NASA Astrophysics Data System (ADS)
Skalak, K.; Benthem, A. J.; Walton-Day, K. E.; Jolly, G.
2015-12-01
The Grand Canyon region contains a large number of breccia pipes with economically viable uranium, copper, and silver concentrations. Mining in this region has occurred since the late 19th century and has produced ore and waste rock having elevated levels of uranium and other contaminants. Fluvial transport of these contaminants from mine sites is a possibility, as this arid region is susceptible to violent storms and flash flooding which might erode and mobilize ore or waste rock. In order to assess and manage the risks associated with uranium mining, it is important to understand the transport and storage rates of sediment and uranium within the ephemeral streams of this region. We are developing a 1-dimensional sediment transportation model to examine uranium transport and storage through a typical canyon system in this region. Our study site is Hack Canyon Mine, a uranium and copper mine site, which operated in the 1980's and is currently experiencing fluvial erosion of its waste rock repository. The mine is located approximately 40km upstream from the Colorado River and is in a deep, narrow canyon with a small watershed. The stream is ephemeral for the upper half of its length and sediment is primarily mobilized during flash flood events. We collected sediment samples at 110 locations longitudinally through the river system to examine the distribution of uranium in the stream. Samples were sieved to the sand size and below fraction (<2mm) and uranium was measured by gamma-ray spectroscopy. Sediment storage zones were also examined in the upper 8km of the system to determine where uranium is preferentially stored in canyon systems. This information will quantify the downstream transport of constituents associated with the Hack Canyon waste rock and contribute to understanding the risks associated with fluvial mobilization of uranium mine waste.
The formation of technic soil in a revegetated uranium ore waste rock pile (Limousin, France)
NASA Astrophysics Data System (ADS)
Boekhout, Flora; Gérard, Martine; Kanzari, Aisha; Calas, Georges; Descostes, Michael
2014-05-01
Mining took place in France between 1945 and 2001 during which time ~210 different sites were exploited and/or explored. A total of 76 Kt of uranium was produced, 52 Mt of ore was extracted, but also 200 Mt of waste rocks was produced, the majority of which, with uranium levels corresponding to the natural environment. So far, the processes of arenisation and technic soil formation in waste rock piles are not well understood but have important implications for understanding the environmental impact and long-term speciation of uranium. Understanding weathering processes in waste rock piles is essential to determine their environmental impact. The main objectives of this work are to assess 1) the micromorphological features and neo-formed U-bearing phases related to weathering and 2) the processes behind arenisation of the rock pile. The site that was chosen is the Vieilles Sagnes waste rock pile in Fanay (Massif Central France) that represents more or less hydrothermally altered granitic rocks that have been exposed to weathering since the construction of the waste rock pile approximately 50 years ago. Two trenches were excavated to investigate the vertical differentiation of the rock pile. This site serves as a key location for studying weathering processes of waste rock piles, as it has not been reworked after initial construction and has therefore preserved information on the original mineralogy of the waste rock pile enabling us to access post emplacement weathering processes. The site is currently overgrown by moss, meter high ferns and small trees. At present day the rock pile material can be described as hydrothermally altered rocks and rock fragments within a fine-grained silty clay matrix exposed to surface conditions and weathering. A sandy "paleo" technic soil underlies the waste rock pile and functions as a natural liner by adsorption of uranium on clay minerals. Post-mining weathering of rock-pile material is superimposed on pre-mining hydrothermal and possible supergene alteration. Clay minerals present are kaolinite, smectite and chlorite. The formation of these minerals is however ambiguous, and can form during both hydrothermal as weathering processes, calling for a detailed micromorphological study. Micromorphological investigations on undisturbed samples by microscopic and ultramicroscopic techniques allow us to interpretate the processes behind the formation of technic soil in the matrix of the waste rock pile, as well as the rate and chronology of mineral formation and arenisation related to weathering (formation of protosoil and saprolitisation). By studying the formation of weathering aureaoles in between the different granitic blocks, we quantify the anthropogenic influence on weathering of this rock pile and their impacts on local ecosystem by comparing our site with natural occuring outcrops of granites currently subjected to weathering. Electron microscope imaging and microgeochemical mapping permits us to make detailed micromorphological observations linking nanoscale processes to petrolographical macroscopic features and field observations. Different petrographic and electronic images of the mineral paragenesis in the micromass associated to their microgeochemical characteristics will be presented. Also, the impact of previous hydrothermal alteration will be highlighted.
Risk evaluation of uranium mining: A geochemical inverse modelling approach
NASA Astrophysics Data System (ADS)
Rillard, J.; Zuddas, P.; Scislewski, A.
2011-12-01
It is well known that uranium extraction operations can increase risks linked to radiation exposure. The toxicity of uranium and associated heavy metals is the main environmental concern regarding exploitation and processing of U-ore. In areas where U mining is planned, a careful assessment of toxic and radioactive element concentrations is recommended before the start of mining activities. A background evaluation of harmful elements is important in order to prevent and/or quantify future water contamination resulting from possible migration of toxic metals coming from ore and waste water interaction. Controlled leaching experiments were carried out to investigate processes of ore and waste (leached ore) degradation, using samples from the uranium exploitation site located in Caetité-Bahia, Brazil. In experiments in which the reaction of waste with water was tested, we found that the water had low pH and high levels of sulphates and aluminium. On the other hand, in experiments in which ore was tested, the water had a chemical composition comparable to natural water found in the region of Caetité. On the basis of our experiments, we suggest that waste resulting from sulphuric acid treatment can induce acidification and salinization of surface and ground water. For this reason proper storage of waste is imperative. As a tool to evaluate the risks, a geochemical inverse modelling approach was developed to estimate the water-mineral interaction involving the presence of toxic elements. We used a method earlier described by Scislewski and Zuddas 2010 (Geochim. Cosmochim. Acta 74, 6996-7007) in which the reactive surface area of mineral dissolution can be estimated. We found that the reactive surface area of rock parent minerals is not constant during time but varies according to several orders of magnitude in only two months of interaction. We propose that parent mineral heterogeneity and particularly, neogenic phase formation may explain the observed variation of the reactive mineral surface area. The formation of coatings on dissolving mineral surfaces significantly reduces the amount of surface available to react with fluids. Our results show that negatively charged ion complexes, responsible for U transport, decreases when alkalinity and rock buffer capacity is similarly lower. Carbonate ion pairs however, may increase U mobility when radionuclide concentration is high and rock buffer capacity is low. The present work helps to orient future monitoring of this site in Brazil as well as of other sites where uranium is linked to igneous rock formations, without the presence of sulphides. Monitoring SO4 migration (in acidic leaching uranium sites) seems to be an efficient and simple way to track different hazards, especially in tropical conditions, where the succession of dry and wet periods increases the weathering action of the residual H2SO4. Nevertheless, models of risk evaluation should take into account reactive surface areas and neogenic minerals since they determine the U ion complex formation, which in turn, controls uranium mobility in natural systems. Keywords: uranium mining, reactive mineral surface area, uranium complexes, inverse modelling approach, risk evaluation
Rapid Dissolution of Soluble Uranyl Phases in Arid, Mine-Impacted Catchments Near Church Rock, NM
DOE Office of Scientific and Technical Information (OSTI.GOV)
deLemos, J.L.; Bostick, B.C.; Quicksall, A.N.
2009-05-14
We tested the hypothesis that runoff of uranium-bearing particles from mining waste disposal areas was a significant mechanism for redistribution of uranium in the northeastern part of the Upper Puerco River watershed (New Mexico). However, our results were not consistent with this hypothesis. Analysis of >100 sediment and suspended sediment samples collected adjacent to and downstream from uranium source areas indicated that uranium levels in the majority of the samples were not elevated above background. Samples collected within 50 m of a known waste disposal site were subjected to detailed geochemical characterization. Uranium in these samples was found to bemore » highly soluble; treatment with synthetic pore water for 24 h caused dissolution of 10-50% of total uranium in the samples. Equilibrium uranium concentrations in pore water were >4.0 mg/L and were sustained in repeated wetting events, effectively depleting soluble uranium from the solid phase. The dissolution rate of uranium appeared to be controlled by solid-phase diffusion of uranium from within uranium-bearing mineral particles. X-ray adsorption spectroscopy indicated the presence of a soluble uranyl silicate, and possibly a uranyl phosphate. These phases were exhausted in transported sediment suggesting that uranium was readily mobilized from sediments in the Upper Puerco watershed and transported in the dissolved load. These results could have significance for uranium risk assessment as well as mining waste management and cleanup efforts.« less
Rapid Dissolution of Soluble Uranyl Phases in Arid, Mine-Impacted Catchments near Church Rock, NM
DELEMOS, JAMIE L.; BOSTICK, BENJAMIN C.; QUICKSALL, ANDREW N.; LANDIS, JOSHUA D.; GEORGE, CHRISTINE C.; SLAGOWSKI, NAOMI L.; ROCK, TOMMY; BRUGGE, DOUG; LEWIS, JOHNNYE; DURANT, JOHN L.
2008-01-01
We tested the hypothesis that runoff of uranium-bearing particles from mining waste disposal areas was a significant mechanism for redistribution of uranium in the northeastern part of the Upper Puerco River watershed (New Mexico). However, our results were not consistent with this hypothesis. Analysis of >100 sediment and suspended sediment samples collected adjacent to and downstream from uranium source areas indicated that uranium levels in the majority of the samples were not elevated above background. Samples collected within 50 m of a known waste disposal site were subjected to detailed geochemical characterization. Uranium in these samples was found to be highly soluble; treatment with synthetic pore water for 24 h caused dissolution of 10–50% of total uranium in the samples. Equilibrium uranium concentrations in pore water were >4.0 mg/L and were sustained in repeated wetting events, effectively depleting soluble uranium from the solid phase. The dissolution rate of uranium appeared to be controlled by solid-phase diffusion of uranium from within uranium-bearing mineral particles. X-ray adsorption spectroscopy indicated the presence of a soluble uranyl silicate, and possibly a uranyl phosphate. These phases were exhausted in transported sediment suggesting that uranium was readily mobilized from sediments in the Upper Puerco watershed and transported in the dissolved load. These results could have significance for uranium risk assessment as well as mining waste management and cleanup efforts. PMID:18589950
Contaminant dispersion at the rehabilitated Mary Kathleen uranium mine, Australia
NASA Astrophysics Data System (ADS)
Lottermoser, B. G.; Ashley, P. M.; Costelloe, M. T.
2005-09-01
This study reports on the transfer of contaminants from waste rock dumps and mineralised ground into soils, sediments, waters and plants at the rehabilitated Mary Kathleen uranium mine in semi-arid northwest Queensland. Numerous waste rock dumps were partly covered with benign soil and the open pit mine was allowed to flood. The mineralised and waste calc-silicate rock in the open pit and dumps has major (>1 wt%) Ca, Fe and Mg, minor (>1,000 ppm) Ce, La, Mn, P and S, subminor (>100 ppm) Ba, Cu, Th and U, and trace (<100 ppm) As, Ni, Pb, Y and Zn values. Consequently, chemical and physical weathering processes have acted on waste rock and on rock faces within the open pit, mobilising many elements and leading to their dispersion into soils, stream sediments, pit water and several plant species. Chemical dispersion is initiated by sulfide mineral breakdown, generation of sulfuric acid and formation of several soluble, transient sulfate minerals as evaporative efflorescent precipitates. Radiation doses associated with the open pit average 5.65 mSv year-1; waste dumps commonly have lower values, especially where soil-covered. Surface pit water is slightly acid, with high sulfate values accompanied by levels of U, Cu and Ni close to or above Australian water guideline values for livestock. Dispersion of U and related elements into soils and stream sediments occurs by physical (erosional) processes and from chemical precipitation. Plants growing in the mine void, on waste dumps and contaminated soil display evidence of biological uptake of U, LREE, Cu and Th and to a lesser degree of As, Ni, Pb, Y and Zn, with values being up to 1-2 orders of magnitude above background sites for the same species. Although rehabilitation procedures have been partly successful in reducing dispersion of U and related elements into the surrounding environment, it is apparent that 20 years after rehabilitation, there is significant physical and chemical mobility, including transfer into plants.
Behavior of uranium under conditions of interaction of rocks and ores with subsurface water
NASA Astrophysics Data System (ADS)
Omel'Yanenko, B. I.; Petrov, V. A.; Poluektov, V. V.
2007-10-01
The behavior of uranium during interaction of subsurface water with crystalline rocks and uranium ores is considered in connection with the problem of safe underground insulation of spent nuclear fuel (SNF). Since subsurface water interacts with crystalline rocks formed at a high temperature, the mineral composition of these rocks and uranium species therein are thermodynamically unstable. Therefore, reactions directed toward the establishment of equilibrium proceed in the water-rock system. At great depths that are characterized by hindered water exchange, where subsurface water acquires near-neutral and reducing properties, the interaction is extremely sluggish and is expressed in the formation of micro- and nanoparticles of secondary minerals. Under such conditions, the slow diffusion redistribution of uranium with enrichment in absorbed forms relative to all other uranium species is realized as well. The products of secondary alteration of Fe- and Ti-bearing minerals serve as the main sorbents of uranium. The rate of alteration of minerals and conversion of uranium species into absorbed forms is slow, and the results of these processes are insignificant, so that the rocks and uranium species therein may be regarded as unaltered. Under reducing conditions, subsurface water is always saturated with uranium. Whether water interacts with rock or uranium ore, the equilibrium uranium concentration in water is only ≤10-8 mol/l. Uraninite ore under such conditions always remains stable irrespective of its age. The stability conditions of uranium ore are quite suitable for safe insulation of SNF, which consists of 95% uraninite (UO2) and is a confinement matrix for all other radionuclides. The disposal of SNF in massifs of crystalline rocks at depths below 500 m, where reducing conditions are predominant, is a reliable guarantee of high SNF stability. Under oxidizing conditions of the upper hydrodynamic zone, the rate of interaction of rocks with subsurface water increases by orders of magnitude and subsurface water is commonly undersaturated with uranium. Uranium absorbed by secondary minerals, particularly by iron hydroxides and leucoxene, is its single stable species under oxidizing conditions. The impact of oxygen-bearing water leads to destruction of uranium ore. This process is realized simultaneously at different hypsometric levels even if the permeability of the medium is variable in both the lateral and vertical directions. As a result, intervals containing uranyl minerals and relics of primary uranium ore are combined in ore-bearing zones with intervals of completely dissolved uranium minerals. A wide halo of elevated uranium contents caused by sorption is always retained at the location of uranium ore entirely destroyed by weathering. Uranium ore commonly finds itself in the aeration zone due to technogenic subsidence of the groundwater table caused by open-pit mining or pumping out of water from underground mines. The capillary and film waters that interact with rocks and ores in this zone are supplemented by free water filtering along fractures when rain falls or snow is thawing. The interaction of uranium ore with capillary water results in oxidation of uraninite, accompanied by loosening of the mineral surface, formation of microfractures, and an increase in solubility with enrichment of capillary water in uranium up to 10-4 mol/l. Secondary U(VI) minerals, first of all, uranyl hydroxides and silicates, replace uraninite, and uranium undergoes local diffusion redistribution with its sorption by secondary minerals of host rocks. The influx of free water facilitates the complete dissolution of primary and secondary uranium minerals, the removal of uranium at the sites of groundwater discharge, and its redeposition under reducing conditions at a greater depth. It is evident that the conditions of the upper hydrodynamic zone and the aeration zone are unfit for long-term insulation of SNF and high-level wastes because, after the failure of containers, the leakage of radionuclides into the environment becomes inevitable.
Comparative analysis of uranium bioassociation with halophilic bacteria and archaea
Bader, Miriam; Müller, Katharina; Foerstendorf, Harald; Schmidt, Matthias; Simmons, Karen; Swanson, Juliet S.; Reed, Donald T.; Stumpf, Thorsten
2018-01-01
Rock salt represents a potential host rock formation for the final disposal of radioactive waste. The interactions between indigenous microorganisms and radionuclides, e.g. uranium, need to be investigated to better predict the influence of microorganisms on the safety assessment of the repository. Hence, the association process of uranium with two microorganisms isolated from rock salt was comparatively studied. Brachybacterium sp. G1, which was isolated from the German salt dome Gorleben, and Halobacterium noricense DSM15987T, were selected as examples of a moderately halophilic bacterium and an extremely halophilic archaeon, respectively. The microorganisms exhibited completely different association behaviors with uranium. While a pure biosorption process took place with Brachybacterium sp. G1 cells, a multistage association process occurred with the archaeon. In addition to batch experiments, in situ attenuated total reflection Fourier-transform infrared spectroscopy was applied to characterize the U(VI) interaction process. Biosorption was identified as the dominating process for Brachybacterium sp. G1 with this method. Carboxylic functionalities are the dominant interacting groups for the bacterium, whereas phosphoryl groups are also involved in U(VI) association by the archaeon H. noricense. PMID:29329319
Testing the concept of drift shadow at Yucca Mountain, Nevada
Paces, J.B.; Neymark, L.A.; Ghezzehei, T.; Dobson, P.F.
2006-01-01
If proven, the concept of drift shadow, a zone of reduced water content and slower ground-water travel time beneath openings in fractured rock of the unsaturated zone, may increase performance of a proposed geologic repository for high-level radioactive waste at Yucca Mountain, To test this concept under natural-flow conditions present in the proposed repository horizon, isotopes within the uranium-series decay chain (uranium-238, uranium-234, and thorium-230, or 238U-234U-230Th) have been analyzed in samples of rock from beneath four naturally occurring lithophysal cavities. All rock samples show 234U depletion relative to parent 238U indicating varying degrees of water-rock interaction over the past million years. Variations in 234U/238U activity ratios indicate that depletion of 234U relative to 238U can be either smaller or greater in rock beneath cavity floors relative to rock near cavity margins. These results are consistent with the concept of drift shadow and with numerical simulations of meter-scale spherical cavities in fractured tuff. Differences in distribution patterns of 234U/ 238U activity ratios in rock beneath the cavity floors are interpreted to reflect differences in the amount of past seepage into lithophysal cavities, as indicated by the abundance of secondary mineral deposits present on the cavity floors.
Uranium Mining and Norm in North America-Some Perspectives on Occupational Radiation Exposure.
Brown, Steven H; Chambers, Douglas B
2017-07-01
All soils and rocks contain naturally occurring radioactive materials (NORM). Many ores and raw materials contain relatively elevated levels of natural radionuclides, and processing such materials can further increase the concentrations of naturally occurring radionuclides. In the U.S., these materials are sometimes referred to as technologically-enhanced naturally occurring radioactive materials (TENORM). Examples of NORM minerals include uranium ores, monazite (a source of rare earth minerals), and phosphate rock used to produce phosphate fertilizer. The processing of these materials has the potential to result in above-background radiation exposure to workers. Following a brief review of the sources and potential for worker exposure from NORM in these varied industries, this paper will then present an overview of uranium mining and recovery in North America, including discussion on the mining methods currently being used for both conventional (underground, open pit) and in situ leach (ISL), also referred to as In Situ Recovery (ISR), and the production of NORM materials and wastes associated with these uranium recovery methods. The radiological composition of the NORM products and wastes produced and recent data on radiological exposures received by workers in the North American uranium recovery industry are then described. The paper also identifies the responsible government agencies in the U.S. and Canada assigned the authority to regulate and control occupational exposure from these NORM materials.
Differential lead retention in zircons: implications for nuclear waste containment.
Gentry, R V; Sworski, T J; McKown, H S; Smith, D H; Eby, R E; Christie, W H
1982-04-16
An innovative ultrasensitive technique was used for lead isotopic analysis of individual zircons extracted from granite core samples at depths of 960, 2170, 2900, 3930, and 4310 meters. The results show that lead, a relatively mobile element compared to the nuclear waste-related actinides uranium and thorium, has been highly retained at elevated temperatures (105 degrees to 313 degrees C) under conditions relevant to the burial of synthetic rock waste containers in deep granite holes.
Radon as a natural tracer for gas transport within uranium waste rock piles.
Silva, N C; Chagas, E G L; Abreu, C B; Dias, D C S; Lopez, D; Guerreiro, E T Z; Alberti, H L C; Braz, M L; Branco, O; Fleming, P
2014-07-01
Acid mine drainage (AMD) has been identified as the main cause for outflow of acid water and radioactive/non-radioactive contaminants. AMD encompasses pyrites oxidation when water and oxygen are available. AMD was identified in uranium waste rock piles (WRPs) of Indústrias Nucleares do Brasil-Caldas facility (Brazilian uranium mine), resulting in high costs for water treatment. AMD reduction is the main challenge, and scientific investigation has been conducted to understand oxygen and water transportation within WRPs, where 222Rn is used as natural tracer for oxygen transportation. The study consists of soil radon gas mapping in the top layer of WRP4 using active soil gas pumping, radon adsorption in active charcoal and 222Rn determination using high-resolution gamma-ray spectrometry. A sampling network of 71 points was built where samples were collected at a depth of 40 cm. Soil radon gas concentration ranged from 33.7 to 1484.2 kBq m(-3) with mean concentration of 320.7±263.3 kBq m(-3). © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Drill-back studies examine fractured, heated rock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wollenberg, H.A.; Flexser, S.; Myer, L.R.
1990-01-01
To investigate the effects of heating on the mineralogical, geochemical, and mechanical properties of rock by high-level radioactive waste, cores are being examined from holes penetrating locations where electric heaters simulated the presence of a waste canister, and from holes penetration natural hydrothermal systems. Results to date indicate the localized mobility and deposition of uranium in an open fracture in heated granitic rock, the mobility of U in a breccia zone in an active hydrothermal system in tuff, and the presence of U in relatively high concentration in fracture-lining material in tuff. Mechanical -- property studies indicate that differences inmore » compressional- and shear-wave parameters between heated and less heated rock can be attributed to differences in the density of microcracks. Emphasis has shifted from initial studies of granitic rock at Stripa, Sweden to current investigations of welded tuff at the Nevada Test Site. 7 refs., 8 figs.« less
Reduction of acid rock drainage using steel slag in cover systems over sulfide rock waste piles.
de Almeida, Rodrigo Pereira; Leite, Adilson do Lago; Borghetti Soares, Anderson
2015-04-01
The extraction of gold, coal, nickel, uranium, copper and other earth-moving activities almost always leads to environmental damage. In metal and coal extraction, exposure of sulfide minerals to the atmosphere leads to generation of acid rock drainage (ARD) and in underground mining to acid mine drainage (AMD) due to contamination of infiltrating groundwater. This study proposes to develop a reactive cover system that inhibits infiltration of oxygen and also releases alkalinity to increase the pH of generated ARD and attenuate metal contaminants at the same time. The reactive cover system is constructed using steel slag, a waste product generated from steel industries. This study shows that this type of cover system has the potential to reduce some of the adverse effects of sulfide mine waste disposal on land. Geochemical and geotechnical characterization tests were carried out. Different proportions of sulfide mine waste and steel slag were studied in leachate extraction tests. The best proportion was 33% of steel slag in dry weight. Other tests were conducted as follows: soil consolidation, saturated permeability and soil water characteristic curve. The cover system was numerically modeled through unsaturated flux analysis using Vadose/w. The solution proposed is an oxygen transport barrier that allows rain water percolation to treat the ARD in the waste rock pile. The results showed that the waste pile slope is an important factor and the cover system must have 5 m thickness to achieve an acceptable effectiveness. © The Author(s) 2015.
Johnson, Raymond H.; Wirt, Laurie
2009-01-01
The Tuba City Landfill (TCL) started as an unregulated waste disposal site in the 1940s and was administratively closed in 1997. Since the TCL closure, radionuclides have been detected in the shallow ground water. In 2006, the Bureau of Indian Affairs (BIA) contracted with the U.S. Geological Survey (USGS) to better understand the source of radionuclides in the ground water at the TCL compared to the surrounding region. This report summarizes those data and presents interpretations that focus on the geochemistry in the rocks and water from the Tuba City region. The TCL is sited on Navajo Sandstone above the contact with the Kayenta Formation. These formations are not rich in uranium but generally are below average crustal abundance values for uranium. Uranium ores in the area were mined nearby in the Chinle Formation and processed at the Rare Metals mill (RMM). Regional samples of rock, sediment, leachates, and water were collected in and around the TCL site and analyzed for major and minor elements, 18O, 2H, 3H, 13C, 14C,34S, 87Sr, and 234U/238U, as appropriate. Results of whole rock and sediment samples, along with leachates, suggest the Chinle Formation is a major source of uranium and other trace elements in the area. Regional water samples indicate that some of the wells within the TCL site have geochemical signatures that are different from the regional springs and surface water. The geochemistry from these TCL wells is most similar to leachates from the Chinle Formation rocks and sediments. Isotope samples do not uniquely identify TCL-derived waters, but they do provide a useful indicator for shallow compared to deep ground-water flow paths and general rock/water interaction times. Information in this report provides a comparison between the geochemistry within the TCL and in the region as a whole.
Decontamination of uranium-contaminated waste oil using supercritical fluid and nitric acid.
Sung, Jinhyun; Kim, Jungsoo; Lee, Youngbae; Seol, Jeunggun; Ryu, Jaebong; Park, Kwangheon
2011-07-01
The waste oil used in nuclear fuel processing is contaminated with uranium because of its contact with materials or environments containing uranium. Under current law, waste oil that has been contaminated with uranium is very difficult to dispose of at a radioactive waste disposal site. To dispose of the uranium-contaminated waste oil, the uranium was separated from the contaminated waste oil. Supercritical R-22 is an excellent solvent for extracting clean oil from uranium-contaminated waste oil. The critical temperature of R-22 is 96.15 °C and the critical pressure is 49.9 bar. In this study, a process to remove uranium from the uranium-contaminated waste oil using supercritical R-22 was developed. The waste oil has a small amount of additives containing N, S or P, such as amines, dithiocarbamates and dialkyldithiophosphates. It seems that these organic additives form uranium-combined compounds. For this reason, dissolution of uranium from the uranium-combined compounds using nitric acid was needed. The efficiency of the removal of uranium from the uranium-contaminated waste oil using supercritical R-22 extraction and nitric acid treatment was determined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castor, S.B.; Berry, M.R.; Robins, J.W.
1977-11-01
This study delineates favorable areas for uranium resources in northeastern Washington and northern Idaho by identifying granitic rocks with relatively large amounts of uranium and (or) thorium. Results are based on analysis of 344 rock samples. Uranium analyses obtained by gamma-ray spectrometric data correlate closely with fluorometric determinations. On the basis of cumulative frequency distribution curves, more than 8 ppM equivalent uranium and more than 20 ppM equivalent thorium are considered anomalous for granitic rocks in northeastern Washington and northern Idaho. Granitic rocks anomalously high in uranium and (or) thorium are concentrated in two northeast-trending belts. The most prominent, themore » Midnite-Hall Mountain belt, includes the Midnite and Sherwood uranium mines, and two lesser but productive areas farther north. This belt follows the contact between Precambrian and Paleozoic rocks, which is also the locus of the Kootenai arc fold belt. The second belt of anomalously radioactive granitic rocks is along the Republic graben, a prominent linear structure in an area with no recorded uranium production. Anomalously radioactive granitic rocks are generally massive quartz monzonite, alaskite, or pegmatite, which contain abundant quartz and potash feldspar. They are also characterized by pink potash feldspar, commonly as large phenocrysts, and by the presence of muscovite. Several uranium and thorium minerals have been identified in these rocks. The two belts of anomalously radioactive plutons are considered favorable for uranium resources. Deposits could occur in the intrusive rocks themselves or in favorable environments in adjacent rocks. 13 figs., 2 tables.« less
Maps showing the distribution of uranium-deposit clusters in the Colorado Plateau uranium province
Finch, Warren I.
1991-01-01
The Colorado Palteau Uranium Province (CPUP) is defined by the distribution of uranium deposits, chiefly the sandstone-type, in upper Paleozoic and Mesozoic sedimentary rocks within the Colorado Plateau physiographic province (Granger and others, 1986). The uranium province is bordered by widely distributed and mostly minor uranium deposits in Precambrian and Tertiary rocks and by outcrops of Tertiary extrusive and intrusive igneous rocks.
NASA Astrophysics Data System (ADS)
Youssef, Mohamed A. S.; Sabra, Mohamed Elsadek M.; Abdeldayem, Abdelaziz L.; Masoud, Alaa A.; Mansour, Salah A.
2017-12-01
Airborne gamma-ray spectrometric data, covering Gabal Umm Hammad area, near Quseir City, in the Eastern Desert of Egypt, has been utilized to identify the uranium migration path, and U, Th and K-favorability indices. The following of the uranium migration technique enabled estimation of the amount of migrated uranium, in and out of the rock units. Investigation of the Taref Formation, Nakhil Formation, Tarawan Formation and Dawi Formation shows large negative amount of uranium migration, indicating that uranium leaching is outward from the geologic body toward surrounding rock units. Moreover, calculation of the U, Th and K-favorability indices has been carried out for the various rock units to locate the rocks having the highest radioelement potentialities. The rock units that possess relatively major probability of uranium potentiality include Mu‧tiq Group, weakly deformed granitic rocks, and Trachyte plugs and sheets. Meanwhile, the rock units with major potential of Th-index are Taref Formation, Quseir Formation and Dawi Formation. The rock units with major potential of K-index are Dokhan volcanic and Mu‧tiq group.
Tan, Wanyu; Li, Yongmei; Tan, Kaixuan; Duan, Xianzhe; Liu, Dong; Liu, Zehua
2016-12-01
Radon diffusion and transport through different media is a complex process affected by many factors. In this study, the fractal theories and field covering experiments were used to study the fractal characteristics of particle size distribution (PSD) of six kinds of geotechnical materials (e.g., waste rock, sand, laterite, kaolin, mixture of sand and laterite, and mixture of waste rock and laterite) and their effects on radon diffusion. In addition, the radon diffusion coefficient and diffusion length were calculated. Moreover, new formulas for estimating diffusion coefficient and diffusion length functional of fractal dimension d of PSD were proposed. These results demonstrate the following points: (1) the fractal dimension d of the PSD can be used to characterize the property of soils and rocks in the studies of radon diffusion behavior; (2) the diffusion coefficient and diffusion length decrease with increasing fractal dimension of PSD; and (3) the effectiveness of final covers in reducing radon exhalation of uranium tailings impoundments can be evaluated on the basis of the fractal dimension of PSD of materials.
NASA Astrophysics Data System (ADS)
Birkham, T.; Hendry, J.; Kirkland, R.; Bradley, S.; Mendoza, C.; Wassenaar, L.
2003-04-01
From 1997 to the present, we have installed and monitored 240 gas probes (maximum depth of 43 m) in unsaturated waste rock, overburden and tailings piles at a uranium mine in northern Saskatchewan, Canada and an oil sands mine in northern Alberta, Canada. Depth profiles of O2, CO2, N2 and CH4 pore-gas concentrations, temperature, and moisture content were measured in the field and used to characterize and quantifyin situ geochemical reaction rates. An innovative field-portable GC system has been developed to monitor pore-gas concentrations. At most sites, gas migration has been attributed to diffusion. At sites where advective transport may be important, subsurface total pressure measurements have been used to assess the contribution of advection to gas migration. The stable isotopes of molecular O2 (16O2 and 18O16O) and C in CO2 (12CO2 and 13CO2) have also been measured and modeled. At the uranium mine, the modelling of the O2, CO2, δ18OO2, and δ13CCO2 depth profiles was used to identify an alternative mechanism of O2 consumption and CO2 production in mine waste-rock piles. At the oil sands mine, a complex and unique system involving O2, CO2, and CH4 fluxes in the unsaturated zone and across the capillary fringe has been identified and is currently being modeled.
URANIUM IN ROCK MINERALS OF THE INTRUSION OF KYZL-OMPUL MOUNTAINS (NORTH KIRGISIA) (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonova, L.L.; Pogiblova, L.S.
1961-01-01
The uranium distribution in rock minerals (syenites, granosyenites, and alaskite granites) of the Kyzyl-Ompul raassif is studied. Alaskite granites are characterized by the granite type of uranium distribution in minerals, about 50 percent of this element being connected with rockforming and about 50 percent with accessory uranium minerals. ln syenites uranium (about 70 percent) is bound to rockforming minerals. The same minerals from syenites and granites strongly differ by their uranium content and are constant in the ranges of each of those rock types. Granosyenites have aa intermediate (between syenites and granites) type of uranium distribution in minerals. (auth)
Ridgley, Jennie L.; Green, M.W.; Pierson, C.T.; Finch, W.I.; Lupe, R.D.
1978-01-01
The San Juan Basin and adjacent region lie predominantly in the southeastern part of the uranium-rich Colorado Plateau of New Mexico, Arizona, Utah, and Colorado. Underlying the province are rocks of the Precambrian basement complex composed mainly of igneous and metamorphic rocks; a thickness of about 3,600 meters of generally horizontal Paleozoic, Mesozoic, and Cenozoic sedimentary rocks; and a variety of Upper Cretaceous and Cenozoic igneous rocks. Sedimentary rocks of the sequence are commonly eroded and well exposed near the present basin margins where Tertiary tectonic activity has uplifted, folded, and faulted the sequence into its present geologic configuration of basins, platforms, monoclines, and other related structural features. Sedimentary rocks of Jurassic age in the southern part of the San Juan Basin contain the largest uranium deposits in the United States, and offer the promise of additional uranium deposits. Elsewhere in the basin and the adjacent Colorado Plateau, reserves and resources of uranium are known primarily in Triassic, Jurassic, and Cretaceous strata. Only scattered occurrences of uranium are known in Paleozoic
Reconnaissance for uranium in asphalt-bearing rocks in the western states
Hail, William James
1955-01-01
Evaluation of field data indicates that naturally occurring asphalts with a relatively high uranium content probably originated in, or migrated through, rocks that contain more than average amounts of uranium. It is believed that some of the uranium was present as an original constituent of the oil but that some uranium may have been introduced during migration of the oil.
Preliminary study of uranium favorability of the Boulder batholith, Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castor, S.B.; Robins, J.W.
1978-01-01
The Boulder batholith of southwestern Montana is a composite Late Cretaceous intrusive mass, mostly composed of quartz monzonite and granodiorite. This study was not restricted to the plutonic rocks; it also includes younger rocks that overlie the batholith, and older rocks that it intrudes. The Boulder batholith area has good overall potential for economic uranium deposits, because its geology is similar to that of areas that contain economic deposits elsewhere in the world, and because at least 35 uranium occurrences of several different types are present. Potential is greatest for the occurrence of small uranium deposits in chalcedony veins andmore » base-metal sulfide veins. Three areas may be favorable for large, low-grade deposits consisting of a number of closely spaced chalcedony veins and enriched wall rock; the Mooney claims, the Boulder area, and the Clancy area. In addition, there is a good possibility of by-product uranium production from phosphatic black shales in the project area. The potential for uranium deposits in breccia masses that cut prebatholith rocks, in manganese-quartz veins near Butte, and in a shear zone that cuts Tertiary rhyolite near Helena cannot be determined on the basis of available information. Low-grade, disseminated, primary uranium concentrations similar to porphyry deposits proposed by Armstrong (1974) may exist in the Boulder batholith, but the primary uranium content of most batholith rocks is low. The geologic environment adjacent to the Boulder batholith is similar in places to that at the Midnite mine in Washington. Some igneous rocks in the project area contain more than 10 ppM U/sub 3/O/sub 8/, and some metasedimentary rocks near the batholith contain reductants such as sulfides and carbonaceous material.« less
Organic geochemical analysis of sedimentary organic matter associated with uranium
Leventhal, J.S.; Daws, T.A.; Frye, J.S.
1986-01-01
Samples of sedimentary organic matter from several geologic environments and ages which are enriched in uranium (56 ppm to 12%) have been characterized. The three analytical techniqyes used to study the samples were Rock-Eval pyrolysis, pyrolysis-gas chromatography-mass spectrometry, and solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy. In samples with low uranium content, the pyrolysis-gas chromatography products contain oxygenated functional groups (as hydroxyl) and molecules with both aliphatic and aromatic carbon atoms. These samples with low uranium content give measurable Rock-Eval hydrocarbon and organic-CO2 yields, and C-13 NMR values of > 30% aliphatic carbon. In contrast, uranium-rich samples have few hydrocarbon pyrolysis products, increased Rock-Eval organic-CO2 contents and > 70% aromatic carbon contents from C-13 NMR. The increase in aromaticity and decrease in hydrocarbon pyrolysis yield are related to the amount of uranium and the age of the uranium minerals, which correspond to the degree of radiation damage. The three analytical techniques give complementary results. Increase in Rock-Eval organic-CO2 yield correlates with uranium content for samples from the Grants uranium region. Calculations show that the amount of organic-CO2 corresponds to the quantity of uranium chemically reduced by the organic matter for the Grants uranium region samples. ?? 1986.
NASA Astrophysics Data System (ADS)
Yang, Hua; Zhang, Wenzheng; Wu, Kai; Li, Shanpeng; Peng, Ping'an; Qin, Yan
2010-09-01
The oil source rocks of the Chang 7 member of the Yanchang Formation in the Erdos Basin were deposited during maximum lake extension during the Late Triassic and show a remarkable positive uranium anomaly, with an average uranium content as high as 51.1 μg/g. Uranium is enriched together with organic matter and elements such as Fe, S, Cu, V and Mo in the rocks. The detailed biological markers determined in the Chang 7 member indicate that the lake water column was oxidizing during deposition of the Chang 7 member. However, redox indicators for sediments such as S 2- content, V/Sc and V/(V + Ni) ratios demonstrate that it was a typical anoxic diagenetic setting. The contrasted redox conditions between the water column and the sediment with a very high content of organic matter provided favorable physical and chemical conditions for syngenetic uranium enrichment in the oil source rocks of the Chang 7 member. Possible uranium sources may be the extensive U-rich volcanic ash that resulted from contemporaneous volcanic eruption and uranium material transported by hydrothermal conduits into the basin. The uranium from terrestrial clastics was unlike because uranium concentration was not higher in the margin area of basin where the terrestrial material input was high. As indicated by correlative analysis, the oil source rocks of the Chang 7 member show high gamma-ray values for radioactive well log data that reflect a positive uranium anomaly and are characterized by high resistance, low electric potential and low density. As a result, well log data can be used to identify positive uranium anomalies and spatial distribution of the oil source rocks in the Erdos Basin. The estimation of the total uranium reserves in the Chang 7 member attain 0.8 × 10 8 t.
Radioactive deposits in California
Walker, George W.; Lovering, Tom G.
1954-01-01
Reconnaissance examination by Government geologists of many areas, mine properties, and prospects in California during the period between 1948 and 1953 has confirmed the presence of radioactive materials in place at more than 40 localities. Abnormal radioactivity at these localities is due to concentrations of primary and secondary uranium minerals, to radon gas, radium (?), and to thorium minerals. Of the known occurrences only three were thought to contain uranium oxide (uranitite or pitchblende), 4 contained uranium-bearing columbate, tantalate, or titanate minerals, 12 contained secondary uranium minerals, such as autunite, carnotite, and torbernite, one contained radon gas, 7 contained thorium minerals, and, at the remaining 16 localities, the source of the anomalous radiation was not positively determined. The occurrences in which uranium oxide has been tentatively identified include the Rathgeb mine (Calaveras County), the Yerih group of claims (San Bernardino County), and the Rainbow claim (Madera County). Occurrences of secondary uranium minerals are largely confined to the arid desert regions of south-eastern California including deposits in San Bernardino, Kern, Inyo, and Imperial Counties. Uranium-bearing columbate, tantalate, or titanate minerals have been reported from pegmatite and granitic rock in southeastern and eastern California. Thorium minerals have been found in vein deposits in eastern San Bernardino County and from pegmatites and granitic rocks in various parts of southeastern California; placer concentrations of thorium minerals are known from nearly all areas in the State that are underlain, in part, by plutonic crystalline rocks. The primary uranium minerals occur principally as minute accessory crystals in pegmatite or granitic rock, or with base-metal sulfide minerals in veins. Thorium minerals also occur as accessory crystals in pegmatite or granitic rock, in placer deposits derived from such rock, and, at Mountain Pass, in veins containing rare earths. Secondary uranium minerals have been found as fracture coatings and as disseminations in various types of wall rock, although they are largely confined to areas of Tertiary volcanic rocks. Probably the uranium in the uraniferous deposits in California is related genetically to felsic crystalline rocks and felsic volcanic rocks; the present distribution of the secondary uranium minerals has been controlled, in part, by circulating ground waters and probably, in part, by magmatic waters related to the Tertiary volcanic activity. The thorium minerals are genetically related to the intrusion of pegmatite and plutonic crystalline rocks. None of the known deposits of radioactive minerals in California contain marketable reserves of uranium or thorium ore under economic conditions existing in 1952. With a favorable local market small lots of uranium ore may be available in the following places: the Rosamund prospect, the Rafferty and Chilson properties, the Lucky Star claim, and the Yerih group. The commercial production of thorium minerals will be possible, in the near future, only if these minerals can be recovered cheaply as a byproduct either from the mining of rare earths minerals at Mountain Pass or as a byproduct of placer mining for gold.
Geology of the Midnite uranium mine area, Washington: maps, description, and interpretation
Nash, J. Thomas
1977-01-01
Bedrock geology of about 12 km2 near the Midnite mine has been mapped at the surface, in mine exposures, and from drilling, at scales from 1:600 to 1:12,000 and is presented here at 1:12,000 to provide description of the setting of uranium deposits. Oldest rocks in the area are metapelitic and metacarbonate rocks of the Precambrian (Y) Togo Formation. The chief host for uranium deposits is graphitic and pyritic mica phyllite and muscovite schist. Ore also occurs in calc-silicate hornfels and marble at the western edge of a calcareous section about 1,150 m thick. Calcareous rocks of the Togo are probably older than the pelitic as they are interpreted to be near the axis of a broad anticline. The composition and structural position of the calcareous unit suggests correlation with less metamorphosed carbonate-bearing rocks of the Lower Wallace Formation, Belt Supergroup, about 200 km to the east. Basic sills intrusive into the Togo have been metamorphosed to amphibolite. Unmetamorphosed rocks in the mine area are Cretaceous(?) and Eocene igneous rocks. Porphyritic quartz monzonite of Cretaceous age, part of the Loon Lake batholith, is exposed over one third of the mine area. It underlies the roof pendant of Precambrian rocks in which the Midnite mine occurs at depths of generally less than 300 m. The pluton is a two-mica granite and exhibits pegmatitic and aplitic textural features indicative of water saturation and pressure quenching. Eocene intrusive and extrusive rocks in the area provide evidence that the Eocene surface was only a short distance above the present uranium deposits. Speculative hypotheses are presented for penesyngenetic, hydrothermal, and supergene modes of uranium emplacement. The Precambrian Stratigraphy, similar in age and pre-metamorphic lithology to that of rocks hosting large uranium deposits in Saskatchewan and Northern Territory, Australia, suggests the possibility of uranium accumulation along with diagenetic pyrite in carbonaceous muds in a marine shelf environment. This hypothesis is not favored by the author because there is no evidence for stratabound uranium such as high regional radioactivity in the Togo. A hydrothermal mode of uranium emplacement is supported by the close apparent ages of mineralization and plutonism, and by petrology of the pluton. I speculate that uranium may have become enriched in postmagmatic fluids at the top of the pluton, possibly by hydrothermal leaching of soluble uranium associated with magnetite, and diffused outward into metasedimentary wall rocks to create an aureole about 100 m thick containing about 100 ppm uranium. Chemistry of the hydrothermal process is not understood, but uranium does not appear to have been transported by an oxidizing fluid, and the fluid did not produce veining and alteration comparable to that of base-metal sulfide deposits. Uranium in the low-grade protore is believed to have been redistributed into permeable zones in the Tertiary to create ore grades. Geologic and isotopic ages of uranium mineralization, and the small volume of porphyritic quartz monzonite available for leaching, are not supportive of supergene emplacement of uranium.
Uranium in NIMROC standard igneous rock samples
NASA Technical Reports Server (NTRS)
Rowe, M. W.; Herndon, J. M.
1976-01-01
Results are reported for analysis of the uranium in multiple samples of each of six igneous-rock standards (dunite, granite, lujavrite, norite, pyroxenite, and syenite) prepared as geochemical reference standards for elemental and isotopic compositions. Powdered rock samples were examined by measuring delayed neutron emission after irradiation with a flux of the order of 10 to the 13th power neutrons/sq cm per sec in a nuclear reactor. The measurements are shown to compare quite favorably with previous uranium determinations for other standard rock samples.
Applied technology for mine waste water decontamination in the uranium ores extraction from Romania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bejenaru, C.; Filip, G.; Vacariu, V.T.
1996-12-31
The exploitation of uranium ores in Romania is carried out in underground mines. In all exploited uranium deposits, mine waste waters results and will still result after the closure of uranium ore extraction activity. The mine waters are radioactively contaminated with uranium and its decay products being a hazard both for underground waters as for the environment. This paper present the results of research work carried out by authors for uranium elimination from waste waters as the problems involved during the exploitation process of the existent equipment as its maintenance in good experimental conditions. The main waste water characteristics aremore » discussed: solids as suspension, uranium, radium, mineral salts, pH, etc. The moist suitable way to eliminate uranium from mine waste waters is the ion exchange process based on ion exchangers in fluidized bed. A flowsheet is given with main advantages resulted.« less
Mineral and energy resources of the BLM Roswell Resource Area, east-central New Mexico
Bartsch-Winkler, Susan B.
1992-01-01
The sedimentary formations of the Roswell Resource Area have significant mineral and energy resources. Some of the pre-Pennsylvanian sequences in the Northwestern Shelf of the Permian Basin are oil and gas reservoirs, and Pennsylvanian rocks in Tucumcari basin are reservoirs of oil and gas as well as source rocks for oil and gas in Triassic rocks. Pre-Permian rocks also contain minor deposits of uranium and vanadium, limestone, and associated gases. Hydrocarbon reservoirs in Permian rocks include associated gases such as carbon dioxide, helium, and nitrogen. Permian rocks are mineralized adjacent to the Lincoln County porphyry belt, and include deposits of copper, uranium, manganese, iron, polymetallic veins, and Mississippi-valley-type (MVT) lead-zinc. Industrial minerals in Permian rocks include fluorite, barite, potash, halite, polyhalite, gypsum, anhydrite, sulfur, limestone, dolomite, brine deposits (iodine and bromine), aggregate (sand), and dimension stone. Doubly terminated quartz crystals, called "Pecos diamonds" and collected as mineral specimens, occur in Permian rocks along the Pecos River. Mesozoic sedimentary rocks are hosts for copper, uranium, and small quantities of gold-silver-tellurium veins, as well as significant deposits of oil and gas, COa, asphalt, coal, and dimension stone. Mesozoic rocks contain limited amounts of limestone, gypsum, petrified wood, dinosaur remains, and clays. Tertiary rocks host ore deposits commonly associated with intrusive rocks, including platinum group elements, iron skarns, manganese, uranium and vanadium, molybdenum, polymetallic vein deposits, gold-silver- tellurium veins, and thorium-rare earth veins. Museum-quality quartz crystals in Lincoln County were formed in association with intrusive rocks in the Lincoln County porphyry belt. Industrial minerals in Tertiary rocks include fluorite, vein- and bedded-barite, caliche, limestone, and aggregate. Tertiary and Quaternary sediments host important placer deposits of gold and titanium, and minor silver, uranium occurrences, as well as important industrial commodities, including caliche, limestone and dolomite, and aggregate (sand). Quaternary basalt contains sub-ore-grade uranium, scoria, and clay deposits.
Mineral and energy resources of the Roswell Resource Area, East-Central New Mexico
Bartsch-Winkler, Susan B.; Donatich, Alessandro J.
1995-01-01
The sedimentary formations of the Roswell Resource Area have significant mineral and energy resources. Some of the pre-Pennsylvanian sequences in the Northwestern Shelf of the Permian Basin are oil and gas reservoirs, and Pennsylvanian rocks in Tucumcari Basin are reservoirs of oil and gas as well as source rocks for oil and gas in Triassic rocks. Pre-Permian rocks also contain minor deposits of uranium and vanadium, limestone, and gases. Hydrocarbon reservoirs in Permian rocks include associated gases such as carbon dioxide, helium, and nitrogen. Permian rocks are mineralized adjacent to the Lincoln County porphyry belt, and include deposits of copper, uranium, manganese, iron, polymetallic veins, and Mississippi-Valley-type lead-zinc. Industrial minerals in Permian rocks include fluorite, barite, potash, halite, polyhalite, gypsum, anhydrite, sulfur, limestone, dolomite, brine deposits (iodine and bromine), aggregate (sand), and dimension stone. Doubly terminated quartz crystals, called 'Pecos diamonds' and collected as mineral specimens, occur in Permian rocks along the Pecos River. Mesozoic sedimentary rocks are hosts for copper, uranium, and small quantities of gold-silver-tellurium veins, as well as significant deposits of oil and gas, carbon dioxide, asphalt, coal, and dimension stone. Mesozoic rocks contain limited amounts of limestone, gypsum, petrified wood, and clay. Tertiary rocks host ore deposits commonly associated with intrusive rocks, including platinum-group elements, iron skarns, manganese, uranium and vanadium, molybdenum, polymetallic vein deposits, gold-silver-tellurium veins, and thorium-rare-earth veins. Museum-quality quartz crystals are associated with Tertiary intrusive rocks. Industrial minerals in Tertiary rocks include fluorite, vein- and bedded-barite, caliche, limestone, and aggregate. Tertiary and Quaternary sediments host important placer deposits of gold and titanium, and occurrences of silver and uranium. Important industrial commodities include caliche, limestone and dolomite, and aggregate. Quaternary basalt contains sub-ore-grade uranium, scoria, and clay deposits.
NASA Astrophysics Data System (ADS)
Petrescu, L.; Bilal, E.
2012-04-01
Between 1962 and 2009, National Company of Uranium - CNU, the former Romanian Rare Metals Mining Company, mined over 1,200,000 tones of pitchblende ore in the East Carpathians (Crucea-Botušana area, Bistrita Mountains). The exploration and mining facilities include 32 adits, situated between 780 and 1040 m above sea level. Radioactive waste resulted from mining are disposed next to the mining facilities. Mine dumps (32) cover an area of 364,000 square meters and consist of waste rock (rocks with sub-economic mineralization) and gangue minerals. Older dumps (18) have been already naturally reclaimed by forest vegetation, which played an important role in stabilizing the waste dump cover and in slowing down the uranium migration processes. The soils samples have been collected from different mine dumps in the Crucea-Botušana uranium deposit, mainly from 1, 4, 5, 6, 8, 9, 1/30 and 950 mine waste galleries. Soil samples were collected from the upper part and slope at each mine dump, from the vegetation root zones. Total uranium concentration in soils collected from Crucea-Botušana site ranged from 6.10 to 680.70 ppm, with a mean of 52.48 ppm (dry wt.). Total thorium varies between 7.70 and 115.30 ppm (dry wt.). This indicates that the adsorption of the radioactive elements by the soils is high and variable, influenced by the ore dump - sample relationship. The sequential extraction has emphasized the fact that the uranium is associated with all the mineral fractions present in the soil samples. A great percentage of U can be found in the carbonate (21.77%), organic (15.04%) and oxides fractions (15.88%) - in accordance with the high absorbed/adsorbed properties of this element. The percentage of uranium detected in the exchangeable fraction is rather small - 2.16%. It is also to be expected that the uranium should be irreversible adsorbed by the organic matter and by the clay minerals due to its ionic radius and to its positive charge. The fact that 21.77% of the total uranium can be found in the specifically absorbed and carbonate bound fraction, indicated the important role played by the carbonates in the retention of U; one the other hand this fraction is liable to release the uranium if the pH should happen to change. Thorium appear in high-enough concentration in the soil is scarcely available because 70.29% is present in residual fraction, and about 21.78% in the crystalline iron oxides occluded fraction and organically and secondary sulfide bound fraction. This is certainly due to the fact that this naturally occurring radionuclide can be associated with relatively insoluble mineral phases like alumino-silicates and refractory oxides. Its association with the organic matter (10.93%) suggests that it can form soluble organic complexes that can facilitate its removal by the stream waters. Grounded on these results, we were able to prove that the examined mine dumps can represent an impact on the environment, which constitute an argument in favor of the initiation of a program of remedying the quality of the environment from this mining zone. Although from our research it resulted that the natural actinides does not concentrate in the exchangeable fraction (Th) or it concentrates very little in it (U), the isolation of the mineral fraction of soil rich in U and Th helps us in the future identification of the links between the bioavailability and the pedogenesis, connections which control the cycle of the radioactive metals.
Olson, Jerry C.
1988-01-01
The Cochetopa and Marshall Pass uranium districts are in Saguache and Gunnison Counties, south-central Colorado. Geologic mapping of both districts has shown that their structural history and geologic relationships have a bearing on the distribution and origin of their uranium deposits. In both districts, the principal uranium deposits are situated at the intersection of major faults with Tertiary erosion surfaces. These surfaces were buried by early Tertiary siliceous tuffs-- a likely source of the uranium. That uranium deposits are related to such unconformities in various parts of the world has been suggested by many other authors. The purpose of this study is to understand the geology of the two districts and to define a genetic model for uranium deposits that may be useful in the discovery and evaluation of uranium deposits in these and other similar geologic settings. The Cochetopa and Marshall Pass uranium districts produced nearly 1,200 metric tons of uranium oxide from 1956 to 1963. Several workings at the Los Ochos mine in the Cochetopa district, and the Pitch mine in the Marshall Pass district, accounted for about 97 percent of this production, but numerous other occurrences of uranium are known in the two districts. As a result of exploration of the Pitch deposit in the 1970's, a large open-pit mining operation began in 1978. Proterozoic rocks in both districts comprise metavolcanic, metasedimentary, and igneous units. Granitic rocks, predominantly quartz monzonitic in composition, occupy large areas. In the northwestern part of the Cochetopa district, metavolcanic and related metasedimentary rocks are of low grade (lower amphibolite facies). In the Marshall Pass district, layered metamorphic rocks are predominantly metasedimentary and are of higher (sillimanite subfacies) grade than the Cochetopa rocks. Paleozoic sedimentary rocks in the Marshall Pass district range from Late Cambrian to Pennsylvanian in age and are 700 m thick. The Paleozoic rocks include, from oldest to youngest, the Sawatch Quartzite, Manitou Dolomite, Harding Quartzite, Fremont Dolomite, Parting Formation and Dyer Dolomite of the Chaffee Group, Leadville Dolomite, and Belden Formation. In the Cochetopa district, Paleozoic rocks are absent. Mesozoic sedimentary rocks overlie the Precambrian rocks in the Cochetopa district and comprise the Junction Creek Sandstone, Morrison Formation, Dakota Sandstone, and Mancos Shale. In the Marshall Pass district, Mesozoic rocks are absent and were presumably removed by pre-Tertiary erosion. Tertiary volcanic rocks were deposited on an irregular surface of unconformity; they blanketed both districts but have been eroded, away from much of the area. They include silicic ash flows as well as andesitic lava flows and breccias. In the Marshall Pass district, a 20to 20D-m thickness of waterlaid tuff of early Tertiary age indicates the former presence of a lake over much of the district. In the Cochetopa district, faults have a predominantly east-west trend, and the major Los Ochos fault shows displacement during Laramide time. In the Marshall Pass district, the Chester fault is a major north-trending reverse fault along which Proterozoic rocks have been thrust westward over Paleozoic and Proterozoic rocks. Displacement on the Chester fault was almost entirely of Laramide age. Both faults and old erosion surfaces or unconformities are important in the origin of uranium deposits because of their influence on the movement and localization of ore-forming solutions. In the Cochetopa district, all the known uranium occurrences crop out within 100 m of the inferred position of the unconformity surface beneath the Tertiary volcanic rocks. Much of the district was part of the drainage of an ancestral Cochetopa Creek. The principal uranium deposit, at the Los Ochos mine, is localized along the Los Ochos fault and is near the bottom of the paleovalley where the paleovalley crosses the fault. This
Alpine, Andrea E.
2010-01-01
On July 21, 2009, U.S. Secretary of the Interior Ken Salazar proposed a two-year withdrawal of about 1 million acres of Federal land near the Grand Canyon from future mineral entry. These lands are contained in three parcels: two parcels on U.S. Bureau of Land Management land to the north of the Grand Canyon (North and East Segregation Areas) and one on the Kaibab National Forest south of the Grand Canyon (South Segregation Area). The purpose of the two-year withdrawal is to examine the potential effects of restricting these areas from new mine development for the next 20 years. This proposed withdrawal initiated a period of study during which the effects of the withdrawal must be evaluated. At the direction of the Secretary, the U.S. Geological Survey began a series of short-term studies designed to develop additional information about the possible effects of uranium mining on the natural resources of the region. Dissolved uranium and other major, minor, and trace elements occur naturally in groundwater as the result of precipitation infiltrating from the surface to water-bearing zones and, presumably, to underlying regional aquifers. Discharges from these aquifers occur as seeps and springs throughout the region and provide valuable habitat and water sources for plants and animals. Uranium mining within the watershed may increase the amount of radioactive materials and heavy metals in the surface water and groundwater flowing into Grand Canyon National Park and the Colorado River, and deep mining activities may increase mobilization of uranium through the rock strata into the aquifers. In addition, waste rock and ore from mined areas may be transported away from the mines by wind and runoff.
Goldstein, Steven J; Abdel-Fattah, Amr I; Murrell, Michael T; Dobson, Patrick F; Norman, Deborah E; Amato, Ronald S; Nunn, Andrew J
2010-03-01
Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ( approximately 10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that (230)Th/(238)U activity ratios range from 0.005 to 0.48 and (226)Ra/(238)U activity ratios range from 0.006 to 113. (239)Pu/(238)U mass ratios for the saturated zone are <2 x 10(-14), and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order (238)U approximately (226)Ra > (230)Th approximately (239)Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.
A preliminary report on the geology of the Dennison-Bunn uranium claim, Sandoval County, New Mexico
Ridgley, Jennie L.
1978-01-01
Uranium at the Dennison-Bunn claim, south of Cuba, N. Mex., along the east margin of the San Juan Basin, occurs in unoxidized gray, fluvial channel sandstone of the Westwater Canyon Member of the Upper Jurassic Morrison Formation. The uranium-bearing sandstone is bounded on the north and south by a variable zone of buff and orange sandstone. Within the mineralized zone, the uranium has been remobilized and reconcentrated along the margins of numerous smaller tongues of oxidized rock in a configuration similar to that found in roll-type uranium deposits. In cross section, these small-scale features are zoned; they have an inner, pale orange, oxidized core, a mineralized redox rim cemented with hematite(?), and an outer-shell of -gray, slightly to moderately mineralized rock. The uranium content in the mineralized rock ranges from 0.001 to 0.07 percent U3O8. The uranium, at this locality, is believed to have originated within the Westwater Canyon Member or to have been derived from the overlying Brushy Basin Member. Based on observed outcrop relations, two hypotheses are proposed for explaining the origin of the occurrence. Briefly these hypotheses are: (1) the mineralized zone represents the remnant of an original roll-type uranium deposit, formed during early Eocene time, which has undergone subsequent oxidation with remobilization and redeposition of uranium around the margins of smaller tongues of oxidized rock; and (2) the mineralized zone represents the remnant of an original tabular deposit which has undergone subsequent oxidation with remobilization and redeposition of uranium around the margins of smaller tongues of oxidized rock.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leslie A. Hansen; Phil R. Fresquez; Rhonda J. Robinson
1999-11-01
Use of a radioactive liquid waste lagoon by medium-sized mammals and levels of tritium, other selected radionuclides, and metals in biological tissues of the animals were documented at Technical Area 53 (TA-53) of Los Alamos National Laboratory during 1997 and 1998. Rock squirrel (Spermophilus variegates), raccoon (Procyon lotor), striped skunk (Mephitis mephitis), and bobcat (Lynx rufus) were captured at TA-53 and at a control site on the Santa Fe National Forest. Captured animals were anesthetized and marked with radio-frequency identification (RFD) tags and/or ear tags. We collected urine and hair samples for tritium and metals (aluminum, antimony, arsenic, barium, beryllium,more » cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and thallium) analyses, respectively. In addition, muscle and bone samples from two rock squirrels collected from each of TA-53, perimeter, and regional background sites were tested for tritium, {sup 137}Cs, {sup 90}Sr, {sup 238}Pu, {sup 239,240}Pu, {sup 241}Am, and total uranium. Animals at TA-53 were monitored entering and leaving the lagoon area using a RFID monitor to read identification numbers from the RFID tags of marked animals and a separate camera system to photograph all animals passing through the monitor. Cottontail rabbit (Sylvilagus spp.), rock squirrel, and raccoon were the species most frequently photographed going through the RFID monitor. Less than half of all marked animals in the lagoon area were detected using the lagoon. Male and female rock squirrels from the lagoon area had significantly higher tritium concentrations compared to rock squirrels from the control area. Metals tested were not significantly higher in rock squirrels from TA-53, although there was a trend toward increased levels of lead in some individuals at TA-53. Muscle and bone samples from squirrels in the lagoon area appeared to have higher levels of tritium, total uranium, and {sup 137}Cs than samples collected from perimeter and background locations. However, the committed effective dose equivalent estimated from the potential human consumption of the muscle and bone tissue from these rock squirrels did not suggest any human health risk. Indirect routes of tritium uptake, possibly through consumption of vegetation, are important for animals in the lagoon area.« less
The East Slope No. 2 uranium prospect, Piute County, Utah
Wyant, Donald Gray
1954-01-01
The secondary uranium minerals autunite, metatorbernite, uranophane(?), and schroeckingerite occur in altered hornfels at the East Slope No. 9. uranium prospect. The deposit, in sec. 6, T. 9.7 S., R. 3 W., Piute County, Utah, is about 1 mile west of the Bullion Monarch mine which is in the central producing area of the Marysvale uranium district. Hornfels, formed by contact metamorphism of rocks of the Bullion Canyon volcanics borderhug the margin of a quartz monzonite stock, is in fault contact with the later Mount Belknap rhyolite. The hornfels was intensely altered by hydrothermal solutions in pre-Mount Belknap time. Hematite-alunite-quartz-kaolinite rock, the most completely altered hornfels, is surrounded by orange to white argillized hornfels containing beidellite-montmorillonite clay, and secondary uranium minerals. The secondary uranium minerals probably have been derived from pitchblende, the primary ore mineral in other deposits of the Marysvale area. The two uranium-rich zones, 4 feet ad 5 feet thick, have been traced on the surface for 60 feet and 110 feet, respectively. Channel samples from these zones contained as much as 0.047 percent uranium. The deposit is significant because of its position outside the central producing area and because of the association of uranium minerals with alunitic rock in hydrothermally altered hornfels of volcanic rocks of early Tertiary age.
Outdoor (222)Rn-concentrations in Germany - part 2 - former mining areas.
Kümmel, M; Dushe, C; Müller, S; Gehrcke, K
2014-06-01
In the German Federal States of Saxony, Saxony-Anhalt and Thuringia, centuries of mining and milling activities resulted in numerous residues with increased levels of natural radioactivity such as waste rock dumps and tailings ponds. These may have altered potential radiation exposures of the population significantly. Especially waste rock dumps from old mining activities as well as 20th century uranium mining may, due to their radon ((222)Rn) exhalation capacity, lead to significant radiation exposures. They often lie close to or within residential areas. In order to study the impact on the natural radon level, the Federal Office for Radiation Protection (BfS) has run networks of radon measurement points in 16 former mining areas, together with 2 networks in regions not influenced by mining for comparison purposes. Representative overviews of the long-term outdoor radon concentrations could be established including estimates of regional background concentrations. Former mining and milling activities did not result in large-area impacts on the outdoor radon level. However, significantly increased radon concentrations were observed in close vicinity of shafts and large waste rock dumps. They are partly located in residential areas and need to be considered under radiation protection aspects. Examples are given that illustrate the consequences of the Wismut Ltd. Company's reclamation activities on the radon situation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Uranium-bearing lignite in southwestern North Dakota
Moore, George W.; Melin, Robert E.; Kepferle, Roy C.
1954-01-01
Uranium-bearing lignite was mapped and sampled in the Bullion Butte, Sentinel Butte, HT Butte, and Chalky Buttes areas in southwestern North Dakota. The uraniferous lignite occurs at several stratigraphic positions in the Sentinel Butte member of the Fort Union formation of Paleocene age. A total of 261 samples were collected for uranium analysis from 85 localities, Lignite contained as much as 0.045 percent uranium, 10.0 percent ash, and 0.45 percent uranium in the ash was found although the average is lower. Inferred reserves for the four areas examined are estimated to be about 27 million tons of lignite in beds about 2 feet thick and containing more than 3000 tons of uranium. The lignite in beds about 2 feet thick and containing more than 3000 tons of uranium. The lignite averages more than 30 percent ash in the surface samples. The principal factor that seems to influence the uranium content of lignite beds is their stratigraphic position below the overlying rocks of the White River group of Oligocene age. All of the uranium-bearing beds closely underlie the base of the White River group. Although this relationship seems to be the controlling factor, the relative concentration of uranium may be modified by other conditions. Beds enclosed in permeable rocks are more uraniferous than beds in impermeable rocks, and thin beds have higher content of uranium than thick beds. In addition, thick lignite beds commonly have a top=preferential distribution of uranium. These and other factors suggest that the uranium is secondary and this it was introduced by ground water which had leached uranium from volcanic ash in the overlying rocks of the White River group. It is thought that the uranium is held in the lignite as part of a metallo-organic compound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truex, Michael J.; Szecsody, James E.; Qafoku, Nikolla
2014-09-01
Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at amore » substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penley, H.M.; Schot, E.H.; Sewell, J.M.
1978-11-01
Three sheared areas in the crystalline Piedmont and Blue Ridge provinces, from which uranium occurrences or anomalous radioactivity have been reported, were studied to determine their favorability for uranium mineralization. The study, which involved a literature review, geologic reconnaissance, ground radiometric surveys, and sampling of rock outcrops for petrographic and chemical analyses, indicates that more-detailed investigations of these and similar areas are warranted. In each area, surface leaching and deep residual cover make it difficult to assess the potential for uranium mineralization on the basis of results from chemical analyses for U/sub 3/O/sub 8/ and the radiometric surveys. Although anomalousmore » radioactivity and anomalous chemical uranium values were noted in only a few rock exposures and samples from the shear zones, the potential for uranium mineralization at depth could be much greater than indicated by these surface data. The study indicates that shear zones within Precambiran granitic basement complexes (such as the Wilson Creek Gneiss of western North Carolina, the Cranberry Gneiss of eastern Tennessee, and the Toxaway Gneiss of western South Carolina) are favorable as hosts for uranium and may contain subsurface deposits. Mylonitized graphitic schists immediately north of the Towaliga fault in Alabama and Georgia may be favorable host rocks for uranium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, P.; Mickle, D.G.
1976-10-01
Uranium potential of Tertiary rocks in the Badger Flats--Elkhorn Thrust area of central Colorado is closely related to a widespread late Eocene erosion surface. Most uranium deposits in the area are in the Eocene Echo Park Alluvium and Oligocene Tallahassee Creek Conglomerate, which were deposited in paleodrainage channels on or above this surface. Arkosic detritus within the channels and overlying tuffaceous sedimentary rocks of the Antero and Florissant Formations of Oligocene age and silicic tuffs within the volcanic units provide abundant sources of uranium that could be concentrated in the channels where carbonaceous debris facilitates a reducing environment. Anomalous soil,more » water, and stream-sediment samples near the Elkhorn Thrust and in Antero basin overlie buried channels or are offset from them along structural trends; therefore, uranium-bearing ground water may have moved upward from buried uranium deposits along faults. The area covered by rocks younger than the late Eocene erosion surface, specifically the trends of mapped or inferred paleochannels filled with Echo Park Alluvium and Tallahassee Creek Conglomerate, and the Antero Formation are favorable for the occurrence of uranium deposits.« less
NASA Astrophysics Data System (ADS)
Markwitz, Vanessa; Porwal, Alok; Campbell McCuaig, T.; Kreuzer, Oliver P.
2010-05-01
Uranium deposits are usually classified based on the characteristics of their host rocks and geological environments (Dahlkamp, 1993; OECD/NEA Red Book and IAEA, 2000; Cuney, 2009). The traditional unconformity-related deposit types are the most economical deposits in the world, with the highest grades amongst all uranium deposit types. In order to predict undiscovered uranium deposits, there is a need to understand the spatial association of uranium mineralization with structures and unconformities. Hydrothermal uranium deposits develop by uranium enriched fluids from source rocks, transported along permeable pathways to their depositional environment. Unconformities are not only separating competent from incompetent sequences, but provide the physico-chemical gradient in the depositional environment. They acted as important fluid flow pathways for uranium to migrate not only for surface-derived oxygenated fluids, but also for high oxidized metamorphic and magmatic fluids, dominated by their geological environment in which the unconformities occur. We have carried out comprehensive empirical spatial analyses of various types of uranium deposits in Australia, and first results indicate that there is a strong spatial correlation between unconformities and uranium deposits, not only for traditional unconformity-related deposits but also for other styles. As a start we analysed uranium deposits in Queensland and in particular Proterozoic metasomatic-related deposits in the Mount Isa Inlier and Late Carboniferous to Early Permian volcanic-hosted uranium occurrences in Georgetown and Charters Towers Regions show strong spatial associations with contemporary and older unconformities. The Georgetown Inlier in northern Queensland consists of a diverse range of rocks, including Proterozoic and early Palaeozoic metamorphic rocks and granites and late Palaeozoic volcanic rocks and related granites. Uranium-molybdenum (+/- fluorine) mineralization in the Georgetown inlier varies from strata- to structure-bound and occurs above regional unconformities. The Proterozoic basins in the Mount Isa Inlier rest unconformably on Palaeoproterozoic basement accompanied by volcanic and igneous rocks, which were deformed and metamorphosed in the Mesoproterozoic. Uranium occurrences in the Western Succession of Mount Isa are either hosted in clastic metasediments or mafic volcanics that belong to the Palaeoproterozoic Eastern Creek Volcanics. Uranium and vanadium mineralization occur in metasomatised and hematite-magnetite-carbonate alteration zones, bounded by major faults and regional unconformities. The results of this study highlight the importance of unconformities in uranium minerals systems as possible fluid pathways and/or surfaces of physico-chemical contrast that could have facilitated the precipitation of uranium, not only in classical unconformity style uranium deposits but in several other styles of uranium mineralization as well. References Cuney, M., 2009. The extreme diversity of uranium deposits. Mineralium Deposita, 44, 3-9. Dahlkamp, F. J., 1993. Uranium ore deposits. Springer, Berlin, p 460. OECD / NEA Red Book & IAEA, 2000. Uranium 1999: Resources, Production and Demand. OECD Nuclear Energy Agency and International Atomic Energy Agency, Paris.
Mining and Environmental Health Disparities in Native American Communities.
Lewis, Johnnye; Hoover, Joseph; MacKenzie, Debra
2017-06-01
More than a century of hard rock mining has left a legacy of >160,000 abandoned mines in the Western USA that are home to the majority of Native American lands. This article describes how abrogation of treaty rights, ineffective policies, lack of infrastructure, and a lack of research in Native communities converge to create chronic exposure, ill-defined risks, and tribal health concerns. Recent results show that Native Americans living near abandoned uranium mines have an increased likelihood for kidney disease and hypertension, and an increased likelihood of developing multiple chronic diseases linked to their proximity to the mine waste and activities bringing them in contact with the waste. Biomonitoring confirms higher than expected exposure to uranium and associated metals in the waste in adults, neonates, and children in these communities. These sites will not be cleaned up for many generations making it critical to understand and prioritize exposure-toxicity relationships in Native populations to appropriately allocate limited resources to protect health. Recent initiatives, in partnership with Native communities, recognize these needs and support development of tribal research capacity to ensure that research respectful of tribal culture and policies can address concerns in the future. In addition, recognition of the risks posed by these abandoned sites should inform policy change to protect community health in the future.
Whole-rock uranium analysis by fission track activation
NASA Technical Reports Server (NTRS)
Weiss, J. R.; Haines, E. L.
1974-01-01
We report a whole-rock uranium method in which the polished sample and track detector are separated in a vacuum chamber. Irradiation with thermal neutrons induces uranium fission in the sample, and the detector records the integrated fission track density. Detection efficiency and geometric factors are calculated and compared with calibration experiments.
Marston, Thomas M.; Beisner, Kimberly R.; Naftz, David L.; Snyder, Terry
2012-01-01
During August of 2008, 35 solid-phase samples were collected from abandoned uranium waste dumps, undisturbed geologic background sites, and adjacent streambeds in Browns Hole in southeastern Utah. The objectives of this sampling program were (1) to assess impacts on human health due to exposure to radium, uranium, and thorium during recreational activities on and around uranium waste dumps on Bureau of Land Management lands; (2) to compare concentrations of trace elements associated with mine waste dumps to natural background concentrations; (3) to assess the nonpoint source chemical loading potential to ephemeral and perennial watersheds from uranium waste dumps; and (4) to assess contamination from waste dumps to the local perennial stream water in Muleshoe Creek. Uranium waste dump samples were collected using solid-phase sampling protocols. Solid samples were digested and analyzed for major and trace elements. Analytical values for radium and uranium in digested samples were compared to multiple soil screening levels developed from annual dosage calculations in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act's minimum cleanup guidelines for uranium waste sites. Three occupancy durations for sites were considered: 4.6 days per year, 7.0 days per year, and 14.0 days per year. None of the sites exceeded the radium soil screening level of 96 picocuries per gram, corresponding to a 4.6 days per year exposure. Two sites exceeded the radium soil screening level of 66 picocuries per gram, corresponding to a 7.0 days per year exposure. Seven sites exceeded the radium soil screening level of 33 picocuries per gram, corresponding to a 14.0 days per year exposure. A perennial stream that flows next to the toe of a uranium waste dump was sampled, analyzed for major and trace elements, and compared with existing aquatic-life and drinking-water-quality standards. None of the water-quality standards were exceeded in the stream samples.
Miller, W. Roger; Houston, R.S.; Karlstrom, K.E.; Hopkins, D.M.; Ficklin, W.H.
1977-01-01
Metasedimentary rocks of Precambrian X age in and near the Snowy Range wilderness study area of southeastern Wyoming are lithologically and chronologically similar to those on the north shore of Lake Huron in Canada. The rocks in Canada contain major deposits of uranium in quartz-pebble conglomerates near the base of the metasedimentary sequence. Similar conglomerates in the Deep Lake Formation in the Medicine Bow Mountains of southeastern Wyoming are slightly radioactive and may contain deposits of uranium and other valuable heavy metals. During the summer of 1976, a geological and geochemical pilot study was conducted in the vicinity of Arrastre Lake in the Medicine Bow Mountains to determine the most effective exploration methods for evaluating the uranium potential of the Snowy Range wilderness study area. The area around Arrastre Lake was selected because of the presence of a radioactive lens within a quartz-pebble conglomerate of the Deep Lake Formation. The results of the survey indicate possible uranium mineralization in the subsurface rocks of this formation. The radon content of the dilute waters of the area is much higher than can be accounted for by the uranium content of the surface rocks. Two sources for the high content of the radon are possible. In either case, the high values of radon obtained in this study are a positive indication of uranium mineralization in the subsurface rocks. The determination of the radon content of water samples is the recommended geochemical technique for uranium exploration in the area. The determination of uranium in water and in organic-rich bog material is also recommended.
Wilmarth, V.R.; Johnson, D.H.
1953-01-01
An area about 6 miles north of Sundance, in the Bear Lodge Mountains, in Crook County, Wyo., was examined during August 1950 for thorium, uranium, and rare-earth oxides and samples were collected. Uranium is known to occur in fluorite veins and iron-manganese veins and in the igneous rocks of Tertiary age that compose the core of the Bear Lodge Mountains. The uranium content of the samples ranges from 0.001 to 0.015 percent in those from the fluorite veins, from 0.005 to 0.018 percent in those from the iron-manganese veins, and from 0.001 to 0.017 percent in those from the igneous rocks. The radioactivity of the samples is more than that expected from the uranium content. Thorium accounts for most of this discrepancy. The thorium oxide content of samples ranges from 0.07 to 0.25 percent in those from the iron-manganese veins and from 0.07 to 0.39 percent in those from the sedimentary rocks, and from0.04 to 0.30 in those from the igneous rocks. Rare-earth oxides occur in iron-manganese veins and in zones of altered igneous rocks. The veins contain from 0.16 to 12.99 percent rare-earth oxides, and the igneous rocks, except for two localities, contain from 0.01 to 0.42 percent rare-earth oxides. Inclusions of metamorphosed sedimentary rocks in the intrusive rocks contain from 0.07 to 2.01 percent rare-earth oxides.
National Uranium Resource Evaluation: Wells Quadrangle, Nevada, Idaho, and Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Proffitt, J.L.; Mayerson, D.L.; Parker, D.P.
1982-08-01
The Wells 2/sup 0/ Quadrangle, Nevada, Idaho, and Utah, was evaluated using National Uranium Resource Evaluation criteria to delineate areas favorable for uranium deposits. Our investigation has resulted in the delineation of areas that contain Tertiary sedimentary rocks favorable for hydroallogenic deposits in the Mountain City area (Favorable Area A) and in the Oxley Peak area north of Wells (Favorable Area B). Environments considered to be unfavorable for uranium deposits include Tertiary felsic volcanic, felsic plutonic, intermediate to mafic volcanic, Paleozoic and Mesozoic sedimentary rocks, Precambrian rocks, and most Tertiary sedimentary rocks located outside the favorable areas. Present-day basins aremore » unevaluated environments because of a paucity of adequate outcrop and subsurface data. However, the scarce data indicate that some characteristics favorable for uranium deposits are present in the Susie Creek-Tule Valley-Wild Horse basin, the Contact-Granite Range-Tijuana John stocks area, the Charleston Reservoir area, and the Wells-Marys River basin.« less
Beisner, Kimberly R.; Marston, Thomas M.; Naftz, David L.; Snyder, Terry; Freeman, Michael L.
2010-01-01
During May, June, and July 2007, 58 solid-phase samples were collected from abandoned uranium mine waste dumps, background sites, and adjacent streambeds in Red, White, and Fry Canyons in southeastern Utah. The objectives of this sampling program were to (1) assess the nonpoint-source chemical loading potential to ephemeral and perennial drainage basins from uranium waste dumps and (2) assess potential effects on human health due to recreational activities on and around uranium waste dumps on Bureau of Land Management property. Uranium waste-dump samples were collected using solid-phase sampling protocols. After collection, solid-phase samples were homogenized and extracted in the laboratory using a leaching procedure. Filtered (0.45 micron) water samples were obtained from the field leaching procedure and were analyzed for major and trace elements at the Inductively Coupled Plasma-Mass Spectrometry Metals Analysis Laboratory at the University of Utah. A subset of the solid-phase samples also were digested with strong acids and analyzed for major ions and trace elements at the U.S. Geological Survey Geologic Division Laboratory in Denver, Colorado. For the initial ranking of chemical loading potential for uranium waste dumps, results of leachate analyses were compared with existing aquatic-life and drinking-water-quality standards. To assess potential effects on human health, solid-phase digestion values for uranium were compared to soil screening levels (SSL) computed using the computer model RESRAD 6.5 for a probable concentration of radium. One or more chemical constituents exceeded aquatic life and drinking-water-quality standards in approximately 64 percent (29/45) of the leachate samples extracted from uranium waste dumps. Most of the uranium waste dump sites with elevated trace-element concentrations in leachates were located in Red Canyon. Approximately 69 percent (31/45) of the strong acid digestible soil concentration values were greater than a calculated SSL. Uranium waste dump sites with elevated leachate and total digestible concentrations may need to be further investigated to determine the most appropriate remediation method.
Wilmarth, V.R.; Vickers, R.C.
1953-01-01
Uranium deposits that contain uraniferous pyrobitumen of possible hydrothermal origin occur at the Weatherly and Robinson properties near Placerville, San Miguel County, Colo. These deposits were mined for copper, silver, and gold more than 50 years ago and were developed for uranium in 1950. The Robinson property, half a mile east of Placerville, consists of the White Spar, New Discovery Lode, and Barbara Jo claims. The rocks in this area are nearly horizontal sandstones, shales, limestones, and conglomerates of the Cutler formation of Permian age and the Dolores formation of Triassic and Jurassic (?) age. These rocks have been faulted extensively and intruded by a Tertiary (?) andesite porphyry dike. Uranium-bearing pyrobitumen associated with tennantite, tetrahedrite, galena, sphalerite, chalcopyrite, bornite, azurite, malachite, calcite, barite, and quartz occurs in a lenticular body as much as 40 feet long and 6 feet wide along a northwest-trending, steeply dipping normal fault. The uranium content of eleven samples from the uranium deposit ranges from 0.001 to 0.045 percent uranium and averages about 0.02 percent uranium. The Weatherly property, about a mile northwest of Placerville, consists of the Black King claims nos. 1, 4, and 5. The rocks in this area include the complexly faulted Cutler formation of Permian age and the Dolores formation of Triassic and Jurassic (?) age. Uranium-bearing pyrobitumen arid uranophane occur, along a northwest-trending, steeply dipping normal fault and in the sedimentary rocks on the hanging wall of the fault. Lens-shaped deposits in the fault zone are as much as 6 feet long and 2 feet wide and contain as much as 9 percent uranium; whereas channel samples across the fault zone contain from 0.001 to 0.014 percent uranium. Tetrahedrite, chalcopyrite, galena, sphalerite, fuchsite, malachite, azurite, erythrite, bornite, and molybdite in a gangue of pyrite, calcite, barite, and quartz are associated with the uraniferous material. In the sedimentary rocks on the hanging wall, uranium-bearing pyrobitumen occurs in replacement lenses as much as,8 inches wide and 6 feet long, and in nodules as much as 6 inches in diameter for approximately 100 feet away from the fault. Pyrite and calcite are closely associated with the uraniferous material in the sedimentary rocks. Samples from the replacement bodies contain from 0. 007 to 1.4 percent uranium.
Host rocks and their alterations as related to uranium-bearing veins in the United States
Walker, George W.
1956-01-01
This paper, dealing with the different kinds of host rocks and their alterations associated with uranium-bearing veins in the United States, is a chapter of a comprehensive report entitled , "Geology of uranium-bearing vein deposits in the United States," in preparation by George W. Walker, Frank W. Osterwald, and others. The comprehensive report will include detailed information on tectonic and structural setting, kinds of host rocks, wall-rock alteration, mineralogy, physical characteristics, processes of deposition, and concepts of origin of uraniferous veins; but, because it will not be completed until sometime in the future, some chapters of the report are being transmitted as they are finished. Part of an introductory chapter to the comprehensive report entitled, "Classification and distribution of uranium-bearing veins in the United States" (Walker and Osterwald, 1956) has already been transmitted; several of the terms used herein are defined in the introductory chapter. Data included in this chapter demonstrate that uranium-bearing veins are: 1) in rocks of nearly all textural, chemical, and mineralogic types; 2) most abundant in holocrystalline, commonly equigranular, igeneous and metamorphic rocks characterized by a moderate to high silica content and and by similar physical properties. Although some of the physiochemical properties of the host rocks are discussed in terms of favorability or nonfavoribility for uranium deposition, the principal purpose of this chapter is to establish the petroloic environment in which uranium-bearing veins have been found. Because favorability or nonfavorability of host rocks is related complexly to the chemistry of ore solutions and to methods or uranium transport and deposition, several hypothetical processes of transport and deposition have been referred to briefly; these and other hypotheses will be outlines and discussed in greater detail in a subsequent chapter. The compilation of data leading to this report and its preparation by a member of the Uranium Research and Resource Section, U.S. Geological Survey, was done on behalf of the Division of Raw Materials, U.S. Atomic Energy Commission. The report is based on both published and unpublished information collected principally by personnel of the U.S. Geological Survey, the U.S. Atomic Energy Commission or its predecessor organization, the Manhattan Engineer District, and to a lesser extent by staff members of other Federal or State agencies and by geologists in private industry. Information concerning foreign uranium-bearing vein deposits has been extracted almost exclusively from published reports; references to these and other data are included at appropriate places.
Thorium and Uranium in the Rock Raw Materials Used For the Production of Building Materials
NASA Astrophysics Data System (ADS)
Pękala, Agnieszka
2017-10-01
Thorium and uranium are constant components of all soils and most minerals thereby rock raw materials. They belong to the particularly dangerous elements because of their natural radioactivity. Evaluation of the content of the radioactive elements in the rock raw materials seems to be necessary in the early stage of the raw material evaluation. The rock formations operated from deposits often are accumulated in landfills and slag heaps where the concentration of the radioactive elements can be many times higher than under natural conditions. In addition, this phenomenon may refer to buildings where rock raw materials are often the main components of the construction materials. The global control system of construction products draws particular attention to the elimination of used construction products containing excessive quantities of the natural radioactive elements. In the presented study were determined the content of thorium and uranium in rock raw materials coming from the Bełachatów lignite deposit. The Bełchatów lignite deposit extracts mainly lignite and secondary numerous accompanying minerals with the raw material importance. In the course of the field works within the framework of the carried out work has been tested 92 samples of rocks of varied petrographic composition. There were carried out analyses of the content of the radioactive elements for 50 samples of limestone of the Jurassic age, 18 samples of kaolinite clays, and 24 samples of siliceous raw materials, represented by opoka-rocks, diatomites, gaizes and clastic rocks. The measurement of content of the natural radioactive elements thorium and uranium based on measuring the frequency counts of gamma quantum, recorded separately in measuring channels. At the same time performed measurements on volume patterns radioactive: thorium and uranium. The studies were carried out in Mazar spectrometer on the powdered material. Standardly performed ten measuring cycles, after which were calculated the concentration of radioactive elements in the sample. The highest concentration of thorium and uranium has been found in the clayey raw material. Their value was respectively from 8 to 12 mg/kg for thorium and from 2.3 to 3.5 mg/kg for uranium. In carbonate sediments the content of thorium was at the level from 0.5 to 2.1 mg/kg and uranium from 0.5-2.2 mg/kg. From a group of the siliceous raw materials the diatomite had a highest concentrations of radioactive elements where the content of thorium was from 1.5 to 1.8 mg/kg and uranium from 1.3 to 1.7 mg/kg.
National Uranium Resource Evaluation: Newcastle Quadrangle, Wyoming and South Dakota
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, E S; Robinson, K; Geer, K A
1982-09-01
Uranium resources of the Newcastle 1/sup 0/x2/sup 0/ Quadrangle, Wyoming and South Dakota were evaluated to a depth of 1500 m (5000 ft) using available surface and subsurface geologic information. Many of the uranium occurrences reported in the literature and in reports of the US Atomic Energy Commission were located, sampled and described. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, were outlined. Areas favorable for uranium deposits in the subsurface were evaluated using gamma-ray logs. Based on surface and subsurface data, two areas have been delineated which are underlain by rocks deemed favorable as hosts for uraniummore » deposits. One of these is underlain by rocks that contain fluvial arkosic facies in the Wasatch and Fort Union Formations of Tertiary age; the other is underlain by rocks containing fluvial quartzose sandstone facies of the Inyan Kara Group of Early Cretaceous age. Unfavorable environments characterize all rock units of Tertiary age above the Wasatch Formation, all rock units of Cretaceous age above the Inyan Kara Group, and most rock units of Mesozoic and Paleozoic age below the Inyan Kara Group. Unfavorable environments characterize all rock units of Cretaceous age above the Inyan Kara Group, and all rock units of Mesozoic and Paleozoic age below the Inyan Kara Group.« less
Freeman, Michael L.; Naftz, David L.; Snyder, Terry; Johnson, Greg
2008-01-01
During July and August of 2006, 117 solid-phase samples were collected from abandoned uranium waste dumps, geologic background sites, and adjacent streambeds in the San Rafael Swell, in southeastern Utah. The objective of this sampling program was to assess the nonpoint source chemical loading potential to ephemeral and perennial watersheds from uranium waste dumps on Bureau of Land Management property. Uranium waste dump samples were collected using solid-phase sampling protocols. After collection, solid-phase samples were homogenized and extracted in the laboratory using a field leaching procedure. Filtered (0.45 micron) water samples were obtained from the field leaching procedure and were analyzed for Ag, As, Ba, Be, Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Se, U, V, and Zn at the Inductively Coupled Plasma-Mass Spectrometry Metals Analysis Laboratory at the University of Utah, Salt Lake City, Utah and for Hg at the U.S. Geological Survey National Water Quality Laboratory, Denver, Colorado. For the initial ranking of chemical loading potential of suspect uranium waste dumps, leachate analyses were compared with existing aquatic life and drinking-water-quality standards and the ratio of samples that exceeded standards to the total number of samples was determined for each element having a water-quality standard for aquatic life and drinking-water. Approximately 56 percent (48/85) of the leachate samples extracted from uranium waste dumps had one or more chemical constituents that exceeded aquatic life and drinking-water-quality standards. Most of the uranium waste dump sites with elevated trace-element concentrations in leachates were along Reds Canyon Road between Tomsich Butte and Family Butte. Twelve of the uranium waste dump sites with elevated trace-element concentrations in leachates contained three or more constituents that exceeded drinking-water-quality standards. Eighteen of the uranium waste dump sites had three or more constituents that exceeded trace-element concentrations for aquatic life water-quality standards. The proximity of the uranium waste dumps in the Tomsich Butte area near Muddy Creek, coupled with the elevated concentration of trace elements, increases the offsite impact potential to water resources. Future assessment and remediation priority of these areas may be done by using GIS-based risk-mapping techniques, such as Sensitive Catchment Integrated Mapping and Analysis Project.
Contaminant Leach Testing of Hanford Tank 241-C-104 Residual Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cantrell, Kirk J.; Snyder, Michelle M.V.; Wang, Guohui
2015-07-01
Leach testing of Tank C-104 residual waste was completed using batch and column experiments. Tank C-104 residual waste contains exceptionally high concentrations of uranium (i.e., as high as 115 mg/g or 11.5 wt.%). This study was conducted to provide data to develop contaminant release models for Tank C-104 residual waste and Tank C-104 residual waste that has been treated with lime to transform uranium in the waste to a highly insoluble calcium uranate (CaUO4) or similar phase. Three column leaching cases were investigated. In the first case, C-104 residual waste was leached with deionized water. In the second case, crushedmore » grout was added to the column so that deionized water contacted the grout prior to contacting the waste. In the third case, lime was mixed in with the grout. Results of the column experiments demonstrate that addition of lime dramatically reduces the leachability of uranium from Tank C-104 residual waste. Initial indications suggest that CaUO4 or a similar highly insoluble calcium rich uranium phase forms as a result of the lime addition. Additional work is needed to definitively identify the uranium phases that occur in the as received waste and the waste after the lime treatment.« less
A Methodology for Characterizing Potential Uranium Transport in Deep Geological Disposal Sites
NASA Astrophysics Data System (ADS)
Dittrich, T. M.; Reimus, P. W.
2013-12-01
In order to make safe and reasonable decisions about radioactive waste disposal in deep geologic sites, it is important to understand the fate and potential transport of long half-life transuranic radionuclides over a wide range of time and distance scales. The objective of this study was to evaluate and demonstrate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments involving uranium, as well as other actinides, have already been conducted. Working on this system provides a unique opportunity to compare lab experimental results with field-scale observations. Drilled rock cores and weathered fracture fill material (FFM) from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption/desorption and column breakthrough experiments. Uranium solutions were made by adding uranium to a synthetic Grimsel groundwater that matched the natural water chemistry found in the GTS groundwater. Batch and breakthrough experiments were conducted using solutions between pH 6.9 and 9.0. All column experiments were conducted using syringe pumps at low flow rate (<0.3 ml h-1) in small columns containing 5 g of material with pore volumes of 2-3 ml. These small columns allow rapid and economical evaluation of sorption/desorption behavior under flowing conditions (and in duplicate or triplicate). Solutions were switched to uranium-free synthetic Grimsel groundwater after equilibration in batch experiments or after near-steady uranium breakthrough occurred in column experiments. The measurement of uranium concentrations as a function of time under these conditions allowed interrogation of desorption rates which we believe control uranium fate and transport over long time and distance scales. Uranium transport was conservative and matched tritium breakthrough for pH 9.0; however, retardation increased when pH was reduced to 7.9 and 6.9. We are currently evaluating uranium adsorption/desorption rates as a function of water chemistry (initial focus on pH), with future testing planned to evaluate the influence of carbonate concentrations, flow rates, mineralogy, bentonite colloids and other actinides (e.g., Am). Figure 1. Uranium breakthrough results for (a) 6.5 μM U, (b) U-free solution, (c) flow rate increased from 0.3 to 0.6 mL h-1, (d) pH increased from 6.8 to 7.2, and (e) pH increased from 7.2 to 8.8.
Oh, Youn Soo; Jo, Ho Young; Ryu, Ji-Hun; Kim, Geon-Young
2017-02-15
The feasibility of using microfluidic tests to investigate water-rock (mineral) interactions in fractures regarding sorption onto thin rock sections (i.e., shale and granite) of lead (Pb) and uranium (U) was evaluated using a synthetic PbCl 2 solution and uranium-containing natural groundwater as fluids. Effluent composition and element distribution on the thin rock sections before and after microfluidic testing were analyzed. Most Pb removal (9.8mg/cm 2 ) occurred within 3.5h (140 PVF), which was 74% of the total Pb removal (13.2mg/cm 2 ) at the end of testing (14.5h, 560 PVF). Element composition on the thin shale sections determined by μ-XRF analysis indicated that Pb removal was related primarily to Fe-containing minerals (e.g., pyrite). Two thin granite sections (biotite rich, Bt-R and biotite poor, Bt-P) exhibited no marked difference in uranium removal capacity, but a slightly higher amount of uranium was removed onto the thin Bt-R section (266μg/cm 2 ) than the thin Bt-P section (240μg/cm 2 ) within 120h (4800 PVF). However, uranium could not be detected by micro X-ray fluorescence (μ-XRF) analysis, likely due to the detection limit. These results suggest that microfluidic testing on thin rock sections enables quantitative evaluation of rock (mineral)-water interactions at the micro-fracture or pore scale. Copyright © 2016 Elsevier B.V. All rights reserved.
Moore, George Winfred; Stephens, James G.
1954-01-01
During the summer of 1952 a reconnaissance was conducted in California and parts of Oregon and Nevada in search of new deposits of uranium-bearing carbonaceous rocks. The principal localities found in California where uranium occurs in coal are listed here with. the uranium content of the coal: Newhall prospect, Los Angeles County, 0.020 percent; Fireflex mine, San Benito County, 0.005 percent; American licyaite mine, Amador County, 0.004 percent; and Tesla prospect, Alameda County, 0.003 percent. An oil-saturated sandstone near Edna, San Luis Obispo County, contains 0.002 percent uranium.
Bacterial leaching of waste uranium materials.
Barbic, F F; Bracilović, D M; Krajincanić, B V; Lucić, J L
1976-01-01
The effect of ferrobacteria and thiobacteria on the leaching of waste uranium materials from which 70-80% of uranium was previously leached by classical chemical hydrometallurgical procedure has been investigated. The bacteria used are found in the ore and the mine water of Zletovska River locality, Yugoslavia. Parameters of biological leaching were examined in the laboratory. Leaching conditions were changed with the aim of increasing the amount of uranium leached. The effect of pyrite added to the waste materials before the beginning of leaching has also been examined. Uranium leaching is directly proportional to the composition and number of ferrobacteria and thiobacteria, and increased by almost twice the value obtained from the same starting materials without using bacteria. Increased sulphuric acid concentrations stimulate considerably the rate of leaching. Uranium leaching is increased up to 20% while sulphuric acid consumption is simultaneously decreased by the addition of pyrite. Uranium concentrations in starting waste materials used for leaching were extremely low (0.0278 and 0.372% U) but about 60% recovery of uranium was obtained, with relatively low consumption of sulphuric acid.
Airborne gamma-ray spectrometer and magnetometer survey: Weed quadrangle, California. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-05-01
Twelve anamolous areas attributable to gamma radiation in the uranium spectral window, and twenty-three in the thorium channel, have been recognized and delineated on the Weed quadrangle. The majority of the uranium anomalies are located in the southwestern part of the map sheet. Most of these are correlated with the pre-Cretaceous metamorphic rock system and the Mesozoic granitic rocks intrusive into it. Of the twenty-three anomalous areas of increased gamma radiation in the thorium spectral window, most are located in the northeast and the east center in a north-south trending belt. However, this apparent alignment is probably fortuitous as themore » individual anomalies are correlated with several different rock formations. Three are correlated with upper Cretaceous marine sediments, six with Ordovician marine sediments, two with Mesozoic granitic intrusives, and two with Silurian marine sediments. In the northwestern part of the quadrangle, four thorium radiation anomalies are delineated over exposures of upper Jurassic marine rocks. Anomaly 6, in the southwest, warrants attention as it suggests strong radiation in the uranium channel with little or no thorium radiation. The uranium/thorium and uranium/potassium ratio anomalies are also strong, supporting the likelihood of uranium enrichment. The feature is located on line 540, fiducials 7700 to 7720. Anomaly 7, on line 540, fiducials 8390 to 8420, shows similar characteristics although a minor thorium excursion is present. Anomaly 10, on line 3010 fiducials 9820 to 9840, is also characterized by a strong uranium radiation spike, with minor thorium radiation. The uranium/thorium and uranium/potassium ratio anomalies are well defined and relatively intense.« less
Discussions about safety criteria and guidelines for radioactive waste management.
Yamamoto, Masafumi
2011-07-01
In Japan, the clearance levels for uranium-bearing waste have been established by the Nuclear Safety Commission (NSC). The criteria for uranium-bearing waste disposal are also necessary; however, the NSC has not concluded the discussion on this subject. Meanwhile, the General Administrative Group of the Radiation Council has concluded the revision of its former recommendation 'Regulatory exemption dose for radioactive solid waste disposal', the dose criteria after the institutional control period for a repository. The Standardization Committee on Radiation Protection in the Japan Health Physics Society (The Committee) also has developed the relevant safety criteria and guidelines for existing exposure situations, which are potentially applicable to uranium-bearing waste disposal. A new working group established by The Committee was initially aimed at developing criteria and guidelines specifically for uranium-bearing waste disposal; however, the aim has been shifted to broader criteria applicable to any radioactive wastes.
Indian Creek uranium prospects, Beaver County, Utah
Wyant, Donald G.; Stugard, Frederick
1951-01-01
The secondary uranium minerals metatorbernite (?) and autunite (?) were discovered at Indian Creek in the spring of 1950. The deposits, in sec. 26, T. 27 S., R. 6 T., Beaver County, Utah, are 20 miles west of Marysvale, and about three-eighths of a mile east of a quartz monzonite stock. The uranium minerals are sparsely disseminated in argillized and silicified earlier Tertiary Bullion Canyon latite and related volcanic rock beneart, but close to, the contact of the overlying later Tertiary Mount Belknap gray rhyolite. The prospects are in a landslide area where exposures are scarce. Therefore, trend and possible continuity of the altered and the uraniferous zones cannot be established definitely. The occurrence of secondary uranium minerals in beidellite-montmorillonite rock, formed by alteration of earlier Tertiary rocks near a quartz monzonite stock, is similar to that in some of the deposits in the Marysvale uranium district.
Effects of hydrated lime on radionuclides stabilization of Hanford tank residual waste.
Wang, Guohui; Um, Wooyong; Cantrell, Kirk J; Snyder, Michelle M V; Bowden, Mark E; Triplett, Mark B; Buck, Edgar C
2017-10-01
Chemical stabilization of tank residual waste is part of a Hanford Site tank closure strategy to reduce overall risk levels to human health and the environment. In this study, a set of column leaching experiments using tank C-104 residual waste were conducted to evaluate the leachability of uranium (U) and technetium (Tc) where grout and hydrated lime were applied as chemical stabilizing agents. The experiments were designed to simulate future scenarios where meteoric water infiltrates through the vadose zones into the interior of the tank filled with layers of grout or hydrated lime, and then contacts the residual waste. Effluent concentrations of U and Tc were monitored and compared among three different packing columns (waste only, waste + grout, and waste + grout + hydrated lime). Geochemical modeling of the effluent compositions was conducted to determine saturation indices of uranium solid phases that could control the solubility of uranium. The results indicate that addition of hydrated lime strongly stabilized the uranium through transforming uranium to a highly insoluble calcium uranate (CaUO 4 ) or similar phase, whereas no significant stabilization effect of grout or hydrated lime was observed on Tc leachability. The result implies that hydrated lime could be a great candidate for stabilizing Hanford tank residual wastes where uranium is one of the main concerns. Published by Elsevier Ltd.
CHEMICAL DIFFERENCES BETWEEN SLUDGE SOLIDS AT THE F AND H AREA TANK FARMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reboul, S.
2012-08-29
The primary source of waste solids received into the F Area Tank Farm (FTF) was from PUREX processing performed to recover uranium and plutonium from irradiated depleted uranium targets. In contrast, two primary sources of waste solids were received into the H Area Tank Farm (HTF): a) waste from PUREX processing; and b) waste from H-modified (HM) processing performed to recover uranium and neptunium from burned enriched uranium fuel. Due to the differences between the irradiated depleted uranium targets and the burned enriched uranium fuel, the average compositions of the F and H Area wastes are markedly different from onemore » another. Both F and H Area wastes contain significant amounts of iron and aluminum compounds. However, because the iron content of PUREX waste is higher than that of HM waste, and the aluminum content of PUREX waste is lower than that of HM waste, the iron to aluminum ratios of typical FTF waste solids are appreciably higher than those of typical HTF waste solids. Other constituents present at significantly higher concentrations in the typical FTF waste solids include uranium, nickel, ruthenium, zinc, silver, cobalt and copper. In contrast, constituents present at significantly higher concentrations in the typical HTF waste solids include mercury, thorium, oxalate, and radionuclides U-233, U-234, U-235, U-236, Pu-238, Pu-242, Cm-244, and Cm-245. Because of the higher concentrations of Pu-238 in HTF, the long-term concentrations of Th-230 and Ra-226 (from Pu-238 decay) will also be higher in HTF. The uranium and plutonium distributions of the average FTF waste were found to be consistent with depleted uranium and weapons grade plutonium, respectively (U-235 comprised 0.3 wt% of the FTF uranium, and Pu-240 comprised 6 wt% of the FTF plutonium). In contrast, at HTF, U-235 comprised 5 wt% of the uranium, and Pu-240 comprised 17 wt% of the plutonium, consistent with enriched uranium and high burn-up plutonium. X-ray diffraction analyses of various FTF and HTF samples indicated that the primary crystalline compounds of iron in sludge solids are Fe{sub 2}O{sub 3}, Fe{sub 3}O{sub 4}, and FeO(OH), and the primary crystalline compounds of aluminum are Al(OH){sub 3} and AlO(OH). Also identified were carbonate compounds of calcium, magnesium, and sodium; a nitrated sodium aluminosilicate; and various uranium compounds. Consistent with expectations, oxalate compounds were identified in solids associated with oxalic acid cleaning operations. The most likely oxidation states and chemical forms of technetium are assessed in the context of solubility, since technetium-99 is a key risk driver from an environmental fate and transport perspective. The primary oxidation state of technetium in SRS sludge solids is expected to be Tc(IV). In salt waste, the primary oxidation state is expected to be Tc(VII). The primary form of technetium in sludge is expected to be a hydrated technetium dioxide, TcO{sub 2} {center_dot} xH{sub 2}O, which is relatively insoluble and likely co-precipitated with iron. In salt waste solutions, the primary form of technetium is expected to be the very soluble pertechnetate anion, TcO{sub 4}{sup -}. The relative differences between the F and H Tank Farm waste provide a basis for anticipating differences that will occur as constituents of FTF and HTF waste residue enter the environment over the long-term future. If a constituent is significantly more dominant in one of the Tank Farms, its long-term environmental contribution will likely be commensurately higher, assuming the environmental transport conditions of the two Tank Farms share some commonality. It is in this vein that the information cited in this document is provided - for use during the generation, assessment, and validation of Performance Assessment modeling results.« less
Uranium in the Upper Cambrian black shale of Sweden
McKelvey, Vincent Ellis
1955-01-01
The Peltura zone of the Upper Cambrian black shales of Sweden contains about 0.02 percent uranium. Maximum amounts are present in rocks deposited in an embayment in the sea and in rocks in or closely adjacent to that part of the vertical sequence that contains maximum amounts of distillable oil, total organic matter, pyrite, and a black highly uraniferous kerogen called "kolm". Available data suggest that the precipitation of uranium is favored by a low redox potential and that the uranium in the shale matrix may be in fine-grained kolm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muldoon, Joe; Yankovich, Tamara; Schramm, Laurier L.
The Gunnar Mine and mill site was the largest of some 38 now-abandoned uranium mines that were developed and operated in Northern Saskatchewan, Canada, during the Cold War years. During their operating lifetimes these mines produced large quantities of ore and tailings. The Gunnar mine (open pit and underground) produced over 5 million tonnes of uranium ore and nearly 4.4 million tonnes of mine tailings during its operations from 1955 through 1963. An estimated 2.2 to 2.7 million m{sup 3} of waste rock that was generated during the processing of the ore abuts the shores of Lake Athabasca, the 22.more » largest lake in the world. After closure in the 1960's, the Gunnar site was abandoned with little to no decommissioning being done. The Saskatchewan Research Council has been contracted to manage the clean-up of these abandoned northern uranium mine and mill sites. The Gunnar Mine, because of the magnitude of tailings and waste rock, is subject to an environmental site assessment process regulated by both provincial and federal governments. This process requires a detailed study of the environmental impacts that have resulted from the mining activities and an analysis of projected impacts from remediation efforts. The environmental assessment process, specific site studies, and public involvement initiatives are all now well underway. Due to the many uncertainties associated with an abandoned site, an adaptive remediation approach, utilizing a decision tree, presented within the environmental assessment documents will be used as part of the site regulatory licensing. A critical early task was dealing with major public safety hazards on the site. The site originally included many buildings that were remnants of a community of approximately 800 people who once occupied the site. These buildings, many of which contained high levels of asbestos, had to be appropriately abated and demolished. Similarly, the original mine head frame and mill site buildings, many of which still contained the original machinery and equipment, also had to be dismantled. Remediation options for the accumulated demolition debris have been assessed, as have remediation options for the waste rock and tailings, all of which form part of the environmental assessment. The regulatory requirements include the environmental assessment processes, a complex public involvement strategy, and licensing from the Canadian Nuclear Safety Commission (CNSC) with the long-term goal of releasing the property in a remediated and stable state to the Province of Saskatchewan. Prescribed environmental and land use endpoints will be determined based on the environmental assessment studies and remediation options analyzed and implemented. Ultimately, the site will be released into an institutional controls program that will allow long-term government management and monitoring. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-06-01
Results of a high-sensitivity, aerial, gamma-ray spectrometer and magnetometer survey of the Lewistown Quadrangle, Montana, are presented. Instrumentation and methods are described in Volume 1 of this final report. Statistical and geological analysis of the radiometric data revealed 58 uranium anomalies worthy of field-checking as possible prospects. One anomaly may be associated with the Cambrian Flathead Quartzite that may contain deposits similar to the Blind River and Rand uranium deposits. Three anomalies may be indicative of sandstone-type deposits in Jurassic rocks, particularly the Morrison Formation, which hosts uranium mineralization elsewhere. One of the latter anomalies is also related to rocksmore » of the Mississippian Madison Group, and this suggests the possible presence of uranium in limestones of the Mission Canyon Formation. There are 45 anomalies related to the Cretaceous rocks. Lignite in the Hell Creek and Judith River formations and Eagle Sandstone may have caused the formation of 22 epigenetic uranium deposits. Many anomalies occur in the Bearpaw Shale and Claggett Formation. However, only five are considered significant of the remainder are expected to be caused by large amounts of radioactive bentonite or bentonitic shale. Two other Cretaceous units that may host sandstone-type deposits are the Colorado Shale and Kootenai Formation that register 16 and two anomalies respectively. Only one anomaly pertains to Tertiary rocks, and it may be indicative of vein-type deposits in the intrusives of the Judith Mountains. These rocks may also act as source rocks for deposits surrounding the Judith Mountains. Eight anomalies related only to Quaternary units may be demonstrative of uranium-rich source rocks that could host uranium mineralization.Several anomalies are located close to oil fields and may have been cause by radium-rich oil-field brines.« less
Depleted uranium as a backfill for nuclear fuel waste package
Forsberg, Charles W.
1998-01-01
A method for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package.
Depleted uranium as a backfill for nuclear fuel waste package
Forsberg, C.W.
1998-11-03
A method is described for packaging spent nuclear fuel for long-term disposal in a geological repository. At least one spent nuclear fuel assembly is first placed in an unsealed waste package and a depleted uranium fill material is added to the waste package. The depleted uranium fill material comprises flowable particles having a size sufficient to substantially fill any voids in and around the assembly and contains isotopically-depleted uranium in the +4 valence state in an amount sufficient to inhibit dissolution of the spent nuclear fuel from the assembly into a surrounding medium and to lessen the potential for nuclear criticality inside the repository in the event of failure of the waste package. Last, the waste package is sealed, thereby substantially reducing the release of radionuclides into the surrounding medium, while simultaneously providing radiation shielding and increased structural integrity of the waste package. 6 figs.
Estimation and mapping of uranium content of geological units in France.
Ielsch, G; Cuney, M; Buscail, F; Rossi, F; Leon, A; Cushing, M E
2017-01-01
In France, natural radiation accounts for most of the population exposure to ionizing radiation. The Institute for Radiological Protection and Nuclear Safety (IRSN) carries out studies to evaluate the variability of natural radioactivity over the French territory. In this framework, the present study consisted in the evaluation of uranium concentrations in bedrocks. The objective was to provide estimate of uranium content of each geological unit defined in the geological map of France (1:1,000,000). The methodology was based on the interpretation of existing geochemical data (results of whole rock sample analysis) and the knowledge of petrology and lithology of the geological units, which allowed obtaining a first estimate of the uranium content of rocks. Then, this first estimate was improved thanks to some additional information. For example, some particular or regional sedimentary rocks which could present uranium contents higher than those generally observed for these lithologies, were identified. Moreover, databases on mining provided information on the location of uranium and coal/lignite mines and thus indicated the location of particular uranium-rich rocks. The geological units, defined from their boundaries extracted from the geological map of France (1:1,000,000), were finally classified into 5 categories based on their mean uranium content. The map obtained provided useful data for establishing the geogenic radon map of France, but also for mapping countrywide exposure to terrestrial radiation and for the evaluation of background levels of natural radioactivity used for impact assessment of anthropogenic activities. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayzar, Theresa M.; Villa, Adam C.; Lobaugh, Megan L.
The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. Furthermore, we alter the (234U)/(238U) composition of Red Rock Creek downstream of the Juniper Mine. As a result of mine-derived contamination, water (234U)/(238U) ratios are 67% lower than in water upstream of the mine (1.114–1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activitymore » ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041–1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (~70–80% of uranium in leachable fraction). Furthermore, contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silver, L T; Williams, I S; Woodhead, J A
1980-10-01
Some of the principal findings of the study on the Lawler Peak Granite are: the granite is dated precisely by this work at 1411 +- 3 m.y., confirming its synchroneity with a great regional terrane of granites. Uranium is presently 8-10 times crustal abundance and thorium 2-3 times in this granite. Uranium is found to be enriched in at least eight, possibly ten, primary igneous mineral species over the whole-rock values. Individual mineral species show distinct levels in, and characteristics ranges of, uranium concentration. It appears that in a uraniferous granite such as this, conventional accuracy mineral suites probably cannotmore » account for most of the uranium in the rock, and more rare, high U-concentration phases also are present and are significant uranium hosts. It appears that at least two different geological episodes have contributed to the disturbance of the U-Th-Pb isotope systems. Studies of various sites for transient dispersal of uranium, thorium, and radiogenic lead isotopes indicate a non-uniform dispersal of these components. It appears that the bulk rock has lost at least 24 percent of its original uranium endowment, accepting limited or no radiogenic lead or thorium migration from the sample.« less
Preliminary examination of uranium deposits near Marysvale, Piute County, Utah
Granger, Harry C.; Bauer, Herman L.
1950-01-01
Autunite and other uranium minerals were discovered in 1948 by Pratt Seegmiller about 3 1/4 miles north of Marysvale, Piute County, Utah. Mining operations were begun in the summer of 1949 by the Vanadium Corporation of America on the Prospector and the Freedom claims, and by the Bullion Monarch Mining Company a the Bullion Monarch claims. These claims were examined briefly in December 1949 and January 1950 by the writers. The uranium deposits of the Marysvale district are in north-easterly striking fault zones in quartz monzonite that intrudes rocks of the "older" Tertiary volcanic sequence. Flows and tuffs of the "younger" Tertiary volcanic sequence uncomfortably overlie the earlier rocks. Autunite, tobernite, uranophane, schroeckingerite, and at least one unidentified secondary uranium mineral occur in the upper parts of the deposits. Pitchblende has been mined from the underground workings of the Prospector No. 1 mine. The uranium minerals are associated with dense quartz veins and intensely argillized wall rock. In the upper parts of the deposits pyrite is completely oxidized. The secondary uranium minerals probably were formed by the alteration of primary pitchblende by circulating meteoric waters.
Kayzar, Theresa M; Villa, Adam C; Lobaugh, Megan L; Gaffney, Amy M; Williams, Ross W
2014-10-01
The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. The ((234)U)/((238)U) composition of Red Rock Creek is altered downstream of the Juniper Mine. As a result of mine-derived contamination, water ((234)U)/((238)U) ratios are 67% lower than in water upstream of the mine (1.114-1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activity ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041-1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (∼70-80% of uranium in leachable fraction). Contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment. Published by Elsevier Ltd.
Kayzar, Theresa M.; Villa, Adam C.; Lobaugh, Megan L.; ...
2014-06-07
The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. Furthermore, we alter the (234U)/(238U) composition of Red Rock Creek downstream of the Juniper Mine. As a result of mine-derived contamination, water (234U)/(238U) ratios are 67% lower than in water upstream of the mine (1.114–1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activitymore » ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041–1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (~70–80% of uranium in leachable fraction). Furthermore, contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment.« less
A reconnaissance for uranium in carbonaceous rocks in southwestern Colorado and parts of New Mexico
Baltz, Elmer H.
1955-01-01
Coal and carbonaceous shale of the Dakota formation of Cretaceous age were examined for radioactivity in the Colorado Plateau of southwestern Colorado and northwestern New l1exico during the summer of 1953. Older and younger sedimentary rocks and some igneous rocks also were examined, but in less detail, Weak radioactivity was detected at many places but no new deposits of apparent economic importance were discovered. The highest radioactivity of carbonaceous rocks was detected in black shale, siltstone, and sandstone of the Paradox member of the Hermosa formation of Pennsylvanian age. A sample collected from this member at the Bald Eagle prospect in Gypsum Valley, San Higuel County, Colo. contains 0.10. percent uranium. Carbonaceous rocks were investigated at several localities on the Las Vegas Plateau and the Canadian Escarpment in Harding and San Miguel Counties, northeastern New Mexico. Carbonaceous sandstone and siltstone in the middle sandstone member of the Chinle formation of Triassic age contain uranium at a prospect of the Hunt Oil Company southwest of Sabinoso in northeastern San Miguel County, N. Mex. A channel sample across 3.2 feet of mineralized rocks at this locality contains 0.22 percent uranium. Weak radioactivity was detected at two localities in carbonaceous shale of the Dakota and Purgatoire formations of Cretaceous age.
Geology of the Ralston Buttes district, Jefferson County, Colorado: a preliminary report
Sheridan, Douglas M.; Maxwell, Charles H.; Albee, Arden L.; Van Horn, Richard
1956-01-01
The Ralston Buttes district in Jefferson County is one of the most significant new uranium districts located east of the Continental Divide in Colorado. The district is east of the Colorado Front Range mineral belt, along the east front of the range. From November 1953 through October 1956, about 10,000 tons of uranium ore, much of which was high-grade pitchblende-bearing vein material, was shipped from the district. The ore occurs in deposits that range in size from bodies containing less than 50 tons to ore shoots containing over 1,000 tons. The only other mining activity in the area has been a sporadic production of beryl, feldspar, and scrap mica from Precambrian pegmatites, and quarrying of dimension stone, limestone, and clay from sedimentary rocks. Most of the Ralston Buttes district consists of complexly folded Precambrian metamorphic and igneous rocks - gneiss, schist, quartzite, amphibolite, and granodiorite. Paleozoic and Mesozoic sedimentary rocks crop out in the northeastern part of the district. These rocks are cut by northwesterly-trending fault systems of Laramide age and by small bodies of intrusive rocks that are Tertiary in age. The typical uranium deposits in the district are hydrothermal veins occupying openings in Laramide fault breccias or related fractures that cut the Precambrian rocks. Pitchblende and lesser amounts of secondary uranium minerals are associated with sparse base-mental sulfides in a gangue of carbonate minerals, potash feldspar, and, more rarely, quartz. Less common types of deposits consist of pitchblende and secondary uranium minerals that occupy fractures cutting pegmatites and quartz veins. The uranium deposits are concentrated in two areas, the Ralston Creek area and the Golden Gate Canyon area. The deposits in the Ralston Creek area are located along the Rogers fault system, and the deposits in the Golden Gate Canyon area are along the Hurricane Hill fault system. Two geologic factors were important to the localization of the uranium deposits: (1) favorable structural environment and (2) favorable host rocks. The deposits in each of the two major areas are located where a northwesterly-trending Laramide fault system splits into a complex network of faults. Also, most of the deposits appear to be localized where the faults cut Precambrian rocks rich in hornblende, biotite, or garnet and biotite. The ore controls recognized in this relatively new uranium district may have wider application in areas of similar geology elsewhere in the Front Range.
Foster, C.B.; Robbins, E.I.; Bone, Y.
1990-01-01
The Rum Jungle Uranium field consists of at least six early Proterozoic deposits that have been mined either for uranium and/or the associated base and precious metals. Organic matter in the host rocks of the Whites Formation and Coomalie Dolomite is now predominantly graphite, consistent with the metamorphic history of these rocks. For nine samples, the mean total organic carbon content is high (3.9 wt%) and ranged from 0.33 to 10.44 wt%. Palynological extracts from the host rocks include black, filamentous, stellate (Eoastrion-like), and spherical morphotypes, which are typical of early Proterozoic microbiota. The colour, abundance, and shapes of these morphotypes reflect the thermal history, organic richness, and probable lacustrine biofacies of the host rocks. Routine analysis of rock thin sections and of palynological residues shows that mineral grains in some of the host rocks are coated with graphitized organic matter. The grain coating is presumed to result from ultimate thermal degradation of a petroleum phase that existed prior to metamorphism. Hydrocarbons are, however, still present in fluid inclusions within carbonates of the Coomalie Dolomite and lower Whites Formation. The fluid inclusions fluoresce dull orange in blue-light excitation and their hydrocarbon content is confirmed by gas chromatography of whole-rock extracts. Preliminary analysis of the oil suggests that it is migrated, and because it has escaped graphitization through metamorphism it is probably not of early Proterozoic age. The presence of live oil is consistent with fluid inclusion data that suggest subsequent, low-temperature brine migration through the rocks. The present observations support earlier suggestions that organic matter in the host formations trapped uranium to form protore. Subsequent fluid migrations probably brought additional uranium and other metals to these formations, and the organic matter provided a reducing environment for entrapment. ?? 1990.
McNeal, J.M.; Lee, D.E.; Millard, H.T.
1981-01-01
Some secondary uranium deposits are thought to have formed from uranium derived by the weathering of silicic igneous rocks such as granites, rhyolites, and tuffs. A regional geochemical survey was made to determine the distribution of uranium and thorium in granitic rocks of the Basin and Range province in order to evaluate the potential for secondary uranium occurrences in the area. The resulting geochemical maps of uranium, thorium, and the Th:U ratio may be useful in locating target areas for uranium exploration. The granites were sampled according to a five-level, nested, analysis-of-variance design, permitting estimates to be made of the variance due to differences between:(1) two-degree cells; (2) one-degree cells; (3) plutons; (4) samples; and (5) analyses. The cells are areas described in units of degrees of latitude and longitude. The results show that individual plutons tend to differ in uranium and thorium concentrations, but that each pluton tends to be relatively homogeneous. Only small amounts of variance occur at the two degree and the between-analyses levels. The three geochemical maps that were prepared are based on one-degree cell means. The reproducibility of the maps is U > Th ??? Th:U. These geochemical maps may be used in three methods of locating target areas for uranium exploration. The first method uses the concept that plutons containing the greatest amounts of uranium may supply the greatest amounts of uranium for the formation of secondary uranium occurrences. The second method is to examine areas with high thorium contents, because thorium and uranium are initially highly correlated but much uranium could be lost by weathering. The third method is to locate areas in which the plutons have particularly high Th:U ratios. Because uranium, but not thorium, is leached by chemical weathering, high Th:U ratios suggest a possible loss of uranium and possibly a greater potential for secondary uranium occurrences to be found in the area. ?? 1981.
Reconnaissance for radioactive materials in the southern part of Brazil
Pierson, Charles T.; Haynes, Donald D.; Filho, Evaristo Ribeiro
1957-01-01
During 1954-1956 a reconnaissance for radioactive minerals was made with carborne, airborne and handborne scintillation equipment in the southern Brazilian states of Rio de Janeiro, Sao Paulo, Parana, Santa Catarina and Rio Grande do Sul. During the traverse covering more than 5,000 kilometers the authors checked the radioactivity of Precambrian igneous and metamorphic rocks, Paleozoic, Mesozoic and Cenozoic sedimentary rocks, and Mesozoic alkalic intrusive and basaltic extrusive rocks. The 22 samples collected contained from 0.003 to 0.029 percent equivalent uranium oxide and from 0.10 to 0.91 percent equivalent thorimn; two samples were taken from radioactive pegmati tes for mineralogic studies. None of the localities is at present a commercial source of uranium or thorium; however, additional work should be done near the alkalic stock at Lages in the State of Santa Catarina and at the Passo das Tropas fossil plant locality near Santa Maria in the state of Rio Grande do Sul. Near Lages highly altered alkalic rock from a dike contained 0.026 percent uranium oxide. At Passo das Tropas highly altered, limonite-impregnated sandstone from the Rio do Rasto group of sedimentary rocks contained 0.029 percent uranium oxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.
1981-02-01
A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium andmore » 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.« less
NASA Astrophysics Data System (ADS)
Jaraula, C.; Schwark, L.; Moreau, X.; Grice, K.; Bagas, L.
2013-12-01
Mulga Rock is a multi-element deposit containing uranium hosted by Eocene peats and lignites deposited in inset valleys incised into Permian rocks of the Gunbarrel Basin and Precambrian rocks of the Yilgarn Craton and Albany-Fraser Orogen. Uranium readily adsorbs onto minerals or phytoclasts to form organo-uranyl complexes. This is important in pre-concentrating uranium in this relatively young ore deposit with rare uraninite [UO2] and coffinite [U(SiO4)1-x(OH)4x], more commonly amorphous and sub-micron uranium-bearing particulates. Organic geochemical and compound-specific stable carbon isotope analyses were conducted to identify possible associations of molecular markers with uranium accumulation and to recognize effect(s) of ionizing radiation on molecular markers. Samples were collected from the Ambassador deposit containing low (<200 ppm) to high (>2000 ppm) uranium concentrations. The bulk rock C/N ratios of 82 to 153, Rock-Eval pyrolysis yields of 316 to 577 mg hydrocarbon/g TOC (Hydrogen Index, HI) and 70 to 102 mg CO2/g TOC (Oxygen Index, OI) are consistent with a terrigenous and predominantly vascular plant OM source deposited in a complex shallow water system, ranging from lacustrine to deltaic, swampy wetland and even shallow lake settings as proposed by previous workers. Organic solvent extracts were separated into saturated hydrocarbon, aromatic hydrocarbon, ketone, and a combined free fatty acid and alcohol fraction. The molecular profiles appear to vary with uranium concentration. In samples with relatively low uranium concentrations, long-chain n-alkanes, alcohols and fatty acids derived from epicuticular plant waxes dominate. The n-alkane distributions (C27 to C31) reveal an odd/even preference (Carbon Preference Index, CPI=1.5) indicative of extant lipids. Average δ13C of -27 to -29 ‰ for long-chain n-alkanes is consistent with a predominant C3 plant source. Samples with relatively higher uranium concentrations contain mostly intermediate-length n-alkanes, ketones, alcohols, and fatty acids (C20 to C24) with no preferential distribution (CPI~1). Intermediate length n-alkanes have modest carbon isotope enrichment compared to long-chain n-alkanes. These shorter-chain hydrocarbons are interpreted to represent alteration products. The diversity and relative abundance of ketones in highly mineralised Mulga Rock peats and lignites are not consistent with aerobic and diagenetic degradation of terrigenous OM in oxic environments. Moreover, molecular changes cannot be associated with thermal breakdown due to the low maturity of the deposits. It is possible that the association of high uranium concentrations and potential radiolysis resulted in the oxidation of alcohol functional groups into aldehydes and ketones and breakdown of highly aliphatic macromolecules (i.e. spores, pollen, cuticles, and algal cysts). These phytoclasts are usually considered to be recalcitrant as they evolved to withstand chemical and physical degradation. Previous petrographic analyses show that spores, pollen and wood fragments are preferentially enriched in uranium. Their molecular compositions are feasible sources of short- to intermediate-length n-alkanes that dominate the mineralised peats and lignites.
Diatremes of the Hopi Buttes, Arizona; chemical and statistical analyses
Wenrich, K.J.; Mascarenas, J.F.
1982-01-01
Lacustrine sediments deposited in maar lakes of the Hopi Buttes diatremes are hosts for uranium mineralization of as much as 1500 ppm. The monchiquites and limburgite turfs erupted from the diatremes are distinguished from normal alkalic basalts of the Colorado Plateau by their extreme silica undersaturation and high water, TiO2, and P2O5 contents. Many trace elements are also unusually abundant, including Ag, As, Ba, Be, Ce, Dy, Eu, F, Gd, Hf, La, Nd, Pb, Rb, Se, Sm, Sn, Sr, Ta, Tb, Th, U, V, Zn, and Zr. The lacustrine sediments, which consist predominantly of travertine and clastic rocks, are the hosts for syngenetic and epigenetic uranium mineralization of as much as 1500 ppm uranium. Fission track maps show the uranium to be disseminated within the travertine and clastic rocks, and although microprobe analyses have not, as yet, revealed discrete uranium-bearing phases, the clastic rocks show a correlation of high Fe, Ti, and P with areas of high U. Correlation coefficients show that for the travertines, clastics, and limburgite ruffs, Mo, As, Sr, Co, and V appear to have the most consistent and strongest correlations with uranium. Many elements, including many of the rare-earth elements, that are high in these three rocks are also high in the monchiquites, as compared to the average crustal abundance for the respective rock type. This similar suite of anomalous elements, which includes such immobile elements as the rare earths, suggests that Fluids which deposited the travertines were related to the monchiquitic magma. The similar age of about 5 m.y. for both the lake beds and the monchiquites also appears to support this source for the mineralizing fluids.
Hyman, H.H.; Dreher, J.L.
1959-07-01
The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.
Geology of the Midnite uranium mine, Stevens County, Washington; a preliminary report
Nash, J. Thomas; Lehrman, Norman J.
1975-01-01
The Midnite mine is one of only two mines in the United States currently producing uranium from discordant deposits in crystalline host rocks. Ore bodies are in metamorphosed steeply dipping Precambrian pelitic and calcareous rocks of a roof pendant adjacent to a Cretaceous(?) porphyritic quartz monzonite pluton. Production during 14 years, of operation has been about 8 million pounds of U3O8 from oxidized and reduced ores averaging 0.23 percent U3O8. Uranium deposits are generally tabular in form and dimensions range up to 380 m long, 210 m wide, and 50 m thick. Deposits are bounded on at least one side by unmineralized intrusive ribs of granitic rock, and thickest mineralized zones invariably occur at depressions in the intrusive contact. Upper limits of some deposits are nearly horizontal, and upper elevations of adjacent mineralized zones separated by ribs of granite are similar. Near surface ore is predominantly autunite, but ore at depth consists of pitchblende and coffinite with abundant pyrite and marcasite. Uranium minerals occur as .disseminations along foliation, replacements, and stockwork fracture-fillings. No stratigraphic controls on ore deposition are recognized. Rather, mineralized zones cut across lithologic boundaries if permeability is adequate. Most ore is in muscovite schist and mica phyllite, but important deposits occur in calc-silicate hornfels. Amphibolite sills and mid-Tertiary dacite dikes locally, carry ore where intensely fractured. High content of iron and sulfur, contained chiefly in FeS2, appear to be an important feature of favorable host rocks. Geometry of deposits, structural, and geochemical features suggest that uranium minerals were deposited over a span of time from late Cretaceous to late Tertiary. Ore occurs in but is not offset by a shear zone that displaces mid-Tertiary rocks.. Economic zones of uranium are interpreted to have been secondarily enriched in late Tertiary time by downward and lateral migration of uranium into permeable zones where deposition was influenced by ground water controls and minerals that could reduce or neutralize uranium-bearing solutions.
Landa, E.R.
2003-01-01
Specific extraction studies in our laboratory have shown that iron and manganese oxide- and alkaline earth sulfate minerals are important hosts of radium in uranium mill tailings. Iron- and sulfate-reducing bacteria may enhance the release of radium (and its analog barium) from uranium mill tailings, oil field pipe scale [a major technologically enhanced naturally occurring radioactive material (TENORM) waste], and jarosite (a common mineral in sulfuric acid processed-tailings). These research findings are reviewed and discussed in the context of nuclear waste forms (such as barium sulfate matrices), radioactive waste management practices, and geochemical environments in the Earth's surficial and shallow subsurface regions.
Uranium provinces of North America; their definition, distribution, and models
Finch, Warren Irvin
1996-01-01
Uranium resources in North America are principally in unconformity-related, quartz-pebble conglomerate, sandstone, volcanic, and phosphorite types of uranium deposits. Most are concentrated in separate, well-defined metallogenic provinces. Proterozoic quartz-pebble conglomerate and unconformity-related deposits are, respectively, in the Blind River–Elliot Lake (BRELUP) and the Athabasca Basin (ABUP) Uranium Provinces in Canada. Sandstone uranium deposits are of two principal subtypes, tabular and roll-front. Tabular sandstone uranium deposits are mainly in upper Paleozoic and Mesozoic rocks in the Colorado Plateau Uranium Province (CPUP). Roll-front sandstone uranium deposits are in Tertiary rocks of the Rocky Mountain and Intermontane Basins Uranium Province (RMIBUP), and in a narrow belt of Tertiary rocks that form the Gulf Coastal Uranium Province (GCUP) in south Texas and adjacent Mexico. Volcanic uranium deposits are concentrated in the Basin and Range Uranium Province (BRUP) stretching from the McDermitt caldera at the Oregon-Nevada border through the Marysvale district of Utah and Date Creek Basin in Arizona and south into the Sierra de Peña Blanca District, Chihuahua, Mexico. Uraniferous phosphorite occurs in Tertiary sediments in Florida, Georgia, and North and South Carolina and in the Lower Permian Phosphoria Formation in Idaho and adjacent States, but only in Florida has economic recovery been successful. The Florida Phosphorite Uranium Province (FPUP) has yielded large quantities of uranium as a byproduct of the production of phosphoric acid fertilizer. Economically recoverable quantities of copper, gold, molybdenum, nickel, silver, thorium, and vanadium occur with the uranium deposits in some provinces.Many major epochs of uranium mineralization occurred in North America. In the BRELUP, uranium minerals were concentrated in placers during the Early Proterozoic (2,500–2,250 Ma). In the ABUP, the unconformity-related deposits were most likely formed initially by hot saline formational water related to diagenesis (»1,400 to 1,330 Ma) and later reconcentrated by hydrothermal events at »1,280–»1,000, »575, and »225 Ma. Subsequently in North America, only minor uranium mineralization occurred until after continental collision in Permian time (255 Ma). Three principal epochs of uranium mineralization occurred in the CPUP: (1) » 210–200 Ma, shortly after Late Triassic sedimentation; (2) »155–150 Ma, in Late Jurassic time; and (3) » 135 Ma, after sedimentation of the Upper Jurassic Morrison Formation. The most likely source of the uranium was silicic volcaniclastics for the three epochs derived from a volcanic island arc at the west edge of the North American continent. Uranium mineralization occurred during Eocene, Miocene, and Pliocene times in the RMIBUP, GCUP, and BRUP. Volcanic activity took place near the west edge of the continent during and shortly after sedimentation of the host rocks in these three provinces. Some volcanic centers in the Sierra de Peña Blanca district within the BRUP may have provided uranium-rich ash to host rocks in the GCUP.Most of the uranium provinces in North America appear to have a common theme of close associations to volcanic activity related to the development of the western margin of the North American plate. The south and west margin of the Canadian Shield formed the leading edge of the progress of uranium source development and mineralization from the Proterozoic to the present. The development of favorable hosts and sources of uranium is related to various tectonic elements developed over time. Periods of major uranium mineralization in North America were Early Proterozoic, Middle Proterozoic, Late Triassic–Early Jurassic, Early Cretaceous, Oligocene, and Miocene. Tertiary mineralization was the most pervasive, covering most of Western and Southern North America.
The roles of organic matter in the formation of uranium deposits in sedimentary rocks
Spirakis, C.S.
1996-01-01
Because reduced uranium species have a much smaller solubility than oxidized uranium species and because of the strong association of organic matter (a powerful reductant) with many uranium ores, reduction has long been considered to be the precipitation mechanism for many types of uranium deposits. Organic matter may also be involved in the alterations in and around tabular uranium deposits, including dolomite precipitation, formation of silicified layers, iron-titanium oxide destruction, dissolution of quartz grains, and precipitation of clay minerals. The diagenetic processes that produced these alterations also consumed organic matter. Consequently, those tabular deposits that underwent the more advanced stages of diagenesis, including methanogenesis and organic acid generation, display the greatest range of alterations and contain the smallest amount of organic matter. Because of certain similarities between tabular uranium deposits and Precambrian unconformity-related deposits, some of the same processes might have been involved in the genesis of Precambrian unconformity-related deposits. Hydrologic studies place important constraints on genetic models of various types of uranium deposits. In roll-front deposits, oxidized waters carried uranium to reductants (organic matter and pyrite derived from sulfate reduction by organic matter). After these reductants were oxidized at any point in the host sandstone, uranium minerals were reoxidized and transported further down the flow path to react with additional reductants. In this manner, the uranium ore migrated through the sandstone at a rate slower than the mineralizing ground water. In the case of tabular uranium deposits, the recharge of surface water into the ground water during flooding of lakes carried soluble humic material to the water table or to an interface where humate precipitated in tabular layers. These humate layers then established the chemical conditions for mineralization and related alterations. In the case of Precambrian unconformity-related deposits, free thermal convection in the thick sandstones overlying the basement rocks carried uranium to concentrations of organic matter in the basement rocks.
National Uranium Resource Evaluation, Tularosa Quadrangle, New Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, V.P.; Nagy, P.A.; Spreng, W.C.
1981-12-01
Uranium favorability of the Tularosa Quadrangle, New Mexico, was evaluated to a depth of 1500 m using National Uranium Resource Evaluation criteria. Uranium occurrences reported in the literature were located, sampled, and described in detail. Areas of anomalous radioactivity, interpreted from an aerial radiometric survey, and geochemical anomalies, interpreted from hydrogeochemical and stream-sediment reconnaissance, were also investigated. Additionally, several hundred rock samples were studied in thin section, and supplemental geochemical analyses of rock and water samples were completed. Fluorometric analyses were completed for samples from the Black Range Primitive Area to augment previously available geochemical data. Subsurface favorability was evaluatedmore » using gamma-ray logs and descriptive logs of sample cuttings. One area of uranium favorability was delineated, based on the data made available from this study. This area is the Nogal Canyon cauldron margin zone. Within the zone, characterized by concentric and radial fractures, resurgent doming, ring-dike volcanism, and intracauldron sedimentation, uranium conentration is confined to magmatic-hydrothermal and volcanogenic uranium deposits.« less
Recovery of fissile materials from nuclear wastes
Forsberg, Charles W.
1999-01-01
A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.
Preliminary study of favorability for uranium resources in Juab County, Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leedom, S.H.; Mitchell, T.P.
1978-02-01
The best potential for large, low-grade uranium deposits in Juab County is in the hydrothermally altered vitric tuffs of Pliocene age. The lateral extent of the altered tuffs may be determined by subsurface studies around the perimeter of the volcanic centers in the Thomas Range and the Honeycomb Hills. Because the ring-fracture zone associated with collapse of the Thomas caldera was a major control for hydrothermal uranium deposits, delineation of the northern and eastern positions of the ring-fracture zone is critical in defining favorable areas for uranium deposits. A small, medium-grade ore deposit in tuffaceous sand of Pliocene age atmore » the Yellow Chief mine in Dugway Dell is unique in origin, and the probability of discovering another deposit of this type is low. A deposit of this type may be present under alluvial cover in the northwestern Drum Mountains along the southern extension of the ring-fracture zone of the Thomas caldera. Festoonlike iron oxide structures and uranium deposition within permeable sandstone horizons indicate that the Yellow Chief deposit was formed by recent ground-water circulation. Granitic intrusive rocks in the Deep Creek Range and in Desert Mountain contain isolated epigenetic vein-type deposits. These rocks could be a source of arkosic sediments buried in adjacent valleys. The Pleistocene lacustrine sediments and playa lake brines may contain concentrations of uranium leached from uranium-rich rocks.« less
Uranium mining wastes, garden exhibition and health risks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Gerhard; Schmidt, Peter; Hinz, Wilko
2007-07-01
Available in abstract form only. Full text of publication follows: For more than 40 years the Soviet-German stockholding company SDAG WISMUT mined and milled Uranium in the East of Germany and became up to 1990 the world's third largest Uranium producer. After reunification of Germany, the new found state own company Wismut GmbH was faced with the task of decommissioning and rehabilitation of the mining and milling sites. One of the largest mining areas in the world, that had to be cleaned up, was located close to the municipality of Ronneburg near the City of Gera in Thuringia. After closingmore » the operations of the Ronneburg underground mine and at the 160 m deep open pit mine with a free volume of 84 Mio.m{sup 3}, the open pit and 7 large piles of mine waste, together 112 Mio.m{sup 3} of material, had to be cleaned up. As a result of an optimisation procedure it was chosen to relocate the waste rock piles back into the open pit. After taking this decision and approval of the plan the disposal operation was started. Even though the transport task was done by large trucks, this took 16 years. The work will be finished in 2007, a cover consisting of 40 cm of uncontaminated material will be placed on top of the material, and the re-vegetation of the former open pit area will be established. When in 2002 the City of Gera applied to host the largest garden exhibition in Germany, Bundesgartenschau (BUGA), in 2007, Wismut GmbH supported this plan by offering parts of the territory of the former mining site as an exhibition ground. Finally, it was decided by the BUGA organizers to arrange its 2007 exhibition on grounds in Gera and in the valley adjacent to the former open pit mine, with parts of the remediated area within the fence of the exhibition. (authors)« less
Process for electrolytically preparing uranium metal
Haas, Paul A.
1989-01-01
A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.
Process for electrolytically preparing uranium metal
Haas, Paul A.
1989-08-01
A process for making uranium metal from uranium oxide by first fluorinating uranium oxide to form uranium tetrafluoride and next electrolytically reducing the uranium tetrafluoride with a carbon anode to form uranium metal and CF.sub.4. The CF.sub.4 is reused in the fluorination reaction rather than being disposed of as a hazardous waste.
Scarborough, Robert Bryan; Wilt, Jan Carol
1979-01-01
This study focuses attention on Cenozoic sedimentary rocks in the Basin and Range Province of Arizona. The known occurrences of uranium and anomalous radioactivity in these rocks are associated with sediments that accumulated in a low energy environment characterized by fine-grained clastics, including important tuffaceous materials, and carbonate rocks. Most uranium occurrences, in these rocks appear to be stratabound. Emphasis was placed on those sedimentary materials that pre-date the late Cenozoic Basin and Range disturbance. They are deformed and crop out on pedimented range blocks and along the province interface with the Transition Zone. Three tentative age groups are recognized: Group I - Oligocene, pre-22 m.y., Group II - early Miocene - 22 m.y. - 16 m.y., and Group III - middle Miocene - 16 m.y. to 13--10 m.y. Regionally, these three groups contain both coarse to fine-grained red clastics and low energy lighter colored 'lacustrine' phases. Each of the three groups has been the object of uranium exploration. Group II, the early Miocene strata, embraces the Anderson Mine - Artillery region host rocks and also the New River - Cave Creek early Miocene beds-along the boundary with the Transition Zone. These three groups of rocks have been tectonically deformed to the extent that original basins of deposition cannot yet be reconstructed. However, they were considerably more extensive in size than the late Cenozoic basins the origin of which deformed the former. Group II rocks are judged to be of prime interest because of: (1) the development and preservation of organic matter in varying lithologies, (2) apparent contemporaneity with silicic volcanic centers, (3) influence of Precambrian crystalline rocks, and (4) relative outcrop continuity near the stable Transition Zone. The Transition Zone, especially along its boundary with the Basin and Range Province, needs additional geologic investigation, especially as regards the depositional continuity of Group II sediment s.
National uranium resource evaluation: Newark Quadrangle, Pennsylvania and New Jersey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popper, G.H.P.; Martin, T.S.
1982-04-01
The Newark Quadrangle, Pennsylvania and New Jersey, was evaluated to a depth of 1500 m to identify geologic environments and delineate areas favorable for uranium deposits. Criteria used were those developed for the National Uranium Resource Evaluation program. Results of the investigation indicate that the Precambrian Reading Prong contains environments favorable for anatectic and allogenic uranium deposits. Two suites of rocks are favorable for anatectic-type concentrations: An alaskite-magnetite-gneiss association, and red granite and quartz monzonite. Allogenic uranium concentrations occur in rocks of the marble-skarn-serpentinite association. Environments favorable for peneconcordant sandstone-type uranium deposits occur in the upper one-third of the Catskillmore » Formation, the Mississippian-Pennsylvanian Mauch Chunk-Pottsville transition beds, and the upper half of the Triassic Stockton Formation. The Triassic Lockatong Formation contains environments favorable for carbonaceous shale-type uranium concentrations. The Ordovician Epler Formation and the Cretaceous-Tertiary strata of the Coastal Plain were not evaluated due to time restrictions and lack of outcroup. All other geologic environments are considered unfavorable for uranium deposits.« less
Uranium in the Wyoming Landscape Conservation Initiative study area, southwestern Wyoming
Wilson, Anna B.
2015-10-20
In the WLCI study area, all uranium areas except Poison Basin and Ketchum Buttes contain roll-front deposits in Eocene (56–34 Ma) sedimentary rocks. Tabular sandstone-hosted uranium deposits are also recognized within the study area.
Excess lead in "rusty rock" 66095 and implications for an early lunar differentiation
Nunes, P.D.; Tatsumoto, M.
1973-01-01
Apollo 16 breccia 66095 contains a remarkably high amount of lead (15 part's per million), 85 percent of which is not supported by uranium and thorium in the rock. An acid leach experiment coupled with separate analyses of the whole rock and mineral fractions for uranium, thorium, and lead indicate that the excess lead has a lunar source and was apparently introduced about 4.0 X 109 years ago. The data also suggest that a major lunar crustal differentiation occurred about 4.47 X 109 years ago.
Liu, Xinhua; Wei, Fangxin; Xu, Chunyan; Liao, Yunxuan; Jiang, Jing
2015-09-01
The proper classification of radioactive waste is the basis upon which to define its disposal method. In view of differences between waste containing artificial radionuclides and waste with naturally occurring radionuclides, the scientific definition of the properties of waste arising from the front end of the uranium fuel cycle (UF Waste) is the key to dispose of such waste. This paper is intended to introduce briefly the policy and practice to dispose of such waste in China and some foreign countries, explore how to solve the dilemma facing such waste, analyze in detail the compositions and properties of such waste, and finally put forward a new concept of classifying such waste as waste with naturally occurring radionuclides.
Potential Aquifer Vulnerability in Regions Down-Gradient from Uranium In Situ Recovery (ISR) Sites
Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are instrumental in leaching uranium from source rock...
Szecsody, Jim E; Truex, Mike J; Qafoku, Nikolla P; Wellman, Dawn M; Resch, Tom; Zhong, Lirong
2013-08-01
This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH2) resulted in a rapid (<10 h) increase in aqueous carbonate (with Ca(2+), Mg(2+)) and phosphate and a slow (100 s of hours) increase in silica, Al(3+), and K(+), likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH13) resulted in a rapid (<10h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity. Copyright © 2013 Elsevier B.V. All rights reserved.
National Uranium Resource Evaluation: Durango Quadrangle, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Theis, N.J.; Madson, M.E.; Rosenlund, G.C.
1981-06-01
The Durango Quadrangle (2/sup 0/), Colorado, was evaluated using National Uranium Resource Evaluation criteria to determine environments favorable for uranium deposits. General reconnaissance, geologic and radiometric investigations, was augmented by detailed surface examination and radiometric and geochemical studies in selected areas. Eight areas favorable for uranium deposits were delineated. Favorable geologic environments include roscoelite-type vanadium-uranium deposits in the Placerville and Barlow Creek-Hermosa Creek districts, sandstone uranium deposits along Hermosa Creek, and vein uranium deposits in the Precambrian rocks of the Needle Mountains area and in the Paleozoic rocks of the Tuckerville and Piedra River Canyon areas. The major portions ofmore » the San Juan volcanic field, the San Juan Basin, and the San Luis Basin within the quadrangle were judged unfavorable. Due to lack of information, the roscoelite belt below 1000 ft (300 m), the Eolus Granite below 0.5 mi (0.8 km), and the Lake City caldera are unevaluated. The Precambrian Y melasyenite of Ute Creek and the Animas Formation within the Southern Ute Indian Reservation are unevaluated due to lack of access.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blomeke, J O; Ferguson, D E; Croff, A G
1978-01-01
Based on preliminary analyses, spent fuel assemblies are an acceptable form for waste disposal. The following studies appear necessary to bring our knowledge of spent fuel as a final disposal form to a level comparable with that of the solidified wastes from reprocessing: 1. A complete systems analysis is needed of spent fuel disposition from reactor discharge to final isolation in a repository. 2. Since it appears desirable to encase the spent fuel assembly in a metal canister, candidate materials for this container need to be studied. 3. It is highly likely that some ''filler'' material will be needed betweenmore » the fuel elements and the can. 4. Leachability, stability, and waste-rock interaction studies should be carried out on the fuels. The major disadvantages of spent fuel as a disposal form are the lower maximum heat loading, 60 kW/acre versus 150 kW/acre for high-level waste from a reprocessing plant; the greater long-term potential hazard due to the larger quantities of plutonium and uranium introduced into a repository; and the possibility of criticality in case the repository is breached. The major advantages are the lower cost and increased near-term safety resulting from eliminating reprocessing and the treatment and handling of the wastes therefrom.« less
Bioaccessibility of U, Th and Pb in particulate matter from an abandoned uranium mine
NASA Astrophysics Data System (ADS)
Millward, Geoffrey; Foulkes, Michael; Henderson, Sam; Blake, William
2016-04-01
Currently, there are approximately 150 uranium mines in Europe at various stages of either operation, development, decommissioning, restoration or abandonment (wise-uranium.com). The particulate matter comprising the mounds of waste rock and mill tailings poses a risk to human health through the inadvertent ingestion of particles contaminated with uranium and thorium, and their decay products, which exposes recipients to the dual toxicity of heavy elements and their radioactive emissions. We investigated the bioaccessibility of 238U, 232Th and 206,214,210Pb in particulate samples taken from a contaminated, abandoned uranium mine in South West England. Sampling included a mine shaft, dressing floor and waste heap, as well as soils from a field used for grazing. The contaminants were extracted using the in-vitro Unified Bioaccessibility Research Group of Europe Method (UBM) in order to mimic the digestion processes in the human stomach (STOM) and the combined stomach and gastrointestinal tract (STOM+INT). Analyses of concentrations of U, Th and Pb in the extracts were by ICP-MS and the activity concentrations of radionuclides were determined on the same particles, before and after extraction, using gamma spectroscopy. 'Total' concentrations of U, Th and Pb for all samples were in the range 57 to 16,200, 0.28 to 3.8 and 69 to 4750 mg kg-1, respectively. For U and Pb the concentrations in the STOM fraction were lower than the total and STOM+INT fractions were even lower. However, for Th the STOM+INT fractions were higher than the STOM due to the presence of Th carbonate species within the gastrointestinal fluid. Activity concentrations for 214Pb and 210Pb, including total, STOM and STOM+INT, were in the range 180 to <1 Bq g-1 for the dressing floor and waste heap and 18 to <1 Bq g-1 for the grazing land. Estimates of the bioaccessible fractions (BAFs) of 238U in the most contaminated samples were 39% and 8% in the STOM and STOM+INT, respectively, whereas the respective BAFs for 232Th were 3% and 9%. For stable 206Pb the STOM and STOM+INT BAFs were 16% and 3% for the most contaminated samples, whereas those from the field had 44% in the STOM fraction and 17% in the STOM+INT fraction. The BAFs for 214Pb and 210Pb were the same as 206Pb. Dose estimates were made for the contaminants together with radioactive doses in order to assess potential risk to human health.
Real-time noble gas release signaling rock deformation
NASA Astrophysics Data System (ADS)
Bauer, S. J.; Gardner, W. P.; Lee, H.
2016-12-01
We present empirical results/relationships of rock strain, microfracture density, acoustic emissions, and noble gas release from laboratory triaxial experiments for a granite and basalt. Noble gases are contained in most crustal rock at inter/intra granular sites, their release during natural and manmade stress and strain changes represents a signal of brittle/semi brittle deformation. The gas composition depends on lithology, geologic history and age, fluids present, and uranium, thorium and potassium-40 concentrations in the rocks that affect radiogenic noble gases (helium, argon) production. Noble gas emission and its relationship to crustal processes have been studied, including correlations to tectonic velocities and qualitative estimates of deep permeability from surface measurements, finger prints of nuclear weapon detonation, and as potential precursory signals to earthquakes attributed to gas release due to pre-seismic stress, dilatancy and/or rock fracturing. Helium emission has been shown as a precursor of volcanic activity. Real-time noble gas release is observed using an experimental system utilizing mass spectrometers to measure gases released during triaxial rock deformation. Noble gas release is shown to represent a sensitive precursor signal of rock deformation by relating real-time noble gas release to stress-strain state changes and acoustic emissions. We propose using noble gas release to also signal rock deformation in boreholes, mines and nuclear waste repositories. We postulate each rock exhibits a gas release signature which is microstructure, stress/strain state, and or permanent deformation dependent. Such relationships, when calibrated, may be used to sense rock deformation and then develop predictive models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corp., for the US Dept. of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-7468 A
NASA Astrophysics Data System (ADS)
Kiselev, G. P.; Yakovlev, E. Yu.; Druzhinin, S. V.; Galkin, A. S.
2017-09-01
The contents of radioactive elements and the uranium isotopic composition of kimberlite in the Arkhangelskaya pipe at the M.V. Lomonosov deposit and of nearby country rocks have been studied. A surplus of 234U isotope has been established in rocks from the near-pipe space. The high γ = 234U/238U ratio is controlled by the geological structure of the near-pipe space. A nonequilibrium uranium halo reaches two pipe diameters in size and can be regarded as a local ore guide for kimberlite discovery. The rocks in the nearpipe space are also characterized by elevated or anomalous U, Th, and K contents with respect to the background.
Flowsheets and source terms for radioactive waste projections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forsberg, C.W.
1985-03-01
Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF/sub 6/ conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables.
Hurtado-Bermúdez, Santiago; Villa-Alfageme, María; Mas, José Luis; Alba, María Dolores
2018-07-01
The development of Deep Geological Repositories (DGP) to the storage of high-level radioactive waste (HLRW) is mainly focused in systems of multiple barriers based on the use of clays, and particularly bentonites, as natural and engineered barriers in nuclear waste isolation due to their remarkable properties. Due to the fact that uranium is the major component of HLRW, it is required to go in depth in the analysis of the chemistry of the reaction of this element within bentonites. The determination of uranium under the conditions of HLRW, including the analysis of silicate matrices before and after the uranium-bentonite reaction, was investigated. The performances of a state-of-the-art and widespread radiochemical method based on chromatographic UTEVA resins, and a well-known and traditional method based on solvent extraction with tri-n-butyl phosphate (TBP), for the analysis of uranium and thorium isotopes in solid matrices with high concentrations of uranium were analysed in detail. In the development of this comparison, both radiochemical approaches have an overall excellent performance in order to analyse uranium concentration in HLRW samples. However, due to the high uranium concentration in the samples, the chromatographic resin is not able to avoid completely the uranium contamination in the thorium fraction. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, B.A.
1980-09-01
A total of 1214 geochemical samples were collected and analyzed. The sampling media included 334 waters, 616 stream sediments, and 264 rocks. In addition, some stratigraphic sections of Elba and Yost Quartzites and Archean metasedimentary rock were measured and sampled and numerous radiation determinations made of the various target units. Statistical evaluation of the geochemical data permitted recognition of 156 uranium anomalies, 52 in water, 79 in stream sediment, and 25 in rock. Geographically, 68 are located in the Grouse Creek Mountains, 43 in the Raft River Mountains, and 41 in the Albion Range. Interpretation of the various data leadsmore » to the conclusion that uranium anomalies relate to sparingly and moderately soluble uraniferous heavy minerals, which occur as sparse but widely distributed magmatic, detrital, and/or metamorphically segregated components in the target lithostratigraphic units. The uraniferous minerals known to occur and believed to account for the geochemical anomalies include allanite, monazite, zircon, and apatite. In some instances samarskite may be important. These heavy minerals contain uranium and geochemically related elements, such as Th, Ce, Y, and Zr, in sufficient quantities to account for both the conspicuous lithologic preference and the generally observed low amplitude of the anomalies. The various data generated in connection with this study, as well as those available in the published literature, collectively support the conclusion that the various Precambrian W and X lithostratigraphic units pre-selected for evaluation probably lack potential to host important Precambrian quartz-pebble conglomerate uranium deposits. Moreover it is also doubted that they possess any potential to host Proterozoic unconformity-type uranium deposits.« less
Sandstone type uranium deposits in the Ordos Basin, Northwest China: A case study and an overview
NASA Astrophysics Data System (ADS)
Akhtar, Shamim; Yang, Xiaoyong; Pirajno, Franco
2017-09-01
This paper provides a comprehensive review on studies of sandstone type uranium deposits in the Ordos Basin, Northwest China. As the second largest sedimentary basin, the Ordos Basin has great potential for targeting sandstone type U mineralization. The newly found and explored Dongsheng and Diantou sandstone type uranium deposits are hosted in the Middle Jurassic Zhilou Formation. A large number of investigations have been conducted to trace the source rock compositions and relationship between lithic subarkose sandstone host rock and uranium mineralization. An optical microscopy study reveals two types of alteration associated with the U mineralization: chloritization and sericitization. Some unusual mineral structures, with compositional similarity to coffinite, have been identified in a secondary pyrite by SEM These mineral phases are proposed to be of bacterial origin, following high resolution mapping of uranium minerals and trace element determinations in situ. Moreover, geochemical studies of REE and trace elements constrained the mechanism of uranium enrichment, displaying LREE enrichment relative to HREE. Trace elements such as Pb, Mo and Ba have a direct relationship with uranium enrichment and can be used as index for mineralization. The source of uranium ore forming fluids and related geological processes have been studied using H, O and C isotope systematics of fluid inclusions in quartz veins and the calcite cement of sandstone rocks hosting U mineralization. Both H and O isotopic compositions of fluid inclusions reveal that ore forming fluids are a mixture of meteoric water and magmatic water. The C and S isotopes of the cementing material of sandstone suggest organic origin and bacterial sulfate reduction (BSR), providing an important clue for U mineralization. Discussion of the ore genesis shows that the greenish gray sandstone plays a crucial role during processes leading to uranium mineralization. Consequently, an oxidation-reduction model for sandstone-type uranium deposit is proposed, which can elucidate the source of uranium in the deposits of the Ordos Basin, based on the role of organic materials and sulfate reducing bacteria. We discuss the mechanism of uranium deposition responsible for the genesis of these large sandstone type uranium deposits in this unique sedimentary basin.
URANIUM RECOVERY FROM COMPOSITE UF$sub 4$ REDUCTION BOMB WASTES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, E R; Doyle, R L; Coleman, J R
1954-01-28
A number of techniques have been investigated on a laboratory-scale for separating uranium from fluorides during the recovery of uranium from UF4 reduction bomb wastes (C-oxide) by an HCl leach - NH4OH precipitation process. Among these are included adsorption of fluorides from filtered leach liquors, fractional precipitation of fluorides and uranium, complexing of fluorides into forms soluble in slightly acid solutions, and fluoride volatilization from the uranium concentrate. Solubility studies of CaF2 and MgF2 in aqueous hydrochloric acid at various acidities and temperatures were also conducted. A description of the production-scale processing of C-oxide in the FMPC scrap plant hasmore » been included.« less
Uranium-mediated electrocatalytic dihydrogen production from water.
Halter, Dominik P; Heinemann, Frank W; Bachmann, Julien; Meyer, Karsten
2016-02-18
Depleted uranium is a mildly radioactive waste product that is stockpiled worldwide. The chemical reactivity of uranium complexes is well documented, including the stoichiometric activation of small molecules of biological and industrial interest such as H2O, CO2, CO, or N2 (refs 1 - 11), but catalytic transformations with actinides remain underexplored in comparison to transition-metal catalysis. For reduction of water to H2, complexes of low-valent uranium show the highest potential, but are known to react violently and uncontrollably forming stable bridging oxo or uranyl species. As a result, only a few oxidations of uranium with water have been reported so far; all stoichiometric. Catalytic H2 production, however, requires the reductive recovery of the catalyst via a challenging cleavage of the uranium-bound oxygen-containing ligand. Here we report the electrocatalytic water reduction observed with a trisaryloxide U(III) complex [(((Ad,Me)ArO)3mes)U] (refs 18 and 19)--the first homogeneous uranium catalyst for H2 production from H2O. The catalytic cycle involves rare terminal U(IV)-OH and U(V)=O complexes, which have been isolated, characterized, and proven to be integral parts of the catalytic mechanism. The recognition of uranium compounds as potentially useful catalysts suggests new applications for such light actinides. The development of uranium-based catalysts provides new perspectives on nuclear waste management strategies, by suggesting that mildly radioactive depleted uranium--an abundant waste product of the nuclear power industry--could be a valuable resource.
NASA Astrophysics Data System (ADS)
Alnour, I. A.; Wagiran, H.; Ibrahim, N.; Hamzah, S.; Elias, M. S.
2017-01-01
Amang or tin tailing is processed into concentrated ores and other economical valuable minerals such as monazite, zircon, xenotime, ilmenite etc. Besides that, the tailings from these ores may have a significant potential source of radiation exposure to amang plants' workers. This study was conducted to determine the elemental concentration of uranium and thorium in mineral samples collected from five amang tailing factories. The concentration of uranium and thorium was carried out by using instrumental neutron activation analysis (INAA) relative technique. The concentration of uranium and thorium in ppm obtained in this study are as follows: raw (189-1064) and (622-4965); monazite (1076-1988) and (3467-33578); xenotime 4053 and 5540; zircon (309-3090) and (387-6339); ilmenite (104-583) and (88-1205); rutile (212-889) and (44-1119); pyrite (7-43) and (9-132); and waste (5-338) and (9-1218) respectively. The analysis results shows that the monazite, xenotime and zircon have high content of uranium and thorium, whereas ilmenite, rutile, pyrite and waste have lower concentration compare with raw materials after tailing process. The highest values of uranium and thorium concentrations (4053 ± 428 ppm and 33578 ± 873 ppm, respectively) were observed in xenotime and monazite; whereas the lowest value was 5.48 ± 0.86 ppm of uranium recorded in waste (sand) and 9 ± 0.32 ppm of thorium for waste (sand) and pyrite.
NASA Astrophysics Data System (ADS)
Mahur, A. K.; Kumar, Rajesh; Sonkawade, R. G.; Sengupta, D.; Prasad, Rajendra
2008-04-01
The Singhbhum shear zone is a 200 km long arcuate belt in Jharkhand state situated in eastern India. The central part between Jaduguda-Bhatin-Nimdih, Narwapahr-Garadih-Turamdih is rich in uranium. Presence of uranium in the host rocks and the prevalence of a confined atmosphere within mines could result in enhanced concentration of radon (222Rn) gas and its progeny. Inhalation of radon daughter products is a major contributor to the radiation dose to exposed subjects. By using high resolution γ-ray spectroscopic system various radionuclides in the rock samples, collected from different places of Jaduguda uranium mines have been identified quantitatively based on the characteristic spectral peaks. The activity concentrations of the natural radionuclides, uranium (238U), thorium (232Th) and potassium (40K) were measured in the rock samples and radiological parameters were calculated. Uranium concentration was found to vary from 123 ± 7 Bq kg-1 to 40,858 ± 174 Bq kg-1. Activity of thorium was not significant in the samples, whereas, few samples have shown potassium activity from 162 ± 11 Bq kg-1 to 9024 ± 189 Bq kg-1. Radon exhalation rates from these samples were also measured using "Sealed Can technique" and found to vary from 4.2 ± 0.05 to 13.7 ± 0.08 Bq m-2 h-1. A positive correlation was found between the radon exhalation rate and the uranium activity. The absorbed dose rates vary from 63.6 to 18876.4 nGy h-1, with an average value of 7054.2 nGy h-1. The annual external effective dose rates vary from 0.7 to 23.2 mSv y-1. Radium equivalent activities (Raeq) varied from 134.3 to 40858.0 Bq kg-1. Value of external hazard index (Hex) varied from 0.4 to 110.4 with an average value of 41.2.
HEU Holdup Measurements on 321-M A-Lathe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewberry, R.A.
The Analytical Development Section of SRTC was requested by the Facilities Disposition Division (FDD) of the Savannah River Site to determine the holdup of enriched uranium in the 321-M facility as part of an overall deactivation project of the facility. The 321-M facility was used to fabricate enriched uranium fuel assemblies, lithium-aluminum target tubes, neptunium assemblies, and miscellaneous components for the production reactors. The results of the holdup assays are essential for determining compliance with the solid waste Waste Acceptance Criteria, Material Control and Accountability, and to meet criticality safety controls. Three measurement systems were used to determine highly enrichedmore » uranium (HEU) holdup. This report covers holdup measurements on the A-Lathe that was used to machine uranium-aluminum-alloy (U-Al). Our results indicated that the lathe contained more than the limits stated in the Waste Acceptance Criteria (WAC) for the solid waste E-Area Vaults. Thus the lathe was decontaminated three times and assayed four times in order to bring the amounts of uranium to an acceptable content. This report will discuss the methodology, Non-Destructive Assay (NDA) measurements, and results of the U-235 holdup on the lathe.« less
238U, and its decay products, in grasses from an abandoned uranium mine
NASA Astrophysics Data System (ADS)
Childs, Edgar; Maskall, John; Millward, Geoffrey
2016-04-01
Bioaccumulation of radioactive contaminants by plants is of concern particularly where the sward is an essential part of the diet of ruminants. The abandoned South Terras uranium mine, south west England, had primary deposits of uraninite (UO2) and pitchblende (U3O8), which contained up to 30% uranium. When the mine was active uranium and radium were extracted but following closure it was abandoned without remediation. Waste rock and gangue, consisting of inefficiently processed minerals, were spread around the site, including a field where ruminants are grazed. Here we report the activity concentrations of 238U, 235U 214,210Pb, and the concentrations of selected metals in the soils, roots and leaves of grasses taken from the contaminated field. Soil samples were collected at the surface, and at 30 cm depth, using an auger along a 10-point transect in the field from the foot of a waste heap. Whole, individual grass plants were removed with a spade, ensuring that their roots were intact. The soils and roots and grass leaves were freeze-dried. Activity concentrations of the radionuclides were determined by gamma spectroscopy, following 30 days incubation for development of secular equilibrium. Dried soils, roots and grasses were also digested in aqua regia and the concentrations of elements determined by ICP techniques. Maximum activity concentrations of 238U, 235U, 214Pb and 210Pb surface soils were 63,300, 4,510, 23,300 and 49,400 Bq kg-1, respectively. The mean 238U:235U ratio was 11.8 ± 1.8, an order of magnitude lower than the natural value of 138, indicating disequilibrium within the decay chain due to mineral processing. Radionuclides in the roots had 5 times lower concentration and only grass leaves in the vicinity of the waste heap had measureable values. The mean soil to root transfer factor for 238U was 36%, the mean root to leaf was 3% and overall only 0.7% of 238U was transferred from the soil to the leaves. The roots contained 0.8% iron, possibly as iron plaque acting to mediate 238U transfer within the plants. The results are discussed in the context of remediation of grazing land contaminated with radionuclides.
Chemical Technology Division annual technical report, 1992
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battles, J.E.; Myles, K.M.; Laidler, J.J.
1993-06-01
In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7)more » processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagener, H.D.; McHone, J.G.
1982-10-01
Detailed petrologic investigations were conducted at 74 anomalies that have surface radioactivities of 5 to 300 times background in the Grandfather Mountain region of North Carolina and Tennessee. One or more specimens of radioactive rock and one specimen of nonanomalous (barren) rock were taken for chemical analysis from each of the 74 sites. The specimens were analyzed fluorometrically for uranium (U/sub 3/O/sub 8/) and for 29 other elements by emission spectroscopy. Of the radioactive specimens, 23 contained less than 100 ppM U/sub 3/O/sub 8/ and were either depleted in uranium because of leaching or were rich in thorium; 25 containedmore » more than 500 ppM U/sub 3/O/sub 8/, with a maximum of 33,000 ppM. Specimens collected as barren contained up to 65 ppM U/sub 3/O/sub 8/. The more uraniferous rocks of the region tend to contain the larger concentrations of trace amounts of base metals.« less
Nitrate release from waste rock dumps in the Elk Valley, British Columbia, Canada.
Mahmood, Fazilatun N; Barbour, S Lee; Kennedy, C; Hendry, M Jim
2017-12-15
The origin, distribution and leaching of nitrate (NO 3 - ) from coal waste rock dumps in the Elk Valley, British Columbia, Canada were defined using chemical and NO 3 - isotope analyses (δ 15 N- and δ 18 O-NO 3 - ) of solids samples of pre- and post-blast waste rock and from thick (up to 180m) unsaturated waste rock dump profiles constructed between 1982 and 2012 as well as water samples collected from a rock drain located at the base of one dump and effluent from humidity cell (HC) and leach pad (LP) tests on waste rock. δ 15 N- and δ 18 O-NO 3 - values and NO 3 - concentrations of waste rock and rock drain waters confirmed the source of NO 3 - in the waste rock to be explosives and that limited to no denitrification occurs in the dump. The average mass of N released during blasting was estimated to be about 3-6% of the N in the explosives. NO 3 - concentrations in the fresh-blast waste rock and recently placed waste rock used for the HC and LP experiments were highly variable, ranging from below detection to 241mg/kg. The mean and median concentrations of these samples ranged from 10-30mg/kg. In this range of concentrations, the initial aqueous concentration of fresh-blasted waste rock could range from approximately 200-600mg NO 3 - -N/L. Flushing of NO 3 - from the HCs, LPs and a deep field profile was simulated using a scale dependent leaching efficiency (f) where f ranged from 5-15% for HCs, to 35-80% for the LPs, to 80-90% for the field profile. Our findings show aqueous phase NO 3 - from blasting residuals is present at highly variable initial concentrations in waste rock and the majority of this NO 3 - (>75%) should be flushed by recharging water during displacement of the first stored water volume. Copyright © 2017 Elsevier B.V. All rights reserved.
This enclosure from a DOE letter to EPA regarding a waste container disposed at the WIPP from the Advanced Mixed Waste Treatment Project includes Table 5-2, Isotopic Compositions of Rocky Flats Plutonium and Uranium.
Biswas, Ashis; Hendry, M Jim; Essilfie-Dughan, Joseph
2017-02-01
This study investigated the geochemistry of arsenic (As) in low sulfide-high carbonate coal waste rock of the Elk Valley, British Columbia, Canada. Its abundance and mineralogical associations in waste rock of different placement periods were determined in addition to its mobilization into porewater and rock-drain effluent. The mean (5.34mg/kg; 95% confidence interval: 4.95-5.73mg/kg) As concentration in the waste rock was typical of sedimentary rock. Electron microprobe and As K-edge X-ray absorption near-edge spectroscopic analyses showed the As is predominantly associated with primary pyrites in both source and freshly blasted waste rock. However, in aged waste rock the As is associated with both primary pyrites and secondary Fe oxyhydroxides. Oxidation of pyrite in waste rock dumps was reflected by the presence of high concentrations of SO 4 2- in porewater and oxidation rims of Fe oxyhydroxides around pyrite grains. Acid released from pyrite oxidation to Fe oxyhydroxides is neutralized by carbonate mineral dissolution that buffers the pH in the waste rock to circumneutral values. Adsorption of As onto secondary Fe oxyhydroxides provides an internal geochemical control on As release during pyrite oxidation and porewater flushing from the dump, resulting in the low As concentrations observed in porewater (median: 9.91μg/L) and rock-drain effluent (median: 0.31μg/L). Secondary Fe oxyhydroxides act as a long-term sink for As under present day hydrologic settings in waste rock dumps in the Elk Valley. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lambert, I. B.
2012-04-01
This presentation will consider the adequacy of global uranium and thorium resources to meet realistic nuclear power demand scenarios over the next half century. It is presented on behalf of, and based on evaluations by, the Uranium Group - a joint initiative of the OECD Nuclear Energy Agency and the International Atomic Energy Agency, of which the author is a Vice Chair. The Uranium Group produces a biennial report on Uranium Resources, Production and Demand based on information from some 40 countries involved in the nuclear fuel cycle, which also briefly reviews thorium resources. Uranium: In 2008, world production of uranium amounted to almost 44,000 tonnes (tU). This supplied approximately three-quarters of world reactor requirements (approx. 59,000 tU), the remainder being met by previously mined uranium (so-called secondary sources). Information on availability of secondary sources - which include uranium from excess inventories, dismantling nuclear warheads, tails and spent fuel reprocessing - is incomplete, but such sources are expected to decrease in market importance after 2013. In 2008, the total world Reasonably Assured plus Inferred Resources of uranium (recoverable at less than 130/kgU) amounted to 5.4 million tonnes. In addition, it is clear that there are vast amounts of uranium recoverable at higher costs in known deposits, plus many as yet undiscovered deposits. The Uranium Group has concluded that the uranium resource base is more than adequate to meet projected high-case requirements for nuclear power for at least half a century. This conclusion does not assume increasing replacement of uranium by fuels from reprocessing current reactor wastes, or by thorium, nor greater reactor efficiencies, which are likely to ameliorate future uranium demand. However, progressively increasing quantities of uranium will need to be mined, against a backdrop of the relatively small number of producing facilities around the world, geopolitical uncertainties and strong opposition to growth of nuclear power in a number of quarters - it is vital that the market provides incentives for exploration and development of environmentally sustainable mining operations. Thorium: World Reasonably Assured plus Inferred Resources of thorium are estimated at over 2.2 million tonnes, in hard rock and heavy mineral sand deposits. At least double this amount is considered to occur in as yet undiscovered thorium deposits. Currently, demand for thorium is insignificant, but even a major shift to thorium-fueled reactors would not make significant inroads into the huge resource base over the next half century.
Nuclear waste viewed in a new light; a synchrotron study of uranium encapsulated in grout.
Stitt, C A; Hart, M; Harker, N J; Hallam, K R; MacFarlane, J; Banos, A; Paraskevoulakos, C; Butcher, E; Padovani, C; Scott, T B
2015-03-21
How do you characterise the contents of a sealed nuclear waste package without breaking it open? This question is important when the contained corrosion products are potentially reactive with air and radioactive. Synchrotron X-rays have been used to perform micro-scale in-situ observation and characterisation of uranium encapsulated in grout; a simulation for a typical intermediate level waste storage packet. X-ray tomography and X-ray powder diffraction generated both qualitative and quantitative data from a grout-encapsulated uranium sample before, and after, deliberately constrained H2 corrosion. Tomographic reconstructions provided a means of assessing the extent, rates and character of the corrosion reactions by comparing the relative densities between the materials and the volume of reaction products. The oxidation of uranium in grout was found to follow the anoxic U+H2O oxidation regime, and the pore network within the grout was observed to influence the growth of uranium hydride sites across the metal surface. Powder diffraction analysis identified the corrosion products as UO2 and UH3, and permitted measurement of corrosion-induced strain. Together, X-ray tomography and diffraction provide means of accurately determining the types and extent of uranium corrosion occurring, thereby offering a future tool for isolating and studying the reactions occurring in real full-scale waste package systems. Copyright © 2014 Elsevier B.V. All rights reserved.
National low-level waste management program radionuclide report series, Volume 15: Uranium-238
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, J.P.
1995-09-01
This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.
TENORM (Technologically Enhanced Naturally Occurring Radioactive Materials)
... and Titanium Mining Wastes Rare Earths Mining Wastes Uranium Mining Wastes Copper Mining and Production Wastes Bauxite and Alumina Production Wastes Energy production Oil and Gas Production Wastes Coal Combustion Residuals Water ...
Summary of Uranium Solubility Studies in Concrete Waste Forms and Vadose Zone Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golovich, Elizabeth C.; Wellman, Dawn M.; Serne, R. Jeffrey
2011-09-30
One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Concrete encasement would contain and isolate the waste packages from the hydrologic environment and act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expected to havemore » a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. This report presents the results of investigations elucidating the uranium mineral phases controlling the long-term fate of uranium within concrete waste forms and the solubility of these phases in concrete pore waters and alkaline, circum-neutral vadose zone environments.« less
Radiation shielding materials and containers incorporating same
Mirsky, Steven M.; Krill, Stephen J.; Murray, Alexander P.
2005-11-01
An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound ("PYRUC") shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.
Radiation Shielding Materials and Containers Incorporating Same
Mirsky, Steven M.; Krill, Stephen J.; and Murray, Alexander P.
2005-11-01
An improved radiation shielding material and storage systems for radioactive materials incorporating the same. The PYRolytic Uranium Compound (''PYRUC'') shielding material is preferably formed by heat and/or pressure treatment of a precursor material comprising microspheres of a uranium compound, such as uranium dioxide or uranium carbide, and a suitable binder. The PYRUC shielding material provides improved radiation shielding, thermal characteristic, cost and ease of use in comparison with other shielding materials. The shielding material can be used to form containment systems, container vessels, shielding structures, and containment storage areas, all of which can be used to house radioactive waste. The preferred shielding system is in the form of a container for storage, transportation, and disposal of radioactive waste. In addition, improved methods for preparing uranium dioxide and uranium carbide microspheres for use in the radiation shielding materials are also provided.
Natural radionuclides in the rocks of the Valle del Cervo Pluton in Piedmont.
Sesana, Lucia; Fumagalli, Marco; Carnevale, Mauro; Polla, Giancarla; Facchini, Ugo; Colombo, Annita; Tunesi, Annalisa; De Capitani, Luisa; Rusconi, Rosella
2006-01-01
Monitoring of the gamma radiation in Valle del Cervo Pluton was performed by determining U and Th contents in the main rock types cropping out over the entire area and pertaining to the granitic complex, syenitic complex and monzonitic complex. In particular, syenitic rocks were largely used as building and ornamental materials (e.g. Sienite della Balma). All the samples are fresh and do not present joints or fractures filled with U minerals. In the crushed samples the activity of uranium varies from 346 to 764 Bq/kg. Concentration of thorium varies from 202 to 478 Bq/kg. For all the analysed rocks uranium activity is higher than thorium one. The lowest value of radioactive concentration is referred to rocks of the granitic complex. The most active rocks are syenites. The data confirm the high activities of Valle del Cervo rock types, strongly connected with high K content of the source magma (geochemical signature); on the contrary, the activity seems to be not related to the location of the samples.
Denton, J. S.; Goldstein, S. J.; Paviet, P.; ...
2016-04-10
Studies of uranium-series (U-series) disequilibria within and around ore deposits provide valuable information on the extent and timing of actinide mobility, via mineral-fluid interaction, over a range of spatial and temporal scales. Such information is useful in studies of analogs of high-level nuclear-waste repositories, as well as for mining and mineral extraction sites, locations of previous nuclear weapons testing, and legacy nuclear waste contamination. In this study we present isotope dilution mass spectrometry U-series measurements for fracture-fill materials (hematite, goethite, kaolinite, calcite, dolomite and quartz) from one such analog; the Nopal I uranium ore deposit situated at Peña Blanca inmore » the Chihuahua region of northern Mexico. The ore deposit is located in fractured, unsaturated volcanic tuff and fracture-fill materials from surface fractures as well as fractures in a vertical drill core have been analyzed. High uranium concentrations in the fracture-fill materials (between 12 and 7700 ppm) indicate uranium mobility and transport from the deposit. Furthermore, uranium concentrations generally decrease with horizontal distance away from the deposit but in this deposit there is no trend with depth below the surface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Haeyeon; G. Eggert, Roderick; W. Carlsen, Brett
Phosphate rock contains significant amounts of uranium, although in low concentrations. Recovery of uranium as a by-product from phosphoric acid, an intermediate product produced during the recovery of phosphorus from phosphate rock, is not unprecedented. Phosphoric acid plants ceased to produce uranium as a by-product in the early 1990s with the fall of uranium prices. In the last decade, this topic has regained attention due to higher uranium prices and expected increase in demand for uranium. Our study revisits the topic and estimates how much uranium might be recoverable from current phosphoric acid production in the United States and whatmore » the associated costs might be considering two different recovery processes: solvent extraction and ion exchange. Based on U.S. phosphoric acid production in 2014, 5.5 million pounds of U 3O 8 could have been recovered, more than domestic U.S. mine production of uranium in the same year. Annualized costs for a hypothetical uranium recovery plant are US$48-66 per pound U 3O 8 for solvent extraction, the process used historically in the United States to recover uranium from phosphoric acid. For ion exchange, not yet proven at a commercial scale for uranium recovery, the estimated costs are US$33-54 per pound U 3O 8. Our results suggest that it is technically possible for the United States to recover significant quantities of uranium from current phosphoric acid production. And for this type of uranium production to be economically attractive on a large scale, either recovery costs must fall or uranium prices rise.« less
Kim, Haeyeon; G. Eggert, Roderick; W. Carlsen, Brett; ...
2016-06-16
Phosphate rock contains significant amounts of uranium, although in low concentrations. Recovery of uranium as a by-product from phosphoric acid, an intermediate product produced during the recovery of phosphorus from phosphate rock, is not unprecedented. Phosphoric acid plants ceased to produce uranium as a by-product in the early 1990s with the fall of uranium prices. In the last decade, this topic has regained attention due to higher uranium prices and expected increase in demand for uranium. Our study revisits the topic and estimates how much uranium might be recoverable from current phosphoric acid production in the United States and whatmore » the associated costs might be considering two different recovery processes: solvent extraction and ion exchange. Based on U.S. phosphoric acid production in 2014, 5.5 million pounds of U 3O 8 could have been recovered, more than domestic U.S. mine production of uranium in the same year. Annualized costs for a hypothetical uranium recovery plant are US$48-66 per pound U 3O 8 for solvent extraction, the process used historically in the United States to recover uranium from phosphoric acid. For ion exchange, not yet proven at a commercial scale for uranium recovery, the estimated costs are US$33-54 per pound U 3O 8. Our results suggest that it is technically possible for the United States to recover significant quantities of uranium from current phosphoric acid production. And for this type of uranium production to be economically attractive on a large scale, either recovery costs must fall or uranium prices rise.« less
Webinar on the Removal of Uranium from Drinking Water by Small System Treatment Technology
Abstract: Radionuclides, such as uranium (U), occur naturally as trace elements in rocks and soils and thus can be found in dissolved forms in ground waters. Uranium has four oxidation states (+3, +4, +5, and +6) and is a very reactive element forming a variety of stable complexe...
Hendry, M Jim; Wassenaar, Leonard I; Barbour, S Lee; Schabert, Marcie S; Birkham, Tyler K; Fedec, Tony; Schmeling, Erin E
2018-05-29
Ammonium nitrate (NH 4 NO 3 ) mixed with fuel oil is a common blasting agent used to fragment rock into workable size fractions at mines throughout the world. The decomposition and oxidation of undetonated explosives can result in high NO 3 - concentrations in waters emanating from waste rock dumps. We used the stable isotopic composition of NO 3 - (δ 15 N- and δ 18 O-NO 3 - ) to define and quantify the controls on NO 3 - composition in waste rock dumps by studying water-unsaturated and saturated conditions at nine coal waste rock dumps located in the Elk Valley, British Columbia, Canada. Estimates of the extent of nitrification of NH 4 NO 3 in oxic zones in the dumps, initial NO 3 - concentrations prior to denitrification, and the extent of NO 3 - removal by denitrification in sub-oxic to anoxic zones are provided. δ 15 N data from unsaturated waste rock dumps confirm NO 3 - is derived from blasting. δ 15 N- and δ 18 O-NO 3 - data show extensive denitrification can occur in saturated waste rock and in localized zones of elevated water saturation and low oxygen concentrations in unsaturated waste rock. At the mine dump scale, the extent of denitrification in the unsaturated waste rock was inferred from water samples collected from underlying rock drains. Copyright © 2018. Published by Elsevier B.V.
Landsat analysis for uranium exploration in Northeast Turkey
Lee, Keenan
1983-01-01
No uranium deposits are known in the Trabzon, Turkey region, and consequently, exploration criteria have not been defined. Nonetheless, by analogy with uranium deposits studied elsewhere, exploration guides are suggested to include dense concentrations of linear features, lineaments -- especially with northwest trend, acidic plutonic rocks, and alteration indicated by limonite. A suite of digitally processed images of a single Landsat scene served as the image base for mapping 3,376 linear features. Analysis of the linear feature data yielded two statistically significant trends, which in turn defined two sets of strong lineaments. Color composite images were used to map acidic plutonic rocks and areas of surficial limonitic materials. The Landsat interpretation yielded a map of these exploration guides that may be used to evaluate relative uranium potential. One area in particular shows a high coincidence of favorable indicators.
Preliminary report on the Comet area, Jefferson County, Montana
Becraft, George Earle
1953-01-01
Several radioactivity anomalies and a few specimens of sooty pitchblende and other uranium minerals have been found on the mine dumps of formerly productive base- and precious-metal mines along the Comet-Gray Eagle shear zone in the Comet area in southwestern Montana. The shear zone is from 50 to 200 feet wide and has been traced for at least 5? miles. It trends N. 80 ? W. across the northern part of the area and cuts the quartz monzonitic rocks of the Boulder batholith and younger silicic intrusive rocks, as well as prebatholithic volcanic rocks, and is in turn cut by dacite and andesite dikes. The youngest period of mineralization is represented by chalcedonic vein zones comprising one or more discontinuous stringers and veins of cryptocrystalline silica in silicified quartz monzonite and in alaskite that has not been appreciably silicified. In some places these zones contain no distinct chalcedonic veins but are represented only by silicified quartz monzonite. These zones locally contain uranium in association with very small amounts of pyrite, galena, ruby silver, arqentite, native silver, molybdenite, chalcopyrite, arsenopyrite, and barite. At the Free Enterprise mine, uranium has been produced from a narrow chalcedonic vein that contains disseminated secondary uranium minerals and local small pods of pitchblende and also from disseminated secondary uranium ,minerals in the adjacent quartz monzonite. Undiscovered deposits of uranium ore may occur spatially associated with the base- and precious-metal deposits along the Comet-Gray Eagle shear zone and with chalcedonic vein zones similar to the Free Enterprise.
Roberts, W.A.; Gude, A.J.
1952-01-01
Uranium minerals.occur in pods associated with cryptocrystalline silica, silver minerals, and scattered sulfide mineral grains in a hydrothermal vein that cuts quartz monzonite and alaskite at the Free Enterprise mine, 2 miles west of Boulder, Mont. The Free Enterprise vein is one of many silicified reef-like structures in this area, most of which trend about N. 60° E. The cryptocrystalline silica zones of the area are lenticular and are bordered by an altered zone where quartz monzonite is the wall rock. No alteration was noticed where alaskite is adjacent to silica zones. No uranium minerals were observed at the surface, but radioactivity anomalies were noted at 57 outcrops. Underground mining has shown that leaching by downward percolating waters has removed most of the uranium from the near-surface part of the Free Enterprise vein and probably has enriched slightly, parts of the vein and the adjacent wall rock from the bottom of the leached zone to the ground-water level. It is possible that other veins that show low to moderate radioactivity at the surface may contain significant concentrations of uranium minerals at relatively shallow depth. The quartz monzonite appears to be a more favorable host rock for the cryptocrystalline silica and associated uranium minerals than the alaskite. The alaskite occurs as vertical_dikes plug-like masses, and as irregularly shaped, gently dipping masses that are believed to have been intruded into open fractures formed during the cooling of the quartz monzonite.
NASA Astrophysics Data System (ADS)
Marshalkin, V. Ye.; Povyshev, V. M.
2017-12-01
It is shown for a closed thorium-uranium-plutonium fuel cycle that, upon processing of one metric ton of irradiated fuel after each four-year campaign, the radioactive wastes contain 54 kg of fission products, 0.8 kg of thorium, 0.10 kg of uranium isotopes, 0.005 kg of plutonium isotopes, 0.002 kg of neptunium, and "trace" amounts of americium and curium isotopes. This qualitatively simplifies the handling of high-level wastes in nuclear power engineering.
Landis, Edwin R.
1955-01-01
As a part of the Geological Survey's program of investigating uranium-bearing carbonaceous rocks on behalf of the Division of Raw Materials of the U.S. Atomic Energy Commission, a reconnaissance of the Sharon Springs member of the Pierre shale in western Kansas and eastern Colorado was conducted during 1954. The Sharon Springs member of the Pierre shale and its lateral equivalents ranges from 155 to about 500 feet in thickness and generally contains about 0.001 percent uranium, but some beds contain larger amounts. A 6-foot thick shale bed in Cheyenne County, Colo., contains about 0.006 percent uranium, a 4 1/2-foot thick sequence of beds in Crowley County, Colo., is estimated to contain between 0.004 and 0.005 percent uranium, and a 3 1/2-foot thick sequence of beds in Kiowa County, Colo., contains about 0.004 percent uranium. At several outcrop localities, sequences of beds as much as 9 1/2 feet thick contain about 0.003 percent uranium. Data from wells indicate that the 4 1/2-foot thick sequence of beds in Crowley County, Colo., may have a lateral extent of at least 5 1/2 miles. A gamma-ray log of a well in Yuma County, Colo., indicates the presence of a sequence of beds 66 feet thick which contains 0.005 to 0.010 percent equivalent uranium. No definite pattern of areal distribution of radioactivity and uranium content in the Sharon Springs is indicated by available data. Lateral variation in uranium content of individual beds was not noted in outcrops, which seldom extend more than 150 feet, but subsurface data from gamma-ray logs of wells indicate that both the maximum radioactivity and the thickness of radioactive beds are variable within distances of a few miles. Vertical variation in radioactivity and uranium content of the more radioactive beds is usually abrupt, but in the rocks as a whole the range of uranium content is so small that large variations in content are absent. In most of the gamma-ray logs examined there is only part of the sequence of rocks comprising the Pierre shale and Niobrara formation that exhibits radioactivity in excess of the average radioactivity of the two formations. Comparison of features of gamma-ray logs of wells in north-eastern Colorado suggests that the most radioactive part referred to above is a laterally correlatable sequence of beds. The stratigraphic position of the radioactive unit relative to the Pierre shale-Niobrara formation contact in oil industry scout reports, as identified from electric logs and wells, is variable within short distances. This may indicate that some of the Pierre-Niobrara contacts picked from electric logs may not correspond to the boundary that would be selected by examination of the rocks themselves, or may indicate that there is a facies relationship between teh lowermost part of the Pierre shale and the uppermost part of the Niobrara formation.
Applications of UThPb isotope systematics to the problems of radioactive waste disposal
Stuckless, J.S.
1986-01-01
Concentrations of U, Th and Pb, and the isotopic composition of Pb for whole-rock samples of granitoids show: (1) that open-system behavior is nearly universal in the surface and near-surface environment; and (2) that elemental mobility is possible to depths of several hundred meters. Several identified or at least postulated factors that control U and/or Pb mobility include: (1) the mineralogical sites for U and its daughter products; (2) access of groundwater to these sites; (3) the volume of circulating water; and (4) the chemistry of the groundwater. Studies of granitic samples from peralkaline complexes in the Arabian Shield have shown that most samples lost less than 20% of their U during recent exposure to the near-surface environment. Most of the U in these samples appears to be firmly bound in zircons. In contrast, most surface and shallow drill-core samples of the granite of Lankin Dome (Granite Mountains, Wyoming) have lost ??? 70% of their U. Most of the U in these samples is weakly bound in biotite and epidote-family minerals. The granite recovered during the Illinois Deep Drill Hole Project (Stephenson County, Illinois) is mineralogically similar to the granite of Lankin Dome, but this granite lost radiogenic Pb rather than U, probably as a result of exposure to groundwater that had a markedly different chemistry from that in the Granite Mountains. Studies of the Sherman Granite (Wyoming) and the Go??temar Granite (southeastern Sweden) have shown that U and/or Pb mobility is greatest in and near fractured rock. The greater mobility is interpreted to be the result of both a larger water/rock ratio in the fractured rock and exposure to water over an increased surface area (and consequently a greater number of uranium sites). Several types of geochemical and mineralogic data can be used to identify rock-water interaction in granites; however, if rock samples have favorable radiogenic to common Pb ratios, both the amount and approximate timing of U or Pb mobility can be obtained through the use of isotopic studies. Such information can be extremely important in the search for favorable hosts for containment of radioactive waste. Rocks such as the Go??temar Granite have undergone considerable rock-water interaction, most of which occurred ??? 400 Myr. ago and little in recent times. Thus a search for zones that have experienced only a little interaction with water may provide a misleading prediction as to the ability of such zones to shield radioactive wastes from the modern biosphere. From an isotopic point of view, an ideal candidate for evaluation as a host rock for radioactive wastes would have the following characteristics: (1) a high ratio (> 2) of radiogenic to common Pb in order to optimize precision of the results; (2) a simple two-stage geologic history so that results could be interpreted without multiple working hypotheses; and (3) an originally high percentage (> 50%) of labile U so that the results would be highly sensitive to even small amount of rock-water interaction. These characteristics should produce rocks with marked radioactive disequilibrium in surface samples. The disequilibrium should grade to radioactive equilibrium with increasing depth until zones in which water has not circulated are found. Extensive regions of such zones must exist because UThPb systematics of most analyzed granitoids demonstrate closed-system behavior for almost all of their history except for their recent history in the near-surface environment. ?? 1986.
Challenges dealing with depleted uranium in Germany - Reuse or disposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moeller, Kai D.
2007-07-01
During enrichment large amounts of depleted Uranium are produced. In Germany every year 2.800 tons of depleted uranium are generated. In Germany depleted uranium is not classified as radioactive waste but a resource for further enrichment. Therefore since 1996 depleted Uranium is sent to ROSATOM in Russia. However it still has to be dealt with the second generation of depleted Uranium. To evaluate the alternative actions in case a solution has to be found in Germany, several studies have been initiated by the Federal Ministry of the Environment. The work that has been carried out evaluated various possibilities to dealmore » with depleted uranium. The international studies on this field and the situation in Germany have been analyzed. In case no further enrichment is planned the depleted uranium has to be stored. In the enrichment process UF{sub 6} is generated. It is an international consensus that for storage it should be converted to U{sub 3}O{sub 8}. The necessary technique is well established. If the depleted Uranium would have to be characterized as radioactive waste, a final disposal would become necessary. For the planned Konrad repository - a repository for non heat generating radioactive waste - the amount of Uranium is limited by the licensing authority. The existing license would not allow the final disposal of large amounts of depleted Uranium in the Konrad repository. The potential effect on the safety case has not been roughly analyzed. As a result it may be necessary to think about alternatives. Several possibilities for the use of depleted uranium in the industry have been identified. Studies indicate that the properties of Uranium would make it useful in some industrial fields. Nevertheless many practical and legal questions are open. One further option may be the use as shielding e.g. in casks for transport or disposal. Possible techniques for using depleted Uranium as shielding are the use of the metallic Uranium as well as the inclusion in concrete. Another possibility could be the use of depleted uranium for the blending of High enriched Uranium (HEU) or with Plutonium to MOX-elements. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conway, R.; Wade, M.; Tharp, T.
1994-12-31
The first remediation of an Environmental Restoration (ER) Project site at Sandia National Laboratories (SNL) was successfully conducted in May and June 1994 at Technical Area II. The removal action involved four Uranium Calibration Pits (UCPs) filled with radioactive or hazardous materials. The concrete culvert pits were used to test and calibrate borehole radiometric logging tools for uranium exploration. The removal action consisted of excavating and containerizing the pit contents and contaminated soil beneath the culverts, removing the four culverts, and backfilling the excavation. Each UCP removal had unique complexities. Sixty 208-L drums of solid radioactive waste and eight 208-Lmore » drums of liquid hazardous waste were generated during the VCM. Two of the concrete culverts will be disposed as radioactive waste and two as solid waste. Uranium-238 was detected in UCP-2 ore material at 746 pci/g, and at 59 pci/g in UCP-1 silica sand. UCP-4 was empty; sludge from UCP-3 contained 122 mg/L (ppm) chromium.« less
... Home or Building? Radon forms naturally. Uranium in soil or rock breaks down to form radium, which ... lung cancer. Because radon comes from rock and soil, it can be found anywhere. Exposure to limited ...
Impact craters - Are they useful?
NASA Astrophysics Data System (ADS)
Masaitis, V. L.
1992-03-01
Terrestrial impact craters are important geological and geomorphological objects that are significant not only for scientific research but for industrial and commercial purposes. The structures may contain commercial minerals produced directly by thermodynamic transformation of target rocks (including primary forming ores) controlled by some morphological, structural or lithological factors and exposed in the crater. Iron and uranium ores, nonferrous metals, diamonds, coals, oil shales, hydrocarbons, mineral waters and other raw materials occur in impact craters. Impact morphostructures may be used for underground storage of gases or liquid waste material. Surface craters may serve as reservoirs for hydropower. These ring structures may be of value to society in other ways. Scientific investigation of them is especially important in comparative planetology, terrestrial geology and in other divisions of the natural sciences.
NASA Astrophysics Data System (ADS)
Ault, Timothy M.
The environment, health, and safety properties of thorium-uranium-based (''thorium'') fuel cycles are estimated and compared to those of analogous uranium-plutonium-based (''uranium'') fuel cycle options. A structured assessment methodology for assessing and comparing fuel cycle is refined and applied to several reference fuel cycle options. Resource recovery as a measure of environmental sustainability for thorium is explored in depth in terms of resource availability, chemical processing requirements, and radiological impacts. A review of available experience and recent practices indicates that near-term thorium recovery will occur as a by-product of mining for other commodities, particularly titanium. The characterization of actively-mined global titanium, uranium, rare earth element, and iron deposits reveals that by-product thorium recovery would be sufficient to satisfy even the most intensive nuclear demand for thorium at least six times over. Chemical flowsheet analysis indicates that the consumption of strong acids and bases associated with thorium resource recovery is 3-4 times larger than for uranium recovery, with the comparison of other chemical types being less distinct. Radiologically, thorium recovery imparts about one order of magnitude larger of a collective occupational dose than uranium recovery. Moving to the entire fuel cycle, four fuel cycle options are compared: a limited-recycle (''modified-open'') uranium fuel cycle, a modified-open thorium fuel cycle, a full-recycle (''closed'') uranium fuel cycle, and a closed thorium fuel cycle. A combination of existing data and calculations using SCALE are used to develop material balances for the four fuel cycle options. The fuel cycle options are compared on the bases of resource sustainability, waste management (both low- and high-level waste, including used nuclear fuel), and occupational radiological impacts. At steady-state, occupational doses somewhat favor the closed thorium option while low-level waste volumes slightly favor the closed uranium option, although uncertainties are significant in both cases. The high-level waste properties (radioactivity, decay heat, and ingestion radiotoxicity) all significantly favor the closed fuel cycle options (especially the closed thorium option), but an alternative measure of key fission product inventories that drive risk in a repository slightly favors the uranium fuel cycles due to lower production of iodine-129. Resource requirements are much lower for the closed fuel cycle options and are relatively similar between thorium and uranium. In additional to the steady-state results, a variety of potential transition pathways are considered for both uranium and thorium fuel cycle end-states. For dose, low-level waste, and fission products contributing to repository risk, the differences among transition impacts largely reflected the steady-state differences. However, the HLW properties arrived at a distinctly opposite result in transition (strongly favoring uranium, whereas thorium was strongly favored at steady-state), because used present-day fuel is disposed without being recycled given that uranium-233, rather than plutonium, is the primarily fissile nuclide at the closed thorium fuel cycle's steady-state. Resource consumption was the only metric was strongly influenced by the specific transition pathway selected, favoring those pathways that more quickly arrived at steady-state through higher breeding ratio assumptions regardless of whether thorium or uranium was used.
Lazareva, Svetlana; Ismagilov, Zinfer; Kuznetsov, Vadim; Shikina, Nadezhda; Kerzhentsev, Mikhail
2018-02-05
Huge amounts of nuclear waste, including depleted uranium, significantly contribute to the adverse environmental situation throughout the world. An approach to the effective use of uranium oxides in catalysts for the deep oxidation of chlorine-containing hydrocarbons is suggested. Investigation of the catalytic activity of the synthesized supported uranium oxide catalysts doped with Cr, Mn and Co transition metals in the chlorobenzene oxidation showed that these catalysts are comparable with conventional commercial ones. Physicochemical properties of the catalysts were studied by X-ray diffraction, temperature-programmed reduction with hydrogen (H 2 -TPR), and Fourier transform infrared spectroscopy. The higher activity of Mn- and Co-containing uranium oxide catalysts in the H 2 -TPR and oxidation of chlorobenzene in comparison with non-uranium catalysts may be related to the formation of a new disperse phase represented by uranates. The study of chlorobenzene adsorption revealed that the surface oxygen is involved in the catalytic process.
Map showing radon potential of rocks and soils in Fairfax County, Virginia
Otton, James K.; Schumann, R. Randall; Owen, Douglass E.; Thurman, Nelson; Duval, Joseph S.
1988-01-01
Since 1984, indoor radon has gained national attention as a significant health hazard in the United States. Radon is a colorless, odorless, radioactive gas derived from uranium by radioactive decay. The U.S. Environmental Protection Agency (EPA) now projects that 5,000 to 20,000 lung-cancer deaths per year may be attributed to the long-term exposure to indoor radon and its radioactive decay products. Indoor radon has been previously recognized as a health hazard associated with uranium-bearing mill tailings or building materials, but it was not until December 1984 that some natural soils and rocks were found to be sources of indoor radon at levels comparable to those in uranium mines. It is now suspected that elevated indoor radon levels are far more widespread than initially though. The EPA considers 4 picoCuries of radon per liter of air (pCi/L) as the level (in a year-round measurement) at which actions ought to be taken to lower the concentration of indoor radon. All soils and rocks contain measurable amounts of uranium, which generate measurable amounts of radon. Certain soils and rocks, however, have a greater potential to cause indoor radon problems than others because (1) they have a higher uranium content and thus can generate higher levels of radon in soil gas (gas that occupies the pores of the soil), and (2) the permeability of the sol or rack is sufficiently high that radon-bearing soil gas can flow freely and move indoors through the foundation of the structure. This study was designed to demonstrate the correlation between the geologic environment and indoor radon levels and to demonstrate a method of assessment that could be used by other informed workers in areas of their interest. A parallel study by Gundersen and others (1988) of the radon potential of rocks and soils in Montgomery County, Md., used somewhat different methods of assessment because the data available for and assessment of Montgomery County differed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLemore, V. T.
1982-01-01
From an extensive literature search and field examination of 96 nonsandstone radioactive occurrences, the author compiled an annotated bibliography of over 600 citations and a list of 327 radioactive occurrences in veins and igneous and metamorphic rocks of New Mexico. The citations are indexed by individual radioactive occurrence, geographic area, county, fluorspar deposits and occurrences, geochemical analyses, and geologic maps. In addition, the geology, mineralization, and uranium and thorium potential of 41 geographic areas in New Mexico containing known radioactive occurrences in veins and igneous and metamorphic rocks or that contain host rocks considered favorable for uranium or thorium mineralizationmore » are summarized. A list of aerial-radiometric, magnetic, hydrogeochemical, and stream-sediment survey reports is included.« less
Sanders, Charles L.
2012-01-01
Ultra-low doses and dose- rates of ionizing radiation are effective in preventing disease which suggests that they also may be effective in treating disease. Limited experimental and anecdotal evidence indicates that low radiation doses from radon in mines and spas, thorium-bearing monazite sands and enhanced radioactive uranium ore obtained from a natural geological reactor may be useful in treating many inflammatory conditions and proliferative disorders, including cancer. Optimal therapeutic applications were identified via a literature survey as dose-rates ranging from 7 to 11μGy/hr or 28 to 44 times world average background rates. Rocks from an abandoned uranium mine in Utah were considered for therapeutic application and were examined by γ-ray and laser-induced breakdown fluorescence spectroscopy. The rocks showed the presence of transuranics and fission products with a γ-ray energy profile similar to aged spent uranium nuclear fuel (93% dose due to β particles and 7% due to γ rays). Mud packs of pulverized uranium ore rock dust in sealed plastic bags delivering bag surface β,γ dose-rates of 10–450 μGy/h were used with apparent success to treat several inflammatory and proliferative conditions in humans. PMID:23304108
Uranium-mediated electrocatalytic dihydrogen production from water
NASA Astrophysics Data System (ADS)
Halter, Dominik P.; Heinemann, Frank W.; Bachmann, Julien; Meyer, Karsten
2016-02-01
Depleted uranium is a mildly radioactive waste product that is stockpiled worldwide. The chemical reactivity of uranium complexes is well documented, including the stoichiometric activation of small molecules of biological and industrial interest such as H2O, CO2, CO, or N2 (refs 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11), but catalytic transformations with actinides remain underexplored in comparison to transition-metal catalysis. For reduction of water to H2, complexes of low-valent uranium show the highest potential, but are known to react violently and uncontrollably forming stable bridging oxo or uranyl species. As a result, only a few oxidations of uranium with water have been reported so far; all stoichiometric. Catalytic H2 production, however, requires the reductive recovery of the catalyst via a challenging cleavage of the uranium-bound oxygen-containing ligand. Here we report the electrocatalytic water reduction observed with a trisaryloxide U(III) complex [((Ad,MeArO)3mes)U] (refs 18 and 19)—the first homogeneous uranium catalyst for H2 production from H2O. The catalytic cycle involves rare terminal U(IV)-OH and U(V)=O complexes, which have been isolated, characterized, and proven to be integral parts of the catalytic mechanism. The recognition of uranium compounds as potentially useful catalysts suggests new applications for such light actinides. The development of uranium-based catalysts provides new perspectives on nuclear waste management strategies, by suggesting that mildly radioactive depleted uranium—an abundant waste product of the nuclear power industry—could be a valuable resource.
Zielinski, R.A.
1982-01-01
Uraniferous, fluorescent opal, which occurs in tuffaceous sedimentary rocks at Virgin Valley, Nevada, records the temperature and composition of uranium-rich solutions as well as the time of uranium-silica coprecipitation. Results are integrated with previous geologic and geochronologic data for the area to produce a model for uranium mobility that may be used to explore for uranium deposits in similar geologic settings. Uraniferous opal occurs as replacements of diatomite, or silicic air-fall ash layers in tuffaceous lakebeds of the Virgin Valley Formation (Miocene) of Merriam (1907). Fission-track radiography shows uranium to be homogeneously dispersed throughout the opal structure, suggesting coprecipitation of dissolved uranium and silica gel. Fluid inclusions preserved within opal replacements of diatomite have homogenization temperatures in the epithermal range and are of low salinity. Four samples of opal from one locality all have U-Pb apparent ages which suggest uraniferous opal precipitation in late Pliocene time. These ages correspond to a period of local, normal faulting, and highangle faults may have served as vertical conduits for transport of deep, thermalized ground water to shallower levels. Lateral migration of rising solutions occurred at intersections of faults with permeable strata. Silica and some uranium were dissolved from silica-rich host strata of 5-20 ppm original uranium content and reprecipitated as the solutions cooled. The model predicts that in similar geologic settings, ore-grade concentrations of uranium will occur in permeable strata that intersect high-angle faults and that contain uranium source rocks as well as efficient reductant traps for uranium. In the absence of sufficient quantities of reductant materials, uranium will be flushed from the system or will accumulate in low-grade disseminated hosts such as uraniferous opal. ?? 1982.
Uranium deposits in the Eureka Gulch area, Central City district, Gilpin County, Colorado
Sims, P.K.; Osterwald, F.W.; Tooker, E.W.
1954-01-01
The Eureka Gulch area of the Central City district, Gilpin County, Colo., was mined for ores of gold, silver, copper, lead, and zinc; but there has been little mining activity in the area since World War I. Between 1951 and 1953 nine radioactive mine dumps were discovered in the area by the U.S. Geological Survey and by prospectors. the importance of the discoveries has not been determined as all but one of the mines are inaccessible, but the distribution, quantity, and grade of the radioactive materials found on the mine dumps indicate that the area is worth of additional exploration as a possible source of uranium ore. The uranium ans other metals are in and near steeply dipping mesothermal veins of Laramide age intrusive rocks. Pitchblende is present in at least four veins, and metatorbernite, associated at places with kosolite, is found along two veins for a linear distance of about 700 feet. The pitchblends and metatorbernite appear to be mutually exclusive and seem to occur in different veins. Colloform grains of pitchblende were deposited in the vein essentially contemporaneously with pyrite. The pitchblende is earlier in the sequence of deposition than galena and sphalerite. The metatorbernite replaces altered biotite-quartz-plagioclase gneiss and altered amphibolite, and to a lesser extent forms coatings on fractures in these rocks adjacent to the veins; the kasolite fills vugs in highly altered material and in altered wall rocks. Much of the pitchblende found on the dumps has been partly leached subsequent to mining and is out of equilibrium. Selected samples of metatorbernite-bearing rock from one mine dump contain as much as 6.11 percent uranium. The pitchblende is a primary vein mineral deposited from uranium-bearing hydrothermal solutions. The metatorbernite probably formed by oxidation, solution, and transportation of uranium from primary pitchblende, but it may be a primary mineral deposited directly from fluids of different composition from these that deposited pitchblende.
Uranium (VI) solubility in carbonate-free ERDA-6 brine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucchini, Jean-francois; Khaing, Hnin; Reed, Donald T
2010-01-01
When present, uranium is usually an element of importance in a nuclear waste repository. In the Waste Isolation Pilot Plant (WIPP), uranium is the most prevalent actinide component by mass, with about 647 metric tons to be placed in the repository. Therefore, the chemistry of uranium, and especially its solubility in the WIPP conditions, needs to be well determined. Long-term experiments were performed to measure the solubility of uranium (VI) in carbonate-free ERDA-6 brine, a simulated WIPP brine, at pC{sub H+} values between 8 and 12.5. These data, obtained from the over-saturation approach, were the first repository-relevant data for themore » VI actinide oxidation state. The solubility trends observed pointed towards low uranium solubility in WIPP brines and a lack of amphotericity. At the expected pC{sub H+} in the WIPP ({approx} 9.5), measured uranium solubility approached 10{sup -7} M. The objective of these experiments was to establish a baseline solubility to further investigate the effects of carbonate complexation on uranium solubility in WIPP brines.« less
Deep rock nuclear waste disposal test: design and operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klett, Robert D.
1974-09-01
An electrically heated test of nuclear waste simulants in granitic rock was conducted to demonstrate the feasibility of the concept of deep rock nuclear waste disposal and to obtain design data. This report describes the deep rock disposal sytstems study and the design and operation of the first concept feasibility test.
Effects of bioleaching on the mechanical and chemical properties of waste rocks
NASA Astrophysics Data System (ADS)
Yin, Sheng-Hua; Wu, Ai-Xiang; Wang, Shao-Yong; Ai, Chun-Ming
2012-01-01
Bioleaching processes cause dramatic changes in the mechanical and chemical properties of waste rocks, and play an important role in metal recovery and dump stability. This study focused on the characteristics of waste rocks subjected to bioleaching. A series of experiments were conducted to investigate the evolution of rock properties during the bioleaching process. Mechanical behaviors of the leached waste rocks, such as failure patterns, normal stress, shear strength, and cohesion were determined through mechanical tests. The results of SEM imaging show considerable differences in the surface morphology of leached rocks located at different parts of the dump. The mineralogical content of the leached rocks reflects the extent of dissolution and precipitation during bioleaching. The dump porosity and rock size change under the effect of dissolution, precipitation, and clay transportation. The particle size of the leached rocks decreased due to the loss of rock integrity and the conversion of dry precipitation into fine particles.
Improving the Estimates of Waste from the Recycling of Used Nuclear Fuel - 13410
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, Chris; Willis, William; Carter, Robert
2013-07-01
Estimates are presented of wastes arising from the reprocessing of 50 GWD/tonne, 5 year and 50 year cooled used nuclear fuel (UNF) from Light Water Reactors (LWRs), using the 'NUEX' solvent extraction process. NUEX is a fourth generation aqueous based reprocessing system, comprising shearing and dissolution in nitric acid of the UNF, separation of uranium and mixed uranium-plutonium using solvent extraction in a development of the PUREX process using tri-n-butyl phosphate in a kerosene diluent, purification of the plutonium and uranium-plutonium products, and conversion of them to uranium trioxide and mixed uranium-plutonium dioxides respectively. These products are suitable for usemore » as new LWR uranium oxide and mixed oxide fuel, respectively. Each unit process is described and the wastes that it produces are identified and quantified. Quantification of the process wastes was achieved by use of a detailed process model developed using the Aspen Custom Modeler suite of software and based on both first principles equilibrium and rate data, plus practical experience and data from the industrial scale Thermal Oxide Reprocessing Plant (THORP) at the Sellafield nuclear site in the United Kingdom. By feeding this model with the known concentrations of all species in the incoming UNF, the species and their concentrations in all product and waste streams were produced as the output. By using these data, along with a defined set of assumptions, including regulatory requirements, it was possible to calculate the waste forms, their radioactivities, volumes and quantities. Quantification of secondary wastes, such as plant maintenance, housekeeping and clean-up wastes, was achieved by reviewing actual operating experience from THORP during its hot operation from 1994 to the present time. This work was carried out under a contract from the United States Department of Energy (DOE) and, so as to enable DOE to make valid comparisons with other similar work, a number of assumptions were agreed. These include an assumed reprocessing capacity of 800 tonnes per year, the requirement to remove as waste forms the volatile fission products carbon-14, iodine-129, krypton-85, tritium and ruthenium-106, the restriction of discharge of any water from the facility unless it meets US Environmental Protection Agency drinking water standards, no intentional blending of wastes to lower their classification, and the requirement for the recovered uranium to be sufficiently free from fission products and neutron-absorbing species to allow it to be re-enriched and recycled as nuclear fuel. The results from this work showed that over 99.9% of the radioactivity in the UNF can be concentrated via reprocessing into a fission-product-containing vitrified product, bottles of compressed krypton storage and a cement grout containing the tritium, that together have a volume of only about one eighth the volume of the original UNF. The other waste forms have larger volumes than the original UNF but contain only the remaining 0.1% of the radioactivity. (authors)« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-10
.... 10-899-02-ML-BD01] In the Matter of Areva Enrichment Services, LLC (Eagle Rock Enrichment Facility... gas centrifuge uranium enrichment facility--denoted as the Eagle Rock Enrichment Facility (EREF)--in... Information for Contention Preparation; In the Matter of Areva Enrichment Services, LLC (Eagle Rock Enrichment...
Preliminary report on the Comet area, Jefferson County, Montana
Becraft, George Earle
1952-01-01
Several radioactivity anomalies and a few specimens of sooty pitchblende and other uranium minerals have been found on the mine dumps of formerly productive base-and precious-metal mines along the Comet-Gray Eagle shear zone in the Comet area in southwestern Montana. The shear zone is from 50 to 200 feet wide and has been traced for at least 5 1/2 miles. It trends N. 80° W. across the northern part of the area and cuts the quartz monzonitic rocks of the Boulder batholith and younger silicic intrusive rocks, as well as the pre-batholitic volcanic rocks, and is in turn cut by dacite and andesite dikes. The youngest period of mineralization is represented by chalcedonic vein zones comprising one or more discontinuous stringers and veins of cryptocrystalline silica in silicified quartz monzonite and in alaskite that has not been appreciably silicified. In some places these zones contain no distinct chalcedonic veins, but are represented only by silicified quartz monzonite. These zones locally contain uranium in association with very small amounts of the following minerals: pyrite, galena, ruby silver, argentite, native silver, molybdenite, chalcopyrite, arsenopyrite, and barite. At the Free Enterprise mine, uranium has been produced from a narrow chalcedonic vein that contains disseminated secondary uranium minerals and local small pods of pitchblende and from disseminated secondary uranium minerals in the adjacent quartz monzonite. Undiscovered commercial deposits of uranium ore may occur spatially associated with the base-and precious-metal deposits along the Comet-Gray Eagle shear zone, and chalcedonic vein zones similar to the Free Enterprise.
Paces, J.B.; Neymark, L.A.; Whelan, J.F.; Wooden, J.L.; Lund, S.P.; Marshall, B.D.
2010-01-01
Understanding the movement of water through thick vadose zones, especially on time scales encompassing long-term climate change, is increasingly important as societies utilize semi-arid environments for both water resources and sites viewed as favorable for long-term disposal or storage of hazardous waste. Hydrologic responses to Pleistocene climate change within a deep vadose zone in the eastern Mojave Desert at Yucca Mountain, Nevada, were evaluated by uranium-series dating of finely layered hyalitic opal using secondary ion mass spectrometry. Opal is present within cm-thick secondary hydrogenic mineral crusts coating floors of lithophysal cavities in fractured volcanic rocks at depths of 200 to 300 m below land surface. Uranium concentrations in opal fluctuate systematically between 5 and 550 μg/g. Age-calibrated profiles of uranium concentration correlate with regional climate records over the last 300,000 years and produce time-series spectral peaks that have distinct periodicities of 100- and 41-ka, consistent with planetary orbital parameters. These results indicate that the chemical compositions of percolating solutions varied in response to near-surface, climate-driven processes. However, slow (micrometers per thousand years), relatively uniform growth rates of secondary opal and calcite deposition spanning several glacial–interglacial climate cycles imply that water fluxes in the deep vadose zone remained low and generally buffered from the large fluctuations in available surface moisture during different climates.
Actinides in metallic waste from electrometallurgical treatment of spent nuclear fuel
NASA Astrophysics Data System (ADS)
Janney, D. E.; Keiser, D. D.
2003-09-01
Argonne National Laboratory has developed a pyroprocessing-based technique for conditioning spent sodium-bonded nuclear-reactor fuel in preparation for long-term disposal. The technique produces a metallic waste form whose nominal composition is stainless steel with 15 wt.% Zr (SS-15Zr), up to ˜ 11 wt.% actinide elements (primarily uranium), and a few percent metallic fission products. Actual and simulated waste forms show similar eutectic microstructures with approximately equal proportions of iron solid solution phases and Fe-Zr intermetallics. This article reports on an analysis of simulated waste forms containing uranium, neptunium, and plutonium.
Uranium Mines and Mills | RadTown USA | US EPA
2017-08-07
Uranium is used as nuclear fuel for electric power generation. U.S. mining industries can obtain uranium in two ways: mining or milling. Mining waste and mill tailings can contaminate water, soil and air if not disposed of properly.
The Permo-Triassic uranium deposits of Gondwanaland
NASA Astrophysics Data System (ADS)
le Roux, J. P.; Toens, P. D.
The world's uranium provinces are time bound and occur in five distinct periods ranging from the Proterozoic to the Recent. One of these periods embraces the time of Gondwana sedimentation and probably is related to the proliferation of land plants from the Devonian on-ward. Decaying vegetal matter produced reducing conditions that enhanced uranium precipitation. The association of uranium with molassic basins adjacent to uplifted granitic and volcanic arcs suggests that lithospheric plate subduction, leading to anatexis of basement rocks and andesitic volcanism, created favorable conditions for uranium mineralization. Uranium occurrences of Gondwana age are of four main types: sandstone-hosted, coal-hosted, pelite-hosted, and vein-type deposits. Sandstone-hosted deposits commonly occur in fluviodeltaic sediments and are related to the presence of organic matter. These deposits commonly are enriched in molybdenum and other base metal sulfides and have been found in South Africa, Zimbabwe, Zambia, Angola, Niger, Madagascar, India, Australia, Argentina, and Brazil. Coalhosted deposits contain large reserves of uranium but are of low grade. In Africa they are mostly within the Permian Ecca Group and its lateral equivalents, as in the Springbok Flats, Limpopo, Botswana, and Tanzania basins. Uraniferous black shales are present in the Gabon and Amazon basins but grades are low. Vein-type uranium is found in Argentina, where it occurs in clustered veins crosscutting sedimentary rocks and quartz porphyries.
Lessons from Natural Analog Studies for Geologic Disposal of High-Level Nuclear Waste (Invited)
NASA Astrophysics Data System (ADS)
Murphy, W. M.
2009-12-01
For over fifty years natural analog studies have provided lessons addressing scientific, technical, and social problems concerning geologic disposal of high-level nuclear waste. Idealized concepts for permanent disposal environments evolved from an understanding of the geological, geochemical and hydrological characteristics of analogous rocks including natural salt deposits (as advocated by the US National Academy of Sciences in 1957), ancient cratonic rocks (as investigated at Lac du Bonnet, Canada, Aspö, Sweden, and Vienne, France), and marine sedimentary rock formations (as studied at Mol, Belgium, and Bure, France). Additional multidisciplinary studies have been conducted at natural sites that bear characteristics analogous to potential repository systems, notably at natural uranium (and thorium) deposits including Poços de Caldas, Brazil, Alligator Rivers, Australia, Peña Blanca, Mexico, and Oklo, Gabon. Researchers of natural analogs for geologic disposal have addressed technical uncertainties regarding processes that have transpired over large time and space scales, which are generally inaccessible to laboratory studies. Principal questions for nuclear waste disposal include the geochemical stability and alteration rates of radionuclide bearing minerals and the mechanisms and rates of transport of radionuclides in groundwater. In their most direct applications, natural analogs studies have been devoted to testing specific models for repository performance and the experimental data that support those models. Parameters used in predictive performance assessment modeling have been compared to natural system data, including mineral solubilities, sorption coefficients, diffusion rates, and colloid transport properties. For example, the rate of uraninite oxidation and the natural paragenesis of uranium mineral alteration at Peña Blanca have been compared favorably to results of experimental studies of spent fuel alteration related to the proposed repository at Yucca Mountain, Nevada, USA. These results generally bracket repository conditions between natural and experimental systems providing confidence in the understanding of expected processes. Also, the conceptual bases and numerical techniques for modeling unsaturated zone contaminant transport over periods of thousands of years at Yucca Mountain were tested by modeling the observable record of metal transport from archaeological artifacts buried in Holocene tuff at Akrotiri, Greece. Geologically episodic mineral alteration and contaminant transport have been documented using radioisotope data in numerous analog systems providing insights for the interpretation and validity of predictive models for long term repository performance. The applicability and value of natural analog studies to understanding geologic disposal systems is a persistent question. As proposed disposal sites become increasingly well defined by site characterization and engineering design, the strengths and weaknesses of analogies can be assessed. Confidence in predictive models for complex geologic and engineered phenomena can be enhanced through multiple lines of investigation including studies of natural analog systems.
Trace elements reconnaissance investigations in New Mexico and adjoining states in 1951
Bachman, George O.; Read, Charles B.
1952-01-01
In the summer and fall of 1951, a reconnaissance search was made in New Mexico and adjacent states for uranium in coal and carbonaceous shale, chiefly of Mesozoic age, and black marine shale of Paleozoic age. Tertiary volcanic rocks, considered to be a possible source for uranium in the coal and associated rocks, were examined where the volcanic rocks were near coal-bearing strata. Uranium in possibly commercial amounts was found at La Ventana Mesa, Sandoval County, New Mexico. Slightly uranifeous coal and carbonaceous shale were found near San Ysidro, Sandoval County, and on Beautiful Mountain, San Juan County, all in New Mexico, and at Keams Canyon, Navajo County, and near Tuba City, Coconino County, in Arizona. Except for La Ventana deposit, none appeared to be of economic importance at the time this report was written, but additional reconnaissance investigations have been underway this field season, in the area where the deposits occur. Marine black shale of Sevonian age was examined in Otero and Socorro Counties, New Mexico and Gila County, Arizona. Mississippian black shale in Socorro County and Pennsylvanian black shale in Taos County, New Mexico were also tested. Equivalent uranium content of samples of these shales did not exceed 0.004 percent. Rhyolitic tuff from the Mount Taylor region is slightly radioactive as is the Bandelier tuff in the Nacimiento region and in the Jemez Plateau. Volcanic rocks in plugs and dikes in the northern Chuska Mountains and to the north in New Mexico as well as in northeastern Arizona and southeastern Utah are slightly radioactive. Coal and carbonaceous rocks in the vicinity of these and similar intrusions are being examined.
Interlaboratory comparison program for nondestructive assay of prototype uranium reference materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trahey, N.M.; Smith, M.M.; Voeks, A.M.
The US Department of Energy (DOE), New Brunswick Laboratory (NBS), designed and administered an interlaboratory comparison program based on the measurement of NBL-produced prototype uranium nondestructive assay (NDA) reference materials for scrap and waste. The objectives of the program were to evaluate the reliability of NDA techniques as applied to nuclear safeguards materials control and accountability needs and to investigate the feasibility of providing practical NDA scrap and waste reference materials for use throughout the nuclear safeguards community. Fourteen facilities representing seven DOE contractors, four US Nuclear Regulatory Commission (NRC) licensees, one EURATOM Laboratory, and NBL, participated in this program.more » Three stable, well-characterized uranium reference materials were developed and certified for this program. Synthetic calcined ash, cellulose fiber, and ion-exchange resin simulate selected uranium scrap and waste forms which are often encountered in fabrication and recovery operations. The synthetic calcined ash represents an intermediate density inorganic matrix while the cellulose fiber and ion-exchange resin are representative of low-density organic matrices. The materials, containing from 0 to 13% uranium enriched at 93% /sup 235/U, were sealed in specially selected containers. Nineteen prototype reference samples, plus three empty containers, one to accompany each set, was circulated to the participants between August 1979 and May 1984. Triplicate measurements for /sup 235/U on each of the 19 filled containers were required. In addition, participants could opt to perform modular configuration measurements using containers from Sets IIA and IIB to simulate non-homogeneously dispersed uranium in waste containers. All data were reported to NBL for evaluation.« less
Amin, Maisa M; Elaassy, Ibrahim E; El-Feky, Mohamed G; Sallam, Abdel Sattar M; Talaat, Mona S; Kawady, Nilly A
2014-08-01
Bioleaching, like Biotechnology uses microorganisms to extract metals from their ore materials, whereas microbial activity has an appreciable effect on the dissolution of toxic metals and radionuclides. Bioleaching of uranium was carried out with isolated fungi from uraniferous sedimentary rocks from Southwestern Sinai, Egypt. Eight fungal species were isolated from different grades of uraniferous samples. The bio-dissolution experiments showed that Aspergillus niger and Aspergillus terreus exhibited the highest leaching efficiencies of uranium from the studied samples. Through monitoring the bio-dissolution process, the uranium grade and mineralogic constituents of the ore material proved to play an important role in the bioleaching process. The tested samples asserted that the optimum conditions of uranium leaching are: 7 days incubation time, 3% pulp density, 30 °C incubation temperature and pH 3. Both fungi produced the organic acids, namely; oxalic, acetic, citric, formic, malonic, galic and ascorbic in the culture filtrate, indicating an important role in the bioleaching processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Reuse of ornamental rock-cutting waste in aluminous porcelain.
Silva, M A; Paes, H R; Holanda, J N F
2011-03-01
Large amounts of solid wastes are discarded in the ornamental rocks industry. This work investigates the incorporation of ornamental rock-cutting waste as a raw material into an aluminous porcelain body, replacing natural feldspar material by up to 35 wt.%. Formulations containing rock-cutting waste were pressed and sintered at 1350 °C. The porcelain pieces were tested to determine their properties (linear shrinkage, water absorption, apparent density, mechanical strength, and electrical resistivity). Development of the microstructure was followed by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. The results showed that ornamental rock-cutting waste could be used in aluminous porcelains, in the range up to 10 wt.%, as a partial replacement for traditional flux material, resulting in a valid route for management of this abundant waste. Copyright © 2010 Elsevier Ltd. All rights reserved.
Agyeman, Stephen; Ampadu, Samuel I K
2016-02-01
Mine rock waste, which is the rock material removed in order to access and mine ore, is free from gold processing chemical contaminants but presents a significant environmental challenge owing to the large volumes involved. One way of mitigating the environmental and safety challenges posed by the large volume of mine rock waste stockpiled in mining communities is to find uses of this material as a substitute for rock aggregates in construction. This article reports on a study conducted to evaluate the engineering properties of such a mine deposit to determine its suitability for use as road pavement material. Samples of mine rock waste, derived from the granitic and granodioritic intrusive units overlying the gold-bearing metavolcanic rock and volcano-clastic sediments of a gold mining area in Ghana, were obtained from three mine rock waste disposal facilities and subjected to a battery of laboratory tests to determine their physical, mechanical, geotechnical, geometrical and durability properties. The overall conclusion was that the mine rock waste met all the requirements of the Ghana Ministry of Transportation specification for use as aggregates for crushed rock subbase, base and surface dressing chippings for road pavements. The recommendation is to process it into the required sizes for the various applications. © The Author(s) 2015.
Biogeochemical aspects of uranium mineralization, mining, milling, and remediation
Campbell, Kate M.; Gallegos, Tanya J.; Landa, Edward R.
2015-01-01
Natural uranium (U) occurs as a mixture of three radioactive isotopes: 238U, 235U, and 234U. Only 235U is fissionable and makes up about 0.7% of natural U, while 238U is overwhelmingly the most abundant at greater than 99% of the total mass of U. Prior to the 1940s, U was predominantly used as a coloring agent, and U-bearing ores were mined mainly for their radium (Ra) and/or vanadium (V) content; the bulk of the U was discarded with the tailings (Finch et al., 1972). Once nuclear fission was discovered, the economic importance of U increased greatly. The mining and milling of U-bearing ores is the first step in the nuclear fuel cycle, and the contact of residual waste with natural water is a potential source of contamination of U and associated elements to the environment. Uranium is mined by three basic methods: surface (open pit), underground, and solution mining (in situ leaching or in situ recovery), depending on the deposit grade, size, location, geology and economic considerations (Abdelouas, 2006). Solid wastes at U mill tailings (UMT) sites can include both standard tailings (i.e., leached ore rock residues) and solids generated on site by waste treatment processes. The latter can include sludge or “mud” from neutralization of acidic mine/mill effluents, containing Fe and a range of coprecipitated constituents, or barium sulfate precipitates that selectively remove Ra (e.g., Carvalho et al., 2007). In this chapter, we review the hydrometallurgical processes by which U is extracted from ore, the biogeochemical processes that can affect the fate and transport of U and associated elements in the environment, and possible remediation strategies for site closure and aquifer restoration.This paper represents the fourth in a series of review papers from the U.S. Geological Survey (USGS) on geochemical aspects of UMT management that span more than three decades. The first paper (Landa, 1980) in this series is a primer on the nature of tailings and radionuclide mobilization from them. The second paper (Landa, 1999) includes coverage of research carried out under the U.S. Department of Energy’s Uranium Mill Tailings Remedial Action Program (UMTRA). The third paper (Landa, 2004) reflects the increased focus of researchers on biotic effects in UMT environs. This paper expands the focus to U mining, milling, and remedial actions, and includes extensive coverage of the increasingly important alkaline in situ recovery and groundwater restoration.
Dutova, Ekaterina M; Nikitenkov, Aleksei N; Pokrovskiy, Vitaly D; Banks, David; Frengstad, Bjørn S; Parnachev, Valerii P
2017-11-01
Generic hydrochemical modelling of a grantoid-groundwater system, using the Russian software "HydroGeo", has been carried out with an emphasis on simulating the accumulation of uranium in the aqueous phase. The baseline model run simulates shallow granitoid aquifers (U content 5 ppm) under conditions broadly representative of southern Norway and southwestern Siberia: i.e. temperature 10 °C, equilibrated with a soil gas partial CO 2 pressure (P CO2 , open system) of 10 -2.5 atm. and a mildly oxidising redox environment (Eh = +50 mV). Modelling indicates that aqueous uranium accumulates in parallel with total dissolved solids (or groundwater mineralisation M - regarded as an indicator of degree of hydrochemical evolution), accumulating most rapidly when M = 550-1000 mg L -1 . Accumulation slows at the onset of saturation and precipitation of secondary uranium minerals at M = c. 1000 mg L -1 (which, under baseline modelling conditions, also corresponds approximately to calcite saturation and transition to Na-HCO 3 hydrofacies). The secondary minerals are typically "black" uranium oxides of mixed oxidation state (e.g. U 3 O 7 and U 4 O 9 ). For rock U content of 5-50 ppm, it is possible to generate a wide variety of aqueous uranium concentrations, up to a maximum of just over 1 mg L -1 , but with typical concentrations of up to 10 μg L -1 for modest degrees of hydrochemical maturity (as indicated by M). These observations correspond extremely well with real groundwater analyses from the Altai-Sayan region of Russia and Norwegian crystalline bedrock aquifers. The timing (with respect to M) and degree of aqueous uranium accumulation are also sensitive to Eh (greater mobilisation at higher Eh), uranium content of rocks (aqueous concentration increases as rock content increases) and P CO2 (low P CO2 favours higher pH, rapid accumulation of aqueous U and earlier saturation with respect to uranium minerals). Copyright © 2017 Elsevier Ltd. All rights reserved.
Radon gas: contractor liability for an indoor health hazard.
Shuko, C M
1986-01-01
Many families throughout the United States have recently detected dangerously high concentrations of radon gas inside their homes. Radon, a carcinogenic gas produced from uranium, has been discovered in structures overlying uranium-bearing rock. This discovery may result in litigation to determine contractor liability for building upon radon-releasing rock sites. This Note examines the strengths and weaknesses of the various theories of contractor liability and considers potential statutory claims under the Clean Air Act. The Note suggests, as an alternative approach to recovery, a proposed regulatory scheme and implementation plan.
Method for converting uranium oxides to uranium metal
Duerksen, Walter K.
1988-01-01
A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.
Nash, J. Thomas; Frishman, David
1983-01-01
Analytical results for 61 elements in 370 samples from the Ranger Mine area are reported. Most of the rocks come from drill core in the Ranger No. 1 and Ranger No. 3 deposits, but 20 samples are from unmineralized drill core more than 1 km from ore. Statistical tests show that the elements Mg, Fe, F, Be, Co, Li, Ni, Pb, Sc, Th, Ti, V, CI, As, Br, Au, Ce, Dy, La Sc, Eu, Tb, Yb, and Tb have positive association with uranium, and Si, Ca, Na, K, Sr, Ba, Ce, and Cs have negative association. For most lithologic subsets Mg, Fe, Li, Cr, Ni, Pb, V, Y, Sm, Sc, Eu, and Yb are significantly enriched in ore-bearing rocks, whereas Ca, Na, K, Sr, Ba, Mn, Ce, and Cs are significantly depleted. These results are consistent with petrographic observations on altered rocks. Lithogeochemistry can aid exploration, but for these rocks requires methods that are expensive and not amenable to routine use.
Landa, Edward R.
2004-01-01
Uranium mill tailings (UMT) are a high volume, low specific activity radioactive waste typically disposed in surface impoundments. This review focuses on research on UMT and related earth materials during the past decade relevant to the assessment of: (1) mineral hosts of radionuclides; (2) the use of soil analogs in predicting long-term fate of radionuclides; (3) microbial and diagenetic processes that may alter radionuclide mobility in the surficial environment; (4) waste-management technologies to limit radionuclide migration; and (5) the impact of UMT on biota.
Steven, Thomas A.
1984-01-01
PART A: Igneous activity in the Marysvale volcanic field of western Utah can be separated into many episodes of extrusion, intrusion, and hydrothermal activity. The rocks of the western Tushar Mountains, near the western part of the volcanic field, include intermediate-composition, calc-alkalic volcanic rocks erupted from scattered volcanoes in Oligocene through earliest Miocene time and related monzonitic intrusions emplaced 24-23 m.y. ago. Beginning 22-21 m.y. ago and extending through much of the later Cenozoic, a bimodal basalt-rhyolite assemblage was erupted widely throughout the volcanic field. Only volcanic and intrusive rocks belonging to the rhyolitic end member of this bimodal assemblage are present in the western Tushar Mountains; most of these rocks either fill the Mount Belknap caldera (19 m.y. old) or are part of the rhyolite of Gillies Hill (9---8 m.y. old). Episodic hydrothermal activity altered and mineralized rocks at many places in the western Tushar Mountains during Miocene time. The earliest activity took place in and adjacent to monzonitic calcalkalic intrusions emplaced in the vicinity of Indian Creek and Cork Ridge. These rocks were widely propylitized, and gold-bearing quartz-pyrite-carbonate veins formed in local fractures. Hydrothermal activity associated with the Mount Belknap caldera mobilized and redeposited uranium contained in the caldera-fill rocks and formed primary concentrations of lithophile elements (including molybdenum and uranium) in the vicinity of intrusive bodies. Hydrothermal activity associated with the rhyolite of Gillies Hill altered and mineralized rocks at several places along the fault zone that marks the western margin of the Tushar Mountains; the zoned alunite and gold deposits at Sheep Rock, the gold deposit at the Sunday Mine, and an alunite deposit near Indian Creek were thus produced. Resetting of isotopic ages suggests that another center of hydrothermally altered rocks associated with a buried pluton about 16 m.y. old may exist near Indian Creek just west of the Mount Belknap caldera. Geophysical evidence confirms the probability of a buried pluton near Indian Creek, and also indicates that another buried pluton probably exists beneath the 9-m.y.-old mineralized area at Sheep Rock. The mineral potential of the different hydrothermal systems, and the types of minerals deposited probably vary considerably from one period of mineralization to another and from one depth environment to another within a given system. PART B: The Big John caldera, on the western flank of the Tushar Mountains in the Marysvale volcanic field in west-central Utah, formed 23-22 m.y. ago in response to ash-flow eruptions of the Delano Peak Tuff Member of the Bullion Canyon Volcanics. These eruptions were near the end of the period of Oligocene-early Miocene calc-alkalic igneous activity that built a broad volcanic plateau in this part of Utah. About 22 m.y. ago, the composition of rocks erupted changed to a bimodal assemblage of mafic and silicic volcanics that was erupted episodically through the remainder of Cenozoic time. The alkali rhyolites are uranium rich in part, and are associated with all the known uranium deposits in the Marysvale volcanic field. The Big John caldera was a broad drained basin whose floor was covered by a layer of stream gravels when ash flows from the western source area of the Mount Belknap Volcanics filled the caldera with the Joe Lott Tuff Member about 19 m.y. ago. Devitrified and zeolitized rocks in the caldera fill have lost one-quarter to one-half of the uranium contained in the original magma. This mobilized uranium probably moved into the hydrologic regime, and some may have been redeposited in stream gravels underlying the Joe Lott within the caldera, or in gravels filling the original drainage channel that extended south from the caldera.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-04
... and Licensing Board; AREVA Enrichment Services, LLC (Eagle Rock Enrichment Facility) December 17, 2010... construction and operation of a gas centrifuge uranium enrichment facility--denoted as the Eagle Rock... site at http://www.nrc.gov/materials/fuel-cycle-fac/arevanc.html . These and other documents relating...
Prevention of sulfide oxidation in sulfide-rich waste rock
NASA Astrophysics Data System (ADS)
Nyström, Elsa; Alakangas, Lena
2015-04-01
The ability to reduce sulfide oxidation in waste rock after mine closure is a widely researched area, but to reduce and/or inhibit the oxidation during operation is less common. Sulfide-rich (ca 30 % sulfur) waste rock, partially oxidized, was leached during unsaturated laboratory condition. Trace elements such as As and Sb were relatively high in the waste rock while other sulfide-associated elements such as Cu, Pb and Zn were low compared to common sulfide-rich waste rock. Leaching of unsaturated waste rock lowered the pH, from around six down to two, resulting in continuously increasing element concentrations during the leaching period of 272 days. The concentrations of As (65 mg/L), Cu (6.9 mg/L), Sb (1.2 mg/L), Zn (149 mg/L) and S (43 g/L) were strongly elevated at the end of the leaching period. Different alkaline industrial residues such as slag, lime kiln dust and cement kiln dust were added as solid or as liquid to the waste rock in an attempt to inhibit sulfide oxidation through neo-formed phases on sulfide surfaces in order to decrease the mobility of metals and metalloids over longer time scale. This will result in a lower cost and efforts of measures after mine closure. Results from the experiments will be presented.
Aruscavage, P. J.; Millard, H.T.
1972-01-01
A neutron activation analysis procedure was developed for the determination of uranium, thorium and potassium in basic and ultrabasic rocks. The three elements are determined in the same 0.5-g sample following a 30-min irradiation in a thermal neutron flux of 2??1012 n??cm-2??sec-1. Following radiochemical separation, the nuclides239U (T=23.5 m),233Th (T=22.2 m) and42K (T=12.36 h) are measured by ??-counting. A computer program is used to resolve the decay curves which are complex owing to contamination and the growth of daughter activities. The method was used to determine uranium, throium and potassium in the U. S. Geological Survey standard rocks DTS-1, PCC-1 and BCR-1. For 0.5-g samples the limits of detection for uranium, throium and potassium are 0.7, 1.0 and 10 ppb, respectively. ?? 1972 Akade??miai Kiado??.
NASA Astrophysics Data System (ADS)
Grijalva-Rodríguez, T.; Valencia-Moreno, M.; Calmus, T.; Del Rio-Salas, R.; Balcázar-García, M.
2017-12-01
This work reviews the characteristics of the El Horror uranium prospect in northeastern Sonora, Mexico. It was formerly detected by a radiometric anomaly after airborne gamma ray exploration carried out in the 70's by the Mexican government. As a promising site to contain important uranium resources, the El Horror was re-evaluated by CFE (Federal Electricity Commission) by in situ gamma ray surveys. The study also incorporates rock and stream sediment ICP-MS geochemistry, X-ray diffraction, X-ray fluorescence, Raman spectrometry and Scanning Electron Microscopy (SEM) to provide a better understanding of the radiometric anomaly. The results show that, instead of a single anomaly, it comprises at least five individual anomalies hosted in hydrothermally altered Laramide (80-40 Ma) andesitic volcanic rocks of the Tarahumara Formation. Concentrations for elemental uranium and uranium calculated from gamma ray surveys (i.e., equivalent uranium) are not spatially coincident within the anomaly, but, at least at some degree, they do so in specific sites. X-ray diffraction and Raman spectrometry revealed the presence of rutile/anatase, uvite, bukouvskyte and allanite as the more likely mineral phases to contain uranium. SEM studies revealed a process of iron-rich concretion formation, suggesting that uranium was initially incorporated to the system by adsorption, but was largely removed later during incorporation of Fe+3 ions. Stream sediment geochemistry reveals that the highest uranium concentrations are derived from the southern part of the Sierra La Madera batholith (∼63 Ma), and decrease toward the El Horror anomaly.
Lourenço, J; Marques, S; Carvalho, F P; Oliveira, J; Malta, M; Santos, M; Gonçalves, F; Pereira, R; Mendo, S
2017-12-15
Active and abandoned uranium mining sites often create environmentally problematic situations, since they cause the contamination of all environmental matrices (air, soil and water) with stable metals and radionuclides. Due to their cytotoxic, genotoxic and teratogenic properties, the exposure to these contaminants may cause several harmful effects in living organisms. The Fish Embryo Acute Toxicity Test (FET) test was employed to evaluate the genotoxic and teratogenic potential of mine liquid effluents and sludge elutriates from a deactivated uranium mine. The aims were: a) to determine the risk of discharge of such wastes in the environment; b) the effectiveness of the chemical treatment applied to the uranium mine water, which is a standard procedure generally applied to liquid effluents from uranium mines and mills, to reduce its toxicological potential; c) the suitability of the FET test for the evaluation the toxicity of such wastes and the added value of including the evaluation of genotoxicity. Results showed that through the FET test it was possible to determine that both elutriates and effluents are genotoxic and also that the mine effluent is teratogenic at low concentrations. Additionally, liquid effluents and sludge elutriates affect other parameters namely, growth and hatching and that water pH alone played an important role in the hatching process. The inclusion of genotoxicity evaluation in the FET test was crucial to prevent the underestimation of the risks posed by some of the tested effluents/elutriates. Finally, it was possible to conclude that care should be taken when using benchmark values calculated for specific stressors to evaluate the risk posed by uranium mining wastes to freshwater ecosystems, due to their chemical complexity. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harmon, K.M.; Lakey, L.T.; Leigh, I.W.
Worldwide activities related to nuclear fuel cycle and radioactive waste management programs are summarized. Several trends have developed in waste management strategy: All countries having to dispose of reprocessing wastes plan on conversion of the high-level waste (HLW) stream to a borosilicate glass and eventual emplacement of the glass logs, suitably packaged, in a deep geologic repository. Countries that must deal with plutonium-contaminated waste emphasize pluonium recovery, volume reduction and fixation in cement or bitumen in their treatment plans and expect to use deep geologic repositories for final disposal. Commercially available, classical engineering processing are being used worldwide to treatmore » and immobilize low- and intermediate-level wastes (LLW, ILW); disposal to surface structures, shallow-land burial and deep-underground repositories, such as played-out mines, is being done widely with no obvious technical problems. Many countries have established extensive programs to prepare for construction and operation of geologic repositories. Geologic media being studied fall into three main classes: argillites (clay or shale); crystalline rock (granite, basalt, gneiss or gabbro); and evaporates (salt formations). Most nations plan to allow 30 years or longer between discharge of fuel from the reactor and emplacement of HLW or spent fuel is a repository to permit thermal and radioactive decay. Most repository designs are based on the mined-gallery concept, placing waste or spent fuel packages into shallow holes in the floor of the gallery. Many countries have established extensive and costly programs of site evaluation, repository development and safety assessment. Two other waste management problems are the subject of major R and D programs in several countries: stabilization of uranium mill tailing piles; and immobilization or disposal of contaminated nuclear facilities, namely reactors, fuel cycle plants and R and D laboratories.« less
Assessment of natural radioactivity in aquifer medium bearing uranium ores in Koprubasi, Turkey
NASA Astrophysics Data System (ADS)
Simsek, Celalettin
2008-10-01
Koprubasi, located within Manisa Province near the Izmir, is the biggest uranium mine where uranium ores originate from Neogene aged altered sandstone and conglomerate layers. The main objective of this study is to determine the radiation hazard associated with radioactivity levels of uranium ores, and the rocks and sediments around Koprubasi. In this regard, measured activity levels of 226Ra, 232Th and 40K were compared with world averages. The average activity levels of 226 Ra, 232Th and 40K were measured to be 5369.75, 124.78 and 10.0 Bq/kg in uranium ores, 24.32, 52.94 and 623.38 Bq/kg in gneiss, 46.24, 45.13 and 762.26 Bq/kg in sandstone and conglomerate, 73.11, 43.15 and 810.65 Bq/kg in sediments, respectively. All samples have high 226Ra and 40K levels according to world average level. As these sediments are used as construction materials and in agricultural activities within the study area, the radiation hazard are calculated by using dose rate (D), annual effective dose rate (He), radium equivalent activity (Raeq) and radiation hazard index (Iyr). All the samples have Raeq levels that are lower than the world average limit of 370 Bq/kg. On the other hand, D, He and Iyr values are higher than world average values. These results indicate that the uranium ores in the Koprubasi is the most important contributor to the natural radiation level. The radioactivity levels of sediments and rocks make them unsuitable for use as agricultural soil and as construction materials. Moreover, it is determined that shallow groundwater in sediments and deep groundwater in conglomerate rocks and also surface water sources in the Koprubasi have high 226Ra content. According to environmental radioactive baseline, some environmental protection study must be taken in Koprubasi uranium site and the environment.
RECONNAISSANCE FOR URANIUM IN ASPHALT-BEARING ROCKS IN THE WESTERN UNITED STATES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hail, W.J. Jr.
1957-01-01
An appraisal of asphait-bearing rocks as potential sources of uranium was made during 1953 and 1954 in 45 areas in Calif., Utah, Wyo., Mont., N. Mex., Tex., Okla., and Mo. A total of 202 samples from these areas was analyzed for uranium. The oldest rocks sampled are Ordovician in age, and the youngest are Recent. Although none of the deposits are of value at this time as a source of U, some of the deposits may constitute a low-grade U resource, but recovery of the U will depend upon the primary use of the asphalt. Significant amounts of U lnmore » the ash of oil extracted from these rocks were found in samples from 7 of the 45 areas examined. These areas are Chalome Creek, McKittrick, Edna, and Los Alamos Calif.; Vernal, Utah; Sulphur, Okla.; and Ellis, Mo. The average U content in the ash of the extracted oil of samples from these 7 areas ranges from 0.028 to 0.376%. All except the Chalone Creek area contain large estimated reserves of asphalt-bearing rock, ranging from 15 million to almost 2 billion tons. The average U content of samples from 13 additiomal areas ranges from 0.020 to 0.06B% in the ash of the extracted oil. Many of these areas contain very large reserves of asphalt-bearing rocks. It is believed that most of the asphalt deposits are oil residues, and that the U was introduced during or after the late stages of oil movement and loss of the lighter oil fractions. (auth)« less
CHARACTERIZATION AND PH/EH-BASED LEACHING TESTS OF MINING WASTES CONTAINING MERCURY
This study was undertaken as a part of developing treatment alternatives for waste materials, primarily waste rock and roaster tailings, from sites contaminated with mercury (Hg) mining wastes. Leaching profiles of waste rock over a range of different pH and oxidation-reduction (...
CHARACTERIZATION AND PH/EH-BASED LEACHING TESTS OF MINING WASTES CONTAINING MERCURY
This study was undertaken as a part of developing treatment alternatives for waste materials, primarily waste rock and roaster tailings, from sites contaminated with Mercury (Hg) mining wastes. Leaching profiles of waste rock over a range of different pH and oxidation-reduction ...
Depleted uranium hexafluoride: The source material for advanced shielding systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quapp, W.J.; Lessing, P.A.; Cooley, C.R.
1997-02-01
The U.S. Department of Energy (DOE) has a management challenge and financial liability problem in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. DOE is evaluating several options for the disposition of this UF{sub 6}, including continued storage, disposal, and recycle into a product. Based on studies conducted to date, the most feasible recycle option for the depleted uranium is shielding in low-level waste, spent nuclear fuel, or vitrified high-level waste containers. Estimates for the cost of disposal, using existing technologies, range between $3.8 andmore » $11.3 billion depending on factors such as the disposal site and the applicability of the Resource Conservation and Recovery Act (RCRA). Advanced technologies can reduce these costs, but UF{sub 6} disposal still represents large future costs. This paper describes an application for depleted uranium in which depleted uranium hexafluoride is converted into an oxide and then into a heavy aggregate. The heavy uranium aggregate is combined with conventional concrete materials to form an ultra high density concrete, DUCRETE, weighing more than 400 lb/ft{sup 3}. DUCRETE can be used as shielding in spent nuclear fuel/high-level waste casks at a cost comparable to the lower of the disposal cost estimates. Consequently, the case can be made that DUCRETE shielded casks are an alternative to disposal. In this case, a beneficial long term solution is attained for much less than the combined cost of independently providing shielded casks and disposing of the depleted uranium. Furthermore, if disposal is avoided, the political problems associated with selection of a disposal location are also avoided. Other studies have also shown cost benefits for low level waste shielded disposal containers.« less
Uranium speciation in acid waste-weathered sediments: The role of aging and phosphate amendments
Perdrial, Nicolas; Vázquez-Ortega, Angélica; Wang, Guohui; ...
2017-12-05
Uranium speciation and lability are strongly coupled to mineral transformations in silicate sediments, particularly for sediments subjected to weathering in acidic, high-level radioactive waste, as occurred at the Department of Energy's Hanford (WA) site. Here, uncontaminated Hanford sediments were reacted for 365 days with acidic (pH 3), uranium-bearing waste solutions, with and without phosphate in batch experiments, prior to detailed characterizations using electron microscopy, x-ray diffraction and x-ray absorption spectroscopy. In PO 4-reactant free systems, uranium speciation was controlled initially by precipitation of compreignacite [K 2(UO 2) 6O 4(OH) 6·8H 2O]- and becquerelite [Ca(UO 2) 6O 4(OH) 6·8H 2O]-like species.more » Subsequent further removal of uranium coincided with that of Si and accumulation of boltwoodite, [(K, Na)(UO 2) 2O 4(HSiO 4) 2•0.5(H 2O)]-like species of uranium at 180 and 365 days. When present, PO 4 exerted a direct and strong control over U speciation. Furthermore, the detection of meta-ankoleite, [K 2(UO 2) 2O 4(PO 4) 2·6H 2O] at all reaction times when U was present emphasizes the importance of dissolved phosphate as a control on U speciation. Here, meta-ankoleite appears well crystallized and when it occurs as the principal product of sediment weathering, its low solubility is expected to limit dissolved U(VI) concentrations in groundwater. Although boltwoodite solubility is also low, it is formed more slowly (and only when PO 4 is absent), after initial precipitation of more soluble, less crystalline uranyl hydroxides. In the context of Hanford crib waste our results suggest that with PO 4 present, nearly all uranium would have precipitated in the upper soil.« less
Uranium speciation in acid waste-weathered sediments: The role of aging and phosphate amendments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perdrial, Nicolas; Vázquez-Ortega, Angélica; Wang, Guohui
Uranium speciation and lability are strongly coupled to mineral transformations in silicate sediments, particularly for sediments subjected to weathering in acidic, high-level radioactive waste, as occurred at the Department of Energy's Hanford (WA) site. In this study, uncontaminated Hanford sediments were reacted for 365 days with acidic (pH 3), uranium-bearing waste solutions, with and without phosphate in batch experiments, prior to detailed characterizations using electron microscopy, x-ray diffraction and x-ray absorption spectroscopy. In PO(4)(-)reactant free systems, uranium speciation was controlled initially by precipitation of compreignacite [K-2(UO2)(6)O-4(OH)(6)center dot 8H(2)O]-and becquerelite [Ca(UO2)(6)O-4(OH)(6)center dot 8H(2)O]-like species. Subsequent further removal of uranium coincided withmore » that of Si and accumulation of boltwoodite, [(K, Na)(UO2)(2)O-4(HSiO4)(2)center dot 0.5(H2O)]-like species of uranium at 180 and 365 days. When present, PO4 exerted a direct and strong control over U speciation. The detection of meta-ankoleite, [K-2(UO2)(2)O-4(PO4)(2)center dot 6H(2)O] at all reaction times when U was present emphasizes the importance of dissolved phosphate as a control on U speciation. Here, meta-ankoleite appears well crystallized and when it occurs as the principal product of sediment weathering, its low solubility is expected to limit dissolved U(VI) concentrations in groundwater. Although boltwoodite solubility is also low, it is formed more slowly (and only when PO4 is absent), after initial precipitation of more soluble, less crystalline uranyl hydroxides. In the context of Hanford crib waste our results suggest that with PO4 present, nearly all uranium would have precipitated in the upper soil.« less
Uranium speciation in acid waste-weathered sediments: The role of aging and phosphate amendments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perdrial, Nicolas; Vázquez-Ortega, Angélica; Wang, Guohui
Uranium speciation and lability are strongly coupled to mineral transformations in silicate sediments, particularly for sediments subjected to weathering in acidic, high-level radioactive waste, as occurred at the Department of Energy's Hanford (WA) site. Here, uncontaminated Hanford sediments were reacted for 365 days with acidic (pH 3), uranium-bearing waste solutions, with and without phosphate in batch experiments, prior to detailed characterizations using electron microscopy, x-ray diffraction and x-ray absorption spectroscopy. In PO 4-reactant free systems, uranium speciation was controlled initially by precipitation of compreignacite [K 2(UO 2) 6O 4(OH) 6·8H 2O]- and becquerelite [Ca(UO 2) 6O 4(OH) 6·8H 2O]-like species.more » Subsequent further removal of uranium coincided with that of Si and accumulation of boltwoodite, [(K, Na)(UO 2) 2O 4(HSiO 4) 2•0.5(H 2O)]-like species of uranium at 180 and 365 days. When present, PO 4 exerted a direct and strong control over U speciation. Furthermore, the detection of meta-ankoleite, [K 2(UO 2) 2O 4(PO 4) 2·6H 2O] at all reaction times when U was present emphasizes the importance of dissolved phosphate as a control on U speciation. Here, meta-ankoleite appears well crystallized and when it occurs as the principal product of sediment weathering, its low solubility is expected to limit dissolved U(VI) concentrations in groundwater. Although boltwoodite solubility is also low, it is formed more slowly (and only when PO 4 is absent), after initial precipitation of more soluble, less crystalline uranyl hydroxides. In the context of Hanford crib waste our results suggest that with PO 4 present, nearly all uranium would have precipitated in the upper soil.« less
SR-XFA of uranium-containing materials. A case of Bazhenov formation rocks exploration
NASA Astrophysics Data System (ADS)
Phedorin, M. A.; Bobrov, V. A.; Tchebykin, Ye. P.; Melgunov, M. S.
2000-06-01
When an X-ray fluorescent analysis (XFA) is carried out, errors are possible because fluorescent K-lines of "light" elements and L-lines of some "dark" elements can overlap in energy domain. With certain contents of these elements and insufficient resolution of the spectrometer, this leads to considerable errors of determination. An example is the overlapping of a large number of uranium (U) L-lines and Rb, Nb, Mo K-lines. In this paper a procedure is suggested to correct such overlapping. It was tested on uranium-containing rock samples. These samples represent the oil-producing Bazhenov rock formation, which is characterized by organic matter accumulated in abundance and accompanied by "organophile" elements, including U. The procedure is based on scanning the energy of initial exciting X-radiation. This may be regarded advisable only in the XFA versions that use synchrotron radiation — SR-XFA. As a result of this investigation, geochemical characteristics of the Bazhenov formation rocks are demonstrated and the efficiency of energy scanning procedure in determining both Rb, Nb, Mo and U contents is revealed (using comparison with other methods). The energy scanning procedure also works in the presence of L-lines of some other dark elements (Pb, Th, etc.) in the energy domain of K-lines of As-Mo.
Northeast Church Rock Mine, a former uranium mine 17 miles northeast of Gallup, NM in the Pinedale Chapter of the Navajo Nation. EPA is working with NNEPA to oversee cleanup work by United Nuclear Corporation, a company owned by General Electric (GE).
Russian Experience in the Regulatory Supervision of the Uranium Legacy Sites - 12441
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiselev, M.F.; Romanov, V.V.; Shandala, N.K.
2012-07-01
Management of the uranium legacy is accompanied with environmental impact intensity of which depends on the amount of the waste generated, the extent of that waste localization and environmental spreading. The question is: how hazardous is such impact on the environment and human health? The criterion for safety assurance is adequate regulation of the uranium legacy. Since the establishment of the uranium industry, the well done regulatory system operates in the FMBA of Russia. Such system covers inter alia, the uranium legacy. This system includes the extent laboratory network of independent control and supervision, scientific researches, regulative practices. The currentmore » Russian normative and legal basis of the regulation and its application practice has a number of problems relating to the uranium legacy, connected firstly with the environmental remediation. To improve the regulatory system, the urgent tasks are: -To introduce the existing exposure situation into the national laws and standards in compliance with the ICRP system. - To develop criteria for site remediation and return, by stages, to uncontrolled uses. The similar criteria have been developed within the Russian-Norwegian cooperation for the purpose of remediation of the sites for temporary storage of SNF and RW. - To consider possibilities and methods of optimization for the remediation strategies under development. - To separate the special category - RW resulted from uranium ore mining and dressing. The current Russian RW classification is based on the waste subdivision in terms of the specific activities. Having in mind the new RW-specific law, we receive the opportunity to separate some special category - RW originated from the uranium mining and milling. Introduction of such category can simplify significantly the situation with management of waste of uranium mining and milling processes. Such approach is implemented in many countries and approved by IAEA. The category of 'RW originated from uranium mining and milling' is to be introduced as the legal acts and regulatory documents. The recent ICRP recommendations provide the flexible approaches for solving of such tasks. The FMBA of Russia recognizes the problems of radiation safety assurance related to the legacy of the former USSR in the uranium mining industry. Some part of the regulatory problems assumes to be solved within the EurAsEC inter-state target program 'Reclamation of the territories of the EurAsEC member states affected by the uranium mining and milling facilities'. Using the example of the uranium legacy sites in Kyrgyz and Tajikistan which could result in the tran-boundary disasters and require urgent reclamation, the experience will be gained to be used in other states as well. Harmonization of the national legislations and regulative documents on radiation safety assurance is envisaged. (authors)« less
NASA Technical Reports Server (NTRS)
Francis, A. J.; Dodge, C. J.
1993-01-01
A process has been developed at Brookhaven National Laboratory (BNL) for the removal of metals and radionuclides from contaminated materials, soils, and waste sites. In this process, citric acid, a naturally occurring organic complexing agent, is used to extract metals such as Ba, Cd, Cr, Ni, Zn, and radionuclides Co, Sr, Th, and U from solid wastes by formation of water soluble, metal-citrate complexes. Citric acid forms different types of complexes with the transition metals and actinides, and may involve formation of a bidentate, tridentate, binuclear, or polynuclear complex species. The extract containing radionuclide/metal complex is then subjected to microbiological degradation followed by photochemical degradation under aerobic conditions. Several metal citrate complexes are biodegraded, and the metals are recovered in a concentrated form with the bacterial biomass. Uranium forms binuclear complex with citric acid and is not biodegraded. The supernatant containing uranium citrate complex is separated and upon exposure to light, undergoes rapid degradation resulting in the formation of an insoluble, stable polymeric form of uranium. Uranium is recovered as a precipitate (polyuranate) in a concentrated form for recycling or for appropriate disposal. This treatment process, unlike others which use caustic reagents, does not create additional hazardous wastes for disposal and causes little damage to soil which can then be returned to normal use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman-Pollard, J.R.
1994-03-02
This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handlingmore » and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.« less
Jain, Rohan; Peräniemi, Sirpa; Jordan, Norbert; Vogel, Manja; Weiss, Stephan; Foerstendorf, Harald; Lakaniemi, Aino-Maija
2018-05-24
This study demonstrated the removal and recovery of uranium(VI) in a fed-batch stirred tank reactor (STR) using waste digested activated sludge (WDAS). The batch adsorption experiments showed that WDAS can adsorb 200 (±9.0) mg of uranium(VI) per g of WDAS. The maximum adsorption of uranium(VI) was achieved even at an acidic initial pH of 2.7 which increased to a pH of 4.0 in the equilibrium state. Desorption of uranium(VI) from WDAS was successfully demonstrated from the release of more than 95% of uranium(VI) using both acidic (0.5 M HCl) and alkaline (1.0 M Na 2 CO 3 ) eluents. Due to the fast kinetics of uranium(VI) adsorption onto WDAS, the fed-batch STR was successfully operated at a mixing time of 15 min. Twelve consecutive uranium(VI) adsorption steps with an average adsorption efficiency of 91.5% required only two desorption steps to elute more than 95% of uranium(VI) from WDAS. Uranium(VI) was shown to interact predominantly with the phosphoryl and carboxyl groups of the WDAS, as revealed by in situ infrared spectroscopy and time-resolved laser-induced fluorescence spectroscopy studies. This study provides a proof-of-concept of the use of fed-batch STR process based on WDAS for the removal and recovery of uranium(VI). Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuzmina, L.A.
A method has been developed for determining uranium, thorium, and ionium (Th/sup 230/) in sea silt from a single sample. The completeness of isolation and radiochemical purity of thorium isotopes have been tested by means of tracers. The method has been proved on samples of sea silt as well as of rocks, ores, and minerals. It is applicable at thorium content from 5 x 10/sup -5/ to x x 10/sup - 4/% when uranium content is x x 10/sup -4/ % and at uranium content up to 70% when ionium contert is x x 10/sup -4/% (uranium equivalent). (tr-auth)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starkov, O.; Konovalov, E.
1996-05-01
Alternative vitrification technologies are being developed in the world for the immobilization of high radioactive waste in materials with improved thermodynamic stability, as well as improved chemical and thermal stability and stability to radiation. Oxides, synthesized in the form of analogs to rock-forming minerals and ceramics, are among those materials that have highly stable properties and are compatible with the environment. In choosing the appropriate material, we need to be guided by its geometric stability, the minimal number of cations in the structure of the material and the presence of structural elements in the mineral that are isomorphs of uraniummore » and thorium, actinoids found in nature. Rare earth elements, yttrium, zirconium and calcium are therefore suitable. The minerals listed in the table (with the exception of the zircon) are pegatites by origin, i.e. they are formed towards the end of the magma crystallization of silicates form the residual melt, enriched with Ta, Nb, Ti, Zr, Ce, Y, U and Th. Uranium and thorium in the form of isomorphic admixtures form part of the lattice of the mineral. These minerals, which are rather simple in composition and structure and are formed under high temperatures, may be viewed as natural physio-chemical systems that are stable and long-lived in natural environments. The similarity of the properties of actinoids and lanthanoids plays an important role in the geochemistry of uranium and thorium; however, uranium (IV) is closer to the {open_quotes}heavy{close_quotes} group of lanthanoids (the yttrium group) while thorium (IV) is closer to the {open_quotes}light{close_quotes} group (the cerium group). That is why rare earth minerals contain uranium and thorium in the form of isomorphic admixtures.« less
Voltaggio, M; Spadoni, M; Sacchi, E; Sanam, R; Pujari, P R; Labhasetwar, P K
2015-06-15
The impact on local water resources due to fly ash produced in the Koradi and Khaperkheda thermal power plants (district of Nagpur, Maharashtra - India) and disposed in large ponds at the surface was assessed through the study of environmental variation of ratios of stable and unstable isotopes. Analyses of oxygen and hydrogen isotopes suggest scarce interaction between the water temporarily stored in the ponds and the groundwater in the study area. Data also highlight that the high salinity of groundwater measured in the polluted wells is not due to evaporation, but to subsequent infiltration of stream waters draining from the ponds to the local aquifer. (87)Sr/(86)Sr values, when associated with Sr/Ca ratios, demonstrate the dominant role of waste waters coming from tens of brick kilns surrounding the pond sulfate pollution. Uranium isotopic analyses clearly show evidence of the interaction between groundwater and aquifer rocks, and confirm again the low influence of ash ponds. A new conceptual model based on the study of the isotopes of radium is also proposed and used to estimate residence times of groundwater in the area. This model highlights that high salinity cannot be in any case attributed to a prolonged water-rock interaction, but is due to the influence of untreated waste water of domestic or brick kiln origin on the shallow and vulnerable aquifers. Copyright © 2015 Elsevier B.V. All rights reserved.
Virgin Valley opal district, Humboldt County, Nevada
Staatz, Mortimer Hay; Bauer, Herman L.
1951-01-01
The Virgin Valley opal district, Humboldt County, Nevada, is near the Oregon-Nevada border in the Sheldon Game Refuge. Nineteen claims owned by Jack and Toni Crane were examined, sampled, and tested radiometrically for uranium. Numerous discontinuous layers of opal are interbedded with a gently-dipping series of vitric tuff and ash which is at least 300 ft thick. The tuff and ash are capped by a dark, vesicular basalt in the eastern part of the area and by a thin layer of terrace qravels in the area along the west side of Virgin Valley. Silicification of the ash and tuff has produced a rock that ranges from partly opalized rock that resembles silicified shale to completely altered rock that is entirely translucent, and consists of massive, brown and pale-green opal. Carnotite, the only identified uranium mineral, occurs as fracture coatings or fine layers in the opal; in places, no uranium minerals are visible in the radioactive opal. The opal layers are irregular in extent and thickness. The exposed length of the layers ranges from 8 to 1, 200 ft or more, and the thickness of the layers ranges from 0. 1 to 3. 9 ft. The uranium content of each opal layer, and of different parts of the same layer, differs widely. On the east side of Virgin Valley four of the seven observed opal layers, nos. 3, 4, 5, and 7, are more radioactive than the average; and the uranium content ranges from 0. 002 to 0. 12 percent. Two samples, taken 5 ft apart across opal layer no. 7, contained 0. 003 and 0. -049 percent uranium. On the west side of the valley only four of the fifteen observed opal layers, nos; 9, , 10, 14, and 15, are more radioactive than the average; and the uranium content ranges from 0. 004 to 0. 047 percent. Material of the highest grade was found in a small discontinuous layer of pale-green opal (no. 4) on the east side of Virgin Valley. The grade of this layer ranged from 0. 027 to 0. 12 percent uranium.
Geology of the Shinarump No. 1 uranium mine, Seven Mile Canyon area, Grand County, Utah
Finch, Warren Irvin
1954-01-01
The geology of the Shinarump No. 1 uranium mine, located about 12 miles northwest of Moab, Utah, in the Seven Mile Canyon area, Grand County, Utah, was studied to determine the habits, ore controls, and possible origin of the deposit. Rocks of Permian, Triassic, and Jurassic age crop out in the area mapped, and uranium deposits are found in three zones in the lower 25 feet of the Chinle formation of Late Triassic age. The Shinarump No. 1 mine, which is in the lowermost zone, is located on the west flank of the Moab anticline near the Moab fault. The Shinarump No. 1 uranium deposit consists of discontinuous lenticular layers of mineralized rock, irregular in outline, that, in general, follow the bedding. Ore minerals, mainly uraninite, impregnate the rock. High-grade ore seams of uraninite and chalcocite occur along bedding planes. Uraninite formed later than, or simultaneous with, most sulfides, and the chalcocite may be of two ages, with some being later than uraninite. Uraninite and chalcocite are concentrated in the more poorly sorted parts of siltstones. In the Seven Mile Canyon area guides to ore inferred from the study of the Shinarump No. 1 deposit are the presence of bleached siltstone, carbonaceous matter, and copper sulfides. Results of spectrographic analysis indicate that the mineralizing solutions contained important amounts of barium, vanadium, uranium, and copper, as well as lesser amounts of strontium, chromium, boron, yttrium, lead, and zinc. The origin of the Shinarump No. 1 deposit is thought to be hydrothermal.
Geology of the Shinarump No. 1 uranium mine, Seven Mile Canyon area, Grand County, Utah
Finch, Warren Irvin
1953-01-01
The Shinarump No. 1 uranium mine is located about 12 miles northwest of Moab, Utah, in the Seven Mile Canyon area, Grand County, Utah. A study was made of the geology of the Shinarump No. 1 mine in order to determine the habits, ore controls, and possible origin of the deposit. Rocks of Permain, Triassic, and Jurassic age crop out in the area mapped. Uranium deposits are found in three zones in the lower 25 feet of the Upper Triassic Chinle formation. The Shinarump No. 1 mine, which is in the lowermost zone, is located on the west flank of the Moab anticline near the Moab fault. The Shinarump No. 1 uranium deposit consists of discontinuous lenticular layers of mineralized rock, irregular in outline, that, in general, follow the bedding. Ore minerals, mainly uranite, impregnate the rock. High-grade seams of uranite and chalcocite occur along bedding planes. Formation of unraninite is later than or simultaneous with most sulfides. Chalcocite may be of two ages, with some being later than uraninite. Uraninite and chalcocite are concentrated in the poorer sorted parts of siltstones. Guides to ore in the Seven Mile Canyon area inferred from the study of the Shinarump No. 1 deposit are the presence of bleached siltstone, copper sulfides, and carbonaceous matter. Results of spectrographic analysis indicated that the mineralizing solutions contained important amounts of barium, vanadium, uranium, and copper as well as lesser amounts of strontium, chromium, boron, yttrium, lead, and zinc. The origin of the Shinarump No. 1 deposit is thought to be hydrothermal, dated as later or early.
Detailed mineral and chemical relations in two uranium-vanadium ores
Garrels, Robert M.; Larsen, E. S.; Pommer, A.M.; Coleman, R.G.
1956-01-01
Channel samples from two mines on the Colorado Plateau have been studied in detail both mineralogically and chemically. A channel sample from the Mineral Joe No. 1 mine, Montrose County, Colo., extends from unmineralized rock on one side, through a zone of variable mineralization, into only weakly mineralized rock. The unmineralized rock is a fairly clean quartz sand cemented with gypsum and contains only minor amounts of clay minerals. One boundary between unmineralized and mineralized rock is quite sharo and is nearly at right angles to the bedding. Vanadium clay minerals, chiefly mixed layered mica-montmorillonite and chlorite-monmorillonite, are abundant throughout the mineralized zone. Except in the dark "eye" of the channel sample, the vanadium clay minerals are accompanied by hewettite, carnotite, tyuyamunite, and probably unidentified vanadates. In the dark "eye," paramontroseite, pyrite, and marcasite are abundant, and bordered on each side by a zone containing abundant corvusite. No recognizable uranium minerals were seen in the paramontroseite zone although uranium is abundant there. Coaly material is recognizable throughout all of the channel but is most abundant in and near the dark "eye." Detailed chemical studies show a general increase in Fe, Al, U, and V, and a decrease in SO4 toward the "eye" of the channel. Reducing capacity studies indicate that V(IV) and Fe(II) are present in the clay mineral throughout the channel, but only in and near the "eye" are other V(IV) minerals present (paramontroseite and corvusite). The uranium is sexivalent, although its state of combination is conjectural where it is associated with paramontroseite. Where the ore boundary is sharp, the boundary of introduced trace elements is equally sharp. Textural and chemical relations leave no doubt that the "eye: is a partially oxidized remnant of a former lower-valence ore, and the remainder of the channel is a much more fully oxidized remnant. A channel sample from the Virgin No. 3 mine, Montrose County, Colo., extends from weakly mineralized sandstone on both sides through a strongly mineralized central zone. The weakly mineralized zone is a poorly sorted sandstone with common detrital clay partings; chlorite and mixed layer mica-montmorrillonite are abundant interstitial to the quartz grains. No distinct vanadium or uranium minerals are recognizable, although the clay minerals are vanadium bearing. Euherdral pyrite grains and selenian galena are present but rare. The strongly mineralized rock is separated from the weakly mineralized rock by a narrow transition zone which only apporiximates the bedding planes. It contains abundant vanadium-bearing clay minerals (predominantly chlorite) interstitial to the quartz grains, and apparently replacing them. Paramontroseite is common and is intergrown with the clay minerals. Pyrite and marcasite are present, chiefly in or near the abundant blebs and fragments of carbonaceous material. Selenian galena is rarely present, and generally in or near carbonaceous material. Coffinite is the only uranium mineral idenitified; it is extremely fine grained and was identified only in X-ray diffraction patterns of heavy separates. Distribution of trace elements is not clear; some are consistently high in the strongly mineralized rocks, and some are consistently low. The trace element composition of the unmineralized rock is not known. Chemical studies show a very abrupt rise in the total U, V, and Fe from the weakly mineralized to strongly mineralized rock. Reducing-capacity studies indicate that most of the vanadium is present as V(IV), but some is present as V(V); that iron is present as both Fe(II) and Fe(III), the latter believed to have been present in the primary clays of the unmineralized rock; and that come of the uranium is present as U(VI) in addition to the U(IV) in the coffinite. All evidence points to weak oxidation of an ore once having a somewhat lower valence state. The channel samples from both the Mineral Joe No. 1 mine and the Virgin No. 3 mine are believe to have been essentially identical in mineralogy prior to oxidation by weathering: vanadium was present as V(III) in montroseite and V(IV) in the vanadium clays; uranium was present largely as U(IV) in coffinite and/or uraninite. The Mineral Joe No. 1 mine channel sample is now more fully oxidized. Vanadium clays are unquestionably formed abundantly during the primary mineralization, and they persist with a minimum of alteration during much of the weathering. They suggest that the vanadium is carried as V(IV) in the ore-forming fluids; it seems likely too that the uranium is carried as a U(VI) ion.
NASA Astrophysics Data System (ADS)
Bochiolo, M.; Verdoya, M.; Chiozzi, P.; Pasquale, V.
2012-08-01
We performed a radiometric survey for evaluating the natural radioactivity and the related potential hazard level both outdoor and indoor a mine tunnel. The mine is located in a zone of uranium enrichment in the Western Alps (Italy). At first, a γ-ray spectrometry survey of the area surrounding the mine was carried out to define the extent of the ore deposit. Then, spectrometric measurements were performed in the tunnel and rock samples were collected for laboratory analyses. The results point to significant heterogeneity in uranium concentration and consequently in the absorbed dose rate spatial distribution. Spectrometric results in situ and in the laboratory, together with radon air concentration measurements, were used to infer the radon specific exhalation and flow from the mine rocks. The specific exhalation is positively related to the activity concentration of uranium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karlstrom, K.E.; Houston, R.S.; Schmidt, T.G.
1981-02-01
This volume is presented as a companion to Volume 1: The Geology and Uranium Potential of Precambrian Conglomerates in the Medicine Bow Mountains and Sierra Madre of Southeastern Wyoming; and to Volume 3: Uranium Assessment for Precambrian Pebble Conglomerates in Southeastern Wyoming. Volume 1 summarized the geologic setting and geologic and geochemical characteristics of uranium-bearing conglomerates in Precambrian metasedimentary rocks of southeastern Wyoming. Volume 3 is a geostatistical resource estimate of U and Th in quartz-pebble conglomerates. This volume contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks of the Medicine Bow Mountains and Sierra Madre,more » and drill site geologic maps and cross-sections from most of the holes.« less
Assessment of uranium release to the environment from a disabled uranium mine in Brazil.
Pereira, Wagner de Souza; Kelecom, Alphonse Germaine Albert Charles; da Silva, Ademir Xavier; do Carmo, Alessander Sá; Py Júnior, Delcy de Azavedo
2018-08-01
The Ore Treatment Unit (in Portuguese Unidade de Tratamento de Minérios - UTM) located in Caldas, MG, Brazil is a disabled uranium mine. Environmental conditions generate acid drainage leaching metals and radionuclides from the waste rock pile. This drainage is treated to remove the heavy metals and radionuclides, before allowing the release of the effluent to the environment. To validate the treatment, samples of the released effluents were collected at the interface of the installation with the environment. Sampling was carried out from 2010 to 2015, and the activity concentration (AC, in Bq·l -1 ) of uranium in the liquid effluent was analyzed by arzenazo UV-Vis spectrophotometry of the soluble and particulate fractions, and of the sum of both fractions. Descriptive statistics, Z test and Pearson R 2 correlation among the fractions were performed. Then, the data were organized by year and both ANOVA and Tukey test were carried out to group the means by magnitude of AC. The annual mean ranged from 0.02 Bq·l -1 in 2015 to 0.11 Bq·l -1 in 2010. The soluble fraction showed a higher AC mean when compared to the mean of the particulate fraction and no correlation of the data could be observed. Concerning the magnitude of the release, the ANOVA associated with the Tukey test, identified three groups of annual means (AC 2010 > AC 2011 = AC 2012 = AC 2013 = AC 2014 > AC 2015 ). The mean values of uranium release at the interface installation-environment checking point (point 014) were within the Authorized Annual Limit (AAL) set by the regulator (0.2 Bq·l -1 ) indicating compliance of treatment with the licensing established for the unit. Finally, the data showed a decreasing tendency of U release. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chemical Technology Division, Annual technical report, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-03-01
Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less
Chemical Technology Division, Annual technical report, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-03-01
Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less
Cunningham, C.G.; Rasmussen, J.D.; Steven, T.A.; Rye, R.O.; Rowley, P.D.; Romberger, S.B.; Selverstone, J.
1998-01-01
Uranium deposits containing molybdenum and fluorite occur in the Central Mining Area, near Marysvale, Utah, and formed in an epithermal vein system that is part of a volcanic/hypabyssal complex. They represent a known, but uncommon, type of deposit; relative to other commonly described volcanic-related uranium deposits, they are young, well-exposed and well-documented. Hydrothermal uranium-bearing quartz and fluorite veins are exposed over a 300 m vertical range in the mines. Molybdenum, as jordisite (amorphous MoS2, together with fluorite and pyrite, increase with depth, and uranium decreases with depth. The veins cut 23-Ma quartz monzonite, 20-Ma granite, and 19-Ma rhyolite ash-flow tuff. The veins formed at 19-18 Ma in a 1 km2 area, above a cupola of a composite, recurrent, magma chamber at least 24 ?? 5 km across that fed a sequence of 21- to 14-Ma hypabyssal granitic stocks, rhyolite lava flows, ash-flow tuffs, and volcanic domes. Formation of the Central Mining Area began when the intrusion of a rhyolite stock, and related molybdenite-bearing, uranium-rich, glassy rhyolite dikes, lifted the fractured roof above the stock. A breccia pipe formed and relieved magmatic pressures, and as blocks of the fractured roof began to settle back in place, flat-lying, concave-downward, 'pull-apart' fractures were formed. Uranium-bearing, quartz and fluorite veins were deposited by a shallow hydrothermal system in the disarticulated carapace. The veins, which filled open spaces along the high-angle fault zones and flat-lying fractures, were deposited within 115 m of the ground surface above the concealed rhyolite stock. Hydrothermal fluids with temperatures near 200??C, ??18OH2O ~ -1.5, ?? -1.5, ??DH2O ~ -130, log fO2 about -47 to -50, and pH about 6 to 7, permeated the fractured rocks; these fluids were rich in fluorine, molybdenum, potassium, and hydrogen sulfide, and contained uranium as fluoride complexes. The hydrothermal fluids reacted with the wallrock resulting in precipitation of uranium minerals. At the deepest exposed levels, wall-rocks were altered to sericite; and uraninite, coffinite, jordisite, fluorite, molybdenite, quartz, and pyrite were deposited in the veins. The fluids were progressively oxidized and cooled at higher levels in the system by boiling and degassing; iron-bearing minerals in wall rocks were oxidized to hematite, and quartz, fluorite, minor siderite, and uraninite were deposited in the veins. Near the ground surface, the fluids were acidified by condensation of volatiles and oxidation of hydrogen sulfide in near-surface, steam-heated, ground waters; wall rocks were altered to kaolinite, and quartz fluorite, and uraninite were deposited in veins. Secondary uranium minerals, hematite, and gypsum formed during supergene alteration later in the Cenozoic when the upper part of the mineralized system was exposed by erosion.
Meinrath, A; Schneider, P; Meinrath, G
2003-01-01
The Erzgebirge ('Ore Mountains') area in the eastern part of Germany was a major source of uranium for Soviet nuclear programs between 1945 and 1989. During this time, the former German Democratic Republic became the third largest uranium producer in the world. The high abundance of uranium in the geological formations of the Erzgebirge are mirrored in the discovery of uranium by M. Klaproth close to Freiberg City in 1789 and the description of the so-called 'Schneeberg' disease, lung cancer caused in miners by the accumulation of the uranium decay product, radon, in the subsurfaces of shafts. Since 1991, remediation and mitigation of uranium at production facilities, rock piles and mill tailings has taken place. In parallel, efforts were initiated to assess the likely adverse effects of uranium mining to humans. The costs of these activities amount to about 6.5 10(9) Euro. A comparison with concentrations of depleted uranium at certain sites is given.
This regulation sets environmental standards for public protection from the management and disposal of spent nuclear fuel, high-level wastes and wastes that contain elements with atomic numbers higher than uranium (transuranic wastes).
Modeling transient heat transfer in nuclear waste repositories.
Yang, Shaw-Yang; Yeh, Hund-Der
2009-09-30
The heat of high-level nuclear waste may be generated and released from a canister at final disposal sites. The waste heat may affect the engineering properties of waste canisters, buffers, and backfill material in the emplacement tunnel and the host rock. This study addresses the problem of the heat generated from the waste canister and analyzes the heat distribution between the buffer and the host rock, which is considered as a radial two-layer heat flux problem. A conceptual model is first constructed for the heat conduction in a nuclear waste repository and then mathematical equations are formulated for modeling heat flow distribution at repository sites. The Laplace transforms are employed to develop a solution for the temperature distributions in the buffer and the host rock in the Laplace domain, which is numerically inverted to the time-domain solution using the modified Crump method. The transient temperature distributions for both the single- and multi-borehole cases are simulated in the hypothetical geological repositories of nuclear waste. The results show that the temperature distributions in the thermal field are significantly affected by the decay heat of the waste canister, the thermal properties of the buffer and the host rock, the disposal spacing, and the thickness of the host rock at a nuclear waste repository.
Uranium hydrogeochemical and stream sediment reconnaissance of the Durango NTMS quadrangle, Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, H.E.; Weaver, T.A.
1979-01-01
During the spring and summer of 1976, 1518 water and 1604 waterborne sediment samples were collected from 1804 locations in the Durango NTMS quadrangle, Colorado. The samples obtained from this 19 940-km/sup 2/ area were analyzed at the Los Alamos Scientific Laboratory for total uranium. The uranium concentrations in waters ranged from less than the detectable limit of 0.2 ppB to 25.7 ppB, with a mean value of 0.84 ppB. The concentrations in sediments ranged from 1.0 ppM to 71.6 ppM, with a mean value of 4.2 ppM. Study of total water and total sediment populations indicated that both aremore » actually mixtures of several populations. Consequently, samples were chosen for discussion on the basis of their having conspicuously high uranium concentrations relative to surrounding background values. Thirty-four water samples (approximately 2.2% of the total water population) had uranium concentrations above 5.00 ppB, the highest of which were well water samples from the San Luis Valley. Thirty-seven sediment samples (approximately 2.3% of the total sediment population) had uranium concentrations above 12.0 ppM. The majority of these were taken from sites in Precambrian rocks, but several came from Paleozoic and Mesozoic strate and Tertiary volcanics. The uranium concentrations in sediment samples from areas of Precambrian rock were especially high and these areas may warrant further, more detailed investigations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carvalho, Fernando P.; Torres, Lubelia M.; Oliveira, Joao M.
2007-07-01
Uranium ore was extracted in the surroundings of Mangualde city, North of Portugal, in the mines of Cunha Baixa, Quinta do Bispo and Espinho until a few years ago. Mining waste, milling tailings and acid mine waters are the on site remains of this extractive activity. Environmental radioactivity measurements were performed in and around these sites in order to assess the dispersal of radionuclides from uranium mining waste and the spread of acidic waters resulting from the in situ uranium leaching with sulphuric acid. Results show migration of acid waters into groundwater around the Cunha Baixa mine. This groundwater ismore » tapped by irrigation wells in the agriculture area near the Cunha Baixa village. Water from wells displayed uranium ({sup 238}U) concentrations up to 19x10{sup 3} mBq L{sup -1} and sulphate ion concentrations up to 1070 mg L{sup -1}. These enhanced concentrations are positively correlated with low water pH, pointing to a common origin for radioactivity, dissolved sulphate, and acidity in underground mining works. Radionuclide concentrations were determined in horticulture and farm products from this area also and results suggest low soil to plant transfer of radionuclides and low food chain transfer of radionuclides to man. Analysis of aerosols in surface air showed re suspension of dust from mining and milling waste heaps. Therefore, it is recommended to maintain mine water treatment and to plan remediation of these mine sites in order to prevent waste dispersal in the environment. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Guohui; Um, Wooyong; Wang, Zheming
The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford’s cribs, USA. During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO2)(PO4)·3H2O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K2(UO2)6O4(OH)6·7H2O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitatedmore » as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67E-12 mol g-1 s-1. In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42E-10 mol g-1 s-1. The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.« less
Wang, Guohui; Um, Wooyong; Wang, Zheming; Reinoso-Maset, Estela; Washton, Nancy M; Mueller, Karl T; Perdrial, Nicolas; O'Day, Peggy A; Chorover, Jon
2017-10-03
The reaction of acidic radioactive waste with sediments can induce mineral transformation reactions that, in turn, control contaminant fate. Here, sediment weathering by synthetic uranium-containing acid solutions was investigated using bench-scale experiments to simulate waste disposal conditions at Hanford's cribs (Hanford, WA). During acid weathering, the presence of phosphate exerted a strong influence over uranium mineralogy and a rapidly precipitated, crystalline uranium phosphate phase (meta-ankoleite [K(UO 2 )(PO 4 )·3H 2 O]) was identified using spectroscopic and diffraction-based techniques. In phosphate-free system, uranium oxyhydroxide minerals such as K-compreignacite [K 2 (UO 2 ) 6 O 4 (OH) 6 ·7H 2 O] were formed. Single-pass flow-through (SPFT) and column leaching experiments using synthetic Hanford pore water showed that uranium precipitated as meta-ankoleite during acid weathering was strongly retained in the sediments, with an average release rate of 2.67 × 10 -12 mol g -1 s -1 . In the absence of phosphate, uranium release was controlled by dissolution of uranium oxyhydroxide (compreignacite-type) mineral with a release rate of 1.05-2.42 × 10 -10 mol g -1 s -1 . The uranium mineralogy and release rates determined for both systems in this study support the development of accurate U-release models for the prediction of contaminant transport. These results suggest that phosphate minerals may be a good candidate for uranium remediation approaches at contaminated sites.
Jiang, Li-Guo; Liang, Bing; Xue, Qiang; Yin, Cheng-Wei
2016-05-01
Phosphate mining waste rocks dumped in the Xiangxi River (XXR) bay, which is the largest backwater zone of the Three Gorges Reservoir (TGR), are treated as Type I industry solid wastes by the Chinese government. To evaluate the potential pollution risk of phosphorus leaching from phosphate waste rocks, the phosphorus leaching behaviors of six phosphate waste rock samples with different weathering degrees under both neutral and acidic conditions were investigated using a series of column leaching experiments, following the Method 1314 standard of the US EPA. The results indicate that the phosphorus release mechanism is solubility-controlled. Phosphorus release from waste rocks increases as pH decreases. The phosphorus leaching concentration and cumulative phosphorus released in acidic leaching conditions were found to be one order of magnitude greater than that in neutral leaching conditions. In addition, the phosphorus was released faster during the period when environmental pH turned from weak alkalinity to slight acidity, with this accelerated release period appearing when L/S was in the range of 0.5-2.0 mL/g. In both neutral and acidic conditions, the average values of Total Phosphorus (TP), including orthophosphates, polyphosphates and organic phosphate, leaching concentration exceed the availability by regulatory (0.5 mg/L) in the whole L/S range, suggesting that the phosphate waste rocks stacked within the XXR watershed should be considered as Type II industry solid wastes. Therefore, the phosphate waste rocks deposited within the study area should be considered as phosphorus point pollution sources, which could threaten the adjacent surface-water environment. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, J.; Zhou, Z.; Gong, Y.; Lundstrom, C.; Huang, F.
2015-12-01
Rock weathering and soil formation in the critical zone are important for material cycle from the solid Earth to superficial system. Laterite is a major type of soil in South China forming at hot-humid climate, which has strong effect on the global uranium cycle. Uranium is closely related to the environmental redox condition because U is stable at U(Ⅳ) in anoxic condition and U(Ⅵ) as soluble uranyl ion (UO22+) under oxic circumstance. In order to understand the behavior of U isotopes during crust weathering, here we report uranium isotopic compositions of soil and base rock samples from a laterite profile originated from extreme weathering of basalt in Guangdong, South China. The uranium isotopic data were measured on a Nu Plasma MC-ICP-MS at the University of Illinois at Urbana-Champaign using the double spike method. The δ238U of BCR-1 is -0.29±0.03‰ (relative to the international standard CRM-112A), corresponding to a 238U/235U ratio of 137.911±0.004. Our result of BCR-1 agrees with previous analyses (e.g., -0.28‰ in Weyer et al. 2008) [1]. U contents of the laterite profile decrease from 1.9 ppm to 0.9 ppm with depth, and peak at 160 - 170 cm (2.3 ppm), much higher than the U content of base rocks (~0.5 ppm). In contrary, U/Th of laterites is lower than that of base rock (0.27) except the peak at the depth of 160-170 cm (0.38), indicating significant U loss during weathering. Notably, U isotope compositions of soils show a small variation from -0.38 to -0.28‰, consistent with the base rock within analytical error (0.05‰ to 0.08‰, 2sd). Such small variation can be explained by a "rind effect" (Wang et al., 2015) [2], by which U(Ⅳ) can be completely oxidized to U(VI) layer by layer during basalt weathering by dissolved oxygen. Therefore, our study indicates that U loss during basalt weathering at the hot-humid climate does not change U isotope composition of superficial water system. [1] Weyer S. et al. (2008) Natural fractionation of 238U/235U. GCA 72,345-359 [2] Wang X. et al. (2015) Isotope fractionation during oxidation of tetravalent uranium by dissolved oxygen. GCA 150, 160-170
NASA Astrophysics Data System (ADS)
Smirnov, A. Yu; Mustafin, A. R.; Nevinitsa, V. A.; Sulaberidze, G. A.; Dudnikov, A. A.; Gusev, V. E.
2017-01-01
The effect of the uncertainties of the isotopic composition of the reprocessed uranium on its enrichment process in gas centrifuge cascades while diluting it by adding low-enriched uranium (LEU) and waste uranium. It is shown that changing the content of 232U and 236U isotopes in the initial reprocessed uranium within 15% (rel.) can significantly change natural uranium consumption and separative work (up to 2-3%). However, even in case of increase of these parameters is possible to find the ratio of diluents, where the cascade with three feed flows (depleted uranium, LEU and reprocessed uranium) will be more effective than ordinary separation cascade with one feed point for producing LEU from natural uranium.
Conrad, M.C.; Getz, P.A.; Hickman, J.E.; Payne, L.D.
1982-06-29
The invention is a process for the recovery of uranium from uranium-bearing hydrocarbon oils containing carboxylic acid as a degradation product. In one aspect, the invention comprises providing an emulsion of water and the oil, heating the same to a temperature effecting conversion of the emulsion to an organic phase and to an acidic aqueous phase containing uranium carboxylate, and recovering the uranium from the aqueous phase. The process is effective, simple and comparatively inexpensive. It avoids the use of toxic reagents and the formation of undesirable intermediates.
Reconnaissance for radioactive rocks in the Paulo Afonso Region, Bahia, Brazil
Haynes, Donald D.; Mau, Henry
1958-01-01
Ground and air traverses were made to the northwest, north and northeast of Paulo Afonso, Bahia, Brazil, covering Precambrian crystalline rocks and sedimentary rocks of the Jatoba series of Jurassic or Cretaceous age. No important radioactivity anomalies were found; samples from the two strongest anomalies had an equivalent uranium-oxide content of 0.002 percent and 0.006 percent.
ERIC Educational Resources Information Center
Hayden, Howard C.
1995-01-01
Presents a method to calculate the amount of high-level radioactive waste by taking into consideration the following factors: the fission process that yields the waste, identification of the waste, the energy required to run a 1-GWe plant for one year, and the uranium mass required to produce that energy. Briefly discusses waste disposal and…
This study was undertaken as a part of developing treatment alternatives for waste materials, primarily waste rock and roaster tailings, from sites contaminated with mercury (Hg) mining wastes. Leaching profiles of waste rock over a range of different pH and oxidation-reduction (...
Uranium Mines and Mills Location Database
EPA has compiled mine location information from federal, state, and Tribal agencies into a single database as part of its investigation into the potential environmental hazards of wastes from abandoned uranium mines in the western United States.
Landis, E.R.
1956-01-01
and in some parts of the report area, such as the Cimarron River area of westernmost Oklahoma and northeastern New Mexico, and the Rule Creek area in Bent and Las Animas Counties, Colo. , most, or all, of the water samples collected contain relatively large amounts of uranium. Further exploration to determine the source of the uranium in the water from these rock units and areas may be worthwhile.
Paragenesis and Geochronology of the Nopal I Uranium Deposit, Mexico
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Fayek; M. Ren
2007-02-14
Uranium deposits can, by analogy, provide important information on the long-term performance of radioactive waste forms and radioactive waste repositories. Their complex mineralogy and variable elemental and isotopic compositions can provide important information, provided that analyses are obtained on the scale of several micrometers. Here, we present a structural model of the Nopal I deposit as well as petrography at the nanoscale coupled with preliminary U-Th-Pb ages and O isotopic compositions of uranium-rich minerals obtained by Secondary Ion Mass Spectrometry (SIMS). This multi-technique approach promises to provide ''natural system'' data on the corrosion rate of uraninite, the natural analogue ofmore » spent nuclear fuel.« less
Assawincharoenkij, Thitiphan; Hauzenberger, Christoph; Ettinger, Karl; Sutthirat, Chakkaphan
2018-02-01
Waste rocks from gold mining in northeastern Thailand are classified as sandstone, siltstone, gossan, skarn, skarn-sulfide, massive sulfide, diorite, and limestone/marble. Among these rocks, skarn-sulfide and massive sulfide rocks have the potential to generate acid mine drainage (AMD) because they contain significant amounts of sulfide minerals, i.e., pyrrhotite, pyrite, arsenopyrite, and chalcopyrite. Moreover, both sulfide rocks present high contents of As and Cu, which are caused by the occurrence of arsenopyrite and chalcopyrite, respectively. Another main concern is gossan contents, which are composed of goethite, hydrous ferric oxide (HFO), quartz, gypsum, and oxidized pyroxene. X-ray maps using electron probe micro-analysis (EPMA) indicate distribution of some toxic elements in Fe-oxyhydroxide minerals in the gossan waste rock. Arsenic (up to 1.37 wt.%) and copper (up to 0.60 wt.%) are found in goethite, HFO, and along the oxidized rim of pyroxene. Therefore, the gossan rock appears to be a source of As, Cu, and Mn. As a result, massive sulfide, skarn-sulfide, and gossan have the potential to cause environmental impacts, particularly AMD and toxic element contamination. Consequently, the massive sulfide and skarn-sulfide waste rocks should be protected from oxygen and water to avoid an oxidizing environment, whereas the gossan waste rocks should be protected from the formation of AMD to prevent heavy metal contamination.
Determination of uranium in clinical and environmental samples by FIAS-ICPMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karpas, Z.; Lorber, A.; Halicz, L.
Uranium may enter the human body through ingestion or inhalation. Ingestion of uranium compounds through the diet, mainly drinking water, is a common occurrence, as these compounds are present in the biosphere. Inhalation of uranium-containing particles is mainly an occupational safety problem, but may also take place in areas where uranium compounds are abundant. The uranium concentration in urine samples may serve as an indication of the total uranium body content. A method based on flow injection and inductively coupled plasma mass spectrometry (FIAS-ICPMS) was found to be most suitable for determination of uranium in clinical samples (urine and serum),more » environmental samples (seawater, wells and carbonate rocks) and in liquids consumed by humans (drinking water and commercial beverages). Some examples of the application of the FIAS-ICPMS method are reviewed and presented here.« less
Geology and ore deposits of the McDermitt Caldera, Nevada-Oregon
Rytuba, James J.
1976-01-01
The McDermitt caldera is a Miocene collapse structure along the Nevada-Oregon border. The oval-shaped caldera is bounded by arcuate normal faults on the north and south and by rhyolite ring domes on the west. Precollapse ash-flow tuffs exposed within the south caldera rim consist of three cooling units and are peralkaline in composition. Refractive indexes of nonhydrated glasses from basal vitrophyres of the. units range from 1.493 to 1.503 and are typical of comendites. Post-collapse intracaldera rocks consist of tuffaceous lake sediments, rhyolite flows and domes, and ash-flow tuffs. Within the caldera are the mercury mines of Bretz, Cordero, McDermitt, Opalite, and Ruja and the Moonlight uranium mine. The mercury mines are adjacent to ring fracture faults, and the uranium mine and other uranium occurrences are located within rhyolite ring domes. Fluid inclusions in quartz indicate a deposition temperature of 340?C for the uranium deposit and 200?C for the mercury deposits. The mercury deposits formed at shallow depth by replacement of lakebed sediments and volcanic rocks.
NASA Astrophysics Data System (ADS)
Bajabaa, S. A.; Abd El-Naby, H.; Dawood, Y.
2009-12-01
The fate and transport of heavy metals and radioelements in groundwater aquifers in five wadis located in the Al Qunfudhah and Wadi Haliy quadrangles were investigated. These wadis are an important source of water to the Red Sea coastal plain. Copper, zinc and other base-metals mineralization occur at eastern parts of these quadrangles that dominates the water catchments area of these wadis. Water, rock and soil samples were collected from all wadis and they were analyzed for major, trace elements, heavy metals and stable isotopes. The chemical and isotopic results showed active water/rock interaction. The preliminary investigation of the data analyses showed some samples with high heavy metals and uranium contents. Generally, the uranium and heavy metal contents are higher in samples collected from the upstream area of each wadi where the crystalline rocks are exposed and direct contact with the runoff. The uranium contents were as high as 120 ppb in some water samples. These elevated values are mainly due to two factors water rock interaction and concentration through evaporation. It was also observed to have elevated heavy metal contents near mining activates, which suggests that these mining activates are playing an important role in mobilizing the heavy elements and in turn affecting the water quality in these wadis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.
2011-06-08
Prior laboratory testing identified sodium nitrate and nitrite to be the most promising agents to minimize hydrogen generation from uranium metal aqueous corrosion in Hanford Site K Basin sludge. Of the two, nitrate was determined to be better because of higher chemical capacity, lower toxicity, more reliable efficacy, and fewer side reactions than nitrite. The present lab tests were run to determine if nitrate’s beneficial effects to lower H2 generation in simulated and genuine sludge continued for simulated sludge mixed with agents to immobilize water to help meet the Waste Isolation Pilot Plant (WIPP) waste acceptance drainable liquid criterion. Testsmore » were run at ~60°C, 80°C, and 95°C using near spherical high-purity uranium metal beads and simulated sludge to emulate uranium-rich KW containerized sludge currently residing in engineered containers KW-210 and KW-220. Immobilization agents tested were Portland cement (PC), a commercial blend of PC with sepiolite clay (Aquaset II H), granulated sepiolite clay (Aquaset II G), and sepiolite clay powder (Aquaset II). In all cases except tests with Aquaset II G, the simulated sludge was mixed intimately with the immobilization agent before testing commenced. For the granulated Aquaset II G clay was added to the top of the settled sludge/solution mixture according to manufacturer application directions. The gas volumes and compositions, uranium metal corrosion mass losses, and nitrite, ammonia, and hydroxide concentrations in the interstitial solutions were measured. Uranium metal corrosion rates were compared with rates forecast from the known uranium metal anoxic water corrosion rate law. The ratios of the forecast to the observed rates were calculated to find the corrosion rate attenuation factors. Hydrogen quantities also were measured and compared with quantities expected based on non-attenuated H2 generation at the full forecast anoxic corrosion rate to arrive at H2 attenuation factors. The uranium metal corrosion rates in water alone and in simulated sludge were near or slightly below the metal-in-water rate while nitrate-free sludge/Aquaset II decreased rates by about a factor of 3. Addition of 1 M nitrate to simulated sludge decreased the corrosion rate by a factor of ~5 while 1 M nitrate in sludge/Aquaset II mixtures decreased the corrosion rate by ~2.5 compared with the nitrate-free analogues. Mixtures of simulated sludge with Aquaset II treated with 1 M nitrate had uranium corrosion rates about a factor of 8 to 10 lower than the water-only rate law. Nitrate was found to provide substantial hydrogen mitigation for immobilized simulant sludge waste forms containing Aquaset II or Aquaset II G clay. Hydrogen attenuation factors of 1000 or greater were determined at 60°C for sludge-clay mixtures at 1 M nitrate. Hydrogen mitigation for tests with PC and Aquaset II H (which contains PC) were inconclusive because of suspected failure to overcome induction times and fully enter into anoxic corrosion. Lessening of hydrogen attenuation at ~80°C and ~95°C for simulated sludge and Aquaset II was observed with attenuation factors around 100 to 200 at 1 M nitrate. Valuable additional information has been obtained on the ability of nitrate to attenuate hydrogen gas generation from solution, simulant K Basin sludge, and simulant sludge with immobilization agents. Details on characteristics of the associated reactions were also obtained. The present testing confirms prior work which indicates that nitrate is an effective agent to attenuate hydrogen from uranium metal corrosion in water and simulated K Basin sludge to show that it is also effective in potential candidate solidified K Basin waste forms for WIPP disposal. The hydrogen mitigation afforded by nitrate appears to be sufficient to meet the hydrogen generation limits for shipping various sludge waste streams based on uranium metal concentrations and assumed waste form loadings.« less
Brugge, Doug; deLemos, Jamie L; Bui, Cat
2007-09-01
The Three Mile Island nuclear release exemplifies why there is public and policy interest in the high-technology, highly visible end of the nuclear cycle. The environmental and health consequences of the early steps in the cycle--mining, milling, and processing of uranium ore--may be less appreciated. We examined 2 large unintended acute releases of uranium--at Kerr McGee's Sequoyah Fuels Corporation in Oklahoma and United Nuclear Corporation's Church Rock uranium mill in New Mexico, which were incidents with comparable magnitude to the Three Mile Island release. We urge exploration of whether there is limited national interest and concern for the primarily rural, low-income, and American Indian communities affected by these releases. More attention should be given to the early stages of the nuclear cycle and their impacts on health and the environment.
Houston, Robert Stroud; Graff, P.J.; Karlstrom, K.E.; Root, Forrest
1977-01-01
Middle Precambrian miogeosynclinal metasedimentary rocks o# the Sierra Madre and Medicine Bow Mountains of southeastern Wyoming contain radioactive quartz-pebble conglomerates of possible economic interest. These conglomerates do not contain ore-grade uranium in surface outcrops, but an earlier report on the geochemistry of the Arrastre Lake area of the Medicine Bow Mountains shows that ore-grade deposits may be present in the subsurface. This report describes the stratigraphy of the host metasedimentary rocks and the stratigraphic setting of the radioactive conglomerates in both the Sierra Madre and Medicine Bow Mountains, and compares these rock units with those of the Blind River-Elliot Lake uranium district in Canada. The location of radioactive .conglomerates is given so that further exploration may be undertaken by interested parties.
Hinck, Jo E.; Linder, Greg L.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.; Kuhne, Wendy
2010-01-01
This chapter compiles available chemical and radiation toxicity information for plants and animals from the scientific literature on naturally occurring uranium and associated radionuclides. Specifically, chemical and radiation hazards associated with radionuclides in the uranium decay series including uranium, thallium, thorium, bismuth, radium, radon, protactinium, polonium, actinium, and francium were the focus of the literature compilation. In addition, exposure pathways and a food web specific to the segregation areas were developed. Major biological exposure pathways considered were ingestion, inhalation, absorption, and bioaccumulation, and biota categories included microbes, invertebrates, plants, fishes, amphibians, reptiles, birds, and mammals. These data were developed for incorporation into a risk assessment to be conducted as part of an environmental impact statement for the Bureau of Land Management, which would identify representative plants and animals and their relative sensitivities to exposure of uranium and associated radionuclides. This chapter provides pertinent information to aid in the development of such an ecological risk assessment but does not estimate or derive guidance thresholds for radionuclides associated with uranium. Previous studies have not attempted to quantify the risks to biota caused directly by the chemical or radiation releases at uranium mining sites, although some information is available for uranium mill tailings and uranium mine closure activities. Research into the biological impacts of uranium exposure is strongly biased towards human health and exposure related to enriched or depleted uranium associated with the nuclear energy industry rather than naturally occurring uranium associated with uranium mining. Nevertheless, studies have reported that uranium and other radionuclides can affect the survival, growth, and reproduction of plants and animals. Exposure to chemical and radiation hazards is influenced by a plant’s or an animal’s life history and surrounding environment. Various species of plants, invertebrates, fishes, amphibians, reptiles, birds, and mammals found in the segregation areas that are considered species of concern by State and Federal agencies were included in the development of the site-specific food web. The utilization of subterranean habitats (burrows in uranium-rich areas, burrows in waste rock piles or reclaimed mining areas, mine tunnels) in the seasonally variable but consistently hot, arid environment is of particular concern in the segregation areas. Certain species of reptiles, amphibians, birds, and mammals in the segregation areas spend significant amounts of time in burrows where they can inhale or ingest uranium and other radionuclides through digging, eating, preening, and hibernating. Herbivores may also be exposed though the ingestion of radionuclides that have been aerially deposited on vegetation. Measured tissues concentrations of uranium and other radionuclides are not available for any species of concern in the segregation areas. The sensitivity of these animals to uranium exposure is unknown based on the existing scientific literature, and species-specific uranium presumptive effects levels were only available for two endangered fish species known to inhabit the segregation areas. Overall, the chemical toxicity data available for biological receptors of concern were limited, although chemical and radiation toxicity guidance values are available from several sources. However, caution should be used when directly applying these values to northern Arizona given the unique habitat and life history strategies of biological receptors in the segregation areas and the fact that some guidance values are based on models rather than empirical (laboratory or field) data. No chemical toxicity information based on empirical data is available for reptiles, birds, or wild mammals; therefore, the risks associated with uranium and other radionuclides are unknown for these biota.
On the Nature of the Cherdyntsev-Chalov Effect
NASA Astrophysics Data System (ADS)
Timashev, S. F.
2018-06-01
It is shown that the Cherdyntsev-Chalov effect, usually presented as the separation of even isotopes of uranium upon their transition from the solid to the liquid phase, can include initiated acceleration of the radioactive decay of uranium-238 nuclei during the formation of cracks in geologically (seismic and volcanically) active zones of the Earth's crust. The fissuring of the solid-phase medium leads to an increase in mechanical tensile stress and the emergence of strong local electric fields, resulting in the injection of chemical-scale high-energy electrons into the aqueous phase of the cracks. Under these conditions, the e - catalytic decay of uranium-238 nucleus studied earlier can occur during the formation of metastable protactinium-238 nuclei with locally distorted nucleon structure, which subequently undergo β-decay with the formation of thorium-234 and helium-4 nuclei as products of the fission of the initial uranium-238 nucleus with a characteristic period of several years. The observed increased activity of uranium-234 nuclei that form during the subsequent β-decay of thorium and then protactinium is associated with the initiated fission of uranium-238. The possibility is discussed of developing thermal power by using existing wastes from uranium production that contain uranium-238 to activate this isotope through the mechanochemical processing of these wastes in aqueous media with the formation of 91 238 Pa isu , the half-life of which is several years.
Uranium deposits of the northern part of the Boulder Batholith, Montana
Becraft, George E.
1955-01-01
Uranium minerals and radioactivity anomalies occur in many silver-lead veins and chalcedony veins and vein zones in the Boulder batholith of southwestern Montanao Pitchblende has been identified in a few silver-lead veins. These veins occupy shear zones along which there is no evidence of large-scale lateral displacement. The wall rock adjacent to the veins is intensely silicified and sencitized quartz monzonite and granodiortte. The veins have yielded substantial quantities of lead, silver, zinc, and gold. The silver-lead veins consist principal1y of galena, spha1erite, tetrahedrite, cha1copyrite and pyrite in a gangue of light to dark gray quartz, altered rock, gouge, and subordinate chalcedony and carbonate minerals. No anomalous radioactivity nor uranium minerals have been found in similar veins in pre-batholithic rocks of the area. Chalcedony veins and vein zones, some of which are ttraniferous, are distinctly different from the silver-lead veins and, with a single except1on, are known only in the batholith. The chalcedony vein zones consist of one or more discontinuous stringers or veins of cha1cedony and microcrystalline quartz in silicified and sericitized quartz monzonite and granodiorite, and in less strongly altered alaskite. On1y small amounts of silver ore have been produced from these chalcedony veins and vein zones. All of the veins are ear1y Tertiary in age, but the silver-lead veins probably are older than the chalcedony veins. Uranium is closely associated with chalcedory and microcrystalline quartz in both types of veins. This association suggests that all of the uranium in the area is of the same age. If so, some of the silver-lead veins must have been reopened during the period of chalcedony vein formation.
Uranium favorability of the San Rafael Swell area, east-central Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mickle, D G; Jones, C A; Gallagher, G L
1977-10-01
The San Rafael Swell project area in east-central Utah is approximately 3,000 sq mi and includes the San Rafael Swell anticline and the northern part of the Waterpocket Fold monocline at Capitol Reef. Rocks in the area are predominantly sedimentary rocks of Pennsylvanian through Cretaceous age. Important deposits of uranium in the project area are restricted to two formations, the Chinle (Triassic) and Morrison (Jurassic) Formations. A third formation, the White Rim Sandstone (Permian), was also studied because of reported exploration activity. The White Rim Sandstone is considered generally unfavorable on the basis of lithologic characteristics, distance from a possiblemore » source of uranium, lack of apparent mineralization, and the scarcity of anomalies on gamma-ray logs or in rock, water, and stream-sediment samples. The lower Chinle from the Moss Back Member down to the base of the formation is favorable because it is a known producer. New areas for exploration are all subsurface. Both Salt Wash and Brushy Basin Members of the Morrison Formation are favorable. The Salt Wash Member is favorable because it is a known producer. The Brushy Basin Member is favorable as a low-grade resource.« less
Wall-rock control of cortain pitchblende deposits in Golden Gate Canyon, Jefferson County, Colorado
Adams, John W.; Stugard, Frederick
1954-01-01
Carbonate veins cutting pre-Cambrian metamorphic rocks in Golden Gate Canyon contain pitchblende and base-metal sulfides. The veins occupy extensive faults of Laramide age but normally contain pitchblende only where the cut hornblende gneiss. At the Union Pacific prospect, which was studied in detail, pitchblende, hermatite, and some ankerite formed in advance of sulfides, except possibly for minor pyrite. Base-metal sulfides and the bulk of ankerite-calcite vein-filling were deposited after the pitchblende. Chemical analyses show a high ferrous iron content in the hornblende gneiss in contrast to low ferrous iron in the adjacent biotite gneiss. It is hypothesized that ferrous iron released by alteration of hornblende was partly oxidized to hematite by the ore-bearing solutions and, contemporaneously, uranium was reduced and deposited as pitchblende. In other veins, biotite or iron sulfides may have been similarly effective in precipitating pitchblende. Apparently both the ferrous ion and the sulfide ion can serve as reducing agents and control pitchblende deposition. It is suggested that conditions particularly favorable for uranium deposition are present where uranium-bearing solutions had access to rocks rich in ferrous iron or pre-existing sulfides.
Processing of irradiated, enriched uranium fuels at the Savannah River Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyder, M L; Perkins, W C; Thompson, M C
Uranium fuels containing /sup 235/U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium byproducts. The fuels to be processed are dissolved in nitric acid. Aluminum-clad fuels are disssolved using a mercury catalyst to give a solution rich in aluminum. Fuels clad in more resistant materials are dissolved in an electrolytic dissolver. The resulting solutions are subjected to head-end treatment, including clarification and adjustment of acid and uranium concentration before being fed to solvent extraction. Uranium, neptunium, and plutonium are separated from fission products and from one another by multistage countercurrent solvent extraction withmore » dilute tri-n-butyl phosphate in kerosene. Nitric acid is used as the salting agent in addition to aluminum or other metal nitrates present in the feed solution. Nuclear safety is maintained through conservative process design and the use of monitoring devices as secondary controls. The enriched uranium is recovered as a dilute solution and shipped off-site for further processing. Neptunium is concentrated and sent to HB-Line for recovery from solution. The relatively small quantities of plutonium present are normally discarded in aqueous waste, unless the content of /sup 238/Pu is high enough to make its recovery desirable. Most of the /sup 238/Pu can be recovered by batch extraction of the waste solution, purified by counter-current solvent extraction, and converted to oxide in HB-Line. By modifying the flowsheet, /sup 239/Pu can be recovered from low-enriched uranium in the extraction cycle; neptunium is then not recovered. The solvent is subjected to an alkaline wash before reuse to remove degraded solvent and fission products. The aqueous waste is concentrated and partially deacidified by evaporation before being neutralized and sent to the waste tanks; nitric acid from the overheads is recovered for reuse.« less
Process for continuous production of metallic uranium and uranium alloys
Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.
1995-06-06
A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.
Process for continuous production of metallic uranium and uranium alloys
Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.
1995-01-01
A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.
National Uranium Resource Evaluation: Marfa Quadrangle, Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, C D; Duex, T W; Wilbert, W P
1982-09-01
The uranium favorability of the Marfa 1/sup 0/ by 2/sup 0/ Quadrangle, Texas, was evaluated in accordance with criteria established for the National Uranium Resource Evaluation. Surface and subsurface studies, to a 1500 m (5000 ft) depth, and chemical, petrologic, hydrogeochemical, and airborne radiometric data were employed. The entire quadrangle is in the Basin and Range Province and is characterized by Tertiary silicic volcanic rocks overlying mainly Cretaceous carbonate rocks and sandstones. Strand-plain sandstones of the Upper Cretaceous San Carlos Formation and El Picacho Formation possess many favorable characteristics and are tentatively judged as favorable for sandstone-type deposits. The Tertiarymore » Buckshot Ignimbrite contains uranium mineralization at the Mammoth Mine. This deposit may be an example of the hydroauthigenic class; alternatively, it may have formed by reduction of uranium-bearing ground water produced during diagenesis of tuffaceous sediments of the Vieja Group. Although the presence of the deposit indicates favorability, the uncertainty in the process that formed the mineralization makes delineation of a favorable environment or area difficult. The Allen intrusions are favorable for authigenic deposits. Basin fill in several bolsons possesses characteristics that suggest favorability but which are classified as unevaluated because of insufficient data. All Precambrian, Paleozoic, other Mesozoic, and other Cenozoic environments are unfavorable.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koch, G.S. Jr.; Howarth, R.J.; Schuenemeyer, J.H.
1981-02-01
We have developed a procedure that can help quadrangle evaluators to systematically summarize and use hydrogeochemical and stream sediment reconnaissance (HSSR) and occurrence data. Although we have not provided an independent estimate of uranium endowment, we have devised a methodology that will provide this independent estimate when additional calibration is done by enlarging the study area. Our statistical model for evaluation (system EVAL) ranks uranium endowment for each quadrangle. Because using this model requires experience in geology, statistics, and data analysis, we have also devised a simplified model, presented in the package SURE, a System for Uranium Resource Evaluation. Wemore » have developed and tested these models for the four quadrangles in southern Colorado that comprise the study area; to investigate their generality, the models should be applied to other quandrangles. Once they are calibrated with accepted uranium endowments for several well-known quadrangles, the models can be used to give independent estimates for less-known quadrangles. The point-oriented models structure the objective comparison of the quandrangles on the bases of: (1) Anomalies (a) derived from stream sediments, (b) derived from waters (stream, well, pond, etc.), (2) Geology (a) source rocks, as defined by the evaluator, (b) host rocks, as defined by the evaluator, and (3) Aerial radiometric anomalies.« less
Balboni, Enrica; Jones, Nina; Spano, Tyler; ...
2016-08-31
This study reports major, minor, and trace element data and Sr isotope ratios for 11 uranium ore (uraninite, UO 2+x) samples and one processed uranium ore concentrate (UOC) from various U.S. deposits. The uraninite investigated represent ores formed via different modes of mineralization (e.g., high- and low-temperature) and within various geological contexts, which include magmatic pegmatites, metamorphic rocks, sandstone-hosted, and roll front deposits. In situ trace element data obtained by laser ablation-ICP-MS and bulk sample Sr isotopic ratios for uraninite samples investigated here indicate distinct signatures that are highly dependent on the mode of mineralization and host rock geology. Relativemore » to their high-temperature counterparts, low-temperature uranium ores record high U/Th ratios (>1000), low total rare earth element (REE) abundances (<1 wt%), high contents (>300 ppm) of first row transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), and radiogenic 87Sr/ 86Sr ratios (>0.7200). Comparison of chondrite normalized REE patterns between uraninite and corresponding processed UOC from the same locality indicates identical patterns at different absolute concentrations. Lastly, this result ultimately confirms the importance of establishing geochemical signatures of raw, uranium ore materials for attribution purposes in the forensic analysis of intercepted nuclear materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balboni, Enrica; Jones, Nina; Spano, Tyler
This study reports major, minor, and trace element data and Sr isotope ratios for 11 uranium ore (uraninite, UO 2+x) samples and one processed uranium ore concentrate (UOC) from various U.S. deposits. The uraninite investigated represent ores formed via different modes of mineralization (e.g., high- and low-temperature) and within various geological contexts, which include magmatic pegmatites, metamorphic rocks, sandstone-hosted, and roll front deposits. In situ trace element data obtained by laser ablation-ICP-MS and bulk sample Sr isotopic ratios for uraninite samples investigated here indicate distinct signatures that are highly dependent on the mode of mineralization and host rock geology. Relativemore » to their high-temperature counterparts, low-temperature uranium ores record high U/Th ratios (>1000), low total rare earth element (REE) abundances (<1 wt%), high contents (>300 ppm) of first row transition metals (Sc, Ti, V, Cr, Mn, Co, Ni), and radiogenic 87Sr/ 86Sr ratios (>0.7200). Comparison of chondrite normalized REE patterns between uraninite and corresponding processed UOC from the same locality indicates identical patterns at different absolute concentrations. Lastly, this result ultimately confirms the importance of establishing geochemical signatures of raw, uranium ore materials for attribution purposes in the forensic analysis of intercepted nuclear materials.« less
Progress report on geologic studies of the Ranger orebodies, Northern Territory, Australia
Nash, J.T.; Frishman, David
1982-01-01
The Ranger No. 1 and No. 3 orebodies contain about 124,000 tonnes U3O8 in highly chloritized metasediments of the lower Proterozoic Cahill Formation within about 500 m of the projected sub-Kombolgie Formation unconformity. In both orebodies, oxidized and reduced uranium minerals occur chiefly in quartzose schists that have highly variable amounts of muscovite, sericite, and chlorite. The effects of several periods of alteration are pervasive in the vicinity of orebodies where biotite and garnet are altered to chlorite, and feldspars to white mica or chlorite. Oxidized uranium minerals, associated with earthy iron oxides, occur from the surface to a depth of about 60 m. Below the oxidized zone, uranium occurs chiefly as uraninite and pitchblende disseminated through thick sections of quartz-chlorite-muscovite schist and has no apparent association with graphite or sulfides. In fact, graphite is rare and sulfides are generally low in abundance (<0.5 percent). Higher ore grades occur in disrupted zones a few centimeters thick and in some quartz-chlorite vein-like zones of uncertain origin. Uranium correlates strongly with chlorite, but not all of the many ages of chlorite have associated uranium. At least five textural varieties of chlorite are present and represent at least 3 ages. Preliminary microprobe analyses suggest that Mg-Fe-Al contents are relatively uniform. Apatite commonly occurs with chlorite. Uranium is not common in carbonate rocks and seems to occur only in disrupted zones that have chlorite alteration. Chloritization and silicification are more widespread and intense in the No. 1 orebody than in the No. 3. In both orebodies, hematite occurs tens to hundreds of meters below the weathered zone, in both altered and largely unaltered rocks, with and without uranium. The structure of the orebodies is outwardly simple, particularly in No. 3; dips are less than 40? on most lithologic contacts. The No. 1 orebody is in a basin-like structure about 400 m wide that probably formed in part by progressive removal of carbonate rocks that are as much as 200 m thick adjacent to the No. 1 orebody and below the No. 3 orebody. Quartz-chlorite breccias have formed in the zone of carbonate thinning; uranium is spotty and low grade in these breccias. Chloritized and uraniferous broken and sheared zones, a few centimeters to a few meters thick, have an unknown attitude but must have small displacement. Blocks of altered Kombolgie sandstone are downfaulted into the No. 3 orebody and locally contain reduced uranium minerals. One or more shear zones 5-30 m thick of crushed and smeared fine to coarse rock fragments occur below the orebodies, and other low-angle shears probably occur in the orebodies. The shear zone dips about 40 o and displacement on it is not known. The footwall rocks generally are less retrograded than those in the hanging wall (orebody) and consist of quartz-biotite-feldspar schists and gneisses flanking the Nanambu Complex. A few scattered fractures in the footwall sequence contain pitchblende of unknown age and origin. Major element chemical analyses confirm the lithologic observations of large changes in composition during multiple stages of alteration. Granitic dikes and pelitic schists have gained Fe and Mg and lost Si, Ca, Na, and K during chloritization. Marbles have gained Si, Al, Fe, and P, and lost Mg, Ca, and K during jasperoid-chlorite alteration. Total net chemical gains and losses in the Ranger No. 1 orebody were huge: equal to about 37 percent of the mass of the ore-bearing rock that will be mined. There were net gains in Si and P and net losses in Al, Fe, Mg, Ca, K, and Na. The geologic age(s) of uranium emplacement are obscure because there are few age criteria. Reduced uranium minerals are younger than 1.8-b.y.-old granite dikes, and some occur locally in 1.65-b.y.-old Kombolgie Formation. Diabase dikes (age not known) are thoroughly chloritized and contain sparse ore minerals. Oxidized ura
Felmlee, J. Karen; Cadigan, Robert Allen
1979-01-01
Radium and uranium concentrations in water from 37 wells tapping the aquifer system of the Dakota Sandstone and Purgatoire Formation in southwestern Pueblo County, Colorado, have a wide range of values and define several areas of high radioactivity in the ground water. Radium ranges from 0.3 to 420 picocuries per liter and has a median value of 8.8, and uranium ranges from 0.02 to 180 micrograms per liter and has a median value of 2.4. Radon concentrations, measured in 32 of the 37 wells, range from less than 100 picocuries per liter to as much as 27,000 and have a median value of 580. Relationships among the radioactive elements and 28 other geochemical parameters were studied by using correlation coefficients and R-mode factor analysis. Five factor groups were determined to represent major influences on water chemistry: (1) short-term solution reactions, (2) oxidation reactions, (3) hydrolysis reactions, (4) uranium distribution, and (5) long-term solution reactions. Uranium concentrations are most strongly influenced by oxidation reactions but also are affected by solution reactions and distribution of uranium in the rocks of the aquifer system. Radon and radium concentrations are mostly controlled by uranium distribution; radium also shows a moderate negative relationship with oxidation. To explain the statistical and spatial relationships among the parameters, a model was developed involving the selective leaching of uranium-bearing phases and metal sulfides which occur in discontinuous zones in sandstone and shale. When reducing conditions prevail, uranium is immobile, but radium can be taken into solution. When faults and associated fractured rocks allow oxidizing conditions to dominate, uranium can be taken into solution; radium can also be taken into solution, or it may become immobilized by coprecipitation with iron and manganese oxides or with barite. Several areas within the study area are discussed in terms of the model.
This regulation sets standards for the protection of public health, safety, and the environment from radiological and non-radiological hazards from uranium and thorium ore processing and disposal of associated wastes.
Beikman, Helen M.
1962-01-01
The Powder River Basin is a structural and topographic basin occupying an area of about 20,000 square miles in northeastern Wyoming arid southeastern Montana. The Basin is about 230 miles long in a northwest-southeast direction and is about 100 miles wide. It is bounded on three sides by mountains in which rocks of Precambrian age are exposed. The Basin is asymmetrical with a steep west limb adjacent to the Bighorn Mountains and a gentle east limb adjacent to the Black Hills. Sedimentary rocks within the Basin have a maximum thickness of about 18,000 feet and rocks of every geologic period are represented. Paleozoic rocks are about 2,500 feet thick and consist of marine bonate rocks and sandstone; Mesozoic rocks are about 9,500 feet thick and consist of both marine and nonmarine siltstone and sandstone; and Cenozoic rocks are from 4,000 to 6,000 feet thick and consist of coal-bearing sandstone and shale. Radioactive waste could be stored in the pore space of permeable sandstone or in shale where space could be developed. Many such rock units that could be used for storing radioactive wastes are present within the Powder River Basin. Permeable sandstone beds that may be possible reservoirs for storage of radioactive waste are present throughout the Powder River Basin. These include sandstone beds in the Flathead Sandstone and equivalent strata in the Deadwood Formation, the Tensleep Sandstone and equivalent strata in the Minnelusa Formation and the Sundance Formation in rocks of pre-Cretaceous age. However, most of the possible sandstone reservoirs are in rocks of Cretaceous age and include sandstone beds in the Fall River, Lakota, Newcastle, Frontier, Cody, and Mesaverde Formations. Problems of containment of waste such as clogging of pore space and chemical incompatibility would have to be solved before a particular sandstone unit could be selected for waste disposal. Several thick sequences of impermeable shale such as those in the Skull Creek, Mowry, Frontier, Belle Fourche, Cody, Lewis, and Pierre Formations, occur in rocks of Cretaceous age in the Basin. Limited storage space for liquid waste might be developed in impermeable shale by fracturing the shale and space for calcined or fused waste could be developed by mining cavities.
Lahmira, Belkacem; Lefebvre, René; Aubertin, Michel; Bussière, Bruno
2016-01-01
Waste rock piles producing acid mine drainage (AMD) are partially saturated systems involving multiphase (gas and liquid) flow and coupled transfer processes. Their internal structure and heterogeneous properties are inherited from their wide-ranging material grain sizes, their modes of deposition, and the underlying topography. This paper aims at assessing the effect of physical heterogeneity and anisotropy of waste rock piles on the physical processes involved in the generation of AMD. Generic waste rock pile conditions were represented with the numerical simulator TOUGH AMD based on those found at the Doyon mine waste rock pile (Canada). Models included four randomly distributed material types (coarse, intermediate, fine and very fine-grained). The term "randomly" as used in this study means that the vertical profile and spatial distribution of materials in waste rock piles (internal structure) defy stratigraphy principles applicable to natural sediments (superposition and continuity). The materials have different permeability and capillary properties, covering the typical range of materials found in waste rock piles. Anisotropy with a larger horizontal than vertical permeability was used to represent the effect of pile construction by benches, while the construction by end-dumping was presumed to induce a higher vertical than horizontal permeability. Results show that infiltrated precipitation preferentially flows in fine-grained materials, which remain almost saturated, whereas gas flows preferentially through the most permeable coarse materials, which have higher volumetric gas saturation. Anisotropy, which depends on pile construction methods, often controls global gas flow paths. Construction by benches favours lateral air entry close to the pile slope, whereas end-dumping leads to air entry from the surface to the interior of the pile by secondary gas convection cells. These results can be useful to construct and rehabilitate waste rock piles to minimize AMD, while controlling gas flow and oxygen supply. Copyright © 2015 Elsevier B.V. All rights reserved.
Preliminary report on uranium deposits in the Miller Hill area, Carbon County, Wyoming
Love, J.D.
1953-01-01
A sequence of radioactive rocks of Miocene (?) age, the Browns Park formation, in the Miller Hill area of southern Wyoming is more than 1,000 feet thick. The formation crops out in an area of approximately 600 square miles, and consists of a basal conglomerate, tuffs, tuffaceous limy sandstones, and thin persistent radioactive algal limestones. Uranium is concentrated in both algal limestones and in tuffaceous limy sandstones. The uranium is believed to have been deposited. at least in part with the sediments, rather than to have come in at a later date. The highest uranium values were found in a widespread algal limestone bed, which contains as much as 0. 15 percent uranium. Values of 0.01 percent uranium or more were obtained from 8 samples taken from approximately 220 feet of stratigraphic section in the Browns Park formation. This is the first reported occurrence of limestone source rock from Wyoming that has been found to contain a commercial grade of uranium. The economic possibilities of the area have not been determined adequately and no estimates of tonnage are warranted at the present time. An airborne radiometric survey was made by the Geophysics Branch of the Geological Survey, of the west half of the area, recommended by the writer for investigation. Ground check of all anomalies reported at that time showed that they were in localities where the background radiation was much higher than average. Additional localities with high background radiation were found on the ground in the area east of that which was flown.
NASA Astrophysics Data System (ADS)
Buechel, G.; Merten, D.; Geletneky, J. W.; Kothe, E.
2003-04-01
Between 1947 and 1990 about 113.000 t of uranium were excavated at the former uranium mining site of Ronneburg (Eastern Thuringia, Germany). The legacy consists of more than 200 million m^3 of metasedimentary rocks rich in organic matter, sulfides and heavy metals originally deposited in mining heaps at the surface. The metasedimentary rocks formed under anoxic conditions about a 400 Mio. years ago are now exposed to oxic conditions. The oxidation of markasite and pyrite results in the formation of H_2SO_4. The formation of acid mine drainage (AMD) leads to high concentrations of uranium, rare earth elements (REE) and other heavy metals in surface water, seepage water and groundwater. This mobilization is due to alteration enhanced by high microbial activity and low pH. The tolerance mechanisms towards heavy metal pollution of soil substrate and surface/groundwater has allowed the selection of microbes which have, e.g. specific transporter genes and which are associated to plants in symbiotic interactions like mycorrhiza. In order to follow the processes linking alteration of metasedimentary rocks to biological systems the use of tracers is needed. One group of such tracers occuring in high concentrations in the water phase at the Ronneburg mining site are the REE (La-Lu) which are featured by very similar chemical behaviour. They show smooth but continuous variations of their chemical behaviour as a function of atomic number. For seepage water of the waste rock dump Nordhalde - sampled over a period of two years - the shale normalized REE patterns show enrichment of heavy REE and only minor variations, although the concentration differs. At sampling points in the surface water and in groundwater rather similar REE patterns were observed. Thus, REE can be used as tracers to identify diffuse inflow of REE-rich acid mine drainage of the dumps into the creek and the sediments. The absolute concentrations of REE in the creek and in ground water are up to 1000 times less than in seepage water due to mixing and (co)precipitation of REE. Lu/La and Sm/La relations show a significant decrease with increasing distance from the dump caused by preferential (co)precipitation of heavy REE with amorphous Fe-hydroxides along the Gessenbach. Thus, REE patterns can not only be used as tracers but also to study processes. In contrast to the patterns of the seepage, the REE patterns of the Silurian rocks as determined by LA-ICP-MS feature rather flat patterns with enrichment of middle REE (Sm - Dy). Results from batch experiments show preferentially leaching of heavy REE for all investigated source rocks. The highest absolute concentrations of REE appear in the eluates of the Silurian 'Ockerkalk'. Since the REE pattern closely reflects the pattern found in the seepage water it is assumed to be the most important source for the occurence of the REE pattern observed in seepage water. Studies of microbial heavy metal retention were performed by direct incubation of seepage water using well characterized fungal and bacterial strains. Using the bacterium Escherichia coli for incubation of seepage water sorption of heavy metals to biomass was observed. Use of the fungus Schizophyllum commune for incubation, however, has a much more pronounced effect including significant fractionation of REE pointing to the possibility of a specific active uptake mechanism. Bioextraction with bacteria and fungal mycelia might be an alternative to plant growth and phytoextraction and might be preferable for AMD water treatment since no soil substrate is necessary. Future research must be directed towards genes for active transport, intra- or extracellular storage proteins and their application. Biotechnological use of such genes in, e.g., strains of E. coli, might yield highly useful bioremediation strains that can help to reduce the ecological effects of pollution resulting from former mining activities.
Hall, Susan M.; Mihalasky, Mark J.; Tureck, Kathleen; Hammarstrom, Jane M.; Hannon, Mark
2017-01-01
The coincidence of a number of geologic and climatic factors combined to create conditions favorable for the development of mineable concentrations of uranium hosted by Eocene through Pliocene sandstones in the Texas Coastal Plain. Here 254 uranium occurrences, including 169 deposits, 73 prospects, 6 showings and 4 anomalies, have been identified. About 80 million pounds of U3O8 have been produced and about 60 million pounds of identified producible U3O8 remain in place. The development of economic roll-type uranium deposits requires a source, large-scale transport of uranium in groundwater, and deposition in reducing zones within a sedimentary sequence. The weight of the evidence supports a source from thick sequences of volcanic ash and volcaniclastic sediment derived mostly from the Trans-Pecos volcanic field and Sierra Madre Occidental that lie west of the region. The thickest accumulations of source material were deposited and preserved south and west of the San Marcos arch in the Catahoula Formation. By the early Oligocene, a formerly uniformly subtropical climate along the Gulf Coast transitioned to a zoned climate in which the southwestern portion of Texas Coastal Plain was dry, and the eastern portion humid. The more arid climate in the southwestern area supported weathering of volcanic ash source rocks during pedogenesis and early diagenesis, concentration of uranium in groundwater and movement through host sediments. During the middle Tertiary Era, abundant clastic sediments were deposited in thick sequences by bed-load dominated fluvial systems in long-lived channel complexes that provided transmissive conduits favoring transport of uranium-rich groundwater. Groundwater transported uranium through permeable sandstones that were hydrologically connected with source rocks, commonly across formation boundaries driven by isostatic loading and eustatic sea level changes. Uranium roll fronts formed as a result of the interaction of uranium-rich groundwater with either (1) organic-rich debris adjacent to large long-lived fluvial channels and barrier–bar sequences or (2) extrinsic reductants entrained in formation water or discrete gas that migrated into host units via faults and along the flanks of salt domes and shale diapirs. The southwestern portion of the region, the Rio Grande embayment, contains all the necessary factors required for roll-type uranium deposits. However, the eastern portion of the region, the Houston embayment, is challenged by a humid environment and a lack of source rock and transmissive units, which may combine to preclude the deposition of economic deposits. A grade and tonnage model for the Texas Coastal Plain shows that the Texas deposits represent a lower tonnage subset of roll-type deposits that occur around the world, and required aggregation of production centers into deposits based on geologic interpretation for the purpose of conducting a quantitative mineral resource assessment.
10 CFR 960.4-2-3 - Rock characteristics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... thermal, chemical, mechanical, and radiation stresses expected to be induced by repository construction, operation, and closure and by expected interactions among the waste, host rock, ground water, and engineered... repository construction, operation, or closure or by interactions among the waste, host rock, ground water...
10 CFR 960.4-2-3 - Rock characteristics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... thermal, chemical, mechanical, and radiation stresses expected to be induced by repository construction, operation, and closure and by expected interactions among the waste, host rock, ground water, and engineered... repository construction, operation, or closure or by interactions among the waste, host rock, ground water...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-13
... Evaluation Report; AREVA Enrichment Services LLC, Eagle Rock Enrichment Facility, Bonneville County, ID... report. FOR FURTHER INFORMATION CONTACT: Breeda Reilly, Senior Project Manager, Advanced Fuel Cycle, Enrichment, and Uranium Conversion, Division of Fuel Cycle Safety and Safeguards, Office of Nuclear Material...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denton, J. S.; Goldstein, S. J.; Paviet, P.
Studies of uranium-series (U-series) disequilibria within and around ore deposits provide valuable information on the extent and timing of actinide mobility, via mineral-fluid interaction, over a range of spatial and temporal scales. Such information is useful in studies of analogs of high-level nuclear-waste repositories, as well as for mining and mineral extraction sites, locations of previous nuclear weapons testing, and legacy nuclear waste contamination. In this study we present isotope dilution mass spectrometry U-series measurements for fracture-fill materials (hematite, goethite, kaolinite, calcite, dolomite and quartz) from one such analog; the Nopal I uranium ore deposit situated at Peña Blanca inmore » the Chihuahua region of northern Mexico. The ore deposit is located in fractured, unsaturated volcanic tuff and fracture-fill materials from surface fractures as well as fractures in a vertical drill core have been analyzed. High uranium concentrations in the fracture-fill materials (between 12 and 7700 ppm) indicate uranium mobility and transport from the deposit. Furthermore, uranium concentrations generally decrease with horizontal distance away from the deposit but in this deposit there is no trend with depth below the surface.« less
Smith, Kathleen S.; Hageman, Philip L.; Briggs, Paul H.; Sutley, Stephen J.; McCleskey, R. Blaine; Livo, K. Eric; Verplanck, Philip L.; Adams, Monique G.; Gemery-Hill, Pamela A.
2007-01-01
The goal of this study is to compare and contrast the leachability of metals and the acidity from individual mine waste-rock piles and natural erosional scars in the study area near Questa, New Mexico. Surficial multi-increment (composite) samples less than 2 millimeters in diameter from five waste-rock piles, nine erosional-scar areas, a less-altered site, and a tailings slurry-pipe sample were analyzed for bulk chemistry and mineralogy and subjected to two back-to-back leaching procedures. The first leaching procedure, the U.S. Geological Survey Field Leach Test (FLT), is a short-duration leach (5-minute shaking and 10-minute settling) and is intended to leach readily soluble materials. The FLT was immediately followed by an 18-hour, end-over-end rotation leaching procedure. Comparison of results from the back-to-back leaching procedures can provide information about reactions that may take place upon migration of leachates through changing geochemical conditions (for example, pH changes), both within the waste-rock and scar materials and away from the source materials. For the scar leachates, the concentrations of leachable metals varied substantially between the scar areas sampled. The scar leachates have low pH (pH 3.2-4.1). Under these low-pH conditions, cationic metals are solubilized and mobile, but anionic species, such as molybdenum, are less soluble and less mobile. Generally, metal concentrations in the waste-rock leachates did not exceed the upper range of those metal concentrations in the erosional-scar leachates. One exception is molybdenum, which is notably higher in the waste-rock leachates compared with the scar leachates. Most of the waste-rock leachates were at least mildly acidic (pH 3.0-6.2). The pH values in the waste-rock leachates span a large pH range that includes some pH-dependent solubility and metal-attenuation reactions. An increase in pH with leaching time and agitation indicates that there is pH-buffering capacity in some of the waste-rock piles. As pH increased in the waste-pile leachates, concentrations of several metals decreased with increasing time and agitation. Similar pH-dependent reactions may take place upon migration of the leachates in the waste-rock piles. Bulk chemistry, mineralogy, and leachate sulfur-isotope data indicate that the Capulin and Sugar Shack West waste-rock piles are compositionally different from the younger Sugar Shack South, Sugar Shack Middle, and Old Sulphur Gulch piles. The Capulin and Sugar Shack West piles have the lowest-pH leachates (pH 3.0-4.1) of the waste-pile samples, and the source material for the Capulin and Sugar Shack West piles appears to be similar to the source material for the erosional-scar areas. Calcite dissolution, in addition to gypsum dissolution, appears to produce the calcium and sulfate concentrations in leachates from the Sugar Shack South, Sugar Shack Middle, and Old Sulphur Gulch piles.
Kosior, Grzegorz; Steinnes, Eiliv; Samecka-Cymerman, Aleksandra; Lierhagen, Syverin; Kolon, Krzysztof; Dołhańczuk-Śródka, Agnieszka; Ziembik, Zbigniew
2017-03-01
The past uranium/polymetallic mining activities in the Sudety (SW Poland) left abandoned mines, pits, and dumps of waste rocks with trace elements and radionuclides which may erode or leach out and create a potential risk for the aquatic ecosystem, among others. In the present work four rivers affected by effluents from such mines were selected to evaluate the application of aquatic mosses for the bioindication of 56 elements. Naturally growing F. antipyretica and P. riparioides were compared with transplanted samples of the same species. The results demonstrate serious pollution of the examined rivers, especially with As, Ba, Fe, Mn, Pb, Ti, U and Zn, reaching extremely high concentrations in native moss samples. In the most polluted rivers native F. antipyretica and P. riparioides samples showed significantly higher concentrations of As, Ba, Cu, Fe, La, Nd, Ni, Pb, U and Zn than corresponding transplanted samples, whereas at less polluted sites a reverse situation was sometimes observed. Transplanted moss moved from clean to extremely polluted rivers probably protects itself against the accumulation of toxic elements by reducing their uptake. Selection of native or transplanted F. antipyretica and P. riparioides depended on the pollution load. Copyright © 2016. Published by Elsevier Ltd.
Basic features of waste material storage in underground space in relation to geomechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Konecny, P.
1994-12-31
It is logical to consider utilizing underground cavities for waste material disposal because, during mining, great volumes of rock materials are extracted, and underground hollow areas and communicating workings are created that can, in general, be utilized for waste disposal. Additionally, in many cases, underground waste disposal favorably supports mining process technology (for instance, application of power plant fly ash and preparation plant tailings as hardened backfill). However, it is necessary to give particular attention to the preparation, operation, and isolation of underground tip areas; errors and, in extreme cases, emergencies in underground tips are generally more difficult to dealmore » with than those in surface tips. A tip place constructed underground becomes part of the rock massif; therefore, all natural laws that rule the rock massif must be respected. Of course, such an approach requires knowledge of processes and natural regularities that will occur in rock strata where tip places have been constructed. Such knowledge is gained through familiarity with contemporary geomechanical science. The paper discusses basic geomechanical principles of underground waste disposal; geomechanical aspects of rock massif evaluation in view of waste material storage in mine workings; and plans for an experimental project for waste disposal in the Dul Ostrava underground mine.« less
Volume II investigates the potential radiogenic risks from abandoned uranium mines and evaluates which may pose the greatest hazards to members of the public and to the environment. The intent of this report is to identify who may be most likely to be exposed to wastes at small a...
238U and 235U isotope fractionation upon oxidation of uranium-bearing rocks by fracture waters
NASA Astrophysics Data System (ADS)
Chernyshev, I. V.; Golubev, V. N.; Chugaev, A. V.; Mandzhieva, G. V.
2016-10-01
The variations in 238U/235U values accompanying mobilization of U by fracture waters from uranium-bearing rocks, in which U occurs as a fine impregnation of oxides and silicates, were studied by the high-precision (±0.07‰) MC-ICP-MS method. Transition of U into the aqueous phase in the oxidized state U(VI) is accompanied by its isotope fractionation with enrichment of dissolved U(VI) in the heavy isotope 238U up to 0.32‰ in relation to the composition of the solid phases. According to the sign, this effect is consistent with the tendency of the behavior of 238U and 235U upon interaction of river waters with rocks of the catchment areas [11] and with the effect observed during oxidation of uraninite by the oxygen-bearing NaHCO3 solution [12].
Applied Geochemistry Special Issue on Environmental geochemistry of modern mining
Seal, Robert R.; Nordstrom, D. Kirk
2015-01-01
Environmental geochemistry is an integral part of the mine-life cycle, particularly for modern mining. The critical importance of environmental geochemistry begins with pre-mining baseline characterization and the assessment of environmental risks related to mining, continues through active mining especially in water and waste management practices, and culminates in mine closure. The enhanced significance of environmental geochemistry to modern mining has arisen from an increased knowledge of the impacts that historical and active mining can have on the environment, and from new regulations meant to guard against these impacts. New regulations are commonly motivated by advances in the scientific understanding of the environmental impacts of past mining. The impacts can be physical, chemical, and biological in nature. The physical challenges typically fall within the purview of engineers, whereas the chemical and biological challenges typically require a multidisciplinary array of expertise including geologists, geochemists, hydrologists, microbiologists, and biologists. The modern mine-permitting process throughout most of the world now requires that potential risks be assessed prior to the start of mining. The strategies for this risk assessment include a thorough characterization of pre-mining baseline conditions and the identification of risks specifically related to the manner in which the ore will be mined and processed, how water and waste products will be managed, and what the final configuration of the post-mining landscape will be.In the Fall 2010, the Society of Economic Geologists held a short course in conjunction with the annual meeting of the Geological Society of America in Denver, Colorado (USA) to examine the environmental geochemistry of modern mining. The intent was to focus on issues that are pertinent to current and future mines, as opposed to abandoned mines, which have been the focus of numerous previous short courses. The geochemical challenges of current and future mines share similarities with abandoned mines, but differences also exist. Mining and ore processing techniques have changed; the environmental footprint of waste materials has changed; environmental protection has become a more integral part of the mine planning process; and most historical mining was done with limited regard for the environment. The 17 papers in this special issue evolved from the Society of Economic Geologists’ short course.The relevant geochemical processes encompass the source, transport, and fate of contaminants related to the life cycle of a mine. Contaminants include metals and other inorganic species derived from geologic sources such as ore and solid mine waste, and substances brought to the site for ore processing, such as cyanide to leach gold. Factors, such as mine-waste mineralogy, hydrologic setting, mine-drainage chemistry, and microbial activity, that affect the hydrochemical risks from mining are reviewed by Nordstrom et al. In another paper, Nordstrom discusses baseline characterization at mine sites in a regulatory framework, and emphasizes the influence of mineral deposits in producing naturally elevated concentrations of many trace elements in surface water and groundwater. Surface water quality in mineralized watersheds is influenced by a number of processes that act on daily (diel) cycles and can produce dramatic variations in trace element concentrations as described by Gammons et al. Pre-mining baseline characterization studies should strive to capture the magnitude of these diel variations. Desbarats et al., using a case study of mine drainage from a gold mine, illustrate how elements that commonly occur as negatively charged species (anions) in solution, such as arsenic as arsenate, behave in an opposite fashion than most metals, which occur as positively charged species (cations). Significant improvement in the understanding of factors that influence the toxicity of metals to aquatic organisms in surface water has highlighted the importance of aqueous chemistry, particularly dissolved organic carbon, as described by Smith et al. Stream sediment contamination is another important pathway for affecting aquatic organisms, as reviewed by Besser et al. Understanding and predicting environmental consequences from mining begins with knowing the mineralogy and mineral reactivity of the ore, the wastes, and of secondary minerals formed later. Jamieson et al. review the importance of mineralogical studies in mine planning and remediation. A number of types of site-specific studies are needed to identify environmental risks related to individual mines. Lapakko reviews the general framework of mine waste characterization studies that are integral to the mine planning process. Hageman et al. present a comparative study of several static tests commonly used to characterize mine waste.The mining and ore processing practices employed at a specific mine site will vary on the basis of the commodities being targeted, the geology of the deposit, the geometry of the deposit, and the mining and ore processing methods used. Thus, these factors, in addition to the waste management practices used, can result in a variety of end-member mine waste features, each of which has its own set of challenges. Open pit mines and underground mines require waste rock to be removed to access ore. Waste rock presents unique problems because the rock is commonly mineralized at sub-economic grades and has not been processed to remove potentially problematic minerals, such as pyrite. Amos et al. examine the salient aspects of the geochemistry of waste rock. Mill tailings – the waste material after ore minerals have been removed – are a volumetrically important solid waste at many mine sites. Their fine grain size and the options for their management make their behavior in the environment distinct from that of waste rock. Lindsay et al. describe some of these differences through three case-study examples. Subaqueous disposal of tailings is another option described by Moncur et al. Cyanide leaching for gold extraction is a common method throughout the world. Johnson describes environmental aspects of cyanidation. Uranium mining presents unique environmental challenges, particularly since in-situ recovery has seen widespread use. Campbell et al. review the environmental geochemistry of uranium mining and current research on bioremediation. Ore concentrates from many types of metal mining undergo a pyrometallurgical technique known as smelting to extract the metal. Slag is the result of smelting, and it may be an environmental liability or a valuable byproduct, as described by Piatak et al. Finally, the open pits that result from surface mining commonly reach below the water table. At the end of mining, these pits may fill to form lakes that become part of the legacy of the mine. Castendyk et al., in two papers, review theoretical aspects of the environmental limnology of pit lakes. They also describe approaches that have been used to model pit lake water balance, wall-rock contributions to pit lake chemistry, pit lake water quality, and limnological processes, such as vertical mixing, through the use of three case studies.
Yager, Douglas B.; Fey, David L.; Chapin, Thomas; Johnson, Raymond H.
2016-01-01
The Gold King mine water release that occurred on 5 August 2015 near the historical mining community of Silverton, Colorado, highlights the environmental legacy that abandoned mines have on the environment. During reclamation efforts, a breach of collapsed workings at the Gold King mine sent 3 million gallons of acidic and metal-rich mine water into the upper Animas River, a tributary to the Colorado River basin. The Gold King mine is located in the scenic, western San Juan Mountains, a region renowned for its volcano-tectonic and gold-silver-base metal mineralization history. Prior to mining, acidic drainage from hydrothermally altered areas was a major source of metals and acidity to streams, and it continues to be so. In addition to abandoned hard rock metal mines, uranium mine waste poses a long-term storage and immobilization challenge in this area. Uranium resources are mined in the Colorado Plateau, which borders the San Juan Mountains on the west. Uranium processing and repository sites along the Animas River near Durango, Colorado, are a prime example of how the legacy of mining must be managed for the health and well-being of future generations. The San Juan Mountains are part of a geoenvironmental nexus where geology, mining, agriculture, recreation, and community issues converge. This trip will explore the geology, mining, and mine cleanup history in which a community-driven, watershed-based stakeholder process is an integral part. Research tools and historical data useful for understanding complex watersheds impacted by natural sources of metals and acidity overprinted by mining will also be discussed.
Uranium Bioreduction and Biomineralization.
Wufuer, Rehemanjiang; Wei, Yongyang; Lin, Qinghua; Wang, Huawei; Song, Wenjuan; Liu, Wen; Zhang, Daoyong; Pan, Xiangliang; Gadd, Geoffrey Michael
2017-01-01
Following the development of nuclear science and technology, uranium contamination has been an ever increasing concern worldwide because of its potential for migration from the waste repositories and long-term contaminated environments. Physical and chemical techniques for uranium pollution are expensive and challenging. An alternative to these technologies is microbially mediated uranium bioremediation in contaminated water and soil environments due to its reduced cost and environmental friendliness. To date, four basic mechanisms of uranium bioremediation-uranium bioreduction, biosorption, biomineralization, and bioaccumulation-have been established, of which uranium bioreduction and biomineralization have been studied extensively. The objective of this review is to provide an understanding of recent developments in these two fields in relation to relevant microorganisms, mechanisms, influential factors, and obstacles. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chorover, Jon; Mueller, Karl; O'Day, Peggy Anne
2016-06-30
Objectives of the Project: 1. Determine the process coupling that occurs between mineral transformation and contaminant (U and Sr) speciation in acid-uranium waste weathered Hanford sediments. 2. Establish linkages between molecular-scale contaminant speciation and meso-scale contaminant lability, release and reactive transport. 3. Make conjunctive use of molecular- to bench-scale data to constrain the development of a mechanistic, reactive transport model that includes coupling of contaminant sorption-desorption and mineral transformation reactions. Hypotheses Tested: Uranium and strontium speciation in legacy sediments from the U-8 and U-12 Crib sites can be reproduced in bench-scale weathering experiments conducted on unimpacted Hanford sediments from themore » same formations; Reactive transport modeling of future uranium and strontium releases from the vadose zone of acid-waste weathered sediments can be effectively constrained by combining molecular-scale information on contaminant bonding environment with grain-scale information on contaminant phase partitioning, and meso-scale kinetic data on contaminant release from the waste-weathered porous media; Although field contamination and laboratory experiments differ in their diagenetic time scales (decades for field vs. months to years for lab), sediment dissolution, neophase nucleation, and crystal growth reactions that occur during the initial disequilibrium induced by waste-sediment interaction leave a strong imprint that persists over subsequent longer-term equilibration time scales and, therefore, give rise to long-term memory effects. Enabling Capabilities Developed: Our team developed an iterative measure-model approach that is broadly applicable to elucidate the mechanistic underpinnings of reactive contaminant transport in geomedia subject to active weathering.« less
Calibrating rates of early Cambrian evolution
NASA Technical Reports Server (NTRS)
Bowring, Samuel A.; Grotzinger, John P.; Isachsen, Clark E.; Knoll, Andrew H.; Pelechaty, Shane M.; Kolosov, Peter
1993-01-01
An explosive episode of biological diversification occurred near the beginning of the Cambrian period. Evolutionary rates in the Cambrian have been difficult to quantify accurately because of a lack of high-precision ages. Currently, uranium-lead zircon geochronology is the most powerful method for dating rocks of Cambrian age. Uranium-lead zircon data from lower Cambrian rocks located in northeast Siberia indicate that the Cambrian period began about 544 million years ago and that its oldest (Manykaian) stage lasted no less than 10 million years. Other data indicate that the Tommotian and Atdabanian stages together lasted only 5 to 10 million years. The resulting compression of Early Cambrian time accentuates the rapidity of both the faunal diversification and subsequent Cambrian turnover.
NASA Astrophysics Data System (ADS)
Denton, J.; Goldstein, S. J.; Paviet, P.; Nunn, A. J.; Amato, R. S.; Hinrichs, K. A.
2015-12-01
In this study we utilize U-series disequilibria measurements to investigate mineral fluid interactions and the role fractures play in the geochemical evolution of an analogue for a high level nuclear waste repository, the Nopal I uranium ore deposit. Samples of fracture-fill materials have been collected from a vertical drill core and surface fractures. High uranium concentrations in these materials (12-7700 ppm) indicate U mobility and transport from the deposit in the past. U concentrations generally decrease with horizontal distance away from the ore deposit but show no trend with depth. Isotopic activity ratios indicate a complicated geochemical evolution in terms of the timing and extent of actinide mobility, possibly due to changing environmental (redox) conditions over the history of the deposit. 234U/238U activity ratios are generally distinct from secular equilibrium and indicate some degree of open system U behavior during the past 1.2 Ma. However, calculated closed system 238U-234U-230Th model ages are generally >313 ka and >183 ka for the surface fracture and drill core samples respectively, suggesting closed system behavior for U and Th over this most recent time period. Whole rock isochrons drawn for the drill core samples show that at two of three depths fractures have remained closed with respect to U and Th mobility for >200 ka. However, open system behavior for U in the last 350 ka is suggested at 67 m depth. 231Pa/235U activity ratios within error of unity suggest closed system behavior for U and Pa for at least the past 185 ka. 226Ra/230Th activity ratios are typically <1 (0.7-1.2), suggesting recent (<8 ka) radium loss and mobility due to ongoing fluid flow in the fractures. Overall, the mainly closed system behavior of U-Th-Pa over the past ~200 ka provides one indicator of the geochemical immobility of these actinides over long time-scales for potential nuclear waste repositories sited in fractured, unsaturated tuff.
Intense alpha-particle emitting crystallites in uranium mill wastes
Landa, E.R.; Stieff, L.R.; Germani, M.S.; Tanner, A.B.; Evans, J.R.
1994-01-01
Nuclear emulsion microscopy has demonstrated the presence of small, intense ??-particle emitting crystallites in laboratory-produced tailings derived from the sulfuric acid milling of uranium ores. The ??-particle activity is associated with the isotope pair 210Pb 210Po, and the host mineral appears to be PbSO4 occurring as inclusions in gypsum laths. These particles represent potential inhalation hazards at uranium mill tailings disposal areas. ?? 1994.
Felipe-Sotelo, M; Hinchliff, J; Field, L P; Milodowski, A E; Preedy, O; Read, D
2017-07-01
The solubility of uranium and thorium has been measured under the conditions anticipated in a cementitious, geological disposal facility for low and intermediate level radioactive waste. Similar solubilities were obtained for thorium in all media, comprising NaOH, Ca(OH) 2 and water equilibrated with a cement designed as repository backfill (NRVB, Nirex Reference Vault Backfill). In contrast, the solubility of U(VI) was one order of magnitude higher in NaOH than in the remaining solutions. The presence of cellulose degradation products (CDP) results in a comparable solubility increase for both elements. Extended X-ray Absorption Fine Structure (EXAFS) data suggest that the solubility-limiting phase for uranium corresponds to a becquerelite-type solid whereas thermodynamic modelling predicts a poorly crystalline, hydrated calcium uranate phase. The solubility-limiting phase for thorium was ThO 2 of intermediate crystallinity. No breakthrough of either uranium or thorium was observed in diffusion experiments involving NRVB after three years. Nevertheless, backscattering electron microscopy and microfocus X-ray fluorescence confirmed that uranium had penetrated about 40 μm into the cement, implying active diffusion governed by slow dissolution-precipitation kinetics. Precise identification of the uranium solid proved difficult, displaying characteristics of both calcium uranate and becquerelite. Copyright © 2017 Elsevier Ltd. All rights reserved.
Uranium induces oxidative stress in lung epithelial cells
Periyakaruppan, Adaikkappan; Kumar, Felix; Sarkar, Shubhashish; Sharma, Chidananda S.
2009-01-01
Uranium compounds are widely used in the nuclear fuel cycle, antitank weapons, tank armor, and also as a pigment to color ceramics and glass. Effective management of waste uranium compounds is necessary to prevent exposure to avoid adverse health effects on the population. Health risks associated with uranium exposure includes kidney disease and respiratory disorders. In addition, several published results have shown uranium or depleted uranium causes DNA damage, mutagenicity, cancer and neurological defects. In the current study, uranium toxicity was evaluated in rat lung epithelial cells. The study shows uranium induces significant oxidative stress in rat lung epithelial cells followed by concomitant decrease in the antioxidant potential of the cells. Treatment with uranium to rat lung epithelial cells also decreased cell proliferation after 72 h in culture. The decrease in cell proliferation was attributed to loss of total glutathione and superoxide dismutase in the presence of uranium. Thus the results indicate the ineffectiveness of antioxidant system’s response to the oxidative stress induced by uranium in the cells. PMID:17124605
NASA Astrophysics Data System (ADS)
Vengosh, A.; Pery, N.; Paytan, A.; Haquin, G.; Elhanani, S.; Pankratov, I.
2006-05-01
Many aquifer systems are composed of multiple rock types. Previous attempts to evaluate the specific aquifer rocks that control the groundwater chemistry and possible flow paths within these multiple lithological systems have used major ion chemistry and isotopic tracers (e.g., strontium isotopes). Here we propose an additional isotopic proxy that is based on the distribution of radium isotopes in groundwater. Radium has four radioactive isotopes that are part of the decay chains of uranium-238, thorium-232, and uranium-235. The abundance of radium isotope quartet (226Ra-half life 1600 y; 228Ra-5.6 y; 224Ra-3.6 d; 223Ra-11.4 d) in groundwater reflects the Th/U ratios in the rocks. Investigation of groundwater from the Negev, Israel, enabled us to discriminate between groundwaters flowing in the Lower Cretaceous Nubian Sandstone and the Upper Cretaceous Judea Group carbonate aquifers. Groundwater flowing in the sandstone aquifer has distinguishably high 228Ra/226Ra and 224Ra/223Ra ratios due to the high Th/U ratio in sandstone. In contrast, the predominance of uranium in carbonate rocks results in low 228Ra/226Ra and 224Ra/223Ra ratios in the associated groundwater. We show that the radium activity in groundwater in the two-aquifer systems is correlated with temperature, dissolved oxygen, and salinity. The increase of radium activity is also associated with changes in the isotopic ratios; 228Ra/226Ra ratios increase and decrease in the sandstone and carbonate aquifers, respectively. Given that the dissolution of radium isotopes depends on their decay constants, the use of the four radium isotopes with different decay constants enabled us to distinguish between dissolution (higher abundance of the long-lived isotopes) and recoil (predominance of the short-lived isotopes) processes. In spite of these isotopic fractionations, the radium isotopic discrimination between carbonate and sandstone aquifers is significant.
Stitt, C A; Harker, N J; Hallam, K R; Paraskevoulakos, C; Banos, A; Rennie, S; Jowsey, J; Scott, T B
2015-01-01
Synchrotron X-rays have been used to study the oxidation of uranium and uranium hydride when encapsulated in grout and stored in de-ionised water for 10 months. Periodic synchrotron X-ray tomography and X-ray powder diffraction have allowed measurement and identification of the arising corrosion products and the rates of corrosion. The oxidation rates of the uranium metal and uranium hydride were slower than empirically derived rates previously reported for each reactant in an anoxic water system, but without encapsulation in grout. This was attributed to the grout acting as a physical barrier limiting the access of oxidising species to the uranium surface. Uranium hydride was observed to persist throughout the 10 month storage period and industrial consequences of this observed persistence are discussed.
Harker, N. J.; Hallam, K. R.; Paraskevoulakos, C.; Banos, A.; Rennie, S.; Jowsey, J.
2015-01-01
Synchrotron X-rays have been used to study the oxidation of uranium and uranium hydride when encapsulated in grout and stored in de-ionised water for 10 months. Periodic synchrotron X-ray tomography and X-ray powder diffraction have allowed measurement and identification of the arising corrosion products and the rates of corrosion. The oxidation rates of the uranium metal and uranium hydride were slower than empirically derived rates previously reported for each reactant in an anoxic water system, but without encapsulation in grout. This was attributed to the grout acting as a physical barrier limiting the access of oxidising species to the uranium surface. Uranium hydride was observed to persist throughout the 10 month storage period and industrial consequences of this observed persistence are discussed. PMID:26176551
Relocation of net-acid-generating waste to improve post-mining water chemistry.
Morin, K A; Hutt, N M
2001-01-01
Acidic drainage and metal leaching are long-term environmental liabilities that can persist for many decades to millennia. One technique to improve the water chemistry and ecology of post-mining landscapes is to relocate and submerge net-acid-generating mine materials in a lake or water-retaining impoundment. One example of a carefully executed relocation of waste rock took place at the Eskay Creek Mine in Canada. Pre-relocation studies included an empirical relationship that related (1) the amount of acidity retained by the waste rock during past oxidation to (2) the amount of lime needed in each truckload for neutralization of the acidity and for suppression of metal release. During relocation, thousands of rinse pH measurements indicated net acidity varied significantly over short distances within the waste rock and that acidic rock could not be reliably segregated from near-netural rock. After relocation, water from the watershed continued to be acidic for a few years, then returned to near-neutral pH and near-background concentrations of metals. The chemistry of the lake where the waste rock was submerged remains near background conditions. Therefore, with careful planning and implementation, the relocation and submergence of net-acid-generating materials can greatly improve post-mining water chemistry.
Finch, W.I.; Feng, S.; Zuyi, C.; McCammon, R.B.
1993-01-01
Four major types of uranium deposits occur in China: granite, volcanic, sandstone, and carbonaceous-siliceous-pelitic rock. These types are major sources of uranium in many parts of the world and account for about 95 percent of Chinese production. Descriptive models for each of these types record the diagnostic regional and local geologic features of the deposits that are important to genetic studies, exploration, and resource assessment. A fifth type of uranium deposit, metasomatite, is also modeled because of its high potential for production. These five types of uranium deposits occur irregularly in five tectonic provinces distributed from the northwest through central to southern China. ?? 1993 Oxford University Press.
Preliminary report on the White Canyon area, San Juan county, Utah
Benson, William E.; Trites, Albert F.; Beroni, Ernest P.; Feeger, John A.
1952-01-01
The White Canyon area, in the central part of San Juan County, Utah, consists of approximately two 15-minute quadrangles. Approximately 75 square miles have been mapped by the Geological Survey on a scale of 1 inch equals 1 mile, using a combined aerial photography-plane table method. Structure contours were drawn on top of the Organ Rock member of the Cutler formation. Parts of the Gonway and North Point claims, 1/4 mile east of the Happy Jack mine, were mapped in detail. The principal objectives of the investigations were: (1) to establish ore guides; (2) to select areas favorable for exploration; and (3) to map the general geology and to determine the regional relationships of the uranium deposits. The White Canyon area is comprised of sedimentary rocks of Carboniferous to Jurassic age, more than 2,000 feet thick, having a regional dip of 1° to 2° SW. The nearest igneous rocks are in the Henry Mountains about 7 miles west of the northern part of the area; The Shinarump conglomerate of the late Triassic age, the principal ore horizon in the White Canyon area, consists of lenticular beds of sandstone, conglomeratic sandstone, conglomerate, clay, and siltstone. The Shinarump conglomerate, absent in places, is as much as 75 feet thick. The sandstones locally contain molds of logs and fragments of altered volcanic ash. Some of the logs have been replaced by copper and uranium minerals and iron oxides. The clay and siltstone underlie and are interbedded with the sandstone, and are most common in channels that cut into the underlying Moenkopi formation. The Shinarump conglomerate contains reworked Moenkopi siltstone fragments, clay balls, carbonized wood, and pebbles of quarts, quartzite, and chert. Jointing is prominent in the Western part of the mapped area. The three most prominent joint trends are due east, N. 65°-75° W., and N. 65°-75° E. All joints have vertical dips. The red beds are bleached along some joints, especially those that trend N. 65°-75° W. All uranium ore produced has been from the lower part of the Shinarump conglomerate, where it commonly occurs with copper as disseminations and fracture coatings in sandstone. Uranium and copper minerals also occur in low-grade disseminated deposits in the lower Chinle and in the Moenkopi formation and in veins cutting these formations. Although some uranium deposits occur in Chinarump channels and scours, copper and uranium minerals along fractures suggest that channel control may be secondary. Logs and clay balls apparently have exerted some chemical influences for deposition. The uranium occurs as the oxide in some deposits, and as secondary hydrous sulfates, phosphates, oxides, and silicates in these and several other deposits. Charcoal, iron and manganese oxides, and veinlets of hydrocarbon are abnormally radioactive in most of the deposits. Base-metal sulfides are commonly found inside the oxidized zone. Secondary copper minerals include the hydrous sulfates and carbonate. Gangue minerals include quarts, clay minerals, and manganese oxides, dickite (?), calcite, gypsum, pyrite, and chalcedony (?). Principal wall-rock alteration appears to have been silicification, clay alteration, and bleaching. Most of the shipped ore has contained more than 0.3 percent uranium. The ore also contains copper, commonly in grades lower than 1.0 percent. Criteria believed to be most useful for prospecting for concealed uranium deposits are (1) visible uranium minerals; (2) sulfide minerals; (3) secondary copper minerals; (4) dickite (?); (5) hydrocarbons; and (6) bleaching and alteration of the Moenkopi formation.
Microbial transformations of uranium in wastes and implication on its mobility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki,Y.; Nankawa, T.; Ozaki, T.
2008-09-14
Uranium exists in several chemical forms in mining and mill tailings and in nuclear and weapons production wastes. Under appropriate conditions, microorganisms can affect the stability and mobility of U in wastes by altering the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of U in solution and the bioavailability. Dissolution or immobilization of U is brought about by direct enzymatic action or indirect nonenzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of U have been extensively investigated, we have only limited information on the mechanismsmore » of microbial transformations of various chemical forms of U in the presence of electron donors and acceptors.« less
Zielinski, Robert A.; Otton, James K.; Schumann, R. Randall; Wirt, Laurie
2008-01-01
Geochemical sampling of 82 stream waters and 87 stream sediments within mountainous areas immediately west of Denver, Colorado, was conducted by the U.S. Geological Survey in October 1994. The primary purpose was to evaluate regionally the effects of geology and past mining on the concentration and distribution of uranium. The study area contains uranium- and thorium-rich bedrock, numerous noneconomic occurrences of uranium minerals, and several uranium deposits of variable size and production history. During the sampling period, local streams had low discharge and were more susceptible to uranium-bearing acid drainage originating from historical mines of base- and precious-metal sulfides. Results indicated that the spatial distribution of Precambrian granites and metamorphic rocks strongly influences the concentration of uranium in stream sediments. Within-stream transport increases the dispersion of uranium- and thorium rich mineral grains derived primarily from granitic source rocks. Dissolved uranium occurs predominantly as uranyl carbonate complexes, and concentrations ranged from less than 1 to 65 micrograms per liter. Most values were less than 5 micrograms per liter, which is less than the current drinking water standard of 30 micrograms per liter and much less than locally applied aquatic-life toxicity standards of several hundred micrograms per liter. In local streams that are affected by uranium-bearing acid mine drainage, dissolved uranium is moderated by dilution and sorptive uptake by stream sediments. Sorbents include mineral alteration products and chemical precipitates of iron- and aluminum-oxyhydroxides, which form where acid drainage enters streams and is neutralized. Suspended uranium is relatively abundant in some stream segments affected by nearby acid drainage, which likely represents mobilization of these chemical precipitates. The 234U/238U activity ratio of acid drainage (0.95-1.0) is distinct from that of local surface waters (more than 1.05), and this distinctive isotopic composition may be preserved in iron-oxyhydroxide precipitates of acid drainage origin. The study area includes a particularly large vein-type uranium deposit (Schwartzwalder mine) with past uranium production. Stream water and sediment collected downstream from the mine's surface operations have locally anomalous concentrations of uranium. Fine-grained sediments downstream from the mine contain rare minute particles (10-20 micrometers) of uraninite, which is unstable in a stream environment and thus probably of recent origin related to mining. Additional rare particles of very fine grained (less than 5 micrometer) barite likely entered the stream as discharge from settling ponds in which barite precipitation was formerly used to scavenge dissolved radium from mine effluent.
Tc-99 Decontamination From Heat Treated Gaseous Diffusion Membrane -Phase I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oji, L.; Wilmarth, B.; Restivo, M.
2017-03-13
Uranium gaseous diffusion cascades represent a significant environmental challenge to dismantle, containerize and dispose as low-level radioactive waste. Baseline technologies rely on manual manipulations involving direct access to technetium-contaminated piping and materials. There is a potential to utilize novel thermal decontamination technologies to remove the technetium and allow for on-site disposal of the very large uranium converters. Technetium entered these gaseous diffusion cascades as a hexafluoride complex in the same fashion as uranium. Technetium, as the isotope Tc-99, is an impurity that follows uranium in the first cycle of the Plutonium and Uranium Extraction (PUREX) process. The technetium speciation ormore » exact form in the gas diffusion cascades is not well defined. Several forms of Tc-99 compounds, mostly the fluorinated technetium compounds with varying degrees of volatility have been speculated by the scientific community to be present in these cascades. Therefore, there may be a possibility of using thermal desorption, which is independent of the technetium oxidation states, to perform an in situ removal of the technetium as a volatile species and trap the radionuclide on sorbent traps which could be disposed as low-level waste.« less
Cost and Systems Analysis of Innovative Fuel Resources Concepts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Erich; Byers, M.
Economically recovered uranium from seawater can have a transformative effect on the way policy makers view the long-term viability of uranium based fuel cycles. Seawater uranium, even when estimated to cost more than terrestrially mined uranium, is integral in establishing an economic backstop, thus reducing uncertainty in future nuclear power costs. While a passive recovery scheme relying on a field of polymer adsorbents prepared via radiation induced grafting has long been considered the leading technology for full scale deployment, non-trivial cost and logistical barriers persist. Consequently, university partners of the nation-wide consortium for seawater uranium recovery have developed variants ofmore » this technology, each aiming to address a substantial weakness. The focus of this NEUP project is the economic impacts of the proposed variant technologies. The team at University of Alabama has pursued an adsorbent synthesis method that replaces the synthetic fiber backbone with a natural waste product. Chitin fibers suitable for ligand grafting have been prepared from shrimp shell waste. These environmental benefits could be realized at a comparable cost to the reference fiber so long as the uptake can be increased or the chemical consumption cost decreased.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, R.T.; Strand, J.R.; Reid, B.E.
Uranium favorability of the Sangre de Cristo Formation (Pennsylvanian-Permian) in the Las Vegas basin has been evaluated. The Las Vegas basin project area, located in Colfax, Mora, and San Miguel Counties, New Mexico, comprises about 3,489 sq mi. The formation contains sedimentologic and stratigraphic characteristics that are considered favorable for uranium deposition. Field investigations consisted of section measuring, rock sampling, and ground radiometric reconnaissance. North-south and east-west cross sections of the basin were prepared from well logs and measured sections. Petrographic, chemical, and spectrographic analyses were conducted on selected samples. Stratigraphic and sedimentologic information were used to determine depositional environments.more » The most favorable potential host rocks include red to pink, coarse-grained, poorly sorted, feldspathic to arkosic lenticular sandstones with stacked sandstone thicknesses of more than 20 ft and sandstone-to-shale ratios between 1:1 and 2:1. The sandstone is interbedded with mudstone and contains carbonaceous debris and anomalous concentrations of uranium locally. Areas of maximum favorability are found in a braided-stream, alluvial-plain depositional environment in the north-central part of the Las Vegas basin. There, carbonaceous material is well preserved, probably due to rapid subsidence and burial. Furthermore, uranium favorability is highest in the lower half of the formation because carbonaceous wood and plant fragments, as well as known uranium deposits, are concentrated in this zone. Piedmont deposits in the north and east, and meander-belt, alluvial-plain deposits in the south, are not considered favorable because of the paucity of uranium deposits and a minimum of carbonaceous material.« less
Uranium concentration and distribution in six peridotite inclusions of probable mantle origin
NASA Technical Reports Server (NTRS)
Haines, E. L.; Zartman, R. E.
1973-01-01
Fission-track activation was used to investigate uranium concentration and distribution in peridotite inclusions in alkali basalt from six localities. Whole-rock uranium concentrations range from 24 to 82 ng/g. Most of the uranium is uniformly distributed in the major silicate phases - olivine, orthopyroxene, and clinopyroxene. Chromian spinels may be classified into two groups on the basis of their uranium content - those which have less than 10 ng/g and those which have 100 to 150 ng/g U. In one sample accessory hydrous phases, phlogopite and hornblende, contain 130 and 300 ng/g U, respectively. The contact between the inclusion and the host basalt is usually quite sharp. Glassy or microcrystalline veinlets found in some samples contain more than 1 microgram/g. Very little uranium is associated with microcrystals of apatite. These results agree with some earlier investigators, who have concluded that suboceanic peridotites contain too little uranium to account for normal oceanic heat flow by conduction alone.
Chemical aspects of uranium behavior in soils: A review
NASA Astrophysics Data System (ADS)
Vodyanitskii, Yu. N.
2011-08-01
Uranium has varying degrees of oxidation (+4 and +6) and is responsive to changes in the redox potential of the environment. It is deposited at the reduction barrier with the participation of biota and at the sorption barrier under oxidative conditions. Iron (hydr)oxides are the strongest sorbents of uranium. Uranium, being an element of medium biological absorption, can accumulate (relative to thorium) in the humus horizons of some soils. The high content of uranium in uncontaminated soils is most frequently inherited from the parent rocks in the regions of positive U anomalies: in the soils developed on oil shales and in the marginal zone of bogs at the reduction barrier. The development of nuclear and coal-fired power engineering resulted in the environmental contamination with uranium. The immobilization of anthropogenic uranium at artificial geochemical barriers is based on two preconditions: the stimulation of on-site metal-reducing bacteria or the introduction of strong mineral reducers, e.g., Fe at low degrees of oxidation.
NASA Technical Reports Server (NTRS)
1977-01-01
The programs and plans of the U.S. government for the "back end of the nuclear fuel cycle" were examined to determine if there were any significant technological or regulatory gaps and inconsistencies. Particular emphasis was placed on analysis of high-level nuclear waste management plans, since the permanent disposal of radioactive waste has emerged as a major factor in the public acceptance of nuclear power. The implications of various light water reactor fuel cycle options were examined including throwaway, stowaway, uranium recycle, and plutonium plus uranium recycle. The results of this study indicate that the U.S. program for high-level waste management has significant gaps and inconsistencies. Areas of greatest concern include: the adequacy of the scientific data base for geological disposal; programs for the the disposal of spent fuel rods; interagency coordination; and uncertainties in NRC regulatory requirements for disposal of both commercial and military high-level waste.
NASA Astrophysics Data System (ADS)
Dittrich, T. M.; Emerson, H. P.; Michael, D. P.; Reed, D. T.
2016-12-01
Bedded geologic salt formations have been shown to have many favorable properties for the disposal of radioactive waste (i.e., reducing conditions, fracture healing). Performance assessment (PA) modeling for a 10,000 year period for the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM have predicted an extremely low risk of radioactive material reaching the surrounding environment after the 100 year period required for creep to seal the waste panels and access shafts. Human intrusion caused by drilling operations for oil and gas exploration is the main pathway of concern for environmental release of radioactive material due to pressurized brine pockets located within the salt formation below the repository. Our work focuses on the long-term capability of salt repositories and the associated geologic media to safely isolate stored radioactive waste from the surrounding environment, even in the event of a human intrusion scenario such as a direct brine release (DBR) due to a drilling operation intersecting a brine pocket. In particular, we are revisiting the degree of conservatism in the estimated sorption partition coefficients (Kds) used in the PA model based on complementary batch and column experimental methods (Dittrich and Reimus, 2016). The main focus of this work is to investigate the role of ionic strength, solution chemistry, and oxidation state (III-VI) in actinide sorption to dolomite rock. Based on redox conditions and solution chemistry expected in the WIPP, possible actinide species include Pu(III), Pu(IV), U(IV), U(VI), Np(IV), Np(V), Am(III), and Th(IV). We will present (1) a conceptual overview of Kd use in the PA model, (2) background and evolution of the Kd ranges used, and (3) results from batch and column experiments and model predictions for Kds with WIPP-relevant geologic media. We will also briefly discuss the challenges of upscaling from lab experiments to field scale predictions, the presence of ligands (e.g., acetate, citrate, EDTA), the role of colloids and microbes, and the effect of engineered barrier materials (e.g., MgO) on sorption and transport conditions. References: Dittrich, T.M., Reimus, P.W. 2016. Reactive transport of uranium in fractured crystalline rock: Upscaling in time and distance. J Environ Manage 165, 124-132.
A graphene oxide/amidoxime hydrogel for enhanced uranium capture
Wang, Feihong; Li, Hongpeng; Liu, Qi; Li, Zhanshuang; Li, Rumin; Zhang, Hongsen; Liu, Lianhe; Emelchenko, G. A.; Wang, Jun
2016-01-01
The efficient development of selective materials for the recovery of uranium from nuclear waste and seawater is necessary for their potential application in nuclear fuel and the mitigation of nuclear pollution. In this work, a graphene oxide/amidoxime hydrogel (AGH) exhibits a promising adsorption performance for uranium from various aqueous solutions, including simulated seawater. We show high adsorption capacities (Qm = 398.4 mg g−1) and high % removals at ppm or ppb levels in aqueous solutions for uranium species. In the presence of high concentrations of competitive ions such as Mg2+, Ca2+, Ba2+ and Sr2+, AGH displays an enhanced selectivity for uranium. For low uranium concentrations in simulated seawater, AGH binds uranium efficiently and selectively. The results presented here reveal that the AGH is a potential adsorbent for remediating nuclear industrial effluent and adsorbing uranium from seawater. PMID:26758649
Plant growth in amended molybdenum mine waste rock.
Burney, Owen T; Redente, Edward F; Lambert, Charles E
2017-04-01
This greenhouse study examined the use of organic and inorganic soil amendments in waste rock material from the former Questa Molybdenum Mine in northern New Mexico to promote beneficial soil properties. Waste rock material was amended with 11 soil amendment treatments that included municipal composted biosolids, Biosol®, inorganic fertilizer, and two controls (pure waste rock and sand). Elymus trachycaulus and Robinia neomexicana growth performance and plant chemistry were assessed across all treatments over a period of 99 and 141 days, respectively. Even though waste rock material had more than 200 times the molybdenum concentration of native soils, adverse effects were not observed for either species. The two main limiting factors in this study were soil nutritional status and soil water retention. The biosolid amendment was found to provide the greatest buffer against these limiting factors due to significant increases in both nutrition and soil water retention. As a result, both species responded with the highest levels of biomass production and the least amount of required water demands. Use of organic amendments such as biosolids, even though short lived in the soil, may provide plants the necessary growth stimulus to become more resilient to the harsh conditions found on many mine reclamation sites.
Waste rock revegetation: Evaluation of nutrient and biological amendments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meikle, T.W.; Lu, S.; Barta, J.P.
1999-07-01
Lack of salvaged topsoil for the reclamation of historical waste rock piles is a common problem in the arid Great Basin region. Utilization of amended waste rock as a growth media could reduce further disturbance resulting from topsoil harvest, minimize hauling costs, and potentially allow for the use of a higher quality material for plant growth. Getchell Gold Corporation initiated a study in 1995 to determine the suitability of waste rock substrates to support plant growth following application of nutrient and biological amendments. Three nutrient amendments and a biological seed treatment were evaluation for use in establishing vegetative cover onmore » three distinct waste rock substrates. Completely randomized blocks were placed on the three substrates. Treatments included organic fertilizers (Biosol and Gro-Power), a mineral fertilizer (16-20-0), and Azospirillum bacterial inoculant, plus controls. The seed mix consisted of Agropyron riparium, Agropyron spicatum, Elymus cinereus, Poa secunda, and Sitanion hystrix. Canopy and ground cover were monitored for three growing seasons. Conclusions from the study are: (1) two of the three substrates supported plant growth following amendment with organic fertilizers; (2) organic fertilizers increased cover substantially over the mineral fertilizer; and (3) Azospirillum had no effect on canopy cover.« less
Calibrating rates of early Cambrian evolution.
Bowring, S A; Grotzinger, J P; Isachsen, C E; Knoll, A H; Pelechaty, S M; Kolosov, P
1993-09-03
An explosive episode of biological diversification occurred near the beginning of the Cambrian period. Evolutionary rates in the Cambrian have been difficult to quantify accurately because of a lack of high-precision ages. Currently, uranium-lead zircon geochronology is the most powerful method for dating rocks of Cambrian age. Uranium-lead zircon data from lower Cambrian rocks located in northeast Siberia indicate that the Cambrian period began at approximately 544 million years ago and that its oldest (Manykaian) stage lasted no less than 10 million years. Other data indicate that the Tommotian and Atdabanian stages together lasted only 5 to 10 million years. The resulting compression of Early Cambrian time accentuates the rapidity of both the faunal diversification and subsequent Cambrian turnover.
Page, Lincoln R.; Stocking, Hobart E.; Smith, Harriet B.
1956-01-01
Within the boundaries of the United States abnormal amounts of uranium have been found in rocks of nearly all geologic ages and lithologic types. Distribution of ore is more restricted. On the Colorado Plateau, the Morrison formation of Jurassic age yields 61.4 percent of the ore produced in the United States, and the Chinle conglomerate and Shinarump formation of Triassic age contribute 26.0 and 5.8 percent, respectively. Clastic, carbonaceous, and carbonate sedimentary rocks of Tertiary, Mesozoic, and Paleozoic ages and veins of Tertiary age are the source of the remaining 6.8 percent.
NASA Astrophysics Data System (ADS)
Sasamoto, Hiroshi; Yui, Mikazu; Arthur, Randolph C.
Based on geochemical data collected by Japan Nuclear Cycle Development Institute (JNC) in the Tono uranium mine, a conceptual groundwater evolution model developed by JNC is tested to evaluate whether equilibrium-based concepts of water-rock interaction are consistent with observed variations in the mineralogy and hydrochemistry of the Tono mine area. The chemical evolution of the groundwaters is modeled assuming local equilibrium for selected mineral-fluid reactions, taking into account the rainwater origin of these solutions. Results suggest that it is possible to interpret approximately the actual groundwater chemistry (i.e., pH, Eh, total dissolved concentrations of Si, Na, Ca, K, Al, carbonate and sulfate) if the following assumptions are adopted (a) CO 2 concentration in the gas phase contacting pore solutions in the overlying soil zone=10 -1 atm, and (b) minerals in the rock zone that control the solubility of respective elements in the groundwater include: chalcedony (Si), albite (Na), kaolinite (Al), calcite (Ca and carbonate), muscovite (K) and pyrite (Eh and sulfate). This result helps to build confidence in the use of simplified geochemical modeling techniques to develop an understanding of dominant geochemical reactions controlling groundwater chemistry in rocks similar to those that could be used for the geological disposal of radioactive wastes. It is noted, however, that the available field data may not be sufficient to adequately constrain parameters in the groundwater evolution model. In particular, more detailed information characterizing certain site properties are needed to improve the model. For this reason, a model that accounts for ion-exchange reactions among clay minerals, and which is based on the results of laboratory experiments, has also been evaluated in the present study. Further improvement of model considering ion-exchange reactions are needed in future, however.
Organic Separation Test Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.
2014-09-22
Separable organics have been defined as “those organic compounds of very limited solubility in the bulk waste and that can form a separate liquid phase or layer” (Smalley and Nguyen 2013), and result from three main solvent extraction processes: U Plant Uranium Recovery Process, B Plant Waste Fractionation Process, and Plutonium Uranium Extraction (PUREX) Process. The primary organic solvents associated with tank solids are TBP, D2EHPA, and NPH. There is concern that, while this organic material is bound to the sludge particles as it is stored in the tanks, waste feed delivery activities, specifically transfer pump and mixer pump operations,more » could cause the organics to form a separated layer in the tank farms feed tank. Therefore, Washington River Protection Solutions (WRPS) is experimentally evaluating the potential of organic solvents separating from the tank solids (sludge) during waste feed delivery activities, specifically the waste mixing and transfer processes. Given the Hanford Tank Waste Treatment and Immobilization Plant (WTP) waste acceptance criteria per the Waste Feed Acceptance Criteria document (24590-WTP-RPT-MGT-11-014) that there is to be “no visible layer” of separable organics in the waste feed, this would result in the batch being unacceptable to transfer to WTP. This study is of particular importance to WRPS because of these WTP requirements.« less
Remote sensing and uranium exploration at Lisbon Valley, Utah
NASA Technical Reports Server (NTRS)
Conel, J. E.; Niesen, P. L.
1981-01-01
As part of the joint NASA-Geosat uranium test case program, aircraft-acquired multispectral scanner data are used to investigate the distribution of bleaching in Windgate sandstone exposed in Lisbon Valley anticline, Utah. It is noted that all of the large ore bodies contained in lower Chinle Triassic age or Cutler Permian age strata in this area lie beneath or closely adjacent to such bleached outcrops. The geographic coincidences reported here are seen as inviting renewed interest in speculation of a causal relation between occurrences of Mississippian-Pennsylvanian oil and gas in this area and of Triassic uranium accumulation and rock bleaching.
Frizzell, Virgil A.; Kuizon, Lucia
1984-01-01
The Santa Lucia Wilderness Area and Garcia Mountain, Black Mountain, La Panza, Machesna Mountain, Los Machos Hills, Big Rocks, and Stanley Mountain Roadless Areas together occupy an area of about 218 sq mi in the Los Padres National Forest, California. On the basis of a mineral-resource evaluation a small area in the Black Mountain Roadless Area has a probable mineral-resource potential for uranium, and a small area in the Stanley Mountain Roadless Area has probable potential for low-grade mercury resources. Although petroleum resources occur in rocks similar to those found in the study area, no potential for petroleum resources was identified in the wilderness or any of the roadless areas. No resource potential for other mineral resources was identified in any of the areas. Detailed geologic mapping and geochemical sampling probably would increase knowledge about distribution and modes of occurrence of uranium and cinnabar in those areas, respectively.
Gui, Daxiang; Dai, Xing; Zheng, Tao; Wang, Xiangxiang; Silver, Mark A; Chen, Lanhua; Zhang, Chao; Diwu, Juan; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao
2018-02-05
The first heterobimetallic uranium(IV)/vanadium(III) phosphite compound, Na 2 UV 2 (HPO 3 ) 6 (denoted as UVP), was synthesized via an in situ redox-active hydrothermal reaction. It exhibits superior hydrolytic and antioxidant stability compared to the majority of structures containing low-valent uranium or vanadium, further elucidated by first-principles simulations, and therefore shows potential applications in nuclear waste management.
Geology and ore deposits of the Section 23 Mine, Ambrosia Lake District, New Mexico
Granger, H.C.; Santos, E.S.
1982-01-01
The section 23 mine is one of about 18 large uranium mines opened in sandstones of the fluvial Westwater Canyon Member of the Jurassic Morrison Formation in the Ambrosia Lake mining district during the early 1960s. The Ambrosia Lake district is one of several mining districts within the Grants mineral belt, an elongate zone containing many uranium deposits along the southern flank of the San Juan basin. Two distinct types of ore occur in the mine. Primary ore occurs as peneconcordant layers of uranium-rich authigenic organic matter that impregnates parts of the reduced sandstone host rocks and which are typically elongate in an east-southeast direction subparallel both to the sedimentary trends and to the present-day regional strike of the strata. These are called prefault or trend ores because of their early genesis and their elongation and alinement. A second type of ore in the mine is referred to as postfault, stacked, or redistributed ore. Its genesis was similar to that of the roll-type deposits in Tertiary rocks of Wyoming and Texas. Oxidation, related to the development of a large tongue of oxidized rock extending from Gallup to Ambrosia Lake, destroyed much of the primary ore and redistributed it as massive accumulations of lower grade ores bordering the redox interface at the edge of the tongue. Host rocks in the southern half of sec. 23 (T. 14 N., R. 10 W.) are oxidized and contain only remnants of the original, tabular, organic-rich ore. Thick bodies of roll-type ore are distributed along the leading edge of the oxidized zone, and pristine primary ore is found only near the north edge of the section. Organic matter in the primary ore was derived from humic acids that precipitated in the pores of the sandstones and fixed uranium as both coffinite and urano-organic compounds. Vanadium, molybdenum, and selenium are also associated with the ore. The secondary or roll-type ores are essentially free of organic carbon and contain uranium both as coffinite and uraninite. They also contain vanadium and selenium but are virtually devoid of molybdenum. Although much has been learned about these deposits since the time this study was conducted, in 1966, a great deal more study will by required to completely elucidate their geologic history.
A review and overview of nuclear waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, R.L.
1984-12-31
An understanding of the status and issues in the management of radioactive wastes is based on technical information on radioactivity, radiation, biological hazard of radiation exposure, radiation standards, and methods of protection. The fission process gives rise to radioactive fission products and neutron bombardment gives activation products. Radioactive wastes are classified according to source: defense, commercial, industrial, and institutional; and according to physical features: uranium mill tailings, high-level, transuranic, and low-level. The nuclear fuel cycle, which contributes a large fraction of annual radioactive waste, starts with uranium ore, includes nuclear reactor use for electrical power generation, and ends with ultimatemore » disposal of residues. The relation of spent fuel storage and reprocessing is governed by technical, economic, and political considerations. Waste has been successfully solidified in glass and other forms and choices of the containers for the waste form are available. Methods of disposal of high-level waste that have been investigated are transmutation by neutron bombardment, shipment to Antartica, deep-hole insertion, subseabed placement, transfer by rocket to an orbit in space, and disposal in a mined cavity. The latter is the favored method. The choices of host geological media are salt, basalt, tuff, and granite.« less
Ludwig, K. R.; Grauch, R.I.; Nutt, C.J.; Nash, J.T.; Frishman, D.; Simmons, K.R.
1987-01-01
The Ranger and Jabiluka uranium deposits are the largest in the Alligator Rivers uranium field, which contains at least 20% of the world's low-cost uranium reserves. Ore occurs in early Proterozoic metasediments, below an unconformity with sandstones of the 1.65 b.y.-old Kombolgie Formation. This study has used U-Pb isotope data from a large number of whole-rock drill core samples with a variety of mineral assemblages and textures. Both Ranger and Jabiluka reflect a common, profound isotopic disturbance at about 400 to 600 m.y. This disturbance, which was especially pronounced at Jabiluka, may correspond to the development of basins and associated basalt flows to the W and SW.-from Authors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chorover, Jon; Mueller, Karl; O'Day, Peggy
2016-04-02
Objectives of the project: 1. Determine the process coupling that occurs between mineral transformation and contaminant (U and Sr) speciation in acid-uranium waste weathered Hanford sediments. 2. Establish linkages between molecular-scale contaminant speciation and meso-scale contaminant lability, release and reactive transport. 3. Make conjunctive use of molecular- to bench-scale data to constrain the development of a mechanistic, reactive transport model that includes coupling of contaminant sorption-desorption and mineral transformation reactions. Hypotheses tested: - Uranium and strontium speciation in legacy sediments from the U-8 and U-12 Crib sites can be reproduced in bench-scale weathering experiments conducted on unimpacted Hanford sediments frommore » the same formations. - Reactive transport modeling of future uranium and strontium releases from the vadose zone of acid-waste weathered sediments can be effectively constrained by combining molecular-scale information on contaminant bonding environment with grain-scale information on contaminant phase partitioning, and meso-scale kinetic data on contaminant release from the waste-weathered porous media. - Although field contamination and laboratory experiments differ in their diagenetic time scales (decades for field vs. months to years for lab), sediment dissolution, neophase nucleation, and crystal growth reactions that occur during the initial disequilibrium induced by waste-sediment interaction leave a strong imprint that persists over subsequent longer-term equilibration time scales and, therefore, give rise to long-term memory effects. Enabling capabilities developed: Our team developed an iterative measure-model approach that is broadly applicable to elucidate the mechanistic underpinnings of reactive contaminant transport in geomedia subject to active weathering. Experimental design: Hypotheses were tested by comparing (with a similar set of techniques) the geochemical transformations and transport behaviors that occured in bench-scale studies of waste-sediment interaction with parallel model systems studies of homogeneous nucleation and neo-phase dissolution. Initial plans were to compare results with core sample extractions from the acid uranium waste impacted U-8 and U-12 Cribs at Hanford (see original proposal and letter of collaboration from J. Zachara). However, this part of the project was impossible because funding for core extractions were eliminated from the DoE budget. Three distinct crib waste aqueous simulants (whose composition is based on the most up-to-date information from field site investigations) were reacted with Hanford sediments in batch and column systems. Coupling of contaminant uptake to mineral weathering was monitored using a suite of methods both during waste-sediment interaction, and after, when waste-weathered sediments were subjected to infusion with circumneutral background pore water solutions. Our research was designed to adapt as needed to maintain a strong dialogue between laboratory and modeling investigations so that model development was increasingly constrained by emergent data and understanding. Potential impact of the project to DOE: Better prediction of contaminant uranium transport was achieved by employing multi-faceted lines of inquiry to build a strong bridge between molecular- and field-scale information. By focusing multiple lines and scales of observation on a common experimental design, our collaborative team revealed non-linear and emergent behavior in contaminated weathering systems. A goal of the current project was to expand our modeling capabilities, originally focused on hyperalkaline legacy waste streams, to include acidic weathering reactions that, as described above, were expected to result in profoundly different products. We were able to achieve this goal, and showed that these products nonetheless undergo analogous silicate and non-silicate transformation, ripening and aging processes. Our prediction that these weathering reactions would vary with waste stimulant chemistry resulted in data that was incorporated directly into a reactive transport model structure.« less
Ayotte, Joseph D.; Flanagan, Sarah M.; Morrow, William S.
2007-01-01
Water-quality data collected from 1,426 wells during 1993-2003 as part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) program were evaluated to characterize the water quality in glacial and bedrock aquifers of the northern United States. One of the goals of the NAWQA program is to synthesize data from individual studies across the United States to gain regional- and national-scale information about the behavior of contaminants. This study focused on the regional occurrence and distribution of uranium and 222radon in ground water in the glacial aquifer system of the United States as well as in the Cambrian-Ordovician and the New York and New England crystalline aquifer systems that underlie the glacial aquifer system. The occurrence of uranium and 222radon in ground water has long been a concern throughout the United States. In the glacial aquifers, as well as the Cambrian-Ordovician and the New York and New England crystalline aquifer systems of the United States, concentrations of uranium and 222radon were highly variable. High concentrations of uranium and 222radon affect ground water used for drinking water and for agriculture. A combination of information or data on (1) national-scale ground-water regions, (2) regional-scale glacial depositional models, (3) regional-scale geology, and (4) national-scale terrestrial gamma-ray emissions were used to confirm and(or) refine the regions used in the analysis of the water-chemistry data. Significant differences in the occurrence of uranium and 222radon, based primarily on geologic information were observed and used in this report. In general, uranium was highest in the Columbia Plateau glacial, West-Central glacial, and the New York and New England crystalline aquifer groups (75th percentile concentrations of 22.3, 7.7, and 2.9 micrograms per liter (ug/L), respectively). In the Columbia Plateau glacial and the West-Central glacial aquifer groups, more than 10 percent of wells sampled had concentrations of uranium that exceeded the U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Level of 30 ug/L; in the New York and New England crystalline aquifer group, 4 percent exceeded 30 ug/L. Ground-water samples with high concentrations of uranium were commonly linked to geologic sources rich in uranium. In eight of nine aquifer groups defined for this study, concentrations of uranium correlated significantly with concentrations of sulfate in ground water (Spearman's rho = 0.20 to 0.56; p < 0.05). In the Columbia Plateau, glacial aquifers were derived in part from basaltic lava flows, some felsic volcanic rocks, and some paleo-lake bed materials that may be rich in uranium. In the Columbia Plateau and West-Central glacial aquifer groups, uranium correlated with total dissolved solids, bicarbonate, boron, lithium, selenium, and strontium. In the West-Central glacial aquifer group, rocks such as Cretaceous marine shales, which are abundant in uranium, probably contribute to the high concentrations in ground water; in the southern part of this group, which extends into Nebraska, the glacial or glacial-related sediment may be interbedded with uranium-rich materials that originated to the north and west and in the Rocky Mountains. In New England, crystalline bedrock that is granitic, such as two-mica granites, as well as other high-grade metamorphic rocks, has abundant uranium that is soluble in the predominantly oxic to sub-oxic geochemical conditions. This appears to contribute to high uranium concentrations in ground water. The highest 222radon concentrations were present in samples from wells completed in the New York and New England crystalline aquifer group; the median value (2,122 picocurries per liter (pCi/L)) was about 10 times the median values of all other aquifer groups. More than 25 percent of the samples from the New York and New England crystalline aquifer group wells had 222radon concentrations that exceeded the USEPA Alternative
Volunteer revegetation of waste rock surfaces at the Bingham Canyon Mine, Utah.
Borden, Richard K; Black, Rick
2005-01-01
Voluntary recolonization of sulfide-bearing waste rock dumps by native vegetation is inhibited by the harsh chemical and physical conditions. The success of volunteer vegetation on the waste rock surfaces at the Bingham Canyon (Utah) porphyry copper deposit is most strongly dependent on the soil pH and salinity, and to a lesser extent on physical characteristics such as compaction and distance from seed source. Vegetation cover and richness both decline below a paste pH of about 6 and above a paste conductivity of about 0.7 dS/m (for a 1:1 soil to water mixture). No significant vegetation establishment occurs below a soil pH of about 4.5. Young sulfide-bearing waste rock surfaces at Bingham Canyon have high salinity, but as reactive pyrite is depleted and salts are flushed from the soil, the salinity eventually declines, allowing volunteer native vegetation to become established on surfaces with a circumneutral pH. Under natural conditions, the pH of older acidic weathered surfaces will recover very slowly, but it can be rapidly raised by adding relatively small amounts of limestone because there are few intact reactive sulfides. For uncompacted waste rock surfaces with favorable chemical conditions, less than 90% gravel content, and that are located near a native seed source, the arithmetic mean volunteer vegetation cover was 56 +/- 24% and the mean species richness was 17 +/- 5. These data indicate that with adequate surface preparation and limestone addition, direct planting of older, acidic, but low salinity waste rock surfaces can greatly accelerate natural revegetation.
National Uranium Resource Evaluation: Lewistown Quadrangle, Montana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Culver, J.C.
1982-09-01
Uranium resources in the Lewistown Quadrangle, Montana, were evaluated to a depth of 1500 m (5000 ft). All existing geologic data were considered, including geologic surveys, literature, theses, radiometric surveys, oil- and water-well logs. Additional data were generated during the course of two field seasons, including the collection of more than 350 water, rock, crude oil and panned concentrate samples for analyses, sedimentary facies maps, structural geology and isopach maps, and field examination of reported areas of anomalous radioactivity. Three environments with potential for the occurrence of a minimum of 100 t of 0.01% U/sub 3/O/sub 8/ were delineated. Themore » most favorable environment is located in the southeastern portion of the quadrangle; here, Tertiary felsic dikes intrude four potential sandstone host rocks in the Kootenai Formation and the Colorado Shale. Structural-chemical traps for allogenic uranium are provided by the juxtaposition of oil-bearing domes. A second potential environment is located in the Eagle Sandstone in the northwestern and western portions of the quadrangle; here, anomalous water samples were obtained downtip from oxidized outcrops that are structurally related to Tertiary intrusive rocks of the Bearpaw and Highwood Mountains. Lignitic lenses and carbonaceous sandstones deposited in a near-shore lagoonal and deltaic environment provide potential reductants for hexavalent uranium in this environment. A third environment, in the Judith River Formation, was selected as favorable on the basis of water-well and gamma-ray log anomalies and their structural relationship with the Bearpaw Mountains. Organic materials are present in the Judith River Formation as potential reductants. They were deposited in a near-shore fluvial and lagoonal system similar to the depositional environment of the Jackson Group of the Texas Gulf Coast.« less
Summary of the mineralogy of the Colorado Plateau uranium ores
Weeks, Alice D.; Coleman, Robert Griffin; Thompson, Mary E.
1956-01-01
In the Colorado Plateau uranium has been produced chiefly from very shallow mines in carnotite ores (oxidized vanadiferous uranium ores) until recent deeper mining penetrated black unoxidized ores in water-saturated rocks and extensive exploration has discovered many deposits of low to nonvanadiferous ores. The uranium ores include a wide range from highly vanadiferous and from as much as one percent to a trace of copper, and contain a small amount of iron and traces of lead, zinc, molybdenum, cobalt, nickel, silver, manganese, and other metals. Recent investigation indicates that the carnotite ores have been derived by progressive oxidation of primary (unoxidized) black ores that contain low-valent uranium and vanadium oxides and silicates. The uranium minerals, uraninite and coffinite, are associated with coalified wood or other carbonaceous material. The vanadium minerals, chiefly montroseite, roscoelite, and other vanadium silicates, occur in the interstices of the sandstone and in siltstone and clay pellets as well as associated with fossil wood. Calcite, dolomite, barite and minor amounts of sulfides, arsenides, and selenides occur in the unoxidized ore. Partially oxidized vanadiferous ore is blue black, purplish brown, or greenish black in contrast to the black or dark gray unoxidized ore. Vanadium combines with uranium to form rauvite. The excess vanadium is present in corvusite, fernandinite, melanovanadite and many other quadrivalent and quinquevalent vanadium minerals as well as in vanadium silicates. Pyrite and part or all of the calcite are replaced by iron oxides and gypsum. In oxidized vanadiferous uranium ores the uranium is fixed in the relatively insoluble minerals carnotite and tyuyamunite, and the excess vanadium commonly combines with one or more of the following: calcium, sodium, potassium, magnesium, aluminum, iron, copper, manganese, or barium, or rarely it forms the hydrated pentoxide. The relatively stable vanadium silicates are little affected by oxidation. The unoxidized nonvanadiferous ores contain uraninite and coffinite in close association with coalified wood and iron and copper sulfides, and traces of many other sulfides, arsenides and selenides. The oxidized nonvanadiferous ores differ from the vanadiferous ores because, in the absence of vanadium to complex the uranium, a great variety of secondary yellow and greenish-yellow uranyl minerals are formed. The uranyl sulfates and carbonates are more common than the oxides, phosphates, arsenates, and silicates. Because the sulfates and carbonates are much less stable that carnotite, the oxidized nonvanadiferous ores occure only as halos around cores of unoxidized ore and do not form large oxidized deposits close to the surface of the ground as carnotite ores. Oxidation has taken place since the lowering of the water table in the present erosion cycle. Because of local structures and the highly lenticular character of the fluviatile host rocks perched water tables and water-saturated lenses of sandstone are common high above the regional water table. Unoxidized ore has been preserved in these water-saturated rocks and the boundary between oxidized and unoxidized ore is very irregular.
Woodruff, Laurel G.; Nicholson, Suzanne W.; Fey, David L.
2013-01-01
Active mines have developed large open pits with extensive waste-rock piles, but because of the nature of the ore and waste rock, the major environmental impacts documented at the mine sites are reported to be waste disposal issues and somewhat degraded water quality.
Radioactivity at the Copper Creek copper lode prospect, Eagle district, east-central Alaska
Wedow, Helmuth; Tolbert, Gene Edward
1952-01-01
Investigation of radioactivity anomalies at the Copper Creek copper lode prospect, Eagle district, east-central Alaska, during 1949 disclosed that the radioactivity is associated with copper mineralization in highly metamorphosed sedimentary rocks. These rocks are a roof pendant in the Mesozoic "Charley River" batholith. The radioactivity is probably all due to uranium associated with bornite and malachite.
Piatak, Nadine M.; Seal, Robert R.; Hammarstrom, Jane M.; Meier, Allen L.; Briggs, Paul H.
2003-01-01
Waste-rock material produced at historic metal mines contains elevated concentrations of potentially toxic trace elements. Two types of mine waste were examined in this study: sintered waste rock and slag. The samples were collected from the Elizabeth and Ely mines in the Vermont copper belt (Besshi-type massive sulfide deposits), from the Copper Basin mining district near Ducktown, Tennessee (Besshi-type massive sulfide deposits), and from the Clayton silver mine in the Bayhorse mining district, Idaho (polymetallic vein and replacement deposits). The data in this report are presented as a compilation with minimal interpretation or discussion. A detailed discussion and interpretation of the slag data are presented in a companion paper. Data collected from sintered waste rock and slag include: (1) bulk rock chemistry, (2) mineralogy, (3) and the distribution of trace elements among phases for the slag samples. In addition, the reactivity of the waste material under surficial conditions was assessed by examining secondary minerals formed on slag and by laboratory leaching tests using deionized water and a synthetic solution approximating precipitation in the eastern United States.
NASA Astrophysics Data System (ADS)
Dittrich, T. M.; Reed, D. T.
2015-12-01
The Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM is the only operating nuclear waste repository in the US and has been accepting transuranic (TRU) waste since 1999. The WIPP is located in a salt deposit approximately 650 m below the surface and performance assessment (PA) modeling for a 10,000 year period is required to recertify the operating license with the US EPA every five years. The main pathway of concern for environmental release of radioactivity is a human intrusion caused by drilling into a pressurized brine reservoir below the repository. This could result in the flooding of the repository and subsequent transport in the high transmissivity layer (dolomite-rich Culebra formation) above the waste disposal rooms. We evaluate the degree of conservatism in the estimated sorption partition coefficients (Kds) ranges used in the PA based on an approach developed with granite rock and actinides (Dittrich and Reimus, 2015; Dittrich et al., 2015). Sorption onto the waste storage material (Fe drums) may also play a role in mobile actinide concentrations. We will present (1) a conceptual overview of how Kds are used in the PA model, (2) technical background of the evolution of the ranges and (3) results from batch and column experiments and model predictions for Kds with WIPP dolomite and clays, brine with various actinides, and ligands (e.g., acetate, citrate, EDTA) that could promote transport. The current Kd ranges used in performance models are based on oxidation state and are 5-400, 0.5-10,000, 0.03-200, and 0.03-20 mL g-1 for elements with oxidation states of III, IV, V, and VI, respectively. Based on redox conditions predicted in the brines, possible actinide species include Pu(III), Pu(IV), U(IV), U(VI), Np(IV), Np(V), Am(III), and Th(IV). We will also discuss the challenges of upscaling from lab experiments to field scale predictions, the role of colloids, and the effect of engineered barrier materials (e.g., MgO) on transport conditions. Dittrich, T.M., Reimus, P.W. 2015. Uranium transport in a crushed granodiorite: experiments and reactive transport modeling. J Contam Hydrol 175-176: 44-59. Dittrich, T.M., Boukhalfa, H., Ware, S.D., Reimus, P.W. 2015. Laboratory investigation of the role of desorption kinetics on americium transport associated with bentonite colloids. J Environ Radioactiv 148: 170-182.
Defense Technical Information Center Thesaurus
2000-10-01
acquisition radar 4 + Indicates existence of further generic levels of the term DTIC Thesaurus Actuators Acridines Actinide series (cont.) Activated sintering...BT Heterocyclic compounds+ Uranium+ BT Sintering Acrilan Actinide series compounds Activated sludge process use Acrylonitrile polymers RT Actinide...Waste treatment+ Protactinium compounds Acronyms Thorium compounds+ Activation use Abbreviations Transuranium compounds+ UF Energizing Uranium compounds
76 FR 29240 - Environmental Impacts Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-20
...-283-7681. EIS No. 20110150, Final EIS, DOE, ID, ADOPTION--Areva Eagle Rock Enrichment Facility... Uranium Enrichment Facility, Construction, Operation, and Decommission, License Issuance, Piketon, OH...
Beiswenger, Toya N; Gallagher, Neal B; Myers, Tanya L; Szecsody, James E; Tonkyn, Russell G; Su, Yin-Fong; Sweet, Lucas E; Lewallen, Tricia A; Johnson, Timothy J
2018-02-01
The identification of minerals, including uranium-bearing species, is often a labor-intensive process using X-ray diffraction (XRD), fluorescence, or other solid-phase or wet chemical techniques. While handheld XRD and fluorescence instruments can aid in field applications, handheld infrared (IR) reflectance spectrometers can now also be used in industrial or field environments, with rapid, nondestructive identification possible via analysis of the solid's reflectance spectrum providing information not found in other techniques. In this paper, we report the use of laboratory methods that measure the IR hemispherical reflectance of solids using an integrating sphere and have applied it to the identification of mineral mixtures (i.e., rocks), with widely varying percentages of uranium mineral content. We then apply classical least squares (CLS) and multivariate curve resolution (MCR) methods to better discriminate the minerals (along with two pure uranium chemicals U 3 O 8 and UO 2 ) against many common natural and anthropogenic background materials (e.g., silica sand, asphalt, calcite, K-feldspar) with good success. Ground truth as to mineral content was attained primarily by XRD. Identification is facile and specific, both for samples that are pure or are partially composed of uranium (e.g., boltwoodite, tyuyamunite, etc.) or non-uranium minerals. The characteristic IR bands generate unique (or class-specific) bands, typically arising from similar chemical moieties or functional groups in the minerals: uranyls, phosphates, silicates, etc. In some cases, the chemical groups that provide spectral discrimination in the longwave IR reflectance by generating upward-going (reststrahlen) bands can provide discrimination in the midwave and shortwave IR via downward-going absorption features, i.e., weaker overtone or combination bands arising from the same chemical moieties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-04-01
The Gillette quadrangle in northeastern Wyoming and western South Dakota contains approximately equal portions of the Powder River Basin and the Black Hills Uplift. In these two structures, a relatively thick sequence of Paleozoic and Mesozoic strata represent nearly continuous deposition over the Precambrian basement complex. The Powder River Basin also contains a thick sequence of early Tertiary rocks which cover about 50% of the surface. A stratigraphic sequence from Upper Cretaceous to Precambrian is exposed in the Black Hills Uplift to the east. Magnetic data apparently illustrate the relative depth to the Precambrian crystalline rocks, but only weakly definemore » the boundary between the Powder River Basin and the Black Hills Uplift. The positions of some small isolated Tertiary intrusive bodies in the Black Hills Uplift are relatively well expressed. The Gillette quadrangle has been productive in terms of uranium mining, but its current status is uncertain. The producing uranium deposits occur within the Lower Cretaceous Inyan Kara Group and the Jurassic Morrison Formation in the Black Hills Uplift. Other prospects occur within the Tertiary Wasatch and Fort Union Formations in the Pumpkin Buttes - Turnercrest district, where it extends into the quadrangle from the Newcastle quadrangle to the south. These four formations, all predominantly nonmarine, contain all known uranium deposits in the Gillette quadrangle. A total of 108 groups of sample responses in the uranium window constitute anomalies as defined in Volume I. The anomalies are most frequently found in the Inyan Kara-Morrison, Wasatch and Fort Union Formations. Many anomalies occur over known mines or prospects. Others may result from unmapped uranium mines or areas where material other than uranium is mined. The remainder may relate to natural geologic features.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, A.; Johnson, F.
Production of Mo-99 for medical isotope use is being investigated using dissolved low enriched uranium (LEU) fissioned using an accelerator driven process. With the production and separation of Mo-99, a low level waste stream will be generated. Since the production facility is a commercial endeavor, waste disposition paths normally available for federally generated radioactive waste may not be available. Disposal sites for commercially generated low level waste are available, and consideration to the waste acceptance criteria (WAC) of the disposal site should be integral in flowsheet development for the Mo-99 production. Pending implementation of the “Uranium Lease and Take-Back Programmore » for Irradiation for Production of Molybdenum-99 for Medical Use” as directed by the American Medical Isotopes Production Act of 2012, there are limited options for disposing of the waste generated by the production of Mo-99 using an accelerator. The commission of a trade study to assist in the determination of the most favorable balance of production throughput and waste management should be undertaken. The use of a waste broker during initial operations of a facility has several benefits that can offset the cost associated with using a subcontractor. As the facility matures, the development of in-house capabilities can be expanded to incrementally reduce the dependence on a subcontractor.« less
NASA Astrophysics Data System (ADS)
Power, Christopher; Tsourlos, Panagiotis; Ramasamy, Murugan; Nivorlis, Aristeidis; Mkandawire, Martin
2018-03-01
Mine waste rock piles (WRPs) can contain sulfidic minerals whose interaction with oxygen and water can generate acid mine drainage (AMD). Thus, WRPs can be a long-term source of environmental pollution. Since the generation of AMD and its release into the environment is dependent on the net volume and bulk composition of waste rock, effective characterization of WRPs is necessary for successful remedial design and monitoring. In this study, a combined DC resistivity and induced polarization (DC-IP) approach was employed to characterize an AMD-generating WRP in the Sydney Coalfield, Nova Scotia, Canada. Two-dimensional (2D) DC-IP imaging with 6 survey lines was performed to capture the full WRP landform. 2D DC results indicated a highly heterogeneous and moderately conductive waste rock underlain by a resistive bedrock containing numerous fractures. 2D IP (chargeability) results identified several highly-chargeable regions within the waste, with normalized chargeability delineating regions specific to waste mineralogy only. Three-dimensional (3D) DC-IP imaging, using 17 parallel lines on the plateau of the pile, was then used to focus on the composition of the waste rock. The full 3D inverted DC-IP distributions were used to identify coincident and continuous zones (isosurfaces) of low resistivity (<30 Ω-m) and high normalized chargeability (>0.4 mS/m) that were inferred as generated AMD (leachate) and stored AMD (sulfides), respectively. Integrated geological, hydrogeological and geochemical data increased confidence in the geoelectrical interpretations. Knowledge on the location of potentially more reactive waste material is extremely valuable for improved long-term AMD monitoring at the WRP.
NASA Astrophysics Data System (ADS)
Stolboushkin, A. Yu; Ivanov, A. I.; Storozhenko, G. I.; Syromyasov, V. A.; Akst, D. V.
2017-09-01
The rational technology for the production of ceramic bricks with a defect-free structure from coal mining and processing wastes was developed. The results of comparison of physical and mechanical properties and the structure of ceramic bricks manufactured from overburden rocks and waste coal with traditional for semi-dry pressing mass preparation and according to the developed method are given. It was established that a homogeneous, defect-free brick texture obtained from overburden rocks of open-pit mines and waste coal improves the quality of ceramic wall materials produced by the method of compression molding by more than 1.5 times compared to the brick with a traditional mass preparation.
NASA Astrophysics Data System (ADS)
Naumov, G. B.; Vlasov, B. P.; Golubev, V. N.; Mironova, O. F.
2017-01-01
As a result of integrating geological, mineralogical, and geochemical data on the unique Schlema-Alberoda five-element uranium deposit situated in Federal Republic of Germany and explored in detail down to a depth of 2 km, it has been shown that its formation for more than 100 Ma has been caused by combination of internal and external factors. The latter comprise favorable metallogenic specialization of the region, injection of intrusive bodies bearing the necessary stock of energy, and periodic pulses of tectonic reactivation. The internal factors of self-development involve evolutionary processes, which occur in host rocks at the consecutive stages of prograde and retrograde metamorphism giving rise to alteration of rocks in consistence with physical and chemical laws at variable temperature and degree of system opening.
Environmental characterisation of coal mine waste rock in the field: an example from New Zealand
NASA Astrophysics Data System (ADS)
Hughes, J.; Craw, D.; Peake, B.; Lindsay, P.; Weber, P.
2007-08-01
Characterisation of mine waste rock with respect to acid generation potential is a necessary part of routine mine operations, so that environmentally benign waste rock stacks can be constructed for permanent storage. Standard static characterisation techniques, such as acid neutralisation capacity (ANC), maximum potential acidity, and associated acid-base accounting, require laboratory tests that can be difficult to obtain rapidly at remote mine sites. We show that a combination of paste pH and a simple portable carbonate dissolution test, both techniques that can be done in the field in a 15 min time-frame, is useful for distinguishing rocks that are potentially acid-forming from those that are acid-neutralising. Use of these techniques could allow characterisation of mine wastes at the metre scale during mine excavation operations. Our application of these techniques to pyrite-bearing (total S = 1-4 wt%) but variably calcareous coal mine overburden shows that there is a strong correlation between the portable carbonate dissolution technique and laboratory-determined ANC measurements (range of 0-10 wt% calcite equivalent). Paste pH measurements on the same rocks are bimodal, with high-sulphur, low-calcite rocks yielding pH near 3 after 10 min, whereas high-ANC rocks yield paste pH of 7-8. In our coal mine example, the field tests were most effective when used in conjunction with stratigraphy. However, the same field tests have potential for routine use in any mine in which distinction of acid-generating rocks from acid-neutralising rocks is required. Calibration of field-based acid-base accounting characteristics of the rocks with laboratory-based static and/or kinetic tests is still necessary.
Potential Aquifer Vulnerability in Regions Down-Gradient from ...
Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are instrumental in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of these uranium ores is a process of contacting the uranium mineral deposit with leaching (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality impacts from: 1) potential excursions of leaching solutions away from the injection zone into down-dip, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies
Onset of thermally induced gas convection in mine wastes
Lu, N.; Zhang, Y.
1997-01-01
A mine waste dump in which active oxidation of pyritic materials occurs can generate a large amount of heat to form convection cells. We analyze the onset of thermal convection in a two-dimensional, infinite horizontal layer of waste rock filled with moist gas, with the top surface of the waste dump open to the atmosphere and the bedrock beneath the waste dump forming a horizontal and impermeable boundary. Our analysis shows that the thermal regime of a waste rock system depends heavily on the atmospheric temperature, the strength of the heat source and the vapor pressure. ?? 1997 Elsevier Science Ltd. All rights reserved.
61. Picking Floor, Large Pile of Waste Rock and Wood ...
61. Picking Floor, Large Pile of Waste Rock and Wood date unknown Historic Photograph, Photographer Unknown; Collection of William Everett, Jr. (Wilkes-Barre, PA), photocopy by Joseph E.B. Elliot - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA
Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carilli, Jhon T.; Krenzien, Susan K.
2013-07-01
The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)
Development of practical decontamination process for the removal of uranium from gravel.
Kim, Ilgook; Kim, Gye-Nam; Kim, Seung-Soo; Choi, Jong-Won
2018-01-01
In this study, a practical decontamination process was developed to remove uranium from gravel using a soil washing method. The effects of critical parameters including particle size, H 2 SO 4 concentration, temperature, and reaction time on uranium removal were evaluated. The optimal condition for two-stage washing of gravel was found to be particle size of 1-2 mm, 1.0 M H 2 SO 4 , temperature of 60°C, and reaction time of 3 h, which satisfied the required uranium concentration for self-disposal. Furthermore, most of the extracted uranium was removed from the waste solution by precipitation, implying that the treated solution can be reused as washing solution. These results clearly demonstrated that our proposed process can be indeed a practical technique to decontaminate uranium-polluted gravel.
Uranium and its decay products in samples contaminated with uranium mine and mill waste
NASA Astrophysics Data System (ADS)
Benedik, L.; Klemencic, H.; Repinc, U.; Vrecek, P.
2003-05-01
The routine determination of the activity concentrations of uranium isotopes (^{238}U, ^{235}U and ^{234}U), thorium isotopes (^{212}Th, ^{230}TI, and ^{228}Th), ^{231}Pa, ^{226}Ra, ^{210}Pb and ^{210}Po in the environment is one of the most important tasks in uranium mining areas. Natural radionuclides contribute negligibly to the extemal radiation dose, but in the case of ingestion or inhalation can represent a very serious hazard. The objective of this study was to determine the activities of uranium and its decay products ^{230}Th, ^{231}Pa, ^{226}Ra, ^{210}Pb and ^{210}Po in sediments and water below sources of contamination (uranium mine, disposal sites and individual inflows) using gamma and alpha spectrometry, beta counting, the liquid scintillation technique and radiochemical neutron activation analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reilly, Sean Douglas; May, Iain; Copping, Roy
A process for minimizing waste and maximizing utilization of uranium involves recovering uranium from an irradiated solid target after separating the medical isotope product, molybdenum-99, produced from the irradiated target. The process includes irradiating a solid target comprising uranium to produce fission products comprising molybdenum-99, and thereafter dissolving the target and conditioning the solution to prepare an aqueous nitric acid solution containing irradiated uranium. The acidic solution is then contacted with a solid sorbent whereby molybdenum-99 remains adsorbed to the sorbent for subsequent recovery. The uranium passes through the sorbent. The concentrations of acid and uranium are then adjusted tomore » concentrations suitable for crystallization of uranyl nitrate hydrates. After inducing the crystallization, the uranyl nitrate hydrates are separated from a supernatant. The process results in the purification of uranyl nitrate hydrates from fission products and other contaminants. The uranium is therefore available for reuse, storage, or disposal.« less
Dry halide method for separating the components of spent nuclear fuels
Christian, Jerry Dale; Thomas, Thomas Russell; Kessinger, Glen F.
1998-01-01
The invention is a nonaqueous, single method for processing multiple spent nuclear fuel types by separating the fission- and transuranic products from the nonradioactive and fissile uranium product. The invention has four major operations: exposing the spent fuels to chlorine gas at temperatures preferably greater than 1200.degree. C. to form volatile metal chlorides; removal of the fission product chlorides, transuranic product chlorides, and any nickel chloride and chromium chloride in a molten salt scrubber at approximately 400.degree. C.; fractional condensation of the remaining volatile chlorides at temperatures ranging from 164.degree. C. to 2.degree. C.; and regeneration and recovery of the transferred spent molten salt by vacuum distillation. The residual fission products, transuranic products, and nickel- and chromium chlorides are converted to fluorides or oxides for vitrification. The method offers the significant advantages of a single, compact process that is applicable to most of the diverse nuclear fuels, minimizes secondary wastes, segregates fissile uranium from the high level wastes to resolve potential criticality concerns, segregates nonradioactive wastes from the high level wastes for volume reduction, and produces a common waste form glass or glass-ceramic.
Dry halide method for separating the components of spent nuclear fuels
Christian, J.D.; Thomas, T.R.; Kessinger, G.F.
1998-06-30
The invention is a nonaqueous, single method for processing multiple spent nuclear fuel types by separating the fission and transuranic products from the nonradioactive and fissile uranium product. The invention has four major operations: exposing the spent fuels to chlorine gas at temperatures preferably greater than 1200 C to form volatile metal chlorides; removal of the fission product chlorides, transuranic product chlorides, and any nickel chloride and chromium chloride in a molten salt scrubber at approximately 400 C; fractional condensation of the remaining volatile chlorides at temperatures ranging from 164 to 2 C; and regeneration and recovery of the transferred spent molten salt by vacuum distillation. The residual fission products, transuranic products, and nickel- and chromium chlorides are converted to fluorides or oxides for vitrification. The method offers the significant advantages of a single, compact process that is applicable to most of the diverse nuclear fuels, minimizes secondary wastes, segregates fissile uranium from the high level wastes to resolve potential criticality concerns, segregates nonradioactive wastes from the high level wastes for volume reduction, and produces a common waste form glass or glass-ceramic. 3 figs.
Power, Christopher; Ramasamy, Murugan; MacAskill, Devin; Shea, Joseph; MacPhee, Joseph; Mayich, David; Baechler, Fred; Mkandawire, Martin
2017-12-01
Cover systems are commonly placed over waste rock piles (WRPs) to limit atmospheric water and oxygen ingress and control the generation and release of acid mine drainage (AMD) to the receiving environment. Although covers containing geomembranes such as high-density polyethylene (HDPE) exhibit the attributes to be highly effective, there are few, if any, published studies monitoring their performance at full-scale WRPs. In 2011, a HDPE cover was installed over the Scotchtown Summit WRP in Nova Scotia, Canada, and extensive field performance monitoring was conducted over the next five years. A range of parameters within the atmosphere, cover, waste rock, groundwater and surface water, were monitored and integrated into a comprehensive hydrogeochemical conceptual model to assess (i) atmospheric ingress to the waste rock, (ii) waste rock acidity and depletion and (iii) evolution of groundwater and surface water quality. Results demonstrate that the cover is effective and meeting site closure objectives. Depletion in oxygen influx resulted in slower sulphide oxidation and AMD generation, while a significant reduction in water influx (i.e. 512 to 50 mm/year) resulted in diminished AMD release. Consistent improvements in groundwater quality (decrease in sulphate and metals; increase in pH) beneath and downgradient of the WRP were observed. Protection and/or significant improvement in surface water quality was evident in all surrounding watercourses due to the improved groundwater plume and elimination of contaminated runoff over previously exposed waste rock. A variably saturated flow and contaminant transport model is currently being developed to predict long-term cover system performance.
NASA Astrophysics Data System (ADS)
Pedretti, D.; Beckie, R. D.; Mayer, K. U.
2015-12-01
The chemistry of drainage from waste-rock piles at mine sites is difficult to predict because of a number of uncertainties including heterogeneous reactive mineral content, distribution of minerals, weathering rates and physical flow properties. In this presentation, we examine the effects of mixing on drainage chemistry over timescales of 100s of years. We use a 1-D streamtube conceptualization of flow in waste rocks and multicomponent reactive transport modeling. We simplify the reactive system to consist of acid-producing sulfide minerals and acid-neutralizing carbonate minerals and secondary sulfate and iron oxide minerals. We create multiple realizations of waste-rock piles with distinct distributions of reactive minerals along each flow path and examine the uncertainty of drainage geochemistry through time. The limited mixing of streamtubes that is characteristic of the vertical unsaturated flow in many waste-rock piles, allows individual flowpaths to sustain acid or neutral conditions to the base of the pile, where the streamtubes mix. Consequently, mixing and the acidity/alkalinity balance of the streamtube waters, and not the overall acid- and base-producing mineral contents, control the instantaneous discharge chemistry. Our results show that the limited mixing implied by preferential flow and the heterogeneous distribution of mineral contents lead to large uncertainty in drainage chemistry over short and medium time scales. However, over longer timescales when one of either the acid-producing or neutralizing primary phases is depleted, the drainage chemistry becomes less controlled by mixing and in turn less uncertain. A correct understanding of the temporal variability of uncertainty is key to make informed long-term decisions in mining settings regarding the management of waste material.
Roadmap for disposal of Electrorefiner Salt as Transuranic Waste.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rechard, Robert P.; Trone, Janis R.; Kalinina, Elena Arkadievna
The experimental breeder reactor (EBR-II) used fuel with a layer of sodium surrounding the uranium-zirconium fuel to improve heat transfer. Disposing of EBR-II fuel in a geologic repository without treatment is not prudent because of the potentially energetic reaction of the sodium with water. In 2000, the US Department of Energy (DOE) decided to treat the sodium-bonded fuel with an electrorefiner (ER), which produces metallic uranium product, a metallic waste, mostly from the cladding, and the salt waste in the ER, which contains most of the actinides and fission products. Two waste forms were proposed for disposal in a minedmore » repository; the metallic waste, which was to be cast into ingots, and the ER salt waste, which was to be further treated to produce a ceramic waste form. However, alternative disposal pathways for metallic and salt waste streams may reduce the complexity. For example, performance assessments show that geologic repositories can easily accommodate the ER salt waste without treating it to form a ceramic waste form. Because EBR-II was used for atomic energy defense activities, the treated waste likely meets the definition of transuranic waste. Hence, disposal at the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, may be feasible. This report reviews the direct disposal pathway for ER salt waste and describes eleven tasks necessary for implementing disposal at WIPP, provided space is available, DOE decides to use this alternative disposal pathway in an updated environmental impact statement, and the State of New Mexico grants permission.« less
Results of exploration at the Old Leyden coal mine, Jefferson County, Colorado
Gude, A.J.; McKeown, F.A.
1953-01-01
Six diamond core holes totaling 2, 201 feet were drilled by the. U, S. Bureau of Mines under contract to the U. S. Atomic Energy Commission at the Old Leyden coal mine, Jefferson County, Colo. The holes were spotted on the basis of geologic mapping by the U. S. Geological survey and were drilled to explore the lateral and downward extent of a uranium-bearing coal and the associated carnotite deposits in the adjacent sandstone° The data obtained from the diamond-core holes helped to explain the geology and structural control of the deposit. The uranium is most abundant in a coal bed that in places has been brecciated by shearing. and then altered to a hard, dense, and silicified rock. The uraniferous coal is in the nearly vertical beds of the Laramie formation of Upper Cretaceous age. Small lenticular bodies of uraniferous material, 50 feet long, 25 to 30 feet wide, and 2 to 4 feet thick, occur at intervals in the coal and silicified coal over a strike length of about 800 feet. These bodies contain 0.10 to 0.50 percent uranium. Data obtained from the drilling indicate a discontinuous radioactive zone between these higher-grade bodies; assays of samples from the cores range from 0.001 to 0.10 percent uranium. All drill holes were probed by Survey and A. E. C. logging equipment and showed anomalies where the core assayed more than 0.005 percent uranium. Material of ore grade--0.10 percent uranium--was found in one core; the rock in the other five holes was of lower grade. The presence of the radioactive zone in all holes suggests, however, that uranium is distributed irregularly in a southerly plunging deposit which is exposed in the adit, on the outcrop, and in other diamond-drill holes that were put down by the lessee.
Otton, J.K.; Bradbury, J.P.; Forester, R.M.; Hanley, J.H.
1990-01-01
The Tertiary sedimentary sequence of the Date Creek basin area of Arizona is composed principally of intertonguing alluvial-fan and lacustrine deposits. The lacustrine rocks contain large intermediate- to, locally, high-grade uranium deposits that form one of the largest uranium resources in the United States (an estimated 670,000 tons of U3O8 at an average grade of 0.023% is indicated by drilling to date). At the Anderson mine, about 50,000 tons of U3O8 occurs in lacustrine carbonaceous siltstones and mudstones (using a cutoff grade of 0.01%). The Anderson mine constitutes a new class of ore deposit, a lacustrine carbonaceous uranium deposit. Floral and faunal remains at the Anderson mine played a critical role in creating and documenting conditions necessary for uranium mineralization. Organic-rich, uraniferous rocks at the Anderson mine contain plant remains and ostracodes having remarkably detailed preservation of internal features because of infilling by opaline silica. This preservation suggests that the alkaline lake waters in the mine area contained high concentrations of dissolved silica and that silicification occurred rapidly, before compaction or cementation of the enclosing sediment. Uranium coprecipitated with the silica. Thinly laminated, dark-colored, siliceous beds contain centric diatoms preserved with carbonaceous material suggesting that lake waters at the mine were locally deep and anoxic. These alkaline, silica-charged waters and a stagnant, anoxic environment in parts of the lake were necessary conditions for the precipitation of large amounts of uranium in the lake-bottom sediments. Sediments at the Anderson mine contain plant remains and pollen that were derived from diverse vegetative zones suggesting about 1500 m of relief in the area at the time of deposition. The pollen suggests that the valley floor was semiarid and subtropical, whereas nearby mountains supported temperate deciduous forests. ?? 1990.
Resource potential for commodities in addition to Uranium in sandstone-hosted deposits: Chapter 13
Breit, George N.
2016-01-01
Sandstone-hosted deposits mined primarily for their uranium content also have been a source of vanadium and modest amounts of copper. Processing of these ores has also recovered small amounts of molybdenum, rhenium, rare earth elements, scandium, and selenium. These deposits share a generally common origin, but variations in the source of metals, composition of ore-forming solutions, and geologic history result in complex variability in deposit composition. This heterogeneity is evident regionally within the same host rock, as well as within districts. Future recovery of elements associated with uranium in these deposits will be strongly dependent on mining and ore-processing methods.
Uranium minerals in Oligocene gypsum near Chadron, Dawes County, Nebraska
Dunham, R.J.
1955-01-01
Carnotite, sabugalite [HAI(UO2)4(PO4)4 • 16H2O] and autunite occur in the basal 25 feet of a 270-foot sequence of nonmarine bedded gypsum and gypsiferous clay in the Brule formation of Oligocene age about 12 miles northeast of Chadron in northeastern Dawes County, Nebraska. Uranium minerals are visible at only two localities and are associated with carbonaceous matter. Elsewhere the basal 25 feet of the gypsum sequence is interbedded with carbonate rocks and is weakly but persistently uraniferous. Uranium probably was emplaced from above by uranyl solutions rich in sulfate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovley, Derek R
2012-12-28
The goal of this research was to provide computational tools to predictively model the behavior of two microbial communities of direct relevance to Department of Energy interests: 1) the microbial community responsible for in situ bioremediation of uranium in contaminated subsurface environments; and 2) the microbial community capable of harvesting electricity from waste organic matter and renewable biomass. During this project the concept of microbial electrosynthesis, a novel form of artificial photosynthesis for the direct production of fuels and other organic commodities from carbon dioxide and water was also developed and research was expanded into this area as well.
Hinck, Jo E.; Linder, Greg L.; Otton, James K.; Finger, Susan E.; Little, Edward E.; Tillitt, Donald E.
2013-01-01
Chemical data from soil and weathered waste material samples collected from five uranium mines north of the Grand Canyon (three reclaimed, one mined but not reclaimed, and one never mined) were used in a screening-level risk analysis for the Arizona chisel-toothed kangaroo rat (Dipodomys microps leucotis); risks from radiation exposure were not evaluated. Dietary toxicity reference values were used to estimate soil-screening thresholds presenting risk to kangaroo rats. Sensitivity analyses indicated that body weight critically affected outcomes of exposed-dose calculations; juvenile kangaroo rats were more sensitive to the inorganic constituent toxicities than adult kangaroo rats. Species-specific soil-screening thresholds were derived for arsenic (137 mg/kg), cadmium (16 mg/kg), copper (1,461 mg/kg), lead (1,143 mg/kg), nickel (771 mg/kg), thallium (1.3 mg/kg), uranium (1,513 mg/kg), and zinc (731 mg/kg) using toxicity reference values that incorporate expected chronic field exposures. Inorganic contaminants in soils within and near the mine areas generally posed minimal risk to kangaroo rats. Most exceedances of soil thresholds were for arsenic and thallium and were associated with weathered mine wastes.
Final report of the Peña Blanca natural analogue project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, Schön S.; Goldstein, Steven Joel; Abdel-Fattah, Amr I.
2016-10-04
The Peña Blanca region, 50 km north of Chihuahua City, Chihuahua, México, was a target of uranium exploration and mining by the Mexican government. After mining ceased in 1981, researchers became interested in this region as a study area for subsurface uranium migration with relevance to geologic disposal of nuclear waste. Many studies related to this concept were conducted at the Nopal I mine site located on a cuesta (hill) of the Sierra Peña Blanca. This site has geologic, tectonic, hydrologic, and geochemical similarities to Yucca Mountain, Nevada, a formerly proposed site for a high-level nuclear-waste repository in the unsaturatedmore » zone. The U.S. Department of Energy (U.S. DOE), Office of Civilian Radioactive Waste Management (OCRWM), sponsored studies at Nopal I in the 1990s and supported the drilling of three research wells – PB1, PB2, and PB3 – at the site in 2003. Beginning in 2004, the Peña Blanca Natural Analogue Project was undertaken by U.S. DOE, OCRWM to develop a three-dimensional conceptual model of the transport of uranium and its radiogenic daughter products at the Nopal I site.« less
Geology of uranium in the Chadron area, Nebraska and South Dakota
Dunham, Robert Jacob
1961-01-01
The Chadron area covers 375 square miles about 25 miles southeast of the Black Hills. Recurrent mild tectonic activity and erosion on the Chadron arch, a compound anticlinal uplift of regional extent, exposed 1900 feet of Upper Cretaceous rocks, mostly marine shale containing pyrite and organic matter, and 600 feet of Oligocene and Miocene rocks, mostly terrestrial fine-grained sediment containing volcanic ash. Each Cretaceous formation truncated by the sub-Oligocene unconformity is stained yellow and red, leached, kaolinized, and otherwise altered to depths as great as 55 feet. The composition and profile of the altered material indicate lateritic soil; indirect evidence indicates Eocene(?) age. In a belt through the central part of the area, the Brule formation of Oligocene age is a sequence of bedded gypsum, clay, dolomite, and limestone more than 300 feet thick. Uranium in Cretaceous shale in 58 samples averages 0.002 percent, ten times the average for the earths crust. Association with pyrite and organic matter indicates low valency. The uranium probably is syngenetic or nearly so. Uranium in Eocene(?) soil in 43 samples averages 0.054 percent, ranging up to 1.12 percent. The upper part of the soil is depleted in uranium; enriched masses in the basal part of the soil consist of remnants of bedrock shale and are restricted to the highest reaches of the ancient oxidation-reduction interface. The uranium is probably in the from of a low-valent mineral, perhaps uraninite. Modern weathering of Cretaceous shale is capable of releasing as much as 0.780 ppm uranium to water. Eocene(?) weathering probably caused enrichment of the ancient soil through 1) leaching of Cretaceous shale, 2) downward migration of uranyl complex ions, and 3) reduction of hydrogen sulfide at the water table. Uranium minerals occur in the basal 25 feet of the gypsum facies of the Brule formation at the two localities where the gypsum is carbonaceous; 16 samples average 0.066 percent uranium and range up to 0.43 percent. Elsewhere uranium in dolomite and limestone in the basal 25 feet of the gypsum facies in 10 samples averages 0.007 percent, ranging up to 0.12 percent. Localization of the uranium at the base of the gypsum facies suggests downward moving waters; indirect evidence that the water from which the gypsum was deposited was highly alkaline suggests that the uranium was leached from volcanic ash in Oligocene time.
Critical review of analytical techniques for safeguarding the thorium-uranium fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hakkila, E.A.
1978-10-01
Conventional analytical methods applicable to the determination of thorium, uranium, and plutonium in feed, product, and waste streams from reprocessing thorium-based nuclear reactor fuels are reviewed. Separations methods of interest for these analyses are discussed. Recommendations concerning the applicability of various techniques to reprocessing samples are included. 15 tables, 218 references.
Tendall, Danielle M; Binder, Claudia R
2011-03-15
The European nuclear fuel cycle (covering the EU-27, Switzerland and Ukraine) was modeled using material flow analysis (MFA).The analysis was based on publicly available data from nuclear energy agencies and industries, national trade offices, and nongovernmental organizations. Military uranium was not considered due to lack of accessible data. Nuclear fuel cycle scenarios varying spent fuel reprocessing, depleted uranium re-enrichment, enrichment assays, and use of fast neutron reactors, were established. They were then assessed according to environmental, economic and social criteria such as resource depletion, waste production, chemical and radiation emissions, costs, and proliferation risks. The most preferable scenario in the short term is a combination of reduced tails assay and enrichment grade, allowing a 17.9% reduction of uranium demand without significantly increasing environmental, economic, or social risks. In the long term, fast reactors could theoretically achieve a 99.4% decrease in uranium demand and nuclear waste production. However, this involves important costs and proliferation risks. Increasing material efficiency is not systematically correlated with the reduction of other risks. This suggests that an overall optimization of the nuclear fuel cycle is difficult to obtain. Therefore, criteria must be weighted according to stakeholder interests in order to determine the most sustainable solution. This paper models the flows of uranium and associated materials in Europe, and provides a decision support tool for identifying the trade-offs of the alternative nuclear fuel cycles considered.
Stabilization and Solidification of Nitric Acid Effluent Waste at Y-12
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Dileep; Lorenzo-Martin, Cinta
Consolidated Nuclear Security, LLC (CNS) at the Y-12 plant is investigating approaches for the treatment (stabilization and solidification) of a nitric acid waste effluent that contains uranium. Because the pH of the waste stream is 1-2, it is a difficult waste stream to treat and stabilize by a standard cement-based process. Alternative waste forms are being considered. In this regard, Ceramicrete technology, developed at Argonne National Laboratory, is being explored as an option to solidify and stabilize the nitric acid effluent wastes.
MINERALOGY, PETROGRAPHY, AND RADIOACTIVITY OF REPRESENTATIVE SAMPLES OF CHATTANOOGA SHALE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, T.F.; Strahl, E.O.
1957-01-01
Qualitative and quantitative mineralogical studies of the Chattanooga Shale are in progress. Problems of separation and analysis of mineral and organic components are difficult because the rock is fine-grained. However, the applicaiion of light and electron microscopy, x-ray diffraction, nuclear-track study, and other methods has provided data of interest. Megascopically, the shalc is a massive chocolate-brown sediment which displays faint indications of lamination. Some pyrite lenses, nodules, and crystals and a few mica flakes are large enough to be seen with a hand lens. In thin section the rock is seen to consist of grains of quartz and feldspar inmore » a matrix of yellow to red--brown organic material, which incorporates shreds of mica and probably clay particles and is dotted by small clusters of pyrite. Larger organic fragments with associated pyrite are common and take various forms. Individual mineral particles range from pyrite cubes less than 0.15 micron on a side to quartz and feldspar grains as large as 0.10 mm. X-ray studies show the clay minerals to be illite, kaolinite, and chlorite in decreasing order of abundance. Tourmaline, zircon, and apatite are the characteristic heavy minerals of the sediment. Quantitative studies, accomplished by a combination of chemical and mineralogical methods, have shown the composition of a batch sample of this rock to be approxiinately: 22% quartz, 9% feldspar, 31% illite and kaolinite, 22% organic matter, 11% pyrite and marcasite, 2% chlorite, 2% iron oxides, and l% tourmaline, zircon, and apatite. Alphatrack studies of cniulsion-covered thin sections indicate that no uranium mineral is present. Approximately 70% of the uranium atoms is randomly distributed throughout the finegrained matrix of the rock, whereas another 25% is concentrated in organic-pyrite-clay complexes such as pyrite nodules and discrete organic bodies. In unweathered samples there is no relationship between uranium distribution and textural fcatures such as bedding. The data indicate that the uranium was precipitated from sea water under reducing conditions and has not been redistributed following compaction of the sediment. (auth)« less
NASA Technical Reports Server (NTRS)
Haggerty, S. E.
1983-01-01
Stabilization techniques for the storage of radioactive wastes are surveyed, with emphasis on immobilization in a primary barrier of synthetic rock. The composition, half-life, and thermal-emission characteristics of the wastes are shown to require thermally stable immobilization enduring at least 100,000 years. Glass materials are determined to be incapable of withstanding the expected conditions, average temperatures of 100-500 C for the first 100 years. The geological-time stability of crystalline materials, ceramics or synthetic rocks, is examined in detail by comparing their components with similar naturally occurring minerals, especially those containing the same radioactive elements. The high-temperature environment over the first 100 years is seen as stabilizing, since it can recrystallize radiation-induced metamicts. The synthetic-rock stabilization technique is found to be essentially feasible, and improvements are suggested, including the substitution of nepheline with freudenbergite and priderite for alkaline-waste stabilization, the maintenance of low oxygen fugacity, and the dilution of the synthetic-rock pellets into an inert medium.
NASA Astrophysics Data System (ADS)
Carey, S. K.; Wellen, C. C.; Shatilla, N. J.
2015-12-01
Surface mining is a common method of accessing coal. In high-elevation environments, vegetation and soils are typically removed prior to the blasting of overburden rock, thereby allowing access to mineable ore. Following this, the removed overburden rock is deposited in adjacent valleys as waste rock spoils. Previous research has identified that areas downstream of surface coal mining have impaired water quality, yet there is limited information about the interaction of hydrology and geochemistry across a range of mining conditions, particularly at the headwater scale. Here, we provide an analysis of an extensive long-term data set of geochemistry and flows across a gradient of coal mining in the Elk Valley, British Columbia, Canada. This work is part of a broader R&D program examining the influence of surface coal mining on hydrological and water quality responses in the Elk Valley aimed at informing effective management responses. Results indicate that water from waste rock piles has an ionic profile distinct from unimpacted catchments. While the concentration of geochemicals increased with the degree of mine impact, the control of hydrological transport capacity over geochemical export did not vary with degree of mine impact. Geochemical export in mine-influenced catchments was limited more strongly by transport capacity than supply, implying that more water moving through the waste rock mobilized more geochemicals. Placement of waste rock within the catchment (headwaters or outlet) did not affect chemical concentrations but did alter the timing with which chemically distinct water mixed. This work advances on results reported earlier using empirical models of selenium loading and further highlights the importance of limiting water inputs into waste rock piles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-01
The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecastedmore » is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.« less
Lapakko, Kim A.; Wenz, Zachary J.; Olson, Michael C.; Roepke, Elizabeth W.; Novak, Paige J.; Bailey, Jake V.
2017-01-01
ABSTRACT The Duluth Complex in northeastern Minnesota hosts economically significant deposits of copper, nickel, and platinum group elements (PGEs). The primary sulfide mineralogy of these deposits includes the minerals pyrrhotite, chalcopyrite, pentlandite, and cubanite, and weathering experiments show that most sulfide-bearing rock from the Duluth Complex generates moderately acidic leachate (pH 4 to 6). Microorganisms are important catalysts for metal sulfide oxidation and could influence the quality of water from mines in the Duluth Complex. Nevertheless, compared with that of extremely acidic environments, much less is known about the microbial ecology of moderately acidic sulfide-bearing mine waste, and so existing information may have little relevance to those microorganisms catalyzing oxidation reactions in the Duluth Complex. Here, we characterized the microbial communities in decade-long weathering experiments (kinetic tests) conducted on crushed rock and tailings from the Duluth Complex. Analyses of 16S rRNA genes and transcripts showed that differences among microbial communities correspond to pH, rock type, and experimental treatment. Moreover, microbial communities from the weathered Duluth Complex rock were dominated by taxa that are not typically associated with acidic mine waste. The most abundant operational taxonomic units (OTUs) were from the genera Meiothermus and Sulfuriferula, as well as from diverse clades of uncultivated Chloroflexi, Acidobacteria, and Betaproteobacteria. Specific taxa, including putative sulfur-oxidizing Sulfuriferula spp., appeared to be primarily associated with Duluth Complex rock, but not pyrite-bearing rocks subjected to the same experimental treatment. We discuss the implications of these results for the microbial ecology of moderately acidic mine waste with low sulfide content, as well as for kinetic testing of mine waste. IMPORTANCE Economic sulfide mineral deposits in the Duluth Complex may represent the largest undeveloped source of copper and nickel on Earth. Microorganisms are important catalysts for sulfide mineral oxidation, and research on extreme acidophiles has improved our ability to manage and remediate mine wastes. We found that the microbial assemblages associated with weathered rock from the Duluth Complex are dominated by organisms not widely associated with mine waste or mining-impacted environments, and we describe geochemical and experimental influences on community composition. This report will be a useful foundation for understanding the microbial biogeochemistry of moderately acidic mine waste from these and similar deposits. PMID:28600313
Jones, Daniel S; Lapakko, Kim A; Wenz, Zachary J; Olson, Michael C; Roepke, Elizabeth W; Sadowsky, Michael J; Novak, Paige J; Bailey, Jake V
2017-08-15
The Duluth Complex in northeastern Minnesota hosts economically significant deposits of copper, nickel, and platinum group elements (PGEs). The primary sulfide mineralogy of these deposits includes the minerals pyrrhotite, chalcopyrite, pentlandite, and cubanite, and weathering experiments show that most sulfide-bearing rock from the Duluth Complex generates moderately acidic leachate (pH 4 to 6). Microorganisms are important catalysts for metal sulfide oxidation and could influence the quality of water from mines in the Duluth Complex. Nevertheless, compared with that of extremely acidic environments, much less is known about the microbial ecology of moderately acidic sulfide-bearing mine waste, and so existing information may have little relevance to those microorganisms catalyzing oxidation reactions in the Duluth Complex. Here, we characterized the microbial communities in decade-long weathering experiments (kinetic tests) conducted on crushed rock and tailings from the Duluth Complex. Analyses of 16S rRNA genes and transcripts showed that differences among microbial communities correspond to pH, rock type, and experimental treatment. Moreover, microbial communities from the weathered Duluth Complex rock were dominated by taxa that are not typically associated with acidic mine waste. The most abundant operational taxonomic units (OTUs) were from the genera Meiothermus and Sulfuriferula , as well as from diverse clades of uncultivated Chloroflexi , Acidobacteria , and Betaproteobacteria Specific taxa, including putative sulfur-oxidizing Sulfuriferula spp., appeared to be primarily associated with Duluth Complex rock, but not pyrite-bearing rocks subjected to the same experimental treatment. We discuss the implications of these results for the microbial ecology of moderately acidic mine waste with low sulfide content, as well as for kinetic testing of mine waste. IMPORTANCE Economic sulfide mineral deposits in the Duluth Complex may represent the largest undeveloped source of copper and nickel on Earth. Microorganisms are important catalysts for sulfide mineral oxidation, and research on extreme acidophiles has improved our ability to manage and remediate mine wastes. We found that the microbial assemblages associated with weathered rock from the Duluth Complex are dominated by organisms not widely associated with mine waste or mining-impacted environments, and we describe geochemical and experimental influences on community composition. This report will be a useful foundation for understanding the microbial biogeochemistry of moderately acidic mine waste from these and similar deposits. Copyright © 2017 American Society for Microbiology.
NASA Astrophysics Data System (ADS)
Baybaş, Demet; Ulusoy, Ulvi
2012-10-01
The composite of synthetically produced hydroxyapatite (HAP) and polyacrylamide was prepared (PAAm-HAP) and characterized by BET, FT-IR, TGA, XRD, SEM and PZC analysis. The adsorptive features of HAP and PAAm-HAP were compared for UO22+ and Th4+. The entrapment of HAP into PAAm-HAP did not change the structure of HAP. Both structures had high affinity to the studied ions. The adsorption capacity of PAAm-HAP was than that of HAP. The adsorption dependence on pH and ionic intensity provided supportive evidences for the effect of complex formation on adsorption process. The adsorption kinetics was well compatible to pseudo second order model. The values of enthalpy and entropy changes were positive. Th4+ adsorption from the leachate obtained from a regional fluorite rock confirmed the selectivity of PAAm-HAP for this ion. In consequence, PAAm-HAP should be considered amongst favorite adsorbents for especially deposition of nuclear waste containing U and Th, and radionuclide at secular equilibrium with these elements.
15 CFR 782.3 - Compliance review.
Code of Federal Regulations, 2010 CFR
2010-01-01
... recordkeeping requirements set forth herein. Information requested may relate to nuclear fuel cycle research and... activities, or uranium hard-rock mining activities as described in part 783 of the APR. Any person or...
15 CFR 782.3 - Compliance review.
Code of Federal Regulations, 2011 CFR
2011-01-01
... recordkeeping requirements set forth herein. Information requested may relate to nuclear fuel cycle research and... activities, or uranium hard-rock mining activities as described in part 783 of the APR. Any person or...
15 CFR 782.3 - Compliance review.
Code of Federal Regulations, 2013 CFR
2013-01-01
... recordkeeping requirements set forth herein. Information requested may relate to nuclear fuel cycle research and... activities, or uranium hard-rock mining activities as described in part 783 of the APR. Any person or...
15 CFR 782.3 - Compliance review.
Code of Federal Regulations, 2014 CFR
2014-01-01
... recordkeeping requirements set forth herein. Information requested may relate to nuclear fuel cycle research and... activities, or uranium hard-rock mining activities as described in part 783 of the APR. Any person or...
15 CFR 782.3 - Compliance review.
Code of Federal Regulations, 2012 CFR
2012-01-01
... recordkeeping requirements set forth herein. Information requested may relate to nuclear fuel cycle research and... activities, or uranium hard-rock mining activities as described in part 783 of the APR. Any person or...
Beroni, E.P.; McKeown, F.A.
1952-01-01
Previous discoveries and studies of radioactive lignites of Tertiary age in North Dakota, South Dakota, Montana, and Wyoming led the Geological Survey in 1950 to do reconnaissance in the Green River and Uinta Basin of Wyoming and Utah, where similar lignites were believed to be present. Because of the common association of uranium with copper deposits and the presence of such deposits in the Uinta Basin, several areas containing copper-uranium minerals were also examined. No deposits commercially exploitable under present conditions were found. Samples of coal from the Bear River formation at Sage, Wyo., assayed 0.004 to 0.013 percent uranium in the ash; in the old Uteland copper mine in Uinta County, Utah, 0.007 to 0.017 percent uranium; in a freshwater limestone, Duchesne County, Utah, as much as 0.019 percent uranium; and in the Mesaverde formation at the Snow and Bonniebell claims near Jensen, Uintah County, Utah, 0.003 to 0.090 percent uranium. Maps were made and samples were taken at the Skull Creek carnotite deposits in Moffat County, Colo. (0.006 to 0.16 percent uranium); at the Fair-U claims in Routt County, Colo. (0.002 to 0.040 percent uranium); and at the Lucky Strike claims near Kremmling in Grand County, Colo. (0.006 to 0.018 percent uranium).
Use of petrophysical data for siting of deep geological repository of radioactive waste
NASA Astrophysics Data System (ADS)
Petrenko, Liliana; Shestopalov, Vyacheslav
2017-11-01
The paper is devoted to analyzing the petrophysical properties and petrographical characteristics of Volyn region with the view to choosing the least permeable and so the most suitable geological formation for the radioactive waste disposal. On a basis of the petrophysical estimations of the granitoids properties the argumentation of permeability has been developed for the petrotypes of Volyn region. Also method of classification of the petrotypes with their relative rate of suitability for radioactive waste disposal was developed. As a result of studying the perspectives were shown of the zhytomyr and korosten types of the granitoids as host rock for the radioactive waste disposal. According to the results of investigations performed by Swedish researchers a comparative analysis of rocks based on the age of formation, composition, structural features and some petrophysical properties of granitoids as host rocks for repository of radioactive waste was performed. Detail comparison the data of the granitoids of the Forsmark site in Sweden and the data of the granitoids of the Volyn megablock can be one of the next steps in researching the host rocks for the development of the RW disposal system in Ukraine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salas, H.T.; Nalini, H.A. Jr.; Mendes, J.C.
2004-10-03
One hundred samples of granitic rock were collected from granite traders in Belo Horizonte. Autoradiography, optical microscopy, diffractometry, and chemical analysis (X-ray spectrometry, X-ray fluorescence, neutron activation, gravimetry and electron probe microanalysis) were used to determine the mineral assemblages and lithotypes. Autoradiographic results for several samples showed the presence of monazite, allanite and zircon. Chemical analysis revealed concentrations of uranium of {le} 30ppm, and thorium {le} 130ppm. Higher concentrations generally correlated with high concentrations of light rare earths in silica-rich rocks of granitic composition. Calculations were made of radioactive doses for floor tiles in a standard room for samples withmore » total concentration of uranium and thorium greater than 60ppm. On the basis of calculations of {sup 232}Th, {sup 40}K and {sup 226}Ra from Th, K and U analysis, the doses calculated were between 0.11 and 0.34 mSv/year, which are much lower than the acceptable international exposure standard of 1.0 mSv/year.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-09-01
The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section}7901 et seq.), hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miquel County. Contaminated materials cover an estimated 63 acres of the Union Carbide (UC) processing site and 15 ac of the North Continent (NC) processing site. The sites are within 1 mile of each other and are adjacent to the Dolores River. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown andmore » waterborne radioactive tailings materials. The total estimated volume of contaminated materials is approximately 621,300 cubic yards (yd{sup 3}). In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designing site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi northeast of the sites on land administered by the Bureau of Land Management (BLM).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fincke, J.R.; Swank, W.D.; Haggard, D.C.
This paper describes the experimental demonstration of a process for the direct plasma reduction of depleted uranium hexafluoride to uranium metal. The process exploits the large departures from equilibrium that can be achieved in the rapid supersonic expansion of a totally dissociated and partially ionized mixture of UF{sub 6}, Ar, He, and H{sub 2}. The process is based on the rapid condensation of subcooled uranium vapor and the relatively slow rate of back reaction between metallic uranium and HF to F{sub 2} to reform stable fluorides. The high translational velocities and rapid cooling result in an overpopulation of atomic hydrogenmore » which persists throughout the expansion process. Atomic hydrogen shifts the equilibrium composition by inhibiting the reformation of uranium-fluorine compounds. This process has the potential to reduce the cost of reducing UF{sub 6} to uranium metal with the added benefit of being a virtually waste free process. The dry HF produced is a commodity which has industrial value.« less
Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel
Herrmann, Steven Douglas
2014-05-27
Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.
Pena blanca natural analogue project: summary of activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levy, Schon S; Goldstein, Steven J; Abdel - Fattah, Amr I
2010-12-08
The inactive Nopal I uranium mine in silicic tuff north of Chihuahua City, Chihuahua, Mexico, was studied as a natural analogue for an underground nuclear-waste repository in the unsaturated zone. Site stratigraphy was confirmed from new drill core. Datafrom site studies include chemical and isotopic compositions of saturated- and unsaturated-zone waters. A partial geochronology of uranium enrichment and mineralization was established. Evidence pertinent to uranium-series transport in the soil zone and changing redox conditions was collected. The investigations contributed to preliminary, scoping-level performance assessment modeling.
[The risks of out of area missions: depleted uranium].
Ciprani, F; Moroni, M
2006-01-01
Depleted uranium (DU), a waste product of uranium enrichment, has several civilian and military applications. It was used as armor-piercing ammunition in international conflicts and was claimed to contribute to health problems, known as the Gulf War Syndrome and recently as the Balkan Syndrome. Leukaemia/Limphoma cases among UN soldiers in the Balkans have been related hypothetically to exposure to DU. The investigations published in the scientific literature give no support for this hypothesis. However future follow-up is necessary for evaluation of long-term risk.
Srivastava, Sudhakar; Bhainsa, K C
2016-02-01
The present study evaluated uranium (U) removal ability and tolerance to low level nuclear waste (LLNW) of an aquatic weed Hydrilla verticillata. Plants were screened for growth in 10%-50% waste treatments up to 3 d. Treatments of 20% and 50% waste imposed increasing toxicity with duration assessed in terms of change in fresh weight and in the levels of photosynthetic pigments and thiobarbituric acid-reactive substances. U concentration, however, did not show a progressive increase and was about 42 μg g(-1) dw from 20% to 50% waste at 3 d. This suggested that a saturation stage was reached with respect to U removal due to increasing toxicity. However, in another experiment with 10% waste and 10% waste+10 ppm U treatments, plants showed an increase in U concentration with the maximum level approaching 426 μg g(-1) dw at 3 d without showing any toxicity as compared to that at 20% and 50% waste treatments. Hence, plants possessed significant potential to take up U and toxicity of LLNW limited their U removal ability. This implies that the use of Hydrilla plants for U removal from LLNW is feasible at low concentrations and would require repeated harvesting at short intervals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Geologic studies in the Sierra de Pena Blanca, Chihuahua, Mexico
NASA Astrophysics Data System (ADS)
Reyes-Cortes, Ignacio Alfonso
The Sierra del Cuervo has been endowed with uranium mineralization, which has attracted many geological studies, and recently the author was part of a team with the goal of selecting a site of a radioactive waste repository. The first part of the work adds to the regional framework of stratigraphy and tectonics of the area. It includes the idea of a pull apart basin development, which justifies the local great thickness of the Cuervo Formation. It includes the regional structural frame work and the composite stratigraphic column of the Chihuahua Trough and the equivalent Cretaceous Mexican Sea. The general geologic features of the NE part of the Sierra del Cuervo are described, which include the folded ignimbrites and limestones in that area; the irregular large thicknesses of the Cuervo Formation; and the western vergence of the main folding within the area. Sanidine phenocrystals gave ages of 54.2 Ma and 51.8 Ma ± 2.3 Ma. This is the first time these dates have been reported in print. This age indicates a time before the folded structures which outcrop in the area, and 44 Ma is a date after the Cuervo Formation was folded. The Hidalgoan orogeny cycle affected the rocks between this lapse of time. Since then the area has been partially affected by three tensional overlapped stages, which resulted in the actual Basin and Range physiography. The jarosite related to the tectonic activity mineralization has been dated by the Ar-Ar method and yields an age of 9.8 Ma. This is the first report of a date of mineralization timing at Pena Blanca Uranium District in the Sierra del Cuervo. These are some of the frame work features that justify the allocation of a radioactive waste repository in the Sierra del Cuervo. An alluvial fan system within the Boquilla Colorada microbasin was selected as the best target for more detailed site assessment. The study also included the measurement of the alluvium thicknesses by geoelectric soundings; studies of petrography and weathered grade of the rock units; and the possible paths of potential leachate through the geologic media. The last part of the work relates to the natural analog of the Yucca Mountain, the Nopal I orebody, which is compared and found similar in its geologic frame work, in the lithologic units and their weathering, in the stratigraphic relationships with the vitrophyres and tuff horizons, in the climatic dryness, in the regional water table depth and the hydrologic features, in the ignimbritic units mineralogy, and in the radioactive waste fuel compared to the ore mineralogy of the Nopal I. There are mineralogic determinations of the fracture fill material in the orebody and host rock; detailed mapping of the fractures and surface alterations; and gamma ray grid measurements and electromagnetic soundings. All these studies indicate a support criteria to take the Nopal I as a natural analogue of the Yucca Mountain repository. The total evolution of the Nopal I orebody is exposed in the walls and floors of the +00 and +10 levels, which are ready to perform final safety tests in order to compare it with the future Yucca Mountain repository behavior. The Nopal in orebody has been there for several hundred of thousands and may be millions of years in an natural equilibrium with the surrounding environment. (Abstract shortened by UMI.)
Sears, C.M.; Foose, M.P.; Day, G.W.; Ericksen, M.S.
1983-01-01
Semi-quantitative spectrographic analyses for 31 elements on rock, soil, fine-grained stream sediment, bulk stream sediment, and panned stream sediment samples collected in the Rich Mountain Roadless Area, Fannin and Gilmer Counties, Georgia, are reported here. Atomic absorption analyses for gold and fluorometric analyses for uranium are also reported. Brief descriptions of all rock samples analyzed are included.
U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1986-1990
Trask, N.J.; Stevens, P.R.
1991-01-01
The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research efforts are categorized according to whether they are related most directly to: (1) high-level wastes, (2) transuranic wastes, (3) low-level and mixed low-level and hazardous wastes, or (4) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, to development of techniques and methods for characterizing disposal sites, and to studies of geologic and hydrologic processes related to the transport and/or retention of waste radionuclides.
Volcanogenic Uranium Deposits: Geology, Geochemical Processes, and Criteria for Resource Assessment
Nash, J. Thomas
2010-01-01
Felsic volcanic rocks have long been considered a primary source of uranium for many kinds of uranium deposits, but volcanogenic uranium deposits themselves have generally not been important resources. Until the past few years, resource summaries for the United States or the world generally include volcanogenic in the broad category of 'other deposits' because they comprised less than 0.5 percent of past production or estimated resources. Exploration in the United States from the 1940s through 1982 discovered hundreds of prospects in volcanic rocks, of which fewer than 20 had some recorded production. Intensive exploration in the late 1970s found some large deposits, but low grades (less than about 0.10 percent U3O8) discouraged economic development. A few deposits in the world, drilled in the 1980s and 1990s, are now known to contain large resources (>20,000 tonnes U3O8). However, research on ore-forming processes and exploration for volcanogenic deposits has lagged behind other kinds of uranium deposits and has not utilized advances in understanding of geology, geochemistry, and paleohydrology of ore deposits in general and epithermal deposits in particular. This review outlines new ways to explore and assess for volcanogenic deposits, using new concepts of convection, fluid mixing, and high heat flow to mobilize uranium from volcanic source rocks and form deposits that are postulated to be large. Much can also be learned from studies of epithermal metal deposits, such as the important roles of extensional tectonics, bimodal volcanism, and fracture-flow systems related to resurgent calderas. Regional resource assessment is helped by genetic concepts, but hampered by limited information on frontier areas and undiscovered districts. Diagnostic data used to define ore deposit genesis, such as stable isotopic data, are rarely available for frontier areas. A volcanic environment classification, with three classes (proximal, distal, and pre-volcanic structures), permits use of geologic features on 1:500,000 to 1:100,000 scale maps. Geochemical databases for volcanic rocks are postulated to be more effective than databases for stream sediments or surface radioactivity, both of which tend to be inconsistent because of variable leaching of uranium from soils. Based on empirical associations, spatial associations with areas of wet paleoclimate, adjacent oil and gas fields, or evaporite beds are deemed positive. Most difficult to estimate is the location of depositional traps and reduction zones, in part because they are mere points at regional scale. Grade and tonnage data are reviewed and discussed for 32 deposits in the world. Experience of mining engineers and geologists in Asia suggests that tonnages could be higher than presently known in the Western Hemisphere. Geological analysis, and new data from Asia, suggest a typical or median deposit tonnage of about 5,000 tonnes U3O8, and an optimistic forecast of discoveries in the range of 5,000 to 20,000 tonnes U3O8. The likely grade of undiscovered deposits could be about 0.15 percent U3O8 , based on both western and eastern examples. Volcanic terrane is under-explored, relative to other kinds of uranium deposits, and is considered a favorable frontier area for new discoveries.
Biogeochemical behaviour and bioremediation of uranium in waters of abandoned mines.
Mkandawire, Martin
2013-11-01
The discharges of uranium and associated radionuclides as well as heavy metals and metalloids from waste and tailing dumps in abandoned uranium mining and processing sites pose contamination risks to surface and groundwater. Although many more are being planned for nuclear energy purposes, most of the abandoned uranium mines are a legacy of uranium production that fuelled arms race during the cold war of the last century. Since the end of cold war, there have been efforts to rehabilitate the mining sites, initially, using classical remediation techniques based on high chemical and civil engineering. Recently, bioremediation technology has been sought as alternatives to the classical approach due to reasons, which include: (a) high demand of sites requiring remediation; (b) the economic implication of running and maintaining the facilities due to high energy and work force demand; and (c) the pattern and characteristics of contaminant discharges in most of the former uranium mining and processing sites prevents the use of classical methods. This review discusses risks of uranium contamination from abandoned uranium mines from the biogeochemical point of view and the potential and limitation of uranium bioremediation technique as alternative to classical approach in abandoned uranium mining and processing sites.
Chapman, Melinda J.; Cravotta, Charles A.; Szabo, Zoltan; Lindsay, Bruce D.
2013-01-01
Groundwater quality and aquifer lithologies in the Piedmont and Blue Ridge Physiographic Provinces in the eastern United States vary widely as a result of complex geologic history. Bedrock composition (mineralogy) and geochemical conditions in the aquifer directly affect the occurrence (presence in rock and groundwater) and distribution (concentration and mobility) of potential naturally occurring contaminants, such as arsenic and radionuclides, in drinking water. To evaluate potential relations between aquifer lithology and the spatial distribution of naturally occurring contaminants, the crystalline-rock aquifers of the Piedmont and Blue Ridge Physiographic Provinces and the siliciclastic-rock aquifers of the Early Mesozoic basin of the Piedmont Physiographic Province were divided into 14 lithologic groups, each having from 1 to 16 lithochemical subgroups, based on primary rock type, mineralogy, and weathering potential. Groundwater-quality data collected by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program from 1994 through 2008 from 346 wells and springs in various hydrogeologic and land-use settings from Georgia through New Jersey were compiled and analyzed for this study. Analyses for most constituents were for filtered samples, and, thus, the compiled data consist largely of dissolved concentrations. Concentrations were compared to criteria for protection of human health, such as U.S. Environmental Protection Agency (USEPA) drinking water maximum contaminant levels and secondary maximum contaminant levels or health-based screening levels developed by the USGS NAWQA Program in cooperation with the USEPA, the New Jersey Department of Environmental Protection, and Oregon Health & Science University. Correlations among constituent concentrations, pH, and oxidation-reduction (redox) conditions were used to infer geochemical controls on constituent mobility within the aquifers. Of the 23 trace-element constituents evaluated, arsenic, manganese, and zinc were detected in one or more water samples at concentrations greater than established human health-based criteria. Arsenic concentrations typically were less than 1 microgram per liter (µg/L) in most groundwater samples; however, concentrations of arsenic greater than 1 µg/L frequently were detected in groundwater from clastic lacustrine sedimentary rocks of the Early Mesozoic basin aquifers and from metamorphosed clastic sedimentary rocks of the Piedmont and Blue Ridge crystalline rock aquifers. Groundwater from these rock units had elevated pH compared to other rock units evaluated in this study. Of the nine samples for which arsenic concentration was greater than 10 µg/L, six were classified as oxic and three as anoxic, and seven had pH of 7.2 or greater. Manganese concentrations typically were less than 10 µg/L in most samples; however, 8.3 percent of samples from the Piedmont and Blue Ridge crystalline-rock aquifers and 3.0 percent of samples from the Early Mesozoic basin siliciclastic rock aquifers had manganese concentrations greater than the 300-µg/L health-based screening level. The positive correlation of manganese with iron and ammonia and the negative correlation of manganese with dissolved oxygen and nitrate are consistent with the reductive dissolution of manganese oxides in the aquifer. Zinc concentrations typically were less than 10 µg/L in the groundwater samples considered in the study, but 0.4 percent and 5.5 percent of the samples had concentrations greater than the health-based screening level of 2,000 µg/L and one-tenth of the health-based screening level, respectively. The mean rank concentration of zinc in groundwater from the quartz-rich sedimentary rock lithologic group was greater than that for other lithologic groups even after eliminating samples collected from wells constructed with galvanized casing. Approximately 90 percent of 275 groundwater samples had radon-222 concentrations that were greater than the proposed alternative maximum contaminant level of 300 picocuries per liter. In contrast, only 2.0 percent of 98 samples had combined radium (radium-226 plus radium-228) concentrations greater than the maximum contaminant level of 5.0 picocuries per liter, and 0.6 percent of 310 samples had uranium concentrations greater than the maximum contaminant level of 30 µg/L. Radon concentrations were highest in the Piedmont and Blue Ridge crystalline-rock aquifers, especially in granite, and elevated median concentrations were noted in the Piedmont Early Mesozoic basin aquifers, but without the extreme maximum concentrations found in the crystalline rocks (granites). Although the siliciclastic lithologies had a greater frequency of elevated uranium concentrations, radon and radium were commonly detected in water from both siliciclastic and crystalline lithologies. Uranium concentrations in groundwater from clastic sedimentary and clastic lacustrine/evaporite sedimentary lithologic groups within the Early Mesozoic basin aquifers, which had median concentrations of 3.6 and 3.1 µg/L, respectively, generally were higher than concentrations for other siliciclastic lithologic groups, which had median concentrations less than 1 µg/L. Although 89 percent of the 260 samples from crystalline-rock aquifers had uranium concentrations less than 1 µg/L, 0.8 percent had uranium concentrations greater than the 30-µg/L maximum contaminant level, and 6.5 percent had concentrations greater than 3 µg/L.
Iron-nickel alloys as canister material for radioactive waste disposal in underground repositories
NASA Astrophysics Data System (ADS)
Apps, J. A.
1982-09-01
Canisters containing high-level radioactive waste must retain their integrity in an underground waste repository for at least one thousand years after burial (Nuclear Regulatory Commission, 1981). Since no direct means of verifying canister integrity is plausible over such a long period, indirect methods must be chosen. A persuasive approach is to examine the natural environment and find a suitable material which is thermodynamically compatible with the host rock under the environmental conditions with the host rock under the environmental conditions expected in a waste repository. Several candidates have been proposed, among them being iron-nickel alloys that are known to occur naturally in altered ultramafic rocks. The following review of stability relations among iron-nickel alloys below 3500 C is the initial phase of a more detailed evaluation of these alloys as suitable canister materials.
Segmented Gamma Scanner for Small Containers of Uranium Processing Waste- 12295
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, K.E.; Smith, S.K.; Gailey, S.
2012-07-01
The Segmented Gamma Scanner (SGS) is commonly utilized in the assay of 55-gallon drums containing radioactive waste. Successfully deployed calibration methods include measurement of vertical line source standards in representative matrices and mathematical efficiency calibrations. The SGS technique can also be utilized to assay smaller containers, such as those used for criticality safety in uranium processing facilities. For such an application, a Can SGS System is aptly suited for the identification and quantification of radionuclides present in fuel processing wastes. Additionally, since the significant presence of uranium lumping can confound even a simple 'pass/fail' measurement regimen, the high-resolution gamma spectroscopymore » allows for the use of lump-detection techniques. In this application a lump correction is not required, but the application of a differential peak approach is used to simply identify the presence of U-235 lumps. The Can SGS is similar to current drum SGSs, but differs in the methodology for vertical segmentation. In the current drum SGS, the drum is placed on a rotator at a fixed vertical position while the detector, collimator, and transmission source are moved vertically to effect vertical segmentation. For the Can SGS, segmentation is more efficiently done by raising and lowering the rotator platform upon which the small container is positioned. This also reduces the complexity of the system mechanism. The application of the Can SGS introduces new challenges to traditional calibration and verification approaches. In this paper, we revisit SGS calibration methodology in the context of smaller waste containers, and as applied to fuel processing wastes. Specifically, we discuss solutions to the challenges introduced by requiring source standards to fit within the confines of the small containers and the unavailability of high-enriched uranium source standards. We also discuss the implementation of a previously used technique for identifying the presence of uranium lumping. The SGS technique is a well-accepted NDA technique applicable to containers of almost any size. It assumes a homogenous matrix and activity distribution throughout the entire container; an assumption that is at odds with the detection of lumps within the assay item typical of uranium-processing waste. This fact, in addition to the difficultly in constructing small reference standards of uranium-bearing materials, required the methodology used for performing an efficiency curve calibration to be altered. The solution discussed in this paper is demonstrated to provide good results for both the segment activity and full container activity when measuring heterogeneous source distributions. The application of this approach will need to be based on process knowledge of the assay items, as biases can be introduced if used with homogenous, or nearly homogenous, activity distributions. The bias will need to be quantified for each combination of container geometry and SGS scanning settings. One recommended approach for using the heterogeneous calibration discussed here is to assay each item using a homogenous calibration initially. Review of the segment activities compared to the full container activity will signal the presence of a non-uniform activity distribution as the segment activity will be grossly disproportionate to the full container activity. Upon seeing this result, the assay should either be reanalyzed or repeated using the heterogeneous calibration. (authors)« less
Caves, mines and subterranean spaces: hazard and risk from exposure to radon.
NASA Astrophysics Data System (ADS)
Crockett, R. G. M.; Gillmore, G. K.
2009-04-01
Radon is a naturally occurring radioactive gas. It is colourless, odourless and chemically inert. The most hazardous isotope is 222Rn. Radon is formed in the natural environment by the radioactive decay of the element uranium (238U) and is a daughter product of daughter product of radium (226Ra). Uranium and radium are found, in differing degrees, in a wide range of rocks, soils (and building materials that are made from these). Radon concentrations in caves, e.g. limestone caves such as the Great Cave of Niah, Borneo, and caves in the Mendips and Peak District in the UK, has been documented and reveal that both (prehistoric) cave-dwellers and other users such as archaeologists are at risk from exposure to radon a naturally occurring radioactive gas. In general, but dependent on cave geometry and ventilation, radon concentration increases with increasing distance from the entrance, implying that the hazard also increases with distance from the entrance. With regard to mines and mining operations, as well as modern extraction of uranium and radium ores, both ores commonly occur alongside other metallic ores, e.g. silver at Schneeberg and Joachimsthal, and tin in Cornwall, and in some instances, waste from earlier metalliferious mining activity has itself been ‘mined' for uranium and/or radium ores. It is not solely the miners and other subterranean workers which are at risk, other workers and local inhabitants are also at risk. Also, that risk is not eliminated by protection against dust/airborne particulates: the risk from inhalation of radon is only reduced by reducing the inhalation of radon, i.e. use of breathing apparatus. Amongst the general population, radon is the second most significant cause of lung cancer behind tobacco smoking. Estimates vary but 6-9% of lung-cancers are attributable to radon and approximately 2% all cancer deaths are attributable to radon. These proportions will increase in higher-radon environments such as caves, mines and mining areas (via spoil heaps, settlement lagoons etc. containing uranium and radium). We here present an overview of the potential hazard presented by radon in subterranean spaces and by metalliferous mining activities. We also present some speculation as to evidence of (pre-) historic exposure to radon which might potentially exist in archaeological remains and oral traditions. Keywords: radon; caves; metalliferous mining; cave-dwellers; archaeologists.
Selective uptake of uranium and thorium by some vegetables
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusof, A.M.; Ghazali, Z.; Rahman, S.A.
1996-12-31
Uranium and thorium are trace elements in the actinide series found naturally in the atmosphere and can enter the human body through ingestion of food or by drinking. To establish baseline information for current and future environmental assessment due to pollution, especially in foodstuff, by heavy and trace metals, biological samples such as locally grown vegetables were analyzed for uranium and thorium contents. The terrain in most parts of the Malaysian peninsula consists of monazite-bearing rocks or soil that can be found extensively in areas related to tin-mining operations. Abandoned mining areas provide suitable sites for vegetable cultivation where mostmore » vegetables in the lowlands are grown.« less
Johnson, Raymond H.; Diehl, Sharon F.; Benzel, William M.
2013-01-01
This report releases solid-phase data from cores at the proposed Dewey Burdock uranium in-situ recovery site near Edgemont, South Dakota. These cores were collected by Powertech Uranium Corporation, and material not used for their analyses were given to the U.S. Geological Survey for additional sampling and analyses. These additional analyses included total carbon and sulfur, whole rock acid digestion for major and trace elements, 234U/238U activity ratios, X-ray diffraction, thin sections, scanning electron microscopy analyses, and cathodoluminescence. This report provides the methods and data results from these analyses along with a short summary of observations.
Geochemical transformations and modeling of two deep-well injected hazardous wastes
Roy, W.R.; Seyler, B.; Steele, J.D.; Mravik, S.C.; Moore, D.M.; Krapac, I.G.; Peden, J.M.; Griffin, R.A.
1991-01-01
Two liquid hazardous wastes (an alkaline brine-like solution and a dilute acidic waste) were mixed with finely ground rock samples of three injection-related lithologies (sandstone, dolomite, and siltstone) for 155 to 230 days at 325??K-10.8 MPa. The pH and inorganic chemical composition of the alkaline waste were not significantly altered by any of the rock samples after 230 days of mixing. The acidic waste was neutralized as a consequence of carbonate dissolution, ion exchange, or clay-mineral dissolution, and hence was transformed into a nonhazardous waste. Mixing the alkaline waste with the solid phases yielded several reaction products: brucite, Mg(OH)2; calcite, CaCO3; and possibly a type of sodium metasilicate. Clay-like minerals formed in the sandstone, and hydrotalcite, Mg6Al2-CO3(OH)16??4H2O, may have formed in the siltstone at trace levels. Mixing the alkaline waste with a synthetic brine yielded brucite, calcite, and whewellite (CaC2O4??H2O). The thermodynamic model PHRQPITZ predicted that brucite and calcite would precipitate from solution in the dolomite and siltstone mixtures and in the alkaline waste-brine system. The dilute acidic waste did not significantly alter the mineralogical composition of the three rock types after 155 days of contact. The model PHREEQE indicated that the calcite was thermodynamically stable in the dolomite and siltstone mixtures.
Potential aquifer vulnerability in regions down-gradient from uranium in situ recovery (ISR) sites.
Saunders, James A; Pivetz, Bruce E; Voorhies, Nathan; Wilkin, Richard T
2016-12-01
Sandstone-hosted roll-front uranium ore deposits originate when U(VI) dissolved in groundwater is reduced and precipitated as insoluble U(IV) minerals. Groundwater redox geochemistry, aqueous complexation, and solute migration are important in leaching uranium from source rocks and transporting it in low concentrations to a chemical redox interface where it is deposited in an ore zone typically containing the uranium minerals uraninite, pitchblende, and/or coffinite; various iron sulfides; native selenium; clays; and calcite. In situ recovery (ISR) of uranium ores is a process of contacting the uranium mineral deposit with leaching and oxidizing (lixiviant) fluids via injection of the lixiviant into wells drilled into the subsurface aquifer that hosts uranium ore, while other extraction wells pump the dissolved uranium after dissolution of the uranium minerals. Environmental concerns during and after ISR include water quality degradation from: 1) potential excursions of leaching solutions away from the injection zone into down-gradient, underlying, or overlying aquifers; 2) potential migration of uranium and its decay products (e.g., Ra, Rn, Pb); and, 3) potential mobilization and migration of redox-sensitive trace metals (e.g., Fe, Mn, Mo, Se, V), metalloids (e.g., As), and anions (e.g., sulfate). This review describes the geochemical processes that control roll-front uranium transport and fate in groundwater systems, identifies potential aquifer vulnerabilities to ISR operations, identifies data gaps in mitigating these vulnerabilities, and discusses the hydrogeological characterization involved in developing a monitoring program. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyer, R.E.; Arnold, W.D.; Ho, P.C.
1987-11-01
The Sedimentary Rock Program at the Oak Ridge National Laboratory is investigating shale to determine its potential suitability as a host rock for the disposal of high-level radioactive wastes (HLW). In support of this program, preliminary studies were carried out on sorption of cesium, strontium, technetium, neptunium, and uranium onto Chattanooga (Upper Dowelltown), Pierre, Green River Formation, Nolichucky, and Pumpkin Valley Shales under oxic conditions (air present). Three simulated groundwaters were used. One of the groundwaters was a synthetic brine made up to simulate highly saline groundwaters in the Pumpkin Valley Shale. The second was a 100/1 dilution of thismore » groundwater and the third was 0.03 M NaHCO/sub 3/. Moderate to significant sorption was observed under most conditions for all of the tested radionuclides except technetium. Moderate technetium sorption occurred on Upper Dowelltown Shale, and although technetium sorption was low on the other shales, it was higher than expected for Tc(VII), present as the anion TcO/sub 4//sup -/. Little sorption of strontium onto the shales was observed from the concentrated saline groundwater. These data can be used in a generic fashion to help assess the sorption characteristics of shales in support of a national survey. 10 refs., 4 figs., 23 tabs.« less
Accelerator Driven Nuclear Energy: The Thorium Option
Raja, Rajendran
2018-01-05
Conventional nuclear reactors use enriched Uranium as fuel and produce nuclear waste which needs to be stored away for over 10,000 years.  At the current rate of use, existing sources of Uranium will last for 50-100 years. We describe a solution to the problem that uses particle accelerators to produce fast neutrons that can be used to burn existing nuclear waste and produce energy. Such systems, initially proposed by Carlo Rubbia and collaborators in the 1990's, are being seriously considered by many countries as a possible solution to the green energy problem. Accelerator driven reactors operate in a sub-critical regime and, thus, are safer and can obtain energy from plentiful elements such as Thorium-232 and Uranium-238. What is missing is the high intensity (10MW) accelerator that produces 1 GeV protons. We will describe scenarios which if implemented will make such systems a reality. Â
Process to separate transuranic elements from nuclear waste
Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.
1989-03-21
A process is described for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.
Process to separate transuranic elements from nuclear waste
Johnson, T.R.; Ackerman, J.P.; Tomczuk, Z.; Fischer, D.F.
1988-07-12
A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR). 2 figs.
Process to separate transuranic elements from nuclear waste
Johnson, Terry R.; Ackerman, John P.; Tomczuk, Zygmunt; Fischer, Donald F.
1989-01-01
A process for removing transuranic elements from a waste chloride electrolytic salt containing transuranic elements in addition to rare earth and other fission product elements so the salt waste may be disposed of more easily and the valuable transuranic elements may be recovered for reuse. The salt is contacted with a cadmium-uranium alloy which selectively extracts the transuranic elements from the salt. The waste salt is generated during the reprocessing of nuclear fuel associated with the Integral Fast Reactor (IFR).
Kandji, El Hadji Babacar; Plante, Benoit; Bussière, Bruno; Beaudoin, Georges; Dupont, Pierre-Philippe
2017-04-01
The geochemical behavior of ultramafic waste rocks and the effect of carbon sequestration by these waste rocks on the water drainage quality were investigated using laboratory-scale kinetic column tests on samples from the Dumont Nickel Project (RNC Minerals, QC, Canada). The test results demonstrated that atmospheric CO 2 dissolution induced the weathering of serpentine and brucite within the ultramafic rocks, generating high concentrations of Mg and HCO 3 - with pH values ranging between 9 and 10 in the leachates that promote the precipitation of secondary Mg carbonates. These alkaline pH values appear to have prevented the mobilization of many metals; Fe, Ni, Cu, and Zn were found at negligible concentrations in the leachates. Posttesting characterization using chemical analyses, diffuse reflectance infrared Fourier transform (DRIFT), and scanning electron microscope (SEM) observations confirmed the precipitation of secondary hydrated Mg carbonates as predicted by thermodynamic calculations. The formation of secondary Mg carbonates induced cementation of the waste particles, resulting in the development of a hardpan.
Innovative mathematical modeling in environmental remediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, Gour T.; National Central Univ.; Univ. of Central Florida
2013-05-01
There are two different ways to model reactive transport: ad hoc and innovative reaction-based approaches. The former, such as the Kd simplification of adsorption, has been widely employed by practitioners, while the latter has been mainly used in scientific communities for elucidating mechanisms of biogeochemical transport processes. It is believed that innovative mechanistic-based models could serve as protocols for environmental remediation as well. This paper reviews the development of a mechanistically coupled fluid flow, thermal transport, hydrologic transport, and reactive biogeochemical model and example-applications to environmental remediation problems. Theoretical bases are sufficiently described. Four example problems previously carried out aremore » used to demonstrate how numerical experimentation can be used to evaluate the feasibility of different remediation approaches. The first one involved the application of a 56-species uranium tailing problem to the Melton Branch Subwatershed at Oak Ridge National Laboratory (ORNL) using the parallel version of the model. Simulations were made to demonstrate the potential mobilization of uranium and other chelating agents in the proposed waste disposal site. The second problem simulated laboratory-scale system to investigate the role of natural attenuation in potential off-site migration of uranium from uranium mill tailings after restoration. It showed inadequacy of using a single Kd even for a homogeneous medium. The third example simulated laboratory experiments involving extremely high concentrations of uranium, technetium, aluminum, nitrate, and toxic metals (e.g.,Ni, Cr, Co).The fourth example modeled microbially-mediated immobilization of uranium in an unconfined aquifer using acetate amendment in a field-scale experiment. The purposes of these modeling studies were to simulate various mechanisms of mobilization and immobilization of radioactive wastes and to illustrate how to apply reactive transport models for environmental remediation.The second problem simulated laboratory-scale system to investigate the role of natural attenuation in potential off-site migration of uranium from uranium mill tailings after restoration. It showed inadequacy of using a single Kd even for a homogeneous medium.« less
Multisource geological data mining and its utilization of uranium resources exploration
NASA Astrophysics Data System (ADS)
Zhang, Jie-lin
2009-10-01
Nuclear energy as one of clear energy sources takes important role in economic development in CHINA, and according to the national long term development strategy, many more nuclear powers will be built in next few years, so it is a great challenge for uranium resources exploration. Research and practice on mineral exploration demonstrates that utilizing the modern Earth Observe System (EOS) technology and developing new multi-source geological data mining methods are effective approaches to uranium deposits prospecting. Based on data mining and knowledge discovery technology, this paper uses multi-source geological data to character electromagnetic spectral, geophysical and spatial information of uranium mineralization factors, and provides the technical support for uranium prospecting integrating with field remote sensing geological survey. Multi-source geological data used in this paper include satellite hyperspectral image (Hyperion), high spatial resolution remote sensing data, uranium geological information, airborne radiometric data, aeromagnetic and gravity data, and related data mining methods have been developed, such as data fusion of optical data and Radarsat image, information integration of remote sensing and geophysical data, and so on. Based on above approaches, the multi-geoscience information of uranium mineralization factors including complex polystage rock mass, mineralization controlling faults and hydrothermal alterations have been identified, the metallogenic potential of uranium has been evaluated, and some predicting areas have been located.
Hazardous Waste Surveys of Two Army Installations and an Army Hospital.
1980-08-01
232 Nickel-63 Uranium-238 Plutonium-239 Polonium - 210 6 Army Medical Treatment Facilities: General Administration Army Regulation (AR) 40-2, 42A peren...Categories 10 2 Waste Matrix 14 3 Search Format 16 4 Field Sanitation Unit Personal Health Supplies 19 5 Company Vehicle Maintenance Supplies...increasing industrialization of society, coupled with an equally increasing environmental and health safety awareness, has created a long list of wastes
Cleanup Verification Package for the 618-8 Burial Ground
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. J. Appel
2006-08-10
This cleanup verification package documents completion of remedial action for the 618-8 Burial Ground, also referred to as the Solid Waste Burial Ground No. 8, 318-8, and the Early Solid Waste Burial Ground. During its period of operation, the 618-8 site is speculated to have been used to bury uranium-contaminated waste derived from fuel manufacturing, and construction debris from the remodeling of the 313 Building.
Structure and thermodynamics of uranium-containing iron garnets
NASA Astrophysics Data System (ADS)
Guo, Xiaofeng; Navrotsky, Alexandra; Kukkadapu, Ravi K.; Engelhard, Mark H.; Lanzirotti, Antonio; Newville, Matthew; Ilton, Eugene S.; Sutton, Stephen R.; Xu, Hongwu
2016-09-01
Use of crystalline garnet as a waste form phase appears to be advantageous for accommodating actinides from nuclear waste. Previous studies show that large amounts of uranium (U) and its analogues such as cerium (Ce) and thorium (Th) can be incorporated into the garnet structure. In this study, we synthesized U loaded garnet phases, Ca3UxZr2-xFe3O12 (x = 0.5-0.7), along with the endmember phase, Ca3(Zr2)SiFe3+2O12, for comparison. The oxidation states of U were determined by X-ray photoelectron and absorption spectroscopies, revealing the presence of mixed pentavalent and hexavalent uranium in the phases with x = 0.6 and 0.7. The oxidation states and coordination environments of Fe were measured using transmission 57Fe-Mössbauer spectroscopy, which shows that all iron is tetrahedrally coordinated Fe3+. U substitution had a significant effect on local environments, the extent of U substitution within this range had a minimal effect on the structure, and unlike in the x = 0 sample, Fe exists in two different environments in the substituted garnets. The enthalpies of formation of garnet phases from constituent oxides and elements were first time determined by high temperature oxide melt solution calorimetry. The results indicate that these substituted garnets are thermodynamically stable under reducing conditions. Our structural and thermodynamic analysis further provides explanation for the formation of natural uranium garnet, elbrusite-(Zr), and supports the potential use of Ca3UxZr2-xFe3O12 as viable waste form phases for U and other actinides.
NASA Astrophysics Data System (ADS)
Luo, S.; Ku, T.; Todd, V.; Murrell, M. T.; Dinsmoor, J. C.
2007-05-01
The Nopal I uranium ore deposit at Pena Blanca, Mexico, located at > 200 meters above the groundwater table, provides an ideal natural analog for quantifying the effectiveness of geological barrier for isolation of radioactive waste nuclides from reaching the human environments through ground water transport. To fulfill such natural analog studies, three wells (PB1, PB2, and PB3 respectively) were drilled at the site from the land surface down to the saturated groundwater zone and ground waters were collected from each of these wells through large- volume sampling/in-situ Mn-filter filtration for analyses of short-lived uranium/thorium-series radionuclides. Our measurements from PB1 show that the groundwater standing in the hole has much lower 222Rn activity than the freshly pumped groundwater. From this change in 222Rn activity, we estimate the residence time of groundwater in PB1 to be about 20 days. Our measurements also show that the activities of short-lived radioisotopes of Th (234Th), Ra (228Ra, 224Ra, 223Ra), Rn (222Rn), Pb (210Pb), and Po (210Po) in PB1, PB2, and PB3 are all significantly higher than those from the other wells near the Nopal I site. These high activities provide evidence for the enrichment of long-lived U and Ra isotopes in the groundwater as well as in the associated adsorbed phases on the fractured aquifer rocks underneath the ore deposit. Such enrichment suggests a rapid dissolution of U and Ra isotopes from the uranium ore deposit in the vadose zone and the subsequent migration to the groundwater underneath. A reactive transport model can be established to characterize the in-situ transport of radionuclides at the site. The observed change of 222Rn activity at PB1 also suggests that the measured high radioactivityies in ground waters from the site isare not an artifact of drilling operations. However, further studies are needed to assess if or to what extent the radionuclide migration is affected by the previous mining activities at the site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
TODOSOW,M.; KAZIMI,M.
2004-08-01
Issues affecting the implementation, public perception and acceptance of nuclear power include: proliferation, radioactive waste, safety, and economics. The thorium cycle directly addresses the proliferation and waste issues, but optimization studies of core design and fuel management are needed to ensure that it fits within acceptable safety and economic margins. Typical pressurized water reactors, although loaded with uranium fuel, produce 225 to 275 kg of plutonium per gigawatt-year of operation. Although the spent fuel is highly radioactive, it nevertheless offers a potential proliferation pathway because the plutonium is relatively easy to separate, amounts to many critical masses, and does notmore » present any significant intrinsic barrier to weapon assembly. Uranium 233, on the other hand, produced by the irradiation of thorium, although it too can be used in weapons, may be ''denatured'' by the addition of natural, depleted or low enriched uranium. Furthermore, it appears that the chemical behavior of thoria or thoria-urania fuel makes it a more stable medium for the geological disposal of the spent fuel. It is therefore particularly well suited for a once-through fuel cycle. The use of thorium as a fertile material in nuclear fuel has been of interest since the dawn of nuclear power technology due to its abundance and to potential neutronic advantages. Early projects include homogeneous mixtures of thorium and uranium oxides in the BORAX-IV, Indian Point I, and Elk River reactors, as well as heterogeneous mixtures in the Shippingport seed-blanket reactor. However these projects were developed under considerably different circumstances than those which prevail at present. The earlier applications preceded the current proscription, for non-proliferation purposes, of the use of uranium enriched to more than 20 w/o in {sup 235}U, and has in practice generally prohibited the use of uranium highly enriched in {sup 235}U. They were designed when the expected burnup of light water fuel was on the order of 25 MWD/kgU--about half the present day value--and when it was expected that the spent fuel would be recycled to recover its fissile content.« less
DPASV analytical technique for ppb level uranium analysis
NASA Astrophysics Data System (ADS)
Pal, Sangita; Singha, Mousumi; Meena, Sher Singh
2018-04-01
Determining uranium in ppb level is considered to be most crucial for reuse of water originated in nuclear industries at the time of decontamination of plant effluents generated during uranium (fuel) production, fuel rod fabrication, application in nuclear reactors and comparatively small amount of effluents obtained during laboratory research and developmental work. Higher level of uranium in percentage level can be analyzed through gravimetry, titration etc, whereas inductively coupled plasma-atomic energy spectroscopy (ICP-AES), fluorimeter are well suited for ppm level. For ppb level of uranium, inductively coupled plasma - mass spectroscopy (ICP-MS) or Differential Pulse Anodic Stripping Voltammetry (DPASV) serve the purpose. High precision, accuracy and sensitivity are the crucial for uranium analysis in trace (ppb) level, which are satisfied by ICP-MS and stripping voltammeter. Voltammeter has been found to be less expensive, requires low maintenance and is convenient for measuring uranium in presence of large number of other ions in the waste effluent. In this paper, necessity of uranium concentration quantification for recovery as well as safe disposal of plant effluent, working mechanism of voltammeter w.r.t. uranium analysis in ppb level with its standard deviation and a data comparison with ICP-MS has been represented.
National Uranium Resource Evaluation: Aztec quadrangle, New Mexico and Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, M.W.
1982-09-01
Areas and formations within the Aztec 1/sup 0/ x 2/sup 0/ Quadrangle, New Mexico and Colorado considered favorable for uranium endowment of specified minimum grade and tonnage include, in decreasing order of favorability: (1) the Early Cretaceous Burro Canyon Formation in the southeastern part of the Chama Basin; (2) the Tertiary Ojo Alamo Sandstone in the east-central part of the San Juan Basin; and (3) the Jurassic Westwater Canyon and Brushy Basin Members of the Morrison Formation in the southwestern part of the quadrangle. Favorability of the Burro Canyon is based on the presence of favorable host-rock facies, carbonaceous materialmore » and pyrite to act as a reductant for uranium, and the presence of mineralized ground in the subsurface of the Chama Basin. The Ojo Alamo Sandstone is considered favorable because of favorable host-rock facies, the presence of carbonaceous material and pyrite to act as a reductant for uranium, and the presence of a relatively large subsurface area in which low-grade mineralization has been encountered in exploration activity. The Morrison Formation, located within the San Juan Basin adjacent to the northern edge of the Grants mineral belt, is considered favorable because of mineralization in several drill holes at depths near 1500 m (5000 ft) and because of favorable facies relationships extending into the Aztec Quadrangle from the Grants mineral belt which lies in the adjacent Albuquerque and Gallup Quadrangles. Formations considered unfavorable for uranium deposits of specified tonnage and grade include the remainder of sedimentary and igneous formations ranging from Precambrian to Quaternary in age. Included under the unfavorable category are the Cutler Formation of Permian age, and Dakota Sandstone of Late Cretaceous age, and the Nacimiento and San Jose Formations of Tertiary age.« less
Finch, Warren Irvin
1997-01-01
The many aspects of uranium, a heavy radioactive metal used to generate electricity throughout the world, are briefly described in relatively simple terms intended for the lay reader. An adequate glossary of unfamiliar terms is given. Uranium is a new source of electrical energy developed since 1950, and how we harness energy from it is explained. It competes with the organic coal, oil, and gas fuels as shown graphically. Uranium resources and production for the world are tabulated and discussed by country and for various energy regions in the United States. Locations of major uranium deposits and power reactors in the United States are mapped. The nuclear fuel-cycle of uranium for a typical light-water reactor is illustrated at the front end-beginning with its natural geologic occurrence in rocks through discovery, mining, and milling; separation of the scarce isotope U-235, its enrichment, and manufacture into fuel rods for power reactors to generate electricity-and at the back end-the reprocessing and handling of the spent fuel. Environmental concerns with the entire fuel cycle are addressed. The future of the use of uranium in new, simplified, 'passively safe' reactors for the utility industry is examined. The present resource assessment of uranium in the United States is out of date, and a new assessment could aid the domestic uranium industry.
Brugge, Doug; deLemos, Jamie L.; Bui, Cat
2007-01-01
The Three Mile Island nuclear release exemplifies why there is public and policy interest in the high-technology, highly visible end of the nuclear cycle. The environmental and health consequences of the early steps in the cycle—mining, milling, and processing of uranium ore—may be less appreciated. We examined 2 large unintended acute releases of uranium—at Kerr McGee’s Sequoyah Fuels Corporation in Oklahoma and United Nuclear Corporation’s Church Rock uranium mill in New Mexico, which were incidents with comparable magnitude to the Three Mile Island release. We urge exploration of whether there is limited national interest and concern for the primarily rural, low-income, and American Indian communities affected by these releases. More attention should be given to the early stages of the nuclear cycle and their impacts on health and the environment. PMID:17666688
NASA Astrophysics Data System (ADS)
Krawczyk-Bärsch, Evelyn; Lünsdorf, Heinrich; Pedersen, Karsten; Arnold, Thuro; Bok, Frank; Steudtner, Robin; Lehtinen, Anne; Brendler, Vinzenz
2012-11-01
In an underground rock characterization facility, the ONKALO tunnel in Finland, massive 5-10-mm thick biofilms were observed attached to tunnel walls where groundwater was seeping from bedrock fractures at a depth of 70 m. In laboratory experiments performed in a flow cell with detached biofilms to study the effect of uranium on the biofilm, uranium was added to the circulating groundwater (CGW) obtained from the fracture feeding the biofilm. The final uranium concentration in the CGW was adjusted to 4.25 × 10-5 M, in the range expected from a leaking spent nuclear fuel (SNF) canister in a future underground repository. The effects were investigated using microelectrodes to measure pH and Eh, time-resolved laser fluorescence spectroscopy (TRLFS), energy-filtered transmission electron microscopy (EF-TEM), and electron energy-loss spectroscopy (EELS) studies and thermodynamic calculations were utilized as well. The results indicated that the studied biofilms constituted their own microenvironments, which differed significantly from that of the CGW. A pH of 5.37 was recorded inside the biofilm, approximately 3.5 units lower than the pH observed in the CGW, due to sulfide oxidation to sulfuric acid in the biofilm. Similarly, the Eh of +73 mV inside the biofilm was approximately 420 mV lower than the Eh measured in the CGW. Adding uranium increased the pH in the biofilm to 7.27 and reduced the Eh to -164 mV. The changes of Eh and pH influenced the bioavailability of uranium, since microbial metabolic processes are sensitive to metals and their speciation. EF-TEM investigations indicated that uranium in the biofilm was immobilized intracellularly in microorganisms by the formation of metabolically mediated uranyl phosphate, similar to needle-shaped autunite (Ca[UO2]2[PO4]2·2-6H2O) or meta-autunite (Ca[UO2]2[PO4]2·10-12H2O). In contrast, TRLFS studies of the contaminated CGW identified aqueous uranium carbonate species, likely (Ca2UO2[CO3]3), formed due to the high concentration of carbonate in the CGW. The results agreed with thermodynamic calculations of the theoretically predominant field of uranium species, formed in the uranium-contaminated CGW at the measured geochemical parameters. This investigation clearly demonstrated that biological systems must be considered as a part of natural systems that can significantly influence radionuclide behavior. The results improve our understanding of the mechanisms of biofilm response to radionuclides in relation to safety assessments of SNF repositories.
Novel use of geochemical models in evaluating treatment trains for aqueous radioactive waste streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abitz, R.J.
1996-12-31
Thermodynamic geochemical models have been applied to assess the relative effectiveness of a variety of reagents added to aqueous waste streams for the removal of radioactive elements. Two aqueous waste streams were examined: effluent derived from the processing of uranium ore and irradiated uranium fuel rods. Simulations of the treatment train were performed to estimate the mass of reagents needed per kilogram of solution, identify pH regions corresponding to solubility minimums, and predict the identity and quantity of precipitated solids. Results generated by the simulations include figures that chart the chemical evolution of the waste stream as reagents are addedmore » and summary tables that list mass balances for all reagents and radioactive elements of concern. Model results were used to set initial reagent levels for the treatment trains, minimizing the number of bench-scale tests required to bring the treatment train up to full-scale operation. Additionally, presentation of modeling results at public meetings helps to establish good faith between the federal government, industry, concerned citizens, and media groups. 18 refs., 3 figs., 1 tab.« less
Exploration for uranium deposits in the Atkinson Mesa area, Montrose County, Colorado
Brew, Daniel Allen
1954-01-01
The U.S. Geological Survey explored the Atkinson Mesa area for uranium- and vanadium-bearing deposits from July 2, 1951, to June 18, 1953, with 397 diamond-drill holes that totaled 261,251 feet. Sedimentary rocks of Mesozoic age are exposed in the Atkinson Mesa area. They are: the Brushy Basin member of the Upper Jurassic Morrison formation, the Lower Cretaceous Burro Canyon formation, and the Upper and Lower Cretaceous Dakota sandstone. All of the large uranium-vanadium deposits discovered by Geological Survey drilling are in a series of sandstone lenses in the upper part of the Salt Wash member of the Jurassic Morrison formation. The deposits are mainly tabular and blanket-like, but some elongate pod-shaped masses, locally called "rolls" may be present. The mineralized material consists of sandstone impregnated with a uranium mineral which is probably coffinite, spme carnotite, and vanadium minerals, thought to be mainly corvusite and montroseite. In addition,, some mudstone and carbonaceous material is similarly impregnated. Near masses of mineralized material the sandstone is light gray or light brown, is generally over 40 feet thick, and usually contains some carbonaceous material and abundant disseminated pyrite or limonite stain. Similarly, the mudstone in contact with the ore-bearing sandstone near bodies of mineralized rock is commonly blue gray, as compared to its dominant red color away from ore deposits. Presence and degree of these features are useful guides in exploring for new deposits.
Beisner, Kimberly R.; Tillman, Fred D.; Anderson, Jessica R.; Antweiler, Ronald C.; Bills, Donald J.
2017-08-01
A geochemical study was conducted on 37 springs discharging from the Toroweap Formation, Coconino Sandstone, Hermit Formation, Supai Group, and Redwall Limestone north of the Grand Canyon near areas of breccia-pipe uranium mining. Baseline concentrations were established for the elements As, B, Li, Se, SiO2, Sr, Tl, U, and V. Three springs exceeded U.S. Environmental Protection Agency drinking water standards: Fence Spring for arsenic, Pigeon Spring for selenium and uranium, and Willow (Hack) Spring for selenium. The majority of the spring sites had uranium values of less than 10 micrograms per liter (μg/L), but six springs discharging from all of the geologic units studied that are located stratigraphically above the Redwall Limestone had uranium values greater than 10 μg/L (Cottonwood [Tuckup], Grama, Pigeon, Rock, and Willow [Hack and Snake Gulch] Springs). The geochemical characteristics of these six springs with elevated uranium include Ca-Mg-SO4 water type, circumneutral pH, high specific conductance, correlation and multivariate associations between U, Mo, Sr, Se, Li, and Zn, low 87Sr/86Sr, low 234U/238U activity ratios (1.34–2.31), detectable tritium, and carbon isotopic interpretation indicating they may be a mixture of modern and pre-modern waters. Similar geochemical compositions of spring waters having elevated uranium concentrations are observed at sites located both near and away from sites of uranium-mining activities in the present study. Therefore, mining does not appear to explain the presence of elevated uranium concentrations in groundwater at the six springs noted above. The elevated uranium at the six previously mentioned springs may be influenced by iron mineralization associated with mineralized breccia pipe deposits. Six springs discharging from the Coconino Sandstone (Upper Jumpup, Little, Horse, and Slide Springs) and Redwall Limestone (Kanab and Side Canyon Springs) contained water with corrected radiocarbon ages as much as 9,300 years old. Of the springs discharging water with radiocarbon age, Kanab and Side Canyon Springs contain tritium of more than 1.3 picocuries per liter (pCi/L), indicating they may contain a component of modern water recharged after 1952. Springs containing high values of tritium (greater than 5.1 pCi/L), which may suggest a significant component of modern water, include Willow (Hack), Saddle Horse, Cottonwood (Tuckup), Hotel, Bitter, Unknown, Hole in the Wall, and Hanging Springs. Fence and Rider Springs, located on the eastern end of the study area near the Colorado River, have distinctly different geochemical compositions compared to the other springs of the study. Additionally, water from Fence Spring has the highest 87Sr/86Sr for samples analyzed from this study with a value greater than those known in sedimentary rocks from the region. Strontium isotope data likely indicate that water discharging at Fence Spring has interacted with Precambrian basement rocks. Rider Spring had the most depleted values of stable O and H isotopes indicating that recharge, if recent, occurred at higher elevations or was recharged during earlier, cooler-climate conditions.
Madakkaruppan, V; Pius, Anitha; T, Sreenivas; Giri, Nitai; Sarbajna, Chanchal
2016-08-05
This paper describes a study on microwave assisted leaching of uranium from a low-grade ore of Indian origin. The host rock for uranium mineralization is chlorite-biotite-muscovite-quartzo-feldspathic schist. The dominant presence of siliceous minerals determined leaching of uranium values in sulfuric acid medium under oxidizing conditions. Process parametric studies like the effect of sulfuric acid concentration (0.12-0.50M), redox potential (400-500mV), particle size (600-300μm) and temperature (35°-95°C) indicated that microwave assisted leaching is more efficient in terms of overall uranium dissolution, kinetics and provide relatively less impurities (Si, Al, Mg and Fe) in the leach liquor compared to conventional conductive leaching. The kinetics of leaching followed shrinking core model with product layer diffusion as controlling mechanism. Copyright © 2016 Elsevier B.V. All rights reserved.
Hansley, P.L.; Spirakis, C.S.
1992-01-01
Interstitial, epigenetic amorphous organic matter is intimately associated with uranium in the Grants uranium region and is considered essential to genetic models for these deposits. In contrast, uranium minerals are intimately associated with authigenic vanadium chlorite and vanadium oxides in amorphous organic matter-poor ores of the Slick Rock and Henry Mountains mining districts and therefore, in some genetic models amorphous organic matter is not considered crucial to the formation of these deposits. Differences in organic matter content can be explained by recognizing that amorphous organic matter-poor deposits have been subjected to more advanced stages of diagenesis than amorphous organic matter-rich deposits. Evidence that amorphous organic matter was involved in the genesis of organic matter-poor, as well as organic matter-rich, deposits is described. -from Authors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eppich, Gary R.; Williams, Ross W.; Gaffney, Amy M.
Here, age dating of nuclear material can provide insight into source and suspected use in nuclear forensic investigations. We report here a method for the determination of the date of most recent chemical purification for uranium materials using the 235U- 231Pa chronometer. Protactinium is separated from uranium and neptunium matrices using anion exchange resin, followed by sorption of Pa to an SiO 2 medium. The concentration of 231Pa is measured by isotope dilution mass spectrometry using 233Pa spikes prepared from an aliquot of 237Np and calibrated in-house using the rock standard Table Mountain Latite and the uranium isotopic standard U100.more » Combined uncertainties of age dates using this method are 1.5 to 3.5 %, an improvement over alpha spectrometry measurement methods. Model ages of five uranium standard reference materials are presented; all standards have concordant 235U- 231Pa and 234U- 230Th model ages.« less
Anthropogenic sources of carbon from landfill or waste leachate can promote reductive dissolution of in situ arsenic (As) and enhance the mobility of As in groundwater. Groundwater from residential-supply wells in a fractured crystalline-rock aquifer adjacent to a Superfund site ...
Sorption behavior of uranium(VI) on a biotite mineral
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idemitsu, K.; Obata, K.; Furuya, H.
1995-12-31
Biotite has the most important role for the sorption of radionuclides in granitic rocks. Experiments on the sorption of uranium(VI) on biotite were conducted to understand the fundamental controls on uranium sorption on biotite mineral, including the effects of pH and uranium concentration in solution. Biotite powder (mesh 32--60) were washed with 1N HCl for a week and were rinsed twice with deionized water for a week. This HCl treatment was necessary to avoid the effects by other minerals. The agreement between surface adsorption coefficient, Ka, of both biotites with and without HCl treatment was within one order of magnitude.more » The peak Ka value was in the range of 0.1 to 0.01 cm{sup 3}/cm{sup 2} around pH 6. A comparison of aqueous uranium speciations and sorption results indicates that neutral uranyl hydroxide could be an important species sorbed on the biotite. Sequential desorption experiments with KCl and HCl solutions were also carried out after sorption experiments to investigate sorption forms of uranium. Approximately 20% of uranium in solution were sorbed on the biotite as an exchangeable ion. The fraction of exchangeable uranium had a little dependence on pH. The other uranium could not be extracted even by 6N HCl solution. It is possible that most of the uranium could be precipitated as U(IV) via Fe(II) reduction on the biotite surface.« less
NASA Astrophysics Data System (ADS)
Savelyeva, Olga; Philosofova, Tatyana; Bergal-Kuvikas, Olga; Savelyeva, Svetlana
2017-04-01
We have studied the carbonate-siliceous section of paleooceanic Albian-Cenomanian deposits on the Kamchatsky Mys peninsula (Eastern Kamchatka, Russia) [1].The section is represented by a rhythmic alternation of planktonic limestones and jaspers, accumulated in the open ocean environment. The rhythmicity can be attributed to climate variations that reflect a fluctuation of astronomical parameters (Milankovitch cycles) [2, 3].The section contains two beds enriched in organic carbon, corresponding to the two oceanic anoxic events - MCE and OAE2 [3]. The maximum content of organic matter in those beds reaches 68%. Our geochemical studies revealed an enrichment of the carbonaceous rocks in some major and trace elements including PGE, in comparison with the surrounding limestone and jasper [4].The accumulation of the ore elements in carbonaceous beds is caused by euxinic conditions during sedimentation.The content of uranium, yttrium, and rare earth elements in carbonaceous rocks is up to 60, 142 and 312 ppm respectively. Phosphate grains (bone detritus) with microinclusions of yttrium and uranium minerals were revealed in the carbonaceous rocks using the scanning electron microscope. These data prove the hypothesis of the sorbtion of U and Y by phosphate detritus from seawater. Microprobe analysis also showed an increased content of Cu, Zn, V in some pyrite framboids, which indicates that these elements are fixed in rocks by Fe-sulphide phase or organic matter under euxinic conditions. Our research may bring us closer to understanding the mechanism of syngenetic accumulation of metals in the black shales. This work was supported by the RFBR (No. 16-05-00546). [1] Palechek, T.N., Savelyev, D.P., Savelyeva, O.L. (2010) Stratigraphy and Geological Correlation 18, (1) 63-82. [2] Savelyeva, O.L. (2010). Vestnik Kraunts. Nauki o zemle 1 (15), 45-55 (in Russian). [3] Savelyev, D.P., Savelyeva, O.L., Palechek, T.N., Pokrovsky, B.G. (2012) Geophysical Research Abstracts, 14, EGU2012-1940. [4] Savelyeva, O., Palesskiy, S., Savelyev, D. (2015) Goldschmidt Abstracts, 2015. 2779.
NASA Astrophysics Data System (ADS)
Truche, Laurent; Joubert, Gilles; Dargent, Maxime; Martz, Pierre; Cathelineau, Michel; Rigaudier, Thomas; Quirt, David
2018-07-01
Hydrogen (H2)-rich fluids are observed in a wide variety of geologic settings including gas seeps in serpentinized ultramafic rocks, sub-seafloor hydrothermal vents, fracture networks in crystalline rocks from continental and oceanic crust, and volcanic gases. Natural hydrogen sources can sustain deep microbial ecosystems, induce abiotic hydrocarbons synthesis and trigger the formation of prebiotic organic compounds. However, due to its extreme mobility and small size, hydrogen is not easily trapped in the crust. If not rapidly consumed by redox reactions mediated by bacteria or suitable mineral catalysts it diffuses through the rocks and migrates toward the surface. Therefore, H2 is not supposed to accumulate in the crust. We challenge this view by demonstrating that significant amount of H2 may be adsorbed by clay minerals and remain trapped beneath the surface. Here, we report for the first time H2 content in clay-rich rocks, mainly composed of illite, chlorite, and kaolinite from the Cigar Lake uranium ore deposit (northern Saskatchewan, Canada). Thermal desorption measurements reveal that H2 is enriched up to 500 ppm (i.e. 0.25 mol kg-1 of rock) in these water-saturated rocks having a very low total organic content (<0.5 wt%). Such hydrogen uptake is comparable and even exceeds adsorbed methane capacities reported elsewhere for pure clay minerals or shales. Sudoite (Al-Mg di-trioctahedral chlorite) is probably the main mineral responsible for H2 adsorption in the present case. The presence of multiple binding sites in interlinked nanopores between crystal layers of illite-chlorite particles offers the ideal conditions for hydrogen sorption. We demonstrate that 4 to 17% of H2 produced by water radiolysis over the 1.4-Ga-lifetime of the Cigar Lake uranium ore deposit has been trapped in the surrounding clay alteration haloes. As a result, sorption processes on layered silicates must not be overlooked as they may exert an important control on the fate and mobility of H2 in the crust. Furthermore, the high capacity of clay minerals to sorb molecular hydrogen may also open up new opportunities for exploration of unexpected energy resources and for H2 storage based on geo-inspired materials.
You can't see radon. And you can't smell it or taste it. But it may be a problem in your home. Radon comes from the natural breakdown of uranium in soil, rock, and water. Radon is the second leading cause of lung cancer ...
15 CFR Supplement No. 1 to Part 783 - Deadlines for Submission of Reports and Amendments
Code of Federal Regulations, 2010 CFR
2010-01-01
... PROTOCOL REGULATIONS CIVIL NUCLEAR FUEL CYCLE-RELATED ACTIVITIES NOT INVOLVING NUCLEAR MATERIALS Pt. 783...) uranium hard-rock mines that have changed from operating or suspended status to closed-down status during...
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacKallor, J.A.
1962-01-01
An airborne gamma-radioactivity survey of about 7000 square miles around the Georgia Nuclear Laboratory (GNL) in Dawson County, Ga., was made by the U. S. Geological Survey in cooperation with the Division of Biology and Medicine, U. S. Atomic Energy Commission. The project was flown perpendicular to the regional strike at a nominal elevation of 500 ft above the ground with a flight-line spacing of 1 mile. Radioactivity contacts shown on a 1:250,000 map delineate areas of similar radioactivity, which, in general, trend northeast, parallel to the geologic strike. Many, but not all, formations correlate closely with radioactivity units. Changesmore » of radioactivity within some formations may indicate facies changes. In the GNL area the Cartersville fault, which dlosely coincides with a prominent radioactivity contact, separates the Valley and Ridge physiographic province from the Piedmont to the east. Within the Valley and Ridge province bedrock consists of sedimentary rocks of Paleozoic age; the radioactivity is from 300 to 900 counts per second (cps). Areas of limestone and dolomite are characterized by radioactivity lows, usually less than 500 cps. Most areas of shale have a radioactivity of 600 to 900 cps. Bedrock in the Piedmont consists mainly of igneous and metamorphic rocks of Precambrian and Palezoic ages, and the radioactivity ranges from about 250 to 2000 cps. The least radioactive rocks (250 to 500 cps) are hornblende gneiss, dioritic injection gneiss, and some of the granitic gneiss. The most radioactive rock is the augen gneiss in Bartow and Cherokee Counties (1000 to 2000 cps). Some of the granitic gneiss, biotite gneiss and schist, and the Talladega Slate have a radioactivity of slightly more than 1000 cps. Composite samples of surficial material were collected from sites directly under the flight path of the aircraft. After analysis for equivalent uranium based upon the number of counts recorded by geiger tubes, the samples were stored for future reference. The equivalent uranium was plotted against cps obtained from the aerial surveying. From 600 cps, which corresponds to slightiy more than 0.001 percent equivalent uranium, to 1600 cps, each 200-cps increase corresponds to an increase of almost 0.001 percent equivalent uranium. (auth)« less
NASA Astrophysics Data System (ADS)
Marbach, T.; Mangini, A.; Kober, B.; Schleicher, A.; Warr, L. N.
2003-04-01
Major and trace element analyses allow to obtain information concerning the chemical changes induced by alteration. Differences are partly petrographic because the profile crosses the granite-rhyolite contact, but they are also due to different alteration levels induced by fluid circulation along the fault system which has drained the alteration processes. The granite-rhyolite contact constitutes the primary structure. Only the most incompatible elements (Si, Al, Zr, Hf) retain their original signatures and reflect a mixing between typical granite and rhyolite lithologies across the altered zones (cataclasite). The more mobile elements show a different composition within the altered zones (cataclasite) notably a high leaching of cations. The geochemical tracers also suggest at least one strong hydrothermal event with reducing conditions in the altered zones. The isotopic analyses delivered qualitative and temporal information. The use of several isotopic systems, Rb/Sr-, U/Pb-isotopes and Th/U disequilibria, reveals a complex history of polyphase fluid/rock interaction following the Permian volcanic extrusion, showing notable disturbances during the late Jurassic hydrothermal activities, the Tertiary rifting of the Rhine Graben and more recent Quaternary alteration. The granite zone of the sampling profile has underwent an event which set up a new Rb-Sr isotopic composition and reset the Rb/Sr system which originatly corresponded to the Carboniferous intrusion ages. The Rb-Sr data of the granite samples produce a whole rock isochron of 152 ± 5,7 Ma (2σ error) in good agreement with the well-known late Jurassic hydrothermal event (135--160 Ma). The rocks evolution lines for Pb support a Tertiary hydrothermal event (54 Ma ± 16; 1σ error), potentially connected with the development of the Rhine Graben. The profile samples have undergone uranium and thorium redistribution processes which have occurred within the last ˜10^6 years. The samples of the altered zones record a more complex history of uranium exchange with the aqueous phase. This uranium exchange is proportional to the porosity. The best approximation is reached for an exchange coefficient (λ_E) for uranium ranging from 2,5 E-06 [a-1] in the middle of the altered zones to 2,5 E-05 [a-1] on the sides of the altered zones.
Ultrasound enhanced process for extracting metal species in supercritical fluids
Wai, Chien M.; Enokida, Youichi
2006-10-31
Improved methods for the extraction or dissolution of metals, metalloids or their oxides, especially lanthanides, actinides, uranium or their oxides, into supercritical solvents containing an extractant are disclosed. The disclosed embodiments specifically include enhancing the extraction or dissolution efficiency with ultrasound. The present methods allow the direct, efficient dissolution of UO2 or other uranium oxides without generating any waste stream or by-products.
Reconnaissance geology of the Ghazzalah Quadrangle, sheet 26/41 A, Kingdom of Saudi Arabia
Quick, James E.
1983-01-01
The Ghazzalah quadrangle is located in the northern Precambrian shield of Saudi Arabia between lat 26?30' and 27?00' N. and long 41?00' and 41?30' E. The area is underlain by two lithologically distinct, Precambrian volcanosedimentary units and a wide range of dioritoid and granitoid plutonic intrusive rocks. The only Phanerozoic rocks consist of one outcrop of Tertiary(?) basalt and widespread but thin deposits of Quaternary detritus. The Banana greenstone, the oldest rock in the quadrangle, consists of intermediate volcanic and subvolcanic rocks and minor interbedded marble, which have been metamorphosed to greenschist-facies assemblages. Volcanic rocks mainly range in composition from basalt to andesite, and subvolcanic rocks consist of diorite and diabase. The Banana greenstone is unconformably overlain by silicic volcanic rocks and minor arkosic sandstone and breccia of the Hadn formation. Preservation of delicate volcanic textures suggests that the rocks have been only incipiently metamorphosed. Unpublished rubidium/strontium isotopic data for the Hadn formation suggest an age of 620 to 610 Ma. Intrusive rocks are separable according to their ages relative to the Hadn formation. Those that are unconformably overlain by the Hadn formation consist of hornblende quartz diorite and gabbro, which may be consanguineous with the Banana greenstone, and younger tonalite, biotite-hornblende granodiorite, syenogranite, and monzogranite. Plutons of monzogranite, alkali-feldspar g,ranite, syenbgranite, peralkaline granite, and hypabyssal intrusions of granophyre were probably emplaced during a period coincident with and (or) following Hadn volcanism. Uranium-lead and rubidium/strontium isotopic data for two plutons in the adjacent Al Qasr quadrangle suggest that plutonic activity persisted in the region until about 580 to 570 Ma. Faulting appears to postdate all of the plutonic rocks. The dominant faults belong to a northeast-trending system of right-lateral shears; a subordinant system consists of mainly north- to northwest-trending faults. The peralkaline-granite plutons underlying Jibal Ba'gham and Jibal ar Rumman have the most economic potential. Wadi samples from these areas show an anomalous concentrations of tin, lead, niobium, and yttrium. Localized, intense radiometric anomalies in the Ba'gham intrusive complex are associated with high concentrations )f thorium, uranium, andrare-earth elements.
Actinide removal from spent salts
Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.
2002-01-01
A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.
Comparison of heavy metals and uranium removal using adsorbent in soil
NASA Astrophysics Data System (ADS)
Choi, Jaeyoung; Yun, Hunsik
2017-04-01
This study investigates heavy metals (As, Ni, Zn, Cd, and Pb) and uranium removal onto geomaterials (limestone, black shale, and concrete) and biosorbents (Pseudomonas putida and starfish) from waste in soil. Geomaterials or biosorbents with a high capacity for heavy metals and uranium can be obtained and employed of with little cost. For investigating the neutralization capacity, the change in pH, Eh, and EC as a function of time was quantified. The adsorption of heavy metals and uranium by the samples was influenced by pH, and increased with increasing heavy metals and uranium concentrations. Dead cells adsorbed the largest quantity of all heavy metals than lother sorbents. The adsorption capacity followed the order: U(VI) > Pb > Cd > Ni. The results also suggest that bacterial membrane cells can be used successfully in the treatment of high strength metal-contaminated soil.
Investigations for the Recycle of Pyroprocessed Uranium
NASA Astrophysics Data System (ADS)
Westphal, B. R.; Price, J. C.; Chambers, E. E.; Patterson, M. N.
Given the renewed interest in uranium from the pyroprocessing of used nuclear fuel in a molten salt system, the two biggest hurdles for marketing the uranium are radiation levels and transuranic content. A radiation level as low as possible is desired so that handling operations can be performed directly with the uranium. The transuranic content of the uranium will affect the subsequent waste streams generated and, thus also should be minimized. Although the pyroprocessing technology was originally developed without regard to radiation and transuranic levels, adaptations to the process have been considered. Process conditions have been varied during the distillation and casting cycles of the process with increasing temperature showing the largest effect on the reduction of radiation levels. Transuranic levels can be reduced significantly by incorporating a pre-step in the salt distillation operation to remove a majority of the salt prior to distillation.
Seltzer, Michael D
2003-09-01
Laser ablation of pressed soil pellets was examined as a means of direct sample introduction to enable inductively coupled plasma mass spectrometry (ICP-MS) screening of soils for residual depleted uranium (DU) contamination. Differentiation between depleted uranium, an anthropogenic contaminant, and naturally occurring uranium was accomplished on the basis of measured 235U/238U isotope ratios. The amount of sample preparation required for laser ablation is considerably less than that typically required for aqueous sample introduction. The amount of hazardous laboratory waste generated is diminished accordingly. During the present investigation, 235U/238U isotope ratios measured for field samples were in good agreement with those derived from gamma spectrometry measurements. However, substantial compensation was required to mitigate the effects of impaired pulse counting attributed to sample inhomogeneity and sporadic introduction of uranium analyte into the plasma.
NASA Astrophysics Data System (ADS)
Fritschle, Tobias; Daly, J. Stephen; Whitehouse, Martin J.; McConnell, Brian; Buhre, Stephan
2014-05-01
Upper Palaeozoic sedimentary basins in Ireland overlie crystalline rocks within the Caledonian Iapetus Suture Zone. Beneath these basins, Lower Palaeozoic rocks, formed and deformed during the Caledonian orogenic cycle, were intruded by c. 420-390 Ma late-tectonic granites at various tectonic levels. These include the subsurface Kentstown and Glenamaddy granites discovered by mineral exploration drilling. While these granites comprise actual targets for Enhanced Geothermal System (EGS) exploration, several others likely exist based on geophysical considerations. In order to test the regional geothermal potential, the buried granites as well as analogue exposed rocks are being investigated geochemically. The geothermal potential of the intrusives depends on their heat production rate (HPR), which is calculated using rock density and concentrations of the heat producing elements (HPE) uranium, thorium and potassium. In spite of their close spacing and similar ages, the whole-rock geochemistry of the granites varies significantly, but with no obvious geographical control (Fritschle et al., 2013; 2014). The granite HPR values range from 1.4 μW/m3 for the Dhoon Granite (Isle of Man) to 4.9 μW/m3 for the Drogheda Granite (Ireland). This compares with the average HPR for a 'typical' granite of 2.7 μW/m3 (Goldstein et al., 2009). It is demonstrated that an elevated HPR of a granite can be related to enrichment in one of the HPE alone (e.g., uranium-enrichment in the Foxdale Granite (Isle of Man), or thorium-enrichment in the Drogheda Granite). Enrichment in HPE in a granite may occur due to different reasons including hydrothermal (re-) distribution of uranium, or the assimilation of thorium-rich wall-rocks. Hence, the distribution of the HPE in particular minerals, veins and source lithologies, along with the petrophysical characteristics of the sedimentary basins and the granites' petrogenesis, are currently being investigated as possible mechanisms controlling their heat production budget. Fritschle, T., Daly, J.S., Whitehouse, M.J., McConnell, B., Buhre, S., 2013. U-Pb Zircon Ages from Granites in the Iapetus Suture Zone in Ireland and the Isle of Man. Mineralogical Magazine, 77(5): 1115. Fritschle, T., Daly, J.S., Whitehouse, M.J., McConnell, B., Buhre, S., 2014. Zircon geochronology and Hf-O isotope geochemistry from granites in the Iapetus Suture Zone in Ireland and the Isle of Man. This issue. Goldstein, B.A., Hill, A.J., Long, A., Budd, A.R., Ayling, B., Malavazos, M., 2009. Hot rocks down under - evolution of a new energy industry. Geothermal Resources Council Transactions, 33: 185-198.
Caine, Jonathan S.; Johnson, Raymond H.; Wild, Emily C.
2011-01-01
The Schwartzwalder deposit is the largest known vein type uranium deposit in the United States. Located about eight miles northwest of Golden, Colorado it occurs in Proterozoic metamorphic rocks and was formed by hydrothermal fluid flow, mineralization, and deformation during the Laramide Orogeny. A complex brittle fault zone hosts the deposit comprising locally brecciated carbonate, oxide, and sulfide minerals. Mining of pitchblende, the primary ore mineral, began in 1953 and an extensive network of underground workings was developed. Mine dewatering, treatment of the effluent and its discharge into the adjacent Ralston Creek was done under State permit from about 1990 through about 2008. Mining and dewatering ceased in 2000 and natural groundwater rebound has filled the mine workings to a current elevation that is above Ralston Creek but that is still below the lowest ground level adit. Water in the 'mine pool' has concentrations of dissolved uranium in excess of 1,000 times the U.S. Environmental Protection Agency drinking-water standard of 30 milligrams per liter. Other dissolved constituents such as molybdenum, radium, and sulfate are also present in anomalously high concentrations. Ralston Creek flows in a narrow valley containing Quaternary alluvium predominantly derived from weathering of crystalline bedrock including local mineralized rock. Just upstream of the mine site, two capped and unsaturated waste rock piles with high radioactivity sit on an alluvial terrace. As Ralston Creek flows past the mine site, a host of dissolved metal concentrations increase. Ralston Creek eventually discharges into Ralston Reservoir about 2.5 miles downstream. Because of highly elevated uranium concentrations, the State of Colorado issued an enforcement action against the mine permit holder requiring renewed collection and treatment of alluvial groundwater. As part of planned mine reclamation, abundant data were collected and compiled into a report by Wyman and Effner (2007), which was to be used as a basis for eventual mine site closure. In 2010 the U.S. Geological Survey was asked by the State of Colorado to provide an objective and independent review of the Wyman and Effner (2007) report and to identify gaps in knowledge regarding the hydrogeology of the mine site. Key findings from the U.S. Geological Survey assessment include geological structural analysis indicating that although the primary uranium-hosting fault likely does not cross under Ralston Creek, many complex subsidiary faults do cross under Ralston Creek. It is unknown if any of these faults act as conduits for mine pool water to enter Ralston Creek. Reported bedrock permeabilities are low, but local hydraulic gradients are sufficient to potentially drive groundwater flow from the mine pool to the creek. Estimated average linear velocities for the full range of reported hydraulic conductivities indicate groundwater transit times from the mine pool to the creek on the order of a few months to about 3,800 years or 11 to 65 years using mean reported input values. These estimates do not account for geochemical reactions along any given flow path that may differentially enhance or retard movement of individual dissolved constituents. New reconnaissance data including 34S isotope and 234U/238U isotopic activity ratios show potentially distinctive signatures for the mine pool compared to local groundwater and Ralston Creek water above the mine site. Although the mine pool may be near an equilibrium elevation, evidence for groundwater recharge transients indicates inflow to the workings that are greater than outflow. There is not enough hydraulic head data adjacent to the mine workings to adequately constrain a final equilibrium elevation or to predict how several wet years in succession might affect variations in mine pool elevation. Although ground level adits are sealed with bulkheads, if the mine pool elevation were to rise slightly to the elevation of or abo
Cadigan, R.A.; Felmlee, J.K.
1982-01-01
Major radioactive mineral springs are probably related to deep zones of active metamorphism in areas of orogenic tectonism. The most common precipitate is travertine, a chemically precipitated rock composed chiefly of calcium carbonate, but also containing other minerals. The mineral springs are surface manifestations of hydrothermal conduit systems which extend downward many kilometers to hot source rocks. Conduits are kept open by fluid pressure exerted by carbon dioxide-charged waters rising to the surface propelled by heat and gas (CO2 and steam) pressure. On reaching the surface, the dissolved carbon dioxide is released from solution, and calcium carbonate is precipitated. Springs also contain sulfur species (for example, H2S and HS-), and radon, helium and methane as entrained or dissolved gases. The HS- ion can react to form hydrogen sulfide gas, sulfate salts, and native sulfur. Chemical salts and native sulfur precipitate at the surface. The sulfur may partly oxidize to produce detectable sulfur dioxide gas. Radioactivity is due to the presence of radium-226, radon-222, radium-228, and radon-220, and other daughter products of uranium-238 and thorium-232. Uranium and thorium are not present in economically significant amounts in most radioactive spring precipitates. Most radium is coprecipitated at the surface with barite. Barite (barium sulfate) forms in the barium-containing spring water as a product of the oxidation of sulfur species to sulfate ions. The relatively insoluble barium sulfate precipitates and removes much of the radium from solution. Radium coprecipitates to a lesser extent with manganese-barium- and iron-oxy hydroxides. R-mode factor analysis of abundances of elements suggests that 65 percent of the variance of the different elements is affected by seven factors interpreted as follows: (1) Silica and silicate contamination and precipitation; (2) Carbonate travertine precipitation; (3) Radium coprecipitation; (4) Evaporite precipitation; (5) Hydrous limonite precipitation and coprecipitated elements including uranium; (6) Rare earth elements deposited with detrital contamination (?); (7) Metal carbonate adsorption and precipitation. Economically recoverable minerals occurring at some localities in spring precipitates are ores of iron, manganese, sulfur, tungsten and barium and ornamental travertine. Continental radioactive mineral springs occur in areas of crustal thickening caused by overthrusting of crustal plates, and intrusion and metamorphism. Sedimentary rocks on the lower plate are trapped between the plates and form a zone of metamorphism. Connate waters, carbonate rocks and organic-carbon-bearing rocks react to extreme pressure and temperature to produce carbon dioxide, and steam. Fractures are forced open by gas and fluid pressures. Deep-circulating meteoric waters then come in contact with the reactive products, and a hydrothermal cell forms. When hot mineral-charged waters reach the surface they form the familiar hot mineral springs. Hot springs also occur in relation to igneous intrusive action or volcanism both of which may be products of the crustal plate overthrusting. Uranium and thorium in the sedimentary rocks undergoing metamorphism are sometimes mobilized, but mobilization is generally restricted to an acid hydrothermal environment; much is redeposited in favorable environments in the metamorphosed sediments. Radium and radon, which are highly mobile in both acid and alkaline aqueous media move upward into the hydrothermal cell and to the surface.
Innovative mathematical modeling in environmental remediation.
Yeh, Gour-Tsyh; Gwo, Jin-Ping; Siegel, Malcolm D; Li, Ming-Hsu; Fang, Yilin; Zhang, Fan; Luo, Wensui; Yabusaki, Steve B
2013-05-01
There are two different ways to model reactive transport: ad hoc and innovative reaction-based approaches. The former, such as the Kd simplification of adsorption, has been widely employed by practitioners, while the latter has been mainly used in scientific communities for elucidating mechanisms of biogeochemical transport processes. It is believed that innovative mechanistic-based models could serve as protocols for environmental remediation as well. This paper reviews the development of a mechanistically coupled fluid flow, thermal transport, hydrologic transport, and reactive biogeochemical model and example-applications to environmental remediation problems. Theoretical bases are sufficiently described. Four example problems previously carried out are used to demonstrate how numerical experimentation can be used to evaluate the feasibility of different remediation approaches. The first one involved the application of a 56-species uranium tailing problem to the Melton Branch Subwatershed at Oak Ridge National Laboratory (ORNL) using the parallel version of the model. Simulations were made to demonstrate the potential mobilization of uranium and other chelating agents in the proposed waste disposal site. The second problem simulated laboratory-scale system to investigate the role of natural attenuation in potential off-site migration of uranium from uranium mill tailings after restoration. It showed inadequacy of using a single Kd even for a homogeneous medium. The third example simulated laboratory experiments involving extremely high concentrations of uranium, technetium, aluminum, nitrate, and toxic metals (e.g., Ni, Cr, Co). The fourth example modeled microbially-mediated immobilization of uranium in an unconfined aquifer using acetate amendment in a field-scale experiment. The purposes of these modeling studies were to simulate various mechanisms of mobilization and immobilization of radioactive wastes and to illustrate how to apply reactive transport models for environmental remediation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Generic repository design concepts and thermal analysis (FY11).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, Robert; Dupont, Mark; Blink, James A.
2011-08-01
Reference concepts for geologic disposal of used nuclear fuel and high-level radioactive waste in the U.S. are developed, including geologic settings and engineered barriers. Repository thermal analysis is demonstrated for a range of waste types from projected future, advanced nuclear fuel cycles. The results show significant differences among geologic media considered (clay/shale, crystalline rock, salt), and also that waste package size and waste loading must be limited to meet targeted maximum temperature values. In this study, the UFD R&D Campaign has developed a set of reference geologic disposal concepts for a range of waste types that could potentially be generatedmore » in advanced nuclear FCs. A disposal concept consists of three components: waste inventory, geologic setting, and concept of operations. Mature repository concepts have been developed in other countries for disposal of spent LWR fuel and HLW from reprocessing UNF, and these serve as starting points for developing this set. Additional design details and EBS concepts will be considered as the reference disposal concepts evolve. The waste inventory considered in this study includes: (1) direct disposal of SNF from the LWR fleet, including Gen III+ advanced LWRs being developed through the Nuclear Power 2010 Program, operating in a once-through cycle; (2) waste generated from reprocessing of LWR UOX UNF to recover U and Pu, and subsequent direct disposal of used Pu-MOX fuel (also used in LWRs) in a modified-open cycle; and (3) waste generated by continuous recycling of metal fuel from fast reactors operating in a TRU burner configuration, with additional TRU material input supplied from reprocessing of LWR UOX fuel. The geologic setting provides the natural barriers, and establishes the boundary conditions for performance of engineered barriers. The composition and physical properties of the host medium dictate design and construction approaches, and determine hydrologic and thermal responses of the disposal system. Clay/shale, salt, and crystalline rock media are selected as the basis for reference mined geologic disposal concepts in this study, consistent with advanced international repository programs, and previous investigations in the U.S. The U.S. pursued deep geologic disposal programs in crystalline rock, shale, salt, and volcanic rock in the years leading up to the Nuclear Waste Policy Act, or NWPA (Rechard et al. 2011). The 1987 NWPA amendment act focused the U.S. program on unsaturated, volcanic rock at the Yucca Mountain site, culminating in the 2008 license application. Additional work on unsaturated, crystalline rock settings (e.g., volcanic tuff) is not required to support this generic study. Reference disposal concepts are selected for the media listed above and for deep borehole disposal, drawing from recent work in the U.S. and internationally. The main features of the repository concepts are discussed in Section 4.5 and summarized in Table ES-1. Temperature histories at the waste package surface and a specified distance into the host rock are calculated for combinations of waste types and reference disposal concepts, specifying waste package emplacement modes. Target maximum waste package surface temperatures are identified, enabling a sensitivity study to inform the tradeoff between the quantity of waste per disposal package, and decay storage duration, with respect to peak temperature at the waste package surface. For surface storage duration on the order of 100 years or less, waste package sizes for direct disposal of SNF are effectively limited to 4-PWR configurations (or equivalent size and output). Thermal results are summarized, along with recommendations for follow-on work including adding additional reference concepts, verification and uncertainty analysis for thermal calculations, developing descriptions of surface facilities and other system details, and cost estimation to support system-level evaluations.« less
Method for processing coal-enrichment waste with solid and volatile fuel inclusions
NASA Astrophysics Data System (ADS)
Khasanova, A. V.; Zhirgalova, T. B.; Osintsev, K. V.
2017-10-01
The method relates to the field of industrial heat and power engineering. It can be used in coal preparation plants for processing coal waste. This new way is realized to produce a loose ash residue directed to the production of silicate products and fuel gas in rotary kilns. The proposed method is associated with industrial processing of brown coal beneficiation waste. Waste is obtained by flotation separation of rock particles up to 13 mm in size from coal particles. They have in their composition both solid and volatile fuel inclusions (components). Due to the high humidity and significant rock content, low heat of combustion, these wastes are not used on energy boilers, they are stored in dumps polluting the environment.
10 CFR 960.3-1-2 - Diversity of rock types.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 4 2011-01-01 2011-01-01 false Diversity of rock types. 960.3-1-2 Section 960.3-1-2... NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-2 Diversity of rock types. Consideration... sites for characterization shall have different types of host rock. ...
10 CFR 960.3-1-2 - Diversity of rock types.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 4 2013-01-01 2013-01-01 false Diversity of rock types. 960.3-1-2 Section 960.3-1-2... NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-2 Diversity of rock types. Consideration... sites for characterization shall have different types of host rock. ...
10 CFR 960.3-1-2 - Diversity of rock types.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 4 2014-01-01 2014-01-01 false Diversity of rock types. 960.3-1-2 Section 960.3-1-2... NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-2 Diversity of rock types. Consideration... sites for characterization shall have different types of host rock. ...
10 CFR 960.3-1-2 - Diversity of rock types.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 4 2012-01-01 2012-01-01 false Diversity of rock types. 960.3-1-2 Section 960.3-1-2... NUCLEAR WASTE REPOSITORY Implementation Guidelines § 960.3-1-2 Diversity of rock types. Consideration... sites for characterization shall have different types of host rock. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maassen, L.W.; Bolivar, S.L.
1979-06-01
The Los Alamos Scientific Laboratory conducted a hydrogeochemical and stream sediment reconnaissance for uranium. Totals of 408 water and 1538 sediment samples were collected from 1802 locations over a 20 100-km/sup 2/ area at an average density of one location per 11 km/sup 2/. Water samples were collected from springs, wells, and streams; sediments samples were collected predominantly from streams, but also from springs. All water samples were analyzed for uranium and 12 other elements. Sediment samples were analyzed for uranium and 42 additional elements. The uranium concentrations in water samples range from below the detection limit of 0.02 ppBmore » to 194.06 ppB. The mean uranium concentration for all water types containing < 40 ppB uranium is 1.98 ppB. Six samples contained uranium concentrations > 40.00 ppB. Well waters have the highest mean uranium concentration; spring waters have the lowest. Clusters of water samples that contain anomalous uranium concentrations are delineated in nine areas. Sediments collected from the quadrangle have uranium concentrations that range between 0.63 ppM and 28.52 ppM, with a mean for all sediments of 3.53 ppM. Eight areas containing clusters of sediments with anomalous uranium concentrations are delineated. One cluster contains sample locations within the Ambrosia Lake uranium district. Five clusters of sediment samples with anomalous uranium concentrations were collected from streams that drain the Jemez volcanic field. Another cluster defines an area just northeast of Albuquerque where streams drain Precambrian rocks, predominantly granites, of the Sandia Mountains. The last cluster, consisting of spring sediments from Mesa Portales, was collected near the contact of the Tertiary Ojo Alamo sandstone with underlying Cretaceous sediments. Sediments from these springs exhibit some of the highest uranium values reported and are associated with high uranium/thorium ratios.« less
NASA Astrophysics Data System (ADS)
Charlet, Laurent; Alt-Epping, Peter; Wersin, Paul; Gilbert, Benjamin
2017-08-01
Clay rocks are low permeability sedimentary formations that provide records of Earth history, influence the quality of water resources, and that are increasingly used for the extraction or storage of energy resources and the sequestration of waste materials. Informed use of clay rock formations to achieve low-carbon or carbon-free energy goals requires the ability to predict the rates of diffusive transport processes for chemically diverse dissolved and gaseous species over periods up to thousands of years. We survey the composition, properties and uses of clay rock and summarize fundamental science challenges in developing confident conceptual and quantitative gas and solute transport models.
Radioactive equilibrium in ancient marine sediments
Breger, I.A.
1955-01-01
Radioactive equilibrium in eight marine sedimentary formations has been studied by means of direct determinations of uranium, radium and thorium. Alpha-particle counting has also been carried out in order to cross-calibrate thick-source counting techniques. The maximum deviation from radioactive equilibrium that has been noted is 11 per cent-indicating that there is probably equilibrium in all the formations analyzed. Thick-source alpha-particle counting by means of a proportional counter or an ionization chamber leads to high results when the samples contain less than about 10 p.p.m. of uranium. For samples having a higher content of uranium the results are in excellent agreement with each other and with those obtained by direct analytical techniques. The thorium contents that have been obtained correspond well to the average values reported in the literature. The uranium content of marine sediments may be appreciably higher than the average values that have been reported for sedimentary rocks. Data show that there is up to fourteen times the percentage of uranium as of thorium in the formations studied and that the percentage of thorium never exceeds that of uranium. While the proximity of a depositional environment to a land mass may influence the concentration of uranium in a marine sediment, this is not true with thorium. ?? 1955.
Nuclear system that burns its own wastes shows promise
NASA Technical Reports Server (NTRS)
Atchison, K.
1975-01-01
A nuclear fission energy system, capable of eliminating a significant amount of its radioactive wastes by burning them, is described. A theoretical investigation of this system conducted by computer analysis, is based on use of gaseous fuel nuclear reactors. Gaseous core reactors using a uranium plasma fuel are studied along with development for space propulsion.
Structure and thermodynamics of uranium-containing iron garnets
Guo, Xiaofeng; Navrotsky, Alexandra; Kukkadapu, Ravi K.; ...
2016-09-15
Use of crystalline garnet as a waste form phase appears to be advantageous for accommodating actinides from nuclear waste. Previous studies show that large amounts of uranium (U) and its analogues such as cerium (Ce) and thorium (Th) can be incorporated into the garnet structure. In this study, we synthesized U loaded garnet phases, Ca 3U xZr 2–xFe 3O 12 (x = 0.5–0.7), along with the endmember phase, Ca 3(Zr 2)SiFe 3+ 2O 12, for comparison. The oxidation states of U were determined by X-ray photoelectron and absorption spectroscopies, revealing the presence of mixed pentavalent and hexavalent uranium in themore » phases with x = 0.6 and 0.7. The oxidation states and coordination environments of Fe were measured using transmission 57Fe-Mössbauer spectroscopy, which shows that all iron is tetrahedrally coordinated Fe 3+. U substitution had a significant effect on local environments, the extent of U substitution within this range had a minimal effect on the structure, and unlike in the x = 0 sample, Fe exists in two different environments in the substituted garnets. The enthalpies of formation of garnet phases from constituent oxides and elements were first time determined by high temperature oxide melt solution calorimetry. The results indicate that these substituted garnets are thermodynamically stable under reducing conditions. Furthermore, our structural and thermodynamic analysis further provides explanation for the formation of natural uranium garnet, elbrusite-(Zr), and supports the potential use of Ca 3U xZr 2–xFe 3O 12 as viable waste form phases for U and other actinides.« less
Stuckless, J.S.; Bunting, J.A.; Nkomo, I.T.
1981-01-01
The Mount Boreas-type granite and spatially associated syenitic granitoid of Western Australia yield Pb/Pb ages of 2370+ or -100Ma and 2760+ or -210Ma, respectively. Th/Pb ages, although less precise, are concordant with these ages, and therefore the apparent ages are interpreted to be the crystallisation ages for these two units. U/Pb ages are variable and for the most part anomalously old, which suggests a Cainozoic uranium loss. However, this loss is generally small (<3mu g/g); therefore, neither granitoid in its fresh state provides a good source for nearby calcrete-hosted uranium deposits. The possibility remains that the Mount Boreas- type granite that has been completely weathered during the Tertiary could have been a source for the calcrete-type uranium deposits in W.A. Although the Mount Boreas-type granite is highly fractionated, it does not bear a strong geochemical imprint of a sedimentary precursor. This feature contrasts it with apparently fresh granitoids from other parts of the world that have lost large amounts of uranium (approx 20mu g/g) and are associated with large roll-type and other low temperature-type uranium deposits.-Authors
Statistical sampling of the distribution of uranium deposits using geologic/geographic clusters
Finch, W.I.; Grundy, W.D.; Pierson, C.T.
1992-01-01
The concept of geologic/geographic clusters was developed particularly to study grade and tonnage models for sandstone-type uranium deposits. A cluster is a grouping of mined as well as unmined uranium occurrences within an arbitrary area about 8 km across. A cluster is a statistical sample that will reflect accurately the distribution of uranium in large regions relative to various geologic and geographic features. The example of the Colorado Plateau Uranium Province reveals that only 3 percent of the total number of clusters is in the largest tonnage-size category, greater than 10,000 short tons U3O8, and that 80 percent of the clusters are hosted by Triassic and Jurassic rocks. The distributions of grade and tonnage for clusters in the Powder River Basin show a wide variation; the grade distribution is highly variable, reflecting a difference between roll-front deposits and concretionary deposits, and the Basin contains about half the number in the greater-than-10,000 tonnage-size class as does the Colorado Plateau, even though it is much smaller. The grade and tonnage models should prove useful in finding the richest and largest uranium deposits. ?? 1992 Oxford University Press.
Radiometric surveys in underground environment
NASA Astrophysics Data System (ADS)
Bochiolo, Massimo; Chiozzi, Paolo; Verdoya, Massimo; Pasquale, Vincenzo
2010-05-01
Due to their ability to travel through the air for several metres, gamma-rays emitted from natural radioactive elements can be successfully used in surveys carried out both with airborne and ground equipments. Besides the concentration of the radio-elements contained in rocks and soils and the intrinsic characteristics of the gamma-ray detector, the detected count rate depends on the solid angle around the spectrometer. On a flat outcrop, ground spectrometry detects the radiation ideally produced by a cylindrical mass of rock of about two metres in diameter and thickness of about half a meter. Under these geometrical conditions, the natural radioactivity can be easily evaluated. With operating conditions different from the standard ones, such as at the edge of an escarpment, the count rate halves because of the missing material, whereas in the vicinity of a rock wall the count rate will increase. In underground environment, the recorded count rate may even double and the in situ assessment of the concentration of radio-elements may be rather difficult, even if the ratios between the different radio-elements may not be affected. We tested the applicability of gamma-ray spectrometry for rapid assessment of the potential hazard levels related to radon and radiation dose rate in underground environment. A mine shaft, located in a zone of uranium enrichment in Liguria (Italy), has been investigated. A preliminary ground radiometric survey was carried out to define the extent of the ore deposit. Then, the radiometric investigation was focussed on the mine shaft. Due to rock mass above the shaft vault, the background gamma radiation can be considered of negligible influence on measurements. In underground surveys, besides deviations from a flat geometry, factors controlling radon exhalation, emanation and stagnation, such as fractures, water leakage and the presence of ventilation, should be carefully examined. We attempted to evaluate these control factors and collected a set of rock samples along the mine shaft to compare in situ results with high resolution gamma-ray analysis in the laboratory. The comparison points to a systematic overestimation (on the average, by a factor of two) of the uranium, thorium and potassium concentrations obtained with the portable apparatus. The bias between laboratory and field is slightly smaller for potassium and could be due only to deviation from standard geometric conditions. The largest differences occur in uranium concentrations, probably due also to the influence of the activity deriving from radon stagnation. The calculated radon flux depends on the radium specific activity, which, under the assumption of secular radioactive equilibrium, can be easily inferred from the uranium concentration, and the specific exhalation coefficient. Measurements of specific exhalation coefficient are difficult and only few studies have examined unaltered rocks in details. We estimated the values of this parameter by considering the degree of fracturing, width of fissures and evidence of percolating groundwater. In general, the coefficient increases from the entrance, where rocks are more massive, towards the shaft bottom, where closely spaced open fissures, often filled with percolating groundwater, might boost exhalation. As a whole, both potential radon flux and radiation dose values are relevant to radio protection rules.
U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1983, 1984, and 1985
Dinwiddie, G.A.; Trask, N.J.
1986-01-01
The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research is described according to whether it is related most directly to: (1) high-level and transuranic wastes, (2) low-level wastes, or (3) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, and to studies of regions or environments where waste-disposal sites might be located. A significant part of the activity is concerned with techniques and methods for characterizing disposal sites and studies of geologic and hydrologic processes related to the transport and (or) retention of waste radionuclides.
Assessment and evaluation of engineering options at a low-level radioactive waste storage site
NASA Astrophysics Data System (ADS)
Kanehiro, B. Y.; Guvanasen, V.
1982-09-01
Solutions to hydrologic and geotechnical problems associated with existing disposal sites were sought and the efficiency of engineering options that were proposed to improve the integrity of such sites were evaluated. The Weldon Spring site is generally like other low-level nuclear waste sites, except that the wastes are primarily in the form of residues and contaminated rubble from the processing of uranium and thorium ores rather than industrial isotopes or mill tailings.
Damage-plasticity model of the host rock in a nuclear waste repository
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koudelka, Tomáš; Kruis, Jaroslav, E-mail: kruis@fsv.cvut.cz
The paper describes damage-plasticity model for the modelling of the host rock environment of a nuclear waste repository. Radioactive Waste Repository Authority in Czech Republic assumes the repository to be in a granite rock mass which exhibit anisotropic behaviour where the strength in tension is lower than in compression. In order to describe this phenomenon, the damage-plasticity model is formulated with the help of the Drucker-Prager yield criterion which can be set to capture the compression behaviour while the tensile stress states is described with the help of scalar isotropic damage model. The concept of damage-plasticity model was implemented inmore » the SIFEL finite element code and consequently, the code was used for the simulation of the Äspö Pillar Stability Experiment (APSE) which was performed in order to determine yielding strength under various conditions in similar granite rocks as in Czech Republic. The results from the performed analysis are presented and discussed in the paper.« less
PYRAMID ROADLESS AREA, CALIFORNIA.
Armstrong, Augustus K.; Scott, Douglas F.
1984-01-01
A geologic and mineral survey was conducted in the Pyramid Roadless Area, California. The area contains mineral showings, but no mineral-resource potential was identified during our studies. Three granodiorite samples on the west side of the roadless area contained weakly anomalous concentrations of uranium. Two samples of roof-pendant rocks, one metasedimentary rock and one metavolcanic rock, contain low concentrations of copper, and of copper and molybdenum, respectively. Although none was identified, the geologic terrane is permissive for mineral occurrences and large-scale, detailed geologic mapping of the areas of metasedimentary and metavolcanic roof pendants in the Pyramid Roadless Area could define a mineral-resource potential for tungsten and precious metals.
Pierson, Charles Thomas; Green, Morris W.
1977-01-01
Geologic studies were made at all of the uranium mines and prospects in the Dakota Sandstone of Early(?) and Late Cretaceous age in the Gallup mining district, McKinley County, New Mexico. Dakota mines in the adjacent Ambrosia Lake mining district were visited briefly for comparative purposes. Mines in the eastern part of the Gallup district, and in the Ambrosia Lake district, are on the Chaco slope of the southern San Juan Basin in strata which dip gently northward toward the central part of the basin. Mines in the western part of the Gallup district are along the Gallup hogback (Nutria monocline) in strata which dip steeply westward into the Gallup sag. Geologic factors which controlled formation of the uranium deposits in the Dakota Sandstone are: (1) a source of uranium, believed to be uranium deposits of the underlying Morrison Formation of Late Jurassic age; (2) the accessibility to the Dakota of uranium-bearing solutions from the Morrison; (3) the presence in the Dakota of permeable sandstone beds overlain by impermeable carbonaceous shale beds; and (4) the occurrence within the permeable Dakota sandstone beds of carbonaceous reducing material as bedding-plane laminae, or as pockets of carbonaceous trash. Most of the Dakota uranium deposits are found in the lower part of the formation in marginal-marine distributary-channel sandstones which were deposited in the backshore environment. However, the Hogback no. 4 (Hyde) Mine (Gallup district) occurs in sandy paludal shale of the backshore environment, and another deposit, the Silver Spur (Ambrosia Lake district), is found in what is interpreted to be a massive beach or barrier-bar sandstone of the foreshore environment in the upper part of the Dakota. The sedimentary depositional environment most favorable for the accumulation of uranium is that of backshore areas lateral to main distributary channels, where levee, splay, and some distributary-channel sandstones intertongue with gray carbonaceous shales and siltstones of the well-drained swamp environment. Deposits of black carbonaceous shale which were formed in the poorly drained swamp deposits of the interfluve area are not favorable host rocks for uranium. The depositional energy levels of the various environments in which the sandstone and shale beds of the Dakota were deposited govern the relative favorability of the strata as uranium host rocks. In the report area, uranium usually occurs in carbonaceous sandstone deposited under low- to medium-energy fluvial conditions within distributary channels. A prerequisite, however, is that such sandstone be overlain by impermeable carbonaceous shale beds. Low- to medium-energy fluvial conditions result in the deposition of sandstone beds having detrital carbonaceous material distributed in laminae or in trash pockets on bedding planes. The carbonaceous laminae and trash pockets provide the necessary reductant to cause precipitation of uranium from solution. High-energy fluvial conditions result in the deposition of sandstones having little or no carbonaceous material included to provide a reductant. Very low energy swampy conditions result in carbonaceous shale deposits, which are generally barren of uranium because of their relative impermeability to migrating uranium-bearing solutions.
Depleted uranium startup of spent-fuel treatment operations at ANL-West
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, K.M.; Mariani, R.D.; Bonomo, N.L.
1995-12-31
At Argonne National Laboratory-West (ANL-West) there are several thousand kilograms of Experimental Breeder Reactor II (EBR-II) spent nuclear fuel. This fuel will be treated using an electrometallurgical process in the fuel conditioning facility (FCF) at ANL-West to produce stable waste forms for storage and disposal. The process equipment is undergoing testing with depleted uranium in preparation for irradiated fuel operations during the summer of 1995.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qualheim, B.J.
This report presents the results of the geochemical reconnaissance sampling in the Kingman 1 x 2 quadrangle of the National Topographical Map Series (NTMS). Wet and dry sediment samples were collected throughout the 18,770-km arid to semiarid area and water samples at available streams, springs, and wells. Neutron activation analysis of uranium and trace elements and other measurements made in the field and laboratory are presented in tabular hardcopy and microfiche format. The report includes five full-size overlays for use with the Kingman NTMS 1 : 250,000 quadrangle. Water sampling sites, water sample uranium concentrations, water-sample conductivity, sediment sampling sites,more » and sediment-sample total uranium and thorium concentrations are shown on the separate overlays. General geological and structural descriptions of the area are included and known uranium occurrences on this quadrangle are delineated. Results of the reconnaissance are briefly discussed and related to rock types in the final section of the report. The results are suggestive of uranium mineralization in only two areas: the Cerbat Mountains and near some of the western intrusives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bromfield, C.S.; Grauch, R.I.; Otton, J.K.
The Richfield Quadrangle in west-central Utah was evaluated to identify areas favorable for the occurrence of uranium deposits known or likely to contain 100 tons of uranium with an average grade of not less than 100 ppM U/sub 3/O/sub 8/. Geologic reconnaissance was made of all known environments thought to be favorable for uranium deposits, and a representative selection of uranium occurrences reported in the literature was visited. Geochemical analyses from rock and limited water samples were used in the evaluation. Preliminary and incomplete aeroradiometric data and hydrogeochemical and stream-sediment analyses arrived too late in the program to be field-checkedmore » or to be adequately analyzed for this report. Two areas favorable for uranium deposits were delineated: (1) volcanogenic deposits (class 500 to 599) in association with Miocene Mount Belknap rhyolite, and acidic plutons in the Marysvale Volcanic Field in the Antelope Range and Tushar Mountains; and (2) volcanogenic (class 500 to 599) and/or magmatic hydrothermal deposits (class 330) associated with Miocene high-silica high-alkali rhyolite tuffs, flows, and hypabyssal intrusives in volcanic or subvolcanic environments in the southern Wah Wah Mountains.« less
Mineral resources of the Adobe Town Wilderness Study Area, Sweetwater County, Wyoming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Loenen, R.E.; Hill, R.H.; Bankey, V.
1989-01-01
The Adobe Town Wilderness Study Area is in Southwest Wyoming about 60 miles southeast of Rock Springs. This study area consists of flat-lying sedimentary rock of Eocene age located near the center of the Washakie Basin. There are no identified resources. This study area has a high resource potential for undiscovered oil and gas, in over pressured Cretaceous and Tertiary sandstone reservoirs. This study area has a low resource potential for undiscovered oil shale, zeolites, uranium, coal, and metallic minerals.
Wainwright, A.J.; Tosdal, R.M.; Wooden, J.L.; Mazdab, F.K.; Friedman, R.M.
2011-01-01
Uranium-Pb (zircon) ages are linked with geochemical data for porphyry intrusions associated with giant porphyry Cu-Au systems at Oyu Tolgoi to place those rocks within the petrochemical framework of Devonian and Carboniferous rocks of southern Mongolia. In this part of the Gurvansayhan terrane within the Central Asian Orogenic Belt, the transition from Devonian tholeiitic marine rocks to unconformably overlying Carboniferous calc-alkaline subaerial to shallow marine volcanic rocks reflects volcanic arc thickening and maturation. Radiogenic Nd and Pb isotopic compositions (??Nd(t) range from +3.1 to +7.5 and 206Pb/204Pb values for feldspars range from 17.97 to 18.72), as well as low high-field strength element (HFSE) contents of most rocks (mafic rocks typically have <1.5% TiO2) are consistent with magma derivation from depleted mantle in an intra-oceanic volcanic arc. The Late Devonian and Carboniferous felsic rocks are dominantly medium- to high-K calc-alkaline and characterized by a decrease in Sr/Y ratios through time, with the Carboniferous rocks being more felsic than those of Devonian age. Porphyry Cu-Au related intrusions were emplaced in the Late Devonian during the transition from tholeiitic to calc-alkaline arc magmatism. Uranium-Pb (zircon) geochronology indicates that the Late Devonian pre- to syn-mineral quartz monzodiorite intrusions associated with the porphyry Cu-Au deposits are ~372Ma, whereas granodiorite intrusions that post-date major shortening and are associated with less well-developed porphyry Cu-Au mineralization are ~366Ma. Trace element geochemistry of zircons in the Late Devonian intrusions associated with the porphyry Cu-Au systems contain distinct Th/U and Yb/Gd ratios, as well as Hf and Y concentrations that reflect mixing of magma of distinct compositions. These characteristics are missing in the unmineralized Carboniferous intrusions. High Sr/Y and evidence for magma mixing in syn- to late-mineral intrusions distinguish the Late Devonian rocks associated with giant Cu-Au deposits from younger magmatic suites in the district. ?? 2010 Elsevier B.V.
Impact of Reprocessed Uranium Management on the Homogeneous Recycling of Transuranics in PWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youinou, Gilles J.
This article presents the results of a neutronics analysis related to the homogeneous recycling of transuranics (TRU) in PWRs with a MOX fuel using enriched uranium instead of depleted uranium. It also addresses an often, if not always, overlooked aspect related to the recycling of TRU in PWRs, namely the use of reprocessed uranium. From a neutronics point of view, it is possible to multi-recycle the entirety of the plutonium with or without neptunium and americium in a PWR fleet using MOX-EU fuel in between one third and two thirds of the fleet. Recycling neptunium and americium with plutonium significantlymore » decreases the decay heat of the waste stream between 100 to 1,000 years compared to those of an open fuel cycle or when only plutonium is recycled. The uranium present in MOX-EU used fuel still contains a significant amount of 235uranium and recycling it makes a major difference on the natural uranium needs. For example, a PWR fleet recycling its plutonium, neptunium and americium in MOXEU needs 28 percent more natural uranium than a reference UO 2 open cycle fleet generating the same energy if the reprocessed uranium is not recycled and 19 percent less if the reprocessed uranium is recycled back in the reactors, i.e. a 47 percent difference.« less
Impact of Reprocessed Uranium Management on the Homogeneous Recycling of Transuranics in PWRs
Youinou, Gilles J.
2017-05-04
This article presents the results of a neutronics analysis related to the homogeneous recycling of transuranics (TRU) in PWRs with a MOX fuel using enriched uranium instead of depleted uranium. It also addresses an often, if not always, overlooked aspect related to the recycling of TRU in PWRs, namely the use of reprocessed uranium. From a neutronics point of view, it is possible to multi-recycle the entirety of the plutonium with or without neptunium and americium in a PWR fleet using MOX-EU fuel in between one third and two thirds of the fleet. Recycling neptunium and americium with plutonium significantlymore » decreases the decay heat of the waste stream between 100 to 1,000 years compared to those of an open fuel cycle or when only plutonium is recycled. The uranium present in MOX-EU used fuel still contains a significant amount of 235uranium and recycling it makes a major difference on the natural uranium needs. For example, a PWR fleet recycling its plutonium, neptunium and americium in MOXEU needs 28 percent more natural uranium than a reference UO 2 open cycle fleet generating the same energy if the reprocessed uranium is not recycled and 19 percent less if the reprocessed uranium is recycled back in the reactors, i.e. a 47 percent difference.« less
NASA Astrophysics Data System (ADS)
Peterson, H.; Bay, D. S.; Beckie, R. D.; Mayer, K. U.; Klein, B.; Smith, L.
2009-12-01
An ongoing study at the Antamina Cu-Zn-Mo mine in Peru investigates the hydrology and geochemistry of heterogeneous waste rock at multiple scales. Three of five instrumented mesoscale experimental waste rock piles (36m X 36m X 10m high) were constructed between 2006 and 2008. The coarsest-grained Pile 1 exhibits rapid, intense response to rain and returns to residual saturation relatively quickly, suggesting a significant influence of preferential flow in addition to high-conductivity matrix flow. Pile 2, the finest-grained of the three piles, exhibits signals from rain events that are significantly delayed and muted in comparison to those from Pile 1. Except for in the finest size fractions, the particle size distribution of Pile 3 closely resembles that of Pile 2, yet Pile 3 responds to rain events more similarly to Pile 1 than Pile 2. The presence of large boulders in Pile 3 could facilitate preferential flow, either through surface flow effects across boulders or by contributing to the formation of unfilled void space acting as macropores at high infiltration rates. The rapid rain event response of Pile 3 could also be attributed to a silt-clay percentage that is similar to Pile 1, which is less than half of the silt-clay percentage observed in Pile 2 (i.e., ~3%, ~8.5%, and ~4% for Piles 1, 2 and 3, respectively). For each of the three piles, the pH of effluent collected from bottom lysimeters and internal pore water sampled with suction lysimeters has remained circumneutral, with notable maximum concentrations of 2.8 mg/L Zn from Pile 1, which is comprised of slightly reactive hornfels and marble waste rock; 13.4 mg/L Zn and 22.7 mg/L Mo from Pile 2, comprised of reactive intrusive waste rock; and 42.5 mg/L Zn from Pile 3, comprised of reactive exoskarn waste rock. Ongoing work includes analysis of two additional mixed-rock experimental piles, studies to investigate the role of microbes on metal release (Dockrey et al., this session), analysis of pore gas chemistry to aid in the characterization of weathering processes (Singurindy et al., this session), smaller scale barrel-sized field cells to assess specific material characteristics and scaling issues, complemented by laboratory column and mineralogical studies. Mechanistic modeling will be used to integrate the multiscale data and provide a framework for prediction at field scales.
Diehl, S.F.; Hageman, Phil L.; Smith, Kathleen S.; Herron, J.T.; Desborough, G.A.
2005-01-01
Two trenches were dug into the south Dinero mine-waste pile near Leadville, Colorado, to study the weathering of rock fragments and the mineralogic sources of metal contaminants in the surrounding wetland and Lake Fork Watershed. Water seeping from the base of the south Dinero waste-rock pile was pH 2.9, whereas leachate from a composite sample of the rock waste was pH 3.3. The waste pile was mostly devoid of vegetation, open to infiltration of precipitation, and saturated at the base because of placement in the wetland. The south mine-waste pile is composed of poorly sorted material, ranging from boulder-size to fine-grained rock fragments. The trenches showed both matrix-supported and clast-supported zones, with faint horizontal color banding, suggesting zonation of Fe oxides. Secondary minerals such as jarosite and gypsum occurred throughout the depth of the trenches. Infiltration of water and transport of dissolved material through the pile is evidenced by optically continuous secondary mineral deposits that fill or line voids. Iron-sulfate material exhibits microlaminations with shrinkage cracking and preferential dissolution of microlayers that evidence drying and wetting events. In addition to fluids, submicron-sized to very fine-grained particles such as jarosite are transported through channel ways in the pile. Rock fragments are coated with a mixture of clay, jarosite, and manganese oxides. Dissolution of minerals is a primary source of metals. Skeletal remnants of grains, outlined by Fe-oxide minerals, are common. Potassium jarosite is the most abundant jarosite phase, but Pb-and Ag-bearing jarosite are common. Grain-sized clusters of jarosite suggest that entire sulfide grains were replaced by very fine-grained jarosite crystals. The waste piles were removed from the wetland and reclaimed upslope in 2003. This was an opportunity to test methods to identify sources of acid and metals and metal transport processes within a waste pile. A series of entrapment ponds, lined with limestone rip rap, was created where the mine waste was once situated. A flooded adit discharges low-pH metal-bearing waters into the ponds. A white (Zn, Mn)-sulfate precipitate was observed in 2003 around the edges of the most distal pond.
NASA Astrophysics Data System (ADS)
Schwartz, Michael O.
2018-02-01
A novel CO2 sequestration project at Wallula, Washington, USA, makes ample use of the geoscientific data collection of the old nuclear waste repository project at the Hanford Site nearby. Both projects target the Columbia River Basalt (CRB). The new publicity for the old project comes at a time when the approach to high-level nuclear waste disposal has undergone fundamental changes. The emphasis now is on a technical barrier that is chemically compatible with the host rock. In the ideal case, the waste container is in thermodynamic equilibrium with the host-rock groundwater regime. The CRB groundwater has what it takes to represent the ideal case.
Davis, R.W.
1984-01-01
Among the concepts suggested for the deep disposal of high-level radioactive wastes from nuclear power reactors is the excavation of a repository in suitable crystalline rocks overlain by a thick sequence of sedimentary strata in a hydrogeologic environment that would effectively impede waste transport. To determine the occurrence of such environments in the Eastern United States, a review was made of available sources of published or unpublished information, using the following hydrogeologic criteria:The top of the crystalline basement rock is 1,000 to 4,000 feet below land surface.The crystalline rock is overlain by sedimentary rock whose lowermost part, at least, contains ground water with a dissolved-solids concentration of 10,000 milligrams per liter or more.Shale or clay confining beds overlie the saline-water aquifer.The flow system in the saline-water aquifer is known or determinable from presently available data.All of these hydrogeologic conditions occur in two general areas: (1) parts of Indiana, Ohio, and Kentucky, underlain by part of the geologic structure known as the Cincinnati arch, and (2) parts of the Atlantic Coastal Plain from Georgia to New Jersey.
National Uranium Resource Evaluation: Palestine Quadrangle, Texas and Louisiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGowen, M.; Basciano, J.; Fose, F.G. Jr.
1982-09-01
The uranium resource potential of the Palestine Quadrangle, Texas and Louisiana, was evaluated to a depth of 1500 m (5000 ft) using criteria established for the National Uranium Resource Evaluation program. Data derived from geochemical analyses of surface samples (substrate, soil, and stream sediment) in conjunction with hydrochemical data from water wells were used to evaluate geologic environments as being favorable or unfavorable for the occurrence of uranium deposits. Two favorable environments have been identified in the Palestine Quadrangle: potential deposits of modified Texas roll-type in fluvial channels and associated facies within the Yegua Formation, and potential occurrences along mineralizationmore » fronts associated with the Elkhart Graben and Mount Enterprise fault system. Unfavorable environments include: Cretaceous shales and limestones, Tertiary fine-grained marine sequences, Tertiary sandstone units that exhibit favorable host-rock characteristics but fail to show significant syngenetic or epigenetic mineralization, and Quaternary sands and gravels. Unevaluated units include the Woodbine Group (Upper Cretaceous), Jackson Group (Tertiary), and Catahoula Formation (Tertiary). The subsurface interval of the Jackson Group and Catahoula Formation contains depositional facies that may represent favorable environments; however, the evaluation of these units is inconclusive because of the general lack of shallow subsurface control and core material. The Woodbine Group, restricted to the subsurface except for a small exposure over Palestine Dome, occurs above 1500 m (5000 ft) in the northwest quarter of the quadrangle. The unit exhibits favorable host-rock characteristics, but the paucity of gamma logs and cores, as well as the lack of hydrogeochemical and stream-sediment reconnaissance data, makes evaluation of the unit difficult.« less
Forms of uranium associated to silica in the environment of the Nopal deposit (Mexico)
NASA Astrophysics Data System (ADS)
Allard, T.; Othmane, G.; Menguy, N.; Vercouter, T.; Morin, G.; Calas, G.; Fayek, M.
2011-12-01
The understanding of the processes that control the transfers of uranium in the environment is necessary for the safety assessement of nuclear waste repositories. In particular, several poorly ordered phases (e.g. Fe oxihydroxides) are expected to play an important role in trapping uranium from surface waters. Among them, natural systems containing amorphous silica are poorly documented. A former study from the environment of the Peny mine (France) showed the importance of silica in uranium speciation [1]. The Nopal uranium deposit is located in volcanic tuff from tertiary period. It hosted several hydrothermal alteration episodes responsible for clay minerals formation. A primary uranium mineralisation occurred in a breccia pipe, consisting in uraninite, subsequently altered in secondary uranium minerals among which several silicates. Eventually, opal was formed and coated uranyl silicates such as uranophane and weeksite [2], [3]. Opals also contain minor amounts of uranium. The Nopal deposit is still considered as a natural analogue of high level nuclear waste repository located in volcanic tuff. It may be used to reveal the low temperature conditions of trapping of uranium in systems devoid of iron oxides such as silica-containing ones. The aim of this study is then to determine the uranium speciation, and its possible complexity, associated to these opals that represent a late trapping episode. It will provide insights ranging from the micrometer scale of electron microscopies to the molecular scale provided by fluorescence spectroscopy. Three samples of green or yellow opals have been analysed by a combination of complementary tools including scanning electron microscopy (SEM) on cross-sections, transmission electron microscopy (TEM) on focused ion beam (FIB) films, cathodoluminescence and time-resolved laser fluorescence spectroscopy (TRLFS). Uranium speciation was found to be complex. We first evidence U-bearing microparticles of beta-uranophane Ca[(UO2)(SiO3OH)]2(H2O)5 and apatite Ca5(PO4)3(OH,Cl,F) containing minor amounts of uranium. Uranophane was formed prior to opal and coated by it. However the major part of uranium is concentrated in Ca-U-enriched zones with a Ca:U ratio of 1:1 and displaying botryoidal features. The exact nature of Ca-U species in these zones was not specified but TEM, cathodoluminescence and TRLFS analyses suggest the presence of Cam-(UO2)m-(O/OH/H2O)n complexes adsorbed or incorporated in opal. These results will be discussed in terms of chemical conditions that prevailed during U incorporation and compared to other known U-Si environmental systems, including the Peny system (France). [1] Allard, T. et al. (1999) Chem. Geol., 158, 81-103 [2] Calas, G. et al. (2008) Terra Nova, 20, 206-212. [3] Schindler, M. et al. (2010) Geochim. Cosmochim. Ac, 74, 187-202.
Reactive Transport of the Uranyl Ion in Soils, Sediments, and Groundwater Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zachara, John M.; Ilton, Eugene S.; Liu, Chongxuan
2013-05-16
Uranium is a ubiquitous trace component in rocks ranging from 1.2 to 1.3 µg g-1 in sedimentary rocks, 2.2 to 15 µg g-1 in granites, and 20 to 120 µg g-1 in phosphates (Langmuir, 1997; Plant et al., 1999). Uranium (U) is released to natural waters in dilute concentrations (generally < 10-7 mole L-1) from the weathering of these sources, with water concentrations in uraniferous geologic terrains, such as the southwestern U.S. (USGS, 2011), being higher (~ 10-6.5 mol L-1). Elevated water-borne concentrations are associated with the weathering of natural ore bodies [~10-6 mol L-1; e.g, (Payne and Airey, 2006)],more » the extraction and mining of U for armaments (Jiang and Aschner, 2009; WHO, 2001) and nuclear fuels [10-6 to 10-3 mol L-1; (Abdelouas et al., 1999)], and the disposal of waste solids and liquids from nuclear fuels reprocessing and arms production [~ 10-6 to 10-2 mol L-1; e.g., (Wan et al., 2009; Zachara et al., 2007)]. The form of U present in natural waters at high concentration is generally the uranyl ion [e.g., UO22+] which is quite soluble. Groundwater in many parts of the world contains dissolved U originating from natural and anthropogenic sources (ATSDR, 2011; EFSA, 2009). Low levels of dissolved U in drinking water are considered a health concern, causing renal and other effects (Kurttio et al., 2002; Kurttio et al., 2005; Limson Zamora et al., 1998; Nriagu et al., 2012; Raymond-Whish et al., 2007; Selden et al., 2009). The U.S. Environmental Protection Agency has established a regulatory drinking water standard of 30 µg L-1 (1.26 x 10-7 mol L-1) or 30 pCi L-1, whichever is exceeded first. The World Health Organization has recommended an even lower drinking water standard of 15 µg L-1 [6.3 x 10-8 mol L-1; (WHO, 2005)]. Human exposure to U through drinking water is expected to rise as world-wide reliance on groundwater sources increase (ESS, 2010).« less
NASA Astrophysics Data System (ADS)
Tran, E. L.; Teutsch, N.; Klein-BenDavid, O.; Weisbrod, N.
2017-12-01
When radionuclides are leaked into the subsurface due to engineered waste disposal container failure, the ultimate barrier to migration of radionuclides into local aquifers is sorption to the surrounding rock matrix and sediments, which often includes a bentonite backfill. The extent of this sorption is dependent on pH, ionic strength, surface area availability, radionuclide concentration, surface mineral composition, and solution chemistry. Colloidal-sized bentonite particles eroded from the backfill have been shown to facilitate the transport of radionuclides sorbed to them away from their source. Thus, sorption of radionuclides such as uranium and cesium to bentonite surfaces can be both a mobilization or retardation factor. Though numerous studies have been conducted to-date on sorption of radionuclides under low ionic strength and carbonate-poor conditions, there has been little research conducted on the behavior of radionuclides in high salinities and carbonate rich conditions typical of aquifers in the vicinity of some potential nuclear repositories. This study attempts to characterize the sorption properties of U(VI) and Cs to bentonite colloids under these conditions using controlled batch experiments. Results indicated that U(VI) undergoes little to no sorption to bentonite colloids in a high-salinity (TDS= 9000 mg/L) artificial groundwater. This lack of sorption was attributed to the formation of CaUO2(CO3)22- and Ca2UO2(CO3)3 aqueous ions which stabilize the UO22+ ions in solution. In contrast, Cs exhibited greater sorption, the extent to which was influenced greatly by the matrix water's ionic strength and the colloid concentration used. Surprisingly, when both U and Cs were together, the presence of U(VI) in solution decreased Cs sorption, possibly due to the formation of stabilizing CaUO2(CO3)22- anions. The implications of this research are that rather than undergoing colloid-facilitated transport, U(VI) is expected to migrate similarly to a conservative dissolved species under these conditions, and little retardation through sorption onto the surrounding rock matrix is predicted. Cs is expected to undergo more sorption, though U(VI) presence may have a mobilizing effect.
Evaluation and proposed study of potential ground-water supplies, Gallup area, New Mexico
Hiss, William L.
1975-01-01
The ground-water potential of 5 areas in central-western New Mexico within 85 miles (135 km) of Gallup, N. Mex. was evaluated by reviewing the published literature, inspecting aerial and space photographs, and interviewing ranchers and personnel employed by well-drilling and mineral-exploration companies by telephone. The San Andres Limestone and underlying Glorieta Sandstone of Permian age are the oldest aquifers capable of yielding water of a quality suitable for municipal use. Extreme local variations in hydraulic conductivity and water quality reflect a karstic topography developed on the San Andres Limestone prior to burial by Upper Triassic sediments. The San Andres Limestone and Glorieta Sandstone form an important aquifer in the Grants-Bluewater area where yields of as much as 2,200 gallons per minute (140 l/s) have been obtained. Yields from wells completed in the San Andres-Glorieta aquifer on the Chaco slope and in the Gallup sag-Mogollon slope on the northeast and southeast flanks, respectively, of the Zuni uplift will be much less than those prevailing in the Grants-Bluewater area. Water quality in the San Andres Limestone and Glorieta Sandstone deteriorates with distance away from the axis of the Zuni uplift. Sandstones of Triassic, Jurassic, and Cretaceous age are potential aquifers wherever they are present. Yields to wells tapping these aquifers are generally less than 200 gallons per minute (13 l/s) due to the relatively low hydraulic conductivity. Wells tapping alluvium of Late Cenozoic age along the Rio San Jose and Puerco River and interbedded volcanics and alluvium elsewhere in the area generally yield less than 100 gallons per minute (6 l/s) of water. Tributaries ,of the Rio San Jose that have eroded canyons into Paleozoic and Mesozoic rocks east of the Continental Divide and south of the eastern part of the Zuni uplift have been repeatedly displaced and (or) covered by Quaternary volcanic rocks. The exact location, extent, and depth of buried alluvium in the Late Tertiary valleys is unknown. Water enters the volcanic rocks as rainfall and snowmelt and probably passes quickly into and through, the underlying alluvium into Jurassic and Cretaceous strata. The Gallup Sandstone in the lower part of the Mesaverde Group and the San Andres Limestone and Glorieta Sandstone (combined) are potential sources of water in the North Plains-Malpais area. Sustained yields of 500 to 800 gallons per minute (30 to 50 l/s) can be expected from wells completed in the Gallup Sandstone of Cretaceous age in areas west and north of the Zuni uplift. Properly completed wells tapping the Dakota Sandstone of Cretaceous age and the Westwater Canyon Sandstone Member of the Morrison Formation of Jurassic age locally yield 100 to 250 gallons per minute (6 to 15 l/s) north and east of Gallup. Additional supplies of ground water could be developed from these aquifers. However, arrangements to purchase or lease the water would probably need to be made before these resources could be exploited. Approximately 3,000 gallons per minute (190 l/s) of ground water is being pumped from the Westwater Canyon Member of the Morrison Formation at two uranium mines located about 12 miles (20 km) northeast of Gallup in the Church Rock mining district. The water is pumped into settling ponds at the surface. Effluent from the ponds is allowed to flow into arroyos draining into the Puerco River. Some of the waste water will be used in an ore-processing mill that is expected to be constructed near the mines. However, additional waste water will probably be available from other mines that reportedly will be located in the same mining district. Water salvaged from the current mining operations and (or) pumped from abandoned uranium mines constitutes the most readily available and dependable source of new ground-water supplies for the city of Gallup. The water contains dissolved uranium but is otherwise of better quality than that now avai
CRUMP 2003 Selected Water Sample Results
Point locations and water sampling results performed in 2003 by the Church Rock Uranium Monitoring Project (CRUMP) a consortium of organizations (Navajo Nation Environmental Protection Agency, US Environmental Protection Agency, New Mexico Scientific Laboratory Division, Navajo Tribal Utility Authority and NM Water Quality Control Commission). Samples include general description of the wells sampled, general chemistry, heavy metals and aestheic parameters, and selected radionuclides. Here only six sampling results are presented in this point shapefile, including: Gross Alpha (U-Nat Ref.) (pCi/L), Gross Beta (Sr/Y-90 Ref.) (pCi/L), Radium-226 (pCi/L), Radium-228 (pCi/L), Total Uranium (pCi/L), and Uranium mass (ug/L). The CRUMP samples were collected in the area of Churchrock, NM in the Eastern AUM Region of the Navajo Nation.
Extractive waste exploitation towards the natural resource preservation: two Italian case studies
NASA Astrophysics Data System (ADS)
Antonella Dino, Giovanna; Rossetti, Piergiorgio; Biglia, Giulio; Mehta, Neha; Rodeghiero, Franco
2017-04-01
In 2012 the extractive industry represented the second most important sector in terms of waste quantities produced in the EU-27 (29% or 734 million tons). Italy was and still is one of the most important countries as for quarry and mine exploitation, with a consequent huge production of extractive waste (EW; represented by rock waste, operating residues and tailings), which are present in mining dumps (EW facilities). The EU guidelines about waste management aim to the exploitation, based on environmental protection, of any kind of material which can be recovered and recycled, with a consequent natural resources preservation. The decision n. 1600/2002/CE, establishing the VI Environment Action Program, pushes to the revision of the legislation on waste and to the development of specific actions for waste prevention and management. The decisive factors to achieve these results are the minimization of waste production and the recovery of as much waste as possible from the different productive cycles and from landfills, including EW facilities. According to this approach, "WASTE" must be considered as a "RESOURCE", and "LANDFILLS" as "NEW ORE BODIES". In the recent years several projects investigate the recovery of Critical Raw Materials (CRM) and SRM from landfills (Smart Ground, Prosum, etc.). The main objective of the present research, which is one of the activities linked to Smart Ground project (Grant Agreement No 641988), is the estimation of the SRM and CRM present in two selected Italian EW facilities: - Campello Monti mining site (NE Piedmont Region), important for Ni exploitation. The area is characterized by the presence of EW facilities, mainly represented by rock waste and operating residues. - Gorno mining site (N Lombardy Region), famous for Zn exploitation. The area is characterized by the presence of several EW facility areas, mainly represented by rock waste dumps and tailing basins. To appreciate if an EW facility can be considered as an "ore body" to exploit, it is necessary to follow several operative steps, which include: - characterization of the area and of the EW; - evaluation of dumps volume; - SRM estimation, on the basis of EW characterisation and evaluation of dumps volume, and after dressing activities in lab and in pilot plants; - determination of impacts connected to EW management and potential recovery. The comparison of different scenarios (landfilling activity Vs EW exploitation), together with characterisation phases, is useful to evaluate if waste exploitation is profitable or not. At present (December 2016) the phases connected to characterisation of the areas and of the EW have been completed. The first results arising from the sampling activities in Campello Monti show that operating residues are strongly enriched in Ni, Cu, Co; waste rocks in some areas are enriched in the same metals. PGE and Au analysis on the most enriched samples are in progress; the very first results show scattered Pd and Pt enrichments. As for Gorno, the first results arising from rock waste samples show a high content in Zn, often associated to Cd.
Reconnaissance for radioactive materials in northeastern United States during 1952
McKeown, Francis A.; Klemic, Harry
1953-01-01
Reconnaissance for radioactive materials was made in parts of Maine, New York, New Jersey, and Pennsylvania. The primary objective was to examine the iron ore deposits and associated rocks in the Adirondack Mountains of New York and the Highlands of New Jersey. In addition, several deposits known or reported to contain radioactive minerals were examined to delimit their extent. Most of the deposits examined are not significant as possible sources of radioactive elements and the data pertaining to them are summarized in table form. Deposits that do warrant more description than can be given in table form are: Benson Mines, St. Lawrence County, N. Y.; Rutgers mine, Clinton County, N. Y.; Mineville Mines, Essex County, N. Y.l Canfield phosphate mine, Morris County, N. J.; Mullgan quarry, Hunterdon County, N. J.; and the Chestnut Hill-Marble Mountain area, Pennsylvania and New Jersey. The Old Bed in the Mineville district is the only deposit that may be economically significant. Apatite from Old Bed ore contains as much as 4.9 percent total rare earth. 0.04 percent thorium, and 0.018 percent uranium. Magnetite ore at the Rutgers mine contains radioactive zircon and apatite. Radioactivity measurements of outcrops and dump material show that the ore contains from 0.005 to 0.010 percent equivalent uranium. One sample of lean magnetite ore contains 0.006 percent equivalent uranium. Garnet-rich zones in the Benson Mines magnetite deposit contain as much as 0.017 equivalent uranium. Most of the rock and ore, however, contains about 0.005 percent equivalent uranium. Available data indicate that the garnet-rich zones are enriched in radioactive allanite. A shear zone in the Kittatinny limestone of Cambrian age at the Mulligan quarry contains uraniferous material. Radioactivity anomalies elsewhere in the quarry and in adjacent fields indicate that there may be other uraniferous shear zones. Assays of samples and measurements of outcrop radioactivity indicate that the uranium content of these zones is low; samples contain from 0.008 to 0.068 percent equivalent uranium. The anomalies, however, may indicate greater concentrations of uranium below surficial leached zones. The Chestnut Hill-Marble Mountain area contains radioactivity anomalies for about 2 miles along the strike of the contact of pre-Cambrian Pickering gneiss and Franklin limestone formations. In places this contact is injected with pegmatite, which probably was the source of the radioelements. The most favorable area for further study is at Marble Mountain, where a nearly continuous anomaly extends for about 1500 feet. Samples from part of this area contain as much as 0.044 percent equivalent uranium and 0.005 percent uranium. Radioactive hematite and florencite, in which thorium may have substituted for cerium, are the only radioactive minerals observed in the Marble Mountain area.
NASA Astrophysics Data System (ADS)
Jeong, Sueng-Won; Lee, Choonoh; Cho, Yong-Chan; Wu, Ying-Hsin
2015-04-01
In Korea, approximately 5,000 metal mines are spread, but 50% of them are still abandoned without any proper remediation and cleanup. Summer heavy rainfall can result in the physicochemical modification of waste rock materials in the mountainous. From the geotechnical monitoring and field investigation, there are visible traces of mass movements every year. Soil erosion is one of severe phenomena in the study area. In particular, study area is located in the upper part of the Busan Metropolitan City and near the city's water supply. With respect to the supply of drinking water and maintenance of ecological balance, proper disposal of waste rock materials is required. For this reason, we examine the rheological properties of waste rock materials as a function of solid content using a ball- and vane-penetrated rheometer. In the flow curves, which are the relationship between the shear stress and shear rate of waste rock materials, we found that the soil samples exhibited a shear thinning beahivor regardless of solid content. The Bingham, Herschel-Bulkley, Power-law, and Papanastasiou models are used to determine the rheological properties. Assuming that the soil samples behaved as the viscoplastic behavior, the yield stress and viscosity are determined for different water contents. As a result, there are clear relationships between the solid content and rheological values (i.e., Bingham yield stress and plastic viscosity). From these relationships, the maximum and minimum of Bingham yield stresses are ranged from 100 to 2000 Pa. The debris flow mobilization is analysed using a 1D BING and 2D Debris flow models. In addition, the effect of wall slip and test apparatus are discussed.
Case for retrievable high-level nuclear waste disposal
Roseboom, Eugene H.
1994-01-01
Plans for the nation's first high-level nuclear waste repository have called for permanently closing and sealing the repository soon after it is filled. However, the hydrologic environment of the proposed site at Yucca Mountain, Nevada, should allow the repository to be kept open and the waste retrievable indefinitely. This would allow direct monitoring of the repository and maintain the options for future generations to improve upon the disposal methods or use the uranium in the spent fuel as an energy resource.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giaquinta, D.M.; Soderholm, L.; Yuchs, S.E.
1997-08-01
A successful solution to the problem of disposal and permanent storage of water soluble radioactive species must address two issues: exclusion of the radionuclides from the environment and the prevention of leaching from the storage media into the environment. Immobilization of radionuclides in clay minerals has been studied. In addition to the use of clays as potential waste forms, information about the interactions of radionuclides with clays and how such interactions affect their speciations is crucial for successful modeling of actinide-migration. X-ray absorption spectroscopy (XAS) is used to determine the uranium speciation in exchanged and surface-modified clays. The XAS datamore » from uranyl-loaded bentonite clay are compared with those obtained after the particle surfaces have been coated with alkylsilanes. These silane films, which render the surface of the clay hydrophobic, are added in order to minimize the ability of external water to exchange with the water in the clay interlayer, thereby decreasing the release rate of the exchanged-uranium species. Mild hydrothermal conditions are used in an effort to mimic potential geologic conditions that may occur during long-term radioactive waste storage. The XAS spectra indicate that the uranyl monomer species remain unchanged in most samples, except in those samples that were both coated with an alkylsilane and hydrothermally treated. When the clay was coated with an organic film, formed by the acidic deposition of octadecyltrimethoxysilane, hydrothermal treatment results in the formation of aggregated uranium species in which the uranium is reduced from U{sup VI} to U{sup IV}.« less
Final environmental impact statement. Waste Isolation Pilot Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-10-01
This volume contains the appendices for the Final Environmental Impact Statement for the Waste Isolation Pilot Plant (WIPP). Alternative geologic environs are considered. Salt, crystalline rock, argillaceous rock, and tuff are discussed. Studies on alternate geologic regions for the siting of WIPP are reviewed. President Carter's message to Congress on the management of radioactive wastes and the findings and recommendations of the interagency review group on nuclear waste management are included. Selection criteria for the WIPP site including geologic, hydrologic, tectonic, physicochemical compatability, and socio-economic factors are presented. A description of the waste types and the waste processing procedures aremore » given. Methods used to calculate radiation doses from radionuclide releases during operation are presented. A complete description of the Los Medanos site, including archaeological and historic aspects is included. Environmental monitoring programs and long-term safety analysis program are described. (DMC)« less
TENORM: Fertilizer and Fertilizer Production Wastes
Phosphate rock is used in the production of phosphate fertilizers. Due to its chemical properties, phosphate rock may contain significant quantities of naturally occurring radioactive materials (NORM).
Isotope hydrology of the Chalk River Laboratories site, Ontario, Canada
Peterman, Zell; Neymark, Leonid; King-Sharp, K.J.; Gascoyne, Mel
2016-01-01
This paper presents results of hydrochemical and isotopic analyses of groundwater (fracture water) and porewater, and physical property and water content measurements of bedrock core at the Chalk River Laboratories (CRL) site in Ontario. Density and water contents were determined and water-loss porosity values were calculated for core samples. Average and standard deviations of density and water-loss porosity of 50 core samples from four boreholes are 2.73 ± 12 g/cc and 1.32 ± 1.24 percent. Respective median values are 2.68 and 0.83 indicating a positive skewness in the distributions. Groundwater samples from four deep boreholes were analyzed for strontium (87Sr/86Sr) and uranium (234U/238U) isotope ratios. Oxygen and hydrogen isotope analyses and selected solute concentrations determined by CRL are included for comparison. Groundwater from borehole CRG-1 in a zone between approximately +60 and −240 m elevation is relatively depleted in δ18O and δ2H perhaps reflecting a slug of water recharged during colder climatic conditions. Porewater was extracted from core samples by centrifugation and analyzed for major dissolved ions and for strontium and uranium isotopes. On average, the extracted water contains 15 times larger concentration of solutes than the groundwater. 234U/238U and correlation of 87Sr/86Sr with Rb/Sr values indicate that the porewater may be substantially older than the groundwater. Results of this study show that the Precambrian gneisses at Chalk River are similar in physical properties and hydrochemical aspects to crystalline rocks being considered for the construction of nuclear waste repositories in other regions.
The major natural sources of airborne hydrogen fluoride (HF) are volcanic activity, ocean spray, and crustal weathering of fluoride-containing rocks. Anthropogenic sources include emissions from industrial operations such as aluminum and fluorocarbon production, and uranium proce...
Ridgley, Jennie L.; Light, Thomas D.
1983-01-01
The Chama River Canyon Wilderness and Roadless Area have a moderate to high potential for the presence of small deposits of copper with associated uranium and silver. These deposits, as yet undetected, would occur in the Permian Cutler Formation and in the lower part of the Triassic Chinle Formation, rock units that are, for the most part, present only in the subsurface. The presence of these deposits is inferred because such deposits occur in rocks of equivalent age in adjacent areas. Gypsum, of probable minable quality and quantity, occurs throughout the area. Oil and gas are possibly present in Pennsylvanian strata in the subsurface, although no drilling in the study area has tested this hypothesis. Other commodities, including noncopper-related uranium, kaolinite, chromium, vanadium, manganese, and bitumen, although present locally in anomalous concentrations, do not appear to constitute potential resources for these commodities.
Regeneration of pilot-scale ion exchange columns for hexavalent chromium removal.
Korak, Julie A; Huggins, Richard; Arias-Paic, Miguel
2017-07-01
Due to stricter regulations, some drinking water utilities must implement additional treatment processes to meet potable water standards for hexavalent chromium (Cr(VI)), such as the California limit of 10 μg/L. Strong base anion exchange is effective for Cr(VI) removal, but efficient resin regeneration and waste minimization are important for operational, economic and environmental considerations. This study compared multiple regeneration methods on pilot-scale columns on the basis of regeneration efficiency, waste production and salt usage. A conventional 1-Stage regeneration using 2 N sodium chloride (NaCl) was compared to 1) a 2-Stage process with 0.2 N NaCl followed by 2 N NaCl and 2) a mixed regenerant solution with 2 N NaCl and 0.2 N sodium bicarbonate. All methods eluted similar cumulative amounts of chromium with 2 N NaCl. The 2-Stage process eluted an additional 20-30% of chromium in the 0.2 N fraction, but total resin capacity is unaffected if this fraction is recycled to the ion exchange headworks. The 2-Stage approach selectively eluted bicarbonate and sulfate with 0.2 N NaCl before regeneration using 2 N NaCl. Regeneration approach impacted the elution efficiency of both uranium and vanadium. Regeneration without co-eluting sulfate and bicarbonate led to incomplete uranium elution and potential formation of insoluble uranium hydroxides that could lead to long-term resin fouling, decreased capacity and render the resin a low-level radioactive solid waste. Partial vanadium elution occurred during regeneration due to co-eluting sulfate suppressing vanadium release. Waste production and salt usage were comparable for the 1- and 2-Stage regeneration processes with similar operational setpoints with respect to chromium or nitrate elution. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagoner, J.L.
Wet and dry sediments were collected throughout the 18,500-km/sup 2/arid-to-semiarid region and water samples at available streams, springs, and wells. Samples were collected between August 1977 and January 1978. Results of neutron activation analyses of uranium and trace elements and other field and laboratory analyses are presented in tabular hardcopy and microfiche format. The report includes six full-size overlays for use with the Williams NTMS 1:250,000 quadrangle. Sediment samples are divided into five general groups according to the source rock from which the sediment was derived. Background uranium concentrations for the quadrangle are relatively low, ranging from 1.91 to 2.40more » ppM, with the highest associated with the Precambrian igneous and metamorphic complexes of the Basin and Range province. Uranium correlates best with the rare-earth elements and iron, scandium, titanium, and manganese. Known uranium occurrences are not readily identified by the stream sediment data.« less
10 CFR 60.17 - Contents of site characterization plan.
Code of Federal Regulations, 2012 CFR
2012-01-01
... assurance to data collection, recording, and retention. (3) Plans for the decontamination and... rule or order, requires. (b) A description of the possible waste form or waste package for the high... practicable) of the relationship between such waste form or waste package and the host rock at such area, and...
10 CFR 60.17 - Contents of site characterization plan.
Code of Federal Regulations, 2013 CFR
2013-01-01
... assurance to data collection, recording, and retention. (3) Plans for the decontamination and... rule or order, requires. (b) A description of the possible waste form or waste package for the high... practicable) of the relationship between such waste form or waste package and the host rock at such area, and...
10 CFR 60.17 - Contents of site characterization plan.
Code of Federal Regulations, 2014 CFR
2014-01-01
... assurance to data collection, recording, and retention. (3) Plans for the decontamination and... rule or order, requires. (b) A description of the possible waste form or waste package for the high... practicable) of the relationship between such waste form or waste package and the host rock at such area, and...
10 CFR 60.17 - Contents of site characterization plan.
Code of Federal Regulations, 2011 CFR
2011-01-01
... assurance to data collection, recording, and retention. (3) Plans for the decontamination and... rule or order, requires. (b) A description of the possible waste form or waste package for the high... practicable) of the relationship between such waste form or waste package and the host rock at such area, and...
Processing liquid organic wastes at the NNL Preston laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coppersthwaite, Duncan; Greenwood, Howard; Docrat, Tahera
2013-07-01
Organic compounds of various kinds have been used in the nuclear industry for numerous duties in uranium chemical, metal and ceramic processing plants. In the course of the various operations undertaken, these organic compounds have become contaminated with uranic material, either accidentally or as an inevitable part of the process. Typically, the chemical/physical form and/or concentration of the uranic content of the organics has prevented disposal. In order to address the issue of contaminated liquid organic wastes, the National Nuclear Laboratory (NNL) has developed a suite of treatments designed to recover uranium and to render the waste suitable for disposal.more » The developed processes are operated at industrial scale via the NNL Preston Laboratory Residue Processing Plant. The Oil Waste Leaching (OWL) Process is a fully industrialised process used for the treatment of contaminated oils with approximately 200 tonnes of uranium contaminated oil being treated to date. The process was originally developed for the treatment of contaminated tributyl phosphate and odourless kerosene which had been adsorbed onto sawdust. However, over the years, the OWL process has been refined for a range of oils including 'water emulsifiable' cutting oils, lubricating oils, hydraulic oils/fluids and 'Fomblin' (fully fluorinated) oils. Chemically, the OWL process has proved capable of treating solvents as well as oils but the highly volatile/flammable nature of many solvents has required additional precautions compared with those required for oil treatment. These additional precautions led to the development of the Solvent Treatment Advanced Rig (STAR), an installation operated under an inert atmosphere. STAR is a small 'module' (100 dm{sup 3} volume) which allows the treatment of both water miscible and immiscible solvents. This paper discusses the challenges associated with the treatment of liquid organic wastes and the process developments which have allowed a wide range of materials to be successfully treated. (authors)« less
NASA Astrophysics Data System (ADS)
Blake, J.; De Vore, C. L.; Avasarala, S.; Ali, A.; Roldan, C.; Bowers, F.; Spilde, M.; Artyushkova, K.; Cerrato, J.
2015-12-01
The chemical interactions, mobility, and plant uptake of uranium (U) near abandoned mine wastes was investigated along the Rio Paguate, adjacent to the Jackpile Mine, located in Laguna Pueblo, New Mexico. Elevated U concentrations in surface water adjacent to mine waste range from 30 to 710 μg/L seasonally and decrease to 5.77 to 10.0 μg/L at a wetland 4.5 kilometers downstream of the mine. Although U concentrations in stream water are elevated, aqua regia acid digestions performed on co-located stream bed and stream bank sediments reveal that there is limited U accumulation on sediments along the reach between the mine and wetland, with most sediment concentrations being near the 3 mg/kg crustal average. However, U concentrations in sediments in the wetland are 4 times the background concentrations in the area. Individual results from salt cedar roots, stems, and leaves collected along the river transect show higher U concentrations in the roots adjacent to the mine waste (20 and 55 mg/kg) and lower in the stems and leaves. Translocation values calculated below 1 are evident in many of the plant samples, suggesting that U root to shoot translocation is minimal and U is accumulating in the roots. Concentrations of U in salt cedar roots from downstream of the mine waste decrease to 15 mg/kg. X-ray photoelectron spectroscopy analysis on sediment samples adjacent to the mine waste show a 75:25% ratio of Fe(III) to Fe(II), which can have an effect on adsorption properties. Electron microprobe results suggest that the ore in this area is present as a uranium-phosphate phase. Our results suggest that dilution, uptake by plants, and U sorption to wetland sediments are the dominant factors that help to decrease the U concentrations downstream of the mine.
Determining the release of radionuclides from tank waste residual solids. FY2015 report
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, William D.; Hobbs, David T.
Methodology development for pore water leaching studies has been continued to support Savannah River Site High Level Waste tank closure efforts. For FY2015, the primary goal of this testing was the achievement of target pH and Eh values for pore water solutions representative of local groundwater in the presence of grout or grout-representative (CaCO 3 or FeS) solids as well as waste surrogate solids representative of residual solids expected to be present in a closed tank. For oxidizing conditions representative of a closed tank after aging, a focus was placed on using solid phases believed to be controlling pH andmore » E h at equilibrium conditions. For three pore water conditions (shown below), the target pH values were achieved to within 0.5 pH units. Tank 18 residual surrogate solids leaching studies were conducted over an E h range of approximately 630 mV. Significantly higher Eh values were achieved for the oxidizing conditions (ORII and ORIII) than were previously observed. For the ORII condition, the target Eh value was nearly achieved (within 50 mV). However, E h values observed for the ORIII condition were approximately 160 mV less positive than the target. E h values observed for the RRII condition were approximately 370 mV less negative than the target. Achievement of more positive and more negative E h values is believed to require the addition of non-representative oxidants and reductants, respectively. Plutonium and uranium concentrations measured during Tank 18 residual surrogate solids leaching studies under these conditions (shown below) followed the general trends predicted for plutonium and uranium oxide phases, assuming equilibrium with dissolved oxygen. The highest plutonium and uranium concentrations were observed for the ORIII condition and the lowest concentrations were observed for the RRII condition. Based on these results, it is recommended that these test methodologies be used to conduct leaching studies with actual Tank 18 residual solids material. Actual waste testing will include leaching evaluations of technetium and neptunium, as well as plutonium and uranium.« less
ROCK CREEK, IDAHO RURAL CLEAN WATER PROGRAM, 1987 ANNUAL PROGRESS REPORT
Goals of the Rock Creek, Idaho (17040212) Rural Clean Water Program are to significantly reduce the amount of sediment, sediment related pollutants, and animal waste discharging into Rock Creek. Weekly water quality sampling was done through the irrigation season (April - Octobe...
MANAGEMENT AND TREATMENT OF WATER FROM HARD-ROCK MINES {ENGINEERING ISSUE}
This Engineering Issue document on treatment of mining waters is a practical guide to understanding and selecting technologies for the environmental management of waste materials and effluents at hard-rock mines. For the purposes of this discussion, hard-rock mining primarily ref...
Advancing Performance Assessment for Disposal of Depleted Uranium at Clive Utah - 12493
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Paul; Tauxe, John; Perona, Ralph
2012-07-01
A Performance Assessment (PA) for disposal of depleted uranium (DU) waste has recently been completed for a potential disposal facility at Clive in northwestern Utah. For the purposes of this PA, 'DU waste' includes uranium oxides of all naturally-occurring isotopes, though depleted in U-235, varying quantities of other radionuclides introduced to the uranium enrichment process in the form of used nuclear reactor fuel (reactor returns), and decay products of all of these radionuclides. The PA will be used by the State of Utah to inform an approval decision for disposal of DU waste at the facility, and will be availablemore » to federal regulators as they revisit rulemaking for the disposal of DU. The specific performance objectives of the Clive DU PA relate to annual individual radiation dose within a 10,000-year performance period, groundwater concentrations of specific radionuclides within a 500-year compliance period, and site stability in the longer term. Fate and transport processes that underlie the PA model include radioactive decay and ingrowth, diffusion in gaseous and water phases, water advection in unsaturated and saturated zones, transport caused by plant and animal activity, cover naturalization, natural and anthropogenic erosion, and air dispersion. Fate and transport models were used to support the dose assessment and the evaluation of groundwater concentrations. Exposure assessment was based on site-specific scenarios, since the traditional human exposure scenarios suggested by DOE and NRC guidance are unrealistic for this site. Because the U-238 in DU waste reaches peak radioactivity (secular equilibrium) after 2 million years (My) following its separation, the PA must also evaluate the impact of climate change cycles, including the return of pluvial lakes such as Lake Bonneville. The first draft of the PA has been submitted to the State of Utah for review. The results of this preliminary analysis indicate that doses are very low for the site-specific receptors for the 10,000-year compliance period. This is primarily because DU waste is not highly radioactive within this time frame, the DU waste is assumed to be buried beneath zones exposed by erosion, groundwater concentrations of DU waste constituents do not exceed groundwater protection limits with in the 500-year compliance period, and the first deep lake occurrence will disperse DU waste across a large area, and will ultimately be covered by lake-derived sediment. A probabilistic PA model was constructed that considered DU waste and decay product doses to site-specific receptors for a 10,000-yr performance period, as well as deep-time effects. The quantitative results are summarized in Table VII. Doses (as TEDE) are always less than 5 mSv in a year, and doses to the offsite receptors are always much less than 0.25 mSv in a year. Groundwater concentrations of Tc-99 are always less than its GWPL except when the Tc-99 contaminated waste is disposed below grade. Even in this case, the median groundwater concentration is only 4.18 Bq/L (113 pCi/L), which is more than one order of magnitude less than the GWPL for Tc-99. The results overall suggest that there are disposal configurations that can be used to dispose of the proposed quantities of DU waste that are adequately protective of human health. (authors)« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... agents, radioactive materials, chemicals, biological and laboratory waste, wreck or discarded equipment, rock, sand, excavation debris, industrial, municipal, agricultural, and other waste, but such term does... matter of any kind or description, including, but not limited to, dredged material, solid waste...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, Gregory
This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the conditionmore » that the total uranium-233 ( 233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).« less
Hydrogeochemical and stream sediment detailed geochemical survey for Edgemont, South Dakota; Wyoming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butz, T.R.; Dean, N.E.; Bard, C.S.
1980-05-31
Results of the Edgemont detailed geochemical survey are reported. Field and laboratory data are presented for 109 groundwater and 419 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the survey area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Groundwaters containing greater than or equal to 7.35 ppB uranium are present in scattered clusters throughout the area sampled. Most of these groundwaters are from wells drilled where the Inyan Kara Group is exposed at themore » surface. The exceptions are a group of samples in the northwestern part of the area sampled and south of the Dewey Terrace. These groundwaters are also produced from the Inyan Kara Group where it is overlain by the Graneros Group and alluvium. The high uranium groundwaters along and to the south of the terrace are characterized by high molybdenum, uranium/specific conductance, and uranium/sulfate values. Many of the groundwaters sampled along the outcrop of the Inyan Kara Group are near uranium mines. Groundwaters have high amounts of uranium and molybdenum. Samples taken downdip are sulfide waters with low values of uranium and high values of arsenic, molybdenum, selenium, and vanadium. Stream sediments containing greater than or equal to 5.50 ppM soluble uranium are concentrated in basins draining the Graneros and Inyan Kara Groups. These values are associated with high values for arsenic, selenium, and vanadium in samples from both groups. Anomalous values for these elements in the Graneros Group may be caused by bentonite beds contained in the rock units. As shown on the geochemical distribution plot, high uranium values that are located in the Inyan Kara Group are almost exclusively draining open-pit uranium mines.« less
Concentration of Uranium Radioisotopes in Albanian Drinking Waters Measured by Alpha Spectrometry
NASA Astrophysics Data System (ADS)
Bylyku, Elida; Cfarku, Florinda; Deda, Antoneta; Bode, Kozeta; Fishka, Kujtim
2010-01-01
Uranium is a radioactive material that is frequently found in rocks and soil. When uranium decays, it changes into different elements that are also radioactive, including radon, a gas that is known to cause a lung cancer. The main concern with uranium in drinking water is harm to the kidneys. Public water systems are required to keep uranium levels at or below 500 mBq per liter to protect against kidney damage. Such an interest is needed due to safety, regulatory compliance and disposal issue for uranium in the environment since uranium is included as an obligatory controlled radionuclide in the European Legislation (Directive 98/83 CE of Council of 03.11.1998). The aim of this work is to measure the levels of uranium in drinking and drilled well waters in Albania. At first each sample was measured for total Alpha and total Beta activity. The samples with the highest levels of total alpha activity were chosen for the determination of uranium radioisotopes by alpha spectrometry. A radiochemical procedure using extraction with TBP (Tri-Butyl-Phosphate) is used in the presence of U232 as a yield tracer. Thin sources for alpha spectrometry are prepared by electrodepositing on to stainless steel discs. The results of the U238 activity measured in the different samples, depending from their geological origin range between 0.55-13.87 mBq/l. All samples measured results under the European Directive limits for U238 (5-500 mBq/1), Dose Coefficients according to Directive 96/29 EURATOM.
Proceedings of the scientific visit on crystalline rock repository development.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mariner, Paul E.; Hardin, Ernest L.; Miksova, Jitka
2013-02-01
A scientific visit on Crystalline Rock Repository Development was held in the Czech Republic on September 24-27, 2012. The visit was hosted by the Czech Radioactive Waste Repository Authority (RAWRA), co-hosted by Sandia National Laboratories (SNL), and supported by the International Atomic Energy Agency (IAEA). The purpose of the visit was to promote technical information exchange between participants from countries engaged in the investigation and exploration of crystalline rock for the eventual construction of nuclear waste repositories. The visit was designed especially for participants of countries that have recently commenced (or recommenced) national repository programmes in crystalline host rock formations.more » Discussion topics included repository programme development, site screening and selection, site characterization, disposal concepts in crystalline host rock, regulatory frameworks, and safety assessment methodology. Interest was surveyed in establishing a %E2%80%9Cclub,%E2%80%9D the mission of which would be to identify and address the various technical challenges that confront the disposal of radioactive waste in crystalline rock environments. The idea of a second scientific visit to be held one year later in another host country received popular support. The visit concluded with a trip to the countryside south of Prague where participants were treated to a tour of the laboratory and underground facilities of the Josef Regional Underground Research Centre.« less
SAN PEDRO PARKS WILDERNESS, NEW MEXICO.
Santos, Elmer S.; Weisner, Robert C.
1984-01-01
The San Pedro Parks Wilderness occupies 62. 7 sq mi of the Santa Fe National Forest in north-central New Mexico. Several copper mines, many copper prospects, and a few uranium prospects occur in sedimentary units in the vicinity of the wilderness. These units, where they extend into the wilderness, constitute only a small volume of rock and, judging from analyses of samples and from field observations, are devoid of copper and uranium concentration. Prospects on several of about 65 mining claims within the wilderness revealed concentrations of manganese or barite but only in volumes too small to be considered a demonstrated resource.
NASA Technical Reports Server (NTRS)
Conel, J. E.
1983-01-01
NS-001 multispectral scanner data (0.45-2.35 micron) combined as principal components were utilized to map distributions of surface oxidation/weathering in Precambrian granitic rocks at Copper Mountain, Wyoming. Intense oxidation is found over granitic outcrops in partly exhumed pediments along the southern margin of the Owl Creek uplift, and along paleodrainages higher in the range. Supergene(?) uranium mineralization in the granites is localized beneath remnant Tertiary sediments covering portions of the pediments. The patterns of mineralization and oxidation are in agreement, but the genetic connections between the two remain in doubt.
NASA Astrophysics Data System (ADS)
Zhang, Long; Chen, Zhenyu; Li, Xiaofeng; Li, Shengrong; Santosh, M.; Huang, Guolong
2018-05-01
The Zhuguangshan complex, composed of Caledonian, Indosinian, and Yanshanian granites, and Cretaceous mafic dykes, is one of the most important granite-hosted uranium producers in South China. Here we present LA-ICP-MS zircon U-Pb and hornblende 40Ar/39Ar geochronology and whole-rock and biotite geochemistry for the granites in this complex to evaluate the magmatism and its constraints on uranium mineralization. Samples collected from the Fuxi, Youdong, Longhuashan, Chikeng, Qiling, and Sanjiangkou intrusions yield zircon weighted 206Pb/238U ages of 426.7 ± 5.4 Ma, 226.4 ± 3.5 Ma, 225.0 ± 2.7 Ma, 152.2 ± 3.0 Ma, 153.9 ± 2.1 Ma, and 155.2 ± 2.1 Ma, respectively. A new Ar-Ar dating of the hornblende of the diabase from the Changjiang uranium ore field yields a plateau age of 145.1 ± 1.5 Ma. These results coupled with published geochronological data indicate that six major magmatic events occurred in the study area at 420-435 Ma, 225-240 Ma, 150-165 Ma, 140 Ma, 105 Ma, and 90 Ma. Both U-bearing and barren granites occur in this complex, and they display differences in whole-rock and biotite geochemistry. The barren granites show higher Al2O3, CaO, TFMM, Rb, Zr, Ba, SI, Mg#, (La/Yb)N, and Eu/Eu*, but lower SiO2, ALK, Rb, DI, Rb/Sr, and TiO2/MgO than those of the U-bearing granites. Biotites in the U-bearing granites are close to the Fe-rich siderophyllite-annite end member with Fe/(Fe + Mg) ratios higher than 0.66, whereas those in the barren granites are relatively close to the Mg-rich eastonite-phlogopite end member with Fe/(Fe + Mg) ratios <0.66. The U-bearing granites were mainly derived from the partial melting of pelitic sedimentary source, whereas the psammitic source generated the barren granites. In addition, the barren granites show higher TFMM, Ba, and Eu/Eu* but lower SiO2, Rb/Sr and Al2O3/TiO2 ratios with higher zircon saturation temperatures relative to the U-bearing granites. These results indicate that the geochemical compositions of the U-bearing and barren granites are dictated not only by the compositions of source rocks but also the physicochemical conditions of partial melting. Our study suggests that these two factors are also the major factors that control uranium ore potential of the granites in the Zhuguangshan complex. The geochemical variations of U-bearing and barren granites can serve as a potential detector for granite-hosted uranium deposits.
Natural geochemical analogues of the near field of high-level nuclear waste repositories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apps, J.A.
1995-09-01
United States practice has been to design high-level nuclear waste (HLW) geological repositories with waste densities sufficiently high that repository temperatures surrounding the waste will exceed 100{degrees}C and could reach 250{degrees}C. Basalt and devitrified vitroclastic tuff are among the host rocks considered for waste emplacement. Near-field repository thermal behavior and chemical alteration in such rocks is expected to be similar to that observed in many geothermal systems. Therefore, the predictive modeling required for performance assessment studies of the near field could be validated and calibrated using geothermal systems as natural analogues. Examples are given which demonstrate the need for refinementmore » of the thermodynamic databases used in geochemical modeling of near-field natural analogues and the extent to which present models can predict conditions in geothermal fields.« less
MADISON ROADLESS AREA, MONTANA.
Simons, Frank S.; Lambeth, Robert H.
1984-01-01
A mineral-resource survey of the Madison Roadless Area in the Madison Range of southwestern Montana was made. The Madison Roadless Area has demonstrated resources of about 93,000 tons of sillimanite rock at the Placer Creek deposit and of about 83,000 tons of asbestos rock at the Karst deposit. The roadless area also has areas of substantiated phosphate resource potential; much of the phosphate is in thin deeply buried beds. An area near the south edge of the roadless area has a probable resource potential for copper and silver. The concentration of uranium-rich stream-sediment samples in the southwest part of the roadless area suggests that a further attempt to identify the source rocks might be justified.
Reconnaissance of radioactive rocks of Maine
Nelson, John M.; Narten, Perry F.
1951-01-01
The state of Maine was traversed with car-mounted Geiger-Mueller equipment in the late summer of 1948 and the radioactivity of approximately 4,600 miles of road was logged. All samples were analyzed, both in the field by comparing the radioactivity of each sample to the radioactivity of a stranded measured with a simple scaling modification of a portable counter, and in the Geological Survey’s Trace Elements Section Washington Laboratory. Differences between both types of analyses were negligible. The maximum equivalent uranium content of the most radioactive rocks thus analyzed was 0.008 percent. A 1,400-square-mile abnormally radioactive province in southwestern Maine was outlined. The outcrop data obtained from car traversing are evaluated statistically. Cumulative frequency distribution curves are drawn to show the distribution of outcrops at various levels of radioactivity, and straight-line extensions are made to show to maximum probable grade for various rock types and areas in Maine. A maximum grade of 0.055 percent equivalent uranium is thus predicted for the entire state. This prediction necessarily is a broad generalization because large areas of Main are inaccessible for car traversing. A concept of evaluation of an area for possible mineral deposits is proposed on the basis of lithology, and observed and indicated ranges in grade.
From rum jungle to Wismut-reducing the environmental impact of uranium mining and milling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuk, W.M.; Jeffree, R.A.; Levins, D.M.
1994-12-31
Australia has a long history of uranium mining. In the early days, little attention was given to environmental matters and considerable pollution occurred. Ansto has been involved in rehabilitation of a number of the early uranium mining sites, from Rum Jungle in Australia`s Northern Territory to Wismut in Germany, and is working with current producers to minimise the environmental impact of their operations. Ansto`s expertise is extensive and includes, inter alia, amelioration of acid mine drainage, radon measurement and control, treatment of mill wastes, management of tailings, monitoring of seepage plumes, mathematical modelling of pollutant transport and biological impacts inmore » a tropical environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haruna, I. V., E-mail: vela_hi@yahoo.co.uk; Orazulike, D. M.; Ofulume, A. B.
Zing-Monkin area, located in the northern part of Adamawa Massif, is underlain by extensive exposures of moderately radioactive granodiorites, anatectic migmatites, equigranular granites, porphyritic granites and highly radioactive fine-grained granites with minor pegmatites. Selected major and trace element petrochemical investigations of the rocks show that a progression from granodiorite through migmatite to granites is characterised by depletion of MgO, CaO, Fe{sub 2}O{sub 3,} Sr, Ba, and Zr, and enrichment of SiO{sub 2} and Rb. This trend is associated with uranium enrichment and shows a chemical gradation from the more primitive granodiorite to the more evolved granites. Electron microprobe analysis showsmore » that the uranium is content in uranothorite and in accessories, such as monazite, titanite, apatite, epidote and zircon. Based on petrochemical and mineralogical data, the more differentiated granitoids (e.g., fine-grained granite) bordering the Benue Trough are the immediate source of the uranium prospect in Bima Sandstone within the Trough. Uranium was derived from the granitoids by weathering and erosion. Transportation and subsequent interaction with organic matter within the Bima Sandstone led to precipitation of insoluble secondary uranium minerals in the Benue Trough.« less
Improving gross count gamma-ray logging in uranium mining with the NGRS probe
NASA Astrophysics Data System (ADS)
Carasco, C.; Pérot, B.; Ma, J.-L.; Toubon, H.; Dubille-Auchère, A.
2018-01-01
AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration measurement by means of gamma ray logging. The determination of uranium concentration in boreholes is performed with the Natural Gamma Ray Sonde (NGRS) based on a NaI(Tl) scintillation detector. The total gamma count rate is converted into uranium concentration using a calibration coefficient measured in concrete blocks with known uranium concentration in the AREVA Mines calibration facility located in Bessines, France. Until now, to take into account gamma attenuation in a variety of boreholes diameters, tubing materials, diameters and thicknesses, filling fluid densities and compositions, a semi-empirical formula was used to correct the calibration coefficient measured in Bessines facility. In this work, we propose to use Monte Carlo simulations to improve gamma attenuation corrections. To this purpose, the NGRS probe and the calibration measurements in the standard concrete blocks have been modeled with MCNP computer code. The calibration coefficient determined by simulation, 5.3 s-1.ppmU-1 ± 10%, is in good agreement with the one measured in Bessines, 5.2 s-1.ppmU-1. Based on the validated MCNP model, several parametric studies have been performed. For instance, the rock density and chemical composition proved to have a limited impact on the calibration coefficient. However, gamma self-absorption in uranium leads to a nonlinear relationship between count rate and uranium concentration beyond approximately 1% of uranium weight fraction, the underestimation of the uranium content reaching more than a factor 2.5 for a 50 % uranium weight fraction. Next steps will concern parametric studies with different tubing materials, diameters and thicknesses, as well as different borehole filling fluids representative of real measurement conditions.
Paschoa, A S
1998-03-01
The immense volume of naturally occurring radioactive materials (NORM) wastes produced annually by extracting industries throughout the world deserves to come to the attention of international and national environmental protection agencies and regulatory bodies. Although a great deal of work has been done in the fields of radiation protection and remedial actions concerning uranium and other mines, the need to dispose of diffuse NORM wastes will have environmental and regulatory implications that thus far are not fully appreciated. NORM wastes constitute, by and large, unwanted byproducts of industrial activities as diverse as thorium and uranium milling, niobium, tin and gold mining extraction, water treatment, and the production of oil, gas, phosphate fertilizer, coal fire and aluminum. The volumes of NORM wastes produced annually could reach levels so high that the existing low level radioactive waste (LLRW) facilities would be readily occupied by NORM if controlled disposal procedures were not adopted. On the other hand, NORM cannot just be ignored as being below radiological concern (BRC) or lower than exempt concentration levels (ECLs), because sometimes NORM concentrations reach levels as high as 1 x 10(3) kBq/kg for 226Ra, and not much less for 228Ra. Unfortunately, thus far there is not enough information available concerning NORM wastes in key industries, though the international scientific community has been concerned, for a long time now, with technologically enhanced natural radiation exposures (TENRE). This article is written with the intention of examining, to the extent possible, the potential environmental and regulatory implications of NORM wastes being produced in selected industries.
Recycling/Disposal Alternatives for Depleted Uranium Wastes
1981-01-01
could pass before new sites are available. Recent experi- ence with attempts to dispose of wastes generated by cleanup of the Three Mile Island...commercial sector. Nonordnance uses include counterweights, Lallast, shielding , and special appli- cations machinery. Although the purity requirements...Refer- ence 11). Since the activity of the tailings is higher than allow- able for unrestricted access, large earth -dam retention systems, known as
NASA Astrophysics Data System (ADS)
Cerqueira, N. A.; Choe, D.; Alexandre, J.; Azevedo, A. R. G.; Xavier, C. G.; Souza, V. B.
Building work requires optimization of materials and labor, so that the execution of its subsystems contribute to the quality, reduce costs, decrease waste in buildings, productivity, practicality and especially agility. Thus, the fitting blocks can contribute in this direction. This work therefore consists of physical characterization (determination of fitness levels, grain size and bulk density), chemical (EDX) and thermal (DTA and TGA) sample clay Campos dos Goytacazes-RJ and waste rock ornamental Cachoeiro de Itapemirim-ES, to verify potential for producing red ceramic blocks, pressed and burned, male and female type. The output of block will be with different pe rcentages of incorporation of residues of ornamental rocks (0%, 5% and 10%). With the results obtained, it was found that the raw materials under consideration has the potential for application in the production of ceramic articles.
Studies of the mobility of uranium and thorium in Nevada Test Site tuff
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wollenberg, H.A.; Flexser, S.; Smith, A.R.
1991-06-01
Hydro-geochemical processes must be understood if the movement of radionuclides away from a breached radioactive waste canister is to be modeled and predicted. In this respect, occurrences of uranium and thorium in hydrothermal systems are under investigation in tuff and in rhyolitic tuff that was heated to simulate the effects of introduction of radioactive waste. In these studies, high-resolution gamma spectrometry and fission-track radiography are coupled with observations of alteration mineralogy and thermal history to deduce the evidence of, or potential for movement of, U and Th in response to the thermal environment. Observations to date suggest that U wasmore » mobile in the vicinity of the heater but that localized reducing environments provided by Fe-Ti-Mn-oxide minerals concentrated U and thus attenuated its migration.« less
Done, L; Tugulan, L C; Dragolici, F; Alexandru, C
2014-05-01
The Radioactive Waste Management Department from IFIN-HH, Bucharest, performs the conditioning of the institutional radioactive waste in concrete matrix, in 200 l drums with concrete shield, for final disposal at DNDR - Baita, Bihor county, in an old exhausted uranium mine. This paper presents a gamma-ray spectrometry method for the characterization of the radioactive waste drums' radionuclides content, for final disposal. In order to study the accuracy of the method, a similar concrete matrix with Portland cement in a 200 l drum was used. © 2013 The Authors. Published by Elsevier Ltd All rights reserved.
Concept for Underground Disposal of Nuclear Waste
NASA Technical Reports Server (NTRS)
Bowyer, J. M.
1987-01-01
Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-06-01
The results of a high-sensitivity aerial gamma-ray spectrometer and magnetometer survey of the Mt. Hayes Quadrangle, Alaska, are presented. Instrumentation and methods are described in Volume 1 of this final report. Statistical and geological analysis of the radiometric data revealed two uranium anomalies worthy of field checking as possible prospects. One is located near Mesozoic granite, which is believed to have the best potential for future economic uranium deposits. Another uranium anomaly is associated with Paleozoic-Precambrian rocks and may be caused by augen gneiss or possibly granitic intrusives. Two weakly uraniferous provinces merit study: one in the northwest, which maymore » be related to the Tertiary-Cretaceous coal-bearing unit, and a second in the northeast, which may be related to Mesozoic granites.« less
Reconnaissance for uranium in the southeastern states, 1953
Johnson, Henry S.
1953-01-01
During the last quarter of 1952 and most of 1953 the U.S. Geological Survey carried on a program of reconnaissance for radioactive material in the southeastern states on behalf to the Atomic Energy Commission. In the course of the study 111 localities were examined and 43 samples were taken for radioactivity measurements at the Survey's Trace Elements laboratory in Denver, Colo. No economic deposits of uranium were found as a result of this work, but weak radioactivity was noted at the Tungsten Mining Coperation property near Townsville, N. C.; the Comolli granite quarry near Elberton, Ga.; in the Beech and Cranberry granite near Roan Mountain, Tenn.; and in several shales in the Valley and Ridge and Appalachian Plateau provinces. Devonian through Pennsylvanian rocks in these two provinces probably constitute the most favorable ground for new discoveries of uranium in the Southeast.
Report on International Collaboration Involving the FE Heater and HG-A Tests at Mont Terri
DOE Office of Scientific and Technical Information (OSTI.GOV)
Houseworth, Jim; Rutqvist, Jonny; Asahina, Daisuke
Nuclear waste programs outside of the US have focused on different host rock types for geological disposal of high-level radioactive waste. Several countries, including France, Switzerland, Belgium, and Japan are exploring the possibility of waste disposal in shale and other clay-rich rock that fall within the general classification of argillaceous rock. This rock type is also of interest for the US program because the US has extensive sedimentary basins containing large deposits of argillaceous rock. LBNL, as part of the DOE-NE Used Fuel Disposition Campaign, is collaborating on some of the underground research laboratory (URL) activities at the Mont Terrimore » URL near Saint-Ursanne, Switzerland. The Mont Terri project, which began in 1995, has developed a URL at a depth of about 300 m in a stiff clay formation called the Opalinus Clay. Our current collaboration efforts include two test modeling activities for the FE heater test and the HG-A leak-off test. This report documents results concerning our current modeling of these field tests. The overall objectives of these activities include an improved understanding of and advanced relevant modeling capabilities for EDZ evolution in clay repositories and the associated coupled processes, and to develop a technical basis for the maximum allowable temperature for a clay repository.« less