Sample records for uranium-lead dating method

  1. Marine Chemistry in the People’s Republic of China.

    DTIC Science & Technology

    1984-08-01

    Eh, Fe, Al, Mn, Cu, Pb, Zn, Cd, Hg, Cr, and also the sedimentation rate by Pb- 210 method. (2) The effects of flow rate, eddy diffusion, axial length of...sediments, distribution, determination, radium-226, uranium-238, radon-222, polonium - 210 , bismuth- 210 , lead-206, particulates, adsorption, polonium ...sediments, distribution, radium-226, uranium-238, radon-222, polonium - 210 , bismuth- 210 , lead-206, particulates, adsorption, polonium , dating, Zhujiang

  2. 77 FR 14001 - Continuation of Suspended Antidumping Duty Investigation: Uranium From the Russian Federation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... (``Russia'') would likely lead to continuation or recurrence of material injury to an industry in the United... the Suspension Agreement on uranium from Russia. DATES: Effective Date: March 8, 2012. FOR FURTHER.... 731-TA-539-C (Third Review), Uranium from Russia Russia; Institution of a Five-Year Review Concerning...

  3. Calibrating rates of early Cambrian evolution

    NASA Technical Reports Server (NTRS)

    Bowring, Samuel A.; Grotzinger, John P.; Isachsen, Clark E.; Knoll, Andrew H.; Pelechaty, Shane M.; Kolosov, Peter

    1993-01-01

    An explosive episode of biological diversification occurred near the beginning of the Cambrian period. Evolutionary rates in the Cambrian have been difficult to quantify accurately because of a lack of high-precision ages. Currently, uranium-lead zircon geochronology is the most powerful method for dating rocks of Cambrian age. Uranium-lead zircon data from lower Cambrian rocks located in northeast Siberia indicate that the Cambrian period began about 544 million years ago and that its oldest (Manykaian) stage lasted no less than 10 million years. Other data indicate that the Tommotian and Atdabanian stages together lasted only 5 to 10 million years. The resulting compression of Early Cambrian time accentuates the rapidity of both the faunal diversification and subsequent Cambrian turnover.

  4. An evaluation of uranium-series dating of fossil echinoids from southern California Pleistocene marine terraces

    USGS Publications Warehouse

    Muhs, D.R.; Kennedy, G.L.

    1985-01-01

    Fossil sea urchins (Strongylocentrotus) from Pleistocene marine terraces on the southern California Channel Islands have been dated by the uranium-series method in order to test the suitability of echinoids for dating marine terraces. Results indicate that urchin plates and spines do not behave as closed systems with respect to both uranium and thorium. Calculated ages based on these data do not agree with uranium-series ages (120,000 and 127,000 yrs) obtained previously from corals from the same localities. Thus, fossil sea urchins (Strongylocentrotus) are not considered suitable for uraniumseries dating of Pleistocene marine terrace deposits. ?? 1985.

  5. Calibrating rates of early Cambrian evolution.

    PubMed

    Bowring, S A; Grotzinger, J P; Isachsen, C E; Knoll, A H; Pelechaty, S M; Kolosov, P

    1993-09-03

    An explosive episode of biological diversification occurred near the beginning of the Cambrian period. Evolutionary rates in the Cambrian have been difficult to quantify accurately because of a lack of high-precision ages. Currently, uranium-lead zircon geochronology is the most powerful method for dating rocks of Cambrian age. Uranium-lead zircon data from lower Cambrian rocks located in northeast Siberia indicate that the Cambrian period began at approximately 544 million years ago and that its oldest (Manykaian) stage lasted no less than 10 million years. Other data indicate that the Tommotian and Atdabanian stages together lasted only 5 to 10 million years. The resulting compression of Early Cambrian time accentuates the rapidity of both the faunal diversification and subsequent Cambrian turnover.

  6. Anomalous Lead Isotopic Composition of Galena and Age of Altered Uranium Minerals: a Case study of Chauli Deposits, Chatkal-Qurama District, Uzbekistan

    NASA Astrophysics Data System (ADS)

    Chernyshev, I. V.; Golubev, V. N.; Chugaev, A. V.

    2017-11-01

    The enrichment of lead isotopic composition of nonuranium minerals, in the first place galena in 206Pb and 207Pb, as compared to common lead is a remarkable feature of uranium deposits. The study of such lead isotopic composition anomalous in 206Pb and 207Pb in uranium minerals provides an opportunity for not only identification of superimposed processes resulting in transformation of uranium ores during deposit history but also calculation of age of these processes under certain model assumptions. Galena from the Chauli deposit in the Chatkal-Qurama district, Uzbekistan, a typical representative of hydrothermal uranium deposits associated with domains of Phanerozoic continental volcanism, has been examined with the highprecision (±0.02%) MC-ICP-MS method. Twenty microsamples of galena were taken from polished sections. Six of them are galena hosted in carbonate adjacent to pitchblende spherulites or filling thin veinlets (approximately 60 μm) cutting pitchblende. Isotopically anomalous lead with 206Pb/204Pb and 207Pb/204Pb values reaching 20.462 and 15.743, respectively, has been found in these six microsamples in contrast to another fourteen in which the Pb-Pb characteristics are consistent with common lead. On the basis of these data and with account for the 292 ± 2 Ma age for the Chauli deposit, the age of epigenetic transformation of uranium ores of this deposit has been estimated. During this process, radiogenic lead partly lost from pitchblende was captured into galena. The obtained date is 170 Ma. In the Chatkal-Qurama district, these epigenetic processes are apparently caused by the interaction of uranium minerals with activated underground water under tectonic activity and relief transformation, which took place from the post-Permian (i.e., after the Chauli formation) to the Jurassic period.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eppich, Gary R.; Williams, Ross W.; Gaffney, Amy M.

    Here, age dating of nuclear material can provide insight into source and suspected use in nuclear forensic investigations. We report here a method for the determination of the date of most recent chemical purification for uranium materials using the 235U- 231Pa chronometer. Protactinium is separated from uranium and neptunium matrices using anion exchange resin, followed by sorption of Pa to an SiO 2 medium. The concentration of 231Pa is measured by isotope dilution mass spectrometry using 233Pa spikes prepared from an aliquot of 237Np and calibrated in-house using the rock standard Table Mountain Latite and the uranium isotopic standard U100.more » Combined uncertainties of age dates using this method are 1.5 to 3.5 %, an improvement over alpha spectrometry measurement methods. Model ages of five uranium standard reference materials are presented; all standards have concordant 235U- 231Pa and 234U- 230Th model ages.« less

  8. Dilemma posed by uranium-series dates on archaeologically significant bones from Valsequillo, Puebla, Mexico

    USGS Publications Warehouse

    Szabo, B. J.; Malde, H.E.; Irwin-Williams, C.

    1969-01-01

    In an attempt to date stone artifacts of Early Man excavated from several sites at the Valsequillo Reservoir, a few kilometers south of Puebla, Mexico, Szabo applied the uranium-series method on bone samples known to be either from the same geologic formation as the sites or in direct association with the artifacts. The geologic context of the bones was studied by Malde, and the archaeological sites were excavated by Irwin-Williams. A date determined for bone associated with an artifact (Caulapan sample M-B-6, see below) agrees with a radiocarbon date for fossil mollusks in the same bed and indicates man's presence more than 20 000 years ago. However, some of these bone dates exceed 200 000 years. Because such dates for man in North America conflict with all prior archaeological evidence here and abroad, we are confronted by a dilemna - either to defend the dates against an onslaught of archaeological thought, or to abandon the uranium method in this application as being so much wasted effort. Faced with these equally undesirable alternatives, and unable to decide where the onus fairly lies (if a choice must be made), we give the uranium-series dates as a possible stimulus for further mutual work in isotopic dating of archaeological material. A sample from the Lindenmeier archaeological site north of Fort Collins and another from a Pleistocene terrace along the Arkansas River, both in Colorado, were also dated. ?? 1969.

  9. Comparison of amino acid racemization geochronometry with lithostratigraphy, biostratigraphy, uranium-series coral dating, and magnetostratigraphy in the Atlantic Coastal Plain of the southeastern United States

    USGS Publications Warehouse

    McCartan, L.; Owens, J.P.; Blackwelder, B. W.; Szabo, B. J.; Belknap, D.F.; Kriausakul, N.; Mitterer, R.M.; Wehmiller, J.F.

    1982-01-01

    The results of an integrated study comprising litho- and biostratigraphic investigations, uranium-series coral dating, amino acid racemization in molluscs, and paleomagnetic measurements are compared to ascertain relative and absolute ages of Pleistocene deposits of the Atlantic Coastal Plain in North and South Carolina. Four depositional events are inferred for South Carolina and two for North Carolina by all methods. The data suggest that there are four Pleistocene units containing corals that have been dated at about 100,000 yr, 200,000 yr, 450,000 yr, and over 1,000,000 yr. Some conflicts exist between the different methods regarding the correlation of the younger of these depositional events between Charleston and Myrtle Beach. Lack of good uranium-series dates for the younger material at Myrtle Beach makes the correlation with the deposits at Charleston more difficult. ?? 1982.

  10. Plutonium age dating reloaded

    NASA Astrophysics Data System (ADS)

    Sturm, Monika; Richter, Stephan; Aregbe, Yetunde; Wellum, Roger; Mayer, Klaus; Prohaska, Thomas

    2014-05-01

    Although the age determination of plutonium is and has been a pillar of nuclear forensic investigations for many years, additional research in the field of plutonium age dating is still needed and leads to new insights as the present work shows: Plutonium is commonly dated with the help of the 241Pu/241Am chronometer using gamma spectrometry; in fewer cases the 240Pu/236U chronometer has been used. The age dating results of the 239Pu/235U chronometer and the 238Pu/234U chronometer are scarcely applied in addition to the 240Pu/236U chronometer, although their results can be obtained simultaneously from the same mass spectrometric experiments as the age dating result of latter. The reliability of the result can be tested when the results of different chronometers are compared. The 242Pu/238U chronometer is normally not evaluated at all due to its sensitivity to contamination with natural uranium. This apparent 'weakness' that renders the age dating results of the 242Pu/238U chronometer almost useless for nuclear forensic investigations, however turns out to be an advantage looked at from another perspective: the 242Pu/238U chronometer can be utilized as an indicator for uranium contamination of plutonium samples and even help to identify the nature of this contamination. To illustrate this the age dating results of all four Pu/U clocks mentioned above are discussed for one plutonium sample (NBS 946) that shows no signs of uranium contamination and for three additional plutonium samples. In case the 242Pu/238U chronometer results in an older 'age' than the other Pu/U chronometers, contamination with either a small amount of enriched or with natural or depleted uranium is for example possible. If the age dating result of the 239Pu/235U chronometer is also influenced the nature of the contamination can be identified; enriched uranium is in this latter case a likely cause for the missmatch of the age dating results of the Pu/U chronometers.

  11. Uranium in granites from the Southwestern United States: actinide parent-daughter systems, sites and mobilization. First year report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silver, L T; Williams, I S; Woodhead, J A

    1980-10-01

    Some of the principal findings of the study on the Lawler Peak Granite are: the granite is dated precisely by this work at 1411 +- 3 m.y., confirming its synchroneity with a great regional terrane of granites. Uranium is presently 8-10 times crustal abundance and thorium 2-3 times in this granite. Uranium is found to be enriched in at least eight, possibly ten, primary igneous mineral species over the whole-rock values. Individual mineral species show distinct levels in, and characteristics ranges of, uranium concentration. It appears that in a uraniferous granite such as this, conventional accuracy mineral suites probably cannotmore » account for most of the uranium in the rock, and more rare, high U-concentration phases also are present and are significant uranium hosts. It appears that at least two different geological episodes have contributed to the disturbance of the U-Th-Pb isotope systems. Studies of various sites for transient dispersal of uranium, thorium, and radiogenic lead isotopes indicate a non-uniform dispersal of these components. It appears that the bulk rock has lost at least 24 percent of its original uranium endowment, accepting limited or no radiogenic lead or thorium migration from the sample.« less

  12. PROCESS OF PREPARING A FLUORIDE OF TETRAVLENT URANIUM

    DOEpatents

    Wheelwright, E.J.

    1959-02-17

    A method is described for producing a fluoride salt pf tetravalent uranium suitable for bomb reduction to metallic uranium. An aqueous solution of uranyl nitrate is treated with acetic acid and a nitrite-suppressor and then contacted with metallic lead whereby uranium is reduced from the hexavalent to the tetravalent state and soluble lead acetate is formed. Sulfate ions are then added to the solution to precipitate and remove the lead values. Hydrofluoric acid and alkali metal ions are then added causing the formation of an alkali metal uranium double-fluoride in which the uranium is in the tetravalent state. After recovery, this precipitate is suitable for using in the limited production of metallic uranium.

  13. Uranium series, volcanic rocks

    USGS Publications Warehouse

    Vazquez, Jorge A.

    2014-01-01

    Application of U-series dating to volcanic rocks provides unique and valuable information about the absolute timing of crystallization and differentiation of magmas prior to eruption. The 238U–230Th and 230Th-226Ra methods are the most commonly employed for dating the crystallization of mafic to silicic magmas that erupt at volcanoes. Dates derived from the U–Th and Ra–Th methods reflect crystallization because diffusion of these elements at magmatic temperatures is sluggish (Cherniak 2010) and diffusive re-equilibration is insignificant over the timescales (less than or equal to 10^5 years) typically associated with pre-eruptive storage of nearly all magma compositions (Cooper and Reid 2008). Other dating methods based on elements that diffuse rapidly at magmatic temperatures, such as the 40Ar/39Ar and (U–Th)/He methods, yield dates for the cooling of magma at the time of eruption. Disequilibrium of some short-lived daughters of the uranium series such as 210Po may be fractionated by saturation of a volatile phase and can be employed to date magmatic gas loss that is synchronous with volcanic eruption (e.g., Rubin et al. 1994).

  14. METHOD OF APPLYING COPPER COATINGS TO URANIUM

    DOEpatents

    Gray, A.G.

    1959-07-14

    A method is presented for protecting metallic uranium, which comprises anodic etching of the uranium in an aqueous phosphoric acid solution containing chloride ions, cleaning the etched uranium in aqueous nitric acid solution, promptly electro-plating the cleaned uranium in a copper electro-plating bath, and then electro-plating thereupon lead, tin, zinc, cadmium, chromium or nickel from an aqueous electro-plating bath.

  15. Simulated fissioning of uranium and testing of the fission-track dating method

    USGS Publications Warehouse

    McGee, V.E.; Johnson, N.M.; Naeser, C.W.

    1985-01-01

    A computer program (FTD-SIM) faithfully simulates the fissioning of 238U with time and 235U with neutron dose. The simulation is based on first principles of physics where the fissioning of 238U with the flux of time is described by Ns = ??f 238Ut and the fissioning of 235U with the fluence of neutrons is described by Ni = ??235U??. The Poisson law is used to set the stochastic variation of fissioning within the uranium population. The life history of a given crystal can thus be traced under an infinite variety of age and irradiation conditions. A single dating attempt or up to 500 dating attempts on a given crystal population can be simulated by specifying the age of the crystal population, the size and variation in the areas to be counted, the amount and distribution of uranium, the neutron dose to be used and its variation, and the desired ratio of 238U to 235U. A variety of probability distributions can be applied to uranium and counting-area. The Price and Walker age equation is used to estimate age. The output of FTD-SIM includes the tabulated results of each individual dating attempt (sample) on demand and/or the summary statistics and histograms for multiple dating attempts (samples) including the sampling age. An analysis of the results from FTD-SIM shows that: (1) The external detector method is intrinsically more precise than the population method. (2) For the external detector method a correlation between spontaneous track count, Ns, and induced track count, Ni, results when the population of grains has a stochastic uranium content and/or when the counting areas between grains are stochastic. For the population method no correlation can exist. (3) In the external detector method the sampling distribution of age is independent of the number of grains counted. In the population method the sampling distribution of age is highly dependent on the number of grains counted. (4) Grains with zero-track counts, either in Ns or Ni, are in integral part of fissioning theory and under certain circumstances must be included in any estimate of age. (5) In estimating standard error of age the standard error of Ns and Ni and ?? must be accurately estimated and propagated through the age equation. Several statistical models are presently available to do so. ?? 1985.

  16. Fission track dating of kimberlitic zircons

    NASA Astrophysics Data System (ADS)

    Haggerty, Stephen E.; Raber, Ellen; Naeser, Charles W.

    1983-04-01

    The only reliable method for dating kimberlites at present is the lengthy and specialized hydrothermal procedure that extracts 206Pb and 238U from low-uranium zircons. This paper describes a second successful method by fission track dating of large single-crystal zircons, 1.0-1.5 cm in dimension. The use of large crystals overcomes the limitations imposed in conventional fission track analysis which utilizes crushed fragments. Low track densities, optical track dispersion, and the random orientation of polished surfaces in the etch and irradiation cycle are effectively overcome. Fission track ages of zircons from five African kimberlites are reported, from the Kimberley Pool (90.3 ± 6.5 m.y.), Orapa (87.4 ± 5.7 and 92.4 ± 6.1 m.y.), Nzega (51.1 ± 3.8 m.y.), Koffiefontein (90.0 ± 8.2 m.y.), and Val do Queve (133.4 ± 11.5 m.y.). In addition we report the first radiometric ages (707.9 ± 59.6 and 705.5 ± 61.0 m.y.) of crustal zircons from kimberlites in northwest Liberia. The fission track ages agree well with earlier age estimates. Most of the zircons examined in this study are zoned with respect to uranium but linear correlations are established (by regression analysis) between zones of variable uranium content, and within zones of constant uranium content (by analysis of variance). Concordance between the fission track method and the U/Pb technique is established and we concluded that track fading from thermal annealing has not taken place. Kimberlitic zircons dated in this study, therefore, record the time of eruption.

  17. Fission track dating of kimberlitic zircons

    USGS Publications Warehouse

    Haggerty, S.E.; Raber, E.; Naeser, C.W.

    1983-01-01

    The only reliable method for dating kimberlites at present is the lengthy and specialized hydrothermal procedure that extracts 206Pb and 238U from low-uranium zircons. This paper describes a second successful method by fission track dating of large single-crystal zircons, 1.0-1.5 cm in dimension. The use of large crystals overcomes the limitations imposed in conventional fission track analysis which utilizes crushed fragments. Low track densities, optical track dispersion, and the random orientation of polished surfaces in the etch and irradiation cycle are effectively overcome. Fission track ages of zircons from five African kimberlites are reported, from the Kimberley Pool (90.3 ?? 6.5 m.y.), Orapa (87.4 ?? 5.7 and 92.4 ?? 6.1 m.y.), Nzega (51.1 ?? 3.8 m.y.), Koffiefontein (90.0 ?? 8.2 m.y.), and Val do Queve (133.4 ?? 11.5 m.y.). In addition we report the first radiometric ages (707.9 ?? 59.6 and 705.5 ?? 61.0 m.y.) of crustal zircons from kimberlites in northwest Liberia. The fission track ages agree well with earlier age estimates. Most of the zircons examined in this study are zoned with respect to uranium but linear correlations are established (by regression analysis) between zones of variable uranium content, and within zones of constant uranium content (by analysis of variance). Concordance between the fission track method and the U/Pb technique is established and we concluded that track fading from thermal annealing has not taken place. Kimberlitic zircons dated in this study, therefore, record the time of eruption. ?? 1983.

  18. Australopithecus sediba at 1.977 Ma and implications for the origins of the genus Homo.

    PubMed

    Pickering, Robyn; Dirks, Paul H G M; Jinnah, Zubair; de Ruiter, Darryl J; Churchil, Steven E; Herries, Andy I R; Woodhead, Jon D; Hellstrom, John C; Berger, Lee R

    2011-09-09

    Newly exposed cave sediments at the Malapa site include a flowstone layer capping the sedimentary unit containing the Australopithecus sediba fossils. Uranium-lead dating of the flowstone, combined with paleomagnetic and stratigraphic analysis of the flowstone and underlying sediments, provides a tightly constrained date of 1.977 ± 0.002 million years ago (Ma) for these fossils. This refined dating suggests that Au. sediba from Malapa predates the earliest uncontested evidence for Homo in Africa.

  19. Validation of reference materials for uranium radiochronometry in the frame of nuclear forensic investigations

    DOE PAGES

    Varga, Z.; Mayer, K.; Bonamici, C. E.; ...

    2015-05-11

    The results of a joint effort by expert nuclear forensic laboratories in the area of age dating of uranium, i.e. the elapsed time since the last chemical purification of the material are presented and discussed. Completely separated uranium materials of known production date were distributed among the laboratories, and the samples were dated according to routine laboratory procedures by the measurement of the ²²⁰Th/²³⁴U ratio. The measurement results were in good agreement with the known production date showing that the concept for preparing uranium age dating reference material based on complete separation is valid. Detailed knowledge of the laboratory proceduresmore » used for uranium age dating allows the identification of possible improvements in the current protocols and the development of improved practice in the future. The availability of age dating reference materials as well as the evolvement of the age dating best-practice protocol will increase the relevance and applicability of age dating as part of the tool-kit available for nuclear forensic investigations.« less

  20. Validation of reference materials for uranium radiochronometry in the frame of nuclear forensic investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varga, Z.; Mayer, K.; Bonamici, C. E.

    The results of a joint effort by expert nuclear forensic laboratories in the area of age dating of uranium, i.e. the elapsed time since the last chemical purification of the material are presented and discussed. Completely separated uranium materials of known production date were distributed among the laboratories, and the samples were dated according to routine laboratory procedures by the measurement of the ²²⁰Th/²³⁴U ratio. The measurement results were in good agreement with the known production date showing that the concept for preparing uranium age dating reference material based on complete separation is valid. Detailed knowledge of the laboratory proceduresmore » used for uranium age dating allows the identification of possible improvements in the current protocols and the development of improved practice in the future. The availability of age dating reference materials as well as the evolvement of the age dating best-practice protocol will increase the relevance and applicability of age dating as part of the tool-kit available for nuclear forensic investigations.« less

  1. Results from the (U-Th)/He dating systems in Japan Atomic Energy Agency

    NASA Astrophysics Data System (ADS)

    Yamada, K.; Hanamuro, T.; Tagami, T.; Yamada, R.; Umeda, K.

    2007-12-01

    Japan Atomic Energy Agency (JAEA) has jointly set up the lab of the (U-Th)/He dating in cooperation with Kyoto University and National Research Institute for Earth Science and Disaster Prevention. We use the MM5400 rare gas mass spectrometer and the SPQ9000 ICP quadrupole mass spectrometer, belonging to JAEA, and built a new vacuum heater using infrared laser to extract helium. HF decomposes zircon after the alkali-fusion method using XRF bead sampler and LiBO3 in the preparation of ICP solution. Helium is quantified using sensitivity method. Uranium and thorium are using standard addition method. Quantifications of uranium-238 and thorium-232 are only need for parent isotopes to date samples because they are expected that the state of secular equilibrium becomes established and samarium does not compose the samples. At the present stage, we calibrate our systems by dating some standards, such as zircon from the Fish Canyon Tuff and apatite from the Durango, those are the international age standard, and apatite and zircon from the Tanzawa Tonalite Complex, that was dated in Yamada's PhD thesis, as a working standard. We report the results and detailed views of the dating systems.

  2. Uranium series dating of Allan Hills ice

    NASA Technical Reports Server (NTRS)

    Fireman, E. L.

    1986-01-01

    Uranium-238 decay series nuclides dissolved in Antarctic ice samples were measured in areas of both high and low concentrations of volcanic glass shards. Ice from the Allan Hills site (high shard content) had high Ra-226, Th-230 and U-234 activities but similarly low U-238 activities in comparison with Antarctic ice samples without shards. The Ra-226, Th-230 and U-234 excesses were found to be proportional to the shard content, while the U-238 decay series results were consistent with the assumption that alpha decay products recoiled into the ice from the shards. Through this method of uranium series dating, it was learned that the Allen Hills Cul de Sac ice is approximately 325,000 years old.

  3. ALPHA SPECTROMETRIC EVALUATION OF SRM-995 AS A POTENTIAL URANIUM/THORIUM DOUBLE TRACER SYSTEM FOR AGE-DATING URANIUM MATERIALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beals, D.

    2011-12-06

    Uranium-233 (t{sub 1/2} {approx} 1.59E5 years) is an artificial, fissile isotope of uranium that has significant importance in nuclear forensics. The isotope provides a unique signature in determining the origin and provenance of uranium-bearing materials and is valuable as a mass spectrometric tracer. Alpha spectrometry was employed in the critical evaluation of a {sup 233}U standard reference material (SRM-995) as a dual tracer system based on the in-growth of {sup 229}Th (t{sub 1/2} {approx} 7.34E3 years) for {approx}35 years following radiochemical purification. Preliminary investigations focused on the isotopic analysis of standards and unmodified fractions of SRM-995; all samples were separatedmore » and purified using a multi-column anion-exchange scheme. The {sup 229}Th/{sup 233}U atom ratio for SRM-995 was found to be 1.598E-4 ({+-} 4.50%) using recovery-corrected radiochemical methods. Using the Bateman equations and relevant half-lives, this ratio reflects a material that was purified {approx} 36.8 years prior to this analysis. The calculated age is discussed in contrast with both the date of certification and the recorded date of last purification.« less

  4. ELECTROLYSIS OF THORIUM AND URANIUM

    DOEpatents

    Hansen, W.N.

    1960-09-01

    An electrolytic method is given for obtaining pure thorium, uranium, and thorium-uranium alloys. The electrolytic cell comprises a cathode composed of a metal selected from the class consisting of zinc, cadmium, tin, lead, antimony, and bismuth, an anode composed of at least one of the metals selected from the group consisting of thorium and uranium in an impure state, and an electrolyte composed of a fused salt containing at least one of the salts of the metals selected from the class consisting of thorium, uranium. zinc, cadmium, tin, lead, antimony, and bismuth. Electrolysis of the fused salt while the cathode is maintained in the molten condition deposits thorium, uranium, or thorium-uranium alloys in pure form in the molten cathode which thereafter may be separated from the molten cathode product by distillation.

  5. Coupling of Uranium and Thorium Series Isotope Systematics for Age Determination of Late Pleistocene Zircons using LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Sakata, S.; Hirakawa, S.; Iwano, H.; Danhara, T.; Hirata, T.

    2014-12-01

    Zircon U-Th-Pb dating method is one of the most important tools for estimating the duration of magmatism by means of coupling of uranium, actinium and thorium decay series. Using U-Pb dating method, its reliability is principally guaranteed by the concordance between 238U-206Pb and 235U-207Pb ages. In case of dating Quaternary zircons, however, the initial disequilibrium effect on 230Th and 231Pa should be considered. On the other hands, 232Th-208Pb dating method can be a simple but powerful approach for investigating the age of crystallization because of negligible influence from initial disequilibrium effect. We have developed a new correction model for accurate U-Pb dating of the young zircon samples by taking into consideration of initial disequilibrium and a U-Pb vs Th-Pb concordia diagram for reliable age calibration was successfully established. Hence, the U-Th-Pb dating method can be applied to various zircons ranging from Hadean (4,600 Ma) to Quaternary (~50 ka) ages, and this suggests that further detailed information concerning the thermal history of the geological sequences can be made by the coupling of U-Th-Pb, fission track and Ar-Ar ages. In this presentation, we will show an example of U-Th-Pb dating for zircon samples from Sambe Volcano (3 to 100 ka), southwest Japan and the present dating technique using LA-ICP-MS.

  6. METAL COATED ARTICLES AND METHOD OF MAKING

    DOEpatents

    Eubank, L.D.

    1958-08-26

    A method for manufacturing a solid metallic uranium body having an integral multiple layer protective coating, comprising an inner uranium-aluminum alloy firmly bonded to the metallic uranium is presented. A third layer of silver-zinc alloy is bonded to the zinc-aluiminum layer and finally a fourth layer of lead-silver alloy is firmly bonded to the silver-zinc layer.

  7. Isotopic composition analysis and age dating of uranium samples by high resolution gamma ray spectrometry

    NASA Astrophysics Data System (ADS)

    Apostol, A. I.; Pantelica, A.; Sima, O.; Fugaru, V.

    2016-09-01

    Non-destructive methods were applied to determine the isotopic composition and the time elapsed since last chemical purification of nine uranium samples. The applied methods are based on measuring gamma and X radiations of uranium samples by high resolution low energy gamma spectrometric system with planar high purity germanium detector and low background gamma spectrometric system with coaxial high purity germanium detector. The ;Multigroup γ-ray Analysis Method for Uranium; (MGAU) code was used for the precise determination of samples' isotopic composition. The age of the samples was determined from the isotopic ratio 214Bi/234U. This ratio was calculated from the analyzed spectra of each uranium sample, using relative detection efficiency. Special attention is paid to the coincidence summing corrections that have to be taken into account when performing this type of analysis. In addition, an alternative approach for the age determination using full energy peak efficiencies obtained by Monte Carlo simulations with the GESPECOR code is described.

  8. Vector representation as a tool for detecting characteristic uranium peaks

    NASA Astrophysics Data System (ADS)

    Forney, Anne Marie

    Vector representation is found as a viable tool for identifying the presence of and determining the difference between enriched and naturally occurring uranium. This was accomplished through the isolation of two regions of interest around the uranium-235 (235U) gamma emission at 186 keV and the uranium-238 (238U) gamma emission at 1001 keV. The uranium 186 keV peak is used as a meter for uranium enrichment, and events from this emission occurred more frequently with the increase of the 235U composition. Spectra were taken with the use of a high purity germanium detector in series with a multi-channel analyzer (MCA) and Maestro 32, a MCA emulator and spectral software. The vector representation method was used to compare two spectra by taking their dot product. The output from this method is an angle, which represents the similarity and contrast between the two spectra. When the angle is close to zero the spectra are similar, and as the angle approaches 90 degrees the spectral agreement decreases. The angles were calculated and compared in Microsoft Excel. A 49 % enriched uranyl acetate source containing both gamma emissions from 235U and 238U was used as a reference source to which all spectra were compared. Two other uranium sources were used within this project: a 100.2 nCi highly-enriched uranium source with 97.7 % 235U by weight, and a piece of uranium ore with an approximate exposure rate of 0.2 mR/h (51.5 nC/kg/h) at 1 cm. These two uranium sources provided different ratios of 235U to 238U, leading to different ratios of the 186 keV and 1001 keV peaks. To test the limits of the vector representation method, various source configurations were used. These included placing the source directly on top of the detector, using two distances for the source from the detector, using the source in addition to cobalt-60, and finally two distances for the source from the detector with a one centimeter lead shield. The two distances from the detector without the shielding were 1.3 inches (3.30 cm) and 1 foot (30.48 cm). In the cases using lead shielding, in the first geometry, the source was placed directly on the lead shielding and in the second geometry, the source was placed a foot above the lead shielding and detector. Vector representation output angles higher than a value of 40.3 degrees indicated that uranium was not present in the source. All of the sources tested with an angle below this 40.3 degree cutoff contained some type of uranium. To determine whether the uranium was processed or naturally occurring, 18.0 degrees was chosen as the upper limit for processed uranium sources. Sources that produced an angle above 18.0 degrees and below 40.3 degrees were categorized as naturally occurring uranium. The vector representation technique was able to classify the uranium sources in all of the geometries except for the geometries that included the centimeter of lead.

  9. A METHOD OF PREPARING URANIUM DIOXIDE

    DOEpatents

    Scott, F.A.; Mudge, L.K.

    1963-12-17

    A process of purifying raw, in particular plutonium- and fission- products-containing, uranium dioxide is described. The uranium dioxide is dissolved in a molten chloride mixture containing potassium chloride plus sodium, lithium, magnesium, or lead chloride under anhydrous conditions; an electric current and a chlorinating gas are passed through the mixture whereby pure uranium dioxide is deposited on and at the same time partially redissolved from the cathode. (AEC)

  10. A Uranium-Lead Chronology of Speleothem Deposition in the Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Gambino, C.; Shakun, J. D.; McGee, D.; Ramezani, J.; Khadivi, S.; Wong, C. I.

    2017-12-01

    The Artic is one of the fastest warming regions on the planet. Currently much of the Arctic is covered by permafrost, which contains approximately 1,700 gigatons of organic carbon. Permafrost thaw could release a substantial amount of this carbon as greenhouse gases into the atmosphere through microbial decomposition, potentially dramatically amplifying anthropogenic warming. However, the risk of permafrost thaw is uncertain, with models exhibiting a wide range of possibilities. Assessing the stability of permafrost during past interglacial periods enables evaluation of the sensitivity of permafrost to warming. Cave mineral deposits (speleothems) in areas currently covered with permafrost can act as a proxy for past permafrost thaw, as liquid water is one criteria of speleothem growth and thus implies thawed ground conditions. Previous uranium-thorium (U-Th) dating of speleothems (n=67) from a wide range of latitudes and permafrost zones across the southern Canadian Rockies, Northwest Territories, and the northern Yukon suggest deposition during Marine Isotope Stage (MIS) 11 and 13. The majority of U-Th dates of these speleothems, however, exceed the U-Th dating limit of 600 ka. In this study, we apply uranium-lead (U-Pb) geochronology to several of these speleothems to extend the records of speleothem growth further back in time. Initial results include a U-Pb age of 428 ± 14 ka that replicates a previous U-Th age of 416.8 ± 7.9 ka, and U-Pb ages on two other speleothems of 870 ± 100 ka and 1502 ± 30 ka. The results of currently in progress U-Pb analyses and a comparison of results with paleo-temperature and ice volume reconstructions will also be presented.

  11. Ages of fossil bones from British interglacial sites

    USGS Publications Warehouse

    Szabo, B. J.; Collins, D.

    1975-01-01

    THE time gap between the upper limit of radiocarbon dating (???60,000 yr BP) and the lower limit of dates generally obtainable using the K-Ar method (???250,000 yr BP) accounts for the scarcity of dates for the last two interglaciations (the Ipswichian and Hoxnian of Britain; the Eemian and Holsteinian of northern Europe). Accordingly, the ages of such important fossils as the Swanscombe and Steinheim skulls can only be guessed at. For that reason, the adaptation of a method that may date these interglacial periods is highly desirable. We discuss here the application of a uranium-series dating technique pertaining to that span of time. ?? 1975 Nature Publishing Group.

  12. Application of the 226Ra– 230Th– 234U and 227Ac– 231Pa– 235U radiochronometers to uranium certified reference materials

    DOE PAGES

    Rolison, John M.; Treinen, Kerri C.; McHugh, Kelly C.; ...

    2017-11-06

    Uranium certified reference materials (CRM) issued by New Brunswick Laboratory were subjected to dating using four independent uranium-series radiochronometers. In all cases, there was acceptable agreement between the model ages calculated using the 231Pa– 235U, 230Th– 234U, 227Ac– 235U or 226Ra– 234U radiochronometers and either the certified 230Th– 234U model date (CRM 125-A and CRM U630), or the known purification date (CRM U050 and CRM U100). Finally, the agreement between the four independent radiochronometers establishes these uranium certified reference materials as ideal informal standards for validating dating techniques utilized in nuclear forensic investigations in the absence of standards with certifiedmore » model ages for multiple radiochronometers.« less

  13. Application of the 226Ra– 230Th– 234U and 227Ac– 231Pa– 235U radiochronometers to uranium certified reference materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rolison, John M.; Treinen, Kerri C.; McHugh, Kelly C.

    Uranium certified reference materials (CRM) issued by New Brunswick Laboratory were subjected to dating using four independent uranium-series radiochronometers. In all cases, there was acceptable agreement between the model ages calculated using the 231Pa– 235U, 230Th– 234U, 227Ac– 235U or 226Ra– 234U radiochronometers and either the certified 230Th– 234U model date (CRM 125-A and CRM U630), or the known purification date (CRM U050 and CRM U100). Finally, the agreement between the four independent radiochronometers establishes these uranium certified reference materials as ideal informal standards for validating dating techniques utilized in nuclear forensic investigations in the absence of standards with certifiedmore » model ages for multiple radiochronometers.« less

  14. 40 CFR 190.12 - Effective date.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Uranium Fuel Cycle § 190.12 Effective date. (a) The standards in § 190.10(a) shall be effective December 1, 1979, except that for doses arising from operations associated with the milling of uranium ore the...

  15. U/Th dating of carbonate deposits from Constantina (Sevilla), Spain.

    PubMed

    Alcaraz-Pelegrina, J M; Martínez-Aguirre, A

    2007-07-01

    Uranium-series method has been applied to continental carbonate deposits from Constantina, Seville, in Spain. All samples analysed were impure carbonates and the leachate-leachate method was used to obtain activity ratios in carbonate fraction. Leachate-residue methods were applied to one of the samples in order to compare with leachate-leachate method, but leachate-residue method assumptions did not meet and ages resulting from leachate-residue methods were not valid. Ages obtained by leachate-leachate method range from 1.8 to 23.5ky BP and are consistent with stratigraphical positions of samples analysed. Initial activity ratios for uranium isotopes are practically constant in this period, thus indicating that no changes in environmental conditions occur between 1.8 and 23.5ky period.

  16. Development of solid materials for UF 6 sampling: FY16 Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Nicholas; Savina, Joseph; Hebden, Andrew

    2016-10-31

    A handheld implementation of the ABACC-developed Cristallini method, which captures uranium hexafluoride samples as an inert salt, was organized in FY17 and succeeded in demonstrating the handheld sampler concept with reactive hexafluoride gases. The Cristallini method relies on the use of a hydrated substrate to react the incoming hexafluoride resulting in the formation of a stable uranyl fluoride salt. The Cristallini method has been demonstrated as a facility modification installed near the sampling tap of a gas centrifuge enrichment plant. While very successful in reducing the hazards of uranium hexafluoride sample, the method still takes a considerable amount of timemore » and can only be used in facilities where the apparatus has been installed; this arrangement generally prohibits the sampling of filled cylinders that have already exited the facility and have been deposited in the on-site tank storage yard. The handheld unit under development will allow the use of the Cristallini method at facilities that have not been converted as well as tanks in the storage yard. The handheld system utilizes an active vacuum system, rather than a passive vacuum system in the facility setup, to drive the uranium hexafluoride onto the adsorbing media. The handheld unit will be battery operated for fully autonomous operation and will include onboard pressure sensing and flushing capability. To date, the system concept of operations was demonstrated with tungsten hexafluoride that showed the active vacuum pump with multiple cartridges of adsorbing media was viable. Concurrently, the hardened prototype system was developed and tested; removable sample cartridges were developed (the only non-COTS component to date); and preparations were made for uranium tests and a domestic field test.« less

  17. Speleothem dating using Sulfur to Calcium ratio

    NASA Astrophysics Data System (ADS)

    Sabri, Raghid

    2017-04-01

    A speleothem sample from underground water tunnel in Nablus, Palestine, showed contamination from wastewater. The young sample has low concentration of Uranium and could not be dated with uranium thorium dating method. An alternative method was used to determine the age of the sample: lamina counting coupled with Sulfur to calcium ratio peaks counting. Sulfur and Calcium concentrations were measured using SEM-EDS to have a better resolution than the CNS analyzer. Assuming seasonal growth of laminations, it was possible to determine the primarily ages. The sinter was still growing during sampling in 2011. The counting reveals 271 laminae, for seasonal growth it means 135 years. In the 1959, it was observed that there is an unexpected peak of Sulfur to calcium ratio and this peak was repeated seasonally. The sulfur peak increased as a result of diesel use in the heating system during the winter season. For the youngest 117 laminae, 59 S/Ca peaks are observed. Each two lamination layers correspond to one peak. So, it was possible to determine the age of the sample using Sulfur to Calcium ratio.

  18. METHOD OF HOT ROLLING URANIUM METAL

    DOEpatents

    Kaufmann, A.R.

    1959-03-10

    A method is given for quickly and efficiently hot rolling uranium metal in the upper part of the alpha phase temperature region to obtain sound bars and sheets possessing a good surface finish. The uranium metal billet is heated to a temperature in the range of 1000 deg F to 1220 deg F by immersion iii a molten lead bath. The heated billet is then passed through the rolls. The temperature is restored to the desired range between successive passes through the rolls, and the rolls are turned down approximately 0.050 inch between successive passes.

  19. Uranium Associations with Kidney Outcomes Vary by Urine Concentration Adjustment Method

    PubMed Central

    Shelley, Rebecca; Kim, Nam-Soo; Parsons, Patrick J.; Lee, Byung-Kook; Agnew, Jacqueline; Jaar, Bernard G.; Steuerwald, Amy J.; Matanoski, Genevieve; Fadrowski, Jeffrey; Schwartz, Brian S.; Todd, Andrew C.; Simon, David; Weaver, Virginia M.

    2017-01-01

    Uranium is a ubiquitous metal that is nephrotoxic at high doses. Few epidemiologic studies have examined the kidney filtration impact of chronic environmental exposure. In 684 lead workers environmentally exposed to uranium, multiple linear regression was used to examine associations of uranium measured in a four-hour urine collection with measured creatinine clearance, serum creatinine- and cystatin-C-based estimated glomerular filtration rates, and N-acetyl-β-D-glucosaminidase (NAG). Three methods were utilized, in separate models, to adjust uranium levels for urine concentration - μg uranium/g creatinine; μg uranium/L and urine creatinine as separate covariates; and μg uranium/4 hr. Median urine uranium levels were 0.07 μg/g creatinine and 0.02 μg/4 hr and were highly correlated (rs =0.95). After adjustment, higher ln-urine uranium was associated with lower measured creatinine clearance and higher NAG in models that used urine creatinine to adjust for urine concentration but not in models that used total uranium excreted (μg/4 hr). These results suggest that, in some instances, associations between urine toxicants and kidney outcomes may be statistical, due to the use of urine creatinine in both exposure and outcome metrics, rather than nephrotoxic. These findings support consideration of non-creatinine-based methods of adjustment for urine concentration in nephrotoxicant research. PMID:23591699

  20. Formation and Geological Sequestration of Uranium Nanoparticles in Deep Granitic Aquifer

    PubMed Central

    Suzuki, Yohey; Mukai, Hiroki; Ishimura, Toyoho; Yokoyama, Takaomi D.; Sakata, Shuhei; Hirata, Takafumi; Iwatsuki, Teruki; Mizuno, Takashi

    2016-01-01

    The stimulation of bacterial activities that convert hexavalent uranium, U(VI), to tetravalent uranium, U(IV), appears to be feasible for cost-effective remediation of contaminated aquifers. However, U(VI) reduction typically results in the precipitation of U(IV) particles less than 5 nanometers in diameter, except for environmental conditions enriched with iron. Because these tiny particles are mobile and susceptible to oxidative dissolution after the termination of nutrient injection, in situ bioremediation remains to be impractical. Here we show that U(IV) nanoparticles of coffinite (U(SiO4)1−x(OH)4x) formed in fracture-filling calcium carbonate in a granitic aquifer. In situ U-Pb isotope dating demonstrates that U(IV) nanoparticles have been sequestered in the calcium carbonate for at least 1 million years. As the microbiologically induced precipitation of calcium carbonate in aquifer systems worldwide is extremely common, we anticipate simultaneous stimulation of microbial activities for precipitation reactions of calcium carbonate and U(IV) nanoparticles, which leads to long-term sequestration of uranium and other radionuclides in contaminated aquifers and deep geological repositories. PMID:26948389

  1. Formation and Geological Sequestration of Uranium Nanoparticles in Deep Granitic Aquifer.

    PubMed

    Suzuki, Yohey; Mukai, Hiroki; Ishimura, Toyoho; Yokoyama, Takaomi D; Sakata, Shuhei; Hirata, Takafumi; Iwatsuki, Teruki; Mizuno, Takashi

    2016-03-07

    The stimulation of bacterial activities that convert hexavalent uranium, U(VI), to tetravalent uranium, U(IV), appears to be feasible for cost-effective remediation of contaminated aquifers. However, U(VI) reduction typically results in the precipitation of U(IV) particles less than 5 nanometers in diameter, except for environmental conditions enriched with iron. Because these tiny particles are mobile and susceptible to oxidative dissolution after the termination of nutrient injection, in situ bioremediation remains to be impractical. Here we show that U(IV) nanoparticles of coffinite (U(SiO4)1-x(OH)4x) formed in fracture-filling calcium carbonate in a granitic aquifer. In situ U-Pb isotope dating demonstrates that U(IV) nanoparticles have been sequestered in the calcium carbonate for at least 1 million years. As the microbiologically induced precipitation of calcium carbonate in aquifer systems worldwide is extremely common, we anticipate simultaneous stimulation of microbial activities for precipitation reactions of calcium carbonate and U(IV) nanoparticles, which leads to long-term sequestration of uranium and other radionuclides in contaminated aquifers and deep geological repositories.

  2. The age of universe

    NASA Astrophysics Data System (ADS)

    Ali, Zeeshan

    The presence of short-lived isotope Curium-247 in the early Solar System complicates the job of dating the earliest events in the solar nebula. Primitive components in meteorites contain a detailed record of the conditions and processes in the solarnebula, the cloud of dust and gas surrounding the infant Sun. Determining accurately when the first materialsformed re-quires the lead-lead (Pb-Pb) dating method, a method based on the decay of uranium (U) isotopes toPb isotopes. The initial ratio of U-238 to U-235 is critical to determining theages correctly, and many studies have concluded that the ratio is constant for any given age. How-ever, my colleagues at Arizona State University(Frankfurt, Germany), and the Senckenberg Forschungsinstitut und Naturmuseum (also in Frankfurt) and I have found that some calcium-aluminum-rich inclusions (CAIs) in chondritic meteorites deviate from the conventional value for the U-238/U-235 ratio. This could lead to inaccuracies of up to 5 million years in the age of these objects, if no correction is made.Variations in the concentrations of thorium and neodymium with the U-238/U-235 ratio suggest that the ratio may have been lowered by the decay of curium-247, which decays to U-235 with a half-life of 15.6 million years. Curium-247 is created in certain types of energetic supernovae, so its presence suggests that a supernova added material to the pre-solar interstellar cloud between 110 and 140 million years before theSolar System began to form.

  3. PREVENTION OF SCALE FORMATION IN URANIUM SOLVENT EXTRACTOR

    DOEpatents

    Delaplaine, J.W.

    1957-11-01

    A method for preventing the formation of scale in uranium solvent extraction apparatus is presented. The scale, consisting chiefly of precipitated silica and the sulfates uf calcium and lead, may be prevented by a combination of measures, chiefly by prior heating and agitation to crystallize and remove silica, and by a maintenance of uranyl nitrate concentration in the feed and extractant above certain levels to increase the solubility of the calcium and lead sulfates.

  4. New dating evidence of the early presence of hominins in Southern Europe.

    PubMed

    Michel, Véronique; Shen, Chuan-Chou; Woodhead, Jon; Hu, Hsun-Ming; Wu, Chung-Che; Moullé, Pierre-Élie; Khatib, Samir; Cauche, Dominique; Moncel, Marie-Hélène; Valensi, Patricia; Chou, Yu-Min; Gallet, Sylvain; Echassoux, Anna; Orange, François; de Lumley, Henry

    2017-08-30

    The first "Out of Africa" migrations represent a seminal event in the history of humankind. At the gates of Europe, the first appearance of Hominins is recorded in Georgia, 1.8 million years ago (Ma); however, the picture of migration across the continent remains incomplete. Vallonnet Cave (France) is a Lower Paleolithic prehistoric site with traces of hominin activities including lithic remains and cut-marks on mammal bones. Here, we apply the uranium-lead (U-Pb) methods to two flowstones to date the intervening archaeological levels. The U-Pb data, coupled with paleomagnetic constraints, provide an age range from 1.2 to 1.1 Ma. The results conclusively demonstrate that Vallonnet Cave is one of the oldest European prehistoric sites in France with early hominin occupations associated with an Epivillafranchian fauna. Combined with data from other archaeological sites, the new precise chronology suggests a widespread occupation the Northern Mediterranean to Southwestern Europe at ~1.2 Ma.

  5. Depleted uranium instead of lead in munitions: the lesser evil.

    PubMed

    Jargin, Sergei V

    2014-03-01

    Uranium has many similarities to lead in its exposure mechanisms, metabolism and target organs. However, lead is more toxic, which is reflected in the threshold limit values. The main potential hazard associated with depleted uranium is inhalation of the aerosols created when a projectile hits an armoured target. A person can be exposed to lead in similar ways. Accidental dangerous exposures can result from contact with both substances. Encountering uranium fragments is of minor significance because of the low penetration depth of alpha particles emitted by uranium: they are unable to penetrate even the superficial keratin layer of human skin. An additional cancer risk attributable to the uranium exposure might be significant only in case of prolonged contact of the contaminant with susceptible tissues. Lead intoxication can be observed in the wounded, in workers manufacturing munitions etc; moreover, lead has been documented to have a negative impact on the intellectual function of children at very low blood concentrations. It is concluded on the basis of the literature overview that replacement of lead by depleted uranium in munitions would be environmentally beneficial or largely insignificant because both lead and uranium are present in the environment.

  6. A simple-rapid method to separate uranium, thorium, and protactinium for U-series age-dating of materials

    PubMed Central

    Knight, Andrew W.; Eitrheim, Eric S.; Nelson, Andrew W.; Nelson, Steven; Schultz, Michael K.

    2017-01-01

    Uranium-series dating techniques require the isolation of radionuclides in high yields and in fractions free of impurities. Within this context, we describe a novel-rapid method for the separation and purification of U, Th, and Pa. The method takes advantage of differences in the chemistry of U, Th, and Pa, utilizing a commercially-available extraction chromatographic resin (TEVA) and standard reagents. The elution behavior of U, Th, and Pa were optimized using liquid scintillation counting techniques and fractional purity was evaluated by alpha-spectrometry. The overall method was further assessed by isotope dilution alpha-spectrometry for the preliminary age determination of an ancient carbonate sample obtained from the Lake Bonneville site in western Utah (United States). Preliminary evaluations of the method produced elemental purity of greater than 99.99% and radiochemical recoveries exceeding 90% for U and Th and 85% for Pa. Excellent purity and yields (76% for U, 96% for Th and 55% for Pa) were also obtained for the analysis of the carbonate samples and the preliminary Pa and Th ages of about 39,000 years before present are consistent with 14C-derived age of the material. PMID:24681438

  7. Modern U-Pb chronometry of meteorites: advancing to higher time resolution reveals new problems

    USGS Publications Warehouse

    Amelin, Y.; Connelly, J.; Zartman, R.E.; Chen, J.-H.; Gopel, C.; Neymark, L.A.

    2009-01-01

    In this paper, we evaluate the factors that influence the accuracy of lead (Pb)-isotopic ages of meteorites, and may possibly be responsible for inconsistencies between Pb-isotopic and extinct nuclide timescales of the early Solar System: instrumental mass fractionation and other possible analytical sources of error, presence of more than one component of non-radiogenic Pb, migration of ancient radiogenic Pb by diffusion and other mechanisms, possible heterogeneity of the isotopic composition of uranium (U), uncertainties in the decay constants of uranium isotopes, possible presence of "freshly synthesized" actinides with short half-life (e.g. 234U) in the early Solar System, possible initial disequilibrium in the uranium decay chains, and potential fractionation of radiogenic Pb isotopes and U isotopes caused by alpha-recoil and subsequent laboratory treatment. We review the use of 232Th/238U values to assist in making accurate interpretations of the U-Pb ages of meteorite components. We discuss recently published U-Pb dates of calcium-aluminum-rich inclusions (CAIs), and their apparent disagreement with the extinct nuclide dates, in the context of capability and common pitfalls in modern meteorite chronology. Finally, we discuss the requirements of meteorites that are intended to be used as the reference points in building a consistent time scale of the early Solar System, based on the combined use of the U-Pb system and extinct nuclide chronometers.

  8. Determination of 238u/235u, 236u/238u and uranium concentration in urine using sf-icp-ms and mc-icp-ms: an interlaboratory comparison.

    PubMed

    Parrish, Randall R; Thirlwall, Matthew F; Pickford, Chris; Horstwood, Matthew; Gerdes, Axel; Anderson, James; Coggon, David

    2006-02-01

    Accidental exposure to depleted or enriched uranium may occur in a variety of circumstances. There is a need to quantify such exposure, with the possibility that the testing may post-date exposure by months or years. Therefore, it is important to develop a very sensitive test to measure precisely the isotopic composition of uranium in urine at low levels of concentration. The results of an interlaboratory comparison using sector field (SF)-inductively coupled plasma-mass spectrometry (ICP-MS) and multiple collector (MC)-ICP-MS for the measurement of uranium concentration and U/U and U/U isotopic ratios of human urine samples are presented. Three urine samples were verified to contain uranium at 1-5 ng L and shown to have natural uranium isotopic composition. Portions of these urine batches were doped with depleted uranium (DU) containing small quantities of U, and the solutions were split into 100 mL and 400 mL aliquots that were subsequently measured blind by three laboratories. All methods investigated were able to measure accurately U/U with precisions of approximately 0.5% to approximately 4%, but only selected MC-ICP-MS methods were capable of consistently analyzing U/U to reasonable precision at the approximately 20 fg L level of U abundance. Isotope dilution using a U tracer demonstrates the ability to measure concentrations to better than +/-4% with the MC-ICP-MS method, though sample heterogeneity in urine samples was shown to be problematic in some cases. MC-ICP-MS outperformed SF-ICP-MS methods, as was expected. The MC-ICP-MS methodology described is capable of measuring to approximately 1% precision the U/U of any sample of human urine over the entire range of uranium abundance down to <1 ng L, and detecting very small amounts of DU contained therein.

  9. Background and Source Term Identification in Active Neutron Interrogation Methods

    DTIC Science & Technology

    2011-03-24

    interactions occurred to observe gamma ray peaks and not unduly increase simulation time. Not knowing the uranium enrichment modeled by Gozani, pure U...neutron interactions can occur. The uranium targets, though, should have increased neutron fluencies as the energy levels become below 2 MeV. This is...Assessment Monitor Site (TEAMS) at Kirtland AFB, NM. Iron (Fe-56), lead (Pb-207), polyethylene (C2H4 –– > C-12 & H-1), and uranium (U-235 and U-238) were

  10. URANIUM BISMUTHIDE DISPERSION IN MOLTEN METAL

    DOEpatents

    Teitel, R.J.

    1959-10-27

    The formation of intermetallic bismuth compounds of thorium or uranium dispersed in a liquid media containing bismuth and lead is described. A bismuthide of uranium dispersed in a liquid metal medium is formed by dissolving uranium in composition of lead and bismuth containing less than 80% lead and lowering the temperature of the composition to a temperature below the point at which the solubility of uranium is exceeded and above the melting point of the composition.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grate, Jay W.; Bliss, Mary; Farmer, Orville T.

    Ultra low-background radiation measurements are essential to several large-scale physics investigations, such as those involving neutrinoless double-beta decay, dark matter detection (such as SuperCDMS), and solar neutrino detection. There is a need for electrically and thermally insulating dielectric materials with extremely low-background radioactivity for detector construction. This need is best met with plastics. Most currently available structural plastics have milliBecquerel-per-kilogram total intrinsic radioactivity. Modern low-level detection systems require a large variety of plastics with low microBecquerel-per-kilogram levels. However, the assay of polymer materials for extremely low levels of radioactive elements, uranium and thorium in particular, presents new challenges. It ismore » only recently that any certified reference materials (CRMs) for toxic metals such as lead or cadmium in plastics have become available. However, there are no CRMs for uranium or thorium in thermoplastics. This paper discusses our assessment of the use of laser ablation (LA) for sampling and inductively coupled plasma mass spectrometry (ICP-MS) for analysis of polyethylene (PE) samples, with an emphasis on uranium determination. Using a CRM for lead in PE, we examine LA and ICP-MS parameters that determine whether the total atom efficiencies for uranium and lead are similar, and explore methods to use the lead content in a plastic as part of the process of estimating or determining the uranium content by LA-ICP-MS.« less

  12. Uranium Isotope Ratios in Modern and Precambrian Soils

    NASA Astrophysics Data System (ADS)

    DeCorte, B.; Planavsky, N.; Wang, X.; Auerbach, D. J.; Knudsen, A. C.

    2015-12-01

    Uranium isotopes (δ238U values) are an emerging paleoredox proxy that can help to better understand the redox evolution of Earth's surface environment. Recently, uranium isotopes have been used to reconstruct ocean and atmospheric redox conditions (Montoya-Pino et al., 2010; Brennecka et al., 2011; Kendall et al., 2013; Dahl et al., 2014). However, to date, there have not been studies on paleosols, despite that paleosols are, arguably better suited to directly tracking the redox conditions of the atmosphere. Sedimentary δ238U variability requires the formation of the soluble, oxidized form of U, U(VI). The formation of U(VI) is generally thought to require oxygen levels orders of magnitude higher than prebiotic levels. Without significant U mobility, it would have been impossible to develop isotopically distinct pools of uranium in ancient Earth environments. Conversely, an active U redox cycle leads to significant variability in δ238U values. Here we present a temporally and geographically expansive uranium isotope record from paleosols and modern soils to better constrain atmospheric oxygen levels during the Precambrian. Preliminary U isotope measurements of paleosols are unfractionated (relative to igneous rocks), possibly because of limited fractionation during oxidation (e.g., {Wang, 2015 #478}) or insufficient atmospheric oxygen levels to oxidize U(IV)-bearing minerals in the bedrock. Further U isotope measurements of paleosols with comparison to modern soils will resolve this issue.

  13. Preparation of High Purity, High Molecular-Weight Chitin from Ionic Liquids for Use as an Adsorbate for the Extraction of Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, Robin

    Ensuring a domestic supply of uranium is a key issue facing the wider implementation of nuclear power. Uranium is mostly mined in Kazakhstan, Australia, and Canada, and there are few high-grade uranium reserves left worldwide. Therefore, one of the most appealing potential sources of uranium is the vast quantity dissolved in the oceans (estimated to be 4.4 billion tons worldwide). There have been research efforts centered on finding a means to extract uranium from seawater for decades, but so far none have resulted in an economically viable product, due in part to the fact that the materials that have beenmore » successfully demonstrated to date are too costly (in terms of money and energy) to produce on the necessary scale. Ionic Liquids (salts which melt below 100{degrees}C) can completely dissolve raw crustacean shells, leading to recovery of a high purity, high molecular weight chitin powder and to fibers and films which can be spun directly from the extract solution suggesting that continuous processing might be feasible. The work proposed here will utilize the unprecedented control this makes possible over the chitin fiber a) to prepare electrospun nanofibers of very high surface area and in specific architectures, b) to modify the fiber surfaces chemically with selective extractant capacity, and c) to demonstrate their utility in the direct extraction and recovery of uranium from seawater. This approach will 1) provide direct extraction of chitin from shellfish waste thus saving energy over the current industrial process for obtaining chitin; 2) allow continuous processing of nanofibers for very high surface area fibers in an economical operation; 3) provide a unique high molecular weight chitin not available from the current industrial process, leading to stronger, more durable fibers; and 4) allow easy chemical modification of the large surface areas of the fibers for appending uranyl selective functionality providing selectivity and ease of stripping. The resulting sorbent should prove economically feasible, as well as providing an overall net energy gain.« less

  14. 40 CFR 192.34 - Effective date.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management of Uranium Byproduct Materials Pursuant to Section 84 of the Atomic Energy Act of 1954, as Amended...

  15. 40 CFR 192.34 - Effective date.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management of Uranium Byproduct Materials Pursuant to Section 84 of the Atomic Energy Act of 1954, as Amended...

  16. Quarterly Report 24.1.3.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shusterman, Jennifer A.

    We are measuring freshly separated uranium samples using modern list mode (event-by-event) electronics with high resolution HPGe detectors to study the in-growth behaviors of uranium daughters’ gamma-rays. These data will show how we can use gamma-ray spectroscopy to determine the separation date for processed uranium. With this knowledge, one can obtain proper uranium isotope ratios using standard safeguards accountability software such as U-235 or MGAU.

  17. U-Pb dating of uranium deposits in collapse breccia pipes of the Grand Canyon region

    USGS Publications Warehouse

    Ludwig, K. R.; Simmons, K.R.

    1992-01-01

    Two major periods of uranium mineralization are indicated by U-Pb isotope dating of uranium ores from collapse breccia pipes in the Grand Canyon region, northern Arizona. The Hack 2 and 3, Kanab North, and EZ 1 and 2 orebodies apparently formed in the interval of 200 ?? 20 Ma, similar to ages inferred for strata-bound, Late Triassic-hosted uranium deposits in southern Utah and northern Arizona. Samples from the Grand Canyon and Pine Nut pipes, however, indicate a distinctly older age of about 260 Ma. The clustering in ages for a variety of uranium deposits at about the age of the lower part of the Chinle Formation (Late Triassic) suggests that uranium in these deposits may have been derived by leaching from volcanic ash in the Chinle and mobilized by ground-water movement. Pb isotope ratios of galenas in mineralized pipes are more radiogenic than those of sulfides from either uranium-poor pipes or occurrences away from pipes. Fluids which passed through the pipes had interacted with the Proterozoic basement, possibly through the vertical fractures which influenced the location and evolution of the pipes themselves. -from Authors

  18. A simple-rapid method to separate uranium, thorium, and protactinium for U-series age-dating of materials.

    PubMed

    Knight, Andrew W; Eitrheim, Eric S; Nelson, Andrew W; Nelson, Steven; Schultz, Michael K

    2014-08-01

    Uranium-series dating techniques require the isolation of radionuclides in high yields and in fractions free of impurities. Within this context, we describe a novel-rapid method for the separation and purification of U, Th, and Pa. The method takes advantage of differences in the chemistry of U, Th, and Pa, utilizing a commercially-available extraction chromatographic resin (TEVA) and standard reagents. The elution behavior of U, Th, and Pa were optimized using liquid scintillation counting techniques and fractional purity was evaluated by alpha-spectrometry. The overall method was further assessed by isotope dilution alpha-spectrometry for the preliminary age determination of an ancient carbonate sample obtained from the Lake Bonneville site in western Utah (United States). Preliminary evaluations of the method produced elemental purity of greater than 99.99% and radiochemical recoveries exceeding 90% for U and Th and 85% for Pa. Excellent purity and yields (76% for U, 96% for Th and 55% for Pa) were also obtained for the analysis of the carbonate samples and the preliminary Pa and Th ages of about 39,000 years before present are consistent with (14)C-derived age of the material. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Hydrologic and Temporal Influences of Evaporite Minerals on the Vertical Distribution, Storage, and Mobility of Uranium

    NASA Astrophysics Data System (ADS)

    Roycroft, S. J.; Noel, V.; Boye, K.; Besancon, C.; Weaver, K. L.; Johnson, R. H.; Dam, W. L.; Fendorf, S. E.; Bargar, J.

    2016-12-01

    Uranium contaminated groundwater in Riverton, Wyoming persists despite anticipated natural attenuation outside of a former uranium ore processing facility. The inability of natural flushing to dilute the uranium below the regulatory threshold indicates that sediments act as secondary sources likely (re)supplying uranium to groundwater. Throughout the contaminated floodplain, uranium rich-evaporites are readily abundant in the upper 2 m of sediments and are spatially coincident with the location of the plume, which suggests a likely link between evaporites and increased uranium levels. Knowledge of where and how uranium is stored within evaporite-associated sediments is required to understand processes controlling the mobility of uranium. We expect that flooding and seasonal changes in hydrologic conditions will affect U phase partitioning, and thus largely control U mobility. The primary questions we are addressing in this project are: What is the relative abundance of uranium incorporated in various mineral complexes throughout the evaporite sediments? How do the factors of depth, location, and seasonality influence the relative incorporation, mobility and speciation of uranium?We have systematically sampled from two soil columns over three dates in Riverton. The sampling dates span before and after a significant flooding event, providing insight into the flood's impact on local uranium mobility. Sequential chemical extractions are used to decipher the reactivity of uranium and approximate U operationally defined within reactants targeting carbonate, silicate, organic, and metal oxide bound or water and exchangeable phases. Extractions throughout the entirety of the sediment cores provide a high-resolution vertical profile of the distribution of uranium in various extracted phases. Throughout the profile, the majority (50-60%) of uranium is bound within carbonate-targeted extracts, a direct effect of the carbonate-rich evaporite sediments. The sum of our analyses provide a dynamic model of uranium incorporation within evaporite sediments holding implications for the fate of uranium throughout contaminated sites across the Colorado River Basin.

  20. RECONDITIONING FUEL ELEMENTS

    DOEpatents

    Brandt, H.L.

    1962-02-20

    A process is given for decanning fuel elements that consist of a uranium core, an intermediate section either of bronze, silicon, Al-Si, and uranium silicide layers or of lead, Al-Si, and uranium silicide layers around said core, and an aluminum can bonded to said intermediate section. The aluminum can is dissolved in a solution of sodium hydroxide (9 to 20 wt%) and sodium nitrate (35 to 12 wt %), and the layers of the intermediate section are dissolved in a boiling sodium hydroxide solution of a minimum concentration of 50 wt%. (AEC) A method of selectively reducing plutonium oxides and the rare earth oxides but not uranium oxides is described which comprises placing the oxides in a molten solvent of zinc or cadmium and then adding metallic uranium as a reducing agent. (AEC)

  1. 77 FR 16868 - Quality Verification for Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... Fuel Elements for Use in Research and Test Reactors AGENCY: Nuclear Regulatory Commission. ACTION... Plate-Type Uranium-Aluminum Fuel Elements for Use in Research and Test Reactors.'' This guide describes... plate-type uranium-aluminum fuel elements used in research and test reactors (RTRs). DATES: Submit...

  2. 76 FR 60941 - Policy Regarding Submittal of Amendments for Processing of Equivalent Feed at Licensed Uranium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-30

    ... State-licensed uranium recovery site, either conventional, heap leach, or in situ recovery. DATES... types of new uranium recovery facilities (conventional mills, heap leach facilities, and in situ... from the ground for processing at a mill. Rather, the ore is processed in-situ with the resulting...

  3. Middle Proterozoic age for the Montpelier Anorthosite, Goochland terrane, eastern Piedmont, Virginia

    USGS Publications Warehouse

    Aleinikoff, J.N.; Horton, J. Wright; Walter, M.

    1996-01-01

    Uranium-lead dating of zircons from the Montpelier Anorthosite confirms previous interpretations, based on equivocal evidence, that the Goochland terrane in the eastern Piedmont of Virginia contains Grenvillian basement rocks of Middle Proterozoic age. A very few prismatic, elongate, euhedral zircons, which contain 12-29 ppm uranium, are interpreted to be igneous in origin. The vast majority of zircons are more equant, subangular to anhedral, contain 38-52 ppm uranium, and are interpreted to be metamorphic in origin. One fraction of elongate zircon, and four fragments of a very large zircon (occurring in a nelsonite segregation) yield an upper intercept age of 1045 ?? 10 Ma, interpreted as the time of anorthosite crystallization. Irregularly shaped metamorphic zircons are dated at 1011 ?? 2 Ma (weighted average of the 207Pb/206Pb ages). The U-Pb isotopic systematics of metamorphic titanite were reset during the Alleghanian orogeny at 297 ?? 5 Ma. These data provide a minimum age for gneisses of the Goochland terrane that are intruded by the anorthosite. Middle Proterozoic basement rocks of the Goochland terrane may be correlative with those in the Shenandoah massif of the Blue Ridge tectonic province, as suggested by similarities between the Montpelier Anorthosite and the Roseland anorthosite. Although the areal extent of Middle Proterozoic basement and basement-cover relations in the eastern Piedmont remain unresolved, results of this investigation indicate that the Goochland terrane is an internal massif of Laurentian crust rather than an exotic accreted terrane.

  4. Bottom-up construction of a superstructure in a porous uranium-organic crystal

    NASA Astrophysics Data System (ADS)

    Li, Peng; Vermeulen, Nicolaas A.; Malliakas, Christos D.; Gómez-Gualdrón, Diego A.; Howarth, Ashlee J.; Mehdi, B. Layla; Dohnalkova, Alice; Browning, Nigel D.; O'Keeffe, Michael; Farha, Omar K.

    2017-05-01

    Bottom-up construction of highly intricate structures from simple building blocks remains one of the most difficult challenges in chemistry. We report a structurally complex, mesoporous uranium-based metal-organic framework (MOF) made from simple starting components. The structure comprises 10 uranium nodes and seven tricarboxylate ligands (both crystallographically nonequivalent), resulting in a 173.3-angstrom cubic unit cell enclosing 816 uranium nodes and 816 organic linkers—the largest unit cell found to date for any nonbiological material. The cuboctahedra organize into pentagonal and hexagonal prismatic secondary structures, which then form tetrahedral and diamond quaternary topologies with unprecedented complexity. This packing results in the formation of colossal icosidodecahedral and rectified hexakaidecahedral cavities with internal diameters of 5.0 nanometers and 6.2 nanometers, respectively—ultimately giving rise to the lowest-density MOF reported to date.

  5. Novel calibration for LA-ICP-MS-based fission-track thermochronology

    NASA Astrophysics Data System (ADS)

    Soares, C. J.; Guedes, S.; Hadler, J. C.; Mertz-Kraus, R.; Zack, T.; Iunes, P. J.

    2014-01-01

    We present a novel age-equation calibration for fission-track age determinations by laser ablation inductively coupled plasma mass spectrometry. This new calibration incorporates the efficiency factor of an internal surface, [ ηq]is, which is obtained by measuring the projected fission-track length, allowing the determination of FT ages directly using the recommended spontaneous fission decay constant. Also, the uranium concentrations in apatite samples are determined using a Durango (Dur-2, 7.44 μg/g U) crystal and a Mud Tank (MT-7, 6.88 μg/g U) crystal as uranium reference materials. The use of matrix-matched reference materials allows a reduction in the uncertainty of the uranium measurements to those related to counting statistics, which are ca. 1 % taking into account that no extra source of uncertainty has to be considered. The equations as well as the matrix-matched reference materials are evaluated using well-dated samples from Durango, Fish Canyon Tuff, and Limberg as unknown samples. The results compare well with their respective published ages determined through other dating methods. Additionally, the results agree with traditional fission-track ages using both the zeta approach and the absolute approach, suggesting that the calibration presented in this work can be robustly applied in geological context. Furthermore, considering that fission-track ages can be determined without an age standard sample, the fission-track thermochronology approach presented here is assumed to be a valuable dating tool.

  6. The 230Th correction is the 1st priority for accurate dates of young zircons: U/Th partitioning experiments and measurements

    NASA Astrophysics Data System (ADS)

    Krawczynski, M.; McLean, N.

    2017-12-01

    One of the most accurate and useful ways of determining the age of rocks that formed more than about 500,000 years ago is uranium-lead (U-Pb) geochronology. Earth scientists use U-Pb geochronology to put together the geologic history of entire regions and of specific events, like the mass extinction of all non-avian dinosaurs about 66 million years ago or the catastrophic eruptions of supervolcanoes like the one currently centered at Yellowstone. The mineral zircon is often utilized because it is abundant, durable, and readily incorporates uranium into its crystal structure. But it excludes thorium, whose isotope 230Th is part of the naturally occurring isotopic decay chain from 238U to 206Pb. Calculating a date from the relative abundances of 206Pb and 238U therefore requires a correction for the missing 230Th. Existing experimental and observational constraints on the way U and Th behave when zircon crystallizes from a melt are not known precisely enough, and thus currently the uncertainty in dates introduced by they `Th correction' is one of the largest sources of systematic error in determining dates. Here we present preliminary results on our study of actinide partitioning between zircon and melt. Experiments have been conducted to grow zircon from melts doped with U and Th that mimic natural magmas at a range of temperatures, and compositions. Synthetic zircons are separated from their coexisting glass and using high precision and high-spatial-resolution techniques, the abundance and distribution of U and Th in each phase is determined. These preliminary experiments are the beginning of a study that will result in precise determination of the zircon/melt uranium and thorium partition coefficients under a wide variety of naturally occurring conditions. This data will be fit to a multidimensional surface using maximum likelihood regression techniques, so that the ratio of partition coefficients can be calculated for any set of known parameters. The results of this study will reduce the largest source of uncertainty in dating young zircons and improve the accuracy of U-Pb dates, improving our ability to tell time during geologic processes. The attainment of more accurate timing of the geologic timescale is important to geologists of all disciplines, from paleontology to planetary cosmochemistry to geobiology.

  7. 76 FR 72920 - Notification of a Public Teleconference of the Chartered Science Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... Document ``Considerations Related to Post-Closure Monitoring of Uranium In-Situ ISL/ISR Sites.'' DATES: The... Monitoring of Uranium In-Situ ISL/ISR Sites.'' The SAB will comply with the provisions of FACA and all... Environmental Protection Standards for Uranium and Thorium Mill Tailings in regard to underground In-Situ Leach...

  8. UDATE1: A computer program for the calculation of uranium-series isotopic ages

    USGS Publications Warehouse

    Rosenbauer, R.J.

    1991-01-01

    UDATE1 is a FORTRAN-77 program with an interface for an Apple Macintosh computer that calculates isotope activities from measured count rates to date geologic materials by uranium-series disequilibria. Dates on pure samples can be determined directly by the accumulation of 230Th from 234U and of 231Pa from 235U. Dates for samples contaminated by clays containing abundant natural thorium can be corrected by the program using various mixing models. Input to the program and file management are made simple and user friendly by a series of Macintosh modal dialog boxes. ?? 1991.

  9. Selected field and analytical methods and analytical results in the Dutch Flats area, western Nebraska, 1995-99

    USGS Publications Warehouse

    Verstraeten, Ingrid M.; Steele, G.V.; Cannia, J.C.; Bohlke, J.K.; Kraemer, T.E.; Hitch, D.E.; Wilson, K.E.; Carnes, A.E.

    2001-01-01

    A study of the water resources of the Dutch Flats area in the western part of the North Platte Natural Resources District, western Nebraska, was conducted from 1995 through 1999 to describe the surface water and hydrogeology, the spatial distribution of selected water-quality constituents in surface and ground water, and the surface-water/ground-water interaction in selected areas. This report describes the selected field and analytical methods used in the study and selected analytical results from the study not previously published. Specifically, dissolved gases, age-dating data, and other isotopes collected as part of an intensive sampling effort in August and November 1998 and all uranium and uranium isotope data collected through the course of this study are included in the report.

  10. Uranium in US surface, ground, and domestic waters. Volume 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drury, J.S.; Reynolds, S.; Owen, P.T.

    1981-04-01

    The report Uranium in US Surface, Ground, and Domestic Waters comprises four volumes. Volumes 2, 3, and 4 contain data characterizing the location, sampling date, type, use, and uranium conentrations of 89,994 individual samples presented in tabular form. The tabular data in volumes 2, 3, and 4 are summarized in volume 1 in narrative form and with maps and histograms.

  11. 76 FR 36918 - Science Advisory Board Staff Office; Notification of a Public Teleconference and Meeting of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... of EPA's Draft Technical Report Pertaining to Uranium and Thorium In-Situ Leach Recovery and Post... Related to Post-Closure Monitoring of Uranium In-Situ Leach/In-Situ Recovery (ISL/ISR) Sites.'' DATES: The... pertaining to Uranium In-Situ Leach Recovery--Post-Closure Stability Monitoring can be found at http://www...

  12. Bottom-up construction of a superstructure in a porous uranium-organic crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Peng; Vermeulen, Nicolaas A.; Malliakas, Christos D.

    Bottom-up construction of highly intricate structures from simple building blocks remains one of the most difficult challenges in chemistry. We report a structurally complex, mesoporous uranium-based metal-organic framework (MOF) made from simple starting components. The structure comprises 10 uranium nodes and seven tricarboxylate ligands (both crystallographically nonequivalent), resulting in a 173.3-angstrom cubic unit cell enclosing 816 uranium nodes and 816 organic linkers—the largest unit cell found to date for any nonbiological material. The cuboctahedra organize into pentagonal and hexagonal prismatic secondary structures, which then form tetrahedral and diamond quaternary topologies with unprecedented complexity. This packing results in the formation ofmore » colossal icosidodecahedral and rectified hexakaidecahedral cavities with internal diameters of 5.0 nanometers and 6.2 nanometers, respectively—ultimately giving rise to the lowest-density MOF reported to date.« less

  13. Uranium-series dated authigenic carbonates and Acheulian sites in southern Egypt

    NASA Technical Reports Server (NTRS)

    Szabo, B. J.; Mchugh, W. P.; Schaber, G. G.; Breed, C. S.; Haynes, C. V., Jr.

    1989-01-01

    Field investigations of aggraded paleovalleys, which were identified in southern Egypt using SIR, are discussed. Acheulian artifacts were found in authigenic carbonate deposites along the edges of the paleovalleys. Uranium series dating of 25 carbonate samples shows that widespread carbonate deposition in the area occurred about 45, 141, and 212 thousand years ago. Analysis of the carbonate suggests that the deposition may be related to late Pleistocene humid climates that facilitated human settlement in the region.

  14. Uranium Bioreduction and Biomineralization.

    PubMed

    Wufuer, Rehemanjiang; Wei, Yongyang; Lin, Qinghua; Wang, Huawei; Song, Wenjuan; Liu, Wen; Zhang, Daoyong; Pan, Xiangliang; Gadd, Geoffrey Michael

    2017-01-01

    Following the development of nuclear science and technology, uranium contamination has been an ever increasing concern worldwide because of its potential for migration from the waste repositories and long-term contaminated environments. Physical and chemical techniques for uranium pollution are expensive and challenging. An alternative to these technologies is microbially mediated uranium bioremediation in contaminated water and soil environments due to its reduced cost and environmental friendliness. To date, four basic mechanisms of uranium bioremediation-uranium bioreduction, biosorption, biomineralization, and bioaccumulation-have been established, of which uranium bioreduction and biomineralization have been studied extensively. The objective of this review is to provide an understanding of recent developments in these two fields in relation to relevant microorganisms, mechanisms, influential factors, and obstacles. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Uranium-series dating of the Mousterian occupation at Abric Romani, Spain

    USGS Publications Warehouse

    Bischoff, J.L.; Julia, R.; Mora, R.

    1988-01-01

    The precise evolutionary position of the Neanderthal people continues to be a major uncertainty in human evolution. Their origin and their relationship to anatomically modern people are unclear and are clouded by poor chronology. Lithic artefacts of' the Mousterian type, found throughout Europe and the Mediterranean Basin, are believed to be the tool kit of the Neanderthals, but dates within Mousterian-bearing deposits are extremely rare. We report here on 20 high-quality uranium-series dates from Mousterian beds at Abric Romani, a rock shelter near Barcelona, Spain. The dates range from 39 to 60 kyr before present (BP) in an orderly stratigraphic succession and provide precise chronological control on an important Mousterian archaeological site. ?? 1988 Nature Publishing Group.

  16. Determination of trace uranium by resonance fluorescence method coupled with photo-catalytic technology and dual cloud point extraction

    NASA Astrophysics Data System (ADS)

    Li, Jiekang; Li, Guirong; Han, Qian

    2016-12-01

    In this paper, two kinds of salophens (Sal) with different solubilities, Sal1 and Sal2, have been respectively synthesized, and they all can combine with uranyl to form stable complexes: [UO22 +-Sal1] and [UO22 +-Sal2]. Among them, [UO22 +-Sal1] was used as ligand to extract uranium in complex samples by dual cloud point extraction (dCPE), and [UO22 +-Sal2] was used as catalyst for the determination of uranium by photocatalytic resonance fluorescence (RF) method. The photocatalytic characteristic of [UO22 +-Sal2] on the oxidized pyronine Y (PRY) by potassium bromate which leads to the decrease of RF intensity of PRY were studied. The reduced value of RF intensity of reaction system (ΔF) is in proportional to the concentration of uranium (c), and a novel photo-catalytic RF method was developed for the determination of trace uranium (VI) after dCPE. The combination of photo-catalytic RF techniques and dCPE procedure endows the presented methods with enhanced sensitivity and selectivity. Under optimal conditions, the linear calibration curves range for 0.067 to 6.57 ng mL- 1, the linear regression equation was ΔF = 438.0 c (ng mL- 1) + 175.6 with the correlation coefficient r = 0.9981. The limit of detection was 0.066 ng mL- 1. The proposed method was successfully applied for the separation and determination of uranium in real samples with the recoveries of 95.0-103.5%. The mechanisms of the indicator reaction and dCPE are discussed.

  17. Dynamic interplay between uranyl phosphate precipitation, sorption, and phase evolution

    DOE PAGES

    Munasinghe, P. Sumudu; Elwood Madden, Megan E.; Brooks, Scott C.; ...

    2015-04-17

    We report that natural examples demonstrate uranyl-phosphate minerals can maintain extremely low levels of aqueous uranium in groundwaters due to their low solubility. Thus, greater understanding of the geochemical factors leading to uranyl phosphate precipitation may lead to successful application of phosphate-based remediation methods. However, the solubility of uranyl phosphate phases varies over >3 orders of magnitude, with the most soluble phases typically observed in lab experiments. To understand the role of common soil/sediment mineral surfaces in the nucleation and transformation of uranyl phosphate minerals under environmentally relevant conditions, we carried out batch experiments with goethite and mica at pHmore » 6 in mixed electrolyte solutions ranging from 1–800 μM U and 1–800 μM P. All experiments ended with uranium concentrations below the USEPA MCL for U, but with 2–3 orders of magnitude difference in uranium concentrations.« less

  18. Combined apatite fission track and U-Pb dating by LA-ICPMS

    NASA Astrophysics Data System (ADS)

    Chew, D. M.; Donelick, R. A.

    2012-04-01

    Apatite is a common accessory mineral in igneous, metamorphic and clastic sedimentary rocks. It is a nearly ubiquitous accessory phase in igneous rocks, is common in metamorphic rocks of pelitic, carbonate, basaltic, and ultramafic composition and is virtually ubiquitous in clastic sedimentary rocks. In contrast to the polycyclic behavior of the stable heavy mineral zircon, apatite is unstable in acidic groundwaters and has limited mechanical stability in sedimentary transport systems. Apatite has many potential applications in provenance studies, particularly as it likely represents first-cycle detritus. Fission track and U-Pb dating are very powerful techniques in apatite provenance studies. They yield complementary information, with the apatite fission-track system yielding low-temperature exhumation ages and the U-Pb system yielding high-temperature cooling ages which constrain the timing of apatite crystallization. This study focuses on integrating apatite fission track and U-Pb dating by the LA-ICPMS method. Our approach is intentionally broad in scope, and is applicable to any quadrupole or rapid-scanning magnetic-sector LA-ICPMS system. Calculating uranium concentrations in fission-track dating by LA-ICPMS increases the speed of analysis and sample throughput compared to the conventional external detector method and avoids the need for neutron irradiation (Hasebe et al., 2004). LA-ICPMS-based uranium measurements in apatite are measured relative to an internal concentration standard (typically 43Ca). Ca in apatite is not always stochiometric as minor cations (Mn2+, Sr2+, Ba2+ and Fe2+) and REE can substitute with Ca2+. These substitutions must be quantified by multi-elemental LA-ICPMS analyses. Such data are also useful for discriminating between different apatite populations in sedimentary or volcaniclastic rocks based on their trace-element chemistry. Low U, Th and radiogenic Pb concentrations, elevated common Pb / radiogenic Pb ratios and U-Pb elemental fractionation are challenges in apatite U-Pb dating by LA-ICPMS. Isochron-based approaches to common Pb correction require a significant spread in common Pb / radiogenic Pb ratios. This is not usually possible on individual detrital apatite grains and hence the 204Pb-, 207Pb- and 208Pb-correction methods are preferred. Uranium concentration measurements by ICPMS employ large peak jumps (the internal standard is a Ca isotope) which require a quadrupole or a rapid-scanning magnetic-sector LA-ICPMS system. These single-collector instruments require a prohibitively long dwell time on the low intensity 204Pb peak to measure it accurately and hence the 207Pb- and 208Pb-correction methods are preferred. Uranium-concentration measurements in fission-track dating require well-constrained ablation depths during analysis and hence spot analyses are preferred to rastering. Laser-induced U-Pb fractionation is corrected for by sample-standard bracketing using a variety of apatite standards (Durango, Emerald Lake, Fish Canyon Tuff, Kovdor, Otter Lake and McClure Mountain syenite). Of these, Emerald Lake (Chew et al., 2011) and McClure Mountain syenite apatite are recommended as primary standards with Durango apatite making a suitable secondary standard. Offline data-reduction uses custom-written software for ICPMS data processing (the UPbICP package of Ray Donelick) or the freeware IOLITE data-reduction package of Paton et al. (2010).

  19. Round-robin 230Th– 234U age dating of bulk uranium for nuclear forensics

    DOE PAGES

    Gaffney, Amy M.; Hubert, Amélie; Kinman, William S.; ...

    2015-07-30

    We report that in an inter-laboratory measurement comparison study, four laboratories determined 230Th– 234U model ages of uranium certified reference material NBL U050 using isotope dilution mass spectrometry. The model dates determined by the participating laboratories range from 9 March 1956 to 19 October 1957, and are indistinguishable given the associated measurement uncertainties. These model ages are concordant with to slightly older than the known production age of NBL U050.

  20. Summary Report of Depleted Uranium (DU) Survey Actions at Nevada Test and Training Range (NTTR), Airspace Region 63B, Active Target Complex 10 (63-10)

    DTIC Science & Technology

    2016-09-15

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 15 Sep 2016 2. REPORT TYPE...Consultative Letter 3. DATES COVERED (From – To) Feb – Jun 2013 4. TITLE AND SUBTITLE Summary Report of Depleted Uranium (DU) Survey Actions at...USAF RADIOISOTOPE COMMITTEE SECRETARIAT ATTN: DR. RAMACHANDRA BHAT 7700 ARLINGTON BLVD, STE 5151 FALLS CHURCH, VA 22042-5151

  1. Round-robin 230Th– 234U age dating of bulk uranium for nuclear forensics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaffney, Amy M.; Hubert, Amélie; Kinman, William S.

    We report that in an inter-laboratory measurement comparison study, four laboratories determined 230Th– 234U model ages of uranium certified reference material NBL U050 using isotope dilution mass spectrometry. The model dates determined by the participating laboratories range from 9 March 1956 to 19 October 1957, and are indistinguishable given the associated measurement uncertainties. These model ages are concordant with to slightly older than the known production age of NBL U050.

  2. A Lunar Chronology

    ERIC Educational Resources Information Center

    Schaeffer, Oliver A.

    1973-01-01

    Discusses methods used in determination of absolute isotopic ages for the returned lunar material, including the uranium-lead, rubidium-strontium, and argon 40-argon 39 ratio methods. Indicates that there would exist a basin-forming bombardment period for the Moon extending over at least 300 million years. (CC)

  3. Graphic and algebraic solutions of the discordant lead-uranium age problem

    USGS Publications Warehouse

    Stieff, L.R.; Stern, T.W.

    1961-01-01

    Uranium-bearing minerals that give lead-uranium and lead-lead ages that are essentially in agreement, i.e. concordant, generally are considered to have had a relatively simple geologic history and to have been unaltered since their deposition. The concordant ages obtained on such materials are, therefore, assumed to approach closely the actual age of the minerals. Many uranium-bearing samples, particularly uranium ores, give the following discordant age sequences; Pb206 U238 < Pb207 U235 ??? Pb207 Pb206 or, less frequently, Pb207 Pb206 ??? Pb207 U235 < Pb206 U238. These discordant age sequences have been attributed most often to uncertainties in the common lead correction, selective loss of radio-active daughter products, loss or gain of lead or uranium, or contamination by an older generation of radiogenic lead. The evaluation of discordant lead isotope age data may be separated into two operations. The first operation, with which this paper is concerned, is mechanical in nature and involves the calculation of the different possible concordant ages corresponding to the various processes assumed to have produced the discordant ages. The second operation is more difficult to define and requires, in part, some personal judgement. It includes a synthesis of the possible concordant age solutions with other independent geologic and isotopic evidence. The concordant age ultimately chosen as most acceptable should be consistent not only with the known events in the geologic history of the area, the age relations of the enclosing rocks, and the mineralogic and paragenetic evidence, but also with other independent age measurements and the isotopic data obtained on the lead in related or associated non-radioactive minerals. The calculation of the possible concordant ages from discordant age data has been greatly simplified by Wetherill's graphical method of plotting the mole ratios of radiogenic Pb206 U238 ( N206 N238) vs. radiogenic Pb207 U235 ( N207 N235) after correcting for the contaminating common Pb206 and Pb207. The linear relationships noted in this graphical procedure have been extended to plots of the mole ratios of total Pb206 U238 ( tN206 N238) vs. total Pb207 U235 ( tN207 N235). This modification permits the calculation of concordant ages for unaltered samples using only the Pb207 Pb206 ratio of the contaminating common lead. If isotopic data are available for two samples of the same age, x and y, from the same or related deposits or outcrops, graphs of the normalized difference ratios [ ( N206 N204)x - ( N206 N204)y ( N238 N204)x -( N238 N204)y] vs. [ ( N207 N204)x - ( N207 N204)y ( N235 N204)x -( N235 N204)y] can give concordant ages corrected for unknown amounts of a common lead with an unknown Pb207/ Pb206 ratio. (If thorium is absent the difference ratios may be normalized with the more abundant index isotope, Pb208.) Similar plots of tho normalized, difference ratios for three genetically related samples (x - y) and(x - z), will give concordant ages corrected, in addition, for either one unknown period of past alteration or initial contamination by an older generation of radiogenic lead of unknown Pb207/Pb206 ratio. Practical numerical solutions for many of tho concordant age calculations are not currently available. However, the algebraic equivalents of these new graphical methods give equations which may be programmed for computing machines. For geologically probable parameters the equations of higher order have two positive real roots that rapidly converge on the exact concordant ages corrected for original radiogenic lead and for loss or gain of lead or uranium. Modifications of these general age equations expanded only to the second degree have been derived for use with desk calculators. These graphical and algebraic methods clearly suggest both the type and minimum number of samples necessary for adequate mathematical analysis of discordant lead isotope age data. This mathematical treatment also makes it clear t

  4. Geology of the Shinarump No. 1 uranium mine, Seven Mile Canyon area, Grand County, Utah

    USGS Publications Warehouse

    Finch, Warren Irvin

    1953-01-01

    The Shinarump No. 1 uranium mine is located about 12 miles northwest of Moab, Utah, in the Seven Mile Canyon area, Grand County, Utah. A study was made of the geology of the Shinarump No. 1 mine in order to determine the habits, ore controls, and possible origin of the deposit. Rocks of Permain, Triassic, and Jurassic age crop out in the area mapped. Uranium deposits are found in three zones in the lower 25 feet of the Upper Triassic Chinle formation. The Shinarump No. 1 mine, which is in the lowermost zone, is located on the west flank of the Moab anticline near the Moab fault. The Shinarump No. 1 uranium deposit consists of discontinuous lenticular layers of mineralized rock, irregular in outline, that, in general, follow the bedding. Ore minerals, mainly uranite, impregnate the rock. High-grade seams of uranite and chalcocite occur along bedding planes. Formation of unraninite is later than or simultaneous with most sulfides. Chalcocite may be of two ages, with some being later than uraninite. Uraninite and chalcocite are concentrated in the poorer sorted parts of siltstones. Guides to ore in the Seven Mile Canyon area inferred from the study of the Shinarump No. 1 deposit are the presence of bleached siltstone, copper sulfides, and carbonaceous matter. Results of spectrographic analysis indicated that the mineralizing solutions contained important amounts of barium, vanadium, uranium, and copper as well as lesser amounts of strontium, chromium, boron, yttrium, lead, and zinc. The origin of the Shinarump No. 1 deposit is thought to be hydrothermal, dated as later or early.

  5. Laser-Assisted Atom Probe Tomography of Deformed Minerals: A Zircon Case Study.

    PubMed

    La Fontaine, Alexandre; Piazolo, Sandra; Trimby, Patrick; Yang, Limei; Cairney, Julie M

    2017-04-01

    The application of atom probe tomography to the study of minerals is a rapidly growing area. Picosecond-pulsed, ultraviolet laser (UV-355 nm) assisted atom probe tomography has been used to analyze trace element mobility within dislocations and low-angle boundaries in plastically deformed specimens of the nonconductive mineral zircon (ZrSiO4), a key material to date the earth's geological events. Here we discuss important experimental aspects inherent in the atom probe tomography investigation of this important mineral, providing insights into the challenges in atom probe tomography characterization of minerals as a whole. We studied the influence of atom probe tomography analysis parameters on features of the mass spectra, such as the thermal tail, as well as the overall data quality. Three zircon samples with different uranium and lead content were analyzed, and particular attention was paid to ion identification in the mass spectra and detection limits of the key trace elements, lead and uranium. We also discuss the correlative use of electron backscattered diffraction in a scanning electron microscope to map the deformation in the zircon grains, and the combined use of transmission Kikuchi diffraction and focused ion beam sample preparation to assist preparation of the final atom probe tip.

  6. Paleontological analysis of a lacustrine carbonaceous uranium deposit at the Anderson mine, Date Creek basin, west-central Arizona (U.S.A.)

    USGS Publications Warehouse

    Otton, J.K.; Bradbury, J.P.; Forester, R.M.; Hanley, J.H.

    1990-01-01

    The Tertiary sedimentary sequence of the Date Creek basin area of Arizona is composed principally of intertonguing alluvial-fan and lacustrine deposits. The lacustrine rocks contain large intermediate- to, locally, high-grade uranium deposits that form one of the largest uranium resources in the United States (an estimated 670,000 tons of U3O8 at an average grade of 0.023% is indicated by drilling to date). At the Anderson mine, about 50,000 tons of U3O8 occurs in lacustrine carbonaceous siltstones and mudstones (using a cutoff grade of 0.01%). The Anderson mine constitutes a new class of ore deposit, a lacustrine carbonaceous uranium deposit. Floral and faunal remains at the Anderson mine played a critical role in creating and documenting conditions necessary for uranium mineralization. Organic-rich, uraniferous rocks at the Anderson mine contain plant remains and ostracodes having remarkably detailed preservation of internal features because of infilling by opaline silica. This preservation suggests that the alkaline lake waters in the mine area contained high concentrations of dissolved silica and that silicification occurred rapidly, before compaction or cementation of the enclosing sediment. Uranium coprecipitated with the silica. Thinly laminated, dark-colored, siliceous beds contain centric diatoms preserved with carbonaceous material suggesting that lake waters at the mine were locally deep and anoxic. These alkaline, silica-charged waters and a stagnant, anoxic environment in parts of the lake were necessary conditions for the precipitation of large amounts of uranium in the lake-bottom sediments. Sediments at the Anderson mine contain plant remains and pollen that were derived from diverse vegetative zones suggesting about 1500 m of relief in the area at the time of deposition. The pollen suggests that the valley floor was semiarid and subtropical, whereas nearby mountains supported temperate deciduous forests. ?? 1990.

  7. Determination of trace uranium by resonance fluorescence method coupled with photo-catalytic technology and dual cloud point extraction.

    PubMed

    Li, Jiekang; Li, Guirong; Han, Qian

    2016-12-05

    In this paper, two kinds of salophens (Sal) with different solubilities, Sal1 and Sal2, have been respectively synthesized, and they all can combine with uranyl to form stable complexes: [UO2(2+)-Sal1] and [UO2(2+)-Sal2]. Among them, [UO2(2+)-Sal1] was used as ligand to extract uranium in complex samples by dual cloud point extraction (dCPE), and [UO2(2+)-Sal2] was used as catalyst for the determination of uranium by photocatalytic resonance fluorescence (RF) method. The photocatalytic characteristic of [UO2(2+)-Sal2] on the oxidized pyronine Y (PRY) by potassium bromate which leads to the decrease of RF intensity of PRY were studied. The reduced value of RF intensity of reaction system (ΔF) is in proportional to the concentration of uranium (c), and a novel photo-catalytic RF method was developed for the determination of trace uranium (VI) after dCPE. The combination of photo-catalytic RF techniques and dCPE procedure endows the presented methods with enhanced sensitivity and selectivity. Under optimal conditions, the linear calibration curves range for 0.067 to 6.57ngmL(-1), the linear regression equation was ΔF=438.0 c (ngmL(-1))+175.6 with the correlation coefficient r=0.9981. The limit of detection was 0.066ngmL(-1). The proposed method was successfully applied for the separation and determination of uranium in real samples with the recoveries of 95.0-103.5%. The mechanisms of the indicator reaction and dCPE are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Quantitative radiochemical method for determination of major sources of natural radioactivity in ores and minerals

    USGS Publications Warehouse

    Rosholt, J.N.

    1954-01-01

    When an ore sample contains radioactivity other than that attributable to the uranium series in equilibrium, a quantitative analysis of the other emitters must be made in order to determine the source of this activity. Thorium-232, radon-222, and lead-210 have been determined by isolation and subsequent activity analysis of some of their short-lived daughter products. The sulfides of bismuth and polonium are precipitated out of solutions of thorium or uranium ores, and the ??-particle activity of polonium-214, polonium-212, and polonium-210 is determined by scintillation-counting techniques. Polonium-214 activity is used to determine radon-222, polonium-212 activity for thorium-232, and polonium-210 for lead-210. The development of these methods of radiochemical analysis will facilitate the rapid determination of some of the major sources of natural radioactivity.

  9. Determination of lead, uranium, thorium, and thallium in silicate glass standard materials by isotope dilution mass spectrometry

    USGS Publications Warehouse

    Barnes, I.L.; Garner, E.L.; Gramlich, J.W.; Moore, L.J.; Murphy, T.J.; Machlan, L.A.; Shields, W.R.; Tatsumoto, M.; Knight, R.J.

    1973-01-01

    A set of four standard glasses has been prepared which have been doped with 61 different elements at the 500-, 50-, 1-, and 0.02-ppm level. The concentrations of lead, uranium, thorium, and thallium have been determined by isotope dilution mass spectrometry at a number of points in each of the glasses. The results obtained from independent determinations in two laboratories demonstrate the homogeneity of the samples and that precision of the order of 0.5% (95% L.E.) may be obtained by the method even at the 20-ppb level for these elements. The chemical and mass spectrometric procedures necessary are presented.

  10. Enclosure from DOE letter dated 7/20/07 - Table 5-2, Isotopic Compositions of Rocky Flats Plutonium and Uranium

    EPA Pesticide Factsheets

    This enclosure from a DOE letter to EPA regarding a waste container disposed at the WIPP from the Advanced Mixed Waste Treatment Project includes Table 5-2, Isotopic Compositions of Rocky Flats Plutonium and Uranium.

  11. Uranium series dating of human skeletal remains from the Del Mar and Sunnyvale sites, California

    USGS Publications Warehouse

    Bischoff, J.L.; Rosenbauer, R.J.

    1981-01-01

    Uranium series analyses of human bone samples from the Del Mar and Sunnyvale sites indicate ages of 11,000 and 8,300 years, respectively. The dates are supported by internal concordancy between thorium-230 and protactinium-231 decay systems. These ages are significantly younger than the estimates of 48,000 and 70,000 years based on amino acid racemization, and indicate that the individuals could derive from the population waves that came across the Bering Strait during the last sea-level low. Copyright ?? 1981 AAAS.

  12. Calyptogena-cemented rocks and concretions from the eastern part of Nankai accretionary prism: Age and geochemistry of uranium

    NASA Astrophysics Data System (ADS)

    Lalou, Claude; Fontugne, Michel; Lallemand, Serge E.; Lauriat-Rage, Agnès

    1992-04-01

    Calyptogena valves included in a carbonate-rich cement, and fragments of a carbonate-rich chimney, have been examined for their stable isotopic (C and O) composition,14C activity and uranium series disequilibrium. The fossil shells were formed essentially with seawater carbon and a negligible contribution of cold seepage organic carbon, as shown by theirδ13C values. This allows the14C method to be used to determine their age. A fairly good concordance between the14C and230Th234U ages of the youngest shells gives confidence in the dating of the older samples using the latter technique. Thus, theCalyptogena are dated at ca. 150,000 and 20,000 yrs B.P. They have been preserved from dissolution by rapid cementation by a supersaturated carbonate solution. The cement is especially rich in uranium (as high as 75 ppm), whose source is seawater; the enrichment is due to local reducing conditions brought about by the bacterial decomposition of the soft tissues of the bivalves shortly after death. TheCalyptogena that probably developed between these two events (the events of ca. 20,000 and 150,000 yrs) have not been preserved from dissolution because, as is presently the case, the cold seepages were undersaturated with calcium carbonate. The two events probably represent periods of intense fluid venting connected with tectonic activity.

  13. Preparation and certification of Re-Os dating reference materials: Molybdenites HLP and JDC

    USGS Publications Warehouse

    Du, A.; Wu, S.; Sun, D.; Wang, Shaoming; Qu, W.; Markey, R.; Stain, H.; Morgan, J.; Malinovskiy, D.

    2004-01-01

    Two Re-Os dating reference material molybdenites were prepared. Molybdenite JDC and molybdenite HLP are from a carbonate vein-type molybdenum-(lead)- uranium deposit in the Jinduicheng-Huanglongpu area of Shaanxi province, China. The samples proved to be homogeneous, based on the coefficient of variation of analytical results and an analysis of variance test. The sampling weight was 0.1 g for JDC and 0.025 g for HLP. An isotope dilution method was used for the determination of Re and Os. Sample decomposition and preconcentration of Re and Os prior to measurement were accomplished using a variety of methods: acid digestion, alkali fusion, ion exchange and solvent extraction. Negative thermal ionisation mass spectrometry and inductively coupled plasma-mass spectrometry were used for the determination of Re and 187Os concentration and isotope ratios. The certified values include the contents of Re and Os and the model ages. For HLP, the Re content was 283.8 ?? 6.2 ??g g-1, 187Os was 659 ?? 14 ng g-1 and the Re-Os model age was 221.4 ?? 5.6 Ma. For JDC, the Re content was 17.39 ?? 0.32 ng g-1, 187Os was 25.46 ?? 0.60 ng g-1 and the Re-Os model age was 139.6 ?? 3.8 Ma. Uncertainties for both certified reference materials are stated at the 95% level of confidence. Three laboratories (from three countries: P.R. China, USA, Sweden) joined in the certification programme. These certified reference materials are primarily useful for Re-Os dating of molybdenite, sulfides, black shale, etc.

  14. Rapid Radiochemical Method for Isotopic Uranium in Building ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Uranium-234, uranium-235, and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of uranium-234, uranium-235, and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  15. Parent zonation in thermochronometers - resolving complexity revealed by ID-TIMS U-Pb dates and implications for the application of decay-based thermochronometers

    NASA Astrophysics Data System (ADS)

    Navin Paul, Andre; Spikings, Richard; Chew, David; Daly, J. Stephen; Ulyanov, Alexey

    2017-04-01

    High temperature (>350℃) U-Pb thermochronometers primarily use accessory minerals such as apatite, titanite and rutile, and assume that daughter isotopes are lost by thermally activated volume diffusion while the parent remains immobile. Studies exploiting such behaviour have been successfully used to reconstruct thermal histories spanning several hundred million years (e.g. Cochrane et al., 2014). However, outliers in date (ID-TIMS) vs diffusion length space are frequently observed, and grains are frequently found to be either too young or too old for expected thermal history solutions using the diffusion data of Cherniak et al. (2010). These deviations of single grain apatite U-Pb dates from expected behaviour could be caused by a combination of i) metamorphic (over-)growth, ii) fluid-aided Pb mobilisation during alteration/recrystallization, iii) parent isotope zonation, iv) metamictisation, and v) changes in diffusion length with time (e.g. fracturing). We present a large data set from the northern Andes of South America, where we compare apatite U-Pb ID-TIMS-(TEA) data with LA-ICP-MS element maps and in-situ apatite U-Pb LA-(MC)-ICP-MS dates. These are combined with U-Pb zircon and 40Ar/39Ar (muscovite) data to attempt to distinguish between thermally activated volume diffusion and secondary overgrowth/recrystallization. We demonstrate that in young (e.g. Phanerozoic) apatites that have not recrystallized or experienced metasomatic overgrowths, U-Pb dates are dominantly controlled by volume diffusion and intra-crystal uranium zonation. This implies that ID-TIMS analyses of apatites with zoned parent isotope distributions will not usually recover accurate thermal history solutions, and an in-situ dating method is required. Recovering the uranium distribution during in-situ analysis provides a means to account for parent zonation, substantially increasing the accuracy of the modelled t-T-paths. We present in-situ data from apatites where scatter in date v diffusion length scale is observed and compare t-T-paths from single grain and in-situ modelling. Modelling of in-situ data will further show if all apatites from a single hand specimen record the same thermal history using Cherniak et al. (2010) diffusion data, or if the Pb-in-apatite diffusion parameters are a function of composition. U zonation is ubiquitous in the studied rocks (Triassic apatites extracted from peraluminous leucosomes), implying that these conclusions may also apply to lower temperature thermochronometers that are based on uranium decay, such as (U-Th)/He dating.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saccomanno, G.

    This work supported by the United States of Energy, continues to add data on the health affects of cigarette smoking and radon exposure on uranium miners. Since the last Technical Progress Report in July or 1991, 537 sputum cytology samples have been collected on the 300 uranium workers in the surveillance study. To date there are 436 lung cancer cases in the Uranium Miner Tumor Registry with diagnostic slides from surgery and/or autopsy; an additional 40 cases have been diagnosed with sputum cytology only. In March of 1991 the Geno Saccomanno Uranium Workers Archive was established at St. Mary`s Hospitalmore » and Medical Center as a depository for biological specimens and epidemiological data from the 17,700 uranium miners who have been a part or the study.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saccomanno, G.

    This work supported by the United States of Energy, continues to add data on the health affects of cigarette smoking and radon exposure on uranium miners. Since the last Technical Progress Report in July or 1991, 537 sputum cytology samples have been collected on the 300 uranium workers in the surveillance study. To date there are 436 lung cancer cases in the Uranium Miner Tumor Registry with diagnostic slides from surgery and/or autopsy; an additional 40 cases have been diagnosed with sputum cytology only. In March of 1991 the Geno Saccomanno Uranium Workers Archive was established at St. Mary's Hospitalmore » and Medical Center as a depository for biological specimens and epidemiological data from the 17,700 uranium miners who have been a part or the study.« less

  18. Monte carlo simulations of Yttrium reaction rates in Quinta uranium target

    NASA Astrophysics Data System (ADS)

    Suchopár, M.; Wagner, V.; Svoboda, O.; Vrzalová, J.; Chudoba, P.; Tichý, P.; Kugler, A.; Adam, J.; Závorka, L.; Baldin, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Solnyshkin, A.; Tsoupko-Sitnikov, V.; Tyutyunnikov, S.; Bielewicz, M.; Kilim, S.; Strugalska-Gola, E.; Szuta, M.

    2017-03-01

    The international collaboration Energy and Transmutation of Radioactive Waste (E&T RAW) performed intensive studies of several simple accelerator-driven system (ADS) setups consisting of lead, uranium and graphite which were irradiated by relativistic proton and deuteron beams in the past years at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. The most recent setup called Quinta, consisting of natural uranium target-blanket and lead shielding, was irradiated by deuteron beams in the energy range between 1 and 8 GeV in three accelerator runs at JINR Nuclotron in 2011 and 2012 with yttrium samples among others inserted inside the setup to measure the neutron flux in various places. Suitable activation detectors serve as one of possible tools for monitoring of proton and deuteron beams and for measurements of neutron field distribution in ADS studies. Yttrium is one of such suitable materials for monitoring of high energy neutrons. Various threshold reactions can be observed in yttrium samples. The yields of isotopes produced in the samples were determined using the activation method. Monte Carlo simulations of the reaction rates leading to production of different isotopes were performed in the MCNPX transport code and compared with the experimental results obtained from the yttrium samples.

  19. 76 FR 69295 - Strata Energy, Inc.; Establishment of Atomic Safety and Licensing Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ...: Strata Energy, Inc. (Ross In Situ Recovery Uranium Project) This proceeding involves a license... byproduct materials license at its Ross In Situ Recovery Uranium Project site located in Crook County... dated December 29, 1972, published in the Federal Register, 37 FR 28,710 (1972), and the Commission's...

  20. 75 FR 13141 - Powertech (USA), Inc.; Establishment of Atomic Safety and Licensing Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-18

    ... following proceeding: Powertech (USA) Inc. (Dewey-Burdock In Situ Uranium Recovery Facility). This Board is... Powertech (USA) Inc.'s application for a source materials license for an in situ uranium recovery facility... Commission dated December 29, 1972, published in the Federal Register, 37 FR 28,710 (1972), and the...

  1. Methods for determination of radioactive substances in water and fluvial sediments

    USGS Publications Warehouse

    Thatcher, Leland Lincoln; Janzer, Victor J.; Edwards, Kenneth W.

    1977-01-01

    Analytical methods for the determination of some of the more important components of fission or neutron activation product radioactivity and of natural radioactivity found in water are reported. The report for each analytical method includes conditions for application of the method, a summary of the method, interferences, required apparatus and reagents, analytical procedures, calculations, reporting of results, and estimation of precision. The fission product isotopes considered are cesium-137, strontium-90, and ruthenium-106. The natural radioelements and isotopes considered are uranium, lead-210, radium-226, radium-228, tritium, and carbon-14. A gross radioactivity survey method and a uranium isotope ratio method are given. When two analytical methods are in routine use for an individual isotope, both methods are reported with identification of the specific areas of application of each. Techniques for the collection and preservation of water samples to be analyzed for radioactivity are discussed.

  2. A Complication in Determining the Precise Age of the Solar System

    NASA Astrophysics Data System (ADS)

    Brennecka, G. A.

    2010-01-01

    Primitive components in meteorites contain a detailed record of the conditions and processes in the solar nebula, the cloud of dust and gas surrounding the infant Sun. Determining accurately when the first materials formed requires the lead-lead (Pb-Pb) dating method, a method based on the decay of uranium (U) isotopes to Pb isotopes. The initial ratio of U-238 to U-235 is critical to determining the ages correctly, and many studies have concluded that the ratio is constant for any given age. However, my colleagues at Arizona State University, Institut fur Geowissenschaften, Goethe-Universitat (Frankfurt, Germany), and the Senckenberg Forschungsinstitut und Naturmuseum (also in Frankfurt) and I have found that some calcium-aluminum-rich inclusions (CAIs) in chondritic meteorites deviate from the conventional value for the U-238/U-235 ratio. This could lead to inaccuracies of up to 5 million years in the age of these objects, if no correction is made. Variations in the concentrations of thorium and neodymium with the U-238/U-235 ratio suggest that the ratio may have been lowered by the decay of curium-247, which decays to U-235 with a half-life of 15.6 million years. Curium-247 is created in certain types of energetic supernovae, so its presence suggests that a supernova added material to the pre-solar interstellar cloud between 110 and 140 million years before the Solar System began to form.

  3. Tables for determining lead, uranium, and thorium isotope ages

    NASA Technical Reports Server (NTRS)

    Schonfeld, E.

    1974-01-01

    Tables for determining lead, uranium, and thorium isotope ages are presented in the form of computer printouts. Decay constants, analytical expressions for the functions evaluated, and the precision of the calculations are briefly discussed.

  4. Bridging the gap between tribal risk perceptions and scientific decision-making for uranium legacy sites located in Native American communities

    NASA Astrophysics Data System (ADS)

    Joseph, C.; Waugh, W.; Glenn, E.; Chief, K.

    2017-12-01

    There are approximately 15,000 abandoned uranium mines (AUM) in the western United States, of which 500 AUMs are located in the Colorado Plateau Four-Corners region. Uranium mill tailings, referred to as legacy waste, compromise the largest volume of any category of radioactive waste in the nation. Today, the Department of Energy Legacy Management is responsible for long-term stewardship and maintenance of inactive uranium processing sites that have been remediated to prevent further migration and exposure of tailings to the environment and surrounding communities. In collaboration with the DOE-LM, I am investigating the impact of climate change and community adaptation on the long-term performance of disposal cell covers for uranium mill tailings located in Native American communities, as well as how these communities have adapted to and perceive these areas. I am interested in how abiotic engineered cell covers may be candidate sites for future conversion to vegetated evapotranspirative caps for arid to semi-arid climates. The objectives are to: 1) assess above-ground tissue of plants encroaching engineered cell covers for concentrations of uranium, radium, selenium, molybdenum, thorium, arsenic, lead, and manganese and compare them to control sites; 2) determine if above-cell plant tissue is accumulating to toxic levels that may create an exposure pathway, 3) identify climate scenarios for site locations and determine how short-and long-scale climate projections will influence spatial and temporal plant distribution for specific woody species; and 4) evaluate the risk perceptions of Hopi villages located five miles downstream of one site location. To date, risk perception and stakeholder outreach to the Hopi communities has been absent. This study will help inform how land use, water use, and sustenance practices may contribute to environmental health disparities for one of the few tribes that has maintained physical continuity within their ancestral homeland.

  5. THE DETERMINATION OF THE MAJOR CONSTITUENTS OTHER THAN URANIUM IN BELGIAN CONGO ORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowther, A.B.; Wright, J.S.; Bradfield, E.G.

    1953-12-22

    Methods for determining the major constituents of Belgian Congo ore other than uranium are reviewed. A method is given for the determination of cobalt by precipitation with potassium ethyl xanthate from a nitric acid solution of the ore. After wet oxidation of the precipitate, it is titrated potentiometrically in ammoniacal citrate solution with potassium ferricyanide. A method for the determination of silicon is given in which the silica is dehydrated by fuming with perchloric acid. After filtration and ignition, it is volatized as the fluoride, and the silica is deternfined from weight loss. Nickel is determined from a solution ofmore » the ore in nitric acid by double precipitation with dimethyl glyoxime after addition of citrate ion, hydroxylamine, and ammonia. Molybdenum is determined by precipitation as lead molybdate after preliminary separation with benzoin oxime. Aluminum is determined by precipitation as the benzoate, thioglycolic acid being used to complex the iron. The aluminum is then estimated gravimetrically with oxime. A composite method is presented for the deterndnation of lead, iron, alununum, calciuna, and magnesium. (C.J.G.)« less

  6. Depleted UF6 Internet Resources

    Science.gov Websites

    been used to color glass for almost 2 millennia. A uranium-colored glass object was found near Naples , Italy, and dated to about 79 A.D. Uranium oxide added to glass produces a yellow to greenish hue. more Board Defense Nuclear Facilities Safety Board (DNFSB) The Defense Nuclear Facilities Safety Board

  7. 40 CFR 192.43 - Effective date.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Effective date. 192.43 Section 192.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management...

  8. 40 CFR 192.34 - Effective date.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Effective date. 192.34 Section 192.34 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Standards for Management...

  9. Dating the growth of oceanic crust at a slow-spreading ridge

    USGS Publications Warehouse

    Schwartz, J.J.; John, Barbara E.; Cheadle, Michael J.; Miranda, E.A.; Grimes, Craig B.; Wooden, J.L.; Dick, H.J.B.

    2005-01-01

    Nineteen uranium-lead zircon ages of lower crustal gabbros from Atlantis Bank, Southwest Indian Ridge, constrain the growth and construction of oceanic crust at this slow-spreading midocean ridge. Approximately 75% of the gabbros accreted within error of the predicted seafloor magnetic age, whereas ???25% are significantly older. These anomalously old samples suggest either spatially varying stochastic intrusion at the ridge axis or, more likely, crystallization of older gabbros at depths of ???5 to 18 kilometers below the base of crust in the cold, axial lithosphere, which were uplifted and intruded by shallow-level magmas during the creation of Atlantis Bank.

  10. Lead and uranium group abundances in cosmic rays

    NASA Technical Reports Server (NTRS)

    Yadav, J. S.; Perelygin, V. P.

    1985-01-01

    The importance of Lead and Uranium group abundances in cosmic rays is discussed in understanding their evolution and propagation. The electronic detectors can provide good charge resolution but poor data statistics. The plastic detectors can provide somewhat better statistics but charge resolution deteriorates. The extraterrestrial crystals can provide good statistics but with poor charge resolution. Recent studies of extraterrestrial crystals regarding their calibration to accelerated uranium ion beam and track etch kinetics are discussed. It is hoped that a charge resolution of two charge units can be achieved provided an additional parameter is taken into account. The prospects to study abundances of Lead group, Uranium group and superheavy element in extraterrestrial crystals are discussed, and usefulness of these studies in the light of studies with electronic and plastic detectors is assessed.

  11. 76 FR 64107 - Uranium From Russia; Scheduling of an Expedited Five-Year Review Concerning the Suspended...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-539-C; Third Review] Uranium From Russia; Scheduling of an Expedited Five-Year Review Concerning the Suspended Investigation on Uranium From Russia... on uranium from Russia would be likely to lead to continuation or recurrence of material injury...

  12. 78 FR 21416 - Low Enriched Uranium From France; Scheduling of a Full Five-year Review Concerning the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-10

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-909 (Second Review)] Low Enriched Uranium... Enriched Uranium from France AGENCY: United States International Trade Commission. ACTION: Notice. SUMMARY... antidumping duty order on low enriched uranium from France would be likely to lead to continuation or...

  13. Effect of pH and Pressure on Uranium Removal from Drinking Water Using NF/RO Membranes.

    PubMed

    Schulte-Herbrüggen, Helfrid M A; Semião, Andrea J C; Chaurand, Perrine; Graham, Margaret C

    2016-06-07

    Groundwater is becoming an increasingly important drinking water source. However, the use of groundwater for potable purposes can lead to chronic human exposure to geogenic contaminants, for example, uranium. Nanofiltration (NF) and reverse osmosis (RO) processes are used for drinking water purification, and it is important to understand how contaminants interact with membranes since accumulation of contaminants to the membrane surface can lead to fouling, performance decline and possible breakthrough of contaminants. During the current study laboratory experiments were conducted using NF (TFC-SR2) and RO (BW30) membranes to establish the behavior of uranium across pH (3-10) and pressure (5-15 bar) ranges. The results showed that important determinants of uranium-membrane sorption interactions were (i) the uranium speciation (uranium species valence and size in relation to membrane surface charge and pore size) and (ii) concentration polarization, depending on the pH values. The results show that it is important to monitor sorption of uranium to membranes, which is controlled by pH and concentration polarization, and, if necessary, adjust those parameters controlling uranium sorption.

  14. Radiochronological Age of a Uranium Metal Sample from an Abandoned Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, L A; Williams, R W; Glover, S E

    2012-03-16

    A piece of scrap uranium metal bar buried in the dirt floor of an old, abandoned metal rolling mill was analyzed using multi-collector inductively coupled plasma mass spectroscopy (MC-ICP-MS). The mill rolled uranium rods in the 1940s and 1950s. Samples of the contaminated dirt in which the bar was buried were also analyzed. The isotopic composition of uranium in the bar and dirt samples were both the same as natural uranium, though a few samples of dirt also contained recycled uranium; likely a result of contamination with other material rolled at the mill. The time elapsed since the uranium metalmore » bar was last purified can be determined by the in-growth of the isotope {sup 230}Th from the decay of {sup 234}U, assuming that only uranium isotopes were present in the bar after purification. The age of the metal bar was determined to be 61 years at the time of this analysis and corresponds to a purification date of July 1950 {+-} 1.5 years.« less

  15. 40 CFR 192.23 - Effective date.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Effective date. 192.23 Section 192.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Implementation § 192.23...

  16. 40 CFR 192.23 - Effective date.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Effective date. 192.23 Section 192.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Implementation § 192.23...

  17. 40 CFR 192.23 - Effective date.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Effective date. 192.23 Section 192.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Implementation § 192.23...

  18. 40 CFR 192.23 - Effective date.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Effective date. 192.23 Section 192.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR URANIUM AND THORIUM MILL TAILINGS Implementation § 192.23...

  19. Use of Electrodeposition for Sample Preparation and Rejection Rate Prediction for Assay of Electroformed Ultra High Purity Copper for 232Th and 238U Prior to Inductively Coupled Plasma Mass Spectrometry (ICP/MS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoppe, Eric W.; Aalseth, Craig E.; Brodzinski, Ronald L.

    The search for neutrinoless double beta decay in 76Ge has driven the need for ultra-low background Ge detectors shielded by electroformed copper of ultra-high radiopurity (<0.1µBq/kg). Although electrodeposition processes are almost sophisticated enough to produce copper of this purity, to date there are no methods sensitive enough to assay it. Inductively-coupled plasma mass spectrometry (ICP/MS) can detect thorium and uranium at femtogram levels, but in the past, this assay has been hindered by high copper concentrations in the sample. Electrodeposition of copper samples removes copper from the solution while selectively concentrating thorium and uranium contaminants to be assayed by ICP/MS.more » Spiking 232Th and 238U into the plating bath simulates low purity copper and allows for the calculation of the electrochemical rejection rate of thorium and uranium in the electroplating system. This rejection value will help to model plating bath chemistry.« less

  20. Age of the moon: An isotopic study of uranium-thorium-lead systematics of lunar samples

    USGS Publications Warehouse

    Tatsumoto, M.; Rosholt, J.N.

    1970-01-01

    Concentrations of U, Th, and Pb in Apollo 11 samples studied are low (U. 0.16 to 0.87; Th, 0.53 to 3.4; Pb, 0.29 to 1.7, in ppm) but the extremely radiogenic lead in samples allows radiometric dating. The fine dust and the breccia have a concordant age of 4.66 billion years on the basis of 207Pb/206Pb, 206Pb/238U, 207Pb/235U, and 208Pb/232Th ratios. This age is comparable with the age of meteorites and with the age generally accepted for the earth. Six crystalline and vesicular samples are distinctly younger than the dust and breccia. The 238U/235U ratio is the same as that in earth rocks, and 234U is in radioactive equilibrium with parent 238U.

  1. New cosmogenic burial ages for Sterkfontein Member 2 Australopithecus and Member 5 Oldowan

    NASA Astrophysics Data System (ADS)

    Granger, Darryl E.; Gibbon, Ryan J.; Kuman, Kathleen; Clarke, Ronald J.; Bruxelles, Laurent; Caffee, Marc W.

    2015-06-01

    The cave infills at Sterkfontein contain one of the richest assemblages of Australopithecus fossils in the world, including the nearly complete skeleton StW 573 (`Little Foot') in its lower section, as well as early stone tools in higher sections. However, the chronology of the site remains controversial owing to the complex history of cave infilling. Much of the existing chronology based on uranium-lead dating and palaeomagnetic stratigraphy has recently been called into question by the recognition that dated flowstones fill cavities formed within previously cemented breccias and therefore do not form a stratigraphic sequence. Earlier dating with cosmogenic nuclides suffered a high degree of uncertainty and has been questioned on grounds of sediment reworking. Here we use isochron burial dating with cosmogenic aluminium-26 and beryllium-10 to show that the breccia containing StW 573 did not undergo significant reworking, and that it was deposited 3.67 +/- 0.16 million years ago, far earlier than the 2.2 million year flowstones found within it. The skeleton is thus coeval with early Australopithecus afarensis in eastern Africa. We also date the earliest stone tools at Sterkfontein to 2.18 +/- 0.21 million years ago, placing them in the Oldowan at a time similar to that found elsewhere in South Africa at Swartkans and Wonderwerk.

  2. Fate of Noble Metals during the Pyroprocessing of Spent Nuclear Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.R. Westphal; D. Vaden; S.X. Li

    During the pyroprocessing of spent nuclear fuel by electrochemical techniques, fission products are separated as the fuel is oxidized at the anode and refined uranium is deposited at the cathode. Those fission products that are oxidized into the molten salt electrolyte are considered active metals while those that do not react are considered noble metals. The primary noble metals encountered during pyroprocessing are molybdenum, zirconium, ruthenium, rhodium, palladium, and technetium. Pyroprocessing of spent fuel to date has involved two distinctly different electrorefiner designs, in particular the anode to cathode configuration. For one electrorefiner, the anode and cathode collector are horizontallymore » displaced such that uranium is transported across the electrolyte medium. As expected, the noble metal removal from the uranium during refining is very high, typically in excess of 99%. For the other electrorefiner, the anode and cathode collector are vertically collocated to maximize uranium throughput. This arrangement results in significantly less noble metals removal from the uranium during refining, typically no better than 20%. In addition to electrorefiner design, operating parameters can also influence the retention of noble metals, albeit at the cost of uranium recovery. Experiments performed to date have shown that as much as 100% of the noble metals can be retained by the cladding hulls while affecting the uranium recovery by only 6%. However, it is likely that commercial pyroprocessing of spent fuel will require the uranium recovery to be much closer to 100%. The above mentioned design and operational issues will likely be driven by the effects of noble metal contamination on fuel fabrication and performance. These effects will be presented in terms of thermal properties (expansion, conductivity, and fusion) and radioactivity considerations. Ultimately, the incorporation of minor amounts of noble metals from pyroprocessing into fast reactor metallic fuel will be shown to be of no consequence to reactor performance.« less

  3. Uranium provinces of North America; their definition, distribution, and models

    USGS Publications Warehouse

    Finch, Warren Irvin

    1996-01-01

    Uranium resources in North America are principally in unconformity-related, quartz-pebble conglomerate, sandstone, volcanic, and phosphorite types of uranium deposits. Most are concentrated in separate, well-defined metallogenic provinces. Proterozoic quartz-pebble conglomerate and unconformity-related deposits are, respectively, in the Blind River–Elliot Lake (BRELUP) and the Athabasca Basin (ABUP) Uranium Provinces in Canada. Sandstone uranium deposits are of two principal subtypes, tabular and roll-front. Tabular sandstone uranium deposits are mainly in upper Paleozoic and Mesozoic rocks in the Colorado Plateau Uranium Province (CPUP). Roll-front sandstone uranium deposits are in Tertiary rocks of the Rocky Mountain and Intermontane Basins Uranium Province (RMIBUP), and in a narrow belt of Tertiary rocks that form the Gulf Coastal Uranium Province (GCUP) in south Texas and adjacent Mexico. Volcanic uranium deposits are concentrated in the Basin and Range Uranium Province (BRUP) stretching from the McDermitt caldera at the Oregon-Nevada border through the Marysvale district of Utah and Date Creek Basin in Arizona and south into the Sierra de Peña Blanca District, Chihuahua, Mexico. Uraniferous phosphorite occurs in Tertiary sediments in Florida, Georgia, and North and South Carolina and in the Lower Permian Phosphoria Formation in Idaho and adjacent States, but only in Florida has economic recovery been successful. The Florida Phosphorite Uranium Province (FPUP) has yielded large quantities of uranium as a byproduct of the production of phosphoric acid fertilizer. Economically recoverable quantities of copper, gold, molybdenum, nickel, silver, thorium, and vanadium occur with the uranium deposits in some provinces.Many major epochs of uranium mineralization occurred in North America. In the BRELUP, uranium minerals were concentrated in placers during the Early Proterozoic (2,500–2,250 Ma). In the ABUP, the unconformity-related deposits were most likely formed initially by hot saline formational water related to diagenesis (»1,400 to 1,330 Ma) and later reconcentrated by hydrothermal events at »1,280–»1,000, »575, and »225 Ma. Subsequently in North America, only minor uranium mineralization occurred until after continental collision in Permian time (255 Ma). Three principal epochs of uranium mineralization occurred in the CPUP: (1) » 210–200 Ma, shortly after Late Triassic sedimentation; (2) »155–150 Ma, in Late Jurassic time; and (3) » 135 Ma, after sedimentation of the Upper Jurassic Morrison Formation. The most likely source of the uranium was silicic volcaniclastics for the three epochs derived from a volcanic island arc at the west edge of the North American continent. Uranium mineralization occurred during Eocene, Miocene, and Pliocene times in the RMIBUP, GCUP, and BRUP. Volcanic activity took place near the west edge of the continent during and shortly after sedimentation of the host rocks in these three provinces. Some volcanic centers in the Sierra de Peña Blanca district within the BRUP may have provided uranium-rich ash to host rocks in the GCUP.Most of the uranium provinces in North America appear to have a common theme of close associations to volcanic activity related to the development of the western margin of the North American plate. The south and west margin of the Canadian Shield formed the leading edge of the progress of uranium source development and mineralization from the Proterozoic to the present. The development of favorable hosts and sources of uranium is related to various tectonic elements developed over time. Periods of major uranium mineralization in North America were Early Proterozoic, Middle Proterozoic, Late Triassic–Early Jurassic, Early Cretaceous, Oligocene, and Miocene. Tertiary mineralization was the most pervasive, covering most of Western and Southern North America. 

  4. Rapid Method for Sodium Hydroxide Fusion of Concrete and ...

    EPA Pesticide Factsheets

    Technical Fact Sheet Analysis Purpose: Qualitative analysis Technique: Alpha spectrometry Method Developed for: Americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete and brick samples Method Selected for: SAM lists this method for qualitative analysis of americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in concrete or brick building materials. Summary of subject analytical method which will be posted to the SAM website to allow access to the method.

  5. Piezomagnetism and magnetoelastic memory in uranium dioxide

    DOE PAGES

    Jaime, M.; Saul, A.; Salamon, M.; ...

    2017-07-24

    Uranium dioxide (UO 2) is a prime nuclear fuel and perhaps the most thoroughly studied actinide material to date. Its thermal and magnetic properties remain, however, a puzzle resulting from strong couplings between magnetism and lattice vibrations. The magnetic state of this cubic material is characterized by a non- collinear antiferromagnetic structure and multidomain Jahn-Teller distortions that could be behind novel thermal properties. Here we show that single crystals of UO 2, subjected to magnetic fields up to 95 T in the magnetic state, exhibit the abrupt appearance of positive linear magnetostriction leading to a trigonal distortion. Upon reversal ofmore » the field the linear term also reverses sign, a hallmark of piezomagnetism. The switching phenomenon occurs at ± 18 T and persists during subsequent field reversals, demonstrating robust magneto-elastic memory. This is the first example of piezomagnetism in an actinide spin system and the magneto-elastic memory loop here is nearly an order of magnitude wider in field than those previously observed, making UO 2 the hardest piezomagnet known. The possibility of an inverse phase with reduced magnetocrystalline anisotropy is considered to explain these effects.« less

  6. Piezomagnetism and magnetoelastic memory in uranium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaime, M.; Saul, A.; Salamon, M.

    Uranium dioxide (UO 2) is a prime nuclear fuel and perhaps the most thoroughly studied actinide material to date. Its thermal and magnetic properties remain, however, a puzzle resulting from strong couplings between magnetism and lattice vibrations. The magnetic state of this cubic material is characterized by a non- collinear antiferromagnetic structure and multidomain Jahn-Teller distortions that could be behind novel thermal properties. Here we show that single crystals of UO 2, subjected to magnetic fields up to 95 T in the magnetic state, exhibit the abrupt appearance of positive linear magnetostriction leading to a trigonal distortion. Upon reversal ofmore » the field the linear term also reverses sign, a hallmark of piezomagnetism. The switching phenomenon occurs at ± 18 T and persists during subsequent field reversals, demonstrating robust magneto-elastic memory. This is the first example of piezomagnetism in an actinide spin system and the magneto-elastic memory loop here is nearly an order of magnitude wider in field than those previously observed, making UO 2 the hardest piezomagnet known. The possibility of an inverse phase with reduced magnetocrystalline anisotropy is considered to explain these effects.« less

  7. High Temperature Reactions of Uranium Dioxide with Various Metal Oxides

    DTIC Science & Technology

    1956-02-20

    manganese, nickel , lead, and tin. Subtracting the total of these impurities from the oxygen remainder would give a more nearly 1:2 uranium -oxygen ratio. The...Astin, Dire~ctor High -Temperature Reactions of Uranium Dioxide With Various Metal Oxides Acceson For NTIS CRAWI DTfC TAB Unannounced D JustifiCation...1 2. The uranium -oxygen system ------------------------------------- 1 3. Binary systems containing

  8. Method of preparation of uranium nitride

    DOEpatents

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  9. Method of precipitating uranium from an aqueous solution and/or sediment

    DOEpatents

    Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin

    2013-08-20

    A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.

  10. Analysis and comparison of focused ion beam milling and vibratory polishing sample surface preparation methods for porosity study of U-Mo plate fuel for research and test reactors.

    PubMed

    Westman, Bjorn; Miller, Brandon; Jue, Jan-Fong; Aitkaliyeva, Assel; Keiser, Dennis; Madden, James; Tucker, Julie D

    2018-07-01

    Uranium-Molybdenum (U-Mo) low enriched uranium (LEU) fuels are a promising candidate for the replacement of high enriched uranium (HEU) fuels currently in use in a high power research and test reactors around the world. Contemporary U-Mo fuel sample preparation uses focused ion beam (FIB) methods for analysis of fission gas porosity. However, FIB possess several drawbacks, including reduced area of analysis, curtaining effects, and increased FIB operation time and cost. Vibratory polishing is a well understood method for preparing large sample surfaces with very high surface quality. In this research, fission gas porosity image analysis results are compared between samples prepared using vibratory polishing and FIB milling to assess the effectiveness of vibratory polishing for irradiated fuel sample preparation. Scanning electron microscopy (SEM) imaging was performed on sections of irradiated U-Mo fuel plates and the micrographs were analyzed using a fission gas pore identification and measurement script written in MatLab. Results showed that the vibratory polishing method is preferentially removing material around the edges of the pores, causing the pores to become larger and more rounded, leading to overestimation of the fission gas porosity size. Whereas, FIB preparation tends to underestimate due to poor micrograph quality and surface damage leading to inaccurate segmentations. Despite the aforementioned drawbacks, vibratory polishing remains a valid method for porosity analysis sample preparation, however, improvements should be made to reduce the preferential removal of material surrounding pores in order to minimize the error in the porosity measurements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Successful Coupling of a Bis-Amidoxime Uranophile with a Hydrophilic Backbone for Selective Uranium Sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piechowicz, Marek; Abney, Carter W.; Thacker, Nathan C.

    The amidoxime group (-RNH2NOH) has long been used to extract uranium from seawater on account of its high affinity toward uranium. The development of tunable sorbent materials for uranium sequestration remains a research priority as well as a significant challenge. Herein, we report the design, synthesis, and uranium sorption properties of bis-amidoxime-functionalized polymeric materials (BAP 1–3). Bifunctional amidoxime monomers were copolymerized with an acrylamide cross-linker to obtain bis-amidoxime incorporation as high as 2 mmol g–1 after five synthetic steps. The resulting sorbents were able to uptake nearly 600 mg of uranium per gram of polymer after 37 days of contactmore » with a seawater simulant containing 8 ppm uranium. Moreover, the polymeric materials exhibited low vanadium uptake with a maximum capacity of 128 mg of vanadium per gram of polymer. This computationally predicted and experimentally realized selectivity of uranium over vanadium, nearly 5 to 1 w/w, is one of the highest reported to date and represents an advancement in the rational design of sorbent materials with high uptake capacity and selectivity.« less

  12. Cost and Systems Analysis of Innovative Fuel Resources Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Erich; Byers, M.

    Economically recovered uranium from seawater can have a transformative effect on the way policy makers view the long-term viability of uranium based fuel cycles. Seawater uranium, even when estimated to cost more than terrestrially mined uranium, is integral in establishing an economic backstop, thus reducing uncertainty in future nuclear power costs. While a passive recovery scheme relying on a field of polymer adsorbents prepared via radiation induced grafting has long been considered the leading technology for full scale deployment, non-trivial cost and logistical barriers persist. Consequently, university partners of the nation-wide consortium for seawater uranium recovery have developed variants ofmore » this technology, each aiming to address a substantial weakness. The focus of this NEUP project is the economic impacts of the proposed variant technologies. The team at University of Alabama has pursued an adsorbent synthesis method that replaces the synthetic fiber backbone with a natural waste product. Chitin fibers suitable for ligand grafting have been prepared from shrimp shell waste. These environmental benefits could be realized at a comparable cost to the reference fiber so long as the uptake can be increased or the chemical consumption cost decreased.« less

  13. Distribution of uranium in the Bisbee district, Cochise County, Arizona

    USGS Publications Warehouse

    Wallace, Stewart R.

    1956-01-01

    The Bisbee district has been an important source of copper for many years, and substantial amounts of lead and zinc ore and minor amounts of manganese ore have been mined during certain periods. The copper deposits occur both as low-grade disseminated ore in the Sacramento Hill stock and as massive sulfide (and secondary oxide and carbonate) replacement bodies in Paleozoic limestones that are intruded by the stock and related igneous bodies. The lead-zinc production has come almost entirely from limestone replacement bodies. The disseminated ore exhibits no anomalous radioactivity, and samples from the Lavender pit contain from 0.002 to less than 0.001 percent equivalent uranium. The limestone replacement ores are distinctly radioactive and stoping areas can be readily distinguished from from unmineralized ground on the basis of radioactivity alone. The equivalent uranium content of the copper replacement ores ranges from 0.002 to 0.014 percent and averages about 0.005 percent; the lead-zinc replacement ores average more than 0.007 percent equivalent uranium. Most of the uranium in the copper ores of the district is retained in the smelter slag of a residual concentrate; the slag contains about 0.009 percent equivalent uranium. Uranium carried off each day by acid mine drainage is roughly equal to 1 percent of that being added to the slag dump. Although the total amount of uranium in the district is large, no minable concentrations of ore-grade material are known; samples of relatively high-grade material represent only small fractions of tons at any one locality.

  14. Geology and preliminary dating of the hominid-bearing sedimentary fill of the Sima de los Huesos Chamber, Cueva Mayor of the Sierra de Atapuerca, Burgos, Spain.

    PubMed

    Bischoff, J L; Fitzpatrick, J A; León, L; Arsuagà, J L; Falgueres, C; Bahain, J J; Bullen, T

    1997-01-01

    Sediments of the Sima de los Huesos vary greatly over distances of a few meters. This is typical of interior cave facies, and caused by cycles of cut and fill. Mud breccias containing human bones, grading upwards to mud containing bear bones, fill an irregular surface cut into basal marks and sands. The lack of Bedding and the chaotic abundance of fragile speleothem clasts in the fossiliferous muds suggests that the deposit was originally a subterranean pond facies, and that after emplacement of the human remains, underwent vigorous post-depositional rotation and collapse and brecciation, caused by underlying bedrock dissolution and undermining. The fossiliferous deposits are capped by flowstone and guano-bearing muds which lack large-mammal fossils. U-series and radiocarbon dating indicates the capping flowstones formed from about 68 ka to about 25 ka. U-series analyses of speleothem clasts among the human fossils indicate that all are at, or close to, isotopic equilibrium (> 350 ka). The distribution of U-series dates for 25 bear bones (154 +/- 66 ka) and for 16 human bones (148 +/- 34 ka) is similar and rather broad. Because the human bones seem to be stratigraphically older than chose of the bears, the results would indicate that most of the bones have been accumulating uranium irregularly with time. Electron spin resonance (ESR) analyses of six selected bear bones indicates dates of 189 +/- 28 ka, for which each is cordant with their corresponding U-series date (181 +/- 41 ka). Combined ESR and U-series dates for these samples yielded 200 +/- 4 ka. Such agreement is highly suggestive that uranium uptake in these bones was close to the early-uptake (EU) model, and the dates are essentially correct. Another three selected samples yielded combined ESR U-series dates of 320 +/- 4 ka with a modeled intermediate-mode of uranium uptake. The dating results, therefore, seem to provide a firm minimum age of about 200 ka for the human entry: and suggestive evidence of entry before 320 ka.

  15. Geology and preliminary dating of the hominid-bearing sedimentary fill of the Sima de los Huesos Chamber, Cueva Mayor of the Sierra de Atapuerca, Burgos, Spain

    USGS Publications Warehouse

    Bischoff, J.L.; Fitzpatrick, J.A.; Leon, L.; Arsuaga, J.L.; Falgueres, Christophe; Bahain, J.-J.; Bullen, T.

    1997-01-01

    Sediments of the Sima de los Huesos vary greatly over distances of a few meters. This is typical of interior cave facies, and caused by cycles of cut and fill. Mud breccias containing human bones, grading upwards to mud containing bear bones, fill an irregular surface cut into basal marls and sands. The lack of bedding and the chaotic abundance of fragile speleothem clasts in the fossiliferous muds suggests that the deposit was originally a subterranean pond facies, and that after emplacement of the human remains, underwent vigorous post-depositional rotation and collapse and brecciation, caused by underlying bedrock dissolution and undermining. The fossiliferous deposits are capped by flowstone and guano-bearing muds which lack large-mammal fossils. U-series and radiocarbon dating indicates the capping flowstones formed from about 68 ka to about 25 ka. U-series analyses of speleothem clasts among the human fossils indicate that all are at, or close to, isotopic equilibrium (>350 ka). The distribution of U-series dates for 25 bear bones (154??66ka) and for 16 human bones (148??34 ka) is similar and rather broad. Because the human bones seem to be stratigraphically older than those of the bears, the results would indicate that most of the bones have been accumulating uranium irregularly with time. Electron spin resonance (ESR) analyses of six selected bear bones indicates dates of 189??28 ka, for which each is concordant with their corresponding U-series date (181??41 ka). Combined ESR and U-series dates for these samples yielded 200??4 ka. Such agreement is highly suggestive that uranium uptake in these bones was close to the early-uptake (EU) model, and the dates are essentially correct. Another three selected samples yielded combined ESR-U-series dates of 320??4 ka with a modeled intermediate-mode of uranium uptake. The dating results, therefore, seem to provide a firm minimum age of about 200 ka for the human entry; and suggestive evidence of entry before 320 ka. ?? 1997 Academic Press Limited.

  16. The Sima de los Huesos hominids date to beyond U/Th equilibrium (>350 kyr) and perhaps to 400-500 kyr: New radiometric dates

    USGS Publications Warehouse

    Bischoff, J.L.; Shamp, D.D.; Aramburu, Arantza; Arsuaga, J.L.; Carbonell, E.; Bermudez de Castro, Jose Maria

    2003-01-01

    The Sima de los Huesos site of the Atapuerca complex near Burgos, Spain contains the skeletal remains of at least 28 individuals in a mud breccia underlying an accumulation of the Middle Pleistocene cave bear (U. deningeri). Earlier dating estimates of 200 to 320 kyr were based on U-series and ESR methods applied to bones, made inaccurate by unquantifiable uranium cycling. We report here on a new discovery within the Sima de los Huesos of human bones stratigraphically underlying an in situ speleothem. U-series analyses of the speleothem shows the lower part to be at isotopic U/Th equilibrium, translating to a firm lower limit of 350 kyr for the SH hominids. Finite dates on the upper part suggest a speleothem growth rate of c. 1 cm/32 kyr. This rate, along with paleontological constraints, place the likely age of the hominids in the interval of 400 to 600 kyr. ?? 2002 Elsevier Science Ltd. All rights reserved.

  17. Migration of defect clusters and xenon-vacancy clusters in uranium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dong; Gao, Fei; Deng, Huiqiu

    2014-07-01

    The possible transition states, minimum energy paths and migration mechanisms of defect clusters and xenon-vacancy defect clusters in uranium dioxide have been investigated using the dimer and the nudged elastic-band methods. The nearby O atom can easily hop into the oxygen vacancy position by overcoming a small energy barrier, which is much lower than that for the migration of a uranium vacancy. A simulation for a vacancy cluster consisting of two oxygen vacancies reveals that the energy barrier of the divacancy migration tends to decrease with increasing the separation distance of divacancy. For an oxygen interstitial, the migration barrier formore » the hopping mechanism is almost three times larger than that for the exchange mechanism. Xe moving between two interstitial sites is unlikely a dominant migration mechanism considering the higher energy barrier. A net migration process of a Xe-vacancy pair containing an oxygen vacancy and a xenon interstitial is identified by the NEB method. We expect the oxygen vacancy-assisted migration mechanism to possibly lead to a long distance migration of the Xe interstitials in UO2. The migration of defect clusters involving Xe substitution indicates that Xe atom migrating away from the uranium vacancy site is difficult.« less

  18. Constraints on a Late Cretaceous uplift, denudation, and incision of the Grand Canyon region, southwestern Colorado Plateau, USA, from U-Pb dating of lacustrine limestone

    NASA Astrophysics Data System (ADS)

    Hill, Carol A.; Polyak, Victor J.; Asmerom, Yemane; P. Provencio, Paula

    2016-04-01

    The uplift and denudation of the Colorado Plateau is important in reconstructing the geomorphic and tectonic evolution of western North America. A Late Cretaceous (64 ± 2 Ma) U-Pb age for the Long Point limestone on the Coconino Plateau, which overlies a regional erosional surface developed on Permo-Triassic formations, supports unroofing of the Coconino Plateau part of Grand Canyon by that time. U-Pb analyses of three separate outcrops of this limestone gave ages of 64.0 ± 0.7, 60.5 ± 4.6, and 66.3 ± 3.9 Ma, which dates are older than a fossil-based, early Eocene age. Samples of the Long Point limestone were dated using the isotope dilution isochron method on well-preserved carbonates having high-uranium and low-lead concentrations. Our U-Pb ages on the Long Point limestone place important constraints on the (1) time of tectonic uplift of the southwestern Colorado Plateau and Kaibab arch, (2) time of denudation of the Coconino Plateau, and (3) Late Cretaceous models of paleocanyon incision west of, or across, the Kaibab arch. We propose that the age of the Long Point limestone, interbedded within the Music Mountain Formation in the Long Point area, represents a period of regional aggradation and a time of drainage blockage northward and eastward across the Kaibab arch, with possible diversion of northward drainage on the Coconino Plateau westward around the arch via a Laramide paleo-Grand Canyon.

  19. URANIUM COMPOSITIONS

    DOEpatents

    Allen, N.P.; Grogan, J.D.

    1959-05-12

    This patent relates to high purity uranium alloys characterized by improved stability to thermal cycling and low thermal neutron absorption. The high purity uranium alloy contains less than 0.1 per cent by weight in total amount of any ore or more of the elements such as aluminum, silicon, phosphorous, tin, lead, bismuth, niobium, and zinc.

  20. 78 FR 75579 - Low Enriched Uranium From France

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... From France Determination On the basis of the record \\1\\ developed in the subject five-year review, the... uranium from France would be likely to lead to continuation or recurrence of material injury to an... Commission are contained in USITC Publication 4436 (December 2013), entitled Low Enriched Uranium from France...

  1. Uranium deposits of the northern part of the Boulder Batholith, Montana

    USGS Publications Warehouse

    Becraft, George E.

    1955-01-01

    Uranium minerals and radioactivity anomalies occur in many silver-lead veins and chalcedony veins and vein zones in the Boulder batholith of southwestern Montanao Pitchblende has been identified in a few silver-lead veins. These veins occupy shear zones along which there is no evidence of large-scale lateral displacement. The wall rock adjacent to the veins is intensely silicified and sencitized quartz monzonite and granodiortte. The veins have yielded substantial quantities of lead, silver, zinc, and gold. The silver-lead veins consist principal1y of galena, spha1erite, tetrahedrite, cha1copyrite and pyrite in a gangue of light to dark gray quartz, altered rock, gouge, and subordinate chalcedony and carbonate minerals. No anomalous radioactivity nor uranium minerals have been found in similar veins in pre-batholithic rocks of the area. Chalcedony veins and vein zones, some of which are ttraniferous, are distinctly different from the silver-lead veins and, with a single except1on, are known only in the batholith. The chalcedony vein zones consist of one or more discontinuous stringers or veins of cha1cedony and microcrystalline quartz in silicified and sericitized quartz monzonite and granodiorite, and in less strongly altered alaskite. On1y small amounts of silver ore have been produced from these chalcedony veins and vein zones. All of the veins are ear1y Tertiary in age, but the silver-lead veins probably are older than the chalcedony veins. Uranium is closely associated with chalcedory and microcrystalline quartz in both types of veins. This association suggests that all of the uranium in the area is of the same age. If so, some of the silver-lead veins must have been reopened during the period of chalcedony vein formation.

  2. Teratogenicity of depleted uranium aerosols: A review from an epidemiological perspective

    PubMed Central

    Hindin, Rita; Brugge, Doug; Panikkar, Bindu

    2005-01-01

    Background Depleted uranium is being used increasingly often as a component of munitions in military conflicts. Military personnel, civilians and the DU munitions producers are being exposed to the DU aerosols that are generated. Methods We reviewed toxicological data on both natural and depleted uranium. We included peer reviewed studies and gray literature on birth malformations due to natural and depleted uranium. Our approach was to assess the "weight of evidence" with respect to teratogenicity of depleted uranium. Results Animal studies firmly support the possibility that DU is a teratogen. While the detailed pathways by which environmental DU can be internalized and reach reproductive cells are not yet fully elucidated, again, the evidence supports plausibility. To date, human epidemiological data include case examples, disease registry records, a case-control study and prospective longitudinal studies. Discussion The two most significant challenges to establishing a causal pathway between (human) parental DU exposure and the birth of offspring with defects are: i) distinguishing the role of DU from that of exposure to other potential teratogens; ii) documentation on the individual level of extent of parental DU exposure. Studies that use biomarkers, none yet reported, can help address the latter challenge. Thoughtful triangulation of the results of multiple studies (epidemiological and other) of DU teratogenicity contributes to disentangling the roles of various potentially teratogenic parental exposures. This paper is just such an endeavor. Conclusion In aggregate the human epidemiological evidence is consistent with increased risk of birth defects in offspring of persons exposed to DU. PMID:16124873

  3. Surface Cleaning Techniques: Ultra-Trace ICP-MS Sample Preparation and Assay of HDPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Overman, Nicole R.; Hoppe, Eric W.; Addleman, Raymond S.

    2013-06-01

    The world’s most sensitive radiation detection and assay systems depend upon ultra-low background (ULB) materials to reduce unwanted radiological backgrounds. Herein, we evaluate methods to clean HDPE, a material of interest to ULB systems and the means to provide rapid assay of surface and bulk contamination. ULB level material and ultra-trace level detection of actinide elements is difficult to attain, due to the introduction of contamination from sample preparation equipment such as pipette tips, sample vials, forceps, etc. and airborne particulate. To date, literature available on the cleaning of such polymeric materials and equipment for ULB applications and ultra-trace analysesmore » is limited. For these reasons, a study has been performed to identify an effective way to remove surface contamination from polymers in an effort to provide improved instrumental detection limits. Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) was utilized to assess the effectiveness of a variety of leachate solutions for removal of inorganic uranium and thorium surface contamination from polymers, specifically high density polyethylene (HDPE). HDPE leaching procedures were tested to optimize contaminant removal of thorium and uranium. Calibration curves for thorium and uranium ranged from 15 ppq (fg/mL) to 1 ppt (pg/mL). Detection limits were calculated at 6 ppq for uranium and 7 ppq for thorium. Results showed the most effective leaching reagent to be clean 6 M nitric acid for 72 hour exposures. Contamination levels for uranium and thorium found in the leachate solutions were significant for ultralow level radiation detection applications.« less

  4. Method for mobilization of hazardous metal ions in soils

    DOEpatents

    Dugan, P.R.; Pfister, R.M.

    1995-06-27

    A microbial process is revealed for removing heavy metals such as bismuth, cadmium, lead, thorium, uranium and other transuranics from soils and sediments. The method utilizes indigenous, or isolates of indigenous, microorganisms and reducing agents, such as cysteine or sodium thioglycollate, or complexing agents such as the amino acid glycine, to effect the mobilization or release of the metals from the soil particles. 5 figs.

  5. Uranium-series dated authigenic carbonates and acheulian sites in southern Egypt

    USGS Publications Warehouse

    Szabo, B. J.; McHugh, W.P.; Schaber, G.G.; Haynes, C.V.; Breed, C.S.

    1989-01-01

    Field investigations in southern Egypt have yielded Acheulian artifacts in situ in authigenic carbonate deposits (CaCO3-cemented alluvium) along the edges of nowaggraded paleovalleys (Wadi Arid and Wadi Safsaf). Uranium-series dating of 25 carbonate samples from various localities as far apart as 70 kilometers indicates that widespread carbonate deposition occurred about 45, 141 and 212 ka (thousand years ago). Most of the carbonate appears to have been precipitated from groundwater, which suggests that these three episodes of deposition may be related to late Pleistocene humid climates that facilitated human settlement in this now hyperarid region. Carbonate cements from sediments containing Acheulian artifacts provide a minimum age of 212 ka for early occupation of the paleovalleys.

  6. New cosmogenic burial ages for Sterkfontein Member 2 Australopithecus and Member 5 Oldowan.

    PubMed

    Granger, Darryl E; Gibbon, Ryan J; Kuman, Kathleen; Clarke, Ronald J; Bruxelles, Laurent; Caffee, Marc W

    2015-06-04

    The cave infills at Sterkfontein contain one of the richest assemblages of Australopithecus fossils in the world, including the nearly complete skeleton StW 573 ('Little Foot') in its lower section, as well as early stone tools in higher sections. However, the chronology of the site remains controversial owing to the complex history of cave infilling. Much of the existing chronology based on uranium-lead dating and palaeomagnetic stratigraphy has recently been called into question by the recognition that dated flowstones fill cavities formed within previously cemented breccias and therefore do not form a stratigraphic sequence. Earlier dating with cosmogenic nuclides suffered a high degree of uncertainty and has been questioned on grounds of sediment reworking. Here we use isochron burial dating with cosmogenic aluminium-26 and beryllium-10 to show that the breccia containing StW 573 did not undergo significant reworking, and that it was deposited 3.67 ± 0.16 million years ago, far earlier than the 2.2 million year flowstones found within it. The skeleton is thus coeval with early Australopithecus afarensis in eastern Africa. We also date the earliest stone tools at Sterkfontein to 2.18 ± 0.21 million years ago, placing them in the Oldowan at a time similar to that found elsewhere in South Africa at Swartkans and Wonderwerk.

  7. Uranium-Series Dating of the East Franklin Mountain's Fault Carbonates in El Paso, Texas

    NASA Astrophysics Data System (ADS)

    Garcia, V. H.; Ma, L.; Pavlis, T. L.; Hurtado, J. M., Jr.

    2017-12-01

    Direct dating of fault activity is a fundamentally important part of many paleoseismic studies and has potential implications on the quantity, magnitude, recurrence intervals, and timing of earthquake occurrences in the past and future. Faults in the Rio Grande Rift (RGR) in southern New Mexico and West Texas have often been overlooked in seismic hazard assessments due to inferred low tectonic rates and long recurrence intervals. However, there is geologic evidence from surface ruptures that at least 22 large earthquakes (M > 6.25) have occurred in the RGR within the last 10,000 kyrs. The binational conurbation of the El Paso-Juarez region (home to 2.3 million people) lies in the southern extent of the RGR and is traversed by many Quaternary faults, which pose a potentially catastrophic hazard for the region. One fault in particular, the East Franklin Mountains fault (EFMF), is made up of many smaller fault segments that cross through heavily populated areas of the El Paso-Juarez region. Direct dating of past movement on a central segment of the EFMF is a fundamental and important piece of the puzzle in understanding when and how often seismic activity occurred in the fault. In this study, we applied Uranium-series (U-series) dating of fault carbonates collected from a trench that was dug on the central segment of the EFMF. Fault related calcite precipitants and pedogenic carbonates from a nearby soil profile were collected to (1) constraint the timing of past fault activity and (2) understand the relationship and timing of pedogenic carbonate formation away from the EFMF. U-series dating reveals that pedogenic carbonates collected from colluvial wedges along the fault are approximately half the optically stimulated luminescence age of the deposits, suggesting the U-Series dates record a relatively continuous accumulation of carbonates post-deposition. U-Series dates from within the EFMF, however, provided potentially the best estimates for the age of the most recent seismic event with ages of 10 - 12 kyrs, suggesting this method has potential broader applications in paleoseismic studies.

  8. METHOD FOR RECOVERING URANIUM FROM OILS

    DOEpatents

    Gooch, L.H.

    1959-07-14

    A method is presented for recovering uranium from hydrocarbon oils, wherein the uranium is principally present as UF/sub 4/. According to the invention, substantially complete removal of the uranium from the hydrocarbon oil may be effected by intimately mixing one part of acetone to about 2 to 12 parts of the hydrocarbon oil containing uranium and separating the resulting cake of uranium from the resulting mixture. The uranium in the cake may be readily recovered by burning to the oxide.

  9. Uranium-series disequilibrium data for tooth fragments from the fossil hominid site at Ternifine, Algeria.

    USGS Publications Warehouse

    Szabo, B. J.

    1982-01-01

    I report here analyses of elephant molar-tooth fragments that were submitted by the late K.P.Oakley for uranium-series dating. The tooth fragments were collected by the late C. Arambourg from Pleistocene sand in association with the hominid fossils of Ternifine Man, Algeria. Of the results reported the minimum age of over 360 000 yr BP for the enamel appears to be the most reliable. -Authors

  10. Detection Technology in the 21st Century: The Case of Nuclear Weapons of Mass Destruction

    DTIC Science & Technology

    2008-03-26

    Weapons of Mass Destruction FORMAT : Strategy Research Project DATE: 26 March 2008 WORD COUNT: 6,764 PAGES: 25 KEY TERMS: National Security, Deterrence...stocks remaining in Ukraine, Belarus, Uzbekistan, and other former Soviet and Eastern European states, and the unknown amounts of highly enriched uranium ...detect emissions from the decay of radioactive nuclides, which can occur naturally, such as uranium and thorium, or are manmade, such as plutonium

  11. Sources of Nuclear Fuel, Understanding the Atom Series.

    ERIC Educational Resources Information Center

    Singleton, Arthur L., Jr.

    A brief outline of the historical landmarks in nuclear physics leading to the use of nuclear energy for peaceful purposes introduces this illustrated booklet. The distribution of known sources of uranium ores is mapped and some details about the geology of each geographical area given. Methods of prospective, mining, milling, refining, and fuel…

  12. Geological and geochronological evidence for the effect of Paleogene and Miocene uplift of the Northern Ordos Basin on the formation of the Dongsheng uranium district, China

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Yi, Chao; Dong, Qian; Cai, Yu-Qi; Liu, Hong-Xu

    2018-02-01

    The Dongsheng uranium district, located in the northern part of the Ordos Basin, contains the largest known sandstone-hosted uranium deposit in China. This district contains (from west to east) the Daying, Nalinggou, and Dongsheng uranium deposits that host tens of thousands of metric tonnes of estimated recoverable uranium resources at an average grade of 0.05% U. These uranium orebodies are generally hosted by the lower member of the Zhiluo Formation and are dominantly roll or tabular in shape. The uranium deposits in this district formed during two stages of mineralization (as evidenced by U-Pb dating) that occurred at 65-60 and 25 Ma. Both stages generated coffinite, pitchblende, anatase, pyrite, and quartz, with or without sericite, chlorite, calcite, fluorite, and hematite. The post-Late Cretaceous uplift of the Northern Ordos Basin exposed the northern margins of the Zhiluo Formation within the Hetao depression at 65-60 Ma, introducing groundwater into the formation and generating the first stage of uranium mineralization. The Oligocene (∼25 Ma) uplift of this northern margin exposed either the entirety of the southern flank of the Hetao depression or only the clastic sedimentary part of this region, causing a second gravitational influx of groundwater into the Zhiluo Formation and forming the second stage of uranium mineralization.

  13. Uranium, its impact on the national and global energy mix; and its history, distribution, production, nuclear fuel-cycle, future, and relation to the environment

    USGS Publications Warehouse

    Finch, Warren Irvin

    1997-01-01

    The many aspects of uranium, a heavy radioactive metal used to generate electricity throughout the world, are briefly described in relatively simple terms intended for the lay reader. An adequate glossary of unfamiliar terms is given. Uranium is a new source of electrical energy developed since 1950, and how we harness energy from it is explained. It competes with the organic coal, oil, and gas fuels as shown graphically. Uranium resources and production for the world are tabulated and discussed by country and for various energy regions in the United States. Locations of major uranium deposits and power reactors in the United States are mapped. The nuclear fuel-cycle of uranium for a typical light-water reactor is illustrated at the front end-beginning with its natural geologic occurrence in rocks through discovery, mining, and milling; separation of the scarce isotope U-235, its enrichment, and manufacture into fuel rods for power reactors to generate electricity-and at the back end-the reprocessing and handling of the spent fuel. Environmental concerns with the entire fuel cycle are addressed. The future of the use of uranium in new, simplified, 'passively safe' reactors for the utility industry is examined. The present resource assessment of uranium in the United States is out of date, and a new assessment could aid the domestic uranium industry.

  14. Uranium uptake history, open-system behaviour and uranium-series ages of fossil Tridacna gigas from Huon Peninsula, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Ayling, Bridget F.; Eggins, Stephen; McCulloch, Malcolm T.; Chappell, John; Grün, Rainer; Mortimer, Graham

    2017-09-01

    Molluscs incorporate negligible uranium into their skeleton while they are living, with any uranium uptake occurring post-mortem. As such, closed-system U-series dating of molluscs is unlikely to provide reliable age constraints for marine deposits. Even the application of open-system U-series modelling is challenging, because uranium uptake and loss histories can affect time-integrated uranium distributions and are difficult to constrain. We investigate the chemical and isotopic distribution of uranium in fossil Tridacna gigas (giant clams) from Marine Isotope Stage (MIS) 5e (128-116 ka) and MIS 11 (424-374 ka) reefs at Huon Peninsula in Papua New Guinea. The large size of the clams enables detailed chemical and isotopic mapping of uranium using LA-ICPMS and LA-MC-ICPMS techniques. Within each fossil Tridacna specimen, marked differences in uranium concentrations are observed across the three Tridacna growth zones (outer, inner, hinge), with the outer and hinge zones being relatively enriched. In MIS 5e and MIS 11 Tridacna, the outer and hinge zones contain approximately 1 ppm and 5 ppm uranium respectively. In addition to uptake of uranium, loss of uranium appears prevalent, especially in the MIS 11 specimens. The effect of uranium loss is to elevate measured [230Th/238U] values with little effect on [234U/238U] values. Closed-system age estimates are on average 50% too young for the MIS 5e Tridacna, and 25% too young for the MIS 11 Tridacna. A complex, multi-stage uptake and loss history is interpreted for the fossil Tridacna and we demonstrate that they cannot provide independent, reliable geochronological controls on the timing of past reef growth at Huon Peninsula.

  15. METHOD OF OPERATING A CALUTRON

    DOEpatents

    Davidson, P.H.

    1960-01-12

    A method of operating an electromagnetic isotope separator of the calutron class is reported whereby uranium tetrachloride is produced at a controlled rate within the source rather than betng introduced therein as was formerly practiced. This is accomplished by placing a uranium-bearing material, such as uranium metal, uranium trichloride, or uranium carbide in the charge receptacle of the calutron, heating this material to about to produce uranium tetrachloride vapor at a rate controlled by the chlorine gas flow into the source. The vapor is subsequently ionized by an electric arc and mass separated by conventional calutron methods.

  16. Evaluation of positron emission tomography as a method to visualize subsurface microbial processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinsella K.; Schlyer D.; Kinsella, K.

    2012-01-18

    Positron emission tomography (PET) provides spatiotemporal monitoring in a nondestructive manner and has higher sensitivity and resolution relative to other tomographic methods. Therefore, this technology was evaluated for its application to monitor in situ subsurface bacterial activity. To date, however, it has not been used to monitor or image soil microbial processes. In this study, PET imaging was applied as a 'proof-of-principle' method to assess the feasibility of visualizing a radiotracer labeled subsurface bacterial strain (Rahnella sp. Y9602), previously isolated from uranium contaminated soils and shown to promote uranium phosphate precipitation. Soil columns packed with acid-purified simulated mineral soils weremore » seeded with 2-deoxy-2-[{sup 18}F]fluoro-d-glucose ({sup 18}FDG) labeled Rahnella sp. Y9602. The applicability of [{sup 18}F]fluoride ion as a tracer for measuring hydraulic conductivity and {sup 18}FDG as a tracer to identify subsurface metabolically active bacteria was successful in our soil column studies. Our findings indicate that positron-emitting isotopes can be utilized for studies aimed at elucidating subsurface microbiology and geochemical processes important in contaminant remediation.« less

  17. PYROCHEMICAL DECONTAMINATION METHOD FOR REACTOR FUEL

    DOEpatents

    Buyers, A.G.

    1959-06-30

    A pyro-chemical method is presented for decontaminating neutron irradiated uranium and separating plutonium therefrom by contact in the molten state with a metal chloride salt. Uranium trichloride and uranium tetrachloride either alone or in admixture with alkaline metal and alkaline eanth metal fluorides under specified temperature and specified phase ratio conditions extract substantially all of the uranium from the irradiated uranium fuel together with certain fission products. The phases are then separated leaving purified uranium metal. The uranium and plutonium in the salt phase can be reduced to forin a highly decontaminated uraniumplutonium alloy. The present method possesses advantages for economically decontaminating irradiated nuclear fuel elements since irradiated fuel may be proccessed immediately after withdrawal from the reactor and the uranium need not be dissolved and later reduced to the metallic form. Accordingly, the uranium may be economically refabricated and reinserted into the reactor.

  18. METHOD OF SEPARATING URANIUM VALUES, PLUTONIUM VALUES AND FISSION PRODUCTS BY CHLORINATION

    DOEpatents

    Brown, H.S.; Seaborg, G.T.

    1959-02-24

    The separation of plutonium and uranium from each other and from other substances is described. In general, the method comprises the steps of contacting the uranium with chlorine in the presence of a holdback material selected from the group consisting of lanthanum oxide and thorium oxide to form a uranium chloride higher than uranium tetrachloride, and thereafter heating the uranium chloride thus formed to a temperature at which the uranium chloride is volatilized off but below the volatilizalion temperature of plutonium chloride.

  19. Origin of uranium isotope variations in early solar nebula condensates.

    PubMed

    Tissot, François L H; Dauphas, Nicolas; Grossman, Lawrence

    2016-03-01

    High-temperature condensates found in meteorites display uranium isotopic variations ((235)U/(238)U), which complicate dating the solar system's formation and whose origin remains mysterious. It is possible that these variations are due to the decay of the short-lived radionuclide (247)Cm (t 1/2 = 15.6 My) into (235)U, but they could also be due to uranium kinetic isotopic fractionation during condensation. We report uranium isotope measurements of meteoritic refractory inclusions that reveal excesses of (235)U reaching ~+6% relative to average solar system composition, which can only be due to the decay of (247)Cm. This allows us to constrain the (247)Cm/(235)U ratio at solar system formation to (1.1 ± 0.3) × 10(-4). This value provides new clues on the universality of the nucleosynthetic r-process of rapid neutron capture.

  20. Analysis of a Uranium Oxide Sample Interdicted in Slovakia (FSC 12-3-1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borg, Lars E.; Dai, Zurong; Eppich, Gary R.

    2014-01-17

    We provide a concise summary of analyses of a natural uranium sample seized in Slovakia in November 2007. Results are presented for compound identification, water content, U assay, trace element abundances, trace organic compounds, isotope compositions for U, Pb, Sr and O, and age determination using the 234U – 230Th and 235U – 231Pa chronometers. The sample is a mixture of two common uranium compounds - schoepite and uraninite. The uranium isotope composition is indistinguishable from natural; 236U was not detected. The O, Sr and Pb isotope compositions and trace element abundances are unremarkable. The 234U – 230Th chronometer givesmore » an age of 15.5 years relative to the date of analysis, indicating the sample was produced in January 1997. A comparison of the data for this sample with data in the Uranium Sourcing database failed to find a match, indicating the sample was not produced at a facility represented in the database.« less

  1. Excess lead in "rusty rock" 66095 and implications for an early lunar differentiation

    USGS Publications Warehouse

    Nunes, P.D.; Tatsumoto, M.

    1973-01-01

    Apollo 16 breccia 66095 contains a remarkably high amount of lead (15 part's per million), 85 percent of which is not supported by uranium and thorium in the rock. An acid leach experiment coupled with separate analyses of the whole rock and mineral fractions for uranium, thorium, and lead indicate that the excess lead has a lunar source and was apparently introduced about 4.0 X 109 years ago. The data also suggest that a major lunar crustal differentiation occurred about 4.47 X 109 years ago.

  2. National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.

    1981-02-01

    A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium andmore » 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.« less

  3. U-Th-Pb measurements of Luna 20 soil

    USGS Publications Warehouse

    Tatsumoto, M.

    1973-01-01

    The concentrations of uranium, thorium and lead and the lead isotopic composition of Luna 20 soil were determined. The data indicate that the Luna 20 soil is mainly a mixture of highland anorthosites and low-K basalt, but little KREEP basalt. The U-Th-Pb systematics are discussed in comparison with other lunar soils, especially with Apollo 16 soils which were collected from a 'typical' highland region. The data fit well in the Apollo 16 soil array on a U-Pb evolution diagram, and they exhibit excess lead relative to uranium. This relationship appears to be a characteristic of highland localities. Considering the previous observations of lunar samples, we infer that lead enrichment in the soil relative to uranium occurred between 3.2 and 3.9 b.y. ago and that the soil was disturbed by 'third events' about 2.0 b.y. ago. A lunar evolution model is discussed. ?? 1973.

  4. Early formation of the Moon 4.51 billion years ago

    PubMed Central

    Barboni, Melanie; Boehnke, Patrick; Keller, Brenhin; Kohl, Issaku E.; Schoene, Blair; Young, Edward D.; McKeegan, Kevin D.

    2017-01-01

    Establishing the age of the Moon is critical to understanding solar system evolution and the formation of rocky planets, including Earth. However, despite its importance, the age of the Moon has never been accurately determined. We present uranium-lead dating of Apollo 14 zircon fragments that yield highly precise, concordant ages, demonstrating that they are robust against postcrystallization isotopic disturbances. Hafnium isotopic analyses of the same fragments show extremely low initial 176Hf/177Hf ratios corrected for cosmic ray exposure that are near the solar system initial value. Our data indicate differentiation of the lunar crust by 4.51 billion years, indicating the formation of the Moon within the first ~60 million years after the birth of the solar system. PMID:28097222

  5. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOEpatents

    Horton, James A.; Hayden, H. Wayne

    1995-01-01

    An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.

  6. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOEpatents

    Horton, J.A.; Hayden, H.W.

    1995-01-10

    An apparatus and method are disclosed for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode. 2 figures.

  7. Controlling intake of uranium in the workplace: Applications of biokinetic modeling and occupational monitoring data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, Richard Wayne; Eckerman, Keith F; McGinn, Wilson

    2012-01-01

    This report provides methods for interpreting and applying occupational uranium monitoring data. The methods are based on current international radiation protection guidance, current information on the chemical toxicity of uranium, and best available biokinetic models for uranium. Emphasis is on air monitoring data and three types of bioassay data: the concentration of uranium in urine; the concentration of uranium in feces; and the externally measured content of uranium in the chest. Primary Reference guidance levels for prevention of chemical effects and limitation of radiation effects are selected based on a review of current scientific data and regulatory principles for settingmore » standards. Generic investigation levels and immediate action levels are then defined in terms of these primary guidance levels. The generic investigation and immediate actions levels are stated in terms of radiation dose and concentration of uranium in the kidneys. These are not directly measurable quantities, but models can be used to relate the generic levels to the concentration of uranium in air, urine, or feces, or the total uranium activity in the chest. Default investigation and immediate action levels for uranium in air, urine, feces, and chest are recommended for situations in which there is little information on the form of uranium taken into the body. Methods are prescribed also for deriving case-specific investigation and immediate action levels for uranium in air, urine, feces, and chest when there is sufficient information on the form of uranium to narrow the range of predictions of accumulation of uranium in the main target organs for uranium: kidneys for chemical effects and lungs for radiological effects. In addition, methods for using the information herein for alternative guidance levels, different from the ones selected for this report, are described.« less

  8. METHOD OF APPLYING NICKEL COATINGS ON URANIUM

    DOEpatents

    Gray, A.G.

    1959-07-14

    A method is presented for protectively coating uranium which comprises etching the uranium in an aqueous etching solution containing chloride ions, electroplating a coating of nickel on the etched uranium and heating the nickel plated uranium by immersion thereof in a molten bath composed of a material selected from the group consisting of sodium chloride, potassium chloride, lithium chloride, and mixtures thereof, maintained at a temperature of between 700 and 800 deg C, for a time sufficient to alloy the nickel and uranium and form an integral protective coating of corrosion-resistant uranium-nickel alloy.

  9. A novel assay method for the trace determination of Th and U in copper and lead using inductively coupled plasma mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LaFerriere, Brian D.; Maiti, Tapas C.; Arnquist, Isaac J.

    2015-03-01

    This study describes a novel sample preparation and assay method developed in support of the MAJORANA DEMONSTRATOR experiment for the determination of thorium and uranium levels in copper and lead shielding components. Meticulously clean sample preparation methods combined with novel anion exchange separations for analyte pre-concentration and matrix removal were developed. Quantification was performed by inductively coupled plasma mass spectrometry. Detection limits of 0.0084 pg 232Th/g and 0.0106 pg 238U/g were determined for copper, while detection limits of 0.23 pg 232Th/g and 0.46 pg 238U/g were achieved for lead. These methods allow the Majorana Collaboration to accurately assay detector componentsmore » and ensure that the experiment’s stringent radiopurity requirements are met.« less

  10. M4FT-15OR03100421: Status Report on Alkaline Conditioning Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsouris, Costas; Brown, Suree; Janke, Christopher James

    2015-05-01

    Significant progress in understanding the role of alkaline conditioning of polyethylene-fiber adsorbent, developed at the Oak Ridge National Laboratory (ORNL), is demonstrated in this report, which is essentially a manuscript prepared for publication in the journal Industrial & Engineering Chemistry Research of the American Chemical Society. The manuscript describes the influence of various parameters involved in adsorbent alkaline conditioning, including base concentration and duration and temperature of conditioning, on the uranium uptake history by the adsorbent. Various solutions have been used to determine the influence of conditioning parameters including (i) a screening solution containing uranyl nitrate at approximately 8 ppmmore » and sodium bicarbonate and sodium chloride at concentrations similar to those found in seawater, (ii) seawater spiked with approximately 75 ppb uranium, and (iii) natural seawater. In addition to concentration measurements by inductively coupled plasma (ICP) spectroscopy to determine the uranium uptake capacity and kinetics, spectroscopic methods such as Fourier transformed infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy were employed to investigate the effect of base treatment on the various chemical bonds of the adsorbent. Scanning electron microscopy (SEM) has also been employed to determine structural effects of the alkali on the adsorbent. The results are summarized as follows: 1. Alkali conditioning is necessary to prepare the adsorbent for uranium uptake. ICP analysis showed that without alkali conditioning, no appreciable uranium adsorption occurs. 2. FTIR showed that the base converts amidoxime to carboxylate groups. 3. FTIR showed that formation of carboxylate groups is irreversible and reduces the selectivity of the adsorbent toward uranium. 4. NMR showed that alkali conditioning leads also to the formation of cyclic imidedioxime, which is suspected to bind uranium, vanadium, iron, copper, and other metals. 5. Uptake of V, Fe, and Cu follows the same trend as that of uranium. Uptake of Ca, Mg, and Zn ions increases with increasing KOH conditioning time due to formation of carboxylate groups. 6. SEM showed that long conditioning times may also lead to adsorbent degradation. 7. The optimal conditioning parameters are: 0.44 M KOH, 70 C, for 1 hour. The results of this study are useful in the selection of optimal values of the parameters involved in preparing amidoxime-based adsorbent for uranium uptake from seawater. Additional work is still ongoing to provide a complete understanding of the chemistry of base conditioning and its role on the functioning of the adsorbent.« less

  11. Method for the recovery of uranium values from uranium tetrafluoride

    DOEpatents

    Kreuzmann, Alvin B.

    1983-01-01

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions wherein the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  12. Method for the recovery of uranium values from uranium tetrafluoride

    DOEpatents

    Kreuzmann, A.B.

    1982-10-27

    The invention is a novel method for the recovery of uranium from dry, particulate uranium tetrafluoride. In one aspect, the invention comprises reacting particulate uranium tetrafluoride and calcium oxide in the presence of gaseous oxygen to effect formation of the corresponding alkaline earth metal uranate and alkaline earth metal fluoride. The product uranate is highly soluble in various acidic solutions whereas the product fluoride is virtually insoluble therein. The product mixture of uranate and alkaline earth metal fluoride is contacted with a suitable acid to provide a uranium-containing solution, from which the uranium is recovered. The invention can achieve quantitative recovery of uranium in highly pure form.

  13. PROCESS OF RECOVERING URANIUM

    DOEpatents

    Kilner, S.B.

    1959-12-29

    A method is presented for separating and recovering uranium from a complex mixure of impurities. The uranium is dissolved to produce an aqueous acidic solution including various impurities. In accordance with one method, with the uranium in the uranyl state, hydrogen cyanide is introduced into the solution to complex the impurities. Subsequently, ammonia is added to the solution to precipitate the uraniunn as ammonium diuranate away from the impurities in the solution. Alternatively, the uranium is precipitated by adding an alkaline metal hydroxide. In accordance with the second method, the uranium is reduced to the uranous state in the solution. The reduced solution is then treated with solid alkali metal cyanide sufficient to render the solution about 0.1 to 1.0 N in cyanide ions whereat cyanide complex ions of the metal impurities are produced and the uranium is simultaneously precipituted as uranous hydroxide. Alternatively, hydrogen cyanide may be added to the reduced solution and the uranium precipitated subsequently by adding ammonium hydroxide or an alkali metal hydroxide. Other refinements of the method are also disclosed.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Virginia M., E-mail: vweaver@jhsph.edu; Johns Hopkins University School of Medicine, Baltimore, MD; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD

    Positive associations between urine toxicant levels and measures of glomerular filtration rate (GFR) have been reported recently in a range of populations. The explanation for these associations, in a direction opposite that of traditional nephrotoxicity, is uncertain. Variation in associations by urine concentration adjustment approach has also been observed. Associations of urine cadmium, thallium and uranium in models of serum creatinine- and cystatin-C-based estimated GFR (eGFR) were examined using multiple linear regression in a cross-sectional study of adolescents residing near a lead smelter complex. Urine concentration adjustment approaches compared included urine creatinine, urine osmolality and no adjustment. Median age, bloodmore » lead and urine cadmium, thallium and uranium were 13.9 years, 4.0 μg/dL, 0.22, 0.27 and 0.04 g/g creatinine, respectively, in 512 adolescents. Urine cadmium and thallium were positively associated with serum creatinine-based eGFR only when urine creatinine was used to adjust for urine concentration (β coefficient=3.1 mL/min/1.73 m{sup 2}; 95% confidence interval=1.4, 4.8 per each doubling of urine cadmium). Weaker positive associations, also only with urine creatinine adjustment, were observed between these metals and serum cystatin-C-based eGFR and between urine uranium and serum creatinine-based eGFR. Additional research using non-creatinine-based methods of adjustment for urine concentration is necessary. - Highlights: • Positive associations between urine metals and creatinine-based eGFR are unexpected. • Optimal approach to urine concentration adjustment for urine biomarkers uncertain. • We compared urine concentration adjustment methods. • Positive associations observed only with urine creatinine adjustment. • Additional research using non-creatinine-based methods of adjustment needed.« less

  15. Uranium Biominerals Precipitated by an Environmental Isolate of Serratia under Anaerobic Conditions.

    PubMed

    Newsome, Laura; Morris, Katherine; Lloyd, Jonathan R

    2015-01-01

    Stimulating the microbially-mediated precipitation of uranium biominerals may be used to treat groundwater contamination at nuclear sites. The majority of studies to date have focussed on the reductive precipitation of uranium as U(IV) by U(VI)- and Fe(III)-reducing bacteria such as Geobacter and Shewanella species, although other mechanisms of uranium removal from solution can occur, including the precipitation of uranyl phosphates via bacterial phosphatase activity. Here we present the results of uranium biomineralisation experiments using an isolate of Serratia obtained from a sediment sample representative of the Sellafield nuclear site, UK. When supplied with glycerol phosphate, this Serratia strain was able to precipitate 1 mM of soluble U(VI) as uranyl phosphate minerals from the autunite group, under anaerobic and fermentative conditions. Under phosphate-limited anaerobic conditions and with glycerol as the electron donor, non-growing Serratia cells could precipitate 0.5 mM of uranium supplied as soluble U(VI), via reduction to nano-crystalline U(IV) uraninite. Some evidence for the reduction of solid phase uranyl(VI) phosphate was also observed. This study highlights the potential for Serratia and related species to play a role in the bioremediation of uranium contamination, via a range of different metabolic pathways, dependent on culturing or in situ conditions.

  16. Uranium Biominerals Precipitated by an Environmental Isolate of Serratia under Anaerobic Conditions

    PubMed Central

    Newsome, Laura; Morris, Katherine; Lloyd, Jonathan. R.

    2015-01-01

    Stimulating the microbially-mediated precipitation of uranium biominerals may be used to treat groundwater contamination at nuclear sites. The majority of studies to date have focussed on the reductive precipitation of uranium as U(IV) by U(VI)- and Fe(III)-reducing bacteria such as Geobacter and Shewanella species, although other mechanisms of uranium removal from solution can occur, including the precipitation of uranyl phosphates via bacterial phosphatase activity. Here we present the results of uranium biomineralisation experiments using an isolate of Serratia obtained from a sediment sample representative of the Sellafield nuclear site, UK. When supplied with glycerol phosphate, this Serratia strain was able to precipitate 1 mM of soluble U(VI) as uranyl phosphate minerals from the autunite group, under anaerobic and fermentative conditions. Under phosphate-limited anaerobic conditions and with glycerol as the electron donor, non-growing Serratia cells could precipitate 0.5 mM of uranium supplied as soluble U(VI), via reduction to nano-crystalline U(IV) uraninite. Some evidence for the reduction of solid phase uranyl(VI) phosphate was also observed. This study highlights the potential for Serratia and related species to play a role in the bioremediation of uranium contamination, via a range of different metabolic pathways, dependent on culturing or in situ conditions. PMID:26132209

  17. A method for phenomenological and chemical kinetics study of autocatalytic reactive dissolution by optical microscopy. The case of uranium dioxide dissolution in nitric acid media

    NASA Astrophysics Data System (ADS)

    Marc, Philippe; Magnaldo, Alastair; Godard, Jérémy; Schaer, Éric

    2018-03-01

    Dissolution is a milestone of the head-end of hydrometallurgical processes, as the stabilization rates of the chemical elements determine the process performance and hold-up. This study aims at better understanding the chemical and physico-chemical phenomena of uranium dioxide dissolution reactions in nitric acid media in the Purex process, which separates the reusable materials and the final wastes of the spent nuclear fuels. It has been documented that the attack of sintering-manufactured uranium dioxide solids occurs through preferential attack sites, which leads to the development of cracks in the solids. Optical microscopy observations show that in some cases, the development of these cracks leads to the solid cleavage. It is shown here that the dissolution of the detached fragments is much slower than the process of the complete cleavage of the solid, and occurs with no disturbing phenomena, like gas bubbling. This fact has motivated the measurement of dissolution kinetics using optical microscopy and image processing. By further discriminating between external resistance and chemical reaction, the "true" chemical kinetics of the reaction have been measured, and the highly autocatalytic nature of the reaction confirmed. Based on these results, the constants of the chemical reactions kinetic laws have also been evaluated.

  18. Removal of uranium from aqueous HF solutions

    DOEpatents

    Pulley, Howard; Seltzer, Steven F.

    1980-01-01

    This invention is a simple and effective method for removing uranium from aqueous HF solutions containing trace quantities of the same. The method comprises contacting the solution with particulate calcium fluoride to form uranium-bearing particulates, permitting the particulates to settle, and separting the solution from the settled particulates. The CaF.sub.2 is selected to have a nitrogen surface area in a selected range and is employed in an amount providing a calcium fluoride/uranium weight ratio in a selected range. As applied to dilute HF solutions containing 120 ppm uranium, the method removes at least 92% of the uranium, without introducing contaminants to the product solution.

  19. Method for fabricating uranium foils and uranium alloy foils

    DOEpatents

    Hofman, Gerard L [Downers Grove, IL; Meyer, Mitchell K [Idaho Falls, ID; Knighton, Gaven C [Moore, ID; Clark, Curtis R [Idaho Falls, ID

    2006-09-05

    A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

  20. 3.1 Ga crystallization age for magnesian and ferroan gabbro lithologies in the Northwest Africa 773 clan of lunar meteorites

    NASA Astrophysics Data System (ADS)

    Shaulis, B. J.; Righter, M.; Lapen, T. J.; Jolliff, B. L.; Irving, A. J.

    2017-09-01

    The Northwest Africa (NWA) 773 clan of meteorites is a group of paired and/or petrogenetically related stones that contain at least six different lithologies: magnesian gabbro, ferroan gabbro, anorthositic gabbro, olivine phyric basalt, regolith breccia, and polymict breccia. Uranium-lead dates of baddeleyite in the magnesian gabbro, ferroan gabbro, and components within breccia lithologies of paired lunar meteorites NWA 773, NWA 3170, NWA 6950, and NWA 7007 indicate a chronologic link among the meteorites and their components. A total of 50 baddeleyite grains were analyzed and yielded weighted average 207Pb-206Pb dates of 3119.4 ± 9.4 (n = 27), 3108 ± 20 (n = 13), and 3113 ± 15 (n = 10) Ma for the magnesian gabbro, ferroan gabbro, and polymict breccia lithologies, respectively. A weighted average date of 3115.6 ± 6.8 Ma (n = 47/50) was calculated from the baddeleyite dates for all lithologies. A single large zircon grain found in a lithic clast in the polymict breccia of NWA 773 yielded a U-Pb concordia date of 3953 ± 18 Ma, indicating a much more ancient source for some of the components within the breccia. A U-Pb concordia date of apatite and merrillite grains from the magnesian gabbro and polymict breccia lithologies in NWA 773 is 3112 ± 33 Ma, identical to the baddeleyite dates. Magnesian and ferroan gabbros, as well as the dated baddeleyite and Ca-phosphate-bearing detritus in the breccia lithologies, formed during the same igneous event at about 3115 Ma. These data also strengthen proposed petrogenetic connections between magnesian and ferroan gabbro lithologies, which represent some of the youngest igneous rocks known from the Moon.

  1. The distribution of uranium and thorium in granitic rocks of the basin and range province, Western United States

    USGS Publications Warehouse

    McNeal, J.M.; Lee, D.E.; Millard, H.T.

    1981-01-01

    Some secondary uranium deposits are thought to have formed from uranium derived by the weathering of silicic igneous rocks such as granites, rhyolites, and tuffs. A regional geochemical survey was made to determine the distribution of uranium and thorium in granitic rocks of the Basin and Range province in order to evaluate the potential for secondary uranium occurrences in the area. The resulting geochemical maps of uranium, thorium, and the Th:U ratio may be useful in locating target areas for uranium exploration. The granites were sampled according to a five-level, nested, analysis-of-variance design, permitting estimates to be made of the variance due to differences between:(1) two-degree cells; (2) one-degree cells; (3) plutons; (4) samples; and (5) analyses. The cells are areas described in units of degrees of latitude and longitude. The results show that individual plutons tend to differ in uranium and thorium concentrations, but that each pluton tends to be relatively homogeneous. Only small amounts of variance occur at the two degree and the between-analyses levels. The three geochemical maps that were prepared are based on one-degree cell means. The reproducibility of the maps is U > Th ??? Th:U. These geochemical maps may be used in three methods of locating target areas for uranium exploration. The first method uses the concept that plutons containing the greatest amounts of uranium may supply the greatest amounts of uranium for the formation of secondary uranium occurrences. The second method is to examine areas with high thorium contents, because thorium and uranium are initially highly correlated but much uranium could be lost by weathering. The third method is to locate areas in which the plutons have particularly high Th:U ratios. Because uranium, but not thorium, is leached by chemical weathering, high Th:U ratios suggest a possible loss of uranium and possibly a greater potential for secondary uranium occurrences to be found in the area. ?? 1981.

  2. Rapid Method for Sodium Hydroxide Fusion of Asphalt ...

    EPA Pesticide Factsheets

    Technical Brief--Addendum to Selected Analytical Methods (SAM) 2012 The method will be used for qualitative analysis of americium-241, plutonium-238, plutonium-239, radium-226, strontium-90, uranium-234, uranium-235 and uranium-238 in asphalt matrices samples.

  3. Laser fluorometric analysis of plants for uranium exploration

    USGS Publications Warehouse

    Harms, T.F.; Ward, F.N.; Erdman, J.A.

    1981-01-01

    A preliminary test of biogeochemical exploration for locating uranium occurrences in the Marfa Basin, Texas, was conducted in 1978. Only 6 of 74 plant samples (mostly catclaw mimosa, Mimosa biuncifera) contained uranium in amounts above the detection limit (0.4 ppm in the ash) of the conventional fluorometric method. The samples were then analyzed using a Scintrex UA-3 uranium analyzer* * Use of trade names in this paper is for descriptive purposes only and does not constitute endorsement by the U.S. Geological Survey. - an instrument designed for direct analysis of uranium in water, and which can be conveniently used in a mobile field laboratory. The detection limit for uranium in plant ash (0.05 ppm) by this method is almost an order of magnitude lower than with the fluorometric conventional method. Only 1 of the 74 samples contained uranium below the detection limit of the new method. Accuracy and precision were determined to be satisfactory. Samples of plants growing on mineralized soils and nonmineralized soils show a 15-fold difference in uranium content; whereas the soils themselves (analyzed by delayed neutron activation analysis) show only a 4-fold difference. The method involves acid digestion of ashed tissue, extraction of uranium into ethyl acetate, destruction of the ethyl acetate, dissolution of the residue in 0.005% nitric acid, and measurement. ?? 1981.

  4. Fission- and alpha-track study of biogeochemistry of plutonium and uranium in carbonates of bikini and enewetak atolls. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, Y.; Friedman, G. M.; Miller, D. S.

    1978-12-31

    Results of the analysis of uranium concentrations in the 8 coral heads sampled from the Bikini and Enewetak lagoons lead to the following conclusions: (1) no parallel increase in uranium concentration was found in the corals contaminated by Pu and Am; (2) in the noncontaminated corals, the fission track analysis shows wider ranges of uranium concentrations (1.8 to 3.1). Thus, in the corals not contaminated by Pu and Am, uranium concentrations similar to the uranium concentration in the contaminated corals were found; (3) uranium content in all corals analyzed was rather homogeneously distributed, i.e., no hot spots, stars, or areasmore » differing in concentration by more than a few percent were detected by the fission track analyses.« less

  5. METHOD OF ROLLING URANIUM

    DOEpatents

    Smith, C.S.

    1959-08-01

    A method is described for rolling uranium metal at relatively low temperatures and under non-oxidizing conditions. The method involves the steps of heating the uranium to 200 deg C in an oil bath, withdrawing the uranium and permitting the oil to drain so that only a thin protective coating remains and rolling the oil coated uranium at a temperature of 200 deg C to give about a 15% reduction in thickness at each pass. The operation may be repeated to accomplish about a 90% reduction without edge cracking, checking or any appreciable increase in brittleness.

  6. 40 CFR 471.72 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CATEGORY Uranium Forming Subcategory § 471.72 Effluent limitations representing the degree of effluent... Maximum for monthly average mg/off-kg (pounds per million off-pounds) of uranium extruded Cadmium 0.007 0... extruded or forged uranium heat treated Cadmium 0.006 0.003 Chromium 0.012 0.005 Copper 0.040 0.019 Lead 0...

  7. 40 CFR 471.72 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CATEGORY Uranium Forming Subcategory § 471.72 Effluent limitations representing the degree of effluent... Maximum for monthly average mg/off-kg (pounds per million off-pounds) of uranium extruded Cadmium 0.007 0... extruded or forged uranium heat treated Cadmium 0.006 0.003 Chromium 0.012 0.005 Copper 0.040 0.019 Lead 0...

  8. PHYSICAL BENEFICATION OF LOW-GRADE URANIUM ORES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, J.N.

    1958-07-30

    Investigations are presented of methods for the physi cal beneficiation of low-grade and other uranium ores. The investlgations which have been in progress since September 1952 cover work done on a variety of natural ores, as well as a certain amount of basic research on mixtures of synthetic or high-grade natural uranium minerais with various gangues. Methods of beneficlation investigated include flotation, wet and dry attroftioning, magnetic separation. electresiatie separation, and misceilaneous minor methods. A rapid, routine method oicolorimeiric determlnation of uranium was also developed in order to facilitaie analyzing of low-grade materials for uranium. This proeedure is presenied inmore » condensed form. (auth)« less

  9. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil.

    PubMed

    Sitte, Jana; Akob, Denise M; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E; Scheinost, Andreas C; Büchel, Georg; Küsel, Kirsten

    2010-05-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the (35)SO(4)(2-) radiotracer method, was restricted to reduced soil horizons with rates of < or =142 +/- 20 nmol cm(-3) day(-1). Concentrations of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that approximately 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [(13)C]acetate- and [(13)C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined < or =100% during anoxic soil incubations. In contrast to results in other studies, soluble uranium increased in carbon-amended treatments, reaching < or =1,407 nM in solution. Our results suggest that (i) ongoing sulfate reduction in contaminated soil resulted in in situ metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems.

  10. Microbial Links between Sulfate Reduction and Metal Retention in Uranium- and Heavy Metal-Contaminated Soil▿

    PubMed Central

    Sitte, Jana; Akob, Denise M.; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E.; Scheinost, Andreas C.; Büchel, Georg; Küsel, Kirsten

    2010-01-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the 35SO42− radiotracer method, was restricted to reduced soil horizons with rates of ≤142 ± 20 nmol cm−3 day−1. Concentrations of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that ∼80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [13C]acetate- and [13C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined ≤100% during anoxic soil incubations. In contrast to results in other studies, soluble uranium increased in carbon-amended treatments, reaching ≤1,407 nM in solution. Our results suggest that (i) ongoing sulfate reduction in contaminated soil resulted in in situ metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems. PMID:20363796

  11. Copper Doping Improves Hydroxyapatite Sorption for Arsenate in Simulated Groundwaters

    DTIC Science & Technology

    2010-02-15

    Sciences, Notre Dame, Indiana 46556; Department of Environmental and Civil Engineering, Dallas, Texas 75205; and U.S. Army Engineer Research and...widely used to immobilize a wide range of heavy metals in water and soils, including lead, cadmium , zinc, uranium, copper, and nickel (6-9). The...the copper doping technique also has the potential to promote the sorptions of heavy metals including cadmium , zinc, lead, and uranium, whose

  12. Proteome changes in rat serum after a chronic ingestion of enriched uranium: Toward a biological signature of internal contamination and radiological effect.

    PubMed

    Petitot, F; Frelon, S; Chambon, C; Paquet, F; Guipaud, O

    2016-08-22

    The civilian and military use of uranium results in an increased risk of human exposure. The toxicity of uranium results from both its chemical and radiological properties that vary with isotopic composition. Validated biomarkers of health effects associated with exposure to uranium are neither sensitive nor specific to uranium radiotoxicity and/or radiological effect. This study aimed at investigating if serum proteins could be useful as biomarkers of both uranium exposure and radiological effect. Male Sprague-Dawley rats were chronically exposed through drinking water to low levels (40mg/L, corresponding to 1mg of uranium per animal per day) of either 4% (235)U-enriched uranium (EU) or 12% EU during 6 weeks. A proteomics approach based on two-dimensional electrophoresis (2D-DIGE) and mass spectrometry (MS) was used to establish protein expression profiles that could be relevant for discriminating between groups, and to identify some differentially expressed proteins following uranium ingestion. It demonstrated that the expressions of 174 protein spots over 1045 quantified spots were altered after uranium exposure (p<0.05). Using both inferential and non-supervised multivariate statistics, we show sets of spots features that lead to a clear discrimination between controls and EU exposed groups on the one hand (21 spots), and between 4% EU and 12% EU on the other hand (7 spots), showing that investigation of the serum proteome may possibly be of relevance to address both uranium contamination and radiological effect. Finally, using bioinformatics tools, pathway analyses of differentially expressed MS-identified proteins find that acute phase, inflammatory and immune responses as well as oxidative stress are likely involved in the response to contamination, suggesting a physiological perturbation, but that does not necessarily lead to a toxic effect. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Antiquity of Homo sapiens in China.

    PubMed

    Tiemei, C; Quan, Y; En, W

    1994-03-03

    Ten years ago a well-preserved skull of an early form of Homo sapiens was unearthed from Pleistocene cave deposits at the Jinniushan site in China. Here we present electron-spin resonance (ESR) and uranium-series dates from five fossil animal teeth collected from the hominid locality. The minimum ESR ages (195-165 kyr) are about 50 kyr younger than the uranium-series dates. Taken together, the results suggest an age of about 200 kyr or older for the Jinniushan skull, making it among the oldest H. sapiens material found in China, and almost as old as some of the latest Chinese H. erectus. This raises the possibility of the coexistence of the two species in China. The morphology of the skull suggests a strong local component of evolution, consonant with the 'multi-regional continuity' model of the evolution of H. sapiens.

  14. Method for producing uranium atomic beam source

    DOEpatents

    Krikorian, Oscar H.

    1976-06-15

    A method for producing a beam of neutral uranium atoms is obtained by vaporizing uranium from a compound UM.sub.x heated to produce U vapor from an M boat or from some other suitable refractory container such as a tungsten boat, where M is a metal whose vapor pressure is negligible compared to that of uranium at the vaporization temperature. The compound, for example, may be the uranium-rhenium compound, URe.sub.2. An evaporation rate in excess of about 10 times that of conventional uranium beam sources is produced.

  15. STRIPPING OF URANIUM FROM ORGANIC EXTRACTANTS

    DOEpatents

    Crouse, D.J. Jr.

    1962-09-01

    A liquid-liquid extraction method is given for recovering uranium values from uranium-containing solutions. Uranium is removed from a uranium-containing organic solution by contacting said organic solution with an aqueous ammonium carbonate solution substantially saturated in uranium values. A uranium- containing precipitate is thereby formed which is separated from the organic and aqueous phases. Uranium values are recovered from this separated precipitate. (AE C)

  16. 76 FR 52688 - Notice of Intent To Prepare an Environmental Impact Statement for the Sheep Mountain Uranium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... project employing open pit and underground mining methods and using heap leach methods for uranium...] Notice of Intent To Prepare an Environmental Impact Statement for the Sheep Mountain Uranium Project... comments regarding issues and resource information for the proposed Sheep Mountain Uranium Project (the...

  17. Uranium-234 anomalies in corals older than 150,000 years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bard, E.; Fairbanks, R.G.; Zindler, A.

    1991-08-01

    The authors present new precise U-Th ages of well-preserved coral specimens collected from the island of Barbados, West Indies, and the atoll of Mururoa, French Polynesia. Their new data confirm the ages attributed to oxygen isotope stage 7 in the framework of the Milankovitch theory. By using thermal ionization mass spectrometry (TIMS), it is also possible to quantify precisely the [sup 234]U/[sup 238]U ratios in corals. Samples older than 150 kyr B.P. are shown to be characterized by significant excesses of [sup 234]U relative to the uranium isotopic composition expected if the corals grew in present-day sea water. Assuming thatmore » the [sup 230]Th-ingrowth ages are accurate, these anomalies translate into high initial [sup 234]U/[sup 238]U ratios: about 1.2 at 200 kyr and up to 1.5 at about 450 kyr B.P. They propose that the anomalies result from both diagenetic addition and replacement of U and possibly from global changes in the [sup 234]U/[sup 238]U composition of the sea water through time. The [sup 234]U anomalies cast doubt on the accuracy of the classical [sup 230]Th-ingrowth dating method in old corals, and in particular for the use of measured [sup 234]U/[sup 238]U ratios alone to date corals older than 150 kyr.« less

  18. Estimation of uranium migration parameters in sandstone aquifers.

    PubMed

    Malov, A I

    2016-03-01

    The chemical composition and isotopes of carbon and uranium were investigated in groundwater samples that were collected from 16 wells and 2 sources in the Northern Dvina Basin, Northwest Russia. Across the dataset, the temperatures in the groundwater ranged from 3.6 to 6.9 °C, the pH ranged from 7.6 to 9.0, the Eh ranged from -137 to +128 mV, the total dissolved solids (TDS) ranged from 209 to 22,000 mg L(-1), and the dissolved oxygen (DO) ranged from 0 to 9.9 ppm. The (14)C activity ranged from 0 to 69.96 ± 0.69 percent modern carbon (pmC). The uranium content in the groundwater ranged from 0.006 to 16 ppb, and the (234)U:(238)U activity ratio ranged from 1.35 ± 0.21 to 8.61 ± 1.35. The uranium concentration and (234)U:(238)U activity ratio increased from the recharge area to the redox barrier; behind the barrier, the uranium content is minimal. The results were systematized by creating a conceptual model of the Northern Dvina Basin's hydrogeological system. The use of uranium isotope dating in conjunction with radiocarbon dating allowed the determination of important water-rock interaction parameters, such as the dissolution rate:recoil loss factor ratio Rd:p (a(-1)) and the uranium retardation factor:recoil loss factor ratio R:p in the aquifer. The (14)C age of the water was estimated to be between modern and >35,000 years. The (234)U-(238)U age of the water was estimated to be between 260 and 582,000 years. The Rd:p ratio decreases with increasing groundwater residence time in the aquifer from n × 10(-5) to n × 10(-7) a(-1). This finding is observed because the TDS increases in that direction from 0.2 to 9 g L(-1), and accordingly, the mineral saturation indices increase. Relatively high values of R:p (200-1000) characterize aquifers in sandy-clayey sediments from the Late Pleistocene and the deepest parts of the Vendian strata. In samples from the sandstones of the upper part of the Vendian strata, the R:p value is ∼ 24, i.e., sorption processes are expressed more weakly, and uranium is possibly desorbed from the sediments. Overall, these results provide a better understanding of the evolution of uranium isotopes in groundwater systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Method for mobilization of hazardous metal ions in soils

    DOEpatents

    Dugan, Patrick R.; Pfister, Robert M.

    1995-01-01

    A microbial process for removing heavy metals such as bismuth, cadmium, lead, thorium, uranium and other transuranics from soils and sediments, utilizing indigenous, or isolates of indigenous, microorganisms and reducing agents, such as cysteine or sodium thioglycollate, or complexing agents such as the amino acid glycine, to effect the mobilization or release of the metals from the soil particles.

  20. Lichen physiology and cell biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, D.H.

    1985-01-01

    This book presents information on topics relating to mineral element accumulation in bog lichens, nitrogen losses from diazotrophic lichens, influence of automobile exhaust and lead on the oxygen exchange of lichens, temporal variation in lichen element levels, and lead and uranium uptake by lichens. Other topics include the architecture of the concentric bodies in the mycobiont of Peltigera praetextata; multiple enzyme forms in lichens, photosynthesis, water relations multiple enzyme forms in lichens, photosynthesis, water relations and thallus structure of strictaceae lichens; and aspects of carbohydrate metabolism in lichens. The distribution of uranium and companion elements in lichen heath associated withmore » undisturbed uranium deposits in the Canadian Arctic is also discussed.« less

  1. Uranium Pyrophoricity Phenomena and Prediction (FAI/00-39)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PLYS, M.G.

    2000-10-10

    The purpose of this report is to provide a topical reference on the phenomena and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel (SNF) Project with specific applications to SNF Project processes and situations. Spent metallic uranium nuclear fuel is currently stored underwater at the K basins in the Hanford 100 area, and planned processing steps include: (1) At the basins, cleaning and placing fuel elements and scrap into stainless steel multi-canister overpacks (MCOs) holding about 6 MT of fuel apiece; (2) At nearby cold vacuum drying (CVD) stations, draining, vacuum drying, and mechanically sealing the MCOs; (3)more » Shipping the MCOs to the Canister Storage Building (CSB) on the 200 Area plateau; and (4) Welding shut and placing the MCOs for interim (40 year) dry storage in closed CSB storage tubes cooled by natural air circulation through the surrounding vault. Damaged fuel elements have exposed and corroded fuel surfaces, which can exothermically react with water vapor and oxygen during normal process steps and in off-normal situations, A key process safety concern is the rate of reaction of damaged fuel and the potential for self-sustaining or runaway reactions, also known as uranium fires or fuel ignition. Uranium metal and one of its corrosion products, uranium hydride, are potentially pyrophoric materials. Dangers of pyrophoricity of uranium and its hydride have long been known in the U.S. Department of Energy (Atomic Energy Commission/DOE) complex and will be discussed more below; it is sufficient here to note that there are numerous documented instances of uranium fires during normal operations. The motivation for this work is to place the safety of the present process in proper perspective given past operational experience. Steps in development of such a perspective are: (1) Description of underlying physical causes for runaway reactions, (2) Modeling physical processes to explain runaway reactions, (3) Validation of the method against experimental data, (4) Application of the method to plausibly explain operational experience, and (5) Application of the method to present process steps to demonstrate process safety and margin. Essentially, the logic above is used to demonstrate that runaway reactions cannot occur during normal SNF Project process steps, and to illustrate the depth of the technical basis for such a conclusion. Some off-normal conditions are identified here that could potentially lead to runaway reactions. However, this document is not intended to provide an exhaustive analysis of such cases. In summary, this report provides a ''toolkit'' of models and approaches for analysis of pyrophoricity safety issues at Hanford, and the technical basis for the recommended approaches. A summary of recommended methods appears in Section 9.0.« less

  2. METHOD FOR DETERMINING THE STABILITY OF FLUOROCARBON IOLS

    DOEpatents

    Sheldon, Z.D.; Haendler, H.M.

    1959-07-21

    A method of determining the stability of a fluorocarbon oil to uranium hexafluoride is presented. The method comprises reacting a weighed sample of the oil with condensed uranium hexafluoride in a reaction zone and titrating the amount of uranium tetrafluoride produced with potassium dichromate.

  3. Analysis of beryllium and depleted uranium: An overview of detection methods in aerosols and soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Camins, I.; Shinn, J.H.

    We conducted a survey of commercially available methods for analysis of beryllium and depleted uranium in aerosols and soils to find a reliable, cost-effective, and sufficiently precise method for researchers involved in environmental testing at the Yuma Proving Ground, Yuma, Arizona. Criteria used for evaluation include cost, method of analysis, specificity, sensitivity, reproducibility, applicability, and commercial availability. We found that atomic absorption spectrometry with graphite furnace meets these criteria for testing samples for beryllium. We found that this method can also be used to test samples for depleted uranium. However, atomic absorption with graphite furnace is not as sensitive amore » measurement method for depleted uranium as it is for beryllium, so we recommend that quality control of depleted uranium analysis be maintained by testing 10 of every 1000 samples by neutron activation analysis. We also evaluated 45 companies and institutions that provide analyses of beryllium and depleted uranium. 5 refs., 1 tab.« less

  4. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    DOEpatents

    Willit, James L [Ratavia, IL

    2007-09-11

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  5. Porous membrane electrochemical cell for uranium and transuranic recovery from molten salt electrolyte

    DOEpatents

    Willit, James L [Batavia, IL

    2010-09-21

    An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.

  6. Technical Basis for Assessing Uranium Bioremediation Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PE Long; SB Yabusaki; PD Meyer

    2008-04-01

    In situ bioremediation of uranium holds significant promise for effective stabilization of U(VI) from groundwater at reduced cost compared to conventional pump and treat. This promise is unlikely to be realized unless researchers and practitioners successfully predict and demonstrate the long-term effectiveness of uranium bioremediation protocols. Field research to date has focused on both proof of principle and a mechanistic level of understanding. Current practice typically involves an engineering approach using proprietary amendments that focuses mainly on monitoring U(VI) concentration for a limited time period. Given the complexity of uranium biogeochemistry and uranium secondary minerals, and the lack of documentedmore » case studies, a systematic monitoring approach using multiple performance indicators is needed. This document provides an overview of uranium bioremediation, summarizes design considerations, and identifies and prioritizes field performance indicators for the application of uranium bioremediation. The performance indicators provided as part of this document are based on current biogeochemical understanding of uranium and will enable practitioners to monitor the performance of their system and make a strong case to clients, regulators, and the public that the future performance of the system can be assured and changes in performance addressed as needed. The performance indicators established by this document and the information gained by using these indicators do add to the cost of uranium bioremediation. However, they are vital to the long-term success of the application of uranium bioremediation and provide a significant assurance that regulatory goals will be met. The document also emphasizes the need for systematic development of key information from bench scale tests and pilot scales tests prior to full-scale implementation.« less

  7. Preliminary Report on the White Canyon Area, San Juan County, Utah

    USGS Publications Warehouse

    Benson, William Edward Barnes; Trites, A.F.; Beroni, E.P.; Feeger, J.A.

    1952-01-01

    The White Canyon area in San Juan County, Utah, contains known deposits of copper-uranium ore and is currently being mapped and studied by the Geological Survey. To date, approximately 75 square miles, or about 20 percent of the area, has been mapped on a scale 1 inch=1 mile. The White Canyon area is underlain by more than 2,000 feet of sedimentary rocks, Carboniferous to Jurassic(?) in age. The area is on the flank of the Elk Ridge anticline, and the strata have a regional dip of 1 deg to 2 deg SW. The Shinarump conglomerate of Late Triassic age is the principal ore-bearing formation. The Shinarump consists of lenticular beds of sandstone, conglomeratic sandstone, clay, and siltstone, and ranges in thickness from a feather edge to as much as 75 feet. Locally the sandstones contain silicified and carbonized wood and fragments of charcoal. These vegetal remains are especially common in channel-fill deposits. Jointing is prominent in the western part of the area, and apparently affects all formations. Adjacent to the joints some of the redbeds in the sequence are bleached. Deposits of copper-uranium minerals have been found in the Moenkopi, Shinarump, and Chinle formations, but the only production of ore has been from the Shinarump conglomerate. The largest concentration of these minerals is in the lower third of the Shinarump, and the deposits seem to be controlled in part by ancient channel fills and in part by fractures. Locally precipitation of the copper and uranium minerals apparently has been aided by charcoal and clays. Visible uranium minerals include both hard and soft pitchblende and secondary hydrosulfates, phosphates, and silicates. In addition, unidentified uranium compounds are present in carbonized wood and charcoal, and in veinlets of hydrocarbons. Base-metal sulfides have been identified in all prospects that extend beyond the oxidized zone. Secondary copper minerals in the oxidized zone include the hydrous sulfates and carbonates, and possibly chrysocolla. The principal gangue minerals are quartz, clay minerals, chlorite, oxides of iron and manganese, alunite, calcite, gypsum, pyrite, allophane, gibbsite, opal, and chalcedony. The origin of the copper-uranium ores has not been determined, but the association of many deposits with fractures, the mineralogic assemblage, and a lead-uranium age determination of 50 to 60 million years for the pitchblende in the Happy Jack mine favor the hypothesis that the ores are of hydrothermal origin and were deposited in early Tertiary time. Criteria believed to be the most useful in prospecting for new deposits are (1) visible uranium minerals; (2) visible copper minerals; (3) alunite; (4) hydrocarbons; and (5) bleaching of the underlying Moenkopi formation.

  8. Calculated criticality for sup 235 U/graphite systems using the VIM Monte Carlo code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, P.J.; Grasseschi, G.L.; Olsen, D.N.

    1992-01-01

    Calculations for highly enriched uranium and graphite systems gained renewed interest recently for the new production modular high-temperature gas-cooled reactor (MHTGR). Experiments to validate the physics calculations for these systems are being prepared for the Transient Reactor Test Facility (TREAT) reactor at Argonne National Laboratory (ANL-West) and in the Compact Nuclear Power Source facility at Los Alamos National Laboratory. The continuous-energy Monte Carlo code VIM, or equivalently the MCNP code, can utilize fully detailed models of the MHTGR and serve as benchmarks for the approximate multigroup methods necessary in full reactor calculations. Validation of these codes and their associated nuclearmore » data did not exist for highly enriched {sup 235}U/graphite systems. Experimental data, used in development of more approximate methods, dates back to the 1960s. The authors have selected two independent sets of experiments for calculation with the VIM code. The carbon-to-uranium (C/U) ratios encompass the range of 2,000, representative of the new production MHTGR, to the ratio of 10,000 in the fuel of TREAT. Calculations used the ENDF/B-V data.« less

  9. 40 CFR 471.75 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (pounds per million off-pounds) of uranium extruded Cadmium 0.007 0.003 Chromium 0.013 0.005 Copper 0.044... treated Cadmium 0.006 0.003 Chromium 0.012 0.005 Copper 0.040 0.019 Lead 0.009 0.004 Nickel 0.017 0.012...-pounds) of uranium surface treated Cadmium 0.006 0.002 Chromium 0.010 0.004 Copper 0.035 0.017 Lead 0.008...

  10. 40 CFR 471.75 - Pretreatment standards for new sources (PSNS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (pounds per million off-pounds) of uranium extruded Cadmium 0.007 0.003 Chromium 0.013 0.005 Copper 0.044... treated Cadmium 0.006 0.003 Chromium 0.012 0.005 Copper 0.040 0.019 Lead 0.009 0.004 Nickel 0.017 0.012...-pounds) of uranium surface treated Cadmium 0.006 0.002 Chromium 0.010 0.004 Copper 0.035 0.017 Lead 0.008...

  11. PROCESS FOR PRODUCING URANIUM TETRAFLUORIDE

    DOEpatents

    Harvey, B.G.

    1954-09-14

    >This patent relates to improvements in the method for producing uranium tetrafluoride by treating an aqueous solutlon of a uranyl salt at an elevated temperature with a reducing agent effective in acld solutlon in the presence of hydrofluoric acid. Uranium tetrafluoride produced this way frequentiy contains impurities in the raw material serving as the source of uranium. Uranium tetrafluoride much less contaminated with impurities than when prepared by the above method can be prepared from materials containing such impurities by first adding a small proportion of reducing agent so as to cause a small fraction, for example 1 to 5% of the uranium tetrafluoride to be precipitated, rejecting such precipitate, and then precipitating and recovering the remainder of the uranium tetrafluoride.

  12. Certified reference materials and reference methods for nuclear safeguards and security.

    PubMed

    Jakopič, R; Sturm, M; Kraiem, M; Richter, S; Aregbe, Y

    2013-11-01

    Confidence in comparability and reliability of measurement results in nuclear material and environmental sample analysis are established via certified reference materials (CRMs), reference measurements, and inter-laboratory comparisons (ILCs). Increased needs for quality control tools in proliferation resistance, environmental sample analysis, development of measurement capabilities over the years and progress in modern analytical techniques are the main reasons for the development of new reference materials and reference methods for nuclear safeguards and security. The Institute for Reference Materials and Measurements (IRMM) prepares and certifices large quantities of the so-called "large-sized dried" (LSD) spikes for accurate measurement of the uranium and plutonium content in dissolved nuclear fuel solutions by isotope dilution mass spectrometry (IDMS) and also develops particle reference materials applied for the detection of nuclear signatures in environmental samples. IRMM is currently replacing some of its exhausted stocks of CRMs with new ones whose specifications are up-to-date and tailored for the demands of modern analytical techniques. Some of the existing materials will be re-measured to improve the uncertainties associated with their certified values, and to enable laboratories to reduce their combined measurement uncertainty. Safeguards involve the quantitative verification by independent measurements so that no nuclear material is diverted from its intended peaceful use. Safeguards authorities pay particular attention to plutonium and the uranium isotope (235)U, indicating the so-called 'enrichment', in nuclear material and in environmental samples. In addition to the verification of the major ratios, n((235)U)/n((238)U) and n((240)Pu)/n((239)Pu), the minor ratios of the less abundant uranium and plutonium isotopes contain valuable information about the origin and the 'history' of material used for commercial or possibly clandestine purposes, and have therefore reached high level of attention for safeguards authorities. Furthermore, IRMM initiated and coordinated the development of a Modified Total Evaporation (MTE) technique for accurate abundance ratio measurements of the "minor" isotope-amount ratios of uranium and plutonium in nuclear material and, in combination with a multi-dynamic measurement technique and filament carburization, in environmental samples. Currently IRMM is engaged in a study on the development of plutonium reference materials for "age dating", i.e. determination of the time elapsed since the last separation of plutonium from its daughter nuclides. The decay of a radioactive parent isotope and the build-up of a corresponding amount of daughter nuclide serve as chronometer to calculate the age of a nuclear material. There are no such certified reference materials available yet. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Investigating Uranium Concentrations in Groundwaters in the State of Idaho Using Kinetic Phosphorescence Analysis and Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Tkavadze, Levan; Dunker, Roy E; Brey, Richard R; Dudgeon, John

    2016-11-01

    The determination of uranium concentrations in natural water samples is of great interest due to the environmental consequences of this radionuclide. In this study, 380 groundwater samples from various locations within the state of Idaho were analyzed using two different techniques. The first method was Kinetic Phosphorescence Analysis (KPA), which gives the total uranium concentrations in water samples. The second analysis method was inductively coupled plasma mass spectrometry (ICP- MS). This method determines the total uranium concentration as well as the separate isotope concentrations of uranium. The U/U isotopic ratio was also measured for each sample to confirm that there was no depleted or enriched uranium present. The results were compared and mapped separately from each other. The study also found that in some areas of the state, natural uranium concentrations are relatively high.

  14. Semi-automated potentiometric titration method for uranium characterization.

    PubMed

    Cristiano, B F G; Delgado, J U; da Silva, J W S; de Barros, P D; de Araújo, R M S; Lopes, R T

    2012-07-01

    The manual version of the potentiometric titration method has been used for certification and characterization of uranium compounds. In order to reduce the analysis time and the influence of the analyst, a semi-automatic version of the method was developed in the Brazilian Nuclear Energy Commission. The method was applied with traceability assured by using a potassium dichromate primary standard. The combined standard uncertainty in determining the total concentration of uranium was around 0.01%, which is suitable for uranium characterization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. METHOD OF PREPARING URANIUM, THORIUM, OR PLUTONIUM OXIDES IN LIQUID BISMUTH

    DOEpatents

    Davidson, J.K.; Robb, W.L.; Salmon, O.N.

    1960-11-22

    A method is given for forming compositions, as well as the compositions themselves, employing uranium hydride in a liquid bismuth composition to increase the solubility of uranium, plutonium and thorium oxides in the liquid bismuth. The finely divided oxide of uranium, plutonium. or thorium is mixed with the liquid bismuth and uranium hydride, the hydride being present in an amount equal to about 3 at. %, heated to about 5OO deg C, agitated and thereafter cooled and excess resultant hydrogen removed therefrom.

  16. Uniform deposition of uranium hexafluoride (UF6): Standardized mass deposits and controlled isotopic ratios using a thermal fluorination method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNamara, Bruce K.; O’Hara, Matthew J.; Casella, Andrew M.

    2016-07-01

    Abstract: We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other uranium compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within the chamber to a highly predictable degree. We demonstrate the preparation of uranium deposits that range between ~0.01 and 470±34 ng∙cm-2. The data suggest the method can be extended to creating depositions at the sub-picogram∙cm-2 level. Additionally, the isotopic composition of the deposits can be customized by selection of the uranium source materials. Wemore » demonstrate a layering technique whereby two uranium solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit of UF6 that bears an isotopic signature that is a composite of the two uranium sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics.« less

  17. Colorimetric detection of uranium in water

    DOEpatents

    DeVol, Timothy A [Clemson, SC; Hixon, Amy E [Piedmont, SC; DiPrete, David P [Evans, GA

    2012-03-13

    Disclosed are methods, materials and systems that can be used to determine qualitatively or quantitatively the level of uranium contamination in water samples. Beneficially, disclosed systems are relatively simple and cost-effective. For example, disclosed systems can be utilized by consumers having little or no training in chemical analysis techniques. Methods generally include a concentration step and a complexation step. Uranium concentration can be carried out according to an extraction chromatographic process and complexation can chemically bind uranium with a detectable substance such that the formed substance is visually detectable. Methods can detect uranium contamination down to levels even below the MCL as established by the EPA.

  18. Method of fabricating a uranium-bearing foil

    DOEpatents

    Gooch, Jackie G [Seymour, TN; DeMint, Amy L [Kingston, TN

    2012-04-24

    Methods of fabricating a uranium-bearing foil are described. The foil may be substantially pure uranium, or may be a uranium alloy such as a uranium-molybdenum alloy. The method typically includes a series of hot rolling operations on a cast plate material to form a thin sheet. These hot rolling operations are typically performed using a process where each pass reduces the thickness of the plate by a substantially constant percentage. The sheet is typically then annealed and then cooled. The process typically concludes with a series of cold rolling passes where each pass reduces the thickness of the plate by a substantially constant thickness amount to form the foil.

  19. Compositions and methods for removing arsenic in water

    DOEpatents

    Gadgil, Ashok Jagannth [El Cerrito, CA

    2011-02-22

    Compositions and methods and for contaminants from water are provided. The compositions comprise ferric hydroxide and ferric oxyhydride coated substrates for use in removing the contaminant from the water. Contacting water bearing the contaminant with the substrates can substantially reduce contaminant levels therein. Methods of oxidizing the contaminants in water to facilitate their removal by the ferric hydroxide and ferric oxyhydride coated substrates are also provided. The contaminants include, but are not limited to, arsenic, selenium, uranium, lead, cadmium, nickel, copper, zinc, chromium and vanadium, their oxides and soluble salts thereof.

  20. Developing 226Ra and 227Ac age-dating techniques for nuclear forensics to gain insight from concordant and non-concordant radiochronometers

    DOE PAGES

    Kayzar, Theresa M.; Williams, Ross W.

    2015-09-26

    The model age or ‘date of purification’ of a nuclear material is an important nuclear forensic signature. In this study, chemical separation and MC-ICP-MS measurement techniques were developed for 226 Ra and 227Ac: grand-daughter nuclides in the 238U and 235U decay chains respectively. The 230Th- 234U, 226Ra- 238U, 231Pa- 235U, and 227Ac- 235U radiochronometers were used to calculate model ages for CRM-U100 standard reference material and two highly-enriched pieces of uranium metal from the International Technical Working Group Round Robin 3 Exercise. In conclusion, the results demonstrate the accuracy of the 226Ra- 238U and 227Ac- 235U chronometers and provide informationmore » about nuclide migration during uranium processing.« less

  1. Developing 226Ra and 227Ac age-dating techniques for nuclear forensics to gain insight from concordant and non-concordant radiochronometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kayzar, Theresa M.; Williams, Ross W.

    The model age or ‘date of purification’ of a nuclear material is an important nuclear forensic signature. In this study, chemical separation and MC-ICP-MS measurement techniques were developed for 226 Ra and 227Ac: grand-daughter nuclides in the 238U and 235U decay chains respectively. The 230Th- 234U, 226Ra- 238U, 231Pa- 235U, and 227Ac- 235U radiochronometers were used to calculate model ages for CRM-U100 standard reference material and two highly-enriched pieces of uranium metal from the International Technical Working Group Round Robin 3 Exercise. In conclusion, the results demonstrate the accuracy of the 226Ra- 238U and 227Ac- 235U chronometers and provide informationmore » about nuclide migration during uranium processing.« less

  2. Semi-automatic version of the potentiometric titration method for characterization of uranium compounds.

    PubMed

    Cristiano, Bárbara F G; Delgado, José Ubiratan; da Silva, José Wanderley S; de Barros, Pedro D; de Araújo, Radier M S; Dias, Fábio C; Lopes, Ricardo T

    2012-09-01

    The potentiometric titration method was used for characterization of uranium compounds to be applied in intercomparison programs. The method is applied with traceability assured using a potassium dichromate primary standard. A semi-automatic version was developed to reduce the analysis time and the operator variation. The standard uncertainty in determining the total concentration of uranium was around 0.01%, which is suitable for uranium characterization and compatible with those obtained by manual techniques. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Rapid Method for Sodium Hydroxide Fusion of Asphalt ...

    EPA Pesticide Factsheets

    Technical Brief--Addendum to Selected Analytical Methods (SAM) 2012 Rapid method developed for analysis of Americium-241 (241Am), plutonium-238 (238Pu), plutonium-239 (239Pu), radium-226 (226Ra), strontium-90 (90Sr), uranium-234 (234U), uranium-235 (235U) and uranium-238 (238U) in asphalt roofing material samples

  4. Method for converting uranium oxides to uranium metal

    DOEpatents

    Duerksen, Walter K.

    1988-01-01

    A process is described for converting scrap and waste uranium oxide to uranium metal. The uranium oxide is sequentially reduced with a suitable reducing agent to a mixture of uranium metal and oxide products. The uranium metal is then converted to uranium hydride and the uranium hydride-containing mixture is then cooled to a temperature less than -100.degree. C. in an inert liquid which renders the uranium hydride ferromagnetic. The uranium hydride is then magnetically separated from the cooled mixture. The separated uranium hydride is readily converted to uranium metal by heating in an inert atmosphere. This process is environmentally acceptable and eliminates the use of hydrogen fluoride as well as the explosive conditions encountered in the previously employed bomb-reduction processes utilized for converting uranium oxides to uranium metal.

  5. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    DOEpatents

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  6. On the reactive occlusion of the (uranium trichloride + lithium chloride + potassium chloride) eutectic salt in zeolite 4A

    NASA Astrophysics Data System (ADS)

    Lexa, Dusan; Leibowitz, Leonard; Kropf, Jeremy

    2000-03-01

    The interaction between the (uranium trichloride + lithium chloride + potassium chloride) eutectic salt and zeolite 4A has been studied by temperature-resolved synchrotron powder X-ray diffraction, evolved gas analysis and differential scanning calorimetry, between 300 and 900 K. The onset of salt occlusion by the zeolite has been detected at 450 K. Evidence of a reaction between zeolitic water and uranium trichloride, leading to the formation of uranium dioxide, has appeared at 600 K. The uranium dioxide particle size increases from 2 nm at 600 K to 25 nm at 900 K - an indication of their extra-zeolitic location. No appreciable degradation of the zeolite structure has been observed.

  7. METHOD FOR TESTING COATINGS

    DOEpatents

    Johns, I.B.; Newton, A.S.

    1958-09-01

    A method is described for detecting pin hole imperfections in coatings on uranium-metal objects. Such coated objects are contacted with a heated atmosphere of gaseous hydrogen and imperfections present in the coatings will allow the uranlum to react with the hydrogen to form uranium hydride. Since uranium hydride is less dense than uranium metal it will swell, causing enlargement of the coating defeot and rendering it visible.

  8. THE RECOVERY OF URANIUM FROM GAS MIXTURE

    DOEpatents

    Jury, S.H.

    1964-03-17

    A method of separating uranium from a mixture of uranium hexafluoride and other gases is described that comprises bringing the mixture into contact with anhydrous calcium sulfate to preferentially absorb the uranium hexafluoride on the sulfate. The calcium sulfate is then leached with a selective solvent for the adsorbed uranium. (AEC)

  9. PROCESS FOR REMOVING NOBLE METALS FROM URANIUM

    DOEpatents

    Knighton, J.B.

    1961-01-31

    A pyrometallurgical method is given for purifying uranium containing ruthenium and palladium. The uranium is disintegrated and oxidized by exposure to air and then the ruthenium and palladium are extracted from the uranium with molten zinc.

  10. Synthesis, Development, and Testing of High-Surface-Area Polymer-Based Adsorbents for the Selective Recovery of Uranium from Seawater

    DOE PAGES

    Oyola, Yatsandra; Janke, Christopher J.; Dai, Sheng

    2016-02-29

    The ocean contains uranium with an approximate concentration of 3.34 ppb, which can serve as an incredible supply source to sustain nuclear energy in the United States. Unfortunately, technology currently available to recover uranium from seawater is not efficient enough and mining uranium on land is still more economical. For this study, we have developed polymer-based adsorbents with high uranium adsorption capacities by grafting amidoxime onto high-surface-area polyethylene (PE) fibers. Various process conditions have been screened, in combination with developing a rapid testing protocol (<24 h), to optimize the process. These adsorbents are synthesized through radiation-induced grafting of acrylonitrile (AN)more » and methacrylic acid (MAA) onto PE fibers, followed by the conversion of nitriles to amidoximes and basic conditioning. In addition, the uranium adsorption capacity, measured in units of g U/kg ads, is greatly increased by reducing the diameter of the PE fiber or changing its morphology. An increase in the surface area of the PE polymer fiber allows for more grafting sites that are positioned in more-accessible locations, thereby increasing access to grafted molecules that would normally be located in the interior of a fiber with a larger diameter. Polymer fibers with hollow morphologies are able to adsorb beyond 1 order of magnitude more uranium from simulated seawater than current commercially available adsorbents. Finally, several high-surface-area fibers were tested in natural seawater and were able to extract 5–7 times more uranium than any adsorbent reported to date.« less

  11. 40 CFR 471.72 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... average mg/off-kg (pounds per million off-pounds) of uranium extruded Cadmium 0.007 0.003 Chromium 0.013 0... uranium heat treated Cadmium 0.006 0.003 Chromium 0.012 0.005 Copper 0.040 0.019 Lead 0.009 0.004 Nickel 0... million off-pounds) of uranium surface treated Cadmium 0.006 0.002 Chromium 0.010 0.004 Copper 0.035 0.017...

  12. 40 CFR 471.72 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... average mg/off-kg (pounds per million off-pounds) of uranium extruded Cadmium 0.007 0.003 Chromium 0.013 0... uranium heat treated Cadmium 0.006 0.003 Chromium 0.012 0.005 Copper 0.040 0.019 Lead 0.009 0.004 Nickel 0... million off-pounds) of uranium surface treated Cadmium 0.006 0.002 Chromium 0.010 0.004 Copper 0.035 0.017...

  13. LIQUID METAL COMPOSITIONS CONTAINING URANIUM

    DOEpatents

    Teitel, R.J.

    1959-04-21

    Liquid metal compositions containing a solid uranium compound dispersed therein is described. Uranium combines with tin to form the intermetallic compound USn/sub 3/. It has been found that this compound may be incorporated into a liquid bath containing bismuth and lead-bismuth components, if a relatively small percentage of tin is also included in the bath. The composition has a low thermal neutron cross section which makes it suitable for use in a liquid metal fueled nuclear reactor.

  14. Consequences of slow growth for 230Th/U dating of Quaternary opals, Yucca Mountain, NV, USA

    USGS Publications Warehouse

    Neymark, L.A.; Paces, J.B.

    2000-01-01

    Thermal ionization mass-spectrometry 234U/238U and 230Th/238U data are reported for uranium-rich opals coating fractures and cavities within the silicic tuffs forming Yucca Mountain, NV, the potential site of a high-level radioactive waste repository. High uranium concentrations (up to 207 ppm) and extremely high 230Th/232Th activity ratios (up to about 106) make microsamples of these opals suitable for precise 230Th/U dating. Conventional 230Th/U ages range from 40 to greater than 600 ka, and initial 234U/238U activity ratios between 1.03 and 8.2. Isotopic evidence indicates that the opals have not experienced uranium mobility; however, wide variations in apparent ages and initial 234U/238U ratios for separate subsamples of the same outermost mineral surfaces, positive correlation between ages and sample weights, and negative correlation between 230Th/U ages and calculated initial 234U/238U are inconsistent with the assumption that all minerals in a given subsample was deposited instantaneously. The data are more consistent with a conceptual model of continuous deposition where secondary mineral growth has occurred at a constant, slow rate up to the present. This model assumes that individual subsamples represent mixtures of older and younger material, and that calculations using the resulting isotope ratios reflect an average age. Ages calculated using the continuous-deposition model for opals imply average mineral growth rates of less than 5 mm/m.y. The model of continuous deposition also predicts discordance between ages obtained using different radiometric methods for the same subsample. Differences in half-lives will result in younger apparent ages for the shorter-lived isotope due to the greater influence of younger materials continuously added to mineral surfaces. Discordant 14C, 230Th/U and U-Pb ages obtained from outermost mineral surfaces at Yucca Mountain support this model. (C) 2000 Elsevier Science B.V. All rights reserved.

  15. REMOVAL OF URANIUM FROM DRINKING WATER BY CONVENTIONAL TREATMENT METHODS

    EPA Science Inventory

    The USEPA currently does not regulate uranium in drinking water but will be revising the radionuclide regulations during 1989 and will propose a maximum contaminant level for uranium. The paper presents treatment technology information on the effectiveness of conventional method...

  16. Process for reducing beta activity in uranium

    DOEpatents

    Briggs, Gifford G.; Kato, Takeo R.; Schonegg, Edward

    1986-10-07

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.

  17. Volumetric determination of uranium titanous sulfate as reductant before oxidimetric titration

    USGS Publications Warehouse

    Wahlberg, J.S.; Skinner, D.L.; Rader, L.F.

    1957-01-01

    Need for a more rapid volumetric method for the routine determination of uranium in uranium-rich materials has led to the development of a method that uses titanous sulfate as a reductant before oxidimetric titration. Separation of the hydrogen sulfide group is not necessary. Interfering elements precipitated by cupferron are removed by automatic filtrations made simultaneously rather than by the longer chloroform extraction method. Uranium is reduced from VI to IV by addition of an excess of titanous sulfate solution, cupric ion serving as an indicator by forming red metallic copper when reduction is complete. The copper is reoxidized by addition of mercuric perchlorate. The reduced uranium is then determined by addition of excess ferric sulfate and titration with ceric sulfate. The method has proved to be rapid, accurate, and economical.

  18. Process for reducing beta activity in uranium

    DOEpatents

    Briggs, Gifford G.; Kato, Takeo R.; Schonegg, Edward

    1986-01-01

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which have undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed.

  19. Process for reducing beta activity in uranium

    DOEpatents

    Briggs, G.G.; Kato, T.R.; Schonegg, E.

    1985-04-11

    This invention is a method for lowering the beta radiation hazards associated with the casting of uranium. The method reduces the beta radiation emitted from the as-cast surfaces of uranium ingots. The method also reduces the amount of beta radiation emitters retained on the interiors of the crucibles that have been used to melt the uranium charges and which undergone cleaning in a remote handling facility. The lowering of the radioactivity is done by scavenging the beta emitters from the molten uranium with a molten mixture containing the fluorides of magnesium and calcium. The method provides a means of collection and disposal of the beta emitters in a manner that reduces radiation exposure to operating personnel in the work area where the ingots are cast and processed. 5 tabs.

  20. Uptake and mobility of uranium in black oaks: implications for biomonitoring depleted uranium-contaminated groundwater.

    PubMed

    Edmands, J D; Brabander, D J; Coleman, D S

    2001-08-01

    In a preliminary study, the uptake and the mobility of uranium (U) by black oak trees (Quercus velutina) were assessed by measuring the isotopic composition of tree rings in two mature oak trees in a heavy metal contaminated bog in Concord, MA. The bog is adjacent to a nuclear industrial facility that has been processing depleted uranium (DU) since 1959. Over the past 40 years, DU has been leaking from an onsite holding basin and cooling pond down gradient to the bog where the oaks are located. Because DU has no source outside the nuclear industry, contamination from the industrial facility is readily discernable from uptake of natural U by measuring isotopic compositions. Isotope ratio analysis confirms the occurrence of DU in bark, sapwood and heartwood tree rings dating back to 1937, pre-dating the introduction of DU at the site by at least 20 years. Isotope dilution analysis indicates high concentrations of U (>3 ppb) in sapwood that drop rapidly to relatively constant concentrations (0.3-0.4 ppb) in heartwood. These data indicate that once incorporated into tree cells, U is mobile, possibly by diffusion through the tree wood. Concentrations of U in sapwood are approximately equal to average U concentrations in groundwater onsite over the past 10 years, suggesting that oak trees can be used as present-day bioindicators of U-contaminated groundwater. We suggest that regional sampling of oak bark and sapwood is a reasonable, inexpensive alternative to drilling wells to monitor shallow groundwater U contamination.

  1. SELECTIVE SEPARATION OF URANIUM FROM THORIUM, PROTACTINIUM AND FISSION PRODUCTS BY PEROXIDE DISSOLUTION METHOD

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1959-08-18

    A method is described for separating U/sup 233/ from thorium and fission products. The separation is effected by forming a thorium-nitric acid solution of about 3 pH, adding hydrogen peroxide to precipitate uranium and thorium peroxide, treating the peroxides with sodium hydroxide to selectively precipitate the uranium peroxide, and reacting the separated solution with nitric acid to re- precipitate the uranium peroxide.

  2. METHOD OF PREPARING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOEpatents

    Handwerk, J.H.; BAch, R.A.

    1959-08-18

    A method is described for preparing a reactor fuel element by forming a mixture of thorium dioxide and an oxide of uranium, the uranium being present. In an oxidation state at least as high as it is in U/sub 3/O/sub 8/, into a desired shape and firing in air at a temperature siifficiently high to reduce the higher uranium oxide to uranium dioxide.

  3. Innovative Elution Processes for Recovering Uranium and Transition Metals from Amidoxime-based Adsorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wai, Chien M.

    Amidoxime-based polymer fibers are considered one of the most promising materials for sequestering uranium from seawater. The high-surface-area polymer fibers containing amidoxime and carboxylate groups synthesized by Oak Ridge National Lab (ORNL-AF1) show very high uranium adsorption capacities known in the literature. Effective elution of uranium and repeated use of the adsorbent are important factors affecting the cost of producing uranium from seawater using this material. Traditional acid leaching of uranium followed by KOH conditioning of the fiber causes chemical changes and physical damage to the ORNL-AF1 adsorbent. Two alkaline solution leaching methods were developed by this project, one usesmore » a highly concentrated (3 M) potassium bicarbonate solution at pH 8.3 and 40 °C; the other uses a mixture of sodium carbonate and hydrogen peroxide at pH 10.4. Both elution methods do not require KOH conditioning prior to reusing the fiber adsorbent. The conditions of eluting uranium from the amidoxime-based adsorbent using these alkaline solutions are confirmed by thermodynamic calculations. The bicarbonate elution method is selective for uranium recovery compared to other elution methods and causes no chemical change to the fiber material based on FTIR spectroscopy« less

  4. METHOD OF OPERATING NUCLEAR REACTORS

    DOEpatents

    Untermyer, S.

    1958-10-14

    A method is presented for obtaining enhanced utilization of natural uranium in heavy water moderated nuclear reactors by charging the reactor with an equal number of fuel elements formed of natural uranium and of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction. The reactor is operated until the rate of burnup of plutonium equals its rate of production, the fuel elements are processed to recover plutonium, the depleted uranium is discarded, and the remaining uranium is formed into fuel elements. These fuel elements are charged into a reactor along with an equal number of fuel elements formed of uranium depleted in U/sup 235/ to the extent that the combination will just support a chain reaction, and reuse of the uranium is continued as aforesaid until it wlll no longer support a chain reaction when combined with an equal quantity of natural uranium.

  5. Determination of uranium in clinical and environmental samples by FIAS-ICPMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpas, Z.; Lorber, A.; Halicz, L.

    Uranium may enter the human body through ingestion or inhalation. Ingestion of uranium compounds through the diet, mainly drinking water, is a common occurrence, as these compounds are present in the biosphere. Inhalation of uranium-containing particles is mainly an occupational safety problem, but may also take place in areas where uranium compounds are abundant. The uranium concentration in urine samples may serve as an indication of the total uranium body content. A method based on flow injection and inductively coupled plasma mass spectrometry (FIAS-ICPMS) was found to be most suitable for determination of uranium in clinical samples (urine and serum),more » environmental samples (seawater, wells and carbonate rocks) and in liquids consumed by humans (drinking water and commercial beverages). Some examples of the application of the FIAS-ICPMS method are reviewed and presented here.« less

  6. Characterization of low concentration uranium glass working materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eppich, G. R.; Wimpenny, J. B.; Leever, M. E.

    A series of uranium-doped silicate glasses were created at (Lawrence Livermore National Laboratory) LLNL, to be used as working reference material analogs for low uranium concentration research. Specifically, the aim of this effort was the generation of well-characterized glasses spanning a range of concentrations and compositions, and of sufficient homogeneity in uranium concentration and isotopic composition, for instrumentation research and development purposes. While the glasses produced here are not intended to replace or become standard materials for uranium concentration or uranium isotopic composition, it is hoped that they will help fill a current gap, providing low-level uranium glasses sufficient formore » methods development and method comparisons within the limitations of the produced glass suite. Glasses are available for research use by request.« less

  7. Comprehensive Evaluation of Soil Near Uranium Tailings, Beishan City, China.

    PubMed

    Xun, Yan; Zhang, Xinjia; Chaoliang, Chen; Luo, Xuegang; Zhang, Yu

    2018-06-01

    To evaluate the impact of uranium tailings on soil composition and soil microbial, six soil samples at different distance from the uranium tailings (Beishan City, China) were collected for further analysis. Concentrations of radionuclides ( 238 U and 232 Th), heavy metals (Mn, Cd, Cr, Ni, Zn, and Pb) and organochlorine pesticide were determined by ICP-MS and GC, they were significantly higher than those of the control. And the Average Well Color Development as well as the Shannon, the Evenness, and the Simpson index were calculated to evaluate the soil microbial diversity. The carbon utilization model of soil microbial community was also analyzed by Biolog-eco. All results indicated that uranium tailings leaded to excessive radionuclides and heavy metals, and decreased the diversity of the soil microbial community. Our study will provide a valuable basis for soil quality evaluation around uranium tailing repositories and lay a foundation for the management and recovery of uranium tailings.

  8. High strength and density tungsten-uranium alloys

    DOEpatents

    Sheinberg, Haskell

    1993-01-01

    Alloys of tungsten and uranium and a method for making the alloys. The amount of tungsten present in the alloys is from about 55 vol % to about 85 vol %. A porous preform is made by sintering consolidated tungsten powder. The preform is impregnated with molten uranium such that (1) uranium fills the pores of the preform to form uranium in a tungsten matrix or (2) uranium dissolves portions of the preform to form a continuous uranium phase containing tungsten particles.

  9. Uranium extraction: Fuel from seawater

    DOE PAGES

    Tsouris, Costas; Oak Ridge National Lab.

    2017-02-17

    Over four billion tonnes of uranium are currently in the oceans that could be harvested for nuclear fuel, but current capture methods have limited performance and reusability. Now, an electrochemical method using modified carbon electrodes is shown to be promising for the extraction of uranium from seawater.

  10. Simultaneous determination of the quantity and isotopic ratios of uranium in individual micro-particles by isotope dilution thermal ionization mass spectrometry (ID-TIMS).

    PubMed

    Park, Jong-Ho; Choi, Eun-Ju

    2016-11-01

    A method to determine the quantity and isotopic ratios of uranium in individual micro-particles simultaneously by isotope dilution thermal ionization mass spectrometry (ID-TIMS) has been developed. This method consists of sequential sample and spike loading, ID-TIMS for isotopic measurement, and application of a series of mathematical procedures to remove the contribution of uranium in the spike. The homogeneity of evaporation and ionization of uranium content was confirmed by the consistent ratio of n((233)U)/n((238)U) determined by TIMS measurements. Verification of the method was performed using U030 solution droplets and U030 particles. Good agreements of resulting uranium quantity, n((235)U)/n((238)U), and n((236)U)/n((238)U) with the estimated or certified values showed the validity of this newly developed method for particle analysis when simultaneous determination of the quantity and isotopic ratios of uranium is required. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Dissolution of uranium oxides from simulated environmental swipes using ammonium bifluoride

    DOE PAGES

    Meyers, Lisa A.; Yoshida, Thomas M.; Chamberlin, Rebecca M.; ...

    2016-11-01

    We developed an analytical chemistry method to quantitatively recover microgram quanties of solid uranium oxides from swipe media using ammonium bifluoride (ABF, NH 4HF 2) solution. Recovery of uranium from surrogate swipe media (filter paper) was demonstrated at initial uranium loading levels between 3 and 20 µg filter -1. Moreover, the optimal conditions for extracting U 3O 8 and UO 2 are using 1 % ABF solution and incubating at 80 °C for one hour. The average uranium recoveries are 100 % for U 3O 8, and 90 % for UO 2. Finally, with this method, uranium concentration as lowmore » as 3 µg filter -1 can be recovered for analysis.« less

  12. Novel speciation method based on Diffusive Gradients in Thin Films for in situ measurement of uranium in the vicinity of the former uranium mining sites.

    PubMed

    Drozdzak, Jagoda; Leermakers, Martine; Gao, Yue; Phrommavanh, Vannapha; Descostes, Michael

    2016-07-01

    The Diffusive Gradients in Thin Films (DGT) technique using PIWBA resin (The Dow Chemical Company) was developed and validated for the measurement of uranium (U) concentration in natural and uranium mining influenced waters. The U uptake on the PIWBA resin gel was 97.3 ± 0.4% (batch method; Vsol = 5 mL; [U] = 20 μg L(-1); 0.01 M NaNO3; pH = 7.0 ± 0.2). The optimal eluent was found to be HNO3conc/70 °C with an elution efficiency of 88.9 ± 1.4%. The laboratory DGT investigation demonstrated that the PIWBA resin gel exhibits a very good performance across a wide range of pH (3-9) and ionic strength (0.001-0.7 M NaNO3) at different time intervals. Neither effect of PO4(3-) (up to 1.72 × 10(-4) M), nor of HCO3(-) (up to 8.20 × 10(-3) M) on the quantitative measurement of uranium by DGT-PIWBA method were observed. Only at very high Ca(2+) (2.66 × 10(-4) M), and SO4(2-) (5.55 × 10(-4) M) concentration, the U uptake on DGT-PIWBA was appreciably lessened. In-situ DGT field evaluation was carried out in the vicinity of three former uranium mining sites in France (Loire-Atlantique and Herault departments), which employ different water treatment technologies and have different natural geochemical characteristics. There was a similar or inferior U uptake on DGT-Chelex(®)-100 in comparison with the U accumulation on a DGT-PIWBA sampler. Most likely, the performance of Chelex(®)-100 was negatively affected by a highly complex matrix of mining waters. The high concentration and identity of co-accumulating analytes, typical for the mining environment, did not have a substantial impact on the quantitative uptake of labile U species on DGT- PIWBA. The use of the polyphenol impregnated anion exchange resin leads to a significant advancement in the application and development of the DGT technique for determination of U in the vicinity of the former uranium mining sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. METHOD AND FLUX COMPOSITION FOR TREATING URANIUM

    DOEpatents

    Foote, F.

    1958-08-23

    ABS>A flux composition is described fer use with molten uranium or uranium alloys. The flux consists of about 46 weight per cent calcium fiuoride, 46 weight per cent magnesium fluoride and about 8 weight per cent of uranium tetrafiuoride.

  14. Caulobacter crescentus as a Whole-Cell Uranium Biosensor▿ †

    PubMed Central

    Hillson, Nathan J.; Hu, Ping; Andersen, Gary L.; Shapiro, Lucy

    2007-01-01

    We engineered a strain of the bacterium Caulobacter crescentus to fluoresce in the presence of micromolar levels of uranium at ambient temperatures when it is exposed to a hand-held UV lamp. Previous microarray experiments revealed that several Caulobacter genes are significantly upregulated in response to uranium but not in response to other heavy metals. We designated one of these genes urcA (for uranium response in caulobacter). We constructed a reporter that utilizes the urcA promoter to produce a UV-excitable green fluorescent protein in the presence of the uranyl cation, a soluble form of uranium. This reporter is specific for uranium and has little cross specificity for nitrate (<400 μM), lead (<150 μM), cadmium (<48 μM), or chromium (<41.6 μM). The uranium reporter construct was effective for discriminating contaminated groundwater samples (4.2 μM uranium) from uncontaminated groundwater samples (<0.1 μM uranium) collected at the Oak Ridge Field Research Center. In contrast to other uranium detection methodologies, the Caulobacter reporter strain can provide on-demand usability in the field; it requires minimal sample processing and no equipment other than a hand-held UV lamp, and it may be sprayed directly on soil, groundwater, or industrial surfaces. PMID:17905881

  15. Industrial Production of Uranium; PRODUCCION INDUSTRIAL DE URANIO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pedregal, J.D.

    1956-01-01

    The purity requirements of uranium and the necessity of purifying the uranium compounds previous to its metallurgical treatment are briefly discussed as an introduction to the different methods reduction to the metal. The methods which are used by the Junta de Energia Nuclear are indicated. (tr-auth)

  16. METHOD OF SEPARATING URANIUM SUSPENSIONS

    DOEpatents

    Wigner, E.P.; McAdams, W.A.

    1958-08-26

    A process is presented for separating colloidally dissed uranium oxides from the heavy water medium in upwhich they are contained. The method consists in treating such dispersions with hydrogen peroxide, thereby converting the uranium to non-colloidal UO/sub 4/, and separating the UO/sub 4/ sfter its rapid settling.

  17. Formation of Neogenic Ores on the Dump-Heaps of Old Uranium Mines and on the Mine-Head of Mines under Exploitation; FORMATION DE MINERAUX NEOGENES SUR LES HALDES D'ANCIENNES MINES D'URANIUM ET SUR LE CARREAU DES MINES EN EXPLOITATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chervet, J.

    1960-01-01

    The major degradations suffered by primary and secondary uranium ores under the weathering action of air and water are assessed. Pyritic ores were found to be the most vunerable. The interactions between pynite oxidation products and urantferous compounds often lead to the formation of neogentc ores. (C.J.G.)

  18. Zircon U-Pb geochronology links the end-Triassic extinction with the Central Atlantic Magmatic Province.

    PubMed

    Blackburn, Terrence J; Olsen, Paul E; Bowring, Samuel A; McLean, Noah M; Kent, Dennis V; Puffer, John; McHone, Greg; Rasbury, E Troy; Et-Touhami, Mohammed

    2013-05-24

    The end-Triassic extinction is characterized by major losses in both terrestrial and marine diversity, setting the stage for dinosaurs to dominate Earth for the next 136 million years. Despite the approximate coincidence between this extinction and flood basalt volcanism, existing geochronologic dates have insufficient resolution to confirm eruptive rates required to induce major climate perturbations. Here, we present new zircon uranium-lead (U-Pb) geochronologic constraints on the age and duration of flood basalt volcanism within the Central Atlantic Magmatic Province. This chronology demonstrates synchroneity between the earliest volcanism and extinction, tests and corroborates the existing astrochronologic time scale, and shows that the release of magma and associated atmospheric flux occurred in four pulses over about 600,000 years, indicating expansive volcanism even as the biologic recovery was under way.

  19. Predicting equilibrium uranium isotope fractionation in crystals and solution

    NASA Astrophysics Data System (ADS)

    Schauble, E. A.

    2015-12-01

    Despite the rapidly growing interest in using 238U/235U measurements as a proxy for changes in oxygen abundance in surface and near-surface environments, the present theoretical understanding of uranium isotope fractionation is limited to a few simple gas-phase molecules and analogues of dissolved species (e.g., 1,2,3). Understanding uranium isotope fractionation behavior in more complicated species, such as crystals and adsorption complexes, will help in the design and interpretation of experiments and field studies, and may suggest other uses for 38U/235U measurements. In this study, a recently developed first-principles method for estimating the nuclear volume component of field shift fractionation in crystals and complex molecular species (4) is combined with mass-dependent fractionation theory to predict equilibrium 38U/235U fractionations in aqueous and crystalline uranium compounds, including uraninite (UO2). The nuclear field shift effect, caused by the interaction of electrons with the finite volume of the positive charge distribution in uranium nuclei, is estimated using Density Functional Theory and the Projector Augmented Wave method (DFT-PAW). Tests against relativistic electronic structure calculations and Mössbauer isomer shift data indicate that the DFT-PAW method is reasonably accurate, while being much better suited to models of complex and crystalline species. Initial results confirm previous predictions that the nuclear volume effect overwhelms mass depdendent fractionation in U(VI)-U(IV) exchange reactions, leading to higher 238U/235U in U(IV) species (i.e., for UO2 xtal vs. UO22+aq, ln αNV ≈ +1.8‰ , ln αMD ≈ -0.8‰, ln αTotal ≈ +1.0‰ at 25ºC). UO2 and U(H2O)94+, are within ~0.4‰ of each other, while U(VI) species appear to be more variable. This suggests that speciation is likely to significantly affect natural uranium isotope fractionations, in addition to oxidation state. Tentatively, it appears that uranyl-type (UO22+-bearing) structures will tend to have higher 238U/235U than uranate-type structures that lack strong U=O bonds. References: 1. Bigeleisen (1996) JACS 118:3676; 2. Schauble (2006) Eos 87:V21B-0570; 3. Abe et al. (2008) J Chem Phys 128:144309, 129:164309, & Abe et al. (2010) J Chem Phys 133:044309; 4. Schauble (2013) PNAS 110:17714.

  20. PRODUCTION OF PURIFIED URANIUM

    DOEpatents

    Burris, L. Jr.; Knighton, J.B.; Feder, H.M.

    1960-01-26

    A pyrometallurgical method for processing nuclear reactor fuel elements containing uranium and fission products and for reducing uranium compound; to metallic uranium is reported. If the material proccssed is essentially metallic uranium, it is dissolved in zinc, the sulution is cooled to crystallize UZn/sub 9/ , and the UZn/sub 9/ is distilled to obtain uranium free of fission products. If the material processed is a uranium compound, the sollvent is an alloy of zinc and magnesium and the remaining steps are the same.

  1. Quaternary sea level high-stand deposits of the southeast U.S. Atlantic Coastal Plain: Age, distribution, and implications.

    NASA Astrophysics Data System (ADS)

    Poirier, R. K.; Cronin, T. M.; Ghaleb, B.; Portell, R.; Hillaire-Marcel, C.; Wehmiller, J. F.; Thompson, W. G.; Oches, E. A.; Willard, D. A.; Katz, M. E.

    2015-12-01

    Emerged Quaternary paleo-shorelines and marine deposits provide a more direct way to reconstruct and analyze sea-level variability than methods using oxygen isotope analyses of deep ocean benthic foraminifera. New Uranium-series dates on fossil corals (primarily Astrangia spp. and Septastrea spp.) combined with previously published dates have allowed us to constrain the age, elevation, and geographical distribution of marine sediments deposited in the United States Atlantic Coastal Plain (ACP) from Virginia to Florida during periods of past high relative sea level (SL). We present new dates from deposits (VA/NC: Tabb/Norfolk, Nassawadox, & Omar Formations; SC: Wando, Socastee, & Canepatch Formations; FL: Anastasia, Ft. Thompson, & Bermont Formations) representing interglacial high-stands during Marine Isotope Stages (MIS) 5, 7, 9, and 11. In addition, we incorporate stratigraphic, marine micropaleontologic, and palynologic records with our SL chronology to reconstruct a more complete history of middle-to-late Pleistocene interglacial climates of the ACP. Ultimately, these results will test modeled sea-level fingerprint studies based on various melting scenarios of the Greenland and/or Antarctic ice sheets.

  2. Determination of uranium isotopes in environmental samples by anion exchange in sulfuric and hydrochloric acid media.

    PubMed

    Popov, L

    2016-09-01

    Method for determination of uranium isotopes in various environmental samples is presented. The major advantages of the method are the low cost of the analysis, high radiochemical yields and good decontamination factors from the matrix elements, natural and man-made radionuclides. The separation and purification of uranium is attained by adsorption with strong base anion exchange resin in sulfuric and hydrochloric acid media. Uranium is electrodeposited on a stainless steel disk and measured by alpha spectrometry. The analytical method has been applied for the determination of concentrations of uranium isotopes in mineral, spring and tap waters from Bulgaria. The analytical quality was checked by analyzing reference materials. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. METHOD OF IMPREGNATING A POROUS MATERIAL

    DOEpatents

    Steele, G.N.

    1960-06-01

    A method of impregnating a porous body with an inorganic uranium- containing salt is outlined and comprises dissolving a water-soluble uranium- containing salt in water; saturating the intercommunicating pores of the porous body with the salt solution; infusing ammonia gas into the intercommunicating pores of the body, the ammonia gas in water chemically reacting with the water- soluble uranium-containing salt in the water solvent to form a nonwater-soluble uranium-containing precipitant; and evaporating the volatile unprecipitated products from the intercommunicating pores whereby the uranium-containing precipitate is uniformly distributed in the intercommunicating peres of the porous body.

  4. The Problem of Preconcentration of Uranium Ores by Physical Processes; LES PROBLEMES DE LA PRECONCENTRATION DES MINERAIS D'URANIUM PAR VOIE PHYSIQUE. LE TRIAGE ELECTRONIQUE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuchot, L.; Ginocchio, A. et al.

    1959-10-31

    As uranium ores, like most other ores, are not definite substances which can be treated directly for the production of the metal, the ores must be concentrated. The common physical processes used for all ores, such as sieving, gravimetric separation, flotation, electromagnetic separation, and electrostatic separation, are applicable to the beneficiation of uranium. The radioactivity of uranium ores has led to a radiometric method for the concentration. This method is described in detail. As an example, the preconcentration of Forez ores is discussed. (J.S.R.)

  5. LIQUID PHASE SINTERING OF METALLIC CARBIDES

    DOEpatents

    Hammond, J.; Sease, J.D.

    1964-01-21

    An improved method is given for fabricating uranium carbide composites, The method comprises forming a homogeneous mixture of powdered uranium carbide, a uranium intermetallic compound which wets and forms a eutectic with said carbide and has a non-uranium component which has a relatively high vapor pressure at a temperature in the range 1200 to 1500 deg C, and an organic binder, pressing said mixture to a composite of desired green strength, and then vacuum sintering said composite at the eutectic forming temperature for a period sufficient to remove at least a portion of the non-uranium containing component of said eutectic. (AEC)

  6. In-line assay monitor for uranium hexafluoride

    DOEpatents

    Wallace, S.A.

    1980-03-21

    An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from uranium-235. The uranium-235 content of the specimen is determined from comparison of the accumulated 185 keV energy counts and reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen.

  7. PRODUCTION OF URANIUM MONOCARBIDE

    DOEpatents

    Powers, R.M.

    1962-07-24

    A method of making essentially stoichiometric uranium monocarbide by pelletizing a mixture of uranium tetrafluoride, silicon, and carbon and reacting the mixture at a temperature of approximately 1500 to 1700 deg C until the reaction goes to completion, forming uranium monocarbide powder and volatile silicon tetrafluoride, is described. The powder is then melted to produce uranium monocarbide in massive form. (AEC)

  8. Comparison method for uranium determination in ore sample by inductively coupled plasma optical emission spectrometry (ICP-OES).

    PubMed

    Sert, Şenol

    2013-07-01

    A comparison method for the determination (without sample pre-concentration) of uranium in ore by inductively coupled plasma optical emission spectrometry (ICP-OES) has been performed. The experiments were conducted using three procedures: matrix matching, plasma optimization, and internal standardization for three emission lines of uranium. Three wavelengths of Sm were tested as internal standard for the internal standardization method. The robust conditions were evaluated using applied radiofrequency power, nebulizer argon gas flow rate, and sample uptake flow rate by considering the intensity ratio of the Mg(II) 280.270 nm and Mg(I) 285.213 nm lines. Analytical characterization of method was assessed by limit of detection and relative standard deviation values. The certificated reference soil sample IAEA S-8 was analyzed, and the uranium determination at 367.007 nm with internal standardization using Sm at 359.260 nm has been shown to improve accuracy compared with other methods. The developed method was used for real uranium ore sample analysis.

  9. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  10. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  11. Comparison between experimental data and Monte-Carlo simulations of neutron production in spallation reactions of 0.7-1.5 GeV protons on a thick, lead target

    NASA Astrophysics Data System (ADS)

    Krása, A.; Majerle, M.; Krízek, F.; Wagner, V.; Kugler, A.; Svoboda, O.; Henzl, V.; Henzlová, D.; Adam, J.; Caloun, P.; Kalinnikov, V. G.; Krivopustov, M. I.; Stegailov, V. I.; Tsoupko-Sitnikov, V. M.

    2006-05-01

    Relativistic protons with energies 0.7-1.5 GeV interacting with a thick, cylindrical, lead target, surrounded by a uranium blanket and a polyethylene moderator, produced spallation neutrons. The spatial and energetic distributions of the produced neutron field were measured by the Activation Analysis Method using Al, Au, Bi, and Co radio-chemical sensors. The experimental yields of isotopes induced in the sensors were compared with Monte-Carlo calculations performed with the MCNPX 2.4.0 code.

  12. PROCESS OF PRODUCING REFRACTORY URANIUM OXIDE ARTICLES

    DOEpatents

    Hamilton, N.E.

    1957-12-01

    A method is presented for fabricating uranium oxide into a shaped refractory article by introducing a uranium halide fluxing reagent into the uranium oxide, and then mixing and compressing the materials into a shaped composite mass. The shaped mass of uranium oxide and uranium halide is then fired at an elevated temperature so as to form a refractory sintered article. It was found in the present invention that the introduction of a uraninm halide fluxing agent afforded a fluxing action with the uranium oxide particles and that excellent cohesion between these oxide particles was obtained. Approximately 90% of uranium dioxide and 10% of uranium tetrafluoride represent a preferred composition.

  13. Comparison of gestational dating methods and implications for exposure-outcome associations: an example with PM2.5 and preterm birth

    EPA Science Inventory

    OBJECTIVES: Estimating gestational age is usually based on date of last menstrual period (LMP) or clinical estimation (CE); both approaches introduce potential bias. Differences in methods of estimation may lead to misclassificat ion and inconsistencies in risk estimates, particu...

  14. METHOD FOR PURIFYING URANIUM

    DOEpatents

    Kennedy, J.W.; Segre, E.G.

    1958-08-26

    A method is presented for obtaining a compound of uranium in an extremely pure state and in such a condition that it can be used in determinations of the isotopic composition of uranium. Uranium deposited in calutron receivers is removed therefrom by washing with cold nitric acid and the resulting solution, coataining uranium and trace amounts of various impurities, such as Fe, Ag, Zn, Pb, and Ni, is then subjected to various analytical manipulations to obtain an impurity-free uranium containing solution. This solution is then evaporated on a platinum disk and the residue is ignited converting it to U2/sub 3//sub 8/. The platinum disk having such a thin film of pure U/sub 2/O/sub 8/ is suitable for use with isotopic determination techaiques.

  15. Elevated Uranium in Aquifers of the Jacobsville Sandstone

    NASA Astrophysics Data System (ADS)

    Sherman, H.; Gierke, J.

    2003-12-01

    The EPA has announced a new standard for uranium in drinking water of 30 parts per billion (ppb). This maximum contaminant level (MCL) takes effect for community water supplies December 2003. The EPA's ruling has heightened awareness among residential well owners that uranium in drinking water may increase the risk of kidney disease and cancer and has created a need for a quantified, scientific understanding of the occurrence and distribution of uranium isotopes in aquifers. The authors are investigating the occurrence of elevated uranium in northern Michigan aquifers of the Middle Proterozoic Jacobsville sandstone, a red to mottled sequence of sandstones, conglomerates, siltstones and shales deposited as basin fill in the 1.1 Ga Midcontinent rift. Approximately 25% of 300 well water samples tested for isotopic uranium have concentrations above the MCL. Elevated uranium occurrences are distributed throughout the Jacobsville sandstone aquifers stretching across Michigan's Upper Peninsula. However, there is significant variation in well water uranium concentrations (from 0.01 to 190 ppb) and neighboring wells do not necessarily have similar concentrations. The authors are investigating hydrogeologic controls on ground water uranium concentrations in the Jacobsville sandstone, e.g. variations in lithology, mineralogy, groundwater residence time and geochemistry. Approximately 2000' of Jacobsville core from the Amoco St. Amour well was examined in conjunction with the spectral gamma ray log run in the borehole. Spikes in equivalent uranium (eU) concentration from the log are frequently associated with clay and heavy mineral layers in the sandstone core. The lithology and mineralogy of these layers will be determined by analysis of thin sections and x-ray diffraction. A portable spectrometer, model GRS-2000/BL, will be used on the sandstone cliffs along Lake Superior to characterize depositional and lithologic facies of the Jacobsville sandstone in terms of concentrations and ratios of eU, eTh and K. Equipped with borehole accessories, the spectrometer will be used to log residential drinking wells to determine a relationship between the uranium concentration of well water and the eU concentration in the sandstone. Tritium/helium-3 dating will be used to determine whether ground water uranium concentrations increase with residence time. PHREEQCI will be used to model dominate aqueous species of uranium and saturation indices of uranium minerals.

  16. Preliminary study of radioactive limonite localities in Colorado, Utah, and Wyoming

    USGS Publications Warehouse

    Lovering, T.G.; Beroni, E.P.

    1956-01-01

    Nine radioactive limonite localities of different types were sampled during the spring and fall of 1953 in an effort to establish criteria for differentiating limonite outcrops associated with uranium or thorium deposits from limonite outcrops not associated with such deposits. The samples were analyzed for uranium and thorium by standard chemical methods, for equivalent uranium by the radiometric method, and for a number of common metals by semiquantitative geochemical methods. Correlation coefficients were then calculated for each of the metals with respect to equivalent uranium, and to uranium where present, for all of the samples from each locality. The correlation coefficients may indicate a significant association between uranium or thorium and certain metals. Occurrences of specific that are interpreted as significant very considerably for different uranium localities but are more consistent for the thorium localities. Samples taken from radioactive outcrops in the vicinity of uranium or thorium deposits can be quickly analyzed by geochemical methods for various elements. Correlation coefficients can then be determined for the various elements with respect to uranium or thorium; if any significant correlations are obtained, the elements showing such correlation may be indicators of uranium or thorium. Soil samples of covered areas in the vicinity of the radioactive outcrop may then be analyzed for the indicator elements and any resulting anomalies used as a guide for prospecting where the depth of overburden is too great to allow the use of radiation-detecting instruments. Correlation coefficients of the associated indicator elements, used in conjunction with petrographic evidence, may also be useful in interpreting the origin and paragenesis of radioactive deposits. Changes in color of limonite stains on the outcrop may also be a useful guide to ore in some areas.

  17. Ionic Liquids as templating agents in formation of uranium-containing nanomaterials

    DOEpatents

    Visser, Ann E; Bridges, Nicholas J

    2014-06-10

    A method for forming nanoparticles containing uranium oxide is described. The method includes combining a uranium-containing feedstock with an ionic liquid to form a mixture and holding the mixture at an elevated temperature for a period of time to form the product nanoparticles. The method can be carried out at low temperatures, for instance less than about 300.degree. C.

  18. Nuclear reactor target assemblies, nuclear reactor configurations, and methods for producing isotopes, modifying materials within target material, and/or characterizing material within a target material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toth, James J.; Wall, Donald; Wittman, Richard S.

    Target assemblies are provided that can include a uranium-comprising annulus. The assemblies can include target material consisting essentially of non-uranium material within the volume of the annulus. Reactors are disclosed that can include one or more discrete zones configured to receive target material. At least one uranium-comprising annulus can be within one or more of the zones. Methods for producing isotopes within target material are also disclosed, with the methods including providing neutrons to target material within a uranium-comprising annulus. Methods for modifying materials within target material are disclosed as well as are methods for characterizing material within a targetmore » material.« less

  19. Assessing and Minimizing Adversarial Risk in a Nuclear Material Transportation Network

    DTIC Science & Technology

    2013-09-01

    0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 09-27-2013 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND...U.S. as of July 2013. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Figure A.1 Google Earth routing from Areva to Arkansas Nuclear...Uranium ore is mined or removed from the earth in a leaching process. 2. Conversion (1). Triuranium octoxide (U3O8, “yellowcake”) is converted into ura

  20. High strength uranium-tungsten alloys

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1991-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  1. High strength uranium-tungsten alloy process

    DOEpatents

    Dunn, Paul S.; Sheinberg, Haskell; Hogan, Billy M.; Lewis, Homer D.; Dickinson, James M.

    1990-01-01

    Alloys of uranium and tungsten and a method for making the alloys. The amount of tungsten present in the alloys is from about 4 wt % to about 35 wt %. Tungsten particles are dispersed throughout the uranium and a small amount of tungsten is dissolved in the uranium.

  2. DISSOLUTION OF URANIUM FUELS BY MONOOR DIFLUOROPHOSPHORIC ACID

    DOEpatents

    Johnson, R.; Horn, F.L.; Strickland, G.

    1963-05-01

    A method of dissolving and separating uranium from a uranium matrix fuel element by dissolving the uraniumcontaining matrix in monofluorophosphoric acid and/or difluorophosphoric acid at temperatures ranging from 150 to 275 un. Concent 85% C, thereafter neutralizing the solution to precipitate uranium solids, and converting the solids to uranium hexafluoride by treatment with a halogen trifluoride is presented. (AEC)

  3. Highly Sensitive Detection of UV Radiation Using a Uranium Coordination Polymer.

    PubMed

    Liu, Wei; Dai, Xing; Xie, Jian; Silver, Mark A; Zhang, Duo; Wang, Yanlong; Cai, Yawen; Diwu, Juan; Wang, Jian; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao

    2018-02-07

    The accurate detection of UV radiation is required in a wide range of chemical industries and environmental or biological related applications. Conventional methods taking advantage of semiconductor photodetectors suffer from several drawbacks such as sophisticated synthesis and manufacturing procedure, not being able to measure the accumulated UV dosage as well as high defect density in the material. Searching for new strategies or materials serving as precise UV dosage sensor with extremely low detection limit is still highly desirable. In this work, a radiation resistant uranium coordination polymer [UO 2 (L)(DMF)] (L = 5-nitroisophthalic acid, DMF = N,N-dimethylformamide, denoted as compound 1) was successfully synthesized through mild solvothermal method and investigated as a unique UV probe with the detection limit of 2.4 × 10 -7 J. On the basis of the UV dosage dependent luminescence spectra, EPR analysis, single crystal structure investigation, and the DFT calculation, the UV-induced radical quenching mechanism was confirmed. Importantly, the generated radicals are of significant stability which offers the opportunity for measuring the accumulated UV radiation dosage. Furthermore, the powder material of compound 1 was further upgraded into membrane material without loss in luminescence intensity to investigate the real application potentials. To the best of our knowledge, compound 1 represents the most sensitive coordination polymer based UV dosage probe reported to date.

  4. Immobilization of uranium into magnetite from aqueous solution by electrodepositing approach.

    PubMed

    Lu, Bing-Qing; Li, Mi; Zhang, Xiao-Wen; Huang, Chun-Mei; Wu, Xiao-Yan; Fang, Qi

    2018-02-05

    Immobilization of uranium into magnetite (Fe 3 O 4 ), which was generated from metallic iron by electrochemical method, was proposed to rapidly remove uranium from aqueous solution. The effects of electrochemical parameters such as electrode materials, voltage, electrode gap, reaction time and pH value on the crystallization of Fe 3 O 4 and uranium removal efficiencies were investigated. More than 90% uranium in the solution was precipitated with Fe 3 O 4 under laboratory conditions when uranium concentration range from 0.5mg/L to 10mg/L. The Fe 3 O 4 crystallization mechanism and immobilization of uranium was proved by XPS, XRD, TEM, FTIR and VSM methods. The results indicated that the cationic (including Fe 2+ , Fe 3+ and U(VI)) migrate to cathode side under the electric field and the uranium was incorporated or adsorbed by Fe 3 O 4 which was generated at cathode while the pH ranges between 2-7. The uranium-containing precipitate of Fe 3 O 4 can exist stably at the acid concentration below 60g/L. Furthermore, the precipitate may be used as valuable resources for uranium or iron recycling, which resulted in no secondary pollution in the removal of uranium from aqueous solution. Copyright © 2017. Published by Elsevier B.V.

  5. Measurements of uranium mass confined in high density plasmas

    NASA Technical Reports Server (NTRS)

    Stoeffler, R. C.

    1976-01-01

    An X-ray absorption method for measuring the amount of uranium confined in high density, rf-heated uranium plasmas is described. A comparison of measured absorption of 8 keV X-rays with absorption calculated using Beer Law indicated that the method could be used to measure uranium densities from 3 times 10 to the 16th power atoms/cu cm to 5 times 10 to the 18th power atoms/cu cm. Tests were conducted to measure the density of uranium in an rf-heated argon plasma with UF6 infection and with the power to maintain the discharge supplied by a 1.2 MW rf induction heater facility. The uranium density was measured as the flow rate through the test chamber was varied. A maximum uranium density of 3.85 times 10 to the 17th power atoms/cu cm was measured.

  6. Nanostructured Metal Oxide Sorbents for the Collection and Recovery of Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chouyyok, Wilaiwan; Warner, Cynthia L.; Mackie, Katherine E.

    2016-02-07

    The ability to collect uranium from seawater offers the potential for a long-term green fuel supply for nuclear energy. However, extraction of uranium, and other trace minerals, is challenging due to the high ionic strength and low mineral concentrations in seawater. Herein we evaluate the use of nanostructured metal oxide sorbents for the collection and recovery of uranium from seawater. Chemical affinity, chemical adsorption capacity and kinetics of preferred sorbent materials were evaluated. High surface area manganese and iron oxide nanomaterials showed excellent performance for uranium collection from seawater. Inexpensive nontoxic carbonate solutions were demonstrated to be an effective andmore » environmental benign method of stripping the uranium from the metal oxide sorbents. Various formats for the utilization of the nanostructured metals oxide sorbent materials are discussed including traditional and nontraditional methods such as magnetic separation. Keywords: Uranium, nano, manganese, iron, sorbent, seawater, magnetic, separations, nuclear energy« less

  7. Thermogravimetric Control of Intermediate Products in the Metallurgy of Uranium; CONTROL TERMOGRAVIMETRICO DE PRODUCTOS INTERMEDIOS DE LA METALURGIA DEL URANIO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, L.G.; Cellini, R.F.

    1959-01-01

    The thermal decomposition of some intermediate compounds in the metallurgy of uranium such as uranium peroxide, ammonium uranate, ammonium uranium pentafluoride, uranium tetrafluoride, and UO/sub 2/, were studied using Chevenard's thermobalance. Some data on the pyrolysis of synthetic mixtures of intermediate compounds which may appear during the industrial processing are given. Thermogravimetric methods of control are suggested for use in uranium metallurgy. (tr-auth)

  8. METHOD FOR DISSOLVING ZIRCONIUM-URANIUM COMPOSITIONS

    DOEpatents

    Gens, T.A.

    1961-07-18

    A method is descrioed for treating a zirconium-- uranium composition to form a stable solution from which uranium and other values may be extracted by contacting the composition with at least a 4 molar aqueous solution of ammonium fluoride at a temperature of about 100 deg C, adding a peroxide, in incremental amounts, to the heated solution throughout the period of dissolution until all of the uranium is converted to soluble uranyl salt, adding nitric acid to the resultant solution to form a solvent extraction feed solution to convert the uranyl salt to a solvent extractable state, and thereafter recovering the uranium and other desired values from the feed solution by solvent extraction.

  9. METHOD OF SEPARATING URANIUM FROM ALLOYS

    DOEpatents

    Chiotti, P.; Shoemaker, H.E.

    1960-06-28

    Uranium can be recovered from metallic uraniumthorium mixtures containing uranium in comparatively small amounts. The method of recovery comprises adding a quantity of magnesium to a mass to obtain a content of from 48 to 85% by weight; melting and forming a magnesium-thorium alloy at a temperature of between 585 and 800 deg C; agitating the mixture, allowing the mixture to settle whereby two phases, a thorium-containing magnesium-rich liquid phase and a solid uranium-rich phase, are formed; and separating the two phases.

  10. ALLOY COATINGS AND METHOD OF APPLYING

    DOEpatents

    Eubank, L.D.; Boller, E.R.

    1958-08-26

    A method for providing uranium articles with a pro tective coating by a single dip coating process is presented. The uranium article is dipped into a molten zinc bath containing a small percentage of aluminum. The resultant product is a uranium article covered with a thin undercoat consisting of a uranium-aluminum alloy with a small amount of zinc, and an outer layer consisting of zinc and aluminum. The article may be used as is, or aluminum sheathing may then be bonded to the aluminum zinc outer layer.

  11. METHOD OF SEPARATING ISOTOPES OF URANIUM IN A CALUTRON

    DOEpatents

    Jenkins, F.A.

    1958-05-01

    Mass separation devices of the calutron type and the use of uranium hexachloride as a charge material in the calutron ion source are described. The method for using this material in a mass separator includes heating the uranium hexachloride to a temperature in the range of 60 to 100 d C in a vacuum and thereby forming a vapor of the material. The vaporized uranium hexachloride is then ionized in a vapor ionizing device for subsequent mass separation processing.

  12. Uptake of uranium from seawater by amidoxime-based polymeric adsorbent marine testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsouris, C.; Kim, J.; Oyola, Y.

    2013-07-01

    Amidoxime-based polymer adsorbents in the form of functionalized fibers were prepared at the Oak Ridge National Laboratory (ORNL) and screened in laboratory experiments, in terms of uranium uptake capacity, using spiked uranium solution and seawater samples. Batch laboratory experiments conducted with 5-gallon seawater tanks provided equilibrium information. Based on results from 5-gallon experiments, the best adsorbent was selected for field-testing of uranium adsorption from seawater. Flow-through column tests have been performed at different marine sites to investigate the uranium uptake rate and equilibrium capacity under diverse biogeochemistry. The maximum amount of uranium uptake from seawater tests at Sequim, WA, wasmore » 3.3 mg U/g adsorbent after eight weeks of contact of the adsorbent with seawater. This amount was three times higher than the maximum adsorption capacity achieved in this study by a leading adsorbent developed by the Japan Atomic Energy Agency (JAEA), which was 1.1 mg U/g adsorbent at equilibrium. The initial uranium uptake rate of the ORNL adsorbent was 2.6 times higher than that of the JAEA adsorbent under similar conditions. A mathematical model derived from the mass balance of uranium was employed to describe the data. (authors)« less

  13. Chronic Exposure to Uranium from Gestation: Effects on Behavior and Neurogenesis in Adulthood

    PubMed Central

    Dinocourt, Céline; Culeux, Cécile; Legrand, Marie; Elie, Christelle; Lestaevel, Philippe

    2017-01-01

    Uranium exposure leads to cerebral dysfunction involving for instance biochemical, neurochemical and neurobehavioral effects. Most studies have focused on mechanisms in uranium-exposed adult animals. However, recent data on developing animals have shown that the developing brain is also sensitive to uranium. Models of uranium exposure during brain development highlight the need to improve our understanding of the effects of uranium. In a model in which uranium exposure began from the first day of gestation, we studied the neurobehavioral consequences as well as the progression of hippocampal neurogenesis in animals from dams exposed to uranium. Our results show that 2-month-old rats exposed to uranium from gestational day 1 displayed deficits in special memory and a prominent depressive-like phenotype. Cell proliferation was not disturbed in these animals, as shown by 5-bromo-2′deoxyuridine (BrdU)/neuronal specific nuclear protein (NeuN) immunostaining in the dentate gyrus. However, in some animals, the pyramidal cell layer was dispersed in the CA3 region. From our previous results with the same model, the hypothesis of alterations of neurogenesis at prior stages of development is worth considering, but is probably not the only one. Therefore, further investigations are needed to correlate cerebral dysfunction and its underlying mechanistic pathways. PMID:28513543

  14. Chronic Exposure to Uranium from Gestation: Effects on Behavior and Neurogenesis in Adulthood.

    PubMed

    Dinocourt, Céline; Culeux, Cécile; Legrand, Marie; Elie, Christelle; Lestaevel, Philippe

    2017-05-17

    Uranium exposure leads to cerebral dysfunction involving for instance biochemical, neurochemical and neurobehavioral effects. Most studies have focused on mechanisms in uranium-exposed adult animals. However, recent data on developing animals have shown that the developing brain is also sensitive to uranium. Models of uranium exposure during brain development highlight the need to improve our understanding of the effects of uranium. In a model in which uranium exposure began from the first day of gestation, we studied the neurobehavioral consequences as well as the progression of hippocampal neurogenesis in animals from dams exposed to uranium. Our results show that 2-month-old rats exposed to uranium from gestational day 1 displayed deficits in special memory and a prominent depressive-like phenotype. Cell proliferation was not disturbed in these animals, as shown by 5-bromo-2'deoxyuridine (BrdU)/neuronal specific nuclear protein (NeuN) immunostaining in the dentate gyrus. However, in some animals, the pyramidal cell layer was dispersed in the CA3 region. From our previous results with the same model, the hypothesis of alterations of neurogenesis at prior stages of development is worth considering, but is probably not the only one. Therefore, further investigations are needed to correlate cerebral dysfunction and its underlying mechanistic pathways.

  15. LEVELING METAL COATINGS

    DOEpatents

    Gage, H.A.

    1959-02-10

    A method is described for applying metallic coatings to a cylinder of uranium. An aluminum-silicon coat is applied by a process consisting of first cleaning the article by immersion for 5 minutes in 50% nitric acid at 65 C. The article then is dipped through a flux, prepared by adding 10% sodium fluoride to 90% of a flux comprising 53% potassium chloride, 42% lithium chloride, and 5% sodium chloride at 560 for 2 minutes and then directly into a molten metal bath comprising 99% aluminun and 12% silicon at 620 C for 3 minutes. While the coating is yet molten the article is transferred to a pair of steel rollers and rolled until the coating solidifies. By varying the composition of the flux other metals such as zinc, lead or the like may be coated on uranium in a similar manner.

  16. Development of an extractive spectrophotometric method for estimation of uranium in ore leach solutions using 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) mixture as extractant and 2-(5-bromo-2-pyridylozo)-5-diethyl aminophenol (Br-PADAP) as chromophore

    NASA Astrophysics Data System (ADS)

    Biswas, Sujoy; Pathak, P. N.; Roy, S. B.

    2012-06-01

    An extractive spectrophotometric analytical method has been developed for the determination of uranium in ore leach solution. This technique is based on the selective extraction of uranium from multielement system using a synergistic mixture of 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) in cyclohexane and color development from the organic phase aliquot using 2-(5-Bromo-2-pyridylazo)-5-diethyl aminophenol (Br-PADAP) as chromogenic reagent. The absorption maximum (λmax) for UO22+-Br-PADAP complex in organic phase samples, in 64% (v/v) ethanol containing buffer solution (pH 7.8) and 1,2-cyclohexylenedinitrilotetraacetic acid (CyDTA) complexing agent, has been found to be at 576 nm (molar extinction coefficient, ɛ: 36,750 ± 240 L mol-1 cm-1). Effects of various parameters like stability of complex, ethanol volume, ore matrix, interfering ions etc. on the determination of uranium have also been evaluated. Absorbance measurements as a function of time showed that colored complex is stable up to >24 h. Presence of increased amount of ethanol in colored solution suppresses the absorption of a standard UO22+-Br-PADAP solution. Analyses of synthetic standard as well as ore leach a solution show that for 10 determination relative standard deviation (RSD) is <2%. The accuracy of the developed method has been checked by determining uranium using standard addition method and was found to be accurate with a 98-105% recovery rate. The developed method has been applied for the analysis of a number of uranium samples generated from uranium ore leach solutions and results were compared with standard methods like inductively coupled plasma emission spectrometry (ICPAES). The determined values of uranium concentrations by these methods are within ±2%. This method can be used to determine 2.5-250 μg mL-1 uranium in ore leach solutions with high accuracy and precision.

  17. Preliminary report on uranium deposits in the Miller Hill area, Carbon County, Wyoming

    USGS Publications Warehouse

    Love, J.D.

    1953-01-01

    A sequence of radioactive rocks of Miocene (?) age, the Browns Park formation, in the Miller Hill area of southern Wyoming is more than 1,000 feet thick. The formation crops out in an area of approximately 600 square miles, and consists of a basal conglomerate, tuffs, tuffaceous limy sandstones, and thin persistent radioactive algal limestones. Uranium is concentrated in both algal limestones and in tuffaceous limy sandstones. The uranium is believed to have been deposited. at least in part with the sediments, rather than to have come in at a later date. The highest uranium values were found in a widespread algal limestone bed, which contains as much as 0. 15 percent uranium. Values of 0.01 percent uranium or more were obtained from 8 samples taken from approximately 220 feet of stratigraphic section in the Browns Park formation. This is the first reported occurrence of limestone source rock from Wyoming that has been found to contain a commercial grade of uranium. The economic possibilities of the area have not been determined adequately and no estimates of tonnage are warranted at the present time. An airborne radiometric survey was made by the Geophysics Branch of the Geological Survey, of the west half of the area, recommended by the writer for investigation. Ground check of all anomalies reported at that time showed that they were in localities where the background radiation was much higher than average. Additional localities with high background radiation were found on the ground in the area east of that which was flown.

  18. The Nopal 1 Uranium Deposit: an Overview

    NASA Astrophysics Data System (ADS)

    Calas, G.; Allard, T.; Galoisy, L.

    2007-05-01

    The Nopal 1 natural analogue is located in the Pena Blanca uranium district, about 50 kms north of Chihuahua City, Mexico. The deposit is hosted in tertiary ignimbritic ash-flow tuffs, dated at 44 Ma (Nopal and Colorados formations), and overlying the Pozos conglomerate formation and a sequence of Cretaceous carbonate rocks. The deposit is exposed at the ground surface and consists of a near vertical zone extending over about 100 m with a diameter of 40 m. An interesting characteristic is that the primary mineralization has been exposed above the water table, as a result of the uplift of the Sierra Pena Blanca, and subsequently oxidized with a remobilization of hexavalent uranium. The primary mineralization has been explained by various genetic models. It is associated to an extensive hydrothermal alteration of the volcanic tuffs, locally associated to pyrite and preserved by an intense silicification. Several kaolinite parageneses occur in fissure fillings and feldspar pseudomorphs, within the mineralized breccia pipe and the barren surrounding rhyolitic tuffs. Smectites are mainly developed in the underlying weakly welded tuffs. Several radiation-induced defect centers have been found in these kaolinites providing a unique picture of the dynamics of uranium mobilization (see Allard et al., this session). Another evidence of this mobilization is given by the spectroscopy of uranium-bearing opals, which show characteristic fluorescence spectra of uranyl groups sorbed at the surface of silica. By comparison with the other uranium deposits of the Sierra Pena Blanca and the nearby Sierra de Gomez, the Nopal 1 deposit is original, as it is one of the few deposits hving retained a reduced uranium mineralization.

  19. Uranium-Series Ages of Marine Terrace Corals from the Pacific Coast of North America and Implications for Last-Interglacial Sea Level History

    USGS Publications Warehouse

    Muhs, D.R.; Kennedy, G.L.; Rockwell, T.K.

    1994-01-01

    Few of the marine terraces along the Pacific coast of North America have been dated using uranium-series techniques. Ten terrace sequences from southern Oregon to southern Baja California Sur have yielded fossil corals in quantities suitable for U-series dating by alpha spectrometry. U-series-dated terraces representing the ???80,000 yr sea-level high stand are identified in five areas (Bandon, Oregon; Point Arena, San Nicolas Island, and Point Loma, California; and Punta Banda, Baja California); terraces representing the ???125,000 yr sea-level high stand are identified in eight areas (Cayucos, San Luis Obispo Bay, San Nicolas Island, San Clemente Island, and Point Loma, California; Punta Bands and Isla Guadalupe, Baja California; and Cabo Pulmo, Baja California Sur). On San Nicolas Island, Point Loma, and Punta Bands, both the ???80,000 and the ???125,000 yr terraces are dated. Terraces that may represent the ???105,000 sea-level high stand are rarely preserved and none has yielded corals for U-series dating. Similarity of coral ages from midlatitude, erosional marine terraces with coral ages from emergent, constructional reefs on tropical coastlines suggests a common forcing mechanism, namely glacioeustatically controlled fluctuations in sea level superimposed on steady tectonic uplift. The low marine terrace dated at ???125,000 yr on Isla Guadalupe, Baja California, presumed to be tectonically stable, supports evidence from other localities for a +6-m sea level at that time. Data from the Pacific Coast and a compilation of data from other coasts indicate that sea levels at ???80,000 and ???105,000 yr may have been closer to present sea level (within a few meters) than previous studies have suggested.

  20. PRODUCTION OF URANIUM TETRAFLUORIDE

    DOEpatents

    Shaw, W.E.; Spenceley, R.M.; Teetzel, F.M.

    1959-08-01

    A method is presented for producing uranium tetrafluoride from the gaseous hexafluoride by feeding the hexafluoride into a high temperature zone obtained by the recombination of molecularly dissociated hydrogen. The molal ratio of hydrogen to uranium hexnfluoride is preferably about 3 to 1. Uranium tetrafluoride is obtained in a finely divided, anhydrous state.

  1. NICKEL COATED URANIUM ARTICLE

    DOEpatents

    Gray, A.G.

    1958-10-01

    Nickel coatings on uranium and various methods of obtaining such coatings are described. Specifically disclosed are such nickel or nickel alloy layers as barriers between uranium and aluminum- silicon, chromium, or copper coatings.

  2. METHOD FOR PURIFYING URANIUM

    DOEpatents

    Knighton, J.B.; Feder, H.M.

    1960-04-26

    A process is given for purifying a uranium-base nuclear material. The nuclear material is dissolved in zinc or a zinc-magnesium alloy and the concentration of magnesium is increased until uranium precipitates.

  3. Determination of impurities in uranium matrices by time-of-flight ICP-MS using matrix-matched method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buerger, Stefan; Riciputi, Lee R; Bostick, Debra A

    2007-01-01

    The analysis of impurities in uranium matrices is performed in a variety of fields, e.g. for quality control in the production stream converting uranium ores to fuels, as element signatures in nuclear forensics and safeguards, and for non-proliferation control. We have investigated the capabilities of time-of-flight ICP-MS for the analysis of impurities in uranium matrices using a matrix-matched method. The method was applied to the New Brunswick Laboratory CRM 124(1-7) series. For the seven certified reference materials, an overall precision and accuracy of approximately 5% and 14%, respectively, were obtained for 18 analyzed elements.

  4. Uranium mobility across annual growth rings in three deciduous tree species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHugh, Kelly C.; Widom, Elisabeth; Spitz, Henry B.

    Black walnut (Juglans nigra), slippery elm (Ulmus rubra), and white ash (Fraxinus americana) trees were evaluated as potential archives of past uranium (U) contamination. Like other metals, U mobility in annual growth rings of trees is potentially dependent on the tree species. Uranium concentrations and isotopic compositions (masses 234, 235, 236, and 238) were analyzed by thermal ionization mass spectrometry to test the efficacy of using tree rings to retroactively monitor U pollution from the FFMPC, a U purification facility operating from 1951 to 1989. This study found non-natural U (depleted U and detectable 236U) in growth rings of allmore » three tree species that pre-dated the start of operations at FFMPC and compositional trends that did not correspond with known contamination events. Therefore, the annual growth rings of these tree species cannot be used to reliably monitor the chronology of U contamination.« less

  5. Uranium mobility across annual growth rings in three deciduous tree species.

    PubMed

    McHugh, Kelly C; Widom, Elisabeth; Spitz, Henry B; Wiles, Gregory C; Glover, Sam E

    2018-02-01

    Black walnut (Juglans nigra), slippery elm (Ulmus rubra), and white ash (Fraxinus americana) trees were evaluated as potential archives of past uranium (U) contamination. Like other metals, U mobility in annual growth rings of trees is dependent on the tree species. Uranium concentrations and isotopic compositions (masses 234, 235, 236, and 238) were analyzed by thermal ionization mass spectrometry to test the efficacy of using tree rings to retroactively monitor U pollution from the FFMPC, a U purification facility operating from 1951 to 1989. This study found non-natural U (depleted U and detectable 236 U) in growth rings of all three tree species that pre-dated the start of operations at FFMPC and compositional trends that did not correspond with known contamination events. Therefore, the annual growth rings of these tree species cannot be used to reliably monitor the chronology of U contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Extraction of Uranium from Seawater: Design and Testing of a Symbiotic System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slocum, Alex

    The U.S. Department of Energy in October 2014 awarded the Massachusetts Institute of Technology (MIT) a Nuclear Energy University Program grant (DE-NE0008268) to investigate the design and testing of a symbiotic system to harvest uranium from seawater. As defined in the proposal, the goals for the project are: 1. Address the design of machines for seawater uranium mining. 2. Develop design rules for a uranium harvesting system that would be integrated into an offshore wind power tower. 3. Fabricate a 1/50th size scale prototype for bench and pool-testing to verify initial analysis and theory. 4. Design, build, and test amore » second 1/10th size scale prototype in the ocean for more comprehensive testing and validation. This report describes work done as part of DE-NE0008268 from 10/01/2014 to 11/30/2017 entitled, “Extraction of Uranium from Seawater: Design and Testing of a Symbiotic System.” This effort is part of the Seawater Uranium Recovery Program. This report details the publications and presentations to date on the project, an introduction to the project’s goals and background research into previous work done to achieve these goals thus far. From there, the report describes an algorithm developed during the project used to optimize the adsorption of uranium by changing mechanical parameters such as immersion time and adsorbent reuses is described. Next, a design tool developed as part of the project to determine the global feasibility of symbiotic uranium harvesting systems. Additionally, the report details work done on shell enclosures for uranium adsorption. Moving on, the results from the design, building, and testing of a 1/50th physical scale prototype of a highly feasible symbiotic uranium harvester is described. Then, the report describes the results from flume experiment used to determine the affect of enclosure shells on the uptake of uranium by the adsorbent they enclose. From there the report details the design of a Symbiotic Machine for Ocean uRanium Extraction (SMORE). Next, the results of the 1/10th scale physical scale prototype of a highly feasible symbiotic uranium harvester are presented. The report then details the design and results of an experiment to examine the hydrodynamic effects of a uranium harvester on the offshore wind turbine it is attached to using a 1/150th Froude scale tow tank test. Finally, the report details the results of an initial cost-analysis for the production of uranium from seawater from such a symbiotic device.« less

  7. URANIUM RECOVERY PROCESS

    DOEpatents

    Bailes, R.H.; Long, R.S.; Olson, R.S.; Kerlinger, H.O.

    1959-02-10

    A method is described for recovering uranium values from uranium bearing phosphate solutions such as are encountered in the manufacture of phosphate fertilizers. The solution is first treated with a reducing agent to obtain all the uranium in the tetravalent state. Following this reduction, the solution is treated to co-precipitate the rcduced uranium as a fluoride, together with other insoluble fluorides, thereby accomplishing a substantially complete recovery of even trace amounts of uranium from the phosphate solution. This precipitate usually takes the form of a complex fluoride precipitate, and after appropriate pre-treatment, the uranium fluorides are leached from this precipitate and rccovered from the leach solution.

  8. METHOD OF RECOVERING URANIUM COMPOUNDS

    DOEpatents

    Poirier, R.H.

    1957-10-29

    S>The recovery of uranium compounds which have been adsorbed on anion exchange resins is discussed. The uranium and thorium-containing residues from monazite processed by alkali hydroxide are separated from solution, and leached with an alkali metal carbonate solution, whereby the uranium and thorium hydrorides are dissolved. The carbonate solution is then passed over an anion exchange resin causing the uranium to be adsorbed while the thorium remains in solution. The uranium may be recovered by contacting the uranium-holding resin with an aqueous ammonium carbonate solution whereby the uranium values are eluted from the resin and then heating the eluate whereby carbon dioxide and ammonia are given off, the pH value of the solution is lowered, and the uranium is precipitated.

  9. NUCLEAR REACTOR FUEL ELEMENTS AND METHOD OF PREPARATION

    DOEpatents

    Kingston, W.E.; Kopelman, B.; Hausner, H.H.

    1963-07-01

    A fuel element consisting of uranium nitride and uranium carbide in the form of discrete particles in a solid coherent matrix of a metal such as steel, beryllium, uranium, or zirconium and clad with a metal such as steel, aluminum, zirconium, or beryllium is described. The element is made by mixing powdered uranium nitride and uranium carbide with powdered matrix metal, then compacting and sintering the mixture. (AEC)

  10. PROCESS OF PURIFYING URANIUM

    DOEpatents

    Seaborg, G.T.; Orlemann, E.F.; Jensen, L.H.

    1958-12-23

    A method of obtaining substantially pure uranium from a uranium composition contaminated with light element impurities such as sodium, magnesium, beryllium, and the like is described. An acidic aqueous solution containing tetravalent uranium is treated with a soluble molybdate to form insoluble uranous molybdate which is removed. This material after washing is dissolved in concentrated nitric acid to obtaln a uranyl nitrate solution from which highly purified uranium is obtained by extraction with ether.

  11. Concerted Uranium Research in Europe (CURE): toward a collaborative project integrating dosimetry, epidemiology and radiobiology to study the effects of occupational uranium exposure.

    PubMed

    Laurent, Olivier; Gomolka, Maria; Haylock, Richard; Blanchardon, Eric; Giussani, Augusto; Atkinson, Will; Baatout, Sarah; Bingham, Derek; Cardis, Elisabeth; Hall, Janet; Tomasek, Ladislav; Ancelet, Sophie; Badie, Christophe; Bethel, Gary; Bertho, Jean-Marc; Bouet, Ségolène; Bull, Richard; Challeton-de Vathaire, Cécile; Cockerill, Rupert; Davesne, Estelle; Ebrahimian, Teni; Engels, Hilde; Gillies, Michael; Grellier, James; Grison, Stephane; Gueguen, Yann; Hornhardt, Sabine; Ibanez, Chrystelle; Kabacik, Sylwia; Kotik, Lukas; Kreuzer, Michaela; Lebacq, Anne Laure; Marsh, James; Nosske, Dietmar; O'Hagan, Jackie; Pernot, Eileen; Puncher, Matthew; Rage, Estelle; Riddell, Tony; Roy, Laurence; Samson, Eric; Souidi, Maamar; Turner, Michelle C; Zhivin, Sergey; Laurier, Dominique

    2016-06-01

    The potential health impacts of chronic exposures to uranium, as they occur in occupational settings, are not well characterized. Most epidemiological studies have been limited by small sample sizes, and a lack of harmonization of methods used to quantify radiation doses resulting from uranium exposure. Experimental studies have shown that uranium has biological effects, but their implications for human health are not clear. New studies that would combine the strengths of large, well-designed epidemiological datasets with those of state-of-the-art biological methods would help improve the characterization of the biological and health effects of occupational uranium exposure. The aim of the European Commission concerted action CURE (Concerted Uranium Research in Europe) was to develop protocols for such a future collaborative research project, in which dosimetry, epidemiology and biology would be integrated to better characterize the effects of occupational uranium exposure. These protocols were developed from existing European cohorts of workers exposed to uranium together with expertise in epidemiology, biology and dosimetry of CURE partner institutions. The preparatory work of CURE should allow a large scale collaborative project to be launched, in order to better characterize the effects of uranium exposure and more generally of alpha particles and low doses of ionizing radiation.

  12. Visualizing different uranium oxidation states during the surface alteration of uraninite and uranium tetrachloride.

    PubMed

    Grossmann, Kay; Arnold, Thuro; Steudtner, Robin; Weiss, Stefan; Bernhard, Gert

    2009-08-01

    Low-temperature alteration reactions on uranium phases may lead to the mobilization of uranium and thereby poses a potential threat to humans living close to uranium-contaminated sites. In this study, the surface alteration of uraninite (UO(2)) and uranium tetrachloride (UCl(4)) in air atmosphere was studied by confocal laser scanning microscopy (CLSM) and laser-induced fluorescence spectroscopy using an excitation wavelength of 408 nm. It was found that within minutes the oxidation state on the surface of the uraninite and the uranium tetrachloride changed. During the surface alteration process U(IV) atoms on the uraninite and uranium tetrachloride surface became stepwise oxidized by a one-electron step at first to U(V) and then further to U(VI). These observed changes in the oxidation states of the uraninite surface were microscopically visualized and spectroscopically identified on the basis of their fluorescence emission signal. A fluorescence signal in the wavelength range of 415-475 nm was indicative for metastable uranium(V), and a fluorescence signal in the range of 480-560 nm was identified as uranium(VI). In addition, the oxidation process of tetravalent uranium in aqueous solution at pH 0.3 was visualized by CLSM and U(V) was fluorescence spectroscopically identified. The combination of microscopy and fluorescence spectroscopy provided a very convincing visualization of the brief presence of U(V) as a metastable reaction intermediate and of the simultaneous coexistence of the three states U(IV), U(V), and U(VI). These results have a significant importance for fundamental uranium redox chemistry and should contribute to a better understanding of the geochemical behavior of uranium in nature.

  13. Recovery of tritium from tritiated molecules

    DOEpatents

    Swansiger, William A.

    1987-01-01

    A method of recovering tritium from tritiated compounds comprises the steps of heating tritiated water and other co-injected tritiated compounds in a preheater to temperatures of about 600.degree. C. The mixture is injected into a reactor charged with a mixture of uranium and uranium dioxide. The injected mixture undergoes highly exothermic reactions with the uranium causing reaction temperatures to occur in excess of the melting point of uranium, and complete decomposition of the tritiated compounds to remove tritium therefrom. The uranium dioxide functions as an insulating material and heat sink preventing the reactor side walls from attaining reaction temperatures to thereby minimize tritium permeation rates. The uranium dioxide also functions as a diluent to allow for volumetric expansion of the uranium as it is converted to uranium dioxide. The reactor vessel is preferably stainless steel of sufficient mass so as to function as a heat sink preventing the reactor side walls from approaching high temperatures. A disposable copper liner extends between the reaction chamber and stainless steel outer vessel to prevent alloying of the uranium with the outer vessel. Apparatus used to carry out the method of the invention is also disclosed.

  14. ESR dating of tooth enamel: comparison with {230Th }/{234U } speleothem dates at La Chaise-de-Vouthon (Charente), France

    NASA Astrophysics Data System (ADS)

    Blackwell, Bonnie; Porat, N.; Schwarcz, H. P.; Debénath, A.

    One way to assess a new dating method's reliability is by comparing its results with those from well established, independent techniques. A controlled test of the electron spin resonance (ESR) dating method as it is currently being applied to teeth was attempted for the time range 100-250 ka, beyond that of 14C, at the archaeological site of La Chaise-de-Vouthon (Charente, France). Although absent in modern enamel, a single ESR signal with g = 2.0018 in fossil tooth enamel hydroxyapatite increases in amplitude with increasing irradiation doses. ESR ages are derived from the ratio of the AD, the radiation dose needed to produce the observed ESR signal, relative to the natural, environmental dose rate (ED) experienced by the tooth after deposition. Since the age depends on the uranium (U) uptake history assumed, three ages are calculated assuming: (1) early U uptake (EU); (2) continuous (linear) uptake (LU); (3) recent uptake (RU). Generally, the LU age agrees best with known ages determined by other methods, although the RU model is better for some teeth. ESR dating assumes that the fossil has not suffered recrystallization or significant diagenetic alteration. In the preliminary test, three teeth were dated. In Bourgeois-Delaunay, a bovid molar associated with Palaeolithic artefacts was collected from layers dated at 101 ± 12 to 114 ± 7 ka by {230Th }/{234U } dating of the over- and underlying stalagmitic floors. From Suard, two Equus teeth were collected from beneath a stalagmitic floor dating 112 ± 12 ka. ESR dating teeth significantly underestimated the true age for the teeth: the mean ESR ages range from 37 to 94 ka with standard errors of 2-6 ka, and good replicability. Although more teeth at La Chaise need to be tested to ascertain that the underestimation does not result from random variation commonly seen among teeth within one unit, the consistent underestimation suggests a fault in one of the assumptions underlying the dating method. The most obvious source of error lies in the difficulty in modelling the external γ dose. Only U leaching, not incorrectly modelled U uptake, would cause the underestimation. Diagenetic alteration may also cause anomalous fading, thermal instability, variation in k, or ESR signal suppression. More study into the effects of diagenesis alteration on enamel ESR signals is needed, as is a reevaluation of the mean signal life and α efficiency for several more enamel samples.

  15. Diffusive gradient in thin FILMS (DGT) compared with soil solution and labile uranium fraction for predicting uranium bioavailability to ryegrass.

    PubMed

    Duquène, L; Vandenhove, H; Tack, F; Van Hees, M; Wannijn, J

    2010-02-01

    The usefulness of uranium concentration in soil solution or recovered by selective extraction as unequivocal bioavailability indices for uranium uptake by plants is still unclear. The aim of the present study was to test if the uranium concentration measured by the diffusive gradient in thin films (DGT) technique is a relevant substitute for plant uranium availability in comparison to uranium concentration in the soil solution or uranium recovered by ammonium acetate. Ryegrass (Lolium perenne L. var. Melvina) is grown in greenhouse on a range of uranium spiked soils. The DGT-recovered uranium concentration (C(DGT)) was correlated with uranium concentration in the soil solution or with uranium recovered by ammonium acetate extraction. Plant uptake was better predicted by the summed soil solution concentrations of UO(2)(2+), uranyl carbonate complexes and UO(2)PO(4)(-). The DGT technique did not provide significant advantages over conventional methods to predict uranium uptake by plants. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Dating the Naisiusiu Beds, Olduvai Gorge, by electron spin resonance

    NASA Astrophysics Data System (ADS)

    Skinner, A. R.; Hay, R. L.; Masao, F.; Blackwell, B. A. B.

    2003-05-01

    The lower beds at Olduvai Gorge are well known for containing early hominid fossils and Oldowan stone tools, and their ages have been established by 40Ar/ 39Ar dating and paleomagnetic stratigraphy. Ages are generally less certain for the upper deposits at Olduvai Gorge because of the scarcity of datable tuffs. The youngest archaeologically significant site at Olduvai is microlithic LSA, which lies in the type section of the Naisiusiu Beds. The age for the site is controversial, with 14C dates of 17,000-17,550 (Hay, R.L., 1976 Geology of Olduvai Gorge, University of California Press, Berkeley) and >42,000 BP (Manega, P.C., 1993. Geochronology, geochemistry, and isotopic study of the Plio-Pleistocene Hominid sites and the Ngorongoro Volcanic Highland in Northern Tanzania. Unpublished Ph.D. Thesis, University of Colorado, Boulder, CO). The tuff bed in the zone with artifacts does not contain materials datable by 40Ar/ 39Ar, and some other dating method was needed. In the summer of 2001, five equid teeth were collected from the type Naisiusiu site. Another tooth had previously been collected. ESR ages have been determined for three teeth from the archaeological level and their ages cluster around 62±5 ka, assuming linear uranium uptake. Another tooth from a level without artifacts and believed to be significantly younger dated to 39±5 ka, again assuming LU. These dates are considerably older than previous estimates and suggest that the East African MSA/LSA transition occurred very early.

  17. Uranium levels in the diet of São Paulo City residents.

    PubMed

    Garcia, F; Barioni, A; Arruda-Neto, J D T; Deppman, A; Milian, F; Mesa, J; Rodriguez, O

    2006-07-01

    Natural levels of uranium in the diet of São Paulo City residents were studied, and radionuclide concentrations were measured by the fission track method on samples of typical adult food items. This information was used to evaluate the daily intake of uranium in individuals living in São Paulo City which is, according to our findings, around 0.97 microg U/day. Using the ICRP Uranium-model, we estimated the uranium accumulation and committed doses in some tissues and organs, as function of time. We compared the output of the ICRP uranium biokinetic model, tailored for the conditions prevailing in São Paulo, with experimental data from other localities. Such comparison was possible by means of a simple method we developed, which allows normalization among experimental results from different regions where distinct values of chronic daily intake are observed.

  18. Comparison of abundances of chemical elements in mineralized and unmineralized sandstone of the Brushy Basin Member of the Morrison Formation, Smith Lake District, Grants uranium region, New Mexico

    USGS Publications Warehouse

    Pierson, C.T.; Spirakis, C.S.; Robertson, J.F.

    1983-01-01

    Statistical treatment of analytical data from the Mariano Lake and Ruby uranium deposits in the Smith Lake district, New Mexico, indicates that organic carbon, arsenic, barium, calcium, cobalt, copper, gallium, iron, lead, manganese, molybdenum, nickel, selenium, strontium, sulfur, vanadium, yttrium, and zirconium are concentrated along with uranium in primary ore. Comparison of the Smith Lake data with information from other primary deposits in the Grants uranium region and elsewhere in the Morrison Formation of the Colorado Plateau suggests that these elements, with the possible exceptions of zirconium and gallium and with the probable addition of aluminum and magnesium, are typically associated with primary, tabular uranium deposits. Chemical differences between the Ruby and Mariano Lake deposits are consistent with the interpretation that the Ruby deposit has been more affected by post-mineralization oxidizing solutions than has the Mariano Lake deposit.

  19. 77 FR 14837 - Bioassay at Uranium Mills

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-13

    ..., Revision 1 was issued. Comments related to the operation of in-situ recovery mills and associated... received on or before this date. Although a time limit is given, comments and suggestions in connection with items for inclusion in guides currently being developed or improvements in all published guides...

  20. Zirconium determination by cooling curve analysis during the pyroprocessing of used nuclear fuel

    NASA Astrophysics Data System (ADS)

    Westphal, B. R.; Price, J. C.; Bateman, K. J.; Marsden, K. C.

    2015-02-01

    An alternative method to sampling and chemical analyses has been developed to monitor the concentration of zirconium in real-time during the casting of uranium products from the pyroprocessing of used nuclear fuel. The method utilizes the solidification characteristics of the uranium products to determine zirconium levels based on standard cooling curve analyses and established binary phase diagram data. Numerous uranium products have been analyzed for their zirconium content and compared against measured zirconium data. From this data, the following equation was derived for the zirconium content of uranium products:

  1. Method of Making Uranium Dioxide Bodies

    DOEpatents

    Wilhelm, H. A.; McClusky, J. K.

    1973-09-25

    Sintered uranium dioxide bodies having controlled density are produced from U.sub.3 O.sub.8 and carbon by varying the mole ratio of carbon to U.sub.3 O.sub.8 in the mixture, which is compressed and sintered in a neutral or slightly oxidizing atmosphere to form dense slightly hyperstoichiometric uranium dioxide bodies. If the bodies are to be used as nuclear reactor fuel, they are subsequently heated in a hydrogen atmosphere to achieve stoichiometry. This method can also be used to produce fuel elements of uranium dioxide -- plutonium dioxide having controlled density.

  2. METHOD AND APPARATUS FOR MAKING URANIUM-HYDRIDE COMPACTS

    DOEpatents

    Wellborn, W.; Armstrong, J.R.

    1959-03-10

    A method and apparatus are presented for making compacts of pyrophoric hydrides in a continuous operation out of contact with air. It is particularly useful for the preparation of a canned compact of uranium hydride possessing high density and purity. The metallic uranium is enclosed in a container, positioned in a die body evacuated and nvert the uranium to the hydride is admitted and the container sealed. Heat is applied to bring about the formation of the hydride, following which compression is used to form the compact sealed in a container ready for use.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuzmina, L.A.

    A method has been developed for determining uranium, thorium, and ionium (Th/sup 230/) in sea silt from a single sample. The completeness of isolation and radiochemical purity of thorium isotopes have been tested by means of tracers. The method has been proved on samples of sea silt as well as of rocks, ores, and minerals. It is applicable at thorium content from 5 x 10/sup -5/ to x x 10/sup - 4/% when uranium content is x x 10/sup -4/ % and at uranium content up to 70% when ionium contert is x x 10/sup -4/% (uranium equivalent). (tr-auth)

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youker, Amanda J.; Krebs, John F.; Quigley, Kevin J.

    With funding from the National Nuclear Security Administrations Material Management and Minimization Office, Argonne National Laboratory (Argonne) is providing technical assistance to help accelerate the U.S. production of Mo-99 using a non-highly enriched uranium (non-HEU) source. A potential Mo-99 production pathway is by accelerator-initiated fissioning in a subcritical uranyl sulfate solution containing low enriched uranium (LEU). As part of the Argonne development effort, we are undertaking the AMORE (Argonne Molybdenum Research Experiment) project, which is essentially a pilot facility for all phases of Mo-99 production, recovery, and purification. Production of Mo-99 and other fission products in the subcritical target solutionmore » is initiated by putting an electron beam on a depleted uranium (DU) target; the fast neutrons produced in the DU target are thermalized and lead to fissioning of U-235. At the end of irradiation, Mo is recovered from the target solution and separated from uranium and most of the fission products by using a titania column. The Mo is stripped from the column with an alkaline solution. After acidification of the Mo product solution from the recovery column, the Mo is concentrated (and further purified) in a second titania column. The strip solution from the concentration column is then purified with the LEU Modified Cintichem process. A full description of the process can be found elsewhere [1–3]. The initial commissioning steps for the AMORE project include performing a Mo-99 spike test with pH 1 sulfuric acid in the target vessel without a beam on the target to demonstrate the initial Mo separation-and-recovery process, followed by the concentration column process. All glovebox operations were tested with cold solutions prior to performing the Mo-99 spike tests. Two Mo-99 spike tests with pH 1 sulfuric acid have been performed to date. Figure 1 shows the flow diagram for the remotely operated Mo-recovery system for the AMORE project. There are two separate pumps and flow paths for the acid and base operations. The system contains three sample ladders with eight sample loops per ladder for target mixing; column loading, including acid and water washes; and column stripping, including the final water wash.« less

  5. Teneur en uranium et datation U-Th des tissus osseux et dentaires fossiles de la grotte du Lazaret

    NASA Astrophysics Data System (ADS)

    Michel, Véronique; Falguères, Christophe; Yokoyama, Yuji

    1997-09-01

    Fossil bone and dental tissues from Lazaret cave and modern ones are here the subject of a comparative microscopical study. Porous tissues such as dentine and bone have retained their Haversian and Tomes canals respectively. However, cracked areas with calcite were detected, indicating a water percolation within porous tissues and an alteration of tissue in places. In addition, compact fossil enamel is particularly well preserved. These results are essential for U-Th and ESR dating application. Uranium contents, U-Th ages of two fossil mandibular tissues, two tibias and of six burnt fossil bones are presented and discussed.

  6. Rapidly-formed ferromanganese deposit from the eastern Pacific Hess Deep

    USGS Publications Warehouse

    Burnett, W.C.; Piper, D.Z.

    1977-01-01

    A thick ferromanganese deposit encrusting fresh basaltic glass has been dredged from the Hess Deep in the eastern Pacific. Contiguous layers within the Fe-Mn crust have been analysed for uranium-series isotopes and metal contents. The rate of accumulation of the deposit, based on the decline of uranium-unsupported 230Th, is calculated to be approximately 50 mm per 106 yr. Based on hydration-rind dating of the underlying glass and an 'exposure age' calculation, this rate is concluded to be too slow, and an accretion rate on the order of 1 mm per 103 yr is more consistent with our data. ?? 1977 Nature Publishing Group.

  7. Synchronism of the Siberian Traps and the Permian-Triassic boundary

    USGS Publications Warehouse

    Campbell, I.H.; Czamanske, G.K.; Fedorenko, V.A.; Hill, R.I.; Stepanov, V.

    1992-01-01

    Uranium-lead ages from an ion probe were taken for zircons from the ore-bearing Noril'sk I intrusion that is comagmatic with, and intrusive to, the Siberian Traps. These values match, within an experimental error of ??4 million years, the dates for zircons extracted from a tuff at the Permian-Triassic (P-Tr) boundary. The results are consistent with the hypothesis that the P-Tr extinction was caused by the Siberian basaltic flood volcanism. It is likely that the eruption of these magmas was accompanied by the injection of large amounts of sulfur dioxide into the upper atmosphere, which may have led to global cooling and to expansion of the polar ice cap. The P-Tr extinction event may have been caused by a combination of acid rain and global cooling as well as rapid and extreme changes in sea level resulting from expansion of the polar ice cap.

  8. Monitoring Physical and Biogeochemical Dynamics of Uranium Bioremediation at the Intermediate Scale

    NASA Astrophysics Data System (ADS)

    Tarrell, A. N.; Figueroa, L. A.; Rodriguez, D.; Haas, A.; Revil, A.

    2011-12-01

    Subsurface uranium above desired levels for aquifer use categories exists naturally and from historic mining and milling practices. In situ bioimmobilization offers a cost effective alternative to conventional pump and treat methods by stimulating growth of microorganisms that lead to the reduction and precipitation of uranium. Vital to the long-term success of in situ bioimmobilization is the ability to successfully predict and demonstrate treatment effectiveness to assure that regulatory goals are met. However, successfully monitoring the progress over time is difficult and requires long-term stewardship to ensure effective treatment due to complex physical and biogeochemical heterogeneity. In order to better understand these complexities and the resultant effect on uranium immobilization, innovative systematic monitoring approaches with multiple performance indicators must be investigated. A key issue for uranium bioremediation is the long term stability of solid-phase reduction products. It has been shown that a combination of data from electrode-based monitoring, self-potential monitoring, oxidation reduction potential (ORP), and water level sensors provides insight for identifying and localizing bioremediation activity and can provide better predictions of deleterious biogeochemical change such as pore clogging. In order to test the proof-of-concept of these sensing techniques and to deconvolve redox activity from other electric potential changing events, an intermediate scale 3D tank experiment has been developed. Well-characterized materials will be packed into the tank and an artificial groundwater will flow across the tank through a constant-head boundary. The experiment will utilize these sensing methods to image the electrical current produced by bacteria as well as indications of when and where electrical activity is occurring, such as with the reduction of radionuclides. This work will expand upon current knowledge by exploring the behavior of uranium bioremediation at an intermediate scale, as well as examining the effects from introducing a flow field in a laboratory setting. Data collected from this experiment will help further characterize which factors are contributing to current increases. Additional information concerning the effect of geochemical changes in porosity may also be observed. The results of this work will allow the creation of a new data set collected from a more comprehensive laboratory monitoring network and will allow stakeholders to develop effective decision-making tools on the long-term remediation management at uranium contaminated sites. The data will also aid in the long-term prediction abilities of a reactive transport models. As in situ bioremediation offers a low cost alternative to ex situ treatment methods, the results of this work will help to both reduce cost at existing sites and enable treatment of sites that otherwise have no clear solution.

  9. Elution of Uranium and Transition Metals from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Horng-Bin; Kuo, Li-Jung; Wai, Chien M.

    2015-11-30

    High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na 2CO 3-H 2O 2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposure inmore » real seawater. The Na 2CO 3-H 2O 2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater.« less

  10. Metabolomics identifies a biological response to chronic low-dose natural uranium contamination in urine samples.

    PubMed

    Grison, Stéphane; Favé, Gaëlle; Maillot, Matthieu; Manens, Line; Delissen, Olivia; Blanchardon, Eric; Banzet, Nathalie; Defoort, Catherine; Bott, Romain; Dublineau, Isabelle; Aigueperse, Jocelyne; Gourmelon, Patrick; Martin, Jean-Charles; Souidi, Maâmar

    2013-01-01

    Because uranium is a natural element present in the earth's crust, the population may be chronically exposed to low doses of it through drinking water. Additionally, the military and civil uses of uranium can also lead to environmental dispersion that can result in high or low doses of acute or chronic exposure. Recent experimental data suggest this might lead to relatively innocuous biological reactions. The aim of this study was to assess the biological changes in rats caused by ingestion of natural uranium in drinking water with a mean daily intake of 2.7 mg/kg for 9 months and to identify potential biomarkers related to such a contamination. Subsequently, we observed no pathology and standard clinical tests were unable to distinguish between treated and untreated animals. Conversely, LC-MS metabolomics identified urine as an appropriate biofluid for discriminating the experimental groups. Of the 1,376 features detected in urine, the most discriminant were metabolites involved in tryptophan, nicotinate, and nicotinamide metabolic pathways. In particular, N -methylnicotinamide, which was found at a level seven times higher in untreated than in contaminated rats, had the greatest discriminating power. These novel results establish a proof of principle for using metabolomics to address chronic low-dose uranium contamination. They open interesting perspectives for understanding the underlying biological mechanisms and designing a diagnostic test of exposure.

  11. Preliminary investigation of the elemental variation and diagenesis of a tabular uranium deposit, La Sal Mine, San Juan County, Utah

    USGS Publications Warehouse

    Brooks, Robert A.; Campbell, John A.

    1976-01-01

    Ore in the La Sal mine, San Juan County, Utah, occurs as a typical tabular-type uranium deposit of the-Colorado Plateau. Uranium-vanadium occurs in the Salt Wash Member of the Jurassic Morrison Formation. Chemical and petrographic analyses were used to determine elemental variation and diagenetic aspects across the orebody. Vanadium is concentrated in the dark clay matrix, which constitutes visible ore. Uranium content is greater above the vanadium zone. Calcium, carbonate carbon, and lead show greater than fifty-fold increase across the ore zone, whereas copper and organic carbon show only a several-fold increase. Large molybdenum concentrations are present in and above the tabular layer, and large selenium concentrations occur below the uranium zone within the richest vanadium zone. Iron is enriched in the vanadium horizon. Chromium is depleted from above the ore and strongly enriched below. Elements that vary directly with the vanadium content include magnesium, iron, selenium, zirconium, strontium, titanium, lead, boron, yttrium, and scandium. The diagenetic sequence is as follows: (1) formation of secondary quartz overgrowths as cement; (2) infilling and lining of remaining pores with amber opaline material; (3) formation of vanadium-rich clay matrix, which has replaced overgrowths as well as quartz grains; (4) replacement of overgrowths and detrital grains by calcite; (5) infilling of pores with barite and the introduction of pyrite and marcasite.

  12. Method of preparing uranium nitride or uranium carbonitride bodies

    DOEpatents

    Wilhelm, Harley A.; McClusky, James K.

    1976-04-27

    Sintered uranium nitride or uranium carbonitride bodies having a controlled final carbon-to-uranium ratio are prepared, in an essentially continuous process, from U.sub.3 O.sub.8 and carbon by varying the weight ratio of carbon to U.sub.3 O.sub.8 in the feed mixture, which is compressed into a green body and sintered in a continuous heating process under various controlled atmospheric conditions to prepare the sintered bodies.

  13. METHOD OF FABRICATING A URANIUM-ZIRCONIUM HYDRIDE REACTOR CORE

    DOEpatents

    Weeks, I.F.; Goeddel, W.V.

    1960-03-22

    A method is described of evenly dispersing uranlum metal in a zirconium hydride moderator to produce a fuel element for nuclear reactors. According to the invention enriched uranium hydride and zirconium hydride powders of 200 mesh particle size are thoroughly admixed to form a mixture containing 0.1 to 3% by weight of U/sup 235/ hydride. The mixed powders are placed in a die and pressed at 100 tons per square inch at room temperature. The resultant compacts are heated in a vacuum to 300 deg C, whereby the uranium hydride deoomposes into uranium metal and hydrogen gas. The escaping hydrogen gas forms a porous matrix of zirconium hydride, with uramum metal evenly dispersed therethrough. The advantage of the invention is that the porosity and uranium distribution of the final fuel element can be more closely determined and controlled than was possible using prior methods of producing such fuel ele- ments.

  14. Host rocks and their alterations as related to uranium-bearing veins in the United States

    USGS Publications Warehouse

    Walker, George W.

    1956-01-01

    This paper, dealing with the different kinds of host rocks and their alterations associated with uranium-bearing veins in the United States, is a chapter of a comprehensive report entitled , "Geology of uranium-bearing vein deposits in the United States," in preparation by George W. Walker, Frank W. Osterwald, and others. The comprehensive report will include detailed information on tectonic and structural setting, kinds of host rocks, wall-rock alteration, mineralogy, physical characteristics, processes of deposition, and concepts of origin of uraniferous veins; but, because it will not be completed until sometime in the future, some chapters of the report are being transmitted as they are finished. Part of an introductory chapter to the comprehensive report entitled, "Classification and distribution of uranium-bearing veins in the United States" (Walker and Osterwald, 1956) has already been transmitted; several of the terms used herein are defined in the introductory chapter. Data included in this chapter demonstrate that uranium-bearing veins are: 1) in rocks of nearly all textural, chemical, and mineralogic types; 2) most abundant in holocrystalline, commonly equigranular, igeneous and metamorphic rocks characterized by a moderate to high silica content and and by similar physical properties. Although some of the physiochemical properties of the host rocks are discussed in terms of favorability or nonfavoribility for uranium deposition, the principal purpose of this chapter is to establish the petroloic environment in which uranium-bearing veins have been found. Because favorability or nonfavorability of host rocks is related complexly to the chemistry of ore solutions and to methods or uranium transport and deposition, several hypothetical processes of transport and deposition have been referred to briefly; these and other hypotheses will be outlines and discussed in greater detail in a subsequent chapter. The compilation of data leading to this report and its preparation by a member of the Uranium Research and Resource Section, U.S. Geological Survey, was done on behalf of the Division of Raw Materials, U.S. Atomic Energy Commission. The report is based on both published and unpublished information collected principally by personnel of the U.S. Geological Survey, the U.S. Atomic Energy Commission or its predecessor organization, the Manhattan Engineer District, and to a lesser extent by staff members of other Federal or State agencies and by geologists in private industry. Information concerning foreign uranium-bearing vein deposits has been extracted almost exclusively from published reports; references to these and other data are included at appropriate places.

  15. Reductive precipitation of metals photosensitized by tin and antimony porphyrins

    DOEpatents

    Shelnutt, John A.; Gong, Weiliang; Abdelouas, Abdesselam; Lutze, Werner

    2003-09-30

    A method for reducing metals using a tin or antimony porphyrin by forming an aqueous solution of a tin or antimony porphyrin, an electron donor, such as ethylenediaminetetraaceticacid, triethylamine, triethanolamine, and sodium nitrite, and at least one metal compound selected from a uranium-containing compound, a mercury-containing compound, a copper-containing compound, a lead-containing compound, a gold-containing compound, a silver-containing compound, and a platinum-containing compound through irradiating the aqueous solution with light.

  16. Methods to Reduce Sand Ejecta from Projectile Impact - a Scaled Study with the Goal of Application to Depleted Uranium Penetrator Catch Boxes

    DTIC Science & Technology

    2012-04-01

    caliber ammunition that were commercially available were used in this study: (1) lead ball (M33 ball) and (2) armor piercing ( machine hardened steel, M2 ...each test fire. The barrel will be a machined 0.50 caliber, 1 in 15-inch right twist bore, 29-inch length barrel without a muzzle brake; muzzle brake...11 Figure 15. Fired M2 50-caliber round

  17. Direct dating of human fossils.

    PubMed

    Grün, Rainer

    2006-01-01

    The methods that can be used for the direct dating of human remains comprise of radiocarbon, U-series, electron spin resonance (ESR), and amino acid racemization (AAR). This review gives an introduction to these methods in the context of dating human bones and teeth. Recent advances in ultrafiltration techniques have expanded the dating range of radiocarbon. It now seems feasible to reliably date bones up to 55,000 years. New developments in laser ablation mass spectrometry permit the in situ analysis of U-series isotopes, thus providing a rapid and virtually non-destructive dating method back to about 300,000 years. This is of particular importance when used in conjunction with non-destructive ESR analysis. New approaches in AAR analysis may lead to a renaissance of this method. The potential and present limitations of these direct dating techniques are discussed for sites relevant to the reconstruction of modern human evolution, including Florisbad, Border Cave, Tabun, Skhul, Qafzeh, Vindija, Banyoles, and Lake Mungo. (c) 2006 Wiley-Liss, Inc.

  18. Removal of uranium from soil samples for ICP-OES analysis of RCRA metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wero, M.; Lederer-Cano, A.; Billy, C.

    1995-12-01

    Soil samples containing high levels of uranium present unique analytical problems when analyzed for toxic metals (Ag, As, Ba, Cd, Cr, Cu, Ni, Pb, Se and Tl) because of the spectral interference of uranium in the ICP-OES emission spectrometer. Methods to remove uranium from the digestates of soil samples, known to be high in uranium, have been developed that reduce the initial uranium concentration (1-3%) to less than 500 ppm. UTEVA ion exchange columns, used as an ICP-OES analytical pre-treatment, reduces uranium to acceptable levels, permitting good analytical results of the RCRA metals by ICP-OES.

  19. TUNGSTEN INTERFERENCE IN VOLUMETRIC ANALYSIS OF URANIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dufour, R.F.; Articolo, O.

    1958-08-01

    Tungsten was found to have a negligible effect on the determination of uranium in uranium-zirconium alloys by the Jones reductor-dichromate method used at KAPL. The tungstate ion interferred seriously and gave high results. However, the soluble tungsten was precipitated by intensive fuming with sulfuric acid and rendered ineffective in tbe subsequent oxidationreduction reactions of the uranium. (auth)

  20. IMPROVEMENTS IN OR RELATING TO THE PRODUCTION OF SINTERED URANIUM DIOXIDE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, L.E.; Harrison, J.D.L.; Brett, N.H.

    A method is described for producing a dense sintered body of uranium dioxide or a mixture thereof with plutonium dioxide. Compacted uranium dioxide or a compacted uranium dioxide-plutonium dioxide mixture is heated to at least 1300 deg C in an atmosphere of carbon dioxide or carbon dioxide mixed with carbon monoxide. (R.J.S.)

  1. 77 FR 35431 - Final Alternative Soils Standards for the Uravan, CO, Uranium Mill

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-13

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0258] Final Alternative Soils Standards for the Uravan, CO... material. The Commission has determined that the State of Colorado's proposed alternative soils standards... State alternative soil standards. DATES: The Commission made a determination on the State of Colorado's...

  2. 76 FR 63330 - Policy Regarding Submittal of Amendments for Processing of Equivalent Feed at Licensed Uranium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-12

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0217] Policy Regarding Submittal of Amendments for... NRC's policy regarding receipt and processing, without a license amendment, of equivalent feed at an... and Management System (ADAMS) and in the NRC Library, and update the date voluntary responses should...

  3. 77 FR 7182 - Sunshine Act Meeting Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... INTERNATIONAL TRADE COMMISSION [USITC SE-12-004] Sunshine Act Meeting Notice AGENCY HOLDING THE MEETING: United States International Trade Commission. TIME AND DATE: February 14, 2012 at 11:00 a.m.... 4. Vote in Inv. No. 731-TA-539-C (Third Review) (Uranium from Russia). The Commission is currently...

  4. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsouris, Costas; Mayes, Richard T.; Janke, Christopher James

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater.more » The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous-flow natural seawater at the Pacific Northwest National Laboratory (PNNL). Fourier Transform Infrared (FTIR) spectroscopy, Nuclear Magnetic Resonance (NMR) spectroscopy, Scanning Electron Microscopy (SEM), and elemental analysis were used to characterize the adsorbent at different stages of adsorbent preparation and treatment. The study can be divided into two parts: (A) investigation of optimal parameters for KOH adsorbent conditioning and (B) investigation of other possible agents for alkali conditioning, including cost analysis on the basis of uranium production. In the first part of the study, tests with simulated seawater containing 8 ppm uranium showed that the uranium adsorption capacity increased with an increase in the KOH concentration and conditioning time and temperature at each of the KOH concentrations used. FTIR and solid state NMR studies indicated that KOH conditioning converts the amidoxime functional groups into more hydrophilic carboxylate. The longer the KOH conditioning time, up to three hours, the higher was the loading capacity from the simulated seawater solution which is composed of only uranyl, sodium, chloride, and carbonate ions. Marine testing with natural seawater, on the other hand, showed that the uranium adsorption capacity of the adsorbent increased with KOH conditioning temperature, and gradually decreased with increasing KOH conditioning time from one hour to three hours at 80 C. This behavior is due to the conversion of amidoxime to carboxylate. The carboxylate groups are needed to increase the hydrophilicity of the adsorbent; however, conversion of a significant amount of amidoxime to carboxylate leads to loss in selectivity toward uranyl ions. Thus, there is an optimum KOH conditioning time for each temperature at which an optimum ratio between amidoxime and carboxylate is reached. For the case of base conditioning with 0.44 M KOH at 80 C, the optimal conditioning time is 1 hour, with respect to the highest uranium loading capacity from natural seawater. Uptake of other metal ions such as V, Fe, and Cu follows the same trend as that of uranium. Also, the uptake of Ca, Mg, and Zn ions increased with increasing KOH conditioning time, probably due to formation of more carboxylates, which leads to conversion of uranium-selective binding sites to less selective sites. In the second part of the study, inorganic based reagents such as sodium hydroxide (NaOH), sodium carbonate (Na 2CO 3), cesium hydroxide (CsOH), as well as organic based reagents such as ammonium hydroxide (AOH), tetramethylammonium hydroxide (TMAOH), tetraethylammonium hydroxide (TEAOH), triethylmethylammonium hydroxide (TEMAOH), tetrapropylammonium hydroxide (TPAOH) and tetrabutylammonium hydroxide (TBAOH), in addition to KOH, were used for alkaline conditioning. NaOH has emerged as a better reagent for alkaline conditioning of amidoxime-based adsorbent because of higher uranium uptake capacity, higher uranium uptake selectivity ...« less

  5. Direct determination of uranium in seawater by laser fluorimetry.

    PubMed

    Kumar, Sanjukta A; Shenoy, Niyoti S; Pandey, Shailaja; Sounderajan, Suvarna; Venkateswaran, G

    2008-10-19

    A method for estimation of uranium in seawater by using steady state laser flourimetry is described. Uranium present in seawater, in concentration of approximately 3 ng ml(-1) was estimated without prior separation of matrix. Quenching effect of major ions (Cl(-), Na(+), SO(4)(-), Mg(+), Ca(+), K(+), HCO(3)(-), Br(-)) present in seawater on fluorescence intensity of uranium was studied. The concentration of phosphoric acid required for maximum enhancement of fluorescence intensity was optimized and was found to be 5%. Similarly the volume of concentrated nitric acid required to eliminate the quenching effect of chloride and bromide completely from 5 ml of seawater were optimized and was found to be 3 ml. A simple equation was derived using steady state fluorescence correction method and was used for calculation of uranium concentration in seawater samples. The method has a precesion of 1% (1s, n=3). The values obtained from laser fluorimetry were validated by analyzing the same samples by linear sweep adsorptive stripping voltametry (LSASV) of the uranium-chloranilic acid (2,5-dichloro-3,6-dihydroxy-1,4-benzoquinone) complex. Both the values are well in agreement.

  6. Development of an extractive spectrophotometric method for estimation of uranium in ore leach solutions using 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) mixture as extractant and 2-(5-bromo-2-pyridylozo)-5-diethyl aminophenol (Br-PADAP) as chromophore.

    PubMed

    Biswas, Sujoy; Pathak, P N; Roy, S B

    2012-06-01

    An extractive spectrophotometric analytical method has been developed for the determination of uranium in ore leach solution. This technique is based on the selective extraction of uranium from multielement system using a synergistic mixture of 2-ethylhexyl phosphonic acid-mono-2-ethylhexyl ester (PC88A) and tri-n-octyl phosphine oxide (TOPO) in cyclohexane and color development from the organic phase aliquot using 2-(5-Bromo-2-pyridylazo)-5-diethyl aminophenol (Br-PADAP) as chromogenic reagent. The absorption maximum (λ(max)) for UO(2)(2+)-Br-PADAP complex in organic phase samples, in 64% (v/v) ethanol containing buffer solution (pH 7.8) and 1,2-cyclohexylenedinitrilotetraacetic acid (CyDTA) complexing agent, has been found to be at 576 nm (molar extinction coefficient, ɛ: 36,750 ± 240 L mol(-1)cm(-1)). Effects of various parameters like stability of complex, ethanol volume, ore matrix, interfering ions etc. on the determination of uranium have also been evaluated. Absorbance measurements as a function of time showed that colored complex is stable up to > 24h. Presence of increased amount of ethanol in colored solution suppresses the absorption of a standard UO(2)(2+)-Br-PADAP solution. Analyses of synthetic standard as well as ore leach a solution show that for 10 determination relative standard deviation (RSD) is < 2%. The accuracy of the developed method has been checked by determining uranium using standard addition method and was found to be accurate with a 98-105% recovery rate. The developed method has been applied for the analysis of a number of uranium samples generated from uranium ore leach solutions and results were compared with standard methods like inductively coupled plasma emission spectrometry (ICPAES). The determined values of uranium concentrations by these methods are within ± 2%. This method can be used to determine 2.5-250 μg mL(-1) uranium in ore leach solutions with high accuracy and precision. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Study of Fission Barrier Heights of Uranium Isotopes by the Macroscopic-Microscopic Method

    NASA Astrophysics Data System (ADS)

    Zhong, Chun-Lai; Fan, Tie-Shuan

    2014-09-01

    Potential energy surfaces of uranium nuclei in the range of mass numbers 229 through 244 are investigated in the framework of the macroscopic-microscopic model and the heights of static fission barriers are obtained in terms of a double-humped structure. The macroscopic part of the nuclear energy is calculated according to Lublin—Strasbourg-drop (LSD) model. Shell and pairing corrections as the microscopic part are calculated with a folded-Yukawa single-particle potential. The calculation is carried out in a five-dimensional parameter space of the generalized Lawrence shapes. In order to extract saddle points on the potential energy surface, a new algorithm which can effectively find an optimal fission path leading from the ground state to the scission point is developed. The comparison of our results with available experimental data and others' theoretical results confirms the reliability of our calculations.

  8. U-series dating of the Late Pleistocene mammalian fauna from Wood Quarry (Steetley), Nottinghamshire, UK

    NASA Astrophysics Data System (ADS)

    Pike, A. W. G.; Eggins, S.; Grün, R.; Hedges, R. E. M.; Jacobi, R. M.

    2005-01-01

    We present the U-series dating of bones from Wood Quarry (Steetley Quarry Cave) using the diffusion-adsorption model to account for uranium uptake. The results give a weighted mean date of 66.8 ± 3.0 kyr, placing this assemblage within or just before Marine Oxygen Isotope Stage 4. The fauna is thought to correlate with the Banwell Bone Cave mammal assemblage-zone of the Early Devensian in Britain. Our results support the idea that this assemblage-zone immediately precedes the assemblage represented nearby at Pin Hole in Creswell Crags which is contemporary with the Mid-Devensian and correlates with MIS 3. Our dates, and dates for the Banwell Bone Cave mammal assemblage-zone from Stump Cross Cavern and evidence from other sites may indicate a longevity for this fauna.

  9. Study of uranium oxidation states in geological material.

    PubMed

    Pidchenko, I; Salminen-Paatero, S; Rothe, J; Suksi, J

    2013-10-01

    A wet chemical method to determine uranium (U) oxidation states in geological material has been developed and tested. The problem faced in oxidation state determinations with wet chemical methods is that U redox state may change when extracted from the sample material, thereby leading to erroneous results. In order to quantify and monitor U redox behavior during the acidic extraction in the procedure, an analysis of added isotopic redox tracers, (236)U(VI) and (232)U(IV), and of variations in natural uranium isotope ratio ((234)U/(238)U) of indigenous U(IV) and U(VI) fractions was performed. Two sample materials with varying redox activity, U bearing rock and U-rich clayey lignite sediment, were used for the tests. The Fe(II)/Fe(III) redox-pair of the mineral phases was postulated as a potentially disturbing redox agent. The impact of Fe(III) on U was studied by reducing Fe(III) with ascorbic acid, which was added to the extraction solution. We observed that ascorbic acid protected most of the U from oxidation. The measured (234)U/(238)U ratio in U(IV) and U(VI) fractions in the sediment samples provided a unique tool to quantify U oxidation caused by Fe(III). Annealing (sample heating) to temperatures above 500 °C was supposed to heal ionizing radiation induced defects in the material that can disturb U redox state during extraction. Good agreement between two independent methods was obtained for DL-1a material: an average 38% of U(IV) determined by redox tracer corrected wet chemistry and 45% for XANES. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Radon Exposure, IL-6 Promoter Variants, and Lung Squamous Cell Carcinoma in Former Uranium Miners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Shuguang; Thomas, Cynthia L.; Snider, Amanda M.

    Background: High radon exposure is a risk factor for squamous cell carcinoma, a major lung cancer histology observed in former uranium miners. Radon exposure can cause oxidative stress, leading to pulmonary inflammation. Interleukin-6 (IL-6) is a pro-carcinogenic inflammatory cytokine that plays a pivotal role in lung cancer development. Objectives: We assessed whether single nucleotide polymorphisms (SNPs) in the IL6 promoter are associated with lung cancer in former uranium miners with high occupational exposure to radon gas. Methods: Genetic associations were assessed in a case–control study of former uranium miners (242 cases and 336 controls). A replication study was performed usingmore » data from the Gene Environment Association Studies (GENEVA) Genome Wide Association Study (GWAS) of Lung Cancer and Smoking. Functional relevance of the SNPs was characterized using in vitro approaches. Results: We found that rs1800797 was associated with squamous cell carcinoma in miners and with a shorter time between the midpoint of the period of substantial exposure and diagnosis among the cases. Furthermore, rs1800797 was also associated with lung cancer among never smokers in the GENEVA dataset. Functional studies identified that the risk allele was associated with increased basal IL-6 mRNA level and greater promoter activity. Furthermore, fibroblasts with the risk allele showed greater induction of IL-6 secretion by hydrogen peroxide or benzo[a]pyrene diolepoxide treatments. Conclusions: An IL6 promoter variant was associated with lung cancer in uranium miners and never smokers in two external study populations. Lastly, the associations are strongly supported by the functional relevance that the IL6 promoter SNP affects basal expression and carcinogen-induced IL-6 secretion« less

  11. Radon Exposure, IL-6 Promoter Variants, and Lung Squamous Cell Carcinoma in Former Uranium Miners

    DOE PAGES

    Leng, Shuguang; Thomas, Cynthia L.; Snider, Amanda M.; ...

    2015-09-15

    Background: High radon exposure is a risk factor for squamous cell carcinoma, a major lung cancer histology observed in former uranium miners. Radon exposure can cause oxidative stress, leading to pulmonary inflammation. Interleukin-6 (IL-6) is a pro-carcinogenic inflammatory cytokine that plays a pivotal role in lung cancer development. Objectives: We assessed whether single nucleotide polymorphisms (SNPs) in the IL6 promoter are associated with lung cancer in former uranium miners with high occupational exposure to radon gas. Methods: Genetic associations were assessed in a case–control study of former uranium miners (242 cases and 336 controls). A replication study was performed usingmore » data from the Gene Environment Association Studies (GENEVA) Genome Wide Association Study (GWAS) of Lung Cancer and Smoking. Functional relevance of the SNPs was characterized using in vitro approaches. Results: We found that rs1800797 was associated with squamous cell carcinoma in miners and with a shorter time between the midpoint of the period of substantial exposure and diagnosis among the cases. Furthermore, rs1800797 was also associated with lung cancer among never smokers in the GENEVA dataset. Functional studies identified that the risk allele was associated with increased basal IL-6 mRNA level and greater promoter activity. Furthermore, fibroblasts with the risk allele showed greater induction of IL-6 secretion by hydrogen peroxide or benzo[a]pyrene diolepoxide treatments. Conclusions: An IL6 promoter variant was associated with lung cancer in uranium miners and never smokers in two external study populations. Lastly, the associations are strongly supported by the functional relevance that the IL6 promoter SNP affects basal expression and carcinogen-induced IL-6 secretion« less

  12. Combining particle-tracking and geochemical data to assess public supply well vulnerability to arsenic and uranium

    USGS Publications Warehouse

    Hinkle, S.R.; Kauffman, L.J.; Thomas, M.A.; Brown, C.J.; McCarthy, K.A.; Eberts, S.M.; Rosen, Michael R.; Katz, B.G.

    2009-01-01

    Flow-model particle-tracking results and geochemical data from seven study areas across the United States were analyzed using three statistical methods to test the hypothesis that these variables can successfully be used to assess public supply well vulnerability to arsenic and uranium. Principal components analysis indicated that arsenic and uranium concentrations were associated with particle-tracking variables that simulate time of travel and water fluxes through aquifer systems and also through specific redox and pH zones within aquifers. Time-of-travel variables are important because many geochemical reactions are kinetically limited, and geochemical zonation can account for different modes of mobilization and fate. Spearman correlation analysis established statistical significance for correlations of arsenic and uranium concentrations with variables derived using the particle-tracking routines. Correlations between uranium concentrations and particle-tracking variables were generally strongest for variables computed for distinct redox zones. Classification tree analysis on arsenic concentrations yielded a quantitative categorical model using time-of-travel variables and solid-phase-arsenic concentrations. The classification tree model accuracy on the learning data subset was 70%, and on the testing data subset, 79%, demonstrating one application in which particle-tracking variables can be used predictively in a quantitative screening-level assessment of public supply well vulnerability. Ground-water management actions that are based on avoidance of young ground water, reflecting the premise that young ground water is more vulnerable to anthropogenic contaminants than is old ground water, may inadvertently lead to increased vulnerability to natural contaminants due to the tendency for concentrations of many natural contaminants to increase with increasing ground-water residence time.

  13. Uranium resource assessment by the Geological Survey; methodology and plan to update the national resource base

    USGS Publications Warehouse

    Finch, Warren Irvin; McCammon, Richard B.

    1987-01-01

    Based on the Memorandum of Understanding {MOU) of September 20, 1984, between the U.S. Geological Survey of the U.S. Department of Interior and the Energy Information Administration {EIA) of the U.S. Department of Energy {DOE), the U.S. Geological Survey began to make estimates of the undiscovered uranium endowment of selected areas of the United States in 1985. A modified NURE {National Uranium Resource Evaluation) method will be used in place of the standard NURE method of the DOE that was used for the national assessment reported in October 1980. The modified method, here named the 'deposit-size-frequency' {DSF) method, is presented for the first time, and calculations by the two methods are compared using an illustrative example based on preliminary estimates for the first area to be evaluated under the MOU. The results demonstrate that the estimate of the endowment using the DSF method is significantly larger and more uncertain than the estimate obtained by the NURE method. We believe that the DSF method produces a more realistic estimate because the principal factor estimated in the endowment equation is disaggregated into more parts and is more closely tied to specific geologic knowledge than by the NURE method. The DSF method consists of modifying the standard NURE estimation equation, U=AxFxTxG, by replacing the factors FxT by a single factor that represents the tonnage for the total number of deposits in all size classes. Use of the DSF method requires that the size frequency of deposits in a known or control area has been established and that the relation of the size-frequency distribution of deposits to probable controlling geologic factors has been determined. Using these relations, the principal scientist {PS) first estimates the number and range of size classes and then, for each size class, estimates the lower limit, most likely value, and upper limit of the numbers of deposits in the favorable area. Once these probable estimates have been refined by elicitation of the PS, they are entered into the DSF equation, and the probability distribution of estimates of undiscovered uranium endowment is calculated using a slight modification of the program by Ford and McLaren (1980). The EIA study of the viability of the domestic uranium industry requires an annual appraisal of the U.S. uranium resource situation. During DOE's NURE Program, which was terminated in 1983, a thorough assessment of the Nation's resources was completed. A comprehensive reevaluation of uranium resource base for the entire United States is not possible for each annual appraisal. A few areas are in need of future study, however, because of new developments in either scientific knowledge, industry exploration, or both. Four geologic environments have been selected for study by the U.S. Geological Survey in the next several years: (1) surficial uranium deposits throughout the conterminous United States, (2) uranium in collapse-breccia pipes in the Grand Canyon region of Arizona, (3) uranium in Tertiary sedimentary rocks of the Northern Great Plains, and (4) uranium in metamorphic rocks of the Piedmont province in the eastern States. In addition to participation in the National uranium resource assessment, the U.S. Geological Survey will take part in activities of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development and those of the International Atomic Energy Agency.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, Jamie L.; Kuhn, Kevin John; Byerly, Benjamin

    Nuclear forensic publications, performance tests, and research and development efforts typically target the bulk global inventory of intentionally safeguarded materials, such as plutonium (Pu) and uranium (U). Other materials, such as neptunium (Np), pose a nuclear security risk as well. Trafficking leading to recovery of an interdicted Np sample is a realistic concern especially for materials originating in countries that reprocesses fuel. Using complementary forensic methods, potential signatures for an unknown Np oxide sample were investigated. Measurement results were assessed against published Np processes to present hypotheses as to the original intended use, method of production, and origin for thismore » Np oxide.« less

  15. Semimicrodetermination of tantalum with selenous acid

    USGS Publications Warehouse

    Grimaldi, F.S.; Schnepfe, M.M.

    1958-01-01

    Tantalum is separated and determined gravimetrically by precipitation with selenous acid from a highly acidic solution containing oxalic and tartaric acids. The method is selective for the determination of up to 30 mg. of tantalum pentoxide, and tolerates relatively large amounts of scandium, yttrium, cerium, titanium, zirconium, thorium, vanadium, niobium, molybdenum, tungsten, uranium, iron, aluminum, gallium, tin, lead, antimony, and bismuth. The separation of tantalum from niobium and titanium is not strictly quantitative, and correction is made colorimetrically for the small amounts of niobium and titanium co-precipitating with the tantalum. The method was applied to the determination of tantalum in tantaloniobate ores.

  16. Carbon diffusion in molten uranium: an ab initio molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Garrett, Kerry E.; Abrecht, David G.; Kessler, Sean H.; Henson, Neil J.; Devanathan, Ram; Schwantes, Jon M.; Reilly, Dallas D.

    2018-04-01

    In this work we used ab initio molecular dynamics within the framework of density functional theory and the projector-augmented wave method to study carbon diffusion in liquid uranium at temperatures above 1600 K. The electronic interactions of carbon and uranium were described using the local density approximation (LDA). The self-diffusion of uranium based on this approach is compared with literature computational and experimental results for liquid uranium. The temperature dependence of carbon and uranium diffusion in the melt was evaluated by fitting the resulting diffusion coefficients to an Arrhenius relationship. We found that the LDA calculated activation energy for carbon was nearly twice that of uranium: 0.55 ± 0.03 eV for carbon compared to 0.32 ± 0.04 eV for uranium. Structural analysis of the liquid uranium-carbon system is also discussed.

  17. NEUTRONIC REACTOR FUEL ELEMENT AND METHOD OF MANUFACTURE

    DOEpatents

    Finniston, H.M.; Plail, O.S.

    1961-01-24

    BS>A uranium body for use in a nuclear fission reactor is described. It has a homogeneous rod of uranium metal enclosed in an envelope of aluminum, wherein a thin metallic layer of higher melting point than aluminum and of relatively low competitive neutron absorption between the uranium and the aluminum is bonded to the uranium and to the aluminum of the sheath.

  18. METHOD OF RECOVERING TRANSURANIC ELEMENTS OF AN ATOMIC NUMBER BELOW 95

    DOEpatents

    Seaborg, G.T.; James, R.A.

    1959-12-15

    The concentration of neptanium or plutonium by two carrier precipitation steps with identical carriers but using (after dissolution of the first carrier in nitric acid) a reduced quantity of carrier for the second precipitation is discussed. Carriers suitable are uranium(IV) hypophosphate, uranium(IV) pyrophosphate, uranium(IV) oxalate, thorium oxalate, thorium citrate, thorium tartrate, thorium sulfide, and uranium(IV) sulfide.

  19. ELECTROLYTIC PRODUCTION OF URANIUM TETRAFLUORIDE

    DOEpatents

    Lofthouse, E.

    1954-08-31

    This patent relates to electrolytic methods for the production of uranium tetrafluoride. According to the present invention a process for the production of uranium tetrafluoride comprises submitting to electrolysis an aqueous solution of uranyl fluoride containing free hydrofluoric acid. Advantageously the aqueous solution of uranyl fluoride is obtained by dissolving uranium hexafluoride in water. On electrolysis, the uranyl ions are reduced to uranous tons at the cathode and immediately combine with the fluoride ions in solution to form the insoluble uranium tetrafluoride which is precipitated.

  20. THERMAL DECOMPOSITION OF URANIUM COMPOUNDS

    DOEpatents

    Magel, T.T.; Brewer, L.

    1959-02-10

    A method is presented of preparing uranium metal of high purity consisting contacting impure U metal with halogen vapor at between 450 and 550 C to form uranium halide vapor, contacting the uranium halide vapor in the presence of H/sub 2/ with a refractory surface at about 1400 C to thermally decompose the uranium halides and deposit molten U on the refractory surface and collecting the molten U dripping from the surface. The entire operation is carried on at a sub-atmospheric pressure of below 1 mm mercury.

  1. COATING URANIUM FROM CARBONYLS

    DOEpatents

    Gurinsky, D.H.; Storrs, S.S.

    1959-07-14

    Methods are described for making adherent corrosion resistant coatings on uranium metal. According to the invention, the uranium metal is heated in the presence of an organometallic compound such as the carbonyls of nickel, molybdenum, chromium, niobium, and tungsten at a temperature sufficient to decompose the metal carbonyl and dry plate the resultant free metal on the surface of the uranium metal body. The metal coated body is then further heated at a higher temperature to thermally diffuse the coating metal within the uranium bcdy.

  2. Coated Metal Articles and Method of Making

    DOEpatents

    Boller, Ernest R.; Eubank, Lowell D.

    2004-07-06

    The method of protectively coating metallic uranium which comprises dipping the metallic uranium in a molten alloy comprising about 20-75% of copper and about 80-25% of tin, dipping the coated uranium promptly into molten tin, withdrawing it from the molten tin and removing excess molten metal, thereupon dipping it into a molten metal bath comprising aluminum until it is coated with this metal, then promptly withdrawing it from the bath.

  3. Evaluating the risk from depleted uranium after the Boeing 747-258F crash in Amsterdam, 1992.

    PubMed

    Uijt de Haag, P A; Smetsers, R C; Witlox, H W; Krüs, H W; Eisenga, A H

    2000-08-28

    On 4 October 1992, a large cargo plane crashed into an apartment building in the Bijlmermeer quarter of Amsterdam. In the years following the accident, an increasing number of people started reporting health complaints, which they attributed to exposure to dangerous substances after the crash. Since the aircraft had been carrying depleted uranium as counterbalance weights and about 150 kg uranium had been found missing after clearance of the crash site, exposure to uranium oxide particles was pointed out as the possible cause of their health complaints. Six years after the accident, a risk analysis was therefore carried out to investigate whether the health complaints could be attributed to exposure to uranium oxide set free during the accident. The scientific challenge was to come up with reliable results, knowing that - considering the late date - virtually no data were available to validate any calculated result. The source term of uranium was estimated using both generic and specific data. Various dispersion models were applied in combination with the local setting and the meteorological conditions at the time of the accident to estimate the exposure of bystanders during the fire caused by the crash. Emphasis was given to analysing the input parameters, inter-comparing the various models and comparing model results with the scarce information available. Uranium oxide formed in the fire has a low solubility, making the chemical toxicity to humans less important than the radiotoxicity. Best-estimate results indicated that bystanders may have been exposed to a radiation dose of less than 1 microSv, whereas a worst-case approach indicated an upper limit of less than 1 mSv. This value is considerably less than the radiation dose for which acute effects are to be expected. It is therefore considered to be improbable that the missing uranium had indeed led to the health complaints reported.

  4. Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism.

    PubMed

    Cologgi, Dena L; Lampa-Pastirk, Sanela; Speers, Allison M; Kelly, Shelly D; Reguera, Gemma

    2011-09-13

    The in situ stimulation of Fe(III) oxide reduction by Geobacter bacteria leads to the concomitant precipitation of hexavalent uranium [U(VI)] from groundwater. Despite its promise for the bioremediation of uranium contaminants, the biological mechanism behind this reaction remains elusive. Because Fe(III) oxide reduction requires the expression of Geobacter's conductive pili, we evaluated their contribution to uranium reduction in Geobacter sulfurreducens grown under pili-inducing or noninducing conditions. A pilin-deficient mutant and a genetically complemented strain with reduced outer membrane c-cytochrome content were used as controls. Pili expression significantly enhanced the rate and extent of uranium immobilization per cell and prevented periplasmic mineralization. As a result, pili expression also preserved the vital respiratory activities of the cell envelope and the cell's viability. Uranium preferentially precipitated along the pili and, to a lesser extent, on outer membrane redox-active foci. In contrast, the pilus-defective strains had different degrees of periplasmic mineralization matching well with their outer membrane c-cytochrome content. X-ray absorption spectroscopy analyses demonstrated the extracellular reduction of U(VI) by the pili to mononuclear tetravalent uranium U(IV) complexed by carbon-containing ligands, consistent with a biological reduction. In contrast, the U(IV) in the pilin-deficient mutant cells also required an additional phosphorous ligand, in agreement with the predominantly periplasmic mineralization of uranium observed in this strain. These findings demonstrate a previously unrecognized role for Geobacter conductive pili in the extracellular reduction of uranium, and highlight its essential function as a catalytic and protective cellular mechanism that is of interest for the bioremediation of uranium-contaminated groundwater.

  5. Study the oxidation kinetics of uranium using XRD and Rietveld method

    NASA Astrophysics Data System (ADS)

    Zhang, Yanzhi; Guan, Weijun; Wang, Qinguo; Wang, Xiaolin; Lai, Xinchun; Shuai, Maobing

    2010-03-01

    The surface oxidation of uranium metal has been studied by X-ray diffraction (XRD) and Rietveld method in the range of 50~300°C in air. The oxidation processes are analyzed by XRD to determine the extent of surface oxidation and the oxide structure. The dynamics expression for the formation of UO2 was derived. At the beginning, the dynamic expression was nonlinear, but switched to linear subsequently for uranium in air and humid oxygen. That is, the growth kinetics of UO2 can be divided into two stages: nonlinear portion and linear portion. Using the kinetic data of linear portion, the activation energy of reaction between uranium and air was calculated about 46.0 kJ/mol. However the content of oxide as a function of time was linear in humid helium ambience. Contrast the dynamics results, it prove that the absence of oxygen would accelerate the corrosion rate of uranium in the humid gas. We can find that the XRD and Rietveld method are a useful convenient method to estimate the kinetics and thermodynamics of solid-gas reaction.

  6. Enhancing uranium uptake by amidoxime adsorbent in seawater: An investigation for optimum alkaline conditioning parameters

    DOE PAGES

    Das, Sadananda; Tsouris, Costas; Zhang, Chenxi; ...

    2015-09-07

    A high-surface-area polyethylene-fiber adsorbent (AF160-2) has been developed at the Oak Ridge National Laboratory by radiation-induced graft polymerization of acrylonitrile and itaconic acid. The grafted nitriles were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with potassium hydroxide (KOH) by varying different reaction parameters such as KOH concentration (0.2, 0.44, and 0.6 M), duration (1, 2, and 3 h), and temperature (60, 70, and 80 °C). Adsorbent screening was then performed with simulated seawater solutions containing sodium chloride and sodium bicarbonate, at concentrations found in seawater, and uranium nitrate at a uranium concentration ofmore » ~7–8 ppm and pH 8. Fourier transform infrared spectroscopy and solid-state NMR analyses indicated that a fraction of amidoxime groups was hydrolyzed to carboxylate during KOH conditioning. The uranium adsorption capacity in the simulated seawater screening solution gradually increased with conditioning time and temperature for all KOH concentrations. It was also observed that the adsorption capacity increased with an increase in concentration of KOH for all the conditioning times and temperatures. AF160-2 adsorbent samples were also tested with natural seawater using flow-through experiments to determine uranium adsorption capacity with varying KOH conditioning time and temperature. Based on uranium loading capacity values of several AF160-2 samples, it was observed that changing KOH conditioning time from 3 to 1 h at 60, 70, and 80 °C resulted in an increase of the uranium loading capacity in seawater, which did not follow the trend found in laboratory screening with stimulated solutions. Longer KOH conditioning times lead to significantly higher uptake of divalent metal ions, such as calcium and magnesium, which is a result of amidoxime conversion into less selective carboxylate. The scanning electron microscopy showed that long conditioning times may also lead to adsorbent degradation.« less

  7. Properties, use and health effects of depleted uranium (DU): a general overview.

    PubMed

    Bleise, A; Danesi, P R; Burkart, W

    2003-01-01

    Depleted uranium (DU), a waste product of uranium enrichment, has several civilian and military applications. It was used as armor-piercing ammunition in international military conflicts and was claimed to contribute to health problems, known as the Gulf War Syndrome and recently as the Balkan Syndrome. This led to renewed efforts to assess the environmental consequences and the health impact of the use of DU. The radiological and chemical properties of DU can be compared to those of natural uranium, which is ubiquitously present in soil at a typical concentration of 3 mg/kg. Natural uranium has the same chemotoxicity, but its radiotoxicity is 60% higher. Due to the low specific radioactivity and the dominance of alpha-radiation no acute risk is attributed to external exposure to DU. The major risk is DU dust, generated when DU ammunition hits hard targets. Depending on aerosol speciation, inhalation may lead to a protracted exposure of the lung and other organs. After deposition on the ground, resuspension can take place if the DU containing particle size is sufficiently small. However, transfer to drinking water or locally produced food has little potential to lead to significant exposures to DU. Since poor solubility of uranium compounds and lack of information on speciation precludes the use of radioecological models for exposure assessment, biomonitoring has to be used for assessing exposed persons. Urine, feces, hair and nails record recent exposures to DU. With the exception of crews of military vehicles having been hit by DU penetrators, no body burdens above the range of values for natural uranium have been found. Therefore, observable health effects are not expected and residual cancer risk estimates have to be based on theoretical considerations. They appear to be very minor for all post-conflict situations, i.e. a fraction of those expected from natural radiation.

  8. Enhancing Uranium Uptake by Amidoxime Adsorbent in Seawater: An investigation for optimum alkaline conditioning parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, S.; Tsouris, Constantinos; Zhang, C.

    2016-04-20

    A high-surface-area polyethylene-fiber adsorbent (AF160-2) has been developed at the Oak Ridge National Laboratory (ORNL) by radiation-induced graft polymerization of acrylonitrile and itaconic acid. The grafted nitriles were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with potassium hydroxide (KOH) by varying different reaction parameters such as KOH concentration (0.2, 0.44, and 0.6 M), duration (1, 2, and 3 h), and temperature (60, 70, and 80 ºC). Adsorbent screening was then performed with simulated seawater solutions containing sodium chloride and sodium bicarbonate, at concentrations found in seawater, and uranium nitrate at a uranium concentrationmore » of ~ 7-8 ppm and pH 8. FTIR and solid state NMR indicated that a fraction of amidoxime groups was hydrolyzed to carboxylate during KOH conditioning. The uranium adsorption capacity in the simulated seawater screening solution gradually increased with conditioning time and temperature for all KOH concentrations. It was also observed that the adsorption capacity increased with an increase in concentration of KOH for all the conditioning times and temperatures. AF160-2 adsorbent samples were also tested with natural seawater using flow-through experiments to determine uranium adsorption capacity with varying KOH conditioning time and temperature. Based on uranium loading capacity values of several AF160-2 samples, it was observed that changing KOH conditioning time from 3 to 1 h at 60, 70, and 80 ºC resulted in increase of the uranium loading capacity in seawater, which did not follow the trend found in laboratory screening with stimulated solutions. Longer KOH conditioning times lead to significantly higher uptake of divalent metal ions, such as calcium and magnesium, which is a result of amidoxime conversion into less selective carboxylate. Scanning electron microscopy showed that long conditioning times may also lead to adsorbent degradation« less

  9. Surface Water-Groundwater Interactions as a Critical Component of Uranium Plume Persistence

    NASA Astrophysics Data System (ADS)

    Williams, K. H.; Christensen, J. N.; Hobson, C.

    2015-12-01

    Residual contamination of soils, sediments and groundwater by uranium milling operations presents a lingering problem at former mill sites throughout the upper Colorado River Basin in the western USA. Remedial strategies predicated upon natural flushing by low uranium recharge waters have frequently failed to achieve target concentrations set by national and state regulators. Flushing times of tens of years have often yielded negligible decreases in groundwater uranium concentrations, with extrapolated trends suggesting multiple decades or longer may be required to achieve regulatory goals. The U.S. Department of Energy's Rifle, Colorado field site serves as a natural laboratory for investigating the underlying causes for uranium plume persistence, with recent studies there highlighting the important role that surface water-groundwater interactions play in sustaining uranium delivery to the aquifer. Annual snowmelt-driven increases in Colorado River discharge induce 1-2 m excursions in groundwater elevation at the Rifle site, which enables residual tailings-contaminated materials (so-called Supplemental Standards) to become hydrologically connected to the aquifer for short periods of time during peak discharge. The episodic contact between shallow groundwater and residual contamination leads to abrupt 20-fold increases in groundwater uranium concentration, which serve to seasonally replenish the plume given the location of the Supplemental Standards along the upgradient edge of the aquifer. Uranium isotope composition changes abruptly as uranium concentrations increase reflecting the contribution of a temporally distinct contaminant reservoir. The release of uranium serves to potentially replenish organic matter rich sediments located within the alluvial aquifer at downstream locations, which have been postulated to serve as a parallel contributor to plume persistence following the uptake, immobilization, and slow re-oxidation of uranium.

  10. Aircraft and Bases Powered by Compact Nuclear Reactors: Solutions to Projecting Power in Highly Contested Environments and Fossil Fuel Dependence

    DTIC Science & Technology

    2015-05-01

    pushed the depletion date past 2100.21 David Archibald, author of books and papers on climate science and a fellow at the Institute of World...Politics, does not predict explicitly the date of complete exhaustion, but he does note that humans have consumed about half of the world’s supply.22...deuterium, and lithium are plentiful on the earth and in the solar system. As far as fuel for existing and future fission reactors, uranium and

  11. United States Transuranium and Uranium Registries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kathren, R.L.; Filipy, R.E.; Dietert, S.E.

    1991-06-01

    This report summarizes the primary scientific activities of the United States Transuranium and Uranium Registries for the period October 1, 1989 through September 30, 1990. The Registries are parallel human tissue research programs devoted to the study of the actinide elements in humans. To date there have been 261 autopsy or surgical specimen donations, which include 11 whole bodies. The emphasis of the Registry was directed towards quality improvement and the development of a fully computerized data base that would incorporate not only the results of postmortem radiochemical analysis, but also medical and monitoring information obtained during life. Human subjectsmore » reviews were also completed. A three compartment biokinetic model for plutonium distribution is proposed. 2 tabs.« less

  12. Open-system coral ages reveal persistent suborbital sea-level cycles.

    PubMed

    Thompson, William G; Goldstein, Steven L

    2005-04-15

    Sea level is a sensitive index of global climate that has been linked to Earth's orbital variations, with a minimum periodicity of about 21,000 years. Although there is ample evidence for climate oscillations that are too frequent to be explained by orbital forcing, suborbital-frequency sea-level change has been difficult to resolve, primarily because of problems with uranium/thorium coral dating. Here we use a new approach that corrects coral ages for the frequently observed open-system behavior of uranium-series nuclides, substantially improving the resolution of sea-level reconstruction. This curve reveals persistent sea-level oscillations that are too frequent to be explained exclusively by orbital forcing.

  13. Reconnaissance of uranium and copper deposits in parts of New Mexico, Colorado, Utah, Idaho, and Wyoming

    USGS Publications Warehouse

    Gott, Garland B.; Erickson, Ralph L.

    1952-01-01

    Because of the common association of uranium and copper in several of the commercial uranium deposits in the Colorado Plateau Province, a reconnaissance was made of several known deposits of copper disseminated through sandstone to determine whether they might be a source of uranium. In order to obtain more information regarding the relationship between copper, uranium and carbonaceous materials, some of the uraniferious asphaltrite deposits in the Shinarump conglomerate along the west flank of the San Rafael Swell were also investigated briefly. During this reconnaissance 18 deposits were examined in New Mexico, eight in Utah, two in Idaho, and one each in Wyoming and Colorado. No uranium deposits of commercial grade are associated with the copper deposits that were examined. The uraniferous asphaltites in the Shinarump conglomerate of Triassic age on the west flank of the San Rafael Swell, however, are promising from the standpoint of commercial uranium production. Spectrographic analyses of crude oil, asphalt, and bituminous shales show a rather consistent suite of trace metals including vanadium, nickel, copper, cobalt, chromium, lead zinc, and molybdenum. The similarity of the metal assemblage, including uranium of the San Rafael Swell asphaltites, to the metal assemblage in crude oil and other bituminous materials suggests that these metals were concentrated in the asphaltites from petroleum. However, the hypothesis that uranium minerals were already present before the hydrocarbons were introduced and that some sort of replacement or uranium minerals by carbon compounds was effected after the petroleum migrated into the uranium deposit should not be disregarded. The widespread association of uranium with asphaltic material suggests that it also may have been concentrated by some agency connected with the formation of petroleum. The problem of the association of uranium and other trace metals with hydrocarbons should be studied further both in the field and in the laboratory.

  14. Carbon diffusion in molten uranium: an ab initio molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, Kerry E.; Abrecht, David G.; Kessler, Sean H.

    In this work we used ab initio molecular dynamics (AIMD) within the framework of density functional theory (DFT) and the projector-augmented wave (PAW) method to study carbon diffusion in liquid uranium at temperatures above 1600 K. The electronic interactions of carbon and uranium were described using the local density approximation (LDA). The self-diffusion of uranium based on this approach is compared with literature computational and experimental results for liquid uranium. The temperature dependence of carbon and uranium diffusion in the melt was evaluated by fitting the resulting diffusion coefficients to an Arrhenius relationship. We found that the LDA calculated activationmore » energy for carbon was nearly twice that of uranium: 0.55±0.03 eV for carbon compared to 0.32±0.04 eV for uranium. Structural analysis of the liquid uranium-carbon system is also discussed.« less

  15. Absorption of Thermal Neutrons in Uranium

    DOE R&D Accomplishments Database

    Creutz, E. C.; Wilson, R. R.; Wigner, E. P.

    1941-09-26

    A knowledge of the absorption processes for neutrons in uranium is important for planning a chain reaction experiment. The absorption of thermal neutrons in uranium and uranium oxide has been studied. Neutrons from the cyclotron were slowed down by passage through a graphite block. A uranium or uranium oxide sphere was placed at various positions in the block. The neutron intensity at different points in the sphere and in the graphite was measured by observing the activity induced in detectors or uranium oxide or manganese. It was found that both the fission activity in the uranium oxide and the activity induced in manganese was affected by non-thermal neutrons. An experimental correction for such effects was made by making measurements with the detectors surrounded by cadmium. After such corrections the results from three methods of procedure with the uranium oxide detectors and from the manganese detectors were consistent to within a few per cent.

  16. Process for producing an aggregate suitable for inclusion into a radiation shielding product

    DOEpatents

    Lessing, Paul A.; Kong, Peter C.

    2000-01-01

    The present invention is directed to methods for converting depleted uranium hexafluoride to a stable depleted uranium silicide in a one-step reaction. Uranium silicide provides a stable aggregate material that can be added to concrete to increase the density of the concrete and, consequently, shield gamma radiation. As used herein, the term "uranium silicide" is defined as a compound generically having the formula U.sub.x Si.sub.y, wherein the x represents the molecules of uranium and the y represent the molecules of silicon. In accordance with the present invention, uranium hexafluoride is converted to a uranium silicide by contacting the uranium hexafluoride with a silicon-containing material at a temperature in a range between about 1450.degree. C. and about 1750.degree. C. The stable depleted uranium silicide is included as an aggregate in a radiation shielding product, such as a concrete product.

  17. Hot Pressing to Form Canned Uranium Slugs

    DOEpatents

    Roboff, S. B.; Kingston, W. E.

    1961-07-25

    A method of making compacts and cladded slugs from powdered uranium is described. The powdered uranium is introduced into a die and subjected to pressures of 30 to 100 tsi while maintaining a temperature within the range of 450 to 660 deg C.

  18. The Permo-Triassic uranium deposits of Gondwanaland

    NASA Astrophysics Data System (ADS)

    le Roux, J. P.; Toens, P. D.

    The world's uranium provinces are time bound and occur in five distinct periods ranging from the Proterozoic to the Recent. One of these periods embraces the time of Gondwana sedimentation and probably is related to the proliferation of land plants from the Devonian on-ward. Decaying vegetal matter produced reducing conditions that enhanced uranium precipitation. The association of uranium with molassic basins adjacent to uplifted granitic and volcanic arcs suggests that lithospheric plate subduction, leading to anatexis of basement rocks and andesitic volcanism, created favorable conditions for uranium mineralization. Uranium occurrences of Gondwana age are of four main types: sandstone-hosted, coal-hosted, pelite-hosted, and vein-type deposits. Sandstone-hosted deposits commonly occur in fluviodeltaic sediments and are related to the presence of organic matter. These deposits commonly are enriched in molybdenum and other base metal sulfides and have been found in South Africa, Zimbabwe, Zambia, Angola, Niger, Madagascar, India, Australia, Argentina, and Brazil. Coalhosted deposits contain large reserves of uranium but are of low grade. In Africa they are mostly within the Permian Ecca Group and its lateral equivalents, as in the Springbok Flats, Limpopo, Botswana, and Tanzania basins. Uraniferous black shales are present in the Gabon and Amazon basins but grades are low. Vein-type uranium is found in Argentina, where it occurs in clustered veins crosscutting sedimentary rocks and quartz porphyries.

  19. On the Nature of the Cherdyntsev-Chalov Effect

    NASA Astrophysics Data System (ADS)

    Timashev, S. F.

    2018-06-01

    It is shown that the Cherdyntsev-Chalov effect, usually presented as the separation of even isotopes of uranium upon their transition from the solid to the liquid phase, can include initiated acceleration of the radioactive decay of uranium-238 nuclei during the formation of cracks in geologically (seismic and volcanically) active zones of the Earth's crust. The fissuring of the solid-phase medium leads to an increase in mechanical tensile stress and the emergence of strong local electric fields, resulting in the injection of chemical-scale high-energy electrons into the aqueous phase of the cracks. Under these conditions, the e - catalytic decay of uranium-238 nucleus studied earlier can occur during the formation of metastable protactinium-238 nuclei with locally distorted nucleon structure, which subequently undergo β-decay with the formation of thorium-234 and helium-4 nuclei as products of the fission of the initial uranium-238 nucleus with a characteristic period of several years. The observed increased activity of uranium-234 nuclei that form during the subsequent β-decay of thorium and then protactinium is associated with the initiated fission of uranium-238. The possibility is discussed of developing thermal power by using existing wastes from uranium production that contain uranium-238 to activate this isotope through the mechanochemical processing of these wastes in aqueous media with the formation of 91 238 Pa isu , the half-life of which is several years.

  20. Kinetics of dissolution of thorium and uranium doped britholite ceramics

    NASA Astrophysics Data System (ADS)

    Dacheux, N.; Du Fou de Kerdaniel, E.; Clavier, N.; Podor, R.; Aupiais, J.; Szenknect, S.

    2010-09-01

    In the field of immobilization of actinides in phosphate-based ceramics, several thorium and uranium doped britholite samples were submitted to leaching tests. The normalized dissolution rates determined for several pH values, temperatures and acidic media from the calcium release range from 4.7 × 10 -2 g m -2 d -1 to 21.6 g m -2 d -1. Their comparison with that determined for phosphorus, thorium and uranium revealed that the dissolution is clearly incongruent for all the conditions examined. Whatever the leaching solution considered, calcium and phosphorus elements were always released with higher RL values than the other elements (Nd, Th, U). Simultaneously, thorium was found to quickly precipitate as alteration product, leading to diffusion phenomena for uranium. For all the media considered, the uranium release is higher than that of thorium, probably due to its oxidation from tetravalent oxidation state to uranyl. Moreover, the evaluation of the partial order related to proton concentration and the apparent energy of activation suggest that the reaction of dissolution is probably controlled by surface chemical reactions occurring at the solid/liquid interface. Finally, comparative leaching tests performed in sulphuric acid solutions revealed a significant influence of such media on the chemical durability of the leached pellets, leading to higher normalized dissolution rates for all the elements considered. On the basis of the results of chemical speciation, this difference was mainly explained in the light of higher complexion constants by sulfate ions compared to nitrate, chloride and phosphate.

  1. Advanced analysis techniques for uranium assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geist, W. H.; Ensslin, Norbert; Carrillo, L. A.

    2001-01-01

    Uranium has a negligible passive neutron emission rate making its assay practicable only with an active interrogation method. The active interrogation uses external neutron sources to induce fission events in the uranium in order to determine the mass. This technique requires careful calibration with standards that are representative of the items to be assayed. The samples to be measured are not always well represented by the available standards which often leads to large biases. A technique of active multiplicity counting is being developed to reduce some of these assay difficulties. Active multiplicity counting uses the measured doubles and triples countmore » rates to determine the neutron multiplication (f4) and the product of the source-sample coupling ( C ) and the 235U mass (m). Since the 35U mass always appears in the multiplicity equations as the product of Cm, the coupling needs to be determined before the mass can be known. A relationship has been developed that relates the coupling to the neutron multiplication. The relationship is based on both an analytical derivation and also on empirical observations. To determine a scaling constant present in this relationship, known standards must be used. Evaluation of experimental data revealed an improvement over the traditional calibration curve analysis method of fitting the doubles count rate to the 235Um ass. Active multiplicity assay appears to relax the requirement that the calibration standards and unknown items have the same chemical form and geometry.« less

  2. Determination of uranium in tap water by ICP-MS.

    PubMed

    El Himri, M; Pastor, A; de la Guardia, M

    2000-05-01

    A fast and accurate procedure has been developed for the determination of uranium at microg L(-1) level in tap and mineral water. The method is based on the direct introduction of samples, without any chemical pre-treatment, into an inductively coupled plasma mass spectrometer (ICP-MS). Uranium was determined at the mass number 238 using Rh as internal standard. The method provides a limit of detection of 2 ng L(-1) and a good repeatability with relative standard deviation values (RSD) about 3% for five independent analyses of samples containing 73 microg L(-1) of uranium. Recovery percentage values found for the determination of uranium in spiked natural samples varied between 91% and 106%. Results obtained are comparable with those found by radiochemical methods for natural samples and of the same order for the certified content of a reference material, thus indicating the accuracy of the ICP-MS procedure without the need of using isotope dilution. A series of mineral and tap waters from different parts of Spain and Morocco were analysed.

  3. METHOD FOR PREPARING URANIUM MONOCARBIDE-PLUTONIUM MONOCARBIDE SOLID SOLUTION

    DOEpatents

    Ogard, A.E.; Leary, J.A.; Maraman, W.J.

    1963-03-19

    A method is given for preparing solid solutions of uranium monocarbide- plutonium monocarbide. In this method, the powder form of uranium dioxide, plutonium dioxide, and graphite are mixed in a ratio determined by the equation: xUO/sub 2/ + yPuO/sub 2/ + (2+z)C yields UxPu/sub y/C/sub z/ +2CO, where x + y equ al 1.0 and z is greater than 0.9 but less than 1.0. The resulting mixture is compacted and heated in a vacuum at a temperature of 1850 deg C. (AEC)

  4. Application of bimodal distribution to the detection of changes in uranium concentration in drinking water collected by random daytime sampling method from a large water supply zone.

    PubMed

    Garboś, Sławomir; Święcicka, Dorota

    2015-11-01

    The random daytime (RDT) sampling method was used for the first time in the assessment of average weekly exposure to uranium through drinking water in a large water supply zone. Data set of uranium concentrations determined in 106 RDT samples collected in three runs from the water supply zone in Wroclaw (Poland), cannot be simply described by normal or log-normal distributions. Therefore, a numerical method designed for the detection and calculation of bimodal distribution was applied. The extracted two distributions containing data from the summer season of 2011 and the winter season of 2012 (nI=72) and from the summer season of 2013 (nII=34) allowed to estimate means of U concentrations in drinking water: 0.947 μg/L and 1.23 μg/L, respectively. As the removal efficiency of uranium during applied treatment process is negligible, the effect of increase in uranium concentration can be explained by higher U concentration in the surface-infiltration water used for the production of drinking water. During the summer season of 2013, heavy rains were observed in Lower Silesia region, causing floods over the territory of the entire region. Fluctuations in uranium concentrations in surface-infiltration water can be attributed to releases of uranium from specific sources - migration from phosphate fertilizers and leaching from mineral deposits. Thus, exposure to uranium through drinking water may increase during extreme rainfall events. The average chronic weekly intakes of uranium through drinking water, estimated on the basis of central values of the extracted normal distributions, accounted for 3.2% and 4.1% of tolerable weekly intake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. 3 CFR - Continuation of the National Emergency With Respect to the Risk of Nuclear Proliferation Created...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to the Risk of Nuclear Proliferation Created by the Accumulation of Weapons-Usable Fissile Material... Proliferation Created by the Accumulation of Weapons-Usable Fissile Material in the Territory of the Russian... Disposition of Highly Enriched Uranium Extracted from Nuclear Weapons, dated February 18, 1993, and related...

  6. 3 CFR - Continuation of the National Emergency With Respect to the Risk of Nuclear Proliferation Created...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... to the Risk of Nuclear Proliferation Created by the Accumulation of Weapons-usable Fissile Material... Proliferation Created by the Accumulation of Weapons-usable Fissile Material in the Territory of the Russian... Disposition of Highly Enriched Uranium Extracted from Nuclear Weapons, dated February 18, 1993, and related...

  7. 77 FR 37261 - Continuation of the National Emergency With Respect to the Risk of Nuclear Proliferation Created...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-21

    ... National Emergency With Respect to the Risk of Nuclear Proliferation Created by the Accumulation of Weapons... Extracted from Nuclear Weapons, dated February 18, 1993, and related contracts and agreements (collectively... derived from nuclear weapons to low enriched uranium for peaceful commercial purposes. The order invoked...

  8. THE CHEMICAL ANALYSIS OF TERNARY ALLOYS OF PLUTONIUM WITH MOLYBDENUM AND URANIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, G.; Woodhead, J.; Jenkins, E.N.

    1958-09-01

    It is shown that the absorptiometric determination of molybdenum as thiocyanate may be used in the presence of plutonium. Molybdenum interferes with previously published methods for determining uranium and plutonium but conditlons have been established for its complete removal by solvent extraction of the compound with alpha -benzoin oxime. The previous methods for uranium and plutonium are satisfactory when applied to the residual aqueous phase following this solvent extraction. (auth)

  9. Comparison of solvent extraction and extraction chromatography resin techniques for uranium isotopic characterization in high-level radioactive waste and barrier materials.

    PubMed

    Hurtado-Bermúdez, Santiago; Villa-Alfageme, María; Mas, José Luis; Alba, María Dolores

    2018-07-01

    The development of Deep Geological Repositories (DGP) to the storage of high-level radioactive waste (HLRW) is mainly focused in systems of multiple barriers based on the use of clays, and particularly bentonites, as natural and engineered barriers in nuclear waste isolation due to their remarkable properties. Due to the fact that uranium is the major component of HLRW, it is required to go in depth in the analysis of the chemistry of the reaction of this element within bentonites. The determination of uranium under the conditions of HLRW, including the analysis of silicate matrices before and after the uranium-bentonite reaction, was investigated. The performances of a state-of-the-art and widespread radiochemical method based on chromatographic UTEVA resins, and a well-known and traditional method based on solvent extraction with tri-n-butyl phosphate (TBP), for the analysis of uranium and thorium isotopes in solid matrices with high concentrations of uranium were analysed in detail. In the development of this comparison, both radiochemical approaches have an overall excellent performance in order to analyse uranium concentration in HLRW samples. However, due to the high uranium concentration in the samples, the chromatographic resin is not able to avoid completely the uranium contamination in the thorium fraction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Extraction of reduced alteration information based on Aster data: a case study of the Bashibulake uranium ore district

    NASA Astrophysics Data System (ADS)

    Ye, Fa-wang; Liu, De-chang

    2008-12-01

    Practices of sandstone-type uranium exploration in recent years in China indicate that the uranium mineralization alteration information is of great importance for selecting a new uranium target or prospecting in outer area of the known uranium ore district. Taking a case study of BASHIBULAKE uranium ore district, this paper mainly presents the technical minds and methods of extracting the reduced alteration information by oil and gas in BASHIBULAKE ore district using ASTER data. First, the regional geological setting and study status in BASHIBULAKE uranium ore district are introduced in brief. Then, the spectral characteristics of altered sandstone and un-altered sandstone in BASHIBULAKE ore district are analyzed deeply. Based on the spectral analysis, two technical minds to extract the remote sensing reduced alteration information are proposed, and the un-mixing method is introduced to process ASTER data to extract the reduced alteration information in BASHIBULAKE ore district. From the enhanced images, three remote sensing anomaly zones are discovered, and their geological and prospecting significances are further made sure by taking the advantages of multi-bands in SWIR of ASTER data. Finally, the distribution and intensity of the reduced alteration information in Cretaceous system and its relationship with the genesis of uranium deposit are discussed, the specific suggestions for uranium prospecting orientation in outer of BASHIBULAKE ore district are also proposed.

  11. In-line assay monitor for uranium hexafluoride

    DOEpatents

    Wallace, Steven A.

    1981-01-01

    An in-line assay monitor for determining the content of uranium-235 in a uranium hexafluoride gas isotopic separation system is provided which removes the necessity of complete access to the operating parameters of the system for determining the uranium-235 content. The monitor is intended for uses such as safeguard applications to assure that weapons grade uranium is not being produced in an enrichment cascade. The method and monitor for carrying out the method involve cooling of a radiation pervious chamber connected in fluid communication with the selected point in the system to withdraw a specimen and solidify the specimen in the chamber. The specimen is irradiated by means of an ionizing radiation source of energy different from that of the 185 keV gamma emissions from the uranium-235 present in the specimen. Simultaneously, the gamma emissions from the uranium-235 of the specimen and the source emissions transmitted through the sample are counted and stored in a multiple channel analyzer. The uranium-235 content of the specimen is determined from the comparison of the accumulated 185 keV energy counts and the reference energy counts. The latter is used to measure the total uranium isotopic content of the specimen. The process eliminates the necessity of knowing the system operating conditions and yet obtains the necessary data without need for large scintillation crystals and sophisticated mechanical designs.

  12. Dating of the Basal Aurignacian Sandwich at Abric Romanı́ (Catalunya, Spain) by Radiocarbon and Uranium-Series

    USGS Publications Warehouse

    Bischoff, James L.; Ludwig, Kenneth R.; Garcia, Jose Francisco; Carbonell, E.; Vaquero, Manola; Stafford, Thomas W.; Jull, A.J.T.

    1994-01-01

    Abric Romani{dotless}??, a rock shelter located near Barcelona, Spain, contains a charcoal-bearing basal Aurignacian occupation level sandwiched between beds of moss-generated carbonate. The Aurignacian culture is the oldest artefact industry in Europe with which anatomically modern human remains have been associated. Radiocarbon analysis of charcoal fragments by accelerator mass spectrometry (AMS) dates the basal Aurignacian to about 37 ?? 2 ka bp. U-series analyses by alpha spectrometry (AS) and mass spectrometry (MS) date the enclosing carbonate to 43 ?? 1 ka bp. These results confirm the great antiquity of the Aurignacian in northern Spain and support the similar AMS dates from El Castillo and l'Arbreda caves. They also show that radiocarbon dates are significantly younger than U-series at 40 ka bp, as predicted by theory. ?? 1994 Academic Press. All rights reserved.

  13. Radioactive equilibrium in ancient marine sediments

    USGS Publications Warehouse

    Breger, I.A.

    1955-01-01

    Radioactive equilibrium in eight marine sedimentary formations has been studied by means of direct determinations of uranium, radium and thorium. Alpha-particle counting has also been carried out in order to cross-calibrate thick-source counting techniques. The maximum deviation from radioactive equilibrium that has been noted is 11 per cent-indicating that there is probably equilibrium in all the formations analyzed. Thick-source alpha-particle counting by means of a proportional counter or an ionization chamber leads to high results when the samples contain less than about 10 p.p.m. of uranium. For samples having a higher content of uranium the results are in excellent agreement with each other and with those obtained by direct analytical techniques. The thorium contents that have been obtained correspond well to the average values reported in the literature. The uranium content of marine sediments may be appreciably higher than the average values that have been reported for sedimentary rocks. Data show that there is up to fourteen times the percentage of uranium as of thorium in the formations studied and that the percentage of thorium never exceeds that of uranium. While the proximity of a depositional environment to a land mass may influence the concentration of uranium in a marine sediment, this is not true with thorium. ?? 1955.

  14. RECOVERY OF URANIUM FROM AQUEOUS PHOSPHATE-CONTAINING SOLUTIONS

    DOEpatents

    Igelsrud, I.; Stephen, E.F.

    1959-08-11

    ABS>A method is presented for recovering hexavalent uranium from an acidic phosphaie solution. A high molecular weight amine, such as a mixture of cccoanut oil amines, is added to the solution in such amount as to give a ratio of about 2000 parts by weight of amine to 1 part by weight of uranium. The uranium is precipitated with the amines and the whole filtered from the solution. The uranium is leached from the amine mass by washing with aqueous sodium carbonate solution; and the amine mixture is available for reuse.

  15. Galvanic cell for processing of used nuclear fuel

    DOEpatents

    Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.

    2017-02-07

    A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.

  16. Electrochemical fluorination for processing of used nuclear fuel

    DOEpatents

    Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.

    2016-07-05

    A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.

  17. Uptake of Uranium from Seawater by Amidoxime-Based Polymeric Adsorbent: Field Experiments, Modeling, and Updated Economic Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jungseung; Tsouris, Constantinos; Oyola, Yatsandra

    2014-04-09

    Uranium recovery from seawater has been investigated for several decades for the purpose of securing nuclear fuel for energy production. In this study, field column experiments have been performed at the Marine Sciences Laboratory of the Pacific Northwest National Laboratory (PNNL) using a laboratory-proven, amidoxime-based polymeric adsorbent developed at the Oak Ridge National Laboratory (ORNL). The adsorbent was packed either in in-line filters or in flow-through columns. The maximum amount of uranium uptake from seawater was 3.3 mg of U/g of adsorbent after 8 weeks of contact between the adsorbent and seawater. This uranium adsorption amount was about 3 timesmore » higher than the maximum amount achieved in this study by a leading adsorbent developed at the Japan Atomic Energy Agency (JAEA).« less

  18. Assessment of environmental and occupational exposure to heavy metals in Taranto and other provinces of Southern Italy by means of scalp hair analysis.

    PubMed

    Buononato, Elena Viola; De Luca, Daniela; Galeandro, Innocenzo Cataldo; Congedo, Maria Luisa; Cavone, Domenica; Intranuovo, Graziana; Guastadisegno, Chiara Monica; Corrado, Vincenzo; Ferri, Giovanni Maria

    2016-06-01

    The monitoring of heavy metals in industrialized areas to study their association with different occupational and environmental factors is carried out in different ways. In this study, scalp hair analysis was used for the assessment of exposure to these metals in the industrial city of Taranto, characterized by a severe environmental pollution. The highest median values were observed for aluminum, barium, cadmium, lead, mercury, and uranium. Moreover, in the industrial area of Taranto, high levels of barium, cadmium, lead, mercury, nickel, and silver were observed in comparison with other Apulia areas. The risk odds ratios (ORs) for observing values above the 50th percentile were elevated for mercury and fish consumption, uranium and milk consumption, lead and female sex, and aluminum and mineral water consumption. No significant increased risk was observed for occupational activities. In a dendrogram of a cluster analysis, three clusters were observed for the different areas of Taranto (Borgo, San Vito, and Statte). A scree plot and score variables plot underline the presence of two principal components: the first regarding antimony, lead, tin, aluminum and silver; the second regarding mercury and uranium. The observed clusters (Borgo, San Vito, and Statte) showed that lead, antimony, tin, aluminum, and silver were the main component. The highest values above the 50th percentile of these minerals, especially lead, were observed in the Borgo area. The observed metal concentration in the Borgo area is compatible with the presence in Taranto of a military dockyard and a reported increase of lung cancer risk among residents of that area.

  19. METHOD FOR THE REDUCTION OF URANIUM COMPOUNDS

    DOEpatents

    Cooke, W.H.; Crawford, J.W.C.

    1959-05-12

    An improved technique of preparing massive metallic uranium by the reaction at elevated temperature between an excess of alkali in alkaline earth metal and a uranium halide, such ss uranium tetrafluoride is presented. The improvement comprises employing a reducing atmosphere of hydrogen or the like, such as coal gas, in the vessel during the reduction stage and then replacing the reducing atmosphere with argon gas prior to cooling to ambient temperature.

  20. ELECTROCHEMICAL DECONTAMINATION AND RECOVERY OF URANIUM VALUES

    DOEpatents

    McLaren, J.A.; Goode, J.H.

    1958-05-13

    An electrochemical process is described for separating uranium from fission products. The method comprises subjecting the mass of uranium to anodic dissolution in an electrolytic cell containing aqueous alkali bicarbonate solution as its electrolyte, thereby promoting a settling from the solution of a solid sludge from about the electrodes and separating the resulting electrolyte solution containing the anodically dissolved uranium from the sludge which contains the rare earth fission products.

  1. Multisource geological data mining and its utilization of uranium resources exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Jie-lin

    2009-10-01

    Nuclear energy as one of clear energy sources takes important role in economic development in CHINA, and according to the national long term development strategy, many more nuclear powers will be built in next few years, so it is a great challenge for uranium resources exploration. Research and practice on mineral exploration demonstrates that utilizing the modern Earth Observe System (EOS) technology and developing new multi-source geological data mining methods are effective approaches to uranium deposits prospecting. Based on data mining and knowledge discovery technology, this paper uses multi-source geological data to character electromagnetic spectral, geophysical and spatial information of uranium mineralization factors, and provides the technical support for uranium prospecting integrating with field remote sensing geological survey. Multi-source geological data used in this paper include satellite hyperspectral image (Hyperion), high spatial resolution remote sensing data, uranium geological information, airborne radiometric data, aeromagnetic and gravity data, and related data mining methods have been developed, such as data fusion of optical data and Radarsat image, information integration of remote sensing and geophysical data, and so on. Based on above approaches, the multi-geoscience information of uranium mineralization factors including complex polystage rock mass, mineralization controlling faults and hydrothermal alterations have been identified, the metallogenic potential of uranium has been evaluated, and some predicting areas have been located.

  2. Recovery of fissile materials from nuclear wastes

    DOEpatents

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  3. Uranium series isotopes concentration in sediments at San Marcos and Luis L. Leon reservoirs, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Méndez-García, C.; Renteria-Villalobos, M.; García-Tenorio, R.; Montero-Cabrera, M. E.

    2014-07-01

    Spatial and temporal distribution of the radioisotopes concentrations were determined in sediments near the surface and core samples extracted from two reservoirs located in an arid region close to Chihuahua City, Mexico. At San Marcos reservoir one core was studied, while from Luis L. Leon reservoir one core from the entrance and another one close to the wall were investigated. 232Th-series, 238U-series, 40K and 137Cs activity concentrations (AC, Bq kg-1) were determined by gamma spectrometry with a high purity Ge detector. 238U and 234U ACs were obtained by liquid scintillation and alpha spectrometry with a surface barrier detector. Dating of core sediments was performed applying CRS method to 210Pb activities. Results were verified by 137Cs AC. Resulting activity concentrations were compared among corresponding surface and core sediments. High 238U-series AC values were found in sediments from San Marcos reservoir, because this site is located close to the Victorino uranium deposit. Low AC values found in Luis L. Leon reservoir suggest that the uranium present in the source of the Sacramento - Chuviscar Rivers is not transported up to the Conchos River. Activity ratios (AR) 234U/overflow="scroll">238U and 238U/overflow="scroll">226Ra in sediments have values between 0.9-1.2, showing a behavior close to radioactive equilibrium in the entire basin. 232Th/overflow="scroll">238U, 228Ra/overflow="scroll">226Ra ARs are witnesses of the different geological origin of sediments from San Marcos and Luis L. Leon reservoirs.

  4. EPA Method: Rapid Radiochemical Method for Americium-241, Radium-226, Plutonium-238/-239, Radiostronium, and Isotopic Uranium in Water for Environmental Restoration Following Homeland Security Events

    EPA Pesticide Factsheets

    SAM lists this method for the qualitative determination of Americium-241, Radium-226, Plutonium-238, Plutonium-239 and isotopic uranium in drinking water samples using alpha spectrometry and radiostrontium using beta counting.

  5. Method of assaying uranium with prompt fission and thermal neutron borehole logging adjusted by borehole physical characteristics

    DOEpatents

    Barnard, Ralston W.; Jensen, Dal H.

    1982-01-01

    Uranium formations are assayed by prompt fission neutron logging techniques. The uranium in the formation is proportional to the ratio of epithermal counts to thermal or eqithermal dieaway. Various calibration factors enhance the accuracy of the measurement.

  6. Spectroscopic studies of uranium species for environmental decontamination applications

    NASA Astrophysics Data System (ADS)

    Eng, Charlotte

    After the Cold War, Department of Energy began to concentrate its efforts on cleanup of former nuclear material processing facilities, especially uranium-contaminated groundwater and soil. This research aims to study uranium association to both organic and inorganic compounds found in the contaminated environment in the hopes that the information gathered can be applied to the development and optimization of cost-effective remediation techniques. Spectroscopic and electrochemical methods will be employed to examine the behavior of uranium in given conditions to further our understanding of its impact on the environment. Uranium found in groundwater and soil bind with various ligands, especially organic ligands present in the environment due to natural sources (e.g. metabolic by-products or degradation of plants and animals) or man-made sources (e.g. chelating agents used in operating or cleanup of uranium processing facilities). We selected reasonable analogs of naturally occurring matter and studied their structure, chemical and electrochemical behavior and found that the structure of uranyl complexes depends heavily on the nature of the ligand and environmental factors such as pH. Association of uranium-organic complexes with anaerobic bacteria, Clostridium sp. was studied to establish if the bacteria can effectively bioreduce uranium while going through normal bacterial activity. It was found that the nature of the organic ligand affected the bioavailability and toxicity of the uranium on the bacteria. In addition, we have found that the type of iron corrosion products and uranyl species present on the surface of corroded steel depended on various environmental factors, which subsequently affected the removal rate of uranium by a citric acid/hydrogen peroxide/deionized water cleaning process. The method was found to remove uranium from only the topmost corrosion layers and residual uranium could be found (a) deeper in the corrosion layers where it is occluded by the steel corrosion products or (b) in areas where the dissolved uranium/iron species, the products generated by the dissolution power of citric acid, was not properly rinsed away.

  7. Use of Sodium Dithionite as Part of a More Efficient Groundwater Restoration Method Following In-situ Recovery of Uranium at the Smith-Ranch Highland Site in Wyoming

    NASA Astrophysics Data System (ADS)

    Harris, R.; Reimus, P. W.; Ware, D.; Williams, K.; Chu, D.; Perkins, G.; Migdissov, A. A.; Bonwell, C.

    2017-12-01

    Uranium is primarily mined for nuclear power production using an aqueous extraction technique called in-situ recovery (ISR). ISR can pollute groundwater with residual uranium and other heavy metals. Reverse osmosis and groundwater sweep are currently used to restore groundwater after ISR mining, but are not permanent solutions. Sodium dithionite is being tested as part of a method to more permanently restore groundwater after ISR mining at the Smith-Ranch Highland site in Wyoming. Sodium dithionite is a chemical reductant that can reduce sediments that were oxidized during ISR. The reduced sediments can reduce soluble uranium (VI) in the groundwater to insoluble uranium (IV). Laboratory studies that use sodium dithionite to treat sediments and waters from the site may help predict how it will behave during a field deployment. An aqueous batch experiment showed that sodium dithionite reduced uranium in post-mined untreated groundwater from 38 ppm to less than 1 ppm after 1 day. A sediment reduction batch experiment showed that sodium dithionite-treated sediments were capable of reducing uranium in post-mined untreated groundwater from 38 ppm to 2 ppm after 7 days. One column experiment is showing post-mined sodium dithionite-treated sediments are capable of reducing uranium in post-mined groundwater for over 30 pore volumes past the initial injection. While these results are promising for field deployments of sodium dithionite, another column experiment with sodium dithionite-treated sediments containing uranium rich organic matter is showing net production of uranium instead of uranium uptake. Sodium dithionite appears to liberate uranium from the organic matter. Another sediment reduction experiment is being conducted to further investigate this hypothesis. These experiments are helping guide plans for field deployments of sodium dithionite at uranium ISR mining sites.

  8. Embedded Fragments from U.S. Military Personnel—Chemical Analysis and Potential Health Implications

    PubMed Central

    Centeno, José A.; Rogers, Duane A.; van der Voet, Gijsbert B.; Fornero, Elisa; Zhang, Lingsu; Mullick, Florabel G.; Chapman, Gail D.; Olabisi, Ayodele O.; Wagner, Dean J.; Stojadinovic, Alexander; Potter, Benjamin K.

    2014-01-01

    Background: The majority of modern war wounds are characterized by high-energy blast injuries containing a wide range of retained foreign materials of a metallic or composite nature. Health effects of retained fragments range from local or systemic toxicities to foreign body reactions or malignancies, and dependent on the chemical composition and corrosiveness of the fragments in vivo. Information obtained by chemical analysis of excised fragments can be used to guide clinical decisions regarding the need for fragment removal, to develop therapeutic interventions, and to better anticipate future medical problems from retained fragment related injuries. In response to this need, a new U.S Department of Defense (DoD) directive has been issued requiring characterization of all removed fragments to provide a database of fragment types occurring in combat injuries. Objectives: The objective of this study is to determine the chemical composition of retained embedded fragments removed from injured military personnel, and to relate results to histological findings in tissue adjacent to fragment material. Methods: We describe an approach for the chemical analysis and characterization of retained fragments and adjacent tissues, and include case examples describing fragments containing depleted uranium (DU), tungsten (W), lead (Pb), and non-metal foreign bodies composed of natural and composite materials. Fragments obtained from four patients with penetrating blast wounds to the limbs were studied employing a wide range of chemical and microscopy techniques. Available adjacent tissues from three of the cases were histologically, microscopically, and chemically examined. The physical and compositional properties of the removed foreign material surfaces were examined with energy dispersive x-ray fluorescence spectrometry (EDXRF), scanning electron microscopy (SEM), laser ablation inductively-coupled plasma mass-spectrometry (LA-ICP-MS), and confocal laser Raman microspectroscopy (CLRM). Quantitative chemical analysis of both fragments and available tissues was conducted employing ICP-MS. Results: Over 800 fragments have been characterized and included as part of the Joint Pathology Center Embedded Fragment Registry. Most fragments were obtained from penetrating wounds sustained to the extremities, particularly soft tissue injuries. The majority of the fragments were primarily composed of a single metal such as iron, copper, or aluminum with traces of antimony, titanium, uranium, and lead. One case demonstrated tungsten in both the fragment and the connected tissue, together with lead. Capsular tissue and fragments from a case from the 1991 Kuwait conflict showed evidence of uranium that was further characterized by uranium isotopic ratios analysis to contain depleted uranium. Conclusions: The present study provides a systematic approach for obtaining a full chemical characterization of retained embedded fragments. Given the vast number of combat casualties with retained fragments, it is expected that fragment analysis will have significant implications for the optimal short and long-term care of wounded service members. PMID:24464236

  9. The mesoproterozoic Beaverhead impact structure and its tectonic setting, Montana-Idaho: 40Ar/39 and U-Pb isotopic constraints

    USGS Publications Warehouse

    Kellogg, K.S.; Snee, L.W.; Unruh, D.M.

    2003-01-01

    New 40Ar/39Ar and uranium-lead (U-Pb) zircon data from the Beaverhead impact structure, first identified by extensive shatter coning of Proterozoic quartzite and gneiss from the Beaverhead Mountains near the Montana-Idaho border, indicate that the structure formed at or after 900 Ma. The 40Ar/39Ar age spectra from fine-grained muscovite and biotite from a breccia zone in high-grade gneiss show significant argon loss but yield dates for highest-temperature steps that cluster between 899 and 908 Ma. The dated minerals probably formed by recrystallization of impact glass, so on both geologic and isotopic grounds, the dates probably represent the minimum age of impact. U-Pb data for zircons from the same breccia are strongly discordant and yield an upper intercept apparent age of 2464 ?? 56 Ma and a lower intercept apparent age of 779 ?? 69 Ma. Another brecciated gneiss about 7 km to the northeast that does not contain secondary mica does contain zircons that yield a concordant apparent age of 2455 ?? 9 Ma. Nearby gneiss that neither is brecciated nor contains shatter cones yields an apparent age of 2451 ?? 46 Ma. The 40Ar/39Ar results constrain the age of the shatter-coned quartzite and indicate that it is >900 Ma and possibly correlative with the Gunsight Formation of the Mesoproterozoic Lemhi Group. The upper intercept U-Pb age of ???2450 Ma from all three dated samples also shows that the Paleoproterozoic basement rocks of the area are among the youngest in the mostly Archean Wyoming province of North America. The impact site lies near the margin of the province, along the northeast-trending Great Falls tectonic zone, and the relatively young crustal age may reflect Early Proterozoic marginal accretion.

  10. Solving the Martian meteorite age conundrum using micro-baddeleyite and launch-generated zircon.

    PubMed

    Moser, D E; Chamberlain, K R; Tait, K T; Schmitt, A K; Darling, J R; Barker, I R; Hyde, B C

    2013-07-25

    Invaluable records of planetary dynamics and evolution can be recovered from the geochemical systematics of single meteorites. However, the interpreted ages of the ejected igneous crust of Mars differ by up to four billion years, a conundrum due in part to the difficulty of using geochemistry alone to distinguish between the ages of formation and the ages of the impact events that launched debris towards Earth. Here we solve the conundrum by combining in situ electron-beam nanostructural analyses and U-Pb (uranium-lead) isotopic measurements of the resistant micromineral baddeleyite (ZrO2) and host igneous minerals in the highly shock-metamorphosed shergottite Northwest Africa 5298 (ref. 8), which is a basaltic Martian meteorite. We establish that the micro-baddeleyite grains pre-date the launch event because they are shocked, cogenetic with host igneous minerals, and preserve primary igneous growth zoning. The grains least affected by shock disturbance, and which are rich in radiogenic Pb, date the basalt crystallization near the Martian surface to 187 ± 33 million years before present. Primitive, non-radiogenic Pb isotope compositions of the host minerals, common to most shergottites, do not help us to date the meteorite, instead indicating a magma source region that was fractionated more than four billion years ago to form a persistent reservoir so far unique to Mars. Local impact melting during ejection from Mars less than 22 ± 2 million years ago caused the growth of unshocked, launch-generated zircon and the partial disturbance of baddeleyite dates. We can thus confirm the presence of ancient, non-convecting mantle beneath young volcanic Mars, place an upper bound on the interplanetary travel time of the ejected Martian crust, and validate a new approach to the geochronology of the inner Solar System.

  11. Improving gross count gamma-ray logging in uranium mining with the NGRS probe

    NASA Astrophysics Data System (ADS)

    Carasco, C.; Pérot, B.; Ma, J.-L.; Toubon, H.; Dubille-Auchère, A.

    2018-01-01

    AREVA Mines and the Nuclear Measurement Laboratory of CEA Cadarache are collaborating to improve the sensitivity and precision of uranium concentration measurement by means of gamma ray logging. The determination of uranium concentration in boreholes is performed with the Natural Gamma Ray Sonde (NGRS) based on a NaI(Tl) scintillation detector. The total gamma count rate is converted into uranium concentration using a calibration coefficient measured in concrete blocks with known uranium concentration in the AREVA Mines calibration facility located in Bessines, France. Until now, to take into account gamma attenuation in a variety of boreholes diameters, tubing materials, diameters and thicknesses, filling fluid densities and compositions, a semi-empirical formula was used to correct the calibration coefficient measured in Bessines facility. In this work, we propose to use Monte Carlo simulations to improve gamma attenuation corrections. To this purpose, the NGRS probe and the calibration measurements in the standard concrete blocks have been modeled with MCNP computer code. The calibration coefficient determined by simulation, 5.3 s-1.ppmU-1 ± 10%, is in good agreement with the one measured in Bessines, 5.2 s-1.ppmU-1. Based on the validated MCNP model, several parametric studies have been performed. For instance, the rock density and chemical composition proved to have a limited impact on the calibration coefficient. However, gamma self-absorption in uranium leads to a nonlinear relationship between count rate and uranium concentration beyond approximately 1% of uranium weight fraction, the underestimation of the uranium content reaching more than a factor 2.5 for a 50 % uranium weight fraction. Next steps will concern parametric studies with different tubing materials, diameters and thicknesses, as well as different borehole filling fluids representative of real measurement conditions.

  12. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    PubMed

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.

  13. Reduction of date microbial load with ozone

    PubMed Central

    Farajzadeh, Davood; Qorbanpoor, Ali; Rafati, Hasan; Isfeedvajani, Mohsen Saberi

    2013-01-01

    Background: Date is one of the foodstuffs that are produced in tropical areas and used worldwide. Conventionally, methyl bromide and phosphine are used for date disinfection. The toxic side effects of these usual disinfectants have led food scientists to consider safer agents such as ozone for disinfection, because food safety is a top priority. The present study was performed to investigate the possibility of replacing common conventional disinfectants with ozone for date disinfection and microbial load reduction. Materials and Methods: In this experimental study, date samples were ozonized for 3 and 5 hours with 5 and 10 g/h concentrations and packed. Ozonized samples were divided into two groups and kept in an incubator which was maintained at 25°C and 40°C for 9 months. During this period, every 3 month, microbial load (bacteria, mold, and yeast) were examined in ozonized and non-ozonized samples. Results: This study showed that ozonization with 5 g/h for 3 hours, 5 g/h for 5 hours, 10 g/h for 3 hours, and 10 g/h for 5 hours leads to about 25%, 25%, 53%, and 46% reduction in date mold and yeast load and about 6%, 9%, 76%, and 74.7% reduction in date bacterial load at baseline phase, respectively. Appropriate concentration and duration of ozonization for microbial load reduction were 10 g/h and 3 hours. Conclusion: Date ozonization is an appropriate method for microbial load reduction and leads to an increase in the shelf life of dates. PMID:24124432

  14. Elution of uranium and transition metals from amidoxime-based polymer adsorbents for sequestering uranium from seawater

    DOE PAGES

    Pan, Horng-Bin; Kuo, Li-Jung; Miyamoto, Naomi; ...

    2015-11-30

    High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na 2CO 3 H 2O 2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposuremore » in real seawater. The Na 2CO 3 H 2O 2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater. Tiron (4,5-Dihydroxy-1,3-benzenedisulfonic acid disodium salt, 1 M) can remove iron from the adsorbent very effectively at pH around 7. The coordination between vanadium (V) and amidoxime is also discussed based on our 51V NMR data.« less

  15. Uranium isotopes quantitatively determined by modified method of atomic absorption spectrophotometry

    NASA Technical Reports Server (NTRS)

    Lee, G. H.

    1967-01-01

    Hollow-cathode discharge tubes determine the quantities of uranium isotopes in a sample by using atomic absorption spectrophotometry. Dissociation of the uranium atoms allows a large number of ground state atoms to be produced, absorbing the incident radiation that is different for the two major isotopes.

  16. Method of assaying uranium with prompt fission and thermal neutron borehole logging adjusted by borehole physical characteristics. [Patient application

    DOEpatents

    Barnard, R.W.; Jensen, D.H.

    1980-11-05

    Uranium formations are assayed by prompt fission neutron logging techniques. The uranium in the formation is proportional to the ratio of epithermal counts to thermal or epithermal dieaway. Various calibration factors enhance the accuracy of the measurement.

  17. SLURRY SOLVENT EXTRACTION PROCESS FOR THE RECOVERY OF METALS FROM SOLID MATERIALS

    DOEpatents

    Grinstead, R.R.

    1959-01-20

    A solvent extraction process is described for recovering uranium from low grade uranium bearing minerals such as carnotit or shale. The finely communited ore is made up as an aqueous slurry containing the necessary amount of acid to solubilize the uranium and simultaneously or subsequently contacted with an organic solvent extractant such as the alkyl ortho-, or pyro phosphoric acids, alkyl phosphites or alkyl phosphonates in combination with a diluent such as kerosene or carbon tetrachlorids. The extractant phase is separated from the slurry and treated by any suitable process to recover the uranium therefrom. One method for recovering the uranium comprises treating the extract with aqueous HF containing a reducing agent such as ferrous sulfate, which reduces the uranium and causes it to be precipitated as uranium tetrafluoride.

  18. METHOD OF JACKETING URANIUM BODIES

    DOEpatents

    Maloney, J.O.; Haines, E.B.; Tepe, J.B.

    1958-08-26

    An improved process is presented for providing uranium slugs with thin walled aluminum jackets. Since aluminum has a slightiy higher coefficient of thermal expansion than does uraaium, both uranium slugs and aluminum cans are heated to an elevated temperature of about 180 C, and the slug are inserted in the cans at that temperature. During the subsequent cooling of the assembly, the aluminum contracts more than does the uranium and a tight shrink fit is thus assured.

  19. ELECTROLYTIC CLADDING OF ZIRCONIUM ON URANIUM

    DOEpatents

    Wick, J.J.

    1959-09-22

    A method is presented for coating uranium with zircoalum by rendering the uranium surface smooth and oxidefree, immersing it in a molten electrolytic bath in NaCI, K/sub 2/ZrF/sub 6/, KF, and ZrO/sub 2/, and before the article reaches temperature equilibrium with the bath, applying an electrolyzing current of 60 amperes per square dectmeter at approximately 3 volts to form a layer of zirconium metal on the uranium.

  20. SR-XFA of uranium-containing materials. A case of Bazhenov formation rocks exploration

    NASA Astrophysics Data System (ADS)

    Phedorin, M. A.; Bobrov, V. A.; Tchebykin, Ye. P.; Melgunov, M. S.

    2000-06-01

    When an X-ray fluorescent analysis (XFA) is carried out, errors are possible because fluorescent K-lines of "light" elements and L-lines of some "dark" elements can overlap in energy domain. With certain contents of these elements and insufficient resolution of the spectrometer, this leads to considerable errors of determination. An example is the overlapping of a large number of uranium (U) L-lines and Rb, Nb, Mo K-lines. In this paper a procedure is suggested to correct such overlapping. It was tested on uranium-containing rock samples. These samples represent the oil-producing Bazhenov rock formation, which is characterized by organic matter accumulated in abundance and accompanied by "organophile" elements, including U. The procedure is based on scanning the energy of initial exciting X-radiation. This may be regarded advisable only in the XFA versions that use synchrotron radiation — SR-XFA. As a result of this investigation, geochemical characteristics of the Bazhenov formation rocks are demonstrated and the efficiency of energy scanning procedure in determining both Rb, Nb, Mo and U contents is revealed (using comparison with other methods). The energy scanning procedure also works in the presence of L-lines of some other dark elements (Pb, Th, etc.) in the energy domain of K-lines of As-Mo.

  1. Isotopic analysis of uranium in natural waters by alpha spectrometry

    USGS Publications Warehouse

    Edwards, K.W.

    1968-01-01

    A method is described for the determination of U234/U238 activity ratios for uranium present in natural waters. The uranium is coprecipitated from solution with aluminum phosphate, extracted into ethyl acetate, further purified by ion exchange, and finally electroplated on a titanium disc for counting. The individual isotopes are determined by measurement of the alpha-particle energy spectrum using a high resolution low-background alpha spectrometer. Overall chemical recovery of about 90 percent and a counting efficiency of 25 percent allow analyses of water samples containing as little as 0.10 ?g/l of uranium. The accuracy of the method is limited, on most samples, primarily by counting statistics.

  2. Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin.

    PubMed

    Chen, Yanliang; Wei, Yuezhou; He, Linfeng; Tang, Fangdong

    2016-09-30

    To separate thorium and uranium in nitric acid solution using anion exchange process, a strong base silica-based anion exchange resin (SiPyR-N4) was synthesized. Batch experiments were conducted and the separation factor of thorium and uranium in 9M nitric acid was about 10. Ion exchange chromatography was applied to separate thorium and uranium in different ratios. Uranium could be eluted by 9M nitric acid and thorium was eluted by 0.1M nitric acid. It was proved that thorium and uranium can be separated and recovered successfully by this method. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Geological conditions of safe long-term storage and disposal of depleted uranium hexafluoride

    NASA Astrophysics Data System (ADS)

    Laverov, N. P.; Velichkin, V. I.; Omel'Yanenko, B. I.; Yudintsev, S. V.; Tagirov, B. R.

    2010-08-01

    The production of enriched uranium used in nuclear weapons and fuel for atomic power plants is accompanied by the formation of depleted uranium (DU), the amount of which annually increases by 35-40 kt. To date, more than 1.6 Mt DU has accumulated in the world. The main DU mass is stored as environ-mentally hazardous uranium hexafluoride (UF6), which is highly volatile and soluble in water with the formation of hydrofluoric acid. To ensure safe UF6 storage, it is necessary to convert this compound in chemically stable phases. The industrial reprocessing of UF6 into U3O8 and HF implemented in France is highly expensive. We substantiate the expediency of long-term storage of depleted uranium hexafluoride in underground repositories localized in limestone. On the basis of geochemical data and thermodynamic calculations, we show that interaction in the steel container-UF6-limestone-groundwater system gives rise to the development of a slightly alkaline reductive medium favorable for chemical reaction with formation of uraninite (UO2) and fluorite (CaF2). The proposed engineering solution not only ensures safe DU storage but also makes it possible to produce uraninite, which can be utilized, if necessary, in fast-neutron reactors. In the course of further investigations aimed at safe maintenance of DU, it is necessary to study the kinetics of conversion of UF6 into stable phases, involving laboratory and field experiments.

  4. Nuclear forensic analysis of a non-traditional actinide sample

    DOE PAGES

    Doyle, Jamie L.; Kuhn, Kevin John; Byerly, Benjamin; ...

    2016-06-15

    Nuclear forensic publications, performance tests, and research and development efforts typically target the bulk global inventory of intentionally safeguarded materials, such as plutonium (Pu) and uranium (U). Other materials, such as neptunium (Np), pose a nuclear security risk as well. Trafficking leading to recovery of an interdicted Np sample is a realistic concern especially for materials originating in countries that reprocesses fuel. Using complementary forensic methods, potential signatures for an unknown Np oxide sample were investigated. Measurement results were assessed against published Np processes to present hypotheses as to the original intended use, method of production, and origin for thismore » Np oxide.« less

  5. Nuclear forensic analysis of a non-traditional actinide sample.

    PubMed

    Doyle, Jamie L; Kuhn, Kevin; Byerly, Benjamin; Colletti, Lisa; Fulwyler, James; Garduno, Katherine; Keller, Russell; Lujan, Elmer; Martinez, Alexander; Myers, Steve; Porterfield, Donivan; Spencer, Khalil; Stanley, Floyd; Townsend, Lisa; Thomas, Mariam; Walker, Laurie; Xu, Ning; Tandon, Lav

    2016-10-01

    Nuclear forensic publications, performance tests, and research and development efforts typically target the bulk global inventory of intentionally safeguarded materials, such as plutonium (Pu) and uranium (U). Other materials, such as neptunium (Np), pose a nuclear security risk as well. Trafficking leading to recovery of an interdicted Np sample is a realistic concern especially for materials originating in countries that reprocesses fuel. Using complementary forensic methods, potential signatures for an unknown Np oxide sample were investigated. Measurement results were assessed against published Np processes to present hypotheses as to the original intended use, method of production, and origin for this Np oxide. Published by Elsevier B.V.

  6. Impact of the uranium (VI) speciation in mineralised urines on its extraction by calix[6]arene bearing hydroxamic groups used in chromatography columns.

    PubMed

    Baghdadi, S; Bouvier-Capely, C; Ritt, A; Peroux, A; Fevrier, L; Rebiere, F; Agarande, M; Cote, G

    2015-11-01

    Actinides determination in urine samples is part of the analyses performed to monitor internal contamination in case of an accident or a terrorist attack involving nuclear matter. Mineralisation is the first step of any of these analyses. It aims at reducing the sample volume and at destroying all organic compounds present. The mineralisation protocol is usually based on a wet ashing step, followed by actinides co-precipitation and a furnace ashing step, before redissolution and the quantification of the actinides by the appropriate techniques. Amongst the existing methods to perform the actinides co-precipitation, alkali-earth (typically calcium) precipitation is widely used. In the present work, the extraction of uranium(VI), plutonium(IV) and americium(III) from the redissolution solutions (called "mineralised urines") on calix[6]arene columns bearing hydroxamic groups was investigated as such an extraction is a necessary step before their determination by ICP-MS or alpha spectrometry. Difficulties were encountered in the transfer of uranium(VI) from raw to mineralised urines, with yield of transfer ranging between 0% and 85%, compared to about 90% for Pu and Am, depending on the starting raw urines. To understand the origin of such a difficulty, the speciation of uranium (VI) in mineralised urines was investigated by computer simulation using the MEDUSA software and the associated HYDRA database, compiled with recently published data. These calculations showed that the presence of phosphates in the "mineralised urines" leads to the formation of strong uranyl-phosphate complexes (such as UO2HPO4) which compete with the uranium (VI) extraction by the calix[6]arene bearing hydroxamic groups. The extraction constant of uranium (VI) by calix[6]arene bearing hydroxamic groups was determined in a 0.04 mol L(-1) sodium nitrate solution (logK=4.86±0.03) and implemented in an extraction model taking into account the speciation in the aqueous phase. This model allowed to simulate satisfactorily the experimental uranium extraction data and to support the preliminary conclusions about the role of the phosphates present in mineralised urines. These calculations also showed that the phosphate/calcium ratio is a key parameter as far as the efficiency of the uranium (VI) extraction by the calix[6]arene columns is concerned. It predicted that the addition of CaCl2 in mineralised urines would release uranium (VI) from phosphates by forming calcium (II)-phosphate complexes and thus facilitate the uranium (VI) extraction on calix[6]arene columns. These predictions were confirmed experimentally as the addition of 0.1 mol L(-1) CaCl2 to a mineralised urine containing naturally a high concentration of phosphate (typically 0.04 mol L(-1)) significantly increased the percentage of uranium (VI) extraction on the calix[6]arene columns. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Geodynamic simulation of ore-bearing geological structural units by the example of the Strel'tsovka uranium ore field

    NASA Astrophysics Data System (ADS)

    Petrov, V. A.; Leksin, A. B.; Pogorelov, V. V.; Rebetsky, Yu. L.; San'kov, V. A.; Ashurkov, S. V.; Rasskazov, I. Yu.

    2017-05-01

    Information on designing a 3D integrated model of the deflected mode (DM) of rock massif near the Strel'tsovka uranium ore field (SUOF) in the southeastern Transbaikal region is presented in the paper. This information is based on the contemporary stresses estimated by geostructural and tectonophysical techniques and by studying the seismotectonic deformation of the Earth's surface using the data on earthquake source mechanisms and GPS geodesy focused on the recognition of active faults. A combination of the results of geostructural, geophysical, geotectonic, and petrophysical research, as well as original maps of faulting and the arrangement of seismic dislocations and seismotectonic regimes (stress tensors), allowed us to design models of the structure, properties, and rheological links of the medium and to determine the boundary conditions for numerical tectonophysical simulation using the method of terminal elements. The computed 2D and 3D models of the state of the rock massif have been integrated into 3D GIS created on the basis of the ArcGIS 10 platform with an ArcGIS 3D-Analyst module. The simulation results have been corroborated by in situ observations on a regional scale (the Klichka seismodislocation, active from the middle Pliocene to date) and on a local scale (heterogeneously strained rock massif at the Antei uranium deposit). The development of a regional geodynamic model of geological structural units makes it possible to carry out procedures to ensure the safety of mining operations under complex geomechanical conditions that can expose the operating mines and mines under construction, by the Argun Mining and Chemical Production Association (PAO PPGKhO) on a common methodical and geoinformational platform, to the hazards of explosions, as well as to use the simulation results aimed at finding new orebodies to assess the flanks and deep levels of the ore field.

  8. Estimated Marine Residence Times for Drowned Barbadian Paleoreefs

    NASA Astrophysics Data System (ADS)

    Mey, J. L.

    2008-12-01

    Fossil corals are used to estimate past sea level and also to calibrate 14C ages with the aid of U-Th and U-Pa dating methods. These coral fossils have often been subaerially exposed and thus are affected by diagenesis during their initial interaction with fresh water. In an effort to understand when such disequilibria in fossil coral reefs occurred, we have quantified our 'dissolution-cum-adsorption' model (Mey, 2008) for the uranium series disequilibria using a geometrical construction, based on the evolution of the activities in a 230Th/238U versus 234U/238U diagram for closed versus open systems. The traditional age equations for the uranium-series with excess daughters have been used to construct a relationship between (i) the angles of the equal age lines in the 230Th/238U versus 234U/238U activity diagrams, and (ii) the quantified angles of the regressed lines of several uranium series disequilibria trends from Barbados. Our results indicate that the severity of the Barbados uranium series disequilibria is not only explained by 234U and 230Th addition, but may also reflect a loss of 238U through dissolution of coral skeletal structure. The net effect is 238U removal, whereas 234U and 230Th remain; thus, the disequilibria for the extant coral increase the excess daughters' ratio. Our results further indicate that the activity of 234U is reduced (compared to 230Th), as would be expected in regard to the lower mobility of trapped 230Th. It is proposed that the major dissolution that caused the uranium series disequilibria occurred during one relatively short-lived event when the paleoreefs experienced the very first freshwater exposure. During this event, the diagenetic potential was at its maximum for redistribution of the uranium series; this then caused the 234U and the 230Th to behave in a systematic way, resulting in linear trends. The linear trends in the open system uranium series were set early, as shown in the 230Th/238U versus 234U/238U activity diagrams. The timing of the first exposure of the freshwater in the reefs is calculated based on the results of our new model. From the relationship between, (i) dissolution, (ii) in-grown 230Th, and (iii) excess 234U, we derived that the 60,000 old Marine Isotope stage 3 (MIS 3) reef was exposed to freshwater 36-38,000 years after growth in the marine environment. We have calculated these 'marine residence times' for the MIS 3 5a, 5c, 5e, 6.0, 7a and 7c reefs; our results correspond with the duration of the sea level high stand in each of the stages. References: Mey, J. L., (2008) The Uranium Series Diagenesis and the Morphology of Drowned Barbadian Paleoreefs, PhD dissertation, 325pp: Graduate Center, City University of New York, New York.

  9. METHOD OF DISSOLVING URANIUM METAL

    DOEpatents

    Slotin, L.A.

    1958-02-18

    This patent relates to an economicai means of dissolving metallic uranium. It has been found that the addition of a small amount of perchloric acid to the concentrated nitric acid in which the uranium is being dissolved greatly shortens the time necessary for dissolution of the metal. Thus the use of about 1 or 2 percent of perchioric acid based on the weight of the nitric acid used, reduces the time of dissolution of uranium by a factor of about 100.

  10. Time differences in the formation of meteorites as determined from the ratio of lead-207 to lead-206

    USGS Publications Warehouse

    Tatsumoto, M.; Knight, R.J.; Allegre, C.J.

    1973-01-01

    Measurements of the lead isotopic composition and the uranium, thorium, and lead concentrations in meteorites were made in order to obtain more precise radiometric ages of these members of the solar system. The newly determined value of the lead isotopic composition of Canyon Diablo troilite is as follows: 206Pb/204Pb = 9.307, 207Pb/204Pb = 10.294, and 208Pb/204Pb = 29.476. The leads of Angra dos Reis, Sioux County, and Nuevo Laredo achondrites are very radiogenic, the 206Pb/204Pb values are about 200, and the uranium-thorium-lead systems are nearly concordant. The ages of the meteorites as calculated from a single-stage 207Pb/206Pb isochron based on the newly determined primordial lead value and the newly reported 235U and 238U decay constants, are 4.528 ?? 10 9 years for Sioux County and Nuevo Laredo and 4.555 ?? 10 9 years for Angra dos Reis. When calculated with the uranium decay constants used by Patterson, these ages are 4.593 ?? 109 years and 4.620 ?? 109 years, respectively, and are therefore 40 to 70 ?? 106 years older than the 4.55 ?? 109 years age Patterson reported. The age difference of 27 ?? 106 years between Angra dos Reis and the other two meteorites is compatible with the difference between the initial 87Sr/86Sr ratio of Angra dos Reis and that of seven basaltic achondrites observed by Papanastassiou and Wasserburg. The time difference is also comparable to that determined by 129I-129Xe chronology. The ages of ordinary chondrites (H5 and L6) range from 4.52 to 4.57 ?? 109 years, and, here too, time differences in the formation of the parent bodies or later metamorphic events are indicated. Carbonaceous chondrites (C2 and C3) appear to contain younger lead components.

  11. 40 CFR 471.71 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SOURCE CATEGORY Uranium Forming Subcategory § 471.71 Effluent limitations representing the degree of... off-pounds) of uranium extruded Cadium 0.117 0.052 Chromium 0.152 0.062 Copper 0.654 0.344 Lead 0.145 0.069 Nickel 0.661 0.437 Fluoride 20.5 9.08 Molybdenum 2.28 1.18 Oil and grease 6.88 4.13 TSS 14.1 6...

  12. 40 CFR 471.71 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SOURCE CATEGORY Uranium Forming Subcategory § 471.71 Effluent limitations representing the degree of... off-pounds) of uranium extruded Cadium 0.117 0.052 Chromium 0.152 0.062 Copper 0.654 0.344 Lead 0.145 0.069 Nickel 0.661 0.437 Fluoride 20.5 9.08 Molybdenum 2.28 1.18 Oil and grease 6.88 4.13 TSS 14.1 6...

  13. 40 CFR 471.71 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... SOURCE CATEGORY Uranium Forming Subcategory § 471.71 Effluent limitations representing the degree of... off-pounds) of uranium extruded Cadium 0.117 0.052 Chromium 0.152 0.062 Copper 0.654 0.344 Lead 0.145 0.069 Nickel 0.661 0.437 Fluoride 20.5 9.08 Molybdenum 2.28 1.18 Oil and grease 6.88 4.13 TSS 14.1 6...

  14. Depleted uranium hexafluoride: The source material for advanced shielding systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quapp, W.J.; Lessing, P.A.; Cooley, C.R.

    1997-02-01

    The U.S. Department of Energy (DOE) has a management challenge and financial liability problem in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. DOE is evaluating several options for the disposition of this UF{sub 6}, including continued storage, disposal, and recycle into a product. Based on studies conducted to date, the most feasible recycle option for the depleted uranium is shielding in low-level waste, spent nuclear fuel, or vitrified high-level waste containers. Estimates for the cost of disposal, using existing technologies, range between $3.8 andmore » $11.3 billion depending on factors such as the disposal site and the applicability of the Resource Conservation and Recovery Act (RCRA). Advanced technologies can reduce these costs, but UF{sub 6} disposal still represents large future costs. This paper describes an application for depleted uranium in which depleted uranium hexafluoride is converted into an oxide and then into a heavy aggregate. The heavy uranium aggregate is combined with conventional concrete materials to form an ultra high density concrete, DUCRETE, weighing more than 400 lb/ft{sup 3}. DUCRETE can be used as shielding in spent nuclear fuel/high-level waste casks at a cost comparable to the lower of the disposal cost estimates. Consequently, the case can be made that DUCRETE shielded casks are an alternative to disposal. In this case, a beneficial long term solution is attained for much less than the combined cost of independently providing shielded casks and disposing of the depleted uranium. Furthermore, if disposal is avoided, the political problems associated with selection of a disposal location are also avoided. Other studies have also shown cost benefits for low level waste shielded disposal containers.« less

  15. Whole-rock uranium analysis by fission track activation

    NASA Technical Reports Server (NTRS)

    Weiss, J. R.; Haines, E. L.

    1974-01-01

    We report a whole-rock uranium method in which the polished sample and track detector are separated in a vacuum chamber. Irradiation with thermal neutrons induces uranium fission in the sample, and the detector records the integrated fission track density. Detection efficiency and geometric factors are calculated and compared with calibration experiments.

  16. Sandstone type uranium deposits in the Ordos Basin, Northwest China: A case study and an overview

    NASA Astrophysics Data System (ADS)

    Akhtar, Shamim; Yang, Xiaoyong; Pirajno, Franco

    2017-09-01

    This paper provides a comprehensive review on studies of sandstone type uranium deposits in the Ordos Basin, Northwest China. As the second largest sedimentary basin, the Ordos Basin has great potential for targeting sandstone type U mineralization. The newly found and explored Dongsheng and Diantou sandstone type uranium deposits are hosted in the Middle Jurassic Zhilou Formation. A large number of investigations have been conducted to trace the source rock compositions and relationship between lithic subarkose sandstone host rock and uranium mineralization. An optical microscopy study reveals two types of alteration associated with the U mineralization: chloritization and sericitization. Some unusual mineral structures, with compositional similarity to coffinite, have been identified in a secondary pyrite by SEM These mineral phases are proposed to be of bacterial origin, following high resolution mapping of uranium minerals and trace element determinations in situ. Moreover, geochemical studies of REE and trace elements constrained the mechanism of uranium enrichment, displaying LREE enrichment relative to HREE. Trace elements such as Pb, Mo and Ba have a direct relationship with uranium enrichment and can be used as index for mineralization. The source of uranium ore forming fluids and related geological processes have been studied using H, O and C isotope systematics of fluid inclusions in quartz veins and the calcite cement of sandstone rocks hosting U mineralization. Both H and O isotopic compositions of fluid inclusions reveal that ore forming fluids are a mixture of meteoric water and magmatic water. The C and S isotopes of the cementing material of sandstone suggest organic origin and bacterial sulfate reduction (BSR), providing an important clue for U mineralization. Discussion of the ore genesis shows that the greenish gray sandstone plays a crucial role during processes leading to uranium mineralization. Consequently, an oxidation-reduction model for sandstone-type uranium deposit is proposed, which can elucidate the source of uranium in the deposits of the Ordos Basin, based on the role of organic materials and sulfate reducing bacteria. We discuss the mechanism of uranium deposition responsible for the genesis of these large sandstone type uranium deposits in this unique sedimentary basin.

  17. EARTHTIME: Teaching geochronology to high school students

    NASA Astrophysics Data System (ADS)

    Bookhagen, Britta; Buchwaldt, Robert; McLean, Noah; Rioux, Matthew; Bowring, Samuel

    2010-05-01

    The authors taught an educational module developed as part of the EARTHTIME (www.earth-time.org) outreach initiative to 215 high school students from a Massachusetts (USA) High School as part of an "out-of-school" field trip. The workshop focuses on uranium-lead (U-Pb) dating of zircons and its application to solving a geological problem. The theme of our 2.5-hour module is the timing of the K-T boundary and a discussion of how geochronology can be used to evaluate the two main hypotheses for the cause of the concurrent extinction—the Chicxlub impact and the massive eruption of the Deccan Traps. Activities are divided into three parts: In the first part, the instructors lead hands-on activities demonstrating how rock samples are processed to isolate minerals by their physical properties. Students use different techniques, such as magnetic separation, density separation using non-toxic heavy liquids, and mineral identification with a microscope. We cover all the steps from sampling an outcrop to determining a final age. Students also discuss geologic features relevant to the K-T boundary problem and get the chance to examine basalts, impact melts and meteorites. In the second part, we use a curriculum developed for and available on the EARTHTIME website (http://www.earth-time.org/Lesson_Plan.pdf). The curriculum teaches the science behind uranium-lead dating using tables, graphs, and a geochronology kit. In this module, the students start by exploring the concepts of half-life and exponential decay and graphically solving the isotopic decay equation. Manipulating groups of double-sided chips labeled with U and Pb isotopes reinforces the concept that an age determination depends on the Pb/U ratio, not the absolute number of atoms present. Next, the technique's accuracy despite loss of parent and daughter atoms during analysis, as well as the use of isotopic ratios rather than absolute abundances, is explained with an activity on isotope dilution. Here the students determine the number of beads in a large bucket without counting them all by adding a precisely known number of "tracer" beads and averaging ratios from several small samples of the mixture. The (pre-counted) unknown quantity of beads represents the isotopic composition of zircon from four samples—the Deccan Trap basalts, the Chicxulub impact melt, and ash layers above and below the K-T boundary —and the students' measurements are used in the final part of the module. An introduction to statistical inference from small samples can also be added to this exercise. After this, the chemistry and physics behind geochemical laboratory techniques, ion exchange chromatography and isotope ratio measurements using a mass spectrometer, are explained using models, movies, posters, and analogies to familiar physics. In the final part, students engage in a summary exercise where they apply what they have learned to test the two competing hypotheses. Using the dates they calculated with isotope dilution and a graphical solution to the decay equation, they determine if the Chicxulub impact or the Deccan Trap volcanic eruption can explain the K/T boundary mass extinction. They learn the importance of measurement uncertainty in interpreting data and brainstorm how best to resolve this outstanding scientific problem. Feedback from written evaluations shows that teachers valued the interdisciplinary association of concepts from physics, chemistry and mathematics. Students enjoyed the hands-on exercises that gave them the opportunity to see how rocks can be broken down into mineral separates and individual zircons selected for analysis. The K/T-boundary exercise at the end was appreciated because it demonstrates an exciting application of geochronological methods to popular science.

  18. FORMING TUBES AND RODS OF URANIUM METAL BY EXTRUSION

    DOEpatents

    Creutz, E.C.

    1959-01-27

    A method and apparatus are presented for the extrusion of uranium metal. Since uranium is very brittle if worked in the beta phase, it is desirable to extrude it in the gamma phase. However, in the gamma temperature range thc uranium will alloy with the metal of the extrusion dic, and is readily oxidized to a great degree. According to this patent, uranium extrusion in thc ganmma phase may be safely carried out by preheating a billet of uranium in an inert atmosphere to a trmperature between 780 C and 1100 C. The heated billet is then placed in an extrusion apparatus having dies which have been maintained at an elevated temperature for a sufficient length of time to produce an oxide film, and placing a copper disc between the uranium billet and the die.

  19. Chemical compatibility between UO2 fuel and SiC cladding for LWRs. Application to ATF (Accident-Tolerant Fuels)

    NASA Astrophysics Data System (ADS)

    Braun, James; Guéneau, Christine; Alpettaz, Thierry; Sauder, Cédric; Brackx, Emmanuelle; Domenger, Renaud; Gossé, Stéphane; Balbaud-Célérier, Fanny

    2017-04-01

    Silicon carbide-silicon carbide (SiC/SiC) composites are considered to replace the current zirconium-based cladding materials thanks to their good behavior under irradiation and their resistance under oxidative environments at high temperature. In the present work, a thermodynamic analysis of the UO2±x/SiC system is performed. Moreover, using two different experimental methods, the chemical compatibility of SiC towards uranium dioxide, with various oxygen contents (UO2±x) is investigated in the 1500-1970 K temperature range. The reaction leads to the formation of mainly uranium silicides and carbides phases along with CO and SiO gas release. Knudsen Cell Mass Spectrometry is used to measure the gas release occurring during the reaction between UO2+x and SiC powders as function of time and temperature. These experimental conditions are representative of an open system. Diffusion couple experiments with pellets are also performed to study the reaction kinetics in closed system conditions. In both cases, a limited chemical reaction is observed below 1700 K, whereas the reaction is enhanced at higher temperature due to the decomposition of SiC leading to Si vaporization. The temperature of formation of the liquid phase is found to lie between 1850 < T < 1950 K.

  20. Volumetric determination of uranium using titanous sulfate as reductant before oxidimetric titration

    USGS Publications Warehouse

    Wahlberg, James S.; Skinner, Dwight L.; Rader, Lewis F.

    1956-01-01

    A new method for determining uranium in samples containing 0.05 percent or more U3O8, using titanous sulfate as reducing agent, is much shorter, faster, and has fewer interferences than conventional methods using reductor columns. The sample is dissolved with sulfuric, nitric, perchloric, and hydrofluoric acids. Elements that would otherwise form insoluble fluorides are kept in solution by complexing the fluoride ion with boric acid. A precipitation is made with cupferron to remove interfering elements. The solution is filtered to remove the precipitated cupferrates instead of extracting them with chloroform as is usually done. Filtration is preferred to extraction because any niobium that may be in solution forms an insoluble cupferrate that may be removed by filtering but is very difficult to extract with chloroform. Excess cupferron is destroyed by oxidizing with nitric and perchloric acids, and evaporating to dense fumes of sulfuric acid. The uranium is reduced to U(IV) by the addition of titanous sulfate, with cupric sulfate used as an indicator of the completeness of the reduction. Metallic copper is formed when all the uranium is reduced. The reduced copper is then reoxidized by the addition of mercuric perchlorate, an excess of ferric sulfate added, and the solution titrated immediately with standard ceric sulfate with ferroin as an indicator. Precision of the method compared favorable with methods in common use, both for uranium ores and for most types of uranium-rich materials.

  1. Determination of uranium in natural waters

    USGS Publications Warehouse

    Barker, Franklin Butt; Johnson, J.O.; Edwards, K.W.; Robinson, B.P.

    1965-01-01

    A method is described for the determination of very low concentrations of uranium in water. The method is based on the fluorescence of uranium in a pad prepared by fusion of the dried solids from the water sample with a flux of 10 percent NaF 45.5 percent Na2CO3 , and 45.5 percent K2CO3 . This flux permits use of a low fusion temperature and yields pads which are easily removed from the platinum fusion dishes for fluorescence measurements. Uranium concentrations of less than 1 microgram per liter can be determined on a sample of 10 milliliters, or less. The sensitivity and accuracy of the method are dependent primarily on the purity of reagents used, the stability and linearity of the fluorimeter, and the concentration of quenching elements in the water residue. A purification step is recommended when the fluorescence is quenched by more than 30 percent. Equations are given for the calculation of standard deviations of analyses by this method. Graphs of error functions and representative data are also included.

  2. Method for fabricating laminated uranium composites

    DOEpatents

    Chapman, L.R.

    1983-08-03

    The present invention is directed to a process for fabricating laminated composites of uranium or uranium alloys and at least one other metal or alloy. The laminated composites are fabricated by forming a casting of the molten uranium with the other metal or alloy which is selectively positioned in the casting and then hot-rolling the casting into a laminated plate in or around which the casting components are metallurgically bonded to one another to form the composite. The process of the present invention provides strong metallurgical bonds between the laminate components primarily since the bond disrupting surface oxides on the uranium or uranium alloy float to the surface of the casting to effectively remove the oxides from the bonding surfaces of the components.

  3. A STUDY OF THE ACIDOSIS, BLOOD UREA, AND PLASMA CHLORIDES IN URANIUM NEPHRITIS IN THE DOG, AND OF THE PROTECTIVE ACTION OF SODIUM BICARBONATE.

    PubMed

    Goto, K

    1917-05-01

    1. The presence of an acidosis in dogs with experimental uranium nephritis is demonstrable by the Van Slyke-Stillman-Cullen method and that of Marriott. It is detected more readily by the former method. 2. This acidosis is associated with increase in the blood urea and plasma chlorides and with the appearance of albumin and casts in the urine. 3. The oral administration of sodium bicarbonate diminishes the acidosis, the increase in plasma chlorides, the amount of albumin and casts in the urine, and, to a lesser degree, the increase in the blood urea following the administration of uranium. It also diminishes the severity of the changes produced by uranium in the kidneys. 4. The oral administration of sodium bicarbonate to normal dogs raises the carbon dioxide content of the plasma as determined by the. Van Slyke-Stillman-Cullen method.

  4. Uranium plasma emission at gas-core reaction conditions

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Jalufka, N. W.; Hohl, F.; Lee, J. H.

    1976-01-01

    The results of uranium plasma emission produced by two methods are reported. For the first method a ruby laser was focused on the surface of a pure U-238 sample to create a plasma plume with a peak plasma density of about 10 to the 20th power/cu cm and a temperature of about 38,600 K. The absolute intensity of the emitted radiation, covering the range from 300 to 7000 A was measured. For the second method, the uranium plasma was produced in a 20 kilovolt, 25 kilojoule plasma-focus device. The 2.5 MeV neutrons from the D-D reaction in the plasma focus are moderated by polyethylene and induce fissions in the U-235. Spectra of both uranium plasmas were obtained over the range from 30 to 9000 A. Because of the low fission yield the energy input due to fissions is very small compared to the total energy in the plasma.

  5. Method and apparatus for storing hydrogen isotopes. [stored as uranium hydride in a block of copper

    DOEpatents

    McMullen, J.W.; Wheeler, M.G.; Cullingford, H.S.; Sherman, R.H.

    1982-08-10

    An improved method and apparatus for storing isotopes of hydrogen (especially tritium) are provided. The hydrogen gas is stored as hydrides of material (for example uranium) within boreholes in a block of copper. The mass of the block is critically important to the operation, as is the selection of copper, because no cooling pipes are used. Because no cooling pipes are used, there can be no failure due to cooling pipes. And because copper is used instead of stainless steel, a significantly higher temperature can be reached before the eutectic formation of uranium with copper occurs, (the eutectic of uranium with the iron in stainless steel forms at a significantly lower temperature).

  6. Method for monitoring stack gases for uranium activity

    DOEpatents

    Beverly, C.R.; Ernstberger, E.G.

    1985-07-03

    A method for monitoring the stack gases of a purge cascade of gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases. 1 fig.

  7. Method for monitoring stack gases for uranium activity

    DOEpatents

    Beverly, Claude R.; Ernstberger, Harold G.

    1988-01-01

    A method for monitoring the stack gases of a purge cascade of a gaseous diffusion plant for uranium activity. A sample stream is taken from the stack gases and contacted with a volume of moisture-laden air for converting trace levels of uranium hexafluoride, if any, in the stack gases into particulate uranyl fluoride. A continuous strip of filter paper from a supply roll is passed through this sampling stream to intercept and gather any uranyl fluoride in the sampling stream. This filter paper is then passed by an alpha scintillation counting device where any radioactivity on the filter paper is sensed so as to provide a continuous monitoring of the gas stream for activity indicative of the uranium content in the stack gases.

  8. Special nuclear material simulation device

    DOEpatents

    Leckey, John H.; DeMint, Amy; Gooch, Jack; Hawk, Todd; Pickett, Chris A.; Blessinger, Chris; York, Robbie L.

    2014-08-12

    An apparatus for simulating special nuclear material is provided. The apparatus typically contains a small quantity of special nuclear material (SNM) in a configuration that simulates a much larger quantity of SNM. Generally the apparatus includes a spherical shell that is formed from an alloy containing a small quantity of highly enriched uranium. Also typically provided is a core of depleted uranium. A spacer, typically aluminum, may be used to separate the depleted uranium from the shell of uranium alloy. A cladding, typically made of titanium, is provided to seal the source. Methods are provided to simulate SNM for testing radiation monitoring portals. Typically the methods use at least one primary SNM spectral line and exclude at least one secondary SNM spectral line.

  9. Uranium determination in natural water by the fissiontrack technique

    USGS Publications Warehouse

    Reimer, G.M.

    1975-01-01

    The fission track technique, utilizing the neutron-induced fission of uranium-235, provides a versatile analytical method for the routine analysis of uranium in liquid samples of natural water. A detector is immersed in the sample and both are irradiated. The fission track density observed in the detector is directly proportional to the uranium concentration. The specific advantages of this technique are: (1) only a small quantity of sample, typically 0.1-1 ml, is needed; (2) no sample concentration is necessary; (3) it is capable of providing analyses with a lower reporting limit of 1 ??g per liter; and (4) the actual time spent on an analysis can be only a few minutes. This paper discusses and describes the method. ?? 1975.

  10. Modeling Early-Stage Processes of U-10 Wt.%Mo Alloy Using Integrated Computational Materials Engineering Concepts

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowo; Xu, Zhijie; Soulami, Ayoub; Hu, Xiaohua; Lavender, Curt; Joshi, Vineet

    2017-12-01

    Low-enriched uranium alloyed with 10 wt.% molybdenum (U-10Mo) has been identified as a promising alternative to high-enriched uranium. Manufacturing U-10Mo alloy involves multiple complex thermomechanical processes that pose challenges for computational modeling. This paper describes the application of integrated computational materials engineering (ICME) concepts to integrate three individual modeling components, viz. homogenization, microstructure-based finite element method for hot rolling, and carbide particle distribution, to simulate the early-stage processes of U-10Mo alloy manufacture. The resulting integrated model enables information to be passed between different model components and leads to improved understanding of the evolution of the microstructure. This ICME approach is then used to predict the variation in the thickness of the Zircaloy-2 barrier as a function of the degree of homogenization and to analyze the carbide distribution, which can affect the recrystallization, hardness, and fracture properties of U-10Mo in subsequent processes.

  11. METHOD OF FORMING A FUEL ELEMENT FOR A NUCLEAR REACTOR

    DOEpatents

    Layer, E.H. Jr.; Peet, C.S.

    1962-01-23

    A method is given for preparing a fuel element for a nuclear reactor. The method includes the steps of sandblasting a body of uranium dioxide to roughen the surface thereof, depositing a thin layer of carbon thereon by thermal decomposition of methane, and cladding the uranium dioxide body with zirconium by gas pressure bonding. (AEC)

  12. Determination of plutonium-239, thorium-232, and natural uranium isotopic concentrations in biological samples using photofission track analysis

    NASA Astrophysics Data System (ADS)

    Parry, James Roswell

    Fission track analysis (FTA) has many uses in the scientific community including but not limited to geological dating, neutron flux mapping, and dose reconstruction. The common method of fission for FTA is through neutrons from a nuclear reactor. This dissertation investigates the use of bremsstrahlung radiation produced from an electron linear accelerator to induce fission in FTA samples. This provides a means of simultaneously measuring the amount of Pu-239, U-nat, and Th-232 in a single sample. The benefit of measuring the three isotopes simultaneously is the possible elimination of costly and time consuming chemical processing for dose reconstruction samples. Samples containing the three isotopes were irradiated in two different bremsstrahlung spectra and a neutron spectrum to determine the amount of Pu-239, U-nat, and Th-232 in the samples. The reaction rate from the calibration samples and the counted fission tracks on the samples were used in determining the concentration of each isotope in the samples. The results were accurate to within a factor of two or three, showing that the method can work to predict the concentrations of multiple isotopes in a sample. The limitations of current accelerators and detectors limits the application of this specific procedure to higher concentrations of isotopes. The method detection limits for Pu-239, U-nat, and Th-232 are 20 pCi, 1 fCi, and 0.4 flCI respectively. Analysis of extremely low concentrations of isotopes would require the use of different detectors such as quartz due to the embrittlement encountered in the Lexan at high exposures. Cracking of the Texan detectors started to appear at a fluence of about 2 x 1018 electrons from the accelerator. This may be partly due to the beam stop not being an adequate thickness. The procedure is likely limited to specialty applications for the near term. However, with the world concerns of exposure to depleted uranium, this procedure may find applications in this area since it would be simple to adapt the procedure to depleted uranium detection.

  13. Numerical simulation of transient, incongruent vaporization induced by high power laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, C.H.

    1981-01-01

    A mathematical model and numerical calculations were developed to solve the heat and mass transfer problems specifically for uranum oxide subject to laser irradiation. It can easily be modified for other heat sources or/and other materials. In the uranium-oxygen system, oxygen is the preferentially vaporizing component, and as a result of the finite mobility of oxygen in the solid, an oxygen deficiency is set up near the surface. Because of the bivariant behavior of uranium oxide, the heat transfer problem and the oxygen diffusion problem are coupled and a numerical method of simultaneously solving the two boundary value problems ismore » studied. The temperature dependence of the thermal properties and oxygen diffusivity, as well as the highly ablative effect on the surface, leads to considerable non-linearities in both the governing differential equations and the boundary conditions. Based on the earlier work done in this laboratory by Olstad and Olander on Iron and on Zirconium hydride, the generality of the problem is expanded and the efficiency of the numerical scheme is improved. The finite difference method, along with some advanced numerical techniques, is found to be an efficient way to solve this problem.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buck, E.C.; Dietz, N.L.; Bates, J.K.

    Uranium contaminated soils from the Fernald Operation Site, Ohio, have been examined by a combination of optical microscopy, scanning electron microscopy with backscattered electron detection (SEM/BSE), and analytical electron microscopy (AEM). A method is described for preparing of transmission electron microscopy (TEM) thin sections by ultramicrotomy. By using these thin sections, SEM and TEM images can be compared directly. Uranium was found in iron oxides, silicates (soddyite), phosphates (autunites), and fluorite. Little uranium was associated with clays. The distribution of uranium phases was found to be inhomogeneous at the microscopic level.

  15. Separation of uranium from technetium in recovery of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Friedman, H. A.

    1984-06-01

    A method for decontaminating uranium product from the Purex 5 process is described. Hydrazine is added to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO2(2+)) uranium and heptavalent technetius (TcO4-). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H2O2O4), and the Tc-oxalate complex is readily separated from the 10 uranium by solvent extraction with 30 vol % tributyl phosphate in n-dodecane.

  16. METHOD OF PRODUCING URANIUM METAL BY ELECTROLYSIS

    DOEpatents

    Piper, R.D.

    1962-09-01

    A process is given for making uranium metal from oxidic material by electrolytic deposition on the cathode. The oxidic material admixed with two moles of carbon per one mole of uranium dioxide forms the anode, and the electrolyte is a mixture of from 40 to 75% of calcium fluoride or barium fluoride, 15 to 45% of uranium tetrafluoride, and from 10 to 20% of lithium fluoride or magnesium fluoride; the temperature of the electrolyte is between 1150 and 1175 deg C. (AEC)

  17. Recovery of uranium values

    DOEpatents

    Brown, K. B.; Crouse, Jr., D. J.; Moore, J. G.

    1959-03-10

    A liquid-liquid extraction method is presented for recovering uranium values from an aqueous acidic solution by means of certain high molecular weight amine fn the amine classes of primary, secondary, heterocyclic secondary, tertiary, or heterocyclic tertiary. The uranium bearing aqueous acidic solution is contacted with the selected anine dissolved in a nonpolar waterimmiscible organfc solvent such as kerosene. The uranium which is substantially completely extracted by the organic phase may be stripped therefrom by water, and recovered from the aqueous phase by treatment into ammonia to precipitate ammonium diuranate.

  18. RECOVERY OF URANIUM VALUES

    DOEpatents

    Brown, K.B.; Crouse, D.J. Jr.; Moore, J.G.

    1959-03-10

    A liquid-liquid extraction method is presented for recovering uranium values from an aqueous acidic solution by means of certain high molecular weight amine in the amine classes of primary, secondary, heterocyclic secondary, tertiary, or heterocyclic tertiary. The uranium bearing aqueous acidic solution is contacted with the selected amine dissolved in a nonpolar water-immiscible organic solvent such as kerosene. The uranium which is substantially completely exiracted by the organic phase may be stripped therefrom by waters and recovered from the aqueous phase by treatment into ammonia to precipitate ammonium diuranate.

  19. Uranium Measurement Improvements at the Savannah River Technology Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shick, C. Jr.

    Uranium isotope ratio and isotope dilution methods by mass spectrometry are used to achieve sensitivity, precision and accuracy for various applications. This report presents recent progress made at SRTC in the analysis of minor isotopes of uranium. Comparison of routine measurements of NBL certified uranium (U005a) using the SRTC Three Stage Mass Spectrometer (3SMS) and the SRTC Single Stage Mass Spectrometer (SSMS). As expected, the three stage mass spectrometer yielded superior sensitivity, precision, and accuracy for this application.

  20. Method of increasing the deterrent to proliferation of nuclear fuels

    DOEpatents

    Rampolla, Donald S.

    1982-01-01

    A process of recycling protactinium-231 to enhance the utilization of radioactively hot uranium-232 in nuclear fuel for the purpose of making both fresh and spent fuel more resistant to proliferation. The uranium-232 may be obtained by the irradiation of protactinium-231 which is normally found in the spent fuel rods of a thorium base nuclear reactor. The production of protactinium-231 and uranium-232 would be made possible by the use of the thorium uranium-233 fuel cycle in power reactors.

  1. Cover beds older than the mid-pleistocene revolution and the provenance of their eolian components, La Sal Mountains, Utah, USA

    NASA Astrophysics Data System (ADS)

    Krautz, Jana; Gärtner, Andreas; Hofmann, Mandy; Linnemann, Ulf; Kleber, Arno

    2018-04-01

    We used uranium-lead (U-Pb) dating of zircons from a tephra layer deposited in the La Sal Mountains to assign an age of more than c. 1.3 Ma to underlying loess-mixed slope deposits (cover beds) and paleosols developed therein. For the first time, we show that properties of cover beds and soils before the Mid-Pleistocene Revolution were similar to those formed after the revolution. However, the deepest exposed carbonate-enriched horizon is much farther developed than younger ones, indicating that there was a period of enrichment by far exceeding intensities of younger calcic horizons some time before the revolution, possibly in Neogene times. Remarkable differences between age distributions of detrital zircons (DZ) within the cover beds allow reconstructing the regional provenance of mixed eolian matter with high accuracy: we were able to trace particular cover beds back to areas with outcropping Permian and Upper Cretaceous rocks.

  2. An evaluation of health risk to the public as a consequence of in situ uranium mining in Wyoming, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruedig, Elizabeth; Johnson, Thomas E.

    In the United States there is considerable public concern regarding the health effects of in situ recovery uranium mining. These concerns focus principally on exposure to contaminants mobilized in groundwater by the mining process. However, the risk arising as a result of mining must be viewed in light of the presence of naturally occurring uranium ore and other constituents which comprise a latent hazard. The United States Environmental Protection Agency recently proposed new guidelines for successful restoration of an in situ uranium mine by limiting concentrations of thirteen groundwater constituents: arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, nitrate (asmore » nitrogen), molybdenum, radium, total uranium, and gross α activity. We investigated the changes occurring to these constituents at an ISR uranium mine in Wyoming, USA by comparing groundwater quality at baseline measurement to that at stability (post-restoration) testing. Of the groundwater constituents considered, only uranium and radium-226 showed significant (p < 0.05) deviation from site-wide baseline conditions in matched-wells. Uranium concentrations increased by a factor of 5.6 (95% CI 3.6–8.9 times greater) while radium-226 decreased by a factor of about one half (95% CI 0.42–0.75 times less). Change in risk was calculated using the RESRAD (onsite) code for an individual exposed as a resident-farmer; total radiation dose to a resident farmer decreased from pre-to post-mining by about 5.2 mSv y –1. As a result, higher concentrations of uranium correspond to increased biomarkers of nephrotoxicity, however the clinical significance of this increase is unclear.« less

  3. Non-enzymatic U(VI) interactions with biogenic mackinawite

    NASA Astrophysics Data System (ADS)

    Veeramani, H.; Qafoku, N. P.; Kukkadapu, R. K.; Murayama, M.; Hochella, M. F.

    2011-12-01

    Reductive immobilization of hexavalent uranium [U(VI)] by stimulation of dissimilatory metal and/or sulfate reducing bacteria (DMRB or DSRB) has been extensively researched as a remediation strategy for subsurface U(VI) contamination. These bacteria derive energy by reducing oxidized metals as terminal electron acceptors, often utilizing organic substrates as electron donors. Thus, when evaluating the potential for in-situ uranium remediation in heterogeneous subsurface media, it is important to understand how the presence of alternative electron acceptors such as Fe(III) and sulfate affect U(VI) remediation and the long term behavior and reactivity of reduced uranium. Iron, an abundant subsurface element, represents a substantial sink for electrons from DMRB, and the reduction of Fe(III) leads to the formation of dissolved Fe(II) or to reactive biogenic Fe(II)- and mixed Fe(II)/Fe(III)- mineral phases. Consequently, abiotic U(VI) reduction by reactive forms of biogenic Fe(II) minerals could be a potentially important process for uranium immobilization. In our study, the DMRB Shewanella putrefaciens CN32 was used to synthesize a biogenic Fe(II)-bearing sulfide mineral: mackinawite, that has been characterized by XRD, SEM, HRTEM and Mössbauer spectroscopy. Batch experiments involving treated biogenic mackinawite and uranium (50:1 molar ratio) were carried out at room temperature under strict anoxic conditions. Following complete removal of uranium from solution, the biogenic mackinawite was analyzed by a suite of analytical techniques including XAS, HRTEM and Mössbauer spectroscopy to determine the speciation of uranium and investigate concomitant Fe(II)-phase transformation. Determining the speciation of uranium is critical to success of a remediation strategy. The present work elucidates non-enzymatic/abiotic molecular scale redox interactions between biogenic mackinawite and uranium.

  4. An evaluation of health risk to the public as a consequence of in situ uranium mining in Wyoming, USA

    DOE PAGES

    Ruedig, Elizabeth; Johnson, Thomas E.

    2015-08-30

    In the United States there is considerable public concern regarding the health effects of in situ recovery uranium mining. These concerns focus principally on exposure to contaminants mobilized in groundwater by the mining process. However, the risk arising as a result of mining must be viewed in light of the presence of naturally occurring uranium ore and other constituents which comprise a latent hazard. The United States Environmental Protection Agency recently proposed new guidelines for successful restoration of an in situ uranium mine by limiting concentrations of thirteen groundwater constituents: arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, nitrate (asmore » nitrogen), molybdenum, radium, total uranium, and gross α activity. We investigated the changes occurring to these constituents at an ISR uranium mine in Wyoming, USA by comparing groundwater quality at baseline measurement to that at stability (post-restoration) testing. Of the groundwater constituents considered, only uranium and radium-226 showed significant (p < 0.05) deviation from site-wide baseline conditions in matched-wells. Uranium concentrations increased by a factor of 5.6 (95% CI 3.6–8.9 times greater) while radium-226 decreased by a factor of about one half (95% CI 0.42–0.75 times less). Change in risk was calculated using the RESRAD (onsite) code for an individual exposed as a resident-farmer; total radiation dose to a resident farmer decreased from pre-to post-mining by about 5.2 mSv y –1. As a result, higher concentrations of uranium correspond to increased biomarkers of nephrotoxicity, however the clinical significance of this increase is unclear.« less

  5. An evaluation of health risk to the public as a consequence of in situ uranium mining in Wyoming, USA.

    PubMed

    Ruedig, Elizabeth; Johnson, Thomas E

    2015-12-01

    In the United States there is considerable public concern regarding the health effects of in situ recovery uranium mining. These concerns focus principally on exposure to contaminants mobilized in groundwater by the mining process. However, the risk arising as a result of mining must be viewed in light of the presence of naturally occurring uranium ore and other constituents which comprise a latent hazard. The United States Environmental Protection Agency recently proposed new guidelines for successful restoration of an in situ uranium mine by limiting concentrations of thirteen groundwater constituents: arsenic, barium, cadmium, chromium, lead, mercury, selenium, silver, nitrate (as nitrogen), molybdenum, radium, total uranium, and gross α activity. We investigated the changes occurring to these constituents at an ISR uranium mine in Wyoming, USA by comparing groundwater quality at baseline measurement to that at stability (post-restoration) testing. Of the groundwater constituents considered, only uranium and radium-226 showed significant (p < 0.05) deviation from site-wide baseline conditions in matched-wells. Uranium concentrations increased by a factor of 5.6 (95% CI 3.6-8.9 times greater) while radium-226 decreased by a factor of about one half (95% CI 0.42-0.75 times less). Change in risk was calculated using the RESRAD (onsite) code for an individual exposed as a resident-farmer; total radiation dose to a resident farmer decreased from pre-to post-mining by about 5.2 mSv y(-1). Higher concentrations of uranium correspond to increased biomarkers of nephrotoxicity, however the clinical significance of this increase is unclear. Published by Elsevier Ltd.

  6. Experimental investigation of the ionization mechanisms of uranium in thermal ionization mass spectrometry in the presence of carbon

    NASA Astrophysics Data System (ADS)

    Kraiem, M.; Mayer, K.; Gouder, T.; Seibert, A.; Wiss, T.; Thiele, H.; Hiernaut, J.-P.

    2010-01-01

    Thermal ionization mass spectrometry (TIMS) is a well established instrumental technique for providing accurate and precise isotope ratio measurements of elements with reasonably low first ionization potential. In nuclear safeguards and in environmental research, it is often required to measure the isotope ratios in small samples of uranium. Empirical studies had shown that the ionization yield of uranium and plutonium in a TIMS ion source can be significantly increased in the presence of a carbon source. But, even though carbon appeared crucial in providing high ionization yields, processes taking place on the ionization surface were still not well understood. This paper describes the experimental results obtained from an extended study on the evaporation and ionization mechanisms of uranium occurring on a rhenium mass spectrometry filament in the presence of carbon. Solid state reactions were investigated using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Additionally, vaporization measurements were performed with a modified-Knudsen cell mass spectrometer for providing information on the neutral uranium species in the vapor phase. Upon heating, under vacuum, the uranyl nitrate sample was found to turn into a uranium carbide compound, independent of the type of carbon used as ionization enhancer. With further heating, uranium carbide leads to formation of single charged uranium metal ions and a small amount of uranium carbide ions. The results are relevant for a thorough understanding of the ion source chemistry of a uranyl nitrate sample under reducing conditions. The significant increase in ionization yield described by many authors on the basis of empirical results can be now fully explained and understood.

  7. Kinetic study of the thermal decomposition of uranium metaphosphate, U(PO3)4, into uranium pyrophosphate, UP2O7

    NASA Astrophysics Data System (ADS)

    Yang, Hee-Chul; Kim, Hyung-Ju; Lee, Si-Young; Yang, In-Hwan; Chung, Dong-Yong

    2017-06-01

    The thermochemical properties of uranium compounds have attracted much interest in relation to thermochemical treatments and the safe disposal of radioactive waste bearing uranium compounds. The characteristics of the thermal decomposition of uranium metaphosphate, U(PO3)4, into uranium pyrophosphate, UP2O7, have been studied from the view point of reaction kinetics and acting mechanisms. A mixture of U(PO3)4 and UP2O7 was prepared from the pyrolysis residue of uranium-bearing spent TBP. A kinetic analysis of the reaction of U(PO3)4 into UP2O7 was conducted using an isoconversional method and a master plot method on the basis of data from a non-isothermal thermogravimetric analysis. The thermal decomposition of U(PO3)4 into UP2O7 followed a single-step reaction with an activation energy of 175.29 ± 1.58 kJ mol-1. The most probable kinetic model was determined as a type of nucleation and nuclei-growth models, the Avrami-Erofeev model (A3), which describes that there are certain restrictions on nuclei growth of UP2O7 during the solid-state decomposition of U(PO3)4.

  8. PYROMETALLURGICAL METHOD

    DOEpatents

    Nelson, P.A.

    1961-07-18

    The liquid--liquid extraction of plutonium by magnesium from uranium or uranium--chromium alloy is described. Calcium is added to magnesium in about eutectic proportions, which results in a purer plutonium.

  9. Rapid fusion method for the determination of refractory thorium and uranium isotopes in soil samples

    DOE PAGES

    Maxwell, Sherrod L.; Hutchison, Jay B.; McAlister, Daniel R.

    2015-02-14

    Recently, approximately 80% of participating laboratories failed to accurately determine uranium isotopes in soil samples in the U.S Department of Energy Mixed Analyte Performance Evaluation Program (MAPEP) Session 30, due to incomplete dissolution of refractory particles in the samples. Failing laboratories employed acid dissolution methods, including hydrofluoric acid, to recover uranium from the soil matrix. The failures illustrate the importance of rugged soil dissolution methods for the accurate measurement of analytes in the sample matrix. A new rapid fusion method has been developed by the Savannah River National Laboratory (SRNL) to prepare 1-2 g soil sample aliquots very quickly, withmore » total dissolution of refractory particles. Soil samples are fused with sodium hydroxide at 600 ºC in zirconium crucibles to enable complete dissolution of the sample. Uranium and thorium are separated on stacked TEVA and TRU extraction chromatographic resin cartridges, prior to isotopic measurements by alpha spectrometry on cerium fluoride microprecipitation sources. Plutonium can also be separated and measured using this method. Batches of 12 samples can be prepared for measurement in <5 hours.« less

  10. Testing the Limits to Accurate Comminution Dates: A Progress Report

    NASA Astrophysics Data System (ADS)

    Piccione, G.; Blackburn, T.; Edwards, G. H.

    2017-12-01

    The ability to resolve the timing of fine particle production holds potential for contributing to several Earth Science sub-disciplines including glaciology, eolian and fluvial geomorphology, soil production, and fault dynamics. A relatively new geochronologic tool, U-series comminution dating, has shown potential to directly date the timing of particle comminution. This system's sensitivity to particle size arises from a physical disequilibrium in the 238U decay chain generated by the ejected loss of intermediate daughter products (e.g. 234U). It is the goal of this ongoing study to develop and test analytical procedures to improve the accuracy of comminution dating. In the geologic settings explored by previous studies, comminution dates integrate both the time of particle transport and time since deposition. To better test the accuracy of comminution dates, our study focuses on settings where silt has experienced little to no transport time, specifically, glacial moraines in the Eastern Sierras and Rock Avalanches in the San Gabriel Mountains, both locations with existing independent geochronologic constraints. Previous studies demonstrate the dependency of U-series comminution date on grain size and shape. Here we show that mineralogy of samples also plays a role, possibly controlled by the uranium content and crystal bond strength. To separate samples by size and mineralogy, we use dry sonic-sieving, density and magnetic separation. Non-detrital materials deposited on the rim of comminuted grains have an isotopic composition that is unrelated to the isotopic evolution since comminution and therefore must be removed through a multi-step leaching procedure. Leaching is complicated by the fact that areas within the comminuted crystal that have experienced physical fractionation are contained within damaged zones and are prone to being leached themselves, which removes areas of interest from the crystal. We present progress made on a sample processing method developed to alleviate complications that affect comminution age measurements. Initial 234U/238U measurements for untreated silt from an 800ka Sierran glacial till are up to 6% above secular equilibrium, while samples processed with this method have measured ratios as low as 3% below secular equilibrium.

  11. URANIUM RECOVERY PROCESS

    DOEpatents

    Stevenson, J.W.; Werkema, R.G.

    1959-07-28

    The recovery of uranium from magnesium fluoride slag obtained as a by- product in the production of uranium metal by the bomb reduction prccess is presented. Generally the recovery is accomplished by finely grinding the slag, roasting ihe ground slag air, and leaching the roasted slag with a hot, aqueous solution containing an excess of the sodium bicarbonate stoichiometrically required to form soluble uranium carbonate complex. The roasting is preferably carried out at between 425 and 485 deg C for about three hours. The leaching is preferably done at 70 to 90 deg C and under pressure. After leaching and filtration the uranium may be recovered from the clear leach liquor by any desired method.

  12. QUANTITATIVE DETERMINATION OF THE URANIUM CONTENT OF URANIUM ORES TECHNOLOGICAL PRODUCTS BY ION EXCHANGE-COMPLEXON SEPARATION (in Hungarian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fodor, M.

    An ion exchange-complexion separation meihod was developed for the removal of interfering elements in the determination of the uranium content of recovery solutions. By adding (ethylenediamine)tetraacetic acid to the solution, most of the interfering elements can be brought into an anionic complex. Adjusting the soluiion to pH 7 and letting it pass through an Amberlite IRC-50 type cation exchanger of hydrogen form, the uranium remains on the column whereas the interfering elements pass into the effluent. The method was successfully applied in analyzing the recovery solutions of uranium ores. (auth)

  13. Method of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, Lane A.; Ryan, Jack L.

    1999-01-01

    The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the 22.sup.9 Th or 2.sup.27 Ac "cow" radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium; lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture; are removed from the mixture on the chloride form anion exchange column.

  14. Method of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, L.A.; Ryan, J.L.

    1999-03-23

    The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the {sup 229}Th or {sup 227}Ac ``cow`` radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium, lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture are removed from the mixture on the chloride form anion exchange column. 8 figs.

  15. Method of separating and recovering uranium and related cations from spent Purex-type systems

    DOEpatents

    Mailen, J.C.; Tallent, O.K.

    1987-02-25

    A process for separating uranium and related cations from a spent Purex-type solvent extraction system which contains degradation complexes of tributylphosphate wherein the system is subjected to an ion-exchange process prior to a sodium carbonate scrubbing step. A further embodiment comprises recovery of the separated uranium and related cations. 5 figs.

  16. Assessment of undiscovered sandstone-hosted uranium resources in the Texas Coastal Plain, 2015

    USGS Publications Warehouse

    Mihalasky, Mark J.; Hall, Susan M.; Hammarstrom, Jane M.; Tureck, Kathleen R.; Hannon, Mark T.; Breit, George N.; Zielinski, Robert A.; Elliott, Brent

    2015-12-02

    The U.S. Geological Survey estimated a mean of 220 million pounds of recoverable uranium oxide (U3O8 ) remaining as potential undiscovered resources in southern Texas. This estimate used a geology-based assessment method for Tertiary sandstone-hosted uranium deposits in the Texas Coastal Plain sedimentary strata (fig.1).

  17. Micro-PIXE characterisation of uranium occurrence in the coal zones and the mudstones of the Springbok Flats Basin, South Africa

    NASA Astrophysics Data System (ADS)

    Nxumalo, V.; Kramers, J.; Mongwaketsi, N.; Przybyłowicz, W. J.

    2017-08-01

    Uranium occurrence and characterisation in the coal samples of the upper coal zones of the Vryheid Formation and mudstones of the Volksrust Formation was investigated using micro-PIXE (Proton-Induced X-ray Emission) and proton backscattering spectrometry (BS) in conjunction with the nuclear microprobe. Two styles of uranium mineralisation in the Springbok Flats Basin were found: syngenetic mineralisation in which uranium occurs organically bound with coal matrix, with no discrete uranium minerals formed, and epigenetic mineralisation in which uranium occurs in veins that are filled with coffinite with botryoidal texture in the mudstones of the Volksrust Formation, overlying the coal zones. Micro-PIXE analysis made it possible to map out trace elements (including uranium) associated with the coals at low levels of detection, which other techniques such as SEM-EDS and ore microscopy failed. This information will help in better understanding of the best extraction methods to be employed to recover uranium from the coals of the Springbok Flats Basin.

  18. Biogeochemical prospecting for uranium with conifers: results from the Midnite Mine area, Washington

    USGS Publications Warehouse

    Nash, J. Thomas; Ward, Frederick Norville

    1977-01-01

    The ash of needles, cones, and duff from Ponderosa pine (Pinus ponderosa Laws) growing near uranium deposits of the Midnite mine, Stevens County, Wash., contain as much as 200 parts per million (ppm) uranium. Needle samples containing more than 10 ppm uranium define zones that correlate well with known uranium deposits or dumps. Dispersion is as much as 300 m but generally is less. Background is about 1 ppm. Tree roots are judged to be sampling ore, low-grade uranium halo, or ground water to a depth of about 15 m. Uptake of uranium by Douglas fir (Pseudotsuga menziesii (Mirb.) Franco) needles appears to be about the same as by Ponderosa pine needles. Cones and duff are generally enriched in uranium relate to needles. Needles, cones, and duff are recommended as easily collected, uncomplicated sample media for geochemical surveys. Samples can be analyzed by standard methods and total cost per sample kept to about $6.

  19. Uranium, radium and thorium in soils with high-resolution gamma spectroscopy, MCNP-generated efficiencies, and VRF non-linear full-spectrum nuclide shape fitting

    NASA Astrophysics Data System (ADS)

    Metzger, Robert; Riper, Kenneth Van; Lasche, George

    2017-09-01

    A new method for analysis of uranium and radium in soils by gamma spectroscopy has been developed using VRF ("Visual RobFit") which, unlike traditional peak-search techniques, fits full-spectrum nuclide shapes with non-linear least-squares minimization of the chi-squared statistic. Gamma efficiency curves were developed for a 500 mL Marinelli beaker geometry as a function of soil density using MCNP. Collected spectra were then analyzed using the MCNP-generated efficiency curves and VRF to deconvolute the 90 keV peak complex of uranium and obtain 238U and 235U activities. 226Ra activity was determined either from the radon daughters if the equilibrium status is known, or directly from the deconvoluted 186 keV line. 228Ra values were determined from the 228Ac daughter activity. The method was validated by analysis of radium, thorium and uranium soil standards and by inter-comparison with other methods for radium in soils. The method allows for a rapid determination of whether a sample has been impacted by a man-made activity by comparison of the uranium and radium concentrations to those that would be expected from a natural equilibrium state.

  20. Analysis of Rare Earth Elements in Uranium Using Handheld Laser-Induced Breakdown Spectroscopy (HH LIBS)

    DOE PAGES

    Manard, Benjamin T.; Wylie, E. Miller; Willson, Stephen P.

    2018-05-22

    In this paper, a portable handheld laser-induced breakdown spectroscopy (HH LIBS) instrument was evaluated as a rapid method to qualitatively analyze rare earth elements in a uranium oxide matrix. This research is motivated by the need for development of a method to perform rapid, at-line chemical analysis in a nuclear facility, particularly to provide a rapid first pass analysis to determine if additional actions or measurements are warranted. This will result in the minimization of handling and transport of radiological and nuclear material and subsequent exposure to their associated hazards. In this work, rare earth elements (Eu, Nd, and Yb)more » were quantitatively spiked into a uranium oxide powder and analyzed by the HH LIBS instrumentation. This method demonstrates the ability to rapidly identify elemental constituents in sub-percent levels in a uranium matrix. Preliminary limits of detection (LODs) were determined with values on the order of hundredths of a percent. Validity of this methodology was explored by employing a National Institute of Standards and Technology (NIST) standard reference materials (SRM) 610 and 612 (Trace Elements in Glass). Finally, it was determined that the HH LIBS method was able to clearly discern the rare earths elements of interest in the glass or uranium matrices.« less

  1. Analysis of Rare Earth Elements in Uranium Using Handheld Laser-Induced Breakdown Spectroscopy (HH LIBS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manard, Benjamin T.; Wylie, E. Miller; Willson, Stephen P.

    In this paper, a portable handheld laser-induced breakdown spectroscopy (HH LIBS) instrument was evaluated as a rapid method to qualitatively analyze rare earth elements in a uranium oxide matrix. This research is motivated by the need for development of a method to perform rapid, at-line chemical analysis in a nuclear facility, particularly to provide a rapid first pass analysis to determine if additional actions or measurements are warranted. This will result in the minimization of handling and transport of radiological and nuclear material and subsequent exposure to their associated hazards. In this work, rare earth elements (Eu, Nd, and Yb)more » were quantitatively spiked into a uranium oxide powder and analyzed by the HH LIBS instrumentation. This method demonstrates the ability to rapidly identify elemental constituents in sub-percent levels in a uranium matrix. Preliminary limits of detection (LODs) were determined with values on the order of hundredths of a percent. Validity of this methodology was explored by employing a National Institute of Standards and Technology (NIST) standard reference materials (SRM) 610 and 612 (Trace Elements in Glass). Finally, it was determined that the HH LIBS method was able to clearly discern the rare earths elements of interest in the glass or uranium matrices.« less

  2. Analysis of Rare Earth Elements in Uranium Using Handheld Laser-Induced Breakdown Spectroscopy (HH LIBS).

    PubMed

    Manard, Benjamin T; Wylie, E Miller; Willson, Stephen P

    2018-01-01

    A portable handheld laser-induced breakdown spectroscopy (HH LIBS) instrument was evaluated as a rapid method to qualitatively analyze rare earth elements in a uranium oxide matrix. This research is motivated by the need for development of a method to perform rapid, at-line chemical analysis in a nuclear facility, particularly to provide a rapid first pass analysis to determine if additional actions or measurements are warranted. This will result in the minimization of handling and transport of radiological and nuclear material and subsequent exposure to their associated hazards. In this work, rare earth elements (Eu, Nd, and Yb) were quantitatively spiked into a uranium oxide powder and analyzed by the HH LIBS instrumentation. This method demonstrates the ability to rapidly identify elemental constituents in sub-percent levels in a uranium matrix. Preliminary limits of detection (LODs) were determined with values on the order of hundredths of a percent. Validity of this methodology was explored by employing a National Institute of Standards and Technology (NIST) standard reference materials (SRM) 610 and 612 (Trace Elements in Glass). It was determined that the HH LIBS method was able to clearly discern the rare earths elements of interest in the glass or uranium matrices.

  3. SULFIDE METHOD PLUTONIUM SEPARATION

    DOEpatents

    Duffield, R.B.

    1958-08-12

    A process is described for the recovery of plutonium from neutron irradiated uranium solutions. Such a solution is first treated with a soluble sullide, causing precipitation of the plutoniunn and uraniunn values present, along with those impurities which form insoluble sulfides. The precipitate is then treated with a solution of carbonate ions, which will dissolve the uranium and plutonium present while the fission product sulfides remain unaffected. After separation from the residue, this solution may then be treated by any of the usual methods, such as formation of a lanthanum fluoride precipitate, to effect separation of plutoniunn from uranium.

  4. METHOD OF ELECTROPOLISHING URANIUM

    DOEpatents

    Walker, D.E.; Noland, R.A.

    1959-07-14

    A method of electropolishing the surface of uranium articles is presented. The process of this invention is carried out by immersing the uranium anticle into an electrolyte which contains from 35 to 65% by volume sulfuric acid, 1 to 20% by volume glycerine and 25 to 50% by volume of water. The article is made the anode in the cell and polished by electrolyzing at a voltage of from 10 to 15 volts. Discontinuing the electrolysis by intermittently withdrawing the anode from the electrolyte and removing any polarized film formed therein results in an especially bright surface.

  5. Contribution for the Derivation of a Soil Screening Value (SSV) for Uranium, Using a Natural Reference Soil

    PubMed Central

    Caetano, Ana Luisa; Marques, Catarina R.; Gavina, Ana; Carvalho, Fernando; Gonçalves, Fernando; da Silva, Eduardo Ferreira; Pereira, Ruth

    2014-01-01

    In order to regulate the management of contaminated land, many countries have been deriving soil screening values (SSV). However, the ecotoxicological data available for uranium is still insufficient and incapable to generate SSVs for European soils. In this sense, and so as to make up for this shortcoming, a battery of ecotoxicological assays focusing on soil functions and organisms, and a wide range of endpoints was carried out, using a natural soil artificially spiked with uranium. In terrestrial ecotoxicology, it is widely recognized that soils have different properties that can influence the bioavailability and the toxicity of chemicals. In this context, SSVs derived for artificial soils or for other types of natural soils, may lead to unfeasible environmental risk assessment. Hence, the use of natural regional representative soils is of great importance in the derivation of SSVs. A Portuguese natural reference soil PTRS1, from a granitic region, was thereby applied as test substrate. This study allowed the determination of NOEC, LOEC, EC20 and EC50 values for uranium. Dehydrogenase and urease enzymes displayed the lowest values (34.9 and <134.5 mg U Kg, respectively). Eisenia andrei and Enchytraeus crypticus revealed to be more sensitive to uranium than Folsomia candida. EC50 values of 631.00, 518.65 and 851.64 mg U Kg were recorded for the three species, respectively. Concerning plants, only Lactuca sativa was affected by U at concentrations up to 1000 mg U kg1. The outcomes of the study may in part be constrained by physical and chemical characteristics of soils, hence contributing to the discrepancy between the toxicity data generated in this study and that available in the literature. Following the assessment factor method, a predicted no effect concentration (PNEC) value of 15.5 mg kg−1 dw was obtained for U. This PNEC value is proposed as a SSV for soils similar to the PTRS1. PMID:25353962

  6. Biogeochemical behaviour and bioremediation of uranium in waters of abandoned mines.

    PubMed

    Mkandawire, Martin

    2013-11-01

    The discharges of uranium and associated radionuclides as well as heavy metals and metalloids from waste and tailing dumps in abandoned uranium mining and processing sites pose contamination risks to surface and groundwater. Although many more are being planned for nuclear energy purposes, most of the abandoned uranium mines are a legacy of uranium production that fuelled arms race during the cold war of the last century. Since the end of cold war, there have been efforts to rehabilitate the mining sites, initially, using classical remediation techniques based on high chemical and civil engineering. Recently, bioremediation technology has been sought as alternatives to the classical approach due to reasons, which include: (a) high demand of sites requiring remediation; (b) the economic implication of running and maintaining the facilities due to high energy and work force demand; and (c) the pattern and characteristics of contaminant discharges in most of the former uranium mining and processing sites prevents the use of classical methods. This review discusses risks of uranium contamination from abandoned uranium mines from the biogeochemical point of view and the potential and limitation of uranium bioremediation technique as alternative to classical approach in abandoned uranium mining and processing sites.

  7. Calixarene-entrapped nanoemulsion for uranium extraction from contaminated solutions.

    PubMed

    Spagnul, Aurélie; Bouvier-Capely, Céline; Phan, Guillaume; Rebière, François; Fattal, Elias

    2010-03-01

    Accidental cutaneous contamination by actinides such as uranium occurring to nuclear power plant workers can lead to their dissemination in other tissues and induce severe damages. Until now, no specific emergency treatment for such contamination has been developed. The aim of the present work was to formulate a tricarboxylic calix[6]arene molecule, known to exhibit good affinity and selectivity for complexing uranium, within a topical delivery system for the treatment of skin contamination. Since calixarene was shown to reduce oil/water interfacial tension, we have designed an oil-in-water nanoemulsion, taking advantage of the small droplet size offering a high contact surface with the contaminated aqueous medium. Characterization of the calixarene nanoemulsion was performed by determination of the oily droplet size, zeta potential and pH, measured as a function of the calixarene concentration. The obtained results have confirmed the surface localization of calixarene molecules being potentially available to extract uranyl ions from an aqueous contaminated solution. In a preliminary experiments, the calixarene nanoemulsion was used for the removal of free uranium from an aqueous contaminated solution. Results showed that the calixarene nanoemulsion extracted up to 80 +/- 5% of uranium, which demonstrates the potential interest of this delivery system for uranium skin decontamination. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  8. Transmutation of uranium and thorium in the particle field of the Quinta sub-critical assembly

    NASA Astrophysics Data System (ADS)

    Hashemi-Nezhad, S. R.; Asquith, N. L.; Voronko, V. A.; Sotnikov, V. V.; Zhadan, Alina; Zhuk, I. V.; Potapenko, A.; Husak, Krystsina; Chilap, V.; Adam, J.; Baldin, A.; Berlev, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Kudashkin, I.; Mar'in, I.; Paraipan, M.; Pronskih, V.; Solnyshkin, A.; Tyutyunnikov, S.

    2018-03-01

    The fission rates of natural uranium and thorium were measured in the particle field of Quinta, a 512 kg natural uranium target-blanket sub-critical assembly. The Quinta assembly was irradiated with deuterons of energy 4 GeV from the Nuclotron accelerator of the Joint Institute for Nuclear Research (JINR), Dubna, Russia. Fission rates of uranium and thorium were measured using Gamma spectroscopy and fission track techniques. The production rate of 239Np was also measured. The obtained experimental results were compared with Monte Carlo predictions using the MCNPX 2.7 code employing the physics and fission-evaporation models of INCL4-ABLA, CEM03.03 and LAQGSM03.03. Some of the neutronic characteristics of the Quinta are compared with the "Energy plus Transmutation (EpT)" subcritical assembly, which is composed of a lead target and natU blanket. This comparison clearly demonstrates the importance of target material, neutron moderator and reflector types on the performance of a spallation neutron driven subcritical system. As the dimensions of the Quinta are very close to those of an optimal multi-rod-uranium target, the experimental and Monte Carlo calculation results presented in this paper provide insights on the particle field within a uranium target as well as in Accelerator Driven Systems in general.

  9. 40 CFR 471.71 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CATEGORY Uranium Forming Subcategory § 471.71 Effluent limitations representing the degree of effluent... uranium extruded Cadium 0.117 0.052 Chromium 0.152 0.062 Copper 0.654 0.344 Lead 0.145 0.069 Nickel 0.661 0.437 Fluoride 20.5 9.08 Molybdenum 2.28 1.18 Oil and grease 6.88 4.13 TSS 14.1 6.71 pH (1) (1) 1...

  10. 40 CFR 471.71 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CATEGORY Uranium Forming Subcategory § 471.71 Effluent limitations representing the degree of effluent... uranium extruded Cadium 0.117 0.052 Chromium 0.152 0.062 Copper 0.654 0.344 Lead 0.145 0.069 Nickel 0.661 0.437 Fluoride 20.5 9.08 Molybdenum 2.28 1.18 Oil and grease 6.88 4.13 TSS 14.1 6.71 pH (1) (1) 1...

  11. U-Pb Dating of Unabraded Detrital Zircon Metamorphic Rims in the Nanaimo Basin, British Columbia

    NASA Astrophysics Data System (ADS)

    Boivin, M. P.; Guest, B.; Matthews, W.

    2016-12-01

    Thin metamorphic rims on detrital zircons from the Nanaimo Basin in SW British Columbia offer a unique opportunity to further constrain the source of these zircons, helping to resolve the long standing Baja BC controversy. Here we present an analytical approach for dating thin zircon rims and use it to show that zircons from the Nanaimo Basin are most likely derived from metamorphic rocks in southern California. Conventional in-situ laser ablation sample preparation typically requires mounting and polishing zircon grains to expose their core. However, in order to date these thin metamorphic zircon rims a depth-profiling approach on unabraded grains was employed. Zircon grains from the Upper Cretaceous Geoffrey, Spray, and Gabriola formations of the Nanaimo Group exposed on Denman and Hornby Islands (British Columbia) were sorted into five groups based on morphology. The zircons were then mounted on tape along with several grains of a well-characterised zircon reference material to validate the uncertainty of the method. The zircons were then imaged using a Zygo Zescope optical profilometer in order to correct for grain-to-grain variations in elevation relative to mounting medium and ensure consistent laser focus. Backscatter electron images (BSE) were used to further characterised the grains and optimize the location of laser ablation targets. Zircons were ablated using a Resonetics 193 nm excimer laser and uranium and lead isotopic ratios were measured using an Agilent 7700 quadrupole mass spectrometer. A low frequency laser repetition rate extended the data collection period on relatively thin zircon rims. Our results show that metamorphic zircon growth occurred in two main phases at 100 Ma and 77 Ma suggesting two sources of detrital zircons with differing metamorphic histories were present in the catchment area. The timing of metamorphism of the source area for the Nanaimo basin is inconsistent with derivation from sources in the Rocky Mountains (Lemhi sub-basin of the Belt-Purcell basin) and consistent with derivation from Mojave-Sonoran region of southern California and northern Mexico. We speculate that some parts of the detrital zircon population of the Nanaimo basin sediments were likely derived from exhumed bodies of the Pelona, Orocopia and Rand schists.

  12. Determination of depleted uranium, pyridostigmine bromide and its metabolite in plasma and urine following combined administration in rats.

    PubMed

    Abu-Qare, A W; Abou-Donia, M B

    2001-09-01

    A simple and reliable method was developed for the quantification of depleted uranium, the anti nerve agent drug pyridostigmine bromide (PB;3-dimethylaminocarbonyloxy-N-methyl pyridinium bromide) and its metabolite N-methyl-3-hydroxypyridinium bromide in rat plasma and urine. The method involved using solid phase extraction and spectrophotometric determination of uranium, and high performance liquid chromatography (HPLC) with reversed phase C(18) column, and UV detection at 280 nm for PB and its metabolite. Uranium was derivatized using dibenzoylmethane (DBM) then the absorbance was measured at 405 nm. PB and its metabolite were separated using a gradient of 1--40% acetonitrile in 0.1% triflouroacetic acid water solution (pH 3.2) at a flow rate of 0.8 ml/min in a period of 14 min. Limits of detection were 2 ng/ml for uranium and 50 ng/ml for PB and its metabolite. Limits of quantitation were between 10 and 100 ng/ml for uranium and the other two analytes, respectively. Average percentage recovery of five spiked plasma samples were 83.7+/-8.6, 76.8+/-6.7, 79.1+/-7.1, and from urine 82.7+/-8.6, 79.3+/-9.5 and 78.0+/-6.2, for depleted uranium, PB and N-methyl-3-hydroxypyridinium bromide, respectively. The relationship between peak areas and concentration was linear for standards between 100 and 1000 ng/ml for all three analytes. This method was applied to analyze the above chemicals and metabolites following combined administration in rats.

  13. WHETSTONE ROADLESS AREA, ARIZONA.

    USGS Publications Warehouse

    Wrucke, Chester T.; McColly, Robert A.

    1984-01-01

    A mineral survey conducted has shown that areas in and adjacent to the Whetstone Roadless Area, Arizona have a substantiated resource potential for copper, lead, gold, silver, and quartz, and a probable mineral-resource potential for copper silver, lead, gold, molybdenum, tungsten, uranium, and gypsum. Copper and silver occur in a small vein deposit in the southwestern part of the roadless area. Copper, lead, silver, gold, and molybdenum are known in veins associated with a porphyry copper deposit in a reentrant near the southern border of the roadless area. Vein deposits of tungsten and uranium are possible in the northeast part of the roadless area near areas of known production of these commodities. Demonstrated resources of quartz for smelter flux extend into the roadless area from the Ricketts mine. Areas of probable potential for gypsum resources also occur within the roadless area. No potential for fossil fuel resources was identified in the study.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfiffner, Susan M.; Brandt, Craig C.; Kostka, Joel E.

    Our current research represents a joint effort between Oak Ridge National Laboratory (ORNL), Florida State University (FSU), and the University of Tennessee. ORNL will serve as the lead institution with Dr. A.V. Palumbo responsible for project coordination, integration, and deliverables. This project was initiated in November, 2004, in the Integrative Studies Element of the NABIR program. The overall goal of our project is to provide an improved understanding of the relationships between microbial community structure, geochemistry, and metal reduction rates. The research seeks to address the following questions: Is the metabolic diversity of the in situ microbial community sufficiently largemore » and redundant that bioimmobilization of uranium will occur regardless of the type of electron donor added to the system? Are their donor specific effects that lead to enrichment of specific community members that then impose limits on the functional capabilities of the system? Will addition of humics change rates of uranium reduction without changing community structure? Can resource-ratio theory be used to understand changes in uranium reduction rates and community structure with respect to changing C:P ratios?« less

  15. Uranium series radionuclides, polonium-210 and lead-210, in the lichen-caribou-wolf food chain of the Northwest Territories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, P.A.; Sheard, J.W.; Swanson, S.

    1994-12-31

    This report examines baseline concentrations and transfer of the uranium decay products polonium-210 and lead-210 in the lichen-caribou-wolf food chain at two locations in the Northwest Territories, Baker Lake and Snowdrift. At each location, concentrations of the two radionuclides were determined in the lichen species Cetraria nivalis and Cladina mitis, and several tissues from caribou and wolves. Baseline concentrations and transfer coefficients within the food chain were compared between the two locations. Lichen samples were also collected from Kasba Lake, a third hunting ground used by northern Saskatchewan hunters. The lichen species chosen were common forage for caribou. Both themore » predominant lichen species at each location and rumen contents were used to estimate the winter diet of caribou in the calculation of transfer coefficients. The results are relevant to environmental monitoring in areas of potential future uranium mining development and the transfer coefficients determined in the study may be used to estimate radionuclide concentrations and radiation doses in future environmental assessments.« less

  16. Relationship of uranium and other trace elements to post-Cretaceous vulcanism

    USGS Publications Warehouse

    Coats, Robert R.

    1955-01-01

    A regional study of the distribution of uranium, boron, tin, beryllium, niobium, lanthanum, lead, zirconium, lithium, and fluorine in 112 samples of Cenozoic volcanic rocks of predominately rhyolitic and dacitic composition has shown that the content of uranium has a significantly high positive correlation with that of niobium, beryllium, and fluorine, a lower but still significant positive correlation with lithium and tin, a significant negative correlation with boron and lanthanum, and no significant correlation with zirconium and lead. A study of the relation of content of the several elements to the geographic provenance shows significant variation with provenance for all these elements, except tin and lanthanum. On the basis of these variations and on patterns of consistency, five comagmatic provinces, one of which is divided into three sub-provinces, have been delimited, in part, on a map of the western United States. The patter of distribution of boron is significantly different from that of the other elements. The regional difference are perhaps best explained by structural control of the effectiveness of vertical transport.

  17. 40 CFR 440.34 - New source performance standards (NSPS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... uranium ore, excluding mines using in situ leach methods, shall not exceed: Effluent characteristic... for the extraction of uranium or from mines and mills using in situ leach methods. The Agency... Subcategory § 440.34 New source performance standards (NSPS). Except as provided in subpart L of this part any...

  18. 40 CFR 440.34 - New source performance standards (NSPS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... uranium ore, excluding mines using in situ leach methods, shall not exceed: Effluent characteristic... for the extraction of uranium or from mines and mills using in situ leach methods. The Agency... Subcategory § 440.34 New source performance standards (NSPS). Except as provided in subpart L of this part any...

  19. Uraniferous bitumen nodules in the Talvivaara Ni-Zn-Cu-Co deposit (Finland): influence of metamorphism on uranium mineralization in black shales

    NASA Astrophysics Data System (ADS)

    Lecomte, Andreï; Cathelineau, Michel; Deloule, Etienne; Brouand, Marc; Peiffert, Chantal; Loukola-Ruskeeniemi, Kirsti; Pohjolainen, Esa; Lahtinen, Hannu

    2014-04-01

    In the central part of the Fennoscandian Shield, the Talvivaara Ni-Zn-Cu-Co deposit, hosted by Palaeoproterozoic metamorphosed black schists, contains low uranium concentrations ranging from 10 to 30 ppm. The Talvivaara black schists were deposited 2.0-1.9 Ga ago and underwent subsequent metamorphism during the 1.9-1.79 Ga Svecofennian orogeny. Anhedral uraninite crystals rimmed by bitumen constitute the main host of uranium. U-Pb secondary ion mass spectrometry dating indicates that uraninite crystals were formed between 1,878 ± 17 and 1,871 ± 43 Ma, during peak metamorphism. Rare earth element patterns and high Th content (average 6.38 wt%) in disseminated uraninite crystals indicate that U was concentrated during high temperature metamorphism (>400 °C). The formation of bitumen rims around uraninite may be explained by two distinct scenarios: (a) a transport of U coincident with the migration of hydrocarbons or (b) post-metamorphic formation of bitumen rims, through radiolytic polymerization of gaseous hydrocarbons at the contact with uraninite.

  20. METHOD OF ELECTROPLATING ON URANIUM

    DOEpatents

    Rebol, E.W.; Wehrmann, R.F.

    1959-04-28

    This patent relates to a preparation of metallic uranium surfaces for receiving coatings, particularly in order to secure adherent electroplated coatings upon uranium metal. In accordance with the invention the uranium surface is pretreated by degreasing in trichloroethylene, followed by immersion in 25 to 50% nitric acid for several minutes, and then rinsed with running water, prior to pickling in trichloroacetic acid. The last treatment is best accomplished by making the uranium the anode in an aqueous solution of 50 per cent by weight trichloroacetic acid until work-distorted crystals or oxide present on the metal surface have been removed and the basic crystalline structure of the base metal has been exposed. Following these initial steps the metallic uranium is rinsed in dilute nitric acid and then electroplated with nickel. Adnerent firmly-bonded coatings of nickel are obtained.

Top