities, rock piles and mill tailings has taken place. In parallel, efforts were initiated to assess the likely adverse effects of uranium mining to humans. The costs of these activities amount to about 6.5 10(9) Euro. A comparison with concentrations of depleted uranium at certain sites is given.
METHOD FOR RECOVERING URANIUM FROM OILS
Gooch, L.H.
1959-07-14
A method is presented for recovering uranium from hydrocarbon oils, wherein the uranium is principally present as UF/sub 4/. According to the invention, substantially complete removal of the uranium from the hydrocarbon oil may be effected by intimately mixing one part of acetone to about 2 to 12 parts of the hydrocarbon oil containing uranium and separating the resulting cake of uranium from the resulting mixture. The uranium in the cake may be readily recovered by burning to the oxide.
High strength and density tungsten-uranium alloys
Sheinberg, Haskell
1993-01-01
Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.
NASA Astrophysics Data System (ADS)
Smirnov, A. Yu; Mustafin, A. R.; Nevinitsa, V. A.; Sulaberidze, G. A.; Dudnikov, A. A.; Gusev, V. E.
2017-01-01
The effect of the uncertainties of the isotopic composition of the reprocessed uranium on its enrichment process in gas centrifuge cascades while diluting it by adding low-enriched uranium (LEU) and waste uranium. It is shown that changing the content of 232U and 236U isotopes in the initial reprocessed uranium within 15% (rel.) can significantly change natural uranium consumption and separative work (up to 2-3%). However, even in case of increase of these parameters is possible to find the ratio of diluents, where the cascade with three feed flows (depleted uranium, LEU and reprocessed uranium) will be more effective than ordinary separation cascade with one feed point for producing LEU from natural uranium.
METHOD OF RECOVERING URANIUM COMPOUNDS
Poirier, R.H.
1957-10-29
S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.
Galaxy evolution in clusters since z=1
NASA Astrophysics Data System (ADS)
Aragón-Salamanca, A.
2011-11-01
It is now 30 years since Alan Dressler published his seminal paper onthe morphology-density relation. Although there is still much to learnon the effect of the environment on galaxy evolution, extensive progress has been made since then both observationally and theoretically.Galaxy clusters provide some of the most extreme environments in which galaxies evolve, making them excellent laboratories to study the age old question of "nature'' vs. "nurture'' in galaxy evolution. Here I review some of the key observational results obtained during the last decade on the evolution of the morphology, structure, dynamics, star-formation history and stellar populations of cluster galaxies since the time when the universe was half its present age.Many of the results presented here have been obtainedwithin the ESO Distant Cluster Survey (EDisCS) and Space Telescope A901/02 Galaxy Evolution Survey (STAGES) collaborations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, Richard Wayne; Eckerman, Keith F; McGinn, Wilson
2012-01-01
This report provides methods for interpreting and applying occupational uranium monitoring data. The methods are based on current international radiation protection guidance, current information on the chemical toxicity of uranium, and best available biokinetic models for uranium. Emphasis is on air monitoring data and three types of bioassay data: the concentration of uranium in urine; the concentration of uranium in feces; and the externally measured content of uranium in the chest. Primary Reference guidance levels for prevention of chemical effects and limitation of radiation effects are selected based on a review of current scientific data and regulatory principles for settingmore » standards. Generic investigation levels and immediate action levels are then defined in terms of these primary guidance levels. The generic investigation and immediate actions levels are stated in terms of radiation dose and concentration of uranium in the kidneys. These are not directly measurable quantities, but models can be used to relate the generic levels to the concentration of uranium in air, urine, or feces, or the total uranium activity in the chest. Default investigation and immediate action levels for uranium in air, urine, feces, and chest are recommended for situations in which there is little information on the form of uranium taken into the body. Methods are prescribed also for deriving case-specific investigation and immediate action levels for uranium in air, urine, feces, and chest when there is sufficient information on the form of uranium to narrow the range of predictions of accumulation of uranium in the main target organs for uranium: kidneys for chemical effects and lungs for radiological effects. In addition, methods for using the information herein for alternative guidance levels, different from the ones selected for this report, are described.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregoire, D.C.; Goltz, D.M.; Chakrabarti, C.L.
Graphite furnace atomic absorption spectrometry (GFAAS) is an insensitive technique for determination of uranium. Experiments were conducted using electrothermal vaporization inductively coupled plasma mass spectrometry to investigate the atomization and vaporization of atomic and molecular uranium species in the graphite furnace. ETV-ICP-MS signals for uranium were observed at temperatures well below the appearance temperature of uranium atoms suggesting the vaporization of molecular uranium oxide at temperatures below 2000{degrees}C. Examination of individual uranium ETV-ICP-MS signals reveals the vaporization of uranium carbide at temperatures above 2600{degrees}C. Chemical modifiers such as 0.2% HF and 0.1% CHF{sub 3} in the argon carrier gas, weremore » ineffective in preventing the formation of uranium carbide at 2700{degrees}C. Vaporization of uranium from a tungsten surface using tungsten foil inserted into the graphite tube prevented the formation of uranium carbide and eliminated the ETV-ICP-MS signal suppression caused by a sodium chloride matrix.« less
NASA Astrophysics Data System (ADS)
Badawi, Michael; Xerri, Bertrand; Canneaux, Sébastien; Cantrel, Laurent; Louis, Florent
2012-01-01
Ab initio electronic structure calculations at the coupled cluster level with a correction for the triples extrapolated to the complete basis set limit have been made for the estimation of the thermochemical properties of Cs 2, CsH, CsO, Cs 2O, CsX, and Cs 2X 2 (X = OH, Cl, Br, and I). The standard enthalpies of formation and standard molar entropies at 298 K, and the temperature dependence of the heat capacities at constant pressure were evaluated. The calculated thermochemical properties are in good agreement with their literature counterparts. For Cs 2, CsH, CsOH, Cs 2(OH) 2, CsCl, Cs 2Cl 2, CsBr, CsI, and Cs 2I 2, the calculated ΔfH298K∘ values are within chemical accuracy of the most recent experimental values. Based on the excellent agreement observed between our calculated ΔfH298K∘ values and their literature counterparts, the standard enthalpies of formation at 298 K are estimated to be the following: ΔfH298K∘ (CsO) = 17.0 kJ mol -1 and ΔfH298K∘ (Cs 2Br 2) = -575.4 kJ mol -1.
PRODUCTION OF PURIFIED URANIUM
Burris, L. Jr.; Knighton, J.B.; Feder, H.M.
1960-01-26
A pyrometallurgical method for processing nuclear reactor fuel elements containing uranium and fission products and for reducing uranium compound; to metallic uranium is reported. If the material proccssed is essentially metallic uranium, it is dissolved in zinc, the sulution is cooled to crystallize UZn/sub 9/ , and the UZn/sub 9/ is distilled to obtain uranium free of fission products. If the material processed is a uranium compound, the sollvent is an alloy of zinc and magnesium and the remaining steps are the same.
METHOD OF SEPARATING URANIUM VALUES, PLUTONIUM VALUES AND FISSION PRODUCTS BY CHLORINATION
Brown, H.S.; Seaborg, G.T.
1959-02-24
The separation of plutonium and uranium from each other and from other substances is described. In general, the method comprises the steps of contacting the uranium with chlorine in the presence of a holdback material selected from the group consisting of lanthanum oxide and thorium oxide to form a uranium chloride higher than uranium tetrachloride, and thereafter heating the uranium chloride thus formed to a temperature at which the uranium chloride is volatilized off but below the volatilizalion temperature of plutonium chloride.
SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY
Clark, H.M.; Duffey, D.
1958-06-17
A process is described for extracting uranium from uranium ore, wherein the uranium is substantially free from molybdenum contamination. In a solvent extraction process for recovering uranium, uranium and molybdenum ions are extracted from the ore with ether under high acidity conditions. The ether phase is then stripped with water at a lower controiled acidity, resaturated with salting materials such as sodium nitrate, and reextracted with the separation of the molybdenum from the uranium without interference from other metals that have been previously extracted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, W.E.; Kurath, D.E.
1994-04-01
The US Department of Energy has established the Tank Waste Remediation System (TWRS) to manage and dispose of radioactive wastes stored at the Hanford Site. Within this program are evaluations of pretreatment system alternatives through literature reviews. The information in this report was collected as part of this project at Pacific Northwest Laboratory. A preliminary survey of literature on separations recently entered into the Hanford electronic databases (1992--1993) that have the potential for pretreatment of Hanford tank waste was conducted. Separation processes that can assist in the removal of actinides (uranium, plutonium, americium), lanthanides, barium, {sup 137}Cs, {sup 90}Sr,{sup 129more » }I, {sup 63}Ni, and {sup 99}Tc were evaluated. Separation processes of interest were identified through literature searches, journal reviews, and participation in separation technology conferences. This report contains brief descriptions of the potential separation processes, the extent and/or selectivity of the separation, the experimental conditions, and observations. Information was collected on both national and international separation studies to provide a global perspective on recent research efforts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ninh, Giang Nguyen; Phongphaeth, Pengvanich, E-mail: phongphaeth.p@chula.ac.th; Nares, Chankow
Gamma-ray signal can be used as a fingerprint for radioisotope identification. In the context of radioactive and nuclear materials security at the border control point, the detection task can present a significant challenge due to various constraints such as the limited measurement time, the shielding conditions, and the noise interference. This study proposes a novel method to identify the signal of one or several radioisotopes from a poorly resolved gamma-ray spectrum. In this method, the noise component in the raw spectrum is reduced by the wavelet decomposition approach, and the removal of the continuum background is performed using the baselinemore » determination algorithm. Finally, the identification of radioisotope is completed using the matrix linear regression method. The proposed method has been verified by experiments using the poorly resolved gamma-ray signals from various scenarios including single source, mixing of natural uranium with five of the most common industrial radioactive sources (57Co, 60Co, 133Ba, 137Cs, and 241Am). The preliminary results show that the proposed algorithm is comparable with the commercial method.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-21
... License Renewal, Operating License SUA-1341, Uranium One USA, Inc., Willow Creek Uranium In Situ Recovery.... SUA- 1341 to Uranium One USA, Inc. (Uranium One) for its Willow Creek Uranium In Situ Recovery (ISR) Project in Johnson and Campbell Counties, Wyoming. ADDRESSES: Please refer to Docket ID NRC-2009-0036 when...
Johnson, Raymond H.; Tutu, Hlanganani; Brown, Adrian; Figueroa, Linda; Wolkersdorfer, Christian
2013-01-01
Geochemical changes that can occur down gradient from uranium in situ recovery (ISR) sites are important for various stakeholders to understand when evaluating potential effects on surrounding groundwater quality. If down gradient solid-phase material consists of sandstone with iron hydroxide coatings (no pyrite or organic carbon), sorption of uranium on iron hydroxides can control uranium mobility. Using one-dimensional reactive transport models with PHREEQC, two different geochemical databases, and various geochemical parameters, the uncertainties in uranium sorption on iron hydroxides are evaluated, because these oxidized zones create a greater risk for future uranium transport than fully reduced zones where uranium generally precipitates.
Method for the recovery of uranium values from uranium tetrafluoride
Kreuzmann, Alvin B.
1983-01-01
The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.
Method for the recovery of uranium values from uranium tetrafluoride
Kreuzmann, A.B.
1982-10-27
The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.
Fate of Uranium in Wetlands: Impact of Drought Followed by Re-flooding
NASA Astrophysics Data System (ADS)
Gilson, E.; Huang, S.; Koster van Groos, P. G.; Scheckel, K.; Peacock, A. D.; Kaplan, D. I.; Jaffe, P. R.
2014-12-01
Uranium contamination in groundwater can be mitigated in anoxic zones by iron-reducing bacteria that reduce soluble U(VI) to insoluble U(IV) and by uranium immobilization through complexation and sorption. Wetlands often link ground and surface-waters, making them strategic systems for potentially limiting migration of uranium contamination. Little is known about how drought periods that result in the drying of wetland soils, and consequent redox changes, affect uranium fate and transport in wetlands. In order to better understand the fate and stability of immobilized uranium in wetland soils, and how dry periods affect the uranium stability, we dosed saturated wetland mesocosms planted with Scirpus acutus with low levels of uranyl-acetate for 5 months before imposing a 9-day drying period followed by a 13-day rewetting period. Concentrations of uranium in mesocosm effluent increased after rewetting, but the cumulative amount of uranium released in the 13 days following the drying constituted less than 1% of the uranium immobilized in the soil during the 5 months prior to the drought. This low level of remobilization suggests that the uranium immobilized in these soils was not primarily bioreduced U(IV), which could have been oxidized to soluble U(VI) during the drought and released in the effluent during the subsequent flood. XANES analyses confirm that most of the uranium immobilized in the mesocosms was U(VI) sorbed to iron oxides. Compared to mesocosms that did not experience drying or rewetting, mesocosms that were sacrificed immediately after drying and after 13 days of rewetting had less uranium in soil near roots and more uranium on root surfaces. Metal-reducing bacteria only dominated the bacterial community after 13 days of rewetting and not immediately after drying, indicating that these bacteria are not responsible for this redistribution of uranium after the drying and rewetting. Results show that short periods of drought conditions in a wetland may impact uranium distribution, but these conditions may not cause large losses of immobilized uranium from the wetland.
McNeal, J.M.; Lee, D.E.; Millard, H.T.
1981-01-01
Some secondary uranium deposits are thought to have formed from uranium derived by the weathering of silicic igneous rocks such as granites, rhyolites, and tuffs. A regional geochemical survey was made to determine the distribution of uranium and thorium in granitic rocks of the Basin and Range province in order to evaluate the potential for secondary uranium occurrences in the area. The resulting geochemical maps of uranium, thorium, and the Th:U ratio may be useful in locating target areas for uranium exploration. The granites were sampled according to a five-level, nested, analysis-of-variance design, permitting estimates to be made of the variance due to differences between:(1) two-degree cells; (2) one-degree cells; (3) plutons; (4) samples; and (5) analyses. The cells are areas described in units of degrees of latitude and longitude. The results show that individual plutons tend to differ in uranium and thorium concentrations, but that each pluton tends to be relatively homogeneous. Only small amounts of variance occur at the two degree and the between-analyses levels. The three geochemical maps that were prepared are based on one-degree cell means. The reproducibility of the maps is U > Th ??? Th:U. These geochemical maps may be used in three methods of locating target areas for uranium exploration. The first method uses the concept that plutons containing the greatest amounts of uranium may supply the greatest amounts of uranium for the formation of secondary uranium occurrences. The second method is to examine areas with high thorium contents, because thorium and uranium are initially highly correlated but much uranium could be lost by weathering. The third method is to locate areas in which the plutons have particularly high Th:U ratios. Because uranium, but not thorium, is leached by chemical weathering, high Th:U ratios suggest a possible loss of uranium and possibly a greater potential for secondary uranium occurrences to be found in the area. ?? 1981.
NASA Astrophysics Data System (ADS)
Roycroft, S. J.; Noel, V.; Boye, K.; Besancon, C.; Weaver, K. L.; Johnson, R. H.; Dam, W. L.; Fendorf, S. E.; Bargar, J.
2016-12-01
Uranium contaminated groundwater in Riverton, Wyoming persists despite anticipated natural attenuation outside of a former uranium ore processing facility. The inability of natural flushing to dilute the uranium below the regulatory threshold indicates that sediments act as secondary sources likely (re)supplying uranium to groundwater. Throughout the contaminated floodplain, uranium rich-evaporites are readily abundant in the upper 2 m of sediments and are spatially coincident with the location of the plume, which suggests a likely link between evaporites and increased uranium levels. Knowledge of where and how uranium is stored within evaporite-associated sediments is required to understand processes controlling the mobility of uranium. We expect that flooding and seasonal changes in hydrologic conditions will affect U phase partitioning, and thus largely control U mobility. The primary questions we are addressing in this project are: What is the relative abundance of uranium incorporated in various mineral complexes throughout the evaporite sediments? How do the factors of depth, location, and seasonality influence the relative incorporation, mobility and speciation of uranium?We have systematically sampled from two soil columns over three dates in Riverton. The sampling dates span before and after a significant flooding event, providing insight into the flood's impact on local uranium mobility. Sequential chemical extractions are used to decipher the reactivity of uranium and approximate U operationally defined within reactants targeting carbonate, silicate, organic, and metal oxide bound or water and exchangeable phases. Extractions throughout the entirety of the sediment cores provide a high-resolution vertical profile of the distribution of uranium in various extracted phases. Throughout the profile, the majority (50-60%) of uranium is bound within carbonate-targeted extracts, a direct effect of the carbonate-rich evaporite sediments. The sum of our analyses provide a dynamic model of uranium incorporation within evaporite sediments holding implications for the fate of uranium throughout contaminated sites across the Colorado River Basin.
Inherently safe in situ uranium recovery
Krumhansl, James L; Brady, Patrick V
2014-04-29
An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.
Uranium concentrations in groundwater, northeastern Washington
Kahle, Sue C.; Welch, Wendy B.; Tecca, Alison E.; Eliason, Devin M.
2018-04-18
A study of uranium in groundwater in northeastern Washington was conducted to make a preliminary assessment of naturally occurring uranium in groundwater relying on existing information and limited reconnaissance sampling. Naturally occurring uranium is associated with granitic and metasedimentary rocks, as well as younger sedimentary deposits, that occur in this region. The occurrence and distribution of uranium in groundwater is poorly understood. U.S. Environmental Protection Agency (EPA) regulates uranium in Group A community water systems at a maximum contaminant level (MCL) of 30 μg/L in order to reduce uranium exposure, protect from toxic kidney effects of uranium, and reduce the risk of cancer. However, most existing private wells in the study area, generally for single family use, have not been sampled for uranium. This document presents available uranium concentration data from throughout a multi-county region, identifies data gaps, and suggests further study aimed at understanding the occurrence of uranium in groundwater.The study encompasses about 13,000 square miles (mi2) in the northeastern part of Washington with a 2010 population of about 563,000. Other than the City of Spokane, most of the study area is rural with small towns interspersed throughout the region. The study area also includes three Indian Reservations with small towns and scattered population. The area has a history of uranium exploration and mining, with two inactive uranium mines on the Spokane Indian Reservation and one smaller inactive mine on the outskirts of Spokane. Historical (1977–2016) uranium in groundwater concentration data were used to describe and illustrate the general occurrence and distribution of uranium in groundwater, as well as to identify data deficiencies. Uranium concentrations were detected at greater than 1 microgram per liter (μg/L) in 60 percent of the 2,382 historical samples (from wells and springs). Uranium concentrations ranged from less than 1 to 88,600 μg/L, and the median concentration of uranium in groundwater for all sites was 1.4 μg/L.New (2017) uranium in groundwater concentration data were obtained by sampling 13 private domestic wells for uranium in areas without recent (2000s) water-quality data. Uranium was detected in all 13 wells sampled for this study; concentrations ranged from 1.03 to 1,180 μg/L with a median of 22 μg/L. Uranium concentrations of groundwater samples from 6 of the 13 wells exceeded the MCL for uranium. Uranium concentrations in water samples from two wells were 1,130 and 1,180 μg/L, respectively; nearly 40 times the MCL.Additional data collection and analysis are needed in rural areas where self-supplied groundwater withdrawals are the primary source of water for human consumption. Of the roughly 43,000 existing water wells in the study area, only 1,755 wells, as summarized in this document, have available uranium concentration data, and some of those data are decades old. Furthermore, analysis of area groundwater quality would benefit from a more extensive chemical-analysis suite including general chemistry in order to better understand local geochemical conditions that largely govern the mobility of uranium. Although the focus of the present study is uranium, it also is important to recognize that there are other radionuclides of concern that may be present in area groundwater.
Effect of low body temperature on associative interference in conditioned taste aversion.
Christianson, John P; Anderson, Mathew J; Misanin, James R; Hinderliter, Charles F
2005-06-01
When two novel conditioned stimuli precede an unconditioned stimulus (US), the interval between the two conditioned stimuli (CS1 and CS2) influences the magnitude of the CS-US associability of each CS. As the interval between CS1 and CS2 increases, the associability of CS1 with the US decreases due to interference by CS2 and the associability of CS2 increases, given its temporal proximity to the US. Because hypothermia has been reported to increase the interval at which conditioned taste aversions can be formed, its influence was examined on the above relationship, i.e., how interference from CS2 affects the associability of CS1 with the US. Rats received a conditioned taste aversion procedure where CS1 and CS2 were presented either one after the other or separated by an 80-min. delay. For all subjects, the US or pseudo-US was presented immediately after CS2. When hypothermia was interpolated between the two flavor stimuli that were spaced 80 min. apart, CS2-interference with the CS1-US association was greatly attenuated. We propose that hypothermia modifies internal timing mechanisms such that the externally timed 80-min. CS1-CS2 interval was perceived as much shorter for rats made hypothermic. As a result of this perceived shortened inter-CS interval, CS2 produced less interference for the CS1-US association than would be expected for such a relatively long delay between CS1 and CS2.
DYNAMIC PROPERTIES OF SHOCK LOADED THIN URANIUM FOILS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robbins, D. L.; Kelly, A. M.; Alexander, D. J.
A series of spall experiments has been completed with thin depleted uranium targets, nominally 0.1 mm thick. The first set of uranium spall targets was cut and ground to final thickness from electro-refined, high-purity, cast uranium. The second set was rolled to final thickness from low purity uranium. The impactors for these experiments were laser-launched 0.05-mm thick copper flyers, 3 mm in diameter. Laser energies were varied to yield a range of flyer impact velocities. This resulted in varying degrees of damage to the uranium spall targets, from deformation to complete spall or separation at the higher velocities. Dynamic measurementsmore » of the uranium target free surface velocities were obtained with dual velocity interferometers. Uranium targets were recovered and sectioned after testing. Free surface velocity profiles were similar for the two types of uranium, but spall strengths (estimated from the magnitude of the pull-back signal) are higher for the high-purity cast uranium. Velocity profiles and microstructural evidence of spall from the sectioned uranium targets are presented.« less
Aftermath of Uranium Ore Processing on Floodplains: Lasting Effects of Uranium on Soil and Microbes
NASA Astrophysics Data System (ADS)
Tang, H.; Boye, K.; Bargar, J.; Fendorf, S. E.
2016-12-01
A former uranium ore processing site located between the Wind River and the Little Wind River near the city of Riverton, Wyoming, has generated a uranium plume in the groundwater within the floodplain. Uranium is toxic and poses a threat to human health. Thus, controlling and containing the spread of uranium will benefit the human population. The primary source of uranium was removed from the processing site, but a uranium plume still exists in the groundwater. Uranium in its reduced form is relatively insoluble in water and therefore is retained in organic rich, anoxic layers in the subsurface. However, with the aid of microbes uranium becomes soluble in water which could expose people and the environment to this toxin, if it enters the groundwater and ultimately the river. In order to better understand the mechanisms controlling uranium behavior in the floodplains, we examined sediments from three sediment cores (soil surface to aquifer). We determined the soil elemental concentrations and measured microbial activity through the use of several instruments (e.g. Elemental Analyzer, X-ray Fluorescence, MicroResp System). Through the data collected, we aim to obtain a better understanding of how the interaction of geochemical factors and microbial metabolism affect uranium mobility. This knowledge will inform models used to predict uranium behavior in response to land use or climate change in floodplain environments.
New Technique for Speciation of Uranium in Sediments Following Acetate-Stimulated Bioremediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-06-22
Acetate-stimulated bioremediation is a promising new technique for sequestering toxic uranium contamination from groundwater. The speciation of uranium in sediments after such bioremediation attempts remains unknown as a result of low uranium concentration, and is important to analyzing the stability of sequestered uranium. A new technique was developed for investigating the oxidation state and local molecular structure of uranium from field site sediments using X-Ray Absorption Spectroscopy (XAS), and was implemented at the site of a former uranium mill in Rifle, CO. Glass columns filled with bioactive Rifle sediments were deployed in wells in the contaminated Rifle aquifer and amendedmore » with a hexavalent uranium (U(VI)) stock solution to increase uranium concentration while maintaining field conditions. This sediment was harvested and XAS was utilized to analyze the oxidation state and local molecular structure of the uranium in sediment samples. Extended X-Ray Absorption Fine Structure (EXAFS) data was collected and compared to known uranium spectra to determine the local molecular structure of the uranium in the sediment. Fitting was used to determine that the field site sediments did not contain uraninite (UO{sub 2}), indicating that models based on bioreduction using pure bacterial cultures are not accurate for bioremediation in the field. Stability tests on the monomeric tetravalent uranium (U(IV)) produced by bioremediation are needed in order to assess the efficacy of acetate-stimulation bioremediation.« less
Health effects of uranium: new research findings.
Brugge, Doug; Buchner, Virginia
2011-01-01
Recent plans for a nuclear renaissance in both established and emerging economies have prompted increased interest in uranium mining. With the potential for more uranium mining worldwide and a growth in the literature on the toxicology and epidemiology of uranium and uranium mining, we found it timely to review the current state of knowledge. Here, we present a review of the health effects of uranium mining, with an emphasis on newer findings (2005-2011). Uranium mining can contaminate air, water, and soil. The chemical toxicity of the metal constitutes the primary environmental health hazard, with the radioactivity of uranium a secondary concern. The update of the toxicologic evidence on uranium adds to the established findings regarding nephrotoxicity, genotoxicity, and developmental defects. Additional novel toxicologic findings, including some at the molecular level, are now emerging that raise the biological plausibility of adverse effects on the brain, on reproduction, including estrogenic effects, on gene expression, and on uranium metabolism. Historically, most epidemiology on uranium mining has focused on mine workers and radon exposure. Although that situation is still overwhelmingly true, a smaller emerging literature has begun to form around environmental exposure in residential areas near uranium mining and processing facilities. We present and critique such studies. Clearly, more epidemiologic research is needed to contribute to causal inference. As much damage is irreversible, and possibly cumulative, present efforts must be vigorous to limit environmental uranium contamination and exposure.
METHOD OF APPLYING NICKEL COATINGS ON URANIUM
Gray, A.G.
1959-07-14
A method is presented for protectively coating uranium which comprises etching the uranium in an aqueous etching solution containing chloride ions, electroplating a coating of nickel on the etched uranium and heating the nickel plated uranium by immersion thereof in a molten bath composed of a material selected from the group consisting of sodium chloride, potassium chloride, lithium chloride, and mixtures thereof, maintained at a temperature of between 700 and 800 deg C, for a time sufficient to alloy the nickel and uranium and form an integral protective coating of corrosion-resistant uranium-nickel alloy.
Uranium-bearing lignite in southwestern North Dakota
Moore, George W.; Melin, Robert E.; Kepferle, Roy C.
1954-01-01
Uranium-bearing lignite was mapped and sampled in the Bullion Butte, Sentinel Butte, HT Butte, and Chalky Buttes areas in southwestern North Dakota. The uraniferous lignite occurs at several stratigraphic positions in the Sentinel Butte member of the Fort Union formation of Paleocene age. A total of 261 samples were collected for uranium analysis from 85 localities, Lignite contained as much as 0.045 percent uranium, 10.0 percent ash, and 0.45 percent uranium in the ash was found although the average is lower. Inferred reserves for the four areas examined are estimated to be about 27 million tons of lignite in beds about 2 feet thick and containing more than 3000 tons of uranium. The lignite in beds about 2 feet thick and containing more than 3000 tons of uranium. The lignite averages more than 30 percent ash in the surface samples. The principal factor that seems to influence the uranium content of lignite beds is their stratigraphic position below the overlying rocks of the White River group of Oligocene age. All of the uranium-bearing beds closely underlie the base of the White River group. Although this relationship seems to be the controlling factor, the relative concentration of uranium may be modified by other conditions. Beds enclosed in permeable rocks are more uraniferous than beds in impermeable rocks, and thin beds have higher content of uranium than thick beds. In addition, thick lignite beds commonly have a top=preferential distribution of uranium. These and other factors suggest that the uranium is secondary and this it was introduced by ground water which had leached uranium from volcanic ash in the overlying rocks of the White River group. It is thought that the uranium is held in the lignite as part of a metallo-organic compound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Haeyeon; G. Eggert, Roderick; W. Carlsen, Brett
Phosphate rock contains significant amounts of uranium, although in low concentrations. Recovery of uranium as a by-product from phosphoric acid, an intermediate product produced during the recovery of phosphorus from phosphate rock, is not unprecedented. Phosphoric acid plants ceased to produce uranium as a by-product in the early 1990s with the fall of uranium prices. In the last decade, this topic has regained attention due to higher uranium prices and expected increase in demand for uranium. Our study revisits the topic and estimates how much uranium might be recoverable from current phosphoric acid production in the United States and whatmore » the associated costs might be considering two different recovery processes: solvent extraction and ion exchange. Based on U.S. phosphoric acid production in 2014, 5.5 million pounds of U 3O 8 could have been recovered, more than domestic U.S. mine production of uranium in the same year. Annualized costs for a hypothetical uranium recovery plant are US$48-66 per pound U 3O 8 for solvent extraction, the process used historically in the United States to recover uranium from phosphoric acid. For ion exchange, not yet proven at a commercial scale for uranium recovery, the estimated costs are US$33-54 per pound U 3O 8. Our results suggest that it is technically possible for the United States to recover significant quantities of uranium from current phosphoric acid production. And for this type of uranium production to be economically attractive on a large scale, either recovery costs must fall or uranium prices rise.« less
Kim, Haeyeon; G. Eggert, Roderick; W. Carlsen, Brett; ...
2016-06-16
Phosphate rock contains significant amounts of uranium, although in low concentrations. Recovery of uranium as a by-product from phosphoric acid, an intermediate product produced during the recovery of phosphorus from phosphate rock, is not unprecedented. Phosphoric acid plants ceased to produce uranium as a by-product in the early 1990s with the fall of uranium prices. In the last decade, this topic has regained attention due to higher uranium prices and expected increase in demand for uranium. Our study revisits the topic and estimates how much uranium might be recoverable from current phosphoric acid production in the United States and whatmore » the associated costs might be considering two different recovery processes: solvent extraction and ion exchange. Based on U.S. phosphoric acid production in 2014, 5.5 million pounds of U 3O 8 could have been recovered, more than domestic U.S. mine production of uranium in the same year. Annualized costs for a hypothetical uranium recovery plant are US$48-66 per pound U 3O 8 for solvent extraction, the process used historically in the United States to recover uranium from phosphoric acid. For ion exchange, not yet proven at a commercial scale for uranium recovery, the estimated costs are US$33-54 per pound U 3O 8. Our results suggest that it is technically possible for the United States to recover significant quantities of uranium from current phosphoric acid production. And for this type of uranium production to be economically attractive on a large scale, either recovery costs must fall or uranium prices rise.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.R. Westphal; J.C. Price; R.D. Mariani
The pyroprocessing of used nuclear fuel via electrorefining requires the continued addition of uranium trichloride to sustain operations. Uranium trichloride is utilized as an oxidant in the system to allow separation of uranium metal from the minor actinides and fission products. The inventory of uranium trichloride had diminished to a point that production was necessary to continue electrorefiner operations. Following initial experimentation, cupric chloride was chosen as a reactant with uranium metal to synthesize uranium trichloride. Despite the variability in equipment and charge characteristics, uranium trichloride was produced in sufficient quantities to maintain operations in the electrorefiner. The results andmore » conclusions from several experiments are presented along with a set of optimized operating conditions for the synthesis of uranium trichloride.« less
PYROCHEMICAL DECONTAMINATION METHOD FOR REACTOR FUEL
Buyers, A.G.
1959-06-30
A pyro-chemical method is presented for decontaminating neutron irradiated uranium and separating plutonium therefrom by contact in the molten state with a metal chloride salt. Uranium trichloride and uranium tetrachloride either alone or in admixture with alkaline metal and alkaline eanth metal fluorides under specified temperature and specified phase ratio conditions extract substantially all of the uranium from the irradiated uranium fuel together with certain fission products. The phases are then separated leaving purified uranium metal. The uranium and plutonium in the salt phase can be reduced to forin a highly decontaminated uraniumplutonium alloy. The present method possesses advantages for economically decontaminating irradiated nuclear fuel elements since irradiated fuel may be proccessed immediately after withdrawal from the reactor and the uranium need not be dissolved and later reduced to the metallic form. Accordingly, the uranium may be economically refabricated and reinserted into the reactor.
Carbon diffusion in molten uranium: an ab initio molecular dynamics study
NASA Astrophysics Data System (ADS)
Garrett, Kerry E.; Abrecht, David G.; Kessler, Sean H.; Henson, Neil J.; Devanathan, Ram; Schwantes, Jon M.; Reilly, Dallas D.
2018-04-01
In this work we used ab initio molecular dynamics within the framework of density functional theory and the projector-augmented wave method to study carbon diffusion in liquid uranium at temperatures above 1600 K. The electronic interactions of carbon and uranium were described using the local density approximation (LDA). The self-diffusion of uranium based on this approach is compared with literature computational and experimental results for liquid uranium. The temperature dependence of carbon and uranium diffusion in the melt was evaluated by fitting the resulting diffusion coefficients to an Arrhenius relationship. We found that the LDA calculated activation energy for carbon was nearly twice that of uranium: 0.55 ± 0.03 eV for carbon compared to 0.32 ± 0.04 eV for uranium. Structural analysis of the liquid uranium-carbon system is also discussed.
Asymptotic Giant Branch stars as a source of short-lived radioactive nuclei in the solar nebula
NASA Technical Reports Server (NTRS)
Wasserburg, G. J.; Busso, M.; Gallino, R.; Raiteri, C. M.
1994-01-01
We carried out a theoretical evaluation of the contribution of Asymptotic Giant Branch (AGB) stars to some short-lived (10(exp 6) less than or equal to Tau-bar less than or equal to 2 x 10(exp 7) yr) isotopes in the Interstellar Medium (ISM) and in the early solar system using stellar model calculations for thermally pulsing evolutionary phases of low-mass stars. The yields of s-process nuclei in the convective He-shell for different neutron exposures tau(sub 0) were obtained, and AGB stars were shown to produce several radioactive nuclei (especially Pd-107, Pb-205, Fe-60, Zr-93, Tc-99, Cs-135, and Hf-182) in diferent amounts. Assuming either contamination of the solar nebula from a single AGB star or models for continuous injection and mixing from many stars into the ISM, we calculate the ratios of radioactive to stable nuclei at the epoch of the Sun's formation. The dilution factor between the AGB ejecta and the early solar system matter is obtained by matching the observed Pd-107/Pd-108 and depends on the value of tau(sub 0). It is found that small masses M(sub He) of He-shell material (10(exp -4)-10(exp -7) solar mass) enriched in s-process nuclei are sufficient to contaminate 1 solar mass of the ISM to produce the Pd-107 found in the early solar system. Predictions are made for all of the other radioactive isotopes. The optimal model to explain several observed radioactive species at different states of the proto-solar nebula involves a single AGB star with a low neutron exposure (tau(sub 0) = 0.03 mbarn(sup -1)) which contaminated the cloud with a dilution factor of M(sub He)/solar mass approximately 1.5 x 10(exp -4). This will also contribute newly synthesized stable s-process nuclei in the amount of approximately 10(exp -4) of their abundances already present in the proto-solar cloud. Variations in the degree of homogenization (approximately 30%) of the injected material may account for some of the small general isotopic anomalies found in meteorites. It is also found that Fe-60 is produced in small but significant quantities that may be sufficient to explain the observations if the time elapsed delta from the contamination of the ISM to the formation of protoplanetary bodies is not higher than delta = 5 x 10(exp 6) yr. If delta is longer, up to 10 x 10(exp 6) yr, this would require the single AGB star to experience enhanced neutron densities (n(sub n) approximately 3 x 10(exp 9)n/cu cm) in the s-processing zone in order to compensate for the branching at Fe-59. The alternative model of long-term continuous ejection of matter from many AGB stars does not appear to match the observations. We also estimate the Al-26 production from the H-shell and find that the Al-26 abundance in the early solar system may be readily explained in a self-consistent manner. Moreover, Al-26 from AGB stars may contribute substantially to the galactic Al-26 gamma-source, while no significant gamma-flux from Co-60 (deriving from Fe-60 decay) is to be expected.
40 CFR 471.70 - Applicability; description of the uranium forming subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... uranium forming subcategory. 471.70 Section 471.70 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Uranium Forming Subcategory § 471.70 Applicability; description of the uranium forming... introductions of pollutants into publicly owned treatment works from the process operations of the uranium...
40 CFR 471.70 - Applicability; description of the uranium forming subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... uranium forming subcategory. 471.70 Section 471.70 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Uranium Forming Subcategory § 471.70 Applicability; description of the uranium forming... introductions of pollutants into publicly owned treatment works from the process operations of the uranium...
The Toxicity of Depleted Uranium
Briner, Wayne
2010-01-01
Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed. PMID:20195447
Electrochemical method of producing eutectic uranium alloy and apparatus
Horton, James A.; Hayden, H. Wayne
1995-01-01
An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.
Geological and geochemical aspects of uranium deposits. A selected, annotated bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garland, P.A.; Thomas, J.M.; Brock, M.L.
1980-06-01
A bibliography of 479 references encompassing the fields of uranium and thorium geochemistry and mineralogy, geology of uranium deposits, uranium mining, and uranium exploration techniques has been compiled by the Ecological Sciences Information Center of Oak Ridge National Laboratory. The bibliography was produced for the National Uranium Resource Evaluation Program, which is funded by the Grand Junction Office of the Department of Energy. The references contained in the bibliography have been divided into the following eight subject categories: (1) geology of deposits, (2) geochemistry, (3) genesis O deposits, (4) exploration, (5) mineralogy, (6) uranium industry, (7) reserves and resources, andmore » (8) geology of potential uranium-bearing areas. All categories specifically refer to uranium and thorium; the last category contains basic geologic information concerning areas which the Grand Junction Office feels are particularly favorable for uranium deposition. The references are indexed by author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword.« less
Electrochemical method of producing eutectic uranium alloy and apparatus
Horton, J.A.; Hayden, H.W.
1995-01-10
An apparatus and method are disclosed for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode. 2 figures.
Conversion of depleted uranium hexafluoride to a solid uranium compound
Rothman, Alan B.; Graczyk, Donald G.; Essling, Alice M.; Horwitz, E. Philip
2001-01-01
A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.
NASA Astrophysics Data System (ADS)
Dillard, J. G.; Moers, H.; Klewe-Nebenius, H.; Kirch, G.; Pfennig, G.; Ache, H. J.
1984-09-01
The adsorption of methyl iodide on uranium and on uranium dioxide has been studied at 25 °C. Surfaces of the substrates were characterized before and after adsorption by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The XPS binding energy results indicate that CH 3I adsorption on uranium yields a carbide-type carbon, UC, and uranium iodide, UI 3. On uranium dioxide the carbon electron binding energy measurements are consistent with the formation of a hydrocarbon, —CH 3-type moiety. The interpretation of XPS and AES spectral features for CH 3I adsorption on uranium suggest that a complex dissociative adsorption reaction takes place. Adsorption of CH 3I on UO 2 occurs via a dissociative process. Saturation coverage occurs on uranium at approximately two langmuir (1 L = 10 -6 Torr s) exposure whereas saturation coverage on uranium dioxide is found at about five langmuir.
AGR-5/6/7 Irradiation Test Predictions using PARFUME
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skerjanc, William F.
PARFUME, (PARticle FUel ModEl) a fuel performance modeling code used for high temperature gas-cooled reactors (HTGRs), was used to model the Advanced Gas Reactor (AGR)-5/6/7 irradiation test using predicted physics and thermal hydraulics data. The AGR-5/6/7 test consists of the combined fifth, sixth, and seventh planned irradiations of the AGR Fuel Development and Qualification Program. The AGR-5/6/7 test train is a multi-capsule, instrumented experiment that is designed for irradiation in the 133.4-mm diameter north east flux trap (NEFT) position of Advanced Test Reactor (ATR). Each capsule contains compacts filled with uranium oxycarbide (UCO) unaltered fuel particles. This report documents themore » calculations performed to predict the failure probability of tristructural isotropic (TRISO)-coated fuel particles during the AGR-5/6/7 experiment. In addition, this report documents the calculated source term from the driver fuel. The calculations include modeling of the AGR-5/6/7 irradiation that is scheduled to occur from October 2017 to April 2021 over a total of 13 ATR cycles, including nine normal cycles and four Power Axial Locator Mechanism (PALM) cycle for a total between 500 – 550 effective full power days (EFPD). The irradiation conditions and material properties of the AGR-5/6/7 test predicted zero fuel particle failures in Capsules 1, 2, and 4. Fuel particle failures were predicted in Capsule 3 due to internal particle pressure. These failures were predicted in the highest temperature compacts. Capsule 5 fuel particle failures were due to inner pyrolytic carbon (IPyC) cracking causing localized stresses concentrations in the SiC layer. This capsule predicted the highest particle failures due to the lower irradiation temperature. In addition, shrinkage of the buffer and IPyC layer during irradiation resulted in formation of a buffer-IPyC gap. The two capsules at the two ends of the test train, Capsules 1 and 5 experienced the smallest buffer-IPyC gap formation due to the lower irradiation fluences and temperatures. Capsule 3 experienced the largest buffer-IPyC gap formation of just under 24 µm. The release fraction of fission products Ag, Cs, and Sr silver (Ag), cesium (Cs), and strontium (Sr) vary depending on capsule location and irradiation temperature. The maximum release fraction of Ag occurs in Capsule 3, reaching up to 84.8% for the TRISO fuel particles. The release fraction of the other two fission products, Cs and Sr are much smaller and, in most cases, less than 1%. The notable exception is again in Capsule 3, where the release fraction for Cs and Sr reach up to 9.7% and 19.1%, respectively.« less
Maps showing the distribution of uranium-deposit clusters in the Colorado Plateau uranium province
Finch, Warren I.
1991-01-01
The Colorado Palteau Uranium Province (CPUP) is defined by the distribution of uranium deposits, chiefly the sandstone-type, in upper Paleozoic and Mesozoic sedimentary rocks within the Colorado Plateau physiographic province (Granger and others, 1986). The uranium province is bordered by widely distributed and mostly minor uranium deposits in Precambrian and Tertiary rocks and by outcrops of Tertiary extrusive and intrusive igneous rocks.
Uranium in bone: metabolic and autoradiographic studies in the rat.
Priest, N D; Howells, G R; Green, D; Haines, J W
1982-03-01
The distribution and retention of intravenously injected hexavalent uranium-233 in the skeleton of the female rat has been investigated using a variety of autoradiographic and radiochemical techniques. These showed that approximately one third of the injected uranium is deposited in the skeleton where it is retained with an initial biological half-time of approximately 40 days. The studies also showed that: 1 Uranium is initially deposited onto all types of bone surface, but preferentially onto those that are accreting. 2 Uranium is deposited in the calcifying zones of skeletal cartilage. 3 Bone accretion results in the burial of surface deposits of uranium. 4 Bone resorption causes the removal of uranium from surfaces. 5 Resorbed uranium is not retained by osteoclasts and macrophages in the bone marrow. 6 Uranium removed from bone surfaces enters the bloodstream where most is either redeposited in bone or excreted via the kidneys. 7 The recycling of resorbed uranium within the skeleton tends to produce a uniform level of uranium contamination throughout mineralized bone. These results are taken to indicate that uranium deposition in bone shares characteristics in common with both the 'volume-seeking radionuclides' typified by the alkaline earth elements and with the 'bone surface-seeking radionuclides' typified by plutonium.
Horton, James A.; Hayden, Jr., Howard W.
1995-01-01
An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.
Horton, J.A.; Hayden, H.W. Jr.
1995-05-30
An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porcelli, D.; Wasserburg, G.J.; Andersson, P.S.
The importance of colloids and organic deposits for the transport of uranium isotopes from continental source regions and through the estuarine environment was investigated in the mire-rich Kalix River drainage basin in northern Sweden and the Baltic Sea. Ultrafiltration techniques were used to separate uranium and other elements associated with colloids > 10 kD and >3 kD from {open_quotes}solute{close_quotes} uranium and provided consistent results and high recovery rates for uranium as well as for other elements from large volume samples. Uranium concentrations in 0.45 {mu}m-filtered Kalix River water samples increased by a factor of 3 from near the headwaters inmore » the Caledonides to the river mouth while major cation concentrations were relatively constant. {sup 234}U {sup 238}U ratios were high ({delta}{sup 234}U = 770-1500) throughout the basin, without showing any simple pattern, and required a supply of {sup 234}U-rich water. Throughout the Kalix River, a large fraction (30-90%) of the uranium is carried by >10 kD colloids, which is compatible with uranium complexation with humic acids. No isotopic differences were found between colloid-associated and solute uranium. Within the Baltic Sea, about half of the uranium is removed at low salinities. The proportion that is lost is equivalent to that of river-derived colloid-bound uranium, suggesting that while solute uranium behaves conservatively during estuarine mixing, colloid-bound uranium is lost due to rapid flocculation of colloidal material. The association of uranium with colloids therefore may be an important parameter in determining uranium estuarine behavior. Mire peats in the Kalix River highly concentrate uranium and are potentially a significant source of recoil {sup 234}U to the mirewaters and river waters. However, mirewater data clearly demonstrate that only small {sup 234}U/{sup 238}U shifts are generated relative to inflowing groundwater. 63 refs., 8 figs., 3 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maassen, L.W.; Bolivar, S.L.
1979-06-01
The Los Alamos Scientific Laboratory conducted a hydrogeochemical and stream sediment reconnaissance for uranium. Totals of 408 water and 1538 sediment samples were collected from 1802 locations over a 20 100-km/sup 2/ area at an average density of one location per 11 km/sup 2/. Water samples were collected from springs, wells, and streams; sediments samples were collected predominantly from streams, but also from springs. All water samples were analyzed for uranium and 12 other elements. Sediment samples were analyzed for uranium and 42 additional elements. The uranium concentrations in water samples range from below the detection limit of 0.02 ppBmore » to 194.06 ppB. The mean uranium concentration for all water types containing < 40 ppB uranium is 1.98 ppB. Six samples contained uranium concentrations > 40.00 ppB. Well waters have the highest mean uranium concentration; spring waters have the lowest. Clusters of water samples that contain anomalous uranium concentrations are delineated in nine areas. Sediments collected from the quadrangle have uranium concentrations that range between 0.63 ppM and 28.52 ppM, with a mean for all sediments of 3.53 ppM. Eight areas containing clusters of sediments with anomalous uranium concentrations are delineated. One cluster contains sample locations within the Ambrosia Lake uranium district. Five clusters of sediment samples with anomalous uranium concentrations were collected from streams that drain the Jemez volcanic field. Another cluster defines an area just northeast of Albuquerque where streams drain Precambrian rocks, predominantly granites, of the Sandia Mountains. The last cluster, consisting of spring sediments from Mesa Portales, was collected near the contact of the Tertiary Ojo Alamo sandstone with underlying Cretaceous sediments. Sediments from these springs exhibit some of the highest uranium values reported and are associated with high uranium/thorium ratios.« less
31 CFR 540.318 - Uranium Hexafluoride (UF6).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Uranium Hexafluoride (UF6). 540.318... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.318 Uranium Hexafluoride (UF6). The term uranium...
49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.
Code of Federal Regulations, 2013 CFR
2013-10-01
... uranium or thorium. 173.426 Section 173.426 Transportation Other Regulations Relating to Transportation....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...
31 CFR 540.318 - Uranium Hexafluoride (UF6).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Uranium Hexafluoride (UF6). 540.318... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.318 Uranium Hexafluoride (UF6). The term uranium...
31 CFR 540.318 - Uranium Hexafluoride (UF6).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Uranium Hexafluoride (UF6). 540.318... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.318 Uranium Hexafluoride (UF6). The term uranium...
31 CFR 540.316 - Uranium enrichment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Uranium enrichment. 540.316 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of...
31 CFR 540.318 - Uranium Hexafluoride (UF6).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Uranium Hexafluoride (UF6). 540.318... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.318 Uranium Hexafluoride (UF6). The term uranium...
31 CFR 540.316 - Uranium enrichment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Uranium enrichment. 540.316 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of...
31 CFR 540.316 - Uranium enrichment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Uranium enrichment. 540.316 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of...
49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.
Code of Federal Regulations, 2014 CFR
2014-10-01
... uranium or thorium. 173.426 Section 173.426 Transportation Other Regulations Relating to Transportation....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...
31 CFR 540.316 - Uranium enrichment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Uranium enrichment. 540.316 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of...
49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.
Code of Federal Regulations, 2012 CFR
2012-10-01
... uranium or thorium. 173.426 Section 173.426 Transportation Other Regulations Relating to Transportation....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...
31 CFR 540.318 - Uranium Hexafluoride (UF6).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium Hexafluoride (UF6). 540.318... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.318 Uranium Hexafluoride (UF6). The term uranium...
31 CFR 540.309 - Natural uranium.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Natural uranium. 540.309 Section 540.309 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF... REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found in...
31 CFR 540.309 - Natural uranium.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Natural uranium. 540.309 Section 540.309 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF... REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found in...
NASA Astrophysics Data System (ADS)
Bajoga, Abubakar D.
A study of natural radioactivity from ninety different soil samples across the state of Kuwait was carried out with a view to ascertain the level of natural and/or man-made radioactivity from that area. There has been some concern on the levels of NORM following the First Gulf War in which approximately 300 tons of depleted uranium shells were used and in particular, whether it has a significant impact in the surrounding environment. This study uses gamma-spectroscopy in a low background measuring system employing a high resolution Hyper-Pure Germanium detector. The calculated specific activity concentrations are determined for the radionuclides 226Ra, 214Pb, 214Bi and 228Ac, 212Pb, 208Tl following the decays of the primordial radionuclides 238U and 232Th, respectively. The analysis also includes evaluations for the 235U decay chain. In particular, the 186 keV doublet transition is used together with the activity concentration values established from the decays of 214Bi and 214Pb to establish the 226Ra and 235U specific activity concentrations, which can be used to estimate the 235U:238U isotopic ratios and compare to the accepted value for naturally occurring material of 1:138. Specific activity concentration values have also been determined for the 40K and the anthropogenic radionuclide 137Cs (from fallout) were detected within the same samples. Results of the activity concentration gives mean value of 16.99±0.21, 12.79±0.14, 333±37 and 2.18±0.11 Bq/kg for 238U, 232Th, 40K, and 137Cs, respectively. The associated radiological hazard indices from these samples were found to have mean values of 29.13±0.35 nG/hr, 60.20±0.68 Bq/kg, and 35.30±0.40 µSv/year for the dose rates, radium equivalent, and annual dose equivalent, respectively. Analysed results of elemental concentrations of Uranium, Thorium and Potassium were also determined, and were found to range from 0.96±0.02 ppm to 2.53±0.02 ppm, 2.26±0.04 ppm to 5.23±0.05 ppm and a mean value of 1.21±0.03 % for 40K for the northern region, respectively. Overall result indicates values within the world average range. The results obtained for the 235U:238U isotopic ratio gives a mean value of 0.0462, which is consistent with the presence of natural material from the measured location.
THE RECOVERY OF URANIUM FROM GAS MIXTURE
Jury, S.H.
1964-03-17
A method of separating uranium from a mixture of uranium hexafluoride and other gases is described that comprises bringing the mixture into contact with anhydrous calcium sulfate to preferentially absorb the uranium hexafluoride on the sulfate. The calcium sulfate is then leached with a selective solvent for the adsorbed uranium. (AEC)
PREPARATION OF URANIUM-ALUMINUM ALLOYS
Moore, R.H.
1962-09-01
A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)
Separation of uranium from (Th,U)O.sub.2 solid solutions
Chiotti, Premo; Jha, Mahesh Chandra
1976-09-28
Uranium is separated from mixed oxides of thorium and uranium by a pyrometallurgical process in which the oxides are mixed with a molten chloride salt containing thorium tetrachloride and thorium metal which reduces the uranium oxide to uranium metal which can then be recovered from the molten salt. The process is particularly useful for the recovery of uranium from generally insoluble high-density sol-gel thoria-urania nuclear reactor fuel pellets.
PROCESS FOR SEGREGATING URANIUM FROM PLUTONIUM AND FISSION-PRODUCT CONTAMINATION
Ellison, C.V.; Runion, T.C.
1961-06-27
An aqueous nitric acid solution containing uranium, plutonium, and fission product values is contacted with an organic extractant comprised of a trialkyl phosphate and an organic diluent. The relative amounts of trialkyl phosphate and uranium values are controlled to achieve a concentration of uranium values in the organic extractant of at least 0.35 moles uranium per mole of trialkyl phosphate, thereby preferentially extracting uranium values into the organic extractant.
Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.
1959-02-10
A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.
Carbon diffusion in molten uranium: an ab initio molecular dynamics study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, Kerry E.; Abrecht, David G.; Kessler, Sean H.
In this work we used ab initio molecular dynamics (AIMD) within the framework of density functional theory (DFT) and the projector-augmented wave (PAW) method to study carbon diffusion in liquid uranium at temperatures above 1600 K. The electronic interactions of carbon and uranium were described using the local density approximation (LDA). The self-diffusion of uranium based on this approach is compared with literature computational and experimental results for liquid uranium. The temperature dependence of carbon and uranium diffusion in the melt was evaluated by fitting the resulting diffusion coefficients to an Arrhenius relationship. We found that the LDA calculated activationmore » energy for carbon was nearly twice that of uranium: 0.55±0.03 eV for carbon compared to 0.32±0.04 eV for uranium. Structural analysis of the liquid uranium-carbon system is also discussed.« less
Absorption of Thermal Neutrons in Uranium
DOE R&D Accomplishments Database
Creutz, E. C.; Wilson, R. R.; Wigner, E. P.
1941-09-26
A knowledge of the absorption processes for neutrons in uranium is important for planning a chain reaction experiment. The absorption of thermal neutrons in uranium and uranium oxide has been studied. Neutrons from the cyclotron were slowed down by passage through a graphite block. A uranium or uranium oxide sphere was placed at various positions in the block. The neutron intensity at different points in the sphere and in the graphite was measured by observing the activity induced in detectors or uranium oxide or manganese. It was found that both the fission activity in the uranium oxide and the activity induced in manganese was affected by non-thermal neutrons. An experimental correction for such effects was made by making measurements with the detectors surrounded by cadmium. After such corrections the results from three methods of procedure with the uranium oxide detectors and from the manganese detectors were consistent to within a few per cent.
Process for producing an aggregate suitable for inclusion into a radiation shielding product
Lessing, Paul A.; Kong, Peter C.
2000-01-01
The present invention is directed to methods for converting depleted uranium hexafluoride to a stable depleted uranium silicide in a one-step reaction. Uranium silicide provides a stable aggregate material that can be added to concrete to increase the density of the concrete and, consequently, shield gamma radiation. As used herein, the term "uranium silicide" is defined as a compound generically having the formula U.sub.x Si.sub.y, wherein the x represents the molecules of uranium and the y represent the molecules of silicon. In accordance with the present invention, uranium hexafluoride is converted to a uranium silicide by contacting the uranium hexafluoride with a silicon-containing material at a temperature in a range between about 1450.degree. C. and about 1750.degree. C. The stable depleted uranium silicide is included as an aggregate in a radiation shielding product, such as a concrete product.
Fermentation and Hydrogen Metabolism Affect Uranium Reduction by Clostridia
Gao, Weimin; Francis, Arokiasamy J.
2013-01-01
Previously, it has been shown that not only is uranium reduction under fermentation condition common among clostridia species, but also the strains differed in the extent of their capability and the pH of the culture significantly affected uranium(VI) reduction. In this study, using HPLC and GC techniques, metabolic properties of those clostridial strains active in uranium reduction under fermentation conditions have been characterized and their effects on capability variance of uranium reduction discussed. Then, the relationship between hydrogen metabolism and uranium reduction has been further explored and the important role played by hydrogenase in uranium(VI) and iron(III) reduction by clostridiamore » demonstrated. When hydrogen was provided as the headspace gas, uranium(VI) reduction occurred in the presence of whole cells of clostridia. This is in contrast to that of nitrogen as the headspace gas. Without clostridia cells, hydrogen alone could not result in uranium(VI) reduction. In alignment with this observation, it was also found that either copper(II) addition or iron depletion in the medium could compromise uranium reduction by clostridia. In the end, a comprehensive model was proposed to explain uranium reduction by clostridia and its relationship to the overall metabolism especially hydrogen (H 2 ) production.« less
Incorporation of Uranium: II. Distribution of Uranium Absorbed through the Lungs and the Skin
Walinder, G.; Fries, B.; Billaudelle, U.
1967-01-01
In experiments on mice, rabbits, and piglets the distribution of uranium was studied at different times after exposure. Uranium was administered by inhalation (mice) and through the skin (rabbits and piglets). These investigations show that the uptakes of uranium in different organs of the three species are highly dependent on the amounts administered. There seems to be a saturation effect in the spleen and bone tissue whenever the uranium concentration in the blood exceeds a certain level. The effect in the kidney is completely different. If, in a series of animals, the quantity of uranium is continuously increased, the uptakes by the kidneys increase more rapidly than the quantities administered. This observation seems to be consistent with the toxic effects of uranium on the capillary system in the renal cortex. Polyphloretin phosphate, a compound which reduces permeability, was investigated with respect to its effect on the uptake of uranium deposited in skin wounds in rabbits and piglets. It significantly reduced the absorption of uranium, even from depots in deep wounds. The findings are discussed with reference to the routine screening of persons exposed to uranium at AB Atomenergi. Images PMID:6073090
Rapid Dissolution of Soluble Uranyl Phases in Arid, Mine-Impacted Catchments Near Church Rock, NM
DOE Office of Scientific and Technical Information (OSTI.GOV)
deLemos, J.L.; Bostick, B.C.; Quicksall, A.N.
2009-05-14
We tested the hypothesis that runoff of uranium-bearing particles from mining waste disposal areas was a significant mechanism for redistribution of uranium in the northeastern part of the Upper Puerco River watershed (New Mexico). However, our results were not consistent with this hypothesis. Analysis of >100 sediment and suspended sediment samples collected adjacent to and downstream from uranium source areas indicated that uranium levels in the majority of the samples were not elevated above background. Samples collected within 50 m of a known waste disposal site were subjected to detailed geochemical characterization. Uranium in these samples was found to bemore » highly soluble; treatment with synthetic pore water for 24 h caused dissolution of 10-50% of total uranium in the samples. Equilibrium uranium concentrations in pore water were >4.0 mg/L and were sustained in repeated wetting events, effectively depleting soluble uranium from the solid phase. The dissolution rate of uranium appeared to be controlled by solid-phase diffusion of uranium from within uranium-bearing mineral particles. X-ray adsorption spectroscopy indicated the presence of a soluble uranyl silicate, and possibly a uranyl phosphate. These phases were exhausted in transported sediment suggesting that uranium was readily mobilized from sediments in the Upper Puerco watershed and transported in the dissolved load. These results could have significance for uranium risk assessment as well as mining waste management and cleanup efforts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn M.
2013-08-02
Bicarbonate is one of the most significant components within the uranium geochemical cycle. In aqueous solutions, bicarbonate forms strong complexes with uranium. As such, aqueous bicarbonate may significantly increase the rate of uranium release from uranium minerals. Quantifying the relationship of aqueous bicarbonate concentration to the rate of uranium release during dissolution is critical to understanding the long-term fate of uranium within the environment. Single-pass flow-through (SPTF) experiments were conducted to estimate the rate of uranium release from Na meta-autunite as a function of bicarbonate (0.0005-0.003 M) under the pH range of 6-11 and a temperature range of 5-60oC. Consistentmore » with the results of previous investigation, the rate of uranium release exhibited minimal dependency on temperature; but were strongly dependent on pH. Increasing aqueous bicarbonate concentrations afforded comparable increases in the rate of release of uranium. Most notably under low pH conditions the aqueous bicarbonate resulted in up to 370 fold increases in the rate of uranium release in relative to the rate of uranium release in the absence of bicarbonate. However, the effect of aqueous bicarbonate on the release of uranium was significantly less under higher pH conditions. It is postulated that at high pH values, surface sites are saturated with carbonate, thus the addition of more bicarbonate would have less effect on uranium release.« less
Rapid Dissolution of Soluble Uranyl Phases in Arid, Mine-Impacted Catchments near Church Rock, NM
DELEMOS, JAMIE L.; BOSTICK, BENJAMIN C.; QUICKSALL, ANDREW N.; LANDIS, JOSHUA D.; GEORGE, CHRISTINE C.; SLAGOWSKI, NAOMI L.; ROCK, TOMMY; BRUGGE, DOUG; LEWIS, JOHNNYE; DURANT, JOHN L.
2008-01-01
We tested the hypothesis that runoff of uranium-bearing particles from mining waste disposal areas was a significant mechanism for redistribution of uranium in the northeastern part of the Upper Puerco River watershed (New Mexico). However, our results were not consistent with this hypothesis. Analysis of >100 sediment and suspended sediment samples collected adjacent to and downstream from uranium source areas indicated that uranium levels in the majority of the samples were not elevated above background. Samples collected within 50 m of a known waste disposal site were subjected to detailed geochemical characterization. Uranium in these samples was found to be highly soluble; treatment with synthetic pore water for 24 h caused dissolution of 10–50% of total uranium in the samples. Equilibrium uranium concentrations in pore water were >4.0 mg/L and were sustained in repeated wetting events, effectively depleting soluble uranium from the solid phase. The dissolution rate of uranium appeared to be controlled by solid-phase diffusion of uranium from within uranium-bearing mineral particles. X-ray adsorption spectroscopy indicated the presence of a soluble uranyl silicate, and possibly a uranyl phosphate. These phases were exhausted in transported sediment suggesting that uranium was readily mobilized from sediments in the Upper Puerco watershed and transported in the dissolved load. These results could have significance for uranium risk assessment as well as mining waste management and cleanup efforts. PMID:18589950
Biosorption of uranium by Pseudomonas aeruginosa strain CSU: Characterization and comparison studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, M.Z.C.; Norman, J.M.; Faison, B.D.
1996-07-20
Pseudomonas aeruginosa strain CSU, a nongenetically engineered bacterial strain known to bind dissolved hexavalent uranium (as UO{sub 2}{sup 2+} and/or its cationic hydroxo complexes) was characterized with respect to its sorptive activity. The uranium biosorption equilibrium could be described by the Langmuir isotherm. The rate of uranium adsorption increased following permeabilization of the outer and/or cytoplasmic membrane by organic solvents such as acetone. P. aeruginosa CSU biomass was significantly more sorptive toward uranium than certain novel, patented biosorbents derived from algal or fungal biomass sources. P. aeruginosa CSU biomass was also competitive with commercial cation-exchange resins, particularly in the presencemore » of dissolved transition metals. Uranium binding by P. aeruginosa CSU was clearly pH dependent. Uranium loading capacity increased with increasing pH under acidic conditions, presumably as a function of uranium speciation and due to the H{sup +} competition at some binding sites. Nevertheless, preliminary evidence suggests that this microorganism is also capable of binding anionic hexavalent uranium complexes. Ferric iron was a strong inhibitor of uranium binding to P. aeruginosa CSU biomass, and the presence of uranium also decreased the Fe{sup 3+} loading when the biomass was not saturated with Fe{sup 3+}. Thus, a two-state process in which iron and uranium are removed in consecutive steps was proposed for efficient use of the biomass as a biosorbent in uranium removal from mine wastewater, especially acidic leachates.« less
Urinary excretion of uranium in adult inhabitants of the Czech Republic.
Malátová, Irena; Bečková, Věra; Kotík, Lukáš
2016-02-01
The main aim of this study was to determine and evaluate urinary excretion of uranium in the general public of the Czech Republic. This value should serve as a baseline for distinguishing possible increase in uranium content in population living near legacy sites of mining and processing uranium ores and also to help to distinguish the proportion of the uranium content in urine among uranium miners resulting from inhaled dust. The geometric mean of the uranium concentration in urine of 74 inhabitants of the Czech Republic was 0.091 mBq/L (7.4 ng/L) with the 95% confidence interval 0.071-0.12 mBq/L (5.7-9.6 ng/L) respectively. The geometric mean of the daily excretion was 0.15 mBq/d (12.4 ng/d) with the 95% confidence interval 0.12-0.20 mBq/d (9.5-16.1 ng/d) respectively. Despite the legacy of uranium mines and plants processing uranium ore in the Czech Republic, the levels of uranium in urine and therefore, also human body content of uranium, is similar to other countries, esp. Germany, Slovenia and USA. Significant difference in the daily urinary excretion of uranium was found between individuals using public supply and private water wells as a source of drinking water. Age dependence of daily urinary excretion of uranium was not found. Mean values and their range are comparable to other countries, esp. Germany, Slovenia and USA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Challenges dealing with depleted uranium in Germany - Reuse or disposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moeller, Kai D.
2007-07-01
During enrichment large amounts of depleted Uranium are produced. In Germany every year 2.800 tons of depleted uranium are generated. In Germany depleted uranium is not classified as radioactive waste but a resource for further enrichment. Therefore since 1996 depleted Uranium is sent to ROSATOM in Russia. However it still has to be dealt with the second generation of depleted Uranium. To evaluate the alternative actions in case a solution has to be found in Germany, several studies have been initiated by the Federal Ministry of the Environment. The work that has been carried out evaluated various possibilities to dealmore » with depleted uranium. The international studies on this field and the situation in Germany have been analyzed. In case no further enrichment is planned the depleted uranium has to be stored. In the enrichment process UF{sub 6} is generated. It is an international consensus that for storage it should be converted to U{sub 3}O{sub 8}. The necessary technique is well established. If the depleted Uranium would have to be characterized as radioactive waste, a final disposal would become necessary. For the planned Konrad repository - a repository for non heat generating radioactive waste - the amount of Uranium is limited by the licensing authority. The existing license would not allow the final disposal of large amounts of depleted Uranium in the Konrad repository. The potential effect on the safety case has not been roughly analyzed. As a result it may be necessary to think about alternatives. Several possibilities for the use of depleted uranium in the industry have been identified. Studies indicate that the properties of Uranium would make it useful in some industrial fields. Nevertheless many practical and legal questions are open. One further option may be the use as shielding e.g. in casks for transport or disposal. Possible techniques for using depleted Uranium as shielding are the use of the metallic Uranium as well as the inclusion in concrete. Another possibility could be the use of depleted uranium for the blending of High enriched Uranium (HEU) or with Plutonium to MOX-elements. (authors)« less
NASA Astrophysics Data System (ADS)
Markwitz, Vanessa; Porwal, Alok; Campbell McCuaig, T.; Kreuzer, Oliver P.
2010-05-01
Uranium deposits are usually classified based on the characteristics of their host rocks and geological environments (Dahlkamp, 1993; OECD/NEA Red Book and IAEA, 2000; Cuney, 2009). The traditional unconformity-related deposit types are the most economical deposits in the world, with the highest grades amongst all uranium deposit types. In order to predict undiscovered uranium deposits, there is a need to understand the spatial association of uranium mineralization with structures and unconformities. Hydrothermal uranium deposits develop by uranium enriched fluids from source rocks, transported along permeable pathways to their depositional environment. Unconformities are not only separating competent from incompetent sequences, but provide the physico-chemical gradient in the depositional environment. They acted as important fluid flow pathways for uranium to migrate not only for surface-derived oxygenated fluids, but also for high oxidized metamorphic and magmatic fluids, dominated by their geological environment in which the unconformities occur. We have carried out comprehensive empirical spatial analyses of various types of uranium deposits in Australia, and first results indicate that there is a strong spatial correlation between unconformities and uranium deposits, not only for traditional unconformity-related deposits but also for other styles. As a start we analysed uranium deposits in Queensland and in particular Proterozoic metasomatic-related deposits in the Mount Isa Inlier and Late Carboniferous to Early Permian volcanic-hosted uranium occurrences in Georgetown and Charters Towers Regions show strong spatial associations with contemporary and older unconformities. The Georgetown Inlier in northern Queensland consists of a diverse range of rocks, including Proterozoic and early Palaeozoic metamorphic rocks and granites and late Palaeozoic volcanic rocks and related granites. Uranium-molybdenum (+/- fluorine) mineralization in the Georgetown inlier varies from strata- to structure-bound and occurs above regional unconformities. The Proterozoic basins in the Mount Isa Inlier rest unconformably on Palaeoproterozoic basement accompanied by volcanic and igneous rocks, which were deformed and metamorphosed in the Mesoproterozoic. Uranium occurrences in the Western Succession of Mount Isa are either hosted in clastic metasediments or mafic volcanics that belong to the Palaeoproterozoic Eastern Creek Volcanics. Uranium and vanadium mineralization occur in metasomatised and hematite-magnetite-carbonate alteration zones, bounded by major faults and regional unconformities. The results of this study highlight the importance of unconformities in uranium minerals systems as possible fluid pathways and/or surfaces of physico-chemical contrast that could have facilitated the precipitation of uranium, not only in classical unconformity style uranium deposits but in several other styles of uranium mineralization as well. References Cuney, M., 2009. The extreme diversity of uranium deposits. Mineralium Deposita, 44, 3-9. Dahlkamp, F. J., 1993. Uranium ore deposits. Springer, Berlin, p 460. OECD / NEA Red Book & IAEA, 2000. Uranium 1999: Resources, Production and Demand. OECD Nuclear Energy Agency and International Atomic Energy Agency, Paris.
Fan, Jing; Chen, Chunxian; Yu, Qibin; Li, Zheng-Guo; Gmitter, Frederick G
2010-10-01
Three putative terpenoid UDP-glycosyltransferase (UGT) genes, designated CsUGT1, CsUGT2, and CsUGT3, were isolated and characterized in 'Valencia' sweet orange (Citrus sinensis L. Osbeck). CsUGT1 consisted of 1493 nucleotides with an open reading frame encoding 492 amino acids, CsUGT2 consisted of 1727 nucleotides encoding 504 amino acids, and CsUGT3 consisted of 1705 nucleotides encoding 468 amino acids. CsUGT3 had a 145 bp intron at 730-874, whereas CsUGT1 and CsUGT2 had none. The three deduced glycosyltransferase proteins had a highly conserved plant secondary product glycosyltransferase motif in the C terminus. Phylogenetic analysis showed that CsUGT1 and CsUGT3 were classified into group L of glycosyltransferase family 1, and CsUGT2 was classified into group D. Through Southern blotting analysis, CsUGT1 was found to have two copies in the sweet orange genome, whereas CsUGT2 and CsUGT3 had at least seven and nine copies, respectively. CsUGT1, CsUGT2, and CsUGT3 were constitutively expressed in leaf, flower, and fruit tissues. The results facilitate further investigation of the function of terpenoid glycosyltransferases in citrus and the biosynthesis of terpenoid glycosides in vitro.
Suzuki, Hiroki; Moritani, Tatsuru; Morinaga, Tadahiko; Seto, Yoshiki; Sato, Hideyuki; Onoue, Satomi
2017-03-15
The present study aimed to develop an amorphous solid dispersion (ASD) of cyclosporine A (CsA) by a fine droplet drying (FDD) process for improvement in oral absorption of CsA. CsA and hydroxypropyl cellulose-SSL were dissolved in 1,4-dioxane, and the solution was powdered by the FDD process to obtain the ASD formulation of CsA (ASD/CsA). The ASD/CsA was characterized in terms of morphology, particle size distribution, crystallinity, dissolution behavior, physicochemical stability, and pharmacokinetic behavior in rats. The ASD/CsA was obtained in the form of uniform spherical particles, and the span factor was calculated to be ca. 0.4. CsA in the formulation existed in an amorphous state. The ASD/CsA exhibited a higher dissolution behavior of CsA than amorphous CsA, whereas storage of the ASD/CsA under accelerated conditions led to impairment in the dissolution behavior. The constant release of CsA from non-aged ASD/CsA was observed during dissolution testing. After oral administration of CsA samples (10mg-CsA/kg) in rats, the ASD/CsA showed a high and sustained plasma concentration of CsA as evidenced by a 18-fold increase in the oral bioavailability of CsA compared with amorphous CsA. From these findings, the FDD process might be an efficacious option for the ASD formulation of CsA with enhanced biopharmaceutics properties. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tissot, François L. H.; Dauphas, Nicolas
2015-10-01
The 238U/235U isotopic composition of uranium in seawater can provide important insights into the modern U budget of the oceans. Using the double spike technique and a new data reduction method, we analyzed an array of seawater samples and 41 geostandards covering a broad range of geological settings relevant to low and high temperature geochemistry. Analyses of 18 seawater samples from geographically diverse sites from the Atlantic and Pacific oceans, Mediterranean Sea, Gulf of Mexico, Persian Gulf, and English Channel, together with literature data (n = 17), yield a δ238U value for modern seawater of -0.392 ± 0.005‰ relative to CRM-112a. Measurements of the uranium isotopic compositions of river water, lake water, evaporites, modern coral, shales, and various igneous rocks (n = 64), together with compilations of literature data (n = 380), allow us to estimate the uranium isotopic compositions of the various reservoirs involved in the modern oceanic uranium budget, as well as the fractionation factors associated with U incorporation into those reservoirs. Because the incorporation of U into anoxic/euxinic sediments is accompanied by large isotopic fractionation (ΔAnoxic/Euxinic-SW = +0.6‰), the size of the anoxic/euxinic sink strongly influences the δ238U value of seawater. Keeping all other fluxes constant, the flux of uranium in the anoxic/euxinic sink is constrained to be 7.0 ± 3.1 Mmol/yr (or 14 ± 3% of the total flux out of the ocean). This translates into an areal extent of anoxia into the modern ocean of 0.21 ± 0.09% of the total seafloor. This agrees with independent estimates and rules out a recent uranium budget estimate by Henderson and Anderson (2003). Using the mass fractions and isotopic compositions of various rock types in Earth's crust, we further calculate an average δ238U isotopic composition for the continental crust of -0.29 ± 0.03‰ corresponding to a 238U/235U isotopic ratio of 137.797 ± 0.005. We discuss the implications of the variability of the 238U/235U ratio on Pb-Pb and U-Pb ages and provide analytical formulas to calculate age corrections as a function of the age and isotopic composition of the sample. The crustal ratio may be used in calculation of Pb-Pb and U-Pb ages of continental crust rocks and minerals when the U isotopic composition is unknown. In cosmochemistry, the search for 247Cm (t1/2 = 15.6 Myr), an extinct short-lived radionuclide that decays into 235U, is important for understanding how r-process nuclides were synthesized in stars and learning about the astrophysical context of solar system formation (Chen and Wasserburg, 1981; Wasserburg et al., 1996; Nittler and Dauphas, 2006; Brennecka et al., 2010b; Tissot et al., 2015). In both terrestrial and extraterrestrial samples, variations in the 238U/235U ratio affect Pb-Pb ages (and depending on the analytical protocols, U-Pb ages). Therefore, samples dated by these techniques need to have their U isotopic compositions measured (Stirling et al., 2005, 2006; Weyer et al., 2008; Amelin et al., 2010; Brennecka et al., 2010b; Brennecka and Wadhwa, 2012; Connelly et al., 2012; Goldmann et al., 2015) or uncertainties on the U isotopic composition should be propagated into age calculations. In low temperature aqueous geochemistry, U isotopic fractionation between U4+ and U6+ (driven in part by nuclear field shift effects; Bigeleisen, 1996; Schauble, 2007; Abe et al., 2008), makes U isotopes potential tracers of paleoredox conditions (Montoya-Pino et al., 2010; Brennecka et al., 2011a; Kendall et al., 2013, 2015; Asael et al., 2013; Andersen et al., 2014; Dahl et al., 2014; Goto et al., 2014; Noordmann et al., 2015). The present paper aims at constraining some aspects of the global budget of uranium in the modern oceans using 238U/235U isotope variations, which involves characterizing the U isotopic composition of seawater and several reservoirs involved in the uranium oceanic budget. Uranium can exist in two oxidation states in terrestrial surface environments: U4+ is insoluble in seawater while U6+ is soluble (Langmuir, 1978). The contrasting behaviors of the two oxidation states of uranium explains why the disappearance of detrital uraninite after the Archean marks the rise of oxygen in Earth's atmosphere/hydrosphere (Ramdohr, 1958; Rasmussen and Buick, 1999; Frimmel, 2005). More recently, significant effort has focused on using U isotopes to constrain the past extents of anoxic/euxinic vs. oxic or suboxic sediments in modern and ancient oceans (Montoya-Pino et al., 2010; Brennecka et al., 2011a; Asael et al., 2013; Kendall et al., 2013, 2015; Andersen et al., 2014; Dahl et al., 2014; Goto et al., 2014; Noordmann et al., 2015). A virtue of this system is that it can potentially reflect the global redox state of Earth's oceans. At the same time, several difficulties have been encountered in applying U isotopes as paleo-redox indicators. For example, detrital contributions can blur the authigenic signal and have to be corrected for (Asael et al., 2013; Andersen et al., 2014; Noordmann et al., 2015), uranium isotopes can be affected by diagenesis and exchange with porewater (Romaniello et al., 2013; Andersen et al., 2014), and the exact isotopic fractionation factors relevant to various conditions of deposition are uncertain. While significant progress has already been made to address these difficulties (Asael et al., 2013; Romaniello et al., 2013; Andersen et al., 2014; Noordmann et al., 2015), this system and others are missing some of the groundwork studies on modern environments that are needed to gain trust in their applications to ancient sediments.In the modern ocean, water-soluble uranium behaves conservatively (i.e., U concentration correlates linearly to water salinity, Ku et al., 1977; Owens et al., 2011) and has a long residence time of ∼400 kyr (Ku et al., 1977). The ocean is therefore a large repository of uranium, exceeding the total inventory of land-based deposits (Lu, 2014). The riverine input (40-46 Mmol/yr) is balanced by several sinks; including suboxic sediments, anoxic/euxinic sediments, carbonates, altered oceanic crust, salt marshes and Fe-Mn nodules. Barnes and Cochran (1990), Morford and Emerson (1999), Dunk et al. (2002), and Henderson and Anderson (2003) each proposed estimates for the oceanic uranium budget that differ substantially in the fluxes that they use. Uranium isotopes are sensitive to ocean redox conditions because uranium removal in anoxic/euxinic sediments imparts large uranium isotopic fractionation, so that the areal extent of this sink influences greatly the U isotopic composition of seawater relative to the riverine input. In the present paper, we report double-spike uranium isotopic measurements of 18 seawater samples, 18 continental crust lithologies, 7 individual minerals, 6 oyster samples, 3 modern evaporites samples, 2 lake water samples, 1 large river water sample and 1 coral sample. These measurements are supplemented by compilations of literature data. With this large data set (n = 444), we are able to constrain the flux of uranium into anoxic/euxinic sediments, as well as the global extent of anoxia in the modern ocean (percent of seafloor covered by anoxic/euxinic sediments). Our findings compare well with independent estimates and rule out the most recent U budget of Henderson and Anderson (2003).As part of our effort, we also present a data reduction method for double-spike measurements that is both comprehensive in the way the errors are propagated and simple to implement.
Natural uranium impairs the differentiation and the resorbing function of osteoclasts.
Gritsaenko, Tatiana; Pierrefite-Carle, Valérie; Lorivel, Thomas; Breuil, Véronique; Carle, Georges F; Santucci-Darmanin, Sabine
2017-04-01
Uranium is a naturally occurring radionuclide ubiquitously present in the environment. The skeleton is the main site of uranium long-term accumulation. While it has been shown that natural uranium is able to perturb bone metabolism through its chemical toxicity, its impact on bone resorption by osteoclasts has been poorly explored. Here, we examined for the first time in vitro effects of natural uranium on osteoclasts. The effects of uranium on the RAW 264.7 monocyte/macrophage mouse cell line and primary murine osteoclastic cells were characterized by biochemical, molecular and functional analyses. We observed a cytotoxicity effect of uranium on osteoclast precursors. Uranium concentrations in the μM range are able to inhibit osteoclast formation, mature osteoclast survival and mineral resorption but don't affect the expression of the osteoclast gene markers Nfatc1, Dc-stamp, Ctsk, Acp5, Atp6v0a3 or Atp6v0d2 in RAW 274.7 cells. Instead, we observed that uranium induces a dose-dependent accumulation of SQSTM1/p62 during osteoclastogenesis. We show here that uranium impairs osteoclast formation and function in vitro. The decrease in available precursor cells, as well as the reduced viability of mature osteoclasts appears to account for these effects of uranium. The SQSTM1/p62 level increase observed in response to uranium exposure is of particular interest since this protein is a known regulator of osteoclast formation. A tempting hypothesis discussed herein is that SQSTM1/p62 dysregulation contributes to uranium effects on osteoclastogenesis. We describe cellular and molecular effects of uranium that potentially affect bone homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.
Bone as a Possible Target of Chemical Toxicity of Natural Uranium in Drinking Water
Kurttio, Päivi; Komulainen, Hannu; Leino, Aila; Salonen, Laina; Auvinen, Anssi; Saha, Heikki
2005-01-01
Uranium accumulates in bone, affects bone metabolism in laboratory animals, and when ingested in drinking water increases urinary excretion of calcium and phosphate, important components in the bone structure. However, little is known about bone effects of ingested natural uranium in humans. We studied 146 men and 142 women 26–83 years of age who for an average of 13 years had used drinking water originating from wells drilled in bedrock, in areas with naturally high uranium content. Biochemical indicators of bone formation were serum osteocalcin and amino-terminal propeptide of type I procollagen, and a marker for bone resorption was serum type I collagen carboxy-terminal telopeptide (CTx). The primary measure of uranium exposure was uranium concentration in drinking water, with additional information on uranium intake and uranium concentration in urine. The data were analyzed separately for men and women with robust regression (which suppresses contributions of potential influential observations) models with adjustment for age, smoking, and estrogen use. The median uranium concentration in drinking water was 27 μg/L (interquartile range, 6–116 μg/L). The median of daily uranium intake was 36 μg (7–207 μg) and of cumulative intake 0.12 g (0.02–0.66 g). There was some suggestion that elevation of CTx (p = 0.05) as well as osteocalcin (p = 0.19) could be associated with increased uranium exposure (uranium in water and intakes) in men, but no similar relationship was found in women. Accordingly, bone may be a target of chemical toxicity of uranium in humans, and more detailed evaluation of bone effects of natural uranium is warranted. PMID:15626650
NASA Astrophysics Data System (ADS)
Sharma, S. P.; Biswas, A.
2012-12-01
South Purulia Shear Zone (SPSZ) is an important region for prospecting of uranium mineralization. Geological studies and hydro-uranium anomaly suggest the presence of Uranium deposit around Raghunathpur village which lies about 8 km north of SPSZ. However, detailed geophysical investigations have not been carried out in this region for investigation of uranium mineralization. Since surface signature of uranium mineralization is not depicted near the location, a deeper subsurface source is expected for hydro uranium anomaly. To delineate the subsurface structure and to investigate the origin of hydro-uranium anomaly present in the area, Vertical Electrical Sounding (VES) using Schlumberger array and Gradient Resistivity Profiling (GRP) were performed at different locations along a profile perpendicular to the South Purulia Shear Zone. Apparent resistivity computed from the measured sounding data at various locations shows a continuously increasing trend. As a result, conventional apparent resistivity data is not able to detect the possible source of hydro uranium anomaly. An innovative approach is applied which depicts the apparent conductivity in the subsurface revealed a possible connection from SPSZ to Raghunathpur. On the other hand resistivity profiling data suggests a low resistive zone which is also characterized by low Self-Potential (SP) anomaly zone. Since SPSZ is characterized by the source of uranium mineralization; hydro-uranium anomaly at Raghunathpur is connected with the SPSZ. The conducting zone has been delineated from SPSZ to Raghunathpur at deeper depths which could be uranium bearing. Since the location is also characterized by a low gravity and high magnetic anomaly zone, this conducting zone is likely to be mineralized zone. Keywords: Apparent resistivity; apparent conductivity; Self Potential; Uranium mineralization; shear zone; hydro-uranium anomaly.
Yang, Jen Ming; Yang, Jhe-Hao; Huang, Huei Tsz
2014-01-01
The surface of styrene-butadiene-styrene block copolymer (SBS) membrane is modified with tri-steps in this study. At first, two step modified SBS membrane (MSBS) was prepared with epoxidation and ring opening reaction with maleated ionomer. Then chitosan was used as the polycation electrolyte and sodium alginate, poly(γ-glutamic acid) (PGA) and poly(aspartic acid) (PAsp) were selected as polyanion electrolytes to deposit on the surfaces of MSBS membrane by the layer-by-layer self-assembly (LbL) deposition technique to get three [chitosan/polyanion] LbL modified SBS membranes, ([CS/Alg], [CS/PGA] and [CS/PAsp]). From the quantitative XPS analysis and water contact angle measurement, it is found that the order of wettability and the content of functional group percentages of COO(-) and OCN on the three [CS/polyanion] systems are [CS/Alg]>[CS/PGA]>[CS/PAsp]. Performances of water vapor transmission rates, fibronectin adsorption, antibacterial assessment and 3T3 fibroblast cell growth on [CS/Alg], [CS/PGA] and [CS/PAsp] membranes were also evaluated. With the evaluation of water vapor transmission rate, these [CS/Alg], [CS/PGA] and [CS/PAsp] membranes are sterile semipermeable with water evaporation at about 82±8g/day·m(2). It is found that the amount of fibronectin adsorption on the three [CS/polyanion] systems is significantly determined by the sum of the functional group of COO(-) and OCN on the surfaces of [CS/Alg], [CS/PGA] and [CS/PAsp] systems. The results are inverse with the sum of the functional group of COO(-) and OCN on the three [CS/polyanion]. From the cytotoxicity test and cell adhesion and proliferation assay of 3T3 fibroblasts on the three [CS/polyanion] systems, it revealed that the cells not only remained viable but they also proliferated on the surfaces of [CS/Alg], [CS/PGA] and [CS/PAsp]. The bactericidal activity was found on [CS/Alg], [CS/PGA] and [CS/PAsp]. The transport of bacterial through these [CS/polyanion] membranes was also conducted. No bacterial transport was found. © 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, L.G.; Cellini, R.F.
1959-01-01
The thermal decomposition of some intermediate compounds in the metallurgy of uranium such as uranium peroxide, ammonium uranate, ammonium uranium pentafluoride, uranium tetrafluoride, and UO/sub 2/, were studied using Chevenard's thermobalance. Some data on the pyrolysis of synthetic mixtures of intermediate compounds which may appear during the industrial processing are given. Thermogravimetric methods of control are suggested for use in uranium metallurgy. (tr-auth)
Feder, H.M.; Chellew, N.R.
1958-02-01
This patent deals with the separation of rare earth and other fission products from neutron bombarded uranium. This is accomplished by melting the uranium in contact with either thorium oxide, maguesium oxide, alumnum oxide, beryllium oxide, or uranium dioxide. The melting is preferably carried out at from 1150 deg to 1400 deg C in an inert atmosphere, such as argon or helium. During this treatment a scale of uranium dioxide forms on the uranium whtch contains most of the fission products.
Uranium(VI) interactions with mackinawite in the presence and absence of bicarbonate and oxygen.
Gallegos, Tanya J; Fuller, Christopher C; Webb, Samuel M; Betterton, William
2013-07-02
Mackinawite, Fe(II)S, samples loaded with uranium (10(-5), 10(-4), and 10(-3) mol U/g FeS) at pH 5, 7, and 9, were characterized using X-ray absorption spectroscopy and X-ray diffraction to determine the effects of pH, bicarbonate, and oxidation on uptake. Under anoxic conditions, a 5 g/L suspension of mackinawite lowered 5 × 10(-5) M uranium(VI) to below 30 ppb (1.26 × 10(-7) M) U. Between 82 and 88% of the uranium removed from solution by mackinawite was U(IV) and was nearly completely reduced to U(IV) when 0.012 M bicarbonate was added. Near-neighbor coordination consisting of uranium-oxygen and uranium-uranium distances indicates the formation of uraninite in the presence and absence of bicarbonate, suggesting reductive precipitation as the dominant removal mechanism. Following equilibration in air, mackinawite was oxidized to mainly goethite and sulfur and about 76% of U(IV) was reoxidized to U(VI) with coordination of uranium to axial and equatorial oxygen, similar to uranyl. Additionally, uranium-iron distances, typical of coprecipitation of uranium with iron oxides, and uranium-sulfur distances indicating bidentate coordination of U(VI) to sulfate were evident. The affinity of mackinawite and its oxidation products for U(VI) provides impetus for further study of mackinawite as a potential reactive medium for remediation of uranium-contaminated water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-09-30
Results of a reconnaissance geochemical survey of the Brownsville-McAllen Quadrangles, Texas are reported. Field and laboratory data are presented for 427 groundwater and 171 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. Pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate the most promising area for potential uranium mineralization occurs in the northwestern section of the quadrangles (Jim Hogg, Starr, and Zapata Counties), where waters are derived from the Catahoula Formation. These groundwaters have high concentrations of uranium, uranium associated elements,more » and low values for specific conductance. Another area with high uranium concentrations is in the southeastern portion of the survey area (Hidalgo, Cameron, and Willacy Counties). Shallow wells <10 m (30 ft) are numerous in this area and high specific conductance values may indicate contamination from extensive fertilization. Stream sediment data for the survey does not indicate an area favorable for uranium mineralization. Anomalous acid soluble uranium values in the southeastern area (Hidalgo, Cameron, and Willacy Counties) can be attributed to phosphate fertilizer contamination. Four samples in the western part of the area (western Starr County) have anomalously high total uranium values and low acid soluble uranium values, indicating the uranium may be contained in resistate minerals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, S.J.; Sandoval, W.F.; Gallimore, D.L.
1980-06-01
During the summer and fall of 1977, 533 water and 1226 sediment samples were collected from 1740 locations within the 18,000 km/sup 2/ area of the Newcastle quadrangle, Wyoming. Water samples were collected from wells and springs; sediment samples were collected from stream channels and from springs. Each water sample was analyzed for uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit of 0.02 ppB to 702.26 ppB and have a median of 1.73 ppB and a mean of 11.76 ppB. Water samples containingmore » high uranium concentrations (>20 ppB) generally are associated with known uranium mining activity or units known to be uranium bearing. About one-third of the water samples containing high uranium concentrations were collected from locations within the Pumpkin Buttes and Turnercrest-Ross Districts. Nearly half of the water samples containing high uranium concentrations were collected from locations just west of the Monument Hill and Highland Flats-Box Creek Districts. Similar anomalous uranium concentrations in this region have been reported updip from Exxon's Highland uranium deposits. High uranium concentrations were also found associated with the Lance Creek-Old Woman Anticline District.« less
Li, Peng; Zhun, Bao; Wang, Xuegang; Liao, PingPing; Wang, Guanghui; Wang, Lizhang; Guo, Yadan; Zhang, Weimin
2017-12-19
A new strategy combining iron-electrocoagulation and organic ligands (OGLs) cooperative chelation was proposed to screen and precipitate low concentrations (0-18.52 μmol/L) of uranium contaminant in aqueous solution. We hypothesized that OGLs with amino, hydroxyl, and carboxyl groups hydrophobically/hydrophilically would realize precuring of uranyl ion at pH < 3.0, and the following iron-electrocoagulation would achieve faster and more efficient uranium precipitation. Experimentally, the strategy demonstrated highly efficient uranium(VI) precipitation efficiency, especially with hydrophilic macromolecular OGLs. The uranium removal efficiency at optimized experimental condition reached 99.65%. The decrease of zeta potential and the lattice enwrapping between U-OGLs chelates and flocculation precursor were ascribed to the enhanced uranium precipitation activity. Uranium was precipitated as oxides of U(VI) or higher valences that were easily captured in aggregated micelles under low operation current potential. The actual uranium tailing wastewater was treated, and a satisfied uranium removal efficiency of 99.02% was discovered. After elution of the precipitated flocs, a concentrated uranium solution (up to 106.52 μmol/L) with very few other metallic impurities was obtained. Therefore, the proposed strategy could remove uranium and concentrate it concurrently. This work could provide new insights into the purification and recovery of uranium from aqueous solutions in a cost-effective and environmentally friendly process.
31 CFR 540.315 - Uranium-235 (U235).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Uranium-235 (U235). 540.315 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.315 Uranium-235 (U235). The term uranium-235 or U235 means the fissile...
31 CFR 540.315 - Uranium-235 (U235).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Uranium-235 (U235). 540.315 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.315 Uranium-235 (U235). The term uranium-235 or U235 means the fissile...
49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Activity-mass relationships for uranium and....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U present...
49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Activity-mass relationships for uranium and....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U present...
49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Activity-mass relationships for uranium and....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U present...
31 CFR 540.315 - Uranium-235 (U235).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Uranium-235 (U235). 540.315 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.315 Uranium-235 (U235). The term uranium-235 or U235 means the fissile...
31 CFR 540.315 - Uranium-235 (U235).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Uranium-235 (U235). 540.315 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.315 Uranium-235 (U235). The term uranium-235 or U235 means the fissile...
SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS FROM NEUTRON- BOMBARDED URANIUM
Martin, A.E.; Johnson, I.; Burris, L. Jr.; Winsch, I.O.; Feder, H.M.
1962-11-13
A process is given for removing plutonium and/or fission products from uranium fuel. The fuel is dissolved in molten zinc--magnesium (10 to 18% Mg) alloy, more magnesium is added to obtain eutectic composition whereby uranium precipitates, and the uranium are separated from the Plutoniumand fission-product- containing eutectic. (AEC)
31 CFR 540.315 - Uranium-235 (U235).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium-235 (U235). 540.315 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.315 Uranium-235 (U235). The term uranium-235 or U235 means the fissile...
DISSOLUTION OF ZIRCONIUM-CONTAINING FUEL ELEMENTS
Horn, F.L.
1961-12-12
Uranium is recovered from spent uranium fuel elements containing or clad with zirconium. These fuel elements are placed in an anhydrous solution of hydrogen fluoride and nitrogen dioxide. Within this system uranium forms a soluble complex and zirconium forms an insoluble complex. The uranium can then be separated, treated, and removed from solution as uranium hexafluoride. (AEC)
The role of uranium-arene bonding in H2O reduction catalysis
NASA Astrophysics Data System (ADS)
Halter, Dominik P.; Heinemann, Frank W.; Maron, Laurent; Meyer, Karsten
2018-03-01
The reactivity of uranium compounds towards small molecules typically occurs through stoichiometric rather than catalytic processes. Examples of uranium catalysts reacting with water are particularly scarce, because stable uranyl groups form that preclude the recovery of the uranium compound. Recently, however, an arene-anchored, electron-rich uranium complex has been shown to facilitate the electrocatalytic formation of H2 from H2O. Here, we present the precise role of uranium-arene δ bonding in intermediates of the catalytic cycle, as well as details of the atypical two-electron oxidative addition of H2O to the trivalent uranium catalyst. Both aspects were explored by synthesizing mid- and high-valent uranium-oxo intermediates and by performing comparative studies with a structurally related complex that cannot engage in δ bonding. The redox activity of the arene anchor and a covalent δ-bonding interaction with the uranium ion during H2 formation were supported by density functional theory analysis. Detailed insight into this catalytic system may inspire the design of ligands for new uranium catalysts.
Ramie (Boehmeria nivea)'s uranium bioconcentration and tolerance attributes.
Wang, Wei-Hong; Luo, Xue-Gang; Liu, Lai; Zhang, Yan; Zhao, Hao-Zhou
2018-04-01
The authors sampled and analyzed 15 species of dominant wild plants in Huanan uranium tailings pond in China, whose tailings' uranium contents were 3.21-120.52 μg/g. Among the 15 species of wild plants, ramie (Boehmeria nivea) had the strongest uranium bioconcentration and transfer capacities. In order to study the uranium bioconcentration and tolerance attributes of ramie in detail, and provide a reference for the screening remediation plants to phytoremedy on a large scale in uranium tailings pond, a ramie cultivar Xiangzhu No. 7 pot experiment was carried out. We found that both wild ramie and Xiangzhu No. 7 could bioconcentrate uranium, but there were two differences. One was wild ramie's shoots bioconcentrated uranium up to 20 μg/g (which can be regarded as the critical content value of the shoot of uranium hyperaccumulator) even the soil uranium content was as low as 5.874 μg/g while Xiangzhu No. 7's shoots could reach 20 μg/g only when the uranium treatment concentrations were 275 μg/g or more; the other was that all the transfer factors of 3 wild samples were >1, and the transfer factors of 27 out of 28 pot experiment samples were <1. Probably wild ramie was a uranium hyperaccumulator. Xiangzhu No. 7 satisfied the needs of uranium hyperaccumulator on accumulation capability, tolerance capability, bioconcentration factor, but not transfer capability, so Xiangzhu No. 7 was not a uranium hyperaccumulator. We analyzed the possible reasons why there were differences in the uranium bioconcentration and transfer attributes between wild ramie and Xiangzhu No. 7., and proposed the direction for further research. In our opinion, both the plants which bioconcentrate contaminants in the shoots and roots can act as phytoextractors. Although Xiangzhu No. 7's biomass and accumulation of uranium were concentrated on the roots, the roots were small in volume and easy to harvest. And Xiangzhu No. 7's cultivating skills and protection measures had been developed very well. Xiangzhu No. 7's whole bioconcentration factors and the roots' bioconcentration factors, which were 1.200-1.834 and 1.460-2.341, respectively, increased with the increases of uranium contents of pot soil when the soil's uranium contents are 25-175 μg/g, so it can act as a potential phytoextractor when Huanan uranium tailings pond is phytoremediated. Copyright © 2018. Published by Elsevier Ltd.
Baumann, Nils; Arnold, Thuro; Haferburg, Götz
2014-01-01
Uranium concentrations in cultivated (sunflower, sunchoke, potato) and native plants, plant compartment specimens, and mushrooms, grown on a test site within a uranium-contaminated area in Eastern Thuringia, were analyzed and compared. This test site belongs to the Friedrich-Schiller University Jena and is situated on the ground of a former but now removed uranium mine waste leaching heap. For determination of the U concentrations in the biomaterials, the saps of the samples were squeezed out by using an ultracentrifuge, after that, the uranium concentrations in the saps and the remaining residue were measured, using ICP-MS. The study further showed that uranium concentrations observed in plant compartment and mushroom fruiting bodies sap samples were always higher than their associated solid residue sample. Also, it was found that the detected uranium concentration in the root samples were always higher than were observed in their associated above ground biomass, e.g., in shoots, leaves, blossoms etc. The highest uranium concentration was measured with almost 40 ppb U in a fruiting body of a mushroom and in roots of butterbur. However, the detected uranium concentrations in plants and mushrooms collected in this study were always lower than in the associated surface and soil water of the test site, indicating that under the encountered natural conditions, none of the studied plant and mushroom species turned out to be a hyperaccumulator for uranium, which could have extracted uranium in sufficient amounts out of the uranium-contaminated soil. In addition, it was found that the detected uranium concentrations in the sap samples, despite being above the sensitivity limit, proved to be too low-in combination with the presence of fluorescence quenching substances, e.g., iron and manganese ions, and/or organic quenchers-to extract a useful fluorescence signal, which could have helped to identify the uranium speciation in plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camper, Larry W.; Michalak, Paul; Cohen, Stephen
Community Water Systems (CWSs) are required to remove uranium from drinking water to meet EPA standards. Similarly, mining operations are required to remove uranium from their dewatering discharges to meet permitted surface water discharge limits. Ion exchange (IX) is the primary treatment strategy used by these operations, which loads uranium onto resin beads. Presently, uranium-loaded resin from CWSs and mining operations can be disposed as a waste product or processed by NRC- or Agreement State-licensed uranium recovery facilities if that licensed facility has applied for and received permission to process 'alternate feed'. The disposal of uranium-loaded resin is costly andmore » the cost to amend a uranium recovery license to accept alternate feed can be a strong disincentive to commercial uranium recovery facilities. In response to this issue, the NRC issued a Regulatory Issue Summary (RIS) to clarify the agency's policy that uranium-loaded resin from CWSs and mining operations can be processed by NRC- or Agreement State-licensed uranium recovery facilities without the need for an alternate feed license amendment when these resins are essentially the same, chemically and physically, to resins that licensed uranium recovery facilities currently use (i.e., equivalent feed). NRC staff is clarifying its current alternate feed policy to declare IX resins as equivalent feed. This clarification is necessary to alleviate a regulatory and financial burden on facilities that filter uranium using IX resin, such as CWSs and mine dewatering operations. Disposing of those resins in a licensed facility could be 40 to 50 percent of the total operations and maintenance (O and M) cost for a CWS. Allowing uranium recovery facilities to treat these resins without requiring a license amendment lowers O and M costs and captures a valuable natural resource. (authors)« less
As-cast uranium-molybdenum based metallic fuel candidates and the effects of carbon addition
NASA Astrophysics Data System (ADS)
Blackwood, Van Stephen
The objective of this research was to develop and recommend a metallic nuclear fuel candidate that lowered the onset temperature of gamma phase formation comparable or better than the uranium-10 wt. pct. molybdenum alloy, offered a solidus temperature as high or higher than uranium-10 wt. pct. zirconium (1250°C), and stabilized the fuel phase against interaction with iron and steel at least as much as uranium-10 wt. pct. zirconium stabilized the fuel phase. Two new as-cast alloy compositions were characterized to assess thermal equilibrium boundaries of the gamma phase field and the effect of carbon addition up to 0.22 wt. pct. The first system investigated was uranium- x wt. pct. M where x ranged between 5-20 wt. pct. M was held at a constant ratio of 50 wt. pct. molybdenum, 43 wt. pct. titanium, and 7 wt. pct. zirconium. The second system investigated was the uranium-molybdenum-tungsten system in the range 90 wt. pct. uranium - 10 wt. pct. molybdenum - 0 wt. pct. tungsten to 80 wt. pct. uranium - 10 wt. pct. molybdenum - 10 wt. pct. tungsten. The results showed that the solidus temperature increased with increased addition of M up to 12.5 wt. pct. for the uranium-M system. Alloy additions of titanium and zirconium were removed from uranium-molybdenum solid solution by carbide formation and segregation. The uranium-molybdenum-tungsten system solidus temperature increased to 1218°C at 2.5 wt. pct. with no significant change in temperature up to 5 wt. pct. tungsten suggesting the solubility limit of tungsten had been reached. Carbides were observed with surrounding areas enriched in both molybdenum and tungsten. The peak solidus temperatures for the alloy systems were roughly the same at 1226°C for the uranium-M system and 1218°C for the uranium-molybdenum-tungsten system. The uranium-molybdenum-tungsten system required less alloy addition to achieve similar solidus temperatures as the uranium-M system.
URANIUM IN ROCK MINERALS OF THE INTRUSION OF KYZL-OMPUL MOUNTAINS (NORTH KIRGISIA) (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonova, L.L.; Pogiblova, L.S.
1961-01-01
The uranium distribution in rock minerals (syenites, granosyenites, and alaskite granites) of the Kyzyl-Ompul raassif is studied. Alaskite granites are characterized by the granite type of uranium distribution in minerals, about 50 percent of this element being connected with rockforming and about 50 percent with accessory uranium minerals. ln syenites uranium (about 70 percent) is bound to rockforming minerals. The same minerals from syenites and granites strongly differ by their uranium content and are constant in the ranges of each of those rock types. Granosyenites have aa intermediate (between syenites and granites) type of uranium distribution in minerals. (auth)
Removal of uranium from soil samples for ICP-OES analysis of RCRA metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wero, M.; Lederer-Cano, A.; Billy, C.
1995-12-01
Soil samples containing high levels of uranium present unique analytical problems when analyzed for toxic metals (Ag, As, Ba, Cd, Cr, Cu, Ni, Pb, Se and Tl) because of the spectral interference of uranium in the ICP-OES emission spectrometer. Methods to remove uranium from the digestates of soil samples, known to be high in uranium, have been developed that reduce the initial uranium concentration (1-3%) to less than 500 ppm. UTEVA ion exchange columns, used as an ICP-OES analytical pre-treatment, reduces uranium to acceptable levels, permitting good analytical results of the RCRA metals by ICP-OES.
NASA Astrophysics Data System (ADS)
Esparza-Arredondo, Donaji; González-Martín, Omaira; Dultzin, Deborah; Alonso-Herrero, Almudena; Ramos Almeida, Cristina; Díaz-Santos, Tanio; García-Bernete, Ismael; Martinez-Paredes, Mariela; Rodríguez-Espinosa, Jose Miguel
2018-06-01
We studied the circumnuclear mid-IR emission in a sample of 19 local active galactic nuclei (AGNs) with high spatial resolution spectra using T-ReCS (Gemini) and CanariCam (GTC), together with Spitzer/IRS observations. We measured the flux and the equivalent width for the 11.3 μm PAH feature and the [S IV] line emission as a function of galactocentric distance. This allowed us to study the star formation (SF) at subkiloparsec scales from the nucleus for a large sample of nearby AGNs. The [S IV] line emission could be tracing the AGN radiation field within a few thousand times the sublimation radius (R sub), but it often peaks at distances greater than 1000 R sub. One possibility is that the SF is contributing to the [S IV] total flux. We found an 11.3 μm PAH emission deficit within the inner few tens of parsecs from the AGN. This deficit might be due to the destruction of the molecules responsible for this feature or the lack of SF at these distances. We found a sensible agreement in the expected shift of the relation of the AGN bolometric luminosity and the SF rate. This indicates that numerical models attributing the link between AGN activity and host galaxy growth to mergers are in agreement with our data, for most inner galaxy parts.
Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.
1958-04-15
The production of uranium metal by the reduction of uranium tetrafluoride is described. Massive uranium metal of high purily is produced by reacting uranium tetrafluoride with 2 to 20% stoichiometric excess of magnesium at a temperature sufficient to promote the reaction and then mantaining the reaction mass in a sealed vessel at temperature in the range of 1150 to 2000 d C, under a superatomospheric pressure of magnesium for a period of time sufficient 10 allow separation of liquid uranium and liquid magnesium fluoride into separate layers.
Depleted Uranium Program: Repository and Chemical Analysis of Biological Samples
2010-11-01
Chemical Samples • Chemical Pathology and Analytical Assessment of U and DU in: • Tissues • Urine • Whole blood • Semen • Embedded fragments...preparation for determination of total uranium and isotopic uranium ratios Semen – Total Uranium – dry ashed by concentrated nitric acid in muffle...Total uranium and DU measurements in blood 0.0 50.0 100.0 150.0 200.0 250.0 ng U in s am pl e Sample Number Semen Measured U Theortical U Uranium
Method of precipitating uranium from an aqueous solution and/or sediment
Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin
2013-08-20
A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.
Method for fabricating uranium foils and uranium alloy foils
Hofman, Gerard L [Downers Grove, IL; Meyer, Mitchell K [Idaho Falls, ID; Knighton, Gaven C [Moore, ID; Clark, Curtis R [Idaho Falls, ID
2006-09-05
A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.
RECOVERY OF URANIUM FROM ZIRCONIUM-URANIUM NUCLEAR FUELS
Gens, T.A.
1962-07-10
An improvement was made in a process of recovering uranium from a uranium-zirconium composition which was hydrochlorinated with gsseous hydrogen chloride at a temperature of from 350 to 800 deg C resulting in volatilization of the zirconium, as zirconium tetrachloride, and the formation of a uranium containing nitric acid insoluble residue. The improvement consists of reacting the nitric acid insoluble hydrochlorination residue with gaseous carbon tetrachloride at a temperature in the range 550 to 600 deg C, and thereafter recovering the resulting uranium chloride vapors. (AEC)
Short-lived Isotopes from a Close-by AGB Star Triggering the Protosolar Nebula
NASA Astrophysics Data System (ADS)
Gallino, R.; Busso, M.; Wasserburg, G. J.; Straniero, O.
The presence of short-lived isotopes in the early solar system, in particular 26Al, 41Ca, 60Fe, and 107Pd, point to a close-by and fresh nucleosynthesis source, possibly triggering the collapse of the protosolar nebula. We present the results of nucleosynthesis calculations based on an AGB polluting hypothesis. A general concordance of the predicted yields of the above radioactivities relative to 26Al can be obtained in the case of an intermediate mass AGB star with hot bottom burning in the envelope (thus producing 26Al), and mixing through a series of third dredge-up episodes a fraction of the C-rich and s-processed material from the He intershell with the extended envelope. Polution of the protosolar nebula with freshly synthesized material may derive from the efficient winds of the AGB star. In AGB stars, the s-process nucleosynthesis occurs both during the maximum phase of every thermal runaway, driven by the partial activation of the 22Ne(alpha,n)25Mg reaction, and in the interpulse phase, where the 13C nuclei are fully consumed in radiative conditions by the activation of the 13C(alpha,n)16O reaction. We have used different prescriptions for the amount of the 13C nuclei present in the intershell. A minimum amount of 13C is naturally expected in the ashes of H-shell burning. Possible formation of an extra "13C-pocket" derives from the injection of a small amount of protons from the envelope into the 12C-rich intershell during any third dredge-up episode, when the H-shell is inactivated. Prediction for other short-lived, 36Cl, 135Cs, and 205Pb, are given. General consequences for the pollution of the protosolar nebula with newly synthesized stable isotopes from the AGB winds are outlined. The origin of other detected short-lived nuclei, in particular 53Mn, 129I, and 182Hf, which cannot come from an AGB source, is analysed. The alternative trigger hypothesis by a close-by Supernova is discussed.
SMA Spectral Line Survey of the Proto-Planetary Nebula CRL 618
NASA Astrophysics Data System (ADS)
Patel, Nimesh A.; Gottlieb, Carl; Young, Ken; Kaminski, Tomasz Tomek; McCarthy, Michael; Menten, Karl; Primiani, Rurik; Lee, Chin-Fei; Gupta, Harshal
2018-01-01
Carbon-rich Asymptotic Giant Branch (AGB) stars are major sources of gas and dust in the interstellar medium. AGB stars remain in their evolutionary stage for 1 to 10 Myrs, during which they have very high mass loss rates that increase at the end. During the brief (~1000 yr) period in the evolution from the AGB to the Planetary Nebula (PN) stage there are dramatic changes in the morphology from nearly spherical symmetry, to bipolar, quadrupolar and more complex structures, with the development of both slow and fast (100 km/s) outflows. The molecular composition of these objects' cirumstellar envelopes also evolves from being similar to that of parent AGB star (mainly diatomic and small polyatomic species), to more complex molecules (including ions).We have started an observational study of a sample of Proto-Planetary nebulae (PPN) with the Submillimeter Array to carry out spectral-line surveys of ~60 GHz frequency coverage in the 345 GHz band (similar to our published IRC+10216 line survey of 2011). Here we present preliminary results from the line survey of the carbon-rich PPN CRL 618, covering a frequency range of 281.9 to 359.4 GHz. Observations were carried out in January 2016 and September 2017, with the SMA in compact (3" angular resolution) and very extended (0.5") configurations, respectively.More than 1100 lines were detected in CRL 618. The majority of them can be attributed to HC3N and c-C3H2, and their isotopologues. About 350 lines are as yet unassigned. The continuum emission is unresolved even at 0.5" resolution. Several hydrogen recombination lines are detected from the central HII region. Lines of CO, HCO+, CS show the fast outflow wings, while the majority of molecular emission arises from a compact region of about 1" diameter. We present LTEmodeling and rotation temperature diagram analysis of HC3N, c-C3H2, CH3CN, and their isotopologues. We plan to observe another PPN, CRL 2688 with the SMA in 2018. Together, these imaging line surveys will provide observational constraints on models of the chemical evolution from AGB stars to Planetary Nebulae.
The evolution of young HII regions. I. Continuum emission and internal dynamics
NASA Astrophysics Data System (ADS)
Klaassen, P. D.; Johnston, K. G.; Urquhart, J. S.; Mottram, J. C.; Peters, T.; Kuiper, R.; Beuther, H.; van der Tak, F. F. S.; Goddi, C.
2018-04-01
Context. High-mass stars form in much richer environments than those associated with isolated low-mass stars, and once they reach a certain mass, produce ionised (HII) regions. The formation of these pockets of ionised gas are unique to the formation of high-mass stars (M > 8 M⊙), and present an excellent opportunity to study the final stages of accretion, which could include accretion through the HII region itself. Aim. This study of the dynamics of the gas on both sides of these ionisation boundaries in very young HII regions aims to quantify the relationship between the HII regions and their immediate environments. Methods: We present high-resolution ( 0.5″) ALMA observations of nine HII regions selected from the red MSX source survey with compact radio emission and bolometric luminosities greater than 104 L⊙. We focus on the initial presentation of the data, including initial results from the radio recombination line H29α, some complementary molecules, and the 256 GHz continuum emission. Results: Of the six (out of nine) regions with H29α detections, two appear to have cometary morphologies with velocity gradients across them, and two appear more spherical with velocity gradients suggestive of infalling ionised gas. The remaining two were either observed at low resolution or had signals that were too weak to draw robust conclusions. We also present a description of the interactions between the ionised and molecular gas (as traced by CS (J = 5 - 4)), often (but not always) finding the HII region had cleared its immediate vicinity of molecules. Conclusions: Of our sample of nine, the observations of the two clusters expected to have the youngest HII regions (from previous radio observations) are suggestive of having infalling motions in the H29α emission, which could be indicative of late stage accretion onto the stars despite the presence of an HII region. Table A.2 is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A99
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papadopoulos, Padelis P.; Zhang, Zhi-Yu; Xilouris, E. M.
2014-06-20
We used the SPIRE/FTS instrument aboard the Herschel Space Observatory to obtain the Spectral Line Energy Distributions (SLEDs) of CO from J = 4-3 to J = 13-12 of Arp 193 and NGC 6240, two classical merger/starbursts selected from our molecular line survey of local Luminous Infrared Galaxies (L {sub IR} ≥ 10{sup 11} L {sub ☉}). The high-J CO SLEDs are then combined with ground-based low-J CO, {sup 13}CO, HCN, HCO{sup +}, CS line data and used to probe the thermal and dynamical states of their large molecular gas reservoirs. We find the two CO SLEDs strongly diverging frommore » J = 4-3 onward, with NGC 6240 having a much higher CO line excitation than Arp 193, despite their similar low-J CO SLEDs and L {sub FIR}/L {sub CO,} {sub 1} {sub –0}, L {sub HCN}/L {sub CO} (J = 1-0) ratios (proxies of star formation efficiency and dense gas mass fraction). In Arp 193, one of the three most extreme starbursts in the local universe, the molecular SLEDs indicate a small amount (∼5%-15%) of dense gas (n ≥ 10{sup 4} cm{sup –3}) unlike NGC 6240 where most of the molecular gas (∼60%-70%) is dense (n ∼ (10{sup 4}-10{sup 5}) cm{sup –3}). Strong star-formation feedback can drive this disparity in their dense gas mass fractions, and also induce extreme thermal and dynamical states for the molecular gas. In NGC 6240, and to a lesser degree in Arp 193, we find large molecular gas masses whose thermal states cannot be maintained by FUV photons from Photon-Dominated Regions. We argue that this may happen often in metal-rich merger/starbursts, strongly altering the initial conditions of star formation. ALMA can now directly probe these conditions across cosmic epoch, and even probe their deeply dust-enshrouded outcome, the stellar initial mass function averaged over galactic evolution.« less
Huang, Bing; Zhu, Huiwen; Zhou, Yiming; Liu, Xing; Ma, Lan
2017-01-01
Consolidated long-term fear memories become labile and reconsolidated upon retrieval by the presentation of conditioned stimulus (CS) or unconditioned stimulus (US). Whether CS-retrieval or US-retrieval will trigger different memory reconsolidation processes is unknown. In this study, we introduced a sequential fear conditioning paradigm in which footshock (FS) was paired with two distinct sounds (CS-A and CS-B). The treatment with propranolol, a β-adrenergic receptor (β-AR) antagonist, after US (FS)-retrieval impaired freezing behavior evoked by either CS-A or CS-B. Betaxolol, a selective β1-AR antagonist, showed similar effects. However, propranolol treatment after retrieval by one CS (e.g., CS-A) only inhibited freezing behavior evoked by the same CS (i.e., CS-A), not the other CS (CS-B). These data suggest that β-AR is critically involved in reconsolidation of fear memory triggered by US- and CS-retrieval, whereas β-AR blockade after US-retrieval disrupts more CS-US associations than CS-retrieval does. Furthermore, significant CREB activation in almost the whole amygdala and hippocampus was observed after US-retrieval, but CS-retrieval only stimulated CREB activation in the lateral amygdala and the CA3 of hippocampus. In addition, propranolol treatment suppressed memory retrieval-induced CREB activation. These data indicate that US-retrieval activates more memory traces than CS-retrieval does, leading to memory reconsolidation of more CS-US associations. PMID:28848401
Lee, Minhee; Yang, Minjune
2010-01-15
The uranium removal efficiencies of rhizofiltration in the remediation of groundwater were investigated in lab-scale experiments. Sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) were cultivated and an artificially uranium contaminated solution and three genuine groundwater samples were used in the experiments. More than 80% of the initial uranium in solution and genuine groundwater, respectively, was removed within 24h by using sunflower and the residual uranium concentration of the treated water was lower than 30 microg/L (USEPA drinking water limit). For bean, the uranium removal efficiency of the rhizofiltration was roughly 60-80%. The maximum uranium removal via rhizofiltration for the two plant cultivars occurred at pH 3-5 of solution and their uranium removal efficiencies exceeded 90%. The lab-scale continuous rhizofiltration clean-up system delivered over 99% uranium removal efficiency, and the results of SEM and EDS analyses indicated that most uranium accumulated in the roots of plants. The present results suggested that the uranium removal capacity of two plants evaluated in the clean-up system was about 25mg/kg of wet plant mass. Notably, the removal capacity of the root parts only was more than 500 mg/kg.
Organic geochemical analysis of sedimentary organic matter associated with uranium
Leventhal, J.S.; Daws, T.A.; Frye, J.S.
1986-01-01
Samples of sedimentary organic matter from several geologic environments and ages which are enriched in uranium (56 ppm to 12%) have been characterized. The three analytical techniqyes used to study the samples were Rock-Eval pyrolysis, pyrolysis-gas chromatography-mass spectrometry, and solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy. In samples with low uranium content, the pyrolysis-gas chromatography products contain oxygenated functional groups (as hydroxyl) and molecules with both aliphatic and aromatic carbon atoms. These samples with low uranium content give measurable Rock-Eval hydrocarbon and organic-CO2 yields, and C-13 NMR values of > 30% aliphatic carbon. In contrast, uranium-rich samples have few hydrocarbon pyrolysis products, increased Rock-Eval organic-CO2 contents and > 70% aromatic carbon contents from C-13 NMR. The increase in aromaticity and decrease in hydrocarbon pyrolysis yield are related to the amount of uranium and the age of the uranium minerals, which correspond to the degree of radiation damage. The three analytical techniques give complementary results. Increase in Rock-Eval organic-CO2 yield correlates with uranium content for samples from the Grants uranium region. Calculations show that the amount of organic-CO2 corresponds to the quantity of uranium chemically reduced by the organic matter for the Grants uranium region samples. ?? 1986.
Large decadal-scale changes in uranium and bicarbonate in groundwater of the irrigated western U.S
Burow, Karen R.; Belitz, Kenneth; Dubrovsky, Neil M.; Jurgens, Bryant C.
2017-01-01
Samples collected about one decade apart from 1105 wells from across the U.S. were compiled to assess whether uranium concentrations in the arid climate are linked to changing bicarbonate concentrations in the irrigated western U.S. Uranium concentrations in groundwater were high in the arid climate in the western U.S, where uranium sources are abundant. Sixty-four wells (6%) were above the U.S. EPA MCL of 30 μg/L; all but one are in the arid west. Concentrations were low to non-detectable in the humid climate. Large uranium and bicarbonate increases (differences are greater than the uncertainty in concentrations) occur in 109 wells between decade 1 and decade 2. Similarly, large uranium and bicarbonate decreases occur in 76 wells between the two decades. Significantly more wells are concordant (uranium and bicarbonate are both going the same direction) than discordant (uranium and bicarbonate are going opposite directions) (p < 0.001; Chi-square test). The largest percent difference in uranium concentrations occur in wells where uranium is increasing and bicarbonate is also increasing. These large differences occur mostly in the arid climate. Results are consistent with the hypothesis that changing uranium concentrations are linked to changes in bicarbonate in irrigated areas of the western U.S.
Immobilization of uranium into magnetite from aqueous solution by electrodepositing approach.
Lu, Bing-Qing; Li, Mi; Zhang, Xiao-Wen; Huang, Chun-Mei; Wu, Xiao-Yan; Fang, Qi
2018-02-05
Immobilization of uranium into magnetite (Fe 3 O 4 ), which was generated from metallic iron by electrochemical method, was proposed to rapidly remove uranium from aqueous solution. The effects of electrochemical parameters such as electrode materials, voltage, electrode gap, reaction time and pH value on the crystallization of Fe 3 O 4 and uranium removal efficiencies were investigated. More than 90% uranium in the solution was precipitated with Fe 3 O 4 under laboratory conditions when uranium concentration range from 0.5mg/L to 10mg/L. The Fe 3 O 4 crystallization mechanism and immobilization of uranium was proved by XPS, XRD, TEM, FTIR and VSM methods. The results indicated that the cationic (including Fe 2+ , Fe 3+ and U(VI)) migrate to cathode side under the electric field and the uranium was incorporated or adsorbed by Fe 3 O 4 which was generated at cathode while the pH ranges between 2-7. The uranium-containing precipitate of Fe 3 O 4 can exist stably at the acid concentration below 60g/L. Furthermore, the precipitate may be used as valuable resources for uranium or iron recycling, which resulted in no secondary pollution in the removal of uranium from aqueous solution. Copyright © 2017. Published by Elsevier B.V.
Uranium provinces of North America; their definition, distribution, and models
Finch, Warren Irvin
1996-01-01
Uranium resources in North America are principally in unconformity-related, quartz-pebble conglomerate, sandstone, volcanic, and phosphorite types of uranium deposits. Most are concentrated in separate, well-defined metallogenic provinces. Proterozoic quartz-pebble conglomerate and unconformity-related deposits are, respectively, in the Blind River–Elliot Lake (BRELUP) and the Athabasca Basin (ABUP) Uranium Provinces in Canada. Sandstone uranium deposits are of two principal subtypes, tabular and roll-front. Tabular sandstone uranium deposits are mainly in upper Paleozoic and Mesozoic rocks in the Colorado Plateau Uranium Province (CPUP). Roll-front sandstone uranium deposits are in Tertiary rocks of the Rocky Mountain and Intermontane Basins Uranium Province (RMIBUP), and in a narrow belt of Tertiary rocks that form the Gulf Coastal Uranium Province (GCUP) in south Texas and adjacent Mexico. Volcanic uranium deposits are concentrated in the Basin and Range Uranium Province (BRUP) stretching from the McDermitt caldera at the Oregon-Nevada border through the Marysvale district of Utah and Date Creek Basin in Arizona and south into the Sierra de Peña Blanca District, Chihuahua, Mexico. Uraniferous phosphorite occurs in Tertiary sediments in Florida, Georgia, and North and South Carolina and in the Lower Permian Phosphoria Formation in Idaho and adjacent States, but only in Florida has economic recovery been successful. The Florida Phosphorite Uranium Province (FPUP) has yielded large quantities of uranium as a byproduct of the production of phosphoric acid fertilizer. Economically recoverable quantities of copper, gold, molybdenum, nickel, silver, thorium, and vanadium occur with the uranium deposits in some provinces.Many major epochs of uranium mineralization occurred in North America. In the BRELUP, uranium minerals were concentrated in placers during the Early Proterozoic (2,500–2,250 Ma). In the ABUP, the unconformity-related deposits were most likely formed initially by hot saline formational water related to diagenesis (»1,400 to 1,330 Ma) and later reconcentrated by hydrothermal events at »1,280–»1,000, »575, and »225 Ma. Subsequently in North America, only minor uranium mineralization occurred until after continental collision in Permian time (255 Ma). Three principal epochs of uranium mineralization occurred in the CPUP: (1) » 210–200 Ma, shortly after Late Triassic sedimentation; (2) »155–150 Ma, in Late Jurassic time; and (3) » 135 Ma, after sedimentation of the Upper Jurassic Morrison Formation. The most likely source of the uranium was silicic volcaniclastics for the three epochs derived from a volcanic island arc at the west edge of the North American continent. Uranium mineralization occurred during Eocene, Miocene, and Pliocene times in the RMIBUP, GCUP, and BRUP. Volcanic activity took place near the west edge of the continent during and shortly after sedimentation of the host rocks in these three provinces. Some volcanic centers in the Sierra de Peña Blanca district within the BRUP may have provided uranium-rich ash to host rocks in the GCUP.Most of the uranium provinces in North America appear to have a common theme of close associations to volcanic activity related to the development of the western margin of the North American plate. The south and west margin of the Canadian Shield formed the leading edge of the progress of uranium source development and mineralization from the Proterozoic to the present. The development of favorable hosts and sources of uranium is related to various tectonic elements developed over time. Periods of major uranium mineralization in North America were Early Proterozoic, Middle Proterozoic, Late Triassic–Early Jurassic, Early Cretaceous, Oligocene, and Miocene. Tertiary mineralization was the most pervasive, covering most of Western and Southern North America.
Behavior of uranium under conditions of interaction of rocks and ores with subsurface water
NASA Astrophysics Data System (ADS)
Omel'Yanenko, B. I.; Petrov, V. A.; Poluektov, V. V.
2007-10-01
The behavior of uranium during interaction of subsurface water with crystalline rocks and uranium ores is considered in connection with the problem of safe underground insulation of spent nuclear fuel (SNF). Since subsurface water interacts with crystalline rocks formed at a high temperature, the mineral composition of these rocks and uranium species therein are thermodynamically unstable. Therefore, reactions directed toward the establishment of equilibrium proceed in the water-rock system. At great depths that are characterized by hindered water exchange, where subsurface water acquires near-neutral and reducing properties, the interaction is extremely sluggish and is expressed in the formation of micro- and nanoparticles of secondary minerals. Under such conditions, the slow diffusion redistribution of uranium with enrichment in absorbed forms relative to all other uranium species is realized as well. The products of secondary alteration of Fe- and Ti-bearing minerals serve as the main sorbents of uranium. The rate of alteration of minerals and conversion of uranium species into absorbed forms is slow, and the results of these processes are insignificant, so that the rocks and uranium species therein may be regarded as unaltered. Under reducing conditions, subsurface water is always saturated with uranium. Whether water interacts with rock or uranium ore, the equilibrium uranium concentration in water is only ≤10-8 mol/l. Uraninite ore under such conditions always remains stable irrespective of its age. The stability conditions of uranium ore are quite suitable for safe insulation of SNF, which consists of 95% uraninite (UO2) and is a confinement matrix for all other radionuclides. The disposal of SNF in massifs of crystalline rocks at depths below 500 m, where reducing conditions are predominant, is a reliable guarantee of high SNF stability. Under oxidizing conditions of the upper hydrodynamic zone, the rate of interaction of rocks with subsurface water increases by orders of magnitude and subsurface water is commonly undersaturated with uranium. Uranium absorbed by secondary minerals, particularly by iron hydroxides and leucoxene, is its single stable species under oxidizing conditions. The impact of oxygen-bearing water leads to destruction of uranium ore. This process is realized simultaneously at different hypsometric levels even if the permeability of the medium is variable in both the lateral and vertical directions. As a result, intervals containing uranyl minerals and relics of primary uranium ore are combined in ore-bearing zones with intervals of completely dissolved uranium minerals. A wide halo of elevated uranium contents caused by sorption is always retained at the location of uranium ore entirely destroyed by weathering. Uranium ore commonly finds itself in the aeration zone due to technogenic subsidence of the groundwater table caused by open-pit mining or pumping out of water from underground mines. The capillary and film waters that interact with rocks and ores in this zone are supplemented by free water filtering along fractures when rain falls or snow is thawing. The interaction of uranium ore with capillary water results in oxidation of uraninite, accompanied by loosening of the mineral surface, formation of microfractures, and an increase in solubility with enrichment of capillary water in uranium up to 10-4 mol/l. Secondary U(VI) minerals, first of all, uranyl hydroxides and silicates, replace uraninite, and uranium undergoes local diffusion redistribution with its sorption by secondary minerals of host rocks. The influx of free water facilitates the complete dissolution of primary and secondary uranium minerals, the removal of uranium at the sites of groundwater discharge, and its redeposition under reducing conditions at a greater depth. It is evident that the conditions of the upper hydrodynamic zone and the aeration zone are unfit for long-term insulation of SNF and high-level wastes because, after the failure of containers, the leakage of radionuclides into the environment becomes inevitable.
Process for removing carbon from uranium
Powell, George L.; Holcombe, Jr., Cressie E.
1976-01-01
Carbon contamination is removed from uranium and uranium alloys by heating in inert atmosphere to 700.degree.-1900.degree.C in effective contact with yttrium to cause carbon in the uranium to react with the yttrium. The yttrium is either in direct contact with the contaminated uranium or in indirect contact by means of an intermediate transport medium.
10 CFR 71.22 - General license: Fissile material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...
10 CFR 71.22 - General license: Fissile material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...
10 CFR 71.22 - General license: Fissile material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...
10 CFR 71.22 - General license: Fissile material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...
10 CFR 71.22 - General license: Fissile material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...
PRODUCTION OF URANIUM TETRACHLORIDE
Calkins, V.P.
1958-12-16
A process is descrlbed for the production of uranium tetrachloride by contacting uranlum values such as uranium hexafluoride, uranlum tetrafluoride, or uranium oxides with either aluminum chloride, boron chloride, or sodium alumlnum chloride under substantially anhydrous condltlons at such a temperature and pressure that the chlorldes are maintained in the molten form and until the uranium values are completely converted to uranlum tetrachloride.
PRODUCTION OF URANIUM MONOCARBIDE
Powers, R.M.
1962-07-24
A method of making essentially stoichiometric uranium monocarbide by pelletizing a mixture of uranium tetrafluoride, silicon, and carbon and reacting the mixture at a temperature of approximately 1500 to 1700 deg C until the reaction goes to completion, forming uranium monocarbide powder and volatile silicon tetrafluoride, is described. The powder is then melted to produce uranium monocarbide in massive form. (AEC)
Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate
Travelli, A.
1985-10-25
A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.
Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate
Travelli, Armando
1988-01-01
A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.
High temperature UF6 RF plasma experiments applicable to uranium plasma core reactors
NASA Technical Reports Server (NTRS)
Roman, W. C.
1979-01-01
An investigation was conducted using a 1.2 MW RF induction heater facility to aid in developing the technology necessary for designing a self critical fissioning uranium plasma core reactor. Pure, high temperature uranium hexafluoride (UF6) was injected into an argon fluid mechanically confined, steady state, RF heated plasma while employing different exhaust systems and diagnostic techniques to simulate and investigate some potential characteristics of uranium plasma core nuclear reactors. The development of techniques and equipment for fluid mechanical confinement of RF heated uranium plasmas with a high density of uranium vapor within the plasma, while simultaneously minimizing deposition of uranium and uranium compounds on the test chamber peripheral wall, endwall surfaces, and primary exhaust ducts, is discussed. The material tests and handling techniques suitable for use with high temperature, high pressure, gaseous UF6 are described and the development of complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma, effluent exhaust gases, and residue deposited on the test chamber and exhaust system components is reported.
Preparation of carbon coated Fe3O4 nanoparticles for magnetic separation of uranium
NASA Astrophysics Data System (ADS)
Zhang, Xiaofei; Wang, Jun
2018-01-01
Uranium(VI) was removed from aqueous solutions using carbon coated Fe3O4 nanoparticles (Fe3O4@C). Batch experiments were conducted to study the effects of initial pH, shaking time and temperature on uranium sorption efficiency. It was found that the maximum adsorption capacity of the Fe3O4@C toward uranium(VI) was ∼120.20 mg g-1 when the initial uranium(VI) concentration was 100 mg L-1, displaying a high efficiency for the removal of uranium(VI) ions. Kinetics of the uranium(VI) removal is found to follow pseudo-second-order rate equation. In addition, the uranium(VI)-loaded Fe3O4@C nanoparticles can be recovered easily from aqueous solution by magnetic separation and regenerated by acid treatment. Present study suggested that magnetic Fe3O4@C composite particles can be used as an effective and recyclable adsorbent for the removal of uranium(VI) from aqueous solutions.
Vandenhove, H; Van Hees, M; Wannijn, J; Wouters, K; Wang, L
2007-01-01
The present study aimed to quantify the influence of soil parameters on uranium uptake by ryegrass. Ryegrass was established on eighteen distinct soils, spiked with (238)U. Uranium soil-to-plant transfer factors (TF) ranged from 0.0003 to 0.0340kgkg(-1). There was no significant relation between the U soil-to-plant transfer (or total U uptake or flux) and the uranium concentration in the soil solution or any other soil factor measured, nor with the U recovered following selective soil extractions. Multiple linear regression analysis resulted in a significant though complex model explaining up to 99% of variation in TF. The influence of uranium speciation on uranium uptake observed was featured: UO(2)(+2), uranyl carbonate complexes and UO(2)PO(4)(-) seem the U species being preferentially taken up by the roots and transferred to the shoots. Improved correlations were obtained when relating the uranium TF with the summed soil solution concentrations of mentioned uranium species.
Bao, Yi-zhong; Wang, Dan; Hu, Yu-xing; Xu, Ai-hong; Sun, Mei-zhen; Chen, Hong-hong
2011-11-01
This study is to assess the efficacy of BPCBG on the decorporation of uranium (VI) and protecting human renal proximal tubular epithelial cells (HK-2) against uranium-induced damage. BPCBG at different doses was injected intramuscularly to male SD rats immediately after a single intraperitoneal injection of UO2(CH3COO)2. Twenty-four hours later uranium contents in urine, kidneys and femurs were measured by ICP-MS. After HK-2 cells were exposed to UO2(CH3COO)2 immediately or for 24 h followed by BPCBG treatment at different doses for another 24 or 48 h, the uranium contents in HK-2 cells were measured by ICP-MS, the cell survival was assayed by cell counting kit-8 assay, formation of micronuclei was determined by the cytokinesis-block (CB) micronucleus assay and the production of intracellular reactive oxygen species (ROS) was detected by 2',7'-dichlorofluorescin diacetate (DCFH-DA) oxidation. DTPA-CaNa3 was used as control. It was found that BPCBG at dosages of 60, 120, and 600 micromol kg(-1) resulted in 37%-61% increase in 24 h-urinary uranium excretion, and significantly decreased the amount of uranium retention in kidney and bone to 41%-31% and 86%-42% of uranium-treated group, respectively. After HK-2 cells that had been pre-treated with UO2(CH3COO)2 for 24 h were treated with the chelators for another 24 h, 55%-60% of the intracellular uranium was removed by 10-250 micromol L(-1) of BPCBG. Treatment of uranium-treated HK-2 cells with BPCBG significantly enhanced the cell survival, decreased the formation of micronuclei and inhibited the production of intracellular ROS. Although DTPA-CaNa3 markedly reduced the uranium retention in kidney of rats and HK-2 cells, its efficacy of uranium removal from body was significantly lower than that of BPCBG and it could not protect uranium-induced cell damage. It can be concluded that BPCBG effectively decorporated the uranium from UO2(CH3COO)2-treated rats and HK-2 cells, which was better than DTPA-CaNa3. It could also scavenge the uranium-induced intracellular ROS and protect against the uranium-induced cell damage. BPCBG is worth further investigation.
NGC 2024: Far-infrared and radio molecular observations
NASA Technical Reports Server (NTRS)
Thronson, H. A., Jr.; Lada, C. J.; Schwartz, P. R.; Smith, H. A.; Smith, J.; Glaccum, W.; Harper, D. A.; Loewenstein, R. F.
1984-01-01
Far infrared continuum and millimeter wave molecular observations are presented for the infrared and radio source NGC 2024. The measurements are obtained at relatively high angular resolution, enabling a description of the source energetics and mass distribution in greater detail than previously reported. The object appears to be dominated by a dense ridge of material, extended in the north/south direction and centered on the dark lane that is seen in visual photographs. Maps of the source using the high density molecules CS and HCN confirm this picture and allow a description of the core structure and molecular abundances. The radio molecular and infrared observations support the idea that an important exciting star in NGC 2024 has yet to be identified and is centered on the dense ridge about 1' south of the bright mid infrared source IRS 2. The data presented here allows a presentation of a model for the source.
The physics and chemistry of the L134N molecular core
NASA Technical Reports Server (NTRS)
Swade, Daryl A.
1989-01-01
The dark cloud L134N is studied in detail via millimeter- and centimeter-wavelength emission-line spectra. A high-density core of molecular gas exists in L134N which has a kinetic temperature of about 12 K, a peak molecular hydrogen density of about 10 exp 4.5/cu cm, and a mass of about 23 solar. The core may be the site of future star formation. Maps of emission from (C-18)O, CS, H(C-13)O(+), SO, NH3, and C3H2 reveal morphologically different distributions resulting in part from both varying physical conditions within the cloud and optical depth effects. Significant differences also exist which are probably due to chemical abundance variations. A consistent set of LTE chemical abundances has been estimated at as many as seven positions, which can be used to constrain chemical models of dark clouds.
Indirect (source-free) integration method. I. Wave-forms from geodesic generic orbits of EMRIs
NASA Astrophysics Data System (ADS)
Ritter, Patxi; Aoudia, Sofiane; Spallicci, Alessandro D. A. M.; Cordier, Stéphane
2016-12-01
The Regge-Wheeler-Zerilli (RWZ) wave-equation describes Schwarzschild-Droste black hole perturbations. The source term contains a Dirac distribution and its derivative. We have previously designed a method of integration in time domain. It consists of a finite difference scheme where analytic expressions, dealing with the wave-function discontinuity through the jump conditions, replace the direct integration of the source and the potential. Herein, we successfully apply the same method to the geodesic generic orbits of EMRI (Extreme Mass Ratio Inspiral) sources, at second order. An EMRI is a Compact Star (CS) captured by a Super-Massive Black Hole (SMBH). These are considered the best probes for testing gravitation in strong regime. The gravitational wave-forms, the radiated energy and angular momentum at infinity are computed and extensively compared with other methods, for different orbits (circular, elliptic, parabolic, including zoom-whirl).
[Uranium exposure and cancer risk: a review of epidemiological studies].
Tirmarche, M; Baysson, H; Telle-Lamberton, M
2004-02-01
At the end of 2000, certain diseases including leukemia were reported among soldiers who participated in the Balkan and in the Gulf wars. Depleted uranium used during these conflicts was considered as a possible cause. Its radiotoxicity is close to that of natural uranium. This paper reviews the epidemiological knowledge of uranium, the means of exposure and the associated risk of cancer. The only available epidemiological data concerns nuclear workers exposed to uranium. A review of the international literature is proposed by distinguishing between uranium miners and other workers of the nuclear industry. French studies are described in details. In ionizing radiation epidemiology, contamination by uranium is often cited as a risk factor, but the dose-effect relationship is rarely studied. Retrospective assessment of individual exposure is generally insufficient. Moreover, it is difficult to distinguish between uranium radiotoxicity, its chemical toxicity and the radiotoxicity of its progeny. A causal relation between lung cancer and radon exposure, a gas derived from the decay of uranium, has been demonstrated in epidemiological studies of miners. Among other nuclear workers exposed to uranium, there is a mortality deficit from all causes (healthy worker effect). No cancer site appears systematically in excess compared to the national population; very few studies describe a dose-response relationship. Only studies with a precise reconstruction of doses and sufficient numbers of workers will allow a better assessment of risks associated with uranium exposure at levels encountered in industry or during conflicts using depleted uranium weapons.
Enhanced uranium immobilization and reduction by Geobacter sulfurreducens biofilms.
Cologgi, Dena L; Speers, Allison M; Bullard, Blair A; Kelly, Shelly D; Reguera, Gemma
2014-11-01
Biofilms formed by dissimilatory metal reducers are of interest to develop permeable biobarriers for the immobilization of soluble contaminants such as uranium. Here we show that biofilms of the model uranium-reducing bacterium Geobacter sulfurreducens immobilized substantially more U(VI) than planktonic cells and did so for longer periods of time, reductively precipitating it to a mononuclear U(IV) phase involving carbon ligands. The biofilms also tolerated high and otherwise toxic concentrations (up to 5 mM) of uranium, consistent with a respiratory strategy that also protected the cells from uranium toxicity. The enhanced ability of the biofilms to immobilize uranium correlated only partially with the biofilm biomass and thickness and depended greatly on the area of the biofilm exposed to the soluble contaminant. In contrast, uranium reduction depended on the expression of Geobacter conductive pili and, to a lesser extent, on the presence of the c cytochrome OmcZ in the biofilm matrix. The results support a model in which the electroactive biofilm matrix immobilizes and reduces the uranium in the top stratum. This mechanism prevents the permeation and mineralization of uranium in the cell envelope, thereby preserving essential cellular functions and enhancing the catalytic capacity of Geobacter cells to reduce uranium. Hence, the biofilms provide cells with a physically and chemically protected environment for the sustained immobilization and reduction of uranium that is of interest for the development of improved strategies for the in situ bioremediation of environments impacted by uranium contamination. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Enhanced Uranium Immobilization and Reduction by Geobacter sulfurreducens Biofilms
Cologgi, Dena L.; Speers, Allison M.; Bullard, Blair A.; Kelly, Shelly D.
2014-01-01
Biofilms formed by dissimilatory metal reducers are of interest to develop permeable biobarriers for the immobilization of soluble contaminants such as uranium. Here we show that biofilms of the model uranium-reducing bacterium Geobacter sulfurreducens immobilized substantially more U(VI) than planktonic cells and did so for longer periods of time, reductively precipitating it to a mononuclear U(IV) phase involving carbon ligands. The biofilms also tolerated high and otherwise toxic concentrations (up to 5 mM) of uranium, consistent with a respiratory strategy that also protected the cells from uranium toxicity. The enhanced ability of the biofilms to immobilize uranium correlated only partially with the biofilm biomass and thickness and depended greatly on the area of the biofilm exposed to the soluble contaminant. In contrast, uranium reduction depended on the expression of Geobacter conductive pili and, to a lesser extent, on the presence of the c cytochrome OmcZ in the biofilm matrix. The results support a model in which the electroactive biofilm matrix immobilizes and reduces the uranium in the top stratum. This mechanism prevents the permeation and mineralization of uranium in the cell envelope, thereby preserving essential cellular functions and enhancing the catalytic capacity of Geobacter cells to reduce uranium. Hence, the biofilms provide cells with a physically and chemically protected environment for the sustained immobilization and reduction of uranium that is of interest for the development of improved strategies for the in situ bioremediation of environments impacted by uranium contamination. PMID:25128347
Hon, Kam Lun; Tsang, Yin Ching K; Pong, Nga Hin; Luk, David C K; Lee, Vivian W; Woo, Wing Man; Lam, Chak Yiu Justin; Yeung, Yun Ting Eunice; Chau, Yiu Shing Sunny; Chui, Ka Kam Kenneth; Li, Ka Hin Gabriel; Leung, Ting Fan
2015-10-01
Topical corticosteroids (CSs) are the mainstay of treatment for eczema but CS phobia and fears are prevalent and influence therapeutic efficacy. To quantify if CS acceptability and fear affect patients' quality-of-life (QoL). Patients with eczema managed in the pediatric dermatology outpatient clinic of a university hospital were surveyed. Nottingham Eczema Severity Score (NESS) for severity, Children's Dermatology Life Quality Index (CDLQI) for QoL, CS fear, acceptability and reported frequency of CS use were measured with quantified questions. CS fears were prevalent among parents and caregivers of patients with eczema. Fifty-eight percent of parents reported general acceptability of CS as being very good or good, and many applied CS to their child regularly every week. However, >40% of parents reported CS fear "always" or "often", 41% reported that they "always" or "often" apply CS only when eczema got worse, 57% would discuss CS fear with their doctors, 30% would request CS-sparing medications and 14% "always" or "often" use traditional Chinese herbal medicine. Fears were predominantly interpersonal and less often iatrogenic in nature. Skin problems were the most concerned side effects of CS. CS acceptability, frequency of CS usage, CS fear and usage of alternative medications were independent domains in eczema management: CS fears correlated with CDLQI; CS usage frequency correlated with NESS and negatively with parental education; and CS acceptability correlated with parental education. Ordinal logistic regressions showed worse QoL was associated with more CS fear (odds ratio: 1.092 [95% CI: 1.023-1.165], p = 0.008). The extent of CS fears is independent of CS acceptability, but correlates with patients' QoL. Desensitization of parental CS fears should be integral part of eczema education and therapeutics in order to improve therapeutic efficacy and patients' QoL.