THE RECOVERY OF URANIUM FROM GAS MIXTURE
Jury, S.H.
1964-03-17
A method of separating uranium from a mixture of uranium hexafluoride and other gases is described that comprises bringing the mixture into contact with anhydrous calcium sulfate to preferentially absorb the uranium hexafluoride on the sulfate. The calcium sulfate is then leached with a selective solvent for the adsorbed uranium. (AEC)
Volumetric determination of uranium titanous sulfate as reductant before oxidimetric titration
Wahlberg, J.S.; Skinner, D.L.; Rader, L.F.
1957-01-01
Need for a more rapid volumetric method for the routine determination of uranium in uranium-rich materials has led to the development of a method that uses titanous sulfate as a reductant before oxidimetric titration. Separation of the hydrogen sulfide group is not necessary. Interfering elements precipitated by cupferron are removed by automatic filtrations made simultaneously rather than by the longer chloroform extraction method. Uranium is reduced from VI to IV by addition of an excess of titanous sulfate solution, cupric ion serving as an indicator by forming red metallic copper when reduction is complete. The copper is reoxidized by addition of mercuric perchlorate. The reduced uranium is then determined by addition of excess ferric sulfate and titration with ceric sulfate. The method has proved to be rapid, accurate, and economical.
SOLVENT EXTRACTION PROCESS FOR URANIUM FROM CHLORIDE SOLUTIONS
Blake, C.A. Jr.; Brown, K.B.; Horner, D.E.
1960-05-24
An improvement was made in a uranium extraction process wherein the organic extractant is a phosphine oxide. An aqueous solution containing phosphate ions or sulfate ions together with uranium is provided with a source of chloride ions during the extraction step. The presence of the chloride ions enables a phosphine oxide to extract uranium in the presence of strong uranium- complexing ions such as phosphate or sulfate ions.
Volumetric determination of uranium using titanous sulfate as reductant before oxidimetric titration
Wahlberg, James S.; Skinner, Dwight L.; Rader, Lewis F.
1956-01-01
A new method for determining uranium in samples containing 0.05 percent or more U3O8, using titanous sulfate as reducing agent, is much shorter, faster, and has fewer interferences than conventional methods using reductor columns. The sample is dissolved with sulfuric, nitric, perchloric, and hydrofluoric acids. Elements that would otherwise form insoluble fluorides are kept in solution by complexing the fluoride ion with boric acid. A precipitation is made with cupferron to remove interfering elements. The solution is filtered to remove the precipitated cupferrates instead of extracting them with chloroform as is usually done. Filtration is preferred to extraction because any niobium that may be in solution forms an insoluble cupferrate that may be removed by filtering but is very difficult to extract with chloroform. Excess cupferron is destroyed by oxidizing with nitric and perchloric acids, and evaporating to dense fumes of sulfuric acid. The uranium is reduced to U(IV) by the addition of titanous sulfate, with cupric sulfate used as an indicator of the completeness of the reduction. Metallic copper is formed when all the uranium is reduced. The reduced copper is then reoxidized by the addition of mercuric perchlorate, an excess of ferric sulfate added, and the solution titrated immediately with standard ceric sulfate with ferroin as an indicator. Precision of the method compared favorable with methods in common use, both for uranium ores and for most types of uranium-rich materials.
Uranium reduction and resistance to reoxidation under iron-reducing and sulfate-reducing conditions.
Boonchayaanant, Benjaporn; Nayak, Dipti; Du, Xin; Criddle, Craig S
2009-10-01
Oxidation and mobilization of microbially-generated U(IV) is of great concern for in situ uranium bioremediation. This study investigated the reoxidation of uranium by oxygen and nitrate in a sulfate-reducing enrichment and an iron-reducing enrichment derived from sediment and groundwater from the Field Research Center in Oak Ridge, Tennessee. Both enrichments were capable of reducing U(VI) rapidly. 16S rRNA gene clone libraries of the two enrichments revealed that Desulfovibrio spp. are dominant in the sulfate-reducing enrichment, and Clostridium spp. are dominant in the iron-reducing enrichment. In both the sulfate-reducing enrichment and the iron-reducing enrichment, oxygen reoxidized the previously reduced uranium but to a lesser extent in the iron-reducing enrichment. Moreover, in the iron-reducing enrichment, the reoxidized U(VI) was eventually re-reduced to its previous level. In both, the sulfate-reducing enrichment and the iron-reducing enrichment, uranium reoxidation did not occur in the presence of nitrate. The results indicate that the Clostridium-dominated iron-reducing communities created conditions that were more favorable for uranium stability with respect to reoxidation despite the fact that fewer electron equivalents were added to these systems. The likely reason is that more of the added electrons are present in a form that can reduce oxygen to water and U(VI) back to U(IV).
Extractive separation of uranium and zirconium sulfates by amines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schroetterova, D.; Nekovar, P.; Mrnka, M.
1992-04-01
This paper describes an amine extraction process for zirconium and uranium separation. The behaviour of an extraction system containing uranium (VI) sulfate, zirconium (IV) sulfate, 0.2 and 0.5 M sulfuric acid (as the original aqueous phase), tertiary amine tri-n-lauryl- amine or primary amine Primene JMT in benzene (as the original organic phase) is discussed on the basis of equilibrium data. The measured dependences show that the degree of extraction of zirconium at the sulfuric acid concentration of 0.5 M and above is only slightly affected by a presence of uranium in solution. From this surprising behaviour it follows that zirconiummore » may be employed for the displacement of uranium from the organic phase. This effect is more pronounced with the primary amine Primene JMT than with TLA. 29 refs., 4 figs., 1 tab.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Megan E.; Bowers, Delbert L.; Vandegrift, George F.
2015-09-01
During FY 2012 and 2013, a process was developed to convert the SHINE Target Solution (STS) of irradiated uranyl sulfate (140 g U/L) to uranyl nitrate. This process is necessary so that the uranium solution can be processed by the UREX (Uranium Extraction) separation process, which will remove impurities from the uranium so that it can be recycled. The uranyl sulfate solution must contain <0.02 M SO 4 2- so that the uranium will be extractable into the UREXsolvent. In addition, it is desired that the barium content be below 0.0007 M, as this is the limit in the Resourcemore » Conservation and Recovery Act (RCRA).« less
Fuller, Christopher C.; Johnson, Kelly J.; Akstin, Katherine; Singer, David M.; Yabusaki, Steven B.; Fang, Yilin; Fuhrmann, M.
2015-01-01
A proposed approach for groundwater remediation of uranium contamination is to generate reducing conditions by stimulating the growth of microbial populations through injection of electron donor compounds into the subsurface. Sufficiently reducing conditions will result in reduction of soluble hexavalent uranium, U(VI), and precipitation of the less soluble +4 oxidation state uranium, U(IV). This process is termed biostimulated reduction. A key issue in the remediation of uranium (U) contamination in aquifers by biostimulated reduction is the long term stability of the sequestered uranium. Three flow-through column experiments using aquifer sediment were used to evaluate the remobilization of bioreduced U sequestered under conditions in which biostimulation extended well into sulfate reduction to enhance precipitation of reduced sulfur phases such as iron sulfides. One column received added ferrous iron, Fe(II), increasing production of iron sulfides, to test their effect on remobilization of the sequestered uranium, either by serving as a redox buffer by competing for dissolved oxygen, or by armoring the reduced uranium. During biostimulation of the ambient microbial population with acetate, dissolved uranium was lowered by a factor of 2.5 or more with continued removal for over 110 days of biostimulation, well after the onset of sulfate reduction at ~30 days. Sequestered uranium was essentially all U(IV) resulting from the formation of nano-particulate uraninite that coated sediment grains to a thickness of a few 10’s of microns, sometimes in association with S and Fe. A multicomponent biogeochemical reactive transport model simulation of column effluents during biostimulation was generally able to describe the acetate oxidation, iron, sulfate, and uranium reduction for all three columns using parameters derived from simulations of field scale biostimulation experiments. Columns were eluted with artificial groundwater at equilibrium with atmospheric oxygen to simulate the upper limit of dissolved oxygen in recharge water. Overall about 9% of total uranium removed from solution during biostimulation was remobilized. Release of U during oxic elution was a continuous process over 140 days with dissolved uranium concentrations about 0.2 and 0.8 aM for columns with and without ferrous iron addition, respectively. Uranium remaining on the sediment was in the reduced form. The prolonged period of biostimulation and concomitant sulfate reduction appears to limit the rate of U(IV) oxidative remobilization in contrast to a large release observed for columns in previous studies that did not undergo sulfate reduction. Although continued sulfate reduction may cause decreased permeability from precipitation of iron sulfide, the greater apparent stability of the sequestered U(IV) provided by the sustained biostimulation should be considered in design of field scale remediation efforts. Remobilization of uranium following biostimulated reduction should be tested further at the field scale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jie; Veeramani, Harish; Qafoku, Nikolla P.
Systematic flow-through column experiments were conducted using sediments and ground water collected from different subsurface localities at the U.S. Department of Energy's Integrated Field Research Challenge site in Rifle, Colorado. The principal purpose of this study is to gain a better understanding of the interactive effects of groundwater geochemistry, sediment mineralogy, and indigenous bacterial community structures on the efficacy of uranium removal from the groundwater with/without acetate amendment. Overall, we find that the subtle variations in the sediments' mineralogy, redox conditions, as well as contents of metal(loid) co-contaminants showed a pronounced effect on the associated bacterial population and composition, whichmore » mainly determines the system's performance with respect to uranium removal. Positive relationship was identified between the abundance of dissimilatory sulfate-reduction genes (i.e., drsA), markers of sulfate-reducing bacteria, and the sediments' propensity to sequester aqueous uranium. In contrast, no obvious connections were observed between the abundance of common iron-reducing bacteria, e.g., Geobacter spp., and the sediments' ability to sequester uranium. In the sediments with low bacterial biomass and the absence of sulfate-reducing conditions, abiotic adsorption onto mineral surfaces such as phyllosilicates likely played a relatively major role in the attenuation of aqueous uranium; however, in these scenarios, acetate amendment induced detectable rebounds in the effluent uranium concentrations. Lastly, the results of this study suggest that immobilization of uranium can be achieved under predominantly sulfate-reducing conditions, and provide insight into the integrated roles of various biogeochemical components in long-term uranium sequestration.« less
Xu, Jie; Veeramani, Harish; Qafoku, Nikolla P.; ...
2016-12-29
Systematic flow-through column experiments were conducted using sediments and ground water collected from different subsurface localities at the U.S. Department of Energy's Integrated Field Research Challenge site in Rifle, Colorado. The principal purpose of this study is to gain a better understanding of the interactive effects of groundwater geochemistry, sediment mineralogy, and indigenous bacterial community structures on the efficacy of uranium removal from the groundwater with/without acetate amendment. Overall, we find that the subtle variations in the sediments' mineralogy, redox conditions, as well as contents of metal(loid) co-contaminants showed a pronounced effect on the associated bacterial population and composition, whichmore » mainly determines the system's performance with respect to uranium removal. Positive relationship was identified between the abundance of dissimilatory sulfate-reduction genes (i.e., drsA), markers of sulfate-reducing bacteria, and the sediments' propensity to sequester aqueous uranium. In contrast, no obvious connections were observed between the abundance of common iron-reducing bacteria, e.g., Geobacter spp., and the sediments' ability to sequester uranium. In the sediments with low bacterial biomass and the absence of sulfate-reducing conditions, abiotic adsorption onto mineral surfaces such as phyllosilicates likely played a relatively major role in the attenuation of aqueous uranium; however, in these scenarios, acetate amendment induced detectable rebounds in the effluent uranium concentrations. Lastly, the results of this study suggest that immobilization of uranium can be achieved under predominantly sulfate-reducing conditions, and provide insight into the integrated roles of various biogeochemical components in long-term uranium sequestration.« less
Spear, John R.; Figueroa, Linda A.; Honeyman, Bruce D.
2000-01-01
The kinetics for the reduction of sulfate alone and for concurrent uranium [U(VI)] and sulfate reduction, by mixed and pure cultures of sulfate-reducing bacteria (SRB) at 21 ± 3°C were studied. The mixed culture contained the SRB Desulfovibrio vulgaris along with a Clostridium sp. determined via 16S ribosomal DNA analysis. The pure culture was Desulfovibrio desulfuricans (ATCC 7757). A zero-order model best fit the data for the reduction of sulfate from 0.1 to 10 mM. A lag time occurred below cell concentrations of 0.1 mg (dry weight) of cells/ml. For the mixed culture, average values for the maximum specific reaction rate, Vmax, ranged from 2.4 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1) at 0.25 mM sulfate to 5.0 ± 1.1 μmol of sulfate/mg (dry weight) of SRB · h−1 at 10 mM sulfate (average cell concentration, 0.52 mg [dry weight]/ml). For the pure culture, Vmax was 1.6 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1 at 1 mM sulfate (0.29 mg [dry weight] of cells/ml). When both electron acceptors were present, sulfate reduction remained zero order for both cultures, while uranium reduction was first order, with rate constants of 0.071 ± 0.003 mg (dry weight) of cells/ml · min−1 for the mixed culture and 0.137 ± 0.016 mg (dry weight) of cells/ml · min−1 (U0 = 1 mM) for the D. desulfuricans culture. Both cultures exhibited a faster rate of uranium reduction in the presence of sulfate and no lag time until the onset of U reduction in contrast to U alone. This kinetics information can be used to design an SRB-dominated biotreatment scheme for the removal of U(VI) from an aqueous source. PMID:10966381
Landa, E.R.
2003-01-01
Specific extraction studies in our laboratory have shown that iron and manganese oxide- and alkaline earth sulfate minerals are important hosts of radium in uranium mill tailings. Iron- and sulfate-reducing bacteria may enhance the release of radium (and its analog barium) from uranium mill tailings, oil field pipe scale [a major technologically enhanced naturally occurring radioactive material (TENORM) waste], and jarosite (a common mineral in sulfuric acid processed-tailings). These research findings are reviewed and discussed in the context of nuclear waste forms (such as barium sulfate matrices), radioactive waste management practices, and geochemical environments in the Earth's surficial and shallow subsurface regions.
Micro-SHINE Uranyl Sulfate Irradiations at the Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youker, Amanda J.; Kalensky, Michael; Chemerisov, Sergey
2016-08-01
Peroxide formation due to water radiolysis in a uranyl sulfate solution is a concern for the SHINE Medical Technologies process in which Mo-99 is generated from the fission of dissolved low enriched uranium. To investigate the effects of power density and fission on peroxide formation and uranyl-peroxide precipitation, uranyl sulfate solutions were irradiated using a 50-MeV electron linac as part of the micro-SHINE experimental setup. Results are given for uranyl sulfate solutions with both high and low enriched uranium irradiated at different linac powers.
Improved ion exchange membrane
NASA Technical Reports Server (NTRS)
Rembaum, A.; Yen, S. P. S.; Klein, E.
1975-01-01
Membrane, made from commercially-available hollow fibers, is used in reverse osmosis, or dialysis. Fiber has skin layers which pass only small molecules. Macromolecules cannot penetrate skin. Fibers can also be used to remove other undesirable anions, such as phosphate, sulfate, carbonate, and uranium in form of uranium-sulfate complex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jie; Veeramani, Harish; Qafoku, Nikolla P.
Systematic flow-through column experiments were conducted using sediments and ground water collected from different subsurface localities at the U.S. Department of Energy’s Integrated Field Research Challenge site in Rifle, Colorado. The principal purpose of this study is to gain a better understanding of the interactive effects of groundwater geochemistry, sediment mineralogy, and indigenous bacterial community structures on the efficacy of uranium removal from the groundwater with/without acetate amendment. Overall, we find that the subtle variations in the sediments’ mineralogy, particle size, redox conditions, as well as contents of metal(loid) co-contaminants showed a pronounced effect on the associated bacterial population andmore » composition, which mainly determines the system’s performance with respect to uranium removal. Positive relationship was identified between the abundance of dissimilatory sulfate-reduction genes (i.e., drsA), markers of sulfate-reducing bacteria, and the sediments’ propensity to sequester aqueous uranium. In contrast, no obvious connections were observed between the abundance of common iron-reducing bacteria, e.g., Geobacter spp., and the sediments’ ability to sequester uranium. In the sediments with low bacterial biomass and the absence of sulfate-reducing conditions, abiotic adsorption onto mineral surfaces such as phyllosilicates likely played a relatively major role in the attenuation of aqueous uranium; however, in these scenarios, acetate amendment induced detectable rebounds in the effluent uranium concentrations. The results of this study suggest that reductive immobilization of uranium can be achieved under predominantly sulfate-reducing conditions, and provide insight into the integrated roles of various biogeochemical components in long-term uranium sequestration.« less
PEROXIDE PROCESS FOR SEPARATION OF RADIOACTIVE MATERIALS
Seaborg, G.T.; Perlman, I.
1958-09-16
reduced state, from hexavalent uranium. It consists in treating an aqueous solution containing such uranium and plutonium ions with sulfate ions in order to form a soluble uranium sulfate complex and then treating the solution with a soluble thorium compound and a soluble peroxide compound in order to ferm a thorium peroxide carrier precipitate which carries down with it the plutonium peroxide present. During this treatment the pH of the solution must be maintained between 2 and 3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsay, Bradley D.; Hwang, Chiachi; Woo, Hannah L.
2015-03-12
Desulfovibrio carbinoliphilus subsp. oakridgensis FW-101-2B is an anaerobic, organic acid/alcohol-oxidizing, sulfate-reducing δ-proteobacterium. FW-101-2B was isolated from contaminated groundwater at The Field Research Center at Oak Ridge National Lab after in situ stimulation for heavy metal-reducing conditions. The genome will help elucidate the metabolic potential of sulfate-reducing bacteria during uranium reduction.
NASA Astrophysics Data System (ADS)
Xu, J.; Veeramani, H.; Qafoku, N. P.; Singh, G.; Pruden, A.; Kukkadapu, R. K.; Hochella, M. F., Jr.
2015-12-01
A systematic flow-through column study was conducted using sediments and groundwater from the subsurface at the U.S. Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, Colorado, to better understand the efficacy of uranium removal from the groundwater with and without biostimulation in the form of acetate amendments. The interactive effects of acetate amendment, groundwater/sediment geochemistry, and intrinsic bacterial community composition were evaluated using four types of sediments, collected from different uranium-contaminated (D08, LQ107, CD) or non-contaminated (RABS) aquifers. Subtle variations in the sediments' geochemistry in terms of mineral compositions, particle sizes, redox conditions, and metal(loid) co-contaminants had a marked effect on the uranium removal efficiency, following a descending trend of D08 (~ 90 to 95%) >> RABS (~ 20 to 25) ≥ LQ107 (~ 15 to 20%) > CD (~ -10 to 0%). Overall, biostimulation of the sediments with acetate drove deeper anoxic conditions and observable shifts in bacterial population structures. The abundance of dissimilatory sulfate-reduction genes (i.e., drsA), markers of sulfate-reducing bacteria, were highest in the sediments that performed best in terms of uranium removal. By comparison, no obvious associations were found between the uranium removal efficiency and the abundance of typical iron-reducing microorganisms, e.g., Geobacter spp. In the sediments where bacterial biomass was relatively low and sulfate-reduction was not detected (i.e., CD), abiotic adsorption onto fine mineral surfaces such as phyllosilates likely played a dominant role in the attenuation of aqueous uranium. In these scenarios, however, acetate amendment induced significant remobilization of the sequestered uranium and other heavy metals (e.g., strontium), leading to zero or negative uranium removal efficiencies (i.e., CD). The results of this study suggest that reductive immobilization of uranium can be effectively achieved under predominantly sulfate-reducing conditions in sediment microenvironments when bioavailable iron (III) (oxyhydr)oxides are mostly depleted, and provide insight into the integrated roles of sediment geochemistry, mineralogy, and bacterial population dynamics.
Sitte, Jana; Akob, Denise M; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E; Scheinost, Andreas C; Büchel, Georg; Küsel, Kirsten
2010-05-01
Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the (35)SO(4)(2-) radiotracer method, was restricted to reduced soil horizons with rates of < or =142 +/- 20 nmol cm(-3) day(-1). Concentrations of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that approximately 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [(13)C]acetate- and [(13)C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined < or =100% during anoxic soil incubations. In contrast to results in other studies, soluble uranium increased in carbon-amended treatments, reaching < or =1,407 nM in solution. Our results suggest that (i) ongoing sulfate reduction in contaminated soil resulted in in situ metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems.
Sitte, Jana; Akob, Denise M.; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E.; Scheinost, Andreas C.; Büchel, Georg; Küsel, Kirsten
2010-01-01
Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the 35SO42− radiotracer method, was restricted to reduced soil horizons with rates of ≤142 ± 20 nmol cm−3 day−1. Concentrations of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that ∼80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [13C]acetate- and [13C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined ≤100% during anoxic soil incubations. In contrast to results in other studies, soluble uranium increased in carbon-amended treatments, reaching ≤1,407 nM in solution. Our results suggest that (i) ongoing sulfate reduction in contaminated soil resulted in in situ metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems. PMID:20363796
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jie; Veeramani, Harish; Qafoku, Nikolla P.
Systematic flow-through column experiments were conducted using sediments and ground water collected from different subsurface localities at the U.S. Department of Energy's Integrated Field Research Challenge site in Rifle, Colorado. The principal purpose of this study is to gain a better understanding of the interactive effects of groundwater geochemistry, sediment mineralogy, and indigenous bacterial community structures on the efficacy of uranium removal from the groundwater with/without acetate amendment. Overall, we find that the subtle variations in the sediments' mineralogy, particle size, redox conditions, as well as contents of metal(loid) co-contaminants showed a pronounced effect on the associated bacterial population andmore » composition, which mainly determines the system's performance with respect to uranium removal. Positive relationship was identified between the abundance of dissimilatory sulfate-reduction genes (i.e., drsA), markers of sulfatereducing bacteria, and the sediments' propensity to sequester aqueous uranium. In contrast, no obvious connections were observed between the abundance of common iron-reducing bacteria, e.g., Geobacter spp., and the sediments' ability to sequester uranium. In the sediments with low bacterial biomass and the absence of sulfate-reducing conditions, abiotic adsorption onto mineral surfaces such as phyllosilicates likely played a relatively major role in the attenuation of aqueous uranium; however, in these scenarios, acetate amendment induced detectable rebounds in the effluent uranium concentrations. The results of this study suggest that reductive immobilization of uranium can be achieved under predominantly sulfate-reducing conditions, and provide insight into the integrated roles of various biogeochemical components in long-term uranium sequestration.« less
NASA Astrophysics Data System (ADS)
Wu, W.; Watson, D. B.; Mehlhorn, T.; Zhang, G.; Earles, J.; Lowe, K.; Phillips, J.; Boyanov, M.; Kemner, K. M.; Schadt, C. W.; Brooks, S. C.; Criddle, C.; Jardine, P.
2009-12-01
In situ bioremediation of a uranium-contaminated aquifer was conducted at the US DOE Environmental Remediation Sciences Program (ERSP) Integrated Field Research Challenge (IFRC) site, in Oak Ridge, TN. Edible oil was tested as a slow-release electron donor for microbially mediated U (VI) reduction. Uranium contaminated sediments from the site were used in laboratory microcosm tests to study the feasibility of using this electron donor under anaerobic, ambient temperature conditions. Parallel microcosms were established using ethanol as electron donor for comparison. The tests also examined the impact of sulfate concentrations on U (VI) reduction. The oil was degraded by indigenous microorganisms with acetate as a major product but at a much slower rate than ethanol. The rapid removal of U (VI) from the aqueous phase occurred concurrently with acetate production and sulfate reduction. Initial U(VI) concentration in the aqueous phase increased with increased sulfate concentration (1 vs. 5 mM), likely due to U(VI) desorption from the solid phase, but more U(VI) was reduced with higher initial sulfate level. Finally, the bioreaction in microcosms progressed to methanogenesis. Subsequently, a field test with the edible oil was conducted in a highly permeable gravelly layer (hydraulic conductivity 0.076 cm/sec). Groundwater at the site contained 5-6 μM U; 1.0-1.2 mM sulfate; 3-4 mM Ca; pH 6.8. Diluted emulsified oil (20% solution) was injected into three injection wells within 2 hrs. Geochemical analysis of site groundwater demonstrated the sequential reduction of nitrate, Mn, Fe(III) and sulfate. Transient accumulation of acetate was observed as an intermediate in the oil degradation. Reduction and removal of uranium from groundwater was observed in all wells connected to the injection wells after 2-4 weeks. Uranium concentrations in groundwater were reduced to below 0.126 μM (EPA drinking water standard), at some well locations. Rebound of U in groundwater was observed together with the rebound of sulfate concentrations as the oil was consumed. Uranium (VI) reduction to U (IV) in the microcosm and in situ field tests was confirmed by X-ray near-edge absorption spectroscopy analysis. Bacterial populations in microcosms and field samples were analyzed using 16S rRNA gene libraries and Geochip analysis.
PREVENTION OF SCALE FORMATION IN URANIUM SOLVENT EXTRACTOR
Delaplaine, J.W.
1957-11-01
A method for preventing the formation of scale in uranium solvent extraction apparatus is presented. The scale, consisting chiefly of precipitated silica and the sulfates uf calcium and lead, may be prevented by a combination of measures, chiefly by prior heating and agitation to crystallize and remove silica, and by a maintenance of uranyl nitrate concentration in the feed and extractant above certain levels to increase the solubility of the calcium and lead sulfates.
In situ mobility of uranium in the presence of nitrate following sulfate-reducing conditions.
Paradis, Charles J; Jagadamma, Sindhu; Watson, David B; McKay, Larry D; Hazen, Terry C; Park, Melora; Istok, Jonathan D
2016-04-01
Reoxidation and mobilization of previously reduced and immobilized uranium by dissolved-phase oxidants poses a significant challenge for remediating uranium-contaminated groundwater. Preferential oxidation of reduced sulfur-bearing species, as opposed to reduced uranium-bearing species, has been demonstrated to limit the mobility of uranium at the laboratory scale yet field-scale investigations are lacking. In this study, the mobility of uranium in the presence of nitrate oxidant was investigated in a shallow groundwater system after establishing conditions conducive to uranium reduction and the formation of reduced sulfur-bearing species. A series of three injections of groundwater (200 L) containing U(VI) (5 μM) and amended with ethanol (40 mM) and sulfate (20 mM) were conducted in ten test wells in order to stimulate microbial-mediated reduction of uranium and the formation of reduced sulfur-bearing species. Simultaneous push-pull tests were then conducted in triplicate well clusters to investigate the mobility of U(VI) under three conditions: 1) high nitrate (120 mM), 2) high nitrate (120 mM) with ethanol (30 mM), and 3) low nitrate (2 mM) with ethanol (30 mM). Dilution-adjusted breakthrough curves of ethanol, nitrate, nitrite, sulfate, and U(VI) suggested that nitrate reduction was predominantly coupled to the oxidation of reduced-sulfur bearing species, as opposed to the reoxidation of U(IV), under all three conditions for the duration of the 36-day tests. The amount of sulfate, but not U(VI), recovered during the push-pull tests was substantially more than injected, relative to bromide tracer, under all three conditions and further suggested that reduced sulfur-bearing species were preferentially oxidized under nitrate-reducing conditions. However, some reoxidation of U(IV) was observed under nitrate-reducing conditions and in the absence of detectable nitrate and/or nitrite. This suggested that reduced sulfur-bearing species may not be fully effective at limiting the mobility of uranium in the presence of dissolved and/or solid-phase oxidants. The results of this field study confirmed those of previous laboratory studies which suggested that reoxidation of uranium under nitrate-reducing conditions can be substantially limited by preferential oxidation of reduced sulfur-bearing species. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
In situ mobility of uranium in the presence of nitrate following sulfate-reducing conditions
Paradis, Charles J.; Jagadamma, Sindhu; Watson, David B.; ...
2016-02-11
Reoxidation and mobilization of previously reduced and immobilized uranium by dissolved phase oxidants poses a significant challenge for remediating uranium-contaminated groundwater. Preferential oxidation of reduced sulfur-bearing species, as opposed to reduced uranium bearing species, has been demonstrated to limit the mobility of uranium at the laboratory scale yet field-scale investigations are lacking. Here in this study, the mobility of uranium in the presence of nitrate oxidant was investigated in a shallow groundwater system after establishing conditions conducive to uranium reduction and the formation of reduced sulfur-bearing species. A series of three injections of groundwater (200 L) containing U(VI) (5 μM)more » and amended with ethanol (40 mM) and sulfate (20 mM) were conducted in ten test wells in order to stimulate microbial mediated reduction of uranium and the formation of reduced sulfur-bearing species. Simultaneous push-pull tests were then conducted in triplicate well clusters to investigate the mobility of U(VI) under three conditions: 1) high nitrate (120 mM), 2) high nitrate (120 mM) with ethanol (30 mM), and 3) low nitrate (2 mM) with ethanol (30 mM). Dilution-adjusted breakthrough curves of ethanol, nitrate, nitrite, sulfate, and U(VI) suggested that nitrate reduction was predominantly coupled to the oxidation of reduced-sulfur bearing species, as opposed to the reoxidation of U(IV), under all three conditions for the duration of the 36-day tests. The amount of sulfate, but not U(VI), recovered during the push-pull tests was substantially more than injected, relative to bromide tracer, under all three conditions and further suggested that reduced sulfur-bearing species were preferentially oxidized under nitrate-reducing conditions. However, some reoxidation of U(IV) was observed under nitrate-reducing conditions and in the absence of detectable nitrate and/or nitrite. This suggested that reduced sulfur-bearing species may not be fully effective at limiting the mobility of uranium in the presence of dissolved and/or solid-phase oxidants. Lastly, the results of this field study confirmed those of previous laboratory studies which suggested that reoxidation of uranium under nitrate-reducing conditions can be substantially limited by preferential oxidation of reduced sulfur-bearing species.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrao, Alcidio.; Araujo, Jose Adroaldo de; Franca Junior, J.M.
This paper describes a technique for the production of nuclear grade ammonium diuranate (ADU) using uranyl sulfate solutions obtained as eluate from the ion exchange (strong cationic resin) purification of uranium, by precipitation with NH{sub 3} gas. The precipitation of ADU by direct introduction of NH{sub 3} gas into acid uranyl sulfate solution has as consequence a high coprecipitation of sulfate ion, reaching ratios as high as 10 to 14% SO{sub 4}/ADU. To overcome this serious inconvenience, the reverse order of addition of reagents was studied, the ADU precipitation being done in such a way that the pH of themore » mixture was kept higher than 6 during the whole precipitation. This modification, in conjunction with the adjustment of other precipitation parameters, like temperature, precipitation time, aging time, concentration of uranium in uranyl sulfate and pH, allowed a sucessful precipitation of ADU with low sulfate content. The technique was applied at pilot plant scale, using batch and continuous precipitation, in both cases the obtained ADU was low in sulfate.« less
Effects of uranium mining, Puerco River, New Mexico
Lopes, Thomas J.
1991-01-01
Effluent from uranium-mine dewatering and acidic water released by a tailings-pond dike failure increased radionuclide activities in streamflow in the Puerco River in New Mexico and Arizona. Median dissolved gross-alpha activity in the streamflow was 1,130 picocuries per liter from 1975 to 1986 when mine discharges ceased and 6.2 picocuries per liter from 1986 to 1989. From 1975 to July 1979, major ions in streamflow at the Puerco River at Gallup streamflow-gaging station were sodium, bicarbonate, and sulfate. On July 16, 1979, the day of the tailing spill, major ions in streamflow were magnesium, calcium, and sulfate. From 1979 to 1984, major ions in streamflow had a greater proportion of calcium and sulfate than prior to the spill, indicating flushing of residual tailings solution. Geochemical modeling of mine effluent indicates that uranium was unlikely to precipitate from effluent between the mines and Gallup or when mixed with wastewater downstream from Gallup. Geochemical modeling of acidic-tailings solution indicates that uranium was in solution as far downstream as Gallup. When the acidic-tailings solution mixed with 10- to 40-percent wastewater, uranium may have precipitated from solution as carnotite [K2(UO2)2(VO4)2] and tyuyamunite [Ca(UO2)2(VO4)2].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Raymond; Dam, William; Campbell, Sam
2016-08-01
• Evaporites occur in an unsaturated silt layer, which is underlain by a sand and gravel aquifer. • These evaporites are rich in chloride across the site. • Uranium concentrations are higher in the evaporites that overlie the uranium contaminant plume. • Flooding can solubilize the evaporites in the silt layer and release chloride, sulfate (not shown), and uranium into the underlyingsand and gravel aquifer. • The uranium-rich evaporites can delay natural flushing, creating plume persistence near the Little Wind River.
Life Enhancement of Naval Systems through Advanced Materials.
1982-05-12
sulfate ( eutectic at 575*C) and nickel sulfate-sodium sulfate ( eutectic at 670 0 C) systems. Cobalt and nickel sulfate are thermally unstable and undergo a...large scale commercial usage. Table IV-l - Ion implantation parameters Implanted Elements - Virtually any element from hydrogen to uranium can be...readily attainable by oxidation of the up to 1% sulfur allowed inI Navy fuel. Therefore, cobalt and nickel sulfate are formed by reaction of the 30 Fig. V-1
Janot, Noémie; Lezama Pacheco, Juan S; Pham, Don Q; O'Brien, Timothy M; Hausladen, Debra; Noël, Vincent; Lallier, Florent; Maher, Kate; Fendorf, Scott; Williams, Kenneth H; Long, Philip E; Bargar, John R
2016-01-05
The Rifle alluvial aquifer along the Colorado River in west central Colorado contains fine-grained, diffusion-limited sediment lenses that are substantially enriched in organic carbon and sulfides, as well as uranium, from previous milling operations. These naturally reduced zones (NRZs) coincide spatially with a persistent uranium groundwater plume. There is concern that uranium release from NRZs is contributing to plume persistence or will do so in the future. To better define the physical extent, heterogeneity and biogeochemistry of these NRZs, we investigated sediment cores from five neighboring wells. The main NRZ body exhibited uranium concentrations up to 100 mg/kg U as U(IV) and contains ca. 286 g of U in total. Uranium accumulated only in areas where organic carbon and reduced sulfur (as iron sulfides) were present, emphasizing the importance of sulfate-reducing conditions to uranium retention and the essential role of organic matter. NRZs further exhibited centimeter-scale variations in both redox status and particle size. Mackinawite, greigite, pyrite and sulfate coexist in the sediments, indicating that dynamic redox cycling occurs within NRZs and that their internal portions can be seasonally oxidized. We show that oxidative U(VI) release to the aquifer has the potential to sustain a groundwater contaminant plume for centuries. NRZs, known to exist in other uranium-contaminated aquifers, may be regionally important to uranium persistence.
Understanding Uranium Behavior in a Reduced Aquifer
NASA Astrophysics Data System (ADS)
Janot, N.; Lezama-Pacheco, J. S.; Williams, K. H.; Bernier-Latmani, R.; Long, P. E.; Davis, J. A.; Fox, P. M.; Yang, L.; Giammar, D.; Cerrato, J. M.; Bargar, J.
2012-12-01
Uranium contamination of groundwater is a concern at several US Department of Energy sites, such Old Rifle, CO. Uranium transport in the environment is mainly controlled by its oxidation state, since oxidized U(VI) is relatively mobile, whereas U(IV) is relatively insoluble. Bio-remediation of contaminated aquifers aims at immobilizing uranium in a reduced form. Previous laboratory and field studies have shown that adding electron donor (lactate, acetate, ethanol) to groundwater stimulates the activity of metal- and sulfate-reducing bacteria, which promotes U(VI) reduction in contaminated aquifers. However, obtaining information on chemical and physical forms of U, Fe and S species for sediments biostimulated in the field, as well as kinetic parameters such as U(VI) reduction rate, is challenging due to the low concentration of uranium in the aquifers (typically < 10 ppm) and the expense of collecting large number of cores. An in-situ technique has been developed for studying uranium, iron and sulfur reduction dynamics during such bioremediation episodes. This technique uses in-well columns to obtain direct access to chemical and physical forms of U(IV) produced in the aquifer, evolving microbial communities, and trace and major ion groundwater constituents. While several studies have explored bioreduction of uranium under sulfate-reducing conditions, less attention has been paid to the initial iron-reducing phase, noted as being of particular importance to uranium removal. The aim of this work was to assess the formation of U(IV) during the early stages of a bio-remediation experiment at the Old Rifle site, CO, from early iron-reducing conditions to the transition to sulfate-reducing conditions. Several in-well chromatographic columns packed with sediment were deployed and were sampled at different days after the start of bio-reduction. X-ray absorption spectroscopy and X-ray microscopy were used to obtain information on Fe, S and U speciation and distribution. Chemical extractions of the reduced sediments have also been performed, to determine the rate of Fe(II) and U(IV) accumulation.
Reduction of uranium by Desulfovibrio desulfuricans
Lovley, D.R.; Phillips, E.J.P.
1992-01-01
The possibility that sulfate-reducing microorganisms contribute to U(VI) reduction in sedimentary environments was investigated. U(VI) was reduced to U(IV) when washed cells of sulfate-grown Desulfovibrio desulfuricans were suspended in a bicarbonate buffer with lactate or H2 as the electron donor. There was no U(VI) reduction in the absence of an electron donor or when the cells were killed by heat prior to the incubation. The rates of U(VI) reduction were comparable to those in respiratory Fe(III)-reducing microorganisms. Azide or prior exposure of the cells to air did not affect the ability of D. desulfuricans to reduce U(VI). Attempts to grow D. desulfuricans with U(VI) as the electron acceptor were unsuccessful. U(VI) reduction resulted in the extracellular precipitation of the U(IV) mineral uraninite. The presence of sulfate had no effect on the rate of U(VI) reduction. Sulfate and U(VI) were reduced simultaneously. Enzymatic reduction of U(VI) by D. desulfuricans was much faster than nonenzymatic reduction of U(VI) by sulfide, even when cells of D. desulfuricans were added to provide a potential catalytic surface for the nonenzymatic reaction. The results indicate that enzymatic U(VI) reduction by sulfate-reducing microorganisms may be responsible for the accumulation of U(IV) in sulfidogenic environments. Furthermore, since the reduction of U(VI) to U(IV) precipitates uranium from solution, D. desulfuricans might be a useful organisms for recovering uranium from contaminated waters and waste streams.
PROCESS OF PREPARING A FLUORIDE OF TETRAVLENT URANIUM
Wheelwright, E.J.
1959-02-17
A method is described for producing a fluoride salt pf tetravalent uranium suitable for bomb reduction to metallic uranium. An aqueous solution of uranyl nitrate is treated with acetic acid and a nitrite-suppressor and then contacted with metallic lead whereby uranium is reduced from the hexavalent to the tetravalent state and soluble lead acetate is formed. Sulfate ions are then added to the solution to precipitate and remove the lead values. Hydrofluoric acid and alkali metal ions are then added causing the formation of an alkali metal uranium double-fluoride in which the uranium is in the tetravalent state. After recovery, this precipitate is suitable for using in the limited production of metallic uranium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yabusaki, Steven B.; Fang, Yilin; Williams, Kenneth H.
2011-11-01
Field experiments at a former uranium mill tailings site have identified the potential for stimulating indigenous bacteria to catalyze the conversion of aqueous uranium in the +6 oxidation state to immobile solid-associated uranium in the +4 oxidation state. This effectively removes uranium from solution resulting in groundwater concentrations below actionable standards. Three-dimensional, coupled variably-saturated flow and biogeochemical reactive transport modeling of a 2008 in situ uranium bioremediation field experiment is used to better understand the interplay of transport rates and biogeochemical reaction rates that determine the location and magnitude of key reaction products. A comprehensive reaction network, developed largely throughmore » previous 1-D modeling studies, was used to simulate the impacts on uranium behavior of pulsed acetate amendment, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. A principal challenge is the mechanistic representation of biologically-mediated terminal electron acceptor process (TEAP) reactions whose products significantly alter geochemical controls on uranium mobility through increases in pH, alkalinity, exchangeable cations, and highly reactive reduction products. In general, these simulations of the 2008 Big Rusty acetate biostimulation field experiment in Rifle, Colorado confirmed previously identified behaviors including (1) initial dominance by iron reducing bacteria that concomitantly reduce aqueous U(VI), (2) sulfate reducing bacteria that become dominant after {approx}30 days and outcompete iron reducers for the acetate electron donor, (3) continuing iron-reducer activity and U(VI) bioreduction during dominantly sulfate reducing conditions, and (4) lower apparent U(VI) removal from groundwater during dominantly sulfate reducing conditions. New knowledge on simultaneously active metal and sulfate reducers has been incorporated into the modeling. In this case, an initially small population of slow growing sulfate reducers is active from the initiation of biostimulation. Three-dimensional, variably saturated flow modeling was used to address impacts of a falling water table during acetate injection. These impacts included a significant reduction in aquifer saturated thickness and isolation of residual reactants and products, as well as unmitigated uranium, in the newly unsaturated vadose zone. High permeability sandy gravel structures resulted in locally high flow rates in the vicinity of injection wells that increased acetate dilution. In downgradient locations, these structures created preferential flow paths for acetate delivery that enhanced local zones of TEAP reactivity and subsidiary reactions. Conversely, smaller transport rates associated with the lower permeability lithofacies (e.g., fine) and vadose zone were shown to limit acetate access and reaction. Once accessed by acetate, however, these same zones limited subsequent acetate dilution and provided longer residence times that resulted in higher concentrations of TEAP products when terminal electron donors and acceptors were not limiting. Finally, facies-based porosity and reactive surface area variations were shown to affect aqueous uranium concentration distributions; however, the ranges were sufficiently small to preserve general trends. Large computer memory and high computational performance were required to simulate the detailed coupled process models for multiple biogeochemical components in highly resolved heterogeneous materials for the 110-day field experiment and 50 days of post-biostimulation behavior. In this case, a highly-scalable subsurface simulator operating on 128 processor cores for 12 hours was used to simulate each realization. An equivalent simulation without parallel processing would have taken 60 days, assuming sufficient memory was available.« less
Environmental Survey of the B-3 and Ford’s Farm Ranges,
1983-08-01
reported have an estimated analytical error of *35% unless noted otherwise. 14 Isotopic Analysis The isotopic uranium analysis procedure used by UST...sulfate buffer and elec- trodeposited on a stainless steel disc, and isotopes of uranium (234U, 23 5U, and 2 38U) were determined by pulse height analysis ...measurements and some environmental sampling. Several special studies were also conducted, including analyses of the isotopic composition of uranium in
Method for magnesium sulfate recovery
Gay, Richard L.; Grantham, LeRoy F.
1987-01-01
A method of obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.
Method for magnesium sulfate recovery
Gay, R.L.; Grantham, L.F.
1987-08-25
A method is described for obtaining magnesium sulfate substantially free from radioactive uranium from a slag containing the same and having a radioactivity level of at least about 7,000 pCi/gm. The slag is ground to a particle size of about 200 microns or less. The ground slag is then contacted with a concentrated sulfuric acid under certain prescribed conditions to produce a liquid product and a solid product. The particulate solid product and a minor amount of the liquid is then treated to produce a solid residue consisting essentially of magnesium sulfate substantially free of uranium and having a residual radioactivity level of less than 1,000 pCi/gm. In accordance with the preferred embodiment of the invention, a catalyst and an oxidizing agent are used during the initial acid treatment and a final solid residue has a radioactivity level of less than about 50 pCi/gm.
Non-enzymatic U(VI) interactions with biogenic mackinawite
NASA Astrophysics Data System (ADS)
Veeramani, H.; Qafoku, N. P.; Kukkadapu, R. K.; Murayama, M.; Hochella, M. F.
2011-12-01
Reductive immobilization of hexavalent uranium [U(VI)] by stimulation of dissimilatory metal and/or sulfate reducing bacteria (DMRB or DSRB) has been extensively researched as a remediation strategy for subsurface U(VI) contamination. These bacteria derive energy by reducing oxidized metals as terminal electron acceptors, often utilizing organic substrates as electron donors. Thus, when evaluating the potential for in-situ uranium remediation in heterogeneous subsurface media, it is important to understand how the presence of alternative electron acceptors such as Fe(III) and sulfate affect U(VI) remediation and the long term behavior and reactivity of reduced uranium. Iron, an abundant subsurface element, represents a substantial sink for electrons from DMRB, and the reduction of Fe(III) leads to the formation of dissolved Fe(II) or to reactive biogenic Fe(II)- and mixed Fe(II)/Fe(III)- mineral phases. Consequently, abiotic U(VI) reduction by reactive forms of biogenic Fe(II) minerals could be a potentially important process for uranium immobilization. In our study, the DMRB Shewanella putrefaciens CN32 was used to synthesize a biogenic Fe(II)-bearing sulfide mineral: mackinawite, that has been characterized by XRD, SEM, HRTEM and Mössbauer spectroscopy. Batch experiments involving treated biogenic mackinawite and uranium (50:1 molar ratio) were carried out at room temperature under strict anoxic conditions. Following complete removal of uranium from solution, the biogenic mackinawite was analyzed by a suite of analytical techniques including XAS, HRTEM and Mössbauer spectroscopy to determine the speciation of uranium and investigate concomitant Fe(II)-phase transformation. Determining the speciation of uranium is critical to success of a remediation strategy. The present work elucidates non-enzymatic/abiotic molecular scale redox interactions between biogenic mackinawite and uranium.
SLURRY SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM SOLID MATERIALS
Grinstead, R.R.
1959-01-20
A solvent extraction process is described for recovering uranium from low grade uranium bearing minerals such as carnotit or shale. The finely communited ore is made up as an aqueous slurry containing the necessary amount of acid to solubilize the uranium and simultaneously or subsequently contacted with an organic solvent extractant such as the alkyl ortho-, or pyro phosphoric acids, alkyl phosphites or alkyl phosphonates in combination with a diluent such as kerosene or carbon tetrachlorids. The extractant phase is separated from the slurry and treated by any suitable process to recover the uranium therefrom. One method for recovering the uranium comprises treating the extract with aqueous HF containing a reducing agent such as ferrous sulfate, which reduces the uranium and causes it to be precipitated as uranium tetrafluoride.
METHOD OF INHIBITING CORROSION IN URANYL SULFATE SOLUTIONS
Bohlmann, E.G.; Griess, J.C. Jr.
1960-08-23
A method is given for treating a uranyl sulfate solution to inhibit the corrosiveness of the solution and elevate the phase separation temperature of the solution. Lithium sulfate is added to the solution in an amount ranging from 0.25 to 1.3 times the uranyl sulfate concentration. The corrosiveness of the solution with respect to stainless steel is substantially decreased by this means. This treatment also serves to raise the phase separation temperature of the solution (above 250 deg C), at which time the uranyl sulfate solution separates into two liquid phases of unequal uranium concentration and thus becomes unsuitable as nuclear reactor fuel.
Hwang, Chiachi; Wu, Weimin; Gentry, Terry J; Carley, Jack; Corbin, Gail A; Carroll, Sue L; Watson, David B; Jardine, Phil M; Zhou, Jizhong; Criddle, Craig S; Fields, Matthew W
2009-01-01
Bacterial community succession was investigated in a field-scale subsurface reactor formed by a series of wells that received weekly ethanol additions to re-circulating groundwater. Ethanol additions stimulated denitrification, metal reduction, sulfate reduction and U(VI) reduction to sparingly soluble U(IV). Clone libraries of SSU rRNA gene sequences from groundwater samples enabled tracking of spatial and temporal changes over a 1.5-year period. Analyses showed that the communities changed in a manner consistent with geochemical variations that occurred along temporal and spatial scales. Canonical correspondence analysis revealed that the levels of nitrate, uranium, sulfide, sulfate and ethanol were strongly correlated with particular bacterial populations. As sulfate and U(VI) levels declined, sequences representative of sulfate reducers and metal reducers were detected at high levels. Ultimately, sequences associated with sulfate-reducing populations predominated, and sulfate levels declined as U(VI) remained at low levels. When engineering controls were compared with the population variation through canonical ordination, changes could be related to dissolved oxygen control and ethanol addition. The data also indicated that the indigenous populations responded differently to stimulation for bioreduction; however, the two biostimulated communities became more similar after different transitions in an idiosyncratic manner. The strong associations between particular environmental variables and certain populations provide insight into the establishment of practical and successful remediation strategies in radionuclide-contaminated environments with respect to engineering controls and microbial ecology.
PREPARATION OF URANIUM TRIOXIDE
Buckingham, J.S.
1959-09-01
The production of uranium trioxide from aqueous solutions of uranyl nitrate is discussed. The uranium trioxide is produced by adding sulfur or a sulfur-containing compound, such as thiourea, sulfamic acid, sulfuric acid, and ammonium sulfate, to the uranyl solution in an amount of about 0.5% by weight of the uranyl nitrate hexahydrate, evaporating the solution to dryness, and calcining the dry residue. The trioxide obtained by this method furnished a dioxide with a considerably higher reactivity with hydrogen fluoride than a trioxide prepared without the sulfur additive.
Landa, Edward R.; Cravotta, Charles A.; Naftz, David L.; Verplanck, Philip L.; Nordstrom, D. Kirk; Zielinski, Robert A.
2000-01-01
Recent research by the U.S. Geological Survey has characterized contaminant sources and identified important geochemical processes that influence transport of radionuclides from uranium mining and milling wastes. 1) Selective extraction studies indicated that alkaline earth sulfates and hydrous ferric oxides are important hosts of 226Ra in uranium mill tailings. The action of sulfate-reducing and ironreducing bacteria on these phases was shown to enhance release of radium, and this adverse result may temper decisions to dispose of uranium mill tailings in anaerobic environments. 2) Field studies have shown that although surface-applied sewage sludge/wood chip amendments aid in revegetating pyritic spoil, the nitrogen in sludge leachate can enhance pyrite oxidation, acidification of groundwater, and the consequent mobilization of metals and radionuclides. 3) In a U.S. Environmental Protection Agencyfunded study, three permeable reactive barriers consisting of phosphate-rich material, zero-valent iron, or amorphous ferric oxyhydroxide have been installed at an abandoned uranium upgrader facility near Fry Canyon, UT. Preliminary results indicate that each of the permeable reactive barriers is removing the majority of the uranium from the groundwater. 4) Studies on the geochemistry of rare earth elements as analogues for actinides such as uranium and thorium in acid mine drainage environments indicate high mobility under acid-weathering conditions but measurable attenuation associated with iron and aluminum colloid formation. Mass balances from field and laboratory studies are being used to quantify the amount of attenuation. 5) A field study in Colorado demonstrated the use of 234U/238U isotopic ratio measurements to evaluate contamination of shallow groundwater with uranium mill effluent.
Chang, Yun-Juan; Peacock, Aaron D.; Long, Philip E.; Stephen, John R.; McKinley, James P.; Macnaughton, Sarah J.; Hussain, A. K. M. Anwar; Saxton, Arnold M.; White, David C.
2001-01-01
Microbially mediated reduction and immobilization of U(VI) to U(IV) plays a role in both natural attenuation and accelerated bioremediation of uranium-contaminated sites. To realize bioremediation potential and accurately predict natural attenuation, it is important to first understand the microbial diversity of such sites. In this paper, the distribution of sulfate-reducing bacteria (SRB) in contaminated groundwater associated with a uranium mill tailings disposal site at Shiprock, N.Mex., was investigated. Two culture-independent analyses were employed: sequencing of clone libraries of PCR-amplified dissimilatory sulfite reductase (DSR) gene fragments and phospholipid fatty acid (PLFA) biomarker analysis. A remarkable diversity among the DSR sequences was revealed, including sequences from δ-Proteobacteria, gram-positive organisms, and the Nitrospira division. PLFA analysis detected at least 52 different mid-chain-branched saturate PLFA and included a high proportion of 10me16:0. Desulfotomaculum and Desulfotomaculum-like sequences were the most dominant DSR genes detected. Those belonging to SRB within δ-Proteobacteria were mainly recovered from low-uranium (≤302 ppb) samples. One Desulfotomaculum-like sequence cluster overwhelmingly dominated high-U (>1,500 ppb) sites. Logistic regression showed a significant influence of uranium concentration over the dominance of this cluster of sequences (P = 0.0001). This strong association indicates that Desulfotomaculum has remarkable tolerance and adaptation to high levels of uranium and suggests the organism's possible involvement in natural attenuation of uranium. The in situ activity level of Desulfotomaculum in uranium-contaminated environments and its comparison to the activities of other SRB and other functional groups should be an important area for future research. PMID:11425735
Phytoremediation of a nitrogen-contaminated desert soil by native shrubs and microbial processes
Glenn, Edward P.; Jordan, Fiona; Waugh, W. Joseph
2016-02-24
Here, we combined phytoremediation and soil microbial nitrification and denitrification cycles to reduce nitrate and ammonium levels at a former uranium mill site near Monument Valley, Arizona. Ammonia used in uranium extraction was present throughout the soil profile. Sulfate,applied as sulfuric acid to solubilize uranium, was also present in the soil. These contaminants were leaching from a denuded area where a tailings pile had been removed and were migrating away from the site in groundwater. We planted the source area with two deep-rooted native shrubs, Atriplex cansescens and Sarcobatus vermiculatus, and irrigated transplants for 11 years at 20% the ratemore » of potential evapotranspiration to stimulate growth, then discontinued irrigation for 4 years. Over 15 years, total nitrogen levels dropped 82%, from 347 to 64 mg kg –1. Analysis of δ 15N supported our hypothesis that coupled microbial nitrification and denitrification processes were responsible for the loss of N. Soil sulfate levels changed little; however, evapotranspiration reduced sulfate leaching into the aquifer. For arid sites where traditional pump-and-treat methods are problematic, the Monument Valley data suggest that alternatives that incorporate native plants and rely on vadose zone biogeochemistry and hydrology could be a sustainable remediation for nitrogen contaminated soil.« less
Phytoremediation of a nitrogen-contaminated desert soil by native shrubs and microbial processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glenn, Edward P.; Jordan, Fiona; Waugh, W. Joseph
Here, we combined phytoremediation and soil microbial nitrification and denitrification cycles to reduce nitrate and ammonium levels at a former uranium mill site near Monument Valley, Arizona. Ammonia used in uranium extraction was present throughout the soil profile. Sulfate,applied as sulfuric acid to solubilize uranium, was also present in the soil. These contaminants were leaching from a denuded area where a tailings pile had been removed and were migrating away from the site in groundwater. We planted the source area with two deep-rooted native shrubs, Atriplex cansescens and Sarcobatus vermiculatus, and irrigated transplants for 11 years at 20% the ratemore » of potential evapotranspiration to stimulate growth, then discontinued irrigation for 4 years. Over 15 years, total nitrogen levels dropped 82%, from 347 to 64 mg kg –1. Analysis of δ 15N supported our hypothesis that coupled microbial nitrification and denitrification processes were responsible for the loss of N. Soil sulfate levels changed little; however, evapotranspiration reduced sulfate leaching into the aquifer. For arid sites where traditional pump-and-treat methods are problematic, the Monument Valley data suggest that alternatives that incorporate native plants and rely on vadose zone biogeochemistry and hydrology could be a sustainable remediation for nitrogen contaminated soil.« less
Evolution of uranium distribution and speciation in mill tailings, COMINAK Mine, Niger.
Déjeant, Adrien; Galoisy, Laurence; Roy, Régis; Calas, Georges; Boekhout, Flora; Phrommavanh, Vannapha; Descostes, Michael
2016-03-01
This study investigated the evolution of uranium distribution and speciation in mill tailings from the COMINAK mine (Niger), in production since 1978. A multi-scale approach was used, which combined high resolution remote sensing imagery, ICP-MS bulk rock analyses, powder X-ray diffraction, Scanning Electron Microscopy, Focused Ion Beam--Transmission Electron Microscopy and X-ray Absorption Near Edge Spectroscopy. Mineralogical analyses showed that some ore minerals, including residual uraninite and coffinite, undergo alteration and dissolution during tailings storage. The migration of uranium and other contaminants depends on (i) the chemical stability of secondary phases and sorbed species (dissolution and desorption processes), and (ii) the mechanical transport of fine particles bearing these elements. Uranium is stabilized after formation of secondary uranyl sulfates and phosphates, and adsorbed complexes on mineral surfaces (e.g. clay minerals). In particular, the stock of insoluble uranyl phosphates increases with time, thus contributing to the long-term stabilization of uranium. At the surface, a sulfate-cemented duricrust is formed after evaporation of pore water. This duricrust limits water infiltration and dust aerial dispersion, though it is enriched in uranium and many other elements, because of pore water rising from underlying levels by capillary action. Satellite images provided a detailed description of the tailings pile over time and allow monitoring of the chronology of successive tailings deposits. Satellite images suggest that uranium anomalies that occur at deep levels in the pile are most likely former surface duricrusts that have been buried under more recent tailings. Copyright © 2015 Elsevier B.V. All rights reserved.
Sandstone type uranium deposits in the Ordos Basin, Northwest China: A case study and an overview
NASA Astrophysics Data System (ADS)
Akhtar, Shamim; Yang, Xiaoyong; Pirajno, Franco
2017-09-01
This paper provides a comprehensive review on studies of sandstone type uranium deposits in the Ordos Basin, Northwest China. As the second largest sedimentary basin, the Ordos Basin has great potential for targeting sandstone type U mineralization. The newly found and explored Dongsheng and Diantou sandstone type uranium deposits are hosted in the Middle Jurassic Zhilou Formation. A large number of investigations have been conducted to trace the source rock compositions and relationship between lithic subarkose sandstone host rock and uranium mineralization. An optical microscopy study reveals two types of alteration associated with the U mineralization: chloritization and sericitization. Some unusual mineral structures, with compositional similarity to coffinite, have been identified in a secondary pyrite by SEM These mineral phases are proposed to be of bacterial origin, following high resolution mapping of uranium minerals and trace element determinations in situ. Moreover, geochemical studies of REE and trace elements constrained the mechanism of uranium enrichment, displaying LREE enrichment relative to HREE. Trace elements such as Pb, Mo and Ba have a direct relationship with uranium enrichment and can be used as index for mineralization. The source of uranium ore forming fluids and related geological processes have been studied using H, O and C isotope systematics of fluid inclusions in quartz veins and the calcite cement of sandstone rocks hosting U mineralization. Both H and O isotopic compositions of fluid inclusions reveal that ore forming fluids are a mixture of meteoric water and magmatic water. The C and S isotopes of the cementing material of sandstone suggest organic origin and bacterial sulfate reduction (BSR), providing an important clue for U mineralization. Discussion of the ore genesis shows that the greenish gray sandstone plays a crucial role during processes leading to uranium mineralization. Consequently, an oxidation-reduction model for sandstone-type uranium deposit is proposed, which can elucidate the source of uranium in the deposits of the Ordos Basin, based on the role of organic materials and sulfate reducing bacteria. We discuss the mechanism of uranium deposition responsible for the genesis of these large sandstone type uranium deposits in this unique sedimentary basin.
IRON COATED URANIUM AND ITS PRODUCTION
Gray, A.G.
1960-03-15
A method of applying a protective coating to a metallic uranium article is given. The method comprises etching the surface of the article with an etchant solution containlng chloride ions, such as a solution of phosphoric acid and hydrochloric acid, cleaning the etched surface, electroplating iron thereon from a ferrous ammonium sulfate electroplating bath, and soldering an aluminum sheath to the resultant iron layer.
Simulation of in situ uranium bioremediation with slow-release organic amendment injection
NASA Astrophysics Data System (ADS)
Zhang, F.; Parker, J.; Ye, M.; Tang, G.; Wu, W.; Mehlhorn, T.; Gihring, T. M.; Schadt, C.; Watson, D. B.; Brooks, S. C.
2010-12-01
In situ bioremediation of a highly uranium-contaminated gravel aquifer with a slow-release electron donor (emulsified edible oil) has been investigated at the US DOE Oak Ridge Integrated Field Research Challenge (ORIFRC) site in east Tennessee. Groundwater at the study location has pH ~6.7 and contains high concentrations of U (5-6 μM), sulfate (1.0-1.2) mM and Ca (3-4 mM). Diluted emulsified oil (20% solution) was injected into three injection wells within 1.5 hrs. Geochemical analysis of site groundwater demonstrated the sequential reduction of nitrate, Mn, Fe(III) and sulfate. The oil was degraded by indigenous microorganisms with acetate as a major product. Rapid removal of U(VI) from the aqueous phase occurred concurrently with acetate production and sulfate reduction. The field test data were analyzed using a reaction network with a kinetic model for lipid hydrolysis and glycerol fermentation and equilibrium reactions representing microbial reduction of sulfate, nitrate, iron, uranium, manganese and carbon dioxide based on the thermodynamic approach of Istok et al. (2010) using the parallelized HGC5 code. Model-simulated chemical concentrations and relative abundance of functional microbial populations are compared with field measurements. Application of the thermodynamically-based modeling approach instead of the widely used multi-Monod kinetic rate law to formulate bioreduction reactions substantially reduces the number of reaction parameters that need to be calibrated thus facilitating a more comprehensive representation of microbial community dynamics. The model developed through this study is expected to aid the design of future bioremediation strategies for the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hwang, Chiachi; Wu, Weimin; Gentry, Terry J.
2009-05-22
Bacterial community succession was investigated in a field-scale subsurface reactor formed by a series of wells that received weekly ethanol additions to re-circulating groundwater. Ethanol additions stimulated denitrification, metal reduction, sulfate reduction, and U(VI) reduction to sparingly soluble U(IV). Clone libraries of SSU rRNA gene sequences from groundwater samples enabled tracking of spatial and temporal changes over a 1.5 y period. Analyses showed that the communities changed in a manner consistent with geochemical variations that occurred along temporal and spatial scales. Canonical correspondence analysis revealed that the levels of nitrate, uranium, sulfide, sulfate, and ethanol strongly correlated with particular bacterialmore » populations. As sulfate and U(VI) levels declined, sequences representative of sulfate-reducers and metal-reducers were detected at high levels. Ultimately, sequences associated with sulfate-reducing populations predominated, and sulfate levels declined as U(VI) remained at low levels. When engineering controls were compared to the population variation via canonical ordination, changes could be related to dissolved oxygen control and ethanol addition. The data also indicated that the indigenous populations responded differently to stimulation for bio-reduction; however, the two bio-stimulated communities became more similar after different transitions in an idiosyncratic manner. The strong associations between particular environmental variables and certain populations provide insight into the establishment of practical and successful remediation strategies in radionuclide-contaminated environments with respect to engineering controls and microbial ecology.« less
McAdams, Wm.A.; Foss, M.H.
1958-08-12
A method of testing containers for leaks is described, particularly the testing of containers or cans in which the uranium slugs for nuelear reactors are jacketed. This method involves the immersion of the can in water under l50 pounds of pressure, then removing, drying, and coating the can with anhydrous copper sulfate. Amy water absorbed by the can under pressure will exude and discolor the copper sulfate in the area about the leak.
Microbial release of 226Ra2+ from (Ba,Ra)SO4 sludges from uranium mine wastes.
Fedorak, P M; Westlake, D W; Anders, C; Kratochvil, B; Motkosky, N; Anderson, W B; Huck, P M
1986-01-01
226Ra2+ is removed from uranium mine effluents by coprecipitation with BaSO4. (Ba,Ra)SO4 sludge samples from two Canadian mine sites were found to contain active heterotrophic populations of aerobic, anaerobic, denitrifying, and sulfate-reducing bacteria. Under laboratory conditions, sulfate reduction occurred in batch cultures when carbon sources such as acetate, glucose, glycollate, lactate, or pyruvate were added to samples of (Ba,Ra)SO4 sludge. No external sources of nitrogen or phosphate were required for this activity. Further studies with lactate supplementation showed that once the soluble SO4(2-) in the overlying water was depleted, Ba2+ and 226Ra2+ were dissolved from the (Ba,Ra)SO4 sludge, with the concurrent production of S2-. Levels of dissolved 226Ra2+ reached approximately 400 Bq/liter after 10 weeks of incubation. Results suggest that the ultimate disposal of these sludges must maintain conditions to minimize the activity of the indigenous sulfate-reducing bacteria to ensure that unacceptably high levels of 226Ra2+ are not released to the environment. PMID:3752993
Beisner, Kimberly R.; Paretti, Nicholas; Tillman, Fred; Naftz, David L.; Bills, Donald; Walton-Day, Katie; Gallegos, Tanya J.
2017-01-01
The processes that affect water chemistry as the water flows from recharge areas through breccia-pipe uranium deposits in the Grand Canyon region of the southwestern United States are not well understood. Pigeon Spring had elevated uranium in 1982 (44 μg/L), compared to other perched springs (2.7–18 μg/L), prior to mining operations at the nearby Pigeon Mine. Perched groundwater springs in an area around the Pigeon Mine were sampled between 2009 and 2015 and compared with material from the Pigeon Mine to better understand the geochemistry and hydrology of the area. Two general groups of perched groundwater springs were identified from this study; one group is characterized by calcium sulfate type water, low uranium activity ratio 234U/238U (UAR) values, and a mixture of water with some component of modern water, and the other group by calcium-magnesium sulfate type water, higher UAR values, and radiocarbon ages indicating recharge on the order of several thousand years ago. Multivariate statistical principal components analysis of Pigeon Mine and spring samples indicate Cu, Pb, As, Mn, and Cd concentrations distinguished mining-related leachates from perched groundwater springs. The groundwater potentiometric surface indicates that perched groundwater at Pigeon Mine would likely flow toward the northwest away from Pigeon Spring. The geochemical analysis of the water, sediment and rock samples collected from the Snake Gulch area indicate that the elevated uranium at Pigeon Spring is likely related to a natural source of uranium upgradient from the spring and not likely related to the Pigeon Mine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Wensui; Zhou, Jizhong; Wu, Weimin
2007-01-01
A microcosm study was performed to investigate the effect of ethanol and acetate on uranium(VI) biological reduction and microbial community changes under various geochemical conditions. Each microcosm contained an uranium-contaminated sediment (up to 2.8 g U/kg) suspended in buffer with bicarbonate at concentrations of either 1 mM or 40 mM and sulfate at either 1.1 or 3.2 mM. Ethanol or acetate was used as an electron donor. Results indicate that ethanol yielded in significantly higher U(VI) reduction rates than acetate. A low bicarbonate concentration (1 mM) was favored for U(VI) bioreduction to occur in sediments, but high concentrations of bicarbonatemore » (40 mM) and sulfate (3.2 mM) decreased the reduction rates of U(VI). Microbial communities were dominated by species from the Geothrix genus and Proteobacteria phylum in all microcosms. However, species in the Geobacteraceae family capable of reducing U(VI) were significantly enriched by ethanol and acetate in low bicarbonate buffer. Ethanol increased the population of unclassified Desulfuromonales, while acetate increased the population of Desulfovibrio. Additionally, species in the Geobacteraceae family were not enriched in high bicarbonate buffer, but the Geothrix and the unclassified Betaproteobacteria species were enriched. This study concludes that ethanol could be a better electron donor than acetate for reducing U(VI) under given experimental conditions, and electron donor and geoundwater geochemistry alter microbial communities responsible for U(VI) reduction.« less
Uranium minerals in Oligocene gypsum near Chadron, Dawes County, Nebraska
Dunham, R.J.
1955-01-01
Carnotite, sabugalite [HAI(UO2)4(PO4)4 • 16H2O] and autunite occur in the basal 25 feet of a 270-foot sequence of nonmarine bedded gypsum and gypsiferous clay in the Brule formation of Oligocene age about 12 miles northeast of Chadron in northeastern Dawes County, Nebraska. Uranium minerals are visible at only two localities and are associated with carbonaceous matter. Elsewhere the basal 25 feet of the gypsum sequence is interbedded with carbonate rocks and is weakly but persistently uraniferous. Uranium probably was emplaced from above by uranyl solutions rich in sulfate.
NASA Astrophysics Data System (ADS)
Clapp, L. W.; Cabezas, J.; Gamboa, Y.; Fernandez, W.
2011-12-01
State and federal regulations require that groundwater at in-situ recovery (ISR) uranium mining operations be restored to pre-mining conditions. Reverse osmosis (RO) filtration of several pore volumes of the post-leached groundwater and reinjection of the clean permeate is the most common technology currently used for restoring groundwater at uranium ISR sites. However, this approach does not revert the formation back to its initial reducing conditions, which can potentially impede timely groundwater restoration. In-situ biostimulation of indigenous iron- and sulfate reducing bacteria by injection of organic electron donors (e.g., ethanol, acetate, and lactate) to promote soluble uranium reduction and immobilization has been the subject of previous studies. However, injection of organic substrates has been observed to cause aquifer clogging near the injection point. In addition, U(VI) solubility may be enhanced through complexation with carbonate generated by organic carbon oxidation. An alternative approach that may overcome these problems involves the use of hydrogen as a reductant to promote microbial reduction and immobilization of U(VI) in situ. To test this approach, approximately 100,000 scf of compressed hydrogen gas was injected into a leached unconsolidated sand zone over two months at an ISR mining site. During this time groundwater was recirculated between injection and extraction wells (separated by 130 ft) at a rate of about 40 gpm and bromide was coinjected as a conservative tracer. A well monitoring program has been executed since June 2009 to evaluate the performance of the hydrogen injection. Current results show that U(VI) has been reduced from 4.2 to 0.05 ppm in the area surrounding the injection well and to 2.0 ± 0.3 ppm in the area surrounding the extraction well and two intermediate monitoring wells. Other water quality changes near the injection well include significant decreases in concentrations of Mo, sulfate, Fe, Mn, bicarbonate, Ca, and Eh, and increases in pH, methane, and sulfide. No significant rebound of soluble uranium concentrations was observed, but significant rebounds in molybdenum and sulfate have been observed. Ongoing studies are evaluating the effective zone of influence of the hydrogen injection.
Schumacher, John G.
1993-01-01
The geochemistry of the shallow aquifer and geochemical controls on the migration of uranium and other constituents from raffinate pits were determined at the Weldon Spring chemical plant site. Surface-water samples from the raffinate pits con- tained large concentrations of calcium, magnesium, sodium, potassium, sulfate, nitrite, lithium, moly- bdenum, strontium, vanadium, and uranium. Analyses of interstitial-water samples from raffinate pit 3 indicated that concentrations of most constituents increased with increasing depth below the water- sediment interface. Nitrate and uranium were not chemically reduced and attenuated within the raffinate pits and can be expected to migrate into the overburden. Laboratory sorption experiments were performed to evaluate the effect of pH value on the sorption of several raffinate constituents by the overburden. No sorption of calcium, sodium, sulfate, nitrate, or lithium was observed. Sorption of molybdenum was dependent on solution pH and sorption of uranium was dependent on solution pH and carbonate concentration. The sorption of uranium and molybdenum was consistent with sorption controlled by oxyhydroxides. The quality of water collected in overburden lysimeters near raffinate pit 4 can be modeled as a mixture of water from raffinate pits 3 and 4, and an uncontaminated com- ponent in a system at equilibrium with ferrihydrite and calcite. Increased constituent concentrations in a perennial spring north of the site were the result of a subsurface connection between the spring and several losing stream segments receiving runoff from the site, in addition to seepage from the raffinate pits.
Fission-Produced 99Mo Without a Nuclear Reactor.
Youker, Amanda J; Chemerisov, Sergey D; Tkac, Peter; Kalensky, Michael; Heltemes, Thad A; Rotsch, David A; Vandegrift, George F; Krebs, John F; Makarashvili, Vakho; Stepinski, Dominique C
2017-03-01
99 Mo, the parent of the widely used medical isotope 99m Tc, is currently produced by irradiation of enriched uranium in nuclear reactors. The supply of this isotope is encumbered by the aging of these reactors and concerns about international transportation and nuclear proliferation. Methods: We report results for the production of 99 Mo from the accelerator-driven subcritical fission of an aqueous solution containing low enriched uranium. The predominately fast neutrons generated by impinging high-energy electrons onto a tantalum convertor are moderated to thermal energies to increase fission processes. The separation, recovery, and purification of 99 Mo were demonstrated using a recycled uranyl sulfate solution. Conclusion: The 99 Mo yield and purity were found to be unaffected by reuse of the previously irradiated and processed uranyl sulfate solution. Results from a 51.8-GBq 99 Mo production run are presented. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Potential Aquifer Vulnerability in Regions Down-Gradient from ...
Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are instrumental in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of these uranium ores is a process of contacting the uranium mineral deposit with leaching (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality impacts from: 1) potential excursions of leaching solutions away from the injection zone into down-dip, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies
Uranium(VI) interactions with mackinawite in the presence and absence of bicarbonate and oxygen.
Gallegos, Tanya J; Fuller, Christopher C; Webb, Samuel M; Betterton, William
2013-07-02
Mackinawite, Fe(II)S, samples loaded with uranium (10(-5), 10(-4), and 10(-3) mol U/g FeS) at pH 5, 7, and 9, were characterized using X-ray absorption spectroscopy and X-ray diffraction to determine the effects of pH, bicarbonate, and oxidation on uptake. Under anoxic conditions, a 5 g/L suspension of mackinawite lowered 5 × 10(-5) M uranium(VI) to below 30 ppb (1.26 × 10(-7) M) U. Between 82 and 88% of the uranium removed from solution by mackinawite was U(IV) and was nearly completely reduced to U(IV) when 0.012 M bicarbonate was added. Near-neighbor coordination consisting of uranium-oxygen and uranium-uranium distances indicates the formation of uraninite in the presence and absence of bicarbonate, suggesting reductive precipitation as the dominant removal mechanism. Following equilibration in air, mackinawite was oxidized to mainly goethite and sulfur and about 76% of U(IV) was reoxidized to U(VI) with coordination of uranium to axial and equatorial oxygen, similar to uranyl. Additionally, uranium-iron distances, typical of coprecipitation of uranium with iron oxides, and uranium-sulfur distances indicating bidentate coordination of U(VI) to sulfate were evident. The affinity of mackinawite and its oxidation products for U(VI) provides impetus for further study of mackinawite as a potential reactive medium for remediation of uranium-contaminated water.
Sorption of uranyl ions from various acido systems by amphoteric epoxy amine ion-exchange resins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rychkov, V.N.; Radionov, B.K.; Molochnikov, L.S.
1995-03-01
Sorption of uranyl ions by epoxy amine ampholytes with N-monomethylenephosphonic acid groups modified with pyridine or quaternary ammonium groups was studied under dynamic conditions. Heterocyclic nitrogen favors sorption of uranyl ion from fluoride, sulfate, and fluoride-sulfate solutions. The ESR studies of mono- and bimetallic forms of nitrogen-containing ampholytes with copper(II) as paramagnetic marker revealed the characteristics of uranium(VI) interaction with cation- and anion-exchange groups and its dependence on the fluoride content in solution.
Uranium(VI) interactions with mackinawite in the presence and absence of bicarbonate and oxygen
Gallegos, Tanya J.; Fuller, Christopher C.; Webb, Samuel M.; Betterton, William J.
2013-01-01
Mackinawite, Fe(II)S, samples loaded with uranium (10-5, 10-4, and 10-3 mol U/g FeS) at pH 5, 7, and 9, were characterized using X-ray absorption spectroscopy and X-ray diffraction to determine the effects of pH, bicarbonate, and oxidation on uptake. Under anoxic conditions, a 5 g/L suspension of mackinawite lowered 5 × 10-5 M uranium(VI) to below 30 ppb (1.26 × 10-7 M) U. Between 82 and 88% of the uranium removed from solution by mackinawite was U(IV) and was nearly completely reduced to U(IV) when 0.012 M bicarbonate was added. Near-neighbor coordination consisting of uranium–oxygen and uranium-uranium distances indicates the formation of uraninite in the presence and absence of bicarbonate, suggesting reductive precipitation as the dominant removal mechanism. Following equilibration in air, mackinawite was oxidized to mainly goethite and sulfur and about 76% of U(IV) was reoxidized to U(VI) with coordination of uranium to axial and equatorial oxygen, similar to uranyl. Additionally, uranium-iron distances, typical of coprecipitation of uranium with iron oxides, and uranium-sulfur distances indicating bidentate coordination of U(VI) to sulfate were evident. The affinity of mackinawite and its oxidation products for U(VI) provides impetus for further study of mackinawite as a potential reactive medium for remediation of uranium-contaminated water.
Linking AS, SE, V, and MN Behavior to Natural Biostimulated Uranium Cycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keimowitz, Alison; Ranville, James; Mailloux, Brian
The project “Linking As, Se, V, and Mn behavior to Natural and Biostimulated Uranium Cycling” successfully investigated Arsenic cycling the Rifle Colorado IFRC. This project trained undergraduate and graduate students at the Colorado School of Mines, Vassar College, and Barnard College. This resulted in both undergraduate theses and a PhD thesis and multiple publications. The science was highly successful and we were able to test the main hypotheses. We have shown that (H1) under reducing conditions that promote uranium immobilization arsenic is readily mobilized, that (H2) thioarsenic species are abundant during this mobilization, and (H3) we have examined arsenic mobilizationmore » for site sediment. At the Rifle IFRC Acetate was added during experiments to immobilize Uranium. These experiments successfully immobilized uranium but unfortunately would mobilize arsenic. We developed robust sampling and analysis methods for thioarsenic species. We showed that the mobilization occurred under sulfate reducing conditions and the majority of the arsenic was in the form of thioarsenic species. Previous studies had predicted the presence of thioarsenic species but this study used robust field and laboratory methods to quantitatively determine the presence of thioarsenic species. During stimulation in wells with high arsenic the primary species were trithioarsenate and dithioarsenate. In wells with low levels of arsenic release thioarsenates were absent or minor components. Fortunately after the injection of acetate ended the aquifer would become less reducing and the arsenic concentrations would decrease to pre-injection levels. In aquifers where organic carbon is being added as a remedial method or as a contaminant the transient mobility of arsenic during sulfidogenesis should be considered especially in sulfate rich aquifers as this could impact downgradient water quality.« less
ANIONIC EXCHANGE PROCESS FOR THE RECOVERY OF URANIUM AND VANADIUM FROM CARBONATE SOLUTIONS
Bailes, R.H.; Ellis, D.A.; Long, R.S.
1958-12-16
Uranium and vanadium can be economically purified and recovered from non- salt roast carbonate leach liquors by adsorption on a strongly basic anionic exchange resin and subsequent selective elution by one of three alternative methods. Method 1 comprises selectively eluting uranium from the resin with an ammonium sulfate solution followed by eluting vanadium from the resin with either 5 M NaCl, saturated (NH/sub 4/)/sub 2/CO/sub 3/, saturated NaHCO/sub 3/, 1 M NaOH, or saturated S0/sub 2/ solutions. Method II comprises selectively eluting vanadium from the resin with either concentrated NaCl or S0/sub 2/ solutions subsequent to pretreatment of the column with either S0/sub 2/ gas, 1 N HCl, or 0.1 N H/sub 2/8O/sub 4/ followed by eluting uranium from the resin with solutions containing 0.9 M NH/sub 4/Cl or NaCl and 0.1 Cl. Method III comprises flowing the carbonate leac solutlon through a first column of a strongly basic anlonlc exchange resin untll vanadium breakthrough occurs, so that the effluent solution is enriched ln uranium content and the vanadium is chiefly retalned by the resln, absorbing the uranlum from the enriched effluent solution on a second column of a strongly basic anionic exchange resin, pretreating the first column with either 0.1 N HCl, 0.1 H/sub 2/SO/sub 4/, C0/sub 2/ gas, or ammonium sulfate, selectively eluting the vanadlum from the column with saturated S0/sub 2/ solution, pretreatlng the second column with either 0.1 N HCl or S0/sub 2/ gas, selectively eluting residual vanadium from the column with saturated S0/sub 2/ solution, and then eluting the uranium from the column with either 0.1 N HCl and 1 N NaCl orO.l N HCl and 1 N NH/sub 4/Cl.
Williams, K.H.; Long, P.E.; Davis, J.A.; Wilkins, M.J.; N'Guessan, A. L.; Steefel, Carl; Yang, L.; Newcomer, D.; Spane, F.A.; Kerkhof, L.J.; Mcguinness, L.; Dayvault, R.; Lovley, D.R.
2011-01-01
Field biostimulation experiments at the U.S. Department of Energy's Integrated Field Research Challenge (IFRC) site in Rifle, Colorado, have demonstrated that uranium concentrations in groundwater can be decreased to levels below the U.S. Environmental Protection Agency's (EPA) drinking water standard (0.126??M).During successive summer experiments - referred to as "Winchester" (2007) and "Big Rusty" (2008) - acetate was added to the aquifer to stimulate the activity of indigenous dissimilatory metal reducing bacteria capable of reductively immobilizing uranium. The two experiments differed in the length of injection (31 vs. 110 days), the maximum concentration of acetate (5 vs. 30 mM),and the extent to which iron reduction ("Winchester") or sulfate reduction("Big Rusty") was the predominant metabolic process. In both cases, rapid removal of U(VI) from groundwater occurred at calcium concentrations (6 mM) and carbonate alkalinities (8 meq/L) where Ca-UO2-CO3 ternary complexes constitute >90% of uranyl species in groundwater. Complete consumption of acetate and increased alkalinity (>30 meq/L) accompanying the onset of sulfate reduction corresponded to temporary increases in U(VI);however, by increasing acetate concentrations in excess of available sulfate (10 mM), low U(VI) concentrations (0.1-0.05 ??M) were achieved for extended periods of time (>140 days). Uniform delivery of acetate during "Big Rusty" was impeded due to decreases in injection well permeability, likely resulting from biomass accumulation and carbonate and sulfide mineral precipitation. Such decreases were not observed during the short-duration "Winchester" experiment. Terminal restriction fragment length polymorphism (TRFLP) analysis of 16S rRNA genes demonstrated that Geobacter sp. and Geobacter-like strains dominated the groundwater community profile during iron reduction, with 13C stable isotope probing (SIP) results confirming these strains were actively utilizing acetate to replicate their genome during the period of optimal U(VI) removal. Gene transcript levels during "Big Rusty" were quantified for Geobacter-specific citrate synthase (gltA), with ongoing transcription during sulfate reduction indicating that members of the Geobacteraceae were still active and likely contributing to U(VI) removal. The persistence of reducible Fe(III) in sediments recovered from an area of prolonged (110-day) sulfate reduction is consistent with this conclusion. These results indicate that acetate availability and its ability to sustain the activity of iron- and uranyl-respiring Geobacter strains during sulfate reduction exerts a primary control on optimized U(VI) removal from groundwater at the Rifle IFRC site over extended time scales (>50 days). ?? Taylor & Francis Group, LLC.
Alessi, Daniel S; Lezama-Pacheco, Juan S; Janot, Noémie; Suvorova, Elena I; Cerrato, José M; Giammar, Daniel E; Davis, James A; Fox, Patricia M; Williams, Kenneth H; Long, Philip E; Handley, Kim M; Bernier-Latmani, Rizlan; Bargar, John R
2014-11-04
In this study, we report the results of in situ U(VI) bioreduction experiments at the Integrated Field Research Challenge site in Rifle, Colorado, USA. Columns filled with sediments were deployed into a groundwater well at the site and, after a period of conditioning with groundwater, were amended with a mixture of groundwater, soluble U(VI), and acetate to stimulate the growth of indigenous microorganisms. Individual reactors were collected as various redox regimes in the column sediments were achieved: (i) during iron reduction, (ii) just after the onset of sulfate reduction, and (iii) later into sulfate reduction. The speciation of U retained in the sediments was studied using X-ray absorption spectroscopy, electron microscopy, and chemical extractions. Circa 90% of the total uranium was reduced to U(IV) in each reactor. Noncrystalline U(IV) comprised about two-thirds of the U(IV) pool, across large changes in microbial community structure, redox regime, total uranium accumulation, and reaction time. A significant body of recent research has demonstrated that noncrystalline U(IV) species are more suceptible to remobilization and reoxidation than crystalline U(IV) phases such as uraninite. Our results highlight the importance of considering noncrystalline U(IV) formation across a wide range of aquifer parameters when designing in situ remediation plans.
2015-01-01
In this study, we report the results of in situ U(VI) bioreduction experiments at the Integrated Field Research Challenge site in Rifle, Colorado, USA. Columns filled with sediments were deployed into a groundwater well at the site and, after a period of conditioning with groundwater, were amended with a mixture of groundwater, soluble U(VI), and acetate to stimulate the growth of indigenous microorganisms. Individual reactors were collected as various redox regimes in the column sediments were achieved: (i) during iron reduction, (ii) just after the onset of sulfate reduction, and (iii) later into sulfate reduction. The speciation of U retained in the sediments was studied using X-ray absorption spectroscopy, electron microscopy, and chemical extractions. Circa 90% of the total uranium was reduced to U(IV) in each reactor. Noncrystalline U(IV) comprised about two-thirds of the U(IV) pool, across large changes in microbial community structure, redox regime, total uranium accumulation, and reaction time. A significant body of recent research has demonstrated that noncrystalline U(IV) species are more suceptible to remobilization and reoxidation than crystalline U(IV) phases such as uraninite. Our results highlight the importance of considering noncrystalline U(IV) formation across a wide range of aquifer parameters when designing in situ remediation plans. PMID:25265543
Regeneration of pilot-scale ion exchange columns for hexavalent chromium removal.
Korak, Julie A; Huggins, Richard; Arias-Paic, Miguel
2017-07-01
Due to stricter regulations, some drinking water utilities must implement additional treatment processes to meet potable water standards for hexavalent chromium (Cr(VI)), such as the California limit of 10 μg/L. Strong base anion exchange is effective for Cr(VI) removal, but efficient resin regeneration and waste minimization are important for operational, economic and environmental considerations. This study compared multiple regeneration methods on pilot-scale columns on the basis of regeneration efficiency, waste production and salt usage. A conventional 1-Stage regeneration using 2 N sodium chloride (NaCl) was compared to 1) a 2-Stage process with 0.2 N NaCl followed by 2 N NaCl and 2) a mixed regenerant solution with 2 N NaCl and 0.2 N sodium bicarbonate. All methods eluted similar cumulative amounts of chromium with 2 N NaCl. The 2-Stage process eluted an additional 20-30% of chromium in the 0.2 N fraction, but total resin capacity is unaffected if this fraction is recycled to the ion exchange headworks. The 2-Stage approach selectively eluted bicarbonate and sulfate with 0.2 N NaCl before regeneration using 2 N NaCl. Regeneration approach impacted the elution efficiency of both uranium and vanadium. Regeneration without co-eluting sulfate and bicarbonate led to incomplete uranium elution and potential formation of insoluble uranium hydroxides that could lead to long-term resin fouling, decreased capacity and render the resin a low-level radioactive solid waste. Partial vanadium elution occurred during regeneration due to co-eluting sulfate suppressing vanadium release. Waste production and salt usage were comparable for the 1- and 2-Stage regeneration processes with similar operational setpoints with respect to chromium or nitrate elution. Published by Elsevier Ltd.
Ecological aspects of microorganisms inhabiting uranium mill tailings
Miller, C.L.; Landa, E.R.; Updegraff, D.M.
1987-01-01
Numbers and types of microorganisms in uranium mill tailings were determined using culturing techniques. Arthrobacter were found to be the predominant microorganism inhabiting the sandy tailings, whereas Bacillus and fungi predominated in the slime tailings. Sulfate-reducing bacteria, capable of leaching radium, were isolated in low numbers from tailings samples but were isolated in significantly high numbers from topsoil in contact with the tailings. The results are placed in the context of the magnitude of uranium mill tailings in the United States, the hazards posed by the tailings, and how such hazards could be enhanced or diminished by microbial activities. Patterns in the composition of the microbial population are evaluated with respect to the ecological variables that influence microbial growth. ?? 1987 Springer-Verlag New York Inc.
Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites.
Saunders, James A; Pivetz, Bruce E; Voorhies, Nathan; Wilkin, Richard T
2016-12-01
Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are important in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of uranium ores is a process of contacting the uranium mineral deposit with leaching and oxidizing (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality degradation from: 1) potential excursions of leaching solutions away from the injection zone into down-gradient, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential mobilization and migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies data gaps in mitigating these vulnerabilities, and discusses the hydrogeological characterization involved in developing a monitoring program. Published by Elsevier Ltd.
Application of Biostimulation for Remediation of Sulfate-Contaminated Groundwater at a Mining Site
NASA Astrophysics Data System (ADS)
Miao, Z.; Carroll, K. C.; Carreon, C.; Brusseau, M. L.
2011-12-01
There is growing concern regarding sulfate contamination of groundwater. One innovative in-situ remediation option under investigation is biostimulation through addition of electron-donor amendments to enhance sulfate reduction. Two pilot-scale ethanol-injection tests were conducted at a former uranium mining site that is contaminated with sulfate and nitrate (with a lack of heavy metals), and for which there appears to be minimal natural attenuation of sulfate. The first test was a push-pull test that had a limited zone of influence, while the second test was a single-well injection test in which additional downgradient wells were monitored. For both tests, sulfate concentrations began to decline within a few weeks of injection, after nitrate concentrations were significantly reduced. Concomitantly, aqueous concentrations of manganese, iron, and hydrogen sulfide increased from background. Monitoring over many months revealed that the declines in sulfate concentration conformed to exponential decay, with first-order decay rates of approximately 0.01 /d. Analysis of sulfur stable isotope data indicated that the decrease in sulfate concentrations was microbially mediated. The results also indicated that sulfides formed during sulfate reduction may have undergone partial re-oxidation. This study illustrates the feasibility of using ethanol injection for remediation of sulfate-contaminated groundwater. However, re-oxidation of sulfides (both metal sulfide precipitates and hydrogen sulfide gas) is a potential issue of significance that would need to be addressed.
Fertilizer-derived uranium and sulfur in rangeland soil and runoff: A case study in central Florida
Zielinski, R.A.; Orem, W.H.; Simmons, K.R.; Bohlen, P.J.
2006-01-01
Fertilizer applications to rangeland and pastures in central Florida have potential impact on the nutrient-sensitive ecosystems of Lake Okeechobee and the Northern Everglades. To investigate the effects of fertilizer applications, three soil profiles from variably managed and improved rangeland, and four samples of surface runoff from both fertilized and unfertilized pasture were collected. In addition to determining nutrient concentrations, isotopic analyses of uranium (U) and sulfur (S) were performed to provide isotopic evidence for U derived from historically applied phosphate (P)-bearing fertilizer ( 234 U 238U activity ratio =1.0 ?? 0.05), and Sderived from recently applied ammonium sulfate fertilizer(??34 S=3.5permil).The distribution and mobility of fertilizer-derived U in these samples is considered to be analogous to that of fertilizer-derived phosphate.Variations of U concentrations and 234 U/238 U activity ratios in soils indicate contribution of fertilizer-derived U in the upper portions of the fertilized soil (15-}34 percent of total U). The U isotope data for runoff from the fertilized field also are consistent with some contribution from fertilizer-derived U. Parallel investigations of S showed no consistent chemical or isotopic evidence for significant fertilizer-derived sulfate in rangeland soil or runoff. Relatively abundant and isotopically variable S present in the local environment hinders detection of fertilizer-derived sulfate. The results indicate a continuing slow-release of fertilizer-derived U and, by inference, P, to the P-sensitive ecosystem, and a relatively rapid release of sulfate of possible natural origin. ?? Springer 2006.
SOME GEOCHEMICAL METHODS OF URANIUM EXPLORATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Illsley, C.T.; Bills, C.W.; Pollock, J.W.
Geochemical research and development projects were carried on to provide basic information which may be applied to exploration or general studies of uranium geology. The applications and limitations of various aspects of geochemistry to uranium geological problems are considerd. Modifications of existing analytical techniques were made and tested in the laboratory and in the field. These include rapid quantitative determination of unranium in water, soil and peat, and of trace amounts of sulfate and phosphate in water. Geochemical anomaly'' has been defined as a significant departure from the average abundance background of an element where the distribution has not beenmore » disturbed by mineralization. The detection and significance of geocthemical anomalies are directly related to the mobility of the element being sought in the zone of weathering. Mobility of uranium is governed by complex physical, chemical, and biological factors. For uranium anomalies in surface materils, the chemicaly factors affecting mobility are the most sigificant. The effects of pH, solubility, coprecipitution, adsorption complexion, or compound formation are discussed in relation to anomalies detected in water, soil, and stream sediments. (auth)« less
Uranium redox transition pathways in acetate-amended sediments
Bargar, John R.; Williams, Kenneth H.; Campbell, Kate M.; Long, Philip E.; Stubbs, Joanne E.; Suvorova, Elenal I.; Lezama-Pacheco, Juan S.; Alessi, Daniel S.; Stylo, Malgorzata; Webb, Samuel M.; Davis, James A.; Giammar, Daniel E.; Blue, Lisa Y.; Bernier-Latmani, Rizlan
2013-01-01
Redox transitions of uranium [from U(VI) to U(IV)] in low-temperature sediments govern the mobility of uranium in the environment and the accumulation of uranium in ore bodies, and inform our understanding of Earth’s geochemical history. The molecular-scale mechanistic pathways of these transitions determine the U(IV) products formed, thus influencing uranium isotope fractionation, reoxidation, and transport in sediments. Studies that improve our understanding of these pathways have the potential to substantially advance process understanding across a number of earth sciences disciplines. Detailed mechanistic information regarding uranium redox transitions in field sediments is largely nonexistent, owing to the difficulty of directly observing molecular-scale processes in the subsurface and the compositional/physical complexity of subsurface systems. Here, we present results from an in situ study of uranium redox transitions occurring in aquifer sediments under sulfate-reducing conditions. Based on molecular-scale spectroscopic, pore-scale geochemical, and macroscale aqueous evidence, we propose a biotic–abiotic transition pathway in which biomass-hosted mackinawite (FeS) is an electron source to reduce U(VI) to U(IV), which subsequently reacts with biomass to produce monomeric U(IV) species. A species resembling nanoscale uraninite is also present, implying the operation of at least two redox transition pathways. The presence of multiple pathways in low-temperature sediments unifies apparently contrasting prior observations and helps to explain sustained uranium reduction under disparate biogeochemical conditions. These findings have direct implications for our understanding of uranium bioremediation, ore formation, and global geochemical processes.
Uranyl sulfate irradiations at the Van de Graaff: A means to combat uranyl peroxide precipitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youker, Amanda J.; Kalensky, Michael; Quigley, Kevin J.
As part of an effort to support SHINE Medical Technologies in developing a process to produce Mo-99 by neutron-induced fission, a series of irradiation experiments was performed with a 3 MeV Van de Graaff accelerator to generate high radiation doses in 0.5–2 mL uranyl sulfate solutions. The purpose was to determine what conditions result in uranyl peroxide precipitation and what can be done to prevent its formation. The effects of temperature, dose rate, uranium concentration, and the addition of known catalysts for the destruction of peroxide were determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kautsky, Mark; Miller, David
This annual report evaluates the performance of the groundwater remediation system at the Shiprock, New Mexico, Disposal Site (Shiprock site) for the period April 2015 through March 2016. The Shiprock site, a former uranium-ore processing facility remediated under the Uranium Mill Tailings Radiation Control Act, is managed by the U.S. Department of Energy (DOE) Office of Legacy Management. This annual report is based on an analysis of groundwater quality and groundwater level data obtained from site monitoring wells and the groundwater flow rates associated with the extraction wells, drains, and seeps. Background The Shiprock mill operated from 1954 to 1968more » on property leased from the Navajo Nation. Remediation of surface contamination, including stabilization of mill tailings in an engineered disposal cell, was completed in 1986. During mill operation, nitrate, sulfate, uranium, and other milling-related constituents leached into underlying sediments and contaminated groundwater in the area of the mill site. In March 2003, DOE initiated active remediation of groundwater at the site using extraction wells and interceptor drains. At that time, DOE developed a baseline performance report that established specific performance standards for the Shiprock site groundwater remediation system. The Shiprock site is divided into two distinct areas: the floodplain and the terrace. The floodplain remediation system consists of two groundwater extraction wells, a seep collection drain, and two collection trenches (Trench 1 and Trench 2). The terrace remediation system consists of nine groundwater extraction wells, two collection drains (Bob Lee Wash and Many Devils Wash), and a terrace drainage channel diversion structure. All extracted groundwater is pumped into a lined evaporation pond on the terrace. Compliance Strategy and Remediation Goals As documented in the Groundwater Compliance Action Plan, the U.S. Nuclear Regulatory Commission–approved compliance strategy for the floodplain is natural flushing supplemented by active remediation. The contaminants of concern (COCs) at the site are ammonia (total as nitrogen), manganese, nitrate (nitrate + nitrite as nitrogen), selenium, strontium, sulfate, and uranium. The compliance standards for nitrate, selenium, and uranium are listed in Title 40 Code of Federal Regulations Part 192. Regulatory standards are not available for ammonia, manganese, and sulfate; remediation goals for these constituents are either risk-based alternate cleanup standards or background levels. These standards and background levels apply only to the compliance strategy for the floodplain. The compliance strategy for the terrace is to eliminate exposure pathways at the washes and seeps and to apply supplemental standards in the western section.« less
Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K.; Jardine, Philip M.; Zhou, Jizhong; Criddle, Craig S.; Marsh, Terence L.; Tiedje, James M.
2010-01-01
Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 μM and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared. PMID:20729318
Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K; Jardine, Philip M; Zhou, Jizhong; Criddle, Craig S; Marsh, Terence L; Tiedje, James M
2010-10-01
Massively parallel sequencing has provided a more affordable and high-throughput method to study microbial communities, although it has mostly been used in an exploratory fashion. We combined pyrosequencing with a strict indicator species statistical analysis to test if bacteria specifically responded to ethanol injection that successfully promoted dissimilatory uranium(VI) reduction in the subsurface of a uranium contamination plume at the Oak Ridge Field Research Center in Tennessee. Remediation was achieved with a hydraulic flow control consisting of an inner loop, where ethanol was injected, and an outer loop for flow-field protection. This strategy reduced uranium concentrations in groundwater to levels below 0.126 μM and created geochemical gradients in electron donors from the inner-loop injection well toward the outer loop and downgradient flow path. Our analysis with 15 sediment samples from the entire test area found significant indicator species that showed a high degree of adaptation to the three different hydrochemical-created conditions. Castellaniella and Rhodanobacter characterized areas with low pH, heavy metals, and low bioactivity, while sulfate-, Fe(III)-, and U(VI)-reducing bacteria (Desulfovibrio, Anaeromyxobacter, and Desulfosporosinus) were indicators of areas where U(VI) reduction occurred. The abundance of these bacteria, as well as the Fe(III) and U(VI) reducer Geobacter, correlated with the hydraulic connectivity to the substrate injection site, suggesting that the selected populations were a direct response to electron donor addition by the groundwater flow path. A false-discovery-rate approach was implemented to discard false-positive results by chance, given the large amount of data compared.
N'Guessan, A Lucie; Vrionis, Helen A; Resch, Charles T; Long, Philip E; Lovley, Derek R
2008-04-15
Previous field studies on in situ bioremediation of uranium-contaminated groundwater in an aquifer in Rifle, Colorado identified two distinct phases following the addition of acetate to stimulate microbial respiration. In phase I, Geobacter species are the predominant organisms, Fe(III) is reduced, and microbial reduction of soluble U(VI) to insoluble U(IV) removes uranium from the groundwater. In phase II, Fe(III) is depleted, sulfate is reduced, and sulfate-reducing bacteria predominate. Long-term monitoring revealed an unexpected third phase during which U(VI) removal continues even after acetate additions are stopped. All three of these phases were successfully reproduced in flow-through sediment columns. When sediments from the third phase were heat sterilized, the capacity for U(VI) removal was lost. In the live sediments U(VI) removed from the groundwater was recovered as U(VI) in the sediments. This contrasts to the recovery of U(IV) in sediments resulting from the reduction of U(VI) to U(IV) during the Fe(III) reduction phase in acetate-amended sediments. Analysis of 16S rRNA gene sequences in the sediments in which U(VI) was being adsorbed indicated that members of the Firmicutes were the predominant organisms whereas no Firmicutes sequences were detected in background sediments which did not have the capacity to sorb U(VI), suggesting that the U(VI) adsorption might be due to the presence of these living organisms or at least their intact cell components. This unexpected enhanced adsorption of U(VI) onto sediments following the stimulation of microbial growth in the subsurface may potentially enhance the cost effectiveness of in situ uranium bioremediation.
Evaluation on the use of cerium in the NBL Titrimetric Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zebrowski, J.P.; Orlowicz, G.J.; Johnson, K.D.
An alternative to potassium dichromate as titrant in the New Brunswick Laboratory Titrimetric Method for uranium analysis was sought since chromium in the waste makes disposal difficult. Substitution of a ceric-based titrant was statistically evaluated. Analysis of the data indicated statistically equivalent precisions for the two methods, but a significant overall bias of +0.035% for the ceric titrant procedure. The cause of the bias was investigated, alterations to the procedure were made, and a second statistical study was performed. This second study revealed no statistically significant bias, nor any analyst-to-analyst variation in the ceric titration procedure. A statistically significant day-to-daymore » variation was detected, but this was physically small (0.01 5%) and was only detected because of the within-day precision of the method. The added mean and standard deviation of the %RD for a single measurement was found to be 0.031%. A comparison with quality control blind dichromate titration data again indicated similar overall precision. Effects of ten elements on the ceric titration`s performance was determined. Co, Ti, Cu, Ni, Na, Mg, Gd, Zn, Cd, and Cr in previous work at NBL these impurities did not interfere with the potassium dichromate titrant. This study indicated similar results for the ceric titrant, with the exception of Ti. All the elements (excluding Ti and Cr), caused no statistically significant bias in uranium measurements at levels of 10 mg impurity per 20-40 mg uranium. The presence of Ti was found to cause a bias of {minus}0.05%; this is attributed to the presence of sulfate ions, resulting in precipitation of titanium sulfate and occlusion of uranium. A negative bias of 0.012% was also statistically observed in the samples containing chromium impurities.« less
A Uranium Bioremediation Reactive Transport Benchmark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yabusaki, Steven B.; Sengor, Sevinc; Fang, Yilin
A reactive transport benchmark problem set has been developed based on in situ uranium bio-immobilization experiments that have been performed at a former uranium mill tailings site in Rifle, Colorado, USA. Acetate-amended groundwater stimulates indigenous microorganisms to catalyze the reduction of U(VI) to a sparingly soluble U(IV) mineral. The interplay between the flow, acetate loading periods and rates, microbially-mediated and geochemical reactions leads to dynamic behavior in metal- and sulfate-reducing bacteria, pH, alkalinity, and reactive mineral surfaces. The benchmark is based on an 8.5 m long one-dimensional model domain with constant saturated flow and uniform porosity. The 159-day simulation introducesmore » acetate and bromide through the upgradient boundary in 14-day and 85-day pulses separated by a 10 day interruption. Acetate loading is tripled during the second pulse, which is followed by a 50 day recovery period. Terminal electron accepting processes for goethite, phyllosilicate Fe(III), U(VI), and sulfate are modeled using Monod-type rate laws. Major ion geochemistry modeled includes mineral reactions, as well as aqueous and surface complexation reactions for UO2++, Fe++, and H+. In addition to the dynamics imparted by the transport of the acetate pulses, U(VI) behavior involves the interplay between bioreduction, which is dependent on acetate availability, and speciation-controlled surface complexation, which is dependent on pH, alkalinity and available surface complexation sites. The general difficulty of this benchmark is the large number of reactions (74), multiple rate law formulations, a multisite uranium surface complexation model, and the strong interdependency and sensitivity of the reaction processes. Results are presented for three simulators: HYDROGEOCHEM, PHT3D, and PHREEQC.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frazier, William; Campbell, Sam
The U.S. Department of Energy conducted initial groundwater characterization of the Riverton, Wyoming, Processing Site in the 1990s. The characterization culminated in a Site Observational Work Plan in 1998 that recommended a natural flushing compliance strategy. Results of verification monitoring indicated that natural flushing was generally progressing as expected until June 2010, when significant increases in contaminant concentrations were measured in several monitoring wells downgradient of the site after the area flooded. In response to the unexpected results following the flood, an enhanced characterization of the surficial aquifer was conducted in 2012, which included installation of 103 boreholes along ninemore » transects with a Geoprobe, collection of 103 water samples and 65 soil samples, laboratory tests on the soil samples, and additional groundwater modeling. This advanced site investigation report summarizes additional investigation in 2015 through the use of backhoe trenching, sonic drilling, multilevel monitoring wells, direct-push drilling, and temporary well points to collect soil and groundwater samples. Additional surface water measurements were made included the installation of a stilling well and the measurement of stream elevation along the Wind River to approximate upgradient groundwater heads. Groundwater sampling included the addition of geochemical constituents and isotopes that have not been sampled in the past to better understand post-flood conditions and the possibility of additional or ongoing contaminant sources. This sampling was performed to (1) better define the contaminant plumes, (2) verify the occurrence of persistent secondary contaminant sources, (3) better understand the reason for the contaminant spikes after a 2010 flood, and (4) assess contaminant plume stagnation near the Little Wind River. This report provides data analyses and interpretations for the 2015 site investigation that addresses these issues and provides recommendations for future efforts. Observations from trenches and sonic drilling indicate the general lithology of the shallow, unconsolidated sediments consists of a silt zone at the surface that ranges from 2.5 to 4.8 feet below ground surface, underlain by sand and gravel, underlain by the top of the weathered bedrock (Wind River Formation). Soil data from trenches and sonic drilling indicate (1) elevated concentrations of several constituents in the silt zone, likely due to the formation of evaporites, (2) uranium is the only measured element that appears to be concentrated in the silt over the groundwater contaminant plume, (3) in the former tailings impoundment area, there may be a thin unsaturated zone with elevated uranium in the native material just below the fill, (4) in the former tailings impoundment area, slightly higher uranium concentrations occur in the underlying saturated sand and gravel, and (5) several bedrock samples have a unique geochemical signature, generally related to a higher silt content. Assessment of groundwater flow included measuring river elevations along the Wind River and installing the temporary well points adjacent to the Little Wind River that provided additional data points to refine contours for water table elevations. These data confirm past interpretations of groundwater flow to the southeast across the site toward the Little Wind River. Hydraulic head elevations between paired surficial and semiconfined aquifer wells indicate variable vertical gradients across the site with the potential for upward and downward flow. Additional direct-push drilling and groundwater sampling confirmed the contaminant plume configuration, but it also revealed a low-sulfate-concentration zone at the edge of the former tailings impoundment. Temporary well points provided better definition of plume concentrations at the bank of the Little Wind River, and data from these wells indicate plume discharge to the river. Additional sampling in an area southwest of the plume that had elevated uranium groundwater concentrations in the past did not have any uranium concentrations above the U.S. Environmental Protection Agency maximum concentration limit for uranium. Results from multilevel monitoring wells indicate some geochemical differences with depth, but overall concentrations are similar to those in nearby conventional monitoring wells in the long-term monitoring program. Geochemistry data from these multilevel monitoring wells confirm the general increase in contaminant concentrations toward the river and toward the plume centerline for chloride, sulfate, and uranium but highlight geochemical controls on calcium. Iron data indicate slightly reducing conditions, especially near water table and bedrock surfaces, with more oxidizing conditions in the middle of the sand and gravel. Uranium activity ratios (234U/238U) confirm the uranium plume in the surficial aquifer as being mill related, and the area to the southwest outside the plume as natural, non-mill related. In the semiconfined aquifer, evidence of aquifer connection and impacts from the mill is inconclusive. Values of δD and δ 18O suggest water is derived from different sources and tritium data confirm that the semiconfined aquifer water is generally older than the surficial aquifer water. However, these data do indicate some groundwater communication from the surficial aquifer into the semiconfined aquifer, which resulted in δD and δ 18O and tritium values in the semiconfined aquifer that are more similar to those in the surficial aquifer. Values of δ 34S sulfate in the semiconfined aquifer combined with sulfate concentrations indicate the potential for some mill- related sulfate in the semiconfined aquifer, albeit limited to an area near and beneath the former tailings impoundment. Uranium and molybdenum concentrations in the semiconfined aquifer are below groundwater standards in all wells. However, the elevated molybdenum concentrations at one semiconfined aquifer well underneath the former tailings impoundment suggests a mill- derived source for the uranium and molybdenum in that well. It is possible that aquifer cross- communication occurred when the tailings impoundment was active and created a higher head. Current cross-communication appears unlikely given the large differences in tritium values and an upward hydraulic head at this location. Nine domestic wells are located within the institutional control boundary (eight in the confined aquifer and one in the semiconfined aquifer). Uranium and molybdenum concentrations in all samples collected from these wells were one or two orders of magnitude below the groundwater standards. Surface water flow in the Little Wind River in September 2015 was low compared to historical averages for that time of year. As a result, the uranium concentration measured in the Little Wind River was at a historical maximum at the sampling location upstream of the site. However, the impact of uranium discharge from the groundwater plume into the Little Wind River was not measureable. Elevated sulfate concentrations were observed in an outfall ditch related to an active sulfuric acid plant. Uranium concentrations in the oxbow lake remain at concentrations above the groundwater standard. Plume contaminant concentrations had returned to levels found prior to the 2010 flood by the end of 2015. However, these concentrations still exceed model predictions for natural flushing, and the current data indicate that natural flushing to achieve remediation goals within the 100-year time period is not likely, especially with the high potential for additional floods in the update to the conceptual site model (CSM), soil data indicate additional contaminant sources, specifically uranium, in evaporites within the silt layer over the uranium plume and in naturally reduced zones (NRZs). Additional zones of slightly elevated uranium concentration are in the native sediments just above the water table but below the fill layer in the former tailings impoundment area. This area also has slightly elevated uranium in the sand and gravel below the water table. Mass balance calculations indicate that small amounts of dissolution in any of these zones with increased uranium in the solid phase can produce groundwater uranium concentrations above the groundwater standard and could account for the post-flood uranium spike. The additional uranium near the former tailings impoundment provides a mechanism for a continuing source for the uranium plume that was not considered in earlier natural flushing models. In addition, uranium released from the silt layer or the NRZs seasonally and during flooding may add uranium to the groundwater plume near the Little Wind River. These mechanisms provide a possible explanation for plume persistence, along with spikes in concentrations during floods, that creates the current plume configuration. Additional updates to the CSM include (1) chloride flushes more rapidly than uranium beneath the former mill site, (2) chloride in the silt layer provides a scenario in which chloride cannot be used as a conservative tracer (especially in areas prone to flooding), (3) uranium concentrations with depth can be variable (especially below NRZs), and (4) calcite and gypsum solubility limits appear to provide important geochemical controls on groundwater geochemistry. The conclusion of this study provides several recommendations for additional work to refine the CSM and continue assessment of the natural flushing compliance strategy. Recommendations for additional work include targeted soil and groundwater sampling to assess geochemical conditions, distribution of contaminants, and groundwater/surface water interaction; additional column tests to provide data for geochemical modeling; and development of an updated groundwater flow model, which will be used in conjunction with a geochemical model to assess the viability of the natural flushing compliance strategy.« less
Progress report on the Happy Jack mine, Which Canyon area, San Juan county, Utah
Trites, Albert F.; Chew, Randall T.
1954-01-01
The Happy Jack mine is in the White Canyon area, San Juan county, Utah. Production is from high-grade uranium deposits in the Shinarump conglomerate of the Triassic age. In this area the Shinarump beds range from about 16 to 40 feet in thickness and the lower part of these beds fills an east-trending channel this is note than 750 feet wide and 10 feet deep. The Shinarump conglomerate consists of beds of coarse- to fine-grained quartzose sandstone, conglomerate, siltstone, and claystone. Carbonized wood is abundant in these beds, and in the field it was classified as mineral charcoal and coal. Intra-Shinarump channels, cross-stratification, current lineation, and slumping and compaction structures have been recognized in the mine. Steeply dipping fractures have dominant trends in four directions -- N 65°W, N 60°E, N 85°E, and due north. Uranium occurs as bedded deposits, as replacement bodies in accumulations of "trash", and as replacements of larger fragments of wood. An "ore shoot" is formed where the three types of uranium deposits occur together; these ore shoots appear to be elongate masses with sharp boundaries. Uranium minerals include uraninite, sooty pitchblende(?), and the sulfate--betazippeite, johannite, and uranopilite. Associated with the uraninite are the sulfide minerals covellite, bornite, chalcopyritw, and pyrite. Galena and sphalerite have been found in close association with uranium minerals. The gaunge minerals include: limonite and hematite present in most of the sandstone beds throughout the deposit, jarosite that impregnates much of the sandstone in the outer parts of the mine workings, gypsum that fills many of the fractures, and barite that impregnates the sandstone in at least one part of the mine. Secondary copper minerals, mainly copper sulfates, occur throughout the mine, but most abundant near the adits in the outermost 30 feet of the workings. The minerals comprising the bulk of the country rock include quartz, feldspar, and clay minerals. The amount of uranium minerals deposited in a sandstone bed is believed to have been determined by the position of the bed in the channel, the permeability of the sandstone in the bed, and the amount of carbonized wood and plant remains within the bed. The beds considered most favorable for uranium deposition contain an abundance of claystone and siltstone both as matrix filling and as fragments and pebbles. Suggested exploration guides from uranium ore bodies include the following: (1) interbedded siltstone lenses, (2) claystone and siltstone cement and pabbles, (3) concentrations of "trash", (4) covelllite and bornite, (5) chalcopyrite, and (6) carbonized wood.
NASA Astrophysics Data System (ADS)
Wu, W.; Watson, D. B.; Zhang, G.; Mehlhorn, T.; Lowe, K.; Earles, J.; Phillips, J.; Kelly, S. D.; Boyanov, M.; Kemner, K. M.; Schadt, C.; Criddle, C. S.; Jardine, P. M.; Brooks, S. C.
2011-12-01
In order to select sustainable, high efficiency and cost effective electron donor source, oleate and emulsified vegetable oil (EVO) were tested uranium (VI) reduction in comparison with ethanol in microcosms using uranium contaminated sediments and groundwater from the US DOE Oak Ridge Integrated Field Research Challenge (ORIFRC) site. The effect of initial sulfate concentration on U(VI) reduction was also tested. Both oleate and EVO were effective electron donor sources for U(VI) reduction. Accumulation of acetate as a major product and the removal of aqueous U(VI) were observed and were associated with sulfate reduction. Both oleate and EVO supported U(VI) reduction but at slower rates with a comparable but slightly lower extent of reduction than ethanol. X-ray absorption near-edge spectroscopy (XANES) analysis confirmed reduction of U(VI) to U(IV). The extent of U(VI) reduction in solid phase was negatively influenced by aqueous calcium concentration. The majority of electrons of the three substrates were consumed by sulfate reduction, Fe(III) reduction, and methanogenesis. Initial U(VI) concentration in the aqueous phase increased with increased sulfate concentration (1 versus 5 mM), likely due to U(VI) desorption from the solid phase. At the higher initial sulfate concentration more U(VI) was reduced and fewer electrons were used in methanogenesis. Analysis of bacterial and archeal populations using 16S rRNA gene libraries showed a significant increase in Deltaproteobacteria after biostimulation. The microbial community structures developed with oleate and EVO were significantly distinct from those developed with ethanol. Bacteria similar to Desulforegula spp. was predominant for oleate and EVO degradation but were not observed in ethanol-amended microcosms. Known U(VI)-reducing bacteria in the microcosms amended with the three electron donor sources included iron(III) reducing Geobacter spp. but in lower abundances than sulfate-reducing Desulfovibrio spp. The test results were used for the design a field test by one-time injection of EVO to the subsurface for U(VI) reduction in Area 2 of the ORIFRC site.
The impact of biostimulation on the fate of sulfate and associated sulfur dynamics in groundwater
NASA Astrophysics Data System (ADS)
Miao, Ziheng; Carreón-Diazconti, Concepcion; Carroll, Kenneth C.; Brusseau, Mark L.
2014-08-01
The impact of electron-donor addition on sulfur dynamics for a groundwater system with low levels of metal contaminants was evaluated with a pilot-scale biostimulation test conducted at a former uranium mining site. Geochemical and stable-isotope data collected before, during, and after the test were analyzed to evaluate the sustainability of sulfate reducing conditions induced by the test, the fate of hydrogen sulfide, and the impact on aqueous geochemical conditions. The results of site characterization activities conducted prior to the test indicated the absence of measurable bacterial sulfate reduction. The injection of an electron donor (ethanol) induced bacterial sulfate reduction, as confirmed by an exponential decrease of sulfate concentration in concert with changes in oxidation-reduction potential, redox species, alkalinity, production of hydrogen sulfide, and fractionation of δ34S-sulfate. High, stoichiometrically-equivalent hydrogen sulfide concentrations were not observed until several months after the start of the test. It is hypothesized that hydrogen sulfide produced from sulfate reduction was initially sequestered in the form of iron sulfides until the exhaustion of readily reducible iron oxides within the sediment. The fractionation of δ34S for sulfate was atypical, wherein the enrichment declined in the latter half of the experiment. It was conjectured that mixing effects associated with the release of sulfate from sulfate minerals associated with the sediments, along with possible sulfide re-oxidation contributed to this behavior. The results of this study illustrate the biogeochemical complexity that is associated with in-situ biostimulation processes involving bacterial sulfate reduction.
THE IMPACT OF BIOSTIMULATION ON THE FATE OF SULFATE AND ASSOCIATED SULFUR DYNAMICS IN GROUNDWATER
Miao, Ziheng; Carreón-Diazconti, Concepcion; Carroll, Kenneth C.; Brusseau, Mark L.
2014-01-01
The impact of electron-donor addition on sulfur dynamics for a groundwater system with low levels of metal contaminants was evaluated with a pilot-scale biostimulation test conducted at a former uranium mining site. Geochemical and stable-isotope data collected before, during, and after the test were analyzed to evaluate the sustainability of sulfate reducing conditions induced by the test, the fate of hydrogen sulfide, and the impact on aqueous geochemical conditions. The results of site characterization activities conducted prior to the test indicated the absence of measurable bacterial sulfate reduction. The injection of an electron donor (ethanol) induced bacterial sulfate reduction, as confirmed by an exponential decrease of sulfate concentration in concert with changes in oxidation-reduction potential, redox species, alkalinity, production of hydrogen sulfide, and fractionation of δ34S-sulfate. High, stoichiometrically-equivalent hydrogen sulfide concentrations were not observed until several months after the start of the test. It is hypothesized that hydrogen sulfide produced from sulfate reduction was initially sequestered in the form of iron sulfides until the exhaustion of readily reducible iron oxides associated with the sediment. The fractionation of δ34S for sulfate was atypical, wherein the enrichment declined in the latter half of the experiment. It was conjectured that mixing effects associated with the release of sulfate from sulfate minerals associated with the sediments, along with possible sulfide re-oxidation contributed to this behavior. The results of this study illustrate the biogeochemical complexity that is associated with in-situ biostimulation processes involving bacterial sulfate reduction. PMID:25016586
Effects of nitrate on the stability of uranium in a bioreduced region of the subsurface.
Wu, Wei-Min; Carley, Jack; Green, Stefan J; Luo, Jian; Kelly, Shelly D; Van Nostrand, Joy; Lowe, Kenneth; Mehlhorn, Tonia; Carroll, Sue; Boonchayanant, Benjaporn; Löfller, Frank E; Watson, David; Kemner, Kenneth M; Zhou, Jizhong; Kitanidis, Peter K; Kostka, Joel E; Jardine, Philip M; Criddle, Craig S
2010-07-01
The effects of nitrate on the stability of reduced, immobilized uranium were evaluated in field experiments at a U.S. Department of Energy site in Oak Ridge, TN. Nitrate (2.0 mM) was injected into a reduced region of the subsurface containing high levels of previously immobilized U(IV). The nitrate was reduced to nitrite, ammonium, and nitrogen gas; sulfide levels decreased; and Fe(II) levels increased then deceased. Uranium remobilization occurred concomitant with nitrite formation, suggesting nitrate-dependent, iron-accelerated oxidation of U(IV). Bromide tracer results indicated changes in subsurface flowpaths likely due to gas formation and/or precipitate. Desorption-adsorption of uranium by the iron-rich sediment impacted uranium mobilization and sequestration. After rereduction of the subsurface through ethanol additions, background groundwater containing high levels of nitrate was allowed to enter the reduced test zone. Aqueous uranium concentrations increased then decreased. Clone library analyses of sediment samples revealed the presence of denitrifying bacteria that can oxidize elemental sulfur, H(2)S, Fe(II), and U(IV) (e.g., Thiobacillus spp.), and a decrease in relative abundance of bacteria that can reduce Fe(III) and sulfate. XANES analyses of sediment samples confirmed changes in uranium oxidation state. Addition of ethanol restored reduced conditions and triggered a short-term increase in Fe(II) and aqueous uranium, likely due to reductive dissolution of Fe(III) oxides and release of sorbed U(VI). After two months of intermittent ethanol addition, sulfide levels increased, and aqueous uranium concentrations gradually decreased to <0.1 microM.
Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten
2015-12-01
To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.
Hydrogeochemical and stream sediment detailed geochemical survey for Edgemont, South Dakota; Wyoming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butz, T.R.; Dean, N.E.; Bard, C.S.
1980-05-31
Results of the Edgemont detailed geochemical survey are reported. Field and laboratory data are presented for 109 groundwater and 419 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwaters containing greater than or equal to 7.35 ppB uranium are present in scattered clusters throughout the area sampled. Most of these groundwaters are from wells drilled where the Inyan Kara Group is exposed at themore » surface. The exceptions are a group of samples in the northwestern part of the area sampled and south of the Dewey Terrace. These groundwaters are also produced from the Inyan Kara Group where it is overlain by the Graneros Group and alluvium. The high uranium groundwaters along and to the south of the terrace are characterized by high molybdenum, uranium/specific conductance, and uranium/sulfate values. Many of the groundwaters sampled along the outcrop of the Inyan Kara Group are near uranium mines. Groundwaters have high amounts of uranium and molybdenum. Samples taken downdip are sulfide waters with low values of uranium and high values of arsenic, molybdenum, selenium, and vanadium. Stream sediments containing greater than or equal to 5.50 ppM soluble uranium are concentrated in basins draining the Graneros and Inyan Kara Groups. These values are associated with high values for arsenic, selenium, and vanadium in samples from both groups. Anomalous values for these elements in the Graneros Group may be caused by bentonite beds contained in the rock units. As shown on the geochemical distribution plot, high uranium values that are located in the Inyan Kara Group are almost exclusively draining open-pit uranium mines.« less
The roles of organic matter in the formation of uranium deposits in sedimentary rocks
Spirakis, C.S.
1996-01-01
Because reduced uranium species have a much smaller solubility than oxidized uranium species and because of the strong association of organic matter (a powerful reductant) with many uranium ores, reduction has long been considered to be the precipitation mechanism for many types of uranium deposits. Organic matter may also be involved in the alterations in and around tabular uranium deposits, including dolomite precipitation, formation of silicified layers, iron-titanium oxide destruction, dissolution of quartz grains, and precipitation of clay minerals. The diagenetic processes that produced these alterations also consumed organic matter. Consequently, those tabular deposits that underwent the more advanced stages of diagenesis, including methanogenesis and organic acid generation, display the greatest range of alterations and contain the smallest amount of organic matter. Because of certain similarities between tabular uranium deposits and Precambrian unconformity-related deposits, some of the same processes might have been involved in the genesis of Precambrian unconformity-related deposits. Hydrologic studies place important constraints on genetic models of various types of uranium deposits. In roll-front deposits, oxidized waters carried uranium to reductants (organic matter and pyrite derived from sulfate reduction by organic matter). After these reductants were oxidized at any point in the host sandstone, uranium minerals were reoxidized and transported further down the flow path to react with additional reductants. In this manner, the uranium ore migrated through the sandstone at a rate slower than the mineralizing ground water. In the case of tabular uranium deposits, the recharge of surface water into the ground water during flooding of lakes carried soluble humic material to the water table or to an interface where humate precipitated in tabular layers. These humate layers then established the chemical conditions for mineralization and related alterations. In the case of Precambrian unconformity-related deposits, free thermal convection in the thick sandstones overlying the basement rocks carried uranium to concentrations of organic matter in the basement rocks.
Complete Genome Sequence and Updated Annotation of Desulfovibrio alaskensis G20
Hauser, Loren J.; Land, Miriam L.; Brown, Steven D.; ...
2011-06-17
Desulfovibrio alaskensis G20 (formerly desulfuricans G20) is a Gram-negative mesophilic sulfate-reducing bacterium (SRB), known to corrode ferrous metals and to reduce toxic radionuclides and metals such as uranium and chromium to sparingly soluble and less toxic forms. We present the 3.7 Mb genome sequence to provide insights into its physiology.
Uranium decay daughters from isolated mines: Accumulation and sources.
Cuvier, A; Panza, F; Pourcelot, L; Foissard, B; Cagnat, X; Prunier, J; van Beek, P; Souhaut, M; Le Roux, G
2015-11-01
This study combines in situ gamma spectrometry performed at different scales, in order to accurately locate the contamination pools, to identify the concerned radionuclides and to determine the distribution of the contaminants from soil to bearing phase scale. The potential mobility of several radionuclides is also evaluated using sequential extraction. Using this procedure, an accumulation area located downstream of a former French uranium mine and concentrating a significant fraction of radioactivity is highlighted. We report disequilibria in the U-decay chains, which are likely related to the processes implemented on the mining area. Coupling of mineralogical analyzes with sequential extraction allow us to highlight the presence of barium sulfate, which may be the carrier of the Ra-226 activities found in the residual phase (Ba(Ra)SO4). In contrast, uranium is essentially in the reducible fraction and potentially trapped in clay-iron coatings located on the surface of minerals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Summary of the mineralogy of the Colorado Plateau uranium ores
Weeks, Alice D.; Coleman, Robert Griffin; Thompson, Mary E.
1956-01-01
In the Colorado Plateau uranium has been produced chiefly from very shallow mines in carnotite ores (oxidized vanadiferous uranium ores) until recent deeper mining penetrated black unoxidized ores in water-saturated rocks and extensive exploration has discovered many deposits of low to nonvanadiferous ores. The uranium ores include a wide range from highly vanadiferous and from as much as one percent to a trace of copper, and contain a small amount of iron and traces of lead, zinc, molybdenum, cobalt, nickel, silver, manganese, and other metals. Recent investigation indicates that the carnotite ores have been derived by progressive oxidation of primary (unoxidized) black ores that contain low-valent uranium and vanadium oxides and silicates. The uranium minerals, uraninite and coffinite, are associated with coalified wood or other carbonaceous material. The vanadium minerals, chiefly montroseite, roscoelite, and other vanadium silicates, occur in the interstices of the sandstone and in siltstone and clay pellets as well as associated with fossil wood. Calcite, dolomite, barite and minor amounts of sulfides, arsenides, and selenides occur in the unoxidized ore. Partially oxidized vanadiferous ore is blue black, purplish brown, or greenish black in contrast to the black or dark gray unoxidized ore. Vanadium combines with uranium to form rauvite. The excess vanadium is present in corvusite, fernandinite, melanovanadite and many other quadrivalent and quinquevalent vanadium minerals as well as in vanadium silicates. Pyrite and part or all of the calcite are replaced by iron oxides and gypsum. In oxidized vanadiferous uranium ores the uranium is fixed in the relatively insoluble minerals carnotite and tyuyamunite, and the excess vanadium commonly combines with one or more of the following: calcium, sodium, potassium, magnesium, aluminum, iron, copper, manganese, or barium, or rarely it forms the hydrated pentoxide. The relatively stable vanadium silicates are little affected by oxidation. The unoxidized nonvanadiferous ores contain uraninite and coffinite in close association with coalified wood and iron and copper sulfides, and traces of many other sulfides, arsenides and selenides. The oxidized nonvanadiferous ores differ from the vanadiferous ores because, in the absence of vanadium to complex the uranium, a great variety of secondary yellow and greenish-yellow uranyl minerals are formed. The uranyl sulfates and carbonates are more common than the oxides, phosphates, arsenates, and silicates. Because the sulfates and carbonates are much less stable that carnotite, the oxidized nonvanadiferous ores occure only as halos around cores of unoxidized ore and do not form large oxidized deposits close to the surface of the ground as carnotite ores. Oxidation has taken place since the lowering of the water table in the present erosion cycle. Because of local structures and the highly lenticular character of the fluviatile host rocks perched water tables and water-saturated lenses of sandstone are common high above the regional water table. Unoxidized ore has been preserved in these water-saturated rocks and the boundary between oxidized and unoxidized ore is very irregular.
Microbially Mediated Kinetic Sulfur Isotope Fractionation: Reactive Transport Modeling Benchmark
NASA Astrophysics Data System (ADS)
Wanner, C.; Druhan, J. L.; Cheng, Y.; Amos, R. T.; Steefel, C. I.; Ajo Franklin, J. B.
2014-12-01
Microbially mediated sulfate reduction is a ubiquitous process in many subsurface systems. Isotopic fractionation is characteristic of this anaerobic process, since sulfate reducing bacteria (SRB) favor the reduction of the lighter sulfate isotopologue (S32O42-) over the heavier isotopologue (S34O42-). Detection of isotopic shifts have been utilized as a proxy for the onset of sulfate reduction in subsurface systems such as oil reservoirs and aquifers undergoing uranium bioremediation. Reactive transport modeling (RTM) of kinetic sulfur isotope fractionation has been applied to field and laboratory studies. These RTM approaches employ different mathematical formulations in the representation of kinetic sulfur isotope fractionation. In order to test the various formulations, we propose a benchmark problem set for the simulation of kinetic sulfur isotope fractionation during microbially mediated sulfate reduction. The benchmark problem set is comprised of four problem levels and is based on a recent laboratory column experimental study of sulfur isotope fractionation. Pertinent processes impacting sulfur isotopic composition such as microbial sulfate reduction and dispersion are included in the problem set. To date, participating RTM codes are: CRUNCHTOPE, TOUGHREACT, MIN3P and THE GEOCHEMIST'S WORKBENCH. Preliminary results from various codes show reasonable agreement for the problem levels simulating sulfur isotope fractionation in 1D.
Wanty, R.B.; Goldhaber, M.B.; Northrop, H.R.
1990-01-01
The epigenetic Tony M vanadium-uranium orebody in south-central Utah is hosted in fluvial sandstones of the Morrison Formation (Upper Jurassic). Measurements of the relative amounts of V+3 and V +4 in ore minerals show that V+3 is more abundant. Thermodynamic calculations show that vanadium was more likely transported to the site of mineralization as V+4. The ore formed as V+4 was reduced by hydrogen sulfide, followed by hydrolysis and precipitation of V+3 in oxide minerals or chlorite. Uranium was transported as uranyl ion (U+6), or some complex thereof, and reduced by hydrogen sulfide, forming coffinite. Detrital organic matter in the rocks served as the carbon source for sulfate-reducing bacteria. Vanadium most likely was derived from the dissolution of iron-titanium oxides. Uranium probably was derived from the overlying Brushy Basin Member of the Morrison Formation. Previous studies have shown that the ore formed at the density-stratified interface between a basinal brine and dilute meteoric water. The mineralization processes described above occurred within the mixing zone between these two fluids. -from Authors
Bacterial diversity and composition of an alkaline uranium mine tailings-water interface.
Khan, Nurul H; Bondici, Viorica F; Medihala, Prabhakara G; Lawrence, John R; Wolfaardt, Gideon M; Warner, Jeff; Korber, Darren R
2013-10-01
The microbial diversity and biogeochemical potential associated with a northern Saskatchewan uranium mine water-tailings interface was examined using culture-dependent and -independent techniques. Morphologically-distinct colonies from uranium mine water-tailings and a reference lake (MC) obtained using selective and non-selective media were selected for 16S rRNA gene sequencing and identification, revealing that culturable organisms from the uranium tailings interface were dominated by Firmicutes and Betaproteobacteria; whereas, MC organisms mainly consisted of Bacteroidetes and Gammaproteobacteria. Ion Torrent (IT) 16S rRNA metagenomic analysis carried out on extracted DNA from tailings and MC interfaces demonstrated the dominance of Firmicutes in both of the systems. Overall, the tailings-water interface environment harbored a distinct bacterial community relative to the MC, reflective of the ambient conditions (i.e., total dissolved solids, pH, salinity, conductivity, heavy metals) dominating the uranium tailings system. Significant correlations among the physicochemical data and the major bacterial groups present in the tailings and MC were also observed. Presence of sulfate reducing bacteria demonstrated by culture-dependent analyses and the dominance of Desulfosporosinus spp. indicated by Ion Torrent analyses within the tailings-water interface suggests the existence of anaerobic microenvironments along with the potential for reductive metabolic processes.
Cardenas, Erick; Wu, Wei-Min; Leigh, Mary Beth; Carley, Jack; Carroll, Sue; Gentry, Terry; Luo, Jian; Watson, David; Gu, Baohua; Ginder-Vogel, Matthew; Kitanidis, Peter K.; Jardine, Philip M.; Zhou, Jizhong; Criddle, Craig S.; Marsh, Terence L.; Tiedje, James M.
2008-01-01
Microbial enumeration, 16S rRNA gene clone libraries, and chemical analysis were used to evaluate the in situ biological reduction and immobilization of uranium(VI) in a long-term experiment (more than 2 years) conducted at a highly uranium-contaminated site (up to 60 mg/liter and 800 mg/kg solids) of the U.S. Department of Energy in Oak Ridge, TN. Bioreduction was achieved by conditioning groundwater above ground and then stimulating growth of denitrifying, Fe(III)-reducing, and sulfate-reducing bacteria in situ through weekly injection of ethanol into the subsurface. After nearly 2 years of intermittent injection of ethanol, aqueous U levels fell below the U.S. Environmental Protection Agency maximum contaminant level for drinking water and groundwater (<30 μg/liter or 0.126 μM). Sediment microbial communities from the treatment zone were compared with those from a control well without biostimulation. Most-probable-number estimations indicated that microorganisms implicated in bioremediation accumulated in the sediments of the treatment zone but were either absent or in very low numbers in an untreated control area. Organisms belonging to genera known to include U(VI) reducers were detected, including Desulfovibrio, Geobacter, Anaeromyxobacter, Desulfosporosinus, and Acidovorax spp. The predominant sulfate-reducing bacterial species were Desulfovibrio spp., while the iron reducers were represented by Ferribacterium spp. and Geothrix spp. Diversity-based clustering revealed differences between treated and untreated zones and also within samples of the treated area. Spatial differences in community structure within the treatment zone were likely related to the hydraulic pathway and to electron donor metabolism during biostimulation. PMID:18456853
Radioactive mineral springs in Delta County, Colorado
Cadigan, Robert A.; Rosholt, John N.; Felmlee, J. Karen
1976-01-01
The system of springs in Delta County, Colo., contains geochemical clues to the nature and location of buried uranium-mineralized rock. The springs, which occur along the Gunnison River and a principal tributary between Delta and Paonia, are regarded as evidence of a still-functioning hydrothermal system. Associated with the springs are hydrogen sulfide and sulfur dioxide gas seeps, carbon dioxide gas-powered geysers, thick travertine deposits including radioactive travertine, and a flowing warm-water (41?C) radioactive well. Geochemical study of the springs is based on surface observations, on-site water-property measurements, and sampling of water, travertine, soft precipitates, and mud. The spring deposits are mostly carbonates, sulfates, sulfides, and chlorides that locally contain notable amounts of some elements, such as arsenic, barium, lithium, and radium. Samples from five localities have somewhat different trace element assemblages even though they are related to the same hydrothermal system. All the spring waters but one are dominated by sodium chloride or sodium bicarbonate. The exception is an acid sulfate water with a pH of 2.9, which contains high concentrations of aluminum and iron. Most of the detectable radioactivity is due to the presence of radium-226, a uranium daughter product, but at least one spring precipitate contains abundant radium-228, a thorium daughter product. The 5:1 ratio of radium-228 to radium-226 suggests the proximity of a vein-type deposit as a source for the radium. The proposed locus of a thorium-uranium mineral deposit is believed to lie in the vicinity of Paonia, Colo. Exact direction and depth are not determinable from data now available.
Cadigan, R.A.; Felmlee, J.K.
1982-01-01
Major radioactive mineral springs are probably related to deep zones of active metamorphism in areas of orogenic tectonism. The most common precipitate is travertine, a chemically precipitated rock composed chiefly of calcium carbonate, but also containing other minerals. The mineral springs are surface manifestations of hydrothermal conduit systems which extend downward many kilometers to hot source rocks. Conduits are kept open by fluid pressure exerted by carbon dioxide-charged waters rising to the surface propelled by heat and gas (CO2 and steam) pressure. On reaching the surface, the dissolved carbon dioxide is released from solution, and calcium carbonate is precipitated. Springs also contain sulfur species (for example, H2S and HS-), and radon, helium and methane as entrained or dissolved gases. The HS- ion can react to form hydrogen sulfide gas, sulfate salts, and native sulfur. Chemical salts and native sulfur precipitate at the surface. The sulfur may partly oxidize to produce detectable sulfur dioxide gas. Radioactivity is due to the presence of radium-226, radon-222, radium-228, and radon-220, and other daughter products of uranium-238 and thorium-232. Uranium and thorium are not present in economically significant amounts in most radioactive spring precipitates. Most radium is coprecipitated at the surface with barite. Barite (barium sulfate) forms in the barium-containing spring water as a product of the oxidation of sulfur species to sulfate ions. The relatively insoluble barium sulfate precipitates and removes much of the radium from solution. Radium coprecipitates to a lesser extent with manganese-barium- and iron-oxy hydroxides. R-mode factor analysis of abundances of elements suggests that 65 percent of the variance of the different elements is affected by seven factors interpreted as follows: (1) Silica and silicate contamination and precipitation; (2) Carbonate travertine precipitation; (3) Radium coprecipitation; (4) Evaporite precipitation; (5) Hydrous limonite precipitation and coprecipitated elements including uranium; (6) Rare earth elements deposited with detrital contamination (?); (7) Metal carbonate adsorption and precipitation. Economically recoverable minerals occurring at some localities in spring precipitates are ores of iron, manganese, sulfur, tungsten and barium and ornamental travertine. Continental radioactive mineral springs occur in areas of crustal thickening caused by overthrusting of crustal plates, and intrusion and metamorphism. Sedimentary rocks on the lower plate are trapped between the plates and form a zone of metamorphism. Connate waters, carbonate rocks and organic-carbon-bearing rocks react to extreme pressure and temperature to produce carbon dioxide, and steam. Fractures are forced open by gas and fluid pressures. Deep-circulating meteoric waters then come in contact with the reactive products, and a hydrothermal cell forms. When hot mineral-charged waters reach the surface they form the familiar hot mineral springs. Hot springs also occur in relation to igneous intrusive action or volcanism both of which may be products of the crustal plate overthrusting. Uranium and thorium in the sedimentary rocks undergoing metamorphism are sometimes mobilized, but mobilization is generally restricted to an acid hydrothermal environment; much is redeposited in favorable environments in the metamorphosed sediments. Radium and radon, which are highly mobile in both acid and alkaline aqueous media move upward into the hydrothermal cell and to the surface.
Peng, Ching-Yu; Ferguson, John F; Korshin, Gregory V
2013-09-15
This study examined effects of varying levels of anions (chloride and sulfate) and natural organic matter (NOM) on iron release from and accumulation of inorganic contaminants in corrosion scales formed on iron coupons exposed to drinking water. Changes of concentrations of sulfate and chloride were observed to affect iron release and, in lesser extent, the retention of representative inorganic contaminants (vanadium, chromium, nickel, copper, zinc, arsenic, cadmium, lead and uranium); but, effects of NOM were more pronounced. DOC concentration of 1 mg/L caused iron release to increase, with average soluble and total iron concentrations being four and two times, respectively, higher than those in the absence of NOM. In the presence of NOM, the retention of inorganic contaminants by corrosion scales was reduced. This was especially prominent for lead, vanadium, chromium and copper whose retention by the scales decreased from >80% in the absence of NOM to <30% in its presence. Some of the contaminants, notably copper, chromium, zinc and nickel retained on the surface of iron coupons in the presence of DOC largely retained their mobility and were released readily when ambient water chemistry changed. Vanadium, arsenic, cadmium, lead and uranium retained by the scales were largely unsusceptible to changes of NOM and chloride levels. Modeling indicated that the observed effects were associated with the formation of metal-NOM complexes and effects of NOM on the sorption of the inorganic contaminants on solid phases that are typical for iron corrosion in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kautsky, Mark; Ranalli, Tony; Dander, David
The objective of this investigation was to identify and differentiate potential non- mill-related water inputs to a shallow terrace groundwater system through the use of aqueous chemical and isotopic tracers at a former uranium- and vanadium-ore processing facility. Terrace groundwater in the vicinity of the Shiprock, New Mexico, site is hypothesized to be largely anthropogenic because natural rates of recharge in the terrace are likely insufficient to sustain a continuous water table in the terrace alluvial system, as observed in several analogue terrace locations east of the site and in response to post-mill dewatering efforts across the site. The terracemore » is composed of alluvial sand and gravel and weathered and unweathered Mancos Shale. Terrace groundwater exists and flows in the alluvium and to a much less extent in the Mancos Shale. Historical data established that in both the terrace and floodplain below the terrace, mill-derived uranium and sulfate is found primarily in the alluvium and the upper portion of the weathered Mancos Shale. Groundwater extraction is being conducted in the vicinity of former mill operations and in washes and seeps to dewater the formation and remove contamination, thus eliminating these exposure pathways and minimizing movement to the floodplain. However, past and present contribution of non-mill anthropogenic water sources may be hindering the dewatering effort, resulting in reduced remedy effectiveness. Groundwater source signatures can be determined based on chemical and isotopic ratios and are used to help identify and delineate both mill and non-mill water contributions. Aqueous chemical and isotopic tracers, such as 234U/238U activity ratios and uranium concentrations, δ34S sulfate and sulfate concentrations, tritium concentrations, and δ2Hwater and δ18O water are being used in this Phase I study. The aqueous chemical and isotopic analysis has identified areas on the terrace where groundwater is derived from mill-related activities and areas where the groundwater is associated with non-mill activities. A separate field effort of Phase II work will follow, including investigating additional locations for these isotopes and examination of δ18Osulfate , δ34Ssulfate , and chlorofluorocarbon signatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ribas, Antonio G.S.; Abrao, Alcidio
1970-05-15
This paper describes the studies of decontamination of thorium present as impurity in uranyl nitrate solutions, which was carried out through strong cationic resin where the thorium was partially retained. Then, the final decontamination was performed percolating the uranyl solution on a second cationic resin, after complexation of thorium (and other impurities) with EDTA. The thorium decontamination and the uranium retention were studied as a function of EDTA/U ratio, uranium concentration and acidity of the influent uranyl nitrate. The elution conditions were also studied as a function of eluent flow rate, concentration and acidity. Several tables and graphs showing themore » final results are included. (tr-auth)« less
Microbial biogeochemistry of uranium mill tailings
Landa, Edward R.
2005-01-01
Uranium mill tailings (UMT) are the crushed ore residues from the extraction of uranium (U) from ores. Among the radioactive wastes associated with the nuclear fuel cycle, UMT are unique in terms of their volume and their limited isolation from the surficial environment. For this latter reason, their management and long-term fate has many interfaces with environmental microbial communities and processes. The interactions of microorganisms with UMT have been shown to be diverse and with significant consequences for radionuclide mobility and bioremediation. These radionuclides are associated with the U-decay series. The addition of organic carbon and phosphate is required to initiate the reduction of the U present in the groundwater down gradient of the mills. Investigations on sediment and water from the U-contaminated aquifer, indicates that the addition of a carbon source stimulates the rate of U removal by microbial reduction. Moreover, most attention with respect to passive or engineered removal of U from groundwaters focuses on iron-reducing and sulfate-reducing bacteria.
Réduction des nitrates et de l'uranium par les bactéries indigènes
NASA Astrophysics Data System (ADS)
Abdelouas, Abdesselam; Lutze, Werner; Nuttall, Eric
1998-07-01
A bioremediation concept has been developed to clean up ground water contaminated with nitrate (1200 mg·L -1) and uranium (0.25 mg·L -1). We studied the Tuba City mill tailings site, Arizona, USA. Indigenous bacteria capable of catalyzing the reduction of NO 3- and U(VI) were identified in the ground water and in the host rock, the Navajo sandstone. After complete reduction of O 2 and NO 3- within one week, U(VI) was reduced and precipitated as uraninite. Final uranium concentrations < 15 μg·L -1 were reached after a few weeks at 24 °C. Iron sulfide also precipitated as a result of reduction of Fe(III) on the sand surface and sulfate in the ground water. U(VI) was not reduced by sulfide. It was found that enzymatic reduction of U(VI) is faster than abiotic reduction under the conditions given by the composition of the ground water.
Uranium delivery and uptake in a montane wetland, north-central Colorado, USA
Schumann, R. Randall; Zielinski, Robert A.; Otton, James K.; Pantea, Michael P.; Orem, William H.
2017-01-01
Comprehensive sampling of peat, underlying lakebed sediments, and coexisting waters of a naturally uraniferous montane wetland are combined with hydrologic measurements to define the important controls on uranium (U) supply and uptake. The major source of U to the wetland is groundwater flowing through locally fractured and faulted granite gneiss of Proterozoic age. Dissolved U concentrations in four springs and one seep ranged from 20 to 83 ppb (μg/l). Maximum U concentrations are ∼300 ppm (mg/kg) in lakebed sediments and >3000 ppm in peat. Uranium in lakebed sediments is primarily stratabound in the more organic-rich layers, but samples of similar organic content display variable U concentrations. Post-depositional modifications include variable additions of U delivered by groundwater. Uranium distribution in peat is heterogeneous and primarily controlled by proximity to groundwater-fed springs and seeps that act as local point sources of U, and by proximity to groundwater directed along the peat/lakebeds contact. Uranium is initially sorbed on various organic components of peat as oxidized U(VI) present in groundwater. Selective extractions indicate that the majority of sorbed U remains as the oxidized species despite reducing conditions that should favor formation of U(IV). Possible explanations are kinetic hindrances related to strong complex formation between uranyl and humic substances, inhibition of anaerobic bacterial activity by low supply of dissolved iron and sulfate, and by cold temperatures.
Injection of Emulsified Vegetable Oil for Long-Term Bioreduction of Uranium
NASA Astrophysics Data System (ADS)
Brooks, S. C.; Watson, D. B.; Schadt, C. W.; Jardine, P. M.; Gihring, T. M.; Zhang, G.; Mehlhorn, T.; Lowe, K.; Phillips, J.; Earles, J.; Wu, W.; Criddle, C. S.; Kemner, K. M.; Boyanov, M.
2011-12-01
In situ bioremediation of a uranium and nitrate-contaminated aquifer with the slow-release electron donor, emulsified vegetable oil (EVO), was tested at the US DOE Subsurface Biogeochemical Research Program (SBR) Integrated Field Research Challenge (IFRC) site, in Oak Ridge, TN. The EVO injection took place in Area 2 of the IFRC located about 300 m downgradient of the former S-3 disposal ponds. Liquid wastes, disposed in the ponds from 1951 to 1983, were primarily composed of nitric acid, plating wastes containing various metals (Cr, Ni) radionuclides (U, Tc), inorganics (nitrate, sulfate) and organic contaminants (tetrachloroethylene, acetone). Prior pond closure in 1987, large volumes of waste fluids migrated into the subsurface, down Bear Creek Valley and into Bear Creek. Contaminants detected at Area 2 were transported through a high permeability gravelly fill that is considered a preferred transport pathway for U to Bear Creek. Groundwater in the gravelly fill is contaminated with U (1-3 mg/L), sulfate (95-130 mg/L), and nitrate (20-40 mg/L) and 500 mg/kg or higher U has been detected on the solid phase of the fill material. The objective of this study is to investigate the feasibility and long-term sustainability of U(VI) reduction and immobilization, and nitrate degradation in the high permeability, high flow gravel fill using EVO as the electron donor. A one-time EVO injection was conducted over a 2 hour period in the highly permeable gravel (hydraulic conductivity 0.08 cm/sec) in the well instrumented IFRC Area 2 field plot. Extensive monitoring of geochemical parameters, dissolved gases and microbial populations were conducted during the test. A bromide tracer test was conducted prior to the injection of the EVO to assess transport pathways and rates. Geochemical analysis of site groundwater demonstrated the sequential bioreduction of oxygen, nitrate, Mn(IV), Fe(III) and sulfate. Transient accumulation of acetate was observed as an intermediate in the oil degradation. Reduction and removal of U and nitrate from groundwater was observed in all wells in hydraulic connection to the injection wells after 2-4 weeks. U concentrations in groundwater were reduced to below 30 ppb (US EPA drinking water standard) at some well locations and nitrate was reduced to below detectable levels. Rebound of U in groundwater was observed together with the rebound of sulfate concentrations as the EVO was consumed. The flux of U and nitrate contamination from groundwater to the surface water receptor (Bear Creek) was significantly reduced by the EVO injection over a one year period. Uranium (VI) reduction to U(IV) in the field tests was confirmed by X-ray absorption near-edge spectroscopy (XANES) analysis. The reduced U(IV) was determined by X-ray absorption fine structure (XAFS) to be in an Fe-U complex, not uraninite. The activities of major Fe(III)- and sulfate-reducing bacteria with U(VI)-reducing capability as well as methanogens was stimulated after injection of the oil.
Holmes, Dawn E; Giloteaux, Ludovic; Williams, Kenneth H; Wrighton, Kelly C; Wilkins, Michael J; Thompson, Courtney A; Roper, Thomas J; Long, Philip E; Lovley, Derek R
2013-07-01
The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, USA, acetate amendments initially promoted the growth of metal-reducing Geobacter species, followed by the growth of sulfate reducers, as observed previously. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater before the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the ameboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey-predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies.
Holmes, Dawn E; Giloteaux, Ludovic; Williams, Kenneth H; Wrighton, Kelly C; Wilkins, Michael J; Thompson, Courtney A; Roper, Thomas J; Long, Philip E; Lovley, Derek R
2013-01-01
The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, USA, acetate amendments initially promoted the growth of metal-reducing Geobacter species, followed by the growth of sulfate reducers, as observed previously. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater before the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the ameboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey–predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies. PMID:23446832
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, Dawn; Giloteaux, L.; Williams, Kenneth H.
2013-07-28
The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well-recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, acetate amendments initially promoted the growth of metal-reducing Geobacter species followed by the growthmore » of sulfate-reducers, as previously observed. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater prior to the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the amoeboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey-predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity, and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies.« less
SHINE and Mini-SHINE Column Designs for Recovery of Mo from 140 g-U/L Uranyl Sulfate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stepinski, Dominique C.; Vandegrift, George F.
Argonne is assisting SHINE Medical Technologies (SHINE) in their efforts to develop an accelerator-driven process that utilizes a uranyl-sulfate solution for the production of fission Mo-99. In an effort to design a Mo-recovery system for the SHINE project using low-enriched uranium (LEU), we conducted batch, breakthrough, and pulse tests to determine the Mo isotherm, mass-transfer zone (MTZ), and system parameters for a 130 g-U/L uranyl sulfate solution at pH 1 and 80°C, as described previously. The VERSE program was utilized to calculate the MTZ under various loading times and velocities. The results were then used to design Mo separation andmore » recovery columns employing a pure titania sorbent (110-μm particles, S110, and 60 Å pore size). The plant-scale column designs assume Mo will be separated from 271 L of a 141 g-U/L uranyl sulfate solution, pH 1, containing 0.0023 mM Mo. The VERSE-designed recovery systems have been tested and verified in laboratory-scale experiments, and this approach was found to be very successful.« less
Preliminary report on the White Canyon area, San Juan county, Utah
Benson, William E.; Trites, Albert F.; Beroni, Ernest P.; Feeger, John A.
1952-01-01
The White Canyon area, in the central part of San Juan County, Utah, consists of approximately two 15-minute quadrangles. Approximately 75 square miles have been mapped by the Geological Survey on a scale of 1 inch equals 1 mile, using a combined aerial photography-plane table method. Structure contours were drawn on top of the Organ Rock member of the Cutler formation. Parts of the Gonway and North Point claims, 1/4 mile east of the Happy Jack mine, were mapped in detail. The principal objectives of the investigations were: (1) to establish ore guides; (2) to select areas favorable for exploration; and (3) to map the general geology and to determine the regional relationships of the uranium deposits. The White Canyon area is comprised of sedimentary rocks of Carboniferous to Jurassic age, more than 2,000 feet thick, having a regional dip of 1° to 2° SW. The nearest igneous rocks are in the Henry Mountains about 7 miles west of the northern part of the area; The Shinarump conglomerate of the late Triassic age, the principal ore horizon in the White Canyon area, consists of lenticular beds of sandstone, conglomeratic sandstone, conglomerate, clay, and siltstone. The Shinarump conglomerate, absent in places, is as much as 75 feet thick. The sandstones locally contain molds of logs and fragments of altered volcanic ash. Some of the logs have been replaced by copper and uranium minerals and iron oxides. The clay and siltstone underlie and are interbedded with the sandstone, and are most common in channels that cut into the underlying Moenkopi formation. The Shinarump conglomerate contains reworked Moenkopi siltstone fragments, clay balls, carbonized wood, and pebbles of quarts, quartzite, and chert. Jointing is prominent in the Western part of the mapped area. The three most prominent joint trends are due east, N. 65°-75° W., and N. 65°-75° E. All joints have vertical dips. The red beds are bleached along some joints, especially those that trend N. 65°-75° W. All uranium ore produced has been from the lower part of the Shinarump conglomerate, where it commonly occurs with copper as disseminations and fracture coatings in sandstone. Uranium and copper minerals also occur in low-grade disseminated deposits in the lower Chinle and in the Moenkopi formation and in veins cutting these formations. Although some uranium deposits occur in Chinarump channels and scours, copper and uranium minerals along fractures suggest that channel control may be secondary. Logs and clay balls apparently have exerted some chemical influences for deposition. The uranium occurs as the oxide in some deposits, and as secondary hydrous sulfates, phosphates, oxides, and silicates in these and several other deposits. Charcoal, iron and manganese oxides, and veinlets of hydrocarbon are abnormally radioactive in most of the deposits. Base-metal sulfides are commonly found inside the oxidized zone. Secondary copper minerals include the hydrous sulfates and carbonate. Gangue minerals include quarts, clay minerals, and manganese oxides, dickite (?), calcite, gypsum, pyrite, and chalcedony (?). Principal wall-rock alteration appears to have been silicification, clay alteration, and bleaching. Most of the shipped ore has contained more than 0.3 percent uranium. The ore also contains copper, commonly in grades lower than 1.0 percent. Criteria believed to be most useful for prospecting for concealed uranium deposits are (1) visible uranium minerals; (2) sulfide minerals; (3) secondary copper minerals; (4) dickite (?); (5) hydrocarbons; and (6) bleaching and alteration of the Moenkopi formation.
Enzymatic iron and uranium reduction by sulfate-reducing bacteria
Lovley, D.R.; Roden, E.E.; Phillips, E.J.P.; Woodward, J.C.
1993-01-01
The potential for sulfate-reducing bacteria (SRB) to enzymatically reduce Fe(III) and U(VI) was investigated. Five species of Desulfovibrio as well as Desulfobacterium autotrophicum and Desulfobulbus propionicus reduced Fe(III) chelated with nitrilotriacetic acid as well as insoluble Fe(III) oxide. Fe(III) oxide reduction resulted in the accumulation of magnetite and siderite. Desulfobacter postgatei reduced the chelated Fe(III) but not Fe(III) oxide. Desulfobacter curvatus, Desulfomonile tiedjei, and Desulfotomaculum acetoxidans did not reduce Fe(III). Only Desulfovibrio species reduced U(VI). U(VI) reduction resulted in the precipitation of uraninite. None of the SRB that reduced Fe(III) or U(VI) appeared to conserve enough energy to support growth from this reaction. However, Desulfovibrio desulfuricans metabolized H2 down to lower concentrations with Fe(III) or U(VI) as the electron acceptor than with sulfate, suggesting that these metals may be preferred electron acceptors at the low H2 concentrations present in most marine sediments. Molybdate did not inhibit Fe(III) reduction by D. desulfuricans. This indicates that the inability of molybdate to inhibit Fe(III) reduction in marine sediments does not rule out the possibility that SRB are important catalysts for Fe(III) reduction. The results demonstrate that although SRB were previously considered to reduce Fe(III) and U(VI) indirectly through the production of sulfide, they may also directly reduce Fe(III) and U(VI) through enzymatic mechanisms. These findings, as well as our recent discovery that the So-reducing microorganism Desulfuromonas acetoxidans can reduce Fe(III), demonstrate that there are close links between the microbial sulfur, iron, and uranium cycles in anaerobic marine sediments. ?? 1993.
van Berk, Wolfgang; Fu, Yunjiao
2017-01-03
Redox conditions are seen as the key to controlling aqueous uranium concentrations (cU (aq) ). Groundwater data collected by a state-wide groundwater quality monitoring study in Mecklenburg-Western Pomerania (Germany) reveal peak cU (aq) up to 75 μg L -1 but low background uranium concentrations (median cU (aq) < 0.5 μg L -1 ). To characterize the hydrogeochemical processes causing such groundwater contamination by peak cU (aq) , we reanalyzed measured redox potentials and total concentrations of aqueous uranium, nitrate, and sulfate species in groundwater together with their distribution across the aquifer depth and performed semigeneric 2D reactive mass transport modeling which is based on chemical thermodynamics. The combined interpretation of modeling results and measured data reveals that high cU (aq) and its depth-specific distribution depending on redox conditions is a result of a nitrate-triggered roll-front mobilization of geogenic uranium in the studied aquifers which are unaffected by nuclear activities. The modeling results show that groundwater recharge containing (fertilizer-derived) nitrate drives the redox shift from originally reducing toward oxidizing environments, when nitrate input has consumed the reducing capacity of the aquifers, which is present as pyrite, degradable organic carbon, and geogenic U(IV) minerals. This redox shift controls the uranium roll-front mobilization and results in high cU (aq) within the redoxcline. Moreover, the modeling results indicate that peak cU (aq) occurring at this redox front increase along with the temporal progress of such redox conversion within the aquifer.
Carvalho, Fernando P; Oliveira, João M; Faria, Isabel
2009-11-01
Two large uranium mines, Quinta do Bispo and Cunha Baixa, district of Viseu, North of Portugal, were exploited until 1991. Sulfuric acid was used for in situ uranium leaching in Cunha Baixa mine and for heap leaching of low grade ores at both mines. Large amounts of mining and milling residues were accumulated nearby. Since closure of mines, the treatment of acid mine waters has been maintained and treated water is released into surface water lines. Analysis of radionuclides in the soluble phase and in the suspended matter of water samples from the uranium mines, from the creeks receiving the discharges of mine effluents, from the rivers and from wells in this area, show an enhancement of radioactivity levels. For example, downstream the discharge of mine effluents into Castelo Stream, the concentrations of dissolved uranium isotopes and uranium daughters were up to 14 times the concentrations measured upstream; (238)U concentration in suspended particulate matter of Castelo Stream reached 72 kBq kg(-1), which is about 170 times higher than background concentrations in Mondego River. Nevertheless, radionuclide concentrations decreased rapidly to near background values within a distance of about 7 kilometers from the discharge point. Enhancement of radioactivity in underground waters was positively correlated with a decrease in water pH and with an increase of sulfate ion concentration, pointing out to Cunha Baixa mine as the source of groundwater contamination. The radiotoxic exposure risk arising from using these well waters as drinking water and as irrigation water is discussed and implementation of environmental remediation measures is advised.
Trace elements and Pb isotopes in soils and sediments impacted by uranium mining.
Cuvier, A; Pourcelot, L; Probst, A; Prunier, J; Le Roux, G
2016-10-01
The purpose of this study is to evaluate the contamination in As, Ba, Co, Cu, Mn, Ni, Sr, V, Zn and REE, in a high uranium activity (up to 21,000Bq∙kg(-1)) area, downstream of a former uranium mine. Different geochemical proxies like enrichment factor and fractions from a sequential extraction procedure are used to evaluate the level of contamination, the mobility and the availability of the potential contaminants. Pb isotope ratios are determined in the total samples and in the sequential leachates to identify the sources of the contaminants and to determine the mobility of radiogenic Pb in the context of uranium mining. In spite of the large uranium contamination measured in the soils and the sediments (EF≫40), trace element contamination is low to moderate (2
The Influence of Oxygen and Sulfur on Uranium Partitioning Into the Core
NASA Astrophysics Data System (ADS)
Moore, R. D., Jr.; Van Orman, J. A.; Hauck, S. A., II
2017-12-01
Uranium, along with K and Th, may provide substantial long-term heating in planetary cores, depending on the magnitude of their partitioning into the metal during differentiation. In general, non-metallic light elements are known to have a large influence on the partitioning of trace elements, and the presence of sulfur is known to enhance the partitioning of uranium into the metal. Data from the steelmaking literature indicate that oxygen also enhances the solubility of oxygen in liquid iron alloys. Here we present experimental data on the partitioning of U between immiscible liquids in the Fe-S-O system, and use these data along with published metal-silicate partitioning data to calibrate a quantitative activity model for U in the metal. We also determined partition coefficients for Th, K, Nb, Nd, Sm, and Yb, but were unable to fully constrain activity models for these elements with available data. A Monte Carlo fitting routine was used to calculate U-S, U-O, and U-S-O interaction coefficients, and their associated uncertainties. We find that the combined interaction of uranium with sulfur and oxygen is predominant, with S and O together enhancing the solubility of uranium to a far greater degree than either element in isolation. This suggests that uranium complexes with sulfite or sulfate species in the metal. For a model Mars core composition containing 14 at% S and 5 at% O, the metal/silicate partition coefficient for U is predicted to be an order of magnitude larger than for a pure Fe-Ni core.
NASA Astrophysics Data System (ADS)
Lefebvre, Pierre; Noël, Vincent; Jemison, Noah; Weaver, Karrie; Bargar, John; Maher, Kate
2016-04-01
Uranium (U) groundwater contamination following oxidized U(VI) releases from weathering of mine tailings is a major concern at numerous sites across the Upper Colorado River Basin (CRB), USA. Uranium(IV)-bearing solids accumulated within naturally reduced zones (NRZs) characterized by elevated organic carbon and iron sulfide compounds. Subsequent re-oxidation of U(IV)solid to U(VI)aqueous then controls the release to groundwater and surface water, resulting in plume persistence and raising public health concerns. Thus, understanding the extent of uranium oxidation and reduction within NRZs is critical for assessing the persistence of the groundwater contamination. In this study, we measured solid-phase uranium isotope fractionation (δ238/235U) of sedimentary core samples from four study sites (Shiprock, NM, Grand Junction, Rifle and Naturita, CO) using a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS). We observe a strong correlation between U accumulation and the extent of isotopic fractionation, with Δ238U up to +1.8 ‰ between uranium-enriched and low concentration zones. The enrichment in the heavy isotopes within the NRZs appears to be especially important in the vadose zone, which is subject to variations in water table depth. According to previous studies, this isotopic signature is consistent with biotic reduction processes associated with metal-reducing bacteria. Positive correlations between the amount of iron sulfides and the accumulation of reduced uranium underline the importance of sulfate-reducing conditions for U(IV) retention. Furthermore, the positive fractionation associated with U reduction observed across all sites despite some variations in magnitude due to site characteristics, shows a regional trend across the Colorado River Basin. The maximum extent of 238U enrichment observed in the NRZ proximal to the water table further suggests that the redox cycling of uranium, with net release of U(VI) to the groundwater by non-fractionating oxidation, is occurring within this zone. Thus, release of uranium from the NRZs may play a critical role in the persistence of groundwater contamination at these sites.
Li, Li; Steefel, Carl I; Kowalsky, Michael B; Englert, Andreas; Hubbard, Susan S
2010-03-01
Electron donor amendment for bioremediation often results in precipitation of secondary minerals and the growth of biomass, both of which can potentially change flow paths and the efficacy of bioremediation. Quantitative estimation of precipitate and biomass distribution has remained challenging, partly due to the intrinsic heterogeneities of natural porous media and the scarcity of field data. In this work, we examine the effects of physical and geochemical heterogeneities on the spatial distributions of mineral precipitates and biomass accumulated during a biostimulation field experiment near Rifle, Colorado. Field bromide breakthrough data were used to infer a heterogeneous distribution of hydraulic conductivity through inverse transport modeling, while the solid phase Fe(III) content was determined by assuming a negative correlation with hydraulic conductivity. Validated by field aqueous geochemical data, reactive transport modeling was used to explicitly keep track of the growth of the biomass and to estimate the spatial distribution of precipitates and biomass. The results show that the maximum mineral precipitation and biomass accumulation occurs in the vicinity of the injection wells, occupying up to 5.4vol.% of the pore space, and is dominated by reaction products of sulfate reduction. Accumulation near the injection wells is not strongly affected by heterogeneities present in the system due to the ubiquitous presence of sulfate in the groundwater. However, accumulation in the down-gradient regions is dominated by the iron-reducing reaction products, whose spatial patterns are strongly controlled by both physical and geochemical heterogeneities. Heterogeneities can lead to localized large accumulation of mineral precipitates and biomass, increasing the possibility of pore clogging. Although ignoring the heterogeneities of the system can lead to adequate prediction of the average behavior of sulfate-reducing related products, it can also lead to an overestimation of the overall accumulation of iron-reducing bacteria, as well as the rate and extent of iron reduction. Surprisingly, the model predicts that the total amount of uranium being reduced in the heterogeneous 2D system was similar to that in the 1D homogeneous system, suggesting that the overall uranium bioremediation efficacy may not be significantly affected by the heterogeneities of Fe(III) content in the down-gradient regions. Rather, the characteristics close to the vicinity of the injection wells might be crucial in determining the overall efficacy of uranium bioremediation. These findings have important implications not only for uranium bioremediation at the Rifle site and for bioremediation of other redox sensitive contaminants at sites with similar characteristics, but also for the development of optimal amendment delivery strategies in other settings. Copyright 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Griffiths, Trevor R.; Volkovich, Vladimir A.
An extensive review of the literature on the high temperature reactions (both in melts and in the solid state) of uranium oxides (UO 2, U 3O 8 and UO 3) resulting in the formation of insoluble alkali metal (Li to Cs) uranates is presented. Their uranate(VI) and uranate(V) compounds are examined, together with mixed and oxygen-deficient uranates. The reactions of uranium oxides with carbonates, oxides, per- and superoxides, chlorides, sulfates, nitrates and nitrites under both oxidising and non-oxidising conditions are critically examined and systematised, and the established compositions of a range of uranate(VI) and (V) compounds formed are discussed. Alkali metal uranates(VI) are examined in detail and their structural, physical, thermodynamic and spectroscopic properties considered. Chemical properties of alkali metal uranates(VI), including various methods for their reduction, are also reported. Errors in the current theoretical treatment of uranate(VI) spectra are identified and the need to develop routes for the preparation of single crystals is stressed.
In situ bioremediation of uranium with emulsified vegetable oil as the electron donor.
Watson, David B; Wu, Wei-Min; Mehlhorn, Tonia; Tang, Guoping; Earles, Jennifer; Lowe, Kenneth; Gihring, Thomas M; Zhang, Gengxin; Phillips, Jana; Boyanov, Maxim I; Spalding, Brian P; Schadt, Christopher; Kemner, Kenneth M; Criddle, Craig S; Jardine, Philip M; Brooks, Scott C
2013-06-18
A field test with a one-time emulsified vegetable oil (EVO) injection was conducted to assess the capacity of EVO to sustain uranium bioreduction in a high-permeability gravel layer with groundwater concentrations of (mM) U, 0.0055; Ca, 2.98; NO3(-), 0.11; HCO3(-), 5.07; and SO4(2-), 1.23. Comparison of bromide and EVO migration and distribution indicated that a majority of the injected EVO was retained in the subsurface from the injection wells to 50 m downgradient. Nitrate, uranium, and sulfate were sequentially removed from the groundwater within 1-2 weeks, accompanied by an increase in acetate, Mn, Fe, and methane concentrations. Due to the slow release and degradation of EVO with time, reducing conditions were sustained for approximately one year, and daily U discharge to a creek, located approximately 50 m from the injection wells, decreased by 80% within 100 days. Total U discharge was reduced by 50% over the one-year period. Reduction of U(VI) to U(IV) was confirmed by synchrotron analysis of recovered aquifer solids. Oxidants (e.g., dissolved oxygen, nitrate) flowing in from upgradient appeared to reoxidize and remobilize uranium after the EVO was exhausted as evidenced by a transient increase of U concentration above ambient values. Occasional (e.g., annual) EVO injection into a permeable Ca and bicarbonate-containing aquifer can sustain uranium bioreduction/immobilization and decrease U migration/discharge.
Kinetics of dissolution of thorium and uranium doped britholite ceramics
NASA Astrophysics Data System (ADS)
Dacheux, N.; Du Fou de Kerdaniel, E.; Clavier, N.; Podor, R.; Aupiais, J.; Szenknect, S.
2010-09-01
In the field of immobilization of actinides in phosphate-based ceramics, several thorium and uranium doped britholite samples were submitted to leaching tests. The normalized dissolution rates determined for several pH values, temperatures and acidic media from the calcium release range from 4.7 × 10 -2 g m -2 d -1 to 21.6 g m -2 d -1. Their comparison with that determined for phosphorus, thorium and uranium revealed that the dissolution is clearly incongruent for all the conditions examined. Whatever the leaching solution considered, calcium and phosphorus elements were always released with higher RL values than the other elements (Nd, Th, U). Simultaneously, thorium was found to quickly precipitate as alteration product, leading to diffusion phenomena for uranium. For all the media considered, the uranium release is higher than that of thorium, probably due to its oxidation from tetravalent oxidation state to uranyl. Moreover, the evaluation of the partial order related to proton concentration and the apparent energy of activation suggest that the reaction of dissolution is probably controlled by surface chemical reactions occurring at the solid/liquid interface. Finally, comparative leaching tests performed in sulphuric acid solutions revealed a significant influence of such media on the chemical durability of the leached pellets, leading to higher normalized dissolution rates for all the elements considered. On the basis of the results of chemical speciation, this difference was mainly explained in the light of higher complexion constants by sulfate ions compared to nitrate, chloride and phosphate.
Effects of sulfate ligand on uranyl carbonato surface species on ferrihydrite surfaces
Arai, Yuji; Fuller, C.C.
2012-01-01
Understanding uranium (U) sorption processes in permeable reactive barriers (PRB) are critical in modeling reactive transport for evaluating PRB performance at the Fry Canyon demonstration site in Utah, USA. To gain insight into the U sequestration mechanism in the amorphous ferric oxyhydroxide (AFO)-coated gravel PRB, U(VI) sorption processes on ferrihydrite surfaces were studied in 0.01 M Na2SO4 solutions to simulate the major chemical composition of U-contaminatedgroundwater (i.e., [SO42-]~13 mM L-1) at the site. Uranyl sorption was greater at pH 7.5 than that at pH 4 in both air- and 2% pCO2-equilibrated systems. While there were negligible effects of sulfate ligands on the pH-dependent U(VI) sorption (<24 h) in both systems, X-ray absorption spectroscopy (XAS) analysis showed sulfate ligand associated U(VI) surface species at the ferrihydrite–water interface. In air-equilibrated systems, binary and mono-sulfate U(VI) ternary surface species co-existed at pH 5.43. At pH 6.55–7.83, a mixture of mono-sulfate and bis-carbonato U(VI) ternary surface species became more important. At 2% pCO2, there was no contribution of sulfate ligands on the U(VI) ternary surface species. Instead, a mixture of bis-carbonato inner-sphere (38%) and tris-carbonato outer-sphere U(VI) ternary surface species (62%) was found at pH 7.62. The study suggests that the competitive ligand (bicarbonate and sulfate) coordination on U(VI) surface species might be important in evaluating the U solid-state speciation in the AFO PRB at the study site where pCO2 fluctuates between 1 and 2 pCO2%.
Effects of sulfate ligand on uranyl carbonato surface species on ferrihydrite surfaces.
Arai, Yuji; Fuller, C C
2012-01-01
Understanding uranium (U) sorption processes in permeable reactive barriers (PRB) are critical in modeling reactive transport for evaluating PRB performance at the Fry Canyon demonstration site in Utah, USA. To gain insight into the U sequestration mechanism in the amorphous ferric oxyhydroxide (AFO)-coated gravel PRB, U(VI) sorption processes on ferrihydrite surfaces were studied in 0.01 M Na(2)SO(4) solutions to simulate the major chemical composition of U-contaminated groundwater (i.e., [SO(4)(2-)] ~13 mM L(-1)) at the site. Uranyl sorption was greater at pH 7.5 than that at pH 4 in both air- and 2% pCO(2)-equilibrated systems. While there were negligible effects of sulfate ligands on the pH-dependent U(VI) sorption (<24 h) in both systems, X-ray absorption spectroscopy (XAS) analysis showed sulfate ligand associated U(VI) surface species at the ferrihydrite-water interface. In air-equilibrated systems, binary and mono-sulfate U(VI) ternary surface species co-existed at pH 5.43. At pH 6.55-7.83, a mixture of mono-sulfate and bis-carbonato U(VI) ternary surface species became more important. At 2% pCO(2), there was no contribution of sulfate ligands on the U(VI) ternary surface species. Instead, a mixture of bis-carbonato inner-sphere (38%) and tris-carbonato outer-sphere U(VI) ternary surface species (62%) was found at pH 7.62. The study suggests that the competitive ligand (bicarbonate and sulfate) coordination on U(VI) surface species might be important in evaluating the U solid-state speciation in the AFO PRB at the study site where pCO(2) fluctuates between 1 and 2 pCO(2)%. Copyright © 2011 Elsevier Inc. All rights reserved.
METHOD OF PROCESSING MONAZITE SAND
Welt, M.A.; Smutz, M.
1958-08-26
A process is described for recovering thorium, uranium, and rare earth values from monazite sand. The monazite sand is first digested with sulfuric acid and the resulting "monazite sulfate" solution is adjusted to a pH of between 0.4 and 3.0, and oxalate anions are added causing precipitation of the thorium and the rare earths as the oxalates. The oxalate precipitate is separated from the uranium containing supernatant solution, and is dried and calcined to the oxides. The thorium and rare earth oxides are then dissolved in nitric acid and the solution is contacted with tribntyl phosphate whereby an organic extract phase containing the cerium and thorium values is obtained, together with an aqueous raffinate containing the other rare earth values. The organic phase is then separated from the aqueous raffinate and the cerium and thorium are back extracted with an aqueous medium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Zhu
2006-06-15
High-Resolution Mineralogical Characterization and Biogeochemical Modeling of Uranium Reduction Pathways at the Oak Ridge Field-Research Center (FRC) Chen Zhu, Indiana University, David R. Veblen, Johns Hopkins University We have successfully completed a proof-of-concept, one-year grant on a three-year proposal from the former NABIR program, and here we seek additional two-year funding to complete and publish the research. Using a state-of-the-art 300-kV, atomic resolution, Field Emission Gun Transmission Electron Microscope (TEM), we have successfully identified three categories of mineral hosts for uranium in contaminated soils: (1) iron oxides; (2) mixed manganese-iron oxides; and (3) uranium phosphates. Method development using parallel electronmore » energy loss spectroscopy (EELS) associated with the TEM shows great promise for characterizing the valence states of immobilized U during bioremediation. We have also collected 27 groundwater samples from two push-pull field biostimulation tests, which form two time series from zero to approximately 600 hours. The temporal evolution in major cations, anions, trace elements, and the stable isotopes 34S, 18O in sulfate, 15N in nitrate, and 13C in dissolved inorganic carbon (DIC) clearly show that biostimulation resulted in reduction of nitrate, Mn(IV), Fe(III), U(VI), sulfate, and Tc(VII), and these reduction reactions were intimately coupled with a complex network of inorganic reactions evident from alkalinity, pH, Na, K, Mg, and Ca concentrations. From these temporal trends, apparent zero order rates were regressed. However, our extensive suite of chemical and isotopic data sets, perhaps the first and only comprehensive data set available at the FRC, show that the derived rates from these field biostimulation experiments are composite and lump-sum rates. There were several reactions that were occurring at the same time but were masked by these pseudo-zero order rates. A reaction-path model comprising a total of nine redox couples (NO3–/NH4+, MnO2(s)/Mn2+, Fe(OH)3(s) /Fe2+, TcO4–/TcO2(s), UO22+/UO2(s), SO42–/HS–, CO2/CH4, ethanol/acetate, and H+/H2.) is used to simulate the temporal biogeochemical evolution observed in the field tests. Preliminary results show that the models based on thermodynamics and more complex rate laws can generate the apparent zero order rates when several concurrent or competing reactions occur. Professor Alex Halliday of Oxford University, UK, and his postdoctoral associates are measuring the uranium isotopes in our groundwater samples. Newly developed state-of-the-art analytical techniques in measuring variability in 235U/238U offer the potential to distinguish biotic and abiotic uranium reductive mechanisms.« less
Ontiveros-Valencia, Aura; Zhou, Chen; Ilhan, Zehra Esra; de Saint Cyr, Louis Cornette; Krajmalnik-Brown, Rosa; Rittmann, Bruce E
2017-11-15
Molecular microbiology tools (i.e., 16S rDNA gene sequencing) were employed to elucidate changes in the microbial community structure according to the total electron acceptor loading (controlled by influent flow rate and/or medium composition) in a H 2 -based membrane biofilm reactor evaluated for removal of hexavalent uranium. Once nitrate, sulfate, and dissolved oxygen were replaced by U(VI) and bicarbonate and the total acceptor loading was lowered, slow-growing bacteria capable of reducing U(VI) to U(IV) dominated in the biofilm community: Replacing denitrifying bacteria Rhodocyclales and Burkholderiales were spore-producing Clostridiales and Natranaerobiales. Though potentially competing for electrons with U(VI) reducers, homo-acetogens helped attain steady U(VI) reduction, while methanogenesis inhibited U(VI) reduction. U(VI) reduction was reinstated through suppression of methanogenesis by addition of bromoethanesulfonate or by competition from SRB when sulfate was re-introduced. Predictive metagenome analysis further points out community changes in response to alterations in the electron-acceptor loading: Sporulation and homo-acetogenesis were critical factors for strengthening stable microbial U(VI) reduction. This study documents that sporulation was important to long-term U(VI) reduction, whether or not microorganisms that carry out U(VI) reduction mediated by cytochrome c 3 , such as SRB and ferric-iron-reducers, were inhibited. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Kate M.; Kukkadapu, Ravi K.; Qafoku, Nikolla
2012-05-23
Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology, and redox processes that occur in these zones, we examined several cores from a region of naturally occurring reducing conditions in a uranium-contaminated aquifer (Rifle, CO). Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for uranium and iron content, oxidation state, and mineralogy, reduced sulfur phases, and solid phase organic carbon content using a suite ofmore » analytical and spectroscopic techniques on bulk sediment and size fractions. Solid-phase uranium concentrations were higher in the naturally reduced zone, with a high proportion of the uranium present as reduced U(IV). The sediments were also elevated in reduced sulfur phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and sulfate reduction occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentration of solid phase organic carbon and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic carbon concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic carbon for maintaining reducing conditions and uranium immobilization.« less
Uranium and radon in ground water in the lower Illinois River basin
Morrow, William S.
2001-01-01
Uranium and radon are present in ground water throughout the United States, along with other naturally occurring radionuclides. The occurrence and distribution of uranium and radon are of concern because these radionuclides are carcinogens that can be ingested through drinking water. As part of the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) program, water samples were collected and analyzed for uranium and radon from 117 wells in four aquifers in the lower Illinois River Basin (LIRB) from 1996 to 1997. The aquifers were the shallow glacial drift deposits of the Bloomington Ridged Plain (BRP) not overlying a buried bedrock valley (BRP N/O BV), shallow glacial drift deposits of the BRP overlying the Mahomet Buried Bedrock Valley (BRP O/L MBBV), shallow glacial drift deposits of the Galesburg/Springfield Plain not overlying a buried bedrock valley (GSP N/O BV), and the deep glacial drift deposits of the Mahomet Buried Bedrock Valley (MBBV). Uranium was detected in water samples from all aquifers except the MBBV and ranged in concentration from less than 1 microgram per liter ( ? g/L) to 17 ? g/L. Uranium concentrations did not exceed 20 ? g/L, the proposed U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) at the time of sampling (1996?97). The current (2001) promulgated MCL is 30 ? g/L (U.S. Environmental Protection Agency, 2000). The highest median uranium concentration (2.0 ? g/L) among the four aquifers was in the BRP N/O BV. Uranium most often occurred in oxidizing and sulfate-rich water. Radon was detected in water samples from all aquifers in the LIRB. Radon concentrations in all aquifers ranged from less than 80 picocuries per liter (pCi/L) to 1,300 pCi/L. Of 117 samples, radon concentrations exceeded 300 pCi/L (the proposed USEPA MCL) in 34 percent of the samples. Radon concentrations exceeded 300 pCi/L in more than one-half of the samples from the GSP N/O BV and the BRP O/L MBBV. No sample exceeded the proposed Alternative Maximum Contaminant Level (AMCL) of 4,000 pCi/L. Concentrations of uranium and radon were not correlated.
In-situ evidence for uranium immobilization and remobilization
Senko, John M.; Istok, Jonathan D.; Suflita, Joseph M.; Krumholz, Lee R.
2002-01-01
The in-situ microbial reduction and immobilization of uranium was assessed as a means of preventing the migration of this element in the terrestrial subsurface. Uranium immobilization (putatively identified as reduction) and microbial respiratory activities were evaluated in the presence of exogenous electron donors and acceptors with field push−pull tests using wells installed in an anoxic aquifer contaminated with landfill leachate. Uranium(VI) amended at 1.5 μM was reduced to less than 1 nM in groundwater in less than 8 d during all field experiments. Amendments of 0.5 mM sulfate or 5 mM nitrate slowed U(VI) immobilization and allowed for the recovery of 10% and 54% of the injected element, respectively, as compared to 4% in the unamended treatment. Laboratory incubations confirmed the field tests and showed that the majority of the U(VI) immobilized was due to microbial reduction. In these tests, nitrate treatment (7.5 mM) inhibited U(VI) reduction, and nitrite was transiently produced. Further push−pull tests were performed in which either 1 or 5 mM nitrate was added with 1.0 μM U(VI) to sediments that already contained immobilized uranium. After an initial loss of the amendments, the concentration of soluble U(VI) increased and eventually exceeded the injected concentration, indicating that previously immobilized uranium was remobilized as nitrate was reduced. Laboratory experiments using heat-inactivated sediment slurries suggested that the intermediates of dissimilatory nitrate reduction (denitrification or dissimilatory nitrate reduction to ammonia), nitrite, nitrous oxide, and nitric oxide were all capable of oxidizing and mobilizing U(IV). These findings indicate that in-situ subsurface U(VI) immobilization can be expected to take place under anaerobic conditions, but the permanence of the approach can be impaired by disimilatory nitrate reduction intermediates that can mobilize previously reduced uranium.
Liang, Yuting; Van Nostrand, Joy D.; N′Guessan, Lucie A.; Peacock, Aaron D.; Deng, Ye; Long, Philip E.; Resch, C. Tom; Wu, Liyou; He, Zhili; Li, Guanghe; Hazen, Terry C.; Lovley, Derek R.
2012-01-01
To better understand the microbial functional diversity changes with subsurface redox conditions during in situ uranium bioremediation, key functional genes were studied with GeoChip, a comprehensive functional gene microarray, in field experiments at a uranium mill tailings remedial action (UMTRA) site (Rifle, CO). The results indicated that functional microbial communities altered with a shift in the dominant metabolic process, as documented by hierarchical cluster and ordination analyses of all detected functional genes. The abundance of dsrAB genes (dissimilatory sulfite reductase genes) and methane generation-related mcr genes (methyl coenzyme M reductase coding genes) increased when redox conditions shifted from Fe-reducing to sulfate-reducing conditions. The cytochrome genes detected were primarily from Geobacter sp. and decreased with lower subsurface redox conditions. Statistical analysis of environmental parameters and functional genes indicated that acetate, U(VI), and redox potential (Eh) were the most significant geochemical variables linked to microbial functional gene structures, and changes in microbial functional diversity were strongly related to the dominant terminal electron-accepting process following acetate addition. The study indicates that the microbial functional genes clearly reflect the in situ redox conditions and the dominant microbial processes, which in turn influence uranium bioreduction. Microbial functional genes thus could be very useful for tracking microbial community structure and dynamics during bioremediation. PMID:22327592
Whole-genome transcriptional analysis of heavy metal stresses inCaulobacter crescentus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Ping; Brodie, Eoin L.; Suzuki, Yohey
2005-09-21
The bacterium Caulobacter crescentus and related stalkbacterial species are known for their distinctive ability to live in lownutrient environments, a characteristic of most heavy metal contaminatedsites. Caulobacter crescentus is a model organism for studying cell cycleregulation with well developed genetics. We have identified the pathwaysresponding to heavy metal toxicity in C. crescentus to provide insightsfor possible application of Caulobacter to environmental restoration. Weexposed C. crescentus cells to four heavy metals (chromium, cadmium,selenium and uranium) and analyzed genome wide transcriptional activitiespost exposure using a Affymetrix GeneChip microarray. C. crescentusshowed surprisingly high tolerance to uranium, a possible mechanism forwhich may be formationmore » of extracellular calcium-uranium-phosphateprecipitates. The principal response to these metals was protectionagainst oxidative stress (up-regulation of manganese-dependent superoxidedismutase, sodA). Glutathione S-transferase, thioredoxin, glutaredoxinsand DNA repair enzymes responded most strongly to cadmium and chromate.The cadmium and chromium stress response also focused on reducing theintracellular metal concentration, with multiple efflux pumps employed toremove cadmium while a sulfate transporter was down-regulated to reducenon-specific uptake of chromium. Membrane proteins were also up-regulatedin response to most of the metals tested. A two-component signaltransduction system involved in the uranium response was identified.Several differentially regulated transcripts from regions previously notknown to encode proteins were identified, demonstrating the advantage ofevaluating the transcriptome using whole genome microarrays.« less
Remanent Activation in the Mini-SHINE Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Micklich, Bradley J.
2015-04-16
Argonne National Laboratory is assisting SHINE Medical Technologies in developing a domestic source of the medical isotope 99Mo through the fission of low-enrichment uranium in a uranyl sulfate solution. In Phase 2 of these experiments, electrons from a linear accelerator create neutrons by interacting in a depleted uranium target, and these neutrons are used to irradiate the solution. The resulting neutron and photon radiation activates the target, the solution vessels, and a shielded cell that surrounds the experimental apparatus. When the experimental campaign is complete, the target must be removed into a shielding cask, and the experimental components must bemore » disassembled. The radiation transport code MCNPX and the transmutation code CINDER were used to calculate the radionuclide inventories of the solution, the target assembly, and the shielded cell, and to determine the dose rates and shielding requirements for selected removal scenarios for the target assembly and the solution vessels.« less
NASA Astrophysics Data System (ADS)
Hu, Yu; Feng, Dong; Liang, Qianyong; Xia, Zhen; Chen, Linying; Chen, Duofu
2015-12-01
Cold hydrocarbon seepage is a frequently observed phenomenon along continental margins worldwide. However, little is known about the impact of seeping fluids on the geochemical cycle of redox-sensitive elements. Pore waters from four gravity cores (D-8, D-5, D-7, and D-F) collected from cold-seep sites of the northern South China Sea were analyzed for SO42-, Mg2+, Ca2+, Sr2+, dissolved inorganic carbon (DIC), δ13CDIC, dissolved Fe, Mn, and trace elements (e.g. Mo, U). The sulfate concentration-depth profiles, δ13CDIC values and (ΔDIC+ΔCa2++ΔMg2+)/ΔSO42- ratios suggest that organoclastic sulfate reduction (OSR) is the dominant process in D-8 core. Besides OSR, anaerobic oxidation of methane (AOM) is partially responsible for depletion of sulfate at D-5 and D-7 cores. The sulfate consumption at D-F core is predominantly caused by AOM. The depth of sulfate-methane interface (SMI) and methane diffusive flux of D-F core are calculated to be ~7 m and 0.035 mol m-2 yr-1, respectively. The relatively shallow SMI and high methane flux at D-F core suggest the activity of gas seepage in this region. The concentrations of dissolved uranium (U) were inferred to decrease significantly within the iron reduction zone. It seems that AOM has limited influence on the U geochemical cycling. In contrast, a good correlation between the consumption of sulfate and the removal of molybdenum (Mo) suggests that AOM has a significantly influence on the geochemical cycle of Mo at cold seeps. Accordingly, cold seep environments may serve as an important potential sink in the marine geochemical cycle of Mo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L.; Steefel, C.I.; Williams, K.H.
2009-04-20
Injection of organic carbon into the subsurface as an electron donor for bioremediation of redox-sensitive contaminants like uranium often leads to mineral transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation efficacy. This work combines reactive transport modeling with a column experiment and field measurements to understand the biogeochemical processes and to quantify the biomass and mineral transformation/accumulation during a bioremediation experiment at a uranium contaminated site near Rifle, Colorado. We use the reactive transport model CrunchFlow to explicitly simulate microbial community dynamics of iron and sulfate reducers, and their impacts on reaction rates.more » The column experiment shows clear evidence of mineral precipitation, primarily in the form of calcite and iron monosulfide. At the field scale, reactive transport simulations suggest that the biogeochemical reactions occur mostly close to the injection wells where acetate concentrations are highest, with mineral precipitate and biomass accumulation reaching as high as 1.5% of the pore space. This work shows that reactive transport modeling coupled with field data can be an effective tool for quantitative estimation of mineral transformation and biomass accumulation, thus improving the design of bioremediation strategies.« less
Li, Li; Steefel, Carl I; Williams, Kenneth H; Wilkins, Michael J; Hubbard, Susan S
2009-07-15
Injection of organic carbon into the subsurface as an electron donor for bioremediation of redox-sensitive contaminants like uranium often leads to mineral transformation and biomass accumulation, both of which can alter the flow field and potentially bioremediation efficacy. This work combines reactive transport modeling with a column experiment and field measurements to understand the biogeochemical processes and to quantify the biomass and mineral transformation/accumulation during a bioremediation experiment at a uranium contaminated site near Rifle, Colorado. We use the reactive transport model CrunchFlow to explicitly simulate microbial community dynamics of iron and sulfate reducers, and their impacts on reaction rates. The column experiment shows clear evidence of mineral precipitation, primarily in the form of calcite and iron monosulfide. At the field scale, reactive transport simulations suggest that the biogeochemical reactions occur mostly close to the injection wells where acetate concentrations are highest, with mineral precipitate and biomass accumulation reaching as high as 1.5% of the pore space. This work shows that reactive transport modeling coupled with field data can bean effective tool for quantitative estimation of mineral transformation and biomass accumulation, thus improving the design of bioremediation strategies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jinsong
2013-05-01
Development of a hierarchical Bayesian model to estimate the spatiotemporal distribution of aqueous geochemical parameters associated with in-situ bioremediation using surface spectral induced polarization (SIP) data and borehole geochemical measurements collected during a bioremediation experiment at a uranium-contaminated site near Rifle, Colorado. The SIP data are first inverted for Cole-Cole parameters including chargeability, time constant, resistivity at the DC frequency and dependence factor, at each pixel of two-dimensional grids using a previously developed stochastic method. Correlations between the inverted Cole-Cole parameters and the wellbore-based groundwater chemistry measurements indicative of key metabolic processes within the aquifer (e.g. ferrous iron, sulfate, uranium)more » were established and used as a basis for petrophysical model development. The developed Bayesian model consists of three levels of statistical sub-models: 1) data model, providing links between geochemical and geophysical attributes, 2) process model, describing the spatial and temporal variability of geochemical properties in the subsurface system, and 3) parameter model, describing prior distributions of various parameters and initial conditions. The unknown parameters are estimated using Markov chain Monte Carlo methods. By combining the temporally distributed geochemical data with the spatially distributed geophysical data, we obtain the spatio-temporal distribution of ferrous iron, sulfate and sulfide, and their associated uncertainity information. The obtained results can be used to assess the efficacy of the bioremediation treatment over space and time and to constrain reactive transport models.« less
NASA Astrophysics Data System (ADS)
Yabusaki, S.; Fang, Y.; Wilkins, M. J.; Long, P.; Rifle IFRC Science Team
2011-12-01
A series of field experiments in a shallow alluvial aquifer at a former uranium mill tailings site have demonstrated that indigenous bacteria can be stimulated with acetate to catalyze the conversion of hexavalent uranium in a groundwater plume to immobile solid-associated uranium in the +4 oxidation state. While this bioreduction of uranium has been shown to lower groundwater concentrations below actionable standards, a viable remediation methodology will need a mechanistic, predictive and quantitative understanding of the microbially-mediated reactions that catalyze the reduction of uranium in the context of site-specific processes, properties, and conditions. At the Rifle IFRC site, we are investigating the impacts on uranium behavior of pulsed acetate amendment, acetate-oxidizing iron and sulfate reducing bacteria, seasonal water table variation, spatially-variable physical (hydraulic conductivity, porosity) and geochemical (reactive surface area) material properties. The simulation of three-dimensional, variably saturated flow and biogeochemical reactive transport during a uranium bioremediation field experiment includes a genome-scale in silico model of Geobacter sp. to represent the Fe(III) terminal electron accepting process (TEAP). The Geobacter in silico model of cell-scale physiological metabolic pathways is comprised of hundreds of intra-cellular and environmental exchange reactions. One advantage of this approach is that the TEAP reaction stoichiometry and rate are now functions of the metabolic status of the microorganism. The linkage of in silico model reactions to specific Geobacter proteins has enabled the use of groundwater proteomic analyses to assess the accuracy of the model under evolving hydrologic and biogeochemical conditions. In this case, the largest predicted fluxes through in silico model reactions generally correspond to high abundances of proteins linked to those reactions (e.g. the condensation reaction catalyzed by the protein citrate synthase that generates citrate from acetyl-CoA and oxaloacetate). Model discrepancies with the proteomic data, such as the prediction of shifts associated with nitrogen limitation, revealed pathways in the in silico code that could be modified to more accurately predict metabolic processes that occur in the subsurface. The potential outcome of this approach is the engineering of electron donor (e.g., acetate), terminal electron acceptor [e.g., U(VI)], and biogeochemical conditions that enhance the desired metabolic pathways of the target microorganism(s) to effect cost-effective uranium bioreduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan
2013-10-24
Uranium bioremediation has emerged as a potential strategy of cleanup of radionuclear contamination worldwide. An integrated geochemical & microbial community model is a promising approach to predict and provide insights into the bioremediation of a complicated natural subsurface. In this study, an integrated column-scale model of uranium bioremediation was developed, taking into account long-term interactions between biotic and abiotic processes. It is also combined with a comprehensive thermodynamic analysis to track the fate and cycling of biogenic species. As compared with other bioremediation models, the model increases the resolution of the connection of microbial community to geochemistry and establishes directmore » quantitative correlation between overall community evolution and geochemical variation, thereby accurately predicting the community dynamics under different sedimentary conditions. The thermodynamic analysis examined a recently identified homogeneous reduction of U(VI) by Fe(II) under dynamic sedimentary conditions across time and space. It shows that the biogenic Fe(II) from Geobacter metabolism can be removed rapidly by the biogenic sulphide from sulfate reducer metabolism, hence constituting one of the reasons that make the abiotic U(VI) reduction thermodynamically infeasible in the subsurface. Further analysis indicates that much higher influent concentrations of both Fe(II) and U(VI) than normal are required to for abiotic U(VI) reduction to be thermodynamically feasible, suggesting that the abiotic reduction cannot be an alternative to the biotic reduction in the remediation of uranium contaminated groundwater.« less
Coral, Thomas; Descostes, Michaël; De Boissezon, Hélène; Bernier-Latmani, Rizlan; de Alencastro, Luiz Felippe; Rossi, Pierre
2018-07-01
A large fraction (47%) of the world's uranium is mined by a technique called "In Situ Recovery" (ISR). This mining technique involves the injection of a leaching fluid (acidic or alkaline) into a uranium-bearing aquifer and the pumping of the resulting solution through cation exchange columns for the recovery of dissolved uranium. The present study reports the in-depth alterations brought to autochthonous microbial communities during acidic ISR activities. Water samples were collected from a uranium roll-front deposit that is part of an ISR mine in operation (Tortkuduk, Kazakhstan). Water samples were obtained at a depth of ca 500 m below ground level from several zones of the Uyuk aquifer following the natural redox zonation inherited from the roll front deposit, including the native mineralized orebody and both upstream and downstream adjacent locations. Samples were collected equally from both the entrance and the exit of the uranium concentration plant. Next-generation sequencing data showed that the redox gradient shaped the community structures, within the anaerobic, reduced, and oligotrophic habitats of the native aquifer zones. Acid injection induced drastic changes in the structures of these communities, with a large decrease in both cell numbers and diversity. Communities present in the acidified (pH values < 2) mining areas exhibited similarities to those present in acid mine drainage, with the dominance of Sulfobacillus sp., Leptospirillum sp. and Acidithiobacillus sp., as well as the archaean Ferroplasma sp. Communities located up- and downstream of the mineralized zone under ISR and affected by acidic fluids were blended with additional facultative anaerobic and acidophilic microorganisms. These mixed biomes may be suitable communities for the natural attenuation of ISR mining-affected subsurface through the reduction of metals and sulfate. Assessing the effect of acidification on the microbial community is critical to evaluating the potential for natural attenuation or active bioremediation strategies. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beiswenger, Toya N.; Gallagher, Neal B.; Myers, Tanya L.
The identification of minerals, including uranium-bearing minerals, is traditionally a labor-intensive-process using x-ray diffraction (XRD), fluorescence, or other solid-phase and wet chemical techniques. While handheld XRD and fluorescence instruments can aid in field identification, handheld infrared reflectance spectrometers can also be used in industrial or field environments, with rapid, non-destructive identification possible via spectral analysis of the solid’s reflectance spectrum. We have recently developed standard laboratory measurement methods for the infrared (IR) reflectance of solids and have investigated using these techniques for the identification of uranium-bearing minerals, using XRD methods for ground-truth. Due to the rich colors of such species,more » including distinctive spectroscopic signatures in the infrared, identification is facile and specific, both for samples that are pure or are partially composed of uranium (e.g. boltwoodite, schoepite, tyuyamunite, carnotite, etc.) or non-uranium minerals. The method can be used to detect not only pure and partial minerals, but is quite sensitive to chemical change such as hydration (e.g. schoepite). We have further applied statistical methods, in particular classical least squares (CLS) and multivariate curve resolution (MCR) for discrimination of such uranium minerals and two uranium pure chemicals (U3O8 and UO2) against common background materials (e.g. silica sand, asphalt, calcite, K-feldspar) with good success. Each mineral contains unique infrared spectral features; some of the IR features are similar or common to entire classes of minerals, typically arising from similar chemical moieties or functional groups in the minerals: phosphates, sulfates, carbonates, etc. These characteristic 2 infrared bands generate the unique (or class-specific) bands that distinguish the mineral from the interferents or backgrounds. We have observed several cases where the chemical moieties that provide the spectral discrimination in the longwave IR do so by generating upward-going reststrahlen bands in the reflectance data, but the same minerals have other weaker (overtone) bands, sometimes from the same chemical groups, that are manifest as downward-going transmission-type features in the midwave and shortwave infrared.« less
Detection of biological uranium reduction using magnetic resonance.
Vogt, Sarah J; Stewart, Brandy D; Seymour, Joseph D; Peyton, Brent M; Codd, Sarah L
2012-04-01
The conversion of soluble uranyl ions (UO₂²⁺) by bacterial reduction to sparingly soluble uraninite (UO₂(s)) is being studied as a way of immobilizing subsurface uranium contamination. Under anaerobic conditions, several known types of bacteria including iron and sulfate reducing bacteria have been shown to reduce U (VI) to U (IV). Experiments using a suspension of uraninite (UO₂(s)) particles produced by Shewanella putrefaciens CN32 bacteria show a dependence of both longitudinal (T₁) and transverse (T₂) magnetic resonance (MR) relaxation times on the oxidation state and solubility of the uranium. Gradient echo and spin echo MR images were compared to quantify the effect caused by the magnetic field fluctuations (T*₂) of the uraninite particles and soluble uranyl ions. Since the precipitate studied was suspended in liquid water, the effects of concentration and particle aggregation were explored. A suspension of uraninite particles was injected into a polysaccharide gel, which simulates the precipitation environment of uraninite in the extracellular biofilm matrix. A reduction in the T₂ of the gel surrounding the particles was observed. Tests done in situ using three bioreactors under different mixing conditions, continuously stirred, intermittently stirred, and not stirred, showed a quantifiable T₂ magnetic relaxation effect over the extent of the reaction. Copyright © 2011 Wiley Periodicals, Inc.
Geochemical features of the ore-bearing medium in uranium deposits in the Khiagda ore field
NASA Astrophysics Data System (ADS)
Kochkin, B. T.; Solodov, I. N.; Ganina, N. I.; Rekun, M. L.; Tarasov, N. N.; Shugina, G. A.; Shulik, L. S.
2017-09-01
The Neogene uranium deposits of the Khiagda ore field (KOF) belong to the paleovalley variety of the hydrogene type and differ from other deposits of this genetic type in the geological and geochemical localization conditions. The contemporary hydrogeochemical setting and microbiological composition of ore-bearing medium are discussed. The redox potential of the medium (Eh is as low as-400 mV) is much lower than those established at other hydrogenic deposits, both ancient Late Mesozoic and young Late Alpine, studied with the same methods in Russia, Uzbekistan, and southern Kazakhstan. The pH of subsurface water (6.86-8.13) differs in significant fluctuations both between neighboring deposits and within individual ore lodes. Hydrogen-forming and denitrifying bacteria are predominant in microbiological populations, whereas sulfate-reducing bacteria are low-active. The consideration of these factors allowed us to describe the mechanism of uranium ore conservation as resulting from the development of the cryolithic zone, which isolates ore lodes from the effect of the external medium. Carbonated water supplied from the basement along fault zones also participates in the formation of the present-day hydrogeochemical setting. Based on the features of the ore-bearing medium, we propose a method of borehole in situ acid leaching to increase the efficiency of mining in the Khiagda ore field.
Uranium Detection - Technique Validation Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colletti, Lisa Michelle; Garduno, Katherine; Lujan, Elmer J.
As a LANL activity for DOE/NNSA in support of SHINE Medical Technologies™ ‘Accelerator Technology’ we have been investigating the application of UV-vis spectroscopy for uranium analysis in solution. While the technique has been developed specifically for sulfate solutions, the proposed SHINE target solutions, it can be adapted to a range of different solution matrixes. The FY15 work scope incorporated technical development that would improve accuracy, specificity, linearity & range, precision & ruggedness, and comparative analysis. Significant progress was achieved throughout FY 15 addressing these technical challenges, as is summarized in this report. In addition, comparative analysis of unknown samples usingmore » the Davies-Gray titration technique highlighted the importance of controlling temperature during analysis (impacting both technique accuracy and linearity/range). To fully understand the impact of temperature, additional experimentation and data analyses were performed during FY16. The results from this FY15/FY16 work were presented in a detailed presentation, LA-UR-16-21310, and an update of this presentation is included with this short report summarizing the key findings. The technique is based on analysis of the most intense U(VI) absorbance band in the visible region of the uranium spectra in 1 M H 2SO 4, at λ max = 419.5 nm.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fan; Parker, Jack C.; Brooks, Scott C
This study investigated sorption of uranium and technetium onto aluminum and iron hydroxides during titration of a contaminated groundwater using both Na hydroxide and carbonate as titrants. The contaminated groundwater has a low pH of 3.8 and high concentrations of NO3-, SO42-, Al, Ca, Mg, Mn, trace metals such as Ni and Co, and radionuclides such as U and Tc. During titration, most Al and Fe were precipitated out at pH above ~4.5. U as well as Tc was found to be removed from aqueous phase at pH below ~5.5, but to some extent released at higher pH values. Anmore » earlier geochemical equilibrium reaction path model that considered aqueous complexation and precipitation/dissolution reactions predicted mineral precipitation and adequately described concentration variations of Al, Fe and some other metal cations, but failed to predict sulfate, U and Tc concentrations during titration. Previous studies have shown that Fe- and Al-oxyhydroxides strongly sorb dissolved sulfate, U and Tc species. Therefore, an anion exchange model was developed for the sorption of sulfate, U and Tc onto Al and Fe hydroxides. With the additional consideration of the anion exchange reactions, concentration profiles of sulfate, U and Tc were more accurately predicted. Results of this study indicate that consideration of complex reactions such as sorption/desorption on mixed mineral phases, in addition to hydrolysis and precipitation, could improve the prediction of various contaminants during pre- and post-groundwater treatment practices.« less
NASA Astrophysics Data System (ADS)
Davis, J. A.; Smith, R. L.; Bohlke, J. K.; Jemison, N.; Xiang, H.; Repert, D. A.; Yuan, X.; Williams, K. H.
2015-12-01
The occurrence of naturally reduced zones is common in alluvial aquifers in the western U.S.A. due to the burial of woody debris in flood plains. Such reduced zones are usually heterogeneously dispersed in these aquifers and characterized by high concentrations of organic carbon, reduced mineral phases, and reduced forms of metals, including uranium(IV). The persistence of high concentrations of dissolved uranium(VI) at uranium-contaminated aquifers on the Colorado Plateau has been attributed to slow oxidation of insoluble uranium(IV) mineral phases found in association with these reducing zones, although there is little understanding of the relative importance of various potential oxidants. Four field experiments were conducted within an alluvial aquifer adjacent to the Colorado River near Rifle, CO, wherein groundwater associated with the naturally reduced zones was pumped into a gas-impermeable tank, mixed with a conservative tracer (Br-), bubbled with a gas phase composed of 97% O2 and 3% CO2, and then returned to the subsurface in the same well from which it was withdrawn. Within minutes of re-injection of the oxygenated groundwater, dissolved uranium(VI) concentrations increased from less than 1 μM to greater than 2.5 μM, demonstrating that oxygen can be an important oxidant for uranium in such field systems if supplied to the naturally reduced zones. Dissolved Fe(II) concentrations decreased to the detection limit, but increases in sulfate could not be detected due to high background concentrations. Changes in nitrogen species concentrations were variable. The results contrast with other laboratory and field results in which oxygen was introduced to systems containing high concentrations of mackinawite (FeS), rather than the more crystalline iron sulfides found in aged, naturally reduced zones. The flux of oxygen to the naturally reduced zones in the alluvial aquifers occurs mainly through interactions between groundwater and gas phases at the water table. Seasonal variations of the water table at the Rifle, CO site may play an important role in introducing oxygen into the system. Although oxygen was introduced directly to the naturally reduced zones in these experiments, delivery of oxidants to the system may also be controlled by other oxidative pathways in which oxygen plays an indirect role.
Geochemical control on uranium(IV) mobility in a mining-impacted wetland.
Wang, Yuheng; Bagnoud, Alexandre; Suvorova, Elena; McGivney, Eric; Chesaux, Lydie; Phrommavanh, Vannapha; Descostes, Michael; Bernier-Latmani, Rizlan
2014-09-02
Wetlands often act as sinks for uranium and other trace elements. Our previous work at a mining-impacted wetland in France showed that a labile noncrystalline U(IV) species consisting of U(IV) bound to Al-P-Fe-Si aggregates was predominant in the soil at locations exhibiting a U-containing clay-rich layer within the top 30 cm. Additionally, in the porewater, the association of U(IV) with Fe(II) and organic matter colloids significantly increased U(IV) mobility in the wetland. In the present study, within the same wetland, we further demonstrate that the speciation of U at a location not impacted by the clay-rich layer is a different noncrystalline U(IV) species, consisting of U(IV) bound to organic matter in soil. We also show that the clay-poor location includes an abundant sulfate supply and active microbial sulfate reduction that induce substantial pyrite (FeS2) precipitation. As a result, Fe(II) concentrations in the porewater are much lower than those at clay-impacted zones. U porewater concentrations (0.02-0.26 μM) are also considerably lower than those at the clay-impacted locations (0.21-3.4 μM) resulting in minimal U mobility. In both cases, soil-associated U represents more than 99% of U in the wetland. We conclude that the low U mobility reported at clay-poor locations is due to the limited association of Fe(II) with organic matter colloids in porewater and/or higher stability of the noncrystalline U(IV) species in soil at those locations.
NASA Astrophysics Data System (ADS)
Flores Orozco, AdriáN.; Williams, Kenneth H.; Long, Philip E.; Hubbard, Susan S.; Kemna, Andreas
2011-09-01
Experiments at the Department of Energy's Integrated Field Research Challenge (IFRC) site near Rifle, Colorado, have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally invasive and spatially extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days) of acetate injection. A thorough raw data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IFRC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate-reducing microorganisms. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer, a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants such as uranium.
Geochemistry of Peruvian near-surface sediments
NASA Astrophysics Data System (ADS)
Böning, Philipp; Brumsack, Hans-Jürgen; Böttcher, Michael E.; Schnetger, Bernhard; Kriete, Cornelia; Kallmeyer, Jens; Borchers, Sven Lars
2004-11-01
Sixteen short sediment cores were recovered from the upper edge (UEO), within (WO) and below (BO) the oxygen minimum zone (OMZ) off Peru during cruise 147 of R/V Sonne. Solids were analyzed for major/trace elements, total organic carbon, total inorganic carbon, total sulfur, the stable sulfur isotope composition (δ 34S) of pyrite, and sulfate reduction rates (SRR). Pore waters were analyzed for dissolved sulfate/sulfide and δ 34S of sulfate. In all cores highest SRR were observed in the top 5 cm where pore water sulfate concentrations varied little due to resupply of sulfate by sulfide oxidation and/or diffusion of sulfate from bottom water. δ 34S of dissolved sulfate showed only minor downcore increases. Strong 32S enrichments in sedimentary pyrite (to -48‰ vs. V-CDT) are due to processes in the oxidative part of the sulfur cycle in addition to sulfate reduction. Manganese and Co are significantly depleted in Peruvian upwelling sediments most likely due to mobilization from particles settling through the OMZ, whereas release of both elements from reducing sediments only seems to occur in near-coastal sites. Cadmium, Mo and Re are exceptionally enriched in WO sediments (<600 m water depth). High Re and moderate Cd and Mo enrichments are seen in BO sediments (>600 m water depth). Re/Mo ratios indicate anoxic and suboxic conditions for WO and BO sediments, respectively. Cadmium and Mo downcore profiles suggest considerable contribution to UEO/WO sediments by a biodetrital phase, whereas Re presumably accumulates via diffusion across the sediment-water interface to precipitation depth. Uranium is distinctly enriched in WO sediments (due to sulfidic conditions) and in some BO sediments (due to phosphorites). Silver transfer to suboxic BO sediments is likely governed by diatomaceous matter input, whereas in anoxic WO sediments Ag is presumably trapped due to sulfide precipitation. Cadmium, Cu, Zn, Ni, Cr, Ag, and T1 predominantly accumulate via biogenic pre-concentration in plankton remains. Rhenium, Sb, As, V, U and Mo are enriched in accordance with seawater TE availability. Lead and Bi enrichment in UEO surface sediments is likely contributed by anthropogenic activity (mining). Accumulation rates of TOC, Cd, Mo, U, and V from Peruvian and Namibian sediments exceed those from the Oman Margin and Gulf of California due to enhanced preservation off Peru and Namibia.
Kleeschulte, M.J.; Emmett, L.F.
1986-01-01
The Weldon Spring Chemical Plant is located just north of the drainage divide separating the Mississippi River and the Missouri River in St. Charles County, Missouri. From 1957 to 1966 the plant converted uranium-ore concentrates and recycled scrap to pure uranium trioxide, uranium tetrafluoride, and uranium metal. Residues from these operations were pumped to four large pits that had been excavated near the plant. Small springs and losing streams are present in the area. Water overlying the residue in the pits has a large concentration of dissolved solids and a different chemical composition compared to the native groundwater and surface water. This difference is indicated by the concentrations of calcium, sodium, sulfate, nitrate, fluoride, uranium, radium, lithium, molybdenum, strontium, and vanadium, all of which are greater than natural or background concentrations. Water from Burgermeister Spring, located about 1.5 miles north of the chemical plant area, contains uranium and nitrate concentrations greater than background concentrations. Groundwater in the shallow bedrock aquifer moves northward from the vicinity of the chemical plant toward Dardenne Creek. An abandoned limestone quarry several miles southwest of the chemical plant also has been used for the disposal of radioactive waste and rubble. Groundwater flow from the quarry area is southward through the alluvium, away from the quarry and toward the Missouri River. The St. Charles County well field is located in the Missouri River flood plain near the quarry and the large yield wells are open to the Missouri River alluvial aquifer. Water from a well 4,000 ft southeast of the quarry was analyzed; there was no indication of contamination from the quarry. Additional water quality and water level data are needed to determine if water from the quarry moves toward the well field. Observation wells need to be installed in the area between the chemical plant, pits, and Dardenne Creek. The wells would be used to provide access for measurements of depth to ground water and for the collection of water samples from the shallow bedrock aquifer. (Lantz-PTT)
Biogeochemical Signals from Deep Microbial Life in Terrestrial Crust
Fukuda, Akari; Komatsu, Daisuke D.; Hirota, Akinari; Watanabe, Katsuaki; Togo, Yoko; Morikawa, Noritoshi; Hagiwara, Hiroki; Aosai, Daisuke; Iwatsuki, Teruki; Tsunogai, Urumu; Nagao, Seiya; Ito, Kazumasa; Mizuno, Takashi
2014-01-01
In contrast to the deep subseafloor biosphere, a volumetrically vast and stable habitat for microbial life in the terrestrial crust remains poorly explored. For the long-term sustainability of a crustal biome, high-energy fluxes derived from hydrothermal circulation and water radiolysis in uranium-enriched rocks are seemingly essential. However, the crustal habitability depending on a low supply of energy is unknown. We present multi-isotopic evidence of microbially mediated sulfate reduction in a granitic aquifer, a representative of the terrestrial crust habitat. Deep meteoric groundwater was collected from underground boreholes drilled into Cretaceous Toki granite (central Japan). A large sulfur isotopic fractionation of 20–60‰ diagnostic to microbial sulfate reduction is associated with the investigated groundwater containing sulfate below 0.2 mM. In contrast, a small carbon isotopic fractionation (<30‰) is not indicative of methanogenesis. Except for 2011, the concentrations of H2 ranged mostly from 1 to 5 nM, which is also consistent with an aquifer where a terminal electron accepting process is dominantly controlled by ongoing sulfate reduction. High isotopic ratios of mantle-derived 3He relative to radiogenic 4He in groundwater and the flux of H2 along adjacent faults suggest that, in addition to low concentrations of organic matter (<70 µM), H2 from deeper sources might partly fuel metabolic activities. Our results demonstrate that the deep biosphere in the terrestrial crust is metabolically active and playing a crucial role in the formation of reducing groundwater even under low-energy fluxes. PMID:25517230
Ground-Water Quality of the Northern High Plains Aquifer, 1997, 2002-04
Stanton, Jennifer S.; Qi, Sharon L.
2007-01-01
An assessment of ground-water quality in the northern High Plains aquifer was completed during 1997 and 2002-04. Ground-water samples were collected at 192 low-capacity, primarily domestic wells in four major hydrogeologic units of the northern High Plains aquifer-Ogallala Formation, Eastern Nebraska, Sand Hills, and Platte River Valley. Each well was sampled once, and water samples were analyzed for physical properties and concentrations of nitrogen and phosphorus compounds, pesticides and pesticide degradates, dissolved solids, major ions, trace elements, dissolved organic carbon (DOC), radon, and volatile organic compounds (VOCs). Tritium and microbiology were analyzed at selected sites. The results of this assessment were used to determine the current water-quality conditions in this subregion of the High Plains aquifer and to relate ground-water quality to natural and human factors affecting water quality. Water-quality analyses indicated that water samples rarely exceeded established U.S. Environmental Protection Agency public drinking-water standards for those constituents sampled; 13 of the constituents measured or analyzed exceeded their respective standards in at least one sample. The constituents that most often failed to meet drinking-water standards were dissolved solids (13 percent of samples exceeded the U.S. Environmental Protection Agency Secondary Drinking-Water Regulation) and arsenic (8 percent of samples exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level). Nitrate, uranium, iron, and manganese concentrations were larger than drinking-water standards in 6 percent of the samples. Ground-water chemistry varied among hydrogeologic units. Wells sampled in the Platte River Valley and Eastern Nebraska units exceeded water-quality standards more often than the Ogallala Formation and Sand Hills units. Thirty-one percent of the samples collected in the Platte River Valley unit had nitrate concentrations greater than the standard, 22 percent exceeded the manganese standard, 19 percent exceeded the sulfate standard, 26 percent exceeded the uranium standard, and 38 percent exceeded the dissolved-solids standard. In addition, 78 percent of samples had at least one detectable pesticide and 22 percent of samples had at least one detectable VOC. In the Eastern Nebraska unit, 30 percent of the samples collected had dissolved-solids concentrations larger than the standard, 23 percent exceeded the iron standard, 13 percent exceeded the manganese standard, 10 percent exceeded the arsenic standard, 7 percent exceeded the sulfate standard, 7 percent exceeded the uranium standard, and 7 percent exceeded the selenium standard. No samples exceeded the nitrate standard. Thirty percent of samples had at least one detectable pesticide compound and 10 percent of samples had at least one detectable VOC. In contrast, the Sand Hills and Ogallala Formation units had fewer detections of anthropogenic compounds and drinking-water exceedances. In the Sand Hills unit, 15 percent of the samples exceeded the arsenic standard, 4 percent exceeded the nitrate standard, 4 percent exceeded the uranium standard, 4 percent exceeded the iron standard, and 4 percent exceeded the dissolved-solids standard. Fifteen percent of samples had at least one pesticide compound detected and 4 percent had at least one VOC detected. In the Ogallala Formation unit, 6 percent of water samples exceeded the arsenic standard, 4 percent exceeded the dissolved-solids standard, 3 percent exceeded the nitrate standard, 2 percent exceeded the manganese standard, 1 percent exceeded the iron standard, 1 percent exceeded the sulfate standard, and 1 percent exceeded the uranium standard. Eight percent of samples collected in the Ogallala Formation unit had at least one pesticide detected and 6 percent had at least one VOC detected. Differences in ground-water chemistry among the hydrogeologic units were attributed to variable depth to water, depth of the well screen below the water table, reduction-oxidation conditions, ground-water residence time, interactions with surface water, composition of aquifer sediments, extent of cropland, extent of irrigated land, and fertilizer application rates.
Behavior of Colorado Plateau uranium minerals during oxidation
Garrels, Robert Minard; Christ, C.L.
1956-01-01
Uranium occurs as U(VI) and U(IV) in minerals of the Colorado Plateau ores. The number of species containing U(VI) is large, but only two U(IV) minerals are known from the Plateau: uraninite, and oxide, and coffinite, a hydroxy-silicate. These oxidize to yield U(VI) before reacting significantly with other mineral constituents. Crystal-structure analysis has shown that U(VI) invariable occurs as uranyl ion, UO2+2. Uranyl ion may form complex carbonate or sulfate ions with resulting soluble compounds, but only in the absence of quinquevalent vanadium, arsenic, or phosphorous. In the presence of these elements in the +5 valence state, the uranyl ion is fixed in insoluble layer compounds formed by union of uranyl ion with orthovanadate, orthophosphate, or orthoarsenate. Under favorable conditions UO2+2 may react to form the relatively insoluble rutherfordine, UO2CO3, or hydrated uranyl hydroxides. These are rarely found on the Colorado Plateau as opposed to their excellent development in other uraniferous areas, a condition which is apparently related to the semiarid climate and low water table of the Plateau. Uranium may also be fixed as uranyl silicate, but little is known about minerals of this kind. In the present study emphasis has been placed on a detailing of the chemical and crystal structural changes which occur in the oxidation paragenetic sequence.
Geochemical Characterization of the Upper and Middle Floridan Aquifer System, South Florida
NASA Astrophysics Data System (ADS)
Mirecki, J.; Richardson, E.; Bennett, M.; Hendel, J.
2008-05-01
Our study focus is to characterize the water quality and geochemical environment of the Floridan Aquifer System (FAS) throughout the regional flowpath. A synoptic survey of 21 wells (n=15, upper FAS; n=6 middle FAS) was supplemented by additional samples (n=11) obtained during exploratory well development at 4 aquifer storage recovery (ASR) pilot sites. Synoptic survey samples were analyzed intensively, yielding a dataset that consists of major and trace dissolved constituents (including metals), stable isotopes (δ18O, δ13C, δD, δ34S in sulfate and sulfide), carbon species (carbonate alkalinity and organic carbon), uranium-series radionuclides, nutrients, and selected microbes and pathogens. The objectives of this study are three-fold: 1) to provide baseline water-quality and geochemical information prior to initiation of ASR activities that are part of the Comprehensive Everglades Restoration Plan; 2) to quantify the major controls on geochemical evolution along upper and middle FAS flowpaths using geochemical modeling methods; and 3) to identify areas where water- quality may limit the feasibility of ASR methods in the FAS. Preliminary interpretations water quality changes along the regional FAS flowpath can be summarized as follows. Concentrations of dissolved constituents increase from north to south along the flow path; generally, the upper FAS has lower total dissolved solids than the middle FAS at locations where well pairs were analyzed. The redox environment changes from oxic to strongly anoxic, very close to the recharge area. Redox measurements, dissolved iron, sulfide, and sulfur isotope data are consistent with sulfate-reducing conditions. Uranium-series isotope concentrations and activities generally are below regulatory criteria, with few exceptions in both the upper and middle FAS. Areas with greater radionuclide activity occur primarily at distal flowpath locations or at the coast.
Ground-water quality and geochemistry, Carson Desert, western Nevada
Lico, Michael S.; Seiler, R.L.
1994-01-01
Aquifers in the Carson Desert are the primary source of drinking water, which is highly variable in chemical composition. In the shallow basin-fill aquifers, water chemistyr varies from a dilute calcium bicarbonate-dominated water beneath the irrigated areas to a saline sodium chloride- dominated water beneath unirrigated areas. Water samples from the shallow aquifers commonly have dissolved solids, chloride, magnesium, sulfate, arsenic, and manganese concentrations that exceed State of Nevada drinking-water standards. Water in the intermediante basin-fill aquifers is a dilute sodium bicarbonate type in the Fallon area and a distinctly more saline sodium chloride type in the Soda Lake-Upsal Hogback area. Dissolved solids, chloride, arsenic, fluoride, and manganese concen- trations commonly exceed drinking-water standards. The basalt aquifer contains a dilute sodium bicarbonate chloride water. Arsenic concentrations exceed standards in all sampled wells. The concen- trations of major constituents in ground water beneath the southern Carson Desert are the result of evapotranspiration and natural geochemical reactions with minerals derived mostly from igneous rocks. Water with higher concentrations of iron and manganese is near thermodynamic equilibrium with siderite and rhodochrosite and indicates that these elements may be limited by the solubility of their respective carbonate minerals. Naturally occurring radionuclides (uranium and radon-222) are present in ground water from the Carson Desert in concen- tratons higher than proposed drinking-water standards. High uranium concentrations in the shallow aquifers may be caused by evaporative concentration and the release of uranium during dissolution of iron and manganese oxides or the oxidation of sedimentary organic matter that typically has elevated uranium concentrations. Ground water in the Carson Desert does not appear to have be contaminated by synthetic organic chemicals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flores-Orozco, Adrian; Williams, Kenneth H.; Long, Philip E.
2011-07-07
Experiments at the Department of Energy’s Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days)more » of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer – a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orozco, A. Flores; Williams, K.H.; Long, P.E.
2011-04-01
Experiments at the Department of Energy's Rifle Integrated Field Research Challenge (IFRC) site near Rifle, Colorado (USA) have demonstrated the ability to remove uranium from groundwater by stimulating the growth and activity of Geobacter species through acetate amendment. Prolonging the activity of these strains in order to optimize uranium bioremediation has prompted the development of minimally-invasive and spatially-extensive monitoring methods diagnostic of their in situ activity and the end products of their metabolism. Here we demonstrate the use of complex resistivity imaging for monitoring biogeochemical changes accompanying stimulation of indigenous aquifer microorganisms during and after a prolonged period (100+ days)more » of acetate injection. A thorough raw-data statistical analysis of discrepancies between normal and reciprocal measurements and incorporation of a new power-law phase-error model in the inversion were used to significantly improve the quality of the resistivity phase images over those obtained during previous monitoring experiments at the Rifle IRFC site. The imaging results reveal spatiotemporal changes in the phase response of aquifer sediments, which correlate with increases in Fe(II) and precipitation of metal sulfides (e.g., FeS) following the iterative stimulation of iron and sulfate reducing microorganism. Only modest changes in resistivity magnitude were observed over the monitoring period. The largest phase anomalies (>40 mrad) were observed hundreds of days after halting acetate injection, in conjunction with accumulation of Fe(II) in the presence of residual FeS minerals, reflecting preservation of geochemically reduced conditions in the aquifer - a prerequisite for ensuring the long-term stability of immobilized, redox-sensitive contaminants, such as uranium.« less
Ayotte, Joseph D.; Flanagan, Sarah M.; Morrow, William S.
2007-01-01
Water-quality data collected from 1,426 wells during 1993-2003 as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program were evaluated to characterize the water quality in glacial and bedrock aquifers of the northern United States. One of the goals of the NAWQA program is to synthesize data from individual studies across the United States to gain regional- and national-scale information about the behavior of contaminants. This study focused on the regional occurrence and distribution of uranium and 222radon in ground water in the glacial aquifer system of the United States as well as in the Cambrian-Ordovician and the New York and New England crystalline aquifer systems that underlie the glacial aquifer system. The occurrence of uranium and 222radon in ground water has long been a concern throughout the United States. In the glacial aquifers, as well as the Cambrian-Ordovician and the New York and New England crystalline aquifer systems of the United States, concentrations of uranium and 222radon were highly variable. High concentrations of uranium and 222radon affect ground water used for drinking water and for agriculture. A combination of information or data on (1) national-scale ground-water regions, (2) regional-scale glacial depositional models, (3) regional-scale geology, and (4) national-scale terrestrial gamma-ray emissions were used to confirm and(or) refine the regions used in the analysis of the water-chemistry data. Significant differences in the occurrence of uranium and 222radon, based primarily on geologic information were observed and used in this report. In general, uranium was highest in the Columbia Plateau glacial, West-Central glacial, and the New York and New England crystalline aquifer groups (75th percentile concentrations of 22.3, 7.7, and 2.9 micrograms per liter (ug/L), respectively). In the Columbia Plateau glacial and the West-Central glacial aquifer groups, more than 10 percent of wells sampled had concentrations of uranium that exceeded the U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level of 30 ug/L; in the New York and New England crystalline aquifer group, 4 percent exceeded 30 ug/L. Ground-water samples with high concentrations of uranium were commonly linked to geologic sources rich in uranium. In eight of nine aquifer groups defined for this study, concentrations of uranium correlated significantly with concentrations of sulfate in ground water (Spearman's rho = 0.20 to 0.56; p < 0.05). In the Columbia Plateau, glacial aquifers were derived in part from basaltic lava flows, some felsic volcanic rocks, and some paleo-lake bed materials that may be rich in uranium. In the Columbia Plateau and West-Central glacial aquifer groups, uranium correlated with total dissolved solids, bicarbonate, boron, lithium, selenium, and strontium. In the West-Central glacial aquifer group, rocks such as Cretaceous marine shales, which are abundant in uranium, probably contribute to the high concentrations in ground water; in the southern part of this group, which extends into Nebraska, the glacial or glacial-related sediment may be interbedded with uranium-rich materials that originated to the north and west and in the Rocky Mountains. In New England, crystalline bedrock that is granitic, such as two-mica granites, as well as other high-grade metamorphic rocks, has abundant uranium that is soluble in the predominantly oxic to sub-oxic geochemical conditions. This appears to contribute to high uranium concentrations in ground water. The highest 222radon concentrations were present in samples from wells completed in the New York and New England crystalline aquifer group; the median value (2,122 picocurries per liter (pCi/L)) was about 10 times the median values of all other aquifer groups. More than 25 percent of the samples from the New York and New England crystalline aquifer group wells had 222radon concentrations that exceeded the USEPA Alternative
Controlling Pu behavior on Titania: Implications for LEU Fission-Based Mo-99 Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youker, Amanda J.; Brown, M. Alex; Heltemes, Thad A.
Molybdenum-99 is the parent isotope of the most widely used isotope, technetium-99m, in all diagnostic nuclear medicine procedures. Due to proliferation concerns associated with the use of highly enriched uranium (HEU), the preferred method of fission-based Mo-99 production uses low enriched uranium (LEU) targets. Using LEU versus HEU for Mo-99 production produces similar to 30 times more Pu-239, due to neutron capture on U-238 to produce Np-239, which ultimately decays to Pu-239 (t(1/2) = 24,110 yr). Argonne National Laboratory is supporting a potential US Mo-99 producer in their efforts to produce Mo-99 from an LEU solution. In order to mitigatemore » the generation of large volumes of greater-than-class-C (GTCC) low level waste (Pu-239 concentrations greater than 1 nCi/g), we have focused our efforts on the separation chemistry of Pu and Mo with a titania sorbent in sulfate media. Results from batch and column experiments show that temperature and acid wash concentration can be used to control Pu behavior on titania.« less
Compendium of Phase-I Mini-SHINE Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youker, Amanda J.; Chemerisov, Sergey D.; Tkac, Peter
Argonne National Laboratory is assisting SHINE Medical Technologies in their efforts to develop the technology to become a domestic Mo-99 producer using low-enriched uranium (LEU). Mini-SHINE experiments are being performed with the high-current electron linear accelerator (linac) at Argonne. The target solution is a 90-150 g-U/L LEU uranyl sulfate at pH 1. In Phase 1, the convertor was tantalum with a maximum beam power on the convertor of 10 kW, and the target solution was limited to 5 L. This configuration generated a peak fission power density of 0.05 W/mL. Nine experiments were performed between February and October 2015. Resultsmore » are reported and discussed for each experiment regarding the off-gas analysis system, the sampling and Mo-recovery operation, and the Mo-product concentration and purification system. In Phase 2, the convertor will be depleted uranium; beam power will increase to 20 kW; and the solution volume will be 18 L. This configuration will generate a fission power density of up to 1 W/mL.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handley, Kim M.; Wrighton, Kelly C.; Piceno, Yvette M.
2012-04-13
There is increasing interest in harnessing the functional capacities of indigenous microbial communities to transform and remediate a wide range of environmental contaminants. Information about which community members respond to stimulation can guide the interpretation and development of remediation approaches. To comprehensively determine community membership and abundance patterns among a suite of samples associated with uranium bioremediation experiments we employed a high-density microarray (PhyloChip). Samples were unstimulated, naturally reducing, or collected during Fe(III) (early) and sulfate reduction (late biostimulation) from an acetate re-amended/amended aquifer in Rifle, Colorado, and from laboratory experiments using field-collected materials. Deep community sampling with PhyloChip identifiedmore » hundreds-to-thousands of operational taxonomic units (OTUs) present during amendment, and revealed close similarity among highly enriched taxa from drill-core and groundwater well-deployed column sediment. Overall, phylogenetic data suggested stimulated community membership was most affected by a carryover effect between annual stimulation events. Nevertheless, OTUs within the Fe(III)- and sulfate-reducing lineages, Desulfuromonadales and Desulfobacterales, were repeatedly stimulated. Less consistent, co-enriched taxa represented additional lineages associated with Fe(III) and sulfate reduction (for example, Desulfovibrionales; Syntrophobacterales; Peptococcaceae) and autotrophic sulfur oxidation (Sulfurovum; Campylobacterales). These data imply complex membership among highly stimulated taxa, and by inference biogeochemical responses to acetate, a non-fermentable substrate.« less
Peck, Mika R; Klessa, David A; Baird, Donald J
2002-04-01
The wetlands of the Magela floodplain of northern Australia, which is the major sink for dissolved metals transported in the Magela Creek system, contain acid-sulfate sediments. The rewetting of oxidized acid-sulfate soil each wet season produces acidic pulses that have the potential to alter the bioavailability of sediment-associated metal contaminants. Acute toxicity tests (72-h mean lethal concentration [LC50]) using the tropical chironomid Chironomus crassiforceps Kieffer showed that copper toxicity decreased from 0.64 mg/L at pH 6 to 2.30 mg/L at pH 4. Uranium toxicity showed a similar trend (36 mg/L at pH 6 and 58 mg/L at pH 4). Sediment toxicity tests developed using C. crassiforceps also showed that both metals were less toxic at the lower sediment pH with pore-water copper toxicity having a lowest-observed-effect concentration of 4.73 mg/L at pH 4 compared to 1.72 mg/L at pH 6. However, a lower pH increased pore-water metal concentrations and overlying water concentrations in bioassays. Hydrogen ion competition on metal receptor sites in C. crassiforceps was proposed to explain the decrease in toxicity in response to increased H+ activity. This study highlights the need to consider site-specific physicochemical conditions before applying generic risk assessment methods.
Otton, James K.; Zielinski, Robert A.; Horton, Robert J.
2010-01-01
The Fry Canyon uranium/copper project site in San Juan County, southeastern Utah, was affected by the historical (1957-68) processing of uranium and copper-uranium ores. Relict uranium tailings and related ponds, and a large copper heap-leach pile at the site represent point sources of uranium and copper to local soils, surface water, and groundwater. This study was designed to establish the nature, extent, and pathways of contaminant dispersion. The methods used in this study are applicable at other sites of uranium mining, milling, or processing. The uranium tailings and associated ponds sit on a bench that is as much as 4.25 meters above the level of the adjacent modern channel of Fry Creek. The copper heap leach pile sits on bedrock just south of this bench. Contaminated groundwater from the ponds and other nearby sites moves downvalley and enters the modern alluvium of adjacent Fry Creek, its surface water, and also a broader, deeper paleochannel that underlies the modern creek channel and adjacent benches and stream terraces. The northern extent of contaminated groundwater is uncertain from geochemical data beyond an area of monitoring wells about 300 meters north of the site. Contaminated surface water extends to the State highway bridge. Some uranium-contaminated groundwater may also enter underlying bedrock of the Permian Cedar Mesa Sandstone along fracture zones. Four dc-resistivity surveys perpendicular to the valley trend were run across the channel and its adjacent stream terraces north of the heap-leach pile and ponds. Two surveys were done in a small field of monitoring wells and two in areas untested by borings to the north of the well field. Bedrock intercepts, salt distribution, and lithologic information from the wells and surface observations in the well field aided interpretation of the geophysical profiles there and allowed interpretation of the two profiles not tested by wells. The geophysical data for the two profiles to the north of the well field suggest that the paleochannel persists at least 900 m to the north of the heap leach and pond sites. Contamination of groundwater beneath the stream terraces may extend at least that far. Fry Creek surface water (six samples), seeps and springs (six samples), and wells (eight samples) were collected during a dry period of April 16-19, 2007. The most uranium-rich (18.7 milligrams per liter) well water on the site displays distinctive Ca-Mg-SO4-dominant chemistry indicating the legacy of heap leaching copper-uranium ores with sulfuric acid. This same water has strongly negative d34S of sulfate (-13.3 per mil) compared to most local waters of -2.4 to -5.4 per mil. Dissolved uranium species in all sampled waters are dominantly U(VI)-carbonate complexes. All waters are undersaturated with respect to U(VI) minerals. The average 234U/238U activity ratio (AR) in four well waters from the site (0.939 + or ? 0.011) is different from that of seven upstream waters (1.235 + or ? 0.069). This isotopic contrast permits quantitative estimates of mixing of site-derived uranium with natural uranium in waters collected downstream. At the time of sampling, uranium in downstream surface water was mostly (about 67 percent) site-derived and subject to further concentration by evaporation. Three monitoring wells located approximately 0.4 kilometer downstream contained dominantly (78-87 percent) site-derived uranium. Distinctive particles of chalcopyrite (CuFeS) and variably weathered pyrite (FeS2) are present in tailings at the stream edge on the site and are identified in stream sediments 1.3 kilometers downstream, based on inspection of polished grain mounts of magnetic mineral separates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostka, Joel E.; Prakash, Om; Green, Stefan J.
2012-05-01
Our objectives were to: 1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), 2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and 3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations. Field sampling was conducted at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee. Themore » ORFRC subsurface is exposed to mixed contamination predominated by uranium and nitrate. In short, we effectively addressed all 3 stated objectives of the project. In particular, we isolated and characterized a large number of novel anaerobes with a high bioremediation potential that can be used as model organisms, and we are now able to quantify the function of subsurface sedimentary microbial communities in situ using state-of-the-art gene expression methods (molecular proxies).« less
Contaminants in arctic snow collected over northwest Alaskan sea ice
Garbarino, J.R.; Snyder-Conn, E.; Leiker, T.J.; Hoffman, G.L.
2002-01-01
Snow cores were collected over sea ice from four northwest Alaskan Arctic estuaries that represented the annual snowfall from the 1995-1996 season. Dissolved trace metals, major cations and anions, total mercury, and organochlorine compounds were determined and compared to concentrations in previous arctic studies. Traces (<4 nanograms per liter, ng L-1) of cis- and trans-chlordane, dimethyl 2,3,5,6-tetrachloroterephthalate, dieldrin, endosulfan II, and PCBs were detected in some samples, with endosulfan I consistently present. High chlorpyrifos concentrations (70-80 ng L-1) also were estimated at three sites. The snow was highly enriched in sulfates (69- 394 mg L-1), with high proportions of nonsea salt sulfates at three of five sites (9 of 15 samples), thus indicating possible contamination through long-distance transport and deposition of sulfate-rich atmospheric aerosols. Mercury, cadmium, chromium, molybdenum, and uranium were typically higher in the marine snow (n = 15) in relation to snow from arctic terrestrial studies, whereas cations associated with terrigenous sources, such as aluminum, frequently were lower over the sea ice. One Kasegaluk Lagoon site (Chukchi Sea) had especially high concentrations of total mercury (mean = 214 ng L-1, standard deviation = 5 ng L-1), but no methyl mercury was detected above the method detection limit (0.036 ng L-1) at any of the sites. Elevated concentrations of sulfate, mercury, and certain heavy metals might indicate mechanisms of contaminant loss from the arctic atmosphere over marine water not previously reported over land areas. Scavenging by snow, fog, or riming processes and the high content of deposited halides might facilitate the loss of such contaminants from the atmosphere. Both the mercury and chlorpyrifos concentrations merit further investigation in view of their toxicity to aquatic organisms at low concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Dave; Miller, David; Kautsky, Mark
A uranium- and vanadium-ore-processing mill operated from 1954 to 1968 within the Navajo Nation near Shiprock, New Mexico. By September 1986, all tailings and structures on the former mill property were encapsulated in a disposal cell built on top of two existing tailings piles on the Shiprock site (the site) [1]. Local groundwater was contaminated by multiple inorganic constituents as a result of the milling operations. The U.S. Department of Energy (DOE) took over management of the site in 1978 as part of the Uranium Mill Tailings Remedial Action (UMTRA) Project. The DOE Office of Legacy Management currently manages ongoingmore » activities at the former mill facility, including groundwater remediation. Remediation activities are designed primarily to reduce the concentrations and total plume mass of the mill-related contaminants sulfate, uranium, and nitrate. In addition to contaminating groundwater in alluvial and bedrock sediments directly below the mill site, ore processing led to contamination of a nearby floodplain bordering the San Juan River. Groundwater in a shallow alluvial aquifer beneath the floodplain is strongly influenced by the morphology of the river channel as well as changing flows in the river, which provides drainage for regional runoff from the San Juan Mountains of Colorado. As part of a recent study of the floodplain hydrology, a revised conceptual model was developed for the alluvial aquifer along with an updated status of contaminant plumes that have been impacted by more than 10 years of groundwater pumping for site remediation purposes. Several findings from the recent study will be discussed here.« less
Ammonium Sulfate Evaporites Associated With Uranium Mill Tailings Disposal Cells
NASA Astrophysics Data System (ADS)
Wendlandt, R. F.; Harrison, W. J.
2006-12-01
The waste products of uranium mill operations are complex and dependent on the ore mineralogy, milling process (e.g., low pH vs. high pH), and operational status of the mill among other things. The White Mesa Mill, Utah, was visited during both quiescent (July 2004) and operational phases (August 2005) to collect liquid and solid samples from the active evaporation and storage ponds environments (Cells 1 and 3). Cell 4, which was unused and being excavated at the times of both samplings, yielded solids accumulated through the history of that cell's use. Raffinate samples are concentrated Na-Mg-Al-Fe-SO4-NO3(-NH4) brines characterized by extreme enrichments in REE and transition elements. Ionic strengths, calculated using the Pitzer activity coefficient model varied from 25M (pH = 1 at 25°C) in Cell 1 and 12M (pH = 2.7) in Cell 3 during July 2004, to 5M (pH = 1.5) in Cell 1 and 1.2M (pH = 2.9) in Cell 3 during August 2005. At the first sampling, the dominant anion was sulfate in Cell 1 and nitrate in Cell 3. At the time of the second sampling, both cells were dominated by sulfate. During July 2004, there was significant evaporative drawdown in the ponds, resulting in 3 variably colored zones (~7m) of mineralogically complex evaporites at the cell margins. During August 2005, the operational nature of the mill and the addition of fresh water had produced high water levels in Cells 1 and 3. Evaporation crusts were recognized around the margins of the cells but they were <2m in extent. XRD analyses document the presence of boussingaultite, (NH4)2Mg(SO4)2.6H2O, which was actively precipitating from Cell 1 during 2004, tschermigite, (NH4)Al(SO4)2.12H2O, gypsum, and polymorphs of Na2SO4 including thenardite. ESEM imaging and EDS analyses of crusts reveal complex parageneses involving the above-mentioned phases and NH4-bearing metavoltine, K2Na6Fe^{+2}Fe6^{+3}(SO4)12O2.18H2O, among others. Ksp calculations and field relations are consistent with a precipitation sequence of tschermigite followed by boussingaultite and metavoltine.
Preliminary Report on the White Canyon Area, San Juan County, Utah
Benson, William Edward Barnes; Trites, A.F.; Beroni, E.P.; Feeger, J.A.
1952-01-01
The White Canyon area in San Juan County, Utah, contains known deposits of copper-uranium ore and is currently being mapped and studied by the Geological Survey. To date, approximately 75 square miles, or about 20 percent of the area, has been mapped on a scale 1 inch=1 mile. The White Canyon area is underlain by more than 2,000 feet of sedimentary rocks, Carboniferous to Jurassic(?) in age. The area is on the flank of the Elk Ridge anticline, and the strata have a regional dip of 1 deg to 2 deg SW. The Shinarump conglomerate of Late Triassic age is the principal ore-bearing formation. The Shinarump consists of lenticular beds of sandstone, conglomeratic sandstone, clay, and siltstone, and ranges in thickness from a feather edge to as much as 75 feet. Locally the sandstones contain silicified and carbonized wood and fragments of charcoal. These vegetal remains are especially common in channel-fill deposits. Jointing is prominent in the western part of the area, and apparently affects all formations. Adjacent to the joints some of the redbeds in the sequence are bleached. Deposits of copper-uranium minerals have been found in the Moenkopi, Shinarump, and Chinle formations, but the only production of ore has been from the Shinarump conglomerate. The largest concentration of these minerals is in the lower third of the Shinarump, and the deposits seem to be controlled in part by ancient channel fills and in part by fractures. Locally precipitation of the copper and uranium minerals apparently has been aided by charcoal and clays. Visible uranium minerals include both hard and soft pitchblende and secondary hydrosulfates, phosphates, and silicates. In addition, unidentified uranium compounds are present in carbonized wood and charcoal, and in veinlets of hydrocarbons. Base-metal sulfides have been identified in all prospects that extend beyond the oxidized zone. Secondary copper minerals in the oxidized zone include the hydrous sulfates and carbonates, and possibly chrysocolla. The principal gangue minerals are quartz, clay minerals, chlorite, oxides of iron and manganese, alunite, calcite, gypsum, pyrite, allophane, gibbsite, opal, and chalcedony. The origin of the copper-uranium ores has not been determined, but the association of many deposits with fractures, the mineralogic assemblage, and a lead-uranium age determination of 50 to 60 million years for the pitchblende in the Happy Jack mine favor the hypothesis that the ores are of hydrothermal origin and were deposited in early Tertiary time. Criteria believed to be the most useful in prospecting for new deposits are (1) visible uranium minerals; (2) visible copper minerals; (3) alunite; (4) hydrocarbons; and (5) bleaching of the underlying Moenkopi formation.
Microbial physiology-based model of ethanol metabolism in subsurface sediments
NASA Astrophysics Data System (ADS)
Jin, Qusheng; Roden, Eric E.
2011-07-01
A biogeochemical reaction model was developed based on microbial physiology to simulate ethanol metabolism and its influence on the chemistry of anoxic subsurface environments. The model accounts for potential microbial metabolisms that degrade ethanol, including those that oxidize ethanol directly or syntrophically by reducing different electron acceptors. Out of the potential metabolisms, those that are active in the environment can be inferred by fitting the model to experimental observations. This approach was applied to a batch sediment slurry experiment that examined ethanol metabolism in uranium-contaminated aquifer sediments from Area 2 at the U.S. Department of Energy Field Research Center in Oak Ridge, TN. According to the simulation results, complete ethanol oxidation by denitrification, incomplete ethanol oxidation by ferric iron reduction, ethanol fermentation to acetate and H 2, hydrogenotrophic sulfate reduction, and acetoclastic methanogenesis: all contributed significantly to the degradation of ethanol in the aquifer sediments. The assemblage of the active metabolisms provides a frame work to explore how ethanol amendment impacts the chemistry of the environment, including the occurrence and levels of uranium. The results can also be applied to explore how diverse microbial metabolisms impact the progress and efficacy of bioremediation strategies.
Redox Conditions and Related Color Change in Eastern Equatorial Pacific Sediments: IODP Site U1334
NASA Astrophysics Data System (ADS)
Kordesch, W. E.; Gussone, N. C.; Hathorne, E. C.; Kimoto, K.; Delaney, M. L.
2011-12-01
This study was prompted by a 65 m thick brown-green color change in deep-sea sediments of IODP Site U1334 (0-38 Ma, 4799 m water depth) that corresponds to its equatorial crossing (caused by the Northward movement of the pacific plate). Green sediment is a visual indicator of reducing conditions in sediment due to enhanced organic matter deposition and burial. Here we use geochemical redox indicators to characterize the effect of equatorial upwelling on bottom water. The modern redox signal is captured in porewater profiles (nitrate, manganese, iron, sulfate) while trace metal Enrichment Factors (EF) in bulk sediment (manganese, uranium, molybdenum, rhenium) normalized to the detrital component (titanium) record redox state at burial. To measure export productivity we also measure biogenic barium. Porewater profiles reveal suboxic diagenesis; profiles follow the expected sequence of nitrate, manganese oxide, and iron oxide reduction with increasing depth. Constant sulfate (~28 μM) implies anoxia has not occurred. Bulk sediment Mn EF are enriched (EF > 1) throughout the record (Mn EF = 15-200) while U and Mo enrichment corresponds to green color and equatorial proximity (U EF = 4-19; Mo EF = 0-7). Constant Mn enrichment implies continuous oxygenation. Uranium and Mo enrichment near the equator represents suboxic conditions also seen in the porewater. Low Re concentrations (below detection) provide additional evidence against anoxia. A comparison of Mn EF from total digestions to samples treated with an additional reductive cleaning step distinguishes between Mn-oxides and Mn-carbonates, indicating oxygenated and reducing conditions respectively. Mn-carbonate occurrence agrees with U and Mo EF; conditions were more reducing near the equator. Bio-Ba shows significant variability over this interval (22-99 mmol g-1). Our geochemical results indicate that bottom waters became suboxic at the equator as a result of equatorial upwelling-influenced increases in organic matter sedimentation. Comparison of results to Site U1335 (0-26 Ma, 4327 m water depth) will test the relative importance of equatorial proximity.
Contaminant dispersion at the rehabilitated Mary Kathleen uranium mine, Australia
NASA Astrophysics Data System (ADS)
Lottermoser, B. G.; Ashley, P. M.; Costelloe, M. T.
2005-09-01
This study reports on the transfer of contaminants from waste rock dumps and mineralised ground into soils, sediments, waters and plants at the rehabilitated Mary Kathleen uranium mine in semi-arid northwest Queensland. Numerous waste rock dumps were partly covered with benign soil and the open pit mine was allowed to flood. The mineralised and waste calc-silicate rock in the open pit and dumps has major (>1 wt%) Ca, Fe and Mg, minor (>1,000 ppm) Ce, La, Mn, P and S, subminor (>100 ppm) Ba, Cu, Th and U, and trace (<100 ppm) As, Ni, Pb, Y and Zn values. Consequently, chemical and physical weathering processes have acted on waste rock and on rock faces within the open pit, mobilising many elements and leading to their dispersion into soils, stream sediments, pit water and several plant species. Chemical dispersion is initiated by sulfide mineral breakdown, generation of sulfuric acid and formation of several soluble, transient sulfate minerals as evaporative efflorescent precipitates. Radiation doses associated with the open pit average 5.65 mSv year-1; waste dumps commonly have lower values, especially where soil-covered. Surface pit water is slightly acid, with high sulfate values accompanied by levels of U, Cu and Ni close to or above Australian water guideline values for livestock. Dispersion of U and related elements into soils and stream sediments occurs by physical (erosional) processes and from chemical precipitation. Plants growing in the mine void, on waste dumps and contaminated soil display evidence of biological uptake of U, LREE, Cu and Th and to a lesser degree of As, Ni, Pb, Y and Zn, with values being up to 1-2 orders of magnitude above background sites for the same species. Although rehabilitation procedures have been partly successful in reducing dispersion of U and related elements into the surrounding environment, it is apparent that 20 years after rehabilitation, there is significant physical and chemical mobility, including transfer into plants.
Bondici, V F; Lawrence, J R; Khan, N H; Hill, J E; Yergeau, E; Wolfaardt, G M; Warner, J; Korber, D R
2013-06-01
To describe the diversity and metabolic potential of microbial communities in uranium mine tailings characterized by high pH, high metal concentration and low permeability. To assess microbial diversity and their potential to influence the geochemistry of uranium mine tailings using aerobic and anaerobic culture-based methods, in conjunction with next generation sequencing and clone library sequencing targeting two universal bacterial markers (the 16S rRNA and cpn60 genes). Growth assays revealed that 69% of the 59 distinct culturable isolates evaluated were multiple-metal resistant, with 15% exhibiting dual-metal hypertolerance. There was a moderately positive correlation coefficient (R = 0·43, P < 0·05) between multiple-metal resistance of the isolates and their enzyme expression profile. Of the isolates tested, 17 reduced amorphous iron, 22 reduced molybdate and seven oxidized arsenite. Based on next generation sequencing, tailings depth was shown to influence bacterial community composition, with the difference in the microbial diversity of the upper (0-20 m) and middle (20-40 m) tailings zones being highly significant (P < 0·01) from the lower zone (40-60 m) and the difference in diversity of the upper and middle tailings zone being significant (P < 0·05). Phylotypes closely related to well-known sulfate-reducing and iron-reducing bacteria were identified with low abundance, yet relatively high diversity. The presence of a population of metabolically-diverse, metal-resistant micro-organisms within the tailings environment, along with their demonstrated capacity for transforming metal elements, suggests that these organisms have the potential to influence the long-term geochemistry of the tailings. This study is the first investigation of the diversity and functional potential of micro-organisms present in low permeability, high pH uranium mine tailings. © 2013 The Society for Applied Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Titov, A.V.; Semenova, M.P.; Seregin, V.A.
2013-07-01
Manmade chemical and radioactive contamination of groundwater is one of damaging effects of the uranium mining and milling facilities. Groundwater contamination is of special importance for the area of Priargun Production Mining and Chemical Association, JSC 'PPMCA', because groundwater is the only source of drinking water. The paper describes natural conditions of the site, provides information on changes of near-surface area since the beginning of the company, illustrates the main trends of contaminators migration and assesses manmade impact on the quality and mode of near-surface and ground waters. The paper also provides the results of chemical and radioactive measurements inmore » groundwater at various distances from the sources of manmade contamination to the drinking water supply areas. We show that development of deposits, mine water discharge, leakages from tailing dams and cinder storage facility changed general hydro-chemical balance of the area, contributed to new (overlaid) aureoles and flows of scattering paragenetic uranium elements, which are much smaller in comparison with natural ones. However, increasing flow of groundwater stream at the mouth of Sukhoi Urulyungui due to technological water infiltration, mixing of natural water with filtration streams from industrial reservoirs and sites, containing elevated (relative to natural background) levels of sulfate-, hydro-carbonate and carbonate- ions, led to the development and moving of the uranium contamination aureole from the undeveloped field 'Polevoye' to the water inlet area. The aureole front crossed the southern border of water inlet of drinking purpose. The qualitative composition of groundwater, especially in the southern part of water inlet, steadily changes for the worse. The current Russian intervention levels of gross alpha activity and of some natural radionuclides including {sup 222}Rn are in excess in drinking water; regulations for fluorine and manganese concentrations are also in excess. Possible ways to improve the situation are considered. (authors)« less
AQUO-OXALATO-SULFATE COMPOUNDS OF URANIUM (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chernyaev, I.I.; Golovnya, V.A.; Shchelokov, R.N.
1960-07-01
The following mixed aquo-acido complex uranyl compounds containing an oxalate and a sulfate group were synthesized for the first time: K/sub 2/STAUO/ sub 2/(C/sub 2/O/sub 4/) (SO/sub 4/ (H/sub 2/O)/sub 2/!. H/sub 2/O, Rb/sub 2/ STAUO/sub 2/(C/sub 2/O/sub 4/)(SO/sub 4/)(H/sub 2/O)/sub 2/!, Cs/sub 2/STAUO/sub 2/(C/sub 2/O/sub 4/)(SO/sub 4/)(H/sub 2/O)/sub 2/)!, and Cs(NH/sub 4/) (UO/sub 2/ (C/sub 2/O/sub 4/) (SO/sub 4/)(H/sub 2/O)/sub 2/!. T he molecular conductivity and pH were determined in dilute solutions, and it was concluded that the decrease in stability of these complexes in aqueous solution is as follows: STAUO/ sub 2/(C/sub 2/O/sub 4/)/sub 2/(H/sub 2/O)/sub 2/!/sup 2-/more » > STAUO/sub 2/(C/su b 2/O/sub 4/)(SO/sub 4)(H/sub 2/O)/sub 2/!/sup 2-/ > STAUO/sub 2/(SO/sub 4/)/sub 2/ (H/sub 2O)/sub 2/!/sup 2-. (TTT)« less
NASA Astrophysics Data System (ADS)
Carpenter, J.; Hyun, S.; Hayes, K. F.
2010-12-01
Uranium (U) originating from mining operations for weapon manufacturing and nuclear energy production is a significant radionuclide contaminant in groundwater local to uranium mining, uranium milling, and uranium mill tailing (UMT) storage sites. In the USA, the Department of Energy (DOE) is currently overseeing approximately 24 Uranium Mill Tailing Remediation Action (UMTRA) sites which have collectively processed over 27 million tons of uranium ore1,2. In-Situ microbial bio-reduction of the highly mobile U6+ ion into the dramatically less mobile U4+ ion has been demonstrated as an effective remedial process to inhibit uranium migration in the aqueous phase3. The resistance of this process to oxidization and possible remobilization of U when bioremediation stops (and oxidants such as oxygen from the air or nitrate in water diffuse into the formation) in the long term is not known. UMTRA site studies3 have shown that iron sulfide solids are produced by sulfate reducing bacteria (SRB) during U bioremediation, and some forms of these iron sulfide solids are known to be effective oxidant scavengers, potentially protecting against re-oxidation and thus remobilization of U. This work is investigating the role of iron sulfide solids in the long-term immobilization of reduced U compounds after bioremediation is completed in groundwater local to UMTRA sites. Re-oxidation tests are being performed in packed media columns loaded with both FeS and U solids. High quality mackinawite (FeS), and uraninite (UO2) have been synthesized in our laboratory via a wet chemistry approach. These synthetic materials are expected to mimic the naturally occurring and biogenic materials present in biologically stimulated UMTRA sites. In order to establish the initial conditions of the prepared experimental columns and to compare synthetic and biogenic FeS and UO2, these synthesized materials have been characterized with synchrotron radiation at the Stanford Synchrotron Radiation Lightsource using synchrotron x-ray powder diffraction (SXRD) and extended x-ray absorption fine structure (EXAFS). SXRD data were collected and analyzed with profile fitting to determine lattice parameters and crystallite size for comparison with published values for both biogenic and synthetic materials. This is particularly of interest for UO2, as there is very little information on particle size and lattice parameters for synthetic UO2 in the literature. Profile fitting of the SXRD data for FeS gives lattice parameters of a = b = 3.668 and a mean crystallite size of 5 to 8 nm. Both of these values are in good agreement with published values. For fresh UO2, lattice parameters were determined as a = b = c = 5.4 nm for both freshly synthesized and aged (3 months) UO2 and particle size was determined to be 3.5 nm for fresh UO2 and 5.83 nm for aged UO2. This suggests a growth mechanism for crystallites over time, and an inferred decrease in reactivity.
Preparation of alpha-emitting nuclides by electrodeposition
NASA Astrophysics Data System (ADS)
Lee, M. H.; Lee, C. W.
2000-06-01
A method is described for electrodepositing the alpha-emitting nuclides. To determine the optimum conditions for plating plutonium, the effects of electrolyte concentration, chelating reagent, current, pH of electrolyte and the time of plating on the electrodeposition were investigated on the base of the ammonium oxalate-ammonium sulfate electrolyte containing diethyl triamino pentaacetic acid. An optimized electrodeposition procedure for the determination of plutonium was validated by application to environmental samples. The chemical yield of the optimized method of electrodeposition step in the environmental sample was a little higher than that of Talvitie's method. The developed electrodeposition procedure in this study was applied to determine the radionuclides such as thorium, uranium and americium that the electrodeposition yields were a little higher than those of the conventional method.
NASA Astrophysics Data System (ADS)
Ito, S.; Takaku, Y.; Ikeda, M.; Kishimoto, Y.
2018-01-01
The Super Kamiokand-Gadolinium (SK-Gd) project is the upgrade of the Super-Kamiokande (SK) detector in order to discover Supernova Relic Neutrinos (SRNs) by loading 0.2% of Gd2(SO4)3 into a 50 kton of the SK water tank. In order to continue solar neutrino measurement with low energy threshold at ˜3.5 MeV, main radioactive contamination, U and Th in Gd2(SO4)3, should be purified before loading. We developed solid-phase extraction technique to measure low concentration of U and Th in Gd2(SO4)3 by ICP-MS. The extraction technique and current status will be presented.
Formation and resulfidization of a South Texas roll-type uranium deposit
Goldhaber, Martin B.; Reynolds, Richard L.; Rye, Robert O.
1979-01-01
Core samples from a roll type uranium deposit in Live Oak County, south Texas have been studied and results are reported for Se, Mo, FeS2 and organic-carbon distribution, sulfide mineral petrology, and sulfur isotopic composition of iron-disulfide phases. In addition, sulfur isotopic compositions of dissolved sulfate and sulfide from the modern ground water within the ore bearing sand have been studied. The suite of elements in the ore sand and their geometric relationships throughout the deposit are those expected for typical roll-type deposits with well-developed oxidation-reduction interfaces. However, iron-disulfide minerals are abundant in the altered tongue, demonstrating that this interval has been sulfidized after mineralization (resulfidized or rereduced). Iron disulfide minerals in the rereduced interval differ mineralogically and isotopically from those throughout the remainder of the deposit. The resulfidized sand contains dominantly pyrite that is enriched in 34S, whereas the sand beyond the altered tongue contains abundant marcasite that is enriched in the light isotope, 32S. Textural relationships between pyrite and marcasite help to establish relative timing of iron disulfide formation. In reduced rock outside the altered tongue, three distinct generations of iron disulfide are present. The oldest of these generations consists largely of pyrite with lesser amounts of marcasite. A major episode of marcasite formation contemporaneous with ore genesis postdates the oldest pyrite generation but predates a younger pyrite generation. Resulfidization probably led to the final pyrite stage recognized beyond the altered tongue. Stable isotope data establish that the source of sulfur for the resulfidization was fault-leaked H2S probably derived from the Edwards Limestone of Cretaceous age which underlies the deposit. The deposit formed in at least two stages: (1) a pre-ore process of host rock sulfidization which produced disseminated pyrite as the dominant iron disulfide phase; and (2) an ore-stage process which led to the development of the uranium roll with emplacement of the characteristic suite of minor and accessory elements and which produced abundant isotopically light marcasite. The host rock was modified by a post-ore stage of resulfidization which precipitated isotopically heavy pyrite. Sulfur isotopic compositions of sulfide and sulfate present in modern ground water within the host sand differ greatly from sulfur isotopic composition of iron disulfides formed during the resulfidization episode. Iron disulfide minerals formed from the sulfur species of modern ground water have not been unequivocally identified.
Uranium in groundwater - A synopsis based on a large hydrogeochemical data set.
Riedel, Thomas; Kübeck, Christine
2018-02-01
Most of the knowledge on the occurrence of Uranium (U) in groundwater comes from in-situ manipulation experiments in the field, computational modelling studies or from laboratory analyses where individual processes of U mobilization were studied in isolation. Because of Uranium's vital redox chemistry it interacts, often simultaneously, with many other element cycles (e.g., sulfur, carbon, iron, and manganese) making it difficult to predict U concentrations in natural environments. For the present study a large data set was analyzed to predict the occurrence of U in groundwater from basic hydrochemistry. The data set consists of more than 8000 chemical groundwater analyses (including Uranium concentrations) from more than 2000 sampling locations. A strong relation between U concentrations and electric conductivity as well as alkalinity was observed, suggesting that weathering of geogenic source material and desorption from mineral surfaces is the principle mechanism of U release. Except for aquifers with strongly reducing conditions this process leads to a slow but continuous accumulation of U in groundwater in most cases. Importantly, the occurrence of U is modulated by the prevailing redox conditions in an aquifer. Uranium concentrations were moderate under oxic conditions and highest under manganese and nitrate-reducing conditions (heterotrophic as wells as autotrophic nitrate reduction). Only in iron- and sulfate-reducing groundwater the probability of U concentrations above 1 μg l -1 was virtually zero, as these ground waters act as U sinks. The combination of mineral weathering (especially carbonates) with mobilization of U under manganese and nitrate reducing conditions results in the highest risk of detecting U. In contrast, a low risk is associated with low pH (<7) and low mineralization of groundwater, which is the case in granitic catchments, for example. Our results further provide evidence, that agricultural practices such as liming, use of fertilizers and irrigation influence the occurrence of U in groundwater in multiple ways. Accurate management of aquifers underlying farmland will therefore become more and more important in the future. In summary, we find that the vulnerability of an aquifer to elevated U concentrations cannot be explained by a single factor. This complicates efforts to target elevated U concentrations in groundwaters that are abstracted for drinking water production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Burkhardt, Eva-Maria; Akob, Denise M; Bischoff, Sebastian; Sitte, Jana; Kostka, Joel E; Banerjee, Dipanjan; Scheinost, Andreas C; Küsel, Kirsten
2010-01-01
Understanding the dynamics of metals and radionuclides in soil environments is necessary for evaluating risks to pristine sites. An iron-rich creek soil of a former uranium-mining district (Ronneburg, Germany) showed high porewater concentrations of heavy metals and radionuclides. Thus, this study aims to (i) evaluate metal dynamics during terminal electron accepting processes (TEAPs) and (ii) characterize active microbial populations in biostimulated soil microcosms using a stable isotope probing (SIP) approach. In biostimulated soil slurries, concentrations of soluble Co, Ni, Zn, As, and unexpectedly U increased during Fe(III)-reduction. This suggests that there was a release of sorbed metals and As during reductive dissolution of Fe(III)-oxides. Subsequent sulfate-reduction was concurrent with a decrease of U, Co, Ni, and Zn concentrations. The relative contribution of U(IV) in the solid phase changed from 18.5 to 88.7% after incubation. The active Fe(III)-reducing population was dominated by delta-Proteobacteria (Geobacter) in (13)C-ethanol amended microcosms. A more diverse community was present in (13)C-lactate amended microcosms including taxa related to Acidobacteria, Firmicutes, delta-Proteobacteria, and beta-Proteobacteria. Our results suggested that biostimulated Fe(III)-reducing communities facilitated the release of metals including U to groundwater which is in contrast to other studies.
Bresloff, Cynthia J.; Nguyen, Uyen; Glenn, Edward P.; Waugh, Jody; Nagler, Pamela L.
2013-01-01
This study employed ground and remote sensing methods to monitor the effects of grazing on leaf area index (LAI), fractional cover (fc) and evapotranspiration (ET) of a desert phreatophyte community over an 11 year period at a former uranium mill site on the Colorado Plateau, U.S. Nitrate, ammonium and sulfate are migrating away from the mill site in a shallow alluvial aquifer. The phreatophyte community, consisting of Atriplex canescens (ATCA) and Sarcobatus vermiculatus (SAVE) shrubs, intercepts groundwater and could potentially slow the movement of the contaminant plume through evapotranspiration (ET). However, the site has been heavily grazed by livestock, reducing plant cover and LAI. We used livestock exclosures and revegetation plots to determine the effects of grazing on LAI, fc and ET, then projected the findings over the whole site using multi-platform remote sensing methods. We show that ET is approximately equal to annual precipitation at the site, but when ATCA and SAVE are protected from grazing they can develop high fc and LAI values, and ET can exceed annual precipitation, with the excess coming from groundwater discharge. Therefore, control of grazing could be an effective method to slow migration of contaminants at this and similar sites in the western U.S.
Mayer, S.W.
1962-11-13
This invention relates to a nuciear reactor fuel composition comprising (1) from about 0.01 to about 50 wt.% based on the total weight of said composition of at least one element selected from the class consisting of uranium, thorium, and plutonium, wherein said eiement is present in the form of at least one component selected from the class consisting of oxides, halides, and salts of oxygenated anions, with components comprising (2) at least one member selected from the class consisting of (a) sulfur, wherein the sulfur is in the form of at least one entity selected irom the class consisting of oxides of sulfur, metal sulfates, metal sulfites, metal halosulfonates, and acids of sulfur, (b) halogen, wherein said halogen is in the form of at least one compound selected from the class of metal halides, metal halosulfonates, and metal halophosphates, (c) phosphorus, wherein said phosphorus is in the form of at least one constituent selected from the class consisting of oxides of phosphorus, metal phosphates, metal phosphites, and metal halophosphates, (d) at least one oxide of a member selected from the class consisting of a metal and a metalloid wherein said oxide is free from an oxide of said element in (1); wherein the amount of at least one member selected from the class consisting of halogen and sulfur is at least about one at.% based on the amount of the sum of said sulfur, halogen, and phosphorus atom in said composition; and wherein the amount of said 2(a), 2(b) and 2(c) components in said composition which are free from said elements of uranium, thorium, arid plutonium, is at least about 60 wt.% based on the combined weight of the components of said composition which are free from said elements of uranium, thorium, and plutonium. (AEC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, Donald Timothy; Borkowski, Marian; Lucchini, Jean - Francois
2010-12-10
The fate and potential mobility of multivalent actinides in the subsurface is receiving increased attention as the DOE looks to cleanup the many legacy nuclear waste sites and associated subsurface contamination. Plutonium, uranium and neptunium are the near-surface multivalent contaminants of concern and are also key contaminants for the deep geologic disposal of nuclear waste. Their mobility is highly dependent on their redox distribution at their contamination source as well as along their potential migration pathways. This redox distribution is often controlled, especially in the near-surface where organic/inorganic contaminants often coexist, by the direct and indirect effects of microbial activity.more » Under anoxic conditions, indirect and direct bioreduction mechanisms exist that promote the prevalence of lower-valent species for multivalent actinides. Oxidation-state-specific biosorption is also an important consideration for long-term migration and can influence oxidation state distribution. Results of ongoing studies to explore and establish the oxidation-state specific interactions of soil bacteria (metal reducers and sulfate reducers) as well as halo-tolerant bacteria and Archaea for uranium, neptunium and plutonium will be presented. Enzymatic reduction is a key process in the bioreduction of plutonium and uranium, but co-enzymatic processes predominate in neptunium systems. Strong sorptive interactions can occur for most actinide oxidation states but are likely a factor in the stabilization of lower-valent species when more than one oxidation state can persist under anaerobic microbiologically-active conditions. These results for microbiologically active systems are interpreted in the context of their overall importance in defining the potential migration of multivalent actinides in the subsurface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waldron, P.J.; Wu, L.; Van Nostrand, J.D.
2009-06-15
To understand how contaminants affect microbial community diversity, heterogeneity, and functional structure, six groundwater monitoring wells from the Field Research Center of the U.S. Department of Energy Environmental Remediation Science Program (ERSP; Oak Ridge, TN), with a wide range of pH, nitrate, and heavy metal contamination were investigated. DNA from the groundwater community was analyzed with a functional gene array containing 2006 probes to detect genes involved in metal resistance, sulfate reduction, organic contaminant degradation, and carbon and nitrogen cycling. Microbial diversity decreased in relation to the contamination levels of the wells. Highly contaminated wells had lower gene diversity butmore » greater signal intensity than the pristine well. The microbial composition was heterogeneous, with 17-70% overlap between different wells. Metal-resistant and metal-reducing microorganisms were detected in both contaminated and pristine wells, suggesting the potential for successful bioremediation of metal-contaminated groundwaters. In addition, results of Mantel tests and canonical correspondence analysis indicate that nitrate, sulfate, pH, uranium, and technetium have a significant (p < 0.05) effect on microbial community structure. This study provides an overall picture of microbial community structure in contaminated environments with functional gene arrays by showing that diversity and heterogeneity can vary greatly in relation to contamination.« less
Tang, Guoping; Watson, David B; Wu, Wei-Min; Schadt, Christopher W; Parker, Jack C; Brooks, Scott C
2013-04-02
We amended a shallow fast-flowing uranium (U) contaminated aquifer with emulsified vegetable oil (EVO) and subsequently monitored the biogeochemical responses for over a year. Using a biogeochemical model developed in a companion article (Tang et al., Environ. Sci. Technol.2013, doi: 10.1021/es304641b) based on microcosm tests, we simulated geochemical and microbial dynamics in the field test during and after the 2-h EVO injection. When the lab-determined parameters were applied in the field-scale simulation, the estimated rate coefficient for EVO hydrolysis in the field was about 1 order of magnitude greater than that in the microcosms. Model results suggested that precipitation of long-chain fatty acids, produced from EVO hydrolysis, with Ca in the aquifer created a secondary long-term electron donor source. The model predicted substantial accumulation of denitrifying and sulfate-reducing bacteria, and U(IV) precipitates. The accumulation was greatest near the injection wells and along the lateral boundaries of the treatment zone where electron donors mixed with electron acceptors in the groundwater. While electron acceptors such as sulfate were generally considered to compete with U(VI) for electrons, this work highlighted their role in providing electron acceptors for microorganisms to degrade complex substrates thereby enhancing U(VI) reduction and immobilization.
Heavy metal mining using microbes.
Rawlings, Douglas E
2002-01-01
The use of acidiphilic, chemolithotrophic iron- and sulfur-oxidizing microbes in processes to recover metals from certain types of copper, uranium, and gold-bearing minerals or mineral concentrates is now well established. During these processes insoluble metal sulfides are oxidized to soluble metal sulfates. Mineral decomposition is believed to be mostly due to chemical attack by ferric iron, with the main role of the microorganisms being to reoxidize the resultant ferrous iron back to ferric iron. Currently operating industrial biomining processes have used bacteria that grow optimally from ambient to 50 degrees C, but thermophilic microbes have been isolated that have the potential to enable mineral biooxidation to be carried out at temperatures of 80 degrees C or higher. The development of higher-temperature processes will extend the variety of minerals that can be commercially processed.
SIMULANT DEVELOPMENT FOR SAVANNAH RIVER SITE HIGH LEVEL WASTE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, M; Russell Eibling, R; David Koopman, D
2007-09-04
The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste (HLW) for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, and sulfate). The HLW is processed in large batches through DWPF; DWPF has recently completed processing Sludge Batch 3 (SB3) and is currently processing Sludge Batch 4 (SB4). The composition of metal species in SB4 is shown in Table 1 as a function of the ratiomore » of a metal to iron. Simulants remove radioactive species and renormalize the remaining species. Supernate composition is shown in Table 2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leigh, Mary Beth; Wu, Wei -Min; Cardenas, Erick
Stable isotope probing (SIP) was used to identify microbes stimulated by ethanol addition in microcosms containing two sediments collected from the bioremediation test zone at the US Department of Energy Oak Ridge site, TN, USA. One sample was highly bioreduced with ethanol while another was less reduced. Microcosms with the respective sediments were amended with 13C labeled ethanol and incubated for 7 days for SIP. Ethanol was rapidly converted to acetate within 24 h accompanied with the reduction of nitrate and sulfate. The accumulation of acetate persisted beyond the 7 d period. Aqueous U did not decline in the microcosmmore » with the reduced sediment due to desorption of U but continuously declined in the less reduced sample. Microbial growth and concomitant 13C-DNA production was detected when ethanol was exhausted and abundant acetate had accumulated in both microcosms. This coincided with U(VI) reduction in the less reduced sample. 13C originating from ethanol was ultimately utilized for growth, either directly or indirectly, by the dominant microbial community members within 7 days of incubation. The microbial community was comprised predominantly of known denitrifiers, sulfate-reducing bacteria and iron (III) reducing bacteria including Desulfovibrio, Sphingomonas, Ferribacterium, Rhodanobacter, Geothrix, Thiobacillus and others, including the known U(VI)-reducing bacteria Acidovorax, Anaeromyxobacter, Desulfovibrio, Geobacter and Desulfosporosinus. As a result, the findings suggest that ethanol biostimulates the U(VI)-reducing microbial community by first serving as an electron donor for nitrate, sulfate, iron (III) and U(VI) reduction, and acetate which then functions as electron donor for U(VI) reduction and carbon source for microbial growth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youker, Amanda J.; Krebs, John F.; Quigley, Kevin J.
With funding from the National Nuclear Security Administrations Material Management and Minimization Office, Argonne National Laboratory (Argonne) is providing technical assistance to help accelerate the U.S. production of Mo-99 using a non-highly enriched uranium (non-HEU) source. A potential Mo-99 production pathway is by accelerator-initiated fissioning in a subcritical uranyl sulfate solution containing low enriched uranium (LEU). As part of the Argonne development effort, we are undertaking the AMORE (Argonne Molybdenum Research Experiment) project, which is essentially a pilot facility for all phases of Mo-99 production, recovery, and purification. Production of Mo-99 and other fission products in the subcritical target solutionmore » is initiated by putting an electron beam on a depleted uranium (DU) target; the fast neutrons produced in the DU target are thermalized and lead to fissioning of U-235. At the end of irradiation, Mo is recovered from the target solution and separated from uranium and most of the fission products by using a titania column. The Mo is stripped from the column with an alkaline solution. After acidification of the Mo product solution from the recovery column, the Mo is concentrated (and further purified) in a second titania column. The strip solution from the concentration column is then purified with the LEU Modified Cintichem process. A full description of the process can be found elsewhere [1–3]. The initial commissioning steps for the AMORE project include performing a Mo-99 spike test with pH 1 sulfuric acid in the target vessel without a beam on the target to demonstrate the initial Mo separation-and-recovery process, followed by the concentration column process. All glovebox operations were tested with cold solutions prior to performing the Mo-99 spike tests. Two Mo-99 spike tests with pH 1 sulfuric acid have been performed to date. Figure 1 shows the flow diagram for the remotely operated Mo-recovery system for the AMORE project. There are two separate pumps and flow paths for the acid and base operations. The system contains three sample ladders with eight sample loops per ladder for target mixing; column loading, including acid and water washes; and column stripping, including the final water wash.« less
Boughton, Gregory K.
2014-01-01
Groundwater samples were collected from 146 shallow (less than or equal to 500 feet deep) wells for the Wyoming Groundwater-Quality Monitoring Network, from November 2009 through September 2012. Groundwater samples were analyzed for physical characteristics, major ions and dissolved solids, trace elements, nutrients and dissolved organic carbon, uranium, stable isotopes of hydrogen and oxygen, volatile organic compounds, and coliform bacteria. Selected samples also were analyzed for gross alpha radioactivity, gross beta radioactivity, radon, tritium, gasoline range organics, diesel range organics, dissolved hydrocarbon gases (methane, ethene, and ethane), and wastewater compounds. Water-quality measurements and concentrations in some samples exceeded numerous U.S. Environmental Protection Agency (EPA) drinking water standards. Physical characteristics and constituents that exceeded EPA Maximum Contaminant Levels (MCLs) in some samples were arsenic, selenium, nitrite, nitrate, gross alpha activity, and uranium. Total coliforms and Escherichia coli in some samples exceeded EPA Maximum Contaminant Level Goals. Measurements of pH and turbidity and concentrations of chloride, sulfate, fluoride, dissolved solids, aluminum, iron, and manganese exceeded EPA Secondary Maximum Contaminant Levels in some samples. Radon concentrations in some samples exceeded the alternative MCL proposed by the EPA. Molybdenum and boron concentrations in some samples exceeded EPA Health Advisory Levels. Water-quality measurements and concentrations also exceeded numerous Wyoming Department of Environmental Quality (WDEQ) groundwater standards. Physical characteristics and constituents that exceeded WDEQ Class I domestic groundwater standards in some samples were measurements of pH and concentrations of chloride, sulfate, dissolved solids, iron, manganese, boron, selenium, nitrite, and nitrate. Measurements of pH and concentrations of chloride, sulfate, dissolved solids, aluminum, iron, manganese, boron, and selenium exceeded WDEQ Class II agriculture groundwater standards in some samples. Measurements of pH and concentrations of sulfate, dissolved solids, aluminum, boron, and selenium exceeded WDEQ Class III livestock groundwater standards in some samples. The concentrations of dissolved solids in two samples exceeded the WDEQ Class IV industry groundwater standard. Measurements of pH and concentrations of dissolved solids, aluminum, iron, manganese, and selenium exceeded WDEQ Class special (A) fish and aquatic life groundwater standards in some samples. Stable isotopes of hydrogen and oxygen measured in water samples were compared to the Global Meteoric Water Line and Local Meteoric Water Lines. Results indicated that recharge to all of the wells was derived from precipitation and that the water has undergone some fractionation, possibly because of evaporation. Concentrations of organic compounds did not exceed any State or Federal water-quality standards. Few volatile organic compounds were detected in samples, whereas gasoline range organics, diesel range organics, and methane were detected most frequently. Concentrations of wastewater compounds did not exceed any State or Federal water-quality standards. The compounds N,N-diethyl-meta-toluamide (DEET), benzophenone, and phenanthrene were detected most frequently. Bacteria samples were collected, processed, incubated, and enumerated in the field or at the U.S. Geological Survey Wyoming-Montana Water Science Center. Total coliforms and Escherichia coli were detected in some samples.
Geology and mineral deposits of the Carlile quadrangle, Crook County, Wyoming
Bergendahl, M.H.; Davis, R.E.; Izett, G.A.
1961-01-01
The Carlile quadrangle-is along the northwestern flank of the Black Hills uplift in Crook County, Wyo. The area-is primarily one of canyons and divides that are a result of downcutting by the Belle Fourche River and its tributaries through an alternating succession of sandstone, siltstone, and mudstone or shale beds. The present topography is also influenced by the regional structure, as reflected by the beds that dip gently westward and by the local structural features such as anticlines, domes, synclines, basins, and terraces, which are superimposed upon the regional setting. Rocks exposed include shale and thin limestone and sandstone beds belonging to the Redwater shale member of the Sundance formation and to the Morrison formation, both of Late Jurassic age; sandstone, siltstone, and mudstone of the Lakota and Fall River formations of Early Cretaceous age; and shale and sandstone of the Skull Creek shale, Newcastle sandstone, and Mowry shale, also of Early Cretaceous age. In the southwestern part of the quadrangle rocks of the Upper Cretaceous series are exposed. These include the Belle Fourche shale, Greenhorn formation, and Carlile shale. Gravel terraces, landslide debris, and stream alluvium comprise the surficial deposits. The Lakota and Fall River formations, which make up the Iriyan Kara group, contain uranium deposits locally in the northern Black Hills. These formations were informally subdivided in order to show clearly the vertical and lateral distribution of the sandstone, siltstone, and mudstone facies within them.The Lakota was subdivided into a sandstone unit and an overlying mudstone unit; the Fall River was subdivided, in ascending order, into a siltstone unit, a mudstone unit, a sandstone unit, and an upper unit. The lithologic character of the Lakota changes abruptly locally, and the units are quite inconsistent with respect to composition, thickness, and extent. This is in contrast to a notable consistency in the lithologic character and thickness among all the Fall River units, with the exception of the upper unit. Petrographic studies on selected samples of units from both formations show differences in composition between Lakota and Fall River rocks.The Carlile quadrangle lies immediately east of the monocline that marks the outer limit of the Black Hills uplift, and the rocks in this area have a regional dip of less than 2° outward from the center of the uplift. Superimposed upon the regional uplift are many subordinate structural features anticlines, synclines, domes, basins, and terraces which locally modify the regional features. The most pronounced of these subordinate structural features are the doubly-plunging Pine Ridge, Oil Butte, and Dakota Divide anticlines, and the Eggie Creek syncline. Stress throughout the area was relieved almost entirely through folding; only a few small nearly vertical normal faults were found within the quadrangle.Uranium has been mined from the Carlile deposit, owned by the Homestake Mining Co. The ore minerals, carnotite and tyuyamnuite occur in a sandstone lens that is enclosed within relatively impermeable clayey beds in the mudstone unit of the Lakota formation. The ore also includes unidentified black vanadium minerals and possibly coffinite. Uranium minerals are more abundant in and adjacent to thicker carbonaceous and silty seams in the sandstone lens. A mixture of fine-grained calcium carbonate and calcium sulfate fills the interstices between detrital quartz grains in mineralized sandstone. Selenium and arsenic are more abundant in samples that are high in uranium. Drilling on Thorn Divide about 1 mile west of the Carlile mine has roughly outlined concentrations of a sooty black uranium mineral associated with pyrite In two stratigraphic intervals of the Lakota formation. One is in the same sandstone lens that contains the ore at the Carlile mine; the other is in conglomeratic sandstone near the base of the Lakota. These deposits are relatively deep, and no mining has been attempted. The mineralogy of the Carlile deposits and the lithologic features of the sandstone host rock suggest that uranium and vanadium were transported in the high-valent state by carbonate or sulfate solutions, were extracted from solution by organic material, and were reduced to low-valent states to form an original assemblage of oxides and silicates. These primary minerals were oxidized in place, and the present carnotite-tyuyamunite assemblage was formed. In general, radioactivity analyses correspond fairly closely with chemical analyses of uranium, thus it is believed that only minor solution and migration of uranium has occurred since the present suite of oxidized minerals was formed. The factors responsible for ore localization are not clear, but probably a combination of three lithologic and structural elements contributed to provide a favorable environment for precipitating uranium from aqueous solutions: abundant carbonaceous material or pyrite in a thin, permeable sandstone enclosed within relatively thick impermeable clays; local structural basins; and a regional structural setting involving a broad syncline between two anticlines. The structural features controlled the regional flow of ground water and the lithologic features controlled the local rate of flow and provided the proper chemical environment for uranium deposition. Bentonite has been mined from an opencut in the Mowry shale in the southwest part of the quadrangle. A bentonite bed in the Newcastle sandstone also seems to be of minable thickness and quality. Exploration for petroleum has been unsuccessful within the quadrangle; however, some wells that yielded oil were recently drilled on small anticlines to the west and southeast. It is possible that similar structural features in the Carlile area, that were previously overlooked, may be equally productive.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawel, Steven J.
2014-10-01
Laboratory corrosion testing of candidate alloys—including Zr-4 and Zr-2.5Nb representing the target solution vessel, and 316L, 2304, 304L, and 17-4 PH stainless steels representing process piping and balance-of-plant components—was performed in support of the proposed SHINE process to produce 99Mo from low-enriched uranium. The test solutions used depleted uranyl sulfate in various concentrations and incorporated a range of temperatures, excess sulfuric acid concentrations, nitric acid additions (to simulate radiolysis product generation), and iodine additions. Testing involved static immersion of coupons in solution and in the vapor above the solution, and was extended to include planned-interval tests to examine details associatedmore » with stainless steel corrosion in environments containing iodine species. A large number of galvanic tests featuring couples between a stainless steel and a zirconium-based alloy were performed, and limited vibratory horn testing was incorporated to explore potential erosion/corrosion features of compatibility. In all cases, corrosion of the zirconium alloys was observed to be minimal, with corrosion rates based on weight loss calculated to be less than 0.1 mil/year with no change in surface roughness. The resulting passive film appeared to be ZrO2 with variations in thickness that influence apparent coloration (toward light brown for thicker films). Galvanic coupling with various stainless steels in selected exposures had no discernable effect on appearance, surface roughness, or corrosion rate. Erosion/corrosion behavior was the same for zirconium alloys in uranyl sulfate solutions and in sodium sulfate solutions adjusted to a similar pH, suggesting there was no negative effect of uranium resulting from fluid dynamic conditions aggressive to the passive film. Corrosion of the candidate stainless steels was similarly modest across the entire range of exposures. However, some sensitivity to corrosion of the stainless steels was observed in solutions with 50 wppm iodine (the actual SHINE process expects 0.1–1 wppm) with the highest corrosion rates (up to ~6 mil/year) observed on specimens exposed in the vapor phase. Lower concentrations of iodine species (5 or 28 wppm) proved much less corrosive, and the planned-interval data indicated that metal corrodibility decreased with time for all immersed exposures and, with one minor exception, all vapor exposures. Little change in susceptibility to corrosion was observed as a result of nitric acid additions to the test environment (simulating radiolysis products). The trend toward reduced corrosion (immersion and vapor phase) with decreasing iodine concentration suggests that, at the expected conditions in the SHINE process, it is unlikely that iodine species will generate a general corrosion concern for the candidate stainless steels.« less
Edberg, Frida; Andersson, Anders F; Holmström, Sara J M
2012-11-01
Mining of pyrite minerals is a major environmental issue involving both biological and geochemical processes. Here we present a study of an artificial lake of a former uranium open pit mine with the aim to connect the chemistry and bacterial community composition (454-pyrosequencing of 16S rRNA genes) in the stratified water column. A shift in the water chemistry from oxic conditions in the epilimnion to anoxic, alkaline, and metal and sulfide-rich conditions in the hypolimnion was corresponded by a strong shift in the bacterial community, with few shared operational taxonomic units (OTU) between the water layers. The epilimnetic bacterial community of the lake (~20 years old) showed similarities to other temperate freshwater lakes, while the hypolimnetic bacterial community showed similarity to extreme chemical environments. The epilimnetic bacterial community had dominance of Actinobacteria and Betaproteobacteria. The hypolimnion displayed a higher bacterial diversity and was dominated by the phototrophic green sulphur bacterium of the genus Chlorobium (ca. 40 % of the total community). Deltaproteobacteria were only represented in the hypolimnion and the most abundant OTUs were affiliated with ferric iron and sulfate reducers of the genus Geobacter and Desulfobulbus, respectively. The chemistry is clearly controlling, especially the hypolimnetic, bacterial community but the community composition also indicates that the bacteria are involved in metal cycling in the lake.
Deng, Ye; Zhang, Ping; Qin, Yujia; Tu, Qichao; Yang, Yunfeng; He, Zhili; Schadt, Christopher Warren; Zhou, Jizhong
2016-01-01
Discerning network interactions among different species/populations in microbial communities has evoked substantial interests in recent years, but little information is available about temporal dynamics of microbial network interactions in response to environmental perturbations. Here, we modified the random matrix theory-based network approach to discern network succession in groundwater microbial communities in response to emulsified vegetable oil (EVO) amendment for uranium bioremediation. Groundwater microbial communities from one control and seven monitor wells were analysed with a functional gene array (GeoChip 3.0), and functional molecular ecological networks (fMENs) at different time points were reconstructed. Our results showed that the network interactions were dramatically altered by EVO amendment. Dynamic and resilient succession was evident: fairly simple at the initial stage (Day 0), increasingly complex at the middle period (Days 4, 17, 31), most complex at Day 80, and then decreasingly complex at a later stage (140-269 days). Unlike previous studies in other habitats, negative interactions predominated in a time-series fMEN, suggesting strong competition among different microbial species in the groundwater systems after EVO injection. Particularly, several keystone sulfate-reducing bacteria showed strong negative interactions with their network neighbours. These results provide mechanistic understanding of the decreased phylogenetic diversity during environmental perturbations. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Deng, Ye; Zhang, Ping; Qin, Yujia; ...
2015-08-11
When trying to discern network interactions among different species/populations in microbial communities interests have been evoked in recent years, but little information is available about temporal dynamics of microbial network interactions in response to environmental perturbations. We modified the random matrix theory-based network approach to discern network succession in groundwater microbial communities in response to emulsified vegetable oil (EVO) amendment for uranium bioremediation. Groundwater microbial communities from one control and seven monitor wells were analysed with a functional gene array (GeoChip 3.0), and functional molecular ecological networks (fMENs) at different time points were reconstructed. Our results showed that the networkmore » interactions were dramatically altered by EVO amendment. Dynamic and resilient succession was evident: fairly simple at the initial stage (Day 0), increasingly complex at the middle period (Days 4, 17, 31), most complex at Day 80, and then decreasingly complex at a later stage (140–269 days). Unlike previous studies in other habitats, negative interactions predominated in a time-series fMEN, suggesting strong competition among different microbial species in the groundwater systems after EVO injection. In particular, several keystone sulfate-reducing bacteria showed strong negative interactions with their network neighbours. These results provide mechanistic understanding of the decreased phylogenetic diversity during environmental perturbations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, Jonathan O.
Project Overview: The impact of the original seed award was substantially increased by leveraging a postdoctoral fellowship (Marie Curie Postdoctoral Fellowship) and parallel funds from (A) synergistic project supported by NSF and (B) with DOE collaborators (PI’s Ranville and Williams) as well as no-cost extension that greatly increased the impact and publications associated with the project. In aligning with SBR priorities, the project’s focus was extended more broadly to explore coupled biogeochemical analysis of metal (im)mobilization processes beyond uranium with a foundation in integrating microbial ecology with geochemical analyses. This included investigations of arsenic and zinc during sulfate reducing conditionsmore » in addition to direct microbial reduction of metals. Complimentary work with NSF funding and collaborative DOE interactions further increased the project scope to investigate metal (im)mobilization coupled to biogeochemical perturbations in forest ecosystems with an emphasis on coupled carbon and metal biogeochemistry. In total, the project was highly impactful and resulted in 9 publications and directly supported salary/tuition for 3 graduate students at various stages of their academic careers as well as my promotion to Associate Professor. In going forward, findings provided inspiration for a two subsequent proposals with collaborators at Lawrence Berkeley Laboratory and others that are currently in review (as of March 2016).« less
Bresloff, Cynthia J; Nguyen, Uyen; Glenn, Edward P; Waugh, Jody; Nagler, Pamela L
2013-01-15
This study employed ground and remote sensing methods to monitor the effects of grazing on leaf area index (LAI), fractional cover (f(c)) and evapotranspiration (ET) of a desert phreatophyte community over an 11 year period at a former uranium mill site on the Colorado Plateau, U.S. Nitrate, ammonium and sulfate are migrating away from the mill site in a shallow alluvial aquifer. The phreatophyte community, consisting of Atriplex canescens (ATCA) and Sarcobatus vermiculatus (SAVE) shrubs, intercepts groundwater and could potentially slow the movement of the contaminant plume through evapotranspiration (ET). However, the site has been heavily grazed by livestock, reducing plant cover and LAI. We used livestock exclosures and revegetation plots to determine the effects of grazing on LAI, f(c) and ET, then projected the findings over the whole site using multi-platform remote sensing methods. We show that ET is approximately equal to annual precipitation at the site, but when ATCA and SAVE are protected from grazing they can develop high f(c) and LAI values, and ET can exceed annual precipitation, with the excess coming from groundwater discharge. Therefore, control of grazing could be an effective method to slow migration of contaminants at this and similar sites in the western U.S. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kleeschulte, M.J.; Emmett, L.F.
1987-01-01
Water samples from five monitoring wells adjacent to raffinate pits storing low-level radioactive waste contained concentrations of nitrate as nitrogen ranging from 53 to 990 milligrams per liter. Most samples also had maximum concentrations of calcium (900 milligrams per liter), sodium (340 milligrams per liter), sulfate (320 milligrams per liter), lithium (1,700 micrograms), strontium (1,900 micrograms per liter), and uranium (86 micrograms per liter). The raffinate pits also had large concentrations of these constituents. A water balance made on the raffinate pits indicated a 0.04 to 0.08 inch per day decrease in the water level that cannot be attributed to meterological conditions. These data and seismically-detected areas of saturated overburden beneath one raffinate pit and possibly adjacent to three other pits indicate leakage from the pits. (USGS)
Radiation protection and radioactive scales in oil and gas production.
Testa, C; Desideri, D; Meli, M A; Roselli, C; Bassignani, A; Colombo, G; Fantoni, R F
1994-07-01
Low specific-activity scales consisting of alkaline earth metal carbonates and sulfates are often present in some gaseous and liquid hydrocarbon plants. These scales contain a certain concentration of radium, uranium, and thorium which can cause a risk of gamma irradiation and internal radiocontamination when they must be mechanically removed. The gamma dose rates and the 238U, 232Th, 226Ra concentrations were determined in sludges, scales, and waters of some gas and oil hydrocarbon plants located in Italy, Congo, and Tunisia. 238U and 232Th concentrations were were low. The isotopes 238U and 234U resulted in radioactive equilibrium, while 232Th and 228Th were not always equilibrium. A rough correlation was found between the gamma dose rate and the 226Ra concentration. Some considerations and conclusions about radiation protection problems are pointed out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
David R. Veblen; Chen Zhu; Lee Krumholz
The effectiveness and feasibility of bioremediation at the field scale cannot be fully assessed until the mechanisms of immobilization and U speciation in the solid matrix are resolved. However, characterization of the immobilized U and its valence states is extremely difficult, because microbially mediated mineral precipitates are generally nanometer (nm)-sized, poorly crystalline, or amorphous. We are developing combined field emission gun--scanning electron microscopy (FEG-SEM, at Indiana University) and FEG transmission electron microscopy (TEM, at Hopkins) to detect and isolate uranium containing phases; (1) method developments for TEM sample preparations and parallel electron energy loss spectroscopy (EELS) determination of uranium valence;more » and (2) to determine the speciation, fate, reactivity, valence states of immobilized uranium, using the state-of-the-art 300-kV, FEG-TEM. We have obtained preliminary results on contaminated sediments from Area 3 at the Oak Ridge Field Research Center (FRC). TEM results show that the sediments contain numerous minerals, including quartz, mica/clay (muscovite and/or illite), rutile, ilmenite, zircon, and an Al-Sr-Ce-Ca phosphate mineral, none of which contain uranium above the EDS detection limit. Substantial U (up to {approx}2 wt.%) is, however, clearly associated with two materials: (1) the Fe oxyhydroxide and (2) clots of a chemically complex material that is likely a mixture of several nm-scale phases. The Fe oxyhydroxide was identified as goethite from its polycrystalline SAED pattern and EDS analysis showing it to be very Fe-rich; the aggregate also displays one of several morphologies that are common for goethite. U is strongly sorbed to goethite in the FRC sediment, and the ubiquitous association with phosphorous suggests that complexes containing both U and P may play an important role in that sorption. Results from bulk analysis and SEM had previously demonstrated the association of U with Fe and thus suggested that U may be sorbed by Fe oxide or oxyhydroxide (Dr. Roh, image presented by David Watson). However, rigorous identification of the host minerals for U requires TEM results such as these involving imaging, electron diffraction, and spectroscopic analysis. An even higher concentration of U occurs in the chemically complex material noted above. These ''clots'' are high in Fe but also contain C, O, Mg, Al, Si, P, S, Cl, K, Ca, Mn, and U. This chemical complexity strongly suggests that they consist of aggregates of carbonate, silicate, phosphate, and sulfate phases, and TEM images also suggest that they may be intergrowths of numerous exceedingly small nanoparticles. EELS and EFTEM studies should be able to resolve these various components and identify precisely where the uranium is in these complex materials. From the results, it is clear that the FEG-SEM and FEG-TEM can readily detect uranium in the FRC samples. The FEG-SEM allows a wide field of view of the samples and can detect U-rich aggregates as small as 20-30 nm. The FEG-TEM can then focus on these aggregates and use SAED, EDS, EFTEM, and PEELS techniques to determine the valence states, structures, and compositional data for these aggregates. This research will provide a crucial component for a complete understanding of the efficacy of uranium bioremediation.« less
A hydrogen-oxidizing, Fe(III)-reducing microorganism from the Great Bay estuary, New Hampshire
Caccavo, F.; Blakemore, R.P.; Lovley, D.R.
1992-01-01
A dissimilatory Fe(III)- and Mn(IV)-reducing bacterium was isolated from bottom sediments of the Great Bay estuary, New Hampshire. The isolate was a facultatively anaerobic gram-negative rod which did not appear to fit into any previously described genus. It was temporarily designated strain BrY. BrY grew anaerobically in a defined medium with hydrogen or lactate as the electron donor and Fe(III) as the electron acceptor. BrY required citrate, fumarate, or malate as a carbon source for growth on H2 and Fe(III). With Fe(III) as the sole electron acceptor, BrY metabolized hydrogen to a minimum threshold at least 60-fold lower than the threshold reported for pure cultures of sulfate reducers. This finding supports the hypothesis that when Fe(III) is available, Fe(III) reducers can outcompete sulfate reducers for electron donors. Lactate was incompletely oxidized to acetate and carbon dioxide with Fe(III) as the electron acceptor. Lactate oxidation was also coupled to the reduction of Mn(IV), U(VI), fumarate, thiosulfate, or trimethylamine n-oxide under anaerobic conditions. BrY provides a model for how enzymatic metal reduction by respiratory metal-reducing microorganisms has the potential to contribute to the mobilization of iron and trace metals and to the immobilization of uranium in sediments of Great Bay Estuary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
This report on evaporite mineralization was completed as an Ancillary Work Plan for the Applied Studies and Technology program under the U.S. Department of Energy (DOE) Office of Legacy Management (LM). This study reviews all LM sites under Title I and Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) and one Decontamination and Decommissioning site to provide (1) a summary of which sites have evaporite deposits, (2) any available quantitative geochemical and mineralogical analyses, and (3) references to relevant reports. In this study, “evaporite” refers to any secondary mineral precipitate that occurs due to a loss ofmore » water through evaporative processes. This includes efflorescent salt crusts, where this term refers to a migration of dissolved constituents to the surface with a resulting salt crust, where “salt” can refer to any secondary precipitate, regardless of constituents. The potential for the formation of evaporites at LM sites has been identified, and may have relevance to plume persistence issues. Evaporite deposits have the potential to concentrate and store contaminants at LM sites that could later be re-released. These deposits can also provide a temporary storage mechanism for carbonate, chloride, and sulfate salts along with uranium and other contaminants of concern (COCs). Identification of sites with evaporites will be used in a new technical task plan (TTP), Persistent Secondary Contaminant Sources (PeSCS), for any proposed additional sampling and analyses. This additional study is currently under development and will focus on determining if the dissolution of evaporites has the potential to hinder natural flushing strategies and impact plume persistence. This report provides an initial literature review on evaporites followed by details for each site with identified evaporites. The final summary includes a table listing of all relevant LM sites regardless of evaporite identification.« less
Uranium isotopes distinguish two geochemically distinct stages during the later Cambrian SPICE event
Dahl, Tais W.; Boyle, Richard A.; Canfield, Donald E.; Connelly, James N.; Gill, Benjamin C.; Lenton, Timothy M.; Bizzarro, Martin
2015-01-01
Anoxic marine zones were common in early Paleozoic oceans (542–400 Ma), and present a potential link to atmospheric pO2 via feedbacks linking global marine phosphorous recycling, primary production and organic carbon burial. Uranium (U) isotopes in carbonate rocks track the extent of ocean anoxia, whereas carbon (C) and sulfur (S) isotopes track the burial of organic carbon and pyrite sulfur (primary long-term sources of atmospheric oxygen). In combination, these proxies therefore reveal the comparative dynamics of ocean anoxia and oxygen liberation to the atmosphere over million-year time scales. Here we report high-precision uranium isotopic data in marine carbonates deposited during the Late Cambrian ‘SPICE’ event, at ca. 499 Ma, documenting a well-defined −0.18‰ negative δ238U excursion that occurs at the onset of the SPICE event’s positive δ13C and δ34S excursions, but peaks (and tails off) before them. Dynamic modelling shows that the different response of the U reservoir cannot be attributed solely to differences in residence times or reservoir sizes - suggesting that two chemically distinct ocean states occurred within the SPICE event. The first ocean stage involved a global expansion of euxinic waters, triggering the spike in U burial, and peaking in conjunction with a well-known trilobite extinction event. During the second stage widespread euxinia waned, causing U removal to tail off, but enhanced organic carbon and pyrite burial continued, coinciding with evidence for severe sulfate depletion in the oceans (Gill et al., 2011). We discuss scenarios for how an interval of elevated pyrite and organic carbon burial could have been sustained without widespread euxinia in the water column (both non-sulfidic anoxia and/or a more oxygenated ocean state are possibilities). Either way, the SPICE event encompasses two different stages of elevated organic carbon and pyrite burial maintained by high nutrient fluxes to the ocean, and potentially sustained by internal marine geochemical feedbacks. PMID:25684783
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fan; Parker, Jack C.; Watson, David B
This study investigates uranium and technetium sorption onto aluminum and iron hydroxides during titration of acidic groundwater. The contaminated groundwater exhibits oxic conditions with high concentrations of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, U, Tc, and various metal cations. More than 90% of U and Tc was removed from the aqueous phase as Al and Fe precipitated above pH 5.5, but was partially resolublized at higher pH values. An equilibrium hydrolysis and precipitation reaction model adequately described variations in aqueous concentrations of metal cations. An anion exchange reaction model was incorporated to simulate sulfate, U and Tc sorption onto variablymore » charged (pH-dependent) Al and Fe hydroxides. Modeling results indicate that competitive sorption/desorption on mixed mineral phases needs to be considered to adequately predict U and Tc mobility. The model could be useful for future studies of the speciation of U, Tc and co-existing ions during pre- and post-groundwater treatment practices.« less
Preliminary experiments on the reduction of the uranyl ion to uraninite by carbonaceous substances
Breger, Irving A.; Moore, Richard T.
1955-01-01
An aqueous solution of uranyl sulfate containing a suspension of subbituminous coal has been heated at 210 C for three days. Examination of the coal at the end of the experiment showed it to contain 31.8 percent uranium recognizable as uraninite by a sharp, strong X-ray diffraction pattern. A similar experiment with degraded spruce wood also led to the formation of uraninite but in lesser quantity and with broader lines in the X-ray diffraction pattern. The ability of coal or wood to reduce the uranyl ion is a critical factor in the correlation of studies of uraniferous coals containing the uranyl ion with studies of uraninite-bearing coalified wood from the Colorado Plateau. Although these results are based an preliminary experiments, they are extremely important geochemically and warrant the development of the series of controlled studies that are proposed.
NASA Astrophysics Data System (ADS)
Druhan, Jennifer L.; Steefel, Carl I.; Conrad, Mark E.; DePaolo, Donald J.
2014-01-01
This study demonstrates a mechanistic incorporation of the stable isotopes of sulfur within the CrunchFlow reactive transport code to model the range of microbially-mediated redox processes affecting kinetic isotope fractionation. Previous numerical models of microbially mediated sulfate reduction using Monod-type rate expressions have lacked rigorous coupling of individual sulfur isotopologue rates, with the result that they cannot accurately simulate sulfur isotope fractionation over a wide range of substrate concentrations using a constant fractionation factor. Here, we derive a modified version of the dual-Monod or Michaelis-Menten formulation (Maggi and Riley, 2009, 2010) that successfully captures the behavior of the 32S and 34S isotopes over a broad range from high sulfate and organic carbon availability to substrate limitation using a constant fractionation factor. The new model developments are used to simulate a large-scale column study designed to replicate field scale conditions of an organic carbon (acetate) amended biostimulation experiment at the Old Rifle site in western Colorado. Results demonstrate an initial period of iron reduction that transitions to sulfate reduction, in agreement with field-scale behavior observed at the Old Rifle site. At the height of sulfate reduction, effluent sulfate concentrations decreased to 0.5 mM from an influent value of 8.8 mM over the 100 cm flow path, and thus were enriched in sulfate δ34S from 6.3‰ to 39.5‰. The reactive transport model accurately reproduced the measured enrichment in δ34S of both the reactant (sulfate) and product (sulfide) species of the reduction reaction using a single fractionation factor of 0.987 obtained independently from field-scale measurements. The model also accurately simulated the accumulation and δ34S signature of solid phase elemental sulfur over the duration of the experiment, providing a new tool to predict the isotopic signatures associated with reduced mineral pools. To our knowledge, this is the first rigorous treatment of sulfur isotope fractionation subject to Monod kinetics in a mechanistic reactive transport model that considers the isotopic spatial distribution of both dissolved and solid phase sulfur species during microbially-mediated sulfate reduction. describe the design and results of the large-scale column experiment; demonstrate incorporation of the stable isotopes of sulfur in a dual-Monod kinetic expression such that fractionation is accurately modeled at both high and low substrate availability; verify accurate simulation of the chemical and isotopic gradients in reactant and product sulfur species using a kinetic fractionation factor obtained from field-scale analysis (Druhan et al., 2012); utilize the model to predict the final δ34S values of secondary sulfur minerals accumulated in the sediment over the course of the experiment. The development of rigorous isotope-specific Monod-type rate expressions are presented here in application to sulfur cycling during amended biostimulation, but are readily applicable to a variety of stable isotope systems associated with both steady state and transient biogenic redox environments. In other words, the association of this model with a uranium remediation experiment does not limit its applicability to more general redox systems. Furthermore, the ability of this model treatment to predict the isotopic composition of secondary minerals accumulated as a result of fractionating processes (item 4) offers an important means of interpreting solid phase isotopic compositions and tracking long-term stability of precipitates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mouser, Paula J.; N'Guessan, A. Lucie; Qafoku, Nikolla
The capacity for subsurface sediments to sequester metal contaminants, such as uranium (U), and retain them after bioremediation efforts are completed is critical to site stewardship. Sediments enriched in natural organic matter are capable of sequestering significant quantities of U, but may also serve as sources to the aquifer, contributing to plume persistence. Two types of sediments were compared to better understand the mechanisms contributing to the sequestration and release of U in the presence of organic matter. Artificially bioreduced sediments were retrieved from a field experimental plot previously stimulated with acetate while naturally bioreduced sediments were collected from amore » location enriched in organic matter but never subject to acetate amendment. Batch incubations demonstrated that the artificially bioreduced sediments were primed to rapidly remove uranium from the groundwater whereas naturally bioreduced sediments initially released a sizeable portion of sediment U before U(VI)-removal commenced. Column experiments confirmed that U release persisted for 65 pore volumes in naturally bioreduced sediments, demonstrating the sink-source behavior of this sediment. Acetate addition to artificially bioreduced sediments shifted the microbial community from one dominated by sulfate-reducing bacteria within Desulfobacteraceae to the iron-reducing family Geobacteraceae and Firmicutes during U(VI) reduction. In contrast, initial Geobacteraceae communities innaturally reduced sediments were replaced by clone sequences with similarity to opportunistic Pseudomonas spp. during U release, while U(VI) removal occurred concurrent with enrichment of Firmicutes. These investigations stress the importance of characterizing zones with heterogeneous carbon pools at U contaminated sites prior to the determination of a remedial strategy.« less
Kumar, Deepak; Singh, Anshuman; Jha, Rishi Kumar
2018-04-21
Investigation of presence of Uranium (U) in groundwater/drinking water is an active are of research due to its chemical and radiological toxicity as well as long-term health effects. The current study had the objective of estimating U as a naturally occurring radioactive element in groundwater samples and assessment of ingestion dose, when groundwater is the source of drinking water. The random sampling method was chosen for the collection of samples based on population density. The estimation of U was done using LED fluorimeter. Statistical tools were applied to analyze the data and its spatial distribution. The U concentrations in three blocks of urban Patna were well below the permissible limits suggested by different health agencies of the world. A correlation test was performed to analyze the association of U with other physiochemical parameters of water samples. It was found that the sulfate, chloride, calcium, hardness, alkalinity, TDS, salinity, and ORP were positively correlated, whereas fluoride, phosphate, magnesium, dissolved oxygen, and pH were negatively correlated with U concentrations. The ingestion dose due to U, occurring in groundwater, was found to vary from 0.2-27.0 μSv y -1 with a mean of 4.2 μSv y - 1 , which was well below the recommended limit of 0.1 mSv (WHO WHO Chron 38:104-108, 2012).Therefore, the water in this region is fit for drinking purposes.
Goulet, Richard R; Thompson, Patsy A; Serben, Kerrie C; Eickhoff, Curtis V
2015-01-01
Treated effluent discharge from uranium (U) mines and mills elevates the concentrations of U, calcium (Ca), magnesium (Mg), and sulfate (SO42–) above natural levels in receiving waters. Many investigations on the effect of hardness on U toxicity have been experiments on the combined effects of changes in hardness, pH, and alkalinity, which do not represent water chemistry downstream of U mines and mills. Therefore, more toxicity studies with water chemistry encountered downstream of U mines and mills are necessary to support predictive assessments of impacts of U discharge to the environment. Acute and chronic U toxicity laboratory bioassays were realized with 6 freshwater species in waters of low alkalinity, circumneutral pH, and a range of chemical hardness as found in field samples collected downstream of U mines and mills. In laboratory-tested waters, speciation calculations suggested that free uranyl ion concentrations remained constant despite increasing chemical hardness. When hardness increased while pH remained circumneutral and alkalinity low, U toxicity decreased only to Hyalella azteca and Pseudokirchneriella subcapitata. Also, Ca and Mg did not compete with U for the same uptake sites. The present study confirms that the majority of studies concluding that hardness affected U toxicity were in fact studies in which alkalinity and pH were the stronger influence. The results thus confirm that studies predicting impacts of U downstream of mines and mills should not consider chemical hardness. PMID:25475484
Chemical quality of ground water in Salt Lake Valley, Utah, 1969-85
Waddell, K.M.; Seiler, R.L.; Solomon, D.K.
1986-01-01
During 1979-84, 35 wells completed in the principal aquifer in the Salt Lake Valley, Utah, that had been sampled during 1962-67 were resampled to determine if water quality changes had occurred. The dissolved solids concentration of the water from 13 of the wells has increased by more than 10% since 1962-67. Much of the ground water between the mouth of Bingham Canyon and the Jordan River about 10 mi to the east has been contaminated by seepage from reservoirs and evaporation ponds associated with mining activities. Many domestic and irrigation wells yield water with concentrations of dissolved solids that exceed 2,000 mg/L. A reservoir in the mouth of Bingham Canyon contains acidic waters with a pH of 3 to 4 and concentrations of dissolved solids ranging from 43,000 to 68,000 mg/L. Seepage from evaporation ponds, which are about 4.5 mi east of the reservoir, also is acidic and contains similar concentrations of dissolved solids. East of the reservoir, where a steep hydraulic gradient exists along the mountain front, the velocities of contaminant movement were estimated to range from about 680-1,000 ft/yr. Groundwater underlying part of the community of South Salt Lake near the Jordan River has been contaminated by leachate from uranium-mill tailings. The major effect of the leachate from the tailings of the Vitro Chemical Co. on the shallow unconfined aquifer downgradient from the tailings was the contribution of measurable quantities of dissolved solids, chloride, sulfate, iron, and uranium. The concentration of dissolved solids in uncontaminated water was 1,650 mg/L, whereas downgradient from the tailings area, the concentrations ranged from 2,320-21,000 mg/L. The maximum volume of contaminated water was estimated to be 7,800 acre-ft. The major effect of the leachate from the Vitro tailings on the confined aquifer was the contribution of measurable quantities of dissolved solids, chloride, sulfate, and iron. The concentration of dissolved solids upgradient from the tailings was 330 mg/L, and beneath and downgradient from the tailings the concentrations were 864 and 1,240 mg/L. The minimum volume of contaminated water in the confined aquifer was estimated to be about 12,000 acre-ft. (Lantz-PTT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nostrand, J.D. Van; Wu, L.; Wu, W.M.
2010-08-15
A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter{sup -1}). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed thatmore » Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process.« less
Van Nostrand, Joy D.; Wu, Liyou; Wu, Wei-Min; Huang, Zhijian; Gentry, Terry J.; Deng, Ye; Carley, Jack; Carroll, Sue; He, Zhili; Gu, Baohua; Luo, Jian; Criddle, Craig S.; Watson, David B.; Jardine, Philip M.; Marsh, Terence L.; Tiedje, James M.; Hazen, Terry C.; Zhou, Jizhong
2011-01-01
A pilot-scale system was established to examine the feasibility of in situ U(VI) immobilization at a highly contaminated aquifer (U.S. DOE Integrated Field Research Challenge site, Oak Ridge, TN). Ethanol was injected intermittently as an electron donor to stimulate microbial U(VI) reduction, and U(VI) concentrations fell to below the Environmental Protection Agency drinking water standard (0.03 mg liter−1). Microbial communities from three monitoring wells were examined during active U(VI) reduction and maintenance phases with GeoChip, a high-density, comprehensive functional gene array. The overall microbial community structure exhibited a considerable shift over the remediation phases examined. GeoChip-based analysis revealed that Fe(III)-reducing bacterial (FeRB), nitrate-reducing bacterial (NRB), and sulfate-reducing bacterial (SRB) functional populations reached their highest levels during the active U(VI) reduction phase (days 137 to 370), in which denitrification and Fe(III) and sulfate reduction occurred sequentially. A gradual decrease in these functional populations occurred when reduction reactions stabilized, suggesting that these functional populations could play an important role in both active U(VI) reduction and maintenance of the stability of reduced U(IV). These results suggest that addition of electron donors stimulated the microbial community to create biogeochemical conditions favorable to U(VI) reduction and prevent the reduced U(IV) from reoxidation and that functional FeRB, SRB, and NRB populations within this system played key roles in this process. PMID:21498771
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, Kim F.; Bi, Yuqiang; Carpenter, Julian
2013-12-31
This overarching aim of this project was to identify the role of biogenic and synthetic iron-sulfide minerals in the long-term sequestration of reduced U(IV) formed under sulfate-reducing conditions when subjected to re-oxidizing conditions. The work reported herein was achieved through the collaborative research effort conducted at Arizona State University (ASU) and the University of Michigan (UM). Research at ASU, focused on the biogenesis aspects, examined the biogeochemical bases for iron-sulfide production by Desulfovibrio vulgaris, a Gram-negative bacterium that is one of the most-studied strains of sulfate-reducing bacteria. A series of experimental studies were performed to investigate comprehensively important metabolic andmore » environmental factors that affect the rates of sulfate reduction and iron-sulfide precipitation, the mineralogical characteristics of the iron sulfides, and how uranium is reduced or co-reduced by D. vulagaris. FeS production studies revealed that controlling the pH affected the growth of D. vulgaris and strongly influenced the formation and growth of FeS solids. In particular, lower pH produced larger-sized mackinawite (Fe 1+xS). Greater accumulation of free sulfide, from more sulfate reduction by D. vulgaris, also led to larger-sized mackinawite and stimulated mackinawite transformation to greigite (Fe 3S 4) when the free sulfide concentration was 29.3 mM. On the other hand, using solid Fe(III) (hydr)oxides as the iron source led to less productivity of FeS due to their slow and incomplete dissolution and scavenging of sulfide. Furthermore, sufficient free Fe 2+, particularly during Fe(III) (hydr)oxide reductions, led to the additional formation of vivianite [Fe 3(PO 4) 2•8(H 2O)]. The U(VI) reduction studies revealed that D. vulgaris reduced U(VI) fastest when accumulating sulfide from concomitant sulfate reduction, since direct enzymatic and sulfide-based reductions of U(VI) occurred in parallel. The UO 2 produced in presence of ferrous iron was poorly crystalline. At UM, laboratory-scale reactor studies were performed to assess the potential for the predominant abiotic reductants formed under sulfate reducing conditions (SRCs) to: (1) reduce U(VI) in contaminated groundwater sediments), and (2) inhibit the re-oxidation of U(IV) species, and in particular, uraninite (UO 2(s)). Under SRCs, mackinawite and aqueous sulfide are the key reductants expected to form. To assess their potential for abiotic reduction of U(VI) species, a series of experiments were performed in which either FeS or S(-II) was added to solutions of U(VI), with the rates of conversion to U(IV) solids monitored as a function of pH, and carbonate and calcium concentration. In the presence of FeS and absence of oxygen or carbonate, U(IV) was completely reduced uraninite. S(-II) was also found to be an effective reductant of aqueous phase U(VI) species and produced uraninite, with the kinetics and extent of reduction depending on geochemical conditions. U(VI) reduction to uraninite was faster under higher S(-II) concentrations but was slowed by an increase in the dissolved Ca or carbonate concentration. Rapid reduction of U(VI) occurred at circumneutral pH but virtually no reduction occurred at pH 10.7. In general, dissolved Ca and carbonate slowed abiotic U(VI) reduction by forming stable Ca-U(VI)-carbonate soluble complexes that are resistant to reaction with aqueous sulfide. To investigate the stability of U(IV) against re-oxidation in the presence of iron sulfides by oxidants in simulated groundwater environments, and to develop a mechanistic understanding the controlling redox processes, continuously-mixed batch reactor (CMBR) and flow-through reactor (CMFR) studies were performed at UM. In these studies a series of experiments were conducted under various oxic groundwater conditions to examine the effectiveness of FeS as an oxygen scavenger to retard UO 2 dissolution. The results indicate that FeS is an effective oxygen scavenger, and can lower the rate of oxidative dissolution of UO 2 by over an order of magnitude compared to the absence of FeS, depending on pH, FeS content, and DO concentrations. Column reactor studies were performed at UM to assess the impact of mackinawite on uraninite oxidation under hydrodynamic flow conditions more representative of packed porous media at contaminated groundwater sites. In these studies, Rifle sediments were packed in the two columns which were subjected to different bioreduction steps and then run in parallel. The first column was bioreduced under SRCs (i.e., with sulfate in the influent) to generate mackinawite, mixed with uraninite, gamma-sterilized to inhibit subsequent microbiological activity, and then subjected to groundwater influent containing first nitrite and then oxygen. The second column was bioreduced (but in absence of sulfate in the influent) so that no iron sulfides would form, and then subjected to identical steps and influent as the first column. When nitrite was introduced in the influent of both columns, no significant release of U(VI) relative to the anoxic flow prior to nitrite addition occurred. However, when oxygen was introduced, the column which had undergone sulfate reduction (and had produced mackinawite as later verified by XAS) significantly lowered the peak U(VI) effluent concentrations, and in general, slowed U(VI) release considerably compared to the column with no FeS. Overall, these studies demonstrated that the presence of mackinawite can be a significant scavenger of oxygen and inhibit the oxidation of uraninite by oxygen, whereas nitrite had little impact on uraninite oxidation either in the presence or absence of FeS.« less
SUMMARY TECHNICAL REPORT ON FEED MATERIALS FOR THE PERIOD APRIL 1, 1959 TO JUNE 30, 1959
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, J.W. ed.
1959-07-20
Anaconda Acld, Kermac, Moab, Rifle, and Texas Zinc uranium concentrates were evaluated (the laboratory portlon of feed material evaluation). Laboratory equilibrium tests and Pilot Plant 2-inch-column extraction tests demonstrated effective distribution of uranium into a TBPkerosene solvent from aqueous phases containing as little as 0.5N HNO/sub 3/ and varying amounts of added metal nitrates (NaNO/sub 3/). The concentration of assoclated nitric acid in dilute aqueous nitric acld solutions was determined after values were obtained for the equillbrium constant for the reaction of tri-n-butyl phosphate with associated nitric acid and for the equilibrium distribution constant for the partition of associated nitricmore » acld into tri-n-butyl phosphate. Optimum partition of uranium into tri-n-butyl phosphate was realized in the laboratory by using an aqueous uranyl nitrate solution containing sufficient hydrogen ions to promote extraction and a low concentration of associated nitric acid. An Ohmart system for controlling the uranium profile in the A'' extractlon column was installed on Refinery pulse columns. Use of this system improved control but did not stop all column upsets. The effect of 13 to l89 ppm sodium contaminatlon upon hydrofluorination conversion of teraperature at the site of the reaction. Uranyl sulfate was shown to undergo an enantiotroplc transitlon at 755 deg C and to decompose to U/sub 3/O/sub 8/ in an atmosphere of oxygen sulfur dioxide, which gases are evolved during decoraposition. Decontamination of sodium, calcium, nickel, magnesium, gadolinium, and dysprosium was achieved in a laboratory investigatlon of the ADU process. UO/sub 2/ produced by reductions programmed from 700 to ll00 deg F was hydrofluorinated at programmed temperatures of 550 to 1100 deg F and isothermally at ll00 deg F. Good conversion was obtained for material whose source was ADU calcined at 1200 deg F. Uranium derbles were classified by the present method of derby grading and were then examined for slag coverage, slag volume, and slag weight. There was a high degree of overlap of these parameters for adjacent grades. A hydraulic separator for separatlng uranlum from magnesium and magnesium fluorlde was fabrlcated. Excellent separatlon was obtained for +l6 mesh material. A hydrochloric acid dissolution- UF/sub 4/ precipitation process for routing scrap materials to the reductlon-to- metal step was examined. The purification obtained was noted, and process conditions were varied to determine their effect upon UF/sub 4/ density, UF/sub 4/ purity and precipitation time. Three types of uranium scrap were subjected to the HCl dissolution-aqueous precipitation Winlo process to determine the purification achieved. Green salt made from dolomitlc bomb liner residues was found to be grossly contaminated. Acceptable green salt was raade from pickle liquor treated with formaldehyde and from pickle liquor plus black oxide. Nominal 80% yields were obtained in the recovery of magnesium metal by reaction of calcium carblde with magnesium fluoride slag and in the recovery of HF by the reactlon of sulfuric acid wlth magnesium fluoride slag. A sample holder for use in quantitative preferred orientation studies was fabricated. The holder, designed to fit a North American Philips Gonionweter, will accommodate specimens up to l 13/16 inches in diameter and incorporates a precision ball bearing. A satisfactory technique was developed for the analysis of uranium metal for traces of fluoride. A direct flame photometric method is glven for the determination of magnesium in uranium ore concentrates. No chemical separation step is required, except for high-iron-content ores. (auth)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin
2011-06-15
The objectives of this project were to: (1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), (2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and (3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee, where themore » subsurface is exposed to mixed contamination predominated by uranium and nitrate. A total of 20 publications (16 published or 'in press' and 4 in review), 10 invited talks, and 43 contributed seminars/ meeting presentations were completed during the past four years of the project. PI Kostka served on one proposal review panel each year for the U.S. DOE Office of Science during the four year project period. The PI leveraged funds from the state of Florida to purchase new instrumentation that aided the project. Support was also leveraged by the PI from the Joint Genome Institute in the form of two successful proposals for genome sequencing. Draft genomes are now available for two novel species isolated during our studies and 5 more genomes are in the pipeline. We effectively addressed each of the three project objectives and research highlights are provided. Task I - Isolation and characterization of novel anaerobes: (1) A wide range of pure cultures of metal-reducing bacteria, sulfate-reducing bacteria, and denitrifying bacteria (32 strains) were isolated from subsurface sediments of the Oak Ridge Field Research Center (ORFRC), where the subsurface is exposed to mixed contamination of uranium and nitrate. These isolates which are new to science all show high sequence identity to sequences retrieved from ORFRC subsurface. (2) Based on physiological and phylogenetic characterization, two new species of subsurface bacteria were described: the metal-reducer Geobacter daltonii, and the denitrifier Rhodanobacter denitrificans. (3) Strains isolated from the ORFRC show that Rhodanobacter species are well adapted to the contaminated subsurface. Strains 2APBS1 and 116-2 grow at high salt (3% NaCl), low pH (3.5) and tolerate high concentrations of nitrate (400mM) and nitrite (100mM). Strain 2APBS1 was demonstrated to grow at in situ acidic pHs down to 2.5. (4) R. denitrificans strain 2APBS1 is the first described Rhodanobacter species shown to denitrify. Nitrate is almost entirely converted to N2O, which may account for the large accumulation of N2O in the ORFRC subsurface. (5) G. daltonii, isolated from uranium- and hydrocarbon-contaminated subsurface sediments of the ORFRC, is the first organism from the subsurface clade of the genus Geobacter that is capable of growth on aromatic hydrocarbons. (6) High quality draft genome sequences and a complete eco-physiological description are completed for R. denitrificans strain 2APBS1 and G. daltonii strain FRC-32. (7) Given their demonstrated relevance to DOE remediation efforts and the availability of detailed genotypic/phenotypic characterization, Rhodanobacter denitrificans strain 2APBS1 and Geobacter daltonii strain FRC-32 represent ideal model organisms to provide a predictive understanding of subsurface microbial activity through metabolic modeling. Tasks II and III-Diversity and distribution of active anaerobes and Mechanisms linking electron transport and the fate of radionuclides: (1) Our study showed that members of genus Rhodanobacter and Geobacter are abundant and active in the uranium and nitrate contaminated subsurface. In the contaminant source zone of the Oak Ridge site, Rhodanobacter spp. are the predominant, active organisms detected (comprising 50% to 100% of rRNA detected). (2) We demonstrated for the first time that the function of microbial communities can be quantified in subsurface sediments using messenger RNA assays (molecular proxies) under in situ conditions. (3) Active Geobacteraceae were identified and phylogenetically characterized from the cDNA of messenger RNA extracted from ORFRC subsurface sediment cores. Multiple clone sequences were retrieved from G. uraniireducens, G. daltonii, and G. metallireducens. (4) Results show that Geobacter strain FRC-32 is capable of growth on benzoate, toluene and benzene as the electron donor, thereby providing evidence that this strain is physiologically distinct from other described members of the subsurface Geobacter clade. (5) Fe(III)-reducing bacteria transform structural Fe in clay minerals from their layer edges rather than from their basal surfaces.« less
31 CFR 540.317 - Uranium feed; natural uranium feed.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Uranium feed; natural uranium feed...) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The term uranium feed or natural uranium feed means natural uranium in the form of UF6 suitable for uranium...
31 CFR 540.317 - Uranium feed; natural uranium feed.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium feed; natural uranium feed...) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The term uranium feed or natural uranium feed means natural uranium in the form of UF6 suitable for uranium...
Process for continuous production of metallic uranium and uranium alloys
Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.
1995-06-06
A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.
Process for continuous production of metallic uranium and uranium alloys
Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.
1995-01-01
A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.
Responses of microbial community functional structures to pilot-scale uranium in situ bioremediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, M.; Wu, W.-M.; Wu, L.
2010-02-15
A pilot-scale field test system with an inner loop nested within an outer loop was constructed for in situ U(VI) bioremediation at a US Department of Energy site, Oak Ridge, TN. The outer loop was used for hydrological protection of the inner loop where ethanol was injected for biostimulation of microorganisms for U(VI) reduction/immobilization. After 2 years of biostimulation with ethanol, U(VI) levels were reduced to below drinking water standard (<30 {micro}gl{sup -1}) in the inner loop monitoring wells. To elucidate the microbial community structure and functions under in situ uranium bioremediation conditions, we used a comprehensive functional gene arraymore » (GeoChip) to examine the microbial functional gene composition of the sediment samples collected from both inner and outer loop wells. Our study results showed that distinct microbial communities were established in the inner loop wells. Also, higher microbial functional gene number, diversity and abundance were observed in the inner loop wells than the outer loop wells. In addition, metal-reducing bacteria, such as Desulfovibrio, Geobacter, Anaeromyxobacter and Shewanella, and other bacteria, for example, Rhodopseudomonas and Pseudomonas, are highly abundant in the inner loop wells. Finally, the richness and abundance of microbial functional genes were highly correlated with the mean travel time of groundwater from the inner loop injection well, pH and sulfate concentration in groundwater. These results suggest that the indigenous microbial communities can be successfully stimulated for U bioremediation in the groundwater ecosystem, and their structure and performance can be manipulated or optimized by adjusting geochemical and hydrological conditions.« less
Geochemical and mineralogical studies of a South Texas roll-front uranium deposit
Goldhaber, Martin B.; Reynolds, Richard L.
1977-01-01
Core samples from a roll-front uranium deposit in south Texas have been analyzed for iron sulfide content and mineralogy, organic carbon content and the abundance of carbonate, iron, manganese and titanium. Sulfide occurs almost exclusively as the iron disulfides pyrite and marcasite, in concentrations as high as 2 percent of the coarse (>62 ?m) fraction. Marcasite is particularly abundant relative to pyrite in the vicinity of the roll front. Because marcasite precipitation requires acidic pH's and the most likely mechanism for generating a low pH is oxidation of preore sulfide, it is argued that marcasite formation is, at least in part, related to roll-front development. Organic carbon analyses from various representative parts of the deposit are uniformly low (<0.1 percent C). This is taken to imply that sulfate reducing bacteria were not involved in either initial sulfidation of the host rock or during later sulfidization that was related to the ore-forming episode. carbonate minerals, such as calcite, are quite abundant, but appear to have formed after the ore. The overall abundance of iron apparently is not systematically related to position with respect to the roll front, whereas manganese probably is concentrated near the redox interface. Titanium like iron does not show a systematic relationship to position about the roll. However, titanium is systematically more abundant in the fine fraction (462 ?m) relative to the coarse fraction with distance downdip. This reflects a progressively more intense alteration of precursor iron titanium oxide minerals to fine-grained TiO2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dam, William; Gil, Dr. April; Johnson, Raymond H.
The US Department of Energy Office of Legacy Management (LM) is responsible for maintaining protective public health and environmental conditions at former uranium mill tailings sites nationwide via long-term stewardship. One of these sites, a former uranium mill near Riverton, Wyoming, is within the boundary of the Wind River Indian Reservation and operated from 1958 to 1963. Tailings and contaminated material associated with mill operations were removed and transported to an offsite disposal cell in 1989. The remedial action was completed under Title I of the Uranium Mill Tailings Radiation Control Act of 1978. Milling operations, which included an unlinedmore » tailings impoundment and an unlined evaporation pond, contaminated the shallow groundwater, resulting in a downgradient groundwater plume that discharges to the Little Wind River. A natural flushing compliance strategy was implemented in 1998. This strategy allows contaminants of concern to naturally flush from the groundwater, provided that contaminants flush below US Environmental Protection Agency maximum concentration limits within 100 years. As part of the compliance strategy, LM has implemented a groundwater monitoring program along with institutional controls that include the installation of an alternate water supply, continued sampling of private wells, and restrictions on well drilling and gravel pit construction. LM works closely with local stakeholders and community members to ensure that these institutional controls are in place and maintained. The Riverton site provides an interesting case study where contaminant remobilization due to river flooding prompted a reevaluation of the conceptual site model to verify if the current compliance strategy would remain protective of human health and the environment. Concentrations of groundwater contaminants, which include sulfate, molybdenum, and uranium, were transiently elevated following flooding of the Little Wind River in 2010 and 2016. These flood events provided the impetus to investigate other aspects of the hydrologic system, including the unsaturated zone, naturally reduced (sulfidic) zones, and evaporite deposits. New site conceptual models, field and laboratory studies, and numerical models are being developed to explain how biogeochemical sediment–water interactions contribute to plume persistence and flood-related increases in groundwater concentrations. Updated human health and ecological risk assessments are progressing to evaluate the risk to human health and the environment based on current site conditions. Groundwater concentrations may remain above US Environmental Protection Agency maximum concentration limits beyond the 100-year natural flushing regulatory time frame. LM in its capacity as a long-term steward continues to monitor the site to ensure protectiveness is maintained and to determine the feasibility of alternative compliance and remediation strategies.« less
Biogeochemical aspects of uranium mineralization, mining, milling, and remediation
Campbell, Kate M.; Gallegos, Tanya J.; Landa, Edward R.
2015-01-01
Natural uranium (U) occurs as a mixture of three radioactive isotopes: 238U, 235U, and 234U. Only 235U is fissionable and makes up about 0.7% of natural U, while 238U is overwhelmingly the most abundant at greater than 99% of the total mass of U. Prior to the 1940s, U was predominantly used as a coloring agent, and U-bearing ores were mined mainly for their radium (Ra) and/or vanadium (V) content; the bulk of the U was discarded with the tailings (Finch et al., 1972). Once nuclear fission was discovered, the economic importance of U increased greatly. The mining and milling of U-bearing ores is the first step in the nuclear fuel cycle, and the contact of residual waste with natural water is a potential source of contamination of U and associated elements to the environment. Uranium is mined by three basic methods: surface (open pit), underground, and solution mining (in situ leaching or in situ recovery), depending on the deposit grade, size, location, geology and economic considerations (Abdelouas, 2006). Solid wastes at U mill tailings (UMT) sites can include both standard tailings (i.e., leached ore rock residues) and solids generated on site by waste treatment processes. The latter can include sludge or “mud” from neutralization of acidic mine/mill effluents, containing Fe and a range of coprecipitated constituents, or barium sulfate precipitates that selectively remove Ra (e.g., Carvalho et al., 2007). In this chapter, we review the hydrometallurgical processes by which U is extracted from ore, the biogeochemical processes that can affect the fate and transport of U and associated elements in the environment, and possible remediation strategies for site closure and aquifer restoration.This paper represents the fourth in a series of review papers from the U.S. Geological Survey (USGS) on geochemical aspects of UMT management that span more than three decades. The first paper (Landa, 1980) in this series is a primer on the nature of tailings and radionuclide mobilization from them. The second paper (Landa, 1999) includes coverage of research carried out under the U.S. Department of Energy’s Uranium Mill Tailings Remedial Action Program (UMTRA). The third paper (Landa, 2004) reflects the increased focus of researchers on biotic effects in UMT environs. This paper expands the focus to U mining, milling, and remedial actions, and includes extensive coverage of the increasingly important alkaline in situ recovery and groundwater restoration.
Method for converting uranium oxides to uranium metal
Duerksen, Walter K.
1988-01-01
A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.
Taylor, Howard E.; Peart, D.B.; Antweiler, Ronald C.; Brinton, T.I.; Campbell, W.L.; Barbarino, J.R.; Roth, D.A.; Hart, R.J.; Averett, R.C.
1996-01-01
Two water-quality synoptic studies were made on the Colorado River in the Grand Canyon, Arizona. Field measurements and the collection of water samples for laboratory analysis were made at 10 mainstem and 6 tributary sites every 6 hours for a 48-hour period on November 5-6, 1990, and again on June 18-20, 1991. Field measurements included discharge, alkalinity, water temperature, light penetration, pH, specific conductance, and dissolved oxygen. Water samples were collected for the laboratory analysis of major and minor ions (calcium, magnesium, sodium, potassium, strontium, chloride, sulfate, silica as SiO2), trace elements (aluminum, arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, iron, lead, lithium, manganese, molybdenum, nickel, selenium, thallium, uranium, vanadium and zinc), and nutrients (phosphate, nitrate, ammonium, nitrite, total dissolved nitrogen, total dissolved phosphorus and dissolved organic carbon). Biological measurements included drift (benthic invertebrates and detrital material), and benthic invertebrates from the river bottom.
40 CFR 421.320 - Applicability: Description of the secondary uranium subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... secondary uranium subcategory. 421.320 Section 421.320 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Uranium Subcategory § 421.320 Applicability: Description of the secondary uranium... uranium (including depleted uranium) by secondary uranium facilities. ...
40 CFR 421.320 - Applicability: Description of the secondary uranium subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... secondary uranium subcategory. 421.320 Section 421.320 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Uranium Subcategory § 421.320 Applicability: Description of the secondary uranium... uranium (including depleted uranium) by secondary uranium facilities. ...
40 CFR 421.320 - Applicability: Description of the secondary uranium subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... secondary uranium subcategory. 421.320 Section 421.320 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Uranium Subcategory § 421.320 Applicability: Description of the secondary uranium... uranium (including depleted uranium) by secondary uranium facilities. ...
40 CFR 421.320 - Applicability: Description of the secondary uranium subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... secondary uranium subcategory. 421.320 Section 421.320 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Uranium Subcategory § 421.320 Applicability: Description of the secondary uranium... uranium (including depleted uranium) by secondary uranium facilities. ...
40 CFR 421.320 - Applicability: Description of the secondary uranium subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... secondary uranium subcategory. 421.320 Section 421.320 Protection of Environment ENVIRONMENTAL PROTECTION... CATEGORY Secondary Uranium Subcategory § 421.320 Applicability: Description of the secondary uranium... uranium (including depleted uranium) by secondary uranium facilities. ...
Bioremediation of uranium contamination with enzymatic uranium reduction
Lovley, D.R.; Phillips, E.J.P.
1992-01-01
Enzymatic uranium reduction by Desulfovibrio desulfuricans readily removed uranium from solution in a batch system or when D. desulfuricans was separated from the bulk of the uranium-containing water by a semipermeable membrane. Uranium reduction continued at concentrations as high as 24 mM. Of a variety of potentially inhibiting anions and metals evaluated, only high concentrations of copper inhibited uranium reduction. Freeze-dried cells, stored aerobically, reduced uranium as fast as fresh cells. D. desulfuricans reduced uranium in pH 4 and pH 7.4 mine drainage waters and in uraniumcontaining groundwaters from a contaminated Department of Energy site. Enzymatic uranium reduction has several potential advantages over other bioprocessing techniques for uranium removal, the most important of which are as follows: the ability to precipitate uranium that is in the form of a uranyl carbonate complex; high capacity for uranium removal per cell; the formation of a compact, relatively pure, uranium precipitate.
Release behavior of uranium in uranium mill tailings under environmental conditions.
Liu, Bo; Peng, Tongjiang; Sun, Hongjuan; Yue, Huanjuan
2017-05-01
Uranium contamination is observed in sedimentary geochemical environments, but the geochemical and mineralogical processes that control uranium release from sediment are not fully appreciated. Identification of how sediments and water influence the release and migration of uranium is critical to improve the prevention of uranium contamination in soil and groundwater. To understand the process of uranium release and migration from uranium mill tailings under water chemistry conditions, uranium mill tailing samples from northwest China were investigated with batch leaching experiments. Results showed that water played an important role in uranium release from the tailing minerals. The uranium release was clearly influenced by contact time, liquid-solid ratio, particle size, and pH under water chemistry conditions. Longer contact time, higher liquid content, and extreme pH were all not conducive to the stabilization of uranium and accelerated the uranium release from the tailing mineral to the solution. The values of pH were found to significantly influence the extent and mechanisms of uranium release from minerals to water. Uranium release was monitored by a number of interactive processes, including dissolution of uranium-bearing minerals, uranium desorption from mineral surfaces, and formation of aqueous uranium complexes. Considering the impact of contact time, liquid-solid ratio, particle size, and pH on uranium release from uranium mill tailings, reducing the water content, decreasing the porosity of tailing dumps and controlling the pH of tailings were the key factors for prevention and management of environmental pollution in areas near uranium mines. Copyright © 2017 Elsevier Ltd. All rights reserved.
PRODUCTION OF URANIUM METAL BY CARBON REDUCTION
Holden, R.B.; Powers, R.M.; Blaber, O.J.
1959-09-22
The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.
STRIPPING OF URANIUM FROM ORGANIC EXTRACTANTS
Crouse, D.J. Jr.
1962-09-01
A liquid-liquid extraction method is given for recovering uranium values from uranium-containing solutions. Uranium is removed from a uranium-containing organic solution by contacting said organic solution with an aqueous ammonium carbonate solution substantially saturated in uranium values. A uranium- containing precipitate is thereby formed which is separated from the organic and aqueous phases. Uranium values are recovered from this separated precipitate. (AE C)
Process for electroslag refining of uranium and uranium alloys
Lewis, P.S. Jr.; Agee, W.A.; Bullock, J.S. IV; Condon, J.B.
1975-07-22
A process is described for electroslag refining of uranium and uranium alloys wherein molten uranium and uranium alloys are melted in a molten layer of a fluoride slag containing up to about 8 weight percent calcium metal. The calcium metal reduces oxides in the uranium and uranium alloys to provide them with an oxygen content of less than 100 parts per million. (auth)
Detection of depleted uranium in urine of veterans from the 1991 Gulf War.
Gwiazda, R H; Squibb, K; McDiarmid, M; Smith, D
2004-01-01
American soldiers involved in "friendly fire" accidents during the 1991 Gulf War were injured with depleted-uranium-containing fragments or possibly exposed to depleted uranium via other routes such as inhalation, ingestion, and/or wound contamination. To evaluate the presence of depleted uranium in these soldiers eight years later, the uranium concentration and depleted uranium content of urine samples were determined by inductively coupled plasma mass spectrometry in (a) depleted uranium exposed soldiers with embedded shrapnel, (b) depleted uranium exposed soldiers with no shrapnel, and (c) a reference group of deployed soldiers not involved in the friendly fire incidents. Uranium isotopic ratios measured in many urine samples injected directly into the inductively coupled plasma mass spectrometer and analyzed at a mass resolution m/delta m of 300 appeared enriched in 235U with respect to natural abundance (0.72%) due to the presence of an interference of a polyatomic molecule of mass 234.81 amu that was resolved at a mass resolution m/delta m of 4,000. The 235U abundance measured on uranium separated from these urines by anion exchange chromatography was clearly natural or depleted. Urine uranium concentrations of soldiers with shrapnel were higher than those of the two other groups, and 16 out of 17 soldiers with shrapnel had detectable depleted uranium in their urine. In depleted uranium exposed soldiers with no shrapnel, depleted uranium was detected in urine samples of 10 out of 28 soldiers. The median uranium concentration of urines with depleted uranium from soldiers without shrapnel was significantly higher than in urines with no depleted uranium, though substantial overlap in urine uranium concentrations existed between the two groups. Accordingly, assessment of depleted uranium exposure using urine must rely on uranium isotopic analyses, since urine uranium concentration is not an unequivocal indicator of depleted uranium presence in soldiers with no embedded shrapnel.
31 CFR 540.317 - Uranium feed; natural uranium feed.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The...
31 CFR 540.317 - Uranium feed; natural uranium feed.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The...
31 CFR 540.317 - Uranium feed; natural uranium feed.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Uranium feed; natural uranium feed... (Continued) OFFICE OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.317 Uranium feed; natural uranium feed. The...
Process for electrolytically preparing uranium metal
Haas, Paul A.
1989-01-01
A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.
Process for electrolytically preparing uranium metal
Haas, Paul A.
1989-08-01
A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.
Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid.
Sung, Jinhyun; Kim, Jungsoo; Lee, Youngbae; Seol, Jeunggun; Ryu, Jaebong; Park, Kwangheon
2011-07-01
The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 °C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined.
Duquène, L; Vandenhove, H; Tack, F; Van Hees, M; Wannijn, J
2010-02-01
The usefulness of uranium concentration in soil solution or recovered by selective extraction as unequivocal bioavailability indices for uranium uptake by plants is still unclear. The aim of the present study was to test if the uranium concentration measured by the diffusive gradient in thin films (DGT) technique is a relevant substitute for plant uranium availability in comparison to uranium concentration in the soil solution or uranium recovered by ammonium acetate. Ryegrass (Lolium perenne L. var. Melvina) is grown in greenhouse on a range of uranium spiked soils. The DGT-recovered uranium concentration (C(DGT)) was correlated with uranium concentration in the soil solution or with uranium recovered by ammonium acetate extraction. Plant uptake was better predicted by the summed soil solution concentrations of UO(2)(2+), uranyl carbonate complexes and UO(2)PO(4)(-). The DGT technique did not provide significant advantages over conventional methods to predict uranium uptake by plants. Copyright 2009 Elsevier Ltd. All rights reserved.
Robertson, Andrew J.; Ranalli, Anthony J.; Austin, Stephen A.; Lawlis, Bryan R.
2016-04-21
The Shiprock Disposal Site is the location of the former Navajo Mill (Mill), a uranium ore-processing facility, located on a terrace overlooking the San Juan River in the town of Shiprock, New Mexico. Following the closure of the Mill, all tailings and associated materials were encapsulated in a disposal cell built on top of the former Mill and tailings piles. The milling operations, conducted at the site from 1954 to 1968, created radioactive tailings and process-related wastes that are now found in the groundwater. Elevated concentrations of constituents of concern—ammonium, manganese, nitrate, selenium, strontium, sulfate, and uranium—have also been measured in groundwater seeps in the nearby Many Devils Wash arroyo, leading to the inference that these constituents originated from the Mill. These constituents have also been reported in groundwater that is associated with Mancos Shale, the bedrock that underlies the site. The objective of this report is to increase understanding of the source of water and solutes to the groundwater beneath Many Devils Wash and to establish the background concentrations for groundwater that is in contact with the Mancos Shale at the site. This report presents evidence on three working hypotheses: (1) the water and solutes in Many Devils Wash originated from the operations at the former Mill, (2) groundwater in deep aquifers is upwelling under artesian pressure to recharge the shallow groundwater beneath Many Devils Wash, and (3) the groundwater beneath Many Devils Wash originates as precipitation that infiltrates into the shallow aquifer system and discharges to Many Devils Wash in a series of springs on the east side of the wash. The solute concentrations in the shallow groundwater of Many Devils Wash would result from the interaction of the water and the Mancos Shale if the source of water was upwelling from deep aquifers or precipitation.In order to compare the groundwater from various wells to groundwater that has been affected by Mill activities, a classification system was developed to determine which wells were most likely to have been affected. Affects to groundwater by the Mill were determined by using the reported uranium alpha activity ratios measured in groundwater samples, along with the concentration of the uranium and the location of the wells relative to the Mill. Activity ratios of 1.2 or less were determined to be the most reliable indicator of Mill-affected groundwater. Wells with samples that had a reported activity ratio of 1.2 or less were classified as Mill affected. To compare groundwater with background water-quality, data from groundwater seeps and springs in the Upper Eagle Nest Arroyo and Salt Creek Wash, located north of the San Juan River, are also presented and analyzed.Based on groundwater elevations and tritium concentrations measured in wells located between the disposal cell and Many Devils Wash, Mill water is not likely to reach Many Devils Wash. The tritium concentrations also indicate that groundwater from the Mill has not substantially affected Many Devils Wash in the past. Upwelling from deep aquifers was also determined to be an unlikely source, primarily by comparing the composition of the stable isotopes of water in the shallow groundwater with those reported in groundwater samples from the deeper aquifers. The stable-isotope compositions of the shallow groundwater around the site are enriched relative to the San Juan River and local meteoric lines, which suggests that most of the shallow groundwater has been influenced by evaporation and therefore was recharged at the surface. Several observations indicate that focused recharge is the likely source of groundwater in the area of Many Devils Wash. The visible erosional features in Many Devils Wash provide evidence of piping and groundwater sapping, and the distribution and type of vegetation in Many Devils Wash suggest that the focused recharge of precipitation is occurring. The estimated recharge from precipitation was calculated to be 0.0008 inches per year (in/yr) by using the mass-balance approach from reported seep discharge and 0.0011 in/yr using the chloride mass-balance approach.A conceptual model of groundwater quality beneath Many Devils Wash is presented to explain the source of solutes in the groundwater beneath Many Devils Wash. The major-ion concentrations and geochemical evolution in the groundwater beneath Many Devils Wash and across the study area support the conceptual model that the underlying Mancos Shale is the source of solutes. Differences in the major-ion composition between groundwater samples collected around the site, result from the degree of weathering to the Mancos Shale. The cation distribution appears to be an indicator of effects from the Mill, with samples from the Mill-affected wells largely having a calcium/magnesium-sulfate composition that resembles the reported compositions of more weathered shale; however, that composition could change if the Mill-processed water flowed into areas where the Mancos Shale was less weathered. On the basis of the widespread presence of uranium in the Mancos Shale and the distribution of aqueous uranium in the analog sites and other sites in the region, it appears likely that uranium in the groundwater of Many Devils Wash is naturally sourced from the Mancos Shale.
Zychowski, Katherine E; Kodali, Vamsi; Harmon, Molly; Tyler, Christina; Sanchez, Bethany; Ordonez Suarez, Yoselin; Herbert, Guy; Wheeler, Abigail; Avasarala, Sumant; Cerrato, José M; Kunda, Nitesh K; Muttil, Pavan; Shuey, Chris; Brearley, Adrian; Ali, Abdul-Mehdi; Lin, Yan; Shoeb, Mohammad; Erdely, Aaron; Campen, Matthew J
2018-04-05
Exposure to windblown particulate matter (PM) arising from legacy uranium (U) mine sites in the Navajo Nation may pose a human health hazard due to their potentially high metal content, including U and vanadium (V). To assess the toxic impact of PM derived from Claim 28 (a priority U mine) compared to background PM, and consider the putative role of metal species U and V. Two representative sediment samples from Navajo Nation sites (Background PM and Claim 28 PM) were obtained, characterized in terms of chemistry and morphology, and fractioned to the respirable (≤10μm) fraction. Mice were dosed with either PM sample, uranyl acetate or vanadyl sulfate via aspiration (100µg), with assessments of pulmonary and vascular toxicity 24h later. PM samples were also examined for in vitro effects on cytotoxicity, oxidative stress, phagocytosis, and inflammasome induction. Claim 28 PM10 was highly enriched with U and V and exhibited a unique nanoparticle ultrastructure compared to background PM10. Claim 28 PM10 exhibited enhanced pulmonary and vascular toxicity relative to background PM10. Both U and V exhibited complementary pulmonary inflammatory potential, with U driving a classical inflammatory cytokine profile (elevated IL-1β, TNFα, KC/GRO) while V preferentially induced a different cytokine pattern (elevated IL-5, IL-6, IL-10). Claim 28 PM10 was more potent than background PM10 in terms of in vitro cytotoxicity, impairment of phagocytosis, and oxidative stress responses. Resuspended PM10 derived from U mine waste exhibit greater cardiopulmonary toxicity than background dusts. Rigorous exposure assessment is needed to gauge the regional health risks imparted by these unremediated sites.
Gihring, Thomas M.; Zhang, Gengxin; Brandt, Craig C.; Brooks, Scott C.; Campbell, James H.; Carroll, Susan; Criddle, Craig S.; Green, Stefan J.; Jardine, Phil; Kostka, Joel E.; Lowe, Kenneth; Mehlhorn, Tonia L.; Overholt, Will; Watson, David B.; Yang, Zamin; Wu, Wei-Min; Schadt, Christopher W.
2011-01-01
Subsurface amendments of slow-release substrates (e.g., emulsified vegetable oil [EVO]) are thought to be a pragmatic alternative to using short-lived, labile substrates for sustained uranium bioimmobilization within contaminated groundwater systems. Spatial and temporal dynamics of subsurface microbial communities during EVO amendment are unknown and likely differ significantly from those of populations stimulated by soluble substrates, such as ethanol and acetate. In this study, a one-time EVO injection resulted in decreased groundwater U concentrations that remained below initial levels for approximately 4 months. Pyrosequencing and quantitative PCR of 16S rRNA from monitoring well samples revealed a rapid decline in groundwater bacterial community richness and diversity after EVO injection, concurrent with increased 16S rRNA copy levels, indicating the selection of a narrow group of taxa rather than a broad community stimulation. Members of the Firmicutes family Veillonellaceae dominated after injection and most likely catalyzed the initial oil decomposition. Sulfate-reducing bacteria from the genus Desulforegula, known for long-chain fatty acid oxidation to acetate, also dominated after EVO amendment. Acetate and H2 production during EVO degradation appeared to stimulate NO3−, Fe(III), U(VI), and SO42− reduction by members of the Comamonadaceae, Geobacteriaceae, and Desulfobacterales. Methanogenic archaea flourished late to comprise over 25% of the total microbial community. Bacterial diversity rebounded after 9 months, although community compositions remained distinct from the preamendment conditions. These results demonstrated that a one-time EVO amendment served as an effective electron donor source for in situ U(VI) bioreduction and that subsurface EVO degradation and metal reduction were likely mediated by successive identifiable guilds of organisms. PMID:21764967
Gihring, Thomas M; Zhang, Gengxin; Brandt, Craig C; Brooks, Scott C; Campbell, James H; Carroll, Susan; Criddle, Craig S; Green, Stefan J; Jardine, Phil; Kostka, Joel E; Lowe, Kenneth; Mehlhorn, Tonia L; Overholt, Will; Watson, David B; Yang, Zamin; Wu, Wei-Min; Schadt, Christopher W
2011-09-01
Subsurface amendments of slow-release substrates (e.g., emulsified vegetable oil [EVO]) are thought to be a pragmatic alternative to using short-lived, labile substrates for sustained uranium bioimmobilization within contaminated groundwater systems. Spatial and temporal dynamics of subsurface microbial communities during EVO amendment are unknown and likely differ significantly from those of populations stimulated by soluble substrates, such as ethanol and acetate. In this study, a one-time EVO injection resulted in decreased groundwater U concentrations that remained below initial levels for approximately 4 months. Pyrosequencing and quantitative PCR of 16S rRNA from monitoring well samples revealed a rapid decline in groundwater bacterial community richness and diversity after EVO injection, concurrent with increased 16S rRNA copy levels, indicating the selection of a narrow group of taxa rather than a broad community stimulation. Members of the Firmicutes family Veillonellaceae dominated after injection and most likely catalyzed the initial oil decomposition. Sulfate-reducing bacteria from the genus Desulforegula, known for long-chain fatty acid oxidation to acetate, also dominated after EVO amendment. Acetate and H(2) production during EVO degradation appeared to stimulate NO(3)(-), Fe(III), U(VI), and SO(4)(2-) reduction by members of the Comamonadaceae, Geobacteriaceae, and Desulfobacterales. Methanogenic archaea flourished late to comprise over 25% of the total microbial community. Bacterial diversity rebounded after 9 months, although community compositions remained distinct from the preamendment conditions. These results demonstrated that a one-time EVO amendment served as an effective electron donor source for in situ U(VI) bioreduction and that subsurface EVO degradation and metal reduction were likely mediated by successive identifiable guilds of organisms.
Goulet, Richard R; Thompson, Patsy A; Serben, Kerrie C; Eickhoff, Curtis V
2015-03-01
Treated effluent discharge from uranium (U) mines and mills elevates the concentrations of U, calcium (Ca), magnesium (Mg), and sulfate (SO4 (2-) ) above natural levels in receiving waters. Many investigations on the effect of hardness on U toxicity have been experiments on the combined effects of changes in hardness, pH, and alkalinity, which do not represent water chemistry downstream of U mines and mills. Therefore, more toxicity studies with water chemistry encountered downstream of U mines and mills are necessary to support predictive assessments of impacts of U discharge to the environment. Acute and chronic U toxicity laboratory bioassays were realized with 6 freshwater species in waters of low alkalinity, circumneutral pH, and a range of chemical hardness as found in field samples collected downstream of U mines and mills. In laboratory-tested waters, speciation calculations suggested that free uranyl ion concentrations remained constant despite increasing chemical hardness. When hardness increased while pH remained circumneutral and alkalinity low, U toxicity decreased only to Hyalella azteca and Pseudokirchneriella subcapitata. Also, Ca and Mg did not compete with U for the same uptake sites. The present study confirms that the majority of studies concluding that hardness affected U toxicity were in fact studies in which alkalinity and pH were the stronger influence. The results thus confirm that studies predicting impacts of U downstream of mines and mills should not consider chemical hardness. Environ Toxicol Chem 2015;34:562-574. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of SETAC. © 2014 The Authors. Published by Wiley Periodicals, Inc. on behalf of SETAC.
ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration.
Beiranvand Pour, Amin; Hashim, Mazlan
2014-01-01
This paper provides a review of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Advanced Land Imager (ALI), and Hyperion data and applications of the data as a tool for ore minerals exploration, lithological and structural mapping. Spectral information extraction from ASTER, ALI, and Hyperion data has great ability to assist geologists in all disciplines to map the distribution and detect the rock units exposed at the earth's surface. The near coincidence of Earth Observing System (EOS)/Terra and Earth Observing One (EO-1) platforms allows acquiring ASTER, ALI, and Hyperion imagery of the same ground areas, resulting accurate information for geological mapping applications especially in the reconnaissance stages of hydrothermal copper and gold exploration, chromite, magnetite, massive sulfide and uranium ore deposits, mineral components of soils and structural interpretation at both regional and district scales. Shortwave length infrared and thermal infrared bands of ASTER have sufficient spectral resolution to map fundamental absorptions of hydroxyl mineral groups and silica and carbonate minerals for regional mapping purposes. Ferric-iron bearing minerals can be discriminated using six unique wavelength bands of ALI spanning the visible and near infrared. Hyperion visible and near infrared bands (0.4 to 1.0 μm) and shortwave infrared bands (0.9 to 2.5 μm) allowed to produce image maps of iron oxide minerals, hydroxyl-bearing minerals, sulfates and carbonates in association with hydrothermal alteration assemblages, respectively. The techniques and achievements reviewed in the present paper can further introduce the efficacy of ASTER, ALI, and Hyperion data for future mineral and lithological mapping and exploration of the porphyry copper, epithermal gold, chromite, magnetite, massive sulfide and uranium ore deposits especially in arid and semi-arid territory.
Precipitation and Dissolution of Uranyl Phosphates in a Microfluidic Pore Structure
NASA Astrophysics Data System (ADS)
Werth, C. J.; Fanizza, M.; Strathmann, T.; Finneran, K.; Oostrom, M.; Zhang, C.; Wietsma, T. W.; Hess, N. J.
2011-12-01
The abiotic precipitation of uranium (U(VI)) was evaluated in a microfluidic pore structure (i.e. micromodel) to assess the efficacy of using a phosphate amendment to immobilize uranium in groundwater and mitigate the risk of this contaminant to potential down-gradient receptor sites. U(VI) was mixed transverse to the direction of flow with hydrogen phosphate (HPO42-), in the presence or absence of calcium (Ca2+) or sulfate (SO42-), in order to identify precipitation rates, the morphology and types of minerals formed, and the stability of these minerals to dissolution with and without bicarbonate (HCO3-) present. Raman backscattering spectroscopy and micro X-ray diffraction (μ-XRD) results both showed that the only mineral precipitated was chernikovite (also known as hydrogen uranyl phosphate; UO2HPO4), even though the formation of other minerals were thermodynamically favored depending on the experimental conditions. Precipitation and dissolution rates varied with influent conditions. Relative to when only U(VI) and HPO42- were present, precipitation rates were 2.3 times slower when SO42- was present, and 1.4 times faster when Ca2+ was present. These rates were inversely related to the size of crystals formed during precipitation. Dissolution rates for chernikovite increased with increasing HCO3- concentrations, consistent with formation of uranyl carbonate complexes in aqueous solution, and they were the fastest for chernikovite formed in the presence of SO42-, and slowest for the chernikovite formed in the presence of Ca2+. These rates are related to the ratios of mineral-water interfacial area to mineral volume. Fluorescent tracer studies and laser confocal microscopy images showed that densely aggregated precipitates blocked pores and reduced permeability. The results suggest that changes in the solute conditions evaluated affect precipitation rates, crystal morphology, and crystal stability, but not mineral type.
URANIUM LEACHING AND RECOVERY PROCESS
McClaine, L.A.
1959-08-18
A process is described for recovering uranium from carbonate leach solutions by precipitating uranium as a mixed oxidation state compound. Uranium is recovered by adding a quadrivalent uranium carbon;te solution to the carbonate solution, adjusting the pH to 13 or greater, and precipitating the uranium as a filterable mixed oxidation state compound. In the event vanadium occurs with the uranium, the vanadium is unaffected by the uranium precipitation step and remains in the carbonate solution. The uranium-free solution is electrolyzed in the cathode compartment of a mercury cathode diaphragm cell to reduce and precipitate the vanadium.
Plutonium recovery from spent reactor fuel by uranium displacement
Ackerman, John P.
1992-01-01
A process for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.
Cellular localization of uranium in the renal proximal tubules during acute renal uranium toxicity.
Homma-Takeda, Shino; Kitahara, Keisuke; Suzuki, Kyoko; Blyth, Benjamin J; Suya, Noriyoshi; Konishi, Teruaki; Terada, Yasuko; Shimada, Yoshiya
2015-12-01
Renal toxicity is a hallmark of uranium exposure, with uranium accumulating specifically in the S3 segment of the proximal tubules causing tubular damage. As the distribution, concentration and dynamics of accumulated uranium at the cellular level is not well understood, here, we report on high-resolution quantitative in situ measurements by high-energy synchrotron radiation X-ray fluorescence analysis in renal sections from a rat model of uranium-induced acute renal toxicity. One day after subcutaneous administration of uranium acetate to male Wistar rats at a dose of 0.5 mg uranium kg(-1) body weight, uranium concentration in the S3 segment of the proximal tubules was 64.9 ± 18.2 µg g(-1) , sevenfold higher than the mean renal uranium concentration (9.7 ± 2.4 µg g(-1) ). Uranium distributed into the epithelium of the S3 segment of the proximal tubules and highly concentrated uranium (50-fold above mean renal concentration) in micro-regions was found near the nuclei. These uranium levels were maintained up to 8 days post-administration, despite more rapid reductions in mean renal concentration. Two weeks after uranium administration, damaged areas were filled with regenerating tubules and morphological signs of tissue recovery, but areas of high uranium concentration (100-fold above mean renal concentration) were still found in the epithelium of regenerating tubules. These data indicate that site-specific accumulation of uranium in micro-regions of the S3 segment of the proximal tubules and retention of uranium in concentrated areas during recovery are characteristics of uranium behavior in the kidney. Copyright © 2015 John Wiley & Sons, Ltd.
Method of preparation of uranium nitride
Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James
2013-07-09
Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.
Fiume, Monice; Bergfeld, Wilma F; Belsito, Donald V; Klaassen, Curtis D; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Alan Andersen, F
2010-05-01
Sodium cetearyl sulfate is the sodium salt of a mixture of cetyl and stearyl sulfate. The other ingredients in this safety assessment are also alkyl salts, including ammonium coco-sulfate, ammonium myristyl sulfate, magnesium coco-sulfate, sodium cetyl sulfate, sodium coco/hydrogenated tallow sulfate, sodium coco-sulfate, sodium decyl sulfate, sodium ethylhexyl sulfate, sodium myristyl sulfate, sodium oleyl sulfate, sodium stearyl sulfate, sodium tallow sulfate, sodium tridecyl sulfate, and zinc coco-sulfate. These ingredients are surfactants used at concentrations from 0.1% to 29%, primarily in soaps and shampoos. Many of these ingredients are not in current use. The Cosmetic Ingredient Review (CIR) Expert Panel previously completed a safety assessment of sodium and ammonium lauryl sulfate. The data available for sodium lauryl sulfate and ammonium lauryl sulfate provide sufficient basis for concluding that sodium cetearyl sulfate and related alkyl sulfates are safe in the practices of use and concentration described in the safety assessment.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Uranium leases on lands controlled by DOE. (Domestic Uranium Program Circular No. 760.1, formerly (AEC) Domestic Uranium Program Circular 8, 10 CFR 60.8). 760.1 Section 760.1 Energy DEPARTMENT OF ENERGY DOMESTIC URANIUM PROGRAM § 760.1 Uranium leases on lands...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Uranium leases on lands controlled by DOE. (Domestic Uranium Program Circular No. 760.1, formerly (AEC) Domestic Uranium Program Circular 8, 10 CFR 60.8). 760.1 Section 760.1 Energy DEPARTMENT OF ENERGY DOMESTIC URANIUM PROGRAM § 760.1 Uranium leases on lands...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Uranium leases on lands controlled by DOE. (Domestic Uranium Program Circular No. 760.1, formerly (AEC) Domestic Uranium Program Circular 8, 10 CFR 60.8). 760.1 Section 760.1 Energy DEPARTMENT OF ENERGY DOMESTIC URANIUM PROGRAM § 760.1 Uranium leases on lands...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Uranium leases on lands controlled by DOE. (Domestic Uranium Program Circular No. 760.1, formerly (AEC) Domestic Uranium Program Circular 8, 10 CFR 60.8). 760.1 Section 760.1 Energy DEPARTMENT OF ENERGY DOMESTIC URANIUM PROGRAM § 760.1 Uranium leases on lands...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Uranium leases on lands controlled by DOE. (Domestic Uranium Program Circular No. 760.1, formerly (AEC) Domestic Uranium Program Circular 8, 10 CFR 60.8). 760.1 Section 760.1 Energy DEPARTMENT OF ENERGY DOMESTIC URANIUM PROGRAM § 760.1 Uranium leases on lands...
PROCESS OF PRODUCING REFRACTORY URANIUM OXIDE ARTICLES
Hamilton, N.E.
1957-12-01
A method is presented for fabricating uranium oxide into a shaped refractory article by introducing a uranium halide fluxing reagent into the uranium oxide, and then mixing and compressing the materials into a shaped composite mass. The shaped mass of uranium oxide and uranium halide is then fired at an elevated temperature so as to form a refractory sintered article. It was found in the present invention that the introduction of a uraninm halide fluxing agent afforded a fluxing action with the uranium oxide particles and that excellent cohesion between these oxide particles was obtained. Approximately 90% of uranium dioxide and 10% of uranium tetrafluoride represent a preferred composition.
31 CFR 540.309 - Natural uranium.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Natural uranium. 540.309 Section 540... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found in...
31 CFR 540.309 - Natural uranium.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Natural uranium. 540.309 Section 540... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found in...
31 CFR 540.309 - Natural uranium.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Natural uranium. 540.309 Section 540... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found in...
Rapid Radiochemical Method for Isotopic Uranium in Building ...
Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Uranium-234, uranium-235, and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of uranium-234, uranium-235, and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.
NASA Astrophysics Data System (ADS)
Spycher, Nicolas F.; Issarangkun, Montarat; Stewart, Brandy D.; Sevinç Şengör, S.; Belding, Eileen; Ginn, Tim R.; Peyton, Brent M.; Sani, Rajesh K.
2011-08-01
One option for immobilizing uranium present in subsurface contaminated groundwater is in situ bioremediation, whereby dissimilatory metal-reducing bacteria and/or sulfate-reducing bacteria are stimulated to catalyze the reduction of soluble U(VI) and precipitate it as uraninite (UO 2). This is typically accomplished by amending groundwater with an organic electron donor. It has been shown, however, that once the electron donor is entirely consumed, Fe(III) (hydr)oxides can reoxidize biogenically produced UO 2, thus potentially impeding cleanup efforts. On the basis of published experiments showing that such reoxidation takes place even under highly reducing conditions (e.g., sulfate-reducing conditions), thermodynamic and kinetic constraints affecting this reoxidation are examined using multicomponent biogeochemical simulations, with particular focus on the role of sulfide and Fe(II) in solution. The solubility of UO 2 and Fe(III) (hydr)oxides are presented, and the effect of nanoscale particle size on stability is discussed. Thermodynamically, sulfide is preferentially oxidized by Fe(III) (hydr)oxides, compared to biogenic UO 2, and for this reason the relative rates of sulfide and UO 2 oxidation play a key role on whether or not UO 2 reoxidizes. The amount of Fe(II) in solution is another important factor, with the precipitation of Fe(II) minerals lowering the Fe +2 activity in solution and increasing the potential for both sulfide and UO 2 reoxidation. The greater (and unintuitive) UO 2 reoxidation by hematite compared to ferrihydrite previously reported in some experiments can be explained by the exhaustion of this mineral from reaction with sulfide. Simulations also confirm previous studies suggesting that carbonate produced by the degradation of organic electron donors used for bioreduction may significantly increase the potential for UO 2 reoxidation through formation of uranyl carbonate aqueous complexes.
NASA Astrophysics Data System (ADS)
Sasamoto, Hiroshi; Yui, Mikazu; Arthur, Randolph C.
Based on geochemical data collected by Japan Nuclear Cycle Development Institute (JNC) in the Tono uranium mine, a conceptual groundwater evolution model developed by JNC is tested to evaluate whether equilibrium-based concepts of water-rock interaction are consistent with observed variations in the mineralogy and hydrochemistry of the Tono mine area. The chemical evolution of the groundwaters is modeled assuming local equilibrium for selected mineral-fluid reactions, taking into account the rainwater origin of these solutions. Results suggest that it is possible to interpret approximately the actual groundwater chemistry (i.e., pH, Eh, total dissolved concentrations of Si, Na, Ca, K, Al, carbonate and sulfate) if the following assumptions are adopted (a) CO 2 concentration in the gas phase contacting pore solutions in the overlying soil zone=10 -1 atm, and (b) minerals in the rock zone that control the solubility of respective elements in the groundwater include: chalcedony (Si), albite (Na), kaolinite (Al), calcite (Ca and carbonate), muscovite (K) and pyrite (Eh and sulfate). This result helps to build confidence in the use of simplified geochemical modeling techniques to develop an understanding of dominant geochemical reactions controlling groundwater chemistry in rocks similar to those that could be used for the geological disposal of radioactive wastes. It is noted, however, that the available field data may not be sufficient to adequately constrain parameters in the groundwater evolution model. In particular, more detailed information characterizing certain site properties are needed to improve the model. For this reason, a model that accounts for ion-exchange reactions among clay minerals, and which is based on the results of laboratory experiments, has also been evaluated in the present study. Further improvement of model considering ion-exchange reactions are needed in future, however.
NASA Astrophysics Data System (ADS)
Tang, G.; Parker, J.; Wu, W.; Schadt, C. W.; Watson, D. B.; Brooks, S. C.; Orifrc Team
2011-12-01
A comprehensive biogeochemical model was developed to quantitatively describe the coupled hydrologic, geochemical and microbiological processes that occurred following injection of emulsified vegetable oil (EVO) as the electron donor to immobilize U(VI) at the Oak Ridge Integrated Field Research Challenge site (ORIFRC) in Tennessee. The model couples the degradation of EVO, production and oxidation of long-chain fatty acids (LCFA), glycerol, hydrogen and acetate, reduction of nitrate, manganese, ferrous iron, sulfate and uranium, and methanoganesis with growth of multiple microbial groups. The model describes the evolution of geochemistry and microbial populations not only in the aqueous phase as typically observed, but also in the mineral phase and therefore enables us to evaluate the applicability of rates from the literature for field scale assessment, estimate the retention and degradation rates of EVO and LCFA, and assess the influence of the coupled processes on fate and transport of U(VI). Our results suggested that syntrophic bacteria or metal reducers might catalyze LCFA oxidation in the downstream locations when sulfate was consumed, and competition between methanogens and others for electron donors and slow growth of methanogen might contribute to the sustained reducing condition. Among the large amount of hydrologic, geochemical and microbiological parameter values, the initial biomass, and the interactions (e.g., inhibition) of the microbial functional groups, and the rate and extent of Mn and Fe oxide reduction appear as the major sources of uncertainty. Our model provides a platform to conduct numerical experiments to study these interactions, and could be useful for further iterative experimental and modeling investigations into the bioreductive immobiliztion of radionuclide and metal contaminants in the subsurface.
Tracing the Origin of Radioactivity in Groundwater from the Negev, Israel
NASA Astrophysics Data System (ADS)
Vengosh, A.; Pery, N.; Paytan, A.; Haquin, G.; Enhanany, S.; Pankratov, I.
2004-12-01
In normal groundwater conditions natural radionuclides are typically retained on the aquifer matrix and their activity in the groundwater is low. Radium is exceptional since the ratio between adsorbed and dissolved radium depends the ionic strength of the solution. Under high salinity radium is rapidly desorbed and accumulates in the liquid phase. Here we report the results of a geochemical study that investigates the origin of radioactivity in brackish to saline groundwater from the Negev and Arava Valley, Israel. We use the Ra isotope quartet (226Ra-half life 1600 y, 228Ra - 5.6 y, 224Ra - 3.6 d, 223Ra - 11.4 d) to discriminate between radioactivity derived from a thorium source (high 228Ra/226Ra and 224Ra/223Ra ratios) found in groundwater flowing in the Nubian Sandstone aquifer and an uranium source (low 228Ra/226Ra and 224Ra/223Ra ratios) in groundwater flowing in carbonate (Upper Cretaceous) aquifer. We show that the activity of 226Ra in groundwater from the carbonate aquifer is positively correlated with that of the salinity. In the Nubian Sandstone aquifer, however, no such correlation was found. Instead, we observed an inverse correlation between 228Ra activity and sulfate and a positive correlation with barium contents. Given the high H2S content of the ground water, we hypothesized that sulfate reduction process triggers radium leaching to the water, probably due to barite dissolution and anoxic conditions in the aquifer. These findings indicate that high radioactivity can also be found even in low-saline groundwater and that the isotopic ratios of radium are sensitive tracers for the water-rock interactions and thus reconstructing the flow paths in different aquifer matrix (i.e., carbonate versus sandstone).
Plutonium recovery from spent reactor fuel by uranium displacement
Ackerman, J.P.
1992-03-17
A process is described for separating uranium values and transuranic values from fission products containing rare earth values when the values are contained together in a molten chloride salt electrolyte. A molten chloride salt electrolyte with a first ratio of plutonium chloride to uranium chloride is contacted with both a solid cathode and an anode having values of uranium and fission products including plutonium. A voltage is applied across the anode and cathode electrolytically to transfer uranium and plutonium from the anode to the electrolyte while uranium values in the electrolyte electrolytically deposit as uranium metal on the solid cathode in an amount equal to the uranium and plutonium transferred from the anode causing the electrolyte to have a second ratio of plutonium chloride to uranium chloride. Then the solid cathode with the uranium metal deposited thereon is removed and molten cadmium having uranium dissolved therein is brought into contact with the electrolyte resulting in chemical transfer of plutonium values from the electrolyte to the molten cadmium and transfer of uranium values from the molten cadmium to the electrolyte until the first ratio of plutonium chloride to uranium chloride is reestablished.
16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM ...
16. VIEW OF THE ENRICHED URANIUM RECOVERY SYSTEM. ENRICHED URANIUM RECOVERY PROCESSED RELATIVELY PURE MATERIALS AND SOLUTIONS AND SOLID RESIDUES WITH RELATIVELY LOW URANIUM CONTENT. URANIUM RECOVERY INVOLVED BOTH SLOW AND FAST PROCESSES. (4/4/66) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO
77 FR 51579 - Application for a License To Export High-Enriched Uranium
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-24
... NUCLEAR REGULATORY COMMISSION Application for a License To Export High-Enriched Uranium Pursuant.... Complex, July 30, 2012, August Uranium (93.35%). uranium-235 high-enriched 1, 2012, XSNM3726, 11006037. contained in 7.5 uranium in the kilograms uranium. form of broken metal to the Atomic Energy of Canada...
Deposit model for volcanogenic uranium deposits
Breit, George N.; Hall, Susan M.
2011-01-01
The International Atomic Energy Agency's tabulation of volcanogenic uranium deposits lists 100 deposits in 20 countries, with major deposits in Russia, Mongolia, and China. Collectively these deposits are estimated to contain uranium resources of approximately 500,000 tons of uranium, which amounts to 6 percent of the known global resources. Prior to the 1990s, these deposits were considered to be small (less than 10,000 tons of uranium) with relatively low to moderate grades (0.05 to 0.2 weight percent of uranium). Recent availability of information on volcanogenic uranium deposits in Asia highlighted the large resource potential of this deposit type. For example, the Streltsovskoye district in eastern Russia produced more than 100,000 tons of uranium as of 2005; with equivalent resources remaining. Known volcanogenic uranium deposits within the United States are located in Idaho, Nevada, Oregon, and Utah. These deposits produced an estimated total of 800 tons of uranium during mining from the 1950s through the 1970s and have known resources of 30,000 tons of uranium. The most recent estimate of speculative resources proposed an endowment of 200,000 tons of uranium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siekhaus, W. J.; Teslich, N. E.; Weber, P. K.
Depleted uranium that included carbide inclusions was sputtered with 30-keV gallium ions or 16-kev cesium ions to depths much greater than the ions’ range, i.e. using steady-state sputtering. The recession of both the uranium’s and uranium carbide’s surfaces and the ion corresponding fluences were used to determine the steady-state target sputtering yields of both uranium and uranium carbide, i.e. 6.3 atoms of uranium and 2.4 units of uranium carbide eroded per gallium ion, and 9.9 uranium atoms and 3.65 units of uranium carbide eroded by cesium ions. The steady state surface composition resulting from the simultaneous gallium or cesium implantationmore » and sputter-erosion of uranium and uranium carbide were calculated to be U₈₆Ga₁₄, (UC)₇₀Ga₃₀ and U₈₁Cs₉, (UC)₇₉Cs₂₁, respectively.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, S.J.; Sandoval, W.F.; Gallimore, D.L.
1980-06-01
Water and sediment samples were collected and each water sample was analyzed for U, and each sediment sample was analyzed for 43 elements, including U and Th. Uranium concentrations in water samples range from below the detection limit of 0.02 ppB to 702.26 ppB and have a median of 1.73 ppB and a mean of 11.76 ppB. Water samples containing high uranium concentrations generally are associated with known uranium mining activity or units known to be uranium bearing. About one-third of the water samples containing high uranium concentrations were collected from locations within the Pumpkin Buttes and Turnercrest-Ross Districts. Nearlymore » half of the water samples containing high uranium concentrations were collected from locations just west of the Monument Hill and Highland Flats-Box Creek Districts. Similar anomalous uranium concentrations in this region have been reported updip from Exxon's Highland uranium deposits. High uranium concentrations were also found associated with the Lance Creek-Old Woman Anticline District. Uranium concentrations in sediment samples range from 1.14 to 220.70 ppM and have a median of 3.37 ppM and a mean of 4.03 ppM. Throughout the major uranium mining districts of the Powder River Basin, sediment samples with high uranium concentrations were collected from dry streams located near wells producing water samples with high uranium concentrations. High uranium concentrations were also found associated with the Lance Creek oil field where uranium mineralization is known in the White River formation. High uranium concentrations were also found in sediment samples in areas where uranium mineralization is not known. These samples are from dry streams in areas underlain by the White River formation, the Niobrara formation, and the Pierre, Carlisle, Belle Fourche, and Mowry shales.« less
Influence of uranium hydride oxidation on uranium metal behaviour
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, N.; Hambley, D.; Clarke, S.A.
2013-07-01
This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, ifmore » sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)« less
Szecsody, Jim E; Truex, Mike J; Qafoku, Nikolla P; Wellman, Dawn M; Resch, Tom; Zhong, Lirong
2013-08-01
This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH2) resulted in a rapid (<10 h) increase in aqueous carbonate (with Ca(2+), Mg(2+)) and phosphate and a slow (100 s of hours) increase in silica, Al(3+), and K(+), likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH13) resulted in a rapid (<10h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity. Copyright © 2013 Elsevier B.V. All rights reserved.
Uranium induces oxidative stress in lung epithelial cells
Periyakaruppan, Adaikkappan; Kumar, Felix; Sarkar, Shubhashish; Sharma, Chidananda S.
2009-01-01
Uranium compounds are widely used in the nuclear fuel cycle, antitank weapons, tank armor, and also as a pigment to color ceramics and glass. Effective management of waste uranium compounds is necessary to prevent exposure to avoid adverse health effects on the population. Health risks associated with uranium exposure includes kidney disease and respiratory disorders. In addition, several published results have shown uranium or depleted uranium causes DNA damage, mutagenicity, cancer and neurological defects. In the current study, uranium toxicity was evaluated in rat lung epithelial cells. The study shows uranium induces significant oxidative stress in rat lung epithelial cells followed by concomitant decrease in the antioxidant potential of the cells. Treatment with uranium to rat lung epithelial cells also decreased cell proliferation after 72 h in culture. The decrease in cell proliferation was attributed to loss of total glutathione and superoxide dismutase in the presence of uranium. Thus the results indicate the ineffectiveness of antioxidant system’s response to the oxidative stress induced by uranium in the cells. PMID:17124605
Meinrath, A; Schneider, P; Meinrath, G
2003-01-01
The Erzgebirge ('Ore Mountains') area in the eastern part of Germany was a major source of uranium for Soviet nuclear programs between 1945 and 1989. During this time, the former German Democratic Republic became the third largest uranium producer in the world. The high abundance of uranium in the geological formations of the Erzgebirge are mirrored in the discovery of uranium by M. Klaproth close to Freiberg City in 1789 and the description of the so-called 'Schneeberg' disease, lung cancer caused in miners by the accumulation of the uranium decay product, radon, in the subsurfaces of shafts. Since 1991, remediation and mitigation of uranium at production facilities, rock piles and mill tailings has taken place. In parallel, efforts were initiated to assess the likely adverse effects of uranium mining to humans. The costs of these activities amount to about 6.5 10(9) Euro. A comparison with concentrations of depleted uranium at certain sites is given.
METHOD FOR RECOVERING URANIUM FROM OILS
Gooch, L.H.
1959-07-14
A method is presented for recovering uranium from hydrocarbon oils, wherein the uranium is principally present as UF/sub 4/. According to the invention, substantially complete removal of the uranium from the hydrocarbon oil may be effected by intimately mixing one part of acetone to about 2 to 12 parts of the hydrocarbon oil containing uranium and separating the resulting cake of uranium from the resulting mixture. The uranium in the cake may be readily recovered by burning to the oxide.
High strength and density tungsten-uranium alloys
Sheinberg, Haskell
1993-01-01
Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.
NASA Astrophysics Data System (ADS)
Smirnov, A. Yu; Mustafin, A. R.; Nevinitsa, V. A.; Sulaberidze, G. A.; Dudnikov, A. A.; Gusev, V. E.
2017-01-01
The effect of the uncertainties of the isotopic composition of the reprocessed uranium on its enrichment process in gas centrifuge cascades while diluting it by adding low-enriched uranium (LEU) and waste uranium. It is shown that changing the content of 232U and 236U isotopes in the initial reprocessed uranium within 15% (rel.) can significantly change natural uranium consumption and separative work (up to 2-3%). However, even in case of increase of these parameters is possible to find the ratio of diluents, where the cascade with three feed flows (depleted uranium, LEU and reprocessed uranium) will be more effective than ordinary separation cascade with one feed point for producing LEU from natural uranium.
METHOD OF RECOVERING URANIUM COMPOUNDS
Poirier, R.H.
1957-10-29
S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leggett, Richard Wayne; Eckerman, Keith F; McGinn, Wilson
2012-01-01
This report provides methods for interpreting and applying occupational uranium monitoring data. The methods are based on current international radiation protection guidance, current information on the chemical toxicity of uranium, and best available biokinetic models for uranium. Emphasis is on air monitoring data and three types of bioassay data: the concentration of uranium in urine; the concentration of uranium in feces; and the externally measured content of uranium in the chest. Primary Reference guidance levels for prevention of chemical effects and limitation of radiation effects are selected based on a review of current scientific data and regulatory principles for settingmore » standards. Generic investigation levels and immediate action levels are then defined in terms of these primary guidance levels. The generic investigation and immediate actions levels are stated in terms of radiation dose and concentration of uranium in the kidneys. These are not directly measurable quantities, but models can be used to relate the generic levels to the concentration of uranium in air, urine, or feces, or the total uranium activity in the chest. Default investigation and immediate action levels for uranium in air, urine, feces, and chest are recommended for situations in which there is little information on the form of uranium taken into the body. Methods are prescribed also for deriving case-specific investigation and immediate action levels for uranium in air, urine, feces, and chest when there is sufficient information on the form of uranium to narrow the range of predictions of accumulation of uranium in the main target organs for uranium: kidneys for chemical effects and lungs for radiological effects. In addition, methods for using the information herein for alternative guidance levels, different from the ones selected for this report, are described.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregoire, D.C.; Goltz, D.M.; Chakrabarti, C.L.
Graphite furnace atomic absorption spectrometry (GFAAS) is an insensitive technique for determination of uranium. Experiments were conducted using electrothermal vaporization inductively coupled plasma mass spectrometry to investigate the atomization and vaporization of atomic and molecular uranium species in the graphite furnace. ETV-ICP-MS signals for uranium were observed at temperatures well below the appearance temperature of uranium atoms suggesting the vaporization of molecular uranium oxide at temperatures below 2000{degrees}C. Examination of individual uranium ETV-ICP-MS signals reveals the vaporization of uranium carbide at temperatures above 2600{degrees}C. Chemical modifiers such as 0.2% HF and 0.1% CHF{sub 3} in the argon carrier gas, weremore » ineffective in preventing the formation of uranium carbide at 2700{degrees}C. Vaporization of uranium from a tungsten surface using tungsten foil inserted into the graphite tube prevented the formation of uranium carbide and eliminated the ETV-ICP-MS signal suppression caused by a sodium chloride matrix.« less
PRODUCTION OF PURIFIED URANIUM
Burris, L. Jr.; Knighton, J.B.; Feder, H.M.
1960-01-26
A pyrometallurgical method for processing nuclear reactor fuel elements containing uranium and fission products and for reducing uranium compound; to metallic uranium is reported. If the material proccssed is essentially metallic uranium, it is dissolved in zinc, the sulution is cooled to crystallize UZn/sub 9/ , and the UZn/sub 9/ is distilled to obtain uranium free of fission products. If the material processed is a uranium compound, the sollvent is an alloy of zinc and magnesium and the remaining steps are the same.
METHOD OF SEPARATING URANIUM VALUES, PLUTONIUM VALUES AND FISSION PRODUCTS BY CHLORINATION
Brown, H.S.; Seaborg, G.T.
1959-02-24
The separation of plutonium and uranium from each other and from other substances is described. In general, the method comprises the steps of contacting the uranium with chlorine in the presence of a holdback material selected from the group consisting of lanthanum oxide and thorium oxide to form a uranium chloride higher than uranium tetrachloride, and thereafter heating the uranium chloride thus formed to a temperature at which the uranium chloride is volatilized off but below the volatilizalion temperature of plutonium chloride.
SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY
Clark, H.M.; Duffey, D.
1958-06-17
A process is described for extracting uranium from uranium ore, wherein the uranium is substantially free from molybdenum contamination. In a solvent extraction process for recovering uranium, uranium and molybdenum ions are extracted from the ore with ether under high acidity conditions. The ether phase is then stripped with water at a lower controiled acidity, resaturated with salting materials such as sodium nitrate, and reextracted with the separation of the molybdenum from the uranium without interference from other metals that have been previously extracted.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-21
... License Renewal, Operating License SUA-1341, Uranium One USA, Inc., Willow Creek Uranium In Situ Recovery.... SUA- 1341 to Uranium One USA, Inc. (Uranium One) for its Willow Creek Uranium In Situ Recovery (ISR) Project in Johnson and Campbell Counties, Wyoming. ADDRESSES: Please refer to Docket ID NRC-2009-0036 when...
Johnson, Raymond H.; Tutu, Hlanganani; Brown, Adrian; Figueroa, Linda; Wolkersdorfer, Christian
2013-01-01
Geochemical changes that can occur down gradient from uranium in situ recovery (ISR) sites are important for various stakeholders to understand when evaluating potential effects on surrounding groundwater quality. If down gradient solid-phase material consists of sandstone with iron hydroxide coatings (no pyrite or organic carbon), sorption of uranium on iron hydroxides can control uranium mobility. Using one-dimensional reactive transport models with PHREEQC, two different geochemical databases, and various geochemical parameters, the uncertainties in uranium sorption on iron hydroxides are evaluated, because these oxidized zones create a greater risk for future uranium transport than fully reduced zones where uranium generally precipitates.
Method for the recovery of uranium values from uranium tetrafluoride
Kreuzmann, Alvin B.
1983-01-01
The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.
Method for the recovery of uranium values from uranium tetrafluoride
Kreuzmann, A.B.
1982-10-27
The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.
Fate of Uranium in Wetlands: Impact of Drought Followed by Re-flooding
NASA Astrophysics Data System (ADS)
Gilson, E.; Huang, S.; Koster van Groos, P. G.; Scheckel, K.; Peacock, A. D.; Kaplan, D. I.; Jaffe, P. R.
2014-12-01
Uranium contamination in groundwater can be mitigated in anoxic zones by iron-reducing bacteria that reduce soluble U(VI) to insoluble U(IV) and by uranium immobilization through complexation and sorption. Wetlands often link ground and surface-waters, making them strategic systems for potentially limiting migration of uranium contamination. Little is known about how drought periods that result in the drying of wetland soils, and consequent redox changes, affect uranium fate and transport in wetlands. In order to better understand the fate and stability of immobilized uranium in wetland soils, and how dry periods affect the uranium stability, we dosed saturated wetland mesocosms planted with Scirpus acutus with low levels of uranyl-acetate for 5 months before imposing a 9-day drying period followed by a 13-day rewetting period. Concentrations of uranium in mesocosm effluent increased after rewetting, but the cumulative amount of uranium released in the 13 days following the drying constituted less than 1% of the uranium immobilized in the soil during the 5 months prior to the drought. This low level of remobilization suggests that the uranium immobilized in these soils was not primarily bioreduced U(IV), which could have been oxidized to soluble U(VI) during the drought and released in the effluent during the subsequent flood. XANES analyses confirm that most of the uranium immobilized in the mesocosms was U(VI) sorbed to iron oxides. Compared to mesocosms that did not experience drying or rewetting, mesocosms that were sacrificed immediately after drying and after 13 days of rewetting had less uranium in soil near roots and more uranium on root surfaces. Metal-reducing bacteria only dominated the bacterial community after 13 days of rewetting and not immediately after drying, indicating that these bacteria are not responsible for this redistribution of uranium after the drying and rewetting. Results show that short periods of drought conditions in a wetland may impact uranium distribution, but these conditions may not cause large losses of immobilized uranium from the wetland.
McNeal, J.M.; Lee, D.E.; Millard, H.T.
1981-01-01
Some secondary uranium deposits are thought to have formed from uranium derived by the weathering of silicic igneous rocks such as granites, rhyolites, and tuffs. A regional geochemical survey was made to determine the distribution of uranium and thorium in granitic rocks of the Basin and Range province in order to evaluate the potential for secondary uranium occurrences in the area. The resulting geochemical maps of uranium, thorium, and the Th:U ratio may be useful in locating target areas for uranium exploration. The granites were sampled according to a five-level, nested, analysis-of-variance design, permitting estimates to be made of the variance due to differences between:(1) two-degree cells; (2) one-degree cells; (3) plutons; (4) samples; and (5) analyses. The cells are areas described in units of degrees of latitude and longitude. The results show that individual plutons tend to differ in uranium and thorium concentrations, but that each pluton tends to be relatively homogeneous. Only small amounts of variance occur at the two degree and the between-analyses levels. The three geochemical maps that were prepared are based on one-degree cell means. The reproducibility of the maps is U > Th ??? Th:U. These geochemical maps may be used in three methods of locating target areas for uranium exploration. The first method uses the concept that plutons containing the greatest amounts of uranium may supply the greatest amounts of uranium for the formation of secondary uranium occurrences. The second method is to examine areas with high thorium contents, because thorium and uranium are initially highly correlated but much uranium could be lost by weathering. The third method is to locate areas in which the plutons have particularly high Th:U ratios. Because uranium, but not thorium, is leached by chemical weathering, high Th:U ratios suggest a possible loss of uranium and possibly a greater potential for secondary uranium occurrences to be found in the area. ?? 1981.
NASA Astrophysics Data System (ADS)
Roycroft, S. J.; Noel, V.; Boye, K.; Besancon, C.; Weaver, K. L.; Johnson, R. H.; Dam, W. L.; Fendorf, S. E.; Bargar, J.
2016-12-01
Uranium contaminated groundwater in Riverton, Wyoming persists despite anticipated natural attenuation outside of a former uranium ore processing facility. The inability of natural flushing to dilute the uranium below the regulatory threshold indicates that sediments act as secondary sources likely (re)supplying uranium to groundwater. Throughout the contaminated floodplain, uranium rich-evaporites are readily abundant in the upper 2 m of sediments and are spatially coincident with the location of the plume, which suggests a likely link between evaporites and increased uranium levels. Knowledge of where and how uranium is stored within evaporite-associated sediments is required to understand processes controlling the mobility of uranium. We expect that flooding and seasonal changes in hydrologic conditions will affect U phase partitioning, and thus largely control U mobility. The primary questions we are addressing in this project are: What is the relative abundance of uranium incorporated in various mineral complexes throughout the evaporite sediments? How do the factors of depth, location, and seasonality influence the relative incorporation, mobility and speciation of uranium?We have systematically sampled from two soil columns over three dates in Riverton. The sampling dates span before and after a significant flooding event, providing insight into the flood's impact on local uranium mobility. Sequential chemical extractions are used to decipher the reactivity of uranium and approximate U operationally defined within reactants targeting carbonate, silicate, organic, and metal oxide bound or water and exchangeable phases. Extractions throughout the entirety of the sediment cores provide a high-resolution vertical profile of the distribution of uranium in various extracted phases. Throughout the profile, the majority (50-60%) of uranium is bound within carbonate-targeted extracts, a direct effect of the carbonate-rich evaporite sediments. The sum of our analyses provide a dynamic model of uranium incorporation within evaporite sediments holding implications for the fate of uranium throughout contaminated sites across the Colorado River Basin.
NASA Astrophysics Data System (ADS)
Mullakaev, A. I.; Khasanov, R. R.; Badrutdinov, O. R.; Kamaletdinov, I. R.
2018-05-01
The article investigates geochemical features of Permian (Cisuralian, Ufimian Stage and Biarmian, Kazanian Stage of the General Stratigraphic Scale of Russia) bituminous sands and sandstones located on the territory of the Volga-Ural oil and gas province (Republic of Tatarstan). Natural bitumens are extracted using thermal methods as deposits of high-viscosity oils. In the samples studied, the specific activity of natural radionuclides from the 238U (226Ra), 232Th, and 40K series was measured using gamma spectrometry. As a result of the precipitation of uranium and thorium and their subsequent decay, the accumulation of radium (226Ra and 228Ra) has been shown to occur in the bituminous substance. In the process of exploitation of bitumen-bearing rock deposits (as an oil fields) radium in the composition of a water-oil mixture can be extracted to the surface or deposited on sulfate barriers, while being concentrated on the walls of pipes and other equipment. This process requires increased attention to monitoring and inspection the environmental safety of the exploitation procedure.
Inherently safe in situ uranium recovery
Krumhansl, James L; Brady, Patrick V
2014-04-29
An in situ recovery of uranium operation involves circulating reactive fluids through an underground uranium deposit. These fluids contain chemicals that dissolve the uranium ore. Uranium is recovered from the fluids after they are pumped back to the surface. Chemicals used to accomplish this include complexing agents that are organic, readily degradable, and/or have a predictable lifetime in an aquifer. Efficiency is increased through development of organic agents targeted to complexing tetravalent uranium rather than hexavalent uranium. The operation provides for in situ immobilization of some oxy-anion pollutants under oxidizing conditions as well as reducing conditions. The operation also artificially reestablishes reducing conditions on the aquifer after uranium recovery is completed. With the ability to have the impacted aquifer reliably remediated, the uranium recovery operation can be considered inherently safe.
Uranium concentrations in groundwater, northeastern Washington
Kahle, Sue C.; Welch, Wendy B.; Tecca, Alison E.; Eliason, Devin M.
2018-04-18
A study of uranium in groundwater in northeastern Washington was conducted to make a preliminary assessment of naturally occurring uranium in groundwater relying on existing information and limited reconnaissance sampling. Naturally occurring uranium is associated with granitic and metasedimentary rocks, as well as younger sedimentary deposits, that occur in this region. The occurrence and distribution of uranium in groundwater is poorly understood. U.S. Environmental Protection Agency (EPA) regulates uranium in Group A community water systems at a maximum contaminant level (MCL) of 30 μg/L in order to reduce uranium exposure, protect from toxic kidney effects of uranium, and reduce the risk of cancer. However, most existing private wells in the study area, generally for single family use, have not been sampled for uranium. This document presents available uranium concentration data from throughout a multi-county region, identifies data gaps, and suggests further study aimed at understanding the occurrence of uranium in groundwater.The study encompasses about 13,000 square miles (mi2) in the northeastern part of Washington with a 2010 population of about 563,000. Other than the City of Spokane, most of the study area is rural with small towns interspersed throughout the region. The study area also includes three Indian Reservations with small towns and scattered population. The area has a history of uranium exploration and mining, with two inactive uranium mines on the Spokane Indian Reservation and one smaller inactive mine on the outskirts of Spokane. Historical (1977–2016) uranium in groundwater concentration data were used to describe and illustrate the general occurrence and distribution of uranium in groundwater, as well as to identify data deficiencies. Uranium concentrations were detected at greater than 1 microgram per liter (μg/L) in 60 percent of the 2,382 historical samples (from wells and springs). Uranium concentrations ranged from less than 1 to 88,600 μg/L, and the median concentration of uranium in groundwater for all sites was 1.4 μg/L.New (2017) uranium in groundwater concentration data were obtained by sampling 13 private domestic wells for uranium in areas without recent (2000s) water-quality data. Uranium was detected in all 13 wells sampled for this study; concentrations ranged from 1.03 to 1,180 μg/L with a median of 22 μg/L. Uranium concentrations of groundwater samples from 6 of the 13 wells exceeded the MCL for uranium. Uranium concentrations in water samples from two wells were 1,130 and 1,180 μg/L, respectively; nearly 40 times the MCL.Additional data collection and analysis are needed in rural areas where self-supplied groundwater withdrawals are the primary source of water for human consumption. Of the roughly 43,000 existing water wells in the study area, only 1,755 wells, as summarized in this document, have available uranium concentration data, and some of those data are decades old. Furthermore, analysis of area groundwater quality would benefit from a more extensive chemical-analysis suite including general chemistry in order to better understand local geochemical conditions that largely govern the mobility of uranium. Although the focus of the present study is uranium, it also is important to recognize that there are other radionuclides of concern that may be present in area groundwater.
Dissolved molybdenum and uranium in the Three Rivers of eastern Tibet
NASA Astrophysics Data System (ADS)
Noh, H.; Huh, Y.
2006-12-01
Three large rivers - the Chang Jiang (Yangtze), Mekong (Lancang Jiang) and Salween (Nu Jiang) - originate in eastern Tibet and run in close parallel over 300 km near the eastern Himalayan syntaxis. They flow across suture zones and faults generated by the collision of India and Eurasia. Sixty-five water samples were collected in summer of 1999 to 2004 and nine in winter of 2002 to 2003. The complex geologic makeup of the Three Rivers region (TRR) results in widely varying major and trace element compositions of the dissolved load. Two redox-sensitive elements, molybdenum (Mo) and uranium (U) were analyzed by ICP-MS, as potential proxies for weathering of sedimentary organic carbon and resultant generation of atmospheric carbon dioxide. Additionally, Mo constitutes an essential co-enzyme for biology. Mo concentration ranges from 0.76 to 21.3 nmol/kg (average: 6.24 nmol/kg, average of global rivers: ~5 nmol/kg (Martin and Meybeck, 1979)), and U concentration varies from 2.86 to 10.7 nmol/kg (average: 3.12 nmol/kg, average of global rivers: ~1 nmol/kg (Palmer and Edmond, 1993)). The highest values of Mo and U are observed in the headwater tributary sample of the Chang Jiang, where evaporite dissolution is dominant. Statistical analyses show that Mo is closely correlated with U (r = 0.713, p < 0.01) indicating similar source of Mo and U to river waters in the TRR. Inverse correlation with Si/total anions ratio suggests that their sources are non-silicate minerals. The correlation with sulfate supports the use Mo and U as proxies for weathering of reduced organic-rich sediments (Mo and SO4: r = 0.383, p < 0.01; U and SO4: r = 0.508, p < 0.01). Among the parameters tested (basin area, elevation, relief, slope, T, precipitation, potential-evapotranspiration, normalized difference vegetation index (NDVI), population density), best positive correlation (r>0.5) is shown between U and basin elevation, and negative correlation is shown between U and temperature, precipitation and potential- evapotranspiration. Martin J.-M. and Meybeck M. (1979) Elemental mass-balance of material carried by major world rivers. Mar. Chem. 7, 173-206. Palmer M. R. and Edmond J. M. (1993) Uranium in river water. Geochim. Cosmochim. Acta 57, 4947-4955.
DYNAMIC PROPERTIES OF SHOCK LOADED THIN URANIUM FOILS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robbins, D. L.; Kelly, A. M.; Alexander, D. J.
A series of spall experiments has been completed with thin depleted uranium targets, nominally 0.1 mm thick. The first set of uranium spall targets was cut and ground to final thickness from electro-refined, high-purity, cast uranium. The second set was rolled to final thickness from low purity uranium. The impactors for these experiments were laser-launched 0.05-mm thick copper flyers, 3 mm in diameter. Laser energies were varied to yield a range of flyer impact velocities. This resulted in varying degrees of damage to the uranium spall targets, from deformation to complete spall or separation at the higher velocities. Dynamic measurementsmore » of the uranium target free surface velocities were obtained with dual velocity interferometers. Uranium targets were recovered and sectioned after testing. Free surface velocity profiles were similar for the two types of uranium, but spall strengths (estimated from the magnitude of the pull-back signal) are higher for the high-purity cast uranium. Velocity profiles and microstructural evidence of spall from the sectioned uranium targets are presented.« less
Aftermath of Uranium Ore Processing on Floodplains: Lasting Effects of Uranium on Soil and Microbes
NASA Astrophysics Data System (ADS)
Tang, H.; Boye, K.; Bargar, J.; Fendorf, S. E.
2016-12-01
A former uranium ore processing site located between the Wind River and the Little Wind River near the city of Riverton, Wyoming, has generated a uranium plume in the groundwater within the floodplain. Uranium is toxic and poses a threat to human health. Thus, controlling and containing the spread of uranium will benefit the human population. The primary source of uranium was removed from the processing site, but a uranium plume still exists in the groundwater. Uranium in its reduced form is relatively insoluble in water and therefore is retained in organic rich, anoxic layers in the subsurface. However, with the aid of microbes uranium becomes soluble in water which could expose people and the environment to this toxin, if it enters the groundwater and ultimately the river. In order to better understand the mechanisms controlling uranium behavior in the floodplains, we examined sediments from three sediment cores (soil surface to aquifer). We determined the soil elemental concentrations and measured microbial activity through the use of several instruments (e.g. Elemental Analyzer, X-ray Fluorescence, MicroResp System). Through the data collected, we aim to obtain a better understanding of how the interaction of geochemical factors and microbial metabolism affect uranium mobility. This knowledge will inform models used to predict uranium behavior in response to land use or climate change in floodplain environments.
New Technique for Speciation of Uranium in Sediments Following Acetate-Stimulated Bioremediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2011-06-22
Acetate-stimulated bioremediation is a promising new technique for sequestering toxic uranium contamination from groundwater. The speciation of uranium in sediments after such bioremediation attempts remains unknown as a result of low uranium concentration, and is important to analyzing the stability of sequestered uranium. A new technique was developed for investigating the oxidation state and local molecular structure of uranium from field site sediments using X-Ray Absorption Spectroscopy (XAS), and was implemented at the site of a former uranium mill in Rifle, CO. Glass columns filled with bioactive Rifle sediments were deployed in wells in the contaminated Rifle aquifer and amendedmore » with a hexavalent uranium (U(VI)) stock solution to increase uranium concentration while maintaining field conditions. This sediment was harvested and XAS was utilized to analyze the oxidation state and local molecular structure of the uranium in sediment samples. Extended X-Ray Absorption Fine Structure (EXAFS) data was collected and compared to known uranium spectra to determine the local molecular structure of the uranium in the sediment. Fitting was used to determine that the field site sediments did not contain uraninite (UO{sub 2}), indicating that models based on bioreduction using pure bacterial cultures are not accurate for bioremediation in the field. Stability tests on the monomeric tetravalent uranium (U(IV)) produced by bioremediation are needed in order to assess the efficacy of acetate-stimulation bioremediation.« less
Health effects of uranium: new research findings.
Brugge, Doug; Buchner, Virginia
2011-01-01
Recent plans for a nuclear renaissance in both established and emerging economies have prompted increased interest in uranium mining. With the potential for more uranium mining worldwide and a growth in the literature on the toxicology and epidemiology of uranium and uranium mining, we found it timely to review the current state of knowledge. Here, we present a review of the health effects of uranium mining, with an emphasis on newer findings (2005-2011). Uranium mining can contaminate air, water, and soil. The chemical toxicity of the metal constitutes the primary environmental health hazard, with the radioactivity of uranium a secondary concern. The update of the toxicologic evidence on uranium adds to the established findings regarding nephrotoxicity, genotoxicity, and developmental defects. Additional novel toxicologic findings, including some at the molecular level, are now emerging that raise the biological plausibility of adverse effects on the brain, on reproduction, including estrogenic effects, on gene expression, and on uranium metabolism. Historically, most epidemiology on uranium mining has focused on mine workers and radon exposure. Although that situation is still overwhelmingly true, a smaller emerging literature has begun to form around environmental exposure in residential areas near uranium mining and processing facilities. We present and critique such studies. Clearly, more epidemiologic research is needed to contribute to causal inference. As much damage is irreversible, and possibly cumulative, present efforts must be vigorous to limit environmental uranium contamination and exposure.
METHOD OF APPLYING NICKEL COATINGS ON URANIUM
Gray, A.G.
1959-07-14
A method is presented for protectively coating uranium which comprises etching the uranium in an aqueous etching solution containing chloride ions, electroplating a coating of nickel on the etched uranium and heating the nickel plated uranium by immersion thereof in a molten bath composed of a material selected from the group consisting of sodium chloride, potassium chloride, lithium chloride, and mixtures thereof, maintained at a temperature of between 700 and 800 deg C, for a time sufficient to alloy the nickel and uranium and form an integral protective coating of corrosion-resistant uranium-nickel alloy.
Uranium-bearing lignite in southwestern North Dakota
Moore, George W.; Melin, Robert E.; Kepferle, Roy C.
1954-01-01
Uranium-bearing lignite was mapped and sampled in the Bullion Butte, Sentinel Butte, HT Butte, and Chalky Buttes areas in southwestern North Dakota. The uraniferous lignite occurs at several stratigraphic positions in the Sentinel Butte member of the Fort Union formation of Paleocene age. A total of 261 samples were collected for uranium analysis from 85 localities, Lignite contained as much as 0.045 percent uranium, 10.0 percent ash, and 0.45 percent uranium in the ash was found although the average is lower. Inferred reserves for the four areas examined are estimated to be about 27 million tons of lignite in beds about 2 feet thick and containing more than 3000 tons of uranium. The lignite in beds about 2 feet thick and containing more than 3000 tons of uranium. The lignite averages more than 30 percent ash in the surface samples. The principal factor that seems to influence the uranium content of lignite beds is their stratigraphic position below the overlying rocks of the White River group of Oligocene age. All of the uranium-bearing beds closely underlie the base of the White River group. Although this relationship seems to be the controlling factor, the relative concentration of uranium may be modified by other conditions. Beds enclosed in permeable rocks are more uraniferous than beds in impermeable rocks, and thin beds have higher content of uranium than thick beds. In addition, thick lignite beds commonly have a top=preferential distribution of uranium. These and other factors suggest that the uranium is secondary and this it was introduced by ground water which had leached uranium from volcanic ash in the overlying rocks of the White River group. It is thought that the uranium is held in the lignite as part of a metallo-organic compound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Haeyeon; G. Eggert, Roderick; W. Carlsen, Brett
Phosphate rock contains significant amounts of uranium, although in low concentrations. Recovery of uranium as a by-product from phosphoric acid, an intermediate product produced during the recovery of phosphorus from phosphate rock, is not unprecedented. Phosphoric acid plants ceased to produce uranium as a by-product in the early 1990s with the fall of uranium prices. In the last decade, this topic has regained attention due to higher uranium prices and expected increase in demand for uranium. Our study revisits the topic and estimates how much uranium might be recoverable from current phosphoric acid production in the United States and whatmore » the associated costs might be considering two different recovery processes: solvent extraction and ion exchange. Based on U.S. phosphoric acid production in 2014, 5.5 million pounds of U 3O 8 could have been recovered, more than domestic U.S. mine production of uranium in the same year. Annualized costs for a hypothetical uranium recovery plant are US$48-66 per pound U 3O 8 for solvent extraction, the process used historically in the United States to recover uranium from phosphoric acid. For ion exchange, not yet proven at a commercial scale for uranium recovery, the estimated costs are US$33-54 per pound U 3O 8. Our results suggest that it is technically possible for the United States to recover significant quantities of uranium from current phosphoric acid production. And for this type of uranium production to be economically attractive on a large scale, either recovery costs must fall or uranium prices rise.« less
Kim, Haeyeon; G. Eggert, Roderick; W. Carlsen, Brett; ...
2016-06-16
Phosphate rock contains significant amounts of uranium, although in low concentrations. Recovery of uranium as a by-product from phosphoric acid, an intermediate product produced during the recovery of phosphorus from phosphate rock, is not unprecedented. Phosphoric acid plants ceased to produce uranium as a by-product in the early 1990s with the fall of uranium prices. In the last decade, this topic has regained attention due to higher uranium prices and expected increase in demand for uranium. Our study revisits the topic and estimates how much uranium might be recoverable from current phosphoric acid production in the United States and whatmore » the associated costs might be considering two different recovery processes: solvent extraction and ion exchange. Based on U.S. phosphoric acid production in 2014, 5.5 million pounds of U 3O 8 could have been recovered, more than domestic U.S. mine production of uranium in the same year. Annualized costs for a hypothetical uranium recovery plant are US$48-66 per pound U 3O 8 for solvent extraction, the process used historically in the United States to recover uranium from phosphoric acid. For ion exchange, not yet proven at a commercial scale for uranium recovery, the estimated costs are US$33-54 per pound U 3O 8. Our results suggest that it is technically possible for the United States to recover significant quantities of uranium from current phosphoric acid production. And for this type of uranium production to be economically attractive on a large scale, either recovery costs must fall or uranium prices rise.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
B.R. Westphal; J.C. Price; R.D. Mariani
The pyroprocessing of used nuclear fuel via electrorefining requires the continued addition of uranium trichloride to sustain operations. Uranium trichloride is utilized as an oxidant in the system to allow separation of uranium metal from the minor actinides and fission products. The inventory of uranium trichloride had diminished to a point that production was necessary to continue electrorefiner operations. Following initial experimentation, cupric chloride was chosen as a reactant with uranium metal to synthesize uranium trichloride. Despite the variability in equipment and charge characteristics, uranium trichloride was produced in sufficient quantities to maintain operations in the electrorefiner. The results andmore » conclusions from several experiments are presented along with a set of optimized operating conditions for the synthesis of uranium trichloride.« less
PYROCHEMICAL DECONTAMINATION METHOD FOR REACTOR FUEL
Buyers, A.G.
1959-06-30
A pyro-chemical method is presented for decontaminating neutron irradiated uranium and separating plutonium therefrom by contact in the molten state with a metal chloride salt. Uranium trichloride and uranium tetrachloride either alone or in admixture with alkaline metal and alkaline eanth metal fluorides under specified temperature and specified phase ratio conditions extract substantially all of the uranium from the irradiated uranium fuel together with certain fission products. The phases are then separated leaving purified uranium metal. The uranium and plutonium in the salt phase can be reduced to forin a highly decontaminated uraniumplutonium alloy. The present method possesses advantages for economically decontaminating irradiated nuclear fuel elements since irradiated fuel may be proccessed immediately after withdrawal from the reactor and the uranium need not be dissolved and later reduced to the metallic form. Accordingly, the uranium may be economically refabricated and reinserted into the reactor.
Carbon diffusion in molten uranium: an ab initio molecular dynamics study
NASA Astrophysics Data System (ADS)
Garrett, Kerry E.; Abrecht, David G.; Kessler, Sean H.; Henson, Neil J.; Devanathan, Ram; Schwantes, Jon M.; Reilly, Dallas D.
2018-04-01
In this work we used ab initio molecular dynamics within the framework of density functional theory and the projector-augmented wave method to study carbon diffusion in liquid uranium at temperatures above 1600 K. The electronic interactions of carbon and uranium were described using the local density approximation (LDA). The self-diffusion of uranium based on this approach is compared with literature computational and experimental results for liquid uranium. The temperature dependence of carbon and uranium diffusion in the melt was evaluated by fitting the resulting diffusion coefficients to an Arrhenius relationship. We found that the LDA calculated activation energy for carbon was nearly twice that of uranium: 0.55 ± 0.03 eV for carbon compared to 0.32 ± 0.04 eV for uranium. Structural analysis of the liquid uranium-carbon system is also discussed.
40 CFR 471.70 - Applicability; description of the uranium forming subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... uranium forming subcategory. 471.70 Section 471.70 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Uranium Forming Subcategory § 471.70 Applicability; description of the uranium forming... introductions of pollutants into publicly owned treatment works from the process operations of the uranium...
40 CFR 471.70 - Applicability; description of the uranium forming subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... uranium forming subcategory. 471.70 Section 471.70 Protection of Environment ENVIRONMENTAL PROTECTION... SOURCE CATEGORY Uranium Forming Subcategory § 471.70 Applicability; description of the uranium forming... introductions of pollutants into publicly owned treatment works from the process operations of the uranium...
The Toxicity of Depleted Uranium
Briner, Wayne
2010-01-01
Depleted uranium (DU) is an emerging environmental pollutant that is introduced into the environment primarily by military activity. While depleted uranium is less radioactive than natural uranium, it still retains all the chemical toxicity associated with the original element. In large doses the kidney is the target organ for the acute chemical toxicity of this metal, producing potentially lethal tubular necrosis. In contrast, chronic low dose exposure to depleted uranium may not produce a clear and defined set of symptoms. Chronic low-dose, or subacute, exposure to depleted uranium alters the appearance of milestones in developing organisms. Adult animals that were exposed to depleted uranium during development display persistent alterations in behavior, even after cessation of depleted uranium exposure. Adult animals exposed to depleted uranium demonstrate altered behaviors and a variety of alterations to brain chemistry. Despite its reduced level of radioactivity evidence continues to accumulate that depleted uranium, if ingested, may pose a radiologic hazard. The current state of knowledge concerning DU is discussed. PMID:20195447
Electrochemical method of producing eutectic uranium alloy and apparatus
Horton, James A.; Hayden, H. Wayne
1995-01-01
An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.
Geological and geochemical aspects of uranium deposits. A selected, annotated bibliography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garland, P.A.; Thomas, J.M.; Brock, M.L.
1980-06-01
A bibliography of 479 references encompassing the fields of uranium and thorium geochemistry and mineralogy, geology of uranium deposits, uranium mining, and uranium exploration techniques has been compiled by the Ecological Sciences Information Center of Oak Ridge National Laboratory. The bibliography was produced for the National Uranium Resource Evaluation Program, which is funded by the Grand Junction Office of the Department of Energy. The references contained in the bibliography have been divided into the following eight subject categories: (1) geology of deposits, (2) geochemistry, (3) genesis O deposits, (4) exploration, (5) mineralogy, (6) uranium industry, (7) reserves and resources, andmore » (8) geology of potential uranium-bearing areas. All categories specifically refer to uranium and thorium; the last category contains basic geologic information concerning areas which the Grand Junction Office feels are particularly favorable for uranium deposition. The references are indexed by author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword.« less
Electrochemical method of producing eutectic uranium alloy and apparatus
Horton, J.A.; Hayden, H.W.
1995-01-10
An apparatus and method are disclosed for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode. 2 figures.
Conversion of depleted uranium hexafluoride to a solid uranium compound
Rothman, Alan B.; Graczyk, Donald G.; Essling, Alice M.; Horwitz, E. Philip
2001-01-01
A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.
NASA Astrophysics Data System (ADS)
Dillard, J. G.; Moers, H.; Klewe-Nebenius, H.; Kirch, G.; Pfennig, G.; Ache, H. J.
1984-09-01
The adsorption of methyl iodide on uranium and on uranium dioxide has been studied at 25 °C. Surfaces of the substrates were characterized before and after adsorption by X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES). The XPS binding energy results indicate that CH 3I adsorption on uranium yields a carbide-type carbon, UC, and uranium iodide, UI 3. On uranium dioxide the carbon electron binding energy measurements are consistent with the formation of a hydrocarbon, —CH 3-type moiety. The interpretation of XPS and AES spectral features for CH 3I adsorption on uranium suggest that a complex dissociative adsorption reaction takes place. Adsorption of CH 3I on UO 2 occurs via a dissociative process. Saturation coverage occurs on uranium at approximately two langmuir (1 L = 10 -6 Torr s) exposure whereas saturation coverage on uranium dioxide is found at about five langmuir.
Grosser, Gary; Bennien, Josefine; Sánchez-Guijo, Alberto; Bakhaus, Katharina; Döring, Barbara; Hartmann, Michaela; Wudy, Stefan A; Geyer, Joachim
2018-05-01
The sodium-dependent organic anion transporter SOAT/Soat shows highly specific transport activity for sulfated steroids. SOAT substrates identified so far include dehydroepiandrosterone sulfate, 16α-hydroxydehydroepiandrosterone sulfate, estrone-3-sulfate, pregnenolone sulfate, 17β-estradiol-3-sulfate, and androstenediol sulfate. Apart from these compounds, many other sulfated steroids occur in mammals. Therefore, we aimed to expand the substrate spectrum of SOAT and analyzed the SOAT-mediated transport of eight different sulfated steroids by combining in vitro transport experiments in SOAT-transfected HEK293 cells with LC-MS/MS analytics of cell lysates. In addition, we aimed to better understand the structural requirements for SOAT substrates and so selected structural pairs varying only at specific positions: 3α/3β-sulfate, 17α/17β-sulfate, mono-sulfate/di-sulfate, and 17α-hydroxylation. We found significant and sodium-dependent SOAT-mediated transport of 17α-hydroxypregnenolone sulfate, 17β-estradiol-17-sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and 5α-dihydrotestosterone sulfate. However, 17β-estradiol-3,17-disulfate was not transported by SOAT. SOAT substrates from the group of sulfated steroids are characterized by a planar and lipophilic steroid backbone in trans-trans-trans conformation of the rings and a negatively charged mono-sulfate group at positions 3' or 17' with flexibility for α- or β- orientation. Furthermore, 5α-reduction, 16α-hydroxylation, and 17α-hydroxylation are acceptable for SOAT substrate recognition, whereas addition of a second negatively charged sulfate group seems to abolish substrate binding to SOAT, and so 17β-estradiol-3,17-disulfate is not transported by SOAT. Copyright © 2017 Elsevier Ltd. All rights reserved.
Maps showing the distribution of uranium-deposit clusters in the Colorado Plateau uranium province
Finch, Warren I.
1991-01-01
The Colorado Palteau Uranium Province (CPUP) is defined by the distribution of uranium deposits, chiefly the sandstone-type, in upper Paleozoic and Mesozoic sedimentary rocks within the Colorado Plateau physiographic province (Granger and others, 1986). The uranium province is bordered by widely distributed and mostly minor uranium deposits in Precambrian and Tertiary rocks and by outcrops of Tertiary extrusive and intrusive igneous rocks.
Uranium in bone: metabolic and autoradiographic studies in the rat.
Priest, N D; Howells, G R; Green, D; Haines, J W
1982-03-01
The distribution and retention of intravenously injected hexavalent uranium-233 in the skeleton of the female rat has been investigated using a variety of autoradiographic and radiochemical techniques. These showed that approximately one third of the injected uranium is deposited in the skeleton where it is retained with an initial biological half-time of approximately 40 days. The studies also showed that: 1 Uranium is initially deposited onto all types of bone surface, but preferentially onto those that are accreting. 2 Uranium is deposited in the calcifying zones of skeletal cartilage. 3 Bone accretion results in the burial of surface deposits of uranium. 4 Bone resorption causes the removal of uranium from surfaces. 5 Resorbed uranium is not retained by osteoclasts and macrophages in the bone marrow. 6 Uranium removed from bone surfaces enters the bloodstream where most is either redeposited in bone or excreted via the kidneys. 7 The recycling of resorbed uranium within the skeleton tends to produce a uniform level of uranium contamination throughout mineralized bone. These results are taken to indicate that uranium deposition in bone shares characteristics in common with both the 'volume-seeking radionuclides' typified by the alkaline earth elements and with the 'bone surface-seeking radionuclides' typified by plutonium.
Horton, James A.; Hayden, Jr., Howard W.
1995-01-01
An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.
Horton, J.A.; Hayden, H.W. Jr.
1995-05-30
An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porcelli, D.; Wasserburg, G.J.; Andersson, P.S.
The importance of colloids and organic deposits for the transport of uranium isotopes from continental source regions and through the estuarine environment was investigated in the mire-rich Kalix River drainage basin in northern Sweden and the Baltic Sea. Ultrafiltration techniques were used to separate uranium and other elements associated with colloids > 10 kD and >3 kD from {open_quotes}solute{close_quotes} uranium and provided consistent results and high recovery rates for uranium as well as for other elements from large volume samples. Uranium concentrations in 0.45 {mu}m-filtered Kalix River water samples increased by a factor of 3 from near the headwaters inmore » the Caledonides to the river mouth while major cation concentrations were relatively constant. {sup 234}U {sup 238}U ratios were high ({delta}{sup 234}U = 770-1500) throughout the basin, without showing any simple pattern, and required a supply of {sup 234}U-rich water. Throughout the Kalix River, a large fraction (30-90%) of the uranium is carried by >10 kD colloids, which is compatible with uranium complexation with humic acids. No isotopic differences were found between colloid-associated and solute uranium. Within the Baltic Sea, about half of the uranium is removed at low salinities. The proportion that is lost is equivalent to that of river-derived colloid-bound uranium, suggesting that while solute uranium behaves conservatively during estuarine mixing, colloid-bound uranium is lost due to rapid flocculation of colloidal material. The association of uranium with colloids therefore may be an important parameter in determining uranium estuarine behavior. Mire peats in the Kalix River highly concentrate uranium and are potentially a significant source of recoil {sup 234}U to the mirewaters and river waters. However, mirewater data clearly demonstrate that only small {sup 234}U/{sup 238}U shifts are generated relative to inflowing groundwater. 63 refs., 8 figs., 3 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maassen, L.W.; Bolivar, S.L.
1979-06-01
The Los Alamos Scientific Laboratory conducted a hydrogeochemical and stream sediment reconnaissance for uranium. Totals of 408 water and 1538 sediment samples were collected from 1802 locations over a 20 100-km/sup 2/ area at an average density of one location per 11 km/sup 2/. Water samples were collected from springs, wells, and streams; sediments samples were collected predominantly from streams, but also from springs. All water samples were analyzed for uranium and 12 other elements. Sediment samples were analyzed for uranium and 42 additional elements. The uranium concentrations in water samples range from below the detection limit of 0.02 ppBmore » to 194.06 ppB. The mean uranium concentration for all water types containing < 40 ppB uranium is 1.98 ppB. Six samples contained uranium concentrations > 40.00 ppB. Well waters have the highest mean uranium concentration; spring waters have the lowest. Clusters of water samples that contain anomalous uranium concentrations are delineated in nine areas. Sediments collected from the quadrangle have uranium concentrations that range between 0.63 ppM and 28.52 ppM, with a mean for all sediments of 3.53 ppM. Eight areas containing clusters of sediments with anomalous uranium concentrations are delineated. One cluster contains sample locations within the Ambrosia Lake uranium district. Five clusters of sediment samples with anomalous uranium concentrations were collected from streams that drain the Jemez volcanic field. Another cluster defines an area just northeast of Albuquerque where streams drain Precambrian rocks, predominantly granites, of the Sandia Mountains. The last cluster, consisting of spring sediments from Mesa Portales, was collected near the contact of the Tertiary Ojo Alamo sandstone with underlying Cretaceous sediments. Sediments from these springs exhibit some of the highest uranium values reported and are associated with high uranium/thorium ratios.« less
31 CFR 540.318 - Uranium Hexafluoride (UF6).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Uranium Hexafluoride (UF6). 540.318... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.318 Uranium Hexafluoride (UF6). The term uranium...
49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.
Code of Federal Regulations, 2013 CFR
2013-10-01
... uranium or thorium. 173.426 Section 173.426 Transportation Other Regulations Relating to Transportation....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...
31 CFR 540.318 - Uranium Hexafluoride (UF6).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Uranium Hexafluoride (UF6). 540.318... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.318 Uranium Hexafluoride (UF6). The term uranium...
31 CFR 540.318 - Uranium Hexafluoride (UF6).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Uranium Hexafluoride (UF6). 540.318... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.318 Uranium Hexafluoride (UF6). The term uranium...
31 CFR 540.316 - Uranium enrichment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Uranium enrichment. 540.316 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of...
31 CFR 540.318 - Uranium Hexafluoride (UF6).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Uranium Hexafluoride (UF6). 540.318... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.318 Uranium Hexafluoride (UF6). The term uranium...
31 CFR 540.316 - Uranium enrichment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Uranium enrichment. 540.316 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of...
31 CFR 540.316 - Uranium enrichment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Uranium enrichment. 540.316 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of...
49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.
Code of Federal Regulations, 2014 CFR
2014-10-01
... uranium or thorium. 173.426 Section 173.426 Transportation Other Regulations Relating to Transportation....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...
31 CFR 540.316 - Uranium enrichment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Uranium enrichment. 540.316 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.316 Uranium enrichment. The term uranium enrichment means the process of...
49 CFR 173.426 - Excepted packages for articles containing natural uranium or thorium.
Code of Federal Regulations, 2012 CFR
2012-10-01
... uranium or thorium. 173.426 Section 173.426 Transportation Other Regulations Relating to Transportation....426 Excepted packages for articles containing natural uranium or thorium. A manufactured article in which the sole Class 7 (radioactive) material content is natural uranium, unirradiated depleted uranium...
31 CFR 540.318 - Uranium Hexafluoride (UF6).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium Hexafluoride (UF6). 540.318... OF FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.318 Uranium Hexafluoride (UF6). The term uranium...
31 CFR 540.309 - Natural uranium.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Natural uranium. 540.309 Section 540.309 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF... REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found in...
31 CFR 540.309 - Natural uranium.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Natural uranium. 540.309 Section 540.309 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) OFFICE OF... REGULATIONS General Definitions § 540.309 Natural uranium. The term natural uranium means uranium found in...
PREPARATION OF URANIUM-ALUMINUM ALLOYS
Moore, R.H.
1962-09-01
A process is given for preparing uranium--aluminum alloys from a solution of uranium halide in an about equimolar molten alkali metal halide-- aluminum halide mixture and excess aluminum. The uranium halide is reduced and the uranium is alloyed with the excess aluminum. The alloy and salt are separated from each other. (AEC)
Separation of uranium from (Th,U)O.sub.2 solid solutions
Chiotti, Premo; Jha, Mahesh Chandra
1976-09-28
Uranium is separated from mixed oxides of thorium and uranium by a pyrometallurgical process in which the oxides are mixed with a molten chloride salt containing thorium tetrachloride and thorium metal which reduces the uranium oxide to uranium metal which can then be recovered from the molten salt. The process is particularly useful for the recovery of uranium from generally insoluble high-density sol-gel thoria-urania nuclear reactor fuel pellets.
PROCESS FOR SEGREGATING URANIUM FROM PLUTONIUM AND FISSION-PRODUCT CONTAMINATION
Ellison, C.V.; Runion, T.C.
1961-06-27
An aqueous nitric acid solution containing uranium, plutonium, and fission product values is contacted with an organic extractant comprised of a trialkyl phosphate and an organic diluent. The relative amounts of trialkyl phosphate and uranium values are controlled to achieve a concentration of uranium values in the organic extractant of at least 0.35 moles uranium per mole of trialkyl phosphate, thereby preferentially extracting uranium values into the organic extractant.
Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.
1959-02-10
A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.
Carbon diffusion in molten uranium: an ab initio molecular dynamics study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, Kerry E.; Abrecht, David G.; Kessler, Sean H.
In this work we used ab initio molecular dynamics (AIMD) within the framework of density functional theory (DFT) and the projector-augmented wave (PAW) method to study carbon diffusion in liquid uranium at temperatures above 1600 K. The electronic interactions of carbon and uranium were described using the local density approximation (LDA). The self-diffusion of uranium based on this approach is compared with literature computational and experimental results for liquid uranium. The temperature dependence of carbon and uranium diffusion in the melt was evaluated by fitting the resulting diffusion coefficients to an Arrhenius relationship. We found that the LDA calculated activationmore » energy for carbon was nearly twice that of uranium: 0.55±0.03 eV for carbon compared to 0.32±0.04 eV for uranium. Structural analysis of the liquid uranium-carbon system is also discussed.« less
Absorption of Thermal Neutrons in Uranium
DOE R&D Accomplishments Database
Creutz, E. C.; Wilson, R. R.; Wigner, E. P.
1941-09-26
A knowledge of the absorption processes for neutrons in uranium is important for planning a chain reaction experiment. The absorption of thermal neutrons in uranium and uranium oxide has been studied. Neutrons from the cyclotron were slowed down by passage through a graphite block. A uranium or uranium oxide sphere was placed at various positions in the block. The neutron intensity at different points in the sphere and in the graphite was measured by observing the activity induced in detectors or uranium oxide or manganese. It was found that both the fission activity in the uranium oxide and the activity induced in manganese was affected by non-thermal neutrons. An experimental correction for such effects was made by making measurements with the detectors surrounded by cadmium. After such corrections the results from three methods of procedure with the uranium oxide detectors and from the manganese detectors were consistent to within a few per cent.
Process for producing an aggregate suitable for inclusion into a radiation shielding product
Lessing, Paul A.; Kong, Peter C.
2000-01-01
The present invention is directed to methods for converting depleted uranium hexafluoride to a stable depleted uranium silicide in a one-step reaction. Uranium silicide provides a stable aggregate material that can be added to concrete to increase the density of the concrete and, consequently, shield gamma radiation. As used herein, the term "uranium silicide" is defined as a compound generically having the formula U.sub.x Si.sub.y, wherein the x represents the molecules of uranium and the y represent the molecules of silicon. In accordance with the present invention, uranium hexafluoride is converted to a uranium silicide by contacting the uranium hexafluoride with a silicon-containing material at a temperature in a range between about 1450.degree. C. and about 1750.degree. C. The stable depleted uranium silicide is included as an aggregate in a radiation shielding product, such as a concrete product.
Fermentation and Hydrogen Metabolism Affect Uranium Reduction by Clostridia
Gao, Weimin; Francis, Arokiasamy J.
2013-01-01
Previously, it has been shown that not only is uranium reduction under fermentation condition common among clostridia species, but also the strains differed in the extent of their capability and the pH of the culture significantly affected uranium(VI) reduction. In this study, using HPLC and GC techniques, metabolic properties of those clostridial strains active in uranium reduction under fermentation conditions have been characterized and their effects on capability variance of uranium reduction discussed. Then, the relationship between hydrogen metabolism and uranium reduction has been further explored and the important role played by hydrogenase in uranium(VI) and iron(III) reduction by clostridiamore » demonstrated. When hydrogen was provided as the headspace gas, uranium(VI) reduction occurred in the presence of whole cells of clostridia. This is in contrast to that of nitrogen as the headspace gas. Without clostridia cells, hydrogen alone could not result in uranium(VI) reduction. In alignment with this observation, it was also found that either copper(II) addition or iron depletion in the medium could compromise uranium reduction by clostridia. In the end, a comprehensive model was proposed to explain uranium reduction by clostridia and its relationship to the overall metabolism especially hydrogen (H 2 ) production.« less
Incorporation of Uranium: II. Distribution of Uranium Absorbed through the Lungs and the Skin
Walinder, G.; Fries, B.; Billaudelle, U.
1967-01-01
In experiments on mice, rabbits, and piglets the distribution of uranium was studied at different times after exposure. Uranium was administered by inhalation (mice) and through the skin (rabbits and piglets). These investigations show that the uptakes of uranium in different organs of the three species are highly dependent on the amounts administered. There seems to be a saturation effect in the spleen and bone tissue whenever the uranium concentration in the blood exceeds a certain level. The effect in the kidney is completely different. If, in a series of animals, the quantity of uranium is continuously increased, the uptakes by the kidneys increase more rapidly than the quantities administered. This observation seems to be consistent with the toxic effects of uranium on the capillary system in the renal cortex. Polyphloretin phosphate, a compound which reduces permeability, was investigated with respect to its effect on the uptake of uranium deposited in skin wounds in rabbits and piglets. It significantly reduced the absorption of uranium, even from depots in deep wounds. The findings are discussed with reference to the routine screening of persons exposed to uranium at AB Atomenergi. Images PMID:6073090
Rapid Dissolution of Soluble Uranyl Phases in Arid, Mine-Impacted Catchments Near Church Rock, NM
DOE Office of Scientific and Technical Information (OSTI.GOV)
deLemos, J.L.; Bostick, B.C.; Quicksall, A.N.
2009-05-14
We tested the hypothesis that runoff of uranium-bearing particles from mining waste disposal areas was a significant mechanism for redistribution of uranium in the northeastern part of the Upper Puerco River watershed (New Mexico). However, our results were not consistent with this hypothesis. Analysis of >100 sediment and suspended sediment samples collected adjacent to and downstream from uranium source areas indicated that uranium levels in the majority of the samples were not elevated above background. Samples collected within 50 m of a known waste disposal site were subjected to detailed geochemical characterization. Uranium in these samples was found to bemore » highly soluble; treatment with synthetic pore water for 24 h caused dissolution of 10-50% of total uranium in the samples. Equilibrium uranium concentrations in pore water were >4.0 mg/L and were sustained in repeated wetting events, effectively depleting soluble uranium from the solid phase. The dissolution rate of uranium appeared to be controlled by solid-phase diffusion of uranium from within uranium-bearing mineral particles. X-ray adsorption spectroscopy indicated the presence of a soluble uranyl silicate, and possibly a uranyl phosphate. These phases were exhausted in transported sediment suggesting that uranium was readily mobilized from sediments in the Upper Puerco watershed and transported in the dissolved load. These results could have significance for uranium risk assessment as well as mining waste management and cleanup efforts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn M.
2013-08-02
Bicarbonate is one of the most significant components within the uranium geochemical cycle. In aqueous solutions, bicarbonate forms strong complexes with uranium. As such, aqueous bicarbonate may significantly increase the rate of uranium release from uranium minerals. Quantifying the relationship of aqueous bicarbonate concentration to the rate of uranium release during dissolution is critical to understanding the long-term fate of uranium within the environment. Single-pass flow-through (SPTF) experiments were conducted to estimate the rate of uranium release from Na meta-autunite as a function of bicarbonate (0.0005-0.003 M) under the pH range of 6-11 and a temperature range of 5-60oC. Consistentmore » with the results of previous investigation, the rate of uranium release exhibited minimal dependency on temperature; but were strongly dependent on pH. Increasing aqueous bicarbonate concentrations afforded comparable increases in the rate of release of uranium. Most notably under low pH conditions the aqueous bicarbonate resulted in up to 370 fold increases in the rate of uranium release in relative to the rate of uranium release in the absence of bicarbonate. However, the effect of aqueous bicarbonate on the release of uranium was significantly less under higher pH conditions. It is postulated that at high pH values, surface sites are saturated with carbonate, thus the addition of more bicarbonate would have less effect on uranium release.« less
Rapid Dissolution of Soluble Uranyl Phases in Arid, Mine-Impacted Catchments near Church Rock, NM
DELEMOS, JAMIE L.; BOSTICK, BENJAMIN C.; QUICKSALL, ANDREW N.; LANDIS, JOSHUA D.; GEORGE, CHRISTINE C.; SLAGOWSKI, NAOMI L.; ROCK, TOMMY; BRUGGE, DOUG; LEWIS, JOHNNYE; DURANT, JOHN L.
2008-01-01
We tested the hypothesis that runoff of uranium-bearing particles from mining waste disposal areas was a significant mechanism for redistribution of uranium in the northeastern part of the Upper Puerco River watershed (New Mexico). However, our results were not consistent with this hypothesis. Analysis of >100 sediment and suspended sediment samples collected adjacent to and downstream from uranium source areas indicated that uranium levels in the majority of the samples were not elevated above background. Samples collected within 50 m of a known waste disposal site were subjected to detailed geochemical characterization. Uranium in these samples was found to be highly soluble; treatment with synthetic pore water for 24 h caused dissolution of 10–50% of total uranium in the samples. Equilibrium uranium concentrations in pore water were >4.0 mg/L and were sustained in repeated wetting events, effectively depleting soluble uranium from the solid phase. The dissolution rate of uranium appeared to be controlled by solid-phase diffusion of uranium from within uranium-bearing mineral particles. X-ray adsorption spectroscopy indicated the presence of a soluble uranyl silicate, and possibly a uranyl phosphate. These phases were exhausted in transported sediment suggesting that uranium was readily mobilized from sediments in the Upper Puerco watershed and transported in the dissolved load. These results could have significance for uranium risk assessment as well as mining waste management and cleanup efforts. PMID:18589950
Biosorption of uranium by Pseudomonas aeruginosa strain CSU: Characterization and comparison studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, M.Z.C.; Norman, J.M.; Faison, B.D.
1996-07-20
Pseudomonas aeruginosa strain CSU, a nongenetically engineered bacterial strain known to bind dissolved hexavalent uranium (as UO{sub 2}{sup 2+} and/or its cationic hydroxo complexes) was characterized with respect to its sorptive activity. The uranium biosorption equilibrium could be described by the Langmuir isotherm. The rate of uranium adsorption increased following permeabilization of the outer and/or cytoplasmic membrane by organic solvents such as acetone. P. aeruginosa CSU biomass was significantly more sorptive toward uranium than certain novel, patented biosorbents derived from algal or fungal biomass sources. P. aeruginosa CSU biomass was also competitive with commercial cation-exchange resins, particularly in the presencemore » of dissolved transition metals. Uranium binding by P. aeruginosa CSU was clearly pH dependent. Uranium loading capacity increased with increasing pH under acidic conditions, presumably as a function of uranium speciation and due to the H{sup +} competition at some binding sites. Nevertheless, preliminary evidence suggests that this microorganism is also capable of binding anionic hexavalent uranium complexes. Ferric iron was a strong inhibitor of uranium binding to P. aeruginosa CSU biomass, and the presence of uranium also decreased the Fe{sup 3+} loading when the biomass was not saturated with Fe{sup 3+}. Thus, a two-state process in which iron and uranium are removed in consecutive steps was proposed for efficient use of the biomass as a biosorbent in uranium removal from mine wastewater, especially acidic leachates.« less
Urinary excretion of uranium in adult inhabitants of the Czech Republic.
Malátová, Irena; Bečková, Věra; Kotík, Lukáš
2016-02-01
The main aim of this study was to determine and evaluate urinary excretion of uranium in the general public of the Czech Republic. This value should serve as a baseline for distinguishing possible increase in uranium content in population living near legacy sites of mining and processing uranium ores and also to help to distinguish the proportion of the uranium content in urine among uranium miners resulting from inhaled dust. The geometric mean of the uranium concentration in urine of 74 inhabitants of the Czech Republic was 0.091 mBq/L (7.4 ng/L) with the 95% confidence interval 0.071-0.12 mBq/L (5.7-9.6 ng/L) respectively. The geometric mean of the daily excretion was 0.15 mBq/d (12.4 ng/d) with the 95% confidence interval 0.12-0.20 mBq/d (9.5-16.1 ng/d) respectively. Despite the legacy of uranium mines and plants processing uranium ore in the Czech Republic, the levels of uranium in urine and therefore, also human body content of uranium, is similar to other countries, esp. Germany, Slovenia and USA. Significant difference in the daily urinary excretion of uranium was found between individuals using public supply and private water wells as a source of drinking water. Age dependence of daily urinary excretion of uranium was not found. Mean values and their range are comparable to other countries, esp. Germany, Slovenia and USA. Copyright © 2015 Elsevier Ltd. All rights reserved.
Challenges dealing with depleted uranium in Germany - Reuse or disposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moeller, Kai D.
2007-07-01
During enrichment large amounts of depleted Uranium are produced. In Germany every year 2.800 tons of depleted uranium are generated. In Germany depleted uranium is not classified as radioactive waste but a resource for further enrichment. Therefore since 1996 depleted Uranium is sent to ROSATOM in Russia. However it still has to be dealt with the second generation of depleted Uranium. To evaluate the alternative actions in case a solution has to be found in Germany, several studies have been initiated by the Federal Ministry of the Environment. The work that has been carried out evaluated various possibilities to dealmore » with depleted uranium. The international studies on this field and the situation in Germany have been analyzed. In case no further enrichment is planned the depleted uranium has to be stored. In the enrichment process UF{sub 6} is generated. It is an international consensus that for storage it should be converted to U{sub 3}O{sub 8}. The necessary technique is well established. If the depleted Uranium would have to be characterized as radioactive waste, a final disposal would become necessary. For the planned Konrad repository - a repository for non heat generating radioactive waste - the amount of Uranium is limited by the licensing authority. The existing license would not allow the final disposal of large amounts of depleted Uranium in the Konrad repository. The potential effect on the safety case has not been roughly analyzed. As a result it may be necessary to think about alternatives. Several possibilities for the use of depleted uranium in the industry have been identified. Studies indicate that the properties of Uranium would make it useful in some industrial fields. Nevertheless many practical and legal questions are open. One further option may be the use as shielding e.g. in casks for transport or disposal. Possible techniques for using depleted Uranium as shielding are the use of the metallic Uranium as well as the inclusion in concrete. Another possibility could be the use of depleted uranium for the blending of High enriched Uranium (HEU) or with Plutonium to MOX-elements. (authors)« less
PROGRESS REPORT ON RAW MATERIALS FOR MAY 1957. Chemical Technology Div.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, K.B.; Coleman, C.F.; Crouse, D.J.
1957-09-27
Systematic Studies. A mixed n-octyl-n-decyl tertiary amine, commercially available in development quantities, appeared promising for process use. Its U extraction power was similar to that of tri-n-octylamine, and loss by distribution to a sulfate liquor was lower. A corresponding secondary amine was similar in extraction behavior to di-n-decylamine, but loss by distribution was higher. Screening tests of U extraction power from diluteacid test solutions are summarized for various organophosphoras compounds, with principal attention to dialkylphosphinic acids, monoalkylphosphonic acids, and some polymeric compounds. Unusually high U extraction power was shown by in alpha -hydroxy phosphinic acid, phenyl(1hydroxy-2-ethylhexyl)phosphinic acid. Uranium(IV) was extractedmore » strongly from dilute icidic sulfate solution by a primary and s secondaryamine, but not bya tertiary amine. It was extracted more strongly than U/sup 6+/ from hydrochloric acid solutions by di(2-ethylhexyl)phosphoric acid (D2EHPA). In contrast to U/sup 6+/, U/sup 4+/ extraction by D2EHPA was enhanced little if any by the presence of TBP. Process Development. In tests with tri-iso-octylamine, a number of diluent additives were tested for ability to prevent separation of amine heteropolymolybdate precipitates from the usual kerosene-alcohol diluent during the chloride stripping cycle. Addition of nitrobenzeneat 100 g/liter was effective for this purpose. In other tests, several of the Mo precipitates were separated and analyzed for amine, Mo, phosphate,and V content. The amount of Mo reporting to U products from the Dapex process varied with the method and conditions by which uranium was precipitated from the sodium carbonate strip solution. Direct caustic precipitation of the U gave products essentially free of Mo although filtration characteristics of the precipitate were poor. When the U was recovered by first acidifying with H/sub 2/SO/sub 4/ and then precipitating with NH/sub 3/, most of the Mo remained in the product even when an excess of ammonia was used. Recovery by acidification and precipitation with caustic resulted in better Mo decontamination, particularly when an appreciable excess of caustic was added. Engineering Studies. The rate of U extraction from a synthetic H/sub 2/SO/sub 4/ leach liquor by a Dapex-tyne organic was proportional to the cube root of power input and was slightly faster in a 12-in. than in a 6- in. mixer at the same power input per unit volume. At a given power input the rate increased with decreased turbine diameter. Location of the turbine at one diameter from the bottom of the mixer tank provided only slightly faster extraction than at a center location. (For preceding period see ORNL-2346.) (auth)« less
NASA Astrophysics Data System (ADS)
Markwitz, Vanessa; Porwal, Alok; Campbell McCuaig, T.; Kreuzer, Oliver P.
2010-05-01
Uranium deposits are usually classified based on the characteristics of their host rocks and geological environments (Dahlkamp, 1993; OECD/NEA Red Book and IAEA, 2000; Cuney, 2009). The traditional unconformity-related deposit types are the most economical deposits in the world, with the highest grades amongst all uranium deposit types. In order to predict undiscovered uranium deposits, there is a need to understand the spatial association of uranium mineralization with structures and unconformities. Hydrothermal uranium deposits develop by uranium enriched fluids from source rocks, transported along permeable pathways to their depositional environment. Unconformities are not only separating competent from incompetent sequences, but provide the physico-chemical gradient in the depositional environment. They acted as important fluid flow pathways for uranium to migrate not only for surface-derived oxygenated fluids, but also for high oxidized metamorphic and magmatic fluids, dominated by their geological environment in which the unconformities occur. We have carried out comprehensive empirical spatial analyses of various types of uranium deposits in Australia, and first results indicate that there is a strong spatial correlation between unconformities and uranium deposits, not only for traditional unconformity-related deposits but also for other styles. As a start we analysed uranium deposits in Queensland and in particular Proterozoic metasomatic-related deposits in the Mount Isa Inlier and Late Carboniferous to Early Permian volcanic-hosted uranium occurrences in Georgetown and Charters Towers Regions show strong spatial associations with contemporary and older unconformities. The Georgetown Inlier in northern Queensland consists of a diverse range of rocks, including Proterozoic and early Palaeozoic metamorphic rocks and granites and late Palaeozoic volcanic rocks and related granites. Uranium-molybdenum (+/- fluorine) mineralization in the Georgetown inlier varies from strata- to structure-bound and occurs above regional unconformities. The Proterozoic basins in the Mount Isa Inlier rest unconformably on Palaeoproterozoic basement accompanied by volcanic and igneous rocks, which were deformed and metamorphosed in the Mesoproterozoic. Uranium occurrences in the Western Succession of Mount Isa are either hosted in clastic metasediments or mafic volcanics that belong to the Palaeoproterozoic Eastern Creek Volcanics. Uranium and vanadium mineralization occur in metasomatised and hematite-magnetite-carbonate alteration zones, bounded by major faults and regional unconformities. The results of this study highlight the importance of unconformities in uranium minerals systems as possible fluid pathways and/or surfaces of physico-chemical contrast that could have facilitated the precipitation of uranium, not only in classical unconformity style uranium deposits but in several other styles of uranium mineralization as well. References Cuney, M., 2009. The extreme diversity of uranium deposits. Mineralium Deposita, 44, 3-9. Dahlkamp, F. J., 1993. Uranium ore deposits. Springer, Berlin, p 460. OECD / NEA Red Book & IAEA, 2000. Uranium 1999: Resources, Production and Demand. OECD Nuclear Energy Agency and International Atomic Energy Agency, Paris.
Natural uranium impairs the differentiation and the resorbing function of osteoclasts.
Gritsaenko, Tatiana; Pierrefite-Carle, Valérie; Lorivel, Thomas; Breuil, Véronique; Carle, Georges F; Santucci-Darmanin, Sabine
2017-04-01
Uranium is a naturally occurring radionuclide ubiquitously present in the environment. The skeleton is the main site of uranium long-term accumulation. While it has been shown that natural uranium is able to perturb bone metabolism through its chemical toxicity, its impact on bone resorption by osteoclasts has been poorly explored. Here, we examined for the first time in vitro effects of natural uranium on osteoclasts. The effects of uranium on the RAW 264.7 monocyte/macrophage mouse cell line and primary murine osteoclastic cells were characterized by biochemical, molecular and functional analyses. We observed a cytotoxicity effect of uranium on osteoclast precursors. Uranium concentrations in the μM range are able to inhibit osteoclast formation, mature osteoclast survival and mineral resorption but don't affect the expression of the osteoclast gene markers Nfatc1, Dc-stamp, Ctsk, Acp5, Atp6v0a3 or Atp6v0d2 in RAW 274.7 cells. Instead, we observed that uranium induces a dose-dependent accumulation of SQSTM1/p62 during osteoclastogenesis. We show here that uranium impairs osteoclast formation and function in vitro. The decrease in available precursor cells, as well as the reduced viability of mature osteoclasts appears to account for these effects of uranium. The SQSTM1/p62 level increase observed in response to uranium exposure is of particular interest since this protein is a known regulator of osteoclast formation. A tempting hypothesis discussed herein is that SQSTM1/p62 dysregulation contributes to uranium effects on osteoclastogenesis. We describe cellular and molecular effects of uranium that potentially affect bone homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.
Bone as a Possible Target of Chemical Toxicity of Natural Uranium in Drinking Water
Kurttio, Päivi; Komulainen, Hannu; Leino, Aila; Salonen, Laina; Auvinen, Anssi; Saha, Heikki
2005-01-01
Uranium accumulates in bone, affects bone metabolism in laboratory animals, and when ingested in drinking water increases urinary excretion of calcium and phosphate, important components in the bone structure. However, little is known about bone effects of ingested natural uranium in humans. We studied 146 men and 142 women 26–83 years of age who for an average of 13 years had used drinking water originating from wells drilled in bedrock, in areas with naturally high uranium content. Biochemical indicators of bone formation were serum osteocalcin and amino-terminal propeptide of type I procollagen, and a marker for bone resorption was serum type I collagen carboxy-terminal telopeptide (CTx). The primary measure of uranium exposure was uranium concentration in drinking water, with additional information on uranium intake and uranium concentration in urine. The data were analyzed separately for men and women with robust regression (which suppresses contributions of potential influential observations) models with adjustment for age, smoking, and estrogen use. The median uranium concentration in drinking water was 27 μg/L (interquartile range, 6–116 μg/L). The median of daily uranium intake was 36 μg (7–207 μg) and of cumulative intake 0.12 g (0.02–0.66 g). There was some suggestion that elevation of CTx (p = 0.05) as well as osteocalcin (p = 0.19) could be associated with increased uranium exposure (uranium in water and intakes) in men, but no similar relationship was found in women. Accordingly, bone may be a target of chemical toxicity of uranium in humans, and more detailed evaluation of bone effects of natural uranium is warranted. PMID:15626650
NASA Astrophysics Data System (ADS)
Sharma, S. P.; Biswas, A.
2012-12-01
South Purulia Shear Zone (SPSZ) is an important region for prospecting of uranium mineralization. Geological studies and hydro-uranium anomaly suggest the presence of Uranium deposit around Raghunathpur village which lies about 8 km north of SPSZ. However, detailed geophysical investigations have not been carried out in this region for investigation of uranium mineralization. Since surface signature of uranium mineralization is not depicted near the location, a deeper subsurface source is expected for hydro uranium anomaly. To delineate the subsurface structure and to investigate the origin of hydro-uranium anomaly present in the area, Vertical Electrical Sounding (VES) using Schlumberger array and Gradient Resistivity Profiling (GRP) were performed at different locations along a profile perpendicular to the South Purulia Shear Zone. Apparent resistivity computed from the measured sounding data at various locations shows a continuously increasing trend. As a result, conventional apparent resistivity data is not able to detect the possible source of hydro uranium anomaly. An innovative approach is applied which depicts the apparent conductivity in the subsurface revealed a possible connection from SPSZ to Raghunathpur. On the other hand resistivity profiling data suggests a low resistive zone which is also characterized by low Self-Potential (SP) anomaly zone. Since SPSZ is characterized by the source of uranium mineralization; hydro-uranium anomaly at Raghunathpur is connected with the SPSZ. The conducting zone has been delineated from SPSZ to Raghunathpur at deeper depths which could be uranium bearing. Since the location is also characterized by a low gravity and high magnetic anomaly zone, this conducting zone is likely to be mineralized zone. Keywords: Apparent resistivity; apparent conductivity; Self Potential; Uranium mineralization; shear zone; hydro-uranium anomaly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, L.G.; Cellini, R.F.
1959-01-01
The thermal decomposition of some intermediate compounds in the metallurgy of uranium such as uranium peroxide, ammonium uranate, ammonium uranium pentafluoride, uranium tetrafluoride, and UO/sub 2/, were studied using Chevenard's thermobalance. Some data on the pyrolysis of synthetic mixtures of intermediate compounds which may appear during the industrial processing are given. Thermogravimetric methods of control are suggested for use in uranium metallurgy. (tr-auth)
Feder, H.M.; Chellew, N.R.
1958-02-01
This patent deals with the separation of rare earth and other fission products from neutron bombarded uranium. This is accomplished by melting the uranium in contact with either thorium oxide, maguesium oxide, alumnum oxide, beryllium oxide, or uranium dioxide. The melting is preferably carried out at from 1150 deg to 1400 deg C in an inert atmosphere, such as argon or helium. During this treatment a scale of uranium dioxide forms on the uranium whtch contains most of the fission products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-09-30
Results of a reconnaissance geochemical survey of the Brownsville-McAllen Quadrangles, Texas are reported. Field and laboratory data are presented for 427 groundwater and 171 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. Pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwater data indicate the most promising area for potential uranium mineralization occurs in the northwestern section of the quadrangles (Jim Hogg, Starr, and Zapata Counties), where waters are derived from the Catahoula Formation. These groundwaters have high concentrations of uranium, uranium associated elements,more » and low values for specific conductance. Another area with high uranium concentrations is in the southeastern portion of the survey area (Hidalgo, Cameron, and Willacy Counties). Shallow wells <10 m (30 ft) are numerous in this area and high specific conductance values may indicate contamination from extensive fertilization. Stream sediment data for the survey does not indicate an area favorable for uranium mineralization. Anomalous acid soluble uranium values in the southeastern area (Hidalgo, Cameron, and Willacy Counties) can be attributed to phosphate fertilizer contamination. Four samples in the western part of the area (western Starr County) have anomalously high total uranium values and low acid soluble uranium values, indicating the uranium may be contained in resistate minerals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, S.J.; Sandoval, W.F.; Gallimore, D.L.
1980-06-01
During the summer and fall of 1977, 533 water and 1226 sediment samples were collected from 1740 locations within the 18,000 km/sup 2/ area of the Newcastle quadrangle, Wyoming. Water samples were collected from wells and springs; sediment samples were collected from stream channels and from springs. Each water sample was analyzed for uranium, and each sediment sample was analyzed for 43 elements, including uranium and thorium. Uranium concentrations in water samples range from below the detection limit of 0.02 ppB to 702.26 ppB and have a median of 1.73 ppB and a mean of 11.76 ppB. Water samples containingmore » high uranium concentrations (>20 ppB) generally are associated with known uranium mining activity or units known to be uranium bearing. About one-third of the water samples containing high uranium concentrations were collected from locations within the Pumpkin Buttes and Turnercrest-Ross Districts. Nearly half of the water samples containing high uranium concentrations were collected from locations just west of the Monument Hill and Highland Flats-Box Creek Districts. Similar anomalous uranium concentrations in this region have been reported updip from Exxon's Highland uranium deposits. High uranium concentrations were also found associated with the Lance Creek-Old Woman Anticline District.« less
Li, Peng; Zhun, Bao; Wang, Xuegang; Liao, PingPing; Wang, Guanghui; Wang, Lizhang; Guo, Yadan; Zhang, Weimin
2017-12-19
A new strategy combining iron-electrocoagulation and organic ligands (OGLs) cooperative chelation was proposed to screen and precipitate low concentrations (0-18.52 μmol/L) of uranium contaminant in aqueous solution. We hypothesized that OGLs with amino, hydroxyl, and carboxyl groups hydrophobically/hydrophilically would realize precuring of uranyl ion at pH < 3.0, and the following iron-electrocoagulation would achieve faster and more efficient uranium precipitation. Experimentally, the strategy demonstrated highly efficient uranium(VI) precipitation efficiency, especially with hydrophilic macromolecular OGLs. The uranium removal efficiency at optimized experimental condition reached 99.65%. The decrease of zeta potential and the lattice enwrapping between U-OGLs chelates and flocculation precursor were ascribed to the enhanced uranium precipitation activity. Uranium was precipitated as oxides of U(VI) or higher valences that were easily captured in aggregated micelles under low operation current potential. The actual uranium tailing wastewater was treated, and a satisfied uranium removal efficiency of 99.02% was discovered. After elution of the precipitated flocs, a concentrated uranium solution (up to 106.52 μmol/L) with very few other metallic impurities was obtained. Therefore, the proposed strategy could remove uranium and concentrate it concurrently. This work could provide new insights into the purification and recovery of uranium from aqueous solutions in a cost-effective and environmentally friendly process.
31 CFR 540.315 - Uranium-235 (U235).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Uranium-235 (U235). 540.315 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.315 Uranium-235 (U235). The term uranium-235 or U235 means the fissile...
31 CFR 540.315 - Uranium-235 (U235).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Uranium-235 (U235). 540.315 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.315 Uranium-235 (U235). The term uranium-235 or U235 means the fissile...
49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 2 2014-10-01 2014-10-01 false Activity-mass relationships for uranium and....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U present...
49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 2 2012-10-01 2012-10-01 false Activity-mass relationships for uranium and....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U present...
49 CFR 173.434 - Activity-mass relationships for uranium and natural thorium.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 2 2013-10-01 2013-10-01 false Activity-mass relationships for uranium and....434 Activity-mass relationships for uranium and natural thorium. The table of activity-mass relationships for uranium and natural thorium are as follows: Thorium and uranium enrichment 1(Wt% 235 U present...
31 CFR 540.315 - Uranium-235 (U235).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Uranium-235 (U235). 540.315 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.315 Uranium-235 (U235). The term uranium-235 or U235 means the fissile...
31 CFR 540.315 - Uranium-235 (U235).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Uranium-235 (U235). 540.315 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.315 Uranium-235 (U235). The term uranium-235 or U235 means the fissile...
SEPARATION OF URANIUM, PLUTONIUM AND FISSION PRODUCTS FROM NEUTRON- BOMBARDED URANIUM
Martin, A.E.; Johnson, I.; Burris, L. Jr.; Winsch, I.O.; Feder, H.M.
1962-11-13
A process is given for removing plutonium and/or fission products from uranium fuel. The fuel is dissolved in molten zinc--magnesium (10 to 18% Mg) alloy, more magnesium is added to obtain eutectic composition whereby uranium precipitates, and the uranium are separated from the Plutoniumand fission-product- containing eutectic. (AEC)
31 CFR 540.315 - Uranium-235 (U235).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Uranium-235 (U235). 540.315 Section... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY HIGHLY ENRICHED URANIUM (HEU) AGREEMENT ASSETS CONTROL REGULATIONS General Definitions § 540.315 Uranium-235 (U235). The term uranium-235 or U235 means the fissile...
DISSOLUTION OF ZIRCONIUM-CONTAINING FUEL ELEMENTS
Horn, F.L.
1961-12-12
Uranium is recovered from spent uranium fuel elements containing or clad with zirconium. These fuel elements are placed in an anhydrous solution of hydrogen fluoride and nitrogen dioxide. Within this system uranium forms a soluble complex and zirconium forms an insoluble complex. The uranium can then be separated, treated, and removed from solution as uranium hexafluoride. (AEC)
The role of uranium-arene bonding in H2O reduction catalysis
NASA Astrophysics Data System (ADS)
Halter, Dominik P.; Heinemann, Frank W.; Maron, Laurent; Meyer, Karsten
2018-03-01
The reactivity of uranium compounds towards small molecules typically occurs through stoichiometric rather than catalytic processes. Examples of uranium catalysts reacting with water are particularly scarce, because stable uranyl groups form that preclude the recovery of the uranium compound. Recently, however, an arene-anchored, electron-rich uranium complex has been shown to facilitate the electrocatalytic formation of H2 from H2O. Here, we present the precise role of uranium-arene δ bonding in intermediates of the catalytic cycle, as well as details of the atypical two-electron oxidative addition of H2O to the trivalent uranium catalyst. Both aspects were explored by synthesizing mid- and high-valent uranium-oxo intermediates and by performing comparative studies with a structurally related complex that cannot engage in δ bonding. The redox activity of the arene anchor and a covalent δ-bonding interaction with the uranium ion during H2 formation were supported by density functional theory analysis. Detailed insight into this catalytic system may inspire the design of ligands for new uranium catalysts.
Ramie (Boehmeria nivea)'s uranium bioconcentration and tolerance attributes.
Wang, Wei-Hong; Luo, Xue-Gang; Liu, Lai; Zhang, Yan; Zhao, Hao-Zhou
2018-04-01
The authors sampled and analyzed 15 species of dominant wild plants in Huanan uranium tailings pond in China, whose tailings' uranium contents were 3.21-120.52 μg/g. Among the 15 species of wild plants, ramie (Boehmeria nivea) had the strongest uranium bioconcentration and transfer capacities. In order to study the uranium bioconcentration and tolerance attributes of ramie in detail, and provide a reference for the screening remediation plants to phytoremedy on a large scale in uranium tailings pond, a ramie cultivar Xiangzhu No. 7 pot experiment was carried out. We found that both wild ramie and Xiangzhu No. 7 could bioconcentrate uranium, but there were two differences. One was wild ramie's shoots bioconcentrated uranium up to 20 μg/g (which can be regarded as the critical content value of the shoot of uranium hyperaccumulator) even the soil uranium content was as low as 5.874 μg/g while Xiangzhu No. 7's shoots could reach 20 μg/g only when the uranium treatment concentrations were 275 μg/g or more; the other was that all the transfer factors of 3 wild samples were >1, and the transfer factors of 27 out of 28 pot experiment samples were <1. Probably wild ramie was a uranium hyperaccumulator. Xiangzhu No. 7 satisfied the needs of uranium hyperaccumulator on accumulation capability, tolerance capability, bioconcentration factor, but not transfer capability, so Xiangzhu No. 7 was not a uranium hyperaccumulator. We analyzed the possible reasons why there were differences in the uranium bioconcentration and transfer attributes between wild ramie and Xiangzhu No. 7., and proposed the direction for further research. In our opinion, both the plants which bioconcentrate contaminants in the shoots and roots can act as phytoextractors. Although Xiangzhu No. 7's biomass and accumulation of uranium were concentrated on the roots, the roots were small in volume and easy to harvest. And Xiangzhu No. 7's cultivating skills and protection measures had been developed very well. Xiangzhu No. 7's whole bioconcentration factors and the roots' bioconcentration factors, which were 1.200-1.834 and 1.460-2.341, respectively, increased with the increases of uranium contents of pot soil when the soil's uranium contents are 25-175 μg/g, so it can act as a potential phytoextractor when Huanan uranium tailings pond is phytoremediated. Copyright © 2018. Published by Elsevier Ltd.
Development of affinity-based delivery of NGF from a chondroitin sulfate biomaterial.
Butterfield, Karen Chao; Conovaloff, Aaron W; Panitch, Alyssa
2011-01-01
Chondroitin sulfate is a major component of the extracellular matrix in both the central and peripheral nervous systems. Chondroitin sulfate is upregulated at injury, thus methods to promote neurite extension through chondroitin sulfate-rich matrices and synthetic scaffolds are needed. We describe the use of both chondroitin sulfate and a novel chondroitin sulfate-binding peptide to control the release of nerve growth factor. Interestingly, the novel chondroitin sulfate-binding peptide enhances the controlled release properties of the chondroitin sulfate gels. While introduction of chondroitin sulfate into a scaffold inhibits primary cortical outgrowth, the combination of chondroitin sulfate, chondroitin sulfate-binding peptide and nerve growth factor promotes primary cortical neurite outgrowth in chondroitin sulfate gels.
Baumann, Nils; Arnold, Thuro; Haferburg, Götz
2014-01-01
Uranium concentrations in cultivated (sunflower, sunchoke, potato) and native plants, plant compartment specimens, and mushrooms, grown on a test site within a uranium-contaminated area in Eastern Thuringia, were analyzed and compared. This test site belongs to the Friedrich-Schiller University Jena and is situated on the ground of a former but now removed uranium mine waste leaching heap. For determination of the U concentrations in the biomaterials, the saps of the samples were squeezed out by using an ultracentrifuge, after that, the uranium concentrations in the saps and the remaining residue were measured, using ICP-MS. The study further showed that uranium concentrations observed in plant compartment and mushroom fruiting bodies sap samples were always higher than their associated solid residue sample. Also, it was found that the detected uranium concentration in the root samples were always higher than were observed in their associated above ground biomass, e.g., in shoots, leaves, blossoms etc. The highest uranium concentration was measured with almost 40 ppb U in a fruiting body of a mushroom and in roots of butterbur. However, the detected uranium concentrations in plants and mushrooms collected in this study were always lower than in the associated surface and soil water of the test site, indicating that under the encountered natural conditions, none of the studied plant and mushroom species turned out to be a hyperaccumulator for uranium, which could have extracted uranium in sufficient amounts out of the uranium-contaminated soil. In addition, it was found that the detected uranium concentrations in the sap samples, despite being above the sensitivity limit, proved to be too low-in combination with the presence of fluorescence quenching substances, e.g., iron and manganese ions, and/or organic quenchers-to extract a useful fluorescence signal, which could have helped to identify the uranium speciation in plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camper, Larry W.; Michalak, Paul; Cohen, Stephen
Community Water Systems (CWSs) are required to remove uranium from drinking water to meet EPA standards. Similarly, mining operations are required to remove uranium from their dewatering discharges to meet permitted surface water discharge limits. Ion exchange (IX) is the primary treatment strategy used by these operations, which loads uranium onto resin beads. Presently, uranium-loaded resin from CWSs and mining operations can be disposed as a waste product or processed by NRC- or Agreement State-licensed uranium recovery facilities if that licensed facility has applied for and received permission to process 'alternate feed'. The disposal of uranium-loaded resin is costly andmore » the cost to amend a uranium recovery license to accept alternate feed can be a strong disincentive to commercial uranium recovery facilities. In response to this issue, the NRC issued a Regulatory Issue Summary (RIS) to clarify the agency's policy that uranium-loaded resin from CWSs and mining operations can be processed by NRC- or Agreement State-licensed uranium recovery facilities without the need for an alternate feed license amendment when these resins are essentially the same, chemically and physically, to resins that licensed uranium recovery facilities currently use (i.e., equivalent feed). NRC staff is clarifying its current alternate feed policy to declare IX resins as equivalent feed. This clarification is necessary to alleviate a regulatory and financial burden on facilities that filter uranium using IX resin, such as CWSs and mine dewatering operations. Disposing of those resins in a licensed facility could be 40 to 50 percent of the total operations and maintenance (O and M) cost for a CWS. Allowing uranium recovery facilities to treat these resins without requiring a license amendment lowers O and M costs and captures a valuable natural resource. (authors)« less
As-cast uranium-molybdenum based metallic fuel candidates and the effects of carbon addition
NASA Astrophysics Data System (ADS)
Blackwood, Van Stephen
The objective of this research was to develop and recommend a metallic nuclear fuel candidate that lowered the onset temperature of gamma phase formation comparable or better than the uranium-10 wt. pct. molybdenum alloy, offered a solidus temperature as high or higher than uranium-10 wt. pct. zirconium (1250°C), and stabilized the fuel phase against interaction with iron and steel at least as much as uranium-10 wt. pct. zirconium stabilized the fuel phase. Two new as-cast alloy compositions were characterized to assess thermal equilibrium boundaries of the gamma phase field and the effect of carbon addition up to 0.22 wt. pct. The first system investigated was uranium- x wt. pct. M where x ranged between 5-20 wt. pct. M was held at a constant ratio of 50 wt. pct. molybdenum, 43 wt. pct. titanium, and 7 wt. pct. zirconium. The second system investigated was the uranium-molybdenum-tungsten system in the range 90 wt. pct. uranium - 10 wt. pct. molybdenum - 0 wt. pct. tungsten to 80 wt. pct. uranium - 10 wt. pct. molybdenum - 10 wt. pct. tungsten. The results showed that the solidus temperature increased with increased addition of M up to 12.5 wt. pct. for the uranium-M system. Alloy additions of titanium and zirconium were removed from uranium-molybdenum solid solution by carbide formation and segregation. The uranium-molybdenum-tungsten system solidus temperature increased to 1218°C at 2.5 wt. pct. with no significant change in temperature up to 5 wt. pct. tungsten suggesting the solubility limit of tungsten had been reached. Carbides were observed with surrounding areas enriched in both molybdenum and tungsten. The peak solidus temperatures for the alloy systems were roughly the same at 1226°C for the uranium-M system and 1218°C for the uranium-molybdenum-tungsten system. The uranium-molybdenum-tungsten system required less alloy addition to achieve similar solidus temperatures as the uranium-M system.
Sánchez-Guijo, Alberto; Oji, Vinzenz; Hartmann, Michaela F.; Traupe, Heiko; Wudy, Stefan A.
2015-01-01
Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R2 > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood. PMID:26239050
URANIUM IN ROCK MINERALS OF THE INTRUSION OF KYZL-OMPUL MOUNTAINS (NORTH KIRGISIA) (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonova, L.L.; Pogiblova, L.S.
1961-01-01
The uranium distribution in rock minerals (syenites, granosyenites, and alaskite granites) of the Kyzyl-Ompul raassif is studied. Alaskite granites are characterized by the granite type of uranium distribution in minerals, about 50 percent of this element being connected with rockforming and about 50 percent with accessory uranium minerals. ln syenites uranium (about 70 percent) is bound to rockforming minerals. The same minerals from syenites and granites strongly differ by their uranium content and are constant in the ranges of each of those rock types. Granosyenites have aa intermediate (between syenites and granites) type of uranium distribution in minerals. (auth)
Removal of uranium from soil samples for ICP-OES analysis of RCRA metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wero, M.; Lederer-Cano, A.; Billy, C.
1995-12-01
Soil samples containing high levels of uranium present unique analytical problems when analyzed for toxic metals (Ag, As, Ba, Cd, Cr, Cu, Ni, Pb, Se and Tl) because of the spectral interference of uranium in the ICP-OES emission spectrometer. Methods to remove uranium from the digestates of soil samples, known to be high in uranium, have been developed that reduce the initial uranium concentration (1-3%) to less than 500 ppm. UTEVA ion exchange columns, used as an ICP-OES analytical pre-treatment, reduces uranium to acceptable levels, permitting good analytical results of the RCRA metals by ICP-OES.
Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.
1958-04-15
The production of uranium metal by the reduction of uranium tetrafluoride is described. Massive uranium metal of high purily is produced by reacting uranium tetrafluoride with 2 to 20% stoichiometric excess of magnesium at a temperature sufficient to promote the reaction and then mantaining the reaction mass in a sealed vessel at temperature in the range of 1150 to 2000 d C, under a superatomospheric pressure of magnesium for a period of time sufficient 10 allow separation of liquid uranium and liquid magnesium fluoride into separate layers.
Depleted Uranium Program: Repository and Chemical Analysis of Biological Samples
2010-11-01
Chemical Samples • Chemical Pathology and Analytical Assessment of U and DU in: • Tissues • Urine • Whole blood • Semen • Embedded fragments...preparation for determination of total uranium and isotopic uranium ratios Semen – Total Uranium – dry ashed by concentrated nitric acid in muffle...Total uranium and DU measurements in blood 0.0 50.0 100.0 150.0 200.0 250.0 ng U in s am pl e Sample Number Semen Measured U Theortical U Uranium
Method of precipitating uranium from an aqueous solution and/or sediment
Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin
2013-08-20
A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.
Method for fabricating uranium foils and uranium alloy foils
Hofman, Gerard L [Downers Grove, IL; Meyer, Mitchell K [Idaho Falls, ID; Knighton, Gaven C [Moore, ID; Clark, Curtis R [Idaho Falls, ID
2006-09-05
A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.
RECOVERY OF URANIUM FROM ZIRCONIUM-URANIUM NUCLEAR FUELS
Gens, T.A.
1962-07-10
An improvement was made in a process of recovering uranium from a uranium-zirconium composition which was hydrochlorinated with gsseous hydrogen chloride at a temperature of from 350 to 800 deg C resulting in volatilization of the zirconium, as zirconium tetrachloride, and the formation of a uranium containing nitric acid insoluble residue. The improvement consists of reacting the nitric acid insoluble hydrochlorination residue with gaseous carbon tetrachloride at a temperature in the range 550 to 600 deg C, and thereafter recovering the resulting uranium chloride vapors. (AEC)
Lee, Minhee; Yang, Minjune
2010-01-15
The uranium removal efficiencies of rhizofiltration in the remediation of groundwater were investigated in lab-scale experiments. Sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) were cultivated and an artificially uranium contaminated solution and three genuine groundwater samples were used in the experiments. More than 80% of the initial uranium in solution and genuine groundwater, respectively, was removed within 24h by using sunflower and the residual uranium concentration of the treated water was lower than 30 microg/L (USEPA drinking water limit). For bean, the uranium removal efficiency of the rhizofiltration was roughly 60-80%. The maximum uranium removal via rhizofiltration for the two plant cultivars occurred at pH 3-5 of solution and their uranium removal efficiencies exceeded 90%. The lab-scale continuous rhizofiltration clean-up system delivered over 99% uranium removal efficiency, and the results of SEM and EDS analyses indicated that most uranium accumulated in the roots of plants. The present results suggested that the uranium removal capacity of two plants evaluated in the clean-up system was about 25mg/kg of wet plant mass. Notably, the removal capacity of the root parts only was more than 500 mg/kg.
Organic geochemical analysis of sedimentary organic matter associated with uranium
Leventhal, J.S.; Daws, T.A.; Frye, J.S.
1986-01-01
Samples of sedimentary organic matter from several geologic environments and ages which are enriched in uranium (56 ppm to 12%) have been characterized. The three analytical techniqyes used to study the samples were Rock-Eval pyrolysis, pyrolysis-gas chromatography-mass spectrometry, and solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy. In samples with low uranium content, the pyrolysis-gas chromatography products contain oxygenated functional groups (as hydroxyl) and molecules with both aliphatic and aromatic carbon atoms. These samples with low uranium content give measurable Rock-Eval hydrocarbon and organic-CO2 yields, and C-13 NMR values of > 30% aliphatic carbon. In contrast, uranium-rich samples have few hydrocarbon pyrolysis products, increased Rock-Eval organic-CO2 contents and > 70% aromatic carbon contents from C-13 NMR. The increase in aromaticity and decrease in hydrocarbon pyrolysis yield are related to the amount of uranium and the age of the uranium minerals, which correspond to the degree of radiation damage. The three analytical techniques give complementary results. Increase in Rock-Eval organic-CO2 yield correlates with uranium content for samples from the Grants uranium region. Calculations show that the amount of organic-CO2 corresponds to the quantity of uranium chemically reduced by the organic matter for the Grants uranium region samples. ?? 1986.
Large decadal-scale changes in uranium and bicarbonate in groundwater of the irrigated western U.S
Burow, Karen R.; Belitz, Kenneth; Dubrovsky, Neil M.; Jurgens, Bryant C.
2017-01-01
Samples collected about one decade apart from 1105 wells from across the U.S. were compiled to assess whether uranium concentrations in the arid climate are linked to changing bicarbonate concentrations in the irrigated western U.S. Uranium concentrations in groundwater were high in the arid climate in the western U.S, where uranium sources are abundant. Sixty-four wells (6%) were above the U.S. EPA MCL of 30 μg/L; all but one are in the arid west. Concentrations were low to non-detectable in the humid climate. Large uranium and bicarbonate increases (differences are greater than the uncertainty in concentrations) occur in 109 wells between decade 1 and decade 2. Similarly, large uranium and bicarbonate decreases occur in 76 wells between the two decades. Significantly more wells are concordant (uranium and bicarbonate are both going the same direction) than discordant (uranium and bicarbonate are going opposite directions) (p < 0.001; Chi-square test). The largest percent difference in uranium concentrations occur in wells where uranium is increasing and bicarbonate is also increasing. These large differences occur mostly in the arid climate. Results are consistent with the hypothesis that changing uranium concentrations are linked to changes in bicarbonate in irrigated areas of the western U.S.
Immobilization of uranium into magnetite from aqueous solution by electrodepositing approach.
Lu, Bing-Qing; Li, Mi; Zhang, Xiao-Wen; Huang, Chun-Mei; Wu, Xiao-Yan; Fang, Qi
2018-02-05
Immobilization of uranium into magnetite (Fe 3 O 4 ), which was generated from metallic iron by electrochemical method, was proposed to rapidly remove uranium from aqueous solution. The effects of electrochemical parameters such as electrode materials, voltage, electrode gap, reaction time and pH value on the crystallization of Fe 3 O 4 and uranium removal efficiencies were investigated. More than 90% uranium in the solution was precipitated with Fe 3 O 4 under laboratory conditions when uranium concentration range from 0.5mg/L to 10mg/L. The Fe 3 O 4 crystallization mechanism and immobilization of uranium was proved by XPS, XRD, TEM, FTIR and VSM methods. The results indicated that the cationic (including Fe 2+ , Fe 3+ and U(VI)) migrate to cathode side under the electric field and the uranium was incorporated or adsorbed by Fe 3 O 4 which was generated at cathode while the pH ranges between 2-7. The uranium-containing precipitate of Fe 3 O 4 can exist stably at the acid concentration below 60g/L. Furthermore, the precipitate may be used as valuable resources for uranium or iron recycling, which resulted in no secondary pollution in the removal of uranium from aqueous solution. Copyright © 2017. Published by Elsevier B.V.
Uranium provinces of North America; their definition, distribution, and models
Finch, Warren Irvin
1996-01-01
Uranium resources in North America are principally in unconformity-related, quartz-pebble conglomerate, sandstone, volcanic, and phosphorite types of uranium deposits. Most are concentrated in separate, well-defined metallogenic provinces. Proterozoic quartz-pebble conglomerate and unconformity-related deposits are, respectively, in the Blind River–Elliot Lake (BRELUP) and the Athabasca Basin (ABUP) Uranium Provinces in Canada. Sandstone uranium deposits are of two principal subtypes, tabular and roll-front. Tabular sandstone uranium deposits are mainly in upper Paleozoic and Mesozoic rocks in the Colorado Plateau Uranium Province (CPUP). Roll-front sandstone uranium deposits are in Tertiary rocks of the Rocky Mountain and Intermontane Basins Uranium Province (RMIBUP), and in a narrow belt of Tertiary rocks that form the Gulf Coastal Uranium Province (GCUP) in south Texas and adjacent Mexico. Volcanic uranium deposits are concentrated in the Basin and Range Uranium Province (BRUP) stretching from the McDermitt caldera at the Oregon-Nevada border through the Marysvale district of Utah and Date Creek Basin in Arizona and south into the Sierra de Peña Blanca District, Chihuahua, Mexico. Uraniferous phosphorite occurs in Tertiary sediments in Florida, Georgia, and North and South Carolina and in the Lower Permian Phosphoria Formation in Idaho and adjacent States, but only in Florida has economic recovery been successful. The Florida Phosphorite Uranium Province (FPUP) has yielded large quantities of uranium as a byproduct of the production of phosphoric acid fertilizer. Economically recoverable quantities of copper, gold, molybdenum, nickel, silver, thorium, and vanadium occur with the uranium deposits in some provinces.Many major epochs of uranium mineralization occurred in North America. In the BRELUP, uranium minerals were concentrated in placers during the Early Proterozoic (2,500–2,250 Ma). In the ABUP, the unconformity-related deposits were most likely formed initially by hot saline formational water related to diagenesis (»1,400 to 1,330 Ma) and later reconcentrated by hydrothermal events at »1,280–»1,000, »575, and »225 Ma. Subsequently in North America, only minor uranium mineralization occurred until after continental collision in Permian time (255 Ma). Three principal epochs of uranium mineralization occurred in the CPUP: (1) » 210–200 Ma, shortly after Late Triassic sedimentation; (2) »155–150 Ma, in Late Jurassic time; and (3) » 135 Ma, after sedimentation of the Upper Jurassic Morrison Formation. The most likely source of the uranium was silicic volcaniclastics for the three epochs derived from a volcanic island arc at the west edge of the North American continent. Uranium mineralization occurred during Eocene, Miocene, and Pliocene times in the RMIBUP, GCUP, and BRUP. Volcanic activity took place near the west edge of the continent during and shortly after sedimentation of the host rocks in these three provinces. Some volcanic centers in the Sierra de Peña Blanca district within the BRUP may have provided uranium-rich ash to host rocks in the GCUP.Most of the uranium provinces in North America appear to have a common theme of close associations to volcanic activity related to the development of the western margin of the North American plate. The south and west margin of the Canadian Shield formed the leading edge of the progress of uranium source development and mineralization from the Proterozoic to the present. The development of favorable hosts and sources of uranium is related to various tectonic elements developed over time. Periods of major uranium mineralization in North America were Early Proterozoic, Middle Proterozoic, Late Triassic–Early Jurassic, Early Cretaceous, Oligocene, and Miocene. Tertiary mineralization was the most pervasive, covering most of Western and Southern North America.
Behavior of uranium under conditions of interaction of rocks and ores with subsurface water
NASA Astrophysics Data System (ADS)
Omel'Yanenko, B. I.; Petrov, V. A.; Poluektov, V. V.
2007-10-01
The behavior of uranium during interaction of subsurface water with crystalline rocks and uranium ores is considered in connection with the problem of safe underground insulation of spent nuclear fuel (SNF). Since subsurface water interacts with crystalline rocks formed at a high temperature, the mineral composition of these rocks and uranium species therein are thermodynamically unstable. Therefore, reactions directed toward the establishment of equilibrium proceed in the water-rock system. At great depths that are characterized by hindered water exchange, where subsurface water acquires near-neutral and reducing properties, the interaction is extremely sluggish and is expressed in the formation of micro- and nanoparticles of secondary minerals. Under such conditions, the slow diffusion redistribution of uranium with enrichment in absorbed forms relative to all other uranium species is realized as well. The products of secondary alteration of Fe- and Ti-bearing minerals serve as the main sorbents of uranium. The rate of alteration of minerals and conversion of uranium species into absorbed forms is slow, and the results of these processes are insignificant, so that the rocks and uranium species therein may be regarded as unaltered. Under reducing conditions, subsurface water is always saturated with uranium. Whether water interacts with rock or uranium ore, the equilibrium uranium concentration in water is only ≤10-8 mol/l. Uraninite ore under such conditions always remains stable irrespective of its age. The stability conditions of uranium ore are quite suitable for safe insulation of SNF, which consists of 95% uraninite (UO2) and is a confinement matrix for all other radionuclides. The disposal of SNF in massifs of crystalline rocks at depths below 500 m, where reducing conditions are predominant, is a reliable guarantee of high SNF stability. Under oxidizing conditions of the upper hydrodynamic zone, the rate of interaction of rocks with subsurface water increases by orders of magnitude and subsurface water is commonly undersaturated with uranium. Uranium absorbed by secondary minerals, particularly by iron hydroxides and leucoxene, is its single stable species under oxidizing conditions. The impact of oxygen-bearing water leads to destruction of uranium ore. This process is realized simultaneously at different hypsometric levels even if the permeability of the medium is variable in both the lateral and vertical directions. As a result, intervals containing uranyl minerals and relics of primary uranium ore are combined in ore-bearing zones with intervals of completely dissolved uranium minerals. A wide halo of elevated uranium contents caused by sorption is always retained at the location of uranium ore entirely destroyed by weathering. Uranium ore commonly finds itself in the aeration zone due to technogenic subsidence of the groundwater table caused by open-pit mining or pumping out of water from underground mines. The capillary and film waters that interact with rocks and ores in this zone are supplemented by free water filtering along fractures when rain falls or snow is thawing. The interaction of uranium ore with capillary water results in oxidation of uraninite, accompanied by loosening of the mineral surface, formation of microfractures, and an increase in solubility with enrichment of capillary water in uranium up to 10-4 mol/l. Secondary U(VI) minerals, first of all, uranyl hydroxides and silicates, replace uraninite, and uranium undergoes local diffusion redistribution with its sorption by secondary minerals of host rocks. The influx of free water facilitates the complete dissolution of primary and secondary uranium minerals, the removal of uranium at the sites of groundwater discharge, and its redeposition under reducing conditions at a greater depth. It is evident that the conditions of the upper hydrodynamic zone and the aeration zone are unfit for long-term insulation of SNF and high-level wastes because, after the failure of containers, the leakage of radionuclides into the environment becomes inevitable.
Process for removing carbon from uranium
Powell, George L.; Holcombe, Jr., Cressie E.
1976-01-01
Carbon contamination is removed from uranium and uranium alloys by heating in inert atmosphere to 700.degree.-1900.degree.C in effective contact with yttrium to cause carbon in the uranium to react with the yttrium. The yttrium is either in direct contact with the contaminated uranium or in indirect contact by means of an intermediate transport medium.
10 CFR 71.22 - General license: Fissile material.
Code of Federal Regulations, 2011 CFR
2011-01-01
... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...
10 CFR 71.22 - General license: Fissile material.
Code of Federal Regulations, 2012 CFR
2012-01-01
... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...
10 CFR 71.22 - General license: Fissile material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...
10 CFR 71.22 - General license: Fissile material.
Code of Federal Regulations, 2010 CFR
2010-01-01
... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...
10 CFR 71.22 - General license: Fissile material.
Code of Federal Regulations, 2013 CFR
2013-01-01
... to obtain the value of X, then the values for the terms in the equation for uranium-233 and plutonium... if: (i) Uranium-233 is present in the package; (ii) The mass of plutonium exceeds 1 percent of the mass of uranium-235; (iii) The uranium is of unknown uranium-235 enrichment or greater than 24 weight...
PRODUCTION OF URANIUM TETRACHLORIDE
Calkins, V.P.
1958-12-16
A process is descrlbed for the production of uranium tetrachloride by contacting uranlum values such as uranium hexafluoride, uranlum tetrafluoride, or uranium oxides with either aluminum chloride, boron chloride, or sodium alumlnum chloride under substantially anhydrous condltlons at such a temperature and pressure that the chlorldes are maintained in the molten form and until the uranium values are completely converted to uranlum tetrachloride.
PRODUCTION OF URANIUM MONOCARBIDE
Powers, R.M.
1962-07-24
A method of making essentially stoichiometric uranium monocarbide by pelletizing a mixture of uranium tetrafluoride, silicon, and carbon and reacting the mixture at a temperature of approximately 1500 to 1700 deg C until the reaction goes to completion, forming uranium monocarbide powder and volatile silicon tetrafluoride, is described. The powder is then melted to produce uranium monocarbide in massive form. (AEC)
Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate
Travelli, A.
1985-10-25
A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.
Nuclear reactor fuel structure containing uranium alloy wires embedded in a metallic matrix plate
Travelli, Armando
1988-01-01
A flat or curved plate structure, to be used as fuel in a nuclear reactor, comprises elongated fissionable wires or strips embedded in a metallic continuous non-fissionable matrix plate. The wires or strips are made predominantly of a malleable uranium alloy, such as uranium silicide, uranium gallide or uranium germanide. The matrix plate is made predominantly of aluminum or an aluminum alloy. The wires or strips are located in a single row at the midsurface of the plate, parallel with one another and with the length dimension of the plate. The wires or strips are separated from each other, and from the surface of the plate, by sufficient thicknesses of matrix material, to provide structural integrity and effective fission product retention, under neutron irradiation. This construction makes it safely feasible to provide a high uranium density, so that the uranium enrichment with uranium 235 may be reduced below about 20%, to deter the reprocessing of the uranium for use in nuclear weapons.
High temperature UF6 RF plasma experiments applicable to uranium plasma core reactors
NASA Technical Reports Server (NTRS)
Roman, W. C.
1979-01-01
An investigation was conducted using a 1.2 MW RF induction heater facility to aid in developing the technology necessary for designing a self critical fissioning uranium plasma core reactor. Pure, high temperature uranium hexafluoride (UF6) was injected into an argon fluid mechanically confined, steady state, RF heated plasma while employing different exhaust systems and diagnostic techniques to simulate and investigate some potential characteristics of uranium plasma core nuclear reactors. The development of techniques and equipment for fluid mechanical confinement of RF heated uranium plasmas with a high density of uranium vapor within the plasma, while simultaneously minimizing deposition of uranium and uranium compounds on the test chamber peripheral wall, endwall surfaces, and primary exhaust ducts, is discussed. The material tests and handling techniques suitable for use with high temperature, high pressure, gaseous UF6 are described and the development of complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma, effluent exhaust gases, and residue deposited on the test chamber and exhaust system components is reported.
Preparation of carbon coated Fe3O4 nanoparticles for magnetic separation of uranium
NASA Astrophysics Data System (ADS)
Zhang, Xiaofei; Wang, Jun
2018-01-01
Uranium(VI) was removed from aqueous solutions using carbon coated Fe3O4 nanoparticles (Fe3O4@C). Batch experiments were conducted to study the effects of initial pH, shaking time and temperature on uranium sorption efficiency. It was found that the maximum adsorption capacity of the Fe3O4@C toward uranium(VI) was ∼120.20 mg g-1 when the initial uranium(VI) concentration was 100 mg L-1, displaying a high efficiency for the removal of uranium(VI) ions. Kinetics of the uranium(VI) removal is found to follow pseudo-second-order rate equation. In addition, the uranium(VI)-loaded Fe3O4@C nanoparticles can be recovered easily from aqueous solution by magnetic separation and regenerated by acid treatment. Present study suggested that magnetic Fe3O4@C composite particles can be used as an effective and recyclable adsorbent for the removal of uranium(VI) from aqueous solutions.
Vandenhove, H; Van Hees, M; Wannijn, J; Wouters, K; Wang, L
2007-01-01
The present study aimed to quantify the influence of soil parameters on uranium uptake by ryegrass. Ryegrass was established on eighteen distinct soils, spiked with (238)U. Uranium soil-to-plant transfer factors (TF) ranged from 0.0003 to 0.0340kgkg(-1). There was no significant relation between the U soil-to-plant transfer (or total U uptake or flux) and the uranium concentration in the soil solution or any other soil factor measured, nor with the U recovered following selective soil extractions. Multiple linear regression analysis resulted in a significant though complex model explaining up to 99% of variation in TF. The influence of uranium speciation on uranium uptake observed was featured: UO(2)(+2), uranyl carbonate complexes and UO(2)PO(4)(-) seem the U species being preferentially taken up by the roots and transferred to the shoots. Improved correlations were obtained when relating the uranium TF with the summed soil solution concentrations of mentioned uranium species.
Bao, Yi-zhong; Wang, Dan; Hu, Yu-xing; Xu, Ai-hong; Sun, Mei-zhen; Chen, Hong-hong
2011-11-01
This study is to assess the efficacy of BPCBG on the decorporation of uranium (VI) and protecting human renal proximal tubular epithelial cells (HK-2) against uranium-induced damage. BPCBG at different doses was injected intramuscularly to male SD rats immediately after a single intraperitoneal injection of UO2(CH3COO)2. Twenty-four hours later uranium contents in urine, kidneys and femurs were measured by ICP-MS. After HK-2 cells were exposed to UO2(CH3COO)2 immediately or for 24 h followed by BPCBG treatment at different doses for another 24 or 48 h, the uranium contents in HK-2 cells were measured by ICP-MS, the cell survival was assayed by cell counting kit-8 assay, formation of micronuclei was determined by the cytokinesis-block (CB) micronucleus assay and the production of intracellular reactive oxygen species (ROS) was detected by 2',7'-dichlorofluorescin diacetate (DCFH-DA) oxidation. DTPA-CaNa3 was used as control. It was found that BPCBG at dosages of 60, 120, and 600 micromol kg(-1) resulted in 37%-61% increase in 24 h-urinary uranium excretion, and significantly decreased the amount of uranium retention in kidney and bone to 41%-31% and 86%-42% of uranium-treated group, respectively. After HK-2 cells that had been pre-treated with UO2(CH3COO)2 for 24 h were treated with the chelators for another 24 h, 55%-60% of the intracellular uranium was removed by 10-250 micromol L(-1) of BPCBG. Treatment of uranium-treated HK-2 cells with BPCBG significantly enhanced the cell survival, decreased the formation of micronuclei and inhibited the production of intracellular ROS. Although DTPA-CaNa3 markedly reduced the uranium retention in kidney of rats and HK-2 cells, its efficacy of uranium removal from body was significantly lower than that of BPCBG and it could not protect uranium-induced cell damage. It can be concluded that BPCBG effectively decorporated the uranium from UO2(CH3COO)2-treated rats and HK-2 cells, which was better than DTPA-CaNa3. It could also scavenge the uranium-induced intracellular ROS and protect against the uranium-induced cell damage. BPCBG is worth further investigation.
[Uranium exposure and cancer risk: a review of epidemiological studies].
Tirmarche, M; Baysson, H; Telle-Lamberton, M
2004-02-01
At the end of 2000, certain diseases including leukemia were reported among soldiers who participated in the Balkan and in the Gulf wars. Depleted uranium used during these conflicts was considered as a possible cause. Its radiotoxicity is close to that of natural uranium. This paper reviews the epidemiological knowledge of uranium, the means of exposure and the associated risk of cancer. The only available epidemiological data concerns nuclear workers exposed to uranium. A review of the international literature is proposed by distinguishing between uranium miners and other workers of the nuclear industry. French studies are described in details. In ionizing radiation epidemiology, contamination by uranium is often cited as a risk factor, but the dose-effect relationship is rarely studied. Retrospective assessment of individual exposure is generally insufficient. Moreover, it is difficult to distinguish between uranium radiotoxicity, its chemical toxicity and the radiotoxicity of its progeny. A causal relation between lung cancer and radon exposure, a gas derived from the decay of uranium, has been demonstrated in epidemiological studies of miners. Among other nuclear workers exposed to uranium, there is a mortality deficit from all causes (healthy worker effect). No cancer site appears systematically in excess compared to the national population; very few studies describe a dose-response relationship. Only studies with a precise reconstruction of doses and sufficient numbers of workers will allow a better assessment of risks associated with uranium exposure at levels encountered in industry or during conflicts using depleted uranium weapons.
Enhanced uranium immobilization and reduction by Geobacter sulfurreducens biofilms.
Cologgi, Dena L; Speers, Allison M; Bullard, Blair A; Kelly, Shelly D; Reguera, Gemma
2014-11-01
Biofilms formed by dissimilatory metal reducers are of interest to develop permeable biobarriers for the immobilization of soluble contaminants such as uranium. Here we show that biofilms of the model uranium-reducing bacterium Geobacter sulfurreducens immobilized substantially more U(VI) than planktonic cells and did so for longer periods of time, reductively precipitating it to a mononuclear U(IV) phase involving carbon ligands. The biofilms also tolerated high and otherwise toxic concentrations (up to 5 mM) of uranium, consistent with a respiratory strategy that also protected the cells from uranium toxicity. The enhanced ability of the biofilms to immobilize uranium correlated only partially with the biofilm biomass and thickness and depended greatly on the area of the biofilm exposed to the soluble contaminant. In contrast, uranium reduction depended on the expression of Geobacter conductive pili and, to a lesser extent, on the presence of the c cytochrome OmcZ in the biofilm matrix. The results support a model in which the electroactive biofilm matrix immobilizes and reduces the uranium in the top stratum. This mechanism prevents the permeation and mineralization of uranium in the cell envelope, thereby preserving essential cellular functions and enhancing the catalytic capacity of Geobacter cells to reduce uranium. Hence, the biofilms provide cells with a physically and chemically protected environment for the sustained immobilization and reduction of uranium that is of interest for the development of improved strategies for the in situ bioremediation of environments impacted by uranium contamination. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Enhanced Uranium Immobilization and Reduction by Geobacter sulfurreducens Biofilms
Cologgi, Dena L.; Speers, Allison M.; Bullard, Blair A.; Kelly, Shelly D.
2014-01-01
Biofilms formed by dissimilatory metal reducers are of interest to develop permeable biobarriers for the immobilization of soluble contaminants such as uranium. Here we show that biofilms of the model uranium-reducing bacterium Geobacter sulfurreducens immobilized substantially more U(VI) than planktonic cells and did so for longer periods of time, reductively precipitating it to a mononuclear U(IV) phase involving carbon ligands. The biofilms also tolerated high and otherwise toxic concentrations (up to 5 mM) of uranium, consistent with a respiratory strategy that also protected the cells from uranium toxicity. The enhanced ability of the biofilms to immobilize uranium correlated only partially with the biofilm biomass and thickness and depended greatly on the area of the biofilm exposed to the soluble contaminant. In contrast, uranium reduction depended on the expression of Geobacter conductive pili and, to a lesser extent, on the presence of the c cytochrome OmcZ in the biofilm matrix. The results support a model in which the electroactive biofilm matrix immobilizes and reduces the uranium in the top stratum. This mechanism prevents the permeation and mineralization of uranium in the cell envelope, thereby preserving essential cellular functions and enhancing the catalytic capacity of Geobacter cells to reduce uranium. Hence, the biofilms provide cells with a physically and chemically protected environment for the sustained immobilization and reduction of uranium that is of interest for the development of improved strategies for the in situ bioremediation of environments impacted by uranium contamination. PMID:25128347
Sánchez-Guijo, Alberto; Oji, Vinzenz; Hartmann, Michaela F; Traupe, Heiko; Wudy, Stefan A
2015-09-01
Steroids are primarily present in human fluids in their sulfated forms. Profiling of these compounds is important from both diagnostic and physiological points of view. Here, we present a novel method for the quantification of 11 intact steroid sulfates in human serum by LC-MS/MS. The compounds analyzed in our method, some of which are quantified for the first time in blood, include cholesterol sulfate, pregnenolone sulfate, 17-hydroxy-pregnenolone sulfate, 16-α-hydroxy-dehydroepiandrosterone sulfate, dehydroepiandrosterone sulfate, androstenediol sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and dihydrotestosterone sulfate. The assay was conceived to quantify sulfated steroids in a broad range of concentrations, requiring only 300 μl of serum. The method has been validated and its performance was studied at three quality controls, selected for each compound according to its physiological concentration. The assay showed good linearity (R(2) > 0.99) and recovery for all the compounds, with limits of quantification ranging between 1 and 80 ng/ml. Averaged intra-day and between-day precisions (coefficient of variation) and accuracies (relative errors) were below 10%. The method has been successfully applied to study the sulfated steroidome in diseases such as steroid sulfatase deficiency, proving its diagnostic value. This is, to our best knowledge, the most comprehensive method available for the quantification of sulfated steroids in human blood. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Kalashnyk, Anna
2015-04-01
During exploration works we discovered the spatial association and proximity time formation of kimberlite dykes (ages are 1,815 and 1,900 Ga for phlogopite) and major industrial uranium deposits in carbonate-sodium metasomatites (age of the main uranium ore of an albititic formation is 1,85-1,70 Ga according to U-Pb method) in Kirovogradsky, Krivorozhsky and Alekseevsko-Lysogorskiy uranium ore regions of the Ukrainian Shield (UkrSh) [1]. In kimberlites of Kirovogradsky ore region uranium content reaches 18-20 g/t. Carbon dioxide is a major component in the formation of hydrothermal uranium deposits and the formation of the sodium in the process of generating the spectrum of alkaline ultrabasic magmas in the range from picritic to kimberlite and this is the connection between these disparate geochemical processes. For industrial uranium deposits in carbonate-sodium metasomatitics of the Kirovogradsky and Krivorozhsky uranium ore regions are characteristic of uranyl carbonate introduction of uranium, which causes correlation between CO2 content and U in range of "poor - ordinary - rich" uranium ore. In productive areas of uranium-ore fields of the Kirovogradsky ore region for phlogopite-carbonate veinlets of uranium ore albitites deep δ13C values (from -7.9 to -6.9o/oo) are characteristic. Isotope-geochemical investigation of albitites from Novokonstantynovskoe, Dokuchaevskoe, Partyzanskoe uranium deposits allowed obtaining direct evidence of the involvement of mantle material during formation of uranium albitites in Kirovogradsky ore region [2]. Petrological characteristics of kimberlites from uranium ore regions of the UkrSh (presence of nodules of dunite and harzburgite garnet in kimberlites, diamonds of peridotite paragenesis, chemical composition of indicator minerals of kimberlite, in particular Gruzskoy areas pyropes (Cr2O3 = 6,1-7,1%, MgO = 19,33-20,01%, CaO = 4,14-4,38 %, the content of knorringite component of most grains > 50mol%), chromites (Cr2O3 = 45,32-62,17%, MgO = 7,3-12,5%) allow us to estimate the depth of generation of kimberlite magmas more than 170-200 km. Ilmenites show two groups according to MgO, Cr2O3 and TiO2 content. Reconstructions of the mantle sections show also two intervals of pressures divided at 4.5 GPa, the upper part is highly metasomatized This high degree metasomatism is determined for almost all mantle columns. It is suggested that large-scale of uranium-bearing mantle fluids may be associated with the ancient degasation during the subduction which is highly enriched in U component . Analysis of the reasons for the marked association kimberlitic dykes and major industrial uranium deposits in carbonate-sodium metasomatic in the UkrSh led to the conclusion that hydrothermal uranium deposits are confined to the supply mantle fluid systems of mantle fault zones exercising brings sodium carbonate solutions enriched uranium from mantle sources. References: 1. Kalashnik A.A. New prognostic-evaluation criteria in technology prognosis of forming industrial endogenous uranium deposits of the Ukrainian Shield, 2014. Scientific proceedings of UkrSGRI, № 2, p. 27-54 (in Russian) 2. Stepanjuk L.M., Bondarenko S.V., Somka V.O. and other, 2012. Source of uranium and uranium-bearing sodium albitites for example of Dokuchaievskogo field of the Ingulsky megablock of the UkrSh: Abstracts of scientific conference "Theoretical issues and research practice metasomatic rocks and ores" (Kyiv, 14-16 March 2012), IGMOF, p.78-80. (in Ukrainian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mechelynck, Ph.
1958-07-15
After an examination of the different processes for the treatment of uranium minerals, it is concluded that the extraction of uranium by ion exchange is not applicable to hydrochloric acid solutions of phosphates. A sulfuric or phosphoric solution can be used. For solvent extraction of uranium, sulfuric or phosphoric solutions are the best, but hydrochloric solutions can be used. The cost of the solvents used would determine the cost of the operation. It is necessary, in the case of liquid-liquid extraction, to filter or decant the solution before extraction. (tr-auth)
PROCESS FOR PRODUCING URANIUM TETRAFLUORIDE
Harvey, B.G.
1954-09-14
>This patent relates to improvements in the method for producing uranium tetrafluoride by treating an aqueous solutlon of a uranyl salt at an elevated temperature with a reducing agent effective in acld solutlon in the presence of hydrofluoric acid. Uranium tetrafluoride produced this way frequentiy contains impurities in the raw material serving as the source of uranium. Uranium tetrafluoride much less contaminated with impurities than when prepared by the above method can be prepared from materials containing such impurities by first adding a small proportion of reducing agent so as to cause a small fraction, for example 1 to 5% of the uranium tetrafluoride to be precipitated, rejecting such precipitate, and then precipitating and recovering the remainder of the uranium tetrafluoride.
Exposure assessment of natural uranium from drinking water.
Jakhu, Rajan; Mehra, Rohit; Mittal, H M
2016-12-08
The uranium concentration in the drinking water of the residents of the Jaipur and Ajmer districts of Rajasthan has been measured for exposure assessment. The daily intake of uranium from the drinking water for the residents of the study area is found to vary from 0.4 to 123.9 μg per day. For the average uranium ingestion rate of 35.2 μg per day for a long term exposure period of 60 years, estimations have been made for the retention of uranium in different body organs and its excretion with time using ICRP's biokinetic model of uranium. Radioactive and chemical toxicity of uranium has been reported and discussed in detail in the present manuscript.
METHOD OF APPLYING COPPER COATINGS TO URANIUM
Gray, A.G.
1959-07-14
A method is presented for protecting metallic uranium, which comprises anodic etching of the uranium in an aqueous phosphoric acid solution containing chloride ions, cleaning the etched uranium in aqueous nitric acid solution, promptly electro-plating the cleaned uranium in a copper electro-plating bath, and then electro-plating thereupon lead, tin, zinc, cadmium, chromium or nickel from an aqueous electro-plating bath.
Reconnaissance for uranium in asphalt-bearing rocks in the western states
Hail, William James
1955-01-01
Evaluation of field data indicates that naturally occurring asphalts with a relatively high uranium content probably originated in, or migrated through, rocks that contain more than average amounts of uranium. It is believed that some of the uranium was present as an original constituent of the oil but that some uranium may have been introduced during migration of the oil.
DISSOLUTION OF URANIUM FUELS BY MONOOR DIFLUOROPHOSPHORIC ACID
Johnson, R.; Horn, F.L.; Strickland, G.
1963-05-01
A method of dissolving and separating uranium from a uranium matrix fuel element by dissolving the uraniumcontaining matrix in monofluorophosphoric acid and/or difluorophosphoric acid at temperatures ranging from 150 to 275 un. Concent 85% C, thereafter neutralizing the solution to precipitate uranium solids, and converting the solids to uranium hexafluoride by treatment with a halogen trifluoride is presented. (AEC)
Biogeochemical behaviour and bioremediation of uranium in waters of abandoned mines.
Mkandawire, Martin
2013-11-01
The discharges of uranium and associated radionuclides as well as heavy metals and metalloids from waste and tailing dumps in abandoned uranium mining and processing sites pose contamination risks to surface and groundwater. Although many more are being planned for nuclear energy purposes, most of the abandoned uranium mines are a legacy of uranium production that fuelled arms race during the cold war of the last century. Since the end of cold war, there have been efforts to rehabilitate the mining sites, initially, using classical remediation techniques based on high chemical and civil engineering. Recently, bioremediation technology has been sought as alternatives to the classical approach due to reasons, which include: (a) high demand of sites requiring remediation; (b) the economic implication of running and maintaining the facilities due to high energy and work force demand; and (c) the pattern and characteristics of contaminant discharges in most of the former uranium mining and processing sites prevents the use of classical methods. This review discusses risks of uranium contamination from abandoned uranium mines from the biogeochemical point of view and the potential and limitation of uranium bioremediation technique as alternative to classical approach in abandoned uranium mining and processing sites.
Plant-uptake of uranium: Hydroponic and soil system studies
Ramaswami, A.; Carr, P.; Burkhardt, M.
2001-01-01
Limited information is available on screening and selection of terrestrial plants for uptake and translocation of uranium from soil. This article evaluates the removal of uranium from water and soil by selected plants, comparing plant performance in hydroponic systems with that in two soil systems (a sandy-loam soil and an organic-rich soil). Plants selected for this study were Sunflower (Helianthus giganteus), Spring Vetch (Vicia sativa), Hairy Vetch (Vicia villosa), Juniper (Juniperus monosperma), Indian Mustard (Brassica juncea), and Bush Bean (Phaseolus nanus). Plant performance was evaluated both in terms of the percent uranium extracted from the three systems, as well as the biological absorption coefficient (BAC) that normalized uranium uptake to plant biomass. Study results indicate that uranium extraction efficiency decreased sharply across hydroponic, sandy and organic soil systems, indicating that soil organic matter sequestered uranium, rendering it largely unavailable for plant uptake. These results indicate that site-specific soils must be used to screen plants for uranium extraction capability; plant behavior in hydroponic systems does not correlate well with that in soil systems. One plant species, Juniper, exhibited consistent uranium extraction efficiencies and BACs in both sandy and organic soils, suggesting unique uranium extraction capabilities.
Uranium removal from aqueous solution by coir pith: equilibrium and kinetic studies.
Parab, Harshala; Joshi, Shreeram; Shenoy, Niyoti; Verma, Rakesh; Lali, Arvind; Sudersanan, M
2005-07-01
Basic aspects of uranium adsorption by coir pith have been investigated by batch equilibration. The influence of different experimental parameters such as final solution pH, adsorbent dosage, sorption time, temperature and various concentrations of uranium on uptake were evaluated. Maximum uranium adsorption was observed in the pH range 4.0-6.0. The Freundlich and Langmuir adsorption models were used for the mathematical description of the adsorption equilibrium. The equilibrium data fitted well to both the equilibrium models in the studied concentration range of uranium (200-800 mg/l) and temperatures (305-336 K). The coir pith exhibited the highest uptake capacity for uranium at 317 K, at the final solution pH value of 4.3 and at the initial uranium concentration of 800 mg/l. The kinetics of the adsorption process followed a second-order adsorption. The adsorbent used proved to be suitable for removal of uranium from aqueous solutions. 0.2 N HCl was effective in uranium desorption. The results indicated that the naturally abundant coir pith of otherwise nuisance value exhibited considerable potential for application in removal of uranium from aqueous solution.
Deng, Qin-Wen; Wang, Yong-Dong; Ding, De-Xin; Hu, Nan; Sun, Jing; He, Jia-Dong; Xu, Fei
2017-02-01
The endophyte Pseudomonas sp. XNN8 was separated from Typha orientalis which can secrete indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminase and siderophores and has strong resistance to uranium it was then colonized in the Syngonium podophyllum; and the S. podophyllum-Pseudomonas sp. XNN8 symbiotic purification system (SPPSPS) for uranium-containing wastewater was constructed. Afterwards, the hydroponic experiments to remove uranium from uranium-containing wastewater by the SPPSPS were conducted. After 24 days of treatment, the uranium concentrations of the wastewater samples with uranium concentrations between 0.5 and 5.0 mg/L were lowered to below 0.05 mg/L. Furthermore, the uranium in the plants was assayed using Fourier transform infrared spectroscopy (FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The Pseudomonas sp. XNN8 was found to generate substantial organic groups in the roots of the Syngonium podophyllum, which could improve the complexing capability of S. podophyllum for uranium. The uranium in the roots of S. podophyllum was found to be the uranyl phosphate (47.4 %) and uranyl acetate (52.6 %).
Polovov, Ilya B; Volkovich, Vladimir A; Charnock, John M; Kralj, Brett; Lewin, Robert G; Kinoshita, Hajime; May, Iain; Sharrad, Clint A
2008-09-01
Soluble uranium chloride species, in the oxidation states of III+, IV+, V+, and VI+, have been chemically generated in high-temperature alkali chloride melts. These reactions were monitored by in situ electronic absorption spectroscopy. In situ X-ray absorption spectroscopy of uranium(VI) in a molten LiCl-KCl eutectic was used to determine the immediate coordination environment about the uranium. The dominant species in the melt was [UO 2Cl 4] (2-). Further analysis of the extended X-ray absorption fine structure data and Raman spectroscopy of the melts quenched back to room temperature indicated the possibility of ordering beyond the first coordination sphere of [UO 2Cl 4] (2-). The electrolytic generation of uranium(III) in a molten LiCl-KCl eutectic was also investigated. Anodic dissolution of uranium metal was found to be more efficient at producing uranium(III) in high-temperature melts than the cathodic reduction of uranium(IV). These high-temperature electrolytic processes were studied by in situ electronic absorption spectroelectrochemistry, and we have also developed in situ X-ray absorption spectroelectrochemistry techniques to probe both the uranium oxidation state and the uranium coordination environment in these melts.
... Glucosamine Sulphate KCl, Glucosamine-6-Phosphate, GS, Mono-Sulfated Saccharide, Poly-(1->3)-N-Acetyl-2-Amino- ... Sulfate de Glucosamine, Sulfate de Glucosamine 2KCl, SG, Sulfated Monosaccharide, Sulfated Saccharide, Sulfato de Glucosamina. Glucosamine Hydrochloride ...
Zielinski, R.A.
1982-01-01
Uraniferous, fluorescent opal, which occurs in tuffaceous sedimentary rocks at Virgin Valley, Nevada, records the temperature and composition of uranium-rich solutions as well as the time of uranium-silica coprecipitation. Results are integrated with previous geologic and geochronologic data for the area to produce a model for uranium mobility that may be used to explore for uranium deposits in similar geologic settings. Uraniferous opal occurs as replacements of diatomite, or silicic air-fall ash layers in tuffaceous lakebeds of the Virgin Valley Formation (Miocene) of Merriam (1907). Fission-track radiography shows uranium to be homogeneously dispersed throughout the opal structure, suggesting coprecipitation of dissolved uranium and silica gel. Fluid inclusions preserved within opal replacements of diatomite have homogenization temperatures in the epithermal range and are of low salinity. Four samples of opal from one locality all have U-Pb apparent ages which suggest uraniferous opal precipitation in late Pliocene time. These ages correspond to a period of local, normal faulting, and highangle faults may have served as vertical conduits for transport of deep, thermalized ground water to shallower levels. Lateral migration of rising solutions occurred at intersections of faults with permeable strata. Silica and some uranium were dissolved from silica-rich host strata of 5-20 ppm original uranium content and reprecipitated as the solutions cooled. The model predicts that in similar geologic settings, ore-grade concentrations of uranium will occur in permeable strata that intersect high-angle faults and that contain uranium source rocks as well as efficient reductant traps for uranium. In the absence of sufficient quantities of reductant materials, uranium will be flushed from the system or will accumulate in low-grade disseminated hosts such as uraniferous opal. ?? 1982.
Grossmann, Kay; Arnold, Thuro; Steudtner, Robin; Weiss, Stefan; Bernhard, Gert
2009-08-01
Low-temperature alteration reactions on uranium phases may lead to the mobilization of uranium and thereby poses a potential threat to humans living close to uranium-contaminated sites. In this study, the surface alteration of uraninite (UO(2)) and uranium tetrachloride (UCl(4)) in air atmosphere was studied by confocal laser scanning microscopy (CLSM) and laser-induced fluorescence spectroscopy using an excitation wavelength of 408 nm. It was found that within minutes the oxidation state on the surface of the uraninite and the uranium tetrachloride changed. During the surface alteration process U(IV) atoms on the uraninite and uranium tetrachloride surface became stepwise oxidized by a one-electron step at first to U(V) and then further to U(VI). These observed changes in the oxidation states of the uraninite surface were microscopically visualized and spectroscopically identified on the basis of their fluorescence emission signal. A fluorescence signal in the wavelength range of 415-475 nm was indicative for metastable uranium(V), and a fluorescence signal in the range of 480-560 nm was identified as uranium(VI). In addition, the oxidation process of tetravalent uranium in aqueous solution at pH 0.3 was visualized by CLSM and U(V) was fluorescence spectroscopically identified. The combination of microscopy and fluorescence spectroscopy provided a very convincing visualization of the brief presence of U(V) as a metastable reaction intermediate and of the simultaneous coexistence of the three states U(IV), U(V), and U(VI). These results have a significant importance for fundamental uranium redox chemistry and should contribute to a better understanding of the geochemical behavior of uranium in nature.
NASA Astrophysics Data System (ADS)
Ayling, Bridget F.; Eggins, Stephen; McCulloch, Malcolm T.; Chappell, John; Grün, Rainer; Mortimer, Graham
2017-09-01
Molluscs incorporate negligible uranium into their skeleton while they are living, with any uranium uptake occurring post-mortem. As such, closed-system U-series dating of molluscs is unlikely to provide reliable age constraints for marine deposits. Even the application of open-system U-series modelling is challenging, because uranium uptake and loss histories can affect time-integrated uranium distributions and are difficult to constrain. We investigate the chemical and isotopic distribution of uranium in fossil Tridacna gigas (giant clams) from Marine Isotope Stage (MIS) 5e (128-116 ka) and MIS 11 (424-374 ka) reefs at Huon Peninsula in Papua New Guinea. The large size of the clams enables detailed chemical and isotopic mapping of uranium using LA-ICPMS and LA-MC-ICPMS techniques. Within each fossil Tridacna specimen, marked differences in uranium concentrations are observed across the three Tridacna growth zones (outer, inner, hinge), with the outer and hinge zones being relatively enriched. In MIS 5e and MIS 11 Tridacna, the outer and hinge zones contain approximately 1 ppm and 5 ppm uranium respectively. In addition to uptake of uranium, loss of uranium appears prevalent, especially in the MIS 11 specimens. The effect of uranium loss is to elevate measured [230Th/238U] values with little effect on [234U/238U] values. Closed-system age estimates are on average 50% too young for the MIS 5e Tridacna, and 25% too young for the MIS 11 Tridacna. A complex, multi-stage uptake and loss history is interpreted for the fossil Tridacna and we demonstrate that they cannot provide independent, reliable geochronological controls on the timing of past reef growth at Huon Peninsula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn M.
2013-09-05
ABSTRACT: Hydrogen carbonate is one of the most significant components within the uranium geochemical cycle. In aqueous solutions, hydrogen carbonate forms strong complexes with uranium. As such, aqueous bicarbonate may significantly increase the rate of uranium release from uranium minerals. Quantifying the relationship of aqueous hydrogen carbonate solutions to the rate of uranium release during dissolution is critical to understanding the long-term fate of uranium within the environment. Single-pass flow-through (SPTF) experiments were conducted to estimate the rate of uranium release from Na meta-autunite as a function of bicarbonate solutions (0.0005-0.003 M) under the pH range of 6-11 and temperaturesmore » of 5-60oC. Consistent with the results of previous investigation, the rate of uranium release from sodium autunite exhibited minimal dependency on temperature; but were strongly dependent on pH and increasing concentrations of bicarbonate solutions. Most notably at pH 7, the rate of uranium release exhibited 370 fold increases relative to the rate of uranium release in the absence of bicarbonate. However, the effect of increasing concentrations of bicarbonate solutions on the release of uranium was significantly less under higher pH conditions. It is postulated that at high pH values, surface sites are saturated with carbonate, thus the addition of more bicarbonate would have less effect on uranium release. Results indicate the activation energies were unaffected by temperature and bicarbonate concentration variations, but were strongly dependent on pH conditions. As pH increased from 6 to 11, activation energy values were observed to decrease from 29.94 kJ mol-1 to 13.07 kJ mol-1. The calculated activation energies suggest a surface controlled dissolution mechanism.« less
Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Karen L.; Dashner, Erica J.; Tsosie, Ranalda
Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; < 10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein.more » Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. - Highlights: • Low micromolar concentration of uranium inhibits polymerase-1 (PARP-1) activity. • Uranium causes zinc loss from multiple DNA repair proteins. • Uranium enhances retention of DNA damage caused by ultraviolet radiation. • Zinc reverses the effects of uranium on PARP activity and DNA damage repair.« less
PROCESS FOR REMOVING NOBLE METALS FROM URANIUM
Knighton, J.B.
1961-01-31
A pyrometallurgical method is given for purifying uranium containing ruthenium and palladium. The uranium is disintegrated and oxidized by exposure to air and then the ruthenium and palladium are extracted from the uranium with molten zinc.
Method for producing uranium atomic beam source
Krikorian, Oscar H.
1976-06-15
A method for producing a beam of neutral uranium atoms is obtained by vaporizing uranium from a compound UM.sub.x heated to produce U vapor from an M boat or from some other suitable refractory container such as a tungsten boat, where M is a metal whose vapor pressure is negligible compared to that of uranium at the vaporization temperature. The compound, for example, may be the uranium-rhenium compound, URe.sub.2. An evaporation rate in excess of about 10 times that of conventional uranium beam sources is produced.
Rapid Method for Sodium Hydroxide Fusion of Concrete and ...
Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.
Yeager, J.H.
1958-08-12
In the prior art processing of uranium ores, the ore is flrst digested with nitric acid and filtered, and the uranium values are then extracted tom the filtrate by contacting with an organic solvent. The insoluble residue has been processed separately in order to recover any uranium which it might contain. The improvement consists in contacting a slurry, composed of both solution and residue, with the organic solvent prior to filtration. Tbe result is that uranium values contained in the residue are extracted along with the uranium values contained th the solution in one step.
PROCESS FOR THE PRODUCTION OF AMMONIUM URANIUM FLUORIDE
Ellis, A.S.; Mooney, R.B.
1953-08-25
This patent relates to the preparation of ammonium uranium fluoride. The process comprises adding a water soluble fluoride to an aqueous solution of a uranous compound containing an ammonium salt, and isolating the resulting precipitate. This patent relates to the manufacture of uranium tetnafluoride from ammonium uranium fluoride, NH/sub 4/UF/sub 5/. Uranium tetrafluoride is prepared by heating the ammonium uranium fluoride to a temperature at which dissociation occurs with liberation of ammonium fluoride. Preferably the process is carried out under reduced pressure, or in a current of an inert gas.
Process for alloying uranium and niobium
Holcombe, Cressie E.; Northcutt, Jr., Walter G.; Masters, David R.; Chapman, Lloyd R.
1991-01-01
Alloys such as U-6Nb are prepared by forming a stacked sandwich array of uraniun sheets and niobium powder disposed in layers between the sheets, heating the array in a vacuum induction melting furnace to a temperature such as to melt the uranium, holding the resulting mixture at a temperature above the melting point of uranium until the niobium dissolves in the uranium, and casting the uranium-niobium solution. Compositional uniformity in the alloy product is enabled by use of the sandwich structure of uranium sheets and niobium powder.
METHOD OF OPERATING A CALUTRON
Davidson, P.H.
1960-01-12
A method of operating an electromagnetic isotope separator of the calutron class is reported whereby uranium tetrachloride is produced at a controlled rate within the source rather than betng introduced therein as was formerly practiced. This is accomplished by placing a uranium-bearing material, such as uranium metal, uranium trichloride, or uranium carbide in the charge receptacle of the calutron, heating this material to about to produce uranium tetrachloride vapor at a rate controlled by the chlorine gas flow into the source. The vapor is subsequently ionized by an electric arc and mass separated by conventional calutron methods.
Uranium hexafluoride public risk
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, D.R.; Hui, T.E.; Yurconic, M.
1994-08-01
The limiting value for uranium toxicity in a human being should be based on the concentration of uranium (U) in the kidneys. The threshold for nephrotoxicity appears to lie very near 3 {mu}g U per gram kidney tissue. There does not appear to be strong scientific support for any other improved estimate, either higher or lower than this, of the threshold for uranium nephrotoxicity in a human being. The value 3 {mu}g U per gram kidney is the concentration that results from a single intake of about 30 mg soluble uranium by inhalation (assuming the metabolism of a standard person).more » The concentration of uranium continues to increase in the kidneys after long-term, continuous (or chronic) exposure. After chronic intakes of soluble uranium by workers at the rate of 10 mg U per week, the concentration of uranium in the kidneys approaches and may even exceed the nephrotoxic limit of 3 {mu}g U per gram kidney tissue. Precise values of the kidney concentration depend on the biokinetic model and model parameters assumed for such a calculation. Since it is possible for the concentration of uranium in the kidneys to exceed 3 {mu}g per gram tissue at an intake rate of 10 mg U per week over long periods of time, we believe that the kidneys are protected from injury when intakes of soluble uranium at the rate of 10 mg U per week do not continue for more than two consecutive weeks. For long-term, continuous occupational exposure to low-level, soluble uranium, we recommend a reduced weekly intake limit of 5 mg uranium to prevent nephrotoxicity in workers. Our analysis shows that the nephrotoxic limit of 3 {mu}g U per gram kidney tissues is not exceeded after long-term, continuous uranium intake at the intake rate of 5 mg soluble uranium per week.« less
Van Gosen, Bradley S.; Hall, Susan M.
2017-12-18
This report describes the discovery and geology of two near-surface uranium deposits within calcareous lacustrine strata of Pleistocene age in west Texas, United States. Calcrete uranium deposits have not been previously reported in the United States. The west Texas uranium deposits share characteristics with some calcrete uranium deposits in Western Australia—uranium-vanadium minerals hosted by nonpedogenic calcretes deposited in saline lacustrine environments.In the mid-1970s, Kerr-McGee Corporation conducted a regional uranium exploration program in the Southern High Plains province of the United States, which led to the discovery of two shallow uranium deposits (that were not publicly reported). With extensive drilling, Kerr-McGee delineated one deposit of about 2.1 million metric tons of ore with an average grade of 0.037 percent U3O8 and another deposit of about 0.93 million metric tons of ore averaging 0.047 percent U3O8.The west-Texas calcrete uranium-vanadium deposits occur in calcareous, fine-grained sediments interpreted to be deposited in saline lakes formed during dry interglacial periods of the Pleistocene. The lakes were associated with drainages upstream of a large Pleistocene lake. Age determinations of tephra in strata adjacent to one deposit indicate the host strata is middle Pleistocene in age.Examination of the uranium-vanadium mineralization by scanning-electron microscopy indicated at least two generations of uranium-vanadium deposition in the lacustrine strata identified as carnotite and a strontium-uranium-vanadium mineral. Preliminary uranium-series results indicate a two-component system in the host calcrete, with early lacustrine carbonate that was deposited (or recrystallized) about 190 kilo-annum, followed much later by carnotite-rich crusts and strontium-uranium-vanadium mineralization in the Holocene (about 5 kilo-annum). Differences in initial 234U/238U activity ratios indicate two separate, distinct fluid sources.
Uranium Associations with Kidney Outcomes Vary by Urine Concentration Adjustment Method
Shelley, Rebecca; Kim, Nam-Soo; Parsons, Patrick J.; Lee, Byung-Kook; Agnew, Jacqueline; Jaar, Bernard G.; Steuerwald, Amy J.; Matanoski, Genevieve; Fadrowski, Jeffrey; Schwartz, Brian S.; Todd, Andrew C.; Simon, David; Weaver, Virginia M.
2017-01-01
Uranium is a ubiquitous metal that is nephrotoxic at high doses. Few epidemiologic studies have examined the kidney filtration impact of chronic environmental exposure. In 684 lead workers environmentally exposed to uranium, multiple linear regression was used to examine associations of uranium measured in a four-hour urine collection with measured creatinine clearance, serum creatinine- and cystatin-C-based estimated glomerular filtration rates, and N-acetyl-β-D-glucosaminidase (NAG). Three methods were utilized, in separate models, to adjust uranium levels for urine concentration - μg uranium/g creatinine; μg uranium/L and urine creatinine as separate covariates; and μg uranium/4 hr. Median urine uranium levels were 0.07 μg/g creatinine and 0.02 μg/4 hr and were highly correlated (rs =0.95). After adjustment, higher ln-urine uranium was associated with lower measured creatinine clearance and higher NAG in models that used urine creatinine to adjust for urine concentration but not in models that used total uranium excreted (μg/4 hr). These results suggest that, in some instances, associations between urine toxicants and kidney outcomes may be statistical, due to the use of urine creatinine in both exposure and outcome metrics, rather than nephrotoxic. These findings support consideration of non-creatinine-based methods of adjustment for urine concentration in nephrotoxicant research. PMID:23591699
Jha, V N; Tripathi, R M; Sethy, N K; Sahoo, S K
2016-01-01
Concentration of uranium was determined in aquatic plants and substrate (sediment or water) of fresh water ecosystem on and around uranium mill tailings pond at Jaduguda, India. Aquatic plant/substrate concentration ratios (CRs) of uranium were estimated for different sites on and around the uranium mill tailings disposal area. These sites include upstream and downstream side of surface water sources carrying the treated tailings effluent, a small pond inside tailings disposal area and residual water of this area. Three types of plant groups were investigated namely algae (filamentous and non-filamentous), other free floating & water submerged and sediment rooted plants. Wide variability in concentration ratio was observed for different groups of plants studied. The filamentous algae uranium concentration was significantly correlated with that of water (r=0.86, p<0.003). For sediment rooted plants significant correlation was found between uranium concentration in plant and the substrate (r=0.88, p<0.001). Both for other free floating species and sediment rooted plants, uranium concentration was significantly correlated with Mn, Fe, and Ni concentration of plants (p<0.01). Filamentous algae, Jussiaea and Pistia owing to their high bioproductivity, biomass, uranium accumulation and concentration ratio can be useful for prospecting phytoremediation of stream carrying treated or untreated uranium mill tailings effluent. Copyright © 2015 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Small, Jack A.; Bunn, Amoret L.; McKinstry, Craig A.
2008-04-01
Periphyton communities can be used as monitors of ecosystem health and as indicators of contamination in lotic systems. Measures of biomass, community structure and genetic diversity were used to investigate impacts of uranium exposure on periphyton. Laboratory exposures of periphyton in river water amended with uranium were performed for 5 days, followed by 2 days of uranium depuration in unamended river water. Productivity as measured by biomass was not affected by concentrations up to 100 µg L-1 uranium. Phospholipid fatty acid (PLFA) profiles and denaturing gradient gel electrophoresis (DGGE) banding patterns found no changes in community or genetic structure relatedmore » to uranium exposure. We suggest that the periphyton community as a whole is not impacted by exposures of uranium up to a dose of 100 µg L-1. These findings have significance for the assessment and prediction of uranium impacts on aquatic ecosystems.« less
METHOD OF OPERATING NUCLEAR REACTORS
Untermyer, S.
1958-10-14
A method is presented for obtaining enhanced utilization of natural uranium in heavy water moderated nuclear reactors by charging the reactor with an equal number of fuel elements formed of natural uranium and of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction. The reactor is operated until the rate of burnup of plutonium equals its rate of production, the fuel elements are processed to recover plutonium, the depleted uranium is discarded, and the remaining uranium is formed into fuel elements. These fuel elements are charged into a reactor along with an equal number of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction, and reuse of the uranium is continued as aforesaid until it wlll no longer support a chain reaction when combined with an equal quantity of natural uranium.
A graphene oxide/amidoxime hydrogel for enhanced uranium capture
Wang, Feihong; Li, Hongpeng; Liu, Qi; Li, Zhanshuang; Li, Rumin; Zhang, Hongsen; Liu, Lianhe; Emelchenko, G. A.; Wang, Jun
2016-01-01
The efficient development of selective materials for the recovery of uranium from nuclear waste and seawater is necessary for their potential application in nuclear fuel and the mitigation of nuclear pollution. In this work, a graphene oxide/amidoxime hydrogel (AGH) exhibits a promising adsorption performance for uranium from various aqueous solutions, including simulated seawater. We show high adsorption capacities (Qm = 398.4 mg g−1) and high % removals at ppm or ppb levels in aqueous solutions for uranium species. In the presence of high concentrations of competitive ions such as Mg2+, Ca2+, Ba2+ and Sr2+, AGH displays an enhanced selectivity for uranium. For low uranium concentrations in simulated seawater, AGH binds uranium efficiently and selectively. The results presented here reveal that the AGH is a potential adsorbent for remediating nuclear industrial effluent and adsorbing uranium from seawater. PMID:26758649
Applied technology for mine waste water decontamination in the uranium ores extraction from Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bejenaru, C.; Filip, G.; Vacariu, V.T.
1996-12-31
The exploitation of uranium ores in Romania is carried out in underground mines. In all exploited uranium deposits, mine waste waters results and will still result after the closure of uranium ore extraction activity. The mine waters are radioactively contaminated with uranium and its decay products being a hazard both for underground waters as for the environment. This paper present the results of research work carried out by authors for uranium elimination from waste waters as the problems involved during the exploitation process of the existent equipment as its maintenance in good experimental conditions. The main waste water characteristics aremore » discussed: solids as suspension, uranium, radium, mineral salts, pH, etc. The moist suitable way to eliminate uranium from mine waste waters is the ion exchange process based on ion exchangers in fluidized bed. A flowsheet is given with main advantages resulted.« less
Determination of uranium in clinical and environmental samples by FIAS-ICPMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpas, Z.; Lorber, A.; Halicz, L.
Uranium may enter the human body through ingestion or inhalation. Ingestion of uranium compounds through the diet, mainly drinking water, is a common occurrence, as these compounds are present in the biosphere. Inhalation of uranium-containing particles is mainly an occupational safety problem, but may also take place in areas where uranium compounds are abundant. The uranium concentration in urine samples may serve as an indication of the total uranium body content. A method based on flow injection and inductively coupled plasma mass spectrometry (FIAS-ICPMS) was found to be most suitable for determination of uranium in clinical samples (urine and serum),more » environmental samples (seawater, wells and carbonate rocks) and in liquids consumed by humans (drinking water and commercial beverages). Some examples of the application of the FIAS-ICPMS method are reviewed and presented here.« less
PREPARATION OF URANIUM HEXAFLUORIDE
Lawroski, S.; Jonke, A.A.; Steunenberg, R.K.
1959-10-01
A process is described for preparing uranium hexafluoride from carbonate- leach uranium ore concentrate. The briquetted, crushed, and screened concentrate is reacted with hydrogen fluoride in a fluidized bed, and the uranium tetrafluoride formed is mixed with a solid diluent, such as calcium fluoride. This mixture is fluorinated with fluorine and an inert diluent gas, also in a fluidized bed, and the uranium hexafluoride obtained is finally purified by fractional distillation.
PROCESS FOR THE RECOVERY OF URANIUM
Morris, G.O.
1955-06-21
This patent relates to a process for the recovery of uranium from impure uranium tetrafluoride. The process consists essentially of the steps of dissolving the impure uranium tetrafluoride in excess dilute sulfuric acid in the presence of excess hydrogen peroxide, precipitating ammonium uranate from the solution so formed by adding an excess of aqueous ammonia, dissolving the precipitate in sulfuric acid and adding hydrogen peroxide to precipitate uranium peroxdde.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false General license for custody and long-term care of uranium... long-term care of uranium or thorium byproduct materials disposal sites. (a) A general license is... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill...
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false General license for custody and long-term care of uranium... long-term care of uranium or thorium byproduct materials disposal sites. (a) A general license is... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill...
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false General license for custody and long-term care of uranium... long-term care of uranium or thorium byproduct materials disposal sites. (a) A general license is... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 1 2014-01-01 2014-01-01 false General license for custody and long-term care of uranium... long-term care of uranium or thorium byproduct materials disposal sites. (a) A general license is... in this part for uranium or thorium mill tailings sites closed under title II of the Uranium Mill...
Kay, Robert T.; Groschen, George E.; Dupre, David H.; Drexler, Timothy D.; Thingvold, Karen L.; Rosenfeld, Heather J.
2009-01-01
Surface water can exhibit substantial diel variations in the concentration of a number of constituents. Sampling regimens that do not characterize diel variations in water quality can result in an inaccurate understanding of site conditions and of the threat posed by the site to human health and the environment. Surface- and groundwater affected by acid drainage were sampled every 60 to 90 minutes over a 48-hour period at a former zinc smelter known as the Hegeler Zinc Superfund Site, in Hegeler, Ill. Groundwater-quality data from a well at the site indicate stable, low pH, weakly oxidizing geochemical conditions in the aquifer. With the exceptions of temperature and pH, no constituents exhibited diel variations in groundwater. Variations in temperature and pH likely were not representative of conditions in the aquifer. Surface water was sampled at a site on Grape Creek. Diel variations were observed in temperature, dissolved oxygen, pH, and specific conductance, and in the concentrations of nitrite, barium, iron, lead, vanadium, and possibly uranium. Concentrations during the diel cycles varied by about an order of magnitude for nitrite and varied by about a factor of two for barium, iron, lead, vanadium, and uranium. Temperature, dissolved oxygen, specific conductance, nitrite, barium, lead, and uranium generally reached maximum values during the afternoon and minimum values during the night. Iron, vanadium, and pH generally reached minimum values during the afternoon and maximum values during the night. These variations would need to be accounted for during sampling of surface-water quality in similar hydrologic settings. The temperature variations in surface water were affected by variations in air temperature. Concentrations of dissolved oxygen were affected by variations in the intensity of photosynthetic activity and respiration. Nitrite likely was formed by the oxidation of ammonium by dissolved oxygen and degraded by its anaerobic oxidation by ammonium or as part of the decomposition of organic matter. Variations in pH were affected by the photoreduction of Fe3+ to Fe2+ and the precipitation of iron oxyhydroxides. Diel variations in concentrations of iron and vanadium were likely caused by variations in the dissolution and precipitation of iron oxyhydroxides, oxyhydroxysulfates, and hydrous sulfates, which may have been affected by in the intensity of insolation, iron photoreduction, and the concentration of dissolved oxygen. The concentrations of lead, uranium, and perhaps barium in Grape Creek may have been affected by competition for sorption sites on iron oxyhydroxides. Competition for sorption sites was likely affected by variations in pH and the concentration of Fe2+. Constituent concentrations likely also were affected by precipitation and dissolution of minerals that are sensitive to changes in pH, temperature, oxidation-reduction conditions, and biologic activity. The chemical and biologic processes that resulted in the diel variations observed in Grape Creek occurred within the surface-water column or in the underlying sediments.
Ethridge, F.G.; Sunada, D.K.; Tyler, Noel; Andrews, Sarah
1982-01-01
Numerous hypotheses have been proposed to account for the nature and distribution of tabular uranium and vanadium-uranium deposits of the Colorado Plateau. In one of these hypotheses it is suggested that the deposits resulted from geochemical reactions at the interface between a relatively stagnant groundwater solution and a dynamic, ore-carrying groundwater solution which permeated the host sandstones (Shawe, 1956; Granger, et al., 1961; Granger, 1968, 1976; and Granger and Warren, 1979). The study described here was designed to investigate some aspects of this hypothesis, particularly the nature of fluid flow in sands and sandstones, the nature and distribution of deposits, and the relations between the deposits and the host sandstones. The investigation, which was divided into three phases, involved physical model, field, and computer simulation studies. During the initial phase of the investigation, physical model studies were conducted in porous-media flumes. These studies verified the fact that humic acid precipitates could form at the interface between a humic acid solution and a potassium aluminum sulfate solution and that the nature and distribution of these precipitates were related to flow phenomena and to the nature and distribution of the host porous-media. During the second phase of the investigation field studies of permeability and porosity patterns in Holocene stream deposits were investigated and the data obtained were used to design more realistic porous media models. These model studies, which simulated actual stream deposits, demonstrated that precipitates possess many characteristics, in terms of their nature and relation to host sandstones, that are similar to ore deposits of the Colorado Plateau. The final phase of the investigation involved field studies of actual deposits, additional model studies in a large indoor flume, and computer simulation studies. The field investigations provided an up-to-date interpretation of the depositional environments of the host sandstones in the Slick Rock District and data on the nature and distribution of the ore deposits which are found to be directly related to the architecture of the host sandstones which acted as conduits for the transport of mineralized groundwaters. Large-scale model studies, designed to simulate Grants Mineral Belt deposits, demonstrated that precipitates had characteristics similar to those of actual uranium deposits and data obtained from these studies strongly supported the hypothesis that the ores formed soon after deposition of the host sandstones and that their distribution was largely controlled by permeability and porosity patterns established at the time of deposition of the host sandstones. A numerical model was developed during the second and third stages of the investigation that can predict favorable locations for mineralization given sufficient data on porosity, hydraulic conductivity, the distribution and thickness of sandstone hosts, and an estimate of the initial hydrologic conditions. The model was successfully tested using data from the Slick Rock District.
Uranium speciation and stability after reductive immobilization in aquifer sediments
NASA Astrophysics Data System (ADS)
Sharp, Jonathan O.; Lezama-Pacheco, Juan S.; Schofield, Eleanor J.; Junier, Pilar; Ulrich, Kai-Uwe; Chinni, Satya; Veeramani, Harish; Margot-Roquier, Camille; Webb, Samuel M.; Tebo, Bradley M.; Giammar, Daniel E.; Bargar, John R.; Bernier-Latmani, Rizlan
2011-11-01
It has generally been assumed that the bioreduction of hexavalent uranium in groundwater systems will result in the precipitation of immobile uraninite (UO 2). In order to explore the form and stability of uranium immobilized under these conditions, we introduced lactate (15 mM for 3 months) into flow-through columns containing sediments derived from a former uranium-processing site at Old Rifle, CO. This resulted in metal-reducing conditions as evidenced by concurrent uranium uptake and iron release. Despite initial augmentation with Shewanella oneidensis, bacteria belonging to the phylum Firmicutes dominated the biostimulated columns. The immobilization of uranium (˜1 mmol U per kg sediment) enabled analysis by X-ray absorption spectroscopy (XAS). Tetravalent uranium associated with these sediments did not have spectroscopic signatures representative of U-U shells or crystalline UO 2. Analysis by microfocused XAS revealed concentrated micrometer regions of solid U(IV) that had spectroscopic signatures consistent with bulk analyses and a poor proximal correlation (μm scale resolution) between U and Fe. A plausible explanation, supported by biogeochemical conditions and spectral interpretations, is uranium association with phosphoryl moieties found in biomass; hence implicating direct enzymatic uranium reduction. After the immobilization phase, two months of in situ exposure to oxic influent did not result in substantial uranium remobilization. Ex situ flow-through experiments demonstrated more rapid uranium mobilization than observed in column oxidation studies and indicated that sediment-associated U(IV) is more mobile than biogenic UO 2. This work suggests that in situ uranium bioimmobilization studies and subsurface modeling parameters should be expanded to account for non-uraninite U(IV) species associated with biomass.
Wufuer, Rehemanjiang; Song, Wenjuan; Zhang, Daoyong; Pan, Xiangliang; Gadd, Geoffrey Michael
2018-09-01
Recent reports have drawn attention to the uranium contamination arising from coal mining activities in the Yili region of Xinjiang, China due to the mixed distribution of uranium and coal mines, and some of the coal mines being associated with a high uranium content. In this study, we have collected water samples, solid samples such as soil, mud, coal, and coal ash, and hair and urine samples from local populations in order to evaluate the uranium level in this environment and its implications for humans in this high uranium coal mining area. Our results showed that uranium concentrations were 8.71-10.91 μg L -1 in underground water, whereas lower levels of uranium occurred in river water. Among the solid samples, coal ash contained fairly high concentrations of uranium (33.1 μg g -1 ) due to enrichment from coal burning. In addition, uranium levels in the other solid samples were around 2.8 μg g -1 (the Earth's average background value). Uranium concentrations in hair and urine samples were 22.2-634.5 ng g -1 (mean: 156.2 ng g -1 ) and 8.44-761.6 ng L -1 (mean: 202.6 ng L -1 ), respectively, which are significantly higher than reference values reported for unexposed subjects in other areas. Therefore, these results indicate that people living in this coal mining area have been subjected to uranium exposure for long periods of time. Copyright © 2018. Published by Elsevier Ltd.
Raymond-Whish, Stefanie; Mayer, Loretta P.; O’Neal, Tamara; Martinez, Alisyn; Sellers, Marilee A.; Christian, Patricia J.; Marion, Samuel L.; Begay, Carlyle; Propper, Catherine R.; Hoyer, Patricia B.; Dyer, Cheryl A.
2007-01-01
Background The deleterious impact of uranium on human health has been linked to its radioactive and heavy metal–chemical properties. Decades of research has defined the causal relationship between uranium mining/milling and onset of kidney and respiratory diseases 25 years later. Objective We investigated the hypothesis that uranium, similar to other heavy metals such as cadmium, acts like estrogen. Methods In several experiments, we exposed intact, ovariectomized, or pregnant mice to depleted uranium in drinking water [ranging from 0.5 μg/L (0.001 μM) to 28 mg/L (120 μM). Results Mice that drank uranium-containing water exhibited estrogenic responses including selective reduction of primary follicles, increased uterine weight, greater uterine luminal epithelial cell height, accelerated vaginal opening, and persistent presence of cornified vaginal cells. Coincident treatment with the antiestrogen ICI 182,780 blocked these responses to uranium or the synthetic estrogen diethylstilbestrol. In addition, mouse dams that drank uranium-containing water delivered grossly normal pups, but they had significantly fewer primordial follicles than pups whose dams drank control tap water. Conclusions Because of the decades of uranium mining/milling in the Colorado plateau in the Four Corners region of the American Southwest, the uranium concentration and the route of exposure used in these studies are environmentally relevant. Our data support the conclusion that uranium is an endocrine-disrupting chemical and populations exposed to environmental uranium should be followed for increased risk of fertility problems and reproductive cancers. PMID:18087588
He, Jia-dong; Wang, Yong-dong; Hu, Nan; Ding, Dexin; Sun, Jing; Deng, Qin-wen; Li, Chang-wu; Xu, Fei
2015-12-01
Aspergillus niger was inoculated to the roots of five plants, and the Syngonium podophyllum-A. niger combinate system (SPANCS) was found to be the most effective in removing uranium from hydroponic liquid with initial uranium concentration of 5 mg L(-1). Furthermore, the hydroponic experiments on the removal of uranium from the hydroponic liquids with initial uranium concentrations of 0.5, 1.0, and 3.0 mg L(-1) by the SPANCS were conducted, the inhibitory effect of A. niger on the growth of S. podophyllum in the SPANCS was studied, the accumulation characteristics of uranium by S. podophyllum in the SPANCS were analyzed, and the Fourier transform infrared (FT-IR) and extended X-ray absorption fine structure (EXAFS) spectra were measured. The results show that the removal of uranium by the SPANCS from the hydroponic liquids with initial uranium concentrations of 0.5, 1.0, and 3.0 mg L(-1) reached 98.20, 97.90, and 98.50%, respectively, after 37 days of accumulation of uranium; that the uranium concentrations in the hydroponic liquids decreased to 0.009, 0.021, and 0.045 mg L(-1), respectively, which are lower than the stipulated concentration for discharge of 0.050 mg L(-1) by the People's Republic of China; that A. niger helped to generate more groups in the root of S. podophyllum which can improve the complexing capability of S. podophyllum for uranium; and that the uranium accumulated in the root of S. podophyllum was in the form of phosphate uranyl and carboxylic uranyl.
Occurrences of uranium at Clinton, Hunterdon County, New Jersey
McKeown, F.A.; Klemic, H.; Choquette, P.W.
1954-01-01
An occurrence of uranium at Clinton, Hunterdon County, N. J. was first brought to the attention of the U.S. Geological Survey when Mr. Thomas L. Eak of Avenel, N. J. submitted to the Survey a sample containing 0.068 percent uranium. Subsequent examinations of the area around Clinton indicated that detailed mapping and study were warranted. The uranium occurrences at Clinton are in or associated with fault zones in the Kittatinny limestone of Cambro-Ordovician age. The limestone generally light gray, thick bedded, and dolomitic; chert is common but not abundant. Regionally and locally, faults are the most significant structural features. The local faults at Clinton are the loci for most of the uranium. The largest fault can be traced for about 700 feet and is radioactive everywhere it crops out. Samples from this fault contain as much as 0.038 percent uranium; the average content is about 0.010 percent uranium. Uranium also occurs disseminated in two 4-inch layers of black feldspathic dolomite and in several zones of residual soil derived from the Kittatinny limestone. The black layers contain as much as 0.046 percent uranium and can be traced only about 20 feet along strike. They are cut by a small fault that is also radioactive. The radioactive soil zones are roughly elongated parallel to bedding. Soil from them contains up to 0.008 percent uranium. The uranium occurrences are best explained by a supergene origin. The sampling, mapping, and radioactivity testing of uranium occurrences at Clinton indicate they are too low grade to be of current economic interest.
Uranium Bioreduction and Biomineralization.
Wufuer, Rehemanjiang; Wei, Yongyang; Lin, Qinghua; Wang, Huawei; Song, Wenjuan; Liu, Wen; Zhang, Daoyong; Pan, Xiangliang; Gadd, Geoffrey Michael
2017-01-01
Following the development of nuclear science and technology, uranium contamination has been an ever increasing concern worldwide because of its potential for migration from the waste repositories and long-term contaminated environments. Physical and chemical techniques for uranium pollution are expensive and challenging. An alternative to these technologies is microbially mediated uranium bioremediation in contaminated water and soil environments due to its reduced cost and environmental friendliness. To date, four basic mechanisms of uranium bioremediation-uranium bioreduction, biosorption, biomineralization, and bioaccumulation-have been established, of which uranium bioreduction and biomineralization have been studied extensively. The objective of this review is to provide an understanding of recent developments in these two fields in relation to relevant microorganisms, mechanisms, influential factors, and obstacles. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillet, H.
1959-02-01
A description is given of direct fluorination of preconcentrated uranium ores in order to obtain the hexafluoride. After normal sulfuric acid treatment of the ore to eliminate silica, the uranium is precipitated by lime to obtain either impure calcium uranate of medium grade, or containing around 10% of uranium. This concentrate is dried in an inert atmosphere and then treated with a current of elementary fluorine. The uranium hexafluoride formed is condensed at the outlet of the reaction vessel and may be used either for reduction to tetrafluoride and the subsequent manufacture of uranium metal or as the initial productmore » in a diffusion plant. (auth)« less
PROCESSING OF URANIUM-METAL-CONTAINING FUEL ELEMENTS
Moore, R.H.
1962-10-01
A process is given for recovering uranium from neutronbombarded uranium- aluminum alloys. The alloy is dissolved in an aluminum halide--alkali metal halide mixture in which the halide is a mixture of chloride and bromide, the aluminum halide is present in about stoichiometric quantity as to uranium and fission products and the alkali metal halide in a predominant quantity; the uranium- and electropositive fission-products-containing salt phase is separated from the electronegative-containing metal phase; more aluminum halide is added to the salt phase to obtain equimolarity as to the alkali metal halide; adding an excess of aluminum metal whereby uranium metal is formed and alloyed with the excess aluminum; and separating the uranium-aluminum alloy from the fission- productscontaining salt phase. (AEC)
METHOD AND FLUX COMPOSITION FOR TREATING URANIUM
Foote, F.
1958-08-23
ABS>A flux composition is described fer use with molten uranium or uranium alloys. The flux consists of about 46 weight per cent calcium fiuoride, 46 weight per cent magnesium fluoride and about 8 weight per cent of uranium tetrafiuoride.
High Useful Yield and Isotopic Analysis of Uranium by Resonance Ionization Mass Spectrometry
Savina, Michael R.; Isselhardt, Brett H.; Kucher, Andrew; ...
2017-05-09
Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. Here, we demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar + and Ga + sputtering. The useful yieldmore » for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We also demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.« less
High Useful Yield and Isotopic Analysis of Uranium by Resonance Ionization Mass Spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savina, Michael R.; Isselhardt, Brett H.; Kucher, Andrew
Useful yields from resonance ionization mass spectrometry can be extremely high compared to other mass spectrometry techniques, but uranium analysis shows strong matrix effects arising from the tendency of uranium to form strongly bound oxide molecules that do not dissociate appreciably on energetic ion bombardment. Here, we demonstrate a useful yield of 24% for metallic uranium. Modeling the laser ionization and ion transmission processes shows that the high useful yield is attributable to a high ion fraction achieved by resonance ionization. We quantify the reduction of uranium oxide surface layers by Ar + and Ga + sputtering. The useful yieldmore » for uranium atoms from a uranium dioxide matrix is 0.4% and rises to 2% when the surface is in sputter equilibrium with the ion beam. The lower useful yield from the oxide is almost entirely due to uranium oxide molecules reducing the neutral atom content of the sputtered flux. We also demonstrate rapid isotopic analysis of solid uranium oxide at a precision of <0.5% relative standard deviation using relatively broadband lasers to mitigate spectroscopic fractionation.« less
Isotopic Analysis of Uranium in NIST SRM Glass by Femtosecond Laser Ablation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffin, Andrew M.; Hart, Garret L.; Hanlen, Richard C.
We employed femtosecond Laser Ablation Multicollector Inductively Coupled Mass Spectrometry for the 11 determination of uranium isotope ratios in a series of standard reference material glasses (NIST 610, 612, 614, and 12 616). This uranium concentration in this series of SRM glasses is a combination of isotopically natural uranium in 13 the materials used to make the glass matrix and isotopically depleted uranium added to increase the uranium 14 elemental concentration across the series. Results for NIST 610 are in excellent agreement with literature values. 15 However, other than atom percent 235U, little information is available for the remaining glasses.more » We present atom 16 percent and isotope ratios for 234U, 235U, 236U, and 238U for all four glasses. Our results show deviations from the 17 certificate values for the atom percent 235U, indicating the need for further examination of the uranium isotopes in 18 NIST 610-616. Our results are fully consistent with a two isotopic component mixing between the depleted 19 uranium spike and natural uranium in the bulk glass.« less
Reconnaissance for uranium in black shale, Northern Rocky Mountains and Great Plains, 1953
Mapel, W.J.
1954-01-01
Reconnaissance examinations for uranium in 22 formations containing black shale were conducted in parts of Montana, North Dakota, Utah, Idaho, and Oregon during 1953. About 150 samples from 80 outcrop localities and 5 oil and gas wells were submitted for uranium determinations. Most of the black shale deposits examined contain less than 0.003 percent uranium; however, thin beds of black shale at the base of the Mississippian system contain 0.005 percent uranium at 2 outcrop localities in southwestern Montana and as much as 0.007 percent uranium in a well in northeastern Montana. An eight-foot bed of phosphatic black shale at the base of the Brazer limestone of Late Mississippian age in Rich County, Utah, contains as much as 0.009 percent uranium. Commercial gamma ray logs of oil and gas wells drilled in Montana and adjacent parts of the Dakotas indicate that locally the Heath shale of Late Mississippian age contains as much as 0.01 percent equivalent uranium, and black shales of Late Cretaceous age contain as much as 0.008 percent equivalent uranium.
Removing organic matter from sulfate-rich wastewater via sulfidogenic and methanogenic pathways.
Vilela, Rogerio Silveira; Damianovic, Márcia Helena Rissato Zamariolli; Foresti, Eugenio
2014-01-01
The simultaneous organic matter removal and sulfate reduction in synthetic sulfate-rich wastewater was evaluated for various chemical oxygen demand (COD)/sulfate ratios applied in a horizontal-flow anaerobic immobilized sludge (HAIS) reactor. At higher COD/sulfate ratios (12.5 and 7.5), the removal of organic matter was stable, likely due to methanogenesis. A combination of sulfate reduction and methanogenesis was clearly established at COD/sulfate ratios of 3.0 and 1.9. At a COD/sulfate ratio of 1.0, the organic matter removal was likely influenced by methanogenesis inhibition. The quantity of sulfate removed at a COD/sulfate ratio of 1.0 was identical to that obtained at a ratio of 1.9, indicating a lack of available electron donors for sulfidogenesis. The sulfate reduction and organic matter removal were not maximized at the same COD/sulfate ratio; therefore, competitive inhibition must be the predominant mechanism in establishing an electron flow.
NASA Astrophysics Data System (ADS)
Fakhraee, Mojtaba; Li, Jiying; Katsev, Sergei
2017-09-01
Dissimilatory sulfate reduction (DSR) is a major carbon mineralization pathway in aquatic sediments, soils, and groundwater, which regulates the production of hydrogen sulfide and the mobilization rates of biologically important elements such as phosphorus and mercury. It has been widely assumed that water-column sulfate is the main sulfur source to fuel this reaction in sediments. While this assumption may be justified in high-sulfate environments such as modern seawater, we argue that in low-sulfate environments mineralization of organic sulfur compounds can be an important source of sulfate. Using a reaction-transport model, we investigate the production of sulfate from sulfur-containing organic matter for a range of environments. The results show that in low sulfate environments (<500 μM) the in-sediment production of sulfate can support a substantial portion (>50%) of sulfate reduction. In well-oxygenated systems, porewater sulfate profiles often exhibit sub-interface peaks so that sulfate fluxes are directed out of the sediment. Our measurements in Lake Superior, the world's largest lake, corroborate this conclusion: offshore sediments act as sources rather than sinks of sulfate for the water column, and sediment DSR is supported entirely by the in-sediment production of sulfate. Sulfate reduction rates are correlated to the depth of oxygen penetration and strongly regulated by the supply of reactive organic matter; rate co-regulation by sulfate availability becomes appreciable below 500 μM level. The results indicate the need to consider the mineralization of organic sulfur in the biogeochemical cycling in low-sulfate environments, including several of the world's largest freshwater bodies, deep subsurface, and possibly the sulfate-poor oceans of the Early Earth.
21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Neomycin sulfate and polymyxin B sulfate... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a) Specifications. Each milliliter of the ophthalmic preparation contains 5.0 milligrams neomycin sulfate (3.5...
21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Neomycin sulfate and polymyxin B sulfate... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a) Specifications. Each milliliter of the ophthalmic preparation contains 5.0 milligrams neomycin sulfate (3.5...
21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Neomycin sulfate and polymyxin B sulfate... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a) Specifications. Each milliliter of the ophthalmic preparation contains 5.0 milligrams neomycin sulfate (3.5...
21 CFR 524.1484e - Neomycin sulfate and polymyxin B sulfate ophthalmic solution.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Neomycin sulfate and polymyxin B sulfate... DOSAGE FORM NEW ANIMAL DRUGS § 524.1484e Neomycin sulfate and polymyxin B sulfate ophthalmic solution. (a) Specifications. Each milliliter of the ophthalmic preparation contains 5.0 milligrams neomycin sulfate (3.5...
NUCLEAR REACTOR FUEL ELEMENTS AND METHOD OF PREPARATION
Kingston, W.E.; Kopelman, B.; Hausner, H.H.
1963-07-01
A fuel element consisting of uranium nitride and uranium carbide in the form of discrete particles in a solid coherent matrix of a metal such as steel, beryllium, uranium, or zirconium and clad with a metal such as steel, aluminum, zirconium, or beryllium is described. The element is made by mixing powdered uranium nitride and uranium carbide with powdered matrix metal, then compacting and sintering the mixture. (AEC)
Seaborg, G.T.; Orlemann, E.F.; Jensen, L.H.
1958-12-23
A method of obtaining substantially pure uranium from a uranium composition contaminated with light element impurities such as sodium, magnesium, beryllium, and the like is described. An acidic aqueous solution containing tetravalent uranium is treated with a soluble molybdate to form insoluble uranous molybdate which is removed. This material after washing is dissolved in concentrated nitric acid to obtaln a uranyl nitrate solution from which highly purified uranium is obtained by extraction with ether.
Conrad, M.C.; Getz, P.A.; Hickman, J.E.; Payne, L.D.
1982-06-29
The invention is a process for the recovery of uranium from uranium-bearing hydrocarbon oils containing carboxylic acid as a degradation product. In one aspect, the invention comprises providing an emulsion of water and the oil, heating the same to a temperature effecting conversion of the emulsion to an organic phase and to an acidic aqueous phase containing uranium carboxylate, and recovering the uranium from the aqueous phase. The process is effective, simple and comparatively inexpensive. It avoids the use of toxic reagents and the formation of undesirable intermediates.
Carter, J.M.; Larson, C.E.
1958-10-01
A process is presented for recovering uranium values from calutron deposits. The process consists in treating such deposits to produce an oxidlzed acidic solution containing uranium together with the following imparities: Cu, Fe, Cr, Ni, Mn, Zn. The uranium is recovered from such an impurity-bearing solution by adjusting the pH of the solution to the range 1.5 to 3.0 and then treating the solution with hydrogen peroxide. This results in the precipitation of uranium peroxide which is substantially free of the metal impurities in the solution. The peroxide precipitate is then separated from the solution, washed, and calcined to produce uranium trioxide.
High loading uranium fuel plate
Wiencek, Thomas C.; Domagala, Robert F.; Thresh, Henry R.
1990-01-01
Two embodiments of a high uranium fuel plate are disclosed which contain a meat comprising structured uranium compound confined between a pair of diffusion bonded ductile metal cladding plates uniformly covering the meat, the meat having a uniform high fuel loading comprising a content of uranium compound greater than about 45 Vol. % at a porosity not greater than about 10 Vol. %. In a first embodiment, the meat is a plurality of parallel wires of uranium compound. In a second embodiment, the meat is a dispersion compact containing uranium compound. The fuel plates are fabricated by a hot isostatic pressing process.
Hyde, E.K.; Katzin, L.I.; Wolf, M.J.
1959-07-14
The separation of uranium from a mixture of uranium and thorium by organic solvent extraction from an aqueous solution is described. The uranium is separrted from an aqueous mixture of uranium and thorium nitrates 3 N in nitric acid and containing salting out agents such as ammonium nitrate, so as to bring ihe total nitrate ion concentration to a maximum of about 8 N by contacting the mixture with an immiscible aliphatic oxygen containing organic solvent such as diethyl carbinol, hexone, n-amyl acetate and the like. The uranium values may be recovered from the organic phase by back extraction with water.
Safeguards on uranium ore concentrate? the impact of modern mining and milling process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, Stephen
2013-07-01
Increased purity in uranium ore concentrate not only raises the question as to whether Safeguards should be applied to the entirety of uranium conversion facilities, but also as to whether some degree of coverage should be moved back to uranium ore concentrate production at uranium mining and milling facilities. This paper looks at uranium ore concentrate production across the globe and explores the extent to which increased purity is evident and the underlying reasons. Potential issues this increase in purity raises for IAEA's strategy on the Starting Point of Safeguards are also discussed.
Uranium transport in the Walker River Basin, California and Nevada
Benson, L.V.; Leach, D.L.
1979-01-01
During the summer of 1976 waters from tributaries, rivers, springs and wells were sampled in the Walker River Basin. Snow and sediments from selected sites were also sampled. All samples were analyzed for uranium and other elements. The resulting data provide an understanding of the transport of uranium within a closed hydrologic basin as well as providing a basis for the design of geochemical reconnaissance studies for the Basin and Range Province of the Western United States. Spring and tributary data are useful in locating areas containing anomalous concentrations of uranium. However, agricultural practices obscure the presence of known uranium deposits and render impossible the detection of other known deposits. Uranium is extremely mobile in stream waters and does not appear to sorb or precipitate. Uranium has a long residence time (2500 years) in the open waters of Walker Lake; however, once it crosses the sediment-water interface, it is reduced to the U(IV) state and is lost from solution. Over the past two million years the amount of uranium transported to the terminal point of the Walker River system may have been on the order of 4 ?? 108 kg. This suggests that closed basin termini are sites for significant uranium accumulations and are, therefore, potential sites of uranium ore deposits. ?? 1979.
Uranium in groundwater--Fertilizers versus geogenic sources.
Liesch, Tanja; Hinrichsen, Sören; Goldscheider, Nico
2015-12-01
Due to its radiological and toxicological properties even at low concentration levels, uranium is increasingly recognized as relevant contaminant in drinking water from aquifers. Uranium originates from different sources, including natural or geogenic, mining and industrial activities, and fertilizers in agriculture. The goal of this study was to obtain insights into the origin of uranium in groundwater while differentiating between geogenic sources and fertilizers. A literature review concerning the sources and geochemical processes affecting the occurrence and distribution of uranium in the lithosphere, pedosphere and hydrosphere provided the background for the evaluation of data on uranium in groundwater at regional scale. The state of Baden-Württemberg, Germany, was selected for this study, because of its hydrogeological and land-use diversity, and for reasons of data availability. Uranium and other parameters from N=1935 groundwater monitoring sites were analyzed statistically and geospatially. Results show that (i) 1.6% of all water samples exceed the German legal limit for drinking water (10 μg/L); (ii) The range and spatial distribution of uranium and occasional peak values seem to be related to geogenic sources; (iii) There is a clear relation between agricultural land-use and low-level uranium concentrations, indicating that fertilizers generate a measurable but low background of uranium in groundwater. Copyright © 2015 Elsevier B.V. All rights reserved.
Laurent, Olivier; Gomolka, Maria; Haylock, Richard; Blanchardon, Eric; Giussani, Augusto; Atkinson, Will; Baatout, Sarah; Bingham, Derek; Cardis, Elisabeth; Hall, Janet; Tomasek, Ladislav; Ancelet, Sophie; Badie, Christophe; Bethel, Gary; Bertho, Jean-Marc; Bouet, Ségolène; Bull, Richard; Challeton-de Vathaire, Cécile; Cockerill, Rupert; Davesne, Estelle; Ebrahimian, Teni; Engels, Hilde; Gillies, Michael; Grellier, James; Grison, Stephane; Gueguen, Yann; Hornhardt, Sabine; Ibanez, Chrystelle; Kabacik, Sylwia; Kotik, Lukas; Kreuzer, Michaela; Lebacq, Anne Laure; Marsh, James; Nosske, Dietmar; O'Hagan, Jackie; Pernot, Eileen; Puncher, Matthew; Rage, Estelle; Riddell, Tony; Roy, Laurence; Samson, Eric; Souidi, Maamar; Turner, Michelle C; Zhivin, Sergey; Laurier, Dominique
2016-06-01
The potential health impacts of chronic exposures to uranium, as they occur in occupational settings, are not well characterized. Most epidemiological studies have been limited by small sample sizes, and a lack of harmonization of methods used to quantify radiation doses resulting from uranium exposure. Experimental studies have shown that uranium has biological effects, but their implications for human health are not clear. New studies that would combine the strengths of large, well-designed epidemiological datasets with those of state-of-the-art biological methods would help improve the characterization of the biological and health effects of occupational uranium exposure. The aim of the European Commission concerted action CURE (Concerted Uranium Research in Europe) was to develop protocols for such a future collaborative research project, in which dosimetry, epidemiology and biology would be integrated to better characterize the effects of occupational uranium exposure. These protocols were developed from existing European cohorts of workers exposed to uranium together with expertise in epidemiology, biology and dosimetry of CURE partner institutions. The preparatory work of CURE should allow a large scale collaborative project to be launched, in order to better characterize the effects of uranium exposure and more generally of alpha particles and low doses of ionizing radiation.
Experiments and Modeling of Uranium Adsorption in the Presence of Other Ions in Simulated Seawater
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ladshaw, Austin; Das, Sadananda; Liao, Wei-Po
2015-11-19
Seawater contains uranium at an average concentration of 3.3 ppb, as well as a variety of other ions at either overwhelmingly higher or similar concentrations, which complicate the recovery of uranium. This report describes an investigation of the effects of various factors such as uranium speciation and presence of salts including sodium, calcium, magnesium, and bicarbonate, as well as trace elements such as vanadium on uranium adsorption kinetics in laboratory experiments. Adsorption models are also developed to describe the experimental data of uranium extraction from seawater. Results show that the presence of calcium and magnesium significantly slows down the uraniummore » adsorption kinetics. Vanadium can replace uranium from amidoxime-based adsorbent in the presence of sodium in the solution. Results also show that bicarbonate in the solution strongly competes with amidoxime for binding uranium, and thus slows down the uranium adsorption kinetics. Developed on the basis of the experimental findings, the model is capable of describing the effects of pH, ionic strength, temperature, and concentration of various species. The results of this work are useful in the understanding of the important factors that control the adsorbent capacity and kinetics of uranium uptake by amidoxime-based adsorbents.« less
Uranium quantification in semen by inductively coupled plasma mass spectrometry
Todorov, Todor I.; Ejnik, John W.; Guandalini, Gustavo S.; Xu, Hanna; Hoover, Dennis; Anderson, Larry W.; Squibb, Katherine; McDiarmid, Melissa A.; Centeno, Jose A.
2013-01-01
In this study we report uranium analysis for human semen samples. Uranium quantification was performed by inductively coupled plasma mass spectrometry. No additives, such as chymotrypsin or bovine serum albumin, were used for semen liquefaction, as they showed significant uranium content. For method validation we spiked 2 g aliquots of pooled control semen at three different levels of uranium: low at 5 pg/g, medium at 50 pg/g, and high at 1000 pg/g. The detection limit was determined to be 0.8 pg/g uranium in human semen. The data reproduced within 1.4–7% RSD and spike recoveries were 97–100%. The uranium level of the unspiked, pooled control semen was 2.9 pg/g of semen (n = 10). In addition six semen samples from a cohort of Veterans exposed to depleted uranium (DU) in the 1991 Gulf War were analyzed with no knowledge of their exposure history. Uranium levels in the Veterans’ semen samples ranged from undetectable (<0.8 pg/g) to 3350 pg/g. This wide concentration range for uranium in semen is consistent with known differences in current DU body burdens in these individuals, some of whom have retained embedded DU fragments.
Caulobacter crescentus as a Whole-Cell Uranium Biosensor▿ †
Hillson, Nathan J.; Hu, Ping; Andersen, Gary L.; Shapiro, Lucy
2007-01-01
We engineered a strain of the bacterium Caulobacter crescentus to fluoresce in the presence of micromolar levels of uranium at ambient temperatures when it is exposed to a hand-held UV lamp. Previous microarray experiments revealed that several Caulobacter genes are significantly upregulated in response to uranium but not in response to other heavy metals. We designated one of these genes urcA (for uranium response in caulobacter). We constructed a reporter that utilizes the urcA promoter to produce a UV-excitable green fluorescent protein in the presence of the uranyl cation, a soluble form of uranium. This reporter is specific for uranium and has little cross specificity for nitrate (<400 μM), lead (<150 μM), cadmium (<48 μM), or chromium (<41.6 μM). The uranium reporter construct was effective for discriminating contaminated groundwater samples (4.2 μM uranium) from uncontaminated groundwater samples (<0.1 μM uranium) collected at the Oak Ridge Field Research Center. In contrast to other uranium detection methodologies, the Caulobacter reporter strain can provide on-demand usability in the field; it requires minimal sample processing and no equipment other than a hand-held UV lamp, and it may be sprayed directly on soil, groundwater, or industrial surfaces. PMID:17905881
Depleted uranium analysis in blood by inductively coupled plasma mass spectrometry
Todorov, T.I.; Xu, H.; Ejnik, J.W.; Mullick, F.G.; Squibb, K.; McDiarmid, M.A.; Centeno, J.A.
2009-01-01
In this study we report depleted uranium (DU) analysis in whole blood samples. Internal exposure to DU causes increased uranium levels as well as change in the uranium isotopic composition in blood specimen. For identification of DU exposure we used the 235U/238U ratio in blood samples, which ranges from 0.00725 for natural uranium to 0.002 for depleted uranium. Uranium quantification and isotopic composition analysis were performed by inductively coupled plasma mass spectrometry. For method validation we used eight spiked blood samples with known uranium concentrations and isotopic composition. The detection limit for quantification was determined to be 4 ng L-1 uranium in whole blood. The data reproduced within 1-5% RSD and an accuracy of 1-4%. In order to achieve a 235U/238U ratio range of 0.00698-0.00752% with 99.7% confidence limit a minimum whole blood uranium concentration of 60 ng L??1 was required. An additional 10 samples from a cohort of veterans exposed to DU in Gulf War I were analyzed with no knowledge of their medical history. The measured 235U/ 238U ratios in the blood samples were used to identify the presence or absence of DU exposure within this patient group. ?? 2009 The Royal Society of Chemistry.
Jain, Rohan; Peräniemi, Sirpa; Jordan, Norbert; Vogel, Manja; Weiss, Stephan; Foerstendorf, Harald; Lakaniemi, Aino-Maija
2018-05-24
This study demonstrated the removal and recovery of uranium(VI) in a fed-batch stirred tank reactor (STR) using waste digested activated sludge (WDAS). The batch adsorption experiments showed that WDAS can adsorb 200 (±9.0) mg of uranium(VI) per g of WDAS. The maximum adsorption of uranium(VI) was achieved even at an acidic initial pH of 2.7 which increased to a pH of 4.0 in the equilibrium state. Desorption of uranium(VI) from WDAS was successfully demonstrated from the release of more than 95% of uranium(VI) using both acidic (0.5 M HCl) and alkaline (1.0 M Na 2 CO 3 ) eluents. Due to the fast kinetics of uranium(VI) adsorption onto WDAS, the fed-batch STR was successfully operated at a mixing time of 15 min. Twelve consecutive uranium(VI) adsorption steps with an average adsorption efficiency of 91.5% required only two desorption steps to elute more than 95% of uranium(VI) from WDAS. Uranium(VI) was shown to interact predominantly with the phosphoryl and carboxyl groups of the WDAS, as revealed by in situ infrared spectroscopy and time-resolved laser-induced fluorescence spectroscopy studies. This study provides a proof-of-concept of the use of fed-batch STR process based on WDAS for the removal and recovery of uranium(VI). Copyright © 2018 Elsevier Ltd. All rights reserved.
12. VIEW OF DEPLETED URANIUM INGOT AND MOLDS. DEPLETED URANIUM ...
12. VIEW OF DEPLETED URANIUM INGOT AND MOLDS. DEPLETED URANIUM CASTING OPERATIONS CEASED IN 1988. (11/14/57) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO
Stitt, C A; Harker, N J; Hallam, K R; Paraskevoulakos, C; Banos, A; Rennie, S; Jowsey, J; Scott, T B
2015-01-01
Synchrotron X-rays have been used to study the oxidation of uranium and uranium hydride when encapsulated in grout and stored in de-ionised water for 10 months. Periodic synchrotron X-ray tomography and X-ray powder diffraction have allowed measurement and identification of the arising corrosion products and the rates of corrosion. The oxidation rates of the uranium metal and uranium hydride were slower than empirically derived rates previously reported for each reactant in an anoxic water system, but without encapsulation in grout. This was attributed to the grout acting as a physical barrier limiting the access of oxidising species to the uranium surface. Uranium hydride was observed to persist throughout the 10 month storage period and industrial consequences of this observed persistence are discussed.
URANIUM RECOVERY AND PURIFICATION PROCESS AND PRODUCTION OF HIGH PURITY URANIUM TETRAFLUORIDE
Bailes, R.H.; Long, R.S.; Grinstead, R.R.
1957-09-17
A process is described wherein an anionic exchange technique is employed to separate uramium from a large variety of impurities. Very efficient and economical purification of contamimated uranium can be achieved by treatment of the contaminated uranium to produce a solution containing a high concentration of chloride. Under these conditions the uranium exists as an aniomic chloride complex. Then the uranium chloride complex is adsorbed from the solution on an aniomic exchange resin, whereby a portion of the impurities remain in the solution and others are retained with the uramium by the resin. The adsorbed impurities are then removed by washing the resin with pure concentrated hydrochloric acid, after which operation the uranium is eluted with pure water yielding an acidic uranyl chloride solution of high purity.
Ackerman, John P.; Miller, William E.
1989-01-01
An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuel using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuel, and two cathodes, the first cathode composed of either a solid alloy or molten cadmium and the second cathode composed of molten cadmium. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then substantially pure uranium is electrolytically transported and deposited on the first alloy or molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on the second molten cadmium cathode.
Ackerman, J.P.; Miller, W.E.
1987-11-05
An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuels is disclosed using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuels, two cathodes and electrical power means connected to the anode basket, cathodes and lower molten cadmium pool for providing electrical power to the cell. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then purified uranium is electrolytically transported and deposited on a first molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on a second cathode. 3 figs.
Characterization of low concentration uranium glass working materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eppich, G. R.; Wimpenny, J. B.; Leever, M. E.
A series of uranium-doped silicate glasses were created at (Lawrence Livermore National Laboratory) LLNL, to be used as working reference material analogs for low uranium concentration research. Specifically, the aim of this effort was the generation of well-characterized glasses spanning a range of concentrations and compositions, and of sufficient homogeneity in uranium concentration and isotopic composition, for instrumentation research and development purposes. While the glasses produced here are not intended to replace or become standard materials for uranium concentration or uranium isotopic composition, it is hoped that they will help fill a current gap, providing low-level uranium glasses sufficient formore » methods development and method comparisons within the limitations of the produced glass suite. Glasses are available for research use by request.« less
ELECTROLYSIS OF THORIUM AND URANIUM
Hansen, W.N.
1960-09-01
An electrolytic method is given for obtaining pure thorium, uranium, and thorium-uranium alloys. The electrolytic cell comprises a cathode composed of a metal selected from the class consisting of zinc, cadmium, tin, lead, antimony, and bismuth, an anode composed of at least one of the metals selected from the group consisting of thorium and uranium in an impure state, and an electrolyte composed of a fused salt containing at least one of the salts of the metals selected from the class consisting of thorium, uranium. zinc, cadmium, tin, lead, antimony, and bismuth. Electrolysis of the fused salt while the cathode is maintained in the molten condition deposits thorium, uranium, or thorium-uranium alloys in pure form in the molten cathode which thereafter may be separated from the molten cathode product by distillation.
Harker, N. J.; Hallam, K. R.; Paraskevoulakos, C.; Banos, A.; Rennie, S.; Jowsey, J.
2015-01-01
Synchrotron X-rays have been used to study the oxidation of uranium and uranium hydride when encapsulated in grout and stored in de-ionised water for 10 months. Periodic synchrotron X-ray tomography and X-ray powder diffraction have allowed measurement and identification of the arising corrosion products and the rates of corrosion. The oxidation rates of the uranium metal and uranium hydride were slower than empirically derived rates previously reported for each reactant in an anoxic water system, but without encapsulation in grout. This was attributed to the grout acting as a physical barrier limiting the access of oxidising species to the uranium surface. Uranium hydride was observed to persist throughout the 10 month storage period and industrial consequences of this observed persistence are discussed. PMID:26176551
Selective Extraction of Uranium from Liquid or Supercritical Carbon Dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farawila, Anne F.; O'Hara, Matthew J.; Wai, Chien M.
2012-07-31
Current liquid-liquid extraction processes used in recycling irradiated nuclear fuel rely on (1) strong nitric acid to dissolve uranium oxide fuel, and (2) the use of aliphatic hydrocarbons as a diluent in formulating the solvent used to extract uranium. The nitric acid dissolution process is not selective. It dissolves virtually the entire fuel meat which complicates the uranium extraction process. In addition, a solvent washing process is used to remove TBP degradation products, which adds complexity to the recycling plant and increases the overall plant footprint and cost. A liquid or supercritical carbon dioxide (l/sc -CO2) system was designed tomore » mitigate these problems. Indeed, TBP nitric acid complexes are highly soluble in l/sc -CO2 and are capable of extracting uranium directly from UO2, UO3 and U3O8 powders. This eliminates the need for total acid dissolution of the irradiated fuel. Furthermore, since CO2 is easily recycled by evaporation at room temperature and pressure, it eliminates the complex solvent washing process. In this report, we demonstrate: (1) A reprocessing scheme starting with the selective extraction of uranium from solid uranium oxides into a TBP-HNO3 loaded Sc-CO2 phase, (2) Back extraction of uranium into an aqueous phase, and (3) Conversion of recovered purified uranium into uranium oxide. The purified uranium product from step 3 can be disposed of as low level waste, or mixed with enriched uranium for use in a reactor for another fuel cycle. After an introduction on the concept and properties of supercritical fluids, we first report the characterization of the different oxides used for this project. Our extraction system and our online monitoring capability using UV-Vis absorbance spectroscopy directly in sc-CO2 is then presented. Next, the uranium extraction efficiencies and kinetics is demonstrated for different oxides and under different physical and chemical conditions: l/sc -CO2 pressure and temperature, TBP/HNO3 complex used, reductant or complexant used for selectivity, and ionic liquids used as supportive media. To complete the extraction and recovery cycle, we then demonstrate uranium back extraction from the TBP loaded sc-CO2 phase into an aqueous phase and the characterization of the uranium complex formed at the end of this process. Another aspect of this project was to limit proliferation risks by either co-extracting uranium and plutonium, or by leaving plutonium behind by selectively extracting uranium. We report that the former is easily achieved, since plutonium is in the tetravalent or hexavalent oxidation state in the oxidizing environment created by the TBP-nitric acid complex, and is therefore co-extracted. The latter is more challenging, as a reductant or complexant to plutonium has to be used to selectively extract uranium. After undertaking experiments on different reducing or complexing systems (e.g., AcetoHydroxamic Acid (AHA), Fe(II), ascorbic acid), oxalic acid was chosen as it can complex tetravalent actinides (Pu, Np, Th) in the aqueous phase while allowing the extraction of hexavalent uranium in the sc-CO2 phase. Finally, we show results using an alternative media to commonly used aqueous phases: ionic liquids. We show the dissolution of uranium in ionic liquids and its extraction using sc-CO2 with and without the presence of AHA. The possible separation of trivalent actinides from uranium is also demonstrated in ionic liquids using neodymium as a surrogate and diglycolamides as the extractant.« less
Hinck, Jo E.; Linder, Greg L.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.; Kuhne, Wendy
2010-01-01
This chapter compiles available chemical and radiation toxicity information for plants and animals from the scientific literature on naturally occurring uranium and associated radionuclides. Specifically, chemical and radiation hazards associated with radionuclides in the uranium decay series including uranium, thallium, thorium, bismuth, radium, radon, protactinium, polonium, actinium, and francium were the focus of the literature compilation. In addition, exposure pathways and a food web specific to the segregation areas were developed. Major biological exposure pathways considered were ingestion, inhalation, absorption, and bioaccumulation, and biota categories included microbes, invertebrates, plants, fishes, amphibians, reptiles, birds, and mammals. These data were developed for incorporation into a risk assessment to be conducted as part of an environmental impact statement for the Bureau of Land Management, which would identify representative plants and animals and their relative sensitivities to exposure of uranium and associated radionuclides. This chapter provides pertinent information to aid in the development of such an ecological risk assessment but does not estimate or derive guidance thresholds for radionuclides associated with uranium. Previous studies have not attempted to quantify the risks to biota caused directly by the chemical or radiation releases at uranium mining sites, although some information is available for uranium mill tailings and uranium mine closure activities. Research into the biological impacts of uranium exposure is strongly biased towards human health and exposure related to enriched or depleted uranium associated with the nuclear energy industry rather than naturally occurring uranium associated with uranium mining. Nevertheless, studies have reported that uranium and other radionuclides can affect the survival, growth, and reproduction of plants and animals. Exposure to chemical and radiation hazards is influenced by a plant’s or an animal’s life history and surrounding environment. Various species of plants, invertebrates, fishes, amphibians, reptiles, birds, and mammals found in the segregation areas that are considered species of concern by State and Federal agencies were included in the development of the site-specific food web. The utilization of subterranean habitats (burrows in uranium-rich areas, burrows in waste rock piles or reclaimed mining areas, mine tunnels) in the seasonally variable but consistently hot, arid environment is of particular concern in the segregation areas. Certain species of reptiles, amphibians, birds, and mammals in the segregation areas spend significant amounts of time in burrows where they can inhale or ingest uranium and other radionuclides through digging, eating, preening, and hibernating. Herbivores may also be exposed though the ingestion of radionuclides that have been aerially deposited on vegetation. Measured tissues concentrations of uranium and other radionuclides are not available for any species of concern in the segregation areas. The sensitivity of these animals to uranium exposure is unknown based on the existing scientific literature, and species-specific uranium presumptive effects levels were only available for two endangered fish species known to inhabit the segregation areas. Overall, the chemical toxicity data available for biological receptors of concern were limited, although chemical and radiation toxicity guidance values are available from several sources. However, caution should be used when directly applying these values to northern Arizona given the unique habitat and life history strategies of biological receptors in the segregation areas and the fact that some guidance values are based on models rather than empirical (laboratory or field) data. No chemical toxicity information based on empirical data is available for reptiles, birds, or wild mammals; therefore, the risks associated with uranium and other radionuclides are unknown for these biota.
Post, V E A; Vassolo, S I; Tiberghien, C; Baranyikwa, D; Miburo, D
2017-12-31
The potential use of groundwater for potable water supply can be severely compromised by natural contaminants such as uranium. The environmental mobility of uranium depends on a suite of factors including aquifer lithology, redox conditions, complexing agents, and hydrological processes. Uranium concentrations of up to 734μg/L are found in groundwater in northern Burundi, and the objective of the present study was to identify the causes for these elevated concentrations. Based on a comprehensive data set of groundwater chemistry, geology, and hydrological measurements, it was found that the highest dissolved uranium concentrations in groundwater occur near the shores of Lake Tshohoha South and other smaller lakes nearby. A model is proposed in which weathering and evapotranspiration during groundwater recharge, flow and discharge exert the dominant controls on the groundwater chemical composition. Results of PHREEQC simulations quantitatively confirm this conceptual model and show that uranium mobilization followed by evapo-concentration is the most likely explanation for the high dissolved uranium concentrations observed. The uranium source is the granitic sand, which was found to have a mean elemental uranium content of 14ppm, but the exact mobilization process could not be established. Uranium concentrations may further be controlled by adsorption, especially where calcium-uranyl‑carbonate complexes are present. Water and uranium mass balance calculations for Lake Tshohoha South are consistent with the inferred fluxes and show that high‑uranium groundwater represents only a minor fraction of the overall water input to the lake. These findings highlight that the evaporation effects that cause radionuclide concentrations to rise to harmful levels in groundwater discharge areas are not only confined to arid regions, and that this should be considered when selecting suitable locations for water supply wells. Copyright © 2017 Elsevier B.V. All rights reserved.
The role of extracellular DNA in uranium precipitation and biomineralisation.
Hufton, Joseph; Harding, John H; Romero-González, Maria E
2016-10-26
Bacterial extra polymeric substances (EPS) have been associated with the extracellular precipitation of uranium. Here we report findings on the biomineralisation of uranium, with extracellular DNA (eDNA) used as a model biomolecule representative of EPS. The complexation and precipitation of eDNA with uranium were investigated as a function of pH, ionic strength and varying concentrations of reactants. The role of phosphate moieties in the biomineralisation mechanism was studied by enzymatically releasing phosphate (ePO 4 ) from eDNA compared to abiotic phosphate (aPO 4 ). The eDNA-uranium precipitates and uranium minerals obtained were characterised by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FT-IR) spectroscopy, Scanning Electron Microscopy-Energy Dispersive X-Ray analysis (SEM-EDX), X-Ray Powder Diffraction (XRD) and X-Ray Photoelectron Spectroscopy (XPS). ATR-FT-IR showed that at pH 5, the eDNA-uranium precipitation mechanism was predominantly mediated by interactions with phosphate moieties from eDNA. At pH 2, the uranium interactions with eDNA occur mainly through phosphate. The solubility equilibrium was dependent on pH with the formation of precipitate reduced as the pH increased. The XRD data confirmed the formation of a uranium phosphate precipitate when synthesised using ePO 4 . XPS and SEM-EDX studies showed the incorporation of carbon and nitrogen groups from the enzymatic orthophosphate hydrolysis on the obtained precipitated. These results suggested that the removal of uranium from solution occurs via two mechanisms: complexation by eDNA molecules and precipitation of a uranium phosphate mineral of the type (UO 2 HPO 4 )·xH 2 O by enzymatic orthophosphate hydrolysis. This demonstrated that eDNA from bacterial EPS is a key contributor to uranium biomineralisation.