Sample records for uranyl nitrate complex

  1. Photochemical water oxidation and origin of nonaqueous uranyl peroxide complexes.

    PubMed

    McGrail, Brendan T; Pianowski, Laura S; Burns, Peter C

    2014-04-02

    Sunlight photolysis of uranyl nitrate and uranyl acetate solutions in pyridine produces uranyl peroxide complexes. To answer longstanding questions about the origin of these complexes, we conducted a series of mechanistic studies and demonstrate that these complexes arise from photochemical oxidation of water. The peroxo ligands are easily removed by protonolysis, allowing regeneration of the initial uranyl complexes for potential use in catalysis.

  2. Synthesis of microspheres of triuranium octaoxide by simultaneous water and nitrate extraction from ascorbate-uranyl sols.

    PubMed

    Brykala, M; Deptula, A; Rogowski, M; Lada, W; Olczak, T; Wawszczak, D; Smolinski, T; Wojtowicz, P; Modolo, G

    A new method for synthesis of uranium oxide microspheres (diameter <100 μm) has been developed. It is a variant of our patented Complex Sol-Gel Process, which has been used to synthesize high-quality powders of a wide variety of complex oxides. Starting uranyl-nitrate-ascorbate sols were prepared by addition of ascorbic acid to uranyl nitrate hexahydrate solution and alkalizing by aqueous ammonium hydroxide and then emulsified in 2-ethylhexanol-1 containing 1v/o SPAN-80. Drops of emulsion were firstly gelled by extraction of water by the solvent. Destruction of the microspheres during thermal treatment, owing to highly reactive components in the gels, requires modification of the gelation step by Double Extraction Process-simultaneously extraction of water and nitrates using Primene JMT, which completely eliminates these problem. Final step was calcination in air of obtained microspheres of gels to triuranium octaoxide.

  3. Uranyl(VI) nitrate salts: modeling thermodynamic properties using the binding mean spherical approximation theory and determination of "fictive" binary data.

    PubMed

    Ruas, Alexandre; Bernard, Olivier; Caniffi, Barbara; Simonin, Jean-Pierre; Turq, Pierre; Blum, Lesser; Moisy, Philippe

    2006-02-23

    This work is aimed at a description of the thermodynamic properties of highly concentrated aqueous solutions of uranyl nitrate at 25 degrees C. A new resolution of the binding mean spherical approximation (BIMSA) theory, taking into account 1-1 and also 1-2 complex formation, is developed and used to reproduce, from a simple procedure, experimental uranyl nitrate osmotic coefficient variation with concentration. For better consistency of the theory, binary uranyl perchlorate and chloride osmotic coefficients are also calculated. Comparison of calculated and experimental values is made. The possibility of regarding the ternary system UO(2)(NO(3))(2)/HNO(3)/H(2)O as a "simple" solution (in the sense of Zdanovskii, Stokes, and Robinson) is examined from water activity and density measurements. Also, an analysis of existing uranyl nitrate binary data is proposed and compared with our obtained data. On the basis of the concept of "simple" solution, values for density and water activity for the binary system UO(2)(NO(3))(2)/H(2)O are proposed in a concentration range on which uranyl nitrate precipitates from measurements on concentrated solutions of the ternary system UO(2)(NO(3))(2)/HNO(3)/H(2)O. This new set of binary data is "fictive" in the sense that the real binary system is not stable chemically. Finally, a new, interesting predictive capability of the BIMSA theory is shown.

  4. EXTRACTION OF URANYL NITRATE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Furman, N.H.; Mundy, R.J.

    1957-12-10

    An improvement in the process is described for extracting aqueous uranyl nitrate solutions with an organic solvent such as ether. It has been found that the organic phase will extract a larger quantity of uranyl nitrate if the aqueous phase contains in addition to the uranyl nitrate, a quantity of some other soluble nitrate to act as a salting out agent. Mentioned as suitable are the nitrates of lithium, calcium, zinc, bivalent copper, and trivalent iron.

  5. Sorption of uranium in uranyl nitrate solutions on strong cationic resins and its elution with ammonium sulfate. II. Effects of EDTA on thorium decontamination; Estudos de sorpcao de uranio contido em solucoes de nitrato de uranilo por resina cationica forte e sua eluicao com sulfato de amonio. Parte II: efeito de EDTA na descontaminacao do torio (in Portuguese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ribas, Antonio G.S.; Abrao, Alcidio

    1970-05-15

    This paper describes the studies of decontamination of thorium present as impurity in uranyl nitrate solutions, which was carried out through strong cationic resin where the thorium was partially retained. Then, the final decontamination was performed percolating the uranyl solution on a second cationic resin, after complexation of thorium (and other impurities) with EDTA. The thorium decontamination and the uranium retention were studied as a function of EDTA/U ratio, uranium concentration and acidity of the influent uranyl nitrate. The elution conditions were also studied as a function of eluent flow rate, concentration and acidity. Several tables and graphs showing themore » final results are included. (tr-auth)« less

  6. URANIUM PURIFICATION PROCESS

    DOEpatents

    Ruhoff, J.R.; Winters, C.E.

    1957-11-12

    A process is described for the purification of uranyl nitrate by an extraction process. A solution is formed consisting of uranyl nitrate, together with the associated impurities arising from the HNO/sub 3/ leaching of the ore, in an organic solvent such as ether. If this were back extracted with water to remove the impurities, large quantities of uranyl nitrate will also be extracted and lost. To prevent this, the impure organic solution is extracted with small amounts of saturated aqueous solutions of uranyl nitrate thereby effectively accomplishing the removal of impurities while not allowing any further extraction of the uranyl nitrate from the organic solvent. After the impurities have been removed, the uranium values are extracted with large quantities of water.

  7. URANIUM EXTRACTION

    DOEpatents

    Harrington, C.D.; Opie, J.V.

    1958-07-01

    The recovery of uranium values from uranium ore such as pitchblende is described. The ore is first dissolved in nitric acid, and a water soluble nitrate is added as a salting out agent. The resulting feed solution is then contacted with diethyl ether, whereby the bulk of the uranyl nitrate and a portion of the impurities are taken up by the ether. This acid ether extract is then separated from the aqueous raffinate, and contacted with water causing back extractioa of the uranyl nitrate and impurities into the water to form a crude liquor. After separation from the ether extract, this crude liquor is heated to about 118 deg C to obtain molten uranyl nitrate hexahydratc. After being slightly cooled the uranyl nitrate hexahydrate is contacted with acid free diethyl ether whereby the bulk of the uranyl nitrate is dissolved into the ethcr to form a neutral ether solution while most of the impurities remain in the aqueous waste. After separation from the aqueous waste, the resultant ether solution is washed with about l0% of its volume of water to free it of any dissolved impurities and is then contacted with at least one half its volume of water whereby the uranyl nitrate is extracted into the water to form an aqueous product solution.

  8. Method for loading resin beds

    DOEpatents

    Notz, Karl J.; Rainey, Robert H.; Greene, Charles W.; Shockley, William E.

    1978-01-01

    An improved method of preparing nuclear reactor fuel by carbonizing a uranium loaded cation exchange resin provided by contacting a H.sup.+ loaded resin with a uranyl nitrate solution deficient in nitrate, comprises providing the nitrate deficient solution by a method comprising the steps of reacting in a reaction zone maintained between about 145.degree.-200.degree. C, a first aqueous component comprising a uranyl nitrate solution having a boiling point of at least 145.degree. C with a second aqueous component to provide a gaseous phase containing HNO.sub.3 and a reaction product comprising an aqueous uranyl nitrate solution deficient in nitrate.

  9. Uranyl coordination in ionic liquids: the competition between ionic liquid anions, uranyl counterions, and Cl- anions investigated by extended X-ray absorption fine structure and UV-visible spectroscopies and molecular dynamics simulations.

    PubMed

    Gaillard, C; Chaumont, A; Billard, I; Hennig, C; Ouadi, A; Wipff, G

    2007-06-11

    The first coordination sphere of the uranyl cation in room-temperature ionic liquids (ILs) results from the competition between its initially bound counterions, the IL anions, and other anions (e.g., present as impurities or added to the solution). We present a joined spectroscopic (UV-visible and extended X-ray absorption fine structure)-simulation study of the coordination of uranyl initially introduced either as UO2X2 salts (X-=nitrate NO3-, triflate TfO-, perchlorate ClO4-) or as UO2(SO4) in a series of imidazolium-based ILs (C4mimA, A-=PF6-, Tf2N-, BF4- and C4mim=1-methyl-3-butyl-imidazolium) as well as in the Me3NBuTf2N IL. The solubility and dissociation of the uranyl salts are found to depend on the nature of X- and A-. The addition of Cl- anions promotes the solubilization of the nitrate and triflate salts in the C4mimPF6 and the C4mimBF4 ILs via the formation of chloro complexes, also formed with other salts. The first coordination sphere of uranyl is further investigated by molecular dynamics (MD) simulations on associated versus dissociated forms of UO2X2 salts in C4mimA ILs as a function of A- and X- anions. Furthermore, the comparison of UO2Cl(4)2-, 2 X- complexes with dissociated X- anions, to the UO2X2, 4 Cl- complexes with dissociated chlorides, shows that the former is more stable. The case of fluoro complexes is also considered, as a possible result of fluorinated IL anion's degradation, showing that UO2F42- should be most stable in solution. In all cases, uranyl is found to be solvated as formally anionic UO2XnAmClp2-n-m-p complexes, embedded in a cage of stabilizing IL imidazolium or ammonium cations.

  10. URANIUM PURIFICATION PROCESS

    DOEpatents

    Winters, C.E.

    1957-11-12

    A method for the preparation of a diethyl ether solution of uranyl nitrate is described. Previously the preparation of such ether solutions has been difficult and expensive, since crystalline uranyl nitrate hexahydrate dissolves very slowly in ether. An improved method for effecting such dissolution has been found, and it comprises adding molten uranyl nitrate hexahydrate at a temperature of 65 to 105 deg C to the ether while maintaining the temperature of the ether solvent below its boiling point.

  11. DFT study of uranyl peroxo complexes with H2O, F-, OH-, CO3(2-), and NO3(-).

    PubMed

    Odoh, Samuel O; Schreckenbach, Georg

    2013-05-06

    The structural and electronic properties of monoperoxo and diperoxo uranyl complexes with aquo, fluoride, hydroxo, carbonate, and nitrate ligands have been studied using scalar relativistic density functional theory (DFT). Only the complexes in which the peroxo ligands are coordinated to the uranyl moiety in a bidentate mode were considered. The calculated binding energies confirm that the affinity of the peroxo ligand for the uranyl group far exceeds that of the F(-), OH(-), CO3(2-), NO3(-), and H2O ligands. The formation of the monoperoxo complexes from UO2(H2O)5(2+) and HO2(-) were found to be exothermic in solution. In contrast, the formation of the monouranyl-diperoxo, UO2(O2)2X2(4-) or UO2(O2)2X(4-/3-) (where X is any of F(-), OH(-), CO3(2-), or NO3(-)), complexes were all found to be endothermic in aqueous solution. This suggests that the monoperoxo species are the terminal monouranyl peroxo complexes in solution, in agreement with recent experimental work. Overall, we find that the properties of the uranyl-peroxo complexes conform to well-known trends: the coordination of the peroxo ligand weakens the U-O(yl) bonds, stabilizes the σ(d) orbitals and causes a mixing between the uranyl π- and peroxo σ- and π-orbitals. The weakening of the U-O(yl) bonds upon peroxide coordination results in uranyl stretching vibrational frequencies that are much lower than those obtained after the coordination of carbonato or hydroxo ligands.

  12. Density functional theory and molecular dynamics study of the uranyl ion (UO₂)²⁺.

    PubMed

    Rodríguez-Jeangros, Nicolás; Seminario, Jorge M

    2014-03-01

    The detection of uranium is very important, especially in water and, more importantly, in the form of uranyl ion (UO₂)²⁺, which is one of its most abundant moieties. Here, we report analyses and simulations of uranyl in water using ab initio modified force fields for water with improved parameters and charges of uranyl. We use a TIP4P model, which allows us to obtain accurate water properties such as the boiling point and the second and third shells of water molecules in the radial distribution function thanks to a fictitious charge that corrects the 3-point models by reproducing the exact dipole moment of the water molecule. We also introduced non-bonded interaction parameters for the water-uranyl intermolecular force field. Special care was taken in testing the effect of a range of uranyl charges on the structure of uranyl-water complexes. Atomic charges of the solvated ion in water were obtained using density functional theory (DFT) calculations taking into account the presence of nitrate ions in the solution, forming a neutral ensemble. DFT-based force fields were calculated in such a way that water properties, such as the boiling point or the pair distribution function stand. Finally, molecular dynamics simulations of a water box containing uranyl cations and nitrate anions are performed at room temperature. The three peaks in the oxygen-oxygen radial distribution function for water were found to be kept in the presence of uranyl thanks to the improvement of interaction parameters and charges. Also, we found three shells of water molecules surrounding the uranyl ion instead of two as was previously thought.

  13. A Solution-Based Approach for Mo-99 Production: Considerations for Nitrate versus Sulfate Media

    DOE PAGES

    Youker, Amanda J.; Chemerisov, Sergey D.; Kalensky, Michael; ...

    2013-01-01

    Molybdenum-99 is the parent of Technetium-99m, which is used in nearly 80% of all nuclear medicine procedures. The medical community has been plagued by Mo-99 shortages due to aging reactors, such as the NRU (National Research Universal) reactor in Canada. There are currently no US producers of Mo-99, and NRU is scheduled for shutdown in 2016, which means that another Mo-99 shortage is imminent unless a potential domestic Mo-99 producer fills the void. Argonne National Laboratory is assisting two potential domestic suppliers of Mo-99 by examining the effects of a uranyl nitrate versus a uranyl sulfate target solution configuration onmore » Mo-99 production. Uranyl nitrate solutions are easier to prepare and do not generate detectable amounts of peroxide upon irradiation, but a high radiation field can lead to a large increase in pH, which can lead to the precipitation of fission products and uranyl hydroxides. Uranyl sulfate solutions are more difficult to prepare, and enough peroxide is generated during irradiation to cause precipitation of uranyl peroxide, but this can be prevented by adding a catalyst to the solution. A titania sorbent can be used to recover Mo-99 from a highly concentrated uranyl nitrate or uranyl sulfate solution; however, different approaches must be taken to prevent precipitation during Mo-99 production.« less

  14. Uranyl nitrate-exposed rat alveolar macrophages cell death: Influence of superoxide anion and TNF α mediators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orona, N.S.; Tasat, D.R., E-mail: deborah.tasat@unsam.edu.ar; School of Dentistry, University of Buenos Aires, M. T. de Alvear 2142

    2012-06-15

    Uranium compounds are widely used in the nuclear fuel cycle, military and many other diverse industrial processes. Health risks associated with uranium exposure include nephrotoxicity, cancer, respiratory, and immune disorders. Macrophages present in body tissues are the main cell type involved in the internalization of uranium particles. To better understand the pathological effects associated with depleted uranium (DU) inhalation, we examined the metabolic activity, phagocytosis, genotoxicity and inflammation on DU-exposed rat alveolar macrophages (12.5–200 μM). Stability and dissolution of DU could differ depending on the dissolvent and in turn alter its biological action. We dissolved DU in sodium bicarbonate (NaHCO{submore » 3} 100 mM) and in what we consider a more physiological vehicle resembling human internal media: sodium chloride (NaCl 0.9%). We demonstrate that uranyl nitrate in NaCl solubilizes, enters the cell, and elicits its cytotoxic effect similarly to when it is diluted in NaHCO{sub 3}. We show that irrespective of the dissolvent employed, uranyl nitrate impairs cell metabolism, and at low doses induces both phagocytosis and generation of superoxide anion (O{sub 2}{sup −}). At high doses it provokes the secretion of TNFα and through all the range of doses tested, apoptosis. We herein suggest that at DU low doses O{sub 2}{sup −} may act as the principal mediator of DNA damage while at higher doses the signaling pathway mediated by O{sub 2}{sup −} may be blocked, prevailing damage to DNA by the TNFα route. The study of macrophage functions after uranyl nitrate treatment could provide insights into the pathophysiology of uranium‐related diseases. -- Highlights: ► Uranyl nitrate effect on cultured macrophages is linked to the doses and independent of its solubility. ► At low doses uranyl nitrate induces generation of superoxide anion. ► At high doses uranyl nitrate provokes secretion of TNFα. ► Uranyl nitrate induces apoptosis through all the range of doses tested.« less

  15. FLAME DENITRATION AND REDUCTION OF URANIUM NITRATE TO URANIUM DIOXIDE

    DOEpatents

    Hedley, W.H.; Roehrs, R.J.; Henderson, C.M.

    1962-06-26

    A process is given for converting uranyl nitrate solution to uranium dioxide. The process comprises spraying fine droplets of aqueous uranyl nitrate solution into a hightemperature hydrocarbon flame, said flame being deficient in oxygen approximately 30%, retaining the feed in the flame for a sufficient length of time to reduce the nitrate to the dioxide, and recovering uranium dioxide. (AEC)

  16. 2,6-Diiminopiperidin-1-ol: an overlooked motif relevant to uranyl and transition metal binding on poly(amidoxime) adsorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Zachary C.; Cardenas, Allan Jay P.; Corbey, Jordan F.

    2016-01-01

    Glutardiamidoxime, a structural motif on sorbents used in uranium extraction from seawater, was discovered to cyclize in situ at room temperature to 2,6-diimino-piperidin-1-ol in the presence of uranyl nitrate. The new diimino motif was also generated when exposed to competing transition metals Cu(II) and Ni(II). Multinuclear μ-O bridged U(VI), Cu(II), and Ni(II) complexes featuring bound diimino ligands were isolated. A Cu(II) complex with the historically relevant cyclic imide dioxime motif is also reported for structural comparison to the reported diimino complexes.

  17. Ions generated from uranyl nitrate solutions by electrospray ionization (ESI) and detected with Fourier transform ion-cyclotron resonance (FT-ICR) mass spectrometry.

    PubMed

    Pasilis, Sofie; Somogyi, Arpád; Herrmann, Kristin; Pemberton, Jeanne E

    2006-02-01

    Electrospray ionization (ESI) of uranyl nitrate solutions generates a wide variety of positively and negatively charged ions, including complex adducts of uranyl ions with methoxy, hydroxy, and nitrate ligands. In the positive ion mode, ions detected by Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry are sensitive to instrumental tuning parameters such as quadrupole operating frequency and trapping time. Positive ions correspond to oligomeric uranyl nitrate species that can be characterized as having a general formula of [(UO(2))(n)(A)(m)(CH(3)OH)(s)](+) or [(UO(2))(n)(O)(A)(m)(CH(3)OH)(s)](+) with n = 1-4, m = 1-7, s = 0 or 1, and A = OH, NO(3), CH(3)O or a combination of these, although the formation of NO(3)-containing species is preferred. In the negative ion mode, complexes of the form [(UO(2))(NO(3))(m)](-) (m = 1-3) are detected, although the formation of the oxo-containing ions [(UO(2))(O)(n)(NO(3))(m)](-) (n = 1-2, m = 1-2) and the hydroxy-containing ions [(UO(2))(OH)(n)(NO(3))(m)](-) (n = 1-2, m = 0-1) are also observed. The extent of coordinative unsaturation of both positive and negative ions can be determined by ligand association/exchange and H/D exchange experiments using D(2)O and CD(3)OD as neutral reaction partners in the gas-phase. Positive ions are of varying stability and reactivity and may fragment extensively upon collision with D(2)O, CD(3)OD and N(2) in sustained off-resonance irradiation/collision-induced dissociation (SORI-CID) experiments. Electron-transfer reactions, presumably occurring during electrospray ionization but also in SORI-CID, can result in reduction of U(VI) to U(V) and perhaps even U(IV).

  18. PROCESS FOR EXTRACTING NEPTUNIUM AND PLUTONIUM FROM NITRIC ACID SOLUTIONS OF SAME CONTAINING URANYL NITRATE WITH A TERTIARY AMINE

    DOEpatents

    Sheppard, J.C.

    1962-07-31

    A process of selectively extracting plutonium nitrate and neptunium nitrate with an organic solution of a tertiary amine, away from uranyl nitrate present in an aqueous solution in a maximum concentration of 1M is described. The nitric acid concentration is adjusted to about 4M and nitrous acid is added prior to extraction. (AEC)

  19. Thermal stability of uranyl complexes with neutral oxygen-containing organic bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobets, L.V.

    1987-03-01

    The thermal stability of uranyl chloride, nitrate, and oxalate with a series of neutral oxygen-containing organic ligands is discussed. It was found that the temperatures of removal of chlorine are higher than the stripping of the first molecule of the base in complexes UO/sub 2/Cl/sub 2/ x 2L. This is an indication of greater strength of the bonds of the Cl/sup -/ ions to the uranyl group in comparison with the investigated bases. It was shown that the temperatures of removal of a mole of neutral ligands depend little on the nature of the anions and exhibit a correlation withmore » the donor capacity of the bases: Ac < TBP < DMFA similarly ordered DMSO < TBPO similarly ordered PyO. The chemistry of the decomposition of the complexes and the strength of the binding of the acido- and neutral ligands in them are discussed.« less

  20. Precipitation characteristics of uranyl ions at different pHs depending on the presence of carbonate ions and hydrogen peroxide.

    PubMed

    Kim, Kwang-Wook; Kim, Yeon-Hwa; Lee, Se-yoon; Lee, Jae-Won; Joe, Kih-Soo; Lee, Eil-Hee; Kim, Jong-Seung; Song, Kyuseok; Song, Kee-Chan

    2009-04-01

    This work studied the dissolution of uranium dioxide and precipitation characteristics of uranyl ions in alkaline and acidic solutions depending on the presence of carbonate ions and H2O2 in the solutions at different pHs controlled by adding HNO3 or NaOH in the solution. The chemical structures of the precipitates generated in different conditions were evaluated and compared by using XRD, SEM, TG-DT, and IR analyses together. The sizes and forms of the precipitates in the solutions were evaluated, as well. The uranyl ions were precipitated in the various forms, depending on the solution pH and the presences of hydrogen peroxide and carbonate ions in the solution. In a 0.5 M Na2CO3 solution with H2O2, where the uranyl ions formed mixed uranyl peroxy-carbonato complexes, the uranyl ions were precipitated as a uranium peroxide of UO4(H20)4 at pH 3-4, and precipitated as a clarkeite of Na2U2Ox(OH)y(H2O)z above pH 13. In the same carbonate solution without H2O2, where the uranyl ions formed uranyl tris-carbonato complex, the uranyl ions were observed to be precipitated as a different form of clarkeite above pH 13. The precipitate of uranyl ions in a nitrate solution without carbonate ions and H2O2 at a high pH were studied together to compare the precipitate forms in the carbonate solutions.

  1. PROCESS OF SEPARATING URANIUM FROM AQUEOUS SOLUTION BY SOLVENT EXTRACTION

    DOEpatents

    Warf, J.C.

    1958-08-19

    A process is described for separating uranium values from aqueous uranyl nitrate solutions. The process consists in contacting the uramium bearing solution with an organic solvent, tributyl phosphate, preferably diluted with a less viscous organic liquida whereby the uranyl nitrate is extracted into the organic solvent phase. The uranvl nitrate may be recovered from the solvent phase bv back extracting with an aqueous mediuin.

  2. Series of mixed uranyl-lanthanide (Ce, Nd) organic coordination polymers with aromatic polycarboxylates linkers.

    PubMed

    Mihalcea, Ionut; Volkringer, Christophe; Henry, Natacha; Loiseau, Thierry

    2012-09-17

    Three series of mixed uranyl-lanthanide (Ce or Nd) carboxylate coordination polymers have been successfully synthesized by means of a hydrothermal route using either conventional or microwave heating methods. These compounds have been prepared from mixtures of uranyl nitrate, lanthanide nitrate together with phthalic acid (1,2), pyromellitic acid (3,4), or mellitic acid (5,6) in aqueous solution. The X-ray diffraction (XRD) single-crystal revealed that the phthalate complex (UO(2))(4)O(2)Ln(H(2)O)(7)(1,2-bdc)(4)·NH(4)·xH(2)O (Ln = Ce(1), Nd(2); x = 1 for 1, x = 0 for 2), is based on the connection of tetranuclear uranyl-centered building blocks linked to discrete monomeric units LnO(2)(H(2)O)(7) via the organic species to generate infinite chains, intercalated by free ammonium cations. The pyromellitate phase (UO(2))(3)Ln(2)(H(2)O)(12)(btec)(3)·5H(2)O (Ce(3), Nd(4)) contains layers of monomeric uranyl-centered hexagonal and pentagonal bipyramids linked via the carboxylate arms of the organic molecules. The three-dimensionality of the structure is ensured by the connection of remaining free carboxylate groups with isolated monomeric units LnO(2)(H(2)O)(7). The network of the third series (UO(2))(2)(OH)Ln(H(2)O)(7)(mel)·5H(2)O (Ce(5), Nd(6)) is built up from dinuclear uranyl units forming layers through connection with the mellitate ligands, which are further linked to each other through discrete monomers LnO(3)(H(2)O)(6). The thermal decomposition of the various coordination complexes led to the formation of mixed uranium-lanthanide oxide, with the fluorite-type structure at 1500 °C (for 1, 2) or 1400 °C for 3-6. Expected U/Ln ratio from the crystal structures were observed for compounds 1-6.

  3. Liquid-liquid extraction of uranyl by TBP: the TBP and ions models and related interfacial features revisited by MD and PMF simulations.

    PubMed

    Benay, G; Wipff, G

    2014-03-20

    We report a molecular dynamics (MD) study of biphasic systems involved in the liquid-liquid extraction of uranyl nitrate by tri-n-butylphosphate (TBP) to hexane, from "pH neutral" or acidic (3 M nitric acid) aqueous solutions, to assess the model dependence of the surface activity and partitioning of TBP alone, of its UO2(NO3)2(TBP)2 complex, and of UO2(NO3)2 or UO2(2+) uncomplexed. For this purpose, we first compare several electrostatic representations of TBP with regards to its polarity and conformational properties, its interactions with H2O, HNO3, and UO2(NO3)2 species, its relative free energies of solvation in water or oil environments, the properties of the pure TBP liquid and of the pure-TBP/water interface. The free energies of transfer of TBP, UO2(NO3)2, UO2(2+), and the UO2(NO3)2(TBP)2 complex across the water/oil interface are then investigated by potential of mean force (PMF) calculations, comparing different TBP models and two charge models of uranyl nitrate. Describing uranyl and nitrate ions with integer charges (+2 and -1, respectively) is shown to exaggerate the hydrophilicity and surface activity of the UO2(NO3)2(TBP)2 complex. With more appropriate ESP charges, mimicking charge transfer and polarization effects in the UO2(NO3)2 moiety or in the whole complex, the latter is no more surface active. This feature is confirmed by MD, PMF, and mixing-demixing simulations with or without polarization. Furthermore, with ESP charges, pulling the UO2(NO3)2 species to the TBP phase affords the formation of UO2(NO3)2(TBP)2 at the interface, followed by its energetically favorable extraction. The neutral complexes should therefore not accumulate at the interface during the extraction process, but diffuse to the oil phase. A similar feature is found for an UO2(NO3)2(Amide)2 neutral complex with fatty amide extracting ligands, calling for further simulations and experimental studies (e.g., time evolution of the nonlinear spectroscopic signature and of surface tension) on the interfacial landscape upon ion extraction.

  4. PREPARATION OF URANIUM TRIOXIDE

    DOEpatents

    Buckingham, J.S.

    1959-09-01

    The production of uranium trioxide from aqueous solutions of uranyl nitrate is discussed. The uranium trioxide is produced by adding sulfur or a sulfur-containing compound, such as thiourea, sulfamic acid, sulfuric acid, and ammonium sulfate, to the uranyl solution in an amount of about 0.5% by weight of the uranyl nitrate hexahydrate, evaporating the solution to dryness, and calcining the dry residue. The trioxide obtained by this method furnished a dioxide with a considerably higher reactivity with hydrogen fluoride than a trioxide prepared without the sulfur additive.

  5. CONTINUOUS PRECIPITATION METHOD FOR CONVERSION OF URANYL NITRATE TO URANIUM HEXAFLUORIDE

    DOEpatents

    Reinhart, G.M.; Collopy, T.J.

    1962-11-13

    A continuous precipitation process is given for converting a uranyl nitrate solution to uranium tetrafluoride. A stream of the uranyl nitrate solution and a stream of an aqueous ammonium hydroxide solution are continuously introduced into an agitated reaction zone maintained at a pH of 5.0 to 6.5. Flow rates are adjusted to provide a mean residence time of the resulting slurry in the reaction zone of at least 30 minutes. After a startup period of two hours the precipitate is recovered from the effluent stream by filtration and is converted to uranium tetrafluoride by reduction to uranium dioxide with hydrogen and reaction of the uranium dioxide with anhydrous hydrogen fluoride. (AEC)

  6. ANALYTICAL METHOD FOR THE DETERMINATION OF BORON IN URANYL NITRATE SOLUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1962-01-01

    A method was developed for the determination of boron in uranyl nitrate solutions. The boron is separated from uranium and other impurities by distillation of methyl borate. It is determined absorptiometrically by means of curcumin in the presence of orthochlorophenol, perchloric acid, and acetic anhydride. The limit of detection is judged to be not greater than 0.05 mu g, but is dependent on the purity of the reagents used. The coefficient of variation on 210 results at the 0.2 mu g boron level was 26% with a bias of -25%. The method may be applied to depleted uranyl nitrate solutionsmore » and uranium slag recovery liquors. (auth)« less

  7. Uranium: A Dentist's perspective

    PubMed Central

    Toor, R. S. S.; Brar, G. S.

    2012-01-01

    Uranium is a naturally occurring radionuclide found in granite and other mineral deposits. In its natural state, it consists of three isotopes (U-234, U-235 and U-238). On an average, 1% – 2% of ingested uranium is absorbed in the gastrointestinal tract in adults. The absorbed uranium rapidly enters the bloodstream and forms a diffusible ionic uranyl hydrogen carbonate complex (UO2HCO3+) which is in equilibrium with a nondiffusible uranyl albumin complex. In the skeleton, the uranyl ion replaces calcium in the hydroxyapatite complex of the bone crystal. Although in North India, there is a risk of radiological toxicity from orally ingested natural uranium, the principal health effects are chemical toxicity. The skeleton and kidney are the primary sites of uranium accumulation. Acute high dose of uranyl nitrate delays tooth eruption, and mandibular growth and development, probably due to its effect on target cells. Based on all previous research and recommendations, the role of a dentist is to educate the masses about the adverse effects of uranium on the overall as well as the dental health. The authors recommended that apart from the discontinuation of the addition of uranium to porcelain, the Public community water supplies must also comply with the Environmental Protection Agency (EPA) standards of uranium levels being not more than 30 ppb (parts per billion). PMID:24478959

  8. U-EXTRACTION--IMPROVEMENTS IN ELIMINATION OF Mo BY USE OF FERRIC ION

    DOEpatents

    Clark, H.M.; Duffey, D.

    1958-06-10

    An improved solvent extraction process is described whereby U may be extracted by a water immiscible organic solvent from an aqueous solution of uranyl nitrate. It has been found that Mo in the presence of phosphate ions appears to form a complex with the phosphate which extracts along with the U. This extraction of Mo may be suppressed by providing ferric ion in the solution prior to the extraction step. The ferric ion is preferably provided in the form of ferric nitrate.

  9. Sensitivity analysis of high resolution gamma-ray detection for safeguards monitoring at natural uranium conversion facilities

    DOE PAGES

    Dewji, Shaheen A.; Croft, Stephen; Hertel, Nolan E.

    2016-12-16

    Under the policies proposed by recent International Atomic Energy Agency (IAEA) circulars and policy papers, implementation of safeguards exists when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed in previous work to develop and validate gamma-ray nondestructive assay monitoring systemsmore » in a natural uranium conversion plant (NUCP). In particular, uranyl nitrate (UO 2(NO 3) 2) solution exiting solvent extraction was identified as a key measurement point (KMP). Passive nondestructive assay techniques using high resolution gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely manner. Building upon the aforementioned previous validation work on detector sensitivity to varying concentrations of uranyl nitrate via a series of dilution measurements, this work investigates detector response parameter sensitivities to gamma-ray signatures of uranyl nitrate. The full energy peak efficiency of a detection system is dependent upon the sample, geometry, absorption, and intrinsic efficiency parameters. Perturbation of these parameters translates into corresponding variations of the 185.7 keV peak area of the 235U in uranyl nitrate. Such perturbations in the assayed signature impact the quality or versatility of the safeguards conclusions drawn. Given the potentially high throughput of uranyl nitrate in NUCPs, the ability to assay 1 SQ of material requires uncertainty «1%. Accounting for material self-shielding properties, pipe thickness, and source-detector orientation is instrumental in determining the robustness of gamma-ray detection in the process monitoring of uranyl nitrate in NUCPs. Monte Carlo models and ray-tracing models were employed to determine the sensitivity of the detected 185.7 keV photon to self-shielding properties, pipe thickness, and source-detector geometry. Considering the implementation of the detection of 1 SQ, diversion of 1 SQ becomes essentially undetectable given the systematic uncertainty, in addition to considerations such as propagating uncertainties due to pipe offset/position, as well as minor variations in pipe thickness. Consequently, pipe thickness was the most sensitive variable in affecting full energy efficiency of the 185.7 keV signature peak with up to 8% variation in efficiency for ±0.5 mm changes in Schedule 40 304L stainless steel piping. Furthermore, computation of the attenuation correction factor of the uranyl nitrate solution [CF(AT) (i.e. εsample)] using Parker's method using with the approximation for the geometrical factor κ≈π/4 was validated through experimental, Monte Carlo and ray-tracing calculations for a uranyl nitrate filled transfer pipe segment. Furthermore, quantifying sensitivity in detector position, as well as voiding effects due to bubbly flow or laminar flow with an air gap in the uranyl nitrate becomes increasingly important as considerations from (static) design-scale measurements translate into (dynamic) field operations tests.« less

  10. Sensitivity analysis of high resolution gamma-ray detection for safeguards monitoring at natural uranium conversion facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewji, Shaheen A.; Croft, Stephen; Hertel, Nolan E.

    Under the policies proposed by recent International Atomic Energy Agency (IAEA) circulars and policy papers, implementation of safeguards exists when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed in previous work to develop and validate gamma-ray nondestructive assay monitoring systemsmore » in a natural uranium conversion plant (NUCP). In particular, uranyl nitrate (UO 2(NO 3) 2) solution exiting solvent extraction was identified as a key measurement point (KMP). Passive nondestructive assay techniques using high resolution gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely manner. Building upon the aforementioned previous validation work on detector sensitivity to varying concentrations of uranyl nitrate via a series of dilution measurements, this work investigates detector response parameter sensitivities to gamma-ray signatures of uranyl nitrate. The full energy peak efficiency of a detection system is dependent upon the sample, geometry, absorption, and intrinsic efficiency parameters. Perturbation of these parameters translates into corresponding variations of the 185.7 keV peak area of the 235U in uranyl nitrate. Such perturbations in the assayed signature impact the quality or versatility of the safeguards conclusions drawn. Given the potentially high throughput of uranyl nitrate in NUCPs, the ability to assay 1 SQ of material requires uncertainty «1%. Accounting for material self-shielding properties, pipe thickness, and source-detector orientation is instrumental in determining the robustness of gamma-ray detection in the process monitoring of uranyl nitrate in NUCPs. Monte Carlo models and ray-tracing models were employed to determine the sensitivity of the detected 185.7 keV photon to self-shielding properties, pipe thickness, and source-detector geometry. Considering the implementation of the detection of 1 SQ, diversion of 1 SQ becomes essentially undetectable given the systematic uncertainty, in addition to considerations such as propagating uncertainties due to pipe offset/position, as well as minor variations in pipe thickness. Consequently, pipe thickness was the most sensitive variable in affecting full energy efficiency of the 185.7 keV signature peak with up to 8% variation in efficiency for ±0.5 mm changes in Schedule 40 304L stainless steel piping. Furthermore, computation of the attenuation correction factor of the uranyl nitrate solution [CF(AT) (i.e. εsample)] using Parker's method using with the approximation for the geometrical factor κ≈π/4 was validated through experimental, Monte Carlo and ray-tracing calculations for a uranyl nitrate filled transfer pipe segment. Furthermore, quantifying sensitivity in detector position, as well as voiding effects due to bubbly flow or laminar flow with an air gap in the uranyl nitrate becomes increasingly important as considerations from (static) design-scale measurements translate into (dynamic) field operations tests.« less

  11. Sensitivity analysis of high resolution gamma-ray detection for safeguards monitoring at natural uranium conversion facilities

    NASA Astrophysics Data System (ADS)

    Dewji, S. A.; Croft, S.; Hertel, N. E.

    2017-03-01

    Under the policies proposed by recent International Atomic Energy Agency (IAEA) circulars and policy papers, implementation of safeguards exists when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed in previous work to develop and validate gamma-ray nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP). In particular, uranyl nitrate (UO2(NO3)2) solution exiting solvent extraction was identified as a key measurement point (KMP). Passive nondestructive assay techniques using high resolution gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely manner. Building upon the aforementioned previous validation work on detector sensitivity to varying concentrations of uranyl nitrate via a series of dilution measurements, this work investigates detector response parameter sensitivities to gamma-ray signatures of uranyl nitrate. The full energy peak efficiency of a detection system is dependent upon the sample, geometry, absorption, and intrinsic efficiency parameters. Perturbation of these parameters translates into corresponding variations of the 185.7 keV peak area of the 235U in uranyl nitrate. Such perturbations in the assayed signature impact the quality or versatility of the safeguards conclusions drawn. Given the potentially high throughput of uranyl nitrate in NUCPs, the ability to assay 1 SQ of material requires uncertainty «1%. Accounting for material self-shielding properties, pipe thickness, and source-detector orientation is instrumental in determining the robustness of gamma-ray detection in the process monitoring of uranyl nitrate in NUCPs. Monte Carlo models and ray-tracing models were employed to determine the sensitivity of the detected 185.7 keV photon to self-shielding properties, pipe thickness, and source-detector geometry. Considering the implementation of the detection of 1 SQ, diversion of 1 SQ becomes essentially undetectable given the systematic uncertainty, in addition to considerations such as propagating uncertainties due to pipe offset/position, as well as minor variations in pipe thickness. Consequently, pipe thickness was the most sensitive variable in affecting full energy efficiency of the 185.7 keV signature peak with up to 8% variation in efficiency for ±0.5 mm changes in Schedule 40 304L stainless steel piping. Furthermore, computation of the attenuation correction factor of the uranyl nitrate solution [CF(AT) (i.e. εsample)] using Parker's method using with the approximation for the geometrical factor κ≈π/4 was validated through experimental, Monte Carlo and ray-tracing calculations for a uranyl nitrate filled transfer pipe segment. Quantifying sensitivity in detector position, as well as voiding effects due to bubbly flow or laminar flow with an air gap in the uranyl nitrate becomes increasingly important as considerations from (static) design-scale measurements translate into (dynamic) field operations tests.

  12. Design of a Fission 99 Mo Recovery Process and Implications toward Mo Adsorption Mechanism on Titania and Alumina Sorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepinski, Dominique C.; Youker, Amanda J.; Krahn, Elizabeth O.

    2017-03-01

    Molybdenum-99 is a parent of the most widely used medical isotope technetium-99m. Proliferation concerns have prompted development of alternative Mo production methods utilizing low enriched uranium. Alumina and titania sorbents were evaluated for separation of Mo from concentrated uranyl nitrate solutions. System, mass transfer, and isotherm parameters were determined to enable design of Mo separation processes under a wide range of conditions. A model-based approach was utilized to design representative commercial-scale column processes. The designs and parameters were verified with bench-scale experiments. The results are essential for design of Mo separation processes from irradiated uranium solutions, selection of support materialmore » and process optimization. Mo uptake studies show that adsorption decreases with increasing concentration of uranyl nitrate; howeveL, examination of Mo adsorption as a function of nitrate ion concentration shows no dependency, indicating that uranium competes with Mo for adsorption sites. These results are consistent with reports indicating that Mo forms inner-sphere complexes with titania and alumina surface groups.« less

  13. Preparation of U.sub.3 O.sub.8

    DOEpatents

    Johnson, David R.

    1980-01-01

    A method is described for the preparation of U.sub.3 O.sub.8 nuclear fuel material by direct precipitation of uranyl formate monohydrate from uranyl nitrate solution. The uranyl formate monohydrate precipitate is removed, dried and calcined to produce U.sub.3 O.sub.8 having a controlled particle size distribution.

  14. Two actinide-organic frameworks constructed by a tripodal flexible ligand: Occurrence of infinite {(UO2)O2(OH)3}4n and hexanuclear {Th6O4(OH)4} motifs

    NASA Astrophysics Data System (ADS)

    Liang, Lingling; Zhang, Ronglan; Zhao, Jianshe; Liu, Chiyang; Weng, Ng Seik

    2016-11-01

    Two new actinide metal-organic frameworks were constructed by using a tripodal flexible ligand tris (2-carboxyethyl) isocyanurate (H3tci) under hydrothermal condition. The combination of H3tci and uranyl nitrate hexahydrate in aqueous solution leads to the isolation of [(UO2)2(H2O)4]0.5(tci)2(UO2)4(OH)4·18H2O (1), which contains two distinct UO22+ coordination environments. Four uranyl cations, linked through μ3-OH respectively, result in the edge-sharing ribbons. Then, the layer structure is constructed by U-O clusters linked through other eight-coordinated uranyl unions, giving rise to a porous structure in the space. Topological analysis reveals that complex 1 belongs to a (4, 8)-connected net with a schläfli symbol of (34.26.3)2(34.46.56.68.73.8). Th3(tci)2O2(OH)2(H2O)3·12H2O (2) generated by the reaction of H3tci and thorium nitrate tetrahydrate, possesses nine-fold coodinated Th(IV) centers with a monocapped square antiprismatic geometry. The hexamers "Th6O4(OH)4" motifs are connected together by the carboxylate groups, showing a three-dimensional structures. Complex 2 takes on an 8-connected architecture and the point symbol is (424.64).

  15. Validation of gamma-ray detection techniques for safeguards monitoring at natural uranium conversion facilities

    NASA Astrophysics Data System (ADS)

    Dewji, S. A.; Lee, D. L.; Croft, S.; Hertel, N. E.; Chapman, J. A.; McElroy, R. D.; Cleveland, S.

    2016-07-01

    Recent IAEA circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under the revised policy, IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed to develop and validate concepts of nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP). In particular, uranyl nitrate (UO2(NO3)2) solution exiting solvent extraction was identified as a key measurement point (KMP), where gamma-ray spectroscopy was selected as the process monitoring tool. The Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility at Oak Ridge National Laboratory was employed to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in an NUCP. Nondestructive assay techniques using gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely way. This work investigated gamma-ray signatures of uranyl nitrate circulating in the UNCLE facility and evaluated various gamma-ray detector sensitivities to uranyl nitrate. These detector validation activities include assessing detector responses to the uranyl nitrate gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and high-purity germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10-90 g U/L of natural uranyl nitrate are presented. A range of gamma-ray lines is examined, including attenuation for transmission measurement of density and concentration. It was determined that transmission-corrected gamma-ray spectra provide a reliable way to monitor the 235U concentration of uranyl nitrate solution in transfer pipes in NUCPs. Furthermore, existing predictive and analysis methods are adequate to design and realize practical designs. The 137Cs transmission source employed in this work is viable but not optimal for 235U densitometry determination. Validated simulations assessed the viability of 133Ba and 57Co as alternative densitometry sources. All three gamma-ray detectors are viable for monitoring natural uranium feed; although high-purity germanium is easiest to interpret, it is, however, the least attractive as an installation instrument. Overall, for monitoring throughput in a facility such as UNCLE, emulating the uranium concentration and pump speeds of the Springfields conversion facility in the United Kingdom, an uncertainty of less than 0.17% is required in order to detect the diversion of 1 SQ of uranyl nitrate through changes in uranium concentration over an accountancy period of one year with a detection probability of 50%. Although calibrated gamma-ray detection systems are capable of determining the concentration of uranium content in NUCPs, it is only in combination with verifiable operator declarations and supporting data, such as flow rate and enrichment, that safeguards conclusions can be drawn.

  16. Structural determination of individual chemical species in a mixed system by iterative transformation factor analysis-based X-ray absorption spectroscopy combined with UV-visible absorption and quantum chemical calculation.

    PubMed

    Ikeda, Atsushi; Hennig, Christoph; Rossberg, André; Tsushima, Satoru; Scheinost, Andreas C; Bernhard, Gert

    2008-02-15

    A multitechnique approach using extended X-ray absorption fine structure (EXAFS) spectroscopy based on iterative transformation factor analysis (ITFA), UV-visible absorption spectroscopy, and density functional theory (DFT) calculations has been performed in order to investigate the speciation of uranium(VI) nitrate species in acetonitrile and to identify the complex structure of individual species in the system. UV-visible spectral titration suggests that there are four different species in the system, that is, pure solvated species, mono-, di-, and trinitrate species. The pure EXAFS spectra of these individual species are extracted by ITFA from the measured spectral mixtures on the basis of the speciation distribution profile calculated from the UV-visible data. Data analysis of the extracted EXAFS spectra, with the help of DFT calculations, reveals the most probable complex structures of the individual species. The pure solvated species corresponds to a uranyl hydrate complex with an equatorial coordination number (CNeq) of 5, [UO2(H2O)5]2+. Nitrate ions tend to coordinate to the uranyl(VI) ion in a bidentate fashion rather than a unidentate one in acetonitrile for all the nitrate species. The mononitrate species forms the complex of [UO2(H2O)3NO3]+ with a CNeq value of 5, while the di- and trinitrate species have a CNeq value of 6, corresponding to [UO2(H2O)2(NO3)2]0 (D2h) and [UO2(NO3)3]- (D3h), respectively.

  17. Study of Pulsed Columns with the System. Uranyl Nitrate-Nitric Acid-Water- Tributylphosphate; ETUDE DES COLONNES A PULSATIONS A L'AIDE DU SYSTEME NITRATE D'URANYLE-ACIDE NITRIQUEEAU-TRIBUTYLPHOSPHATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durandet, J.; Defives, D.; Choffe, B.

    1959-10-31

    The performsnce of a pulsed column with perforated plates was studied with the aid of a uranyl nitrate-nitric acid --water --tributyl phosphate system. The extraction of uranium from an aqueous acidic solution by an organic solvent and the extraction of uranium from organic solutions by water were the two cases investigated. The variation of the efficiency and the capacity of the pulsed column was determined as a function of the pulse amplitude and frequency, of the total flow rate, of the diameter of the holes, and of the choice of dispersed phase. The results showed that for a given amplitudemore » and total flow rate the efficiency has a maximum with an increase in frequency. (J.S.R.)« less

  18. SEPARATION OF URANYL NITRATE BY EXTRACTION

    DOEpatents

    Stoughton, R.W.; Steahly, F.L.

    1958-08-26

    A process is presented for obtaining U/sup 233/ from solutions containing Pa/sup 233/. A carrier precipitate, such as MnO/sub 2/, is formed in such solutions and carries with it the Pa/sup 233/ present. This precipitate is then dissolved in nitric acid and the solution is aged to allow decay of the Pa/ sup 233/ into U/sup 233/. After a sufficient length of time the U/sup 233/ bearing solution is made 2.5 to 4.5 Molar in manganese nitrate by addition thereof, and the solution is then treated with ether to obtain uranyl nitrate by solvent extraction techniques.

  19. Validation of gamma-ray detection techniques for safeguards monitoring at natural uranium conversion facilities

    DOE PAGES

    Dewji, Shaheen A.; Lee, Denise L.; Croft, Stephen; ...

    2016-03-28

    Recent IAEA circulars and policy papers have sought to implement safeguards when any purified aqueous uranium solution or uranium oxides suitable for isotopic enrichment or fuel fabrication exists. Under the revised policy, IAEA Policy Paper 18, the starting point for nuclear material under safeguards was reinterpreted, suggesting that purified uranium compounds should be subject to safeguards procedures no later than the first point in the conversion process. In response to this technical need, a combination of simulation models and experimental measurements were employed to develop and validate concepts of nondestructive assay monitoring systems in a natural uranium conversion plant (NUCP).more » In particular, uranyl nitrate (UO 2(NO 3) 2) solution exiting solvent extraction was identified as a key measurement point (KMP), where gamma-ray spectroscopy was selected as the process monitoring tool. The Uranyl Nitrate Calibration Loop Equipment (UNCLE) facility at Oak Ridge National Laboratory was employed to simulate the full-scale operating conditions of a purified uranium-bearing aqueous stream exiting the solvent extraction process in an NUCP. Nondestructive assay techniques using gamma-ray spectroscopy were evaluated to determine their viability as a technical means for drawing safeguards conclusions at NUCPs, and if the IAEA detection requirements of 1 significant quantity (SQ) can be met in a timely way. This work investigated gamma-ray signatures of uranyl nitrate circulating in the UNCLE facility and evaluated various gamma-ray detector sensitivities to uranyl nitrate. These detector validation activities include assessing detector responses to the uranyl nitrate gamma-ray signatures for spectrometers based on sodium iodide, lanthanum bromide, and high-purity germanium detectors. The results of measurements under static and dynamic operating conditions at concentrations ranging from 10–90 g U/L of natural uranyl nitrate are presented. A range of gamma-ray lines is examined, including attenuation for transmission measurement of density and concentration. It was determined that transmission-corrected gamma-ray spectra provide a reliable way to monitor the 235U concentration of uranyl nitrate solution in transfer pipes in NUCPs. Furthermore, existing predictive and analysis methods are adequate to design and realize practical designs. The 137Cs transmission source employed in this work is viable but not optimal for 235U densitometry determination. Validated simulations assessed the viability of 133Ba and 57Co as alternative densitometry sources. All three gamma-ray detectors are viable for monitoring natural uranium feed; although high-purity germanium is easiest to interpret, it is, however, the least attractive as an installation instrument. Overall, for monitoring throughput in a facility such as UNCLE, emulating the uranium concentration and pump speeds of the Springfields conversion facility in the United Kingdom, an uncertainty of less than 0.17% is required in order to detect the diversion of 1 SQ of uranyl nitrate through changes in uranium concentration over an accountancy period of one year with a detection probability of 50%. As a result, calibrated gamma-ray detection systems are capable of determining the concentration of uranium content in NUCPs, it is only in combination with verifiable operator declarations and supporting data, such as flow rate and enrichment, that safeguards conclusions can be drawn.« less

  20. GRAPHITE PRODUCTION UTILIZING URANYL NITRATE HEXAHYDRATE CATALYST

    DOEpatents

    Sheinberg, H.; Armstrong, J.R.; Schell, D.H.

    1964-03-10

    ABS>The graphitizing of a mixture composed of furfuryl alcohol binder and uranyl nitrate hexahydrate hardener and the subsequent curing, baking, and graphitizing with pressure being initially applied prior to curing are described. The pressure step may be carried out by extrusion, methyl cellulose being added to the mixture before the completion of extrusion. Uranium oxide may be added to the graphitizable mixture prior to the heating and pressure steps. The graphitizable mixture may consist of discrete layers of different compositions. (AEC)

  1. PLUTONIUM SEPARATION METHOD

    DOEpatents

    Beaufait, L.J. Jr.; Stevenson, F.R.; Rollefson, G.K.

    1958-11-18

    The recovery of plutonium ions from neutron irradiated uranium can be accomplished by bufferlng an aqueous solutlon of the irradiated materials containing tetravalent plutonium to a pH of 4 to 7, adding sufficient acetate to the solution to complex the uranyl present, adding ferric nitrate to form a colloid of ferric hydroxide, plutonlum, and associated fission products, removing and dissolving the colloid in aqueous nitric acid, oxldizlng the plutonium to the hexavalent state by adding permanganate or dichromate, treating the resultant solution with ferric nitrate to form a colloid of ferric hydroxide and associated fission products, and separating the colloid from the plutonlum left in solution.

  2. Uranyl extraction by N,N-dialkylamide ligands studied using static and dynamic DFT simulations.

    PubMed

    Sieffert, Nicolas; Wipff, Georges

    2015-02-14

    We report DFT static and dynamic studies on uranyl complexes [UO(2)(NO(3))x(H(2)O)(y)L(z)](2-x) involved in the uranyl extraction from water to an "oil" phase (hexane) by an amide ligand L (N,N-dimethylacetamide). Static DFT results "in solution" (continuum SMD models for water and hexane) predict that the stepwise formation of [UO(2)(NO(3))(2)L(2)] from the UO(2)(H(2)O)(5)(2+) species is energetically favourable, and allow us to compare cis/trans isomers of penta- and hexa-coordinated complexes and key intermediates in the two solvents. DFT-MD simulations of [UO(2)(NO(3))(2)L(2)], [UO(2)(NO(3))(2)(H(2)O)L(2)], and [UO(2)(NO(3))(H(2)O)L(2)](+) species in explicit solvent environments (water, hexane, or the water/hexane interface) represented at the MM or full-DFT level reveal a versatile solvent dependent binding mode of nitrates, also evidenced by metadynamics simulations. In water and at the interface, the latter exchange from bi- to monodentate, via in plane rotational motions in some cases. Remarkably, structures of complexes at the interface are more "water-like" than gas phase- or hexane-like. Thus, the order of U-O(NO(3))/U-O(L) bond distances observed in the gas phase (U-O(nit) < U-OL) is inverted at the interface and in water. Overall, the results are consistent with the experimental observation of uranyl extraction from nitric acid solutions by amide analogues (bearing "fatty" substituents), and allow us to propose possible extraction mechanisms, involving complexation of L "right at the interface". They also point to the importance of the solvent environment and the dynamics on the structure and stability of the complexes.

  3. SEPARATION OF BARIUM VALUES FROM URANYL NITRATE SOLUTIONS

    DOEpatents

    Tompkins, E.R.

    1959-02-24

    The separation of radioactive barium values from a uranyl nitrate solution of neutron-irradiated uranium is described. The 10 to 20% uranyl nitrate solution is passed through a flrst column of a cation exchange resin under conditions favoring the adsorption of barium and certain other cations. The loaded resin is first washed with dilute sulfuric acid to remove a portion of the other cations, and then wash with a citric acid solution at pH of 5 to 7 to recover the barium along with a lesser amount of the other cations. The PH of the resulting eluate is adjusted to about 2.3 to 3.5 and diluted prior to passing through a smaller second column of exchange resin. The loaded resin is first washed with a citric acid solution at a pH of 3 to elute undesired cations and then with citric acid solution at a pH of 6 to eluts the barium, which is substantially free of undesired cations.

  4. Recovery of uranium from an irradiated solid target after removal of molybdenum-99 produced from the irradiated target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reilly, Sean Douglas; May, Iain; Copping, Roy

    A process for minimizing waste and maximizing utilization of uranium involves recovering uranium from an irradiated solid target after separating the medical isotope product, molybdenum-99, produced from the irradiated target. The process includes irradiating a solid target comprising uranium to produce fission products comprising molybdenum-99, and thereafter dissolving the target and conditioning the solution to prepare an aqueous nitric acid solution containing irradiated uranium. The acidic solution is then contacted with a solid sorbent whereby molybdenum-99 remains adsorbed to the sorbent for subsequent recovery. The uranium passes through the sorbent. The concentrations of acid and uranium are then adjusted tomore » concentrations suitable for crystallization of uranyl nitrate hydrates. After inducing the crystallization, the uranyl nitrate hydrates are separated from a supernatant. The process results in the purification of uranyl nitrate hydrates from fission products and other contaminants. The uranium is therefore available for reuse, storage, or disposal.« less

  5. Separation of uranium from technetium in recovery of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Friedman, H. A.

    1984-06-01

    A method for decontaminating uranium product from the Purex 5 process is described. Hydrazine is added to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO2(2+)) uranium and heptavalent technetius (TcO4-). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H2O2O4), and the Tc-oxalate complex is readily separated from the 10 uranium by solvent extraction with 30 vol % tributyl phosphate in n-dodecane.

  6. Evaluation of the stability of uranyl peroxo-carbonato complex ions in carbonate media at different temperatures.

    PubMed

    Kim, Kwang-Wook; Lee, Keun-Young; Chung, Dong-Yong; Lee, Eil-Hee; Moon, Jei-Kwon; Shin, Dong-Woo

    2012-09-30

    This work studied the stability of peroxide in uranyl peroxo carbonato complex ions in a carbonate solution with hydrogen peroxide using absorption and Raman spectroscopies, and evaluated the temperature dependence of the decomposition characteristics of uranyl peroxo carbonato complex ions in the solution. The uranyl peroxo carbonato complex ions self-decomposed more rapidly into uranyl tris-carbonato complex ions in higher temperature carbonate solutions. The concentration of peroxide in the solution without free hydrogen peroxide represents the concentration of uranyl peroxo carbonato complex ions in a mixture of uranyl peroxo carbonato complex and uranyl tris-carbonato complex ions. The self-decomposition of the uranyl peroxo carbonato complex ions was a first order reaction, and its activation energy was evaluated to be 7.144×10(3) J mol(-1). The precipitation of sodium uranium oxide hydroxide occurred when the amount of uranyl tris-carbonato complex ions generated from the decomposition of the uranyl peroxo carbonato complex ions exceeded the solubility of uranyl tris-carbonato ions in the solution at the solution temperature. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. URANIUM RECOVERY PROCESS

    DOEpatents

    Hyman, H.H.; Dreher, J.L.

    1959-07-01

    The recovery of uranium from the acidic aqueous metal waste solutions resulting from the bismuth phosphate carrier precipitation of plutonium from solutions of neutron irradiated uranium is described. The waste solutions consist of phosphoric acid, sulfuric acid, and uranium as a uranyl salt, together with salts of the fission products normally associated with neutron irradiated uranium. Generally, the process of the invention involves the partial neutralization of the waste solution with sodium hydroxide, followed by conversion of the solution to a pH 11 by mixing therewith sufficient sodium carbonate. The resultant carbonate-complexed waste is contacted with a titanated silica gel and the adsorbent separated from the aqueous medium. The aqueous solution is then mixed with sufficient acetic acid to bring the pH of the aqueous medium to between 4 and 5, whereby sodium uranyl acetate is precipitated. The precipitate is dissolved in nitric acid and the resulting solution preferably provided with salting out agents. Uranyl nitrate is recovered from the solution by extraction with an ether such as diethyl ether.

  8. Polymorphism in alkali metal uranyl nitrates: Synthesis and crystal structure of gamma-K(UO2)(NO3)3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouffret, Laurent J.; Krivovichev, Sergey V.; Burns, Peter C.

    2011-07-20

    Single crystals of γ-K(UO₂)(NO₃)₃ were prepared from aqueous solutions by evaporation. The crystal structure [orthorhombic, Pbca (61), a = 9.2559(3) Å, b = 12.1753(3) Å, c = 15.8076(5) Å, V = 1781.41(9) ų, Z = 8] was determined by direct methods and refined to R₁ = 0.0267 on the basis of 3657 unique observed reflections. The structure is composed of isolated anionic uranyl trinitrate units, [(UO₂)(NO₃)₃] –, that are linked through eleven-coordinated K + cations. Both known polymorphs of K(UO₂)(NO₃)₃ (α- and γ-phases) can be considered as based upon sheets of isolated complex [(UO₂)(NO₃)₃] – ions separated by K +more » cations. The existence of polymorphism in the two K[UO₂(NO₃)₃] polymorphs is due to the different packing modes of uranyl trinitrate clusters that adopt the same two-dimensional but different three-dimensional arrangements.« less

  9. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOEpatents

    Friedman, H.A.

    1984-06-13

    A method for decontaminating uranium product from the Purex 5 process comprises addition of hydrazine to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO/sub 2//sup 2 +/) uranium and heptavalent technetium (TcO/sub 4/-). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H/sub 2/C/sub 2/O/sub 4/), and the Tc-oxalate complex is readily separated from the 10 uranium by solvent extraction with 30 vol % tributyl phosphate in n-dodecane.

  10. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOEpatents

    Friedman, Horace A.

    1985-01-01

    A method for decontaminating uranium product from the Purex process comprises addition of hydrazine to the product uranyl nitrate stream from the Purex process, which contains hexavalent (UO.sub.2.sup.2+) uranium and heptavalent technetium (TcO.sub.4 -). Technetium in the product stream is reduced and then complexed by the addition of oxalic acid (H.sub.2 C.sub.2 O.sub.4), and the Tc-oxalate complex is readily separated from the uranium by solvent extraction with 30 vol. % tributyl phosphate in n-dodecane.

  11. Polymorphism in Alkali Metal Uranyl Nitrates: Synthesis and Crystal Structure of γ-K(UO2)(NO3)3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouffret, Laurent J.; Krivovichev, Sergey V.; Burns, Peter C.

    2011-07-20

    Single crystals of γ-K(UO2)(NO3)3 were prepared from aqueous solutions by evaporation. The crystal structure [orthorhombic, Pbca (61), a = 9.2559(3) Å, b = 12.1753(3) Å, c = 15.8076(5) Å, V = 1781.41(9) Å3, Z = 8] was determined by direct methods and refined to R1 = 0.0267 on the basis of 3657 unique observed reflections. The structure is composed of isolated anionic uranyl trinitrate units, [(UO2)(NO3)3]–, that are linked through eleven-coordinated K+ cations. Both known polymorphs of K(UO2)(NO3)3 (α- and γ-phases) can be considered as based upon sheets of isolated complex [(UO2)(NO3)3]– ions separated by K+ cations. The existence ofmore » polymorphism in the two K[UO2(NO3)3] polymorphs is due to the different packing modes of uranyl trinitrate clusters that adopt the same two-dimensional but different three-dimensional arrangements.« less

  12. ON THE REACTION OF COMPONENETS IN MeNO$sub 3$-UO$sub 2$(NO$sub 3$)$sub 2$- H$sub 2$O TYPE SYSTEMS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakimov, M.A.; Nosova, N.F.; Degtyarev, A.Ya.

    1963-01-01

    Solubility in ternary systems TlNO/sub 3/--UO/sub 2/(NO/sub 3/)/sub 2/-- H/sub 2/ O and CsNO/sub 3/--UO/sub 2/(NO/sub 3/)/sub 2/--H/sub 2/O at 0 to 25 c- C was studi ed by the isothermal method. The first system did not form solid phase compounds; the second system formed two compounds Cs/sub 2/UO/ sub 2/(NO/sub 3/)/sub 4/ and CsUO/sub 2/(NO/sub 3/)/sub 3/ at 25 c- and of water vapor pressure over the systems at 25 c- showed that water activity in the ternary systems at certain concentrations does not exceed the water activity in binary uranyl nitratewater system (at identical uranyl nitrate concentrations) confirmingmore » the observed complex formation in the solution. The mechanism of complex formation was analyzed and expanded for alkali metal - metal salt-complexing agent water systems. (R.V.J.)« less

  13. RECOVERY OF URANIUM FROM PITCHBLENDE

    DOEpatents

    Ruehle, A.E.

    1958-06-24

    The decontamination of uranium from molybdenum is described. When acid solutions containing uranyl nitrate are contacted with ether for the purpose of extracting the uranium values, complex molybdenum compounds are coextracted with the uranium and also again back-extracted from the ether with the uranium. This invention provides a process for extracting uranium in which coextraction of molybdenum is avoided. It has been found that polyhydric alcohols form complexes with molybdenum which are preferentially water-soluble are taken up by the ether extractant to only a very minor degree. The preferred embodiment of the process uses mannitol, sorbitol or a mixture of the two as the complexing agent.

  14. FY-15 Progress Report on Cleanup of irradiated SHINE Target Solutions Containing 140g-U/L Uranyl Sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Megan E.; Bowers, Delbert L.; Vandegrift, George F.

    2015-09-01

    During FY 2012 and 2013, a process was developed to convert the SHINE Target Solution (STS) of irradiated uranyl sulfate (140 g U/L) to uranyl nitrate. This process is necessary so that the uranium solution can be processed by the UREX (Uranium Extraction) separation process, which will remove impurities from the uranium so that it can be recycled. The uranyl sulfate solution must contain <0.02 M SO 4 2- so that the uranium will be extractable into the UREXsolvent. In addition, it is desired that the barium content be below 0.0007 M, as this is the limit in the Resourcemore » Conservation and Recovery Act (RCRA).« less

  15. Selective Se-for-S substitution in Cs-bearing uranyl compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurzhiy, Vladislav V., E-mail: vladgeo17@mail.ru; Tyumentseva, Olga S.; Krivovichev, Sergey V.

    Phase formation in the mixed sulfate-selenate aqueous system of uranyl nitrate and cesium nitrate has been investigated. Two types of crystalline compounds have been obtained and characterized using a number of experimental (single crystal XRD, FTIR, SEM) and theoretical (information-based complexity calculations, topological analysis) techniques. No miscibility gaps have been observed for Cs{sub 2}[(UO{sub 2}){sub 2}(TO{sub 4}){sub 3}] (T= S, Se), which crystallizes in tetragonal system, P-42{sub 1}m, a =9.616(1)–9.856(2), c =8.105(1)–8.159(1) Å, V =749.6(2)–792.5(3) Å{sup 3}. Nine phases with variable amount of S and Se have been structurally characterized. The structures of the Cs{sub 2}[(UO{sub 2}){sub 2}(TO{sub 4}){sub 3}]more » (T= S, Se) compounds are based upon the [(UO{sub 2}){sub 2}(TO{sub 4}){sub 3}]{sup 2-} layers of corner-sharing uranyl pentagonal bipyramids and TO{sub 4} tetrahedra. The layers contain two types of tetrahedral sites: T1 (3-connected, i.e. having three O atoms shared by adjacent uranyl polyhedra) and T2 (4-connected). The Se-for-S substitution in tetrahedral sites is highly selective with smaller S{sup 6+} cation showing a strong preference for the more tightly bonded T2 site. Crystallization in the pure Se system starts with the formation of Cs{sub 2}[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)](H{sub 2}O) crystals, its subsequent dissolution and formation of Cs{sub 2}[(UO{sub 2}){sub 2}(SeO{sub 4}){sub 3}]. The information-based structural complexity calculations for these two phases support the rule that more topologically complex structures form at the latest stages of crystallization. - Graphical abstract: Nine phases representing the Cs{sub 2}[(UO{sub 2}){sub 2}(TO{sub 4}){sub 3}] (T= S, Se) solid solution series with variable amount of S and Se have been prepared by isothermal evaporation from aqueous solutions and characterized using a number of experimental and theoretical techniques. No immiscibility is observed between the pure sulfate and selenate compounds. The Se-for-S substitution in tetrahedral sites is highly selective with smaller S{sup 6+} cation showing a strong preference for the more tightly bonded 4-connected site. - Highlights: • Single crystals of novel mixed sulfate-selenate uranyl oxysalts were prepared by evaporation method. • Topological analysis and information-based complexity calculations were used for structure description. • The selective Se-for-S substitution was observed. • Evolution of phase formation in the aqueous Cs{sup +}–UO{sub 2}{sup 2+}–SO{sub 4}{sup 2–}–SeO{sub 4}{sup 2–} system was analyzed.« less

  16. PROCESS OF PREPARING URANIUM-IMPREGNATED GRAPHITE BODY

    DOEpatents

    Kanter, M.A.

    1958-05-20

    A method for the fabrication of graphite bodies containing uniformly distributed uranium is described. It consists of impregnating a body of graphite having uniform porosity and low density with an aqueous solution of uranyl nitrate hexahydrate preferably by a vacuum technique, thereafter removing excess aqueous solution from the surface of the graphite, then removing the solvent water from the body under substantially normal atmospheric conditions of temperature and pressure in the presence of a stream of dry inert gas, and finally heating the dry impregnated graphite body in the presence of inert gas at a temperature between 800 and 1400 d C to convert the uranyl nitrate hexahydrate to an oxide of uranium.

  17. Proteogenomic insights into uranium tolerance of a Chernobyl's Microbacterium bacterial isolate.

    PubMed

    Gallois, Nicolas; Alpha-Bazin, Béatrice; Ortet, Philippe; Barakat, Mohamed; Piette, Laurie; Long, Justine; Berthomieu, Catherine; Armengaud, Jean; Chapon, Virginie

    2018-04-15

    Microbacterium oleivorans A9 is a uranium-tolerant actinobacteria isolated from the trench T22 located near the Chernobyl nuclear power plant. This site is contaminated with different radionuclides including uranium. To observe the molecular changes at the proteome level occurring in this strain upon uranyl exposure and understand molecular mechanisms explaining its uranium tolerance, we established its draft genome and used this raw information to perform an in-depth proteogenomics study. High-throughput proteomics were performed on cells exposed or not to 10μM uranyl nitrate sampled at three previously identified phases of uranyl tolerance. We experimentally detected and annotated 1532 proteins and highlighted a total of 591 proteins for which abundances were significantly differing between conditions. Notably, proteins involved in phosphate and iron metabolisms show high dynamics. A large ratio of proteins more abundant upon uranyl stress, are distant from functionally-annotated known proteins, highlighting the lack of fundamental knowledge regarding numerous key molecular players from soil bacteria. Microbacterium oleivorans A9 is an interesting environmental model to understand biological processes engaged in tolerance to radionuclides. Using an innovative proteogenomics approach, we explored its molecular mechanisms involved in uranium tolerance. We sequenced its genome, interpreted high-throughput proteomic data against a six-reading frame ORF database deduced from the draft genome, annotated the identified proteins and compared protein abundances from cells exposed or not to uranyl stress after a cascade search. These data show that a complex cellular response to uranium occurs in Microbacterium oleivorans A9, where one third of the experimental proteome is modified. In particular, the uranyl stress perturbed the phosphate and iron metabolic pathways. Furthermore, several transporters have been identified to be specifically associated to uranyl stress, paving the way to the development of biotechnological tools for uranium decontamination. Copyright © 2017. Published by Elsevier B.V.

  18. Establishing the traceability of a uranyl nitrate solution to a standard reference material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, C.H.; Clark, J.P.

    1978-01-01

    A uranyl nitrate solution for use as a Working Calibration and Test Material (WCTM) was characterized, using a statistically designed procedure to document traceability to National Bureau of Standards Reference Material (SPM-960). A Reference Calibration and Test Material (PCTM) was prepared from SRM-960 uranium metal to approximate the acid and uranium concentration of the WCTM. This solution was used in the characterization procedure. Details of preparing, handling, and packaging these solutions are covered. Two outside laboratories, each having measurement expertise using a different analytical method, were selected to measure both solutions according to the procedure for characterizing the WCTM. Twomore » different methods were also used for the in-house characterization work. All analytical results were tested for statistical agreement before the WCTM concentration and limit of error values were calculated. A concentration value was determined with a relative limit of error (RLE) of approximately 0.03% which was better than the target RLE of 0.08%. The use of this working material eliminates the expense of using SRMs to fulfill traceability requirements for uranium measurements on this type material. Several years' supply of uranyl nitrate solution with NBS traceability was produced. The cost of this material was less than 10% of an equal quantity of SRM-960 uranium metal.« less

  19. Crystal Chemistry of the Potassium and Rubidium Uranyl Borate Families Derived from Boric Acid Fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shuao; Alekseev, Evgeny V.; Stritzinger, Jared T.

    2010-07-19

    The reaction of uranyl nitrate with a large excess of molten boric acid in the presence of potassium or rubidium nitrate results in the formation of three new potassium uranyl borates, K{sub 2}[(UO{sub 2}){sub 2}B{sub 12}O{sub 19}(OH){sub 4}]·0.3H{sub 2}O (KUBO-1), K[(UO{sub 2}){sub 2}B{sub 10}O{sub 15}(OH){sub 5}] (KUBO-2), and K[(UO{sub 2}){sub 2}B{sub 10}O{sub 16}(OH){sub 3}]·0.7H{sub 2}O (KUBO-3) and two new rubidium uranyl borates Rb{sub 2}[(UO{sub 2}){sub 2}B{sub 13}O{sub 20}(OH){sub 5}] (RbUBO-1) and Rb[(UO{sub 2}){sub 2}B{sub 10}O{sub 16}(OH){sub 3}]·0.7H{sub 2}O (RbUBO-2). The latter is isotypic with KUBO-3. These compounds share a common structural motif consisting of a linear uranyl, UO{sub 2}{sup 2+},more » cation surrounded by BO{sub 3} triangles and BO{sub 4} tetrahedra to create an UO{sub 8} hexagonal bipyramidal environment around uranium. The borate anions bridge between uranyl units to create sheets. Additional BO{sub 3} triangles extend from the polyborate layers and are directed approximately perpendicular to the sheets. All of these compounds adopt layered structures. With the exception of KUBO-1, the structures are all centrosymmetric. All of these compounds fluoresce when irradiated with long-wavelength UV light. The fluorescence spectrum yields well-defined vibronically coupled charge-transfer features.« less

  20. In Situ Bioremediation of Perchlorate in Vadose Zone Soil Using Gaseous Electron Donors

    DTIC Science & Technology

    2009-11-01

    National Aeronautics and Space Administration ND Non-detect NDMA N-Nitrosodimethylamine No. Number NO3- Nitrate OD Outside diameter O&M...Nitrite xv • Selenate • Arsenate • Chromate and dichromate (i.e., hexavalent chromium) • Uranylate • Pertechnetate • N-Nitrosodimethylamine ( NDMA ...Arsenate • Chromate and dichromate (i.e., hexavalent chromium) • Uranylate • Pertechnetate • N-Nitrosodimethylamine ( NDMA ) • Trichloroethene (TCE

  1. Uranyl adsorption kinetics within silica gel: dependence on flow velocity and concentration

    NASA Astrophysics Data System (ADS)

    Dodd, Brandon M.; Tepper, Gary

    2017-09-01

    Trace quantities of a uranyl dissolved in water were measured using a simple optical method. A dilute solution of uranium nitrate dissolved in water was forced through nanoporous silica gel at fixed and controlled water flow rates. The uranyl ions deposited and accumulated within the silica gel and the uranyl fluorescence within the silica gel was monitored as a function of time using a light emitting diode as the excitation source and a photomultiplier tube detector. It was shown that the response time of the fluorescence output signal at a particular volumetric flow rate or average liquid velocity through the silica gel can be used to quantify the concentration of uranium in water. The response time as a function of concentration decreased with increasing flow velocity.

  2. Electrospray ionization of uranyl-citrate complexes

    NASA Astrophysics Data System (ADS)

    Somogyi, Árpád; Pasilis, Sofie P.; Pemberton, Jeanne E.

    2007-09-01

    Results presented here demonstrate the usefulness of electrospray ionization and gas-phase ion-molecule reactions to predict structural and electronic differences in complex inorganic ions. Electrospray ionization of uranyl citrate solutions generates positively and negatively charged ions that participate in further ion-molecule reactions in 3D ion trap and FT-ICR mass analyzers. Most ions observed are derived from the major solution uranyl-citrate complexes and involve species of {(UO2)2Cit2}2-, (UO2)3Cit2, and {(UO2)3Cit3}3-, where Cit indicates the citrate trianion, C6H5O73-. In a 3D ion trap operated at relatively high pressure, complex adducts containing solvent molecules, alkali and ammonium cations, and nitrate or chloride anions are dominant, and proton/alkali cation (Na+, K+) exchange is observed for up to six exchangeable protons in an excess of alkali cations. Adduct formation in a FT-ICR cell that is operated at lower pressures is less dominant, and direct detection of positive and negative ions of the major solution complexes is possible. Multiply charged ions are also detected, suggesting the presence of uranium in different oxidation states. Changes in uranium oxidation state are detected by He-CID and SORI-CID fragmentation, and certain fragments undergo association reactions in trapping analyzers, forming "exotic" species such as [(UO2)4O3]-, [(UO2)4O4]-, and [(UO2)4O5]-. Ion-molecule reactions with D2O in the FT-ICR cell indicate substantial differences in H/D exchange rate and D2O accommodation for different ion structures and charge states. Most notably, the positively charged ions [H2(UO2)2Cit2(H)]+ and [(UO2)2(Cit)]+ accommodate two and three D2O molecules, respectively, which reflects well the structural differences, i.e., tighter uranyl-citrate coordination in the former ion than in the latter. The corresponding negatively charged ions accommodate zero or two D2O molecules, which can be rationalized using suggested solution phase structures and charge state distributions.

  3. Comparative study of uranyl(VI) and -(V) carbonato complexes in an aqueous solution.

    PubMed

    Ikeda, Atsushi; Hennig, Christoph; Tsushima, Satoru; Takao, Koichiro; Ikeda, Yasuhisa; Scheinost, Andreas C; Bernhard, Gert

    2007-05-14

    Electrochemical, complexation, and electronic properties of uranyl(VI) and -(V) carbonato complexes in an aqueous Na2CO3 solution have been investigated to define the appropriate conditions for preparing pure uranyl(V) samples and to understand the difference in coordination character between UO22+ and UO2+. Cyclic voltammetry using three different working electrodes of platinum, gold, and glassy carbon has suggested that the electrochemical reaction of uranyl(VI) carbonate species proceeds quasi-reversibly. Electrolysis of UO22+ has been performed in Na2CO3 solutions of more than 0.8 M with a limited pH range of 11.7 < pH < 12.0 using a platinum mesh electrode. It produces a high purity of the uranyl(V) carbonate solution, which has been confirmed to be stable for at least 2 weeks in a sealed glass cuvette. Extended X-ray absorption fine structure (EXAFS) measurements revealed the structural arrangement of uranyl(VI) and -(V) tricarbonato complexes, [UO2(CO3)3]n- [n = 4 for uranyl(VI), 5 for uranyl(V)]. The bond distances of U-Oax, U-Oeq, U-C, and U-Odist are determined to be 1.81, 2.44, 2.92, and 4.17 A for the uranyl(VI) complex and 1.91, 2.50, 2.93, and 4.23 A for the uranyl(V) complex, respectively. The validity of the structural parameters obtained from EXAFS has been supported by quantum chemical calculations for the uranyl(VI) complex. The uranium LI- and LIII-edge X-ray absorption near-edge structure spectra have been interpreted in terms of electron transitions and multiple-scattering features.

  4. SEPARATION OF URANIUM FROM THORIUM AND PROTACTINIUM

    DOEpatents

    Musgrave, W.K.R.

    1959-06-30

    This patent relates to the separation of uranium from thorium and protactinium; such mixtures of elements usually being obtained by neutron irradiation of thorium. The method of separating the constituents has been first to dissolve the mixture of elements in concertrated nitric acid and then to remove the protactinium by absorption on manganese dioxide and the uranium by solvent extraction with ether. Prior to now, comparatively large amounts of thorium were extracted with the uranium. According to the invention this is completely prevented by adding sodium diethyldithiocarbamate to the mixture of soluble nitrate salts. The organic salt has the effect of reacting only with the uranyl nitrate to form the corresponding uranyl salt which can then be selectively extracted from the mixture with amyl acetate.

  5. Laser removal of loose uranium compound contamination from metal surfaces

    NASA Astrophysics Data System (ADS)

    Roberts, D. E.; Modise, T. S.

    2007-04-01

    Pulsed laser removal of surface contamination of uranyl nitrate and uranium dioxide from stainless steel has been studied. Most of the loosely bound contamination has been removed at fluence levels below 0.5 J cm -2, leaving about 5% fixed contamination for uranyl nitrate and 15% for uranium dioxide. Both alpha and beta activities are then sufficiently low that contaminated objects can be taken out of a restricted radiation area for re-use. The ratio of beta to alpha activity is found to be a function of particle size and changes during laser removal. In a separate experiment using technetium-99m, the collection of removed radioactivity in the filter was studied and an inventory made of removed and collected contamination.

  6. Method for photochemical reduction of uranyl nitrate by tri-N-butyl phosphate and application of this method to nuclear fuel reprocessing

    DOEpatents

    De Poorter, Gerald L.; Rofer-De Poorter, Cheryl K.

    1978-01-01

    Uranyl ion in solution in tri-n-butyl phosphate is readily photochemically reduced to U(IV). The product U(IV) may effectively be used in the Purex process for treating spent nuclear fuels to reduce Pu(IV) to Pu(III). The Pu(III) is readily separated from uranium in solution in the tri-n-butyl phosphate by an aqueous strip.

  7. Water structure and aqueous uranyl(VI) adsorption equilibria onto external surfaces of beidellite, montmorillonite, and pyrophyllite: results from molecular simulations.

    PubMed

    Greathouse, Jeffery A; Cygan, Randall T

    2006-06-15

    Molecular dynamics simulations were performed to provide a systematic study of aqueous uranyl adsorption onto the external surface of 2:1 dioctahedral clays. Our understanding of this key process is critical in predicting the fate of radioactive contaminants in natural groundwaters. These simulations provide atomistic detail to help explain experimental trends in uranyl adsorption onto natural media containing smectite clays. Aqueous uranyl concentrations ranged from 0.027 to 0.162 M. Sodium ions and carbonate ions (0.027-0.243 M) were also present in the aqueous regions to more faithfully model a stream of uranyl-containing groundwater contacting a mineral system comprised of Na-smectite. No adsorption occurred near the pyrophyllite surface, and there was little difference in uranyl adsorption onto the beidellite and montmorillonite, despite the difference in location of clay layer charge between the two. At low uranyl concentration, the pentaaquouranyl complex dominates in solution and readily adsorbs to the clay basal plane. At higher uranyl (and carbonate) concentrations, the mono(carbonato) complex forms in solution, and uranyl adsorption decreases. Sodium adsorption onto beidellite occurred both as inner- and outer-sphere surface complexes, again with little effect on uranyl adsorption. Uranyl surface complexes consisted primarily of the pentaaquo cation (85%) and to a lesser extent the mono(carbonato) species (15%). Speciation diagrams of the aqueous region indicate that the mono(carbonato)uranyl complex is abundant at high ionic strength. Oligomeric uranyl complexes are observed at high ionic strength, particularly near the pyrophyllite and montmorillonite surfaces. Atomic density profiles of water oxygen and hydrogen atoms are nearly identical near the beidellite and montmorillonite surfaces. Water structure therefore appears to be governed by the presence of adsorbed ions and not by the location of layer charge associated with the substrate. The water oxygen density near the pyrophyllite surface is similar to the other cases, but the hydrogen density profile indicates reduced hydrogen bonding between adsorbed water molecules and the surface.

  8. Structural, spectroscopic and redox properties of uranyl complexes with a maleonitrile containing ligand.

    PubMed

    Hardwick, Helen C; Royal, Drew S; Helliwell, Madeleine; Pope, Simon J A; Ashton, Lorna; Goodacre, Roy; Sharrad, Clint A

    2011-06-14

    The reaction of uranyl nitrate hexahydrate with the maleonitrile containing Schiff base 2,3-bis[(4-diethylamino-2-hydroxybenzylidene)amino]but-2-enedinitrile (salmnt((Et(2)N)(2))H(2)) in methanol produces [UO(2)(salmnt((Et2N)2))(H(2)O)] (1) where the uranyl equatorial coordination plane is completed by the N(2)O(2) tetradentate cavity of the (salmnt((Et(2)N)(2)))(2-) ligand and a water molecule. The coordinated water molecule readily undergoes exchange with pyridine (py), dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF) and triphenylphosphine oxide (TPPO) to give a series of [UO(2)(salmnt((Et(2)N)(2)))(L)] complexes (L = py, DMSO, DMF, TPPO; 2-5, respectively). X-Ray crystallography of 1-5 show that the (salmnt((Et(2)N)(2)))(2-) ligand is distorted when coordinated to the uranyl moiety, in contrast to the planar structure observed for the free protonated ligand (salmnt((Et(2)N)(2))H(2)). The Raman spectra of 1-5 only display extremely weak bands (819-828 cm(-1)) that can be assigned to the typically symmetric O=U=O stretch. This stretching mode is also observed in the infrared spectra for all complexes 1-5 (818-826 cm(-1)) predominantly caused by the distortion of the tetradentate (salmnt((Et(2)N)(2)))(2-) ligand about the uranyl equatorial plane resulting in a change in dipole for this bond stretch. The solution behaviour of 2-5 was studied using NMR, electronic absorption and emission spectroscopy, and cyclic voltammetry. Complexes 2-5 exhibit intense absorptions in the visible region of the spectrum due to intramolecular charge transfer (ICT) transitions and the luminescence lifetimes (< 5 ns) indicate the emission arises from ligand-centred excited states. Reversible redox processes assigned to the {UO(2)}(2+)/{UO(2)}(+) couple are observed for complexes 2-5 (2: E(1/2) = -1.80 V; 3,5: E(1/2) = -1.78 V; 4: E(1/2) = -1.81 V : vs. ferrocenium/ferrocene {Fc(+)/Fc}, 0.1 M Bu(4)NPF(6)) in dichloromethane (DCM). These are some of the most negative half potentials for the {UO(2)}(2+)/{UO(2)}(+) couple observed to date and indicate the strong electron donating nature of the (salmnt((Et(2)N)(2)))(2-) ligand. Multiple uranyl redox processes are clearly seen for [UO(2)(salmnt((Et(2)N)(2)))(L)] in L (L = py, DMSO, DMF; 2-4: 0.1 M Bu(4)NPF(6)) indicating the relative instability of these complexes when competing ligands are present, but the reversible {UO(2)}(2+)/{UO(2)}(+) couple for the intact complexes can still be assigned and shows the position of this couple can be modulated by the solvation environment. Several redox processes were also observed between +0.2 and +1.2 V (vs. Fc(+)/Fc) that prove the redox active nature of the maleonitrile-containing ligand.

  9. Composition for detecting uranyl

    DOEpatents

    Baylor, Lewis C.; Stephens, Susan M.

    1995-01-01

    A composition for detecting the presence and concentration of a substance such as uranyl, comprising an organohalide covalently bonded to an indicator for said substance. The composition has at least one active OH site for forming a complex with the substance to be detected. The composition is made by reacting equimolar amounts of the indicator and the organohalide in a polar organic solvent. The absorbance spectrum of the composition-uranyl complex is shifted with respect to the absorbance spectrum of the indicator-uranyl complex, to provide better spectral resolution for detecting uranyl.

  10. Distribution of ciprofloxacin into the central nervous system in rats with acute renal or hepatic failure.

    PubMed

    Naora, K; Ichikawa, N; Hirano, H; Iwamoto, K

    1999-05-01

    Pharmacokinetic changes of various drugs have been reported in renal or hepatic failure. The present study employed ciprofloxacin, a quinolone antibiotic having neurotoxic side effects, to assess the influence of these diseases on distribution of ciprofloxacin into the central nervous system (CNS). After intravenous dosing of ciprofloxacin (10-30 mg kg(-1)), ciprofloxacin levels in plasma and brain were measured in normal rats (Wistar, male, 10-week-old) and those with acute renal and hepatic injuries which were induced by uranyl nitrate and carbon tetrachloride (CCl4), respectively. In the uranyl nitrate-treated rats, the plasma elimination half-life of ciprofloxacin was prolonged and the total body clearance was reduced when compared with those in the normal rats. Similar but smaller changes were observed in the CCl4-treated group. Brain levels of ciprofloxacin were significantly increased by both uranyl nitrate and CCl4 treatments. A proportional correlation between serum unbound levels and brain levels of ciprofloxacin was observed in the normal group. However, brain-to-serum unbound concentration ratios of ciprofloxacin were reduced in the rats with renal or hepatic failure. These results suggest that renal failure as well as hepatic failure retards elimination of ciprofloxacin from the blood, leading to elevation of the CNS level, and also that ciprofloxacin distribution in the brain is reduced in these disease states.

  11. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Non-destructive chemical analyses of these compounds is important for process and environmental monitoring and X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride,more » and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. These compounds have unique spectral signatures that can be used to identify unknown samples.« less

  12. Partitioning of uranyl between ferrihydrite and humic substances at acidic and circum-neutral pH

    NASA Astrophysics Data System (ADS)

    Dublet, Gabrielle; Lezama Pacheco, Juan; Bargar, John R.; Fendorf, Scott; Kumar, Naresh; Lowry, Gregory V.; Brown, Gordon E.

    2017-10-01

    As part of a larger study of the reactivity and mobility of uranyl (U(VI)O22+) cations in subsurface environments containing natural organic matter (NOM) and hydrous ferric oxides, we have examined the effect of reference humic and fulvic substances on the sorption of uranyl on 2-line ferrihydrite (Fh), a common, naturally occurring nano-Fe(III)-hydroxide. Uranyl was reacted with Fh at pH 4.6 and 7.0 in the presence and absence of Elliott Soil Humic Acid (ESHA) (0-835 ppm) or Suwanee River Fulvic Acid (SRFA) (0-955 ppm). No evidence was found for reduction of uranyl by either form of NOM after 24 h of exposure. The following three size fractions were considered in this study: (1) ≥0.2 μm (Fh-NOM aggregates), (2) 0.02-0.2 μm (dispersed Fh nanoparticles and NOM macro-molecules), and (3) <0.02 μm (dissolved). The extent to which U(VI) is sorbed in aggregates or dispersed as colloids was assessed by comparing U, Fe, and NOM concentrations in these three size fractions. Partitioning of uranyl between Fh and NOM was determined in size fraction (1) using X-ray absorption spectroscopy (XAS). Uranyl sorption on Fh-NOM aggregates was affected by the presence of NOM in different ways depending on pH and type of NOM (ESHA vs. SRFA). The presence of ESHA in the uranyl-Fh-NOM ternary system at pH 4.6 enhanced uranyl uptake more than the presence of SRFA. In contrast, neither form of NOM affected uranyl sorption at pH 7.0 over most of the NOM concentration range examined (0-500 ppm); at the highest NOM concentrations (500-955 ppm) uranyl uptake in the aggregates was slightly inhibited at pH 7.0, which is interpreted as being due to the dispersion of Fh aggregates. XAS at the U LIII-edge was used to characterize molecular-level changes in uranyl complexation as a result of sorption to the Fh-NOM aggregates. In the absence of NOM, uranyl formed dominantly inner-sphere, mononuclear, bidentate sorption complexes on Fh. However, when NOM concentration was increased at pH 4.6, the proportion of uranyl-Fh inner-sphere sorption complexes decreased relative to uranyl-ESHA or uranyl-SRFA complexes, which comprised up to ∼60% of the total uranyl in the systems studied. At pH 7.0, uranyl-NOM complexes were also present in the Fh-NOM aggregates in the concentration ranges of ESHA or SRFA considered; however, the proportion of these complexes was smaller at pH 7.0 than at pH 4.6 and did not increase significantly with increasing NOM concentration.

  13. Formic acid interaction with the uranyl(VI) ion: structural and photochemical characterization.

    PubMed

    Lucks, Christian; Rossberg, André; Tsushima, Satoru; Foerstendorf, Harald; Fahmy, Karim; Bernhard, Gert

    2013-10-07

    Complex formation between the uranyl(VI) ion and formic acid was studied by infrared absorption (IR) and X-ray absorption (EXAFS) spectroscopy as well as density functional theory (DFT) calculations. In contrast to the acetate ion which forms exclusively a bidentate complex with uranyl(VI), the formate ion binds to uranyl(VI) in a unidentate fashion. The photochemistry of the uranyl(VI)-formic acid system was explored by DFT calculations and photoreduction of uranyl(VI) in the presence of formic acid was found to occur via an intermolecular process, that is, hydrogen abstraction from hydrogenformate by the photo-excited uranyl(VI). There is no photo-induced decarboxylation of uranyl(VI) formate via an intramolecular process, presumably due to lack of a C=C double bond.

  14. Conceptual designs of NDA instruments for the NRTA system at the Rokkasho Reprocessing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T.K.; Klosterbuer, S.F.; Menlove, H.O.

    The authors are studying conceptual designs of selected nondestructive assay (NDA) instruments for the near-real-time accounting system at the rokkasho Reprocessing Plant (RRP) of Japan Nuclear Fuel Limited (JNFL). The JNFL RRP is a large-scale commercial reprocessing facility for spent fuel from boiling-water and pressurized-water reactors. The facility comprises two major components: the main process area to separate and produce purified plutonium nitrate and uranyl nitrate from irradiated reactor spent fuels, and the co-denitration process area to combine and convert the plutonium nitrate and uranyl nitrate into mixed oxide (MOX). The selected NDA instruments for conceptual design studies are themore » MOX-product canister counter, holdup measurement systems for calcination and reduction furnaces and for blenders in the co-denitration process, the isotope dilution gamma-ray spectrometer for the spent fuel dissolver solution, and unattended verification systems. For more effective and practical safeguards and material control and accounting at RRP, the authors are also studying the conceptual design for the UO{sub 3} large-barrel counter. This paper discusses the state-of-the-art NDA conceptual design and research and development activities for the above instruments.« less

  15. Self-assembly of silver nanoparticles as high active surface-enhanced Raman scattering substrate for rapid and trace analysis of uranyl(VI) ions

    NASA Astrophysics Data System (ADS)

    Wang, Shaofei; Jiang, Jiaolai; Wu, Haoxi; Jia, Jianping; Shao, Lang; Tang, Hao; Ren, Yiming; Chu, Mingfu; Wang, Xiaolin

    2017-06-01

    A facile surface-enhanced Raman scattering (SERS) substrate based on the self-assembly of silver nanoparticles on the modified silicon wafer was obtained, and for the first time, an advanced SERS analysis method basing on this as-prepared substrate was established for high sensitive and rapid detection of uranyl ions. Due to the weakened bond strength of Odbnd Udbnd O resulting from two kinds of adsorption of uranyl species (;strong; and ;weak; adsorption) on the substrate, the ν1 symmetric stretch vibration frequency of Odbnd Udbnd O shifted from 871 cm- 1 (normal Raman) to 720 cm- 1 and 826 cm- 1 (SERS) along with significant Raman enhancement. Effects of the hydrolysis of uranyl ions on SERS were also investigated, and the SERS band at 826 cm- 1 was first used to approximately define the constitution of uranyl species at trace quantity level. Besides, the SERS intensity was proportional to the variable concentrations of uranyl nitrate ranging from 10- 7 to 10- 3 mol L- 1 with an excellent linear relation (R2 = 0.998), and the detection limit was 10- 7 mol L- 1. Furthermore, the related SERS approach involves low-cost substrate fabrication, rapid and trace analysis simultaneously, and shows great potential applications for the field assays of uranyl ions in the nuclear fuel cycle and environmental monitoring.

  16. Synthesis, X-ray crystallography, thermal studies, spectroscopic and electrochemistry investigations of uranyl Schiff base complexes.

    PubMed

    Asadi, Zahra; Shorkaei, Mohammad Ranjkesh

    2013-03-15

    Some tetradentate salen type Schiff bases and their uranyl complexes were synthesized and characterized by UV-Vis, NMR, IR, TG, C.H.N. and X-ray crystallographic studies. From these investigations it is confirmed that a solvent molecule occupied the fifth position of the equatorial plane of the distorted pentagonal bipyramidal structure. Also, the kinetics of complex decomposition by using thermo gravimetric methods (TG) was studied. The thermal decomposition reactions are first order for the studied complexes. To examine the properties of uranyl complexes according to the substitutional groups, we have carried out the electrochemical studies. The electrochemical reactions of uranyl Schiff base complexes in acetonitrile were reversible. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.; Eiden, Gregory C.; Pemmaraju, C. D.; Prendergast, David; Duffin, Andrew M.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Chemical analyses of these compounds are important for process and environmental monitoring. X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride, and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. The effect of hydration state on the sample, a potential complication in interpreting oxygen K-edge spectra, is discussed. These compounds have unique spectral signatures that can be used to identify unknown samples.

  18. Uranium extraction from TRISO-coated fuel particles using supercritical CO2 containing tri-n-butyl phosphate.

    PubMed

    Zhu, Liyang; Duan, Wuhua; Xu, Jingming; Zhu, Yongjun

    2012-11-30

    High-temperature gas-cooled reactors (HTGRs) are advanced nuclear systems that will receive heavy use in the future. It is important to develop spent nuclear fuel reprocessing technologies for HTGR. A new method for recovering uranium from tristructural-isotropic (TRISO-) coated fuel particles with supercritical CO(2) containing tri-n-butyl phosphate (TBP) as a complexing agent was investigated. TRISO-coated fuel particles from HTGR fuel elements were first crushed to expose UO(2) pellet fuel kernels. The crushed TRISO-coated fuel particles were then treated under O(2) stream at 750°C, resulting in a mixture of U(3)O(8) powder and SiC shells. The conversion of U(3)O(8) into solid uranyl nitrate by its reaction with liquid N(2)O(4) in the presence of a small amount of water was carried out. Complete conversion was achieved after 60 min of reaction at 80°C, whereas the SiC shells were not converted by N(2)O(4). Uranyl nitrate in the converted mixture was extracted with supercritical CO(2) containing TBP. The cumulative extraction efficiency was above 98% after 20 min of online extraction at 50°C and 25 MPa, whereas the SiC shells were not extracted by TBP. The results suggest an attractive strategy for reprocessing spent nuclear fuel from HTGR to minimize the generation of secondary radioactive waste. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. PROCESSES OF RECOVERING URANIUM FROM A CALUTRON

    DOEpatents

    Baird, D.O.; Zumwalt, L.R.

    1958-07-15

    An improved process is described for recovering the residue of a uranium compound which has been subjected to treatment in a calutron, from the parts of the calutron disposed in the source region upon which the residue is deposited. The process may be utilized when the uranium compound adheres to a surface containing metals of the group consisting of copper, iron, chromium, and nickel. The steps comprise washing the surface with an aqueous acidic oxidizing solvent for the uranium whereby there is obtained an acidic aqueous Solution containing uranium as uranyl ions and metals of said group as impurities, treating the acidic solution with sodium acetate in the presenee of added sodium nitrate to precipitate the uranium as sodium uranyl acetate away from the impurities in the solution, and separating the sodium uranyl acetate from the solution.

  20. Coordination characteristics of uranyl BBP complexes: Insights from an electronic structure analysis

    DOE PAGES

    Pemmaraju, Chaitanya Das; Copping, Roy; Smiles, Danil E.; ...

    2017-03-21

    Here, organic ligand complexes of lanthanide/actinide ions have been studied extensively for applications in nuclear fuel storage and recycling. Several complexes of 2,6-bis(2-benzimidazyl)pyridine (H2BBP) featuring the uranyl moiety have been reported recently, and the present study investigates the coordination characteristics of these complexes using density functional theory-based electronic structure analysis. In particular, with the aid of several computational models, the nonplanar equatorial coordination about uranyl, observed in some of the compounds, is studied and its origin traced to steric effects.

  1. Two actinide-organic frameworks constructed by a tripodal flexible ligand: Occurrence of infinite ((UO{sub 2})O{sub 2}(OH){sub 3}){sub 4n} and hexanuclear (Th{sub 6}O{sub 4}(OH){sub 4}) motifs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Lingling; Zhang, Ronglan; Zhao, Jianshe, E-mail: jszhao@nwu.edu.cn

    Two new actinide metal-organic frameworks were constructed by using a tripodal flexible ligand tris (2-carboxyethyl) isocyanurate (H{sub 3}tci) under hydrothermal condition. The combination of H{sub 3}tci and uranyl nitrate hexahydrate in aqueous solution leads to the isolation of [(UO{sub 2}){sub 2}(H{sub 2}O){sub 4}]{sub 0.5}(tci){sub 2}(UO{sub 2}){sub 4}(OH){sub 4}·18H{sub 2}O (1), which contains two distinct UO{sub 2}{sup 2+} coordination environments. Four uranyl cations, linked through μ{sub 3}-OH respectively, result in the edge-sharing ribbons. Then, the layer structure is constructed by U-O clusters linked through other eight-coordinated uranyl unions, giving rise to a porous structure in the space. Topological analysis reveals thatmore » complex 1 belongs to a (4, 8)-connected net with a schläfli symbol of (3{sup 4.}2{sup 6.}3){sub 2}(3{sup 4.}4{sup 6.}5{sup 6.}6{sup 8.}7{sup 3.}8). Th{sub 3}(tci){sub 2}O{sub 2}(OH){sub 2}(H{sub 2}O){sub 3}·12H{sub 2}O (2) generated by the reaction of H{sub 3}tci and thorium nitrate tetrahydrate, possesses nine-fold coodinated Th(IV) centers with a monocapped square antiprismatic geometry. The hexamers “Th{sub 6}O{sub 4}(OH){sub 4}” motifs are connected together by the carboxylate groups, showing a three-dimensional structures. Complex 2 takes on an 8-connected architecture and the point symbol is (4{sup 24.}6{sup 4}). - Graphical abstract: Two new 3D actinide metal-organic frameworks were constructed by using a tripodal flexible ligand tris (2-carboxyethyl) isocyanurate (H3tci) and their topological structures were displayed. The infinite ((UO{sub 2})O{sub 2}(OH){sub 3}){sub 4n} and hexanuclear (Th{sub 6}O{sub 4}(OH){sub 4}) motifs were found in the title actinides networks.« less

  2. Dehydration of Uranyl Nitrate Hexahydrate to Uranyl Nitrate Trihydrate under Ambient Conditions as Observed via Dynamic Infrared Reflectance Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.

    2015-05-22

    the hexahydrate [UO 2(NO 3) 2(H 2O) 6] (UNH) and the trihydrate [UO 2(NO 3) 2(H 2O) 3] (UNT) forms. Their stabilities depend on both relative humidity and temperature. Both phases have previously been studied by infrared transmission spectroscopy, but the data were limited by both instrumental resolution and the ability to prepare the samples as pellets without desiccating them. We report time-resolved infrared (IR) measurements using an integrating sphere that allow us to observe the transformation from the hexahydrate to the trihydrate simply by flowing dry nitrogen gas over the sample. Hexahydrate samples were prepared and confirmed via knownmore » XRD patterns, then measured in reflectance mode. The hexahydrate has a distinct uranyl asymmetric stretch band at 949.0 cm -1 that shifts to shorter wavelengths and broadens as the sample dehydrates and recrystallizes to the trihydrate, first as a blue edge shoulder but ultimately resulting in a doublet band with reflectance peaks at 966 and 957 cm -1. The data are consistent with transformation from UNH to UNT since UNT has two non-equivalent UO 2 2+ sites. The dehydration of UO 2(NO 3) 2(H 2O) 6 to UO 2(NO 3) 2(H 2O) 3 is both a morphological and structural change that has the lustrous lime green crystals changing to the dull greenish yellow of the trihydrate. Crystal structures and phase transformation were confirmed theoretically using DFT calculations and experimentally via microscopy methods. Both methods showed a transformation with two distinct sites for the uranyl cation in the trihydrate, as opposed to a single crystallographic site in the hexahydrate.« less

  3. Uranyl ion coordination

    USGS Publications Warehouse

    Evans, H.T.

    1963-01-01

    A review of the known crystal structures containing the uranyl ion shows that plane-pentagon coordination is equally as prevalent as plane-square or plane-hexagon. It is suggested that puckered-hexagon configurations of OH - or H2O about the uranyl group will tend to revert to plane-pentagon coordination. The concept of pentagonal coordination is invoked for possible explanations of the complex crystallography of the natural uranyl hydroxides and the unusual behavior of polynuclear ions in hydrolyzed uranyl solutions.

  4. Recovering and recycling uranium used for production of molybdenum-99

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reilly, Sean Douglas; May, Iain; Copping, Roy

    A processes for recycling uranium that has been used for the production of molybdenum-99 involves irradiating a solution of uranium suitable for forming fission products including molybdenum-99, conditioning the irradiated solution to one suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina. Another process involves irradiation of a solid target comprising uranium, forming an acidic solution from the irradiated targetmore » suitable for inducing the formation of crystals of uranyl nitrate hydrates, then forming the crystals and a supernatant and then separating the crystals from the supernatant, thus using the crystals as a source of uranium for recycle. Molybdenum-99 is recovered from the supernatant using an adsorbent such as alumina.« less

  5. Surface complexation model of uranyl sorption on Georgia kaolinite

    USGS Publications Warehouse

    Payne, T.E.; Davis, J.A.; Lumpkin, G.R.; Chisari, R.; Waite, T.D.

    2004-01-01

    The adsorption of uranyl on standard Georgia kaolinites (KGa-1 and KGa-1B) was studied as a function of pH (3-10), total U (1 and 10 ??mol/l), and mass loading of clay (4 and 40 g/l). The uptake of uranyl in air-equilibrated systems increased with pH and reached a maximum in the near-neutral pH range. At higher pH values, the sorption decreased due to the presence of aqueous uranyl carbonate complexes. One kaolinite sample was examined after the uranyl uptake experiments by transmission electron microscopy (TEM), using energy dispersive X-ray spectroscopy (EDS) to determine the U content. It was found that uranium was preferentially adsorbed by Ti-rich impurity phases (predominantly anatase), which are present in the kaolinite samples. Uranyl sorption on the Georgia kaolinites was simulated with U sorption reactions on both titanol and aluminol sites, using a simple non-electrostatic surface complexation model (SCM). The relative amounts of U-binding >TiOH and >AlOH sites were estimated from the TEM/EDS results. A ternary uranyl carbonate complex on the titanol site improved the fit to the experimental data in the higher pH range. The final model contained only three optimised log K values, and was able to simulate adsorption data across a wide range of experimental conditions. The >TiOH (anatase) sites appear to play an important role in retaining U at low uranyl concentrations. As kaolinite often contains trace TiO2, its presence may need to be taken into account when modelling the results of sorption experiments with radionuclides or trace metals on kaolinite. ?? 2004 Elsevier B.V. All rights reserved.

  6. Iron (III) Matrix Effects on Mineralization and Immobilization of Actinides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cynthia-May S. Gong; Tyler A. Sullens; Kenneth R. Czerwinski

    2006-01-01

    Abstract - A number of models for the Yucca Mountain Project nuclear waste repository use studies of actinide sorption onto well-defined iron hydroxide materials. In the case of a waste containment leak, however, a complex interaction between dissolved waste forms and failed containment vessel components can lead to immediate precipitation of migratory iron and uranyl in the silicate rich near-field environment. Use of the Fe(III) and UO22+ complexing agent acetohydroxamic acid (AHA) as a colorimetric agent for visible spectrophotometry is well-known. Using the second derivative of these spectra a distinct shift in iron complexation in the presence of silicate ismore » seen that is not seen with uranyl or alone. Silica also decreases the ability of uranyl and ferric solutions to absorb hydroxide, hastening precipitation. These ferric silicate precipitates are highly amorphous and soluble. Precipitates formed in the presence of uranyl below ~1 mol% exhibit lower solubility than precipitates from up to 50 mol % and of uranyl silicates alone.« less

  7. Expanding the Library of Uranyl Amide Derivatives: New Complexes Featuring the tert-Butyldimethylsilylamide Ligand.

    PubMed

    Pattenaude, Scott A; Coughlin, Ezra J; Collins, Tyler S; Zeller, Matthias; Bart, Suzanne C

    2018-04-16

    New uranyl derivatives featuring the amide ligand, -N(SiHMe 2 ) t Bu, were synthesized and characterized by X-ray crystallography, multinuclear NMR spectroscopy, and absorption spectroscopies. Steric properties of these complexes were also quantified using the computational program Solid-G. The increased basicity of the free ligand -N(SiHMe 2 ) t Bu was demonstrated by direct comparison to -N(SiMe 3 ) 2 , a popular supporting ligand for uranyl. Substitutional lability on a uranyl center was also demonstrated by exchange with the -N(SiMe 3 ) 2 ligand. The increased basicity of this ligand and diverse characterization handles discussed here will make these compounds useful synthons for future reactivity.

  8. 4. VIEW OF ROOM 103 IN 1980. SIX OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW OF ROOM 103 IN 1980. SIX OF THE NINE URANIUM NITRATE STORAGE TANKS ARE SHOWN. HIGHLY ENRICHED URANIUM WAS INTRODUCED INTO THE BUILDING IN THE SUMMER OF 1965 AND THE FIRST EXPERIMENTS WERE PERFORMED IN SEPTEMBER OF 1965. EXPERIMENTS WERE PERFORMED ON ENRICHED URANIUM METAL AND SOLUTION, PLUTONIUM METAL, LOW ENRICHED URANIUM OXIDE, AND SEVERAL SPECIAL APPLICATIONS. AFTER 1983, EXPERIMENTS WERE CONDUCTED PRIMARILY WITH URANYL NITRATE SOLUTIONS, AND DID NOT INVOLVE SOLID MATERIALS. - Rocky Flats Plant, Critical Mass Laboratory, Intersection of Central Avenue & 86 Drive, Golden, Jefferson County, CO

  9. PROCESS OF MAKING A NEUTRONIC REACTOR FUEL ELEMENT COMPOSITION

    DOEpatents

    Alter, H.W.; Davidson, J.K.; Miller, R.S.; Mewherter, J.L.

    1959-01-13

    A process is presented for making a ceramic-like material suitable for use as a nuclear fuel. The material consists of a solid solution of plutonium dioxide in uranium dioxide and is produced from a uranyl nitrate -plutonium nitrate solution containing uraniunm and plutonium in the desired ratio. The uranium and plutonium are first precipitated from the solution by addition of NH/ sub 4/OH and the dried precipitate is then calcined at 600 C in a hydrogen atmosphere to yield the desired solid solution of PuO/sub 2/ in UO/sub 2/.

  10. Equatorial coordination of uranyl: Correlating ligand charge donation with the O yl-U-O yl asymmetric stretch frequency

    DOE PAGES

    Gibson, John K.; de Jong, Wibe A.; van Stipdonk, Michael J.; ...

    2017-10-14

    In uranyl coordination complexes, UO 2(L) n 2+, uranium in the formally dipositive [O=U=O] 2+ moiety is coordinated by n neutral organic electron donor ligands, L. The extent of ligand electron donation, which results in partial reduction of uranyl and weakening of the U=O bonds, is revealed by the magnitude of the red-shift of the uranyl asymmetric stretch frequency, ν 3 . This phenomenon appears in gas-phase complexes in which uranyl is coordinated by electron donor ligands: the ν 3 red-shift increases as the number of ligands and their proton affinity (PA) increases. Because PA is a measure of themore » enthalpy change associated with a proton-ligand interaction, which is much stronger and of a different nature than metal ion-ligand bonding, it is not necessarily expected that ligand PAs should reliably predict uranyl-ligand bonding and the resulting ν 3 red-shift. In this study, ν 3 was measured for uranyl coordinated by ligands with a relatively broad range of PAs, revealing a surprisingly good correlation between PA and ν 3 frequency. From computed ν 3 frequencies for bare UO 2 cations and neutrals, it is inferred that the effective charge of uranyl in UO 2(L) n 2+ complexes can be reduced to near zero upon ligation by sufficiently strong charge-donor ligands. The basis for the correlation between ν 3 and ligand PAs, as well as limitations and deviations from it, are considered. It is demonstrated that the correlation evidently extends to a ligand that exhibits polydentate metal ion coordination.« less

  11. EXTRACTION METHOD FOR SEPARATING URANIUM, PLUTONIUM, AND FISSION PRODUCTS FROM COMPOSITIONS CONTAINING SAME

    DOEpatents

    Seaborg, G.T.

    1957-10-29

    Methods for separating plutonium from the fission products present in masses of neutron irradiated uranium are reported. The neutron irradiated uranium is first dissolved in an aqueous solution of nitric acid. The plutonium in this solution is present as plutonous nitrate. The aqueous solution is then agitated with an organic solvent, which is not miscible with water, such as diethyl ether. The ether extracts 90% of the uraryl nitrate leaving, substantially all of the plutonium in the aqueous phase. The aqueous solution of plutonous nitrate is then oxidized to the hexavalent state, and agitated with diethyl ether again. In the ether phase there is then obtained 90% of plutonium as a solution of plutonyl nitrate. The ether solution of plutonyl nitrate is then agitated with water containing a reducing agent such as sulfur dioxide, and the plutonium dissolves in the water and is reduced to the plutonous state. The uranyl nitrate remains in the ether. The plutonous nitrate in the water may be recovered by precipitation.

  12. Performance testing accountability measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldham, R.D.; Mitchell, W.G.; Spaletto, M.I.

    The New Brunswick Laboratory (NBL) provides assessment support to the DOE Operations Offices in the area of Material Control and Accountability (MC and A). During surveys of facilities, the Operations Offices have begun to request from NBL either assistance in providing materials for performance testing of accountability measurements or both materials and personnel to do performance testing. To meet these needs, NBL has developed measurement and measurement control performance test procedures and materials. The present NBL repertoire of performance tests include the following: (1) mass measurement performance testing procedures using calibrated and traceable test weights, (2) uranium elemental concentration (assay)more » measurement performance tests which use ampulated solutions of normal uranyl nitrate containing approximately 7 milligrams of uranium per gram of solution, and (3) uranium isotopic measurement performance tests which use ampulated uranyl nitrate solutions with enrichments ranging from 4% to 90% U-235. The preparation, characterization, and packaging of the uranium isotopic and assay performance test materials were done in cooperation with the NBL Safeguards Measurements Evaluation Program since these materials can be used for both purposes.« less

  13. EVALUATION OF AUSTRALIAN RUM JUNGLE URANIUM CONCENTRATE FOR USE AS NLO REFINERY FEED

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collopy, T.J.; Huntington, C.W.; Blum, J.F.

    1956-01-20

    A laboratory evaluation of Australian Rum Jungle uranium concentrate showed that the uracium can be satisfactorily extracted by 33.5% TBP-kerosene from an aqueous acid slurry of the material, and that impurities in the aqueous uranyl nitrate product obtained by re-extraetion from the organic phase approach NL0 tolerance specifications. The uranium values in the organic product were not completely re-extracted at room temperatare (l0th stage organic, 1.6 g/l U); however, it was assumed that reextraction will be complete under pulse column conditions (150 deg F). The results of the Pilot Plant evaluation of Rum Jungle uranium concentrate (Lot No. 1) indicatedmore » that this material can be processed employing NLO refinery conditions. The aqueous uranyl nitrate product from the test met all impurity specifications except those for manganese and nickel. The high chloride content of this lot of concentrate will mske blending necessary in order to meet NLO feed material specifications. The blending will alan lessen the tendencies toward metallic contamination of the OK liquor observed in these tests. (auth)« less

  14. Electrodeposition of uranium and thorium onto small platinum electrodes

    NASA Astrophysics Data System (ADS)

    Reichenberger, Michael A.; Ito, Takashi; Ugorowski, Philip B.; Montag, Benjamin W.; Stevenson, Sarah R.; Nichols, Daniel M.; McGregor, Douglas S.

    2016-03-01

    Preparation of thin U- and Th-coated 0.3 mm diameter Pt working electrodes by the cyclic potential sweep method is described. Uranyl- and thorium hydroxide layers were electrodeposited from ethanol solutions containing 0.02 M natural uranyl and 0.02 M natural thorium nitrate, each with 3.6 M ammonium nitrate. The cell for electrodeposition was specially developed in order to accommodate the small working electrodes for this research by including a working electrode probe, 3-D translation stage, and microscope. The source material deposition was analyzed using digital microscopy and scanning electron microscopy, and confirmed using x-ray fluorescence measurements. The appropriate potential range for electrodeposition was determined to be -0.62 V to -0.64 V for a 0.3 mm diameter Pt working electrode placed 1 cm from the counter electrode. Smooth, uniform deposition was observed near the central region of the working electrode, while surface cracking and crystalline formations were found near the edge of the working electrode. The final procedure for sample substrate preparation, electrolytic solution preparation and electrodeposition are described.

  15. The fundamental ribosomal RNA transcription initiation factor-IB (TIF-IB, SL1, factor D) binds to the rRNA core promoter primarily by minor groove contacts.

    PubMed

    Geiss, G K; Radebaugh, C A; Paule, M R

    1997-11-14

    Acanthamoeba castellanii transcription initiation factor-IB (TIF-IB) is the TATA-binding protein-containing transcription factor that binds the rRNA promoter to form the committed complex. Minor groove-specific drugs inhibit TIF-IB binding, with higher concentrations needed to disrupt preformed complexes because of drug exclusion by bound TIF-IB. TIF-IB/DNA interactions were mapped by hydroxyl radical and uranyl nitrate footprinting. TIF-IB contacts four minor grooves in its binding site. TIF-IB and DNA wrap around each other in a right-handed superhelix of high pitch, so the upstream and downstream contacts are on opposite faces of the helix. Dimethyl sulfate protection assays revealed limited contact with a few guanines in the major groove. This detailed analysis suggests significant DNA conformation dependence of the interaction.

  16. Multilinear analysis of Time-Resolved Laser-Induced Fluorescence Spectra of U(VI) containing natural water samples

    NASA Astrophysics Data System (ADS)

    Višňák, Jakub; Steudtner, Robin; Kassahun, Andrea; Hoth, Nils

    2017-09-01

    Natural waters' uranium level monitoring is of great importance for health and environmental protection. One possible detection method is the Time-Resolved Laser-Induced Fluorescence Spectroscopy (TRLFS), which offers the possibility to distinguish different uranium species. The analytical identification of aqueous uranium species in natural water samples is of distinct importance since individual species differ significantly in sorption properties and mobility in the environment. Samples originate from former uranium mine sites and have been provided by Wismut GmbH, Germany. They have been characterized by total elemental concentrations and TRLFS spectra. Uranium in the samples is supposed to be in form of uranyl(VI) complexes mostly with carbonate (CO32- ) and bicarbonate (HCO3- ) and to lesser extend with sulphate (SO42- ), arsenate (AsO43- ), hydroxo (OH- ), nitrate (NO3- ) and other ligands. Presence of alkaline earth metal dications (M = Ca2+ , Mg2+ , Sr2+ ) will cause most of uranyl to prefer ternary complex species, e.g. Mn(UO2)(CO3)32n-4 (n ɛ {1; 2}). From species quenching the luminescence, Cl- and Fe2+ should be mentioned. Measurement has been done under cryogenic conditions to increase the luminescence signal. Data analysis has been based on Singular Value Decomposition and monoexponential fit of corresponding loadings (for separate TRLFS spectra, the "Factor analysis of Time Series" (FATS) method) and Parallel Factor Analysis (PARAFAC, all data analysed simultaneously). From individual component spectra, excitation energies T00, uranyl symmetric mode vibrational frequencies ωgs and excitation driven U-Oyl bond elongation ΔR have been determined and compared with quasirelativistic (TD)DFT/B3LYP theoretical predictions to cross -check experimental data interpretation. Note to the reader: Several errors have been produced in the initial version of this article. This new version published on 23 October 2017 contains all the corrections.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, John K.; de Jong, Wibe A.; van Stipdonk, Michael J.

    In uranyl coordination complexes, UO 2(L) n 2+, uranium in the formally dipositive [O=U=O] 2+ moiety is coordinated by n neutral organic electron donor ligands, L. The extent of ligand electron donation, which results in partial reduction of uranyl and weakening of the U=O bonds, is revealed by the magnitude of the red-shift of the uranyl asymmetric stretch frequency, ν 3 . This phenomenon appears in gas-phase complexes in which uranyl is coordinated by electron donor ligands: the ν 3 red-shift increases as the number of ligands and their proton affinity (PA) increases. Because PA is a measure of themore » enthalpy change associated with a proton-ligand interaction, which is much stronger and of a different nature than metal ion-ligand bonding, it is not necessarily expected that ligand PAs should reliably predict uranyl-ligand bonding and the resulting ν 3 red-shift. In this study, ν 3 was measured for uranyl coordinated by ligands with a relatively broad range of PAs, revealing a surprisingly good correlation between PA and ν 3 frequency. From computed ν 3 frequencies for bare UO 2 cations and neutrals, it is inferred that the effective charge of uranyl in UO 2(L) n 2+ complexes can be reduced to near zero upon ligation by sufficiently strong charge-donor ligands. The basis for the correlation between ν 3 and ligand PAs, as well as limitations and deviations from it, are considered. It is demonstrated that the correlation evidently extends to a ligand that exhibits polydentate metal ion coordination.« less

  18. Tris-amidoximate uranyl complexes via η2 binding mode coordinated in aqueous solution shown by X-ray absorption spectroscopy and density functional theory methods.

    PubMed

    Zhang, Linjuan; Qie, Meiying; Su, Jing; Zhang, Shuo; Zhou, Jing; Li, Jiong; Wang, Yu; Yang, Shitong; Wang, Shuao; Li, Jingye; Wu, Guozhong; Wang, Jian Qiang

    2018-03-01

    The present study sheds some light on the long-standing debate concerning the coordination properties between uranyl ions and the amidoxime ligand, which is a key ingredient for achieving efficient extraction of uranium. Using X-ray absorption fine structure combined with theoretical simulation methods, the binding mode and bonding nature of a uranyl-amidoxime complex in aqueous solution were determined for the first time. The results show that in a highly concentrated amidoxime solution the preferred binding mode between UO 2 2+ and the amidoxime ligand is η 2 coordination with tris-amidoximate species. In such a uranyl-amidoximate complex with η 2 binding motif, strong covalent interaction and orbital hybridization between U 5f/6d and (N, O) 2p should be responsible for the excellent binding ability of the amidoximate ligand to uranyl. The study was performed directly in aqueous solution to avoid the possible binding mode differences caused by crystallization of a single-crystal sample. This work also is an example of the simultaneous study of local structure and electronic structure in solution systems using combined diagnostic tools.

  19. Synthesis and characterization of heterometallic uranyl pyridinedicarboxylate compounds

    NASA Astrophysics Data System (ADS)

    Jayasinghe, Ashini S.; Payne, Maurice K.; Forbes, Tori Z.

    2017-10-01

    The incorporation of transition metals into hybrid uranyl materials can result in more diverse structural topologies and variations in physical and chemical properties. To explore the impact of transition metals on the uranyl cation, five uranium containing bimetallic chain compounds, [(UO2)M(PDC)2(H2O)4]·4(H2O) (PDC = 2,6 pyridinedicarboxylate; M = Ni2+, Co2+, Fe2+, Zn2+, and Cu2+) were synthesized by evaporation of aqueous solutions at room temperature. The uranyl cation is complex by two PDC ligands and the transition metal cations bond to the complex to form a one-dimensional chain topology. The presence of the transition metal leads to the presence of a stronger uranyl oxo bonds as shown by the single-crystal X-ray diffraction data and the Raman spectra. Solid state diffuse reflectance UV/Visible spectra confirmed the presence of the transition metals in the structure by the broad bands that appeared at relevant wavelengths.

  20. Exploring New Assembly Modes of Uranyl Terephthalate: Templated Syntheses and Structural Regulation of a Series of Rare 2D → 3D Polycatenated Frameworks

    DOE PAGES

    Mei, Lei; Wang, Cong-zhi; Zhu, Liu-zheng; ...

    2017-06-23

    In this paper, the reaction of uranyl nitrate with terephthalic acid (H 2TP) under hydrothermal conditions in the presence of an organic base, 1,3-(4,4'-bispyridyl)propane (BPP) or 4,4'-bipyridine (BPY), provided four uranyl terephthalate compounds with different entangled structures by a pH-tuning method. [UO 2(TP) 1.5](H 2BPP) 0.5·2H 2O (1) obtained in a relatively acidic solution (final aqueous pH, 4.28) crystallizes in the form of a noninterpenetrated honeycomb-like two-dimensional network structure. An elevation of the solution pH (final pH, 5.21) promotes the formation of a dimeric uranyl-mediated polycatenated framework, [(UO 2) 2(μ-OH) 2(TP) 2] 2(H 2BPP) 2·4.5H 2O (2). Another new polycatenatedmore » framework with a monomeric uranyl unit, [(UO 2) 2(TP) 3](H 2BPP) (3), begins to emerge as a minor accompanying product of 2 when the pH is increased up to 6.61, and turns out to be a significant product at pH 7.00. When more rigid but small-size BPY molecules replace BPP molecules, [UO 2(TP) 1.5](H 2BPP) 0.5 (4) with a polycatenated framework similar to 3 was obtained in a relatively acidic solution (final pH, 4.81). The successful preparation of 2–4 represents the first report of uranyl–organic polycatenated frameworks derived from a simple H 2TP linker. Finally, a direct comparison between these polycatenated frameworks and previously reported uranyl terephthalate compounds suggests that the template and cavity-filling effects of organic bases (such as BPP or BPY), in combination with specific hydrothermal conditions, promote the formation of uranyl terephthalate polycatenated frameworks.« less

  1. Actinide metal processing

    DOEpatents

    Sauer, N.N.; Watkin, J.G.

    1992-03-24

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  2. Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory

    DOE PAGES

    Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.

    2015-04-02

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K 1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO 2 2+ complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K 1 values are significantly overestimated. Accurate predictions of the absolute log K 1 values (root mean square deviation from experiment < 1.0 for logmore » K 1 values ranging from 0 to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.« less

  3. A procedure for quantitation of total oxidized uranium for bioremediation studies

    USGS Publications Warehouse

    Elias, Dwayne A.; Senko, John M.; Krumholz, Lee R.

    2003-01-01

    A procedure was developed for the quantitation of complexed U(VI) during studies on U(VI) bioremediation. These studies typically involve conversion of soluble or complexed U(VI) (oxidized) to U(IV) (the reduced form which is much less soluble). Since U(VI) freely exchanges between material adsorbed to the solid phase and the dissolved phase, uranium bioremediation experiments require a mass balance of U in both its soluble and adsorbed forms as well as in the reduced sediment bound phase. We set out to optimize a procedure for extraction and quantitation of sediment bound U(VI). Various extractant volumes to sediment ratios were tested and it was found that between 1:1 to 8:1 ratios (v/w) there was a steady increase in U(VI) recovered, but no change with further increases in v/w ratio.Various strengths of NaHCO3, Na-EDTA, and Na-citrate were used to evaluate complexed U(VI) recovery, while the efficiency of a single versus repeated extraction steps was compared with synthesized uranyl-phosphate and uranyl-hydroxide. Total recovery with 1 M NaHCO3 was 95.7% and 97.9% from uranyl-phosphate and uranyl-hydroxide, respectively, compared to 80.7% and 89.9% using 450 mM NaHCO3. Performing the procedure once yielded an efficiency of 81.1% and 92.3% for uranyl-phosphate and uranyl-hydroxide, respectively, as compared to three times. All other extractants yielded 7.9–82.0% in both experiments.

  4. Surface catalysis of uranium(VI) reduction by iron(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liger, E.; Charlet, L.; Van Cappellen, P.

    1999-10-01

    Colloidal hematite ({alpha}-Fe{sub 2}O{sub 3}) is used as model solid to investigate the kinetic effect of specific adsorption interactions on the chemical reduction of uranyl (U{sup VI}O{sub 2}{sup 2+}) by ferrous iron. Acid-base titrations and Fe(II) and uranyl adsorption experiments are performed on hematite suspensions, under O{sub 2}- and CO{sub 2}-free conditions. The results are explained in terms of a constant capacitance surface complexation model of the hematite-aqueous solution interface. Two distinct Fe(II) surface complexes are required to reproduce the data: ({equivalent{underscore}to}Fe{sup III}OFe{sup II}){sup +} (or {equivalent{underscore}to}Fe{sup III}OFe{sup II}(OH{sub 2}){sub n}{sup +}) and {equivalent{underscore}to}Fe{sup III}OFe{sup II}OH{sup 0} (or {equivalent{underscore}to}Fe{sup III}OFe{supmore » II}(OH{sub 2}){sub n{minus}1}OH{sup 0}). The latter complex represents a significant fraction of total adsorbed Fe(II) at pH {gt} 6.5. Uranyl binding to the hematite particles is characterized by a sharp adsorption edge between pH 4 and pH 5.5. Because of the absence of competing aqueous carbonate complexes, uranyl remains completely adsorbed at pH {gt} 7. A single mononuclear surface complex accounts for the adsorption of uranyl over the entire range of experimental conditions. Although thermodynamically feasible, no reaction between uranyl and Fe(II) is observed in homogeneous solution at pH 7.5, for periods of up to three days. In hematite suspensions, however, surface-bound uranyl reacts on a time scale of hours. Based on Fourier Transformed Infrared spectra, chemical reduction of U(VI) is inferred to be the mechanism responsible for the disappearance of uranyl. The kinetics of uranyl reduction are quantified by measuring the decrease with time of the concentration of U(VI) extractable from the hematite particles by NaHCO{sub 3}. In the presence of excess Fe(II), the initial rate of U(VI) reduction exhibits a first-order dependence on the concentration of adsorbed uranyl. The pseudo-first-order rate constant varies with pH (range, 6--7.5) and the total (dissolved + adsorbed) concentration of Fe(II) (range, 2--160 {micro}M). When analyzing the rate data in terms of the calculated surface speciation, the variability of the rate constant can be accounted for entirely by changes in the concentration of the Fe(II) monohydroxo surface complex {equivalent{underscore}to}Fe{sup III}OFe{sup II}OH{sup 0}. Therefore, the rate law is derived for the hematite-catalyzed reduction of uranyl by Fe(II), where the bimolecular rate constant {kappa} has a value of 399 {+-} 25 M{sup {minus}1} min{sup {minus}1} at 25 C. The hydroxo surface complex is the rate-controlling reductant species, because it provides the most favorable coordination environment in which electrons are removed from Fe(II). Natural particulate matter collected in the hypolimnion of a seasonally stratified lake also causes the rapid reduction of uranyl by Fe(II), Ferrihydrite, identified in the particulate matter by X-ray diffraction, is one possible mineral phase accelerating the reaction between U(VI) and Fe(II). At near-neutral pH and total Fe(II) levels less than 1 mM, the pseudo-first-order rate constants of chemical U(VI) reduction, measured in the presence of the hematite and lake particles, are of the same order of magnitude as the highest corresponding rate coefficients for enzymatic U(VI) reduction in bacterial cultures. Hence, based on the results of this study, surface-catalyzed U(VI) reduction by Fe(II) is expected to be a major pathway of uranium immobilization in a wide range of redox-stratified environments.« less

  5. 49 CFR 176.84 - Other requirements for stowage and segregation for cargo vessels and passenger vessels.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... liquids. 29 Stow “away from” ammonium compounds. 30 Stow “away from” animal or vegetable oils. 31 Stow...” alkaline compounds.2 54 Stow “separated from” animal or vegetable oils. 55 Stow “separated from” ammonia... applies. 130 Stowage Category A applies, except for uranyl nitrate hexahydrate solution, uranium metal...

  6. 49 CFR 176.84 - Other requirements for stowage and segregation for cargo vessels and passenger vessels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... liquids. 29 Stow “away from” ammonium compounds. 30 Stow “away from” animal or vegetable oils. 31 Stow...” alkaline compounds.2 54 Stow “separated from” animal or vegetable oils. 55 Stow “separated from” ammonia... applies. 130 Stowage Category A applies, except for uranyl nitrate hexahydrate solution, uranium metal...

  7. METHOD AND APPARATUS FOR CALCINING SALT SOLUTIONS

    DOEpatents

    Lawroski, S.; Jonke, A.A.; Taecker, R.G.

    1961-10-31

    A method is given for converting uranyl nitrate solution into solid UO/ sub 3/, The solution is sprayed horizontally into a fluidized bed of UO/sub 3/ particles at 310 to 350 deg C by a nozzle of the coaxial air jet type at about 26 psig, Under these conditions the desired conversion takes place, and caking in the bed is avoided.

  8. Flowsheet Analysis of U-Pu Co-Crystallization Process as a New Reprocessing System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shunji Homma; Jun-ichi Ishii; Jiro Koga

    2006-07-01

    A new fuel reprocessing system by U-Pu co-crystallization process is proposed and examined by flowsheet analysis. This reprocessing system is based on the fact that hexavalent plutonium in nitric acid solution is co-crystallized with uranyl nitrate, whereas it is not crystallized when uranyl nitrate does not exist in the solution. The system consists of five steps: dissolution of spent fuel, plutonium oxidation, U-Pu co-crystallization as a co-decontamination, re-dissolution of the crystals, and U re-crystallization as a U-Pu separation. The system requires a recycling of the mother liquor from the U-Pu co-crystallization step and the appropriate recycle ratio is determined bymore » flowsheet analysis such that the satisfactory decontamination is achieved. Further flowsheet study using four different compositions of LWR spent fuels demonstrates that the constant ratio of plutonium to uranium in mother liquor from the re-crystallization step is achieved for every composition by controlling the temperature. It is also demonstrated by comparing to the Purex process that the size of the plant based on the proposed system is significantly reduced. (authors)« less

  9. Dehydration-driven evolution of topological complexity in ethylamonium uranyl selenates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurzhiy, Vladislav V., E-mail: vladgeo17@mail.ru; Krivovichev, Sergey V.; Tananaev, Ivan G.

    Single crystals of four novel uranyl selenate and selenite-selenate oxysalts with protonated ethylamine molecules, (C{sub 2}H{sub 8}N){sub 2}[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)](H{sub 2}O) (I), (C{sub 2}H{sub 8}N){sub 3}[(UO{sub 2})(SeO{sub 4}){sub 2}(HSeO{sub 4})] (II), (C{sub 2}H{sub 8}N)[(UO{sub 2})(SeO{sub 4})(HSeO{sub 3})] (III), and (C{sub 2}H{sub 8}N)(H{sub 3}O)[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)] (IV) have been prepared by isothermal evaporation from aqueous solutions. Uranyl-containing 1D and 2D units have been investigated using topological approach and information-based complexity measurements that demonstrate the evolution of structural units and the increase of topological complexity with the decrease of H{sub 2}O content. - Graphical abstract: Single crystals ofmore » four novel uranyl selenate and selenite-selenate oxysalts with protonated ethylamine molecules have been prepared by isothermal evaporation from aqueous solutions. Structural analysis and information-based topological complexity calculations points to the possible sequence of crystalline phases formation, showing both topological and structural branches of evolution. - Highlights: • Single crystals of four novel uranyl oxysalts were prepared by evaporation method. • The graph theory was used for investigation of topologies of structural units. • Dehydration processes drives the evolution of topological complexity of 1D and 2D structural units.« less

  10. Uranyl nitrate hexahydrate solubility in nitric acid and its crystallization selectivity in the presence of nitrate salts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Jonathan D.; Moyer, Bruce A.

    The solubility of uranyl nitrate hexahydrate was determined as a function of nitric acid concentration and temperature, and the crystallization yield was calculated. Results showed an increase in crystal formation at lower initial nitric acid concentrations upon cooling a saturated solution of U(VI) from 50 °C to 2 °C, with over 70% recovery of U(VI) mass at all nitric acid concentrations and nearly quantitative recovery starting at 4 M HNO 3. A direct correlation between the change in mother liquor volume percent and U mass removal percent was observed. By reducing the cooling rate from roughly 4.0 °C/min to 0.22more » °C/min, the separation factor was increased from 3.88 to 15.7 to greater than 81 for the separation of U(VI) from Sr, Cs, and Nd. At the slower cooling rate, the separation factors were measured as a function of acidity for 2.0–4.3 M HNO 3, showing a decrease in selectivity with a decrease in the acidity. There was also no indication that tetravalent metal double-salt precipitation occurred with either Zr 4+ or Ce 4+. Here, these results indicate that a high-yield, high purity hexavalent actinide crystallization scheme may offer attractive benefits for nuclear-fuel recycle in that only a single very simple and well-understood technology is employed, and the use of organic compounds and solvents is avoided.« less

  11. Uranyl nitrate hexahydrate solubility in nitric acid and its crystallization selectivity in the presence of nitrate salts

    DOE PAGES

    Burns, Jonathan D.; Moyer, Bruce A.

    2017-10-23

    The solubility of uranyl nitrate hexahydrate was determined as a function of nitric acid concentration and temperature, and the crystallization yield was calculated. Results showed an increase in crystal formation at lower initial nitric acid concentrations upon cooling a saturated solution of U(VI) from 50 °C to 2 °C, with over 70% recovery of U(VI) mass at all nitric acid concentrations and nearly quantitative recovery starting at 4 M HNO 3. A direct correlation between the change in mother liquor volume percent and U mass removal percent was observed. By reducing the cooling rate from roughly 4.0 °C/min to 0.22more » °C/min, the separation factor was increased from 3.88 to 15.7 to greater than 81 for the separation of U(VI) from Sr, Cs, and Nd. At the slower cooling rate, the separation factors were measured as a function of acidity for 2.0–4.3 M HNO 3, showing a decrease in selectivity with a decrease in the acidity. There was also no indication that tetravalent metal double-salt precipitation occurred with either Zr 4+ or Ce 4+. Here, these results indicate that a high-yield, high purity hexavalent actinide crystallization scheme may offer attractive benefits for nuclear-fuel recycle in that only a single very simple and well-understood technology is employed, and the use of organic compounds and solvents is avoided.« less

  12. Time-Resolved Infrared Reflectance Studies of the Dehydration-Induced Transformation of Uranyl Nitrate Hexahydrate to the Trihydrate Form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.

    Uranyl nitrate is a key species in the nuclear fuel cycle. However, this species is known to exist in different states of hydration, including the hexahydrate ([UO2(NO3)2(H2O)6] often called UNH), the trihydrate [UO2(NO3)2(H2O)3 or UNT], and in very dry environments the dihydrate form [UO2(NO3)2(H2O)2]. Their relative stabilities depend on both water vapor pressure and temperature. In the 1950s and 1960s the different phases were studied by infrared transmission spectroscopy, but were limited both by instrumental resolution and by the ability to prepare the samples for transmission. We have revisited this problem using time-resolved reflectance spectroscopy, which requires no sample preparationmore » and allows dynamic analysis while the sample is exposed to a flow of N2 gas. Samples of known hydration state were prepared and confirmed via X-ray diffraction patterns of known species. In reflectance mode the hexahydrate UO2(NO3)2(H2O)6 has a distinct uranyl asymmetric stretch band at 949.0 cm-1 that shifts to shorter wavelengths and broadens as the sample desiccates and recrystallizes to the trihydrate, first as a shoulder growing in on the blue edge but ultimately results in a doublet band with reflectance peaks at 966 and 957 cm-1. The data are consistent with transformation from UNH to UNT as UNT has two inequivalent UO22+ sites. The dehydration of UO2(NO3)2(H2O)6 to UO2(NO3)2(H2O)3 is both a structural and morphological change that has the lustrous lime green UO2(NO3)2(H2O)6 crystals changing to the matte greenish yellow of the trihydrate solid. The phase transformation and crystal structures were confirmed by density functional theory calculations and optical microscopy methods, both of which showed a transformation with two distinct sites for the uranyl cation in the trihydrate, with but one in the hexahydrate.« less

  13. Time-resolved infrared reflectance studies of the dehydration-induced transformation of uranyl nitrate hexahydrate to the trihydrate form

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Timothy J.; Sweet, Lucas E.; Meier, David E.

    2015-09-08

    Uranyl nitrate is a key species in the nuclear fuel cycle. However, this species is known to exist in different states of hydration, including the hexahydrate ([UO 2(NO 3) 2(H 2O) 6] often called UNH), the trihydrate [UO 2(NO 3) 2(H 2O) 3 or UNT], and in very dry environments the dihydrate form [UO 2(NO 3) 2(H 2O) 2]. Their relative stabilities depend on both water vapor pressure and temperature. In the 1950s and 1960s, the different phases were studied by infrared transmission spectroscopy but were limited both by instrumental resolution and by the ability to prepare the samples formore » transmission. We have revisited this problem using time-resolved reflectance spectroscopy, which requires no sample preparation and allows dynamic analysis while the sample is exposed to a flow of N 2 gas. Samples of known hydration state were prepared and confirmed via X-ray diffraction patterns of known species. In reflectance mode the hexahydrate UO 2(NO 3) 2(H 2O) 6 has a distinct uranyl asymmetric stretch band at 949.0 cm –1 that shifts to shorter wavelengths and broadens as the sample desiccates and recrystallizes to the trihydrate, first as a shoulder growing in on the blue edge but ultimately results in a doublet band with reflectance peaks at 966 and 957 cm –1. The data are consistent with transformation from UNH to UNT as UNT has two inequivalent UO 2 2+ sites. The dehydration of UO 2(NO 3) 2(H 2O) 6 to UO 2(NO 3) 2(H 2O) 3 is both a structural and morphological change that has the lustrous lime green UO 2(NO 3) 2(H 2O) 6 crystals changing to the matte greenish yellow of the trihydrate solid. As a result, the phase transformation and crystal structures were confirmed by density functional theory calculations and optical microscopy methods, both of which showed a transformation with two distinct sites for the uranyl cation in the trihydrate, with only one in the hexahydrate.« less

  14. Uranyl adsorption and surface speciation at the imogolite-water interface: Self-consistent spectroscopic and surface complexation models

    USGS Publications Warehouse

    Arai, Y.; McBeath, M.; Bargar, J.R.; Joye, J.; Davis, J.A.

    2006-01-01

    Macro- and molecular-scale knowledge of uranyl (U(VI)) partitioning reactions with soil/sediment mineral components is important in predicting U(VI) transport processes in the vadose zone and aquifers. In this study, U(VI) reactivity and surface speciation on a poorly crystalline aluminosilicate mineral, synthetic imogolite, were investigated using batch adsorption experiments, X-ray absorption spectroscopy (XAS), and surface complexation modeling. U(VI) uptake on imogolite surfaces was greatest at pH ???7-8 (I = 0.1 M NaNO3 solution, suspension density = 0.4 g/L [U(VI)]i = 0.01-30 ??M, equilibration with air). Uranyl uptake decreased with increasing sodium nitrate concentration in the range from 0.02 to 0.5 M. XAS analyses show that two U(VI) inner-sphere (bidentate mononuclear coordination on outer-wall aluminol groups) and one outer-sphere surface species are present on the imogolite surface, and the distribution of the surface species is pH dependent. At pH 8.8, bis-carbonato inner-sphere and tris-carbonato outer-sphere surface species are present. At pH 7, bis- and non-carbonato inner-sphere surface species co-exist, and the fraction of bis-carbonato species increases slightly with increasing I (0.1-0.5 M). At pH 5.3, U(VI) non-carbonato bidentate mononuclear surface species predominate (69%). A triple layer surface complexation model was developed with surface species that are consistent with the XAS analyses and macroscopic adsorption data. The proton stoichiometry of surface reactions was determined from both the pH dependence of U(VI) adsorption data in pH regions of surface species predominance and from bond-valence calculations. The bis-carbonato species required a distribution of surface charge between the surface and ?? charge planes in order to be consistent with both the spectroscopic and macroscopic adsorption data. This research indicates that U(VI)-carbonato ternary species on poorly crystalline aluminosilicate mineral surfaces may be important in controlling U(VI) mobility in low-temperature geochemical environments over a wide pH range (???5-9), even at the partial pressure of carbon dioxide of ambient air (pCO2 = 10-3.45 atm). ?? 2006 Elsevier Inc. All rights reserved.

  15. Infrared Multiphoton Dissociation Spectroscopy of a Gas-Phase Complex of Uranyl and 3-Oxa-Glutaramide: An Extreme Red-Shift of the [O=U=O]²⁺ Asymmetric Stretch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibson, John K.; Hu, Hanshi; Van Stipdonk, Michael J.

    2015-04-09

    The gas-phase complex UO₂(TMOGA)₂²⁺ (TMOGA = tetramethyl-3-oxa-glutaramide) prepared by electrospray ionization was characterized by infrared multiphoton dissociation (IRMPD) spectroscopy. The IRMPD spectrum from 700–1800 cm⁻¹ was interpreted using a computational study based on density functional theory. The predicted vibrational frequencies are in good agreement with the measured values, with an average deviation of only 8 cm⁻¹ (<1%) and a maximum deviation of 21 cm⁻¹ (<2%). The only IR peak assigned to the linear uranyl moiety was the asymmetric ν₃ mode, which appeared at 965 cm⁻¹ and was predicted by DFT as 953 cm⁻¹. This ν₃ frequency is red-shifted relative tomore » bare uranyl, UO₂²⁺, by ca. 150 cm⁻¹ due to electron donation from the TMOGA ligands. Based on the degree of red-shifting, it is inferred that two TMOGA oxygen-donor ligands have a greater effective gas basicity than the four monodentate acetone ligands in UO₂(acetone)₄²⁺. The uranyl ν₃ frequency was also computed for uranyl coordinated by two TMGA ligands, in which the central Oether of TMOGA has been replaced by CH₂. The computed ν₃ for UO₂(TMGA)₂²⁺, 950 cm⁻¹, is essentially the same as that for UO₂(TMOGA)₂²⁺, suggesting that electron donation to uranyl from the Oether of TMOGA is minor. The computed ν₃ asymmetric stretching frequencies for the three actinyl complexes, UO₂(TMOGA)₂²⁺, NpO₂(TMOGA)₂²⁺ and PuO₂(TMOGA)₂²⁺, are comparable. This similarity is discussed in the context of the relationship between ν₃ and intrinsic actinide-oxygen bond energies in actinyl complexes.« less

  16. PROCESS OF PURIFYING URANIUM

    DOEpatents

    Seaborg, G.T.; Orlemann, E.F.; Jensen, L.H.

    1958-12-23

    A method of obtaining substantially pure uranium from a uranium composition contaminated with light element impurities such as sodium, magnesium, beryllium, and the like is described. An acidic aqueous solution containing tetravalent uranium is treated with a soluble molybdate to form insoluble uranous molybdate which is removed. This material after washing is dissolved in concentrated nitric acid to obtaln a uranyl nitrate solution from which highly purified uranium is obtained by extraction with ether.

  17. Exopolysaccharide produced by Enterobacter sp. YG4 reduces uranium induced nephrotoxicity.

    PubMed

    K, Nagaraj; Devasya, Rekha Punchapady; Bhagwath, Arun Ananthapadmanabha

    2016-01-01

    Uranium nephrotoxicity is a health concern with very few treatment options. Bacterial exopolysaccharides (EPS) possess multiple biological activities and appear as prospective candidates for treating uranium nephrotoxicity. This study focuses on the ability of an EPS produced by a bacterial strain Enterobacter sp. YG4 to reduce uranium nephrotoxicity in vivo. This bacterium was isolated from the gut contents of a slug Laevicaulis alte (Férussac). Based on the aniline blue staining reaction and infrared spectral analysis, the EPS was identified as β-glucan and its molecular weight was 11.99×10(6)Da. The EPS showed hydroxyl radical scavenging ability and total antioxidant capacity in vitro. To assess the protection provided by the EPS against uranium nephrotoxicity, a single dose of 2mg/kg uranyl nitrate was injected intraperitoneally to albino Wistar rats. As intervention, the EPS was administered orally (100mg/kg/day) for 4 consecutive days. The rats were sacrificed on the fifth day and analyses were conducted. Increased serum creatinine and urea nitrogen levels and histopathological alterations in kidneys were observed in uranyl nitrate treated animals. All these alterations were reduced with the administration of Enterobacter sp. YG4 EPS, emphasizing a novel approach in treating uranium nephrotoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A new formulation containing calixarene molecules as an emergency treatment of uranium skin contamination.

    PubMed

    Spagnul, Aurélie; Bouvier-Capely, Céline; Phan, Guillaume; Rebière, François; Fattal, Elias

    2010-09-01

    Cutaneous contamination represents the second highest contamination pathway in the nuclear industry. Despite that the entry of actinides such as uranium into the body through intact or wounded skin can induce a high internal exposure, no specific emergency treatment for cutaneous contamination exists. In the present work, an innovative formulation dedicated to uranium skin decontamination was developed. The galenic form consists in an oil-in-water nanoemulsion, which contains a tricarboxylic calixarene known for its high uranium affinity and selectivity. The physicochemical characterization of this topical form revealed that calixarene molecules are located at the surface of the dispersed oil droplets of the nanoemulsion, being thus potentially available for uranium chelation. It was demonstrated in preliminary in vitro experiments by using an adapted ultrafiltration method that the calixarene nanoemulsion was able to extract and retain more than 80% of uranium from an aqueous uranyl nitrate contamination solution. First ex vivo experiments carried out in Franz diffusion cells on pig ear skin explants during 24 h showed that the immediate application of the calixarene nanoemulsion on a skin contaminated by a uranyl nitrate solution allowed a uranium transcutaneous diffusion decrease of about 98% through intact and excoriated skins. The calixarene nanoemulsion developed in this study thus seems to be an efficient emergency system for uranium skin decontamination.

  19. In situ ligand synthesis with the UO22+ cation under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Frisch, Mark; Cahill, Christopher L.

    2007-09-01

    A novel uranium (VI) coordination polymer, (UO 2) 2(C 2O 4)(C 5H 6NO 3) 2 ( 1), has been prepared under the hydrothermal reaction of uranium nitrate hexahydrate and L-pyroglutamic acid. Compound 1 (monoclinic, C2/ c, a=22.541(6) Å, b=5.7428(15) Å, c=15.815(4) Å, β=119.112(4)°, Z=4, R1=0.0237, w R2=0.0367) consists of uranium pentagonal bipyramids linked via L-pyroglutamate and oxalate anions to form an overall two-dimensional (2D) structure. With the absence of oxalic acid within the starting materials, the oxalate anions are hypothesized to form in situ whereby decarboxylation of L-pyroglutamic acid occurs followed by coupling of CO 2 to form the oxalate linkages as observed in the crystal structure. Addition of copper (II) to this system appears to promote oxalate formation in that synthetic moolooite (Cu(C 2O 4)· nH 2O; 0⩽ n⩽1) and a known uranyl oxalate [(UO 2) 2(C 2O 4)(OH) 2(H 2O) 2·H 2O], co-crystallize in significant quantity. Compound 1 exhibits the characteristic uranyl emission spectrum upon either direct uranyl excitation or ligand excitation, the latter of which shows an increase in relative intensity. This subsequent increase in the intensity indicates an energy transfer from the ligand to the uranyl cations thus illustrating an example of the antenna effect in the solid state.

  20. Uranyl mediated photofootprinting reveals strong E. coli RNA polymerase--DNA backbone contacts in the +10 region of the DeoP1 promoter open complex.

    PubMed Central

    Jeppesen, C; Nielsen, P E

    1989-01-01

    Employing a newly developed uranyl photofootprinting technique (Nielsen et al. (1988) FEBS Lett. 235, 122), we have analyzed the structure of the E. coli RNA polymerase deoP1 promoter open complex. The results show strong polymerase DNA backbone contacts in the -40, -10, and most notably in the +10 region. These results suggest that unwinding of the -12 to +3 region of the promoter in the open complex is mediated through polymerase DNA backbone contacts on both sides of this region. The pattern of bases that are hyperreactive towards KMnO4 or uranyl within the -12 to +3 region furthermore argues against a model in which this region is simply unwound and/or single stranded. The results indicate specific protein contacts and/or a fixed DNA conformation within the -12 to +3 region. Images PMID:2503811

  1. A novel stable 3D luminescent uranyl complex for highly efficient and sensitive recognition of Ru3+ and biomolecules

    NASA Astrophysics Data System (ADS)

    Tian, Hong-Hong; Chen, Liang-Ting; Zhang, Rong-Lan; Zhao, Jian-She; Liu, Chi-Yang; Weng, Ng Seik

    2018-02-01

    A novel highly stable 3D luminescent uranyl coordination polymer, namely {[UO2(L)]·DMA}n (1), was assembled with uranyl salt and a glycine-derivative ligand [6-(carboxymethyl-amino)-4-oxo-4,5-dihydro-[1,3,5]triazin-2-ylamino]-acetic acid (H2L) under solvothermal reaction. Besides, It was found that complex 1 possesses excellent luminescent properties, particularly the efficient selectivity and sensitivity in the recognition of Ru3+, biomacromolecule bovine serum albumin (BSA), biological small molecules dopamine (DA), ascorbic acid (AA) and uric acid (UA) in the water solution based on a "turn-off" mechanism. Accordingly, the luminescent explorations also demonstrated that complex 1 could be acted as an efficient luminescent probe with high quenching efficiency and low detection limit for selectively detecting Ru3+ and biomolecules (DA, AA, UA and BSA). It was noted that the framework structure of complex 1 still remains highly stable after quenching, which was verified by powder X-ray diffraction (PXRD).

  2. Radiolysis of hexavalent plutonium in solutions of uranyl nitrate containing fission product simulants

    NASA Astrophysics Data System (ADS)

    Rance, Peter J. W.; Zilberman, B. Ya.; Akopov, G. A.

    2000-07-01

    The effect of the inherent radioactivity on the chemical state of plutonium ions in solution was recognized very shortly after the first macroscopic amounts of plutonium became available and early studies were conducted as part of the Manhattan Project. However, the behavior of plutonium ions, in nitric acid especially, has been found to be somewhat complex, so much so that a relatively modern summary paper included the comment that, "The vast amount of work carried out in nitric acid solutions can not be adequately summarized. Suffice it to say results in these solutions are plagued with irreproducibility and induction periods…" Needless to say, the presence of other ions in solution, as occurs when irradiated nuclear fuel is dissolved, further complicates matters. The purpose of the work described below was to add to the rather small amount of qualitative data available relating to the radiolytic behavior of plutonium in solutions of irradiated nuclear fuel.

  3. PREVENTION OF SCALE FORMATION IN URANIUM SOLVENT EXTRACTOR

    DOEpatents

    Delaplaine, J.W.

    1957-11-01

    A method for preventing the formation of scale in uranium solvent extraction apparatus is presented. The scale, consisting chiefly of precipitated silica and the sulfates uf calcium and lead, may be prevented by a combination of measures, chiefly by prior heating and agitation to crystallize and remove silica, and by a maintenance of uranyl nitrate concentration in the feed and extractant above certain levels to increase the solubility of the calcium and lead sulfates.

  4. Structural characterization of environmentally relevant ternary uranyl citrate complexes present in aqueous solutions and solid state materials.

    PubMed

    Basile, Madeline; Unruh, Daniel K; Flores, Erin; Johns, Adam; Forbes, Tori Z

    2015-02-14

    Organic acids are important metal chelators in environmental systems and tend to form soluble complexes in aqueous solutions, ultimately influencing the transport and bioavailability of contaminants in surface and subsurface waters. This is particularly true for the formation of uranyl citrate complexes, which have been utilized in advanced photo- and bioremediation strategies for soils contaminated with nuclear materials. Given the complexity of environmental systems, the formation of ternary or heterometallic uranyl species in aqueous solutions are also expected, particularly with Al(iii) and Fe(iii) cations. These ternary forms are reported to be more stable in aqueous solutions, potentially enhancing contaminant mobility and uptake by organisms, but the exact coordination geometries of these soluble molecular complexes have not been elucidated. To provide insight into the nature of these species, we have developed a series of geochemical model compounds ([(UO(2))(2)Al(2)(C(6)H(4)O(7))(4)](6-) (U(2)Al(2)), [(UO(2))(2)Fe(2)(C(6)H(4)O(7))(4)](6-) (U(2)Fe(2)-1) and [(UO(2))(2)Fe(2)(C(6)H(4)O(7))(4)(H(2)O)(2)](6-) (U(2)Fe(2)-2) and [(UO(2))(2)Fe(4)(OH)(4)(C(6)H(4)O(7))(4)](8-) (U(2)Fe(4))) that were characterized by single-crystal X-ray diffraction and vibrational spectroscopy. Mass spectroscopy was then employed to compare the model compounds to species present in aqueous solutions to provide an enhanced understanding of the ternary uranyl citrate complexes that could be relevant in natural systems.

  5. Molecular-scale characterization of uranium sorption by bone apatite materials for a permeable reactive barrier demonstration

    USGS Publications Warehouse

    Fuller, C.C.; Bargar, J.R.; Davis, J.A.

    2003-01-01

    Uranium binding to bone charcoal and bone meal apatite materials was investigated using U LIII-edge EXAFS spectroscopy and synchrotron source XRD measurements of laboratory batch preparations in the absence and presence of dissolved carbonate. Pelletized bone char apatite recovered from a permeable reactive barrier (PRB) at Fry Canyon, UT, was also studied. EXAFS analyses indicate that U(VI) sorption in the absence of dissolved carbonate occurred by surface complexation of U(VI) for sorbed concentrations ??? 5500 ??g U(VI)/g for all materials with the exception of crushed bone char pellets. Either a split or a disordered equatorial oxygen shell was observed, consistent with complexation of uranyl by the apatite surface. A second shell of atoms at a distance of 2.9 A?? was required to fit the spectra of samples prepared in the presence of dissolved carbonate (4.8 mM total) and is interpreted as formation of ternary carbonate complexes with sorbed U(VI). A U-P distance at 3.5-3.6 A?? was found for most samples under conditions where uranyl phosphate phases did not form, which is consistent with monodentate coordination of uranyl by phosphate groups in the apatite surface. At sorbed concentrations ??? 5500 ??g U(VI)/g in the absence of dissolved carbonate, formation of the uranyl phosphate solid phase, chernikovite, was observed. The presence of dissolved carbonate (4.8 mM total) suppressed the formation of chernikovite, which was not detected even with sorbed U(VI) up to 12 300 ??g U(VI)/g in batch samples of bone meal, bone charcoal, and reagent-grade hydroxyapatite. EXAFS spectra of bone char samples recovered from the Fry Canyon PRB were comparable to laboratory samples in the presence of dissolved carbonate where U(VI) sorption occurred by surface complexation. Our findings demonstrate that uranium uptake by bone apatite will probably occur by surface complexation instead of precipitation of uranyl phosphate phases under the groundwater conditions found at many U-contaminated sites.

  6. A Uranyl Peroxide Dimer in the Gas Phase

    DOE PAGES

    Dau, Phuong D.; Dau, Phuong V.; Rao, Linfeng; ...

    2017-03-14

    For this study, the gas-phase uranyl peroxide dimer, [(UO 2) 2(O2)(L) 2] 2+ where L = 2,2'-trifluoroethylazanediyl)bis(N,N'-dimethylacetamide), was synthesized by electrospray ionization of a solution of UO 2 2+ and L. Collision-induced dissociation of this dimer resulted in endothermic O atom elimination to give [(UO 2) 2(O)(L) 2] 2+, which was found to spontaneously react with water via exothermic hydrolytic chemisorption to yield [(UO 2) 2(OH) 2(L) 2] 2+. Density functional theory computations of the energies for the gas-phase reactions are in accord with observations. The structures of the observed uranyl dimer were computed, with that of the peroxide ofmore » particular interest, as a basis to evaluate the formation of condensed phase uranyl peroxides with bent structures. The computed dihedral angle in [(UO 2) 2(O 2)(L) 2] 2+ is 145°, indicating a substantial deviation from the planar structure with a dihedral angle of 180°. Energies needed to induce bending in the most elementary gas-phase uranyl peroxide complex, [(UO 2) 2(O 2)] 2+, were computed. It was found that bending from the lowest-energy planar structure to dihedral angles up to 140° required energies of <10 kJ/mol. The gas-phase results demonstrate the inherent stability of the uranyl peroxide moiety and support the notion that the uranyl-peroxide-uranyl structural unit is intrinsically planar, with only minor energy perturbations needed to form the bent structures found in studtite and uranyl peroxide nanostructures.« less

  7. Effects of aqueous uranyl speciation on the kinetics of microbial uranium reduction

    DOE PAGES

    Belli, Keaton M.; DiChristina, Thomas J.; Van Cappellen, Philippe; ...

    2015-02-16

    The ability to predict the success of the microbial reduction of soluble U(VI) to highly insoluble U(IV) as an in situ bioremediation strategy is complicated by the wide range of geochemical conditions at contaminated sites and the strong influence of aqueous uranyl speciation on the bioavailability and toxicity of U(VI) to metal-reducing bacteria. In order to determine the effects of aqueous uranyl speciation on uranium bioreduction kinetics, incubations and viability assays with Shewanella putrefaciens strain 200 were conducted over a range of pH and dissolved inorganic carbon (DIC), Ca 2+, and Mg 2+ concentrations. A speciation-dependent kinetic model was developedmore » to reproduce the observed time series of total dissolved uranium concentration over the range of geochemical conditions tested. The kinetic model yielded the highest rate constant for the reduction of uranyl non-carbonate species (i.e., the ‘free’ hydrated uranyl ion, uranyl hydroxides, and other minor uranyl complexes), indicating that they represent the most readily reducible fraction of U(VI) despite being the least abundant uranyl species in solution. In the presence of DIC, Ca 2+, and Mg 2+ is suppressed during the formation of more bioavailable uranyl non-carbonate species and resulted in slower bioreduction rates. At high concentrations of bioavailable U(VI), however, uranium toxicity to S. putrefaciens inhibited bioreduction, and viability assays confirmed that the concentration of non-carbonate uranyl species best predicts the degree of toxicity. The effect of uranium toxicity was accounted for by incorporating the free ion activity model of metal toxicity into the bioreduction rate law. These results demonstrate that, in the absence of competing terminal electron acceptors, uranium bioreduction kinetics can be predicted over a wide range of geochemical conditions based on the bioavailability and toxicity imparted on U(VI) by solution composition. Finally, these findings also imply that the concentration of uranyl non-carbonate species, despite being extremely low, is a determining factor controlling uranium bioreduction at contaminated sites.« less

  8. A route to oligosaccharide-appended salicylaldehydes: useful building blocks for the synthesis of metal-salophen complexes.

    PubMed

    Bedini, Emiliano; Forte, Gianpiero; De Castro, Cristina; Parrilli, Michelangelo; Dalla Cort, Antonella

    2013-08-16

    A simple and general synthetic protocol to obtain oligosaccharide-appended salicylaldehydes, key intermediates for the synthesis of water-soluble metal-salophen complexes, is here reported. Six new aldehydes have been prepared and fully characterized as well as the corresponding zinc- and uranyl-salophen complexes. These new derivatives show very good solubility in water. Preliminary studies on the association of compound 19-U, that is, the uranyl maltotetraose derivative, with hydrogen phosphate and fluoride provide very encouraging results and open up the possibility of using such compounds for the efficient recognition of anions in pure water.

  9. Keno-Nr a Monte Carlo Code Simulating the Californium -252-SOURCE-DRIVEN Noise Analysis Experimental Method for Determining Subcriticality

    NASA Astrophysics Data System (ADS)

    Ficaro, Edward Patrick

    The ^{252}Cf -source-driven noise analysis (CSDNA) requires the measurement of the cross power spectral density (CPSD) G_ {23}(omega), between a pair of neutron detectors (subscripts 2 and 3) located in or near the fissile assembly, and the CPSDs, G_{12}( omega) and G_{13}( omega), between the neutron detectors and an ionization chamber 1 containing ^{252}Cf also located in or near the fissile assembly. The key advantage of this method is that the subcriticality of the assembly can be obtained from the ratio of spectral densities,{G _sp{12}{*}(omega)G_ {13}(omega)over G_{11 }(omega)G_{23}(omega) },using a point kinetic model formulation which is independent of the detector's properties and a reference measurement. The multigroup, Monte Carlo code, KENO-NR, was developed to eliminate the dependence of the measurement on the point kinetic formulation. This code utilizes time dependent, analog neutron tracking to simulate the experimental method, in addition to the underlying nuclear physics, as closely as possible. From a direct comparison of simulated and measured data, the calculational model and cross sections are validated for the calculation, and KENO-NR can then be rerun to provide a distributed source k_ {eff} calculation. Depending on the fissile assembly, a few hours to a couple of days of computation time are needed for a typical simulation executed on a desktop workstation. In this work, KENO-NR demonstrated the ability to accurately estimate the measured ratio of spectral densities from experiments using capture detectors performed on uranium metal cylinders, a cylindrical tank filled with aqueous uranyl nitrate, and arrays of safe storage bottles filled with uranyl nitrate. Good agreement was also seen between simulated and measured values of the prompt neutron decay constant from the fitted CPSDs. Poor agreement was seen between simulated and measured results using composite ^6Li-glass-plastic scintillators at large subcriticalities for the tank of uranyl nitrate. It is believed that the response of these detectors is not well known and is incorrectly modeled in KENO-NR. In addition to these tests, several benchmark calculations were also performed to provide insight into the properties of the point kinetic formulation.

  10. A Nuclear Reactor and Chemical Processing Design for Production of Molybdenum-99 with Crystalline Uranyl Nitrate Hexahydrate Fuel

    NASA Astrophysics Data System (ADS)

    Stange, Gary Michael

    Medical radioisotopes are used in tens of millions of procedures every year to detect and image a wide variety of maladies and conditions in the human body. The most widely-used diagnostic radioisotope is technetium-99m, a metastable isomer of technetium-99 that is generated by the radioactive decay of molybdenum-99. For a number of reasons, the supply of molybdenum-99 has become unreliable and the techniques used to produce it have become unattractive. This has spurred the investigation of new technologies that avoid the use of highly enriched uranium to produce molybdenum-99 in the United States, where approximately half of the demand originates. The first goal of this research is to develop a critical nuclear reactor design powered by solid, discrete pins of low enriched uranium. Analyses of single-pin heat transfer and whole-core neutronics are performed to determine the required specifications. Molybdenum-99 is produced directly in the fuel of this reactor and then extracted through a series of chemical processing steps. After this extraction, the fuel is left in an aqueous state. The second goal of this research is to describe a process by which the uranium may be recovered from this spent fuel solution and reconstituted into the original fuel form. Fuel recovery is achieved through a crystallization step that generates solid uranyl nitrate hexahydrate while leaving the majority of fission products and transuranic isotopes in solution. This report provides background information on molybdenum-99 production and crystallization chemistry. The previously unknown thermal conductivity of the fuel material is measured. Following this is a description of the modeling and calculations used to develop a reactor concept. The operational characteristics of the reactor core model are analyzed and reported. Uranyl nitrate crystallization experiments have also been conducted, and the results of this work are presented here. Finally, a process flow scheme for uranium recovery is examined, in part qualitatively and in part quantitatively, based upon the preceding data garnered through literature review, modeling, and experimentation. The sum of this research is meant to allow for a complete understanding of the process flow, from the beginning of one production cycle to the beginning of another.

  11. Potential New Ligand Systems for Binding Uranyl Ions in Seawater Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, John

    2014-12-13

    Work began this quarter on a new project involving a combined computational and biosynthetic approach to selective recognition of uranyl ion in aqueous solution. This project exploits the results of computational studies to discover new ligand classes. Synthetic studies will follow to generate target systems for uranyl binding and determination of binding constants. The process will be iterative, with results from computation informing synthesis, and vice versa. The theme of the ligand classes to be examined initially will be biologically based. New phosphonate-containing α-amino acid N-carboxyanhydride (NCA) monomers were used recently to prepare well-defined phosphonate-containing poly-peptides and block copolypeptides. Ourmore » first approach is to utilize these phosphate- and phosphonate-containing NCAs for the coordination of uranyl. The work includes the laboratory-scale preparation of a series of NCAs and the full thermodynamic and spectroscopic characterization of the resulting uranyl complexes. We are also evaluating the sequestering activity in different physiological and environmental conditions of these copolymers as well as their biodegradability.« less

  12. Investigation of the effects of radiolytic-gas bubbles on the long-term operation of solution reactors for medical-isotope production

    NASA Astrophysics Data System (ADS)

    Souto Mantecon, Francisco Javier

    One of the most common and important medical radioisotopes is 99Mo, which is currently produced using the target irradiation technology in heterogeneous nuclear reactors. The medical isotope 99Mo can also be produced from uranium fission using aqueous homogeneous solution reactors. In solution reactors, 99Mo is generated directly in the fuel solution, resulting in potential advantages when compared with the target irradiation process in heterogeneous reactors, such as lower reactor power, less waste heat, and reduction by a factor of about 100 in the generation of spent fuel. The commercial production of medical isotopes in solution reactors requires steady-state operation at about 200 kW. At this power regime, the formation of radiolytic-gas bubbles creates a void volume in the fuel solution that introduces a negative coefficient of reactivity, resulting in power reduction and instabilities that may impede reactor operation for medical-isotope production. A model has been developed considering that reactivity effects are due to the increase in the fuel-solution temperature and the formation of radiolytic-gas bubbles. The model has been validated against experimental results from the Los Alamos National Laboratory uranyl fluoride Solution High-Energy Burst Assembly (SHEBA), and the SILENE uranyl nitrate solution reactor, commissioned at the Commissariat a l'Energie Atomique, in Valduc, France. The model shows the feasibility of solution reactors for the commercial production of medical isotopes and reveals some of the important parameters to consider in their design, including the fuel-solution type, 235U enrichment, uranium concentration, reactor vessel geometry, and neutron reflectors surrounding the reactor vessel. The work presented herein indicates that steady-state operation at 200 kW can be achieved with a solution reactor consisting of 120 L of uranyl nitrate solution enriched up to 20% with 235U and a uranium concentration of 145 kg/m3 in a graphite-reflected cylindrical geometry.

  13. FY13 Progress Report on the Phase I Mini-SHINE Water Irradiations and Micro-SHINE Irradiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youker, Amanda J.; Krebs, John F.; Kalensky, Michael

    2014-02-19

    The original goal of the micro-SHINE experiments was to confirm that precipitation of uranyl peroxide can be prevented by adding a catalyst such as FeSO 4 to destroy peroxide. After successfully demonstrating that FeSO 4 is an effective catalyst for peroxide destruction, subsequent micro-SHINE solutions were used as tracers to perform a Mo-separation and recovery column experiment, a sulfate-to-nitrate conversion, and iodine speciation experiments.

  14. Status of Health Concerns about Military Use of Depleted Uranium and Surrogate Metals in Armor-Penetrating Munitions

    DTIC Science & Technology

    2005-01-01

    were no significant differences in semen and sperm characteristics among veterans with high or low DU urine concentrations [McDiarmid 2000...Larumbe, R.L. Cabrini, Tetracycline in uranyl nitrate intoxication: its action on renal damage and U retention in bone, Health Physics 57: 403-405...610. [Leggett 1997] R.W. Leggett, A model of the distribution and retention of tungsten in the human body, Science of the Total Environment 206

  15. Studies on the protective effect of dietary fish oil on uranyl-nitrate-induced nephrotoxicity and oxidative damage in rat kidney.

    PubMed

    Priyamvada, Shubha; Khan, Sara A; Khan, Md Wasim; Khan, Sheeba; Farooq, Neelam; Khan, Farah; Yusufi, A N K

    2010-01-01

    Human and animal exposure demonstrates that uranium is nephrotoxic. However, attempts to reduce it were not found suitable for clinical use. Dietary fish oil (FO) enriched in omega-3 fatty acids reduces the severity of cardiovascular and renal diseases. Present study investigates the protective effect of FO on uranyl nitrate (UN)-induced renal damage. Rats prefed with experimental diets for 15 days, given single nephrotoxic dose of UN (0.5mg/kg body weight) intraperitoneally. After 5d of UN treatment, serum/urine parameters, enzymes of carbohydrate metabolism, brush border membrane (BBM), oxidative stress and phosphate transport were analyzed in rat kidney. UN nephrotoxicity was characterized by increased serum creatinine and blood urea nitrogen. UN increased the activity of lactate dehydrogenase and NADP-malic enzyme whereas decreased malate, isocitrate and glucose-6-phophate dehydrogenases; glucose-6-phophatase, fructose-1, 6-bisphosphatase and BBM enzyme activities. UN caused oxidant/antioxidant imbalances as reflected by increased lipid peroxidation, activities of superoxide dismutase, glutathione peroxidase and decreased catalase activity. Feeding FO alone increased activities of enzymes of glucose metabolism, BBM, oxidative stress and Pi transport. UN-elicited alterations were prevented by FO feeding. However, corn oil had no such effects and was not similarly effective. In conclusion, FO appears to protect against UN-induced nephrotoxicity by improving energy metabolism and antioxidant defense mechanism. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Synthesis and X-ray diffraction study of new uranyl malonate and oxalate complexes with carbamide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedkov, Ya. A.; Serezhkina, L. B., E-mail: Lserezh@samsu.ru; Grigor’ev, M. S.

    2016-05-15

    Two new malonate-containing uranyl complexes with carbamide of the formulas [UO{sub 2}(C{sub 3}H{sub 2}O{sub 4})(Urea){sub 2}] (I) and [UO{sub 2}(C{sub 3}H{sub 2}O{sub 4})(Urea){sub 3}] (II), where Urea is carbamide, and one uranyl oxalate complex of the formula [UO{sub 2}(C{sub 2}O{sub 4})(Urea){sub 3}] (III) were synthesized, and their crystals were studied by X-ray diffraction. The main structural units in crystals I are the electroneutral chains [UO{sub 2}(C{sub 3}H{sub 2}O{sub 4})(Urea){sub 2}]{sub ∞} belonging to the crystal-chemical group AT{sup 11}M{sub 2}{sup 1} (A = UO{sub 2}{sup 2+}, T{sup 11} = C{sub 3}H{sub 2}O{sub 4}{sup 2-}, M{sup 1} = Urea) of uranyl complexes.more » Crystals II and III are composed of the molecular complexes [UO{sub 2}(L)(Urea){sub 3}], where L = C{sub 3}H{sub 2}O{sub 4}{sup 2-} or C{sub 2}O{sub 4}{sup 2-}, belonging to the crystal-chemical group AB{sup 01}M{sub 3}{sup 1} (A = UO{sub 2}{sup 2+}, B{sup 01} = C{sub 3}H{sub 2}O{sub 4}{sup 2-} or C{sub 2}O{sub 4}{sup 2-}, M{sup 1} = Urea). The characteristic features of the packing of the uranium-containing complexes are discussed in terms of molecular Voronoi–Dirichlet polyhedra. The effect of the Urea: U ratio on the structure of uranium-containing structural units is considered.« less

  17. New insight into the ternary complexes of uranyl carbonate in seawater.

    PubMed

    Beccia, M R; Matara-Aho, M; Reeves, B; Roques, J; Solari, P L; Monfort, M; Moulin, C; Den Auwer, C

    2017-11-01

    Uranium is naturally present in seawater at trace levels and may in some cases be present at higher concentrations, due to anthropogenic nuclear activities. Understanding uranium speciation in seawater is thus essential for predicting and controlling its behavior in this specific environmental compartment and consequently, its possible impact on living organisms. The carbonato calcic complex Ca 2 UO 2 (CO 3 ) 3 was previously identified as the main uranium species in natural seawater, together with CaUO 2 (CO 3 ) 3 2- . In this work, we further investigate the role of the alkaline earth cation in the structure of the ternary uranyl-carbonate complexes. For this purpose, artificial seawater, free of Mg 2+ and Ca 2+ , using Sr 2+ as a spectroscopic probe was prepared. Combining TRLIF and EXAFS spectroscopy, together with DFT and theoretical thermodynamic calculations, evidence for the presence of Sr alkaline earth counter ion in the complex structure can be asserted. Furthermore, data suggest that when Ca 2+ is replaced by Sr 2+ , SrUO 2 (CO 3 ) 3 2- is the main complex in solution and it occurs with the presence of at least one monodentate carbonate in the uranyl coordination sphere. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Interaction of Uranium with Bacterial Cell Surfaces: Inferences from Phosphatase-Mediated Uranium Precipitation.

    PubMed

    Kulkarni, Sayali; Misra, Chitra Seetharam; Gupta, Alka; Ballal, Anand; Apte, Shree Kumar

    2016-08-15

    Deinococcus radiodurans and Escherichia coli expressing either PhoN, a periplasmic acid phosphatase, or PhoK, an extracellular alkaline phosphatase, were evaluated for uranium (U) bioprecipitation under two specific geochemical conditions (GCs): (i) a carbonate-deficient condition at near-neutral pH (GC1), and (ii) a carbonate-abundant condition at alkaline pH (GC2). Transmission electron microscopy revealed that recombinant cells expressing PhoN/PhoK formed cell-associated uranyl phosphate precipitate under GC1, whereas the same cells displayed extracellular precipitation under GC2. These results implied that the cell-bound or extracellular location of the precipitate was governed by the uranyl species prevalent at that particular GC, rather than the location of phosphatase. MINTEQ modeling predicted the formation of predominantly positively charged uranium hydroxide ions under GC1 and negatively charged uranyl carbonate-hydroxide complexes under GC2. Both microbes adsorbed 6- to 10-fold more U under GC1 than under GC2, suggesting that higher biosorption of U to the bacterial cell surface under GC1 may lead to cell-associated U precipitation. In contrast, at alkaline pH and in the presence of excess carbonate under GC2, poor biosorption of negatively charged uranyl carbonate complexes on the cell surface might have resulted in extracellular precipitation. The toxicity of U observed under GC1 being higher than that under GC2 could also be attributed to the preferential adsorption of U on cell surfaces under GC1. This work provides a vivid description of the interaction of U complexes with bacterial cells. The findings have implications for the toxicity of various U species and for developing biological aqueous effluent waste treatment strategies. The present study provides illustrative insights into the interaction of uranium (U) complexes with recombinant bacterial cells overexpressing phosphatases. This work demonstrates the effects of aqueous speciation of U on the biosorption of U and the localization pattern of uranyl phosphate precipitated as a result of phosphatase action. Transmission electron microscopy revealed that location of uranyl phosphate (cell associated or extracellular) was primarily influenced by aqueous uranyl species present under the given geochemical conditions. The data would be useful for understanding the toxicity of U under different geochemical conditions. Since cell-associated precipitation of metal facilitates easy downstream processing by simple gravity-based settling down of metal-loaded cells, compared to cumbersome separation techniques, the results from this study are of considerable relevance to effluent treatment using such cells. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Interaction of Uranium with Bacterial Cell Surfaces: Inferences from Phosphatase-Mediated Uranium Precipitation

    PubMed Central

    Kulkarni, Sayali; Misra, Chitra Seetharam; Gupta, Alka; Ballal, Anand

    2016-01-01

    ABSTRACT Deinococcus radiodurans and Escherichia coli expressing either PhoN, a periplasmic acid phosphatase, or PhoK, an extracellular alkaline phosphatase, were evaluated for uranium (U) bioprecipitation under two specific geochemical conditions (GCs): (i) a carbonate-deficient condition at near-neutral pH (GC1), and (ii) a carbonate-abundant condition at alkaline pH (GC2). Transmission electron microscopy revealed that recombinant cells expressing PhoN/PhoK formed cell-associated uranyl phosphate precipitate under GC1, whereas the same cells displayed extracellular precipitation under GC2. These results implied that the cell-bound or extracellular location of the precipitate was governed by the uranyl species prevalent at that particular GC, rather than the location of phosphatase. MINTEQ modeling predicted the formation of predominantly positively charged uranium hydroxide ions under GC1 and negatively charged uranyl carbonate-hydroxide complexes under GC2. Both microbes adsorbed 6- to 10-fold more U under GC1 than under GC2, suggesting that higher biosorption of U to the bacterial cell surface under GC1 may lead to cell-associated U precipitation. In contrast, at alkaline pH and in the presence of excess carbonate under GC2, poor biosorption of negatively charged uranyl carbonate complexes on the cell surface might have resulted in extracellular precipitation. The toxicity of U observed under GC1 being higher than that under GC2 could also be attributed to the preferential adsorption of U on cell surfaces under GC1. This work provides a vivid description of the interaction of U complexes with bacterial cells. The findings have implications for the toxicity of various U species and for developing biological aqueous effluent waste treatment strategies. IMPORTANCE The present study provides illustrative insights into the interaction of uranium (U) complexes with recombinant bacterial cells overexpressing phosphatases. This work demonstrates the effects of aqueous speciation of U on the biosorption of U and the localization pattern of uranyl phosphate precipitated as a result of phosphatase action. Transmission electron microscopy revealed that location of uranyl phosphate (cell associated or extracellular) was primarily influenced by aqueous uranyl species present under the given geochemical conditions. The data would be useful for understanding the toxicity of U under different geochemical conditions. Since cell-associated precipitation of metal facilitates easy downstream processing by simple gravity-based settling down of metal-loaded cells, compared to cumbersome separation techniques, the results from this study are of considerable relevance to effluent treatment using such cells. PMID:27287317

  20. Analysis of vibration frequencies of uranyl ion in complexes with neutral bases (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobets, L.V.; Umreiko, D.S.

    1986-12-01

    It has been shown that any estimate of the changes in vibration frequencies of UO/sub 2//sup 2 +/ applies only to the series of isostructural compounds with similar stoichiometry. Either the same values of stretching vibration frequencies of uranyl correspond to complexes with ligands that have different donor abilities, or changes in these frequencies are not great and do not reflect the real increase in the donor ability of the bases with respect to proton-containing acceptors. When the acido ligands are replaced or the stoichiometry of the complexes is changed, no correlations can be carried out, since, besides the basicitiesmore » of donors, other parameters such as the dentateness of the ligand, and hence the symmetry and the structure of the compound, are also varied. In this paper, the authors evaluate the contributions of the ligands to the shift of the vibration frequencies of uranyl that have been made and do not take into account the characteristic features of the compounds which therefore led to very different values of the contributions for one and the same ligand in different compounds. To evaluate the shifts produced by the ligands, the value of 1065 cm/sup -1/ was taken as the vibration frequency of a hypothetical fee uranyl ion, not perturbed by bonds with equatorial ligands. The authors also evaluate the contributions of ions able to form polymer structures.« less

  1. Selective colorimetric and fluorescent quenching determination of uranyl ion via its complexation with curcumin

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Hui; Zhao, Xin; Yang, Jidong; Tan, Yu-Ting; Zhang, Lei; Liu, Shao-Pu; Liu, Zhong-Fang; Hu, Xiao-Li

    2016-04-01

    Under pH 4.0 HAc-NaAc buffer medium, curcumin alone possesses extraordinary weak fluorescence emission. Nevertheless, the introduction of Triton X-100 micelles can largely enhance the fluorescence intensity of curcumin. Uranyl ions can complex with micelles-capped curcumin, along with the slight red shift of curcumin fluorescence (about 1-7 nm), a clear decrement of absorbance (424 nm) and fluorescence (507 nm) intensities, and a distinct color change from bright yellow to orange. The fluorescence decrements (ΔF, 507 nm) are positively correlated to the amount of uranyl ions in the concentration range of 3.7 × 10- 6-1.4 × 10- 5 mol L- 1. The detection limit of this fluorescence quenching methods is 3.7 × 10- 6 mol L- 1, which is nearly 9000 times lower than the maximum allowable level in drinking water proposed by World Health Organization. Good selectivity is achieved because of a majority of co-existing substances (such as Ce4 +, La3 +, and Th4 +) do not affect the detection. The content of uranyl ions in tap water samples was determined by the proposed method with satisfactory results.

  2. Determination of uranium in zircon

    USGS Publications Warehouse

    Cuttitta, F.; Daniels, G.J.

    1959-01-01

    A routine fluorimetric procedure is described for the determination of trace amounts of uranium in zircon. It employs the direct extraction of uranyl nitrate with ethyl acetate using phosphate as a retainer for zirconium. Submicrogram amounts or uranium are separated in the presence of 100,000 times the amount of zirconium. The modified procedure has been worked out using synthetic mixtures of known composition and zircon. Results of analyses have an accuracy of 97-98% of the contained uranium and a standard deviation of less than 2.5%. ?? 1959.

  3. Perrhenate complexation by uranyl in traditional solvents and in ionic liquids: a joint molecular dynamics/spectroscopic study.

    PubMed

    Chaumont, Alain; Klimchuk, Olga; Gaillard, Clotilde; Billard, Isabelle; Ouadi, Ali; Hennig, Christoph; Wipff, Georges

    2012-03-15

    The complexation of perrhenate (ReO(4)(-)) anions by the uranyl (UO(2)(2+)) cation has been investigated by joint molecular dynamics simulations and spectroscopic (UV-vis, TRLFS, and EXAFS) studies in aqueous solution, acetonitrile, and three ionic liquids (ILs), namely, [Bmi][Tf(2)N], [Me(3)BuN][Tf(2)N], and [Bu(3)MeN][Tf(2)N] that are based on the same Tf(2)N(-) anion (bis(trifluoromethylsulfonyl)imide) and either Bmi(+) (1-butyl,3-methylimidazolium), Me(3)BuN(+), or Bu(3)MeN(+) cations. They show that ReO(4)(-) behaves as a weak ligand in aqueous solution and as a strong ligand in acetonitrile and in the ILs. According to MD simulations in aqueous solution, the UO(2)(ReO(4))(2) complex quickly dissociates to form UO(2)(H(2)O)(5)(2+), while in acetonitrile, a stable UO(2)(ReO(4))(5)(3-) species forms from dissociated ions. In the ILs, the UO(2)(ReO(4))(n)(2-n) complexes (n = 1 to 5) remained stable along the dynamics, and to assess their relative stabilities, we computed the free energy profiles for stepwise ReO(4)(-) complexation to uranyl. In the two studied ILs, complexation is favored, leading to the UO(2)(ReO(4))(5)(3-) species in [Bmi][Tf(2)N] and to UO(2)(ReO(4))(4)(2-) in [Bu(3)MeN][Tf(2)N]. Furthermore, in both acetonitrile and [Bmi][Tf(2)N] solutions, MD and PMF simulations support the formation of dimeric uranyl complexes [UO(2)(ReO(4))(4)](2)(4-) with two bridging ReO(4)(-) ligands. The simulation results are qualitatively consistent with spectroscopic observations in the different solvents, without firmly concluding, however, on the precise composition and structure of the complexes in the solutions. © 2012 American Chemical Society

  4. Kinetics of triscarbonato uranyl reduction by aqueous ferrous iron: a theoretical study.

    PubMed

    Wander, Matthew C F; Kerisit, Sebastien; Rosso, Kevin M; Schoonen, Martin A A

    2006-08-10

    Uranium is a pollutant whose mobility is strongly dependent on its oxidation state. While U(VI) in the form of the uranyl cation is readily reduced by a range of natural reductants, by contrast complexation of uranyl by carbonate greatly reduces its reduction potential and imposes increased electron transfer (ET) distances. Very little is known about the elementary processes involved in uranium reduction from U(VI) to U(V) to U(IV) in general. In this study, we examine the theoretical kinetics of ET from ferrous iron to triscarbonato uranyl in aqueous solution. A combination of molecular dynamics (MD) simulations and density functional theory (DFT) electronic structure calculations is employed to compute the parameters that enter into Marcus' ET model, including the thermodynamic driving forces, reorganization energies, and electronic coupling matrix elements. MD simulations predict that two ferrous iron atoms will bind in an inner-sphere fashion to the three-membered carbonate ring of triscarbonato uranyl, forming the charge-neutral ternary Fe(2)UO(2)(CO(3))(3)(H(2)O)(8) complex. Through a sequential proton-coupled electron-transfer mechanism (PCET), the first ET step converting U(VI) to U(V) is predicted by DFT to occur with an electronic barrier that corresponds to a rate on the order of approximately 1 s(-1). The second ET step converting U(V) to U(IV) is predicted to be significantly endergonic. Therefore, U(V) is a stabilized end product in this ET system, in agreement with experiment.

  5. Gas Phase Reactions of Ions Derived from Anionic Uranyl Formate and Uranyl Acetate Complexes.

    PubMed

    Perez, Evan; Hanley, Cassandra; Koehler, Stephen; Pestok, Jordan; Polonsky, Nevo; Van Stipdonk, Michael

    2016-12-01

    The speciation and reactivity of uranium are topics of sustained interest because of their importance to the development of nuclear fuel processing methods, and a more complete understanding of the factors that govern the mobility and fate of the element in the environment. Tandem mass spectrometry can be used to examine the intrinsic reactivity (i.e., free from influence of solvent and other condensed phase effects) of a wide range of metal ion complexes in a species-specific fashion. Here, electrospray ionization, collision-induced dissociation, and gas-phase ion-molecule reactions were used to create and characterize ions derived from precursors composed of uranyl cation (U VI O 2 2+ ) coordinated by formate or acetate ligands. Anionic complexes containing U VI O 2 2+ and formate ligands fragment by decarboxylation and elimination of CH 2 =O, ultimately to produce an oxo-hydride species [U VI O 2 (O)(H)] - . Cationic species ultimately dissociate to make [U VI O 2 (OH)] + . Anionic complexes containing acetate ligands exhibit an initial loss of acetyloxyl radical, CH 3 CO 2 •, with associated reduction of uranyl to U V O 2 + . Subsequent CID steps cause elimination of CO 2 and CH 4 , ultimately to produce [U V O 2 (O)] - . Loss of CH 4 occurs by an intra-complex H + transfer process that leaves U V O 2 + coordinated by acetate and acetate enolate ligands. A subsequent dissociation step causes elimination of CH 2 =C=O to leave [U V O 2 (O)] - . Elimination of CH 4 is also observed as a result of hydrolysis caused by ion-molecule reaction with H 2 O. The reactions of other anionic species with gas-phase H 2 O create hydroxyl products, presumably through the elimination of H 2 . Graphical Abstract ᅟ.

  6. Gas Phase Reactions of Ions Derived from Anionic Uranyl Formate and Uranyl Acetate Complexes

    NASA Astrophysics Data System (ADS)

    Perez, Evan; Hanley, Cassandra; Koehler, Stephen; Pestok, Jordan; Polonsky, Nevo; Van Stipdonk, Michael

    2016-12-01

    The speciation and reactivity of uranium are topics of sustained interest because of their importance to the development of nuclear fuel processing methods, and a more complete understanding of the factors that govern the mobility and fate of the element in the environment. Tandem mass spectrometry can be used to examine the intrinsic reactivity (i.e., free from influence of solvent and other condensed phase effects) of a wide range of metal ion complexes in a species-specific fashion. Here, electrospray ionization, collision-induced dissociation, and gas-phase ion-molecule reactions were used to create and characterize ions derived from precursors composed of uranyl cation (UVIO2 2+) coordinated by formate or acetate ligands. Anionic complexes containing UVIO2 2+ and formate ligands fragment by decarboxylation and elimination of CH2=O, ultimately to produce an oxo-hydride species [UVIO2(O)(H)]-. Cationic species ultimately dissociate to make [UVIO2(OH)]+. Anionic complexes containing acetate ligands exhibit an initial loss of acetyloxyl radical, CH3CO2•, with associated reduction of uranyl to UVO2 +. Subsequent CID steps cause elimination of CO2 and CH4, ultimately to produce [UVO2(O)]-. Loss of CH4 occurs by an intra-complex H+ transfer process that leaves UVO2 + coordinated by acetate and acetate enolate ligands. A subsequent dissociation step causes elimination of CH2=C=O to leave [UVO2(O)]-. Elimination of CH4 is also observed as a result of hydrolysis caused by ion-molecule reaction with H2O. The reactions of other anionic species with gas-phase H2O create hydroxyl products, presumably through the elimination of H2.

  7. Plasmachemical synthesis and evaluation of the thermal conductivity of metal-oxide compounds "Molybdenum-uranium dioxide"

    NASA Astrophysics Data System (ADS)

    Kotelnikova, Alexandra A.; Karengin, Alexander G.; Mendoza, Orlando

    2018-03-01

    The article represents possibility to apply oxidative and reducing plasma for plasma-chemical synthesis of metal-oxide compounds «Mo‒UO2» from water-salt mixtures «molybdic acid‒uranyl nitrate» and «molybdic acid‒ uranyl acetate». The composition of water-salt mixture was calculated and the conditions ensuring plasma-chemical synthesis of «Mo‒UO2» compounds were determined. Calculations were carried out at atmospheric pressure over a wide range of temperatures (300-4000 K), with the use of various plasma coolants (air, hydrogen). The heat conductivity coefficients of metal-oxide compounds «Mo‒UO2» consisting of continuous component (molybdenum matrix) are calculated. Inclusions from ceramics in the form of uranium dioxide were ordered in the matrix. Particular attention is paid to methods for calculating the coefficients of thermal conductivity of these compounds with the use of different models. Calculated results were compared with the experimental data.

  8. Dissolution of Used Nuclear Fuel Using a TBP/N-Paraffin Solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudisill, T. S.; Shehee, T. C.; Jones, D. H.

    2017-10-02

    The dissolution of unirradiated used nuclear fuel (UNF) pellets pretreated for tritium removal was demonstrated using a tributly phosphate (TBP) solvent. Dissolution of pretreated fuel in TBP could potentially combine dissolution with two cycle of solvent extraction required for separating the actinides and lanthanides from other fission products. Dissolutions were performed using UNF surrogates prepared from both uranyl nitrate and uranium trioxide produced from the pretreatment process by adding selected actinide and stable fission product elements. In laboratory-scale experiments, the U dissolution efficiency ranged from 80-99+% for both the nitrate and oxide surrogate fuels. On average, 80% of the Pumore » and 50% of the Np and Am in the nitrate surrogate dissolved; however, little of the transuranic elements dissolved in the oxide form. The majority of the 3+ lanthanide elements dissolved. Only small amounts of Sr (0-1.6%) and Mo (0.1-1.7%) and essentially no Cs, Ru, Zr, or Pd dissolved.« less

  9. Failure of ESI Spectra to Represent Metal-Complex Solution Composition: A Study of Lanthanide-Carboxylate Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Luther W.; Campbell, James A.; Clark, Sue B.

    2014-01-21

    Electrospray ionization - mass spectrometry (ESI-MS) was used for the characterization of uranyl complexed to tributyl phosphate (TBP) and dibutyl phosphate (DBP). The stoichiometry of uranyl with TBP and DBP was determined, and the gas phase speciation was found to be dependent on the cone voltage applied to induce fragmentation on the gas phase complexes. To quantitatively compare the gas phase distribution of species to solution, apparent stability constants were calculated. With a cone voltage of 80V, the apparent stability constants for the complexes UO2(NO3)2•2TBP, UO2(NO3)2(H2O)•2TBP, and UO2(DBP)+ were determined. With a lower cone voltage applied, larger complexes were observedmore » and stability constants for the complexes UO2(NO3)2•3TBP and UO2(DBP)42- were determined.« less

  10. On the origin of the cation templated self-assembly of uranyl-peroxide nanoclusters.

    PubMed

    Miró, Pere; Pierrefixe, Simon; Gicquel, Mickaël; Gil, Adrià; Bo, Carles

    2010-12-22

    Uranyl-peroxide nanoclusters display different topologies based on square, pentagonal and hexagonal building blocks. Computed complexation energies of different cations (Li(+), Na(+), K(+), Rb(+), and Cs(+)) with [UO(2)(O(2))(H(2)O)](n) (n = 4, 5, and 6) macrocycles suggest a strong cation templating effect. The inherent bent structure of a U-O(2)-U model dimer is demonstrated and justified through the analysis of its electronic structure, as well as of the inherent curvature of the four-, five-, and six-uranyl macrocyles. The curvature is enhaced by cation coordination, which is suggested to be the driving force for the self-assembly of the nanocapsules.

  11. Removal of toxic uranium from synthetic nuclear power reactor effluents using uranyl ion imprinted polymer particles.

    PubMed

    Preetha, Chandrika Ravindran; Gladis, Joseph Mary; Rao, Talasila Prasada; Venkateswaran, Gopala

    2006-05-01

    Major quantities of uranium find use as nuclear fuel in nuclear power reactors. In view of the extreme toxicity of uranium and consequent stringent limits fixed by WHO and various national governments, it is essential to remove uranium from nuclear power reactor effluents before discharge into environment. Ion imprinted polymer (IIP) materials have traditionally been used for the recovery of uranium from dilute aqueous solutions prior to detection or from seawater. We now describe the use of IIP materials for selective removal of uranium from a typical synthetic nuclear power reactor effluent. The IIP materials were prepared for uranyl ion (imprint ion) by forming binary salicylaldoxime (SALO) or 4-vinylpyridine (VP) or ternary SALO-VP complexes in 2-methoxyethanol (porogen) and copolymerizing in the presence of styrene (monomer), divinylbenzene (cross-linking monomer), and 2,2'-azobisisobutyronitrile (initiator). The resulting materials were then ground and sieved to obtain unleached polymer particles. Leached IIP particles were obtained by leaching the imprint ions with 6.0 M HCl. Control polymer particles were also prepared analogously without the imprint ion. The IIP particles obtained with ternary complex alone gave quantitative removal of uranyl ion in the pH range 3.5-5.0 with as low as 0.08 g. The retention capacity of uranyl IIP particles was found to be 98.50 mg/g of polymer. The present study successfully demonstrates the feasibility of removing uranyl ions selectively in the range 5 microg - 300 mg present in 500 mL of synthetic nuclear power reactor effluent containing a host of other inorganic species.

  12. Behavior of Colorado Plateau uranium minerals during oxidation

    USGS Publications Warehouse

    Garrels, Robert Minard; Christ, C.L.

    1956-01-01

    Uranium occurs as U(VI) and U(IV) in minerals of the Colorado Plateau ores. The number of species containing U(VI) is large, but only two U(IV) minerals are known from the Plateau: uraninite, and oxide, and coffinite, a hydroxy-silicate. These oxidize to yield U(VI) before reacting significantly with other mineral constituents. Crystal-structure analysis has shown that U(VI) invariable occurs as uranyl ion, UO2+2. Uranyl ion may form complex carbonate or sulfate ions with resulting soluble compounds, but only in the absence of quinquevalent vanadium, arsenic, or phosphorous. In the presence of these elements in the +5 valence state, the uranyl ion is fixed in insoluble layer compounds formed by union of uranyl ion with orthovanadate, orthophosphate, or orthoarsenate. Under favorable conditions UO2+2 may react to form the relatively insoluble rutherfordine, UO2CO3, or hydrated uranyl hydroxides. These are rarely found on the Colorado Plateau as opposed to their excellent development in other uraniferous areas, a condition which is apparently related to the semiarid climate and low water table of the Plateau. Uranium may also be fixed as uranyl silicate, but little is known about minerals of this kind. In the present study emphasis has been placed on a detailing of the chemical and crystal structural changes which occur in the oxidation paragenetic sequence.

  13. ELECTRON STAINS

    PubMed Central

    Zobel, C. Richard; Beer, Michael

    1961-01-01

    Chemical studies have been carried out on the interaction of DNA with uranyl salts. The effect of variations in pH, salt concentration, and structural integrity of the DNA on the stoichiometry of the salt-substrate complex have been investigated. At pH 3.5 DNA interacts with uranyl ions in low concentration yielding a substrate metal ion complex with a UO2++/P mole ratio of about ½ and having a large association constant. At low pH's (about 2.3) the mole ratio decreases to about ⅓. Destruction of the structural integrity of the DNA by heating in HCHO solutions leads to a similar drop in the amount of metal ion bound. Raising the pH above 3.5 leads to an apparent increase in binding as does increasing the concentration of the salt solution. This additional binding has a lower association constant. Under similar conditions DNA binds about seven times more uranyl ion than bovine serum albumin, indicating useful selectivity in staining for electron microscopy. PMID:13788706

  14. Speciation of plutonium and other metals under UREX process conditIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paulenova, Alena; Tkac, Peter; Matteson, Brent S.

    2007-07-01

    The extractability of various Pu and Np species into tri-n-butyl phosphate (TBP) was investigated. The concentration effects of aceto-hydroxamic acid, nitric acid and nitrate on the distribution ratio of U, Pu and Np were investigated. The considerable ability of AHA to form complexes with the studied elements even under strong acidic conditions was found. While the difference in the extraction of uranyl in the presence and absence of AHA is minimal, extraction yields of Pu and Np decrease significantly. The UV-Vis-NIR and FT-IR spectroscopic investigations of uranium, plutonium, and neptunium species in the presence and absence of AHA in bothmore » aqueous and organic extraction phase were also performed. Spectroscopic analysis showed that the organic phase can contain a substantial amount of metal-hydroxamate species. A solvated ternary complex of uranium UO{sub 2}.AHA.NO{sub 3}.2TBP was observed only after prolonged contact between the aqueous and organic phases, whereas the plutonium hydroxamate species, presumably Pu(AHA){sub x}(NO{sub 3}){sub 4-x}.2TBP, appeared in the organic phase after a four minute extraction. (authors)« less

  15. WET FLUORIDE SEPARATION METHOD

    DOEpatents

    Seaborg, G.T.; Gofman, J.W.; Stoughton, R.W.

    1958-11-25

    The separation of U/sup 233/ from thorium, protactinium, and fission products present in neutron-irradiated thorium is accomplished by dissolving the irradiated materials in aqueous nitric acid, adding either a soluble fluoride, iodate, phosphate, or oxalate to precipltate the thorium, separating the precipltate from the solution, and then precipitating uranlum and protactinium by alkalizing the solution. The uranium and protactinium precipitate is removcd from the solution and dissolved in nitric acid. The uranyl nitrate may then be extracted from the acid solution by means of ether, and the protactinium recovered from the aqueous phase.

  16. Transfer coefficient measurements of uranium to the organs of Wistar rats, as a function of the uranium content in the food.

    PubMed

    Arruda-Neto, J D; Likhachev, V P; Nogueira, G P; Araujo, G W; Camargo, S P; Cavalcante, G T; Cestari, A C; Craveiro, A M; Deppman, A; Ferreira, J W; Garcia, F; Geraldo, L P; Guzman, F; Helene, O M; Manso, M V; Martins, M N; Mesa, J; Oliveira, M F; Perez, G; Rodriguez, O; Tavares, M V; Vanin, V R

    2001-06-01

    Groups of animals (Wistar rats) were fed with rations doped with uranyl nitrate at concentrations ranging from 0.5 to 100 ppm. The uranium content in the ashes of the organs was measured by the neutron-fission track counting technique. The most striking result is that the transfer coefficients, as a function of the uranium concentration, exhibit a concave shape with a minimum around 20 ppm-U for all organs. Explanations to interpret this finding are tentatively given.

  17. Synthesis and characterization of new ion-imprinted polymer for separation and preconcentration of uranyl (UO2(2+)) ions.

    PubMed

    Ahmadi, Seyed Javad; Noori-Kalkhoran, Omid; Shirvani-Arani, Simindokht

    2010-03-15

    UO(2)(2+) ion-imprinted polymer materials used for solid-phase extraction were prepared by copolymerization of a ternary complex of uranyl ions with styrene and divinyl benzene in the presence of 2,2'-azobisisobutyronitrile. The imprinted particles were leached by HCl 6M. Various parameters in polymerization steps such as DVB/STY ratio, time of polymerization and temperature of polymerization were varied to achieve the most efficient uranyl-imprinted polymer. X-ray diffraction (XRD), infra-red spectroscopy (IR), thermo gravimetric analysis (TGA), UV-vis and nitrogen sorption were used to characterize the polymer particles. The XRD results showed that uranyl ions were completely removed from the polymer after leaching process. IR Analysis indicated that the N,N'-ethylenebis(pyridoxylideneiminato) remained intact in the polymer even after leaching. Some parameters such as pH, weight of the polymer, elution time, eluent volume and aqueous phase volume which affects the efficiency of the polymer were studied. (c) 2009 Elsevier B.V. All rights reserved.

  18. Chemical controls on uranyl citrate speciation and the self-assembly of nanoscale macrocycles and sandwich complexes in aqueous solutions.

    PubMed

    Basile, M; Unruh, D K; Gojdas, K; Flores, E; Streicher, L; Forbes, T Z

    2015-03-28

    Uranyl citrate forms trimeric species at pH > 5.5, but exact structural characteristics of these important oligomers have not previously been reported. Crystallization and structural characterization of the trimers suggests the self-assembly of the 3 : 3 and 3 : 2 U : Cit complexes into larger sandwich and macrocyclic molecules. Raman spectroscopy and ESI-MS have been utilized to investigate the relative abundance of these species in solution under varying pH and citrate concentrations. Additional dynamic light scattering experiments indicate that self-assembly of the larger molecules does occur in aqueous solution.

  19. A ω-mercaptoundecylphosphonic acid chemically modified gold electrode for uranium determination in waters in presence of organic matter.

    PubMed

    Merli, Daniele; Protti, Stefano; Labò, Matteo; Pesavento, Maria; Profumo, Antonella

    2016-05-01

    A chemically modified electrode (CME) on a gold surface assembled with a ω-phosphonic acid terminated thiol was investigated for its capability to complex uranyl ions. The electrode, characterized by electrochemical techniques, demonstrated to be effective for the determination of uranyl at sub-μgL(-1) level by differential pulse adsorptive stripping voltammetry (DPAdSV) in environmental waters, also in presence of humic matter and other potential chelating agents. The accuracy of the measurements was investigated employing as model probes ligands of different complexing capability (humic acids and EDTA). Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Construction of Uranyl Selective Electrode Based on Complex of Uranyl Ion with New Ligand Carboxybenzotriazole in PVC Matrix Membrane

    NASA Astrophysics Data System (ADS)

    Abu-Dalo, M. A.; Al-Rawashdeh, N. A. F.; Al-Mheidat, I. R.; Nassory, N. S.

    2015-10-01

    In the present study uranyl selective electrodes in polyvinyl chloride (PVC) matrix membrane were prepared based on a complex of uranyl ion (UO2) with carboxybenzotriazole (CBT) as ligand. The effect of the nature of plasticizer in PVC matrix were evaluated using three different plasticizers, these are dibutyl phthalate (DBP), dioctyl phthalate (DOP) and bis(2-ethylhexyl) sebacate (BHS). The results of this study indicated that the best plasticizer could be used is the DBP, which may be attributed to its lowest viscosity value compared to DOP and BHS. The electrodes with DBP as plasticizer exhibits a Nernstian response with a slope of 28.0 mV/ decade, over a wide range of concentration from 3.0×10-5-6.0×10-2 M and a detection limit of 4.0×10-6 M. It can be used in the pH range of 4.0-10.0 with a response time of less than 10 s for DBP and 25 s for both DOP and BHS. The effects of ions interferences on the electrode response were evaluated. The di- and tri-valent cations were found to interfere less than univalent cations, which was attributed to the high diffusion and the exchange rate between the univalent ions and the uranyl ion solution. The electrodes were characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron microscopy (SEM). The results of the standard addition method were satisfactory with errors less than 7%. The developed electrode was found to be fast, sensitive and reliable indicated its potential use in measuring the uranly ion concentration in the field.

  1. Response to the comment “Uranyl-chloride speciation and uranium transport in hydrothermal brines: Comment on Migdisov et al. (2018)” by Dargent et al.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Migdisov, A. A.; Runde, W.; Williams-Jones, A. E.

    We welcome the comments provided by Dargent et al. (2018) and appreciate the effort they have made to evaluate our recently reported data on the stability of uranyl(VI) chloride complexes as function of temperature (Migdisov et al., 2018). We also appreciate the opportunity provided by the editor to clarify issues in our paper that were not clearly articulated or in error.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Veelen, Arjen; Bargar, John R.; Law, Gareth T. W.

    Polarization-dependent grazing incidence X-ray absorption spectroscopy (XAS) measurements were completed on oriented single crystals of magnesite [MgCO 3] and brucite [Mg(OH) 2] reacted with aqueous uranyl chloride above and below the solubility boundaries of schoepite (500, 50, and 5 ppm) at pH 8.3 and at ambient (P CO2 = 10 –3.5) or reduced partial pressures of carbon dioxide (P CO2 = 10 –4.5). X-ray absorption near edge structure (XANES) spectra show a striking polarization dependence (χ = 0° and 90° relative to the polarization plane of the incident beam) and consistently demonstrated that the uranyl molecule was preferentially oriented withmore » its O axial = U(VI) = O axial linkage at high angles (60–80°) to both magnesite (101¯4) and brucite (0001). Extended X-ray absorption fine structure (EXAFS) analysis shows that the “effective” number of U(VI) axial oxygens is the most strongly affected fitting parameter as a function of polarization. Furthermore, axial tilt in the surface thin films (thickness ~ 21 Å) is correlated with surface roughness [σ]. Our results show that hydrated uranyl(-carbonate) complexes polymerize on all of our experimental surfaces and that this process is controlled by surface hydroxylation. Lastly, these results provide new insights into the bonding configuration expected for uranyl complexes on the environmentally significant carbonate and hydroxide mineral surfaces.« less

  3. Uranium immobilization and nanofilm formation on magnesium-rich minerals

    DOE PAGES

    van Veelen, Arjen; Bargar, John R.; Law, Gareth T. W.; ...

    2016-03-18

    Polarization-dependent grazing incidence X-ray absorption spectroscopy (XAS) measurements were completed on oriented single crystals of magnesite [MgCO 3] and brucite [Mg(OH) 2] reacted with aqueous uranyl chloride above and below the solubility boundaries of schoepite (500, 50, and 5 ppm) at pH 8.3 and at ambient (P CO2 = 10 –3.5) or reduced partial pressures of carbon dioxide (P CO2 = 10 –4.5). X-ray absorption near edge structure (XANES) spectra show a striking polarization dependence (χ = 0° and 90° relative to the polarization plane of the incident beam) and consistently demonstrated that the uranyl molecule was preferentially oriented withmore » its O axial = U(VI) = O axial linkage at high angles (60–80°) to both magnesite (101¯4) and brucite (0001). Extended X-ray absorption fine structure (EXAFS) analysis shows that the “effective” number of U(VI) axial oxygens is the most strongly affected fitting parameter as a function of polarization. Furthermore, axial tilt in the surface thin films (thickness ~ 21 Å) is correlated with surface roughness [σ]. Our results show that hydrated uranyl(-carbonate) complexes polymerize on all of our experimental surfaces and that this process is controlled by surface hydroxylation. Lastly, these results provide new insights into the bonding configuration expected for uranyl complexes on the environmentally significant carbonate and hydroxide mineral surfaces.« less

  4. Uranium Immobilization and Nanofilm Formation on Magnesium-Rich Minerals.

    PubMed

    van Veelen, Arjen; Bargar, John R; Law, Gareth T W; Brown, Gordon E; Wogelius, Roy A

    2016-04-05

    Polarization-dependent grazing incidence X-ray absorption spectroscopy (XAS) measurements were completed on oriented single crystals of magnesite [MgCO3] and brucite [Mg(OH)2] reacted with aqueous uranyl chloride above and below the solubility boundaries of schoepite (500, 50, and 5 ppm) at pH 8.3 and at ambient (PCO2 = 10(-3.5)) or reduced partial pressures of carbon dioxide (PCO2 = 10(-4.5)). X-ray absorption near edge structure (XANES) spectra show a striking polarization dependence (χ = 0° and 90° relative to the polarization plane of the incident beam) and consistently demonstrated that the uranyl molecule was preferentially oriented with its Oaxial═U(VI)═Oaxial linkage at high angles (60-80°) to both magnesite (101̅4) and brucite (0001). Extended X-ray absorption fine structure (EXAFS) analysis shows that the "effective" number of U(VI) axial oxygens is the most strongly affected fitting parameter as a function of polarization. Furthermore, axial tilt in the surface thin films (thickness ∼ 21 Å) is correlated with surface roughness [σ]. Our results show that hydrated uranyl(-carbonate) complexes polymerize on all of our experimental surfaces and that this process is controlled by surface hydroxylation. These results provide new insights into the bonding configuration expected for uranyl complexes on the environmentally significant carbonate and hydroxide mineral surfaces.

  5. Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion.

    PubMed

    Dutta, Soumen; Ray, Chaiti; Sarkar, Sougata; Pradhan, Mukul; Negishi, Yuichi; Pal, Tarasankar

    2013-09-11

    Herein, a simple wet-chemical pathway has been demonstrated for the synthesis of silver nanoparticle conjugated reduced graphene oxide nanosheets where dimethylformamide (DMF) is judiciously employed as an efficient reducing agent. Altogether, DMF reduces both silver nitrate (AgNO3) and graphene oxide (GO) in the reaction mixture. Additionally, the presence of polyvinylpyrolidone (PVP) assists the nanophasic growth and homogeneous distribution of the plasmonic nanoparticle Ag(0). Reduction of graphene oxide and the presence of aggregated Ag NPs on reduced graphene oxide (rGO) nanosheets are confirmed from various spectroscopic techniques. Finally, the composite material has been exploited as an intriguing platform for surface enhanced Raman scattering (SERS) based selective detection of uranyl (UO2(2+)) ion. The limit of detection has been achieved to be as low as 10 nM. Here the normal Raman spectral (NRS) band of uranyl acetate (UAc) at 838 cm(-1) shifts to 714 and 730 cm(-1) as SERS bands for pH 5.0 and 12.0, respectively. This distinguished Raman shift of the symmetric stretching mode for UO2(2+) ion is indicative of pronounced charge transfer (CT) effect. This CT effect even supports the higher sensitivity of the protocol toward UO2(2+) over other tested oxo-ions. It is anticipated that rGO nanosheets furnish a convenient compartment to favor the interaction between Ag NPs and UO2(2+) ion through proximity induced adsorption even at low concentration.

  6. Molecular dynamics simulations of uranyl adsorption and structure on the basal surface of muscovite

    DOE PAGES

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Cygan, Randall T.

    2014-02-05

    Anthropogenic activities have led to an increased concentration of uranium on the Earth’s surface and potentially in the subsurface with the development of nuclear waste repositories. Uranium is soluble in groundwater, and its mobility is strongly affected by the presence of clay minerals in soils and in subsurface sediments. We use molecular dynamics simulations to probe the adsorption of aqueous uranyl (UO 2 2+) ions onto the basal surface of muscovite, a suitable proxy for typically ultrafine-grained clay phases. Model systems include the competitive adsorption between potassium counterions and aqueous ions (0.1 M and 1.0 M UO 2Cl 2 ,more » 0.1 M NaCl). We find that for systems with potassium and uranyl ions present, potassium ions dominate the adsorption phenomenon. Potassium ions adsorb entirely as inner-sphere complexes associated with the ditrigonal cavity of the basal surface. Uranyl ions adsorb in two configurations when it is the only ion species present, and in a single configuration in the presence of potassium. Finally, the majority of adsorbed uranyl ions are tilted less than 45° relative to the muscovite surface, and are associated with the Si 4Al 2 rings near aluminum substitution sites.« less

  7. Topologically identical, but geometrically isomeric layers in hydrous α-, β-Rb[UO2(AsO3OH)(AsO2(OH)2)]·H2O and anhydrous Rb[UO2(AsO3OH)(AsO2(OH)2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Na; Klepov, Vladislav V.; Villa, Eric M.

    The hydrothermal reaction of uranyl nitrate with rubidium nitrate and arsenic (III) oxide results in the formation of polymorphic α- and β-Rb[UO2(AsO3OH)(AsO2(OH)2)]·H2O (α-, β-RbUAs) and the anhydrous phase Rb[UO2(AsO3OH)(AsO2(OH)2)] (RbUAs). These phases were structurally, chemically and spectroscopically characterized. The structures of all three compounds are based upon topologically identical, but geometrically isomeric layers. The layers are linked with each other by means of the Rb cations and hydrogen bonding. Dehydration experiments demonstrate that water deintercalation from hydrous α- and β-RbUAs yields anhydrous RbUAs via topotactic reactions.

  8. Carbonate-H2O2 Leaching for Sequestering Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Horng-Bin; Weisheng, Liao; Wai, Chien

    Uranium adsorbed on amidoxime-based polyethylene fiber in simulated seawater can be quantitatively eluted at room temperature using 1M Na2CO3 containing 0.1 M H2O2. This efficient elution process is probably due to formation of an extremely stable uranyl-peroxo-carbonato complex in the carbonate solution. After washing with water, the sorbent can be reused with little loss of uranium loading capacity. Possible existence of this stable uranyl species in ocean water is also discussed.

  9. Carbonate-H₂O₂ leaching for sequestering uranium from seawater.

    PubMed

    Pan, Horng-Bin; Liao, Weisheng; Wai, Chien M; Oyola, Yatsandra; Janke, Christopher J; Tian, Guoxin; Rao, Linfeng

    2014-07-28

    Uranium adsorbed on amidoxime-based polyethylene fiber in simulated seawater can be quantitatively eluted at room temperature using 1 M Na2CO3 containing 0.1 M H2O2. This efficient elution process is probably due to the formation of an extremely stable uranyl-peroxo-carbonato complex in the carbonate solution. After washing with water, the sorbent can be reused with minimal loss of uranium loading capacity. Possible existence of this stable uranyl species in ocean water is also discussed.

  10. PROCESS FOR SEPARATION OF HEAVY METALS

    DOEpatents

    Duffield, R.B.

    1958-04-29

    A method is described for separating plutonium from aqueous acidic solutions of neutron-irradiated uranium and the impurities associated therewith. The separation is effected by adding, to the solution containing hexavalent uranium and plutonium, acetate ions and the ions of an alkali metal and those of a divalent metal and thus forming a complex plutonium acetate salt which is carried by the corresponding complex of uranium, such as sodium magnesium uranyl acetate. The plutonium may be separated from the precipitated salt by taking the same back into solution, reducing the plutonium to a lower valent state on reprecipitating the sodium magnesium uranyl salt, removing the latter, and then carrying the plutonium from ihe solution by means of lanthanum fluoride.

  11. Actinide metal processing

    DOEpatents

    Sauer, Nancy N.; Watkin, John G.

    1992-01-01

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  12. Use of spectroscopic techniques for uranium(VI)/montmorillonite interaction modeling.

    PubMed

    Kowal-Fouchard, A; Drot, R; Simoni, E; Ehrhardt, J J

    2004-03-01

    To experimentally identify both clay sorption sites and sorption equilibria and to understand the retention mechanisms at a molecular level, we have characterized the structure of hexavalent uranium surface complexes resulting from the interaction between the uranyl ions and the surface retention groups of a montmorillonite clay. We have performed laser-induced fluorescence spectroscopy (LIFS) and X-ray photoelectron spectroscopy (XPS) on uranyl ion loaded montmorillonite. These structural results were then compared to those obtained from the study of uranyl ions sorbed onto an alumina and also from U(VI) sorbed on an amorphous silica. This experimental approach allowed for a clear determination of the reactive surface sites of montmorillonite for U(VI) sorption. The lifetime values and the U4f XPS spectra of uranium(VI) sorbed on montmorillonite have shown that this ion is sorbed on both exchange and edge sites. The comparison of U(VI)/clay and U(VI)/oxide systems has determined that the interaction between uranyl ions and montmorillonite edge sites occurs via both [triple bond]AlOH and [triple bond]SiOH surface groups and involves three distinct surface complexes. The surface complexation modeling of the U(VI)/montmorillonite sorption edges was determined using the constant capacitance model and the above experimental constraints. The following equilibria were found to account for the uranyl sorption mechanisms onto montmorillonite for metal concentrations ranged from 10(-6) to 10(-3) M and two ionic strengths (0.1 and 0.5 M): 2[triple bond]XNa + UO2(2+) <==> ([triple bond]X)2UO2 + 2Na+, log K0(exch) = 3.0; [triple bond]Al(OH)2 + UO2(2+) <==> [triple bond]Al(OH)2UO2(2+), log K0(Al) = 14.9; [triple bond]Si(OH)2 + UO2(2+) <==> [triple bond]SiO2UO2 + 2H+, log K0(Si1) = -3.8; and [triple bond]Si(OH)2 + 3UO2(2+) + 5H2O <==> [triple bond]SiO2(UO2)3(OH)5- + 7H+, log K0(Si2) = -20.0.

  13. Interfacial Interaction of Titania Nanoparticles and Ligated Uranyl Species: A Relativistic DFT Investigation.

    PubMed

    Zhao, Hong-Bo; Zheng, Ming; Schreckenbach, Georg; Pan, Qing-Jiang

    2017-03-06

    To understand interfacial behavior of actinides adsorbed onto mineral surfaces and unravel their structure-property relationship, the structures, electronic properties, and energetics of various ligated uranyl species adsorbed onto TiO 2 surface nanoparticle clusters (SNCs) were examined using relativistic density functional theory. Rutile (110) and anatase (101) titania surfaces, experimentally known to be stable, were fully optimized. For the former, models studied include clean and water-free Ti 27 O 64 H 20 (dry), partially hydrated (Ti 27 O 64 H 20 )(H 2 O) 8 (sol) and proton-saturated [(Ti 27 O 64 H 20 )(H 2 O) 8 (H) 2 ] 2+ (sat), while defect-free and defected anatase SNCs involving more than 38 TiO 2 units were considered. The aquouranyl sorption onto rutile SNCs is energetically preferred, with interaction energies of -8.54, -10.36, and -2.39 eV, respectively. Energy decomposition demonstrates that the sorption is dominated by orbital attractive interactions and modified by steric effects. Greater hydrogen-bonding involvement leads to increased orbital interactions (i.e., more negative energy) from dry to sol/sat complexes, while much larger steric interaction in the sat complex significantly reduces the sorption interaction (i.e., more positive energy). For dry SNC, adsorbates were varied from aquo to aquo-carbonato, to carbonato, to hydroxo uranyl species. Longer U-O surf /U-Ti distances and more positive sorption energies were calculated upon introducing carbonato and hydroxo ligands, indicative of weaker uranyl sorption onto the substrate. This is consistent with experimental observations that the uranyl sorption rate decreases upon raising solution pH value or adding carbon dioxide. Anatase SNCs adsorbing aquouranyl are even more exothermic, because more bonds are formed than in the case of rutile. Moreover, the anatase sorption can be tuned by surface defects as well as its Ti and O stoichiometry. All the aquouranyl-SNC complexes show similar character of molecular orbitals and energetic order although differing in highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps and orbital energy levels, but changes can be accomplished by adding carbonato and hydroxo ligands.

  14. Genesis of kasolite associated with aplite-pegmatite at Jabal Sayid, Hijaz region, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Dawood, Yehia H.; Harbi, Hesham M.; Abd El-Naby, Hamdy H.

    2010-01-01

    In this study, we report kasolite Pb(UO 2)SiO 4·(H 2O) for the first time as a main uranyl mineral in the mineralized aplite-pegmatite of Jabal Sayid, Hijaz region. It commonly forms clusters of yellow acicular crystals in the voids and fractures. The mineral chemistry and mineralogical characteristics of kasolite were investigated using different techniques. Calcium, iron and phosphorus are detected in kasolite in addition to its major constituents; uranium, lead and silicon. Lead does not exist as a radiogenic product and not even as a substitute for uranium in the mineral structure. Alternatively, galena mineralization could be considered as a source for lead. The fluoride and carbonate complexes played a significant role in the formation of kasolite. High temperature hydrothermal solutions reacted with pre-existing uranium-bearing metamictized accessory minerals such as pyrochlore, U-rich thorite and zircon to form uranous fluoride complexes. These complexes are predominant in reducing environment and at pH 4. When the fluids approached the surface passing through fracture system, the oxygen fugacity ( fO 2) and the pH increased because of the loss of volatile components. At these conditions, uranous fluorides would convert to uranyl fluoride complexes UO 2F 3-. Further decrease in temperature was associated with the decay of the activity of fluorine ion by the dilution of hydrothermal solutions and precipitation of fluorite. At this condition, uranyl-carbonate complexes are favoured. These complexes were combined later with silica and lead to form kasolite.

  15. Thiocyanate complexes of uranium in multiple oxidation states: a combined structural, magnetic, spectroscopic, spectroelectrochemical, and theoretical study.

    PubMed

    Hashem, Emtithal; Platts, James A; Hartl, František; Lorusso, Giulia; Evangelisti, Marco; Schulzke, Carola; Baker, Robert J

    2014-08-18

    A comprehensive study of the complexes A4[U(NCS)8] (A = Cs, Et4N, (n)Bu4N) and A3[UO2(NCS)5] (A = Cs, Et4N) is described, with the crystal structures of [(n)Bu4N]4[U(NCS)8]·2MeCN and Cs3[UO2(NCS)5]·O0.5 reported. The magnetic properties of square antiprismatic Cs4[U(NCS)8] and cubic [Et4N]4[U(NCS)8] have been probed by SQUID magnetometry. The geometry has an important impact on the low-temperature magnetic moments: at 2 K, μeff = 1.21 μB and 0.53 μB, respectively. Electronic absorption and photoluminescence spectra of the uranium(IV) compounds have been measured. The redox chemistry of [Et4N]4[U(NCS)8] has been explored using IR and UV-vis spectroelectrochemical methods. Reversible 1-electron oxidation of one of the coordinated thiocyanate ligands occurs at +0.22 V vs Fc/Fc(+), followed by an irreversible oxidation to form dithiocyanogen (NCS)2 which upon back reduction regenerates thiocyanate anions coordinating to UO2(2+). NBO calculations agree with the experimental spectra, suggesting that the initial electron loss of [U(NCS)8](4-) is delocalized over all NCS(-) ligands. Reduction of the uranyl(VI) complex [Et4N]3[UO2(NCS)5] to uranyl(V) is accompanied by immediate disproportionation and has only been studied by DFT methods. The bonding in [An(NCS)8](4-) (An = Th, U) and [UO2(NCS)5](3-) has been explored by a combination of DFT and QTAIM analysis, and the U-N bonds are predominantly ionic, with the uranyl(V) species more ionic that the uranyl(VI) ion. Additionally, the U(IV)-NCS ion is more ionic than what was found for U(IV)-Cl complexes.

  16. Solid state and aqueous behavior of uranyl peroxide cage clusters

    NASA Astrophysics Data System (ADS)

    Pellegrini, Kristi Lynn

    Uranyl peroxide cage clusters include a large family of more than 50 published clusters of a variety of sizes, which can incorporate various ligands including pyrophosphate and oxalate. Previous studies have reported that uranyl clusters can be used as a method to separate uranium from a solid matrix, with potential applications in reprocessing of irradiated nuclear fuel. Because of the potential applications of these novel structures in an advanced nuclear fuel cycle and their likely presence in areas of contamination, it is important to understand their behavior in both solid state and aqueous systems, including complex environments where other ions are present. In this thesis, I examine the aqueous behavior of U24Pp 12, as well as aqueous cluster systems with added mono-, di-, and trivalent cations. The resulting solutions were analyzed using dynamic light scattering and ultra-small angle X-ray scattering to evaluate the species in solution. Precipitates of these systems were analyzed using powder X-ray diffraction, X-ray fluorescence spectrometry, and Raman spectroscopy. The results of these analyses demonstrate the importance of cation size, charge, and concentration of added cations on the aqueous behavior of uranium macroions. Specifically, aggregates of various sizes and shapes form rapidly upon addition of cations, and in some cases these aggregates appear to precipitate into an X-ray amorphous material that still contains U24Pp12 clusters. In addition, I probe aggregation of U24Pp12 and U60, another uranyl peroxide cage cluster, in mixed solvent water-alcohol systems. The aggregation of uranyl clusters in water-alcohol systems is a result of hydrogen bonding with polar organic molecules and the reduction of the dielectric constant of the system. Studies of aggregation of uranyl clusters also allow for comparison between the newer uranyl polyoxometalate family and century-old transition metal polyoxometalates. To complement the solution studies of uranyl cage clusters, solid state analyses of U24Pp12 are presented, including single crystal X-ray diffraction and preliminary single crystal neutron diffraction. Solid state analyses are used to probe the complicated bonding environments between U24Pp12 and crystallized counterions, giving further insight into the importance of cluster protonation and counterions in uranyl cluster systems. The combination of solid state and solution techniques provides information about the complicated nature of uranyl peroxide nanoclusters, and insight towards future applications of clusters in the advanced nuclear fuel cycle and the environment.

  17. Highly Preorganized Ligand 1,10-Phenanthroline-2,9-dicarboxylic Acid for the Selective Recovery of Uranium from Seawater in the Presence of Competing Vanadium Species

    DOE PAGES

    Lashley, Mark A.; Ivanov, Alexander S.; Bryantsev, Vyacheslav S.; ...

    2016-09-30

    Studies of the complexation of new promising ligands with uranyl (UO 2 2+) and other seawater cations can aid the development of more efficient, selective, and robust sorbents for the recovery of uranium from seawater. Here, we propose that the ligand design principles based on structural preorganization can be successfully applied to obtain a dramatic enhancement in UO 2 2+ ion binding affinity and selectivity. This concept is exemplified through the investigation of the com-plexes of UO 2 2+, VO 2+, and VO 2+ with the highly preorganized ligand PDA (1,10-phenanthroline-2,9-dicarboxylic acid) using a combination of fluores-cence and absorbance techniques,more » along with den-sity functional theory (DFT) calculations. Moreover, the measured stability constant value, log K1, of 16.5 for the UO 2 2+/PDA complex is very high compared to uranyl complexes with other dicarboxylic ligands. Moreover, PDA exhibits strong selectivity for uranyl over vanadium ions, since the determined sta-bility constant values of the PDA complexes of the vanadium ions are quite low (V(IV) log K1 = 7.4, V(V) = 7.3). Finally, the structures of the corresponding UO 2 2+, VO 2+, and VO 2+ complexes with PDA were identified by systematic DFT calculations, and helped to interpret the stronger binding affinity for uranium over the vanadium ions. Due to its high chemical stability, selectivity, and structural preor-ganization for UO 2 2+ complexation, PDA is a very promising candidate that can be potentially used in the development of novel adsorbent materials for the selective extraction of uranium from sea-water.« less

  18. Highly Preorganized Ligand 1,10-Phenanthroline-2,9-dicarboxylic Acid for the Selective Recovery of Uranium from Seawater in the Presence of Competing Vanadium Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lashley, Mark A.; Ivanov, Alexander S.; Bryantsev, Vyacheslav S.

    Studies of the complexation of new promising ligands with uranyl (UO 2 2+) and other seawater cations can aid the development of more efficient, selective, and robust sorbents for the recovery of uranium from seawater. Here, we propose that the ligand design principles based on structural preorganization can be successfully applied to obtain a dramatic enhancement in UO 2 2+ ion binding affinity and selectivity. This concept is exemplified through the investigation of the com-plexes of UO 2 2+, VO 2+, and VO 2+ with the highly preorganized ligand PDA (1,10-phenanthroline-2,9-dicarboxylic acid) using a combination of fluores-cence and absorbance techniques,more » along with den-sity functional theory (DFT) calculations. Moreover, the measured stability constant value, log K1, of 16.5 for the UO 2 2+/PDA complex is very high compared to uranyl complexes with other dicarboxylic ligands. Moreover, PDA exhibits strong selectivity for uranyl over vanadium ions, since the determined sta-bility constant values of the PDA complexes of the vanadium ions are quite low (V(IV) log K1 = 7.4, V(V) = 7.3). Finally, the structures of the corresponding UO 2 2+, VO 2+, and VO 2+ complexes with PDA were identified by systematic DFT calculations, and helped to interpret the stronger binding affinity for uranium over the vanadium ions. Due to its high chemical stability, selectivity, and structural preor-ganization for UO 2 2+ complexation, PDA is a very promising candidate that can be potentially used in the development of novel adsorbent materials for the selective extraction of uranium from sea-water.« less

  19. Modulating Uranium Binding Affinity in Engineered Calmodulin EF-Hand Peptides: Effect of Phosphorylation

    PubMed Central

    Pardoux, Romain; Sauge-Merle, Sandrine; Lemaire, David; Delangle, Pascale; Guilloreau, Luc; Adriano, Jean-Marc; Berthomieu, Catherine

    2012-01-01

    To improve our understanding of uranium toxicity, the determinants of uranyl affinity in proteins must be better characterized. In this work, we analyzed the contribution of a phosphoryl group on uranium binding affinity in a protein binding site, using the site 1 EF-hand motif of calmodulin. The recombinant domain 1 of calmodulin from A. thaliana was engineered to impair metal binding at site 2 and was used as a structured template. Threonine at position 9 of the loop was phosphorylated in vitro, using the recombinant catalytic subunit of protein kinase CK2. Hence, the T9TKE12 sequence was substituted by the CK2 recognition sequence TAAE. A tyrosine was introduced at position 7, so that uranyl and calcium binding affinities could be determined by following tyrosine fluorescence. Phosphorylation was characterized by ESI-MS spectrometry, and the phosphorylated peptide was purified to homogeneity using ion-exchange chromatography. The binding constants for uranyl were determined by competition experiments with iminodiacetate. At pH 6, phosphorylation increased the affinity for uranyl by a factor of ∼5, from Kd = 25±6 nM to Kd = 5±1 nM. The phosphorylated peptide exhibited a much larger affinity at pH 7, with a dissociation constant in the subnanomolar range (Kd = 0.25±0.06 nM). FTIR analyses showed that the phosphothreonine side chain is partly protonated at pH 6, while it is fully deprotonated at pH 7. Moreover, formation of the uranyl-peptide complex at pH 7 resulted in significant frequency shifts of the νas(P-O) and νs(P-O) IR modes of phosphothreonine, supporting its direct interaction with uranyl. Accordingly, a bathochromic shift in νas(UO2)2+ vibration (from 923 cm−1 to 908 cm−1) was observed upon uranyl coordination to the phosphorylated peptide. Together, our data demonstrate that the phosphoryl group plays a determining role in uranyl binding affinity to proteins at physiological pH. PMID:22870263

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoendorff, George E.; De Jong, Wibe A.; Gordon, Mark S.

    The formation of uranyl dicationic complexes containing water and nitrile (acetonitrile, propionitrile, and benzonitrile) ligands, [UO2(H2O)n(RCN)m]2+, has been studied using density functional theory (DFT) with a relativistic effective core potential (RECP) to account for scalar relativistic effects on uranium. It is shown that nitrile addition is favored over the addition of water ligands. Decomposition of these complexes to [UO2OH(H2O)n(RCN)m]+ by the loss of either H3O+ or (RCN+H)+ is also examined. It is found that this reaction occurs when the coordination sphere of uranyl is unsaturated. Additionally, this reaction is influenced by the size of the nitrile ligand with reactions involvingmore » acetonitrile being the most prevalent.« less

  1. NBL CRM 112-A: A new certified isotopic composition

    NASA Astrophysics Data System (ADS)

    Thomas, R. B.; Essex, R. M.; Mason, P.

    2007-12-01

    NBL CRM 112-A Uranium Metal Assay Standard is commonly used as a natural uranium isotopic reference material within the earth science mass spectrometry community. The metal is from the same parent material as NBS SRM 960, the uranyl nitrate solution, CRM 145, and the high-purity uranyl nitrate solution CRM 145-B. Because CRM 112-A has not yet been certified for isotopic composition, it has been assumed that this material has a natural 235U/238U (0.0072527), and the δ234U has been determined by measurement (e.g. -37.1‰; Cheng et al., 2000). These values have been widely used to calibrate the concentration of spikes and standards, and to correct measurements for instrument or mass bias. New, preliminary, isotopic measurements on CRM 145 and CRM 112-A performed at New Brunswick Laboratory suggest that these reference materials have a slightly lower 235U/238U and δ234U than have been commonly used. If this is the case, then data using the accepted values may be slightly biased. The significance of this bias will depend on the uncertainty of the measurement, how the CRM 112-A data is used to correct measurement data, the cited values that were used to correct the data, and the final certified values of the CRM. This fall, New Brunswick Laboratory is certifying the isotopic composition of the CRM 112-A metal using high precision thermal ionization mass spectrometry techniques. Upon completion of certification, the new CRM 112- A standard with certified isotopic ratios will provide the earth science community with a well characterized and traceable reference for calibrating and correcting their mass spectrometry measurement systems.

  2. Experimental investigation of the ionization mechanisms of uranium in thermal ionization mass spectrometry in the presence of carbon

    NASA Astrophysics Data System (ADS)

    Kraiem, M.; Mayer, K.; Gouder, T.; Seibert, A.; Wiss, T.; Thiele, H.; Hiernaut, J.-P.

    2010-01-01

    Thermal ionization mass spectrometry (TIMS) is a well established instrumental technique for providing accurate and precise isotope ratio measurements of elements with reasonably low first ionization potential. In nuclear safeguards and in environmental research, it is often required to measure the isotope ratios in small samples of uranium. Empirical studies had shown that the ionization yield of uranium and plutonium in a TIMS ion source can be significantly increased in the presence of a carbon source. But, even though carbon appeared crucial in providing high ionization yields, processes taking place on the ionization surface were still not well understood. This paper describes the experimental results obtained from an extended study on the evaporation and ionization mechanisms of uranium occurring on a rhenium mass spectrometry filament in the presence of carbon. Solid state reactions were investigated using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Additionally, vaporization measurements were performed with a modified-Knudsen cell mass spectrometer for providing information on the neutral uranium species in the vapor phase. Upon heating, under vacuum, the uranyl nitrate sample was found to turn into a uranium carbide compound, independent of the type of carbon used as ionization enhancer. With further heating, uranium carbide leads to formation of single charged uranium metal ions and a small amount of uranium carbide ions. The results are relevant for a thorough understanding of the ion source chemistry of a uranyl nitrate sample under reducing conditions. The significant increase in ionization yield described by many authors on the basis of empirical results can be now fully explained and understood.

  3. Topologically identical, but geometrically isomeric layers in hydrous α-, β-Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})]·H{sub 2}O and anhydrous Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Na; Klepov, Vladislav V.; Villa, Eric M.

    2014-07-01

    The hydrothermal reaction of uranyl nitrate with rubidium nitrate and arsenic (III) oxide results in the formation of polymorphic α- and β-Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})]·H{sub 2}O (α-, β-RbUAs) and the anhydrous phase Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})] (RbUAs). These phases were structurally, chemically and spectroscopically characterized. The structures of all three compounds are based upon topologically identical, but geometrically isomeric layers. The layers are linked with each other by means of the Rb cations and hydrogen bonding. Dehydration experiments demonstrate that water deintercalation from hydrous α- and β-RbUAs yields anhydrous RbUAs via topotactic reactions. - Graphical abstract: Three differentmore » layer geometries observed in the structures of Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})] and α- and β- Rb[UO{sub 2}(AsO{sub 3}OH)(AsO{sub 2}(OH){sub 2})]·H{sub 2}O. Two different coordination environments of uranium polyhedra (types I and II) are shown schematically on the top of the figure. - Highlights: • Three new uranyl arsenates were synthesized from the hydrothermal reactions. • The phases consist of the topologically identical but geometrically different layers. • Topotactic transitions were observed in the processes of mono-hyrates dehydration.« less

  4. Alteration, adsorption and nucleation processes on clay-water interfaces: Mechanisms for the retention of uranium by altered clay surfaces on the nanometer scale

    NASA Astrophysics Data System (ADS)

    Schindler, Michael; Legrand, Christine A.; Hochella, Michael F.

    2015-03-01

    Nano-scale processes on the solid-water interface of clay minerals control the mobility of metals in the environment. These processes can occur in confined pore spaces of clay buffers and barriers as well as in contaminated sediments and involve a combination of alteration, adsorption and nucleation processes of multiple species and phases. This study characterizes nano-scale processes on the interface between clay minerals and uranyl-bearing solution near neutral pH. Samples of clay minerals with a contact pH of ∼6.7 are collected from a U mill and mine tailings at Key Lake, Saskatchewan, Canada. The tailings material contains Cu-, As-, Co-, Mo-, Ni-, Se-bearing polymetallic phases and has been deposited with a surplus of Ca(OH)2 and Na2CO3 slaked lime. Small volumes of mill-process solutions containing sulfuric acid and U are occasionally discharged onto the surface of the tailings and are neutralized after discharge by reactions with the slaked lime. Transmission electron microscopy (TEM) in combination with the focused ion beam (FIB) technique and other analytical methods (SEM, XRD, XRF and ICP-OES) are used to characterize the chemical and mineralogical composition of phases within confined pore spaces of the clay minerals montmorillonite and kaolinite and in the surrounding tailings material. Alteration zones around the clay minerals are characterized by different generations of secondary silicates containing variable proportions of adsorbed uranyl- and arsenate-species and by the intergrowth of the silicates with the uranyl-minerals cuprosklodowskite, Cu[(UO2)2(SiO3OH)2](H2O)6 and metazeunerite, Cu[(UO2)(AsO4)2](H2O)8. The majority of alteration phases such as illite, illite-smectite, kaolinite and vermiculite have been most likely formed in the sedimentary basin of the U-ore deposit and contain low amounts of Fe (<5 at.%). Iron-enriched Al-silicates or illite-smectites (Fe >10 at.%) formed most likely in the limed tailings at high contact pH (∼10.5) and their structure is characterized by a low degree of long-range order. Adsorption of U and nucleation of metazeunerite and cuprosklodowskite are strongly controlled by the presence of the adsorbed oxy-anion species arsenate and silica on the Fe-enriched silicates. Heterogeneous nucleation of nano-crystals of the uranyl minerals occurs most likely on adsorption sites of binary uranyl-, arsenate- and silica-complexes as well as on ternary uranyl-arsenate or uranyl-silicate complexes. The uranyl minerals occur as aggregates of misoriented nano-size crystals and are the result of supersaturated solutions and a high number of nucleation sites that prevented the formation of larger crystals through Oswald ripening. The results of this study provide an understanding of interfacial nano-scale processes between uranyl species and altered clay buffers in a potential Nuclear Waste repository as similar alteration conditions of clays may occur in a multi-barrier system.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingjie, E-mail: yzx@ansto.gov.au; Karatchevtseva, Inna; Bhadbhade, Mohan

    With the coordination of dimethylformamide (DMF), two new uranium(VI) complexes with either 4-hydroxybenzoic acid (H{sub 2}phb) or terephthalic acid (H{sub 2}tph) have been synthesized under solvothermal conditions and structurally characterized. [(UO{sub 2}){sub 2}(Hphb){sub 2}(phb)(DMF)(H{sub 2}O){sub 3}]·4H{sub 2}O (1) has a dinuclear structure constructed with both pentagonal and hexagonal bipyramidal uranium polyhedra linked through a µ{sub 2}-bridging ligand via both chelating carboxylate arm and alcohol oxygen bonding, first observation of such a coordination mode of 4-hydroxybenzoate for 5 f ions. [(UO{sub 2})(tph)(DMF)] (2) has a three-dimensional (3D) framework built with pentagonal bipyramidal uranium polyhedra linked with µ{sub 4}-terephthalate ligands. The 3Dmore » channeled structure is facilitated by the unique carboxylate bonding with nearly linear C–O–U angles and the coordination of DMF molecules. The presence of phb ligands in different coordination modes, uranyl ions in diverse environments and DMF in complex 1, and tph ligand, DMF and uranyl ion in complex 2 has been confirmed by Raman spectroscopy. In addition, their thermal stability and photoluminescence properties have been investigated. - Graphical abstract: With the coordination of dimethylformamide, two new uranyl complexes with either 4-hydroxybenzoate or terephthalate have been synthesized under solvothermal conditions and structurally characterized. - Highlights: • Solvent facilitates the synthesis of two new uranium(VI) complexes. • A dinuclear complex with both penta- and hexagonal bipyramidal uranium polyhedral. • A unique µ{sub 2}-bridging mode of 4-hydroxybenzoate via alcohol oxygen for 5 f ions. • A 3D framework with uranium polyhedra and µ{sub 4}-terephthalate ligands. • Vibration modes and photoluminescence properties are reported.« less

  6. Roles of Acetone and Diacetone Alcohol in Coordination and Dissociation Reactions of Uranyl Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios, Daniel; Schoendorff, George E.; Van Stipdonk, Michael J.

    2012-12-03

    Combined collision-induced dissociation mass-spectrometry experiments and DFT calculations were employed to elucidate the molecular structure of "hypercoordinated" species and the energetics of water-elimination reactions of uranyl acetone complexes observed in earlier work (Rios, D.; Rutkowski, P. X.; Van Stipdonk, M. J.; Gibson, J. K. Inorg. Chem. 2011, 50, 4781). It is shown that the "hypercoordinated" species contain diacetone alcohol ligands bonded in either bidentate or monodentate fashion, which are indistinguishable from (acetone)2 in mass spectrometry. Calculations confirm that four diacetone ligands can form stable complexes, but that the effective number of atoms coordinating with uranium in the equatorial plane doesmore » not exceed five. Diacetone alcohol ligands are shown to form mesityl oxide ligands and alkoxide species through the elimination of water, providing an explanation for the observed water-elimination reactions.« less

  7. Estimation of weekly 99Mo production by AHR 200 kW

    NASA Astrophysics Data System (ADS)

    Siregar, I. H.; Suharyana; Khakim, A.; Siregar, D.; Frida, A. R.

    2016-11-01

    The estimation of weekly 99Mo production by AHR 200 kW fueled with Low Enriched Uranium Uranyl Nitrate solution has been simulated by using MCNPX computer code. We have employed the AHR design of Babcock & Wilcox Medical Isotope Production System with 9Be Reflector and Stainless steel vessel. We found that when the concentration of uranium in the fresh fuel was 108 gr U/L of UO2(NO3)2 fuel solution, the multiplication factor was 1.0517. The 99Mo concentration reached saturated at tenth day operation. The AHR can produce approximately 1.96×103 6-day-Ci weekly.

  8. Rational Ligand Design for U(VI) and Pu(IV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szigethy, Geza

    2009-08-12

    Nuclear power is an attractive alternative to hydrocarbon-based energy production at a time when moving away from carbon-producing processes is widely accepted as a significant developmental need. Hence, the radioactive actinide power sources for this industry are necessarily becoming more widespread, which is accompanied by the increased risk of exposure to both biological and environmental systems. This, in turn, requires the development of technology designed to remove such radioactive threats efficiently and selectively from contaminated material, whether that be contained nuclear waste streams or the human body. Raymond and coworkers (University of California, Berkeley) have for decades investigated the interactionmore » of biologically-inspired, hard Lewis-base ligands with high-valent, early-actinide cations. It has been established that such ligands bind strongly to the hard Lewis-acidic early actinides, and many poly-bidentate ligands have been developed and shown to be effective chelators of actinide contaminants in vivo. Work reported herein explores the effect of ligand geometry on the linear U(IV) dioxo dication (uranyl, UO 2 2+). The goal is to utilize rational ligand design to develop ligands that exhibit shape selectivity towards linear dioxo cations and provides thermodynamically favorable binding interactions. The uranyl complexes with a series of tetradentate 3-hydroxy-pyridin-2-one (3,2-HOPO) ligands were studied in both the crystalline state as well as in solution. Despite significant geometric differences, the uranyl affinities of these ligands vary only slightly but are better than DTPA, the only FDA-approved chelation therapy for actinide contamination. The terepthalamide (TAM) moiety was combined into tris-beidentate ligands with 1,2- and 3,2-HOPO moieties were combined into hexadentate ligands whose structural preferences and solution thermodynamics were measured with the uranyl cation. In addition to achieving coordinative saturation, these ligands exhibited increased uranyl affinity compared to bis-Me-3,2-HOPO ligands. This result is due in part to their increased denticity, but is primarily the result of the presence of the TAM moiety. In an effort to explore the relatively unexplored coordination chemistry of Pu(IV) with bidentate moieties, a series of Pu(IV) complexes were also crystallized using bidentate hydroxypyridinone and hydroxypyrone ligands. The geometries of these complexes are compared to that of the analogous Ce(IV) complexes. While in some cases these showed the expected structural similarities, some ligand systems led to significant coordination changes. A series of crystal structure analyses with Ce(IV) indicated that these differences are most likely the result of crystallization condition differences and solvent inclusion effects.« less

  9. Six uranyl-organic frameworks with naphthalene-dicarboxylic acid and bipyridyl-based spacers: syntheses, structures, and properties.

    PubMed

    Xu, Wei; Ren, Ya-Nan; Xie, Miao; Zhou, Lin-Xia; Zheng, Yue-Qing

    2018-03-28

    A new series of uranium coordination polymers have been hydrothermally synthesized by using 1,4-naphthalene dicarboxylic acid (H 2 NDC), namely, (H 3 O) 2 [(UO 2 ) 2 (NDC) 3 ]·H 2 O (1), (H 2 -bpp)[(UO 2 ) 2 (NDC) 3 ]·EtOH·5H 2 O (2), (H 2 -bpe) 2/2 [(UO 2 ) 2 (NDC) 3 ]·EtOH (3), (H 2 -bpp)[(UO 2 ) 2 (NDC) 3 ]·5H 2 O (4), (H 2 -bpp)[(UO 2 )(HNDC)(NDC)] 2 ·2H 2 O (5), and (H 2 -bpy)[(UO 2 )(NDC) 2 ] (6) [bpp = 1,3-di(4-pyridyl) propane, bpe = 4,4'-vinylenedipyridine, bpy = 4,4'-bipyridine]. Single-crystal X-ray diffraction demonstrates that complex 1 represents the uranyl-organic polycatenated framework derived from a simple two-dimensional honeycomb grid network structure via a H 2 NDC linker. Complexes 2-4 contain the dinuclear motifs of the two UO 7 pentagonal and one UO 8 hexagonal bipyramids which are linked by NDC 2- anions creating a (UO 2 ) 4 (NDC) 2 unit, and further extend to a 2D layer through NDC 2- anions. Complex 5 displays a 1D zigzag double chain structure, in which the carboxylate groups of the NDC 2- anions adopt a chelate mode and further extends to a 2D framework via hydrogen bonds. The 1D structure of complex 6 is similar to the zigzag chain of complex 5. In addition, powder X-ray diffraction, elemental analysis, IR, thermal stability and luminescence properties of all complexes have also been investigated in this paper. The photocatalytic properties of the six complexes for the degradation of tetracycline hydrochloride (TC) under UV irradiation have been examined. Moreover, density functional theory (DFT) calculations were carried out to explore the electronic structural and bonding properties of the uranyl complexes 1-6.

  10. In situ ligand synthesis with the UO{sub 2}{sup 2+} cation under hydrothermal conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frisch, Mark; Cahill, Christopher L.; Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC

    A novel uranium (VI) coordination polymer, (UO{sub 2}){sub 2}(C{sub 2}O{sub 4})(C{sub 5}H{sub 6}NO{sub 3}){sub 2} (1), has been prepared under the hydrothermal reaction of uranium nitrate hexahydrate and L-pyroglutamic acid. Compound 1 (monoclinic, C2/c, a=22.541(6) A, b=5.7428(15) A, c=15.815(4) A, {beta}=119.112(4){sup o}, Z=4, R{sub 1}=0.0237, wR{sub 2}=0.0367) consists of uranium pentagonal bipyramids linked via L-pyroglutamate and oxalate anions to form an overall two-dimensional (2D) structure. With the absence of oxalic acid within the starting materials, the oxalate anions are hypothesized to form in situ whereby decarboxylation of L-pyroglutamic acid occurs followed by coupling of CO{sub 2} to form the oxalatemore » linkages as observed in the crystal structure. Addition of copper (II) to this system appears to promote oxalate formation in that synthetic moolooite (Cu(C{sub 2}O{sub 4}).nH{sub 2}O; 0{<=}n{<=}1) and a known uranyl oxalate [(UO{sub 2}){sub 2}(C{sub 2}O{sub 4})(OH){sub 2}(H{sub 2}O){sub 2}.H{sub 2}O], co-crystallize in significant quantity. Compound 1 exhibits the characteristic uranyl emission spectrum upon either direct uranyl excitation or ligand excitation, the latter of which shows an increase in relative intensity. This subsequent increase in the intensity indicates an energy transfer from the ligand to the uranyl cations thus illustrating an example of the antenna effect in the solid state. - Graphical abstract: A novel homometallic coordination polymer (UO{sub 2}){sub 2}(C{sub 2}O{sub 4})(C{sub 5}H{sub 6}NO{sub 3}){sub 2}, in the uranium-L-pyroglutamic acid system has been synthesized under hydrothermal conditions. The title compound consists of uranium pentagonal bipyramids bridged through both L-pyroglutamate and oxalate linkages to produce a 3D crystal structure. The oxalate anions are theorized to result from decarboxylation of L-pyroglutamic acid followed by subsequent coupling of CO{sub 2}.« less

  11. Topologically and geometrically flexible structural units in seven new organically templated uranyl selenates and selenite–selenates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurzhiy, Vladislav V., E-mail: vladgeo17@mail.ru; Kovrugin, Vadim M.; Tyumentseva, Olga S.

    2015-09-15

    Single crystals of seven novel uranyl oxysalts of selenium with protonated methylamine molecules, [C{sub 2}H{sub 8}N]{sub 2}[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)] (I), [C{sub 2}H{sub 8}N]{sub 2}[(UO{sub 2}){sub 2}(SeO{sub 4}){sub 3}(H{sub 2}O)] (II), [C{sub 4}H{sub 15}N{sub 3}][H{sub 3}O]{sub 0.5}[(UO{sub 2}){sub 2}(SeO{sub 4}){sub 2.93}(SeO{sub 3}){sub 0.07}(H{sub 2}O)](NO{sub 3}){sub 0.5} (III), [C{sub 2}H{sub 8}N]{sub 3}[H{sub 5}O{sub 2}][(UO{sub 2}){sub 2}(SeO{sub 4}){sub 3}(H{sub 2}O){sub 2}]{sub 2}(H{sub 2}O){sub 5} (IV), [C{sub 2}H{sub 8}N]{sub 2}[H{sub 3}O][(UO{sub 2}){sub 3}(SeO{sub 4}){sub 4}(HSeO{sub 3})(H{sub 2}O)](H{sub 2}SeO{sub 3}){sub 0.2} (V), [C{sub 4}H{sub 12}N]{sub 3}[H{sub 3}O][(UO{sub 2}){sub 3}(SeO{sub 4}){sub 5}(H{sub 2}O)] (VI), and [C{sub 2}H{sub 8}N]{sub 3}(C{sub 2}H{sub 7}N)[(UO{sub 2}){sub 3}(SeO{sub 4}){submore » 4}(HSeO{sub 3})(H{sub 2}O)] (VII) have been prepared by isothermal evaporation from aqueous solutions. Their crystal structures have been solved by direct methods and their uranyl selenate and selenite–selenate units investigated using black-and-white graphs from the viewpoints of topology of interpolyhedral linkages and isomeric variations. The crystal structure of IV is based upon complex layers with unique topology, which has not been observed previously in uranyl selenates. Investigations of the statistics and local distribution of the U–O{sub br}–Se bond angles demonstrates that shorter angles associate with undulations, whereas larger angles correspond to planar areas of the uranyl selenite layers. - Graphical abstract: Crystal structures of the seven novel Se-contaning uranyl oxysalts that contain protonated organic molecules as interlayer species have been investigated from the viewpoints of topology of interpolyhedral linkages, isomeric variations and flexibility of structural units. - Highlights: • Single crystals of seven novel uranyl oxysalts were prepared by evaporation method. • The graph theory was used for investigation of topologies of structural units. • The method of orientation matrices was applied to distinguish geometrical isomers. • The flexibility of structural complexes specifies the undulation of layered structural units.« less

  12. Unusual Versatility of the Filamentous, Diazotrophic Cyanobacterium Anabaena torulosa Revealed for Its Survival during Prolonged Uranium Exposure

    PubMed Central

    Chandwadkar, Pallavi; Nayak, Chandrani

    2017-01-01

    ABSTRACT Reports on interactions between cyanobacteria and uranyl carbonate are rare. Here, we present an interesting succession of the metabolic responses employed by a marine, filamentous, diazotrophic cyanobacterium, Anabaena torulosa for its survival following prolonged exposure to uranyl carbonate extending up to 384 h at pH 7.8 under phosphate-limited conditions. The cells sequestered uranium (U) within polyphosphates on initial exposure to 100 μM uranyl carbonate for 24 to 28 h. Further incubation until 120 h resulted in (i) significant degradation of cellular polyphosphates causing extensive chlorosis and cell lysis, (ii) akinete differentiation followed by (iii) extracellular uranyl precipitation. X-ray diffraction (XRD) analysis, fluorescence spectroscopy, X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopy established the identity of the bioprecipitated uranium as a U(VI) autunite-type mineral, which settled at the bottom of the vessel. Surprisingly, A. torulosa cells resurfaced as small green flakes typical of actively growing colonies on top of the test solutions within 192 to 240 h of U exposure. A consolidated investigation using kinetics, microscopy, and physiological and biochemical analyses suggested a role of inducible alkaline phosphatase activity of cell aggregates/akinetes in facilitating the germination of akinetes leading to substantial regeneration of A. torulosa by 384 h of uranyl incubation. The biomineralized uranium appeared to be stable following cell regeneration. Altogether, our results reveal novel insights into the survival mechanism adopted by A. torulosa to resist sustained uranium toxicity under phosphate-limited oxic conditions. IMPORTANCE Long-term effects of uranyl exposure in cyanobacteria under oxic phosphate-limited conditions have been inadequately explored. We conducted a comprehensive examination of the metabolic responses displayed by a marine cyanobacterium, Anabaena torulosa, to cope with prolonged exposure to uranyl carbonate at pH 7.8 under phosphate limitation. Our results highlight distinct adaptive mechanisms harbored by this cyanobacterium that enabled its natural regeneration following extensive cell lysis and uranium biomineralization under sustained uranium exposure. Such complex interactions between environmental microbes such as Anabaena torulosa and uranium over a broader time range advance our understanding on the impact of microbial processes on uranium biogeochemistry. PMID:28258135

  13. Cellular distribution of uranium after acute exposure of renal epithelial cells: SEM, TEM and nuclear microscopy analysis

    NASA Astrophysics Data System (ADS)

    Carrière, Marie; Gouget, Barbara; Gallien, Jean-Paul; Avoscan, Laure; Gobin, Renée; Verbavatz, Jean-Marc; Khodja, Hicham

    2005-04-01

    The major health effect of uranium exposure has been reported to be chemical kidney toxicity, functional and histological damages being mainly observed in proximal tubule cells. Uranium enters the proximal tubule as uranyl-bicarbonate or uranyl-citrate complexes. The aim of our research is to investigate the mechanisms of uranium toxicity, intracellular accumulation and repartition after acute intoxication of rat renal proximal tubule epithelial cells, as a function of its chemical form. Microscopic observations of renal epithelial cells after acute exposure to uranyl-bicarbonate showing the presence of intracellular precipitates as thin needles of uranyl-phosphate localized in cell lysosomes have been published. However the initial site of precipitates formation has not been identified yet: they could either be formed outside the cells before internalization, or directly inside the cells. Uranium solubility as a function and initial concentration was specified by ICP-MS analysis of culture media. In parallel, uranium uptake and distribution in cell monolayers exposed to U-bicarbonate was investigated by nuclear microprobe analyses. Finally, the presence of uranium precipitates was tested out by scanning electron microscopic observations (SEM), while extracellular and/or intracellular precipitates were observed on thin sections of cells by transmission electron microscopy (TEM).

  14. Impact of uranyl-calcium-carbonato complexes on uranium(VI) adsorption to synthetic and natural sediments.

    PubMed

    Stewart, Brandy D; Mayes, Melanie A; Fendorf, Scott

    2010-02-01

    Adsorption on soil and sediment solids may decrease aqueous uranium concentrations and limit its propensity for migration in natural and contaminated settings. Uranium adsorption will be controlled in large part by its aqueous speciation, with a particular dependence on the presence of dissolved calcium and carbonate. Here we quantify the impact of uranyl speciation on adsorption to both goethite and sediments from the Hanford Clastic Dike and Oak Ridge Melton Branch Ridgetop formations. Hanford sediments were preconditioned with sodium acetate and acetic acid to remove carbonate grains, and Ca and carbonate were reintroduced at defined levels to provide a range of aqueous uranyl species. U(VI) adsorption is directly linked to UO(2)(2+) speciation, with the extent of retention decreasing with formation of ternary uranyl-calcium-carbonato species. Adsorption isotherms under the conditions studied are linear, and K(d) values decrease from 48 to 17 L kg(-1) for goethite, from 64 to 29 L kg (-1) for Hanford sediments, and from 95 to 51 L kg(-1) for Melton Branch sediments as the Ca concentration increases from 0 to 1 mM at pH 7. Our observations reveal that, in carbonate-bearing waters, neutral to slightly acidic pH values ( approximately 5) and limited dissolved calcium are optimal for uranium adsorption.

  15. Uranyl Ion Complexes with Long-Chain Aliphatic α,ω-Dicarboxylates and 3d-Block Metal Counterions.

    PubMed

    Thuéry, Pierre; Harrowfield, Jack

    2016-03-07

    Twelve new complexes were obtained from reaction of uranyl ions with the aliphatic dicarboxylic acids HOOC-(CH2)n-2-COOH (H2Cn; n = 7-10 and 12) under solvo-hydrothermal conditions, in the presence of 3d-block metal ions (Mn(2+), Fe(3+), Co(2+), Ni(2+), and Cu(2+)) and 2,2'-bipyridine (bipy) or 1,10-phenanthroline (phen). In contrast to previously reported triple-stranded helicates obtained with C9(2-) and C12(2-), all these complexes crystallize as polymeric one-dimensional (1D) or two-dimensional (2D) species. [Fe(bipy)3][(UO2)2(C7)3]·3H2O (1), [Cu(phen)2]2[(UO2)3(C7)4(H2O)2]·2H2O (2), and [Cu(bipy)2]2[(UO2)2(C9)3] (6), in which the 3d cation was reduced in situ, are 1D ladderlike polymers displaying tetra- or hexanuclear rings, of sufficient width to encompass two counterions in 2 and 6. The three complexes [Co(phen)3][(UO2)3(C8)3(O)]·H2O (3), [Ni(phen)3][(UO2)3(C8)3(O)]·H2O (4) and [Co(phen)3][(UO2)3(C9)3(O)]·H2O (5) contain bis(μ3-oxo)-bridged tetranuclear secondary building units, and they crystallize as deeply furrowed 2D assemblies. Depending on the nature of the counterion, C10(2-) gives [Ni(bipy)3][(UO2)2(C10)3]·2H2O (7), a 2D network displaying elongated decanuclear rings containing the counterions, or [Mn(phen)3][(UO2)2(C10)3]·6H2O (8), [Co(phen)3][(UO2)2(C10)3]·7H2O (9), and [Ni(phen)3][(UO2)2(C10)3]·7H2O (10), which consist of 2D assemblies with honeycomb topology; the hexanuclear rings in 8-10 are chairlike and occupied by one counterion and two uranyl groups from neighboring layers. Two complexes of the ligand with the longest chain, C12(2-), are reported. [UO2(C12)(bipy)] (11) is a neutral 1D species in which bipy chelates the uranyl ion and plays an important role in the packing through π-stacking interactions. Two polymeric units, 1D and 2D, coexist in the complex [Ni(bipy)3][(UO2)2(C12)3][UO2(C12)(H2O)2]·H2O (12); the 2D network has the honeycomb topology, but the hexanuclear rings are markedly convoluted, with local features akin to those in helicates, and the counterions are embedded in intralayer cavities. Emission spectra measured in the solid state show in most cases various degrees of quenching, with intense and well-resolved uranyl emission being observed only for complexes 2 and 11.

  16. PROCESS FOR RECOVERY OF URANIUM VALUES FROM IMPURE SOLUTIONS THEREOF

    DOEpatents

    Kilner, S.B.

    1959-11-01

    A process is presented for the recovery of uraninm values from impure solutions which are obtained, for example, by washing residual uranium salt or uranium metal deposits from stainless steel surfaces using an aqueous or certain acidic aqueous solutions. The solutions include uranyl and oxidized iron, chromium, nickel, and copper ions and may contain manganese, zinc, and silver ions. In accordance with one procedure. the uranyl ions are reduced to the uranous state, and the impurity ions are complexed with cyanide under acidic conditions. The solution is then treated with ammonium hydroxide or alkali metal hydroxide to precipitate uranous hydroxide away from the complexed impurity ions in the solution. Alternatively, an excess of alkali metal cyanide is added to the reduced solution until the solution becomes sufficiently alkaline for the uranons hydroxide to precipitate. An essential feature in operating the process is in maintaining the pH of the solution sufficiently acid during the complexing operation to prevent the precipitation of the impurity metal hydroxides.

  17. D.C. electrical conductivity and conduction mechanism of some azo sulfonyl quinoline ligands and uranyl complexes.

    PubMed

    El-Ghamaz, N A; Diab, M A; El-Sonbati, A Z; Salem, O L

    2011-12-01

    Supramolecular coordination of dioxouranium(VI) heterochelates 5-sulphono-7-(4'-X phenylazo)-8-hydroxyquinoline HL(n) (n=1, X=CH(3); n=2, X=H; n=3, X=Cl; n=4, X=NO(2)) have been prepared and characterized with various physico-chemical techniques. The infrared spectral studies showed a monobasic bidentate behavior with the oxygen and azonitrogen donor system. The temperature dependence of the D.C. electrical conductivity of HL(n) ligands and their uranyl complexes has been studied in the temperature range 305-415 K. The thermal activation energies E(a) for HL(n) compounds were found to be in the range 0.44-0.9 eV depending on the nature of the substituent X. The complexation process decreased E(a) values to the range 0.043-045 eV. The electrical conduction mechanism has been investigated for all samples under investigation. It was found to obey the variable range hopping mechanism (VRH). Copyright © 2011 Elsevier B.V. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, I-Ting; Sessler, Jonathan L.; Gambhir, Sanjiv Sam

    Chemical tools that can report radioactive isotopes would be of interest to the defense community. Here in this paper we report –250 nm polymeric nanoparticles containing porphyrinoid macrocycles with and without pre-complexed depleted uranium and demonstrate that the latter species may be detected easily and with high sensitivity via photoacoustic imaging. The porphyrinoid macrocycles used in the present study are non-aromatic in the absence of the uranyl cation, but aromatic after cation complexation. We solubilized both the freebase and metalated forms of the macrocycles in poly(lactic-co-glycolic acid) and found a peak in the photoacoustic spectrum at 910 nm excitation inmore » the case of the uranyl complex. The signal was stable for at least 15 minutes and allowed detection of uranium concentrations down to 6.2 ppb (5.7 nM) in vitro and 0.57 ppm (19 fCi; 0.52 μM) in vivo. Furthermore, to the best of our knowledge, this is the first report of a nanoparticle that detects an actinide cation via photoacoustic imaging.« less

  19. Theoretical Study of Oxovanadium(IV) Complexation with Formamidoximate: Implications for the Design of Uranyl-Selective Adsorbents

    DOE PAGES

    Mehio, Nada; Ivanov, Alexander S.; Ladshaw, Austin P.; ...

    2015-11-22

    Poly(acrylamidoxime) fibers are the current state of the art adsorbent for mining uranium from seawater. However, the competition between uranyl (UO 2 2+) and vanadium ions poses a challenge to mining on the industrial scale. In this work, we employ density functional theory (DFT) and coupled-cluster methods (CCSD(T)) in the restricted formalism to investigate potential binding motifs of the oxovanadium(IV) ion (VO 2+) with the formamidoximate ligand. Consistent with experimental EXAFS data, the hydrated six-coordinate complex is predicted to be preferred over the hydrated five-coordinate complex. Here, our investigation of formamidoximate-VO 2+ complexes universally identified the most stable binding motifmore » formed by chelating a tautomerically rearranged imino hydroxylamine via the imino nitrogen and hydroxylamine oxygen. The alternative binding motifs for amidoxime chelation via a non-rearranged tautomer and 2 coordination are found to be ~11 kcal/mol less stable. Ultimately, the difference in the most stable VO 2+ and UO 2 2+ binding conformation has important implications for the design of more selective UO 2 2+ ligands.« less

  20. PROCESS OF PREPARING A FLUORIDE OF TETRAVLENT URANIUM

    DOEpatents

    Wheelwright, E.J.

    1959-02-17

    A method is described for producing a fluoride salt pf tetravalent uranium suitable for bomb reduction to metallic uranium. An aqueous solution of uranyl nitrate is treated with acetic acid and a nitrite-suppressor and then contacted with metallic lead whereby uranium is reduced from the hexavalent to the tetravalent state and soluble lead acetate is formed. Sulfate ions are then added to the solution to precipitate and remove the lead values. Hydrofluoric acid and alkali metal ions are then added causing the formation of an alkali metal uranium double-fluoride in which the uranium is in the tetravalent state. After recovery, this precipitate is suitable for using in the limited production of metallic uranium.

  1. Optimized LWIR enhancement of nanosecond and femtosecond LIBS uranium emission

    NASA Astrophysics Data System (ADS)

    Akpovo, Codjo A.; Ford, Alan; Johnson, Lewis

    2016-05-01

    A carbon dioxide (CO2) transverse electrical breakdown in atmosphere (TEA), pulsed laser was used to enhance the laser-induced breakdown spectroscopy (LIBS) spectral signatures of uranium under nanosecond (ns) and femtosecond (fs) ablation. The peak areas of both ionic and neutral species increased by one order of magnitude for ns-ablation and two orders of magnitude for fs-ablation over LIBS when the CO2 TEA laser was used with samples of dried solutions of uranyl nitrate hexahydrate (UO2(NO3)2·6H2O) on silicon wafers. Electron temperature and density measurements show that the spectral emission improvement from using the TEA laser comes from plasma reheating.

  2. METHOD OF SEPARATION

    DOEpatents

    Boyd, G.E.

    1958-08-26

    A process is presented fer separating uranium, plutonium, and fission products ions from uranyl nitrate solutions having a pH value between 1 and 3 obtained by dissolving neutron irradiated uranium. The method consists in passing such solutions through a bed of cation exchange resin, which may be a sulfonated phenol formaidehyde type. Following the adsorption step the resin is first treated with a solution of 0.2M to 0.3M sulfuric acid to desorb the uranium. Fission product ions are then desorbed by treating the resin in phosphoric acid and 1M in nitric acid. Lastly, the plutonium may be desorbed by treating the resin with a solution approximately 0.8M in phosphoric acid and 1M in nitric acid.

  3. RECOVERY OF URANIUM BY SECONDARY XANTHATE COMPLEXING

    DOEpatents

    Neville, O.K.

    1959-09-01

    A method is described for separating and recovering uranium values contained in an acidic aqueous solution together with thorium or protactinium values. In accordance with the invention, the acidic solution containing uranium in the uranyl form is contacted with an organic xanthate. The xanthate forms a urano-xanthate complex but is substantially non-reactive with thorium and protactinium. The urano-xanthate complex is recovered by organic solvent extraction.

  4. [An electron microscopic study on the RNA component of synaptonemal complexes in spermatocytes of Mus musculus].

    PubMed

    Xing, M; Jing, D Z; Hao, S

    1991-01-01

    The ultrastructural and cytochemical features of synaptonemal complexes (SC) in sections of spermatocytes of Mus musculus were studied under electron microscope. In specimens stained with uranyl acetate and lead citrate the SC was found consisting of three main elements. the lateral element (LE), the central element (CE) and the transverse filament (L-C filament). When stained with the Bernhard's technique, the SC was recognized as a contrasted, tripartite structure which was usually located in the bleached area occupied by the condensed chromatin and composed of highly electron-dense LEs and medium electron-dense CE and L-C filaments. The SC and the LE, stained either by uranyl acetate-lead citrate or by the Bernhard's technique, always showed diameters of about 210 nm and 60 nm, respectively. The results suggest that RNA may be an important component of the SC.

  5. 21 CFR 176.320 - Sodium nitrate-urea complex.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrate-urea complex. 176.320 Section 176... Paperboard § 176.320 Sodium nitrate-urea complex. Sodium nitrate-urea complex may be safely used as a..., packaging, transporting, or holding food, subject to the provisions of this section. (a) Sodium nitrate-urea...

  6. A roadmap to uranium ionic liquids: anti-crystal engineering.

    PubMed

    Yaprak, Damla; Spielberg, Eike T; Bäcker, Tobias; Richter, Mark; Mallick, Bert; Klein, Axel; Mudring, Anja-Verena

    2014-05-19

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C4mim) cation. As dithiocarbamate ligands binding to the UO2(2+) unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand with the aim to establish structure-property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. These materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Impact of uranyl-calcium-carbonato complexes on uranium(VI) adsorption to synthetic and natural sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, B.D.; Mayes, Melanie; Fendorf, Scott

    2010-01-01

    Adsorption on soil and sediment solids may decrease aqueous uranium concentrations and limit its propensity for migration in natural and contaminated settings. Uranium adsorption will be controlled in large part by its aqueous speciation, with a particular dependence on the presence of dissolved calcium and carbonate. Here we quantify the impact of uranyl speciation on adsorption to both goethite and sediments from the Hanford Clastic Dike and Oak Ridge Melton Branch Ridgetop formations. Hanford sediments were preconditioned with sodium acetate and acetic acid to remove carbonate grains, and Ca and carbonate were reintroduced at defined levels to provide a rangemore » of aqueous uranyl species. U(VI) adsorption is directly linked to UO{sub 2}{sup 2+} speciation, with the extent of retention decreasing with formation of ternary uranyl-calcium-carbonato species. Adsorption isotherms under the conditions studied are linear, and K{sub d} values decrease from 48 to 17 L kg{sup -1} for goethite, from 64 to 29 L kg{sup -1} for Hanford sediments, and from 95 to 51 L kg{sup -1} for Melton Branch sediments as the Ca concentration increases from 0 to 1 mM at pH 7. Our observations reveal that, in carbonate-bearing waters, neutral to slightly acidic pH values ({approx}5) and limited dissolved calcium are optimal for uranium adsorption.« less

  8. A roadmap to uranium ionic liquids: Anti-crystal engineering

    DOE PAGES

    Yaprak, Damla; Spielberg, Eike T.; Bäcker, Tobias; ...

    2014-04-15

    In the search for uranium-based ionic liquids, tris(N,N-dialkyldithiocarbamato)uranylates have been synthesized as salts of the 1-butyl-3-methylimidazolium (C 4mim) cation. As dithiocarbamate ligands binding to the UO 2 2+ unit, tetra-, penta-, hexa-, and heptamethylenedithiocarbamates, N,N-diethyldithiocarbamate, N-methyl-N-propyldithiocarbamate, N-ethyl-N-propyldithiocarbamate, and N-methyl-N-butyldithiocarbamate have been explored. X-ray single-crystal diffraction allowed unambiguous structural characterization of all compounds except N-methyl-N-butyldithiocarbamate, which is obtained as a glassy material only. In addition, powder X-ray diffraction as well as vibrational and UV/Vis spectroscopy, supported by computational methods, were used to characterize the products. Differential scanning calorimetry was employed to investigate the phase-transition behavior depending on the N,N-dialkyldithiocarbamato ligand withmore » the aim to establish structure–property relationships regarding the ionic liquid formation capability. Compounds with the least symmetric N,N-dialkyldithiocarbamato ligand and hence the least symmetric anions, tris(N-methyl-N-propyldithiocarbamato)uranylate, tris(N-ethyl-N-propyldithiocarbamato)uranylate, and tris(N-methyl-N-butyldithiocarbamato)uranylate, lead to the formation of (room-temperature) ionic liquids, which confirms that low-symmetry ions are indeed suitable to suppress crystallization. As a result, these materials combine low melting points, stable complex formation, and hydrophobicity and are therefore excellent candidates for nuclear fuel purification and recovery.« less

  9. Unusual Versatility of the Filamentous, Diazotrophic Cyanobacterium Anabaena torulosa Revealed for Its Survival during Prolonged Uranium Exposure.

    PubMed

    Acharya, Celin; Chandwadkar, Pallavi; Nayak, Chandrani

    2017-05-01

    Reports on interactions between cyanobacteria and uranyl carbonate are rare. Here, we present an interesting succession of the metabolic responses employed by a marine, filamentous, diazotrophic cyanobacterium, Anabaena torulosa for its survival following prolonged exposure to uranyl carbonate extending up to 384 h at pH 7.8 under phosphate-limited conditions. The cells sequestered uranium (U) within polyphosphates on initial exposure to 100 μM uranyl carbonate for 24 to 28 h. Further incubation until 120 h resulted in (i) significant degradation of cellular polyphosphates causing extensive chlorosis and cell lysis, (ii) akinete differentiation followed by (iii) extracellular uranyl precipitation. X-ray diffraction (XRD) analysis, fluorescence spectroscopy, X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopy established the identity of the bioprecipitated uranium as a U(VI) autunite-type mineral, which settled at the bottom of the vessel. Surprisingly, A. torulosa cells resurfaced as small green flakes typical of actively growing colonies on top of the test solutions within 192 to 240 h of U exposure. A consolidated investigation using kinetics, microscopy, and physiological and biochemical analyses suggested a role of inducible alkaline phosphatase activity of cell aggregates/akinetes in facilitating the germination of akinetes leading to substantial regeneration of A. torulosa by 384 h of uranyl incubation. The biomineralized uranium appeared to be stable following cell regeneration. Altogether, our results reveal novel insights into the survival mechanism adopted by A. torulosa to resist sustained uranium toxicity under phosphate-limited oxic conditions. IMPORTANCE Long-term effects of uranyl exposure in cyanobacteria under oxic phosphate-limited conditions have been inadequately explored. We conducted a comprehensive examination of the metabolic responses displayed by a marine cyanobacterium, Anabaena torulosa , to cope with prolonged exposure to uranyl carbonate at pH 7.8 under phosphate limitation. Our results highlight distinct adaptive mechanisms harbored by this cyanobacterium that enabled its natural regeneration following extensive cell lysis and uranium biomineralization under sustained uranium exposure. Such complex interactions between environmental microbes such as Anabaena torulosa and uranium over a broader time range advance our understanding on the impact of microbial processes on uranium biogeochemistry. Copyright © 2017 American Society for Microbiology.

  10. Parts per billion detection of uranium with a porphyrinoid-containing nanoparticle and in vivo photoacoustic imaging

    DOE PAGES

    Ho, I-Ting; Sessler, Jonathan L.; Gambhir, Sanjiv Sam; ...

    2015-04-01

    Chemical tools that can report radioactive isotopes would be of interest to the defense community. Here in this paper we report –250 nm polymeric nanoparticles containing porphyrinoid macrocycles with and without pre-complexed depleted uranium and demonstrate that the latter species may be detected easily and with high sensitivity via photoacoustic imaging. The porphyrinoid macrocycles used in the present study are non-aromatic in the absence of the uranyl cation, but aromatic after cation complexation. We solubilized both the freebase and metalated forms of the macrocycles in poly(lactic-co-glycolic acid) and found a peak in the photoacoustic spectrum at 910 nm excitation inmore » the case of the uranyl complex. The signal was stable for at least 15 minutes and allowed detection of uranium concentrations down to 6.2 ppb (5.7 nM) in vitro and 0.57 ppm (19 fCi; 0.52 μM) in vivo. Furthermore, to the best of our knowledge, this is the first report of a nanoparticle that detects an actinide cation via photoacoustic imaging.« less

  11. Synthesis of ion-exchange resin for selective thorium and uranyl ions sorption

    NASA Astrophysics Data System (ADS)

    Konovalov, Konstantin; Sachkov, Victor

    2017-11-01

    In this work, the method of ion-exchange resin synthesis selective to radionuclides (uranium and thorium) is presented. The method includes synthesis of polymeric styrene-divinylbenzene macroporous matrix with size of 0.1-0.2 mm, and its subsequent transformation by nitration and then reduction by tin (II) chloride. For passivation of active primary amines partially oxidation by oxygen from air is used. Obtained ion-exchange resin has ratio of sorption sum U+Th to sorption sum of other total rare-earth elements as 1:1.88 at ratio of solid to liquid phase 1:200. The proposed method of ion-exchange resin synthesis is scaled-up for laboratory reactors with volume of 5 and 50 liters.

  12. A spectroscopic study of uranyl speciation in chloride-bearing solutions at temperatures up to 250 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Migdisov, A. A.; Boukhalfa, H.; Timofeev, A.

    The speciation of U in NaCl-bearing solutions at temperatures up to 250 °C and concentrations of NaCl up to 1.5 m has been investigated using an in situ spectroscopic technique. The recorded spectra permit us to identify the species present in the solutions as UO 2 2+, UO 2Cl +, and UO 2Cl 2°. UO 2Cl 3 - is also likely present at high temperatures and NaCl concentrations, but concentrations of this species are insufficient for derivation of the formation constants. No evidence was found for species of higher ligand (Cl-) number. Thermodynamic stability constants derived for these species showmore » fair agreement with published data for 25 °C, but differ significantly from those predicted by an earlier high-temperature study (Dargent et al., 2013), which suggested that UO 2Cl 4 2- and UO 2Cl 5 3- contribute significantly to the mass balance of uranyl chloride complexes, especially at high temperature. In contrast, our data suggest that the main uranyl-chloride complex present in aqueous solutions at T >150 °C and concentrations of NaCl relevant to natural hydrothermal systems is UO 2Cl 2°. The values of the logarithms of thermodynamic formation constants (β) for the reaction UO 2 2+ + Cl - = UO 2Cl + are 0.02, 0.25, 0.55, 1.09, 1.59, and 2.28 derived at 25, 50, 100, 150, 200, and 250 °C, respectively. For the reaction UO 2 2+ + 2Cl - = UO 2Cl 2° the values of log β derived at these temperatures are 0.4, 0.58, 0.74, 1.44, 2.18, and 3.42. Values of the formation constant estimated for uranyl-chloride species predict the high concentrations of U observed by Richard et al. (2011) in fluid inclusions of the giant McArthur River unconformity-type uranium deposit.« less

  13. A spectroscopic study of uranyl speciation in chloride-bearing solutions at temperatures up to 250 °C

    DOE PAGES

    Migdisov, A. A.; Boukhalfa, H.; Timofeev, A.; ...

    2017-10-24

    The speciation of U in NaCl-bearing solutions at temperatures up to 250 °C and concentrations of NaCl up to 1.5 m has been investigated using an in situ spectroscopic technique. The recorded spectra permit us to identify the species present in the solutions as UO 2 2+, UO 2Cl +, and UO 2Cl 2°. UO 2Cl 3 - is also likely present at high temperatures and NaCl concentrations, but concentrations of this species are insufficient for derivation of the formation constants. No evidence was found for species of higher ligand (Cl-) number. Thermodynamic stability constants derived for these species showmore » fair agreement with published data for 25 °C, but differ significantly from those predicted by an earlier high-temperature study (Dargent et al., 2013), which suggested that UO 2Cl 4 2- and UO 2Cl 5 3- contribute significantly to the mass balance of uranyl chloride complexes, especially at high temperature. In contrast, our data suggest that the main uranyl-chloride complex present in aqueous solutions at T >150 °C and concentrations of NaCl relevant to natural hydrothermal systems is UO 2Cl 2°. The values of the logarithms of thermodynamic formation constants (β) for the reaction UO 2 2+ + Cl - = UO 2Cl + are 0.02, 0.25, 0.55, 1.09, 1.59, and 2.28 derived at 25, 50, 100, 150, 200, and 250 °C, respectively. For the reaction UO 2 2+ + 2Cl - = UO 2Cl 2° the values of log β derived at these temperatures are 0.4, 0.58, 0.74, 1.44, 2.18, and 3.42. Values of the formation constant estimated for uranyl-chloride species predict the high concentrations of U observed by Richard et al. (2011) in fluid inclusions of the giant McArthur River unconformity-type uranium deposit.« less

  14. A spectroscopic study of uranyl speciation in chloride-bearing solutions at temperatures up to 250 °C

    NASA Astrophysics Data System (ADS)

    Migdisov, A. A.; Boukhalfa, H.; Timofeev, A.; Runde, W.; Roback, R.; Williams-Jones, A. E.

    2018-02-01

    The speciation of U in NaCl-bearing solutions at temperatures up to 250 °C and concentrations of NaCl up to 1.5 m has been investigated using an in situ spectroscopic technique. The recorded spectra permit us to identify the species present in the solutions as UO22+, UO2Cl+, and UO2Cl2°. UO2Cl3- is also likely present at high temperatures and NaCl concentrations, but concentrations of this species are insufficient for derivation of the formation constants. No evidence was found for species of higher ligand (Cl-) number. Thermodynamic stability constants derived for these species show fair agreement with published data for 25 °C, but differ significantly from those predicted by an earlier high-temperature study (Dargent et al., 2013), which suggested that UO2Cl42- and UO2Cl53- contribute significantly to the mass balance of uranyl chloride complexes, especially at high temperature. In contrast, our data suggest that the main uranyl-chloride complex present in aqueous solutions at T > 150 °C and concentrations of NaCl relevant to natural hydrothermal systems is UO2Cl2°. The values of the logarithms of thermodynamic formation constants (β) for the reaction UO22+ + Cl- = UO2Cl+ are 0.02, 0.25, 0.55, 1.09, 1.59, and 2.28 derived at 25, 50, 100, 150, 200, and 250 °C, respectively. For the reaction UO22+ + 2Cl- = UO2Cl2° the values of log β derived at these temperatures are 0.4, 0.58, 0.74, 1.44, 2.18, and 3.42. Values of the formation constant estimated for uranyl-chloride species predict the high concentrations of U observed by Richard et al. (2011) in fluid inclusions of the giant McArthur River unconformity-type uranium deposit.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilgrim, Corey D.; Zavarin, Mavrik; Casey, William H.

    Here, the rates of ligand exchange into the geochemically important [NpO 2(CO 3) 3] 4– aqueous complex are measured as a function of pressure in order to complement existing data on the isostructural [UO 2(CO 3) 3] 4– complex. Experiments are conducted at pH conditions where the rate of exchange is independent of the proton concentration. Unexpectedly, the experiments show a distinct difference in the pressure dependencies of rates of exchange for the uranyl and neptunyl complexes.

  16. Micro-SHINE Uranyl Sulfate Irradiations at the Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youker, Amanda J.; Kalensky, Michael; Chemerisov, Sergey

    2016-08-01

    Peroxide formation due to water radiolysis in a uranyl sulfate solution is a concern for the SHINE Medical Technologies process in which Mo-99 is generated from the fission of dissolved low enriched uranium. To investigate the effects of power density and fission on peroxide formation and uranyl-peroxide precipitation, uranyl sulfate solutions were irradiated using a 50-MeV electron linac as part of the micro-SHINE experimental setup. Results are given for uranyl sulfate solutions with both high and low enriched uranium irradiated at different linac powers.

  17. 21 CFR 176.320 - Sodium nitrate-urea complex.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate-urea complex. 176.320 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.320 Sodium nitrate-urea complex. Sodium... the provisions of this section. (a) Sodium nitrate-urea complex is a clathrate of approximately two...

  18. 21 CFR 176.320 - Sodium nitrate-urea complex.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate-urea complex. 176.320 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.320 Sodium nitrate-urea complex. Sodium nitrate-urea complex may be safely used as a component of articles intended for use in producing...

  19. 21 CFR 176.320 - Sodium nitrate-urea complex.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate-urea complex. 176.320 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.320 Sodium nitrate-urea complex. Sodium nitrate-urea complex may be safely used as a component of articles intended for use in producing...

  20. 21 CFR 176.320 - Sodium nitrate-urea complex.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate-urea complex. 176.320 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.320 Sodium nitrate-urea complex. Sodium nitrate-urea complex may be safely used as a component of articles intended for use in producing...

  1. Determination of uranyl incorporation into biogenic manganese oxides using X-ray absorption spectroscopy and scattering

    USGS Publications Warehouse

    Webb, S.M.; Fuller, C.C.; Tebo, B.M.; Bargar, J.R.

    2006-01-01

    Biogenic manganese oxides are common and an important source of reactive mineral surfaces in the environment that may be potentially enhanced in bioremediation cases to improve natural attenuation. Experiments were performed in which the uranyl ion, UO22+ (U(VI)), at various concentrations was present during manganese oxide biogenesis. At all concentrations, there was strong uptake of U onto the oxides. Synchrotron-based extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray diffraction (XRD) studies were carried out to determine the molecular-scale mechanism by which uranyl is incorporated into the oxide and how this incorporation affects the resulting manganese oxide structure and mineralogy. The EXAFS experiments show that at low concentrations (2 mol % U, >4 ??M U(VI) in solution), the presence of U(VI) affects the stability and structure of the Mn oxide to form poorly ordered Mn oxide tunnel structures, similar to todorokite. EXAFS modeling shows that uranyl is present in these oxides predominantly in the tunnels of the Mn oxide structure in a tridentate complex. Observations by XRD corroborate these results. Structural incorporation may lead to more stable U(VI) sequestration that may be suitable for remediation uses. These observations, combined with the very high uptake capacity of the Mn oxides, imply that Mn-oxidizing bacteria may significantly influence dissolved U(VI) concentrations in impacted waters via sorption and incorporation into Mn oxide biominerals. ?? 2006 American Chemical Society.

  2. Uranium(VI) Scavenging by Amorphous Iron Phosphate Encrusting Sphaerotilus natans Filaments.

    PubMed

    Seder-Colomina, Marina; Morin, Guillaume; Brest, Jessica; Ona-Nguema, Georges; Gordien, Nilka; Pernelle, Jean-Jacques; Banerjee, Dipanjan; Mathon, Olivier; Esposito, Giovanni; van Hullebusch, Eric D

    2015-12-15

    U(VI) sorption to iron oxyhydroxides, precipitation of phosphate minerals, as well as biosorption on bacterial biomass are among the most reported processes able to scavenge U(VI) under oxidizing conditions. Although phosphates significantly influence bacterially mediated as well as iron oxyhydroxide mediated scavenging of uranium, the sorption or coprecipitation of U(VI) with poorly crystalline nanosized iron phosphates has been scarcely documented, especially in the presence of microorganisms. Here we show that dissolved U(VI) can be bound to amorphous iron phosphate during their deposition on Sphaerotilus natans filamentous bacteria. Uranium LIII-edge EXAFS analysis reveals that the adsorbed uranyl ions share an equatorial oxygen atom with a phosphate tetrahedron of the amorphous iron phosphate, with a characteristic U-P distance of 3.6 Å. In addition, the uranyl ions are connected to FeO6 octahedra with U-Fe distances at ~3.4 Å and at ~4.0 Å. The shortest U-Fe distance corresponds to a bidentate edge-sharing complex often reported for uranyl adsorption onto iron oxyhydroxides, whereas the longest U-Fe and U-P distances can be interpreted as a bidentate corner-sharing complex, in which two adjacent equatorial oxygen atoms are shared with the vertices of a FeO6 octahedron and of a phosphate tetrahedron. Furthermore, based on these sorption reactions, we demonstrate the ability of an attached S. natans biofilm to remove uranium from solution without any filtration step.

  3. COORDINATION COMPOUND-SOLVENT EXTRACTION PROCESS FOR URANIUM RECOVERY

    DOEpatents

    Reas, W.H.

    1959-03-10

    A method is presented for the separation of uranium from aqueous solutions containing a uranyl salt and thorium. Thc separation is effected by adding to such solutions an organic complexing agent, and then contacting the solution with an organic solvent in which the organic complexing agent is soluble. By use of the proper complexing agent in the proper concentrations uranium will be complexed and subsequently removed in the organic solvent phase, while the thorium remains in the aqueous phase. Mentioned as suitable organic complexing agents are antipyrine, bromoantipyrine, and pyramidon.

  4. Cleaving Off Uranyl Oxygens through Chelation: A Mechanistic Study in the Gas Phase

    DOE PAGES

    Abergel, Rebecca J.; de Jong, Wibe A.; Deblonde, Gauthier J. -P.; ...

    2017-10-11

    Recent efforts to activate the strong uranium-oxygen bonds in the dioxo uranyl cation have been limited to single oxo-group activation through either uranyl reduction and functionalization in solution, or by collision induced dissociation (CID) in the gas-phase, using mass spectrometry (MS). Here, we report and investigate the surprising double activation of uranyl by an organic ligand, 3,4,3-LI(CAM), leading to the formation of a formal U 6+ chelate in the gas-phase. The cleavage of both uranyl oxo bonds was experimentally evidence d by CID, using deuterium and 18O isotopic substitutions, and by infrared multiple photon dissociation (IRMPD) spectroscopy. Density functional theorymore » (DFT) computations predict that the overall reaction requires only 132 kJ/mol, with the first oxygen activation entailing about 107 kJ/mol. Here, combined with analysis of similar, but unreactive ligands, these results shed light on the chelation-driven mechanism of uranyl oxo bond cleavage, demonstrating its dependence on the presence of ligand hydroxyl protons available for direct interactions with the uranyl oxygens.« less

  5. Long-term accumulation of uranium in bones of Wistar rats as a function of intake dosages.

    PubMed

    Arruda-Neto, J D T; Guevara, M V Manso; Nogueira, G P; Saiki, M; Cestari, A C; Shtejer, K; Deppman, A; Pereira Filho, J W; Garcia, F; Geraldo, L P; Gouveia, A N; Guzmán, F; Mesa, J; Rodriguez, O; Semmler, R; Vanin, V R

    2004-01-01

    Groups of Wistar rats were fed with ration doped with uranyl nitrate at concentration A ranging from 0.5 to 100 ppm, starting after the weaning period and lasting until the postpuberty period when the animals were sacrificed. Uranium in the ashes of bones was determined by neutron activation analysis. It was found that the uranium concentration in the bones, as a function of A, exhibits a change in its slope at approximately 20 ppm-a probable consequence of the malfunctioning of kidneys. The uranium transfer coefficient was obtained and an analytical expression was fitted into the data, thus allowing extrapolation down to low doses. Internal and localized doses were calculated. Absorbed doses exceeded the critical dose, even for the lowest uranium dosage.

  6. Long-term accumulation and microdistribution of uranium in the bone and marrow of beagle dog.

    PubMed

    Arruda-Neto, J D T; Manso Guevara, M V; Nogueira, G P; Taricano, I D; Saiki, M; Zamboni, C B; Bonamin, L V; Camargo, S P; Cestari, A C; Deppman, A; Garcia, F; Gouveia, A N; Guzman, F; Helene, O A M; Jorge, S A C; Likhachev, V P; Martins, M N; Mesa, J; Rodriguez, O; Vanin, V R

    2004-08-01

    The accumulation and microdistribution of uranium in the bone and marrow of Beagle dogs were determined by both neutron activation and neutron-fission analysis. The experiment started immediately after the weaning period, lasting till maturity. Two animal groups were fed daily with uranyl nitrate at concentrations of 20 and 100 microg g(-1) food. Of the two measuring techniques, uranium accumulated along the marrow as much as in the bone, contrary to the results obtained with single, acute doses. The role played by this finding for the evaluation of radiobiological long-term risks is discussed. It was demonstrated, by means of a biokinetical approach, that the long-term accumulation of uranium in bone and marrow could be described by a piling up of single dose daily incorporation.

  7. Synthesis and SMM behaviour of trinuclear versus dinuclear 3d-5f uranyl(v)-cobalt(ii) cation-cation complexes.

    PubMed

    Chatelain, Lucile; Tuna, Floriana; Pécaut, Jacques; Mazzanti, Marinella

    2017-05-02

    Trinuclear versus dinuclear heterodimetallic U V O 2 + Co 2+ complexes were selectively assembled via a cation-cation interaction by tuning the ligand. The trimeric complex 2, with a linear [Co-O[double bond, length as m-dash]U[double bond, length as m-dash]O-Co] core, exhibits magnetic exchange and slow relaxation with a reversal barrier of 30.5 ± 0.9 K providing the first example of a U-Co exchange-coupled SMM.

  8. Production and Characterization of Desmalonichrome Relative Binding Affinity for Uranyl Ions in Relation to Other Siderophores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, Kai-For; Dai, Ziyu; Wunschel, David S.

    2016-06-24

    Siderophores are Fe binding secondary metabolites that have been investigated for their uranium binding properties. Much of the previous work has focused on characterizing hydroxamate types of siderophores, such as desferrioxamine B, for their uranyl binding affinity. Carboxylate forms of these metabolites hold potential to be more efficient chelators of uranyl, yet they have not been widely studied and are more difficult to obtain. Desmalonichrome is a carboxylate siderophore which is not commercially available and so was obtained from the ascomycete fungus Fusarium oxysporum cultivated under Fe depleted conditions. The relative affinity for uranyl binding of desmalonichrome was investigated usingmore » a competitive analysis of binding affinities between uranyl acetate and different concentrations of iron(III) chloride using electrospray ionization mass spectrometry (ESI-MS). In addition to desmalonichrome, three other siderophores, including two hydroxamates (desferrioxamine B and desferrichrome) and one carboxylate (desferrichrome A) were studied to understand their relative affinities for the uranyl ion at two pH values. The binding affinities of hydroxymate siderophores to uranyl ion were found to decrease to a greater degree at lower pH as the concentration of Fe (III) ion increases. On the other hand, lowering pH has little impact on the binding affinities between carboxylate siderophores and uranyl ion. Desmalonichrome was shown to have the greatest relative affinity for uranyl at any pH and Fe(III) concentration. These results suggest that acidic functional groups in the ligands are critical for strong chelation with uranium at lower pH.« less

  9. Structure and thermodynamic stability of UTa 3 O 10 , a U( v )-bearing compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xiaofeng; Lipp, Christian; Tiferet, Eitan

    Heating a mixture of uranyl(VI) nitrate and tantalum(V) oxide in the molar ratio of 2 : 3 to 1400 °C resulted in the formation of a new compound, UTa 3O 10. The honey colored to yellow brown crystals of UTa 3O 10 crystallize in an orthorhombic structure with the space group Fddd (no. 70), lattice parameters a = 7.3947(1), b = 12.7599(2), c = 15.8156(2) Å, and Z = 8. Vertex sharing [TaO 6] 7- octahedra of two crystallographically distinct Ta cations form a three dimensional tantalate framework. Within this framework, six membered rings of [TaO 6] 7- octahedra aremore » formed within the (001) plane. The center of these rings is occupied by the uranyl cations [UO 2] +, with an oxidation state of +5 for uranium. The pentavalence of U and Ta was confirmed by X-ray photoelectron spectroscopy and X-ray adsorption spectroscopy. The enthalpy of formation of UTa 3O 10 from Ta 2O 5, β-U 3O 7, and U 3O 8 has been determined to be 13.1 ± 18.1 kJ mol -1 using high temperature oxide melt solution calorimetry with sodium molybdate as the solvent at 700 °C. The close to zero enthalpy of formation of UTa 3O 10 can be explained by closely balanced structural stabilizing and destabilizing factors, which may also apply to other UM 3O 10 compounds.« less

  10. Partitioning of uranyl between ferrihydrite and humic substances at acidic and circum-neutral pH

    DOE PAGES

    Dublet, Gabrielle; Lezama Pacheco, Juan; Bargar, John R.; ...

    2017-07-14

    As part of a larger study of the reactivity and mobility of uranyl (U(VI)O 2 2+) cations in subsurface environments containing natural organic matter (NOM) and hydrous ferric oxides, we have examined the effect of reference humic and fulvic substances on the sorption of uranyl on 2-line ferrihydrite (Fh), a common, naturally occurring nano-Fe(III)-hydroxide. Uranyl was reacted with Fh at pH 4.6 and 7.0 in the presence and absence of Elliott Soil Humic Acid (ESHA) (0–835 ppm) or Suwanee River Fulvic Acid (SRFA) (0–955 ppm). Here, no evidence was found for reduction of uranyl by either form of NOM aftermore » 24 h of exposure.« less

  11. Partitioning of uranyl between ferrihydrite and humic substances at acidic and circum-neutral pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dublet, Gabrielle; Lezama Pacheco, Juan; Bargar, John R.

    As part of a larger study of the reactivity and mobility of uranyl (U(VI)O 2 2+) cations in subsurface environments containing natural organic matter (NOM) and hydrous ferric oxides, we have examined the effect of reference humic and fulvic substances on the sorption of uranyl on 2-line ferrihydrite (Fh), a common, naturally occurring nano-Fe(III)-hydroxide. Uranyl was reacted with Fh at pH 4.6 and 7.0 in the presence and absence of Elliott Soil Humic Acid (ESHA) (0–835 ppm) or Suwanee River Fulvic Acid (SRFA) (0–955 ppm). Here, no evidence was found for reduction of uranyl by either form of NOM aftermore » 24 h of exposure.« less

  12. Uranyl interaction with the hydrated (001) basal face of gibbsite: a combined theoretical and spectroscopic study.

    PubMed

    Veilly, Edouard; Roques, Jérôme; Jodin-Caumon, Marie-Camille; Humbert, Bernard; Drot, Romuald; Simoni, Eric

    2008-12-28

    The sorption of uranyl cations and water molecules on the basal (001) face of gibbsite was studied by combining vibrational and fluorescence spectroscopies together with density functional theory (DFT) computations. Both the calculated and experimental values of O-H bond lengths for the gibbsite bulk are in good agreement. In the second part, water sorption with this surface was studied to take into account the influence of hydration with respect to the uranyl adsorption. The computed water configurations agreed with previously published molecular dynamics studies. The uranyl adsorption in acidic media was followed by time-resolved laser-induced fluorescence spectroscopy and Raman spectrometry measurements. The existence of only one kind of adsorption site for the uranyl cation was then indicated in good agreement with the DFT calculations. The computation of the uranyl adsorption has been performed by means of a bidentate interaction with two surface oxygen atoms. The optimized structures displayed strong hydrogen bonds between the surface and the -yl oxygen of uranyl. The uranium-surface bond strength depends on the protonation state of the surface oxygen atoms. The calculated U-O(surface) bond lengths range between 2.1-2.2 and 2.6-2.7 A for the nonprotonated and protonated surface O atoms, respectively.

  13. PROCESS FOR THE SEPARATION OF HEAVY METALS

    DOEpatents

    Gofman, J.W.; Connick, R.E.; Wahl, A.C.

    1959-01-27

    A method is presented for thc separation of plutonium from uranium and the fission products with which it is associated. The method is based on the fact that hexavalent plutonium forms an insoluble complex precipitate with sodium acetate, as does the uranyl ion, while reduced plutonium is not precipitated by sodium acetate. Several embodiments are shown, e.g., a solution containing plutonium and uranium in the hexavalent state may be contacted with sodium acetate causing the formation of a sodium uranyl acetate precipitate which carries the plutonium values while the fission products remain in solution. If the original solution is treated with a reducing agent, so that the plutonium is reduced while the uranium remains in the hexavalent state, and sodium and acetate ions are added, the uranium will precipitutc while the plutonium remains in solution effecting separation of the Pu from urarium.

  14. Scale-Dependent Rates of Uranyl Surface Complexation Reaction in Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chongxuan; Shang, Jianying; Kerisit, Sebastien N.

    Scale-dependency of uranyl[U(VI)] surface complexation rates was investigated in stirred flow-cell and column systems using a U(VI)-contaminated sediment from the US Department of Energy, Hanford site, WA. The experimental results were used to estimate the apparent rate of U(VI) surface complexation at the grain-scale and in porous media. Numerical simulations using molecular, pore-scale, and continuum models were performed to provide insights into and to estimate the rate constants of U(VI) surface complexation at the different scales. The results showed that the grain-scale rate constant of U(VI) surface complexation was over 3 to 10 orders of magnitude smaller, dependent on themore » temporal scale, than the rate constant calculated using the molecular simulations. The grain-scale rate was faster initially and slower with time, showing the temporal scale-dependency. The largest rate constant at the grain-scale decreased additional 2 orders of magnitude when the rate was scaled to the porous media in the column. The scaling effect from the grain-scale to the porous media became less important for the slower sorption sites. Pore-scale simulations revealed the importance of coupled mass transport and reactions in both intragranular and inter-granular domains, which caused both spatial and temporal dependence of U(VI) surface complexation rates in the sediment. Pore-scale simulations also revealed a new rate-limiting mechanism in the intragranular porous domains that the rate of coupled diffusion and surface complexation reaction was slower than either process alone. The results provided important implications for developing models to scale geochemical/biogeochemical reactions.« less

  15. E-beam and UV induced fabrication of CeO2, Eu2O3 and their mixed oxides with UO2

    NASA Astrophysics Data System (ADS)

    Pavelková, Tereza; Vaněček, Vojtěch; Jakubec, Ivo; Čuba, Václav

    2016-07-01

    CeO2, Eu2O3 and mixed oxides of CeO2-UO2, Eu2O3-UO2 were fabricated. The preparative method was based on the irradiation of aqueous solutions containing cerium/europium (and uranyl) nitrates and ammonium formate. In the course of irradiation, the solid phase (precursor) was precipitated. The composition of irradiated solutions significantly affected the properties of precursor formed in the course of the irradiation. However, subsequent heat treatment of (amorphous) precursors at temperatures ≤650 °C invariably resulted in the formation of powder oxides with well-developed nanocrystals with linear crystallite size 13-27 nm and specific surface area 10-46 m2 g-1. The applicability of both ionizing (e-beam) and non-ionizing (UV) radiation was studied.

  16. Pressure dependence of carbonate exchange with [NpO 2(CO 3) 3] 4– in aqueous solutions

    DOE PAGES

    Pilgrim, Corey D.; Zavarin, Mavrik; Casey, William H.

    2016-12-13

    Here, the rates of ligand exchange into the geochemically important [NpO 2(CO 3) 3] 4– aqueous complex are measured as a function of pressure in order to complement existing data on the isostructural [UO 2(CO 3) 3] 4– complex. Experiments are conducted at pH conditions where the rate of exchange is independent of the proton concentration. Unexpectedly, the experiments show a distinct difference in the pressure dependencies of rates of exchange for the uranyl and neptunyl complexes.

  17. METAL PHTHALOCYANINES

    DOEpatents

    Frigerio, N.A.

    1962-03-27

    A process is given for preparing heavy metal phthalocyanines, sulfonated or not. The process comprises mixing an inorganic metal salt with dimethyl formamide or methyl sulfoxide; separating the metal complex formed from the solution; mixing the complex with an equimolar amount of sodium, potassium, lithium, magnesium, or beryllium sulfonated or unsulfonated phthalocyanine whereby heavy-metal phthalocyanine crystals are formed; and separating the crystals from the solution. Uranyl, thorium, lead, hafnium, and lanthanide rare earth phthalocyanines can be produced by the process. (AEC)

  18. Structure and Reactivity of X-ray Amorphous Uranyl Peroxide, U 2O 7

    DOE PAGES

    Odoh, Samuel O.; Shamblin, Jacob; Colla, Christopher A.; ...

    2016-03-14

    Recent accidents resulting in worker injury and radioactive contamination occurred due to pressurization of uranium yellowcake drums produced in the western USA. The drums contained an unexpected X-ray amorphous reactive form of uranium oxide, U 2O7. Heating hydrated uranyl peroxides produced during in situ mining unintentionally produced U 2O 7. It is a hygroscopic anhydrous uranyl peroxide that reacts rapidly with water to release O 2 gas and form metaschoepite, a uranyl-oxide hydrate. Quantum chemical calculations indicate that the most stable U 2O 7 conformer consists of two bent (UO 2) 2+ uranyl ions bridged by a peroxide group bidentatemore » and parallel to each uranyl ion, and a μ2-O atom, resulting in charge neutrality. A pair distribution function from neutron total scattering supports this structural model. The reactivity of U 2O 7 in water and with water in air is much higher than other uranium oxides, and this can be both hazardous and potentially advantageous in the nuclear fuel cycle.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    WANG,YIFENG; XU,HUIFANG

    Correctly identifying the possible alteration products and accurately predicting their occurrence in a repository-relevant environment are the key for the source-term calculation in a repository performance assessment. Uraninite in uranium deposits has long been used as a natural analog to spent fuel in a repository because of their chemical and structural similarity. In this paper, a SEM/AEM investigation has been conducted on a partially alternated uraninite sample from a uranium ore deposit of Shinkolobwe of Congo. The mineral formation sequences were identified: uraninite {yields} uranyl hydrates {yields} uranyl silicates {yields} Ca-uranyl silicates or uraninite {yields} uranyl silicates {yields} Ca-uranyl silicates.more » Reaction-path calculations were conducted for the oxidative dissolution of spent fuel in a representative Yucca Mountain groundwater. The predicted sequence is in general consistent with the SEM observations. The calculations also show that uranium carbonate minerals are unlikely to become major solubility-controlling mineral phases in a Yucca Mountain environment. Some discrepancies between model predictions and field observations are observed. Those discrepancies may result from poorly constrained thermodynamic data for uranyl silicate minerals.« less

  20. Uranyl sulfate irradiations at the Van de Graaff: A means to combat uranyl peroxide precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youker, Amanda J.; Kalensky, Michael; Quigley, Kevin J.

    As part of an effort to support SHINE Medical Technologies in developing a process to produce Mo-99 by neutron-induced fission, a series of irradiation experiments was performed with a 3 MeV Van de Graaff accelerator to generate high radiation doses in 0.5–2 mL uranyl sulfate solutions. The purpose was to determine what conditions result in uranyl peroxide precipitation and what can be done to prevent its formation. The effects of temperature, dose rate, uranium concentration, and the addition of known catalysts for the destruction of peroxide were determined.

  1. Lewis Acid Assisted Nitrate Reduction with Biomimetic Molybdenum Oxotransferase Complex.

    PubMed

    Elrod, Lee Taylor; Kim, Eunsuk

    2018-03-05

    The reduction of nitrate (NO 3 - ) to nitrite (NO 2 - ) is of significant biological and environmental importance. While Mo IV (O) and Mo VI (O) 2 complexes that mimic the active site structure of nitrate reducing enzymes are prevalent, few of these model complexes can reduce nitrate to nitrite through oxygen atom transfer (OAT) chemistry. We present a novel strategy to induce nitrate reduction chemistry of a previously known catalyst Mo IV (O)(SN) 2 (2), where SN = bis(4- tert-butylphenyl)-2-pyridylmethanethiolate, that is otherwise incapable of achieving OAT with nitrate. Addition of nitrate with the Lewis acid Sc(OTf) 3 (OTf = trifluoromethanesulfonate) to 2 results in an immediate and clean conversion of 2 to Mo VI (O) 2 (SN) 2 (1). The Lewis acid additive further reacts with the OAT product, nitrite, to form N 2 O and O 2 . This work highlights the ability of Sc 3+ additives to expand the reactivity scope of an existing Mo IV (O) complex together with which Sc 3+ can convert nitrate to stable gaseous molecules.

  2. Structural evolution of a uranyl peroxide nano-cage fullerene: U60, at elevated pressures

    NASA Astrophysics Data System (ADS)

    Turner, K. M.; Lin, Y.; Zhang, F.; McGrail, B.; Burns, P. C.; Mao, W. L.; Ewing, R. C.

    2015-12-01

    U60 is a uranyl peroxide nano-cage that adopts a highly symmetric fullerene topology; it is topologically identical to C60. Several studies on the aqueous-phase of U60 clusters, [UO2(O2)(OH)]6060-, have shown its persistence in complex solutions and over lengthy time scales. Peroxide enhances corrosion of nuclear fuel in a reactor accident-uranyl peroxides often form near contaminated sites. U60 (Fm-3) crystallizes with approximate formula: Li68K12(OH)20[UO2(O2)(OH)]60(H2O)310. Here, we have used the diamond anvil cell (DAC) to examine U60 to understand the stability of this cluster at high pressures. We used a symmetric DAC with 300 μm culet diamonds and two different pressure-transmitting media: a mixture of methanol+ethanol and silicone oil. Using a combination of in situ Raman spectroscopy and synchrotron XRD, and electrospray ionization mass spectroscopy (ESI-MS) ex situ, we have determined the pressure-induced evolution of U60. Crystalline U60 undergoes an irreversible phase transition to a tetragonal structure at 4.1 GPa, and irreversibly amorphizes at 13 GPa. The amorphous phase likely consists of clusters of U60. Above 15 GPa, the U60 cluster is irreversibly destroyed. ESI-MS shows that this phase consists of species that likely have between 10-20 uranium atoms. Raman spectroscopy complements the diffraction measurements. U60 shows two dominant vibrational modes: a symmetric stretch of the uranyl U-O triple bond (810 cm-1), and a symmetric stretch of the U-O2-U peroxide bond (820 cm-1). As pressure is increased, these modes shift to higher wavenumbers, and overlap at 4 GPa. At 15 GPa, their intensity decreases below detection. These experiments reveal several novel behaviors including a new phase of U60. Notably, the amorphization of U60 occurs before the collapse of its cluster topology. This is different from the behavior of solvated C60 at high pressure, which maintains a hcp structure up to 30 GPa, while the clusters disorder. These results suggest that uranyl peroxide nano-cage clusters are persistent once formed, regardless of the state of the cluster: crystalline, amorphous, or in solution. These results add to the body of evidence suggesting that uranyl peroxides are important compounds to consider when dealing with environmental impacts of nuclear waste contamination.

  3. Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Juan; Zhou, Zhang-Jian; Lan, Jian-Hui; Ge, Chang-Chun; Chai, Zhi-Fang; Zhang, Peihong; Shi, Wei-Qun

    2017-12-01

    Remediation of the contamination by long-lived actinide wastes is extremely important but also challenging. Adsorption based techniques have attracted much research attention for their potential as low-cost and effective methods to reduce the radioactive waste from solution. In this work, we have investigated the adsorption behavior of uranyl species [with the general form UO2(L1)x(L2)y(L3)z, where L1, L2 and L3 stand for ligands H2O, OH and CO3, respectively] on hydroxylated vanadium carbide V2C(OH)2 MXene nanosheets using density functional theory based simulation methods We find that all studied uranyl species can stably bond to hydroxylated MXene with binding energies ranging from -3.3 to -4.6 eV, suggesting that MXenes could be effective adsorbers for uranyl ions. The strong adsorption is achieved by forming two Usbnd O bonds with the hydroxylated Mxene. In addition, the axial oxygen atoms from the uranyl ions form hydrogen bonds with the hydroxylated V2C, further strengthening the adsorption. We have also investigated the effects of F termination on the uranyl adsorption properties of V2C nanosheets. Usbnd F bonds are in general weaker than Usbnd O bonds on the adsorption site, suggesting that F terminated Mexne is less favorable for uranyl adsorption applications.

  4. Fiber optic detector and method for using same for detecting chemical species

    DOEpatents

    Baylor, Lewis C.; Buchanan, Bruce R.

    1995-01-01

    An optical sensing device for uranyl and other substances, a method for making an optical sensing device and a method for chemically binding uranyl and other indicators to glass, quartz, cellulose and similar substrates. The indicator, such as arsenazo III, is immobilized on the substrate using a chemical binding process. The immobilized arsenazo III causes uranyl from a fluid sample to bind irreversibly to the substrate at its active sites, thus causing absorption of a portion of light transmitted through the substrate. Determination of the amount of light absorbed, using conventional means, yields the concentration of uranyl present in the sample fluid. The binding of uranyl on the substrate can be reversed by subsequent exposure of the substrate to a solution of 2,6-pyridinedicarboxylic acid. The chemical binding process is suitable for similarly binding other indicators, such as bromocresol green.

  5. Dynamic interplay between uranyl phosphate precipitation, sorption, and phase evolution

    DOE PAGES

    Munasinghe, P. Sumudu; Elwood Madden, Megan E.; Brooks, Scott C.; ...

    2015-04-17

    We report that natural examples demonstrate uranyl-phosphate minerals can maintain extremely low levels of aqueous uranium in groundwaters due to their low solubility. Thus, greater understanding of the geochemical factors leading to uranyl phosphate precipitation may lead to successful application of phosphate-based remediation methods. However, the solubility of uranyl phosphate phases varies over >3 orders of magnitude, with the most soluble phases typically observed in lab experiments. To understand the role of common soil/sediment mineral surfaces in the nucleation and transformation of uranyl phosphate minerals under environmentally relevant conditions, we carried out batch experiments with goethite and mica at pHmore » 6 in mixed electrolyte solutions ranging from 1–800 μM U and 1–800 μM P. All experiments ended with uranium concentrations below the USEPA MCL for U, but with 2–3 orders of magnitude difference in uranium concentrations.« less

  6. Bicarbonate Elution of Uranium from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Horng-Bin; Wai, Chien M.; Kuo, Li-Jung

    Uranium adsorbed on amidoxime-based polyethylene fibers in simulated seawater can be quantitatively eluted using 3 M KHCO3 at 40°C. Thermodynamic calculations are in agreement with the experimental observation that at high bicarbonate concentrations (3 M) uranyl ions bound to amidoxime molecules are converted to uranyl tris-carbonato complex in the aqueous solution. The elution process is basically the reverse reaction of the uranium adsorption process which occurs at a very low bicarbonate concentration (~10-3 M) in seawater. In real seawater experiments, the bicarbonate elution is followed by a NaOH treatment to remove natural organic matter adsorbed on the polymer adsorbent. Usingmore » the sequential bicarbonate and NaOH elution, the adsorbent is reusable after rinsing with deionized water and the recycled adsorbent shows no loss of uranium loading capacity based on real seawater experiments.« less

  7. Bicarbonate Elution of Uranium from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Horng-Bin; Wai, Chien M.; Kuo, Li-Jung

    Uranium adsorbed on amidoxime-based polyethylene fibers in simulated seawater can be quantitatively eluted using 3 M KHCO 3 at 40°C. Thermodynamic calculations are in agreement with the experimental observation that at high bicarbonate concentrations (3 M) uranyl ions bound to amidoxime molecules are converted to uranyl tris-carbonato complex in the aqueous solution. The elution process is basically the reverse reaction of the uranium adsorption process which occurs at a very low bicarbonate concentration (~10 -3 M) in seawater. The bicarbonate elution is followed by a NaOH treatment to remove natural organic matter adsorbed on the polymer adsorbent, in real seawatermore » experiments. Furthermore, by using the sequential bicarbonate and NaOH elution, the adsorbent is reusable after rinsing with deionized water and the recycled adsorbent shows no loss of uranium loading capacity based on real seawater experiments.« less

  8. Bicarbonate Elution of Uranium from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    DOE PAGES

    Pan, Horng-Bin; Wai, Chien M.; Kuo, Li-Jung; ...

    2017-05-02

    Uranium adsorbed on amidoxime-based polyethylene fibers in simulated seawater can be quantitatively eluted using 3 M KHCO 3 at 40°C. Thermodynamic calculations are in agreement with the experimental observation that at high bicarbonate concentrations (3 M) uranyl ions bound to amidoxime molecules are converted to uranyl tris-carbonato complex in the aqueous solution. The elution process is basically the reverse reaction of the uranium adsorption process which occurs at a very low bicarbonate concentration (~10 -3 M) in seawater. The bicarbonate elution is followed by a NaOH treatment to remove natural organic matter adsorbed on the polymer adsorbent, in real seawatermore » experiments. Furthermore, by using the sequential bicarbonate and NaOH elution, the adsorbent is reusable after rinsing with deionized water and the recycled adsorbent shows no loss of uranium loading capacity based on real seawater experiments.« less

  9. Preliminary Experimental Results using a Steady State ICP Flow Reactor to Investigate Condensation Chemistry for Nuclear Forensics

    NASA Astrophysics Data System (ADS)

    Koroglu, Batikan; Armstrong, Mike; Cappelli, Mark; Chernov, Alex; Crowhurst, Jonathan; Mehl, Marco; Radousky, Harry; Rose, Timothy; Zaug, Joe

    2016-10-01

    The high temperature chemistry of rapidly condensing matter is under investigation using a steady state inductively coupled plasma (ICP) flow reactor. The objective is to study chemical processes on cooling time scales similar to that of a low yield nuclear fireball. The reactor has a nested set of gas flow rings that provide flexibility in the control of hydrodynamic conditions and mixing of chemical components. Initial tests were run using two different aqueous solutions (ferric nitrate and uranyl nitrate). Chemical reactants passing through the plasma torch undergo non-linear cooling from 10,000K to 1,000K on time scales of <0.1 to 0.5s depending on flow conditions. Optical spectroscopy measurements were taken at different positions along the flow axis to observe the in situ spatial and temporal evolution of chemical species at different temperatures. The current data offer insights into the changes in oxide chemistry as a function of oxygen fugacity. The time resolved measurements will also serve as a validation target for the development of kinetic models that will be used to describe chemical fractionation during nuclear fireball condensation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Ultrastructural and DNA damaging effects of lead nitrate in the liver.

    PubMed

    Narayana, K; Al-Bader, Maie

    2011-01-01

    A ubiquitous environmental toxicant - lead is known to affect several organ systems. This study was designed to investigate the effects of lead nitrate exposure on liver structure and DNA fragmentation. Adult male Wistar rats were treated orally with lead nitrate at the dose levels of 0%, 0.5% and 1% for 60 days and sacrificed on the next day. The liver was processed for thick sections and evaluated after toludine blue staining and by electron microscopy after staining with uranyl acetate and lead citrate. The DNA damage was assessed by DNA fragmentation assay. The liver weight was not significantly affected in the experimental groups. Hepatocyte nuclei were not shrunk, instead lead was mitogenic to hepatocytes as indicated by an increase in the number of binucleated hepatocytes (P<0.05). The number of mitochondria per hepatocyte decreased in a dose-dependent manner (P<0.05). Qualitatively, the necrotic changes such as small to large-sized cytoplasmic vacuoles often displacing the organelles, decrease in hepatocyte microvilli, degeneration of mitochondria, and vacuolar encroachment of nuclei and dilatation of sinusoids were observed. The qualitative changes were induced in a dose-dependent manner. Kupffer cells or Ito cells did not present any notable structural changes. Although the electrophoretic flow of DNA fragments was observed in lead-treated groups, these changes were not significantly different from that in control as evaluated by optical density. In conclusion, lead induces necrotic changes with simultaneous mitogenic activity; however, it does not induce significant DNA damage in the liver. Copyright © 2009 Elsevier GmbH. All rights reserved.

  11. 75 FR 36701 - Issuance of Environmental Assessment and Finding of No Significant Impact for Modification of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-28

    ... in the form of highly water soluble uranyl fluoride. EnergySolutions also proposed the addition of...; the concentration of residual uranyl fluoride in the K-25 piping waste in the railcars would likely... soluble uranyl fluoride in quantities in excess of the limits in Condition 4 of the 2006 Order (i.e., up...

  12. Evidence of a Nonphotochemical Mechanism for the Solid-State Formation of Uranyl Peroxide.

    PubMed

    Kirkegaard, Marie C; Miskowiec, Andrew; Ambrogio, Michael W; Anderson, Brian B

    2018-05-21

    We have demonstrated the solid-state formation of a uranyl peroxide (UP) species from hydrated uranyl fluoride via a uranyl hydroxide intermediate, the first observation of a UP species formed in a solid-state reaction. Water vapor pressure is shown to be a driving factor of both the loss of fluorine and the subsequent formation of peroxo units. We have ruled out a photochemical mechanism for formation of the UP species by demonstrating that the same reaction occurs in the dark. A radiolytic mechanism is unlikely because of the low radioactivity of the sample material, suggesting the existence of a novel UP formation mechanism.

  13. METHOD OF INHIBITING CORROSION IN URANYL SULFATE SOLUTIONS

    DOEpatents

    Bohlmann, E.G.; Griess, J.C. Jr.

    1960-08-23

    A method is given for treating a uranyl sulfate solution to inhibit the corrosiveness of the solution and elevate the phase separation temperature of the solution. Lithium sulfate is added to the solution in an amount ranging from 0.25 to 1.3 times the uranyl sulfate concentration. The corrosiveness of the solution with respect to stainless steel is substantially decreased by this means. This treatment also serves to raise the phase separation temperature of the solution (above 250 deg C), at which time the uranyl sulfate solution separates into two liquid phases of unequal uranium concentration and thus becomes unsuitable as nuclear reactor fuel.

  14. Europium, uranyl, and thorium-phenanthroline amide complexes in acetonitrile solution: an ESI-MS and DFT combined investigation.

    PubMed

    Xiao, Cheng-Liang; Wang, Cong-Zhi; Mei, Lei; Zhang, Xin-Rui; Wall, Nathalie; Zhao, Yu-Liang; Chai, Zhi-Fang; Shi, Wei-Qun

    2015-08-28

    The tetradentate N,N'-diethyl-N,N'-ditolyl-2,9-diamide-1,10-phenanthroline (Et-Tol-DAPhen) ligand with hard-soft donor atoms has been demonstrated to be promising for the group separation of actinides from highly acidic nuclear wastes. To identify the formed complexes of this ligand with actinides and lanthanides, electrospray ionization mass spectrometry (ESI-MS) combined with density functional theory (DFT) calculations was used to probe the possible complexation processes. The 1 : 2 Eu-L species ([EuL2(NO3)](2+)) can be observed in ESI-MS at low metal-to-ligand ([M]/[L]) ratios, whereas the 1 : 1 Eu-L species ([EuL(NO3)2](+)) can be observed when the [M]/[L] ratio is higher than 1.0. However, ([UO2L(NO3)](+)) is the only detected species for the uranyl complexes. The [ThL2(NO3)2](2+) species can be observed at low [M]/[L] ratios; the 1 : 2 species ([ThL2(NO3)](3+)) and a new 1 : 1 species ([ThL(NO3)3](+)) can be detected at high [M]/[L] ratios. Collision-induced dissociation (CID) results showed that Et-Tol-DAPhen ligands can coordinate strongly with metal ions, and the coordination moieties remain intact under CID conditions. Natural bond orbital (NBO), molecular electrostatic potential (MEP), electron localization function (ELF), atoms in molecules (AIM) and molecular orbital (MO) analyses indicated that the metal-ligand bonds of the actinide complexes exhibited more covalent character than those of the lanthanide complexes. In addition, according to thermodynamic analysis, the stable cationic M-L complexes in acetonitrile are found to be in good agreement with the ESI-MS results.

  15. Structure and thermodynamic stability of UTa 3O 10, aU(v)-bearing compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xiaofeng; Lipp, Christian; Tiferet, Eitan

    Heating a mixture of uranyl (VI) nitrate and tantalum (V) oxide in the molar ratio of 2 : 3 to 1400 °C resulted in the formation of a new compound, UTa 3O 10. The honey colored to yellow brown crystals of UTa 3O 10 crystallize in an orthorhombic structure with the space group Fddd (no. 70), lattice parameters a = 7.3947(1), b = 12.7599(2), c = 15.8156(2) Å, and Z = 8. Vertex sharing [TaO 6] 7– octahedra of two crystallographically distinct Ta cations form a three dimensional tantalate framework. Within this framework, six membered rings of [TaO 6] 7–more » octahedra are formed within the (001) plane. The center of these rings is occupied by the uranyl cations [UO 2]+, with an oxidation state of +5 for uranium. The pentavalence of U and Ta was confirmed by X-ray photoelectron spectroscopy and X-ray adsorption spectroscopy. The enthalpy of formation of UTa 3O 10 from Ta 2O 5, β-U 3O 7, and U3O8 has been determined to be 13.1 ± 18.1 kJ mol–1 using high temperature oxide melt solution calorimetry with sodium molybdate as the solvent at 700 °C. As a result, the close to zero enthalpy of formation of UTa 3O 10 can be explained by closely balanced structural stabilizing and destabilizing factors, which may also apply to other UM 3O 10 compounds.« less

  16. Structure and thermodynamic stability of UTa 3O 10, aU(v)-bearing compound

    DOE PAGES

    Guo, Xiaofeng; Lipp, Christian; Tiferet, Eitan; ...

    2016-09-09

    Heating a mixture of uranyl (VI) nitrate and tantalum (V) oxide in the molar ratio of 2 : 3 to 1400 °C resulted in the formation of a new compound, UTa 3O 10. The honey colored to yellow brown crystals of UTa 3O 10 crystallize in an orthorhombic structure with the space group Fddd (no. 70), lattice parameters a = 7.3947(1), b = 12.7599(2), c = 15.8156(2) Å, and Z = 8. Vertex sharing [TaO 6] 7– octahedra of two crystallographically distinct Ta cations form a three dimensional tantalate framework. Within this framework, six membered rings of [TaO 6] 7–more » octahedra are formed within the (001) plane. The center of these rings is occupied by the uranyl cations [UO 2]+, with an oxidation state of +5 for uranium. The pentavalence of U and Ta was confirmed by X-ray photoelectron spectroscopy and X-ray adsorption spectroscopy. The enthalpy of formation of UTa 3O 10 from Ta 2O 5, β-U 3O 7, and U3O8 has been determined to be 13.1 ± 18.1 kJ mol–1 using high temperature oxide melt solution calorimetry with sodium molybdate as the solvent at 700 °C. As a result, the close to zero enthalpy of formation of UTa 3O 10 can be explained by closely balanced structural stabilizing and destabilizing factors, which may also apply to other UM 3O 10 compounds.« less

  17. Gas-Phase Coordination Complexes of UVIO{2/2+}, NpVIO{2/2+}, and PuVIO{2/2+} with Dimethylformamide

    NASA Astrophysics Data System (ADS)

    Rutkowski, Philip X.; Rios, Daniel; Gibson, John K.; van Stipdonk, Michael J.

    2011-11-01

    Electrospray ionization of actinyl perchlorate solutions in H2O with 5% by volume of dimethylformamide (DMF) produced the isolatable gas-phase complexes, [AnVIO2(DMF)3(H2O)]2+ and [AnVIO2(DMF)4]2+, where An = U, Np, and Pu. Collision-induced dissociation confirmed the composition of the dipositive coordination complexes, and produced doubly- and singly-charged fragment ions. The fragmentation products reveal differences in underlying chemistries of uranyl, neptunyl, and plutonyl, including the lower stability of Np(VI) and Pu(VI) compared with U(VI).

  18. Use of LEU in the aqueous homogeneous medical isotope production reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ball, R.M.

    1997-08-01

    The Medical Isotope Production Reactor (MIPR) is an aqueous solution of uranyl nitrate in water, contained in an aluminum cylinder immersed in a large pool of water which can provide both shielding and a medium for heat exchange. The control rods are inserted at the top through re-entrant thimbles. Provision is made to remove radiolytic gases and recombine emitted hydrogen and oxygen. Small quantities of the solution can be continuously extracted and replaced after passing through selective ion exchange columns, which are used to extract the desired products (fission products), e.g. molybdenum-99. This reactor type is known for its largemore » negative temperature coefficient, the small amount of fuel required for criticality, and the ease of control. Calculation using TWODANT show that a 20% U-235 enriched system, water reflected can be critical with 73 liters of solution.« less

  19. Validation of MCNP: SPERT-D and BORAX-V fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Palmer, B.

    1992-11-01

    This report discusses critical experiments involving SPERT-D{sup 1,2} fuel elements and BORAX-V{sup 3-8} fuel which have been modeled and calculations performed with MCNP. MCNP is a Monte Carlo based transport code. For this study continuous-energy nuclear data from the ENDF/B-V cross section library was used. The SPERT-D experiments consisted of various arrays of fuel elements moderated and reflected with either water or a uranyl nitrate solution. Some SPERT-D experiments used cadmium as a fixed neutron poison, while others were poisoned with various concentrations of boron in the moderating/reflecting solution. ne BORAX-V experiments were arrays of either boiling fuel rod assembliesmore » or superheater assemblies, both types of arrays were moderated and reflected with water. In one boiling fuel experiment, two fuel rods were replaced with borated stainless steel poison rods.« less

  20. Validation of MCNP: SPERT-D and BORAX-V fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C.; Palmer, B.

    1992-11-01

    This report discusses critical experiments involving SPERT-D[sup 1,2] fuel elements and BORAX-V[sup 3-8] fuel which have been modeled and calculations performed with MCNP. MCNP is a Monte Carlo based transport code. For this study continuous-energy nuclear data from the ENDF/B-V cross section library was used. The SPERT-D experiments consisted of various arrays of fuel elements moderated and reflected with either water or a uranyl nitrate solution. Some SPERT-D experiments used cadmium as a fixed neutron poison, while others were poisoned with various concentrations of boron in the moderating/reflecting solution. ne BORAX-V experiments were arrays of either boiling fuel rod assembliesmore » or superheater assemblies, both types of arrays were moderated and reflected with water. In one boiling fuel experiment, two fuel rods were replaced with borated stainless steel poison rods.« less

  1. AGR-5/6/7 LEUCO Kernel Fabrication Readiness Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Douglas W.; Bailey, Kirk W.

    2015-02-01

    In preparation for forming low-enriched uranium carbide/oxide (LEUCO) fuel kernels for the Advanced Gas Reactor (AGR) fuel development and qualification program, Idaho National Laboratory conducted an operational readiness review of the Babcock & Wilcox Nuclear Operations Group – Lynchburg (B&W NOG-L) procedures, processes, and equipment from January 14 – January 16, 2015. The readiness review focused on requirements taken from the American Society Mechanical Engineers (ASME) Nuclear Quality Assurance Standard (NQA-1-2008, 1a-2009), a recent occurrence at the B&W NOG-L facility related to preparation of acid-deficient uranyl nitrate solution (ADUN), and a relook at concerns noted in a previous review. Topicmore » areas open for the review were communicated to B&W NOG-L in advance of the on-site visit to facilitate the collection of objective evidences attesting to the state of readiness.« less

  2. Characterization of the Oum Er Rbia (Morocco) high basin karstic water sources by using solid state nuclear track detectors and radon as a natural tracer.

    PubMed

    Khalil, N; Misdaq, M A; Berrazzouk, S; Mania, J

    2002-06-01

    Uranium and thorium contents as well as radon alpha-activities per unit volume were evaluated inside different water samples by using a method based on calculating the CR-39 and LR-115 type II solid state nuclear track detectors (SSNTDs) detection efficiencies for the emitted alpha-particles and measuring the resulting track density rates. The validity of the SSNTD technique utilized was checked by analysing uranyl nitrate (UO2(NO3)26H2O) standard solutions. A relationship between water radon concentration and water transmission of different water sources belonging to two regions of the Middle Atlas (Morocco) water reservoir was found. The influence of the water flow rate as well as the permeability and fracture system of the host rocks of the sources studied was investigated.

  3. Study of continuous precipitation of ADU for the implantation in the pilot installation at the Atomic Energy Institute, Brazil. Estudo de precipitacao continua de DUA para a implantacao na instalacao piloto CEQ-IEA (in Portuguese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araujo, Jose Adroalado de

    1974-05-15

    The paper deals with the ammonium diuranate continuous precipitation with a high chemical purity degree from uranyl nitrate solutions, using 1.2 and 2.4 ammonium hydroxide solutions and gaseous NH{sub 3} as a precipitating agent. The precipitations were carried out in a continuous procedure with one and two stages. The variables studied were the NH[sub 4}OH solutions concentration, ADU precipitation curve, the flow rate of reactants, the temperature of the precipitation, pH of the suspended ADU, and ammonium diuranate filtrability. The experimental work performed and the data obtained permitted the design of a chemical reactor for the continuous nuclear grade ADUmore » precipitation at the Chemical Engineering Department of the Atomic Energy Institute of Sao Paulo.« less

  4. Coordination trends in alkali metal crown ether uranyl halide complexes: the series [A(crown)]2[UO(2)X(4)] where A=Li, Na, K and X=Cl, Br.

    PubMed

    Danis, J A; Lin, M R; Scott, B L; Eichhorn, B W; Runde, W H

    2001-07-02

    UO(2)(C(2)H(3)O(2))(2).2H(2)O reacts with AX or A(C(2)H(3)O(2) or ClO(4)) (where A = Li, Na, K; X = Cl, Br) and crown ethers in HCl or HBr aqueous solutions to give the sandwich-type compounds [K(18-crown-6)](2)[UO(2)Cl(4)] (1), [K(18-crown-6)](2)[UO(2)Br(4)] (2), [Na(15-crown-5)](2)[UO(2)Cl(4)] (3), [Na(15-crown-5)](2)[UO(2)Br(4)] (4), [Li(12-crown-4)](2)[UO(2)Cl(4)] (5), and [Li(12-crown-4)](2)[UO(2)Br(4)] (6). The compounds have been characterized by single-crystal X-ray diffraction, powder diffraction, elemental analysis, IR, and Raman spectroscopy. The [UO(2)X(4)](2-) ions coordinate to two [A(crown)](+) cations through the four halides only (2), through two halides only (3), through the two uranyl oxygens and two halides (3, 4), or through the two uranyl oxygen atoms only (5, 6). Raman spectra reveal nu(U-O) values that correlate with expected trends. The structural trends are discussed within the context of classical principles of hard-soft acid-base theory.

  5. Evidence of a Nonphotochemical Mechanism for the Solid-State Formation of Uranyl Peroxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkegaard, Marie C.; Miskowiec, Andrew J.; Ambrogio, Michael W.

    Here, we have demonstrated the solid-state formation of a uranyl peroxide (UP) species from hydrated uranyl fluoride via a uranyl hydroxide intermediate, the first observation of a UP species formed in a solid-state reaction. Water vapor pressure is shown to be a driving factor of both the loss of fluorine and the subsequent formation of peroxo units. We have ruled out a photochemical mechanism for formation of the UP species by demonstrating that the same reaction occurs in the dark. A radiolytic mechanism is unlikely because of the low radioactivity of the sample material, suggesting the existence of a novelmore » UP formation mechanism.« less

  6. Evidence of a Nonphotochemical Mechanism for the Solid-State Formation of Uranyl Peroxide

    DOE PAGES

    Kirkegaard, Marie C.; Miskowiec, Andrew J.; Ambrogio, Michael W.; ...

    2018-05-10

    Here, we have demonstrated the solid-state formation of a uranyl peroxide (UP) species from hydrated uranyl fluoride via a uranyl hydroxide intermediate, the first observation of a UP species formed in a solid-state reaction. Water vapor pressure is shown to be a driving factor of both the loss of fluorine and the subsequent formation of peroxo units. We have ruled out a photochemical mechanism for formation of the UP species by demonstrating that the same reaction occurs in the dark. A radiolytic mechanism is unlikely because of the low radioactivity of the sample material, suggesting the existence of a novelmore » UP formation mechanism.« less

  7. Complex phylogeny and gene expression patterns of members of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family (NPF) in wheat

    PubMed Central

    Buchner, Peter; Hawkesford, Malcolm J.

    2014-01-01

    NPF (formerly referred to as low-affinity NRT1) and ‘high-affinity’ NRT2 nitrate transporter genes are involved in nitrate uptake by the root, and transport and distribution of nitrate within the plant. The NPF gene family consists of 53 members in Arabidopsis thaliana, however only 11 of these have been functionally characterized. Although homologous genes have been identified in genomes of different plant species including some cereals, there is little information available for wheat (Triticum aestivum). Sixteen genes were identified in wheat homologous to characterized Arabidopsis low-affinity nitrate transporter NPF genes, suggesting a complex wheat NPF gene family. The regulation of wheat NFP genes by plant N-status indicated involvement of these transporters in substrate transport in relation to N-metabolism. The complex expression pattern in relation to tissue specificity, nitrate availability and senescence may be associated with the complex growth patterns of wheat depending on sink/source demands, as well as remobilization during grain filling. PMID:24913625

  8. Synthesis, structure, luminescence and photocatalytic properties of an uranyl-2,5-pyridinedicarboxylate coordination polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Si, Zhen-Xiu; Xu, Wei, E-mail: xuwei@nbu.edu.cn; Zheng, Yue-Qing, E-mail: yqzhengmc@163.com

    2016-07-15

    An uranium coordination polymer, namely [(UO{sub 2}(pydc)(H{sub 2}O)]·H{sub 2}O (1) (H{sub 2}pydc=2,5-pyridinedicarboxylic acid), has been obtained by hydrothermal method and characterized by X-ray single crystal structure determination. Structural analysis reveals that complex 1 exhibits 1D chain coordination polymer, in which UO{sub 2}{sup 2+} ions are bridged by 2,5-pyridinedicarboxylate ligands and the chains are connected into a 3D supramolecular network by O–H···O hydrogen bond interactions and π–π stacking interactions. The photocatalytic properties of 1 for degradation of methylene blue (MB), Rhodamine B (RhB) and methyl orange (MO) under Hg-lamp irradiation have been performed, and the amount of the catalyst as wellmore » as Hg-lamp irradiation with different power on the photodegradation efficiency of MB have been investigated. Elemental analyses, infrared spectroscopy, TG-DTA analyses and luminescence properties were also discussed. - Graphical abstract: Complex 1 exhibits 1D chain coordination polymer in which UO{sub 2}{sup 2+} ions are bridged by 2,5-pyridinedicarboxylate ligand. Photoluminescence studies reveal that complex 1 exhibits characteristic emissions of uranyl centers. The compound is selective to degraded dye and displays good photocatalytic activities for the degradation of MB under Hg-lamp. Display Omitted - Highlights: • Complex 1 exhibits 1D chain coordination polymer. • Complex 1 could degrade methylene blue and Rhodamine B under Hg-lamp irradiation. • Luminescent property of 1 has been studied.« less

  9. First Cationic Uranyl-Organic Framework with Anion-Exchange Capabilities.

    PubMed

    Bai, Zhuanling; Wang, Yanlong; Li, Yuxiang; Liu, Wei; Chen, Lanhua; Sheng, Daopeng; Diwu, Juan; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2016-07-05

    By controlling the extent of hydrolysis during the self-assembly process of a zwitterionic-based ligand with uranyl cations, we observed a structural evolution from the neutral uranyl-organic framework [(UO2)2(TTTPC)(OH)O(COOH)]·1.5DMF·7H2O (SCU-6) to the first cationic uranyl-organic framework with the formula of [(UO2)(HTTTPC)(OH)]Br·1.5DMF·4H2O (SCU-7). The crystal structures of SCU-6 and SCU-7 are layers built with tetranuclear and dinuclear uranyl clusters, respectively. Exchangeable halide anions are present in the interlaminar spaces balancing the positive charge of layers in SCU-7. Therefore, SCU-7 is able to effectively remove perrhenate anions from aqueous solution. Meanwhile, the H2PO4(-)-exchanged SCU-7 material exhibits a moderate proton conductivity of 8.70 × 10(-5) S cm(-1) at 50 °C and 90% relative humidity, representing nearly 80 times enhancement compared to the original material.

  10. Unusual bridging of three nitrates with two bridgehead protons in an octaprotonated azacryptand

    PubMed Central

    Saeed, Musabbir A.; Fronczek, Frank R.; Huang, Ming-Ju; Hossain, Md. Alamgir

    2010-01-01

    Structural analysis of the nitrate complex of a thiophene-based azacryptand suggests that three nitrates are bridged with two bridgehead protons which play the topological role of two transition metal ions in a classical Werner type coordination complex bridging three anions. PMID:20066306

  11. Sonication-assisted synthesis of a new cationic zinc nitrate complex with a tetradentate Schiff base ligand: Crystal structure, Hirshfeld surface analysis and investigation of different parameters influence on morphological properties.

    PubMed

    Mousavi, S A; Montazerozohori, M; Masoudiasl, A; Mahmoudi, G; White, J M

    2018-09-01

    A nanostructured cationic zinc nitrate complex with a formula of [ZnLNO 3 ]NO 3 (where L = (N 2 E,N 2' E)-N 1 ,N 1' -(ethane-1,2-diyl)bis(N 2 -((E)-3-phenylallylidene)ethane-1,2-diamine)) was prepared by sonochemical process and characterized by single crystal X-ray crystallography, scanning electron microscopy (SEM), FT-IR and NMR spectroscopy and X-ray powder diffraction (XRPD). The X-ray analysis demonstrates the formation of a cationic complex that metal center is five-coordinated by four nitrogen atom from Schiff base ligand and one oxygen atom from nitrate group. The crystal packing analysis demonstrates the essential role of the nitrate groups in the organization of supramolecular structure. The morphology and size of ultrasound-assisted synthesized zinc nitrate complex have been investigated using scanning electron microscopy (SEM) by changing parameters such as the concentration of initial reactants, the sonication power and reaction temperature. In addition the calcination of zinc nitrate complex in air atmosphere led to production of zinc oxide nanoparticles. Copyright © 2018. Published by Elsevier B.V.

  12. Laser induced phosphorescence uranium analysis

    DOEpatents

    Bushaw, B.A.

    1983-06-10

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  13. Laser induced phosphorescence uranium analysis

    DOEpatents

    Bushaw, Bruce A.

    1986-01-01

    A method is described for measuring the uranium content of aqueous solutions wherein a uranyl phosphate complex is irradiated with a 5 nanosecond pulse of 425 nanometer laser light and resultant 520 nanometer emissions are observed for a period of 50 to 400 microseconds after the pulse. Plotting the natural logarithm of emission intensity as a function of time yields an intercept value which is proportional to uranium concentration.

  14. Uranyl carboxyphosphonates that incorporate Cd(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsobrook, Andrea N.; Alekseev, Evgeny V.; Depmeier, Wulf

    2011-05-15

    The hydrothermal treatment of UO{sub 3}, Cd(CH{sub 3}CO{sub 2}){sub 2}.2H{sub 2}O, and triethyl phosphonoacetate results in the formation of Cd{sub 2}[(UO{sub 2}){sub 6}(PO{sub 3}CH{sub 2}CO{sub 2}){sub 3}O{sub 3}(OH)(H{sub 2}O){sub 2}].16H{sub 2}O (CdUPAA-1), [Cd{sub 3}(UO{sub 2}){sub 6}(PO{sub 3}CH{sub 2}CO{sub 2}){sub 6}(H{sub 2}O){sub 13}].6H{sub 2}O (CdUPAA-2), and Cd(H{sub 2}O){sub 2}[(UO{sub 2})(PO{sub 3}CH{sub 2}CO{sub 2})(H{sub 2}O)]{sub 2} (CdUPAA-3). CdUPAA-1 adopts a cubic three-dimensional structure constructed from planar uranyl oxide clusters containing both UO{sub 7} pentagonal bipyramids and UO{sub 8} hexagonal bipyramids that are linked by Cd(II) cations and phosphonoacetate to yield large cavities approximately 16 A across that are filled with disordered watermore » molecules. CdUPAA-2 forms a rhombohedral three-dimensional channel structure that is assembled from UO{sub 7} pentagonal bipyramids that are bridged by phosphonoacetate. CdUPAA-3 is layered with the hydrated Cd(II) cations incorporated directly into the layers linking one-dimensional uranyl phosphonate substructures together. In this structure, there are complex networks of hydrogen bonds that exist within the sheets, and also stitch the sheets together. -- Graphical abstract: A view of part of the cubic structure of Cd{sub 2}[(UO{sub 2}){sub 6}(PO{sub 3}CH{sub 2}CO{sub 2}){sub 3}O{sub 3}(OH)(H{sub 2}O){sub 2}].16H{sub 2}O. Display Omitted highlights: > High symmetry uranyl compounds. > Three-dimensional structures. > Porous materials. > Heterobimetallic compounds.« less

  15. Identification of Uranyl Minerals Using Oxygen K-Edge X Ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Jesse D.; Bowden, Mark E.; Resch, Charles T.

    2016-03-01

    Uranium analysis is consistently needed throughout the fuel cycle, from mining to fuel fabrication to environmental monitoring. Although most of the world’s uranium is immobilized as pitchblende or uraninite, there exists a plethora of secondary uranium minerals, nearly all of which contain the uranyl cation. Analysis of uranyl compounds can provide clues as to a sample’s facility of origin and chemical history. X-ray absorption spectroscopy is one technique that could enhance our ability to identify uranium minerals. Although there is limited chemical information to be gained from the uranium X-ray absorption edges, recent studies have successfully used ligand NEXAFS tomore » study the physical chemistry of various uranium compounds. This study extends the use of ligand NEXAFS to analyze a suite of uranium minerals. We find that major classes of uranyl compounds (carbonate, oxyhydroxide, silicate, and phosphate) exhibit characteristic lineshapes in the oxygen K-edge absorption spectra. As a result, this work establishes a library of reference spectra that can be used to classify unknown uranyl minerals.« less

  16. Combination of solid phase extraction and dispersive liquid-liquid microextraction for separation/preconcentration of ultra trace amounts of uranium prior to its fiber optic-linear array spectrophotometry determination.

    PubMed

    Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Shakerian, Farid; Shiralian Esfahani, Golnaz

    2013-12-15

    A simple and sensitive method for the separation and preconcentration of the ultra trace amounts of uranium and its determination by spectrophotometry was developed. The method is based on the combination of solid phase extraction and dispersive liquid-liquid microextraction. Thus, by passing the sample through the basic alumina column, the uranyl ion and some cations are separated from the sample matrix. The retained uranyl ion along with the cations are eluted with 5 mL of nitric acid (2 mol L(-1)) and after neutralization of the eluent, the extracted uranyl ion is converted to its anionic benzoate complex and is separated from other cations by extraction of its ion pair with malachite green into small volume of chloroform using dispersive liquid-liquid microextraction. The amount of uranium is then determined by the absorption measurement of the extracted ion pair at 621 nm using flow injection spectrophotometry. Under the optimum conditions, with 500 mL of the sample, a preconcentration factor of 1980, a detection limit of 40 ng L(-1), and a relative standard deviation of 4.1% (n=6) at 400 ng L(-1) were obtained. The method was successfully applied to the determination of uranium in mineral water, river water, well water, spring water and sea water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. ELECTROLYTIC PRODUCTION OF URANIUM TETRAFLUORIDE

    DOEpatents

    Lofthouse, E.

    1954-08-31

    This patent relates to electrolytic methods for the production of uranium tetrafluoride. According to the present invention a process for the production of uranium tetrafluoride comprises submitting to electrolysis an aqueous solution of uranyl fluoride containing free hydrofluoric acid. Advantageously the aqueous solution of uranyl fluoride is obtained by dissolving uranium hexafluoride in water. On electrolysis, the uranyl ions are reduced to uranous tons at the cathode and immediately combine with the fluoride ions in solution to form the insoluble uranium tetrafluoride which is precipitated.

  18. Sorption of uranyl ions from various acido systems by amphoteric epoxy amine ion-exchange resins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rychkov, V.N.; Radionov, B.K.; Molochnikov, L.S.

    1995-03-01

    Sorption of uranyl ions by epoxy amine ampholytes with N-monomethylenephosphonic acid groups modified with pyridine or quaternary ammonium groups was studied under dynamic conditions. Heterocyclic nitrogen favors sorption of uranyl ion from fluoride, sulfate, and fluoride-sulfate solutions. The ESR studies of mono- and bimetallic forms of nitrogen-containing ampholytes with copper(II) as paramagnetic marker revealed the characteristics of uranium(VI) interaction with cation- and anion-exchange groups and its dependence on the fluoride content in solution.

  19. Fluorimetric determination of some sulfur containing compounds through complex formation with terbium (Tb+3) and uranium (U+3).

    PubMed

    Taha, Elham Anwer; Hassan, Nagiba Yehya; Aal, Fahima Abdel; Fattah, Laila El-Sayed Abdel

    2007-05-01

    Two simple, sensitive and specific fluorimetric methods have been developed for the determination of some sulphur containing compounds namely, Acetylcysteine (Ac), Carbocisteine (Cc) and Thioctic acid (Th) using terbium Tb+3 and uranium U+3 ions as fluorescent probes. The proposed methods involve the formation of a ternary complex with Tb+3 in presence of Tris-buffer method (I) and a binary complex with aqueous uranyl acetate solution method (II). The fluorescence quenching of Tb+3 at 510, 488 and 540 nm (lambda(ex) 250, 241 and 268 nm) and of uranyl acetate at 512 nm (lambda(ex) 240 nm) due to the complex formation was quantitatively measured for Ac, Cc and Th, respectively. The reaction conditions and the fluorescence spectral properties of the complexes have been investigated. Under the described conditions, the proposed methods were applicable over the concentration range (0.2-2.5 microg ml(-1)), (1-4 microg ml(-1)) and (0.5-3.5 microg ml(-1)) with mean percentage recoveries 99.74+/-0.36, 99.70+/-0.52 and 99.43+/-0.23 for method (I) and (0.5-6 microg ml(-1)), (0.5-5 microg ml(-1)), and (1-6 microg ml(-1)) with mean percentage recoveries 99.38+/-0.20, 99.82+/-0.28 and 99.93+/-0.32 for method (II), for the three cited drugs, respectively. The proposed methods were successfully applied for the determination of the studied compounds in bulk powders and in pharmaceutical formulations, as well as in presence of their related substances. The results obtained were found to be in agree statistically with those obtained by official and reported ones. The two methods were validated according to USP guidelines and also assessed by applying the standard addition technique.

  20. Protein scaffolds for selective enrichment of metal ions

    DOEpatents

    He, Chuan; Zhou, Lu; Bosscher, Michael

    2016-02-09

    Polypeptides comprising high affinity for the uranyl ion are provided. Methods for binding uranyl using such proteins are likewise provided and can be used, for example, in methods for uranium purification or removal.

  1. Structure of complexes of uranyl succinate with carbamide and dimethylurea

    NASA Astrophysics Data System (ADS)

    Serezhkina, L. B.; Grigor'ev, M. S.; Seliverstova, N. V.; Serezhkin, V. N.

    2017-09-01

    Three new succinate-containing complexes of uranyl with carbamide ( Urea) and N,N'-dimethylurea ( s-Dmur) are synthesized and studied by IR spectroscopy and X-ray diffraction. Structures of the same type, [UO2( Urea)4(H2O)][(UO2)2(C4H4O4)3] · 3H2O and [UO2( Urea)4(H2O)][(UO2)2(C4H4O4)3] · 2 Urea contain two sorts of uranium-containing complex groups, namely, mononuclear [UO2( Urea)4(H2O)]2+ cations and two-dimensional [(UO2)2(C4H4O4)3]2- anions described by crystal-chemical formulas AM 5 1 and A 2 Q 3 02, respectively ( A = UO2 2+, M 1 = Urea or H2O, Q 02 = C4H4O4 2-), and differ only in the nature of noncoordinated molecules—water and carbamide. The main structural groups of the [(UO2)2(C4H4O4)2( s-Dmur)3] crystals are [(UO2)2(C4H4O4)2( s-Dmur)3] chains belonging to the A 2 Q 2 02 M 3 1 ( A = UO2 2+, Q 02 = C4H4O4 2-, M 1 = s-Dmur) crystal-chemical group. Specific features of intermolecular interactions in the crystal structures are revealed using the Voronoi-Dirichlet method of molecular polyhedra.

  2. Engineered nano-magnetic iron oxide-urea-activated carbon nanolayer sorbent for potential removal of uranium (VI) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Mahmoud, Mohamed E.; Khalifa, Mohamed A.; El Wakeel, Yasser M.; Header, Mennatllah S.; Abdel-Fattah, Tarek M.

    2017-04-01

    A novel magnetic nanosorbent was designed using chemical grafting of nano-magnetite (Nano-Fe3O4) with nanolayer of activated carbon (AC) via urea intermediate for the formation of Nano-Fe3O4-Urea-AC. Characterizing was carried out using FT-IR, SEM, HR-TEM, TGA, point of zero charge (Pzc) and surface area analysis. The designed sorbent maintained its magnetic properties and nanosized structure in the range of 8.7-14.1 nm. The surface area was identified as 389 m2/g based on the BET method. Sorption of uranyl ions from aqueous solutions was studied and evaluated in different experimental conditions. Removal of uranyl ions increased with increasing in pH value and the maximum percentage removal was established at pH 5.0. The removal and sorption processes of uranyl ions by Nano-Fe3O4-Urea-AC sorbent were studied and optimized using the batch technique. The key variables affecting removal of uranyl ions were studied including the effect of the contact time, dosage of Nano-Fe3O4-Urea-AC sorbent, reaction temperature, initial uranyl ions concentration and interfering anions and cations.

  3. Immobilization of selenate by iron in aqueous solution under anoxic conditions and the influence of uranyl

    NASA Astrophysics Data System (ADS)

    Puranen, Anders; Jonsson, Mats; Dähn, Rainer; Cui, Daqing

    2009-08-01

    In proposed high level radioactive waste repositories a large part of the spent nuclear fuel (SNF) canisters are commonly composed of iron. Selenium is present in spent nuclear fuel as a long lived fission product. This study investigates the influence of iron on the uptake of dissolved selenium in the form of selenate and the effect of the presence of dissolved uranyl on the above interaction of selenate. The iron oxide, and selenium speciation on the surfaces was investigated by Raman spectroscopy. X-ray Absorption Spectroscopy was used to determine the oxidation state of the selenium and uranium on the surfaces. Under the simulated groundwater conditions (10 mM NaCl, 2 mM NaHCO 3, <0.1 ppm O 2) the immobilized selenate was found to be reduced to oxidation states close to zero or lower and uranyl was found to be largely reduced to U(IV). The near simultaneous reduction of uranyl was found to greatly enhance the rate of selenate reduction. These findings suggest that the presence of uranyl being reduced by an iron surface could substantially enhance the rate of reduction of selenate under anoxic conditions relevant for a repository.

  4. Cation–cation interactions and cation exchange in a series of isostructural framework uranyl tungstates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balboni, Enrica; Burns, Peter C., E-mail: pburns@nd.edu; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556

    2014-05-01

    The isotypical compounds (UO{sub 2}){sub 3}(WO{sub 6})(H{sub 2}O){sub 5} (1), Ag(UO{sub 2}){sub 3}(WO{sub 6})(OH)(H{sub 2}O){sub 3} (2), K(UO{sub 2}){sub 3}(WO{sub 6})OH(H{sub 2}O){sub 4} (3), Rb(UO{sub 2}){sub 3}(WO{sub 6})(OH)(H{sub 2}O){sub 3.5} (4), and Cs(UO{sub 2}){sub 3}(WO{sub 6})OH(H{sub 2}O){sub 3} (5) were synthesized, characterized, and their structures determined. Each crystallizes in space group Cc. (1): a=12.979 (3), b=10.238 (2), c=11.302 (2), β=102.044 (2); (2): a=13.148 (2), b=9.520 (1), c=11.083 (2), β=101.568 (2); (3): a=13.111 (8), b=9.930 (6), c=11.242 (7), β=101.024 (7); (4): a=12.940 (2), b=10.231 (2), c=11.259(2), β=102.205 (2); (5): a=12.983 (3), b=10.191 (3), c=11.263 (4), β=101.661 (4). Compounds 1–5 are amore » framework of uranyl and tungsten polyhedra containing cation–cation interactions. The framework has three symmetrically distinct U(VI) cations, one tungsten, sixteen to eighteen oxygen atoms, and in 2–5, one monovalent cation. Each atom occupies a general position. Each U(VI) cation is present as a typical (UO{sub 2}){sup 2+} uranyl ion in an overall pentagonal bipyramidal coordination environment. Each pentagonal bipyramid shares two equatorial edges with two other pentagonal bipyramids, forming a trimer. Trimers are connected into chains by edge-sharing with WO{sub 6} octahedra. Chains are linked through cation–cation interactions between two symmetrically independent uranyl ions. This yields a remarkably complex system of intersecting channels that extend along [0 0 1] and [−1 1 0]. The cation exchange properties of 2 and 3 were characterized at room temperature and at 140 °C. - Graphical abstract: Chains of uranium and tungsten polyhedra are connected into a three dimensional framework by cation–cation interactions occurring between two symmetrically independent uranyl pentagonal bipyramids. Monovalent cations present in channels within the structure can be exchanged by room temperature or mild hydrothermal treatments. The framework of these compounds is robust to cation exchange and heat. (yellow polyhedra=uranium pentagonal bipyramids; blue polyhedra=tungsten octahedral, purple balls=K; yellow balls=Na; grey balls=Tl). - Highlights: • Five isostructural uranyl tungstates compounds were synthesized hydrothermally. • The structures consist of a chains of uranium and tungstate polyhedral. • Chains are connected into a framework by cation–cation interactions. • Cation exchange does not alter the structural integrity of the compounds. • Cation exchange was successful at room temperature and mild hydrothermal conditions.« less

  5. Molecular Simulations of the Diffusion of Uranyl Carbonate Species in Nanosized Mineral Fractures

    NASA Astrophysics Data System (ADS)

    Kerisit, S.; Liu, C.

    2010-12-01

    Uranium is a major groundwater contaminant at uranium processing and mining sites as a result of intentional and accidental discharges of uranium-containing waste products into subsurface environments. Recent characterization has shown that uranium preferentially associates with intragrain and intra-aggregate domains in some of the uranium-contaminated sediments collected from the US Department of Energy Hanford Site [1, 2]. In these sediments, uranium existed as precipitated and/or adsorbed phases in grain micropores with nano- to microscale sizes. Desorption and diffusion characterization studies and continuum-scale modeling indicated that ion diffusion in the microfractures is a major mechanism that led to preferential uranium concentration in the microfracture regions and will control the future mobility of uranium in the subsurface sediments [1, 3-4]. However, the diffusion properties of uranyl species in the intragrain regions, especially at the solid-liquid interface, are still poorly understood. Therefore, a general aim of this work is to provide atomic-level insights into the contribution of microscopic surface effects to the slow diffusion process of uranyl species in porous media with nano- to microsized fractures. In this presentation, we will first present molecular dynamics (MD) simulations of feldspar-water interfaces to investigate their interfacial structure and dynamics and establish a theoretical framework for subsequent simulations of water and ion diffusion at these interfaces [5]. We will then report on MD simulations carried out to probe the effects of confinement and of the presence of the mineral surface on the diffusion of water and electrolyte ions in nanosized feldspar fractures [6]. Several properties of the mineral-water interface were varied, such as the fracture width, the ionic strength of the contacting solution, and the surface charge. Our calculations reveal a 2.0-2.5 nm interfacial region within which the diffusion properties of water and that of the electrolyte ions differ significantly from those in bulk aqueous solutions. We will then present MD simulations of the diffusion of a series of alkaline-earth uranyl carbonate species in aqueous solutions [7]. The MD simulations show that the alkaline-earth uranyl carbonate complexes have distinct water exchange dynamics, which could lead to different reactivities. Finally, we will present recent results on the diffusion and adsorption of uranyl carbonate species in intragrain micropores, modeled with the feldspar-water interfaces mentioned in the above, to help interpret the diffusion behavior of uranium in contaminated sediments. [1] Liu C. et al. Geochim. Cosmochim. Acta 68 4519 (2004) [2] McKinley J. P. et al. Geochim. Cosmochim. Acta 70 1873 (2006) [3] Liu C. et al. Water Resour. Res. 42 W12420 (2006) [4] Ilton E. S. et al. Environ. Sci. Technol. 42 1565 (2009) [5] Kerisit S. et al. Geochim. Cosmochim. Acta 72 1481 (2008) [6] Kerisit S. and Liu C. Environ. Sci. Technol. 43 777 (2009) [7] Kerisit S. and Liu C. Geochim. Cosmochim. Acta 74 4937 (2010)

  6. Preliminary experiments on the reduction of the uranyl ion to uraninite by carbonaceous substances

    USGS Publications Warehouse

    Breger, Irving A.; Moore, Richard T.

    1955-01-01

    An aqueous solution of uranyl sulfate containing a suspension of subbituminous coal has been heated at 210 C for three days. Examination of the coal at the end of the experiment showed it to contain 31.8 percent uranium recognizable as uraninite by a sharp, strong X-ray diffraction pattern. A similar experiment with degraded spruce wood also led to the formation of uraninite but in lesser quantity and with broader lines in the X-ray diffraction pattern. The ability of coal or wood to reduce the uranyl ion is a critical factor in the correlation of studies of uraniferous coals containing the uranyl ion with studies of uraninite-bearing coalified wood from the Colorado Plateau. Although these results are based an preliminary experiments, they are extremely important geochemically and warrant the development of the series of controlled studies that are proposed.

  7. Organic Nitrates: A Complex Family of Atmospheric Trace Constituents

    NASA Astrophysics Data System (ADS)

    Ballschmiter, K.; Fischer, R. G.; Grünert, A.; Kastler, J.; Schneider, M.; Woidich, S.

    2003-04-01

    Biogenic and geogenic hydrocarbons are the precursors of organic nitrates that are formed as tropospheric photo-oxidation products in the presence of NOx. Air chemistry leads to a very complex pattern of nitric acid esters: alkyl nitrates, aryl-alkyl nitrates, and bifunctional nitrates like alkyl dinitrates, hydroxy alkyl nitrates and carbonyl alkyl nitrates. We have analyzed the pattern of organic nitrates in air samples after adsorption/thermal desorption (low volume sampling-LVS) or adsorption/solvent desorption (high volume sampling-HVS) by capillary gas chromatography with electron capture (ECD) and mass spectrometric detection (MSD) using air aliquotes of 100 up to 3000 liters on column. The complexity of the organic nitrates found in air requires a group pre-separation by normal phase liquid chromatography. A detection limit per compound of 0.005 ppt(v) is achieved by our approach. We have synthesized a broad spectrum of organic nitrates as reference compounds. Air samples were taken from central Europe, the US West (Utah, Nevada, California), and the North- and South Atlantic including Antarctica. Levels and patterns of the regional and global occurrence of the various groups of C1-C12 organic nitrates including dinitrates and hydroxy nitrates and nitrates of isoprene (2-methylbutadiene) are presented. Werner G., J. Kastler, R. Looser, K. Ballschmiter: "Organic nitrates of isoprene as atmospheric trace compounds" Angewandte Chemie - International Edition (1999) 38: 1634-1637. Woidich S., O. Froescheis, O. Luxenhofer, K. Ballschmiter: "EI- and NCI-mass spectrometry of arylalkyl nitrates and their occurrence in urban air" Fresenius J. Anal. Chem. (1999) 364 : 91-99. Kastler, J; Jarman, W; Ballschmiter, K.: "Multifunctional organic nitrates as constituents in European and US urban photo-smog" Fresenius J. Anal. Chem. (2000) 368:244-249. Schneider M., K. Ballschmiter: "C3-C14 alkyl nitrates in remote South Atlantic air" Chemosphere (1999) 38: 233-244. Fischer, R G; Kastler, J; Ballschmiter, K.: "Levels and pattern of alkyl nitrates, multifunctional alkyl nitrates, and halocarbons in the air over the Atlantic Ocean" J. Geophys. Research (2000) 105:14473-14494. Fischer R.G. , R. Weller, H.-W. Jacobi, K. Ballschmiter: "Levels and patterns of volatile organic nitrates and halocarbons in the air at Neumayer Station (70°), Antarctic" Chemosphere (2002) 48:981-992

  8. SOLVENT EXTRACTION PROCESS

    DOEpatents

    Jonke, A.A.

    1957-10-01

    In improved solvent extraction process is described for the extraction of metal values from highly dilute aqueous solutions. The process comprises contacting an aqueous solution with an organic substantially water-immiscible solvent, whereby metal values are taken up by a solvent extract phase; scrubbing the solvent extract phase with an aqueous scrubbing solution; separating an aqueous solution from the scrubbed solvent extract phase; and contacting the scrubbed solvent phase with an aqueous medium whereby the extracted metal values are removed from the solvent phase and taken up by said medium to form a strip solution containing said metal values, the aqueous scrubbing solution being a mixture of strip solution and an aqueous solution which contains mineral acids anions and is free of the metal values. The process is particularly effective for purifying uranium, where one starts with impure aqueous uranyl nitrate, extracts with tributyl phosphate dissolved in carbon tetrachloride, scrubs with aqueous nitric acid and employs water to strip the uranium from the scrubbed organic phase.

  9. The effect of humic acid on uranyl sorption onto bentonite at trace uranium levels.

    PubMed

    Ivanov, Peter; Griffiths, Tamara; Bryan, Nick D; Bozhikov, Gospodin; Dmitriev, Serguei

    2012-11-01

    The effect of humic acid (HA) on U(VI) sorption on bentonite was studied in batch experiments at room temperature and ambient atmosphere at a (237)U(VI) concentration of 8.4 × 10(-11) M and HA concentration of 100 mg L(-1). The distribution of U(VI) between the liquid and solid phases was studied as a function of pH and ionic strength both in the absence and presence of HA. It was shown that the uranyl sorption on bentonite is strongly dependent on pH and the presence of humics, and the effect of the addition order was negligible. In the absence of HA an enhancement in the uptake with increasing pH was observed and a sharp sorption edge was found to take place between pH 3.2 and 4.2. The presence of HA slightly increases uranium(VI) sorption at low pH and curtails it at moderate pH, compared to the absence of HA. In the basic pH range for both the presence and absence of HA the sorption of uranium is significantly reduced, which could be attributed to the formation of soluble uranyl carbonate complexes. The influence of ionic strength on U(VI) and HA uptake by bentonite were investigated in the range of 0.01-1.0 M, and while there was an enhancement in the sorption of humic acid with increasing ionic strength, no significant effect of the ionic strength on the U(VI) sorption was observed in both the absence and presence of HA.

  10. Uranyl peroxide enhanced nuclear fuel corrosion in seawater.

    PubMed

    Armstrong, Christopher R; Nyman, May; Shvareva, Tatiana; Sigmon, Ginger E; Burns, Peter C; Navrotsky, Alexandra

    2012-02-07

    The Fukushima-Daiichi nuclear accident brought together compromised irradiated fuel and large amounts of seawater in a high radiation field. Based on newly acquired thermochemical data for a series of uranyl peroxide compounds containing charge-balancing alkali cations, here we show that nanoscale cage clusters containing as many as 60 uranyl ions, bonded through peroxide and hydroxide bridges, are likely to form in solution or as precipitates under such conditions. These species will enhance the corrosion of the damaged fuel and, being thermodynamically stable and kinetically persistent in the absence of peroxide, they can potentially transport uranium over long distances.

  11. M4FT-15OR03100415 - Update on COF-based Adsorbent Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayes, Richard T.; Dai, Sheng

    2015-02-01

    This letter report provides an update on activities focused on generating nanoporous adsorbents involving covalent organic frameworks (COF) and zeolitic imidazolium frameworks (ZIF). The adsorbents have been generated and screened in a uranyl-spiked brine (6 ppm U) to understand uranyl-binding behavior. Porous organic polymers (POP) also qualify under this title and are similar to the COF PPN-6 that is discussed herein. Seven COF/POP and one 1 ZIF were synthesized and screened for uranyl adsorption. Seawater screening is on-going via batch testing while flow screening systems are being developed at PNNL.

  12. Uranyl peroxide enhanced nuclear fuel corrosion in seawater

    PubMed Central

    Armstrong, Christopher R.; Nyman, May; Shvareva, Tatiana; Sigmon, Ginger E.; Burns, Peter C.; Navrotsky, Alexandra

    2012-01-01

    The Fukushima-Daiichi nuclear accident brought together compromised irradiated fuel and large amounts of seawater in a high radiation field. Based on newly acquired thermochemical data for a series of uranyl peroxide compounds containing charge-balancing alkali cations, here we show that nanoscale cage clusters containing as many as 60 uranyl ions, bonded through peroxide and hydroxide bridges, are likely to form in solution or as precipitates under such conditions. These species will enhance the corrosion of the damaged fuel and, being thermodynamically stable and kinetically persistent in the absence of peroxide, they can potentially transport uranium over long distances. PMID:22308442

  13. MCNP5 CALCULATIONS REPLICATING ARH-600 NITRATE DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FINFROCK SH

    This report serves to extend the previous document: 'MCNP Calculations Replicating ARH-600 Data' by replicating the nitrate curves found in ARH-600. This report includes the MCNP models used, the calculated critical dimension for each analyzed parameter set, and the resulting data libraries for use with the CritView code. As with the ARH-600 data, this report is not meant to replace the analysis of the fissile systems by qualified criticality personnel. The M CNP data is presented without accounting for the statistical uncertainty (although this is typically less than 0.001) or bias and, as such, the application of a reasonable safetymore » margin is required. The data that follows pertains to the uranyl nitrate and plutonium nitrate spheres, infinite cylinders, and infinite slabs of varying isotopic composition, reflector thickness, and molarity. Each of the cases was modeled in MCNP (version 5.1.40), using the ENDF/B-VI cross section set. Given a molarity, isotopic composition, and reflector thickness, the fissile concentration and diameter (or thicknesses in the case of the slab geometries) were varied. The diameter for which k-effective equals 1.00 for a given concentration could then be calculated and graphed. These graphs are included in this report. The pages that follow describe the regions modeled, formulas for calculating the various parameters, a list of cross-sections used in the calculations, a description of the automation routine and data, and finally the data output. The data of most interest are the critical dimensions of the various systems analyzed. This is presented graphically, and in table format, in Appendix B. Appendix C provides a text listing of the same data in a format that is compatible with the CritView code. Appendices D and E provide listing of example Template files and MCNP input files (these are discussed further in Section 4). Appendix F is a complete listing of all of the output data (i.e., all of the analyzed dimensions and the resulting k{sub eff} values).« less

  14. Highly Sensitive and Selective Uranium Detection in Natural Water Systems Using a Luminescent Mesoporous Metal-Organic Framework Equipped with Abundant Lewis Basic Sites: A Combined Batch, X-ray Absorption Spectroscopy, and First Principles Simulation Investigation.

    PubMed

    Liu, Wei; Dai, Xing; Bai, Zhuanling; Wang, Yanlong; Yang, Zaixing; Zhang, Linjuan; Xu, Lin; Chen, Lanhua; Li, Yuxiang; Gui, Daxiang; Diwu, Juan; Wang, Jianqiang; Zhou, Ruhong; Chai, Zhifang; Wang, Shuao

    2017-04-04

    Uranium is not only a strategic resource for the nuclear industry but also a global contaminant with high toxicity. Although several strategies have been established for detecting uranyl ions in water, searching for new uranium sensor material with great sensitivity, selectivity, and stability remains a challenge. We introduce here a hydrolytically stable mesoporous terbium(III)-based MOF material compound 1, whose channels are as large as 27 Å × 23 Å and are equipped with abundant exposed Lewis basic sites, the luminescence intensity of which can be efficiently and selectively quenched by uranyl ions. The detection limit in deionized water reaches 0.9 μg/L, far below the maximum contamination standard of 30 μg/L in drinking water defined by the United States Environmental Protection Agency, making compound 1 currently the only MOF material that can achieve this goal. More importantly, this material exhibits great capability in detecting uranyl ions in natural water systems such as lake water and seawater with pH being adjusted to 4, where huge excesses of competing ions are present. The uranyl detection limits in Dushu Lake water and in seawater were calculated to be 14.0 and 3.5 μg/L, respectively. This great detection capability originates from the selective binding of uranyl ions onto the Lewis basic sites of the MOF material, as demonstrated by synchrotron radiation extended X-ray adsorption fine structure, X-ray adsorption near edge structure, and first principles calculations, further leading to an effective energy transfer between the uranyl ions and the MOF skeleton.

  15. Grain-Size Based Additivity Models for Scaling Multi-rate Uranyl Surface Complexation in Subsurface Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoying; Liu, Chongxuan; Hu, Bill X.

    The additivity model assumed that field-scale reaction properties in a sediment including surface area, reactive site concentration, and reaction rate can be predicted from field-scale grain-size distribution by linearly adding reaction properties estimated in laboratory for individual grain-size fractions. This study evaluated the additivity model in scaling mass transfer-limited, multi-rate uranyl (U(VI)) surface complexation reactions in a contaminated sediment. Experimental data of rate-limited U(VI) desorption in a stirred flow-cell reactor were used to estimate the statistical properties of the rate constants for individual grain-size fractions, which were then used to predict rate-limited U(VI) desorption in the composite sediment. The resultmore » indicated that the additivity model with respect to the rate of U(VI) desorption provided a good prediction of U(VI) desorption in the composite sediment. However, the rate constants were not directly scalable using the additivity model. An approximate additivity model for directly scaling rate constants was subsequently proposed and evaluated. The result found that the approximate model provided a good prediction of the experimental results within statistical uncertainty. This study also found that a gravel-size fraction (2 to 8 mm), which is often ignored in modeling U(VI) sorption and desorption, is statistically significant to the U(VI) desorption in the sediment.« less

  16. Drinking-Water Nitrate, Methemoglobinemia, and Global Burden of Disease: A Discussion

    PubMed Central

    Fewtrell, Lorna

    2004-01-01

    On behalf of the World Health Organization (WHO), I have undertaken a series of literature-based investigations examining the global burden of disease related to a number of environmental risk factors associated with drinking water. In this article I outline the investigation of drinking-water nitrate concentration and methemoglobinemia. The exposure assessment was based on levels of nitrate in drinking water greater than the WHO guideline value of 50 mg/L. No exposure–response relationship, however, could be identified that related drinking-water nitrate level to methemoglobinemia. Indeed, although it has previously been accepted that consumption of drinking water high in nitrates causes methemoglobinemia in infants, it appears now that nitrate may be one of a number of co-factors that play a sometimes complex role in causing the disease. I conclude that, given the apparently low incidence of possible water-related methemoglobinemia, the complex nature of the role of nitrates, and that of individual behavior, it is currently inappropriate to attempt to link illness rates with drinking-water nitrate levels. PMID:15471727

  17. Dietary nitrate increases arginine availability and protects mitochondrial complex I and energetics in the hypoxic rat heart

    PubMed Central

    Ashmore, Tom; Fernandez, Bernadette O; Branco-Price, Cristina; West, James A; Cowburn, Andrew S; Heather, Lisa C; Griffin, Julian L; Johnson, Randall S; Feelisch, Martin; Murray, Andrew J

    2014-01-01

    Hypoxic exposure is associated with impaired cardiac energetics in humans and altered mitochondrial function, with suppressed complex I-supported respiration, in rat heart. This response might limit reactive oxygen species generation, but at the cost of impaired electron transport chain (ETC) activity. Dietary nitrate supplementation improves mitochondrial efficiency and can promote tissue oxygenation by enhancing blood flow. We therefore hypothesised that ETC dysfunction, impaired energetics and oxidative damage in the hearts of rats exposed to chronic hypoxia could be alleviated by sustained administration of a moderate dose of dietary nitrate. Male Wistar rats (n = 40) were given water supplemented with 0.7 mmol l−1 NaCl (as control) or 0.7 mmol l−1 NaNO3, elevating plasma nitrate levels by 80%, and were exposed to 13% O2 (hypoxia) or normoxia (n = 10 per group) for 14 days. Respiration rates, ETC protein levels, mitochondrial density, ATP content and protein carbonylation were measured in cardiac muscle. Complex I respiration rates and protein levels were 33% lower in hypoxic/NaCl rats compared with normoxic/NaCl controls. Protein carbonylation was 65% higher in hearts of hypoxic rats compared with controls, indicating increased oxidative stress, whilst ATP levels were 62% lower. Respiration rates, complex I protein and activity, protein carbonylation and ATP levels were all fully protected in the hearts of nitrate-supplemented hypoxic rats. Both in normoxia and hypoxia, dietary nitrate suppressed cardiac arginase expression and activity and markedly elevated cardiac l-arginine concentrations, unmasking a novel mechanism of action by which nitrate enhances tissue NO bioavailability. Dietary nitrate therefore alleviates metabolic abnormalities in the hypoxic heart, improving myocardial energetics. PMID:25172947

  18. Combined uranous nitrate production consisting of undivided electrolytic cell and divided electrolytic cell (Electrolysis → Electrolytic cell)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Zhongwei; Yan, Taihong; Zheng, Weifang

    2013-07-01

    The electrochemical reduction of uranyl nitrate is a green, mild way to make uranous ions. Undivided electrolyzers whose maintenance is less but their conversion ratio and current efficiency are low, have been chosen. However, at the beginning of undivided electrolysis, high current efficiency can also be maintained. Divided electrolyzers' conversion ratio and current efficiency is much higher because the re-oxidation of uranous on anode is avoided, but their maintenance costs are more, because in radioactive environment the membrane has to be changed after several operations. In this paper, a combined method of uranous production is proposed which consists of 2more » stages: undivided electrolysis (early stage) and divided electrolysis (late stage) to benefit from the advantages of both electrolysis modes. The performance of the combined method was tested. The results show that in combined mode, after 200 min long electrolysis (80 min undivided electrolysis and 120 min divided electrolysis), U(IV) yield can achieve 92.3% (500 ml feed, U 199 g/l, 72 cm{sup 2} cathode, 120 mA/cm{sup 2}). Compared with divided mode, about 1/3 working time in divided electrolyzer is reduced to achieve the same U(IV) yield. If 120 min long undivided electrolysis was taken, more than 1/2 working time can be reduced in divided electrolyzer, which means that about half of the maintenance cost can also be reduced. (authors)« less

  19. XAFS investigation of polyamidoxime-bound uranyl contests the paradigm from small molecule studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayes, Richard T.; Piechowicz, Marek; Lin, Zekai

    In this study, limited resource availability and population growth have motivated interest in harvesting valuable metals from unconventional reserves, but developing selective adsorbents for this task requires structural knowledge of metal binding environments. Amidoxime polymers have been identified as the most promising platform for large-scale extraction of uranium from seawater. However, despite more than 30 years of research, the uranyl coordination environment on these adsorbents has not been positively identified. We report the first XAFS investigation of polyamidoxime-bound uranyl, with EXAFS fits suggesting a cooperative chelating model, rather than the tridentate or η 2 motifs proposed by small molecule andmore » computational studies. Samples exposed to environmental seawater also display a feature consistent with a μ 2-oxo-bridged transition metal in the uranyl coordination sphere, suggesting in situ formation of a specific binding site or mineralization of uranium on the polymer surface. These unexpected findings challenge several long-held assumptions and have significant implications for development of polymer adsorbents with high selectivity.« less

  20. Insight into hydrogen bonding of uranyl hydroxide layers and capsules by use of 1H magic-angle spinning NMR spectroscopy [Insight into the hydrogen bonding for uranyl hydroxides using 1H MAS NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, Todd M.; Liao, Zuolei; Nyman, May

    Solid-state 1H magic-angle spinning (MAS) NMR was used to investigate local proton environments in anhydrous [UO 2(OH) 2] (α-UOH) and hydrated uranyl hydroxide [(UO 2) 4O(OH) 6·5H 2O (metaschoepite). For the metaschoepite material, proton resonances of the μ 2-OH hydroxyl and interlayer waters were resolved, with two-dimensional (2D) double-quantum (DQ) 1H– 1H NMR correlation experiments revealing strong dipolar interactions between these different proton species. The experimental NMR results were combined with first-principles CASTEP GIPAW (gauge including projector-augmented wave) chemical shift calculations to develop correlations between hydrogen-bond strength and observed 1H NMR chemical shifts. Furthermore, these NMR correlations allowed characterization ofmore » local hydrogen-bond environments in uranyl U 24 capsules and of changes in hydrogen bonding that occurred during thermal dehydration of metaschoepite.« less

  1. XAFS investigation of polyamidoxime-bound uranyl contests the paradigm from small molecule studies

    DOE PAGES

    Mayes, Richard T.; Piechowicz, Marek; Lin, Zekai; ...

    2015-11-12

    In this study, limited resource availability and population growth have motivated interest in harvesting valuable metals from unconventional reserves, but developing selective adsorbents for this task requires structural knowledge of metal binding environments. Amidoxime polymers have been identified as the most promising platform for large-scale extraction of uranium from seawater. However, despite more than 30 years of research, the uranyl coordination environment on these adsorbents has not been positively identified. We report the first XAFS investigation of polyamidoxime-bound uranyl, with EXAFS fits suggesting a cooperative chelating model, rather than the tridentate or η 2 motifs proposed by small molecule andmore » computational studies. Samples exposed to environmental seawater also display a feature consistent with a μ 2-oxo-bridged transition metal in the uranyl coordination sphere, suggesting in situ formation of a specific binding site or mineralization of uranium on the polymer surface. These unexpected findings challenge several long-held assumptions and have significant implications for development of polymer adsorbents with high selectivity.« less

  2. Insight into hydrogen bonding of uranyl hydroxide layers and capsules by use of 1H magic-angle spinning NMR spectroscopy [Insight into the hydrogen bonding for uranyl hydroxides using 1H MAS NMR spectroscopy

    DOE PAGES

    Alam, Todd M.; Liao, Zuolei; Nyman, May; ...

    2016-04-27

    Solid-state 1H magic-angle spinning (MAS) NMR was used to investigate local proton environments in anhydrous [UO 2(OH) 2] (α-UOH) and hydrated uranyl hydroxide [(UO 2) 4O(OH) 6·5H 2O (metaschoepite). For the metaschoepite material, proton resonances of the μ 2-OH hydroxyl and interlayer waters were resolved, with two-dimensional (2D) double-quantum (DQ) 1H– 1H NMR correlation experiments revealing strong dipolar interactions between these different proton species. The experimental NMR results were combined with first-principles CASTEP GIPAW (gauge including projector-augmented wave) chemical shift calculations to develop correlations between hydrogen-bond strength and observed 1H NMR chemical shifts. Furthermore, these NMR correlations allowed characterization ofmore » local hydrogen-bond environments in uranyl U 24 capsules and of changes in hydrogen bonding that occurred during thermal dehydration of metaschoepite.« less

  3. Uranium XAFS analysis of kidney from rats exposed to uranium

    PubMed Central

    Kitahara, Keisuke; Numako, Chiya; Terada, Yasuko; Nitta, Kiyohumi; Homma-Takeda, Shino

    2017-01-01

    The kidney is the critical target of uranium exposure because uranium accumulates in the proximal tubules and causes tubular damage, but the chemical nature of uranium in kidney, such as its chemical status in the toxic target site, is poorly understood. Micro-X-ray absorption fine-structure (µXAFS) analysis was used to examine renal thin sections of rats exposed to uranyl acetate. The U L III-edge X-ray absorption near-edge structure spectra of bulk renal specimens obtained at various toxicological phases were similar to that of uranyl acetate: their edge position did not shift compared with that of uranyl acetate (17.175 keV) although the peak widths for some kidney specimens were slightly narrowed. µXAFS measurements of spots of concentrated uranium in the micro-regions of the proximal tubules showed that the edge jump slightly shifted to lower energy. The results suggest that most uranium accumulated in kidney was uranium (VI) but a portion might have been biotransformed in rats exposed to uranyl acetate. PMID:28244440

  4. Uranium XAFS analysis of kidney from rats exposed to uranium.

    PubMed

    Kitahara, Keisuke; Numako, Chiya; Terada, Yasuko; Nitta, Kiyohumi; Shimada, Yoshiya; Homma-Takeda, Shino

    2017-03-01

    The kidney is the critical target of uranium exposure because uranium accumulates in the proximal tubules and causes tubular damage, but the chemical nature of uranium in kidney, such as its chemical status in the toxic target site, is poorly understood. Micro-X-ray absorption fine-structure (µXAFS) analysis was used to examine renal thin sections of rats exposed to uranyl acetate. The U L III -edge X-ray absorption near-edge structure spectra of bulk renal specimens obtained at various toxicological phases were similar to that of uranyl acetate: their edge position did not shift compared with that of uranyl acetate (17.175 keV) although the peak widths for some kidney specimens were slightly narrowed. µXAFS measurements of spots of concentrated uranium in the micro-regions of the proximal tubules showed that the edge jump slightly shifted to lower energy. The results suggest that most uranium accumulated in kidney was uranium (VI) but a portion might have been biotransformed in rats exposed to uranyl acetate.

  5. Removal of uranyl ions by p-hexasulfonated calyx[6]arene acid

    NASA Astrophysics Data System (ADS)

    Popescu (Hoştuc), Ioana-Carmen; Petru, Filip; Humelnicu, Ionel; Mateescu, Marina; Militaru, Ecaterina; Humelnicu, Doina

    2014-10-01

    Radioactive pollution is a significant threat for the people's health. Therefore highly effective radioactive decontamination methods are required. Ion exchange, biotechnologies and phytoremediation in constructed wetlands have been used as radioactive decontamination technologies for uranium contaminated soil and water remediation. Recently, beside those classical methods the calix[n]arenic derivatives' utilization as radioactive decontaminators has jogged attention. The present work aims to present the preliminary research results of uranyl ion sorption studies on the p-hexasulfonated calyx[6]arenic acid. The effect of temperature, contact time, sorbent amount and uranyl concentration variation on sorption efficiency was investigated. Isotherm models revealed that the sorption process fit better Langmuir isotherm.

  6. Synthesis and Characterization of Templated Ion Exchange Resins for the Selective Complexion of Actinide Ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murrray, George M.; Uy, O. Manuel

    The purpose of this research is to develop polymeric extractants for the selective complexation of uranyl ions (and subsequently other actinyl and actinide ions) from aqueous solutions. Selectivity for a specific actinide ion is obtained by providing the polymers with cavities lined with complexing ligands so arranged as to match the charge, coordination number, coordination geometry, and size of the actinide ion. These cavity-containing polymers are produced by using a specific actinide ion (or surrogate) as a template around which monomeric complexing ligands are polymerized. The polymers provide useful sequestering agents for removing actinide ions from wastes and will formmore » the basis for a variety of analytical techniques for actinide determination.« less

  7. Process for the extraction of technetium from uranium

    DOEpatents

    Gong, Cynthia-May S.; Poineau, Frederic; Czerwinski, Kenneth R.

    2010-12-21

    A spent fuel reprocessing method contacts an aqueous solution containing Technetium(V) and uranyl with an acidic solution comprising hydroxylamine hydrochloride or acetohydroxamic acid to reduce Tc(V) to Tc(II, and then extracts the uranyl with an organic phase, leaving technetium(II) in aqueous solution.

  8. Negative Stains Containing Trehalose: Application to Tubular and Filamentous Structures

    NASA Astrophysics Data System (ADS)

    Harris, J. Robin; Gerber, Max; Gebauer, Wolfgang; Wernicke, Wolfgang; Markl, Jürgen

    1996-02-01

    Several examples are presented that show the successful application of uranyl acetate and ammonium molybdate negative staining in the presence of trehalose for TEM studies of filamentous and tubular structures. The principal benefit to be gained from the inclusion of trehalose stems from the considerably reduced flattening of the large tubular structures and the greater orientational freedom of single molecules due to an increased depth of the negative stain in the presence of trehalose. Trehalose is likely to provide considerable protection to protein molecules and their assemblies during the drying of negatively stained specimens. Some reduction in the excessive density imparted by uranyl acetate around large assemblies is also achieved. Nevertheless, in the presence of 1% (w/v) trehalose, it is desirable to increase the concentration of negative stain to 5% (w/v) for ammonium molybdate and to 4% for uranyl acetate to produce satisfactory image contrast. In general, the ammonium molybdate-trehalose negative stain is more satisfactory than the uranyl acetate-trehalose combination, because of the greater electron beam sensitivity of the uranyl negative stain. Reassembled taxol-stabilized pig brain microtubules, together with collagen fibrils, sperm tails, helical filaments, and reassociated hemocyanin (KLH2), all from the giant keyhole limpet Megathura crenulata, have been studied by negative staining in the presence of trehalose. In all cases satisfactory TEM imaging conditions were readily obtained on the specimens, as long as regions of excessively deep stain were avoided.

  9. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium

    PubMed Central

    Cooper, Karen L.; Dashner, Erica J.; Tsosie, Ranalda; Cho, Young Mi; Lewis, Johnnye

    2015-01-01

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; <10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. PMID:26627003

  10. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium.

    PubMed

    Cooper, Karen L; Dashner, Erica J; Tsosie, Ranalda; Cho, Young Mi; Lewis, Johnnye; Hudson, Laurie G

    2016-01-15

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; <10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein. Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Influence of uranyl speciation and iron oxides on uranium biogeochemical redox reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stewart, B.D.; Amos, R.T.; Nico, P.S.

    2010-03-15

    Uranium is a pollutant of concern to both human and ecosystem health. Uranium's redox state often dictates its partitioning between the aqueous- and solid-phases, and thus controls its dissolved concentration and, coupled with groundwater flow, its migration within the environment. In anaerobic environments, the more oxidized and mobile form of uranium (UO{sub 2}{sup 2+} and associated species) may be reduced, directly or indirectly, by microorganisms to U(IV) with subsequent precipitation of UO{sub 2}. However, various factors within soils and sediments may limit biological reduction of U(VI), inclusive of alterations in U(VI) speciation and competitive electron acceptors. Here we elucidate themore » impact of U(VI) speciation on the extent and rate of reduction with specific emphasis on speciation changes induced by dissolved Ca, and we examine the impact of Fe(III) (hydr)oxides (ferrihydrite, goethite and hematite) varying in free energies of formation on U reduction. The amount of uranium removed from solution during 100 h of incubation with S. putrefaciens was 77% with no Ca or ferrihydrite present but only 24% (with ferrihydrite) and 14% (no ferrihydrite) were removed for systems with 0.8 mM Ca. Imparting an important criterion on uranium reduction, goethite and hematite decrease the dissolved concentration of calcium through adsorption and thus tend to diminish the effect of calcium on uranium reduction. Dissimilatory reduction of Fe(III) and U(VI) can proceed through different enzyme pathways, even within a single organism, thus providing a potential second means by which Fe(III) bearing minerals may impact U(VI) reduction. We quantify rate coefficients for simultaneous dissimilatory reduction of Fe(III) and U(VI) in systems varying in Ca concentration (0 to 0.8 mM), and using a mathematical construct implemented with the reactive transport code MIN3P, we reveal the predominant influence of uranyl speciation, specifically the formation of uranyl-calcium-carbonato complexes, and ferrihydrite on the rate and extent of uranium reduction in complex geochemical systems.« less

  12. SEPARATION OF URANYL AND RUTHENIUM VALUES BY THE TRIBUTYL PHOSPHATE EXTRACTION PROCESS

    DOEpatents

    Wilson, A.S.

    1961-05-01

    A process is given for separating uranyl values from ruthenium values contained in an aqueous 3 to 4 M nitric acid solution. After the addition of hydrogen peroxide to obtain a concentration of 0.3 M, the uranium is selectively extracted with kerosene-diluted tributyl phosphate.

  13. Probing hydrogen and halogen-oxo interactions in uranyl coordination polymers: a combined crystallographic and computational study

    DOE PAGES

    Carter, Korey P.; Kalaj, Mark; Kerridge, Andrew; ...

    2018-01-01

    Four uranyl compounds containing either benzoic acid ( 1 ), m -chlorobenzoic acid ( 2 ), m -bromobenzoic acid ( 3 ), or m -iodobenzoic acid ( 4 ) are described, and the latter two compounds are used to probe non-covalent interaction strengths via structural, vibrational, and computational means.

  14. Unprecedented reduction of the uranyl ion [UO2]2+ into a polyoxo uranium(IV) cluster: synthesis and crystal structure of the first f-element oxide with a M6(micro3-O)8 core.

    PubMed

    Berthet, Jean-Claude; Thuéry, Pierre; Ephritikhine, Michel

    2005-07-21

    The smooth comproportionation reaction of the U(VI) and U(III) complexes UO2(OTf)2 and U(OTf)3, afforded the hexanuclear U(IV) oxide cluster [U6(micro3-O)8(micro2-OTf)8(py)8], a rare example of a metal oxide with a M6(micro3-O)8 core.

  15. Precipitation and Dissolution of Uranyl Phosphates in a Microfluidic Pore Structure

    NASA Astrophysics Data System (ADS)

    Werth, C. J.; Fanizza, M.; Strathmann, T.; Finneran, K.; Oostrom, M.; Zhang, C.; Wietsma, T. W.; Hess, N. J.

    2011-12-01

    The abiotic precipitation of uranium (U(VI)) was evaluated in a microfluidic pore structure (i.e. micromodel) to assess the efficacy of using a phosphate amendment to immobilize uranium in groundwater and mitigate the risk of this contaminant to potential down-gradient receptor sites. U(VI) was mixed transverse to the direction of flow with hydrogen phosphate (HPO42-), in the presence or absence of calcium (Ca2+) or sulfate (SO42-), in order to identify precipitation rates, the morphology and types of minerals formed, and the stability of these minerals to dissolution with and without bicarbonate (HCO3-) present. Raman backscattering spectroscopy and micro X-ray diffraction (μ-XRD) results both showed that the only mineral precipitated was chernikovite (also known as hydrogen uranyl phosphate; UO2HPO4), even though the formation of other minerals were thermodynamically favored depending on the experimental conditions. Precipitation and dissolution rates varied with influent conditions. Relative to when only U(VI) and HPO42- were present, precipitation rates were 2.3 times slower when SO42- was present, and 1.4 times faster when Ca2+ was present. These rates were inversely related to the size of crystals formed during precipitation. Dissolution rates for chernikovite increased with increasing HCO3- concentrations, consistent with formation of uranyl carbonate complexes in aqueous solution, and they were the fastest for chernikovite formed in the presence of SO42-, and slowest for the chernikovite formed in the presence of Ca2+. These rates are related to the ratios of mineral-water interfacial area to mineral volume. Fluorescent tracer studies and laser confocal microscopy images showed that densely aggregated precipitates blocked pores and reduced permeability. The results suggest that changes in the solute conditions evaluated affect precipitation rates, crystal morphology, and crystal stability, but not mineral type.

  16. Influence of Background H2O on the Collision-Induced Dissociation Products Generated from [UO2NO3]+

    NASA Astrophysics Data System (ADS)

    Van Stipdonk, Michael J.; Iacovino, Anna; Tatosian, Irena

    2018-04-01

    Developing a comprehensive understanding of the reactivity of uranium-containing species remains an important goal in areas ranging from the development of nuclear fuel processing methods to studies of the migration and fate of the element in the environment. Electrospray ionization (ESI) is an effective way to generate gas-phase complexes containing uranium for subsequent studies of intrinsic structure and reactivity. Recent experiments by our group have demonstrated that the relatively low levels of residual H2O in a 2-D, linear ion trap (LIT) make it possible to examine fragmentation pathways and reactions not observed in earlier studies conducted with 3-D ion traps (Van Stipdonk et al. J. Am. Soc. Mass Spectrom. 14, 1205-1214, 2003). In the present study, we revisited the dissociation of complexes composed of uranyl nitrate cation [UVIO2(NO3)]+ coordinated by alcohol ligands (methanol and ethanol) using the 2-D LIT. With relatively low levels of background H2O, collision-induced dissociation (CID) of [UVIO2(NO3)]+ primarily creates [UO2(O2)]+ by the ejection of NO. However, CID (using He as collision gas) of [UVIO2(NO3)]+ creates [UO2(H2O)]+ and UO2 + when the 2-D LIT is used with higher levels of background H2O. Based on the results presented here, we propose that product ion spectrum in the previous experiments was the result of a two-step process: initial formation of [UVIO2(O2)]+ followed by rapid exchange of O2 for H2O by ion-molecule reaction. Our experiments illustrate the impact of residual H2O in ion trap instruments on the product ions generated by CID and provide a more accurate description of the intrinsic dissociation pathway for [UVIO2(NO3)]+. [Figure not available: see fulltext.

  17. ARRAYS OF BOTTLES OF PLUTONIUM NITRATE SOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margaret A. Marshall

    2012-09-01

    In October and November of 1981 thirteen approaches-to-critical were performed on a remote split table machine (RSTM) in the Critical Mass Laboratory of Pacific Northwest Laboratory (PNL) in Richland, Washington using planar arrays of polyethylene bottles filled with plutonium (Pu) nitrate solution. Arrays of up to sixteen bottles were used to measure the critical number of bottles and critical array spacing with a tight fitting Plexiglas® reflector on all sides of the arrays except the top. Some experiments used Plexiglas shells fitted around each bottles to determine the effect of moderation on criticality. Each bottle contained approximately 2.4 L ofmore » Pu(NO3)4 solution with a Pu content of 105 g Pu/L and a free acid molarity H+ of 5.1. The plutonium was of low 240Pu (2.9 wt.%) content. These experiments were sponsored by Rockwell Hanford Operations because of the lack of experimental data on the criticality of arrays of bottles of Pu solution such as might be found in storage and handling at the Purex Facility at Hanford. The results of these experiments were used “to provide benchmark data to validate calculational codes used in criticality safety assessments of [the] plant configurations” (Ref. 1). Data for this evaluation were collected from the published report (Ref. 1), the approach to critical logbook, the experimenter’s logbook, and communication with the primary experimenter, B. Michael Durst. Of the 13 experiments preformed 10 were evaluated. One of the experiments was not evaluated because it had been thrown out by the experimenter, one was not evaluated because it was a repeat of another experiment and the third was not evaluated because it reported the critical number of bottles as being greater than 25. Seven of the thirteen evaluated experiments were determined to be acceptable benchmark experiments. A similar experiment using uranyl nitrate was benchmarked as U233-SOL-THERM-014.« less

  18. Biosensing for the Environment and Defence: Aqueous Uranyl Detection Using Bacterial Surface Layer Proteins

    PubMed Central

    Conroy, David J.R.; Millner, Paul A.; Stewart, Douglas I.; Pollmann, Katrin

    2010-01-01

    The fabrication of novel uranyl (UO22+) binding protein based sensors is reported. The new biosensor responds to picomolar levels of aqueous uranyl ions within minutes using Lysinibacillus sphaericus JG-A12 S-layer protein tethered to gold electrodes. In comparison to traditional self assembled monolayer based biosensors the porous bioconjugated layer gave greater stability, longer electrode life span and a denser protein layer. Biosensors responded specifically to UO22+ ions and showed minor interference from Ni2+, Cs+, Cd2+ and Co2+. Chemical modification of JG-A12 protein phosphate and carboxyl groups prevented UO22+ binding, showing that both moieties are involved in the recognition to UO22+. PMID:22399904

  19. Combinatorial function of velvet and AreA in transcriptional regulation of nitrate utilization and secondary metabolism.

    PubMed

    López-Berges, Manuel S; Schäfer, Katja; Hera, Concepción; Di Pietro, Antonio

    2014-01-01

    Velvet is a conserved protein complex that functions as a regulator of fungal development and secondary metabolism. In the soil-inhabiting pathogen Fusarium oxysporum, velvet governs mycotoxin production and virulence on plant and mammalian hosts. Here we report a previously unrecognized role of the velvet complex in regulation of nitrate metabolism. F. oxysporum mutants lacking VeA or LaeA, two key components of the complex, were impaired in growth on the non-preferred nitrogen sources nitrate and nitrite. Both velvet and the general nitrogen response GATA factor AreA were required for transcriptional activation of nitrate (nit1) and nitrite (nii1) reductase genes under de-repressing conditions, as well as for the nitrate-triggered increase in chromatin accessibility at the nit1 locus. AreA also contributed to chromatin accessibility and expression of two velvet-regulated gene clusters, encoding biosynthesis of the mycotoxin beauvericin and of the siderophore ferricrocin. Thus, velvet and AreA coordinately orchestrate primary and secondary metabolism as well as virulence functions in F. oxysporum. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. METHOD OF SEPARATION OF PLUTONIUM FROM CARRIER PRECIPITATES

    DOEpatents

    Dawson, I.R.

    1959-09-22

    The recovery of plutonium from fluoride carrier precipitates is described. The precipitate is dissolved in zirconyl nitrate, ferric nitrate, aluminum nitrate, or a mixture of these complexing agents, and the plutonium is then extracted from the aqueous solution formed with a water-immiscible organic solvent.

  1. ELECTROLYTIC PREPARATION OF UF$sub 4$

    DOEpatents

    Allen, A.L.; Anderson, R.W.; Powell, E.W.

    1958-11-01

    A method is presented for converting hexavalent aranium to uranium tetrafluoride. The method consists of electrolyzing a solution of uranyl fluoride in hydrofluoric acld at about 90 icient laborato C. The uranyl ions are reduced at the cathode and a hydrated uranium tetrafluoride precipitates. The precipitate is separated and subsequently dehydrated to UF/sub 4/.

  2. Structural Phase Transitions and Water Dynamics in Uranyl Fluoride Hydrates

    DOE PAGES

    Miskowiec, Andrew J.; Kirkegaard, Marie C.; Huq, Ashfia; ...

    2015-11-17

    We report a novel production method for uranium oxy uoride [(UO 2) 7F 14(H 2O) 7] 4H 2O, referred to as structure D. Structure D is produced as a product of hydrating anhydrous uranyl uoride, UO 2F 2, through the gas phase at ambient temperatures fol- lowed by desiccation by equilibration with a dry environment. We follow the structure of [(UO 2) 7F 14(H 2O) 7] 4H 2O through an intermediate, liquid-like phase, wherein the coordination number of the uranyl ion is reduced to 5 (from 6 in the anhydrous struc- ture), and a water molecule binds as an equatorialmore » ligand to the uranyl ion. Quasielas- tic neutron scattering results compare well with previous measurements of mineral hydrates. The two groups of structurally distinct water molecules in D perform re- stricted motion on a length scale commensurate with the O{H bond (r = 0.92 A). The more tightly bound equatorial ligand waters rotate slower (Dr = 2.2 ps -1) than their hydrogen-bonded partners (Dr = 28.7 ps -1).« less

  3. Engaging the Terminal: Promoting Halogen Bonding Interactions with Uranyl Oxo Atoms.

    PubMed

    Carter, Korey P; Kalaj, Mark; Surbella, Robert G; Ducati, Lucas C; Autschbach, Jochen; Cahill, Christopher L

    2017-11-02

    Engaging the nominally terminal oxo atoms of the linear uranyl (UO 2 2+ ) cation in non-covalent interactions represents both a significant challenge and opportunity within the field of actinide hybrid materials. An approach has been developed for promoting oxo atom participation in a range of non-covalent interactions, through judicious choice of electron donating equatorial ligands and appropriately polarizable halogen-donor atoms. As such, a family of uranyl hybrid materials was generated based on a combination of 2,5-dihalobenzoic acid and aromatic, chelating N-donor ligands. Delineation of criteria for oxo participation in halogen bonding interactions has been achieved by preparing materials containing 2,5-dichloro- (25diClBA) and 2,5-dibromobenzoic acid (25diBrBA) coupled with 2,2'-bipyridine (bipy) (1 and 2), 1,10-phenanthroline (phen) (3-5), 2,2':6',2''-terpyridine (terpy) (6-8), or 4'-chloro-2,2':6',2''-terpyridine (Cl-terpy) (9-10), which have been characterized through single crystal X-ray diffraction, Raman, Infrared (IR), and luminescence spectroscopy, as well as through density functional calculations of electrostatic potentials. Looking comprehensively, these results are compared with recently published analogues featuring 2,5-diiodobenzoic acid which indicate that although inclusion of a capping ligand in the uranyl first coordination sphere is important, it is the polarizability of the selected halogen atom that ultimately drives halogen bonding interactions with the uranyl oxo atoms. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ultrasensitive detection of uranyl by graphene oxide-based background reduction and RCDzyme-based enzyme strand recycling signal amplification.

    PubMed

    Li, Ming-Hui; Wang, Yong-Sheng; Cao, Jin-Xiu; Chen, Si-Han; Tang, Xian; Wang, Xiao-Feng; Zhu, Yu-Feng; Huang, Yan-Qin

    2015-10-15

    We proposed a novel strategy which combines graphene oxide-based background reduction with RCDzyme-based enzyme strand recycling amplification for ultrahigh sensitive detection of uranyl. The RCDzyme is designed to contain a guanine (G)-rich sequence that replaces the partial sequence in an uranyl-specific DNAzyme. This multifunctional probe can act as the target recognition element, DNAzyme and the primer of signal amplification. The presence of UO2(2+) can induce the cleavage of the substrate strands in RCDzyme. Then, each released enzyme strand can hybridize with another substrate strands to trigger many cycles of the cleavage by binding uranyl, leading to the formation of more G-quadruplexes by split guanine-rich oligonucleotide fragments. The resulting G-quadruplexes could bind to N-methyl-mesoporphyrin IX (NMM), causing an amplified detection signal for the target uranyl. Next, graphene oxide-based background reduction strategy was further employed for adsorbing free ssDNA and NMM, thereby providing a proximalis zero-background signal. The combination of RCDzyme signal amplification and proximalis zero-background signal remarkably improves the sensitivity of this method, achieving a dynamic range of two orders of magnitude and giving a detection limit down to 86 pM, which is much lower than those of related literature reports. These achievements might be helpful in the design of highly sensitive analytical platform for wide applications in environmental and biomedical fields. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Effects of maleic acid and uranyl on mercurial diuresis in dogs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigrovic, V.; Koechel, D.A.; Cafruny, E.J.

    1973-01-01

    The effects of two nephrotoxic agents were studied in anesthetized dogs undergoing mercurial diuresis. One of the agents, uranyl, accumulates in the kidneys when administered as the acetate salt but does not readily react with sulfhydryl groups. In acute experiments uranyl acetate in doses up to 5 ..mu..mol/kg produced no change in the urinary excretion of sodium or chloride. Uranyl acetate given before the injection of mercury(II) did not reduce the diuretic response to inorganic mercury. The other compound, maleic acid, accumulates in the kidneys and also reacts readily with sulfhydryl groups. The administration of small doses of maleic acidmore » did not change the excretion of sodium but it decreased the excretion of chloride. The administration of maleic acid either before or after the administration of mercury completely abolished the diuretic response. The inhibition occurred without significant changes in urinary pH. Diuretic responses to ethacrynic acid, furosemide, hydrochlorothiazide or acetazolamide were preserved in maleate-treated dogs. Both the lack of any effect of uranyl on mercurial diuresis and the specific inhibition of mercurial diuresis by maleic acid support the presently accepted view that the renal diuretic receptor for mercury(II) has at least one sulfhydryl binding site. Although the inhibition is ascribed to competition between mercury(II) and maleate for binding on the receptor, it is conceivable that the reduction in urinary chloride excretion produced by maleate may be responsible, in part, for refractoriness to mercury(II).« less

  6. Nitrate-to-nitrite-to-nitric oxide conversion modulated by nitrate-containing {Fe(NO)2}9 dinitrosyl iron complex (DNIC).

    PubMed

    Tsai, Fu-Te; Lee, Yu-Ching; Chiang, Ming-Hsi; Liaw, Wen-Feng

    2013-01-07

    Nitrosylation of high-spin [Fe(κ(2)-O(2)NO)(4)](2-) (1) yields {Fe(NO)}(7) mononitrosyl iron complex (MNIC) [(κ(2)-O(2)NO)(κ(1)-ONO(2))(3)Fe(NO)](2-) (2) displaying an S = 3/2 axial electron paramagnetic resonance (EPR) spectrum (g(⊥) = 3.988 and g(∥) = 2.000). The thermally unstable nitrate-containing {Fe(NO)(2)}(9) dinitrosyl iron complex (DNIC) [(κ(1)-ONO(2))(2)Fe(NO)(2)](-) (3) was exclusively obtained from reaction of HNO(3) and [(OAc)(2)Fe(NO)(2)](-) and was characterized by IR, UV-vis, EPR, superconducting quantum interference device (SQUID), X-ray absorption spectroscopy (XAS), and single-crystal X-ray diffraction (XRD). In contrast to {Fe(NO)(2)}(9) DNIC [(ONO)(2)Fe(NO)(2)](-) constructed by two monodentate O-bound nitrito ligands, the weak interaction between Fe(1) and the distal oxygens O(5)/O(7) of nitrato-coordinated ligands (Fe(1)···O(5) and Fe(1)···O(7) distances of 2.582(2) and 2.583(2) Å, respectively) may play important roles in stabilizing DNIC 3. Transformation of nitrate-containing DNIC 3 into N-bound nitro {Fe(NO)}(6) [(NO)(κ(1)-NO(2))Fe(S(2)CNEt(2))(2)] (7) triggered by bis(diethylthiocarbamoyl) disulfide ((S(2)CNEt(2))(2)) implicates that nitrate-to-nitrite conversion may occur via the intramolecular association of the coordinated nitrate and the adjacent polarized NO-coordinate ligand (nitrosonium) of the proposed {Fe(NO)(2)}(7) intermediate [(NO)(2)(κ(1)-ONO(2))Fe(S(2)CNEt(2))(2)] (A) yielding {Fe(NO)}(7) [(NO)Fe(S(2)CNEt(2))(2)] (6) along with the release of N(2)O(4) (·NO(2)) and the subsequent binding of ·NO(2) to complex 6. The N-bound nitro {Fe(NO)}(6) complex 7 undergoes Me(2)S-promoted O-atom transfer facilitated by imidazole to give {Fe(NO)}(7) complex 6 accompanied by release of nitric oxide. This result demonstrates that nitrate-containing DNIC 3 acts as an active center to modulate nitrate-to-nitrite-to-nitric oxide conversion.

  7. Genome-Enabled Studies of Anaerobic, Nitrate-Dependent Iron Oxidation in the Chemolithoautotrophic Bacterium Thiobacillus denitrificans

    NASA Astrophysics Data System (ADS)

    Beller, H. R.; Zhou, P.; Legler, T. C.; Chakicherla, A.; O'Day, P. A.

    2013-12-01

    Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. Of the transposon mutants defective in Fe(II) oxidation, one mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process.

  8. Genome-enabled studies of anaerobic, nitrate-dependent iron oxidation in the chemolithoautotrophic bacterium Thiobacillus denitrificans

    PubMed Central

    Beller, Harry R.; Zhou, Peng; Legler, Tina C.; Chakicherla, Anu; Kane, Staci; Letain, Tracy E.; A. O’Day, Peggy

    2013-01-01

    Thiobacillus denitrificans is a chemolithoautotrophic bacterium capable of anaerobic, nitrate-dependent U(IV) and Fe(II) oxidation, both of which can strongly influence the long-term efficacy of in situ reductive immobilization of uranium in contaminated aquifers. We previously identified two c-type cytochromes involved in nitrate-dependent U(IV) oxidation in T. denitrificans and hypothesized that c-type cytochromes would also catalyze Fe(II) oxidation, as they have been found to play this role in anaerobic phototrophic Fe(II)-oxidizing bacteria. Here we report on efforts to identify genes associated with nitrate-dependent Fe(II) oxidation, namely (a) whole-genome transcriptional studies [using FeCO3, Fe2+, and U(IV) oxides as electron donors under denitrifying conditions], (b) Fe(II) oxidation assays performed with knockout mutants targeting primarily highly expressed or upregulated c-type cytochromes, and (c) random transposon-mutagenesis studies with screening for Fe(II) oxidation. Assays of mutants for 26 target genes, most of which were c-type cytochromes, indicated that none of the mutants tested were significantly defective in nitrate-dependent Fe(II) oxidation. The non-defective mutants included the c1-cytochrome subunit of the cytochrome bc1 complex (complex III), which has relevance to a previously proposed role for this complex in nitrate-dependent Fe(II) oxidation and to current concepts of reverse electron transfer. A transposon mutant with a disrupted gene associated with NADH:ubiquinone oxidoreductase (complex I) was ~35% defective relative to the wild-type strain; this strain was similarly defective in nitrate reduction with thiosulfate as the electron donor. Overall, our results indicate that nitrate-dependent Fe(II) oxidation in T. denitrificans is not catalyzed by the same c-type cytochromes involved in U(IV) oxidation, nor have other c-type cytochromes yet been implicated in the process. PMID:24065960

  9. Hydrothermal synthesis of uranyl squarates and squarate-oxalates: hydrolysis trends and in situ oxalate formation.

    PubMed

    Rowland, Clare E; Cahill, Christopher L

    2010-07-19

    We report the synthesis of two uranyl squarates and two mixed-ligand uranyl squarate-oxalates from aqueous solutions under hydrothermal conditions. These products exhibit a range of uranyl building units from squarates with monomers in (UO(2))(2)(C(4)O(4))(5).6NH(4).4H(2)O (1; a = 16.731(17) A, b = 7.280(8) A, c = 15.872(16) A, beta = 113.294(16) degrees , monoclinic, P2(1)/c) and chains in (UO(2))(2)(OH)(2)(H(2)O)(2)(C(4)O(4)) (2; a = 12.909(5) A, b = 8.400(3) A, c = 10.322(4) A, beta = 100.056(7) degrees , monoclinic, C2/c) to two squarate-oxalate polymorphs with dimers in (UO(2))(2)(OH)(C(4)O(4))(C(2)O(4)).NH(4).H(2)O (3; a = 9.0601(7) A, b = 15.7299(12) A, c = 10.5108(8) A, beta = 106.394(1) degrees , monoclinic, P2(1)/n; and 4; a = 8.4469(6) A, b = 7.7589(5) A, c = 10.5257(7) A, beta = 105.696(1) degrees , monoclinic, P2(1)/m). The dominance at low pH of monomeric species and the increasing occurrence of oligomeric species with increasing pH suggests that uranyl hydrolysis, mUO(2)(2+) + nH(2)O right harpoon over left harpoon [(UO(2))(m)(OH)(n)](2m-n) + nH(+), has a significant role in the identity of the inorganic building unit. Additional factors that influence product assembly include in situ hydrolysis of squaric acid to oxalic acid, dynamic metal to ligand concentration, and additional binding modes resulting from the introduction of oxalate anions. These points and the effects of uranyl hydrolysis with changing pH are discussed in the context of the compounds presented herein.

  10. Mixed-Ligand Uranyl Polyrotaxanes Incorporating a Sulfate/Oxalate Coligand: Achieving Structural Diversity via pH-Dependent Competitive Effect.

    PubMed

    Xie, Zhen-Ni; Mei, Lei; Hu, Kong-Qiu; Xia, Liang-Shu; Chai, Zhi-Fang; Shi, Wei-Qun

    2017-03-20

    A mixed-ligand system provides an alternative route to tune the structures and properties of metal-organic compounds by introducing functional organic or inorganic coligands. In this work, five new uranyl-based polyrotaxane compounds incorporating a sulfate or oxalate coligand have been hydrothermally synthesized via a mixed-ligand method. Based on C6BPCA@CB6 (C6BPCA = 1,1'-(hexane-1,6-diyl)bis(4-(carbonyl)pyridin-1-ium), CB6 = cucurbit[6]uril) ligand, UPS1 (UO 2 (L) 0.5 (SO 4 )(H 2 O)·2H 2 O, L = C6BPCA@CB6) is formed by the alteration of initial aqueous solution pH to a higher acidity. The resulting 2D uranyl polyrotaxane sheet structure of UPS1 is based on uranyl-sulfate ribbons connected by the C6BPCA@CB6 pseudorotaxane linkers. By using oxalate ligand instead of sulfate, four oxalate-containing uranyl polyrotaxane compounds, UPO1-UPO4, have been acquired by tuning reaction pH and ligand concentration: UPO1 (UO 2 (L) 0.5 (C 2 O 4 ) 0.5 (NO 3 )·3H 2 O) in one-dimensional chain was obtained at a low pH value range (1.47-1.89) and UPO2 (UO 2 (L)(C 2 O 4 )(H 2 O)·7H 2 O)obtained at a higher pH value range (4.31-7.21). By lowering the amount of oxalate, another two uranyl polyrotaxane network UPO3 ((UO 2 ) 2 (L) 0.5 (C 2 O 4 ) 2 (H 2 O)) and UPO4 ((UO 2 ) 2 O(OH)(L) 0.5 (C 2 O 4 ) 0.5 (H 2 O)) could be acquired at a low pH value of 1.98 and a higher pH value over 6, respectively. The UPO1-UPO4 compounds, which display structural diversity via pH-dependent competitive effect of oxalate, represent the first series of mixed-ligand uranyl polyrotaxanes with organic ligand as the coligand. Moreover, the self-assembly process and its internal mechanism concerning pH-dependent competitive effect and other related factors such as concentration of the reagents and coordination behaviors of the coligands were discussed in detail.

  11. Synthesis and characterization of UO(2)(2+)-ion imprinted polymer for selective extraction of UO(2)(2+).

    PubMed

    Singh, Dhruv K; Mishra, Shraddha

    2009-06-30

    Ion-imprinted polymers (IIPs) were prepared for uranyl ion (imprint ion) by formation of binary (salicylaldoxime (SALO) or 4-vinylpyridine (VP)) or ternary (salicylaldoxime and 4-vinylpyridine) complex in 2-methoxy ethanol (porogen) following copolymerization with methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as crosslinking monomer using 2,2'-azobisisobutyronitrile as initiator. Control polymers (CPs) were also prepared under identical experimental conditions without using imprint ion. The above synthesized polymers were characterized by surface area measurement, microanalysis and FT-IR analysis techniques. The imprinted polymer formed with ternary complex of UO(2)(2+)-SALO-VP (1:2:2, IIP3) showed quantitative enrichment of uranyl ion from dilute aqueous solution and hence was chosen for detailed studies. The optimal pH for quantitative enrichment is 3.5-6.5. The adsorbed UO(2)(2+) was completely eluted with 10 mL of 1.0 M HCl. The retention capacity of IIP3 was found to be 0.559 mmol g(-1). Further, the distribution ratio and selectivity coefficients of uranium and other selected inorganic ions were also evaluated. Five replicate determinations of 25 microg L(-1) of uranium(VI) gave a mean absorbance of 0.032 with a relative standard deviation of 2.20%. The detection limit corresponding to three times the standard deviation of the blank was found to be 5 microg L(-1). IIP3 was tested for preconcentration of uranium(VI) from ground, river and sea water samples.

  12. Selective Nitrate Recognition by a Halogen‐Bonding Four‐Station [3]Rotaxane Molecular Shuttle

    PubMed Central

    Barendt, Timothy A.; Docker, Andrew; Marques, Igor; Félix, Vítor

    2016-01-01

    Abstract The synthesis of the first halogen bonding [3]rotaxane host system containing a bis‐iodo triazolium‐bis‐naphthalene diimide four station axle component is reported. Proton NMR anion binding titration experiments revealed the halogen bonding rotaxane is selective for nitrate over the more basic acetate, hydrogen carbonate and dihydrogen phosphate oxoanions and chloride, and exhibits enhanced recognition of anions relative to a hydrogen bonding analogue. This elaborate interlocked anion receptor functions via a novel dynamic pincer mechanism where upon nitrate anion binding, both macrocycles shuttle from the naphthalene diimide stations at the periphery of the axle to the central halogen bonding iodo‐triazolium station anion recognition sites to form a unique 1:1 stoichiometric nitrate anion–rotaxane sandwich complex. Molecular dynamics simulations carried out on the nitrate and chloride halogen bonding [3]rotaxane complexes corroborate the 1H NMR anion binding results. PMID:27436297

  13. Translocation of uranium from water to foodstuff while cooking.

    PubMed

    Krishnapriya, K C; Baksi, Ananya; Chaudhari, Swathi; Gupta, Soujit Sen; Pradeep, T

    2015-10-30

    The present work report the unusual uranium uptake by foodstuff, especially those rich in carbohydrates like rice when they are cooked in water, contaminated with uranium. The major staple diet in South Asia, rice, was chosen to study its interaction with UO2(2+), the active uranium species in water, using inductively coupled plasma mass spectrometry. Highest uptake limit was checked by cooking rice at very high uranium concentration and it was found to be good scavenger of uranium. To gain insight into the mechanism of uptake, direct interaction of UO2(2+) with monosaccharides was also studied, using electrospray ionization mass spectrometry taking mannose as a model. The studies have been done with dissolved uranium salt, uranyl nitrate hexahydrate (UO2(NO3)2·6H2O), as well as the leachate of a stable oxide of uranium, UO2(s), both of which exist as UO2(2+) in water. Among the eight different rice varieties investigated, Karnataka Ponni showed the maximum uranium uptake whereas unpolished Basmati rice showed the minimum. Interaction with other foodstuffs (potato, carrot, peas, kidney beans and lentils) with and without NaCl affected the extent of chemical interaction but was not consistent with the carbohydrate content. Uranium interaction with D-mannose monitored through ESI-MS, under optimized instrumental parameters, identified the peaks corresponding to uranyl adduct with mannose monomer, dimer and trimer and the species were confirmed by MS/MS studies. The product ion mass spectra showed peaks illustrating water loss from the parent ion as the collision energy was increased, an evidence for the strong interaction of uranium with mannose. This study would constitute the essential background for understanding interaction of uranium with various foods. Extension of this work would involve identification of foodstuff as green heavy metal scavengers. Copyright © 2015. Published by Elsevier B.V.

  14. Metal complexes of the fourth generation quinolone antimicrobial drug gatifloxacin: Synthesis, structure and biological evaluation

    NASA Astrophysics Data System (ADS)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.

    2010-08-01

    Three metal complexes of the fourth generation quinolone antimicrobial agent gatifloxacin (GFLX) with Y(ΙΙΙ), Zr(ΙV) and U(VΙ) have been prepared and characterized with physicochemical and spectroscopic techniques. In these complexes, gatifloxacin acts as a bidentate deprotonated ligand bound to the metal through the ketone oxygen and a carboxylato oxygen. The complexes are six-coordinated with distorted octahedral geometry. The kinetic parameters for gatifloxacin and the three prepared complexes have been evaluated from TGA curves by using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. The calculated bond length and force constant, F(U dbnd O), for the UO 2 bond in uranyl complex are 1.7522 Å and 639.46 N m -1. The antimicrobial activity of the complexes has been tested against microorganisms, three bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) and two fungi species, penicillium ( P. rotatum) and trichoderma ( T. sp.), showing that they exhibit higher activity than free ligand.

  15. Theoretical Study of the Mechanism Behind the para-Selective Nitration of Toluene in Zeolite H-Beta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Amity; Govind, Niranjan; Subramanian, Lalitha

    Periodic density functional theory calculations were performed to investigate the origin of the favorable para-selective nitration of toluene exhibited by zeolite H-beta with acetyl nitrate nitration agent. Energy calculations were performed for each of the 32 crystallographically unique Bronsted acid sites of a beta polymorph B zeolite unit cell with multiple Bronsted acid sites of comparable stability. However, one particular aluminum T-site with three favorable Bronsted site oxygens embedded in a straight 12-T channel wall provides multiple favorable proton transfer sites. Transition state searches around this aluminum site were performed to determine the barrier to reaction for both para andmore » ortho nitration of toluene. A three-step process was assumed for the nitration of toluene with two organic intermediates: the pi- and sigma-complexes. The rate limiting step is the proton transfer from the sigma-complex to a zeolite Bronsted site. The barrier for this step in ortho nitration is shown to be nearly 2.5 times that in para nitration. This discrepancy appears to be due to steric constraints imposed by the curvature of the large 12-T pore channels of beta and the toluene methyl group in the ortho approach that are not present in the para approach.« less

  16. Dietary nitrate and nitrite modulate blood and organ nitrite and the cellular ischemic stress response

    PubMed Central

    Raat, Nicolaas J.H.; Noguchi, Audrey C.; Liu, Virginia B.; Raghavachari, Nalini; Liu, Delong; Xu, Xiuli; Shiva, Sruti; Munson, Peter J.; Gladwin, Mark T.

    2009-01-01

    Dietary nitrate, found in abundance in green vegetables, can be converted to the cytoprotective molecule nitrite by oral bacteria, suggesting that nitrate and nitrite may represent active cardioprotective constituents of the Mediterranean diet. We therefore tested the hypothesis that dietary nitrate and nitrite levels modulate tissue damage and ischemic gene expression in a mouse liver ischemia-reperfusion model. We found that stomach content, plasma, heart and liver nitrite levels were significantly reduced after dietary nitrate and nitrite depletion, and could be restored to normal levels with nitrite supplementation in water. Remarkably, we confirmed that basal nitrite levels significantly reduced liver injury after ischemia-reperfusion. Consistent with an effect of nitrite on the post-translational modification of complex I of the mitochondrial electron transport chain, the severity of liver infarction was inversely proportional to complex I activity after nitrite repletion in the diet. The transcriptional response of dietary nitrite after ischemia was more robust than after normoxia, suggesting a hypoxic potentiation of nitrite-dependent transcriptional signaling. Our studies indicate that normal dietary nitrate and nitrite levels modulate ischemic stress responses and hypoxic gene expression programs, supporting the hypothesis that dietary nitrate and nitrite are cytoprotective components of the diet. PMID:19464364

  17. Construction of the Syngonium podophyllum-Pseudomonas sp. XNN8 Symbiotic Purification System and Investigation of Its Capability of Remediating Uranium Wastewater.

    PubMed

    Deng, Qin-Wen; Wang, Yong-Dong; Ding, De-Xin; Hu, Nan; Sun, Jing; He, Jia-Dong; Xu, Fei

    2017-02-01

    The endophyte Pseudomonas sp. XNN8 was separated from Typha orientalis which can secrete indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminase and siderophores and has strong resistance to uranium it was then colonized in the Syngonium podophyllum; and the S. podophyllum-Pseudomonas sp. XNN8 symbiotic purification system (SPPSPS) for uranium-containing wastewater was constructed. Afterwards, the hydroponic experiments to remove uranium from uranium-containing wastewater by the SPPSPS were conducted. After 24 days of treatment, the uranium concentrations of the wastewater samples with uranium concentrations between 0.5 and 5.0 mg/L were lowered to below 0.05 mg/L. Furthermore, the uranium in the plants was assayed using Fourier transform infrared spectroscopy (FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The Pseudomonas sp. XNN8 was found to generate substantial organic groups in the roots of the Syngonium podophyllum, which could improve the complexing capability of S. podophyllum for uranium. The uranium in the roots of S. podophyllum was found to be the uranyl phosphate (47.4 %) and uranyl acetate (52.6 %).

  18. Selective recovery of uranium from Ca-Mg uranates by chlorination

    NASA Astrophysics Data System (ADS)

    Pomiro, Federico J.; Gaviría, Juan P.; Quinteros, Raúl D.; Bohé, Ana E.

    2017-07-01

    A chlorination process is proposed for the uranium extraction and separation using Calciumsbnd Magnesium uranates such as starting reactants which were obtained by precipitation from uranyl nitrate solutions with calcium hydroxide. The study is based on thermodynamic and reaction analysis using chlorine gas as chlorination agent. The results showed that the chlorination reaction of Ca uranate is more feasible to occur than the Mg uranate. The products obtained after chlorination reactions were washed with deionized water to remove the chlorides produced and analyzed. The XRD patterns of the washed products indicated that the chlorination between 400 and 500 °C result in a single phase of calcium uranate (CaUO4) as reaction product. The formation of U3O8 and MgU3O10 was observed at temperatures between 600 °C and 700 °C for 8 hs. The optimal conditions to recover uranium were 3 l h-1 of chlorine and 10 hs of reaction at 700 °C being U3O8 the single uranium product obtained.

  19. METHOD FOR PREPARATION OF SPHERICAL UO$sub 4$

    DOEpatents

    Gregory, J.F. Jr.; Levey, R.P. Jr.

    1962-06-01

    A method is given for continuously precipitating ura nium peroxide in the form of spherical particles. Seed crystals are formed in a first reaction zone by introducing an acidified aqueous uranyl nitrate solution and an aqueous hydrogen peroxide solution at a ratio of 5 to 20 per cent of the stoichiometric amount required for complete precipitation. After a mean residence time of 2 to 5 minutes in the first reaction zone, the resulting mixture is introduced into a second reaction zone, together with a large excess of hydrogen peroxide solution. The resulting UO4 is rapidly separated from the mother liquor after an over-all residence time of 5 to 11 minutes. The first reaction is maintained at a temperature of 85 to 90 deg C and the second zone above 50 deg C. Additional reaction zones may be employed for further crystal growth. The UO/sub 4/ is converted to U/sub 3/O/sub 8/ or UO/sub 2/ by heating in air or hydrogen atmosphere. This method is particularly useful for the preparation of spherical UO/sub 2/ particles 10 to 25 microns in diameter. (AEC)

  20. Determination of timescales of nitrate contamination by groundwater age models in a complex aquifer system

    NASA Astrophysics Data System (ADS)

    Koh, E. H.; Lee, E.; Kaown, D.; Lee, K. K.; Green, C. T.

    2017-12-01

    Timing and magnitudes of nitrate contamination are determined by various factors like contaminant loading, recharge characteristics and geologic system. Information of an elapsed time since recharged water traveling to a certain outlet location, which is defined as groundwater age, can provide indirect interpretation related to the hydrologic characteristics of the aquifer system. There are three major methods (apparent ages, lumped parameter model, and numerical model) to date groundwater ages, which differently characterize groundwater mixing resulted by various groundwater flow pathways in a heterogeneous aquifer system. Therefore, in this study, we compared the three age models in a complex aquifer system by using observed age tracer data and reconstructed history of nitrate contamination by long-term source loading. The 3H-3He and CFC-12 apparent ages, which did not consider the groundwater mixing, estimated the most delayed response time and a highest period of the nitrate loading had not reached yet. However, the lumped parameter model could generate more recent loading response than the apparent ages and the peak loading period influenced the water quality. The numerical model could delineate various groundwater mixing components and its different impacts on nitrate dynamics in the complex aquifer system. The different age estimation methods lead to variations in the estimated contaminant loading history, in which the discrepancy in the age estimation was dominantly observed in the complex aquifer system.

  1. Selectivity in Ligand Binding to Uranyl Compounds: A Synthetic, Structural, Thermodynamic and Computational Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, John

    The uranyl cation (UO 2 2+) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due tomore » the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. We believe that the goal of developing a practical system for uranium separation from seawater will not be attained without new insights into our existing fundamental knowledge of actinide chemistry. We posit that detailed studies of the kinetic and thermodynamic factors that influence interactions between f-elements and ligands with a range of donor atoms is essential to any major advance in this important area. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. We anticipate that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials.« less

  2. SHINE and Mini-SHINE Column Designs for Recovery of Mo from 140 g-U/L Uranyl Sulfate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepinski, Dominique C.; Vandegrift, George F.

    Argonne is assisting SHINE Medical Technologies (SHINE) in their efforts to develop an accelerator-driven process that utilizes a uranyl-sulfate solution for the production of fission Mo-99. In an effort to design a Mo-recovery system for the SHINE project using low-enriched uranium (LEU), we conducted batch, breakthrough, and pulse tests to determine the Mo isotherm, mass-transfer zone (MTZ), and system parameters for a 130 g-U/L uranyl sulfate solution at pH 1 and 80°C, as described previously. The VERSE program was utilized to calculate the MTZ under various loading times and velocities. The results were then used to design Mo separation andmore » recovery columns employing a pure titania sorbent (110-μm particles, S110, and 60 Å pore size). The plant-scale column designs assume Mo will be separated from 271 L of a 141 g-U/L uranyl sulfate solution, pH 1, containing 0.0023 mM Mo. The VERSE-designed recovery systems have been tested and verified in laboratory-scale experiments, and this approach was found to be very successful.« less

  3. Structure, Kinetics, and Thermodynamics of the Aqueous Uranyl(VI) Cation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerisit, Sebastien N.; Liu, Chongxuan

    2013-08-20

    Molecular simulation techniques are employed to gain insights into the structural, kinetic, and thermodynamic properties of the uranyl(VI) cation (UO22+) in aqueous solution. The simulations make use of an atomistic potential model (force field) derived in this work and based on the model of Guilbaud and Wipff (Guilbaud, P.; Wipff, G. J. Mol. Struct. (THEOCHEM) 1996, 366, 55-63). Reactive flux and thermodynamic integration calculations show that the derived potential model yields predictions for the water exchange rate and free energy of hydration, respectively, that are in agreement with experimental data. The water binding energies, hydration shell structure, and self-diffusion coefficientmore » are also calculated and discussed. Finally, a combination of metadynamics and transition path sampling simulations is employed to probe the mechanisms of water exchange reactions in the first hydration shell of the uranyl ion. These atomistic simulations indicate, based on two-dimensional free energy surfaces, that water exchanges follow an associative interchange mechanism. The nature and structure of the water exchange transition states are also determined. The improved potential model is expected to lead to more accurate predictions of uranyl adsorption energies at mineral surfaces using potential-based molecular dynamics simulations.« less

  4. Periodic density functional theory investigation of the uranyl ion sorption on three mineral surfaces: a comparative study.

    PubMed

    Roques, Jérôme; Veilly, Edouard; Simoni, Eric

    2009-06-04

    Canister integrity and radionuclides retention is of prime importance for assessing the long term safety of nuclear waste stored in engineered geologic depositories. A comparative investigation of the interaction of uranyl ion with three different mineral surfaces has thus been undertaken in order to point out the influence of surface composition on the adsorption mechanism(s). Periodic DFT calculations using plane waves basis sets with the GGA formalism were performed on the TiO(2)(110), Al(OH)(3)(001) and Ni(111) surfaces. This study has clearly shown that three parameters play an important role in the uranyl adsorption mechanism: the solvent (H(2)O) distribution at the interface, the nature of the adsorption site and finally, the surface atoms' protonation state.

  5. Periodic Density Functional Theory Investigation of the Uranyl Ion Sorption on Three Mineral Surfaces: A Comparative Study

    PubMed Central

    Roques, Jérôme; Veilly, Edouard; Simoni, Eric

    2009-01-01

    Canister integrity and radionuclides retention is of prime importance for assessing the long term safety of nuclear waste stored in engineered geologic depositories. A comparative investigation of the interaction of uranyl ion with three different mineral surfaces has thus been undertaken in order to point out the influence of surface composition on the adsorption mechanism(s). Periodic DFT calculations using plane waves basis sets with the GGA formalism were performed on the TiO2(110), Al(OH)3(001) and Ni(111) surfaces. This study has clearly shown that three parameters play an important role in the uranyl adsorption mechanism: the solvent (H2O) distribution at the interface, the nature of the adsorption site and finally, the surface atoms’ protonation state. PMID:19582222

  6. Selective Nitrate Recognition by a Halogen-Bonding Four-Station [3]Rotaxane Molecular Shuttle.

    PubMed

    Barendt, Timothy A; Docker, Andrew; Marques, Igor; Félix, Vítor; Beer, Paul D

    2016-09-05

    The synthesis of the first halogen bonding [3]rotaxane host system containing a bis-iodo triazolium-bis-naphthalene diimide four station axle component is reported. Proton NMR anion binding titration experiments revealed the halogen bonding rotaxane is selective for nitrate over the more basic acetate, hydrogen carbonate and dihydrogen phosphate oxoanions and chloride, and exhibits enhanced recognition of anions relative to a hydrogen bonding analogue. This elaborate interlocked anion receptor functions via a novel dynamic pincer mechanism where upon nitrate anion binding, both macrocycles shuttle from the naphthalene diimide stations at the periphery of the axle to the central halogen bonding iodo-triazolium station anion recognition sites to form a unique 1:1 stoichiometric nitrate anion-rotaxane sandwich complex. Molecular dynamics simulations carried out on the nitrate and chloride halogen bonding [3]rotaxane complexes corroborate the (1) H NMR anion binding results. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. [La(UO{sub 2})V{sub 2}O{sub 7}][(UO{sub 2})(VO{sub 4})] the first lanthanum uranyl-vanadate with structure built from two types of sheets based upon the uranophane anion-topology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mer, A.; Obbade, S.; Rivenet, M.

    2012-01-15

    The new lanthanum uranyl vanadate divanadate, [La(UO{sub 2})V{sub 2}O{sub 7}][(UO{sub 2})(VO{sub 4})] was obtained by reaction at 800 Degree-Sign C between lanthanum chloride, uranium oxide (U{sub 3}O{sub 8}) and vanadium oxide (V{sub 2}O{sub 5}) and the structure was determined from single-crystal X-ray diffraction data. This compound crystallizes in the orthorhombic system with space group P2{sub 1}2{sub 1}2{sub 1} and unit-cell parameters a=6.9470(2) A, b=7.0934(2) A, c=25.7464(6) A, V=1268.73(5) A{sup 3}, Z=4. A full matrix least-squares refinement yielded R{sub 1}=0.0219 for 5493 independent reflections. The crystal structure is characterized by the stacking of uranophane-type sheets {sup 2}{sub {infinity}}[(UO{sub 2})(VO{sub 4})]{sup -}more » and double layers {sup 2}{sub {infinity}}[La(UO{sub 2})(V{sub 2}O{sub 7})]{sup +} connected through La-O bonds involving the uranyl oxygen of the uranyl-vanadate sheets. The double layers result from the connection of two {sup 2}{sub {infinity}}[La(UO{sub 2})(VO{sub 4}){sub 2}]{sup -} sheets derived from the uranophane anion-topology by replacing half of the uranyl ions by lanthanum atoms and connected through the formation of divanadate entities. - Graphical abstract: A view of the three-dimensional structure of [La(UO{sub 2})V{sub 2}O{sub 7}][(UO{sub 2})(VO{sub 4})]. Highlights: Black-Right-Pointing-Pointer New lanthanum uranyl vanadate divanadate has been synthesized. Black-Right-Pointing-Pointer Structure was determined from single-crystal X-ray diffraction data. Black-Right-Pointing-Pointer Structure is characterized by uranophane-type sheets and double layers {sup 2}{sub {infinity}}[La(UO{sub 2})(V{sub 2}O{sub 7})]{sup +}.« less

  8. Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate.

    PubMed

    Su, Chunming; Puls, Robert W

    2004-05-01

    Recent studies have shown that zerovalent iron (Fe0) may potentially be used as a chemical medium in permeable reactive barriers (PRBs) for groundwater nitrate remediation; however, the effects of commonly found organic and inorganic ligands in soil and sediments on nitrate reduction by Fe0 have not been well understood. A 25.0 mL nitrate solution of 20.0 mg of N L(-1) (1.43 mM nitrate) was reacted with 1.00 g of Peerless Fe0 at 200 rpm on a rotational shaker at 23 degrees C for up to 120 h in the presence of each of the organic acids (3.0 mM formic, 1.5 mM oxalic, and 1.0 mM citric acids) and inorganic acids (3.0 mM HCl, 1.5 mM H2SO4, 3.0 mM H3BO3, and 1.5 mM H3PO4). These acids provided an initial dissociable H+ concentration of 3.0 mM available for nitrate reduction reactions under conditions of final pH < 9.3. Nitrate reduction rates (pseudo-first-order) increased in the order: H3PO4 < citric acid < H3BO3 < oxalic acid < H2SO4 < formic acid < HCl, ranging from 0.00278 to 0.0913 h(-1), corresponding to surface area normalized rates ranging from 0.126 to 4.15 h(-1) m(-2) mL. Correlation analysis showed a negative linear relationship between the nitrate reduction rates for the ligands and the conditional stability constants for the soluble complexes of the ligands with Fe2+ (R2 = 0.701) or Fe3+ (R2 = 0.918) ions. This sequence of reactivity corresponds also to surface adsorption and complexation of the three organic ligands to iron oxides, which increase in the order formate < oxalate < citrate. The results are also consistent with the sequence of strength of surface complexation of the inorganic ligands to iron oxides, which increases in the order: chloride < sulfate < borate < phosphate. The blockage of reactive sites on the surface of Fe0 and its corrosion products by specific adsorption of the inner-sphere complex forming ligands (oxalate, citrate, sulfate, borate, and phosphate) may be responsible for the decreased nitrate reduction by Fe0 relative to the chloride system.

  9. Inhibition of poly(ADP-ribose)polymerase-1 and DNA repair by uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Karen L.; Dashner, Erica J.; Tsosie, Ranalda

    Uranium has radiological and non-radiological effects within biological systems and there is increasing evidence for genotoxic and carcinogenic properties attributable to uranium through its heavy metal properties. In this study, we report that low concentrations of uranium (as uranyl acetate; < 10 μM) is not cytotoxic to human embryonic kidney cells or normal human keratinocytes; however, uranium exacerbates DNA damage and cytotoxicity induced by hydrogen peroxide, suggesting that uranium may inhibit DNA repair processes. Concentrations of uranyl acetate in the low micromolar range inhibited the zinc finger DNA repair protein poly(ADP-ribose) polymerase (PARP)-1 and caused zinc loss from PARP-1 protein.more » Uranyl acetate exposure also led to zinc loss from the zinc finger DNA repair proteins Xeroderma Pigmentosum, Complementation Group A (XPA) and aprataxin (APTX). In keeping with the observed inhibition of zinc finger function of DNA repair proteins, exposure to uranyl acetate enhanced retention of induced DNA damage. Co-incubation of uranyl acetate with zinc largely overcame the impact of uranium on PARP-1 activity and DNA damage. These findings present evidence that low concentrations of uranium can inhibit DNA repair through disruption of zinc finger domains of specific target DNA repair proteins. This may provide a mechanistic basis to account for the published observations that uranium exposure is associated with DNA repair deficiency in exposed human populations. - Highlights: • Low micromolar concentration of uranium inhibits polymerase-1 (PARP-1) activity. • Uranium causes zinc loss from multiple DNA repair proteins. • Uranium enhances retention of DNA damage caused by ultraviolet radiation. • Zinc reverses the effects of uranium on PARP activity and DNA damage repair.« less

  10. Cyanex based uranyl sensitive polymeric membrane electrodes.

    PubMed

    Badr, Ibrahim H A; Zidan, W I; Akl, Z F

    2014-01-01

    Novel uranyl selective polymeric membrane electrodes were prepared using three different low-cost and commercially available Cyanex extractants namely, bis(2,4,4-trimethylpentyl) phosphinic acid [L1], bis(2,4,4-trimethylpentyl) monothiophosphinic acid [L2] and bis(2,4,4-trimethylpentyl) dithiophosphinic acid [L3]. Optimization and performance characteristics of the developed Cyanex based polymer membrane electrodes were determined. The influence of membrane composition (e.g., amount and type of ionic sites, as well as type of plasticizer) on potentiometric responses of the prepared membrane electrodes was studied. Optimized Cyanex-based membrane electrodes exhibited Nernstian responses for UO₂(2+) ion over wide concentration ranges with fast response times. The optimized membrane electrodes based on L1, L2 and L3 exhibited Nernstian responses towards uranyl ion with slopes of 29.4, 28.0 and 29.3 mV decade(-1), respectively. The optimized membrane electrodes based on L1-L3 showed detection limits of 8.3 × 10(-5), 3.0 × 10(-5) and 3.3 × 10(-6) mol L(-1), respectively. The selectivity studies showed that the optimized membrane electrodes exhibited high selectivity towards UO₂(2+) ion over large number of other cations. Membrane electrodes based on L3 exhibited superior potentiometric response characteristics compared to those based on L1 and L2 (e.g., widest linear range and lowest detection limit). The analytical utility of uranyl membrane electrodes formulated with Cyanex extractant L3 was demonstrated by the analysis of uranyl ion in different real samples for nuclear safeguards verification purposes. The results obtained using direct potentiometry and flow-injection methods were compared with those measured using the standard UV-visible and inductively coupled plasma spectroscopic methods. © 2013 Published by Elsevier B.V.

  11. Influence of Countercation Hydration Enthalpies on the Formation of Molecular Complexes: A Thorium–Nitrate Example

    DOE PAGES

    Jin, Geng Bang; Lin, Jian; Estes, Shanna L.; ...

    2017-11-17

    Here, the influence of countercations (A n+) in directing the composition of monomeric metal–ligand (ML) complexes that precipitate from solution are often overlooked despite the wide usage of A n+ in materials synthesis. Herein, we describe a correlation between the composition of ML complexes and A + hydration enthalpies found for two related series of thorium (Th)–nitrate molecular compounds obtained by evaporating acidic aqueous Th–nitrate solutions in the presence of A + counterions. Analyses of their chemical composition and solid-state structures demonstrate that A + not only affects the overall solid-state packing of the Th–nitrato complexes but also influences themore » composition of the Th–nitrato monomeric anions themselves. Trends in composition and structure are found to correlate with A + hydration enthalpies, such that the A + with smaller hydration enthalpies associate with less hydrated and more anionic Th–nitrato complexes. This perspective, broader than the general assumption of size and charge as the dominant influence of A n+, opens a new avenue for the design and synthesis of targeted metal–ligand complexes.« less

  12. Influence of Countercation Hydration Enthalpies on the Formation of Molecular Complexes: A Thorium–Nitrate Example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Geng Bang; Lin, Jian; Estes, Shanna L.

    Here, the influence of countercations (A n+) in directing the composition of monomeric metal–ligand (ML) complexes that precipitate from solution are often overlooked despite the wide usage of A n+ in materials synthesis. Herein, we describe a correlation between the composition of ML complexes and A + hydration enthalpies found for two related series of thorium (Th)–nitrate molecular compounds obtained by evaporating acidic aqueous Th–nitrate solutions in the presence of A + counterions. Analyses of their chemical composition and solid-state structures demonstrate that A + not only affects the overall solid-state packing of the Th–nitrato complexes but also influences themore » composition of the Th–nitrato monomeric anions themselves. Trends in composition and structure are found to correlate with A + hydration enthalpies, such that the A + with smaller hydration enthalpies associate with less hydrated and more anionic Th–nitrato complexes. This perspective, broader than the general assumption of size and charge as the dominant influence of A n+, opens a new avenue for the design and synthesis of targeted metal–ligand complexes.« less

  13. Charge-transfer mechanism for electrophilic aromatic nitration and nitrosation via the convergence of (ab initio) molecular-orbital and Marcus-Hush theories with experiments.

    PubMed

    Gwaltney, Steven R; Rosokha, Sergiy V; Head-Gordon, Martin; Kochi, Jay K

    2003-03-19

    The highly disparate rates of aromatic nitrosation and nitration, despite the very similar (electrophilic) properties of the active species: NO(+) and NO(2)(+) in Chart 1, are quantitatively reconciled. First, the thorough mappings of the potential-energy surfaces by high level (ab initio) molecular-orbital methodologies involving extensive coupled-cluster CCSD(T)/6-31G optimizations establish the intervention of two reactive intermediates in nitration (Figure 8) but only one in nitrosation (Figure 7). Second, the same distinctive topologies involving double and single potential-energy minima (Figures 6 and 5) also emerge from the semiquantitative application of the Marcus-Hush theory to the transient spectral data. Such a striking convergence from quite different theoretical approaches indicates that the molecular-orbital and Marcus-Hush (potential-energy) surfaces are conceptually interchangeable. In the resultant charge-transfer mechanism, the bimolecular interactions of arene donors with both NO(+) and NO(2)(+) spontaneously lead (barrierless) to pi-complexes in which electron transfer is concurrent with complexation. Such a pi-complex in nitration is rapidly converted to the sigma-complex, whereas this Wheland adduct in nitrosation merely represents a high energy (transition-state) structure. Marcus-Hush analysis thus demonstrates how the strongly differentiated (arene) reactivities toward NO(+) and NO(2)(+) can actually be exploited in the quantitative development of a single coherent (electron-transfer) mechanism for both aromatic nitrosation and nitration.

  14. Incorporation of Np(V) and U(VI) in Carbonate and Sulfate Minerals Crystallized from Aqueous Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balboni, Enrica; Morrison, Jessica M.; Wang, Zheming

    2015-02-15

    The neptunyl Np(V)O2 + and uranyl U(VI)O2 2+ ions are soluble in groundwater, although their interaction with minerals in the subsurface may impact their mobility. One mechanism for the immobilization of actinyl ions in the subsurface is coprecipitation in low-temperature minerals that form naturally, or that are induced to form as part of a remediation strategy. Important differences in the crystal-chemical behavior of the Np(V) neptunyl and U(VI) uranyl ions suggest their behavior towards incorporation into growing crystals may differ significantly. Using a selection of low temperature minerals synthesized in aqueous systems under ambient conditions, this study examines the factorsmore » that impact the structural incorporation of the Np(V) neptunyl and U(VI) uranyl ions in carbonate and sulfate minerals.« less

  15. Legacy of contaminant N sources to the NO3- signature in rivers: a combined isotopic (δ15N-NO3-, δ18O-NO3-, δ11B) and microbiological investigation

    NASA Astrophysics Data System (ADS)

    Briand, Cyrielle; Sebilo, Mathieu; Louvat, Pascale; Chesnot, Thierry; Vaury, Véronique; Schneider, Maude; Plagnes, Valérie

    2017-02-01

    Nitrate content of surface waters results from complex mixing of multiple sources, whose signatures can be modified through N reactions occurring within the different compartments of the whole catchment. Despite this complexity, the determination of nitrate origin is the first and crucial step for water resource preservation. Here, for the first time, we combined at the catchment scale stable isotopic tracers (δ15N and δ18O of nitrate and δ11B) and fecal indicators to trace nitrate sources and pathways to the stream. We tested this approach on two rivers in an agricultural region of SW France. Boron isotopic ratios evidenced inflow from anthropogenic waters, microbiological markers revealed organic contaminations from both human and animal wastes. Nitrate δ15N and δ18O traced inputs from the surface leaching during high flow events and from the subsurface drainage in base flow regime. They also showed that denitrification occurred within the soils before reaching the rivers. Furthermore, this study highlighted the determinant role of the soil compartment in nitrate formation and recycling with important spatial heterogeneity and temporal variability.

  16. Recuperation of uranyl ions from effluents by means of microbiological collectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cecal, A.; Palamaru, I.; Humelnicu, D.

    1997-12-31

    This paper deals with the study of bioaccumulation of uranyl ions (UO{sub 2}{sup 2+}) from industrial effluents, using microbiological collectors: Nostoc linkia sp., Tolipotrix sp., Spirulina sp., Porphyridium cruentum and also the glucide extract of P. cruentum. The values of retaining degree of UO{sub 2}{sup 2+} on the biomass, for several experimental conditions, were established between 14.22 and 91.99%.

  17. Patch testing with uranyl acetate in veterans exposed to depleted uranium during the 1991 Gulf war and the Iraqi conflict.

    PubMed

    Shvartsbeyn, Marianna; Tuchinda, Papapit; Gaitens, Joanna; Squibb, Katherine S; McDiarmid, Melissa A; Gaspari, Anthony A

    2011-01-01

    The Depleted Uranium Follow-Up Program is a clinical surveillance program run by the Baltimore Veterans Affairs Medical Center since 1993 for veterans of the Gulf and Iraqi wars who were exposed to depleted uranium (DU) as a result of "friendly-fire" incidents. In 2009, 40 veterans from this cohort were screened for skin reactivity to metals by patch-testing with extended metal series and uranyl acetate (0.25%, 2.5%, and 25%). A control arm comprised 46 patients without any known occupational exposures to DU who were seen at the University of Maryland Dermatology Clinic for evaluation of allergic contact dermatitis. Excluding irritant reactions, no patch-test reactions to uranyl acetate were observed in the participants. Irritant reactions to DU were more common in the clinic cohort, likely reflective of the demographic differences between the two arms of the study. Biologic monitoring of urine uranium concentrations in the DU program participants with 24-hour urine samples showed evidence of percutaneous uranium absorption from the skin patches. We conclude that dermatitis observed in a subset of the veterans was unrelated to their military DU exposure. Our data suggest that future studies of skin testing with uranyl acetate should utilize 0.25%, the least irritating concentration.

  18. KINETICS OF THE DISSOLUTION OF URANIUM DIOXIDE IN CARBONATE-BICARBONATE SOLUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schortmann, W.E.; DeSesa, M.A.

    The kinetics of the dissolution of uranium dioxide in sodium carbonate- sodium bicarbonate solutions were determined. The study was undertaken in order to obtain fundamental information about the commercial carbonate process for leaching uranium from its ores. A rate equation incorporating the effects of surface area oxygen partial pressure, temperature, and reagent concentrations was empirically developed. A mechanism consisting essentially of two consecutive reactions at steady state is proposed. These reactions are the oxidation of U/ sup 4+/ to U/sup 6+/ and the subsequent formation of the uranyl dicarbonate complexion. Depending on the conditions, either or both of these reactionsmore » can determine the over-all rate. The conversion of uranyl dicarbonate to the uranyl tricarbonate complexion is postulated to be very rapid. In the suggested mechanism, the rate-determining phase of the oxidation is the dissociation of adsorbed molecular oxygen. and both the carbonate and bicarbonate ions play equivalent roles in the formation of the uranyl dicarbonate. As indicated by their high activation energies of about 13 and 14 kcal per mole uranium, both reactions are chemical rather than diffusional processes. A mathematical examination of the proposed mechanism produced a rate equation consistent with the experimental information. The credibility of the mechanism was thereby strengthened. (auth)« less

  19. Residence times of groundwater and nitrate transport in coastal aquifer systems: Daweijia area, northeastern China.

    PubMed

    Han, Dongmei; Cao, Guoliang; McCallum, James; Song, Xianfang

    2015-12-15

    Groundwater within the coastal aquifer systems of the Daweijia area in northeastern China is characterized by a large of variations (33-521mg/L) in NO3(-) concentrations. Elevated nitrate concentrations, in addition to seawater intrusion in the Daweijia well field, both attributable to anthropogenic activities, may impact future water-management practices. Chemical and stable isotopic (δ(18)O, δ(2)H) analysis, (3)H and CFCs methods were applied to provide a better understanding of the relationship between the distribution of groundwater mean residence time (MRT) and nitrate transport, and to identify sources of nitrate concentrations in the complex coastal aquifer systems. There is a relatively narrow range of isotopic composition (ranging from -8.5 to -7.0‰) in most groundwater. Generally higher tritium contents observed in the wet season relative to the dry season may result from rapid groundwater circulation in response to the rainfall through the preferential flow paths. In the well field, the relatively increased nitrate concentrations of groundwater, accompanied by the higher tritium contents in the wet season, indicate the nitrate pollution can be attributed to domestic wastes. The binary exponential and piston-flow mixing model (BEP) yielded feasible age distributions based on the conceptual model. The good inverse relationship between groundwater MRTs (92-467years) and the NO3(-) concentrations in the shallow Quaternary aquifers indicates that elevated nitrate concentrations are attributable to more recent recharge for shallow groundwater. However, there is no significant relationship between the MRTs (8-411years) and the NO3(-) concentrations existing in the carbonate aquifer system, due to the complex hydrogeological conditions, groundwater age distributions and the range of contaminant source areas. Nitrate in the groundwater system without denitrification effects could accumulate and be transported for tens of years, through the complex carbonate aquifer matrix and the successive inputs of nitrogen from various sources. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A Raman spectroscopic study of the uranyl sulphate mineral johannite.

    PubMed

    Frost, Ray L; Erickson, Kristy L; Cejka, Jirí; Reddy, B Jagannadha

    2005-09-01

    Raman spectroscopy at 298 and 77K has been used to study the secondary uranyl mineral johannite of formula (Cu(UO2)2(SO4)2(OH)2 x 8H2O). Four Raman bands are observed at 3593, 3523, 3387 and 3234cm(-1) and four infrared bands at 3589, 3518, 3389 and 3205cm(-1). The first two bands are assigned to OH- units (hydroxyls) and the second two bands to water units. Estimations of the hydrogen bond distances for these four bands are 3.35, 2.92, 2.79 and 2.70 A. A sharp intense band at 1042 cm(-1) is attributed to the (SO4)2- symmetric stretching vibration and the three Raman bands at 1147, 1100 and 1090cm(-1) to the (SO4)2- anti-symmetric stretching vibrations. The nu2 bending modes were at 469, 425 and 388 cm(-1) at 77K confirming the reduction in symmetry of the (SO4)2- units. At 77K two bands at 811 and 786 cm(-1) are attributed to the nu1 symmetric stretching modes of the (UO2)2+ units suggesting the non-equivalence of the UO bonds in the (UO2)2+ units. The band at 786cm(-1), however, may be related to water molecules libration modes. In the 77K Raman spectrum, bands are observed at 306, 282, 231 and 210cm(-1) with other low intensity bands found at 191, 170 and 149cm(-1). The two bands at 282 and 210 cm(-1) are attributed to the doubly degenerate nu2 bending vibration of the (UO2)2+ units. Raman spectroscopy can contribute significant knowledge in the study of uranyl minerals because of better band separation with significantly narrower bands, avoiding the complex spectral profiles as observed with infrared spectroscopy.

  1. Uptake and speciation of uranium in synthetic gypsum (CaSO4•2H2O): Applications to radioactive mine tailings.

    PubMed

    Lin, Jinru; Sun, Wei; Desmarais, Jacques; Chen, Ning; Feng, Renfei; Zhang, Patrick; Li, Dien; Lieu, Arthur; Tse, John S; Pan, Yuanming

    2018-01-01

    Phosphogypsum formed from the production of phosphoric acid represents by far the biggest accumulation of gypsum-rich wastes in the world and commonly contains elevated radionuclides, including uranium, as well as other heavy metals and metalloids. Therefore, billions-of-tons of phosphogypsum stockpiled worldwide not only possess serious environmental problems but also represent a potential uranium resource. Gypsum is also a major solid constituent in many other types of radioactive mine tailings, which stems from the common usage of sulfuric acid in extraction processes. Therefore, management and remediation of radioactive mine tailings as well as future beneficiation of uranium from phosphogysum all require detailed knowledge about the nature and behavior of uranium in gypsum. However, little is known about the uptake mechanism or speciation of uranium in gypsum. In this study, synthesis experiments suggest an apparent pH control on the uptake of uranium in gypsum at ambient conditions: increase in U from 16 μg/g at pH = 6.5 to 339 μg/g at pH = 9.5. Uranium L 3 -edge synchrotron X-ray absorption spectroscopic analyses of synthetic gypsum show that uranyl (UO 2 ) 2+ at the Ca site is the dominant species. The EXAFS fitting results also indicate that uranyl in synthetic gypsum occurs most likely as carbonate complexes and yields an average U-O distance ∼0.25 Å shorter than the average Ca-O distance, signifying a marked local structural distortion. Applications to phosphogypsum from the New Wales phosphoric acid plant (Florida, USA) and uranium mine tailings from the Key Lake mill (Saskatchewan, Canada) show that gypsum is an important carrier of uranium over a wide range of pH and controls the fate of this radionuclide in mine tailings. Also, development of new technologies for recovering U from phosphogypsum in the future must consider lattice-bound uranyl in gypsum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The geochemistry of water near a surficial organic-rich uranium deposit, northeastern Washington State, U.S.A.

    USGS Publications Warehouse

    Zielinski, R.A.; Otton, J.K.; Wanty, R.B.; Pierson, C.T.

    1987-01-01

    The chemistry of three stream, three spring and six near-surface waters in the vicinity of a Holocene organic-rich uranium deposit is described, with particular emphasis on the chemistry of U. Results characterize the solution behavior of uranium as U-bearing water interacts with relatively undecomposed, surficial organic matter. Of the measured major and trace chemical species, only U is consistently highly enriched (17-318 ppb) relative to reported values for regional waters, or to literature values for waters in largely granitic terrains. R-mode factor analysis of the chemical data suggests that most U is present in a soluble form, but that some U is also associated with fine suspended particulates of clay, organic matter, or hydrous oxides. Calculations that apply thermodynamic data to predict U speciation in solution indicate the relative importance of uranyl carbonate and uranyl phosphate complexes. Analysis of more finely filtered samples (0.05 ??m vs. 0.45 ??m), and direct radiographic observations using fission-track detectors suspended in the waters indicate the presence of some uraniferous particulate matter. Application of existing thermodynamic data for uranous- and uranyl-bearing minerals indicates that all waters are undersaturated with U minerals as long as ambient Eh ??? +0.1 v. If coexisting surface and near-surface waters are sufficiently oxidizing, initial fixation of U in the deposit should be by a mechanism of adsorption. Alternatively, more reducing conditions may prevail in deeper pore waters of the organic-rich host sediments, perhaps leading to direct precipitation or diagenetic formation of U4+ minerals. A 234U 238U alpha activity ratio of 1.08 ?? 0.02 in a spring issuing from a hillslope above the deposit suggests a relatively soluble source of U. In contrast, higher activity ratios of 234U 238U (??? 1.3) in waters in contact with the uraniferous valley-fill sediments suggest differences in the nature of interaction between groundwater and the local, U-rich source rocks. ?? 1987.

  3. Comparative density functional study of the complexes [UO2(CO3)3]4- and [(UO2)3(CO3)6]6- in aqueous solution.

    PubMed

    Schlosser, Florian; Moskaleva, Lyudmila V; Kremleva, Alena; Krüger, Sven; Rösch, Notker

    2010-06-28

    With a relativistic all-electron density functional method, we studied two anionic uranium(VI) carbonate complexes that are important for uranium speciation and transport in aqueous medium, the mononuclear tris(carbonato) complex [UO(2)(CO(3))(3)](4-) and the trinuclear hexa(carbonato) complex [(UO(2))(3)(CO(3))(6)](6-). Focusing on the structures in solution, we applied for the first time a full solvation treatment to these complexes. We approximated short-range effects by explicit aqua ligands and described long-range electrostatic interactions via a polarizable continuum model. Structures and vibrational frequencies of "gas-phase" models with explicit aqua ligands agree best with experiment. This is accidental because the continuum model of the solvent to some extent overestimates the electrostatic interactions of these highly anionic systems with the bulk solvent. The calculated free energy change when three mono-nuclear complexes associate to the trinuclear complex, agrees well with experiment and supports the formation of the latter species upon acidification of a uranyl carbonate solution.

  4. Bambus[6]uril as a novel macrocyclic receptor for the nitrate anion.

    PubMed

    Toman, Petr; Makrlík, Emanuel; Vanura, Petr

    2013-01-01

    By using quantum mechanical DFT calculations, the most probable structure of the bambus[6]uril x NO3(-) anionic complex species was derived. In this complex having C3 symmetry, the nitrate anion NO3(-), included in the macrocyclic cavity, is bound by twelve weak hydrogen bonds between methine hydrogen atoms on the convex face of glycoluril units and the considered NO3(-) ion.

  5. Characterization of UO2(2+) binding to osteopontin, a highly phosphorylated protein: insights into potential mechanisms of uranyl accumulation in bones.

    PubMed

    Qi, Lei; Basset, Christian; Averseng, Olivier; Quéméneur, Eric; Hagège, Agnès; Vidaud, Claude

    2014-01-01

    Bones are one of the few organs in which uranyl (UO2(2+)) accumulates. This large dioxo-cation displays affinity for carboxylates, phenolates and phosphorylated functional groups in proteins. The noncollagenous protein osteopontin (OPN) plays an important role in bone homeostasis. It is mainly found in the extracellular matrix of mineralized tissues but also in body fluids such as milk, blood and urine. Furthermore, OPN is an intrinsically disordered protein, which, like other proteins of the SIBLING family, contains a polyaspartic acid sequence and numerous patterns of alternating acidic and phosphorylated residues. All these properties led to the hypothesis that this protein could be prone to UO2(2+) binding. In this work, a simple purification procedure enabling highly purified bovine (bOPN) and human OPN (hOPN) to be obtained was developed. Various biophysical approaches were set up to study the impact of phosphorylations on the affinity of OPN for UO2(2+) as well as the formation of stable complexes originating from structural changes induced by the binding of this metal cation. The results obtained suggest a new mechanism of the interaction of UO2(2+) with bone metabolism and a new role for OPN as a metal transporter.

  6. Neptunium incorporation into select uranyl phases and thermal analysis of select uranyl phases

    NASA Astrophysics Data System (ADS)

    Klingensmith, Amanda Leigh

    Alteration of spent nuclear fuel in a geological repository under oxidizing conditions is likely to result in abundant uranyl compounds. The proposed repository at Yucca Mountain, Nevada is intended to store about 70,000 metric tons of spent nuclear fuel in the unsaturated zone of a welded tuff sequence. Following failure of canisters that encapsulate the waste, contents may be exposed both to air and water and undergo repetitive wetting and drying events. Incorporation of radionuclides into the uranyl alteration phases may significantly reduce their mobility, thereby impacting repository performance. Of particular interest is 237Np owing to its long half-life (2.14 x 106 years) and potential mobility in groundwater. Powders of the synthetic uranyl phase soddyite, (UO2) 2(SiO4)(H2O)2, a framework type structure, and uranophane, Ca[(UO2)(SiO3OH)]2(H 2O)5, kasolite, Pb[(UO2)(SiO4)]H 2O, Na compreignacite, Na2[(UO2)3O 2(OH)3]2(H2O)7, and becquerelite, Ca[(UO2)3O2(OH)3]2(H 2O)8, all of which are sheet type structures, were synthesized in the presence of Np5+ under varying temperature and pH conditions. Uranophane, kasolite, boltwoodite K[(UO2)(SiO3OH)](H 2O)1.5, and Na boltwoodite K,Na[(UO2)(SiO 3OH)](H2O)1.5 were synthesized in the presence of Np as well as P, Ca and/or Mg. Single crystals of Na metaschoepite, Na[(UO 2)4O2(OH)5]˙5H2O were synthesized in the presence of Np5+ and laser ablation verified that Np can be incorporated within the structure of a uranyl phase. Incorporation of Np5+ into soddyite increased steadily with synthesis temperature. Np incorporation into uranophane, becquerelite, and kasolite was not dependent on synthesis temperature. Np uptake in uranophane and kasolite was found to be dependent on synthesis pH, with an increase in Np uptake with higher pH. Uranophane, boltwoodite and Na boltwoodite showed an increase in Np incorporation in the presence of P. Boltwoodite showed an even higher Np uptake when Mg and P were both present in the synthesis. Thermal analysis was completed for the uranyl phases soddyite, becquerelite, Na compreignacite, uranophane, and kasolite. TGA curves for becquerelite, Na compreignacite and uranophane showed loss of interlayer water groups by 100°C. Soddyite and kasolite showed more gradual TGA curves and retention of water groups up to 400°C for soddyite and 550°C for kasolite, with agreement shown by high temperature powder XRD data.

  7. Facial and meridional isomers of holmium-nitrate N-tert-butylacetamide complexes

    NASA Astrophysics Data System (ADS)

    Chang, Ye-Di; Xue, Jun-Hui; Kang, Xiao-Yan; Yang, Li-Min; Li, Wei-Hong; Xu, Yi-Zhuang; Zhao, Guo-Zhong; Zhang, Gao-Hui; Liu, Ke-Xin; Chen, Jia-Er; Wu, Jin-Guang

    2018-06-01

    Two Ho(C6H13NO)3(NO3)3 complexes formed by holmium nitrate and N-tert-butylacetamide (NtBA) (Ho-NtBA(I) in a Cc space group, and Ho-NtBA(II) in a P21/c space group) are reported here to investigate the coordination of lanthanide ions with amide groups. Using X-ray single crystal diffraction, FTIR, Raman, FIR and THz methods the structures of the two complexes were identified, in which Ho3+ is 9-coordinated to three carbonyl oxygen atoms provided by three NtBA ligands and three bidentate nitrate ions to form the "facial" and "meridional" isomers. Their FTIR and Raman spectra indicate the formation of two holmium complexes, the variations of NtBA after holmium coordination and the spectra are similar for the isomers in some extent. Their FIR and THz spectroscopic results show the coordination of holmium ions and THz maybe more sensitive to isomers. The results demonstrate the coordination behaviors of holmium ions and NtBA ligand.

  8. SEPARATION OF THORIUM FROM URANIUM

    DOEpatents

    Bane, R.W.

    1959-09-01

    A description is given for the separation of thorium from uranium by forming an aqueous acidic solution containing ionic species of thorium, uranyl uranium, and hydroxylamine, flowing the solution through a column containing the phenol-formaldehyde type cation exchange resin to selectively adsorb substantially all the thorium values and a portion of the uranium values, flowing a dilute solution of hydrochloric acid through the column to desorb the uranium values, and then flowing a dilute aqueous acidic solution containing an ion, such as bisulfate, which has a complexing effect upon thortum through the column to desorb substantially all of the thorium.

  9. Adsorption of Fe(II) and U(VI) to carboxyl-functionalized microspheres: The influence of speciation on uranyl reduction studied by titration and XAFS

    NASA Astrophysics Data System (ADS)

    Boyanov, Maxim I.; O'Loughlin, Edward J.; Roden, Eric E.; Fein, Jeremy B.; Kemner, Kenneth M.

    2007-04-01

    The chemical reduction of U(VI) by Fe(II) is a potentially important pathway for immobilization of uranium in subsurface environments. Although the presence of surfaces has been shown to catalyze the reaction between Fe(II) and U(VI) aqueous species, the mechanism(s) responsible for the enhanced reactivity remain ambiguous. To gain further insight into the U-Fe redox process at a complexing, non-conducting surface that is relevant to common organic phases in the environment, we studied suspensions containing combinations of 0.1 mM U(VI), 1.0 mM Fe(II), and 4.2 g/L carboxyl-functionalized polystyrene microspheres. Acid-base titrations were used to monitor protolytic reactions, and Fe K-edge and U L-edge X-ray absorption fine structure spectroscopy was used to determine the valence and atomic environment of the adsorbed Fe and U species. In the Fe + surface carboxyl system, a transition from monomeric to oligomeric Fe(II) surface species was observed between pH 7.5 and pH 8.4. In the U + surface carboxyl system, the U(VI) cation was adsorbed as a mononuclear uranyl-carboxyl complex at both pH 7.5 and 8.4. In the ternary U + Fe + surface carboxyl system, U(VI) was not reduced by the solvated or adsorbed Fe(II) at pH 7.5 over a 4-month period, whereas complete and rapid reduction to U(IV) nanoparticles occurred at pH 8.4. The U(IV) product reoxidized rapidly upon exposure to air, but it was stable over a 4-month period under anoxic conditions. Fe atoms were found in the local environment of the reduced U(IV) atoms at a distance of 3.56 Å. The U(IV)-Fe coordination is consistent with an inner-sphere electron transfer mechanism between the redox centers and involvement of Fe(II) atoms in both steps of the reduction from U(VI) to U(IV). The inability of Fe(II) to reduce U(VI) in solution and at pH 7.5 in the U + Fe + carboxyl system is explained by the formation of a transient, "dead-end" U(V)-Fe(III) complex that blocks the U(V) disproportionation pathway after the first electron transfer. The increased reactivity at pH 8.4 relative to pH 7.5 is explained by the reaction of U(VI) with an Fe(II) oligomer, whereby the bonds between Fe atoms facilitate the transfer of a second electron to the hypothetical U(V)-Fe(III) intermediate. We discuss how this mechanism may explain the commonly observed higher efficiency of uranyl reduction by adsorbed or structural Fe(II) relative to aqueous Fe(II).

  10. Quantum-chemical, NMR, FT IR, and ESI MS studies of complexes of colchicine with Zn(II).

    PubMed

    Jankowski, Wojciech; Kurek, Joanna; Barczyński, Piotr; Hoffmann, Marcin

    2017-04-01

    Colchicine is a tropolone alkaloid from Colchicinum autumnale. It shows antifibrotic, antimitotic, and anti-inflammatory activities, and is used to treat gout and Mediterranean fever. In this work, complexes of colchicine with zinc(II) nitrate were synthesized and investigated using DFT, 1 H and 13 C NMR, FT IR, and ESI MS. The counterpoise-corrected and uncorrected interaction energies of these complexes were calculated. We also calculated their 1 H, 13 C NMR, and IR spectra and compared them with the corresponding experimentally obtained data. According to the ESI MS mass spectra, colchicine forms stable complexes with zinc(II) nitrate that have various stoichiometries: 2:1, 1:1:1, and 2:1:1 with respect to colchichine, Zn(II), and nitrate ion. All of the complexes were investigated using the quantum theory of atoms in molecules (QTAIM). The calculated and the measured spectra showed differences before and after the complexation process. Calculated electron densities and bond critical points indicated the presence of bonds between the ligands and the central cation in the investigated complexes that satisfied the quantum theory of atoms in molecules. Graphical Abstract DFT, NMR, FT IR, ESI MS, QTAIM and puckering studies of complexes of colchicine with Zn(II).

  11. A peroxynitrite complex of copper: formation from a copper-nitrosyl complex, transformation to nitrite and exogenous phenol oxidative coupling or nitration.

    PubMed

    Park, Ga Young; Deepalatha, Subramanian; Puiu, Simona C; Lee, Dong-Heon; Mondal, Biplab; Narducci Sarjeant, Amy A; del Rio, Diego; Pau, Monita Y M; Solomon, Edward I; Karlin, Kenneth D

    2009-11-01

    Reaction of nitrogen monoxide with a copper(I) complex possessing a tridentate alkylamine ligand gives a Cu(I)-(*NO) adduct, which when exposed to dioxygen generates a peroxynitrite (O=NOO(-))-Cu(II) species. This undergoes thermal transformation to produce a copper(II) nitrito (NO(2) (-)) complex and 0.5 mol equiv O(2). In the presence of a substituted phenol, the peroxynitrite complex effects oxidative coupling, whereas addition of chloride ion to dissociate the peroxynitrite moiety instead leads to phenol ortho nitration. Discussions include the structures (including electronic description) of the copper-nitrosyl and copper-peroxynitrite complexes and the formation of the latter, based on density functional theory calculations and accompanying spectroscopic data.

  12. An isotopic view of water and nitrate transport through the vadose zone in Oregon's southern Willamette Valley's Groundwater Management Area

    NASA Astrophysics Data System (ADS)

    Brooks, J. R.; Pearlstein, S.; Hutchins, S.; Faulkner, B. R.; Rugh, W.; Willard, K.; Coulombe, R.; Compton, J.

    2017-12-01

    Groundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the USA. The southern Willamette Valley Groundwater Management Area (GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen (N) inputs to the GWMA comes from agricultural fertilizers, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding N transformations. In partnership with local farmers and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years. Our results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitation water isotopes were highly variable over time, lysimeter water isotopes were surprisingly consistent, more closely resembling long-term precipitation isotope means rather than recent precipitation isotopic signatures. However, some particularly large precipitation events with unique isotopic signatures revealed high spatial variability in transport, with some lysimeters showing greater proportions of recent precipitation inputs than others. In one installation where we have groundwater wells and lysimeters at multiple depths, nitrate/nitrite concentrations decreased with depth. N concentrations and δ15N values indicated leaching at 1 m and denitrification at 3 m depth. However, these relationships showed spatial and temporal complexity. We are exploring how these vadose zone complexities can be incorporated into practical understanding of the impacts of N management on groundwater inputs.

  13. URANIUM RECOVERY AND PURIFICATION PROCESS AND PRODUCTION OF HIGH PURITY URANIUM TETRAFLUORIDE

    DOEpatents

    Bailes, R.H.; Long, R.S.; Grinstead, R.R.

    1957-09-17

    A process is described wherein an anionic exchange technique is employed to separate uramium from a large variety of impurities. Very efficient and economical purification of contamimated uranium can be achieved by treatment of the contaminated uranium to produce a solution containing a high concentration of chloride. Under these conditions the uranium exists as an aniomic chloride complex. Then the uranium chloride complex is adsorbed from the solution on an aniomic exchange resin, whereby a portion of the impurities remain in the solution and others are retained with the uramium by the resin. The adsorbed impurities are then removed by washing the resin with pure concentrated hydrochloric acid, after which operation the uranium is eluted with pure water yielding an acidic uranyl chloride solution of high purity.

  14. METHOD FOR DECONTAMINATION OF REACTOR SOLUTIONS

    DOEpatents

    Maraman, W.J.; Baxman, H.R.; Baker, R.D.

    1959-05-01

    A process for U recovery from phosphate fuel solutions is described. To fuel solution drawn from the reactor is added Fe(NO/sub 3/)/sub 3/ which destroys the U complex and forms ferric phosphate complex. The UO/sub 2/(NO/sub 3/)/sub 2/ formed is extracted into TBP-kerosene in a countercurrent column. The TBP contalning UO/sub 2/(NO/sub 3/)/sub 2/ is further purified by an aqueous Al(NO/ sub 3/)/sub 3/ scrub solution. The pregnant solution then goes to an H/sub 3/PO/ sub 4/ stripping and kerosene washing column. The H/sub 3/PO/sub 4/--uranyl phosphate solution is separated at the bottom and boiled to remove HNO/sub 3/ then diluted to fuel solution make-up strength. (T.R.H.)

  15. Legacy of contaminant N sources to the NO3− signature in rivers: a combined isotopic (δ15N-NO3−, δ18O-NO3−, δ11B) and microbiological investigation

    PubMed Central

    Briand, Cyrielle; Sebilo, Mathieu; Louvat, Pascale; Chesnot, Thierry; Vaury, Véronique; Schneider, Maude; Plagnes, Valérie

    2017-01-01

    Nitrate content of surface waters results from complex mixing of multiple sources, whose signatures can be modified through N reactions occurring within the different compartments of the whole catchment. Despite this complexity, the determination of nitrate origin is the first and crucial step for water resource preservation. Here, for the first time, we combined at the catchment scale stable isotopic tracers (δ15N and δ18O of nitrate and δ11B) and fecal indicators to trace nitrate sources and pathways to the stream. We tested this approach on two rivers in an agricultural region of SW France. Boron isotopic ratios evidenced inflow from anthropogenic waters, microbiological markers revealed organic contaminations from both human and animal wastes. Nitrate δ15N and δ18O traced inputs from the surface leaching during high flow events and from the subsurface drainage in base flow regime. They also showed that denitrification occurred within the soils before reaching the rivers. Furthermore, this study highlighted the determinant role of the soil compartment in nitrate formation and recycling with important spatial heterogeneity and temporal variability. PMID:28150819

  16. Development of Impregnated Agglomerate Pelletization (IAP) process for fabrication of (Th,U)O 2 mixed oxide pellets

    NASA Astrophysics Data System (ADS)

    Khot, P. M.; Nehete, Y. G.; Fulzele, A. K.; Baghra, Chetan; Mishra, A. K.; Afzal, Mohd.; Panakkal, J. P.; Kamath, H. S.

    2012-01-01

    Impregnated Agglomerate Pelletization (IAP) technique has been developed at Advanced Fuel Fabrication Facility (AFFF), BARC, Tarapur, for manufacturing (Th, 233U)O 2 mixed oxide fuel pellets, which are remotely fabricated in hot cell or shielded glove box facilities to reduce man-rem problem associated with 232U daughter radionuclides. This technique is being investigated to fabricate the fuel for Indian Advanced Heavy Water Reactor (AHWR). In the IAP process, ThO 2 is converted to free flowing spheroids by powder extrusion route in an unshielded facility which are then coated with uranyl nitrate solution in a shielded facility. The dried coated agglomerate is finally compacted and then sintered in oxidizing/reducing atmosphere to obtain high density (Th,U)O 2 pellets. In this study, fabrication of (Th,U)O 2 mixed oxide pellets containing 3-5 wt.% UO 2 was carried out by IAP process. The pellets obtained were characterized using optical microscopy, XRD and alpha autoradiography. The results obtained were compared with the results for the pellets fabricated by other routes such as Coated Agglomerate Pelletization (CAP) and Powder Oxide Pelletization (POP) route.

  17. The in-plant evaluation of a uranium NDA system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprinkle, J.K. Jr.; Baxman, H.R.; Langner, D.G.

    1979-12-31

    The Los Alamos Scientific Laboratory has an unirradiated enriched uranium reprocessing facility. Various types of solutions are generated in this facility, including distillates and raffinates containing ppm of uranium and concentrated solutions with up to 400 grams U/t. In addition to uranyl nitrate and HNO{sub 3}, the solutions may also contain zirconium, niobium, fluoride, and small amounts of many metals. A uranium solution assay system (USAS) has been installed to allow accurate and more timely process control, accountability, and criticality data to be obtained. The USAS assays are made by a variety of techniques that depend upon state-of-the-art high-resolution Ge(Li)more » gamma-ray spectroscopy integrated with an interactive, user-oriented computer software package. Tight control of the system`s performance is maintained by constantly monitoring the USAS status. Daily measurement control sequences are required, and the user is forced by the software to perform these sequences. Routine assays require 400 or 1000 seconds for a precision of 0.5% over the concentration range of 5--400 g/t. A comparison of the USAS precision and accuracy with that obtained by traditional destructive analytical chemistry techniques (colorimetric and volumetric) is presented.« less

  18. The in-plant evaluation of a uranium NDA system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprinkle, J.K. Jr.; Baxman, H.R.; Langner, D.G.

    1979-01-01

    The Los Alamos Scientific Laboratory has an unirradiated enriched uranium reprocessing facility. Various types of solutions are generated in this facility, including distillates and raffinates containing ppm of uranium and concentrated solutions with up to 400 grams U/t. In addition to uranyl nitrate and HNO{sub 3}, the solutions may also contain zirconium, niobium, fluoride, and small amounts of many metals. A uranium solution assay system (USAS) has been installed to allow accurate and more timely process control, accountability, and criticality data to be obtained. The USAS assays are made by a variety of techniques that depend upon state-of-the-art high-resolution Ge(Li)more » gamma-ray spectroscopy integrated with an interactive, user-oriented computer software package. Tight control of the system's performance is maintained by constantly monitoring the USAS status. Daily measurement control sequences are required, and the user is forced by the software to perform these sequences. Routine assays require 400 or 1000 seconds for a precision of 0.5% over the concentration range of 5--400 g/t. A comparison of the USAS precision and accuracy with that obtained by traditional destructive analytical chemistry techniques (colorimetric and volumetric) is presented.« less

  19. Electrophilic and free radical nitration of benzene and toluene with various nitrating agents*

    PubMed Central

    Olah, George A.; Lin, Henry C.; Olah, Judith A.; Narang, Subhash C.

    1978-01-01

    Electrophilic nitration of toluene and benzene was studied under various conditions with several nitrating systems. It was found that high orthopara regioselectivity is prevalent in all reactions and is independent of the reactivity of the nitrating agent. The methyl group of toluene is predominantly ortho-para directing under all reaction conditions. Steric factors are considered to be important but not the sole reason for the variation in the ortho/para ratio. The results reinforce our earlier views that, in electrophilic aromatic nitrations with reactive nitrating agents, substrate and positional selectivities are determined in two separate steps. The first step involves a π-aromatic-NO2+ ion complex or encounter pair, whereas the subsequent step is of arenium ion nature (separate for the ortho, meta, and para positions). The former determines substrate selectivity, whereas the latter determines regioselectivity. Thermal free radical nitration of benzene and toluene with tetranitromethane in sharp contrast gave nearly statistical product distributions. PMID:16592503

  20. Factors influencing protein tyrosine nitration – structure-based predictive models

    PubMed Central

    Bayden, Alexander S.; Yakovlev, Vasily A.; Graves, Paul R.; Mikkelsen, Ross B.; Kellogg, Glen E.

    2010-01-01

    Models for exploring tyrosine nitration in proteins have been created based on 3D structural features of 20 proteins for which high resolution X-ray crystallographic or NMR data are available and for which nitration of 35 total tyrosines has been experimentally proven under oxidative stress. Factors suggested in previous work to enhance nitration were examined with quantitative structural descriptors. The role of neighboring acidic and basic residues is complex: for the majority of tyrosines that are nitrated the distance to the heteroatom of the closest charged sidechain corresponds to the distance needed for suspected nitrating species to form hydrogen bond bridges between the tyrosine and that charged amino acid. This suggests that such bridges play a very important role in tyrosine nitration. Nitration is generally hindered for tyrosines that are buried and for those tyrosines where there is insufficient space for the nitro group. For in vitro nitration, closed environments with nearby heteroatoms or unsaturated centers that can stabilize radicals are somewhat favored. Four quantitative structure-based models, depending on the conditions of nitration, have been developed for predicting site-specific tyrosine nitration. The best model, relevant for both in vitro and in vivo cases predicts 30 of 35 tyrosine nitrations (positive predictive value) and has a sensitivity of 60/71 (11 false positives). PMID:21172423

  1. Bicarbonate Impact on U(VI) Bioreduction in a Shallow Alluvial Aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Philip E.; Williams, Kenneth H.; Davis, James A.

    Field-scale biostimulation and desorption tracer experiments conducted in a uranium (U) contaminated, shallow alluvial aquifer have provided insight into the coupling of microbiology, biogeochemistry, and hydrogeology that control U mobility in the subsurface. Initial experiments successfully tested the concept that Fe-reducing bacteria such as Geobacter sp. could enzymatically reduce soluble U(VI) to insoluble U(IV) during in situ electron donor amendment (Anderson et al. 2003, Williams et al. 2011). In parallel, in situ desorption tracer tests using bicarbonate amendment demonstrated rate-limited U(VI) desorption (Fox et al. 2012). These results and prior laboratory studies underscored the importance of enzymatic U(VI)-reduction and suggestedmore » the ability to combine desorption and bioreduction of U(VI). Here we report the results of a new field experiment in which bicarbonate-promoted uranium desorption and acetate amendment were combined and compared to an acetate amendment-only experiment in the same experimental plot. Results confirm that bicarbonate amendment to alluvial aquifer desorbs U(VI) and increases the abundance of Ca-uranyl-carbonato complexes. At the same time, that the rate of acetate-promoted enzymatic U(VI) reduction was greater in the presence of added bicarbonate in spite of the increased dominance of Ca-uranyl-carbonato aqueous complexes. A model-simulated peak rate of U(VI) reduction was ~3.8 times higher during acetate-bicarbonate treatment than under acetate-only conditions. Lack of consistent differences in microbial community structure between acetate-bicarbonate and acetate-only treatments suggest that a significantly higher rate of U(VI) reduction the bicarbonate-impacted sediment may be due to a higher intrinsic rate of microbial reduction induced by elevated concentrations of the bicarbonate oxyanion. The findings indicate that bicarbonate amendment may be useful in improving the engineered bioremediation of uranium in aquifers.« less

  2. Bicarbonate impact on U(VI) bioreduction in a shallow alluvial aquifer

    NASA Astrophysics Data System (ADS)

    Long, Philip E.; Williams, Kenneth H.; Davis, James A.; Fox, Patricia M.; Wilkins, Michael J.; Yabusaki, Steven B.; Fang, Yilin; Waichler, Scott R.; Berman, Elena S. F.; Gupta, Manish; Chandler, Darrell P.; Murray, Chris; Peacock, Aaron D.; Giloteaux, Ludovic; Handley, Kim M.; Lovley, Derek R.; Banfield, Jillian F.

    2015-02-01

    Field-scale biostimulation and desorption tracer experiments conducted in a uranium (U) contaminated, shallow alluvial aquifer have provided insight into the coupling of microbiology, biogeochemistry, and hydrogeology that control U mobility in the subsurface. Initial experiments successfully tested the concept that Fe-reducing bacteria such as Geobacter sp. could enzymatically reduce soluble U(VI) to insoluble U(IV) during in situ electron donor amendment (Anderson et al., 2003; Williams et al., 2011). In parallel, in situ desorption tracer tests using bicarbonate amendment demonstrated rate-limited U(VI) desorption (Fox et al., 2012). These results and prior laboratory studies underscored the importance of enzymatic U(VI)-reduction and suggested the ability to combine desorption and bioreduction of U(VI). Here we report the results of a new field experiment in which bicarbonate-promoted uranium desorption and acetate amendment were combined and compared to an acetate amendment-only experiment in the same experimental plot. Results confirm that bicarbonate amendment to alluvial aquifer sediments desorbs U(VI) and increases the abundance of Ca-uranyl-carbonato complexes. At the same time, the rate of acetate-promoted enzymatic U(VI) reduction was greater in the presence of added bicarbonate in spite of the increased dominance of Ca-uranyl-carbonato aqueous complexes. A model-simulated peak rate of U(VI) reduction was ∼3.8 times higher during acetate-bicarbonate treatment than under acetate-only conditions. Lack of consistent differences in microbial community structure between acetate-bicarbonate and acetate-only treatments suggest that a significantly higher rate of U(VI) reduction in the bicarbonate-impacted sediment may be due to a higher intrinsic rate of microbial reduction induced by elevated concentrations of the bicarbonate oxyanion. The findings indicate that bicarbonate amendment may be useful in improving the engineered bioremediation of uranium in aquifers.

  3. NMR shielding calculations across the periodic table: diamagnetic uranium compounds. 2. Ligand and metal NMR.

    PubMed

    Schreckenbach, Georg

    2002-12-16

    In this and a previous article (J. Phys. Chem. A 2000, 104, 8244), the range of application for relativistic density functional theory (DFT) is extended to the calculation of nuclear magnetic resonance (NMR) shieldings and chemical shifts in diamagnetic actinide compounds. Two relativistic DFT methods are used, ZORA ("zeroth-order regular approximation") and the quasirelativistic (QR) method. In the given second paper, NMR shieldings and chemical shifts are calculated and discussed for a wide range of compounds. The molecules studied comprise uranyl complexes, [UO(2)L(n)](+/-)(q); UF(6); inorganic UF(6) derivatives, UF(6-n)Cl(n), n = 0-6; and organometallic UF(6) derivatives, UF(6-n)(OCH(3))(n), n = 0-5. Uranyl complexes include [UO(2)F(4)](2-), [UO(2)Cl(4)](2-), [UO(2)(OH)(4)](2-), [UO(2)(CO(3))(3)](4-), and [UO(2)(H(2)O)(5)](2+). For the ligand NMR, moderate (e.g., (19)F NMR chemical shifts in UF(6-n)Cl(n)) to excellent agreement [e.g., (19)F chemical shift tensor in UF(6) or (1)H NMR in UF(6-n)(OCH(3))(n)] has been found between theory and experiment. The methods have been used to calculate the experimentally unknown (235)U NMR chemical shifts. A large chemical shift range of at least 21,000 ppm has been predicted for the (235)U nucleus. ZORA spin-orbit appears to be the most accurate method for predicting actinide metal chemical shifts. Trends in the (235)U NMR chemical shifts of UF(6-n)L(n) molecules are analyzed and explained in terms of the calculated electronic structure. It is argued that the energy separation and interaction between occupied and virtual orbitals with f-character are the determining factors.

  4. Infantile methemoglobinemia: reexamining the role of drinking water nitrates.

    PubMed

    Avery, A A

    1999-07-01

    Ingestion of nitrates in drinking water has long been thought to be a primary cause of acquired infantile methemoglobinemia, often called blue baby syndrome. However, recent research and a review of historical cases offer a more complex picture of the causes of infantile methemoglobinemia. Gastrointestinal infection and inflammation and the ensuing overproduction of nitric oxide may be the cause of many cases of infantile methemoglobinemia previously attributed to drinking water nitrates. If so, current limits on allowable levels of nitrates in drinking water, which are based solely on the health threat of infantile methemoglobinemia, may be unnecessarily strict.

  5. A structural and theoretical study of the alkylammonium nitrates forefather: Liquid methylammonium nitrate

    NASA Astrophysics Data System (ADS)

    Gontrani, Lorenzo; Caminiti, Ruggero; Salma, Umme; Campetella, Marco

    2017-09-01

    We present here a structural and vibrational analysis of melted methylammonium nitrate, the simplest compound of the family of alkylammonium nitrates. The static and dynamical features calculated were endorsed by comparing the experimental X-ray data with the theoretical ones. A reliable description cannot be obtained with classical molecular dynamics owing to polarization effects. Contrariwise, the structure factor and the vibrational frequencies obtained from ab initio molecular dynamics trajectories are in very good agreement with the experiment. A careful analysis has provided additional information on the complex hydrogen bonding network that exists in this liquid.

  6. Method of precipitating uranium from an aqueous solution and/or sediment

    DOEpatents

    Tokunaga, Tetsu K; Kim, Yongman; Wan, Jiamin

    2013-08-20

    A method for precipitating uranium from an aqueous solution and/or sediment comprising uranium and/or vanadium is presented. The method includes precipitating uranium as a uranyl vanadate through mixing an aqueous solution and/or sediment comprising uranium and/or vanadium and a solution comprising a monovalent or divalent cation to form the corresponding cation uranyl vanadate precipitate. The method also provides a pathway for extraction of uranium and vanadium from an aqueous solution and/or sediment.

  7. Criticality experiments and analysis of molybdenum reflected cylindrical uranyl fluoride water solution reactors

    NASA Technical Reports Server (NTRS)

    Fieno, D.; Fox, T.; Mueller, R.

    1972-01-01

    Clean criticality data were obtained from molybdenum-reflected cylindrical uranyl-fluoride-water solution reactors. Using ENDF/B molybdenum cross sections, a nine energy group two-dimensional transport calculation of a reflected reactor configuration predicted criticality to within 7 cents of the experimental value. For these reactors, it was necessary to compute the reflector resonance integral by a detailed transport calculation at the core-reflector interface volume in the energy region of the two dominant resonances of natural molybdenum.

  8. An unexpected truth: increasing nitrate loading can decrease nitrate export from watersheds

    NASA Astrophysics Data System (ADS)

    Askarizadeh Bardsiri, A.; Grant, S. B.; Rippy, M.

    2015-12-01

    The discharge of anthropogenic nitrate (e.g., from partially treated sewage, return flows from agricultural irrigation, and runoff from animal feeding operations) to streams can negatively impact both human and ecosystem health. Managing these many point and non-point sources to achieve some specific end-point—for example, reducing the annual mass of nitrate exported from a watershed—can be a challenge, particularly in rapidly growing urban areas. Adding to this complexity is the fact that streams are not inert: they too can add or remove nitrate through assimilation (e.g., by stream-associated plants and animals) and microbially-mediated biogeochemical reactions that occur in streambed sediments (e.g., respiration, ammonification, nitrification, denitrification). By coupling a previously published correlation for in-stream processing of nitrate [Mulholland et al., Nature, 2008, 452, 202-205] with a stream network model of the Jacksons Creek watershed (Victoria, Australia) I demonstrate that managing anthropogenic sources of stream nitrate without consideration of in-stream processing can result in a number of non-intuitive "surprises"; for example, wastewater effluent discharges that increase nitrate loading but decrease in-stream nitrate concentrations can reduce the mass of nitrate exported from a watershed.

  9. Nitration of naphthalene and remarks on the mechanism of electrophilic aromatic nitration.

    PubMed

    Olah, G A; Narang, S C; Olah, J A

    1981-06-01

    Naphthalene was nitrated with a variety of nitrating agents. Comparison of data with Perrin's electrochemical nitration [Perrin, C. L. (1977) J. Am. Chem. Soc. 99, 5516-5518] shows that nitration of naphthalene gives an alpha-nitronaphthalene to beta-nitronaphthalene ratio that varies between 9 and 29 and is thus not constant. Perrin's data, therefore, are considered to be inconclusive evidence for the proposed one-electron transfer mechanism for the nitration of naphthalene and other reactive aromatics. Moodie and Schoefield [Hoggett, J. G., Moodie, R. B., Penton, J. R. & Schoefield, K. (1971) Nitration and Aromatic Reactivity (Cambridge Univ. Press, London)], as well as Perrin, independently concluded that, in the general scheme of nitration of reactive aromatics, there is the necessity to introduce into the classical Ingold mechanism an additional step involving a distinct intermediate preceding the formation of the Wheland intermediate (sigma complexes). This view coincides with our two-step mechanistic picture [Kuhn, S. J. & Olah, G. A. (1961) J. Am. Chem. Soc. 83, 4564-4571] of the nitronium salt nitration of aromatic hydrocarbons (including benzene and toluene), in which low substrate selectivity but high positional selectivity was found, indicating the independence of substrate from positional selectivity.

  10. Nitration of naphthalene and remarks on the mechanism of electrophilic aromatic nitration*

    PubMed Central

    Olah, George A.; Narang, Subhash C.; Olah, Judith A.

    1981-01-01

    Naphthalene was nitrated with a variety of nitrating agents. Comparison of data with Perrin's electrochemical nitration [Perrin, C. L. (1977) J. Am. Chem. Soc. 99, 5516-5518] shows that nitration of naphthalene gives an α-nitronaphthalene to β-nitronaphthalene ratio that varies between 9 and 29 and is thus not constant. Perrin's data, therefore, are considered to be inconclusive evidence for the proposed one-electron transfer mechanism for the nitration of naphthalene and other reactive aromatics. Moodie and Schoefield [Hoggett, J. G., Moodie, R. B., Penton, J. R. & Schoefield, K. (1971) Nitration and Aromatic Reactivity (Cambridge Univ. Press, London)], as well as Perrin, independently concluded that, in the general scheme of nitration of reactive aromatics, there is the necessity to introduce into the classical Ingold mechanism an additional step involving a distinct intermediate preceding the formation of the Wheland intermediate (σ complexes). This view coincides with our two-step mechanistic picture [Kuhn, S. J. & Olah, G. A. (1961) J. Am. Chem. Soc. 83, 4564-4571] of the nitronium salt nitration of aromatic hydrocarbons (including benzene and toluene), in which low substrate selectivity but high positional selectivity was found, indicating the independence of substrate from positional selectivity. PMID:16593026

  11. Synthesis, characterization and biological activities of copper(II) complex of 2-Benzimidazolyl-urea and the nitrate salt of 2-Benzimidazolyl-urea

    NASA Astrophysics Data System (ADS)

    Poyraz, Mehmet; Sari, Musa; Banti, Christina N.; Hadjikakou, Sotiris K.

    2017-10-01

    The synthesis of the complex {[Cu(BZIMU)2](NO3)2} (1) (BZIMU = 2-Benzimidazolyl-urea) is reported here. The complex 1 was characterized by elemental analysis, FT-IR, magnetic susceptibility and molar conductance measurements. The crystal structures of 1 and of the nitrate salt of [(BZIMUH+)(NO3)-] (2) were determined by X-ray diffraction analysis. The copper complex 1 and [(BZIMUH+)(NO3)-] (2) were evaluated for their in vitro cytotoxic activity (cell viability) against human cervix adenocarcinoma (HeLa) and human breast adenocarcinoma (MCF-7) cell line and normal human fetal lung fibroblast cells (MRC-5) with SRB assay.

  12. Potassium and magnesium succinatouranilates – Synthesis and crystal structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, S.A., E-mail: serg.alex.novikov@gmail.com; Grigoriev, M.S.; Serezhkina, L.B.

    2017-04-15

    Single crystal X-ray diffraction has been applied to determine the structures of two new uranyl coordination polymers: K{sub 2}[(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}] (1) and [Mg(H{sub 2}O){sub 6}] [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]·2H{sub 2}O (2), where C{sub 4}H{sub 4}O{sub 4}{sup 2-} is succinate anion. Crystals of 1 and 2 contain polymeric complex anions [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]{sup 2-} with the same A{sub 2}Q{sup 02}{sub 3} crystallochemical formula (A=UO{sub 2}{sup 2+}, Q{sup 02}=C{sub 4}O{sub 4}H{sub 4}{sup 2-}), and have layered (1) or chain (2) structure. It has been found, that conformation of succinate ionsmore » is one of the factors, which affects the structure of [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]{sup 2-} anions. IR spectra of these new compounds are in good agreement with crystallographic data. Topological analysis of the uranium dicarboxylates with A{sub 2}Q{sup 02}{sub 3} crystallochemical formula has shown the presence of five isomers which differ from each other in coordination sequences and / or dimensionality. - Graphical abstract: Crystal structures of two new uranium(VI) coordination polymers with succinate linkers, namely K{sub 2}[(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}] (1) and [Mg(H{sub 2}O){sub 6}][(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]·2H{sub 2}O (2), were determined by single-crystal XRD. Crystals of studied compounds are based on 2D or 1D structural units with the same composition and crystallochemical formula. Topological isomerism in A{sub 2}Q{sup 02}{sub 3} crystallochemical group and conformations of succinate anions in uranyl complexes are under discussion. - Highlights: • Two new uranium coordination polymers were synthesized. • Their structural units have the same composition and crystallochemical formula. • In spite the same composition and CCF dimensionality of units is different. • Structural features of uranyl CPs are affected by linker conformations.« less

  13. Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling.

    PubMed

    Wang, Zimeng; Lee, Sung-Woo; Catalano, Jeffrey G; Lezama-Pacheco, Juan S; Bargar, John R; Tebo, Bradley M; Giammar, Daniel E

    2013-01-15

    The mobility of hexavalent uranium in soil and groundwater is strongly governed by adsorption to mineral surfaces. As strong naturally occurring adsorbents, manganese oxides may significantly influence the fate and transport of uranium. Models for U(VI) adsorption over a broad range of chemical conditions can improve predictive capabilities for uranium transport in the subsurface. This study integrated batch experiments of U(VI) adsorption to synthetic and biogenic MnO(2), surface complexation modeling, ζ-potential analysis, and molecular-scale characterization of adsorbed U(VI) with extended X-ray absorption fine structure (EXAFS) spectroscopy. The surface complexation model included inner-sphere monodentate and bidentate surface complexes and a ternary uranyl-carbonato surface complex, which was consistent with the EXAFS analysis. The model could successfully simulate adsorption results over a broad range of pH and dissolved inorganic carbon concentrations. U(VI) adsorption to synthetic δ-MnO(2) appears to be stronger than to biogenic MnO(2), and the differences in adsorption affinity and capacity are not associated with any substantial difference in U(VI) coordination.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abrao, Alcidio.; Araujo, Jose Adroaldo de; Franca Junior, J.M.

    This paper describes a technique for the production of nuclear grade ammonium diuranate (ADU) using uranyl sulfate solutions obtained as eluate from the ion exchange (strong cationic resin) purification of uranium, by precipitation with NH{sub 3} gas. The precipitation of ADU by direct introduction of NH{sub 3} gas into acid uranyl sulfate solution has as consequence a high coprecipitation of sulfate ion, reaching ratios as high as 10 to 14% SO{sub 4}/ADU. To overcome this serious inconvenience, the reverse order of addition of reagents was studied, the ADU precipitation being done in such a way that the pH of themore » mixture was kept higher than 6 during the whole precipitation. This modification, in conjunction with the adjustment of other precipitation parameters, like temperature, precipitation time, aging time, concentration of uranium in uranyl sulfate and pH, allowed a sucessful precipitation of ADU with low sulfate content. The technique was applied at pilot plant scale, using batch and continuous precipitation, in both cases the obtained ADU was low in sulfate.« less

  15. Efficient tetracycline adsorption and photocatalytic degradation of rhodamine B by uranyl coordination polymer

    NASA Astrophysics Data System (ADS)

    Ren, Ya-Nan; Xu, Wei; Zhou, Lin-Xia; Zheng, Yue-Qing

    2017-07-01

    Two mixed uranyl-cadmium malonate coordination polymers [(UO2)2Cd(H-bipy)2(mal)4(H2O)2]·4H2O 1 and [(UO2)Cd(bipy)(mal)2]·H2O 2 (H2mal = malonic acid, bipy =4,4‧-bipyridine) have been synthesized in room temperature. Compound 1 represents a one-dimensional (1D) chain assembly of Cd(II) ions, uranyl centers and malonate ligands. Compound 2 exhibits a two-dimensional (2D) 2D +2D → 3D polycatenated framework based on inclined interlocked 2D 44 sql grids. The two compounds have been characterized by elemental analysis, IR and UV-vis spectroscopy, thermal analysis, powder X-ray diffraction and photoluminescence spectroscopy. And the ferroelectric property of 2 also has been studied. Moreover, compound 2 exhibits good photocatalytic activity for dye degradation under UV light and is excellent adsorbent for removing tetracycline antibiotics in the aqueous solution.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cresap, D.A.; Halverson, D.S.

    In the Fluorinel Dissolution Process (FDP) upgrade, excess hydrofluoric acid in the dissolver product must be complexed with aluminum nitrate (ANN) to eliminate corrosion concerns, adjusted with nitrate to facilitate extraction, and diluted with water to ensure solution stability. This is currently accomplished via batch processing in large vessels. However, to accommodate increases in projected throughput and reduce water production in a cost-effective manner, a semi-continuous system (In-line Complexing (ILC)) has been developed. The major conclusions drawn from tests demonstrating the feasibility of this concept are given in this report.

  17. Energetic Ionic Liquids Based on Anionic Rare Earth Nitrate Complexes (Preprint)

    DTIC Science & Technology

    2008-07-10

    a glass transition temperature (Tg) at -46 oC. However, it is only stable in dry air, and thus must be protected from water. At 75 oC, clear weight...involved highly toxic and corrosive chemicals, N2O4 and NOCl. Ligands which coordinate via oxygen atoms to a rare earth metal ion give rise to stable...complexes. Thus higher air and thermal stabilities may be obtained by introducing rare earth metal nitrates as main components of ionic liquids. We

  18. Synchronicity of long-term nitrate patterns in forested catchments across the northeastern U.S.

    EPA Science Inventory

    Nitrogen movement through minimally-disturbed catchments can be affected by a variety of biogeochemical processes, climatic effects, hydrology and in-stream or in-lake processes. These combine to create dizzying complexity in long-term and seasonal nitrate patterns, with adjacen...

  19. A Family of Uranyl Coordination Polymers Containing O-Donor Dicarboxylates and Trispyridyltriazine Guests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangavelu, Sonia G.; Cahill, Christopher L.

    Four uranyl coordination polymers [UO2(C6H8O4)(H2O)2](C18H12N6)2 (1), [UO2(C8H4O4)(H2O)2](C18H12N6)2 (2), Na[(UO2)(C12H6O4)2](C18H13N6)·H2O (3), and Na[(UO2)(C16H8O4)(C6H3NO2)](C18H12N6)·H2O (4) containing aliphatic (adipic acid) or aromatic linkers (1,4-benzene dicarboxylic acid (BDC), 1,4-napthalene dicarboxylic acid (NDC), anthracene 9,10-dicarboxylic acid (ADC)) were synthesized and characterized using single crystal X-ray diffraction, powder X-ray diffraction, and luminescence spectroscopy. The π-stacking distances or the number of π–π interactions present between trispyridyltriazine (TPTZ) guests or the host framework in 1–4 may be affected by the size of the O-donor linker (adipic acid < BDC < NDC < ADC). Luminescence studies show that substitution between adipic acid and BDC influences the emission of 1more » and 2, in which the emission of 1 shows a red shift relative to that of 2. Uranyl emission was not observed in 3 and 4, and may be attributed to the position of the NDC and ADC triplet state relative to the emissive uranyl species.« less

  20. A Family of Uranyl Coordination Polymers Containing O-Donor Dicarboxylates and Trispyridyltriazine Guests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thangavelu, Sonia G.; Cahill, Christopher L.

    2016-01-06

    Four uranyl coordination polymers [UO2(C6H8O4)(H2O)2](C18H12N6)2 (1), [UO2(C8H4O4)(H2O)2](C18H12N6)2 (2), Na[(UO2)(C12H6O4)2](C18H13N6)·H2O (3), and Na[(UO2)(C16H8O4)(C6H3NO2)](C18H12N6)·H2O (4) containing aliphatic (adipic acid) or aromatic linkers (1,4-benzene dicarboxylic acid (BDC), 1,4-napthalene dicarboxylic acid (NDC), anthracene 9,10-dicarboxylic acid (ADC)) were synthesized and characterized using single crystal X-ray diffraction, powder X-ray diffraction, and luminescence spectroscopy. The π-stacking distances or the number of π–π interactions present between trispyridyltriazine (TPTZ) guests or the host framework in 1–4 may be affected by the size of the O-donor linker (adipic acid < BDC < NDC < ADC). Luminescence studies show that substitution between adipic acid and BDC influences the emission of 1more » and 2, in which the emission of 1 shows a red shift relative to that of 2. Uranyl emission was not observed in 3 and 4, and may be attributed to the position of the NDC and ADC triplet state relative to the emissive uranyl species.« less

  1. First-principles molecular dynamics simulation of the Ca 2UO 2(CO 3) 3 complex in water

    DOE PAGES

    Priest, Chad; Tian, Ziqi; Jiang, De-en

    2016-01-22

    Recent experiments have shown that the neutral Ca 2UO 2(CO 3) 3 complex is the dominant species of uranium in many uranyl-containing streams. However, the structure and solvation of such a species in water has not been investigated from first principles. Herein we present a first principles molecular dynamics perspective of the Ca 2UO 2(CO 3) 3 complex in water based on density functional theory and Born–Oppenheimer approximation. We find that the Ca 2UO 2(CO 3) 3 complex is very stable in our simulation timeframe for three different concentrations considered and that the key distances from our simulation are inmore » good agreement with the experimental data from extended X-ray absorption fine structure (EXAFS) spectroscopy. More important, we find that the two Ca ions bind differently in the complex, as a result of the hydrogen-bonding network around the whole complex. Furthermore, this finding invites confirmation from time-resolved EXAFS and has implications in understanding the dissociative equilibrium of the Ca 2UO 2(CO 3) 3 complex in water.« less

  2. Factors influencing protein tyrosine nitration--structure-based predictive models.

    PubMed

    Bayden, Alexander S; Yakovlev, Vasily A; Graves, Paul R; Mikkelsen, Ross B; Kellogg, Glen E

    2011-03-15

    Models for exploring tyrosine nitration in proteins have been created based on 3D structural features of 20 proteins for which high-resolution X-ray crystallographic or NMR data are available and for which nitration of 35 total tyrosines has been experimentally proven under oxidative stress. Factors suggested in previous work to enhance nitration were examined with quantitative structural descriptors. The role of neighboring acidic and basic residues is complex: for the majority of tyrosines that are nitrated the distance to the heteroatom of the closest charged side chain corresponds to the distance needed for suspected nitrating species to form hydrogen bond bridges between the tyrosine and that charged amino acid. This suggests that such bridges play a very important role in tyrosine nitration. Nitration is generally hindered for tyrosines that are buried and for those tyrosines for which there is insufficient space for the nitro group. For in vitro nitration, closed environments with nearby heteroatoms or unsaturated centers that can stabilize radicals are somewhat favored. Four quantitative structure-based models, depending on the conditions of nitration, have been developed for predicting site-specific tyrosine nitration. The best model, relevant for both in vitro and in vivo cases, predicts 30 of 35 tyrosine nitrations (positive predictive value) and has a sensitivity of 60/71 (11 false positives). Copyright © 2010 Elsevier Inc. All rights reserved.

  3. A Six-Coordinate Peroxynitrite Low-Spin Iron(III) Porphyrinate Complex—The Product of the Reaction of Nitrogen Monoxide (·NO (g)) with a Ferric-Superoxide Species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Savita K.; Schaefer, Andrew W.; Lim, Hyeongtaek

    Peroxynitrite ( –OON=O, PN) is a reactive nitrogen species (RNS) which can effect deleterious nitrative or oxidative (bio)chemistry. It may derive from reaction of superoxide anion (O 2 •–) with nitric oxide (·NO) and has been suggested to form an as-yet unobserved bound heme-iron-PN intermediate in the catalytic cycle of nitric oxide dioxygenase (NOD) enzymes, which facilitate a ·NO homeostatic process, i.e., its oxidation to the nitrate anion. Here, a discrete six-coordinate low-spin porphyrinate-Fe III complex [(P Im)Fe III( –OON=O)] (P Im; a porphyrin moiety with a covalently tethered imidazole axial “base” donor ligand) has been identified and characterized bymore » various spectroscopies (UV–vis, NMR, EPR, XAS, resonance Raman) and DFT calculations, following its formation at –80 °C by addition of ·NO (g) to the heme-superoxo species, [(P Im)Fe III(O 2 •–)]. DFT calculations confirm that is a six-coordinate low-spin species with the PN ligand coordinated to iron via its terminal peroxidic anionic O atom with the overall geometry being in a cis-configuration. Complex thermally transforms to its isomeric low-spin nitrato form [(P Im)Fe III(NO 3 –)]. While previous (bio)chemical studies show that phenolic substrates undergo nitration in the presence of PN or PN-metal complexes, in the present system, addition of 2,4-di- tert-butylphenol ( 2,4DTBP) to complex does not lead to nitrated phenol; the nitrate complex still forms. Furthermore, DFT calculations reveal that the phenolic H atom approaches the terminal PN O atom (farthest from the metal center and ring core), effecting O–O cleavage, giving nitrogen dioxide (·NO 2) plus a ferryl compound [(P Im)Fe IV=O] (7); this rebounds to give [(P Im)Fe III(NO 3 –)].The generation and characterization of the long sought after ferriheme peroxynitrite complex has been accomplished.« less

  4. A Six-Coordinate Peroxynitrite Low-Spin Iron(III) Porphyrinate Complex—The Product of the Reaction of Nitrogen Monoxide (·NO (g)) with a Ferric-Superoxide Species

    DOE PAGES

    Sharma, Savita K.; Schaefer, Andrew W.; Lim, Hyeongtaek; ...

    2017-11-01

    Peroxynitrite ( –OON=O, PN) is a reactive nitrogen species (RNS) which can effect deleterious nitrative or oxidative (bio)chemistry. It may derive from reaction of superoxide anion (O 2 •–) with nitric oxide (·NO) and has been suggested to form an as-yet unobserved bound heme-iron-PN intermediate in the catalytic cycle of nitric oxide dioxygenase (NOD) enzymes, which facilitate a ·NO homeostatic process, i.e., its oxidation to the nitrate anion. Here, a discrete six-coordinate low-spin porphyrinate-Fe III complex [(P Im)Fe III( –OON=O)] (P Im; a porphyrin moiety with a covalently tethered imidazole axial “base” donor ligand) has been identified and characterized bymore » various spectroscopies (UV–vis, NMR, EPR, XAS, resonance Raman) and DFT calculations, following its formation at –80 °C by addition of ·NO (g) to the heme-superoxo species, [(P Im)Fe III(O 2 •–)]. DFT calculations confirm that is a six-coordinate low-spin species with the PN ligand coordinated to iron via its terminal peroxidic anionic O atom with the overall geometry being in a cis-configuration. Complex thermally transforms to its isomeric low-spin nitrato form [(P Im)Fe III(NO 3 –)]. While previous (bio)chemical studies show that phenolic substrates undergo nitration in the presence of PN or PN-metal complexes, in the present system, addition of 2,4-di- tert-butylphenol ( 2,4DTBP) to complex does not lead to nitrated phenol; the nitrate complex still forms. Furthermore, DFT calculations reveal that the phenolic H atom approaches the terminal PN O atom (farthest from the metal center and ring core), effecting O–O cleavage, giving nitrogen dioxide (·NO 2) plus a ferryl compound [(P Im)Fe IV=O] (7); this rebounds to give [(P Im)Fe III(NO 3 –)].The generation and characterization of the long sought after ferriheme peroxynitrite complex has been accomplished.« less

  5. Trapped in the coordination sphere: Nitrate ion transfer driven by the cerium(III/IV) redox couple

    DOE PAGES

    Ellis, Ross J.; Bera, Mrinal K.; Reinhart, Benjamin; ...

    2016-11-07

    Redox-driven ion transfer between phases underpins many biological and technological processes, including industrial separation of ions. Here we investigate the electrochemical transfer of nitrate anions between oil and water phases, driven by the reduction and oxidation of cerium coordination complexes in oil phases. We find that the coordination environment around the cerium cation has a pronounced impact on the overall redox potential, particularly with regard to the number of coordinated nitrate anions. Our results suggest a new fundamental mechanism for tuning ion transfer between phases; by 'trapping' the migrating ion inside the coordination sphere of a redox-active complex. Here, thismore » presents a new route for controlling anion transfer in electrochemically-driven separation applications.« less

  6. Functionalized Sugarcane Bagasse for U(VI) Adsorption from Acid and Alkaline Conditions.

    PubMed

    Su, Shouzheng; Liu, Qi; Liu, Jingyuan; Zhang, Hongsen; Li, Rumin; Jing, Xiaoyan; Wang, Jun

    2018-01-15

    The highly efficient removal of uranium from mine tailings effluent, radioactive wastewater and enrichment from seawater is of great significance for the development of nuclear industry. In this work, we prepared an efficient U(VI) adsorbent by EDTA modified sugarcane bagasse (MESB) with a simple process. The prepared adsorbent preserves high adsorptive capacity for UO 2 2+ (pH 3.0) and uranyl complexes, such as UO 2 (OH) + , (UO 2 ) 2 (OH) 2 2+ and (UO 2 ) 3 (OH) 5 + (pH 4.0 and pH 5.0) and good repeatability in acidic environment. The maximum adsorption capacity for U(VI) at pH 3.0, 4.0 and 5.0 is 578.0, 925.9 and 1394.1 mg/g and the adsorption capacity loss is only 7% after five cycles. With the pH from 3.0 to 5.0, the inhibitive effects of Na + and K + decreased but increased of Mg 2+ and Ca 2+ . MESB also exhibits good adsorption for [UO 2 (CO 3 ) 3 ] 4- at pH 8.3 from 10 mg/L to 3.3 μg/L. Moreover, MESB could effectively extract U(VI) from simulated seawater in the presence of other metals ions. This work provided a general and efficient uranyl enriched material for nuclear industry.

  7. Different biosorption mechanisms of Uranium(VI) by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions.

    PubMed

    Wang, Tieshan; Zheng, Xinyan; Wang, Xiaoyu; Lu, Xia; Shen, Yanghao

    2017-02-01

    Uranium adsorption mechanisms of live and heat-killed Saccharomyces cerevisiae in different pH values and biomass concentrations were studied under environmentally relevant conditions. Compared with live cells, the adsorption capacity of heat-killed cells is almost one order of magnitude higher in low biomass concentration and highly acidic pH conditions. To explore the mesoscopic surface interactions between uranium and cells, the characteristic of uranium deposition was investigated by SEM-EDX, XPS and FTIR. Biosorption process of live cells was considered to be metabolism-dependent. Under stimulation by uranyl ions, live cells could gradually release phosphorus and reduce uranium from U(VI) to U(IV) to alleviate uranium toxicity. The uranyl-phosphate complexes were formed in scale-like shapes on cell surface. The metabolic detoxification mechanisms such as reduction and "self-protection" are of significance to the migration of radionuclides. In the metabolism-independent biosorption process of heat-killed cells: the cells cytomembrane was damaged by autoclaving which led to the free diffusion of phosphorous from intracellular, and the rough surface and nano-holes indicated that the dead cells provided larger contact area to precipitate U(VI) as spherical nano-particles. The high biosorption capacity of heat-killed cells makes it become a suitable biological adsorbent for uranium removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Influence of the Organic Species and Oxoanion in the Synthesis of two Uranyl Sulfate Hydrates, (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 ­(H 2 O)]·7H 2 O and (H 3 O) 2 [(UO 2 ) 2 (SO 4 ) 3 (H 2 O)]·4H 2 O, and a Uranyl Selenate-Selenite [C 5 H 6 N][(UO 2 )(SeO 4 )(HSeO 3 )

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouffret, Laurent J.; Wylie, Ernest M.; Burns, Peter C.

    2012-08-08

    Two uranyl sulfate hydrates, (H3O)2[(UO2)2(SO4)3(H2O)]·7H2O (NDUS) and (H3O)2[(UO2)2(SO4)3(H2O)]·4H2O (NDUS1), and one uranyl selenate-selenite [C5H6N][(UO2)(SeO4)(HSeO3)] (NDUSe), were obtained and their crystal structures solved. NDUS and NDUSe result from reactions in highly acidic media in the presence of L-cystine at 373 K. NDUS crystallized in a closed vial at 278 K after 5 days and NDUSe in an open beaker at 278 K after 2 weeks. NDUS1 was synthesized from aqueous solution at room temperature over the course of a month. NDUS, NDUS1, and NDUSe crystallize in the monoclinic space group P21/n, a = 15.0249(4) Å,b = 9.9320(2) Å, c = 15.6518(4)more » Å, β = 112.778(1)°, V = 2153.52(9) Å3,Z = 4, the tetragonal space group P43212, a = 10.6111(2) Å,c = 31.644(1) Å, V = 3563.0(2) Å3, Z = 8, and in the monoclinic space group P21/n, a = 8.993(3) Å, b = 13.399(5) Å, c = 10.640(4) Å,β = 108.230(4)°, V = 1217.7(8) Å3, Z = 4, respectively.The structural units of NDUS and NDUS1 are two-dimensional uranyl sulfate sheets with a U/S ratio of 2/3. The structural unit of NDUSe is a two-dimensional uranyl selenate-selenite sheets with a U/Se ratio of 1/2. In-situ reaction of the L-cystine ligands gives two distinct products for the different acids used here. Where sulfuric acid is used, only H3O+ cations are located in the interlayer space, where they balance the charge of the sheets, whereas where selenic acid is used, interlayer C5H6N+ cations result from the cyclization of the carboxyl groups of L-cystine, balancing the charge of the sheets.« less

  9. Infantile methemoglobinemia: reexamining the role of drinking water nitrates.

    PubMed Central

    Avery, A A

    1999-01-01

    Ingestion of nitrates in drinking water has long been thought to be a primary cause of acquired infantile methemoglobinemia, often called blue baby syndrome. However, recent research and a review of historical cases offer a more complex picture of the causes of infantile methemoglobinemia. Gastrointestinal infection and inflammation and the ensuing overproduction of nitric oxide may be the cause of many cases of infantile methemoglobinemia previously attributed to drinking water nitrates. If so, current limits on allowable levels of nitrates in drinking water, which are based solely on the health threat of infantile methemoglobinemia, may be unnecessarily strict. Images Figure 1 Figure 2 PMID:10379005

  10. Development and Validation of an Extractive Spectrophotometric Method for Miconazole Nitrate Assay in Pharmaceutical Formulations.

    PubMed

    Eticha, Tadele; Kahsay, Getu; Hailu, Teklebrhan; Gebretsadikan, Tesfamichael; Asefa, Fitsum; Gebretsadik, Hailekiros; Thangabalan, Boovizhikannan

    2018-01-01

    A simple extractive spectrophotometric technique has been developed and validated for the determination of miconazole nitrate in pure and pharmaceutical formulations. The method is based on the formation of a chloroform-soluble ion-pair complex between the drug and bromocresol green (BCG) dye in an acidic medium. The complex showed absorption maxima at 422 nm, and the system obeys Beer's law in the concentration range of 1-30  µ g/mL with molar absorptivity of 2.285 × 10 4  L/mol/cm. The composition of the complex was studied by Job's method of continuous variation, and the results revealed that the mole ratio of drug : BCG is 1 : 1. Full factorial design was used to optimize the effect of variable factors, and the method was validated based on the ICH guidelines. The method was applied for the determination of miconazole nitrate in real samples.

  11. Structure and Bonding in Uranyl(VI) Peroxide and Crown Ether Complexes; Comparison of Quantum Chemical and Experimental Data.

    PubMed

    Vallet, Valérie; Grenthe, Ingmar

    2017-12-18

    The structure, chemical bonding, and thermodynamics of alkali ions in M[12-crown-4] + , M[15-crown-5] + , and M[18-crown-6] + , M[UO 2 (O 2 )(OH 2 ) 2 ] + 4,5 , and M[UO 2 (O 2 )(OH)(OH 2 )] n 1-n (n = 4, 5) complexes have been explored by using quantum chemical (QC) calculations at the ab initio level. The chemical bonding has been studied in the gas phase in order to eliminate solvent effects. QTAIM analysis demonstrates features that are very similar in all complexes and typical for electrostatic M-O bonds, but with the M-O bonds in the uranyl peroxide systems about 20 kJ mol -1 stronger than in the corresponding crown ether complexes. The regular decrease in bond strength with increasing M-O bond distance is consistent with predominantly electrostatic contributions. Energy decomposition of the reaction energies in the gas phase and solvent demonstrates that the predominant component of the total attractive (ΔE elec + ΔE orb ) energy contribution is the electrostatic component. There are no steric constraints for coordination of large cations to small rings, because the M + ions are located outside the ring plane, [O n ], formed by the oxygen donors in the ligands; coordination of ions smaller than the ligand cavity results in longer than normal M-O distances or in a change in the number of bonds, both resulting in weaker complexes. The Gibbs energies, enthalpies, and entropies of reaction calculated using the conductor-like screening model, COSMO, to account for solvent effects deviate significantly from experimental values in water, while those in acetonitrile are in much better agreement. Factors that might affect the selectivity are discussed, but our conclusion is that present QC methods are not accurate enough to describe the rather small differences in selectivity, which only amount to 5-10 kJ mol -1 . We can, however, conclude on the basis of QC and experimental data that M[crown ether] + complexes in the strongly coordinating water solvent are of outer-sphere type, [M(OH 2 ) n + ][crown ether], while those in weakly coordinating acetonitrile are of inner-sphere type, [M-crown ether] + . The observation that the M[UO 2 (O 2 )(OH)(OH 2 )] n 1-n complexes are more stable in solution than those of M[crown ether] + is an effect of the different charges of the rings.

  12. Luminescent properties of Europium(III) nitrate with 1,10-phenantroline and cinnamic acid in light - Transforming polymer materials

    NASA Astrophysics Data System (ADS)

    Kalinovskaya, I. V.; Zadorozhnaya, A. N.

    2018-04-01

    Influence of cinnamic acid on the luminescent properties of the europium(III) nitrate with 1,10-phenantroline in a polymer materials was studied. It was shown that combined use of these rare earth complexes leads to intense luminescence in the 400-700 nm region. Samples containing polymer europium nitrate with 1,10-phenantroline and cinnamic acid at a molar ratio of 1:2,0 had the maximum luminescence intensity and photostability.

  13. Assessment of calcium addition on the removal of U(VI) in the alkaline conditions created by NH 3 gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsenovich, Yelena; Cardona, Claudia; Szecsody, Jim

    Remediation of uranium (U) contamination in the deep vadose zone (VZ) sediments abundant in calcite mineral is a challenging task considering the formation of highly stable and mobile uranyl complexes with carbonate and calcium in pore water composition. There is a concern that uranium contamination in the VZ can serve as a continued source for groundwater pollution, creating a risk to human health and the environment through the groundwater pathway. This requires in-situ remediation of the radionuclide-contaminated VZ to convert soluble U species to low solubility precipitates that are stable in the natural environment. Injection of reactive gasses (e.g., NHmore » 3) is a promising technology to decrease U mobility in the unsaturated zone without the addition of liquid amendments. The NH 3 injection creates alkaline conditions that can alter the sediment pore water composition due to a release of elements from minerals (via desorption and dissolution) that are present in the sediment. However, it is not known how VZ pore water constituents (Si, Al 3+, HCO 3 -, and Ca 2 +) would affect U(VI) removal/precipitation in alkaline conditions. This study quantified the role of major pore water constituents typically present in the arid and semi-arid environments of the western regions of the U.S and identified solid uranium-bearing phases that could potentially precipitate from solutions approximating pore water compositions after pH manipulations via ammonia gas injections. Triplicate samples were prepared using six Si (5, 50 100, 150, 200, and 250 mM), six HCO 3 - (0, 3, 25, 50, 75, and 100 mM), and two Ca 2+ (5 and 10 mM) concentrations. The concentration of aluminum and uranium was kept constant at 5 mM and 0.0084 mM, respectively, in all synthetic formulations tested. Results showed that the percentage of U(VI) removal was controlled by the Si/Al molar ratios and Ca 2+ concentrations. Regardless of the bicarbonate concentration tested, the percentage of U(VI) removed increased as the Si/Al ratios were increased. However, higher Ca concentrations correlated with higher U(VI) removal, ranging between 96% and 99%, at low Si/Al ratios. The SEM images of dried precipitates displayed dense amorphous regions high in silica content, where EDS elemental analysis unveiled higher U atomic percentages. The formation of uranyl silicate and carbonate minerals was also predicted by the speciation modeling. XRD analysis revealed the presence of uranyl carbonate mineral phases (andersonite, grimselite); however, uranyl silicates predicted (Na-boltwoodite) were not identified experimentally, possibly due to the amorphous nature of the silica solid phases observed in our experiments.« less

  14. The effect of Si and Al concentrations on the removal of U(VI) in the alkaline conditions created by NH3 gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsenovich, Yelena P.; Cardona, Claudia; Lapierre, Robert

    2016-10-01

    Remediation of uranium in the deep unsaturated zone is a challenging task, especially in the presence of oxygenated, high-carbonate alkalinity soil and pore water composition typical for arid and semi-arid environments of the western regions of the U.S. This study evaluates the effect of various pore water constituencies on changes of uranium concentrations in alkaline conditions, created in the presence of reactive gases such as NH3 to effectively mitigate uranium contamination in the vadose zone sediments. This contaminant is a potential source for groundwater pollution through slow infiltration of soluble and highly mobile uranium species towards the water table. Themore » objective of this research was to evaluate uranium sequestration efficiencies in the alkaline synthetic pore water solutions prepared in a broad range of Si, Al, and bicarbonate concentrations typically present in field systems of the western U.S. regions and identify solid uranium-bearing phases that result from ammonia gas treatment. In previous studies (Szecsody et al. 2012; Zhong et al. 2015), although uranium mobility was greatly decreased, solid phases could not be identified at the low uranium concentrations in field-contaminated sediments. The chemical composition of the synthetic pore water used in the experiments varied for silica (5–250 mM), Al3+ (2.8 or 5 mM), HCO3- (0–100 mM) and U(VI) (0.0021–0.0084 mM) in the solution mixture. Experiment results suggested that solutions with Si concentrations higher than 50 mM exhibited greater removal efficiencies of U(VI). Solutions with higher concentrations of bicarbonate also exhibited greater removal efficiencies for Si, Al, and U(VI). Overall, the silica polymerization reaction leading to the formation of Si gel correlated with the removal of U(VI), Si, and Al from the solution. If no Si polymerization was observed, there was no U removal from the supernatant solution. Speciation modeling indicated that the dominant uranium species in the presence of bicarbonate were anionic uranyl carbonate complexes (UO2(CO3)2-2 and UO2(CO3)3-4) and in the absence of bicarbonate in the solution, U(VI) major species appeared as uranyl-hydroxide (UO2(OH)3- and UO2(OH)4-2) species. The model also predicted the formation of uranium solid phases. Uranyl carbonates as rutherfordine [UO2CO3], cejkaite [Na4(UO2)(CO3)3] and hydrated uranyl silicate phases as Na-boltwoodite [Na(UO2)(SiO4)·1.5H2O] were anticipated for most of the synthetic pore water compositions amended from medium (2.9 mM) to high (100 mM) bicarbonate concentrations.« less

  15. Assessment of calcium addition on the removal of U(VI) in the alkaline conditions created by NH 3 gas

    DOE PAGES

    Katsenovich, Yelena; Cardona, Claudia; Szecsody, Jim; ...

    2018-03-06

    Remediation of uranium (U) contamination in the deep vadose zone (VZ) sediments abundant in calcite mineral is a challenging task considering the formation of highly stable and mobile uranyl complexes with carbonate and calcium in pore water composition. There is a concern that uranium contamination in the VZ can serve as a continued source for groundwater pollution, creating a risk to human health and the environment through the groundwater pathway. This requires in-situ remediation of the radionuclide-contaminated VZ to convert soluble U species to low solubility precipitates that are stable in the natural environment. Injection of reactive gasses (e.g., NHmore » 3) is a promising technology to decrease U mobility in the unsaturated zone without the addition of liquid amendments. The NH 3 injection creates alkaline conditions that can alter the sediment pore water composition due to a release of elements from minerals (via desorption and dissolution) that are present in the sediment. However, it is not known how VZ pore water constituents (Si, Al 3+, HCO 3 -, and Ca 2 +) would affect U(VI) removal/precipitation in alkaline conditions. This study quantified the role of major pore water constituents typically present in the arid and semi-arid environments of the western regions of the U.S and identified solid uranium-bearing phases that could potentially precipitate from solutions approximating pore water compositions after pH manipulations via ammonia gas injections. Triplicate samples were prepared using six Si (5, 50 100, 150, 200, and 250 mM), six HCO 3 - (0, 3, 25, 50, 75, and 100 mM), and two Ca 2+ (5 and 10 mM) concentrations. The concentration of aluminum and uranium was kept constant at 5 mM and 0.0084 mM, respectively, in all synthetic formulations tested. Results showed that the percentage of U(VI) removal was controlled by the Si/Al molar ratios and Ca 2+ concentrations. Regardless of the bicarbonate concentration tested, the percentage of U(VI) removed increased as the Si/Al ratios were increased. However, higher Ca concentrations correlated with higher U(VI) removal, ranging between 96% and 99%, at low Si/Al ratios. The SEM images of dried precipitates displayed dense amorphous regions high in silica content, where EDS elemental analysis unveiled higher U atomic percentages. The formation of uranyl silicate and carbonate minerals was also predicted by the speciation modeling. XRD analysis revealed the presence of uranyl carbonate mineral phases (andersonite, grimselite); however, uranyl silicates predicted (Na-boltwoodite) were not identified experimentally, possibly due to the amorphous nature of the silica solid phases observed in our experiments.« less

  16. Evaluation of the nitrate content in leaf vegetables produced through different agricultural systems.

    PubMed

    Guadagnin, S G; Rath, S; Reyes, F G R

    2005-12-01

    The nitrate content of leafy vegetables (watercress, lettuce and arugula) produced by different agricultural systems (conventional, organic and hydroponic) was determined. The daily nitrate intake from the consumption of these crop species by the average Brazilian consumer was also estimated. Sampling was carried out between June 2001 to February 2003 in Campinas, São Paulo State, Brazil. Nitrate was extracted from the samples using the procedure recommended by the AOAC. Flow injection analysis with spectrophotometric detection at 460 nm was used for nitrate determination through the ternary complex FeSCNNO+. For lettuce and arugula, the average nitrate content varied (p < 0.05) between the three agricultural systems with the nitrate level in the crops produced by the organic system being lower than in the conventional system that, in turn, was lower than in the hydroponic system. For watercress, no difference (p < 0.05) was found between the organic and hydroponic samples, both having higher nitrate contents (p < 0.05) than conventionally cultivated samples. The nitrate content for each crop species varied among producers, between different parts of the plant and in relation to the season. The estimated daily nitrate intake, calculated from the consumption of the crops produced by the hydroponic system, represented 29% of the acceptable daily intake established for this ion.

  17. Ground-water movement and nitrate in ground water, East Erda area, Tooele County, Utah, 1997-2000

    USGS Publications Warehouse

    Susong, D.D.

    2005-01-01

    Nitrate was discovered in ground water in the east Erda area of Tooele County, Utah, in 1994. The U.S. Geological Survey, in cooperation with Tooele County, investigated the ground-water flow system and water quality in the eastern part of Tooele Valley to determine (1) the vertical and horizontal distribution of nitrate, (2) the direction of movement of the nitrate contamination, and (3) the source of the nitrate. The potentiometric surface of the upper part of the basin-fill aquifer indicates that the general direction of ground-water flow is to the northwest, the flow system is complex, and there is a ground-water mound probably associated with springs. The spatial distribution of nitrate reflects the flow system with the nitrate contamination split into a north and south part by the ground-water mound. The distribution of dissolved solids and sulfate in ground water varies spatially. Vertical profiles of nitrate in water from selected wells indicate that nitrate contamination generally is in the upper part of the saturated zone and in some wells has moved downward. Septic systems, mining and smelting, agriculture, and natural sources were considered to be possible sources of nitrate contamination in the east Erda area. Septic systems are not the source of nitrate because water from wells drilled upgradient of all septic systems in the area had elevated nitrate concentrations. Mining and smelting activity are a possible source of nitrate contamination but few data are available to link nitrate contamination with mining sites. Natural and agricultural sources of nitrate are present east of the Erda area but few data are available about these sources. The source(s) of nitrate in the east Erda area could not be clearly delineated in spite of considerable effort and expenditure of resources.

  18. Experiments on Anion Exchange with Amberlite Ir-120 Resin; ENSAYOS DE INTERCAMBIO ANIONICO CON RESINA AMBERLITA Ir-120

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cellini, R.F.; Palomino, J.V.

    1956-01-01

    The ion exchange of the uranyl ion on Amberlite Ir-120 resin was studied with different uranyl ion concentrations. Elution with sulfuric acid was investlgated and the elution curve for the experimental conditions was determined. From the concentrations of the ions of Cu/sup 2+/, Ni/sup 2+/, Fe/sup 3+/, Cd/sup 2+/, Mn/sup 2+/, and Cr/sup 3+/ the maximum exchange capacity was tested and elation curves with 4 N sulfuric acid were obtained. (tr-auth)

  19. Reductive stripping process for the recovery of uranium from wet-process phosphoric acid

    DOEpatents

    Hurst, Fred J.; Crouse, David J.

    1984-01-01

    A reductive stripping flow sheet for recovery of uranium from wet-process phosphoric acid is described. Uranium is stripped from a uranium-loaded organic phase by a redox reaction converting the uranyl to uranous ion. The uranous ion is reoxidized to the uranyl oxidation state to form an aqueous feed solution highly concentrated in uranium. Processing of this feed through a second solvent extraction cycle requires far less stripping reagent as compared to a flow sheet which does not include the reductive stripping reaction.

  20. THE SOLVENT EXTRACTION OF NITROSYLRUTHENIUM BY TRILAURYLAMINE IN NITRATE SYSTEM. Summary Report for the Period, July 1, 1960 to March 31, 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skavdahl, R.E.; Mason, E.A.

    1962-06-01

    An investigation of the solvent extraction characteristics of the nitro and nitrato complexes of nitrosylruthenium in nitric acid- sodium nitrate aqueous media was conducted. As the organic extractant phase, a solution of trilaurylamine (TLA) in toluene was utilized. In addition to the usual process parameter variation tyne of experiment, a rapid dilution type of experiment was used extensively to determine qualitative and semiquantitative results regarding the degree of extractability and concentration of the more extractable species of the nitrato complexes of nitrosylruthenium. It was found that the acids of the tetra-nitrato and pentanitrato complexes were the more extractable species formore » that set of complexes and that the acid of the penta-nitrato complex was the more extractable of the two. It was observed that for freshly prepared solutions, the dinitro complex of nitrosylruthenium was much more extractable than the gross nitrato complexes solutions. Nitro complexes in general, and the dinitro complex in particular, may be the controlling agent in ruthenium decontamination of spent nuclear fuel processed by solvent extraction methods. The experimental results from both sets of complexes could be more meaningfully correlated on the basis of unbound nitric acid concentration in the organic phase than on the basis of nitric acid concentration in the aqueous phase. The extraction of nitric acid by TLA from nitric acid-sodium nitrate aqueous solutions was investigated and the results correlated on the basis of activity of the undissociated nitric acid in the aqueous phase. (auth)« less

  1. A comparison of organic and inorganic nitrates/nitrites.

    PubMed

    Omar, Sami A; Artime, Esther; Webb, Andrew J

    2012-05-15

    Although both organic and inorganic nitrates/nitrites mediate their principal effects via nitric oxide, there are many important differences. Inorganic nitrate and nitrite have simple ionic structures and are produced endogenously and are present in the diet, whereas their organic counterparts are far more complex, and, with the exception of ethyl nitrite, are all medicinally synthesised products. These chemical differences underlie the differences in pharmacokinetic properties allowing for different modalities of administration, particularly of organic nitrates, due to the differences in their bioavailability and metabolic profiles. Whilst the enterosalivary circulation is a key pathway for orally ingested inorganic nitrate, preventing an abrupt effect or toxic levels of nitrite and prolonging the effects, this is not used by organic nitrates. The pharmacodynamic differences are even greater; while organic nitrates have potent acute effects causing vasodilation, inorganic nitrite's effects are more subtle and dependent on certain conditions. However, in chronic use, organic nitrates are considerably limited by the development of tolerance and endothelial dysfunction, whereas inorganic nitrate/nitrite may compensate for diminished endothelial function, and tolerance has not been reported. Also, while inorganic nitrate/nitrite has important cytoprotective effects against ischaemia-reperfusion injury, continuous use of organic nitrates may increase injury. While there are concerns that inorganic nitrate/nitrite may induce carcinogenesis, direct evidence of this in humans is lacking. While organic nitrates may continue to dominate the therapeutic arena, this may well change with the increasing recognition of their limitations, and ongoing discovery of beneficial effects and specific advantages of inorganic nitrate/nitrite. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Competing retention pathways of uranium upon reaction with Fe(II)

    NASA Astrophysics Data System (ADS)

    Massey, Michael S.; Lezama-Pacheco, Juan S.; Jones, Morris E.; Ilton, Eugene S.; Cerrato, José M.; Bargar, John R.; Fendorf, Scott

    2014-10-01

    Biogeochemical retention processes, including adsorption, reductive precipitation, and incorporation into host minerals, are important in contaminant transport, remediation, and geologic deposition of uranium. Recent work has shown that U can become incorporated into iron (hydr)oxide minerals, with a key pathway arising from Fe(II)-induced transformation of ferrihydrite, (Fe(OH)3·nH2O) to goethite (α-FeO(OH)); this is a possible U retention mechanism in soils and sediments. Several key questions, however, remain unanswered regarding U incorporation into iron (hydr)oxides and this pathway's contribution to U retention, including: (i) the competitiveness of U incorporation versus reduction to U(IV) and subsequent precipitation of UO2; (ii) the oxidation state of incorporated U; (iii) the effects of uranyl aqueous speciation on U incorporation; and, (iv) the mechanism of U incorporation. Here we use a series of batch reactions conducted at pH ∼7, [U(VI)] from 1 to 170 μM, [Fe(II)] from 0 to 3 mM, and [Ca] at 0 or 4 mM coupled with spectroscopic examination of reaction products of Fe(II)-induced ferrihydrite transformation to address these outstanding questions. Uranium retention pathways were identified and quantified using extended X-ray absorption fine structure (EXAFS) spectroscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. Analysis of EXAFS spectra showed that 14-89% of total U was incorporated into goethite, upon reaction with Fe(II) and ferrihydrite. Uranium incorporation was a particularly dominant retention pathway at U concentrations ⩽50 μM when either uranyl-carbonato or calcium-uranyl-carbonato complexes were dominant, accounting for 64-89% of total U. With increasing U(VI) and Fe(II) concentrations, U(VI) reduction to U(IV) became more prevalent, but U incorporation remained a functioning retention pathway. These findings highlight the potential importance of U(V) incorporation within iron oxides as a retention process of U across a wide range of biogeochemical environments and the sensitivity of uranium retention processes to operative (bio)geochemical conditions.

  3. Competing retention pathways of uranium upon reaction with Fe(II)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massey, Michael S.; Lezama Pacheco, Juan S.; Jones, Morris

    Biogeochemical retention processes, including adsorption, reductive precipitation, and incorporation into host minerals, are important in contaminant transport, remediation, and geologic deposition of uranium. Recent work has shown that U can become incorporated into iron (hydr)oxide minerals, with a key pathway arising from Fe(II)-induced transformation of ferrihydrite, (Fe(OH)3•nH2O) to goethite (α-FeO(OH)); this is a possible U retention mechanism in soils and sediments. Several key questions, however, remain unanswered regarding U incorporation into iron (hydr)oxides and this pathway’s contribution to U retention, including: (i) the competitiveness of U incorporation versus reduction to U(IV) and subsequent precipitation of UO2; (ii) the oxidation statemore » of incorporated U; (iii) the effects of uranyl aqueous speciation on U incorporation; and, (iv) the mechanism of U incorporation. Here we use a series of batch reactions conducted at pH ~7, [U(VI)] from 1 to 170 μM, [Fe(II)] from 0 to 3 mM, and [Ca] at 0 or 4 mM) coupled with spectroscopic examination of reaction products of Fe(II)-induced ferrihydrite transformation to address these outstanding questions. Uranium retention pathways were identified and quantified using extended x-ray absorption fine structure (EXAFS) spectroscopy, x-ray powder diffraction, x-ray photoelectron spectroscopy, and transmission electron microscopy. Analysis of EXAFS spectra showed that 14 to 89% of total U was incorporated into goethite, upon reaction with Fe(II) and ferrihydrite. Uranium incorporation was a particularly dominant retention pathway at U concentrations ≤ 50 μM when either uranyl-carbonato or calcium-uranyl-carbonato complexes were dominant, accounting for 64 to 89% of total U. With increasing U(VI) and Fe(II) concentrations, U(VI) reduction to U(IV) became more prevalent, but U incorporation remained a functioning retention pathway. These findings highlight the potential importance of U(V) incorporation within iron oxides as a retention process of U across a wide range of biogeochemical environments and the sensitivity of uranium retention processes to operative (bio)geochemical conditions.« less

  4. PROCESS OF RECOVERING URANIUM

    DOEpatents

    Kilner, S.B.

    1959-12-29

    A method is presented for separating and recovering uranium from a complex mixure of impurities. The uranium is dissolved to produce an aqueous acidic solution including various impurities. In accordance with one method, with the uranium in the uranyl state, hydrogen cyanide is introduced into the solution to complex the impurities. Subsequently, ammonia is added to the solution to precipitate the uraniunn as ammonium diuranate away from the impurities in the solution. Alternatively, the uranium is precipitated by adding an alkaline metal hydroxide. In accordance with the second method, the uranium is reduced to the uranous state in the solution. The reduced solution is then treated with solid alkali metal cyanide sufficient to render the solution about 0.1 to 1.0 N in cyanide ions whereat cyanide complex ions of the metal impurities are produced and the uranium is simultaneously precipituted as uranous hydroxide. Alternatively, hydrogen cyanide may be added to the reduced solution and the uranium precipitated subsequently by adding ammonium hydroxide or an alkali metal hydroxide. Other refinements of the method are also disclosed.

  5. An accurate cost effective DFT approach to study the sensing behaviour of polypyrrole towards nitrate ions in gas and aqueous phases.

    PubMed

    Wasim, Fatima; Mahmood, Tariq; Ayub, Khurshid

    2016-07-28

    Density functional theory (DFT) calculations have been performed to study the response of polypyrrole towards nitrate ions in gas and aqueous phases. First, an accurate estimate of interaction energies is obtained by methods calibrated against the gold standard CCSD(T) method. Then, a number of low cost DFT methods are also evaluated for their ability to accurately estimate the binding energies of polymer-nitrate complexes. The low cost methods evaluated here include dispersion corrected potential (DCP), Grimme's D3 correction, counterpoise correction of the B3LYP method, and Minnesota functionals (M05-2X). The interaction energies calculated using the counterpoise (CP) correction and DCP methods at the B3LYP level are in better agreement with the interaction energies calculated using the calibrated methods. The interaction energies of an infinite polymer (polypyrrole) with nitrate ions are calculated by a variety of low cost methods in order to find the associated errors. The electronic and spectroscopic properties of polypyrrole oligomers nPy (where n = 1-9) and nPy-NO3(-) complexes are calculated, and then extrapolated for an infinite polymer through a second degree polynomial fit. Charge analysis, frontier molecular orbital (FMO) analysis and density of state studies also reveal the sensing ability of polypyrrole towards nitrate ions. Interaction energies, charge analysis and density of states analyses illustrate that the response of polypyrrole towards nitrate ions is considerably reduced in the aqueous medium (compared to the gas phase).

  6. Amine templating effect absent in uranyl sulfates synthesized with 1,4-n-butyldiamine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouffret, Laurent J., E-mail: ljouffret@nd.edu; Wylie, Ernest M.; Burns, Peter C.

    2013-01-15

    Two new uranyl sulfates, (C{sub 4}H{sub 14}N{sub 2})[(UO{sub 2}){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O)]{center_dot}2H{sub 2}O (NDUS2) and (C{sub 4}H{sub 14}N{sub 2})[(UO{sub 2})(SO{sub 4}){sub 2}(H{sub 2}O)]{center_dot}2H{sub 2}O (NDUS3), were synthesized and their crystal structures determined. NDUS2 was obtained in highly acidic media heat-treated at 373 K and subsequently maintained at 278 K until crystals formed after two months. NDUS3 results from the degradation of NDUS2 over the course of a few days. NDUS2 and NDUS3 crystallize in the monoclinic space group P2{sub 1}/n, a=10.9075(4) A, b=10.4513(4) A, c=17.7881(7) A, {beta}=97.908(2) Degree-Sign , V=2008.52(13) A{sup 3}, Z=4, at 140 K and a=8.8570(4) A,more » b=7.3299(3) A, c=20.4260(9) A, {beta}=95.140(2) Degree-Sign , V=1320.74(10) A{sup 3}, Z=4, at 140 K, respectively. The compounds contain interlayer 1,4-n-butyldiammonium cations that charge-balance the anionic structural units. - Graphical abstract: Amine templating effect absent in uranyl sulfates synthesized with 1,4-diaminobutane, as shown by the synthesis of two new uranyl sulfates, (C{sub 4}H{sub 14}N{sub 2})[(UO{sub 2}){sub 2}(SO{sub 4}){sub 3}(H{sub 2}O)]{center_dot}2H{sub 2}O (NDUS2) and (C{sub 4}H{sub 14}N{sub 2})[(UO{sub 2})(SO{sub 4}){sub 2}(H{sub 2}O)]{center_dot}2H{sub 2}O (NDUS3). Highlights: Black-Right-Pointing-Pointer Two layered uranyl sulfates were synthesized. Black-Right-Pointing-Pointer Amine molecules are located in the interlayers of the compounds. Black-Right-Pointing-Pointer No templating effect of the amine was observed. Black-Right-Pointing-Pointer Amine molecules are only charge balancing cations in the structures.« less

  7. Global sensitivity and uncertainty analysis of the nitrate leaching and crop yield simulation under different water and nitrogen management practices

    USDA-ARS?s Scientific Manuscript database

    Agricultural system models have become important tools in studying water and nitrogen (N) dynamics, as well as crop growth, under different management practices. Complexity in input parameters often leads to significant uncertainty when simulating dynamic processes such as nitrate leaching or crop y...

  8. [(Nitrato-κO,O')(nitrito-κO,O')(0.25/1.75)]bis-(1,10-phenanthroline-κN,N')cadmium(II).

    PubMed

    Najafi, Ezzatollah; Amini, Mostafa M; Ng, Seik Weng

    2011-01-22

    The reaction of cadmium nitrate and sodium nitrite in the presence of 1,10-phenanthroline yields the mixed nitrate-nitrite title complex, [Cd(NO(2))(1.75)(NO(3))(0.25)(C(12)H(8)N(2))(2)]. The metal ion is bis-chelated by two N-heterocycles as well as by the nitrate/nitrite ions in a distorted dodeca-hedral CdN(4)O(4) coordination environment. One nitrite group is ordered; the other is disordered with respect to a nitrate group (ratio 0.75:0.25) concerning the O atom that is not involved in bonding to the metal ion.

  9. Vibrational Properties of Anhydrous and Partially Hydrated Uranyl Fluoride

    DOE PAGES

    Anderson, Brian B.; Kirkegaard, Marie C.; Miskowiec, Andrew J.; ...

    2017-01-01

    Uranyl fluoride (UO 2F 2) is a hygroscopic powder with two main structural phases: an anhydrous crystal and a partially hydrated crystal of the same R¯3m symmetry. The formally closed-shell electron structure of anhydrous UO 2F 2 is amenable to density functional theory calculations. We use density functional perturbation theory (DFPT) to calculate the vibrational frequencies of the anhydrous crystal structure and employ complementary inelastic neutron scattering and temperature-dependent Raman scattering to validate those frequencies. As a model closed-shell actinide, we investigated the effect of LDA, GGA, and non-local vdW functionals as well as the spherically-averaged Hubbard +U correction onmore » vibrational frequencies, electronic structure, and geometry of anhydrous UO 2F 2. A particular choice of U eff = 5.5 eV yields the correct U Oyl bond distance and vibrational frequencies for the characteristic Eg and A1g modes that are within the resolution of experiment. Inelastic neutron scattering and Raman scattering suggest a degree of water coupling to the lattice vibrations in the more experimentally accessible partially hydrated UO 2F 2 system, with the symmetric O-U-O stretching vibration shifted approximately 47 cm -1 lower in energy compared to the anhydrous structure. Evidence of water interaction with the uranyl ion is present from a two-peak decomposition of the uranyl stretching vibration in the Raman spectra and anion hydrogen stretching vibrations in the inelastic neutron scattering spectra. A first-order dehydration phase transition temperature is definitively identified to be 125 °C using temperature-dependent Raman scattering.« less

  10. Dehydration of the Uranyl Peroxide Studtite, [UO 2(η 2-O 2)(H 2O) 2]·2H 2O, Affords a Drastic Change in the Electronic Structure: A Combined X-ray Spectroscopic and Theoretical Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitova, Tonya; Pidchenko, Ivan; Biswas, Saptarshi

    The dehydration of studtite, [UO 2(2-O 2)(H 2O)2]·2H 2O, to metastudtite, [UO 2(2-O 2)(H 2O) 2], uranyl peroxide minerals that are major oxidative alteration phases of UO2 under conditions of geological storage, has been studied using X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy. XPS of the U 4f region shows small but significant differences between studtite and metastudtite, with the 4f binding energy of studtite the highest reported for a uranyl mineral studied by this technique. Further information on the changes in the electronic structure was elucidated using U M4-edge High Energy Resolution XANES (HR-XANES) spectroscopy, which directly probesmore » f-orbital states. The transition from the 3d to the 5f* orbital is sensitive to variations of the U=Oaxial bond length and to changes in the bond covalency. We report evidences that the covalence in the uranyl fragment decreases upon dehydration. Photoluminescence spectroscopy at near liquid helium temperatures reveals significant spectral differences between the two materials, correlating with the X-ray spectroscopy results. A theoretical investigation has been conducted on the structures of both studtite and metastudtite and benchmarked to the HR-XANES spectra. These illustrate the sensitivity of the 3d to the 5f * transition towards U=Oaxial bond variation.« less

  11. Mitochondrial complex I inhibitor rotenone inhibits and redistributes vesicular monoamine transporter 2 via nitration in human dopaminergic SH-SY5Y cells.

    PubMed

    Watabe, Masahiko; Nakaki, Toshio

    2008-10-01

    Parkinson's disease is a progressive neurodegenerative disorder characterized by selective degeneration of nigrostriatal dopaminergic neurons. Long-term systemic mitochondrial complex I inhibition by rotenone induces selective degeneration of dopaminergic neurons in rats. We have reported dopamine redistribution from vesicles to the cytosol to play a crucial role in selective dopaminergic cell apoptosis. In the present study, we investigated how rotenone causes dopamine redistribution to the cytosol using an in vitro model of human dopaminergic SH-SY5Y cells. Rotenone stimulated nitration of the tyrosine residues of intracellular proteins. The inhibition of nitric-oxide synthase or reactive oxygen species decreased the amount of nitrotyrosine and attenuated rotenone-induced apoptosis. When we examined the intracellular localization of dopamine immunocytochemically using anti-dopamine/vesicular monoamine transporter 2 (VMAT2) antibodies and quantitatively using high-performance liquid chromatography, inhibiting nitration was found to suppress rotenone-induced dopamine redistribution from vesicles to the cytosol. We demonstrated rotenone to nitrate tyrosine residues of VMAT2 using an immunocytochemical method with anti-nitrotyrosine antibodies and biochemically with immunoprecipitation experiments. Rotenone inhibited the VMAT2 activity responsible for the uptake of dopamine into vesicles, and this inhibition was reversed by inhibiting nitration. Moreover, rotenone induced the accumulation of aggregate-like formations in the stained image of VMAT2, which was reversed by inhibiting nitration. Our findings demonstrate that nitration of the tyrosine residues of VMAT2 by rotenone leads to both functional inhibition and accumulation of aggregate-like formations of VMAT2 and consequently to the redistribution of dopamine to the cytosol and apoptosis of dopaminergic SH-SY5Y cells.

  12. Electrochemical Sensors for In Situ Phosphate and Nitrate Measurements in Seawater

    NASA Astrophysics Data System (ADS)

    Romanytsia, I.; Chen Legrand, D.; Barus, C.; Striebig, N.; Garcon, V.

    2016-02-01

    Monitoring the evolution of concentrations of dissolved inorganic nutrients, like phosphate and nitrate, provides insights on the oceanic biogeochemical cycles. This long term monitoring is key to investigate how changing oceanic conditions will alter biogeochemical cycles. We report here the latest development and analytical method to measure phosphate and nitrate concentrations in seawater without any addition of liquid reagents. We propose to use a derivative electrochemical method such as Square Wave Voltammetry (SWV) to detect phosphomolybdic complex and nitrate as this method offers a higher sensitivity than classical cyclic voltammetry and avoids the need of stirring the solution like for chronoamperometry technique. Phosphate is a non-electroactive species and its determination is performed by measuring its corresponding phosphomolybdic complex formed in situ after oxidation of two molybdenum electrodes placed into two different compartments connected with a proton-exchange membrane. [1]. All the SWV parameters such as step potential, amplitude and frequency have been determined to detect phosphomolybdic complex as fast as possible and with the lowest limit of detection. Depending on the frequency used, two calibration curves have been obtained for two phosphate concentration ranges: 0.07-1.06 µM (250 Hz) and 0.5-6 µM (2.5 Hz). We are currently working to adapt those parameters to laboratory prototype and results obtained will be presented. On the other hand, nitrate can be detected directly on gold electrode modified with silver nanoparticles (AgNPs) where the nitrate reduction process can be easily measured at -0.97 V [2]. This method allows to obtain good calibration curves with a detection limit of 10 nM, very short measuring time (2.8 s) and long life time of the modified electrode (minimum 47 days storage in seawater). [1] Jonca et al., Electrochimica Acta 88 (2013) 165-169 [2] Fajerwerg et al., Electrochem. Commun. 12 (2010) 1439-1441

  13. Impact of pore size on the sorption of uranyl under seawater conditions

    DOE PAGES

    Mayes, Richard T.; Gorka, Joanna; Dai, Sheng

    2016-04-05

    The extraction of uranium from seawater has received significant interest recently, because of the possibility of a near-limitless supply of uranium to fuel the nuclear power industry. While sorbent development has focused primarily on polymeric sorbents, nanomaterials represent a new area that has the potential to surpass the current polymeric sorbents, because of the high surface areas that are possible. Mesoporous carbon materials are a stable, high-surface-area material capable of extracting various chemical species from a variety of environments. Herein, we report the use of a dual templating process to understand the effect of pore size on the adsorption ofmore » uranyl ions from a uranyl brine consisting of seawater-relevant sodium, chloride, and bicarbonate ions. It was found that pore size played a more significant role in the effective use of the grafted polymer, leading to higher uranium capacities than the surface area. Furthermore, the pore size must be tailored to meet the demands of the extraction medium and analyte metal to achieve efficacy as an adsorbent.« less

  14. Probing the oxygen environment in UO(2)(2+) by solid-state 17O nuclear magnetic resonance spectroscopy and relativistic density functional calculations.

    PubMed

    Cho, Herman; de Jong, Wibe A; Soderquist, Chuck Z

    2010-02-28

    A combined theoretical and solid-state (17)O nuclear magnetic resonance (NMR) study of the electronic structure of the uranyl ion UO(2)(2+) in (NH(4))(4)UO(2)(CO(3))(3) and rutherfordine (UO(2)CO(3)) is presented, the former representing a system with a hydrogen-bonding environment around the uranyl oxygens and the latter exemplifying a uranyl environment without hydrogens. Relativistic density functional calculations reveal unique features of the U-O covalent bond, including the finding of (17)O chemical shift anisotropies that are among the largest for oxygen ever reported (>1200 ppm). Computational results for the oxygen electric field gradient tensor are found to be consistently larger in magnitude than experimental solid-state (17)O NMR measurements in a 7.05 T magnetic field indicate. A modified version of the Solomon theory of the two-spin echo amplitude for a spin-5/2 nucleus is developed and applied to the analysis of the (17)O echo signal of U (17)O(2)(2+).

  15. Chemistry of [Et4N][MoIV(SPh)(PPh3)(mnt)2] as an analogue of dissimilatory nitrate reductase with its inactivation on substitution of thiolate by chloride.

    PubMed

    Majumdar, Amit; Pal, Kuntal; Sarkar, Sabyasachi

    2006-04-05

    Structural-functional analogue of the reduced site of dissimilatory nitrate reductase is synthesized as [Et4N][MoIV(SPh)(PPh3)(mnt)2].CH2Cl2 (1). PPh3 in 1 is readily dissociated in solution to generate the active site of the reduced site of dissimilatory nitrate reductase. This readily reacts with nitrate. The nitrate reducing system is characterized by substrate saturation kinetics. Oxotransfer to and from substrate has been coupled to produce a catalytic system, NO3- + PPh3 --> NO2- + OPPh3, where NO3- is the substrate for dissimilatory nitrate reductase. The corresponding chloro complex, [Et4N][MoIV(Cl)(PPh3)(mnt)2].CH2Cl2 (2), responds to similar PPh3 dissociation but is unable to react with nitrate, showing the indispensable role of thiolate coordination for such oxotransfer reaction. This investigation provides the initial demonstration of the ligand specificity in a model system similar to single point mutation involving site directed mutagenesis in this class of molybdoenzymes.

  16. Approaches to modelling uranium (VI) adsorption on natural mineral assemblages

    USGS Publications Warehouse

    Waite, T.D.; Davis, J.A.; Fenton, B.R.; Payne, T.E.

    2000-01-01

    Component additivity (CA) and generalised composite (GC) approaches to deriving a suitable surface complexation model for description of U(VI) adsorption to natural mineral assemblages are pursued in this paper with good success. A single, ferrihydrite-like component is found to reasonably describe uranyl uptake to a number of kaolinitic iron-rich natural substrates at pH > 4 in the CA approach with previously published information on nature of surface complexes, acid-base properties of surface sites and electrostatic effects used in the model. The GC approach, in which little pre-knowledge about generic surface sites is assumed, gives even better fits and would appear to be a method of particular strength for application in areas such as performance assessment provided the model is developed in a careful, stepwise manner with simplicity and goodness of fit as the major criteria for acceptance.

  17. Investigation of uranium binding forms in selected German mineral waters.

    PubMed

    Osman, Alfatih A A; Geipel, Gerhard; Bernhard, Gert; Worch, Eckhard

    2013-12-01

    Cryogenic time-resolved laser-induced fluorescence spectroscopy was successfully used to identify uranium binding forms in selected German mineral waters of extremely low uranium concentrations (<2.0 μg/L). The measurements were performed at a low temperature of 153 K. The spectroscopic data showed a prevalence of aquatic species Ca2UO2(CO3)3 in all investigated waters, while other uranyl-carbonate complexes, viz, UO2CO3(aq) and UO2(CO3)2 (2-), only existed as minor species. The pH value, alkalinity (CO3 (2-)), and the main water inorganic constituents, specifically the Ca(2+) concentration, showed a clear influence on uranium speciation. Speciation modeling was performed using the most recent thermodynamic data for aqueous complexes of uranium. The modeling results for the main uranium binding form in the investigated waters indicated a good agreement with the spectroscopy measurements.

  18. A Metagenomics-Based Metabolic Model of Nitrate-Dependent Anaerobic Oxidation of Methane by Methanoperedens-Like Archaea

    PubMed Central

    Arshad, Arslan; Speth, Daan R.; de Graaf, Rob M.; Op den Camp, Huub J. M.; Jetten, Mike S. M.; Welte, Cornelia U.

    2015-01-01

    Methane oxidation is an important process to mitigate the emission of the greenhouse gas methane and further exacerbating of climate forcing. Both aerobic and anaerobic microorganisms have been reported to catalyze methane oxidation with only a few possible electron acceptors. Recently, new microorganisms were identified that could couple the oxidation of methane to nitrate or nitrite reduction. Here we investigated such an enrichment culture at the (meta) genomic level to establish a metabolic model of nitrate-driven anaerobic oxidation of methane (nitrate-AOM). Nitrate-AOM is catalyzed by an archaeon closely related to (reverse) methanogens that belongs to the ANME-2d clade, tentatively named Methanoperedens nitroreducens. Methane may be activated by methyl-CoM reductase and subsequently undergo full oxidation to carbon dioxide via reverse methanogenesis. All enzymes of this pathway were present and expressed in the investigated culture. The genome of the archaeal enrichment culture encoded a variety of enzymes involved in an electron transport chain similar to those found in Methanosarcina species with additional features not previously found in methane-converting archaea. Nitrate reduction to nitrite seems to be located in the pseudoperiplasm and may be catalyzed by an unusual Nar-like protein complex. A small part of the resulting nitrite is reduced to ammonium which may be catalyzed by a Nrf-type nitrite reductase. One of the key questions is how electrons from cytoplasmically located reverse methanogenesis reach the nitrate reductase in the pseudoperiplasm. Electron transport in M. nitroreducens probably involves cofactor F420 in the cytoplasm, quinones in the cytoplasmic membrane and cytochrome c in the pseudoperiplasm. The membrane-bound electron transport chain includes F420H2 dehydrogenase and an unusual Rieske/cytochrome b complex. Based on genome and transcriptome studies a tentative model of how central energy metabolism of nitrate-AOM could work is presented and discussed. PMID:26733968

  19. ADSORPTION METHOD FOR SEPARATING THORIUM VALUES FROM URANIUM VALUES

    DOEpatents

    Boyd, G.E.; Russell, E.R.; Schubert, J.

    1959-08-01

    An improved ion exchange method is described for recovery of uranium and thorium values as separate functions from an aqueous acidic solution containing less than 10/sup -3/ M thorium ions and between 0.1 and 1 M uranyl ions. The solution is passed through a bed of cation exchange resin in the acid form to adsorb all the thorium ions and a portion of the uranyl ions. The uranium is eluted by means of aqueous 0.1 to 0.4 M sulfuric acid. The thorium may then be stripped from the resin by elution with aqueous 0.5 M oxalic acid.

  20. ADSORPTION METHOD FOR SEPARATING THORIUM VALUES FROM URANIUM VALUES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, G.E.; Russell, E.R.; Schubert, J.

    An improved ion exchange method is described for recovery of uranium and thorium values as separate functions from an aqueous acidic solution containing less than 10/sup -3/ M thorium ions and between 0.1 and 1 M uranyl ions. The solution is passed through a bed of cation exchange resin in the acid form to adsorb all the thorium ions and a portion of the uranyl ions. The uranium is eluted by means of aqueous 0.1 to 0.4 M sulfuric acid. The thorium may then be stripped from the resin by elution with aqueous 0.5 M oxalic acid.

  1. Uranium (U)-Tolerant Bacterial Diversity from U Ore Deposit of Domiasiat in North-East India and Its Prospective Utilisation in Bioremediation

    PubMed Central

    Kumar, Rakshak; Nongkhlaw, Macmillan; Acharya, Celin; Joshi, Santa Ram

    2013-01-01

    Uranium (U)-tolerant aerobic chemo-heterotrophic bacteria were isolated from the sub-surface soils of U-rich deposits in Domiasiat, North East India. The bacterial community explored at molecular level by amplified ribosomal DNA restriction analysis (ARDRA) resulted in 51 distinct phylotypes. Bacterial community assemblages at the U mining site with the concentration of U ranging from 20 to 100 ppm, were found to be most diverse. Representative bacteria analysed by 16S rRNA gene sequencing were affiliated to Firmicutes (51%), Gammaproteobacteria (26%), Actinobacteria (11%), Bacteroidetes (10%) and Betaproteobacteria (2%). Representative strains removed more than 90% and 53% of U from 100 μM and 2 mM uranyl nitrate solutions, respectively, at pH 3.5 within 10 min of exposure and the activity was retained until 24 h. Overall, 76% of characterized isolates possessed phosphatase enzyme and 53% had PIB-type ATPase genes. This study generated baseline information on the diverse indigenous U-tolerant bacteria which could serve as an indicator to estimate the environmental impact expected to be caused by mining in the future. Also, these natural isolates efficient in uranium binding and harbouring phosphatase enzyme and metal-transporting genes could possibly play a vital role in the bioremediation of metal-/radionuclide-contaminated environments. PMID:23080407

  2. Extraction study on uranyl nitrate for energy applications

    NASA Astrophysics Data System (ADS)

    Giri, R.; Nath, G.

    2017-07-01

    Due to the ever-growing demand of energy nuclear reactor materials and the nuclear energy are now considered to be the most critical materials and source of energy for future era. Deposition of nuclear wastes in different industry, nuclear power sector are very much toxic in open environment which are hazardous to living being. There are different methods for extraction and reprocessing of these materials which are cost effective and tedious process. Ultrasonic assisted solvent extraction process is a most efficient and economical way for extraction of such type materials. The presence of third phase in mixing of extractants-diluent pair with aqueous phase imposes the problems in extraction of nuclear reactor materials. The appropriate solvent mixture in proper concentration is an important step in the solvent extraction process. Study of thermo-physical properties helps in selecting an optimum blend for extraction process. In the present work, the extraction of uranium with the binary mixture of Methyl Ethyl Ketone (MEK) and Kerosene was investigated and discussed with the variation of ultrasonic frequency for different temperatures. The result shows that the low frequency and low temperature is suitable environment for extraction. The extraction of uranium by this method is found to be a better result for extraction study in laboratory scale as well as industrial sector.

  3. Caulobacter crescentus as a Whole-Cell Uranium Biosensor▿ †

    PubMed Central

    Hillson, Nathan J.; Hu, Ping; Andersen, Gary L.; Shapiro, Lucy

    2007-01-01

    We engineered a strain of the bacterium Caulobacter crescentus to fluoresce in the presence of micromolar levels of uranium at ambient temperatures when it is exposed to a hand-held UV lamp. Previous microarray experiments revealed that several Caulobacter genes are significantly upregulated in response to uranium but not in response to other heavy metals. We designated one of these genes urcA (for uranium response in caulobacter). We constructed a reporter that utilizes the urcA promoter to produce a UV-excitable green fluorescent protein in the presence of the uranyl cation, a soluble form of uranium. This reporter is specific for uranium and has little cross specificity for nitrate (<400 μM), lead (<150 μM), cadmium (<48 μM), or chromium (<41.6 μM). The uranium reporter construct was effective for discriminating contaminated groundwater samples (4.2 μM uranium) from uncontaminated groundwater samples (<0.1 μM uranium) collected at the Oak Ridge Field Research Center. In contrast to other uranium detection methodologies, the Caulobacter reporter strain can provide on-demand usability in the field; it requires minimal sample processing and no equipment other than a hand-held UV lamp, and it may be sprayed directly on soil, groundwater, or industrial surfaces. PMID:17905881

  4. Bioaccumulation characterization of uranium by a novel Streptomyces sporoverrucosus dwc-3.

    PubMed

    Li, Xiaolong; Ding, Congcong; Liao, Jiali; Du, Liang; Sun, Qun; Yang, Jijun; Yang, Yuanyou; Zhang, Dong; Tang, Jun; Liu, Ning

    2016-03-01

    The biosorption mechanisms of uranium on an aerobic bacterial strain Streptomyces sporoverrucosus dwc-3, isolated from a potential disposal site for (ultra-)low uraniferous radioactive waste in Southwest China, were evaluated by using transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), proton induced X-ray emission (PIXE) and enhanced proton backscattering spectrometry (EPBS). Approximately 60% of total uranium at an initial concentration of 10mg/L uranium nitrate solution could be absorbed on 100mg S. sporoverrucosus dwc-3 with an adsorption capacity of more than 3.0mg/g (wet weight) after 12hr at room temperature at pH3.0. The dynamic biosorption process of S. sporoverrucosus dwc-3 for uranyl ions was well described by a pseudo second-order model. S. sporoverrucosus dwc-3 could accumulate uranium on cell walls and within the cell, as revealed by SEM and TEM analysis as well as EDX spectra. XPS and FT-IR analysis further suggested that the absorbed uranium was bound to amino, phosphate and carboxyl groups of the cells. Additionally, PIXE and EPBS results confirmed that ion exchange also contributed to the adsorption process of uranium. Copyright © 2015. Published by Elsevier B.V.

  5. Energy dispersive X-ray fluorescence determination of cadmium in uranium matrix using Cd Kα line excited by continuum

    NASA Astrophysics Data System (ADS)

    Dhara, Sangita; Misra, N. L.; Aggarwal, S. K.; Venugopal, V.

    2010-06-01

    An energy dispersive X-ray fluorescence method for determination of cadmium (Cd) in uranium (U) matrix using continuum source of excitation was developed. Calibration and sample solutions of cadmium, with and without uranium were prepared by mixing different volumes of standard solutions of cadmium and uranyl nitrate, both prepared in suprapure nitric acid. The concentration of Cd in calibration solutions and samples was in the range of 6 to 90 µg/mL whereas the concentration of Cd with respect to U ranged from 90 to 700 µg/g of U. From the calibration solutions and samples containing uranium, the major matrix uranium was selectively extracted using 30% tri-n-butyl phosphate in dodecane. Fixed volumes (1.5 mL) of aqueous phases thus obtained were taken directly in specially designed in-house fabricated leak proof Perspex sample cells for the energy dispersive X-ray fluorescence measurements and calibration plots were made by plotting Cd Kα intensity against respective Cd concentration. For the calibration solutions not having uranium, the energy dispersive X-ray fluorescence spectra were measured without any extraction and Cd calibration plots were made accordingly. The results obtained showed a precision of 2% (1 σ) and the results deviated from the expected values by < 4% on average.

  6. Modification of heterogeneous chemistry by complex substrate morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henson, B.F.; Buelow, S.J.; Robinson, J.M.

    1998-12-31

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). Chemistry in many environmental systems is determined at some stage by heterogeneous reaction with a surface. Typically the surface exists as a dispersion or matrix of particulate matter or pores, and a determination of the heterogeneous chemistry of the system must address the extent to which the complexity of the environmental surface affects the reaction rates. Reactions that are of current interest are the series of chlorine nitrate reactions important in polar ozone depletion. The authors have applied surfacemore » spectroscopic techniques developed at LANL to address the chemistry of chlorine nitrate reactions on porous nitric and sulfuric acid ice surfaces as a model study of the measurement of complex, heterogeneous reaction rates. The result of the study is an experimental determination of the surface coverage of one adsorbed reagent and a mechanism of reactivity based on the dependence of this coverage on temperature and vapor pressure. The resulting mechanism allows the first comprehensive modeling of chlorine nitrate reaction probability data from several laboratories.« less

  7. Tracing atmospheric nitrate deposition in a complex semiarid ecosystem using Δ17O

    Treesearch

    Greg Michalski; Thomas Meixner; Mark E. Fenn; Larry Hernandez; Abby Sirulnik; Edith Allen; Mark Thiemens

    2004-01-01

    The isotopic composition of nitrate collected from aerosols, fog, and precipitation was measured and found to have a large 17O anomaly with Δ17O values ranging from 20‰ to 30‰ (Δ17O δ17O - 0.52(δ18O)). This 17...

  8. Electric Hindrance and Precursor Complexes in the Regiochemistry of Some Nitrations

    ERIC Educational Resources Information Center

    Sanchez-Viesca, Francisco; Gomez, Maria Reina Gomez; Berros, Martha

    2011-01-01

    There are still gaps in the theory of supposedly well-known chemical reactions. For example, there is no explanation why there is a notorious preponderance of one of the expected isomers in some electrophilic aromatic substitutions. The preferred ortho orientation of acetyl nitrate has been used widely to obtain ortho nitro compounds; however,…

  9. A smart T(1)-weighted MRI contrast agent for uranyl cations based on a DNAzyme-gadolinium conjugate.

    PubMed

    Xu, Weichen; Xing, Hang; Lu, Yi

    2013-11-07

    Rational design of smart MRI contrast agents with high specificity for metal ions remains a challenge. Here, we report a general strategy for the design of smart MRI contrast agents for detecting metal ions based on conjugation of a DNAzyme with a gadolinium complex. The 39E DNAzyme, which has high selectivity for UO2(2+), was conjugated to Gd(III)-DOTA and streptavidin. The binding of UO2(2+) to its 39E DNAzyme resulted in the dissociation of Gd(III)-DOTA from the large streptavidin, leading to a decrease of the T1 correlation time, and a change in the MRI signal.

  10. Attenuation and Transport Mechanisms of Depleted Uranium in Groundwater at Lawrence Livermore National Laboratory Site 300

    NASA Astrophysics Data System (ADS)

    Danny, K. R.; Taffet, M. J.; Brusseau, M. L. L.; Chorover, J.

    2015-12-01

    Lawrence Livermore National Laboratory (LLNL) Site 300 was established in 1955 to support weapons research and development. Depleted uranium was used as a proxy for fissile uranium-235 (235U) in open-air explosives tests conducted at Building 812. As a result, oxidized depleted uranium was deposited on the ground, eventually migrating to the underlying sandstone aquifer. Uranium (U) groundwater concentrations exceed the California and Federal Maximum Contaminant Level of 20 pCi L-1 (30 ug L-1). However, the groundwater plume appears to attenuate within 60 m of the source, beyond which no depleted U is detected. This study will determine the relative contribution of physical (e.g. dilution), chemical (e.g. surface adsorption, mineral precipitation), and biological (e.g. biotransformation) processes that contribute to the apparent attenuation of U, which exists as uranyl (UO22+) complexes, at the site. Methods of investigation include evaluating 15 yr of hydrogeologic and chemical data, creating a site conceptual model, and applying equilibrium (e.g. aqueous species complexation, mineral saturation indices) and reactive transport models using Geochemist's WorkbenchTM. Reactive transport results are constrained by direct field observations, including U major ion, and dissolved O2 concentrations, pH, and others, under varying chemical and hydraulic conditions. Aqueous speciation calculations indicate that U primarily exists as anionic CaUO2(CO3)32- or neutral Ca2UO2(CO3)30 species. Additionally, nucleation and growth of Ca/Mg uranyl carbonate solids are predicted to affect attenuation. Initial reactive transport results suggest surface adsorption (e.g. ion exchange, surface complexation) to layer silicate clays is limited under the aqueous geochemical conditions of the site. Current and future work includes XRD analysis of aquifer solids to constrain iron and aluminum (oxy)hydroxides, and coupling advective-dispersive transport with the chemical and physical processes. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675707.

  11. Experimental measurements of U60 nanocluster stability in aqueous solution

    NASA Astrophysics Data System (ADS)

    Flynn, Shannon L.; Szymanowski, Jennifer E. S.; Gao, Yunyi; Liu, Tianbo; Burns, Peter C.; Fein, Jeremy B.

    2015-05-01

    In this study, the aqueous behavior of isolated U60 nanoclusters (K16Li25[UO2(O2)OH]60)-19 was studied under several pH conditions and nanocluster concentrations to determine if the nanoclusters exhibit solid phase buffering behavior or if they exhibit behavior more like aqueous complexes. U60 is a cage cluster consisting of 60 (UO2)(O2)2(OH)2 uranyl polyhedral which share OH and O2 groups with their neighboring uranyl polyhedral, resulting in negatively charged cage clusters whose charge is at least partially offset by K+ and Li+ in the aqueous phase. Batch experiments to monitor nanocluster stability were conducted for 16 days at pH 7.5, 8.0 and 8.5 at nanocluster suspension concentrations of 1.4, 2.8 and 6.0 g/L. The aqueous concentrations of U, Li, and K, determined after 10 kDa molecular weight filtration, achieved steady-state with the nanoclusters within 24 h. The steady-state aqueous U, Li, and K concentrations were independent of solution pH, however they increased with increasing nanocluster concentration, indicating that the nanoclusters do not buffer the aqueous activities as a bulk solid phase would, but exhibit behavior that is more characteristic of dissolved aqueous complexes. The ion activity product (I.A.P.) value was calculated using two approaches: (1) treating the nanoclusters as a solid phase with an activity of one, and (2) treating the nanoclusters as aqueous complexes with a non-unit activity equal to their concentration in solution. The I.A.P. values that were calculated with non-unit activity for the nanoclusters exhibited significantly less variation as a function of nanocluster concentration compared to the I.A.P. values calculated with a nanocluster activity of one. The results yield a calculated log dissociation constant for the U60 nanoclusters of 9.2 + 0.2/-0.3 (1σ). Our findings provide a better understanding of the thermodynamic stability and behavior of U60 nanoclusters in aqueous systems, and can be used to estimate the dissociation behavior of nanoclusters under a range of aqueous conditions.

  12. Aerosol-spray diverse mesoporous metal oxides from metal nitrates.

    PubMed

    Kuai, Long; Wang, Junxin; Ming, Tian; Fang, Caihong; Sun, Zhenhua; Geng, Baoyou; Wang, Jianfang

    2015-04-21

    Transition metal oxides are widely used in solar cells, batteries, transistors, memories, transparent conductive electrodes, photocatalysts, gas sensors, supercapacitors, and smart windows. In many of these applications, large surface areas and pore volumes can enhance molecular adsorption, facilitate ion transfer, and increase interfacial areas; the formation of complex oxides (mixed, doped, multimetallic oxides and oxide-based hybrids) can alter electronic band structures, modify/enhance charge carrier concentrations/separation, and introduce desired functionalities. A general synthetic approach to diverse mesoporous metal oxides is therefore very attractive. Here we describe a powerful aerosol-spray method for synthesizing various mesoporous metal oxides from low-cost nitrate salts. During spray, thermal heating of precursor droplets drives solvent evaporation and induces surfactant-directed formation of mesostructures, nitrate decomposition and oxide cross-linking. Thirteen types of monometallic oxides and four groups of complex ones are successfully produced, with mesoporous iron oxide microspheres demonstrated for photocatalytic oxygen evolution and gas sensing with superior performances.

  13. Reactions Between Water Soluble Organic Acids and Nitrates in Atmospheric Aerosols: Recycling of Nitric Acid and Formation of Organic Salts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bingbing; Laskin, Alexander

    Atmospheric particles often include a complex mixture of nitrate and secondary organic materials accumulated within the same individual particles. Nitrate as an important inorganic component can be chemically formed in the atmosphere. For instance, formation of sodium nitrate (NaNO3) and calcium nitrate Ca(NO3)2 when nitrogen oxide and nitric acid (HNO3) species react with sea salt and calcite, respectively. Organic acids contribute a significant fraction of photochemically formed secondary organics that can condense on the preexisting nitrate-containing particles. Here, we present a systematic microanalysis study on chemical composition of laboratory generated particles composed of water soluble organic acids and nitrates (i.e.more » NaNO3 and Ca(NO3)2) investigated using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and Fourier transform infrared micro-spectroscopy (micro-FTIR). The results show that water-soluble organic acids can react with nitrates releasing gaseous HNO3 during dehydration process. These reactions are attributed to acid displacement of nitrate with weak organic acids driven by the evaporation of HNO3 into gas phase due to its relatively high volatility. The reactions result in significant nitrate depletion and formation of organic salts in mixed organic acids/nitrate particles that in turn may affect their physical and chemical properties relevant to atmospheric environment and climate. Airborne nitrate concentrations are estimated by thermodynamic calculations corresponding to various nitrate depletions in selected organic acids of atmospheric relevance. The results indicate a potential mechanism of HNO3 recycling, which may further affect concentrations of gas- and aerosol-phase species in the atmosphere and the heterogeneous reaction chemistry between them.« less

  14. Spectroscopic confirmation of uranium(VI)-carbonato adsorption complexes on hematite

    USGS Publications Warehouse

    Bargar, John R.; Reitmeyer, Rebecca; Davis, James A.

    1999-01-01

    Evaluating societal risks posed by uranium contamination from waste management facilities, mining sites, and heavy industry requires knowledge about uranium transport in groundwater, often the most significant pathway of exposure to humans. It has been proposed that uranium mobility in aquifers may be controlled by adsorption of U(VI)−carbonato complexes on oxide minerals. The existence of such complexes has not been demonstrated, and little is known about their compositions and reaction stoichiometries. We have used attenuated total reflectance Fourier transform infrared (ATR-FTIR) and extended X-ray absorption fine structure (EXAFS) spectroscopies to probe the existence, structures, and compositions of ≡FeOsurface−U(VI)−carbonato complexes on hematite throughout the pH range of uranyl uptake under conditions relevant to aquifers. U(VI)−carbonato complexes were found to be the predominant adsorbed U(VI) species at all pH values examined, a much wider pH range than previously postulated based on analogy to aqueous U(VI)−carbonato complexes, which are trace constituents at pH < 6. This result indicates the inadequacy of the common modeling assumption that the compositions and predominance of adsorbed species can be inferred from aqueous species. By extension, adsorbed carbonato complexes may be of major importance to the groundwater transport of similar actinide contaminants such as neptunium and plutonium.

  15. Lanthanum(III) and Lutetium(III) in Nitrate-Based Ionic Liquids: A Theoretical Study of Their Coordination Shell.

    PubMed

    Bodo, Enrico

    2015-09-03

    By using ab initio molecular dynamics, we investigate the solvent shell structure of La(3+) and Lu(3+) ions immersed in two ionic liquids, ethylammonium nitrate (EAN) and its hydroxy derivative (2-ethanolammonium nitrate, HOEAN). We provide the first study of the coordination properties of these heavy metal ions in such a highly charged nonacqueous environment. We find, as expected, that the coordination in the liquid is mainly due to nitrate anions and that, due to the bidentate nature of the ligand, the complexation shell of the central ion has a nontrivial geometry and a coordination number in terms of nitrate molecules that apparently violates the decrease of ionic radii along the lanthanides series, since the smaller Lu(3+) ion seems to coordinate six nitrate molecules and the La(3+) ion only five. A closer inspection of the structural features obtained from our calculations shows, instead, that the first shell of oxygen atoms is more compact for Lu(3+) than for La(3+) and that the former coordinates 8 oxygen atoms while the latter 10 in accord with the typical lanthanide's trend along the series and that their first solvation shells have a slight irregular and complex geometrical pattern. When moving to the HOEAN solutions, we have found that the solvation of the central ion is possibly also due to the cation itself through the oxygen atom on the side chain. Also, in this liquid, the coordination numbers in terms of oxygen atoms in both solvents is 10 for La(3+) and 8 for Lu(3+).

  16. A Unified Experimental Approach for Estimation of Irrigationwater and Nitrate Leaching in Tree Crops

    NASA Astrophysics Data System (ADS)

    Hopmans, J. W.; Kandelous, M. M.; Moradi, A. B.

    2014-12-01

    Groundwater quality is specifically vulnerable in irrigated agricultural lands in California and many other(semi-)arid regions of the world. The routine application of nitrogen fertilizers with irrigation water in California is likely responsible for the high nitrate concentrations in groundwater, underlying much of its main agricultural areas. To optimize irrigation/fertigation practices, it is essential that irrigation and fertilizers are applied at the optimal concentration, place, and time to ensure maximum root uptake and minimize leaching losses to the groundwater. The applied irrigation water and dissolved fertilizer, as well as root growth and associated nitrate and water uptake, interact with soil properties and fertilizer source(s) in a complex manner that cannot easily be resolved. It is therefore that coupled experimental-modeling studies are required to allow for unraveling of the relevant complexities that result from typical field-wide spatial variations of soil texture and layering across farmer-managed fields. We present experimental approaches across a network of tree crop orchards in the San Joaquin Valley, that provide the necessary soil data of soil moisture, water potential and nitrate concentration to evaluate and optimize irrigation water management practices. Specifically, deep tensiometers were used to monitor in-situ continuous soil water potential gradients, for the purpose to compute leaching fluxes of water and nitrate at both the individual tree and field scale.

  17. An Isotopic view of water and nitrogen transport through the ...

    EPA Pesticide Factsheets

    Groundwater nitrate contamination affects thousands of households in Oregon’s southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen inputs to the GWMA comes from agricultural nitrogen use, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding nitrogen transformations within the vadose zone. In partnership with local farmers, and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years. Our results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitation water isotopes were highly variab

  18. An Isotopic view of water and nitrogen transport through the ...

    EPA Pesticide Factsheets

    Background/Question/MethodsGroundwater nitrate contamination affects thousands of households in Oregon's southern Willamette Valley and many more across the Pacific Northwest. The southern Willamette Valley Groundwater Management Area (SWV GWMA) was established in 2004 due to nitrate levels in the groundwater exceeding the human health standard of 10 mg nitrate-N L-1. Much of the nitrogen inputs to the GWMA comes from agricultural nitrogen use, and thus efforts to reduce N inputs to groundwater are focused upon improving N management. However, the effectiveness of these improvements on groundwater quality is unclear because of the complexity of nutrient transport through the vadose zone and long groundwater residence times. Our objective was to focus on vadose zone transport and understand the dynamics and timing of N and water movement below the rooting zone in relation to N management and water inputs. Stable isotopes are a powerful tool for tracking water movement, and understanding nitrogen transformations within the vadose zone. In partnership with local farmers, and state agencies, we established lysimeters and groundwater wells in multiple agricultural fields in the GWMA, and have monitored nitrate, nitrate isotopes, and water isotopes weekly for multiple years Results/ConclusionsOur results indicate that vadose zone transport is highly complex, and the residence time of water collected in lysimeters was much longer than expected. While input precipitatio

  19. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    NASA Astrophysics Data System (ADS)

    Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.

    2008-09-01

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate ( I), bromo-(2-formylpyridinethiosemicarbazono)copper ( II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate ( III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I III at a concentration of 10-5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  20. Long-term Kinetics of Uranyl Desorption from Sediments Under Advective Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming

    2014-02-15

    Long-term (> 4 months) column experiments were performed to investigate the kinetics of uranyl (U(VI)) desorption in sediments collected from the Integrated Field Research Challenge (IFRC) site at the US Department of Energy (DOE) Hanford 300 Area. The experimental results were used to evaluate alternative multi-rate surface complexation reaction (SCR) approaches to describe the short- and long-term kinetics of U(VI) desorption under flow conditions. The SCR stoichiometry, equilibrium constants, and multi-rate parameters were independently characterized in batch and stirred flow-cell reactors. Multi-rate SCR models that were either additively constructed using the SCRs for individual size fractions (e.g., Shang et al.,more » 2011), or composite in nature could effectively describe short-term U(VI) desorption under flow conditions. The long-term desorption results, however, revealed that using a labile U concentration measured by carbonate extraction under-estimated desorbable U(VI) and the long-term rate of U(VI) desorption. An alternative modeling approach using total U as the desorbable U(VI) concentration was proposed to overcome this difficulty. This study also found that the gravel size fraction (2-8 mm), which is typically treated as non-reactive in modeling U(VI) reactive transport because of low external surface area, can have an important effect on the U(VI) desorption in the sediment. This study demonstrates an approach to effectively extrapolate U(VI) desorption kinetics for field-scale application, and identifies important parameters and uncertainties affecting model predictions.« less

  1. Computer simulation of uranyl uptake by the rough lipopolysaccharide membrane of Pseudomonas aeruginosa.

    PubMed

    Lins, Roberto D; Vorpagel, Erich R; Guglielmi, Matteo; Straatsma, T P

    2008-01-01

    Heavy metal environmental contaminants cannot be destroyed but require containment, preferably in concentrated form, in a solid or immobile form for recycling or final disposal. Microorganisms are able to take up and deposit high levels of contaminant metals, including radioactive metals such as uranium and plutonium, into their cell wall. Consequently, these microbial systems are of great interest as the basis for potential environmental bioremediation technologies. The outer membranes of Gram-negative microbes are highly nonsymmetric and exhibit a significant electrostatic potential gradient across the membrane. This gradient has a significant effect on the uptake and transport of charged and dipolar compounds. However, the effectiveness of microbial systems for environmental remediation will depend strongly on specific properties that determine the uptake of targeted contaminants by a particular cell wall. To aid in the design of microbial remediation technologies, knowledge of the factors that determine the affinity of a particular bacterial outer membrane for the most common ionic species found in contaminated soils and groundwater is of great importance. Using our previously developed model for the lipopolysaccharide (LPS) membrane of Pseudomonas aeruginosa, this work presents the potentials of mean force as the estimate of the free energy profile for uptake of sodium, calcium, chloride, uranyl ions, and a water molecule by the bacterial LPS membrane. A compatible classical parameter set for uranyl has been developed and validated. Results show that the uptake of uranyl is energetically a favorable process relative to the other ions studied. At neutral pH, this nuclide is shown to be retained on the surface of the LPS membrane through chelation with the carboxyl and hydroxyl groups located in the outer core.

  2. UO₂²⁺ uptake by proteins: understanding the binding features of the super uranyl binding protein and design of a protein with higher affinity.

    PubMed

    Odoh, Samuel O; Bondarevsky, Gary D; Karpus, Jason; Cui, Qiang; He, Chuan; Spezia, Riccardo; Gagliardi, Laura

    2014-12-17

    The capture of uranyl, UO2(2+), by a recently engineered protein (Zhou et al. Nat. Chem. 2014, 6, 236) with high selectivity and femtomolar sensitivity has been examined by a combination of density functional theory, molecular dynamics, and free-energy simulations. It was found that UO2(2+) is coordinated to five carboxylate oxygen atoms from four amino acid residues of the super uranyl binding protein (SUP). A network of hydrogen bonds between the amino acid residues coordinated to UO2(2+) and residues in its second coordination sphere also affects the protein's uranyl binding affinity. Free-energy simulations show how UO2(2+) capture is governed by the nature of the amino acid residues in the binding site, the integrity and strength of the second-sphere hydrogen bond network, and the number of water molecules in the first coordination sphere. Alteration of any of these three factors through mutations generally results in a reduction of the binding free energy of UO2(2+) to the aqueous protein as well as of the difference between the binding free energies of UO2(2+) and other ions (Ca(2+), Cu(2+), Mg(2+), and Zn(2+)), a proxy for the protein's selectivity over these ions. The results of our free-energy simulations confirmed the previously reported experimental results and allowed us to discover a mutant of SUP, specifically the GLU64ASP mutant, that not only binds UO2(2+) more strongly than SUP but that is also more selective for UO2(2+) over other ions. The predictions from the computations were confirmed experimentally.

  3. Complex Refractive Index of Ammonium Nitrate in the 2-20 micron Spectral Range

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Norman, Mark L.; Fuller, Kirk A.; Srivastava, Vandana; Cutten, Dean R.

    2002-01-01

    Using high resolution Fourier Transform Infrared Spectroscopy (FTIR) absorbance/transmittance spectral data for ammonium sulfate (AMS), calcium carbonate (CAC) and ammonium nitrate (AMN), comparisons were made with previously published complex refractive indices data for AMS and CAC to infer experimental parameters to determine the imaginary refractive index for AMN in the infrared wavelength range from 2 to 20 microns. Kramers-Kronig mathematical relations were applied to calculate the real refractive index for the three compositions. Excellent agreement for AMS and CAC with the published values was found, validating the complex refractive indices obtained for AMN. Backscatter calculations using a lognormal size distribution for AMS, AMN, and CAC aerosols were performed to show differences in their backscattered spectra.

  4. Crystal structures of two mononuclear complexes of terbium(III) nitrate with the tripodal alcohol 1,1,1-tris-(hy-droxy-meth-yl)propane.

    PubMed

    Gregório, Thaiane; Giese, Siddhartha O K; Nunes, Giovana G; Soares, Jaísa F; Hughes, David L

    2017-02-01

    Two new mononuclear cationic complexes in which the Tb III ion is bis-chelated by the tripodal alcohol 1,1,1-tris-(hy-droxy-meth-yl)propane (H 3 L Et , C 6 H 14 O 3 ) were prepared from Tb(NO 3 ) 3 ·5H 2 O and had their crystal and mol-ecular structures solved by single-crystal X-ray diffraction analysis after data collection at 100 K. Both products were isolated in reasonable yields from the same reaction mixture by using different crystallization conditions. The higher-symmetry complex dinitratobis[1,1,1-tris-(hy-droxy-meth-yl)propane]-terbium(III) nitrate di-meth-oxy-ethane hemisolvate, [Tb(NO 3 ) 2 (H 3 L Et ) 2 ]NO 3 ·0.5C 4 H 10 O 2 , 1 , in which the lanthanide ion is 10-coordinate and adopts an s -bicapped square-anti-prismatic coordination geometry, contains two bidentate nitrate ions bound to the metal atom; another nitrate ion functions as a counter-ion and a half-mol-ecule of di-meth-oxy-ethane (completed by a crystallographic twofold rotation axis) is also present. In product aqua-nitratobis[1,1,1-tris-(hy-droxy-meth-yl)propane]-terbium(III) dinitrate, [Tb(NO 3 )(H 3 L Et ) 2 (H 2 O)](NO 3 ) 2 , 2 , one bidentate nitrate ion and one water mol-ecule are bound to the nine-coordinate terbium(III) centre, while two free nitrate ions contribute to charge balance outside the tricapped trigonal-prismatic coordination polyhedron. No free water mol-ecule was found in either of the crystal structures and, only in the case of 1 , di-meth-oxy-ethane acts as a crystallizing solvent. In both mol-ecular structures, the two tripodal ligands are bent to one side of the coordination sphere, leaving room for the anionic and water ligands. In complex 2 , the methyl group of one of the H 3 L Et ligands is disordered over two alternative orientations. Strong hydrogen bonds, both intra- and inter-molecular, are found in the crystal structures due to the number of different donor and acceptor groups present.

  5. Apoptosis of enterocytes and nitration of junctional complex proteins promote alcohol-induced gut leakiness and liver injury.

    PubMed

    Cho, Young-Eun; Yu, Li-Rong; Abdelmegeed, Mohamed A; Yoo, Seong-Ho; Song, Byoung-Joon

    2018-07-01

    Binge alcohol exposure causes gut leakiness, contributing to increased endotoxemia and inflammatory liver injury, although the molecular mechanisms are still elusive. This study was aimed at investigating the roles of apoptosis of enterocytes and nitration followed by degradation of intestinal tight junction (TJ) and adherens junction (AJ) proteins in binge alcohol-induced gut leakiness. The levels of intestinal (ileum) junctional complex proteins, oxidative stress markers and apoptosis-related proteins in rodents, T84 colonic cells and autopsied human ileums were determined by immunoblot, immunoprecipitation, immunofluorescence, and mass-spectral analyses. Binge alcohol exposure caused apoptosis of gut enterocytes with elevated serum endotoxin and liver injury. The levels of intestinal CYP2E1, iNOS, nitrated proteins and apoptosis-related marker proteins were significantly elevated in binge alcohol-exposed rodents. Differential, quantitative mass-spectral analyses of the TJ-enriched fractions of intestinal epithelial layers revealed that several TJ, AJ and desmosome proteins were decreased in binge alcohol-exposed rats compared to controls. Consistently, the levels of TJ proteins (claudin-1, claudin-4, occludin and zonula occludens-1), AJ proteins (β-catenin and E-cadherin) and desmosome plakoglobin were very low in binge alcohol-exposed rats, wild-type mice, and autopsied human ileums but not in Cyp2e1-null mice. Additionally, pretreatment with specific inhibitors of CYP2E1 and iNOS prevented disorganization and/or degradation of TJ proteins in alcohol-exposed T84 colonic cells. Furthermore, immunoprecipitation followed by immunoblot confirmed that intestinal TJ and AJ proteins were nitrated and degraded via ubiquitin-dependent proteolysis, resulting in their decreased levels. These results demonstrated for the first time the critical roles of CYP2E1, apoptosis of enterocytes, and nitration followed by ubiquitin-dependent proteolytic degradation of the junctional complex proteins, in promoting binge alcohol-induced gut leakiness and endotoxemia, contributing to inflammatory liver disease. Binge alcohol exposure causes gut leakiness, contributing to increased endotoxemia and inflammatory liver injury. Our results demonstrated for the first time the critical roles of apoptosis of enterocytes and nitration followed by ubiquitin-dependent proteolytic degradation of the junctional complex proteins in promoting this gut leakiness and endotoxemia. These results provide insight into the molecular mechanisms of alcohol-induced inflammatory liver disease. Published by Elsevier B.V.

  6. From Nitrate to Nitric Oxide: The Role of Salivary Glands and Oral Bacteria.

    PubMed

    Qu, X M; Wu, Z F; Pang, B X; Jin, L Y; Qin, L Z; Wang, S L

    2016-12-01

    The salivary glands and oral bacteria play an essential role in the conversion process from nitrate (NO 3 - ) and nitrite (NO 2 - ) to nitric oxide (NO) in the human body. NO is, at present, recognized as a multifarious messenger molecule with important vascular and metabolic functions. Besides the endogenous L-arginine pathway, which is catalyzed by complex NO synthases, nitrate in food contributes to the main extrinsic generation of NO through a series of sequential steps (NO 3 - -NO 2 - -NO pathway). Up to 25% of nitrate in circulation is actively taken up by the salivary glands, and as a result, its concentration in saliva can increase 10- to 20-fold. However, the mechanism has not been clearly illustrated until recently, when sialin was identified as an electrogenic 2NO 3 - /H + transporter in the plasma membrane of salivary acinar cells. Subsequently, the oral bacterial species located at the posterior part of the tongue reduce nitrate to nitrite, as catalyzed by nitrate reductase enzymes. These bacteria use nitrate and nitrite as final electron acceptors in their respiration and meanwhile help the host to convert nitrate to NO as the first step. This review describes the role of salivary glands and oral bacteria in the metabolism of nitrate and in the maintenance of NO homeostasis. The potential therapeutic applications of oral inorganic nitrate and nitrite are also discussed. © International & American Associations for Dental Research 2016.

  7. Thermal and X-ray diffraction analysis studies during the decomposition of ammonium uranyl nitrate.

    PubMed

    Kim, B H; Lee, Y B; Prelas, M A; Ghosh, T K

    Two types of ammonium uranyl nitrate (NH 4 ) 2 UO 2 (NO 3 ) 4 ·2H 2 O and NH 4 UO 2 (NO 3 ) 3 , were thermally decomposed and reduced in a TG-DTA unit in nitrogen, air, and hydrogen atmospheres. Various intermediate phases produced by the thermal decomposition and reduction process were investigated by an X-ray diffraction analysis and a TG/DTA analysis. Both (NH 4 ) 2 UO 2 (NO 3 ) 4 ·2H 2 O and NH 4 UO 2 (NO 3 ) 3 decomposed to amorphous UO 3 regardless of the atmosphere used. The amorphous UO 3 from (NH 4 ) 2 UO 2 (NO 3 ) 4 ·2H 2 O was crystallized to γ-UO 3 regardless of the atmosphere used without a change in weight. The amorphous UO 3 obtained from decomposition of NH 4 UO 2 (NO 3 ) 3 was crystallized to α-UO 3 under a nitrogen and air atmosphere, and to β-UO 3 under a hydrogen atmosphere without a change in weight. Under each atmosphere, the reaction paths of (NH 4 ) 2 UO 2 (NO 3 ) 4 ·2H 2 O and NH 4 UO 2 (NO 3 ) 3 were as follows: under a nitrogen atmosphere: (NH 4 ) 2 UO 2 (NO 3 ) 4 ·2H 2 O → (NH 4 ) 2 UO 2 (NO 3 ) 4 ·H 2 O → (NH 4 ) 2 UO 2 (NO 3 ) 4  → NH 4 UO 2 (NO 3 ) 3  → A-UO 3  → γ-UO 3  → U 3 O 8 , NH 4 UO 2 (NO 3 ) 3  → A-UO 3  → α-UO 3  → U 3 O 8 ; under an air atmosphere: (NH 4 ) 2 UO 2 (NO 3 ) 4 ·2H 2 O → (NH 4 ) 2 UO 2 (NO 3 ) 4 ·H 2 O → (NH 4 ) 2 UO 2 (NO 3 ) 4  → NH 4 UO 2 (NO 3 ) 3  → A-UO 3  → γ-UO 3  → U 3 O 8 , NH 4 UO 2 (NO 3 ) 3  → A-UO 3  → α-UO 3  → U 3 O 8 ; and under a hydrogen atmosphere: (NH 4 ) 2 UO 2 (NO 3 ) 4 ·2H 2 O → (NH 4 ) 2 UO 2 (NO 3 ) 4 ·H 2 O → (NH 4 ) 2 UO 2 (NO 3 ) 4  → NH 4 UO 2 (NO 3 ) 3  → A-UO 3  → γ-UO 3  → α-U 3 O 8  → UO 2 , NH 4 UO 2 (NO 3 ) 3  → A-UO 3  → β-UO 3  → α-U 3 O 8  → UO 2 .

  8. Workgroup Report: Drinking-Water Nitrate and Health—Recent Findings and Research Needs

    PubMed Central

    Ward, Mary H.; deKok, Theo M.; Levallois, Patrick; Brender, Jean; Gulis, Gabriel; Nolan, Bernard T.; VanDerslice, James

    2005-01-01

    Human alteration of the nitrogen cycle has resulted in steadily accumulating nitrate in our water resources. The U.S. maximum contaminant level and World Health Organization guidelines for nitrate in drinking water were promulgated to protect infants from developing methemoglobinemia, an acute condition. Some scientists have recently suggested that the regulatory limit for nitrate is overly conservative; however, they have not thoroughly considered chronic health outcomes. In August 2004, a symposium on drinking-water nitrate and health was held at the International Society for Environmental Epidemiology meeting to evaluate nitrate exposures and associated health effects in relation to the current regulatory limit. The contribution of drinking-water nitrate toward endogenous formation of N-nitroso compounds was evaluated with a focus toward identifying subpopulations with increased rates of nitrosation. Adverse health effects may be the result of a complex interaction of the amount of nitrate ingested, the concomitant ingestion of nitrosation cofactors and precursors, and specific medical conditions that increase nitrosation. Workshop participants concluded that more experimental studies are needed and that a particularly fruitful approach may be to conduct epidemiologic studies among susceptible subgroups with increased endogenous nitrosation. The few epidemiologic studies that have evaluated intake of nitrosation precursors and/or nitrosation inhibitors have observed elevated risks for colon cancer and neural tube defects associated with drinking-water nitrate concentrations below the regulatory limit. The role of drinking-water nitrate exposure as a risk factor for specific cancers, reproductive outcomes, and other chronic health effects must be studied more thoroughly before changes to the regulatory level for nitrate in drinking water can be considered. PMID:16263519

  9. Workgroup report: Drinking-water nitrate and health - Recent findings and research needs

    USGS Publications Warehouse

    Ward, M.H.; deKok, T.M.; Levallois, P.; Brender, J.; Gulis, G.; Nolan, B.T.; VanDerslice, J.

    2005-01-01

    Human alteration of the nitrogen cycle has resulted in steadily accumulating nitrate in our water resources. The U.S. maximum contaminant level and World Health Organization guidelines for nitrate in drinking water were promulgated to protect infants from developing methemoglobinemia, an acute condition. Some scientists have recently suggested that the regulatory limit for nitrate is overly conservative; however, they have not thoroughly considered chronic health outcomes. In August 2004, a symposium on drinking-water nitrate and health was held at the International Society for Environmental Epidemiology meeting to evaluate nitrate exposures and associated health effects in relation to the current regulatory limit. The contribution of drinking-water nitrate toward endogenous formation of N-nitroso compounds was evaluated with a focus toward identifying subpopulations with increased rates of nitrosation. Adverse health effects may be the result of a complex interaction of the amount of nitrate ingested, the concomitant ingestion of nitrosation cofactors and precursors, and specific medical conditions that increase nitrosation. Workshop participants concluded that more experimental studies are needed and that a particularly fruitful approach may be to conduct epidemiologic studies among susceptible subgroups with increased endogenous nitrosation. The few epidemiologic studies that have evaluated intake of nitrosation precursors and/or nitrosation inhibitors have observed elevated risks for colon cancer and neural tube defects associated with drinking-water nitrate concentrations below the regulatory limit. The role of drinking-water nitrate exposure as a risk factor for specific cancers, reproductive outcomes, and other chronic health effects must be studied more thoroughly before changes to the regulatory level for nitrate in drinking water can be considered.

  10. Workgroup report: Drinking-water nitrate and health--recent findings and research needs.

    PubMed

    Ward, Mary H; deKok, Theo M; Levallois, Patrick; Brender, Jean; Gulis, Gabriel; Nolan, Bernard T; VanDerslice, James

    2005-11-01

    Human alteration of the nitrogen cycle has resulted in steadily accumulating nitrate in our water resources. The U.S. maximum contaminant level and World Health Organization guidelines for nitrate in drinking water were promulgated to protect infants from developing methemoglobinemia, an acute condition. Some scientists have recently suggested that the regulatory limit for nitrate is overly conservative; however, they have not thoroughly considered chronic health outcomes. In August 2004, a symposium on drinking-water nitrate and health was held at the International Society for Environmental Epidemiology meeting to evaluate nitrate exposures and associated health effects in relation to the current regulatory limit. The contribution of drinking-water nitrate toward endogenous formation of N-nitroso compounds was evaluated with a focus toward identifying subpopulations with increased rates of nitrosation. Adverse health effects may be the result of a complex interaction of the amount of nitrate ingested, the concomitant ingestion of nitrosation cofactors and precursors, and specific medical conditions that increase nitrosation. Workshop participants concluded that more experimental studies are needed and that a particularly fruitful approach may be to conduct epidemiologic studies among susceptible subgroups with increased endogenous nitrosation. The few epidemiologic studies that have evaluated intake of nitrosation precursors and/or nitrosation inhibitors have observed elevated risks for colon cancer and neural tube defects associated with drinking-water nitrate concentrations below the regulatory limit. The role of drinking-water nitrate exposure as a risk factor for specific cancers, reproductive outcomes, and other chronic health effects must be studied more thoroughly before changes to the regulatory level for nitrate in drinking water can be considered.

  11. Totomatix: a novel automatic set-up to control diurnal, diel and long-term plant nitrate nutrition

    PubMed Central

    Adamowicz, Stéphane; Le Bot, Jacques; Huanosto Magaña, Ruth; Fabre, José

    2012-01-01

    Background Stand-alone nutritional set-ups are useful tools to grow plants at defined nutrient availabilities and to measure nutrient uptake rates continuously, in particular that for nitrate. Their use is essential when the measurements are meant to cover long time periods. These complex systems have, however, important drawbacks, including poor long-term reliability and low precision at high nitrate concentration. This explains why the information dealing with diel dynamics of nitrate uptake rate is scarce and concerns mainly young plants grown at low nitrate concentration. Scope The novel system detailed in this paper has been developed to allow versatile use in growth rooms, greenhouses or open fields at nitrate concentrations ranging from a few micro- to several millimoles per litres. The system controls, at set frequencies, the solution nitrate concentration, pH and volumes. Nitrate concentration is measured by spectral deconvolution of UV spectra. The main advantages of the set-up are its low maintenance (weekly basis), an ability to diagnose interference or erroneous analyses and high precision of nitrate concentration measurements (0·025 % at 3 mm). The paper details the precision of diurnal nitrate uptake rate measurements, which reveals sensitivity to solution volume at low nitrate concentration, whereas at high concentration, it is mostly sensitive to the precision of volume estimates. Conclusions This novel set-up allows us to measure and characterize the dynamics of plant nitrate nutrition at high temporal resolution (minutes to hours) over long-term experiments (up to 1 year). It is reliable and also offers a novel method to regulate up to seven N treatments by adjusting the daily uptake of test plants relative to controls, in variable environments such as open fields and glasshouses. PMID:21985796

  12. Theoretical study of the coordination behavior of formate and formamidoximate with dioxovanadium( v ) cation: implications for selectivity towards uranyl

    DOE PAGES

    Mehio, Nada; Johnson, J. Casey; Dai, Sheng; ...

    2015-10-28

    Poly(acrylamidoxime)-based fibers bearing random mixtures of carboxylate and amidoxime groups are the most widely utilized materials for extracting uranium from seawater. However, the competition between uranyl (UO 2 2+) and vanadium ions poses a significant challenge to the industrial mining of uranium from seawater using the current generation of adsorbents. To design more selective adsorbents, a detailed understanding of how major competing ions interact with carboxylate and amidoxime ligands is required. In this work, we employ density functional theory (DFT) and wave-function methods to investigate potential binding motifs of the dioxovanadium ion, VO 2 +, with water, formate, and formamidoximatemore » ligands. Employing higher level of theory calculations (CCSD(T)) resolve the existing controversy between the experimental results and previous DFT calculations for the structure of the hydrated VO 2 + ion. Consistent with the EXAFS data, CCSD(T) calculations predict higher stability of the distorted octahedral geometry of VO 2 +(H 2O) 4 compared to the five-coordinate complex with a single water molecule in the second hydration shell, while all seven tested DFT methods yield the reverse stability of the two conformations. Analysis of the relative stabilities of formate-VO 2 + complexes indicates that both monodentate and bidentate forms may coexist in thermodynamic equilibrium in solution, with the equilibrium balance leaning more towards the formation of monodentate species. Investigations of VO 2 + coordination with the formamidoximate anion has revealed the existence of seven possible binding motifs, four of which are within ~ 4.0 kcal/mol of each other. Calculations establish that the most stable binding motif entails the coordination of oxime oxygen and amide nitrogen atoms via a tautomeric rearrangement of amidoxime to imino hydroxylamine. Lastly, the difference in the most stable VO 2 + and UO 2 2+ binding conformation has important implications for the design of more selective UO 2 2+ ligands.« less

  13. Spectroscopic studies of uranium species for environmental decontamination applications

    NASA Astrophysics Data System (ADS)

    Eng, Charlotte

    After the Cold War, Department of Energy began to concentrate its efforts on cleanup of former nuclear material processing facilities, especially uranium-contaminated groundwater and soil. This research aims to study uranium association to both organic and inorganic compounds found in the contaminated environment in the hopes that the information gathered can be applied to the development and optimization of cost-effective remediation techniques. Spectroscopic and electrochemical methods will be employed to examine the behavior of uranium in given conditions to further our understanding of its impact on the environment. Uranium found in groundwater and soil bind with various ligands, especially organic ligands present in the environment due to natural sources (e.g. metabolic by-products or degradation of plants and animals) or man-made sources (e.g. chelating agents used in operating or cleanup of uranium processing facilities). We selected reasonable analogs of naturally occurring matter and studied their structure, chemical and electrochemical behavior and found that the structure of uranyl complexes depends heavily on the nature of the ligand and environmental factors such as pH. Association of uranium-organic complexes with anaerobic bacteria, Clostridium sp. was studied to establish if the bacteria can effectively bioreduce uranium while going through normal bacterial activity. It was found that the nature of the organic ligand affected the bioavailability and toxicity of the uranium on the bacteria. In addition, we have found that the type of iron corrosion products and uranyl species present on the surface of corroded steel depended on various environmental factors, which subsequently affected the removal rate of uranium by a citric acid/hydrogen peroxide/deionized water cleaning process. The method was found to remove uranium from only the topmost corrosion layers and residual uranium could be found (a) deeper in the corrosion layers where it is occluded by the steel corrosion products or (b) in areas where the dissolved uranium/iron species, the products generated by the dissolution power of citric acid, was not properly rinsed away.

  14. Grain-Size Based Additivity Models for Scaling Multi-rate Uranyl Surface Complexation in Subsurface Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiaoying; Liu, Chongxuan; Hu, Bill X.

    This study statistically analyzed a grain-size based additivity model that has been proposed to scale reaction rates and parameters from laboratory to field. The additivity model assumed that reaction properties in a sediment including surface area, reactive site concentration, reaction rate, and extent can be predicted from field-scale grain size distribution by linearly adding reaction properties for individual grain size fractions. This study focused on the statistical analysis of the additivity model with respect to reaction rate constants using multi-rate uranyl (U(VI)) surface complexation reactions in a contaminated sediment as an example. Experimental data of rate-limited U(VI) desorption in amore » stirred flow-cell reactor were used to estimate the statistical properties of multi-rate parameters for individual grain size fractions. The statistical properties of the rate constants for the individual grain size fractions were then used to analyze the statistical properties of the additivity model to predict rate-limited U(VI) desorption in the composite sediment, and to evaluate the relative importance of individual grain size fractions to the overall U(VI) desorption. The result indicated that the additivity model provided a good prediction of the U(VI) desorption in the composite sediment. However, the rate constants were not directly scalable using the additivity model, and U(VI) desorption in individual grain size fractions have to be simulated in order to apply the additivity model. An approximate additivity model for directly scaling rate constants was subsequently proposed and evaluated. The result found that the approximate model provided a good prediction of the experimental results within statistical uncertainty. This study also found that a gravel size fraction (2-8mm), which is often ignored in modeling U(VI) sorption and desorption, is statistically significant to the U(VI) desorption in the sediment.« less

  15. F-element metalated dipyrrins: synthesis and characterization of a family of uranyl bis(dipyrrinate) complexes.

    PubMed

    Bolotaulo, Duer; Metta-Magaña, Alejandro; Fortier, Skye

    2017-03-07

    Using an improved, chromatography-free dipyrrin synthesis, the α,β-unsubstituted dipyrrins [RC(C 4 H 2 N) 2 H] (2) (R = tolyl (2toly l ), p-OMe-C 6 H 4 (2anis), mesityl (2mes), ferrocenyl (2Fc)) were isolated in good to excellent yields. Deprotonation of 2 with Na[N(SiMe 3 ) 2 ] gives the alkali metal salts [Na(DME) n ][RC(C 4 H 2 N) 2 ] (3) which reacts with UO 2 Cl 2 (THF) 3 to give the uranyl bis(dipyrrinates) UO 2 [RC(C 4 H 2 N) 2 ] 2 (L) (L = THF (4R-THF); DMAP (4R-DMAP)) (R = tolyl, p-OMe-C 6 H 4 , mesityl, ferrocenyl). The THF adducts, 4R-THF, are unstable in aromatic and nonpolar solvents and rapidly decompose to 2 and an intractable uranium-containing solid. On the other hand, the DMAP adducts, 4R-DMAP, are indefinitely stable in solution. The solid-state structures of 4R-THF and 4R-DMAP reveal distorted trigonal bipyramidal geometries. In the solid-state, the dipyrrinate ligands exhibit significant distortions including bowing and, in some instances, out-of-plane equatorial N-atom coordination, likely as a consequence of steric crowding and interligand repulsion. The complexes, 4R-DMAP, have been fully characterized by NMR, UV/Vis, and fluorescence spectroscopies, and their electrochemical properties have been investigated through cyclic voltammetry. The cyclic voltammograms of 4R-DMAP display several redox features but present a reversible wave at ca. -1.9 V (vs. Fc 0/+ ) attributable to a ligand centred reduction. Fluorescence measurements of all compounds reveal that only the mesityl derivatives 2mes, 3mes, and 4mes fluoresce with modest Stokes shift that ranges from ca. 30-70 nm, with 4mes displaying the greatest relative emission intensity.

  16. Synthesis, spectral and magnetic studies of mono- and bi-nuclear metal complexes of a new bis(tridentate NO2) Schiff base ligand derived from 4,6-diacetylresorcinol and ethanolamine.

    PubMed

    Shebl, Magdy

    2009-07-15

    A new bis(tridentate NO2) Schiff base ligand, H(4)L, was prepared by the reaction of the bifunctional carbonyl compound; 4,6-diacetylresorcinol (DAR) with ethanolamine. The ligand reacted with iron(III), cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), cerium(III) and uranyl(VI) ions, in absence and in presence of LiOH, to yield mono- and bi-nuclear complexes with different coordinating sites. The ligand and its metal complexes were characterized by elemental analyses, IR, (1)H NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. In absence of LiOH, mononuclear complexes (2, 3 and 5-9) as well as binuclear complexes (1 and 4) were obtained. In mononuclear complexes, the ligand acted as a neutral, mono- and di-basic/bi- and tetra-dentate ligand while in binuclear complexes (1 and 4), the ligand acted as a bis(mono- or di-basic/tridentate) ligand. On the other hand, in presence of LiOH, only binuclear complexes (10-15) were obtained in which the ligand acted as a bis(dibasic tridentate) ligand. The metal complexes exhibited different geometrical arrangements such as octahedral, tetrahedral, square planar, square pyramidal and pentagonal bipyramidal arrangements.

  17. Protein Hydrogel Microbeads for Selective Uranium Mining from Seawater.

    PubMed

    Kou, Songzi; Yang, Zhongguang; Sun, Fei

    2017-01-25

    Practical methods for oceanic uranium extraction have yet to be developed in order to tap into the vast uranium reserve in the ocean as an alternative energy. Here we present a protein hydrogel system containing a network of recently engineered super uranyl binding proteins (SUPs) that is assembled through thiol-maleimide click chemistry under mild conditions. Monodisperse SUP hydrogel microbeads fabricated by a microfluidic device further enable uranyl (UO 2 2+ ) enrichment from natural seawater with great efficiency (enrichment index, K = 2.5 × 10 3 ) and selectivity. Our results demonstrate the feasibility of using protein hydrogels to extract uranium from the ocean.

  18. METHOD FOR DISSOLVING ZIRCONIUM-URANIUM COMPOSITIONS

    DOEpatents

    Gens, T.A.

    1961-07-18

    A method is descrioed for treating a zirconium-- uranium composition to form a stable solution from which uranium and other values may be extracted by contacting the composition with at least a 4 molar aqueous solution of ammonium fluoride at a temperature of about 100 deg C, adding a peroxide, in incremental amounts, to the heated solution throughout the period of dissolution until all of the uranium is converted to soluble uranyl salt, adding nitric acid to the resultant solution to form a solvent extraction feed solution to convert the uranyl salt to a solvent extractable state, and thereafter recovering the uranium and other desired values from the feed solution by solvent extraction.

  19. Observation of a brine layer on an ice surface with an environmental scanning electron microscope at higher pressures and temperatures.

    PubMed

    Krausko, Ján; Runštuk, Jiří; Neděla, Vilém; Klán, Petr; Heger, Dominik

    2014-05-20

    Observation of a uranyl-salt brine layer on an ice surface using backscattered electron detection and ice surface morphology using secondary-electron detection under equilibrium conditions was facilitated using an environmental scanning electron microscope (ESEM) at temperatures above 250 K and pressures of hundreds of Pa. The micrographs of a brine layer over ice grains prepared by either slow or shock freezing provided a complementary picture of the contaminated ice grain boundaries. Fluorescence spectroscopy of the uranyl ions in the brine layer confirmed that the species exists predominately in the solvated state under experimental conditions of ESEM.

  20. Simultaneous reduction of arsenic(V) and uranium(VI) by mackinawite: role of uranyl arsenate precipitate formation.

    PubMed

    Troyer, Lyndsay D; Tang, Yuanzhi; Borch, Thomas

    2014-12-16

    Uranium (U) and arsenic (As) often occur together naturally and, as a result, can be co-contaminants at sites of uranium mining and processing, yet few studies have examined the simultaneous redox dynamics of U and As. This study examines the influence of arsenate (As(V)) on the reduction of uranyl (U(VI)) by the redox-active mineral mackinawite (FeS). As(V) was added to systems containing 47 or 470 μM U(VI) at concentrations ranging from 0 to 640 μM. In the absence of As(V), U was completely removed from solution and fully reduced to nano-uraninite (nano-UO2). While the addition of As(V) did not reduce U uptake, at As(V) concentrations above 320 μM, the reduction of U(VI) was limited due to the formation of a trögerite-like uranyl arsenate precipitate. The presence of U also significantly inhibited As(V) reduction. While less U(VI) reduction to nano-UO2 may take place in systems with high As(V) concentrations, formation of trögerite-like mineral phases may be an acceptable reclamation end point due to their high stability under oxic conditions.

  1. Spectroscopy and DFT studies of uranyl carbonate, rutherfordine, UO2CO3: a model for uranium transport, carbon dioxide sequestration, and seawater species

    NASA Astrophysics Data System (ADS)

    Kalashnyk, N.; Perry, D. L.; Massuyeau, F.; Faulques, E.

    2017-12-01

    Several optical microprobe experiments of the anhydrous uranium carbonate—rutherfordine—are presented in this work and compared to periodic density functional theory results. Rutherfordine is the simplest uranyl carbonate and constitutes an ideal model system for the study of the rich uranium carbonate family relevant for environmental sustainability. Micro-Raman, micro-reflectance, and micro-photoluminescence (PL) spectroscopy studies have been carried out in situ on native, micrometer-sized crystals. The sensitivity of these techniques is sufficient to analyze minute amounts of samples in natural environments without using x-ray analysis. In addition, very intense micro-PL and micro-reflectance spectra that were not reported before add new results on the ground and excited states of this mineral. The optical gap value determined experimentally is found at about 2.6-2.8 eV. Optimized geometry, band structure, and phonon spectra have been calculated. The main vibrational lines are identified and predicted by this theoretical study. This work is pertinent for optical spectroscopy, for identification of uranyl species in various environmental settings, and for nuclear forensic analysis.

  2. Effects of a low-radiotoxicity uranium salt (uranyl acetate) on biochemical and hematological parameters of the catfish, Clarias gariepinus

    NASA Astrophysics Data System (ADS)

    Al-Ghanim, Khalid A.; Ahmad, Zubair; Al-Kahem Al-Balawi, Hmoud F.; Al-Misned, Fahad; Maboob, Shahid; Suliman, El-Amin M.

    2016-01-01

    Specimens of Clarias gariepinus were treated with lethal (70, 75, 80, 85, 90, and 95 mg/L) and sub-lethal concentrations (8, 12 and 16 mg/L) of uranyl acetate, a low-radiotoxicity uranium salt. The LC 50 value was registered as 81.45 mg/L. The protein and glycogen concentrations in liver and muscles were decreased in the fish exposed to sub-lethal concentrations. The red blood cell (RBC) and white blood cell (WBC) counts, haemoglobin (Hb) concentration and haematocrit (Hct) values were decreased. Different blood indices like mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) were negatively affected. Level of plasma glucose was elevated whereas protein was decreased. The level of calcium concentration (Ca) was declined in the blood of exposed fish whereas magnesium (Mg) remains unchanged. The activity level of glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) was elevated in exposed fish. These effects were more pronounced in the last period of exposure and in higher concentrations. Results of the present study indicate that uranyl acetate has adverse effects on Clarias gariepinus and causes changes in the biochemical and hematological parameters of the fish.

  3. Site-specific incorporation of uranyl carbonate species at the calcite surface

    NASA Astrophysics Data System (ADS)

    Reeder, Richard J.; Elzinga, Evert J.; Tait, C. Drew; Rector, K. D.; Donohoe, Robert J.; Morris, David E.

    2004-12-01

    Spatially resolved luminescence spectra from U(VI) co-precipitated at the (101¯4) growth surface of synthetic calcite single crystals confirm heterogeneous incorporation corresponding to the distribution of structurally non-equivalent steps composing the vicinal surfaces of spiral growth hillocks. Spectral structure from U(VI) luminescence at the "-" vicinal regions and featureless, weak luminescence at the "+" vicinal regions are consistent with previously reported observations of enrichment at the former sites during calcite growth. Luminescence spectra differ between the non-equivalent regions of the crystal, with the spectral features from the "-" vicinal region corresponding to those observed in bulk calcite samples. Subtle spectral shifts are observed from U(VI) co-precipitated with microcrystalline calcite synthesized by a different method, and all of the U(VI)-calcite sample spectra differ significantly from that of U(VI) co-precipitated with aragonite. The step-selective incorporation of U(VI) can be explained by a proposed model in which the allowed orientation for adsorption of the dominant calcium uranyl triscarbonate species is controlled by the atomic arrangement at step edges. Differences in the tilt angles of carbonate groups between non-equivalent growth steps favor adsorption of the calcium uranyl triscarbonate species at "-" steps, as observed in experiments.

  4. Nuclear forensics investigation of morphological signatures in the thermal decomposition of uranyl peroxide.

    PubMed

    Schwerdt, Ian J; Olsen, Adam; Lusk, Robert; Heffernan, Sean; Klosterman, Michael; Collins, Bryce; Martinson, Sean; Kirkham, Trenton; McDonald, Luther W

    2018-01-01

    The analytical techniques typically utilized in a nuclear forensic investigation often provide limited information regarding the process history and production conditions of interdicted nuclear material. In this study, scanning electron microscopy (SEM) analysis of the surface morphology of amorphous-UO 3 samples calcined at 250, 300, 350, 400, and 450°C from uranyl peroxide was performed to determine if the morphology was indicative of the synthesis route and thermal history for the samples. Thermogravimetic analysis-mass spectrometry (TGA-MS) and differential scanning calorimetry (DSC) were used to correlate transitions in the calcined material to morphological transformations. The high-resolution SEM images were processed using the Morphological Analysis for Material Attribution (MAMA) software. Morphological attributes, particle area and circularity, indicated significant trends as a result of calcination temperature. The quantitative morphological analysis was able to track the process of particle fragmentation and subsequent sintering as calcination temperature was increased. At the 90% confidence interval, with 1000 segmented particles, the use of Kolmogorov-Smirnov statistical comparisons allowed discernment between all calcination temperatures for the uranyl peroxide route. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Oxo-exchange of gas-phase uranyl, neptunyl, and plutonyl with water and methanol.

    PubMed

    Lucena, Ana F; Odoh, Samuel O; Zhao, Jing; Marçalo, Joaquim; Schreckenbach, Georg; Gibson, John K

    2014-02-17

    A challenge in actinide chemistry is activation of the strong bonds in the actinyl ions, AnO2(+) and AnO2(2+), where An = U, Np, or Pu. Actinyl activation in oxo-exchange with water in solution is well established, but the exchange mechanisms are unknown. Gas-phase actinyl oxo-exchange is a means to probe these processes in detail for simple systems, which are amenable to computational modeling. Gas-phase exchange reactions of UO2(+), NpO2(+), PuO2(+), and UO2(2+) with water and methanol were studied by experiment and density functional theory (DFT); reported for the first time are experimental results for UO2(2+) and for methanol exchange, as well as exchange rate constants. Key findings are faster exchange of UO2(2+) versus UO2(+) and faster exchange with methanol versus water; faster exchange of UO2(+) versus PuO2(+) was quantified. Computed potential energy profiles (PEPs) are in accord with the observed kinetics, validating the utility of DFT to model these exchange processes. The seemingly enigmatic result of faster exchange for uranyl, which has the strongest oxo-bonds, may reflect reduced covalency in uranyl as compared with plutonyl.

  6. ArcNLET: A GIS-based software to simulate groundwater nitrate load from septic systems to surface water bodies

    NASA Astrophysics Data System (ADS)

    Rios, J. Fernando; Ye, Ming; Wang, Liying; Lee, Paul Z.; Davis, Hal; Hicks, Rick

    2013-03-01

    Onsite wastewater treatment systems (OWTS), or septic systems, can be a significant source of nitrates in groundwater and surface water. The adverse effects that nitrates have on human and environmental health have given rise to the need to estimate the actual or potential level of nitrate contamination. With the goal of reducing data collection and preparation costs, and decreasing the time required to produce an estimate compared to complex nitrate modeling tools, we developed the ArcGIS-based Nitrate Load Estimation Toolkit (ArcNLET) software. Leveraging the power of geographic information systems (GIS), ArcNLET is an easy-to-use software capable of simulating nitrate transport in groundwater and estimating long-term nitrate loads from groundwater to surface water bodies. Data requirements are reduced by using simplified models of groundwater flow and nitrate transport which consider nitrate attenuation mechanisms (subsurface dispersion and denitrification) as well as spatial variability in the hydraulic parameters and septic tank distribution. ArcNLET provides a spatial distribution of nitrate plumes from multiple septic systems and a load estimate to water bodies. ArcNLET's conceptual model is divided into three sub-models: a groundwater flow model, a nitrate transport and fate model, and a load estimation model which are implemented as an extension to ArcGIS. The groundwater flow model uses a map of topography in order to generate a steady-state approximation of the water table. In a validation study, this approximation was found to correlate well with a water table produced by a calibrated numerical model although it was found that the degree to which the water table resembles the topography can vary greatly across the modeling domain. The transport model uses a semi-analytical solution to estimate the distribution of nitrate within groundwater, which is then used to estimate a nitrate load using a mass balance argument. The estimates given by ArcNLET are suitable for a screening-level analysis.

  7. A novel cetyltrimethyl ammonium silver bromide complex and silver bromide nanoparticles obtained by the surfactant counterion.

    PubMed

    Liu, Xian-Hao; Luo, Xiao-Hong; Lu, Shu-Xia; Zhang, Jing-Chang; Cao, Wei-Liang

    2007-03-01

    A novel cetyltrimethyl ammonium silver bromide (CTASB) complex has been prepared simply through the reaction of silver nitrate with cetyltrimethyl ammonium bromide (CTAB) in aqueous solution at room temperature by controlling the concentration of CTAB and the molar ratio of CTAB to silver nitrate in the reaction solution, in which halogen in CTAB is used as surfactant counterion. The structure and thermal behavior of cetyltrimethyl ammonium silver bromide have been investigated by using X-ray diffraction (XRD), infrared spectroscopy (IR), X-ray photoelectron spectroscopy (XPS), UV/vis spectroscopy, thermal analysis (TG-DTA), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). The results show that the complex possesses a metastable layered structure. Upon heating the CTASB aqueous dispersion to above 80 degrees C, the structure change of the complex took place and CTAB-capped nanosized silver bromide particles further formed.

  8. Complex Controls on Groundwater Quality in Growing Mid-sized Cities: A Case Study Focused on Nitrate and Emerging Contaminants

    NASA Astrophysics Data System (ADS)

    Ohr, C. A.; Godsey, S.; Welhan, J. A.; Larson, D. M.; Lohse, K. A.; Finney, B.; Derryberry, D.

    2015-12-01

    Many regions rely on quality groundwater to support urban growth. Groundwater quality often responds in a complex manner to stressors such as land use change, climate change, or policy decisions. Urban growth patterns in mid-sized cities, especially ones that are growing urban centers in water-limited regions in the western US, control and are controlled by water availability and its quality. We present a case study from southeastern Idaho where urban growth over the past 20 years has included significant ex-urban expansion of houses that rely on septic systems rather than city sewer lines for their wastewater treatment. Septic systems are designed to mitigate some contaminants, but not others. In particular, nitrates and emerging contaminants, such as pharmaceuticals, are not removed by most septic systems. Thus, even well-maintained septic systems at sufficiently high densities can impact down gradient water quality. Here we present patterns of nitrate concentrations over the period from 1985-2015 from the Lower Portneuf River Valley in southeastern Idaho. Concentrations vary from 0.03 to 27.09 nitrate-nitrogen mg/L, with average values increasing significantly over the 30 year time period from 3.15 +/- 0.065 to 3.57 +/- 0.43 mg/L. We examine temporal changes in locations of nitrate hotspots, and present pilot data on emerging contaminants of concern. Initial results suggest that high nitrate levels are generally associated with higher septic densities, but that this pattern is influenced by legacy agricultural uses and strongly controlled by underlying aquifer properties. Future work will include more detailed hydrological modeling to predict changes in hotspot locations under potential climate change scenarios.

  9. Hexaammine Complexes of Cr(III) and Co(III): A Spectral Study.

    ERIC Educational Resources Information Center

    Brown, D. R.; Pavlis, R. R.

    1985-01-01

    Procedures are provided for experiments containing complex ions with octahedral symmetry, hexaamminecobalt(III) chloride and hexaamminechromium(III) nitrate, so students can interpret fully the ultra violet/visible spectra of the complex cations in terms of the ligand field parameters, 10 "Dq," the Racah interelectron repulsion parameters, "B,"…

  10. Pharmacological Role of Anions (Sulphate, Nitrate, Oxalate and Acetate) on the Antibacterial Activity of Cobalt(II), Copper(II) and Nickel(II) Complexes With Nicotinoylhydrazine-Derived ONO, NNO and SNO Ligands

    PubMed Central

    Rauf, Abdur

    1996-01-01

    Mixed ligands biologically active complexes of cobalt(II), copper(II) and nickel(II) with nicotinoylhydrazine-derived ONO, NNO and SNO donor schiff-base ligands having the same metal ion but different anions such as sulphate, nitrate, oxalate and acetate have been synthesised and characterised on the basis of their physical, analytical and spectral data. In order to evaluate the role of anions on their bioability, these ligands and their synthesised metal complexes with various anions have been screened against bacterial species such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus and the title studies have proved a definative role of anions in increasing the biological activity PMID:18472896

  11. Thermodynamics of complexation in an aqueous solution of Tb(III) nitrate at 298 K

    NASA Astrophysics Data System (ADS)

    Lobacheva, O. L.; Berlinskii, I. V.; Dzhevaga, N. V.

    2017-01-01

    The pH of the formation of hydroxo complexes and hydrates in an aqueous solution of terbium Tb(III) is determined using combined means of potentiometric and conductometric titration. The stability constants of the hydroxo complexes, the products of hydroxide solubility, and the Gibbs energy of terbium hydroxo complex formation are calculated.

  12. Dietary nitrate attenuates renal ischemia-reperfusion injuries by modulation of immune responses and reduction of oxidative stress.

    PubMed

    Yang, Ting; Zhang, Xing-Mei; Tarnawski, Laura; Peleli, Maria; Zhuge, Zhengbing; Terrando, Niccolo; Harris, Robert A; Olofsson, Peder S; Larsson, Erik; Persson, A Erik G; Lundberg, Jon O; Weitzberg, Eddie; Carlstrom, Mattias

    2017-10-01

    Ischemia-reperfusion (IR) injury involves complex pathological processes in which reduction of nitric oxide (NO) bioavailability is suggested as a key factor. Inorganic nitrate can form NO in vivo via NO synthase-independent pathways and may thus provide beneficial effects during IR. Herein we evaluated the effects of dietary nitrate supplementation in a renal IR model. Male mice (C57BL/6J) were fed nitrate-supplemented chow (1.0mmol/kg/day) or standard chow for two weeks prior to 30min ischemia and during the reperfusion period. Unilateral renal IR caused profound tubular and glomerular damage in the ischemic kidney. Renal function, assessed by plasma creatinine levels, glomerular filtration rate and renal plasma flow, was also impaired after IR. All these pathologies were significantly improved by nitrate. Mechanistically, nitrate treatment reduced renal superoxide generation, pro-inflammatory cytokines (IL-1β, IL-6 and IL-12 p70) and macrophage infiltration in the kidney. Moreover, nitrate reduced mRNA expression of pro-inflammatory cytokines and chemo attractors, while increasing anti-inflammatory cytokines in the injured kidney. In another cohort of mice, two weeks of nitrate supplementation lowered superoxide generation and IL-6 expression in bone marrow-derived macrophages. Our study demonstrates protective effect of dietary nitrate in renal IR injury that may be mediated via modulation of oxidative stress and inflammatory responses. These novel findings suggest that nitrate supplementation deserve further exploration as a potential treatment in patients at high risk of renal IR injury. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Nitrate contamination of groundwater in two areas of the Cameroon Volcanic Line (Banana Plain and Mount Cameroon area)

    NASA Astrophysics Data System (ADS)

    Ako, Andrew Ako; Eyong, Gloria Eneke Takem; Shimada, Jun; Koike, Katsuaki; Hosono, Takahiro; Ichiyanagi, Kimpei; Richard, Akoachere; Tandia, Beatrice Ketchemen; Nkeng, George Elambo; Roger, Ntankouo Njila

    2014-06-01

    Water containing high concentrations of nitrate is unfit for human consumption and, if discharging to freshwater or marine habitats, can contribute to algal blooms and eutrophication. The level of nitrate contamination in groundwater of two densely populated, agro-industrial areas of the Cameroon Volcanic Line (CVL) (Banana Plain and Mount Cameroon area) was evaluated. A total of 100 samples from boreholes, open wells and springs (67 from the Banana Plain; 33 from springs only, in the Mount Cameroon area) were collected in April 2009 and January 2010 and analyzed for chemical constituents, including nitrates. The average groundwater nitrate concentrations for the studied areas are: 17.28 mg/l for the Banana Plain and 2.90 mg/l for the Mount Cameroon area. Overall, groundwaters are relatively free from excessive nitrate contamination, with nitrate concentrations in only 6 % of groundwater resources in the Banana Plain exceeding the maximum admissible concentration for drinking water (50 mg/l). Sources of NO3 - in groundwater of this region may be mainly anthropogenic (N-fertilizers, sewerage, animal waste, organic manure, pit latrines, etc.). Multivariate statistical analyses of the hydrochemical data revealed that three factors were responsible for the groundwater chemistry (especially, degree of nitrate contamination): (1) a geogenic factor; (2) nitrate contamination factor; (3) ionic enrichment factor. The impact of anthropogenic activities, especially groundwater nitrate contamination, is more accentuated in the Banana Plain than in the Mount Cameroon area. This study also demonstrates the usefulness of multivariate statistical analysis in groundwater study as a supplementary tool for interpretation of complex hydrochemical data sets.

  14. Impacts of management and climate change on nitrate leaching in a forested karst area.

    PubMed

    Dirnböck, Thomas; Kobler, Johannes; Kraus, David; Grote, Rüdiger; Kiese, Ralf

    2016-01-01

    Forest management and climate change, directly or indirectly, affect drinking water resources, both in terms of quality and quantity. In this study in the Northern Limestone Alps in Austria we have chosen model calculations (LandscapeDNDC) in order to resolve the complex long-term interactions of management and climate change and their effect on nitrogen dynamics, and the consequences for nitrate leaching from forest soils into the karst groundwater. Our study highlights the dominant role of forest management in controlling nitrate leaching. Both clear-cut and shelterwood-cut disrupt the nitrogen cycle to an extent that causes peak concentrations and high fluxes into the seepage water. While this effect is well known, our modelling approach has revealed additional positive as well as negative impacts of the expected climatic changes on nitrate leaching. First, we show that peak nitrate concentrations during post-cutting periods were elevated under all climate scenarios. The maximal effects of climatic changes on nitrate concentration peaks were 20-24 mg L(-1) in 2090 with shelterwood or clear-cut management. Second, climate change significantly decreased the cumulative nitrate losses over full forest rotation periods (by 10-20%). The stronger the expected temperature increase and precipitation decrease (in summer), the lesser were the observed nitrate losses. However, mean annual seepage water nitrate concentrations and cumulative nitrate leaching were higher under continuous forest cover management than with shelterwood-cut and clear-cut systems. Watershed management can thus be adapted to climate change by either reducing peak concentrations or long-term loads of nitrate in the karst groundwater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Relationship Between Urinary Nitrate Excretion and Blood Pressure in the InChianti Cohort.

    PubMed

    Smallwood, Miranda J; Ble, Alessandro; Melzer, David; Winyard, Paul G; Benjamin, Nigel; Shore, Angela C; Gilchrist, Mark

    2017-07-01

    Inorganic nitrate from the oxidation of endogenously synthesized nitric oxide (NO) or consumed in the diet can be reduced to NO via a complex enterosalivary circulation pathway. The relationship between total nitrate exposure by measured urinary nitrate excretion and blood pressure in a large population sample has not been assessed previously. For this cross-sectional study, 24-hour urinary nitrate excretion was measured by spectrophotometry in the 919 participants from the InChianti cohort at baseline and blood pressure measured with a mercury sphygmomanometer. After adjusting for age and sex only, diastolic blood pressure was 1.9 mm Hg lower in subjects with ≥2 mmol urinary nitrate excretion compared with those excreting <1 mmol nitrate in 24 hours: systolic blood pressure was 3.4 mm Hg (95% confidence interval (CI): -3.5 to -0.4) lower in subjects for the same comparison. Effect sizes in fully adjusted models (for age, sex, potassium intake, use of antihypertensive medications, diabetes, HS-CRP, or current smoking status) were marginally larger: systolic blood pressure in the ≥2 mmol urinary nitrate excretion group was 3.9 (CI: -7.1 to -0.7) mm Hg lower than in the comparison <1 mmol excretion group. Modest differences in total nitrate exposure are associated with lower blood pressure. These differences are at least equivalent to those seen from substantial (100 mmol) reductions in sodium intake. © American Journal of Hypertension, Ltd 2017. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  16. Poly[mu2-(N-hydroxypyridine-2-carboxamidine)-mu2-nitrato-silver(I)].

    PubMed

    Cui, Ai-Li; Han, Peng; Yang, Hui-Juan; Wang, Ru-Ji; Kou, Hui-Zhong

    2007-12-01

    In the title complex, [Ag(NO3)(C6H7N3O)]n or [Ag(NO3)(pyaoxH2)] (pyaoxH2 is N-hydroxypyridine-2-carboxamidine), the Ag+ ion is bridged by the pyaoxH2 ligands and nitrate anions, giving rise to a two-dimensional molecular structure. Each pyaoxH2 ligand coordinates to two Ag+ ions using its pyridyl and carboxamidine N atoms, and the OH and the NH2 groups are uncoordinated. Each nitrate anion uses two O atoms to coordinate to two Ag+ ions. The Ag...Ag separation via the pyaoxH2 bridge is 2.869 (1) A, markedly shorter than that of 6.452 (1) A via the nitrate bridge. The two-dimensional structure is fishscale-like, and can be described as pyaoxH2-bridged Ag2 nodes that are further linked by nitrate anions. Hydrogen bonding between the amidine groups and the nitrate O atoms connects adjacent layers into a three-dimensional network.

  17. Liquid-crystalline dendrimer Cu(II) complexes and Cu(0) nanoclusters based on the Cu(II) complexes: An electron paramagnetic resonance investigation

    NASA Astrophysics Data System (ADS)

    Domracheva, N. E.; Mirea, A.; Schwoerer, M.; Torre-Lorente, L.; Lattermann, G.

    2007-07-01

    New nanostructured materials, namely, the liquid-crystalline copper(II) complexes that contain poly(propylene imine) dendrimer ligands of the first (ligand 1) and second (ligand 2) generations and which have a columnar mesophase and different copper contents (x = Cu/L), are investigated by EPR spectroscopy. The influence of water molecules and nitrate counterions on the magnetic properties of complex 2 (x = 7.3) is studied. It is demonstrated that water molecules can extract some of the copper ions from dendrimer complexes and form hexaaqua copper complexes with free ions. The dimer spectra of fully hydrated complex 2 (x = 7.3) are observed at temperatures T < 10 K. For this complex, the structure is identified and the distance between the copper ions is determined. It is shown that the nitrate counterion plays the role of a bridge between the hexaaqua copper(II) complex and the dendrimer copper(II) complex. The temperature-induced valence tautomerism attended by electron transport is revealed for the first time in blue dendrimer complexes 1 (x = 1.9) with a dimer structure. The activation energy for electron transport is estimated to be 0.35 meV. The coordination of the copper ion site (NO4) and the structural arrangement of green complexes 1 (x = 1.9) in the columnar mesophase are determined. Complexes of this type form linear chains in which nitrate counterions serve as bridges between copper centers. It is revealed that green complexes 1 (x = 1.9) dissolved in isotropic inert solvents can be oriented in the magnetic field (B 0 = 8000 G). The degree of orientation of these complexes is rather high (S z = 0.76) and close to that of systems with a complete ordering (S z = 1) in the magnetic field. Copper(0) nanoclusters prepared by reduction of complex 2 (x = 7.3) in two reducing agents (NaBH4, N2H4 · H2O) are examined. A model is proposed for a possible location of Cu(0) nanoclusters in a dendrimer matrix.

  18. Trends in concentrations of nitrate and total dissolved solids in public supply wells of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins, San Bernardino County, California: Influence of legacy land use

    USGS Publications Warehouse

    Kent, Robert; Landon, Matthew K.

    2013-01-01

    Concentrations and temporal changes in concentrations of nitrate and total dissolved solids (TDS) in groundwater of the Bunker Hill, Lytle, Rialto, and Colton groundwater subbasins of the Upper Santa Ana Valley Groundwater Basin were evaluated to identify trends and factors that may be affecting trends. One hundred, thirty-one public-supply wells were selected for analysis based on the availability of data spanning at least 11 years between the late 1980s and the 2000s. Forty-one of the 131 wells (31%) had a significant (p < 0.10) increase in nitrate and 14 wells (11%) had a significant decrease in nitrate. For TDS, 46 wells (35%) had a significant increase and 8 wells (6%) had a significant decrease. Slopes for the observed significant trends ranged from − 0.44 to 0.91 mg/L/yr for nitrate (as N) and − 8 to 13 mg/L/yr for TDS. Increasing nitrate trends were associated with greater well depth, higher percentage of agricultural land use, and being closer to the distal end of the flow system. Decreasing nitrate trends were associated with the occurrence of volatile organic compounds (VOCs); VOC occurrence decreases with increasing depth. The relations of nitrate trends to depth, lateral position, and VOCs imply that increasing nitrate concentrations are associated with nitrate loading from historical agricultural land use and that more recent urban land use is generally associated with lower nitrate concentrations and greater VOC occurrence. Increasing TDS trends were associated with relatively greater current nitrate concentrations and relatively greater amounts of urban land. Decreasing TDS trends were associated with relatively greater amounts of natural land use. Trends in TDS concentrations were not related to depth, lateral position, or VOC occurrence, reflecting more complex factors affecting TDS than nitrate in the study area.

  19. CALIBRATION OF SUBSURFACE BATCH AND REACTIVE-TRANSPORT MODELS INVOLVING COMPLEX BIOGEOCHEMICAL PROCESSES

    EPA Science Inventory

    In this study, the calibration of subsurface batch and reactive-transport models involving complex biogeochemical processes was systematically evaluated. Two hypothetical nitrate biodegradation scenarios were developed and simulated in numerical experiments to evaluate the perfor...

  20. Tracing the source and fate of nitrate in contemporary mixed land-use surface water systems

    NASA Astrophysics Data System (ADS)

    Stewart, S. D.; Young, M. B.; Horton, T. W.; Harding, J. S.

    2011-12-01

    Nitrogenous fertilizers increase agricultural productivity, ultimately feeding the planet. Yet, it is possible to have too much of a good thing, and nitrogen is no exception. When in excess nitrogen has been shown to accelerate eutrophication of water bodies, and act as a chronic toxin (e.g. methemoglobinemia). As land-use intensity continues to rise in response to increases in agricultural productivity, the risk of adverse effects of nitrogen loading on surface water bodies will also increase. Stable isotope proxies are potential tracers of nitrate, the most common nitrogenous phase in surface waters. Applying stable isotope proxies therefore presents an opportunity to identify and manage sources of excess nitrogen before aquatic systems are severely degraded. However, the heterogeneous nature of potential pollution sources themselves, and their distribution with a modified catchment network, make understanding this issue highly complex. The Banks Peninsula, an eroded late tertiary volcanic complex located on the east coast of the South Island New Zealand, presents a unique opportunity to study and understand the sources and fates of nitrate within streams in a contemporary mixed land-use setting. Within this small geographic area there a variety of agricultural activities are practiced, including: heavily fertilized golf courses; stands of regenerating native forest; and areas of fallow gorse (Ulex europaeus; a invasive N-fixing shrub). Each of these landuse classes has its own unique nitrogen budget. Multivariate analysis was used on stream nitrate concentrations to reveal that stream reaches dominated by gorse had significantly higher nitrate concentrations than other land-use classes. Nitrate δ15N & δ18O data from these sites show strong covariance, plotting along a distinct fractionation line (r2 = 0.96). This finding facilitates interpretation of what processes are controlling nitrate concentration within these systems. Further, complementary aquatic foodweb δ15N δ13C analyses of multiple species in various trophic positions allow for a unique, holistic insight in to the fate of gorse-derived nitrate at an ecosystem level. We present here physicochemical and stable isotopic data from a variety of aqueous and aquatic foodweb components. Data is generated using emerging and established analytical techniques, in order to explore links between foodweb ecology, ecosystem function, and fate and transport of excess nitrate along longitudinal gradients of mixed land-use catchments.

Top