BUDEM: an urban growth simulation model using CA for Beijing metropolitan area
NASA Astrophysics Data System (ADS)
Long, Ying; Shen, Zhenjiang; Du, Liqun; Mao, Qizhi; Gao, Zhanping
2008-10-01
It is in great need of identifying the future urban form of Beijing, which faces challenges of rapid growth in urban development projects implemented in Beijing. We develop Beijing Urban Developing Model (BUDEM in short) to support urban planning and corresponding policies evaluation. BUDEM is the spatio-temporal dynamic model for simulating urban growth in Beijing metropolitan area, using cellular automata (CA) and Multi-agent system (MAS) approaches. In this phase, the computer simulation using CA in Beijing metropolitan area is conducted, which attempts to provide a premise of urban activities including different kinds of urban development projects for industrial plants, shopping facilities, houses. In the paper, concept model of BUDEM is introduced, which is established basing on prevalent urban growth theories. The method integrating logistic regression and MonoLoop is used to retrieve weights in the transition rule by MCE. After model sensibility analysis, we apply BUDEM into three aspects of urban planning practices: (1) Identifying urban growth mechanism in various historical phases since 1986; (2) Identifying urban growth policies needed to implement desired urban form (BEIJING2020), namely planned urban form; (3) Simulating urban growth scenarios of 2049 (BEIJING2049) basing on the urban form and parameter set of BEIJING2020.
Modelling the urban water cycle as an integrated part of the city: a review.
Urich, Christian; Rauch, Wolfgang
2014-01-01
In contrast to common perceptions, the urban water infrastructure system is a complex and dynamic system that is constantly evolving and adapting to changes in the urban environment, to sustain existing services and provide additional ones. Instead of simplifying urban water infrastructure to a static system that is decoupled from its urban context, new management strategies use the complexity of the system to their advantage by integrating centralised with decentralised solutions and explicitly embedding water systems into their urban form. However, to understand and test possible adaptation strategies, urban water modelling tools are required to support exploration of their effectiveness as the human-technology-environment system coevolves under different future scenarios. The urban water modelling community has taken first steps to developing these new modelling tools. This paper critically reviews the historical development of urban water modelling tools and provides a summary of the current state of integrated modelling approaches. It reflects on the challenges that arise through the current practice of coupling urban water management tools with urban development models and discusses a potential pathway towards a new generation of modelling tools.
NASA Astrophysics Data System (ADS)
Randhir, Timothy O.; Raposa, Sarah
2014-11-01
Urbanization has a significant impact on water resources and requires a watershed-based approach to evaluate impacts of land use and urban development on watershed processes. This study uses a simulation with urban policy scenarios to model and strategize transferable recommendations for municipalities and cities to guide urban decisions using watershed ecohydrologic principles. The watershed simulation model is used to evaluation intensive (policy in existing built regions) and extensive (policy outside existing build regions) urban development scenarios with and without implementation of Best Management practices (BMPs). Water quantity and quality changes are simulated to assess effectiveness of five urban development scenarios. It is observed that optimal combination of intensive and extensive strategies can be used to sustain urban ecosystems. BMPs are found critical to reduce storm water and water quality impacts on urban development. Conservation zoning and incentives for voluntary adoption of BMPs can be used in sustaining urbanizing watersheds.
2016-11-01
space houses, etc.), and the unique weather environments that occur in the Urban Heat Island. A detailed urban terrain model was developed in a...affected by urban infrastructure (large buildings, roadways, densely space houses, etc.). A detailed urban terrain model was developed ERDC TR-15-5...different points in the model provided insight to complex propagation paths characteristic of urban environments. ERDC TR-15-5; Report 2 20 4
NASA Astrophysics Data System (ADS)
Sundara, D. M.; Hartono, D. M.; Suganda, E.; Haeruman, JS H.
2018-05-01
East Jakarta icon as a buffer and the lungs of the city is still a big dream of Jakarta. It is a classic problem that there is a struggle for land between current economic interests and sustainable environmental interests for the future. This paper discusses the development of urban forest area of Halim Perdana Kusuma, East Jakarta. The forest area according to regulations of existing city local governments is not enough to support sustainable urban development indicators. Therefore, it requires an extensive mapping of urban forest potential development accurately by utilizing satellite imaging technology. Landsat-TM satellite imagery data can provide a full picture of the potential land width for urban forest area development. The results of this satellite image will then be made into a model of urban forest as one of the indicators of sustainable urban development. This research aims to support sustainable urban development through environmental balance in the form of a green neighborhood revitalization and development of urban forests and to create socio-economic balance. This paper uses a dynamic system model to simulate the conditions of the region against the intervention performed in the potential area for development of urban forests which are derived from urban spatial analysis based on satellite image data, using GIS program as a tool. The result is a model of urban forest area which is integrated with a social and economic function to encourage the development of sustainable cities.
NASA Astrophysics Data System (ADS)
Tang, U. W.; Wang, Z. S.
2008-10-01
Each city has its unique urban form. The importance of urban form on sustainable development has been recognized in recent years. Traditionally, air quality modelling in a city is in a mesoscale with grid resolution of kilometers, regardless of its urban form. This paper introduces a GIS-based air quality and noise model system developed to study the built environment of highly compact urban forms. Compared with traditional mesoscale air quality model system, the present model system has a higher spatial resolution down to individual buildings along both sides of the street. Applying the developed model system in the Macao Peninsula with highly compact urban forms, the average spatial resolution of input and output data is as high as 174 receptor points per km2. Based on this input/output dataset with a high spatial resolution, this study shows that even the highly compact urban forms can be fragmented into a very small geographic scale of less than 3 km2. This is due to the significant temporal variation of urban development. The variation of urban form in each fragment in turn affects air dispersion, traffic condition, and thus air quality and noise in a measurable scale.
To bridge the gaps between traditional mesoscale modelling and microscale modelling, the National Center for Atmospheric Research, in collaboration with other agencies and research groups, has developed an integrated urban modelling system coupled to the weather research and fore...
Modeling Global Urbanization Supported by Nighttime Light Remote Sensing
NASA Astrophysics Data System (ADS)
Zhou, Y.
2015-12-01
Urbanization, a major driver of global change, profoundly impacts our physical and social world, for example, altering carbon cycling and climate. Understanding these consequences for better scientific insights and effective decision-making unarguably requires accurate information on urban extent and its spatial distributions. In this study, we developed a cluster-based method to estimate the optimal thresholds and map urban extents from the nighttime light remote sensing data, extended this method to the global domain by developing a computational method (parameterization) to estimate the key parameters in the cluster-based method, and built a consistent 20-year global urban map series to evaluate the time-reactive nature of global urbanization (e.g. 2000 in Fig. 1). Supported by urban maps derived from nightlights remote sensing data and socio-economic drivers, we developed an integrated modeling framework to project future urban expansion by integrating a top-down macro-scale statistical model with a bottom-up urban growth model. With the models calibrated and validated using historical data, we explored urban growth at the grid level (1-km) over the next two decades under a number of socio-economic scenarios. The derived spatiotemporal information of historical and potential future urbanization will be of great value with practical implications for developing adaptation and risk management measures for urban infrastructure, transportation, energy, and water systems when considered together with other factors such as climate variability and change, and high impact weather events.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Shuli; Yeh Chiatsung; Budd, William W.
2009-02-15
Sustainability indicators have been widely developed to monitor and assess sustainable development. They are expected to guide political decision-making based on their capability to represent states and trends of development. However, using indicators to assess the sustainability of urban strategies and policies has limitations - as they neither reflect the systemic interactions among them, nor provide normative indications in what direction they should be developed. This paper uses a semi-quantitative systematic model tool (Sensitivity Model Tools, SM) to analyze the role of urban development in Taiwan's sustainability. The results indicate that the natural environment in urban area is one ofmore » the most critical components and the urban economic production plays a highly active role in affecting Taiwan's sustainable development. The semi-quantitative simulation model integrates sustainability indicators and urban development policy to provide decision-makers with information about the impacts of their decisions on urban development. The system approach incorporated by this paper can be seen as a necessary, but not sufficient, condition for a sustainability assessment. The participatory process of expert participants for providing judgments on the relations between indicator variables is also discussed.« less
Integrated city as a model for a new wave urban tourism
NASA Astrophysics Data System (ADS)
Ariani, V.
2018-03-01
Cities are a major player for an urban tourism destination. Massive tourism movement for urban tourism gains competitiveness to the city with similar characteristic. The new framework model for new wave urban tourism is crucial to give more experience to the tourist and valuing for the city itself. The integrated city is the answer for creating a new model for an urban tourism destination. The purpose of this preliminary research is to define integrated city framework for urban tourism development. It provides a rationale for tourism planner pursuing an innovative approach, competitive advantages, and general urban tourism destination model. The methodology applies to this research includes desk survey, literature review and focus group discussion. A conceptual framework is proposed, discussed and exemplified. The framework model adopts a place-based approach to tourism destination and suggests an integrated city model for urban tourism development. This model is a tool for strategy making in re-invention integrated city as an urban tourism destination.
Excellent approach to modeling urban expansion by fuzzy cellular automata: agent base model
NASA Astrophysics Data System (ADS)
Khajavigodellou, Yousef; Alesheikh, Ali A.; Mohammed, Abdulrazak A. S.; Chapi, Kamran
2014-09-01
Recently, the interaction between humans and their environment is the one of important challenges in the world. Landuse/ cover change (LUCC) is a complex process that includes actors and factors at different social and spatial levels. The complexity and dynamics of urban systems make the applicable practice of urban modeling very difficult. With the increased computational power and the greater availability of spatial data, micro-simulation such as the agent based and cellular automata simulation methods, has been developed by geographers, planners, and scholars, and it has shown great potential for representing and simulating the complexity of the dynamic processes involved in urban growth and land use change. This paper presents Fuzzy Cellular Automata in Geospatial Information System and remote Sensing to simulated and predicted urban expansion pattern. These FCA-based dynamic spatial urban models provide an improved ability to forecast and assess future urban growth and to create planning scenarios, allowing us to explore the potential impacts of simulations that correspond to urban planning and management policies. A fuzzy inference guided cellular automata approach. Semantic or linguistic knowledge on Land use change is expressed as fuzzy rules, based on which fuzzy inference is applied to determine the urban development potential for each pixel. The model integrates an ABM (agent-based model) and FCA (Fuzzy Cellular Automata) to investigate a complex decision-making process and future urban dynamic processes. Based on this model rapid development and green land protection under the influences of the behaviors and decision modes of regional authority agents, real estate developer agents, resident agents and non- resident agents and their interactions have been applied to predict the future development patterns of the Erbil metropolitan region.
24 CFR 3285.804 - Bottom board repair.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Bottom board repair. 3285.804 Section 3285.804 Housing and Urban Development Regulations Relating to Housing and Urban Development... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Exterior and Interior Close-Up § 3285...
Program of research in severe storms
NASA Technical Reports Server (NTRS)
1979-01-01
Two modeling areas, the development of a mesoscale chemistry-meteorology interaction model, and the development of a combined urban chemical kinetics-transport model are examined. The problems associated with developing a three dimensional combined meteorological-chemical kinetics computer program package are defined. A similar three dimensional hydrostatic real time model which solves the fundamental Navier-Stokes equations for nonviscous flow is described. An urban air quality simulation model, developed to predict the temporal and spatial distribution of reactive and nonreactive gases in and around an urban area and to support a remote sensor evaluation program is reported.
Modeling Urban Energy Savings Scenarios Using Earth System Microclimate and Urban Morphology
NASA Astrophysics Data System (ADS)
Allen, M. R.; Rose, A.; New, J. R.; Yuan, J.; Omitaomu, O.; Sylvester, L.; Branstetter, M. L.; Carvalhaes, T. M.; Seals, M.; Berres, A.
2017-12-01
We analyze and quantify the relationships among climatic conditions, urban morphology, population, land cover, and energy use so that these relationships can be used to inform energy-efficient urban development and planning. We integrate different approaches across three research areas: earth system modeling; impacts, adaptation and vulnerability; and urban planning in order to address three major gaps in the existing capability in these areas: i) neighborhood resolution modeling and simulation of urban micrometeorological processes and their effect on and from regional climate; ii) projections for future energy use under urbanization and climate change scenarios identifying best strategies for urban morphological development and energy savings; iii) analysis and visualization tools to help planners optimally use these projections.
24 CFR 3285.704 - Telephone and cable TV.
Code of Federal Regulations, 2010 CFR
2010-04-01
... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Telephone and cable TV. 3285.704 Section 3285.704 Housing and Urban Development Regulations Relating to Housing and Urban Development...
Urban forests for sustainable urban development
NASA Astrophysics Data System (ADS)
Sundara, Denny M.; Hartono, Djoko M.; Suganda, Emirhadi; Haeruman, S. Herman J.
2017-11-01
This paper explores the development of the urban forest in East Jakarta. By 2030 Jakarta area has a target of 30% green area covering 19,845 hectares, including urban forest covering an area of 4,631 hectares. In 2015, the city forest is only 646 hectares, while the city requires 3,985 hectares of new land Urban forest growth from year to year showed a marked decrease with increasing land area awoke to commercial functions, environmental conditions encourage the development of the city to become unsustainable. This research aims to support sustainable urban development and ecological balance through the revitalization of green areas and urban development. Analytical methods for urban forest area is calculated based on the amount of CO2 that comes from people, vehicles, and industrial. Urban spatial analysis based on satellite image data, using a GIS program is an analysis tool to determine the distribution and growth patterns of green areas. This paper uses a dynamic system model to simulate the conditions of the region against intervention to be performed on potential areas for development of urban forests. The result is a model urban forest area is integrated with a social and economic function to encourage the development of sustainable cities.
NASA Astrophysics Data System (ADS)
Harun, R.
2013-05-01
This research provides an opportunity of collaboration between urban planners and modellers by providing a clear theoretical foundations on the two most widely used urban land use models, and assessing the effectiveness of applying the models in urban planning context. Understanding urban land cover change is an essential element for sustainable urban development as it affects ecological functioning in urban ecosystem. Rapid urbanization due to growing inclination of people to settle in urban areas has increased the complexities in predicting that at what shape and size cities will grow. The dynamic changes in the spatial pattern of urban landscapes has exposed the policy makers and environmental scientists to great challenge. But geographic science has grown in symmetry to the advancements in computer science. Models and tools are developed to support urban planning by analyzing the causes and consequences of land use changes and project the future. Of all the different types of land use models available in recent days, it has been found by researchers that the most frequently used models are Cellular Automaton (CA) and Artificial Neural Networks (ANN) models. But studies have demonstrated that the existing land use models have not been able to meet the needs of planners and policy makers. There are two primary causes identified behind this prologue. First, there is inadequate understanding of the fundamental theories and application of the models in urban planning context i.e., there is a gap in communication between modellers and urban planners. Second, the existing models exclude many key drivers in the process of simplification of the complex urban system that guide urban spatial pattern. Thus the models end up being effective in assessing the impacts of certain land use policies, but cannot contribute in new policy formulation. This paper is an attempt to increase the knowledge base of planners on the most frequently used land use model and also assess the relative effectiveness of the two models, ANN and CA, in urban planning. The questions that are addressed in this research are: a) What makes ANN models different from CA models?; b) Which model has higher accuracy in predicting future urban land use change?; and c) Are the models effective enough in guiding urban land use policies and strategies? The models that are used for this research are Multilayer Perceptron (MLP) and CA model, available in IDRISI Taiga. Since, the objective is to perform a comparative analysis and draw general inferences irrespective of specific urban policies, the availability of data was given more emphasis over the selection of particular location. Urban area in Massachusetts was chosen to conduct the study due to data availability. Extensive literature review was performed to understand the functionality of the two models. The models were applied to predict future changes and the accuracy assessment was performed using standard matrix. Inferences were drawn about the applicability of the models in urban planning context along with recommendations. This research will not only develop understanding of land use models among urban planners, but also will create an environment of coupled research between planners and modellers.
Todaro migration and primacy models: relevance to the urbanization of the Philippines.
Cuervo, J C; Kim Hin, D H
1998-08-01
"This paper looks into the set of factors that [influence] the urbanization of the Philippines, a fast-growing developing economy in South East Asia. The paper demonstrates that the ¿migration primacy urbanization model' is an appropriate one that is able to explain the urbanization case in the Philippines. The model draws supporting evidence from rank-size distribution analysis of major cities in the Philippines, a detailed examination of historical, geopolitical and economic forces which have evolved in the development of the Philippines as a sovereign state, and the applicability of the Todaro model on rural-urban migration to the Philippines." excerpt
Urbanization, economic development and health: evidence from China's labor-force dynamic survey.
Chen, Hongsheng; Liu, Ye; Li, Zhigang; Xue, Desheng
2017-11-29
The frequent outbreak of environmental threats in China has resulted in increased criticism regarding the health effects of China's urbanization. Urbanization is a double-edged sword with regard to health in China. Although great efforts have been made to investigate the mechanisms through which urbanization influences health, the effect of both economic development and urbanization on health in China is still unclear, and how urbanization-health (or development-health) relationships vary among different income groups remain poorly understood. To bridge these gaps, the present study investigates the impact of both urbanization and economic development on individuals' self-rated health and its underlying mechanisms in China. We use data from the national scale of the 2014 China Labor-force Dynamics Survey to analyze the impact of China's urbanization and economic development on health. A total of 14,791 individuals were sampled from 401 neighborhoods within 124 prefecture-level cities. Multilevel ordered logistic models were applied. Model results showed an inverted U-shaped relationship between individuals' self-rated health and urbanization rates (with a turning point of urbanization rate at 42.0%) and a positive linear relationship between their self-rated health and economic development. Model results also suggested that the urbanization-health relationship was inverted U-shaped for high- and middle-income people (with a turning point of urbanization rate at 0.0% and 49.2%, respectively), and the development-health relationship was inverted U-shaped for high- and low-income people (with turning points of GDP per capita at 93,462 yuan and 71,333 yuan, respectively) and linear for middle-income people. The impact of urbanization and economic development on health in China is complicated. Careful assessments are needed to understand the health impact of China's rapid urbanization. Social and environmental problems arising from rapid urbanization and economic growth should be addressed. Equitable provision of health services are needed to improve low-income groups' health in highly urbanized cities.
Dong, X; Zeng, S; Chen, J
2012-01-01
Design of a sustainable city has changed the traditional centralized urban wastewater system towards a decentralized or clustering one. Note that there is considerable spatial variability of the factors that affect urban drainage performance including urban catchment characteristics. The potential options are numerous for planning the layout of an urban wastewater system, which are associated with different costs and local environmental impacts. There is thus a need to develop an approach to find the optimal spatial layout for collecting, treating, reusing and discharging the municipal wastewater of a city. In this study, a spatial multi-objective optimization model, called Urban wastewateR system Layout model (URL), was developed. It is solved by a genetic algorithm embedding Monte Carlo sampling and a series of graph algorithms. This model was illustrated by a case study in a newly developing urban area in Beijing, China. Five optimized system layouts were recommended to the local municipality for further detailed design.
Wang, Long; Wei, Jiahua; Huang, Yuefei; Wang, Guangqian; Maqsood, Imran
2011-07-01
Many urban nonpoint source pollution models utilize pollutant buildup and washoff functions to simulate storm runoff quality of urban catchments. In this paper, two urban pollutant washoff load models are derived using pollutant buildup and washoff functions. The first model assumes that there is no residual pollutant after a storm event while the second one assumes that there is always residual pollutant after each storm event. The developed models are calibrated and verified with observed data from an urban catchment in the Los Angeles County. The application results show that the developed model with consideration of residual pollutant is more capable of simulating nonpoint source pollution from urban storm runoff than that without consideration of residual pollutant. For the study area, residual pollutant should be considered in pollutant buildup and washoff functions for simulating urban nonpoint source pollution when the total runoff volume is less than 30 mm. Copyright © 2011 Elsevier Ltd. All rights reserved.
The Urban Forest Effects (UFORE) model: quantifying urban forest structure and functions
David J. Nowak; Daniel E. Crane
2000-01-01
The Urban Forest Effects (UFORE) computer model was developed to help managers and researchers quantify urban forest structure and functions. The model quantifies species composition and diversity, diameter distribution, tree density and health, leaf area, leaf biomass, and other structural characteristics; hourly volatile organic compound emissions (emissions that...
Norman, L.M.; Guertin, D.P.; Feller, M.
2008-01-01
The development of new approaches for understanding processes of urban development and their environmental effects, as well as strategies for sustainable management, is essential in expanding metropolitan areas. This study illustrates the potential of linking urban growth and watershed models to identify problem areas and support long-term watershed planning. Sediment is a primary source of nonpoint-source pollution in surface waters. In urban areas, sediment is intermingled with other surface debris in transport. In an effort to forecast the effects of development on surface-water quality, changes predicted in urban areas by the SLEUTH urban growth model were applied in the context of erosion-sedimentation models (Universal Soil Loss Equation and Spatially Explicit Delivery Models). The models are used to simulate the effect of excluding hot-spot areas of erosion and sedimentation from future urban growth and to predict the impacts of alternative erosion-control scenarios. Ambos Nogales, meaning 'both Nogaleses,' is a name commonly used for the twin border cities of Nogales, Arizona and Nogales, Sonora, Mexico. The Ambos Nogales watershed has experienced a decrease in water quality as a result of urban development in the twin-city area. Population growth rates in Ambos Nogales are high and the resources set in place to accommodate the rapid population influx will soon become overburdened. Because of its remote location and binational governance, monitoring and planning across the border is compromised. One scenario described in this research portrays an improvement in water quality through the identification of high-risk areas using models that simulate their protection from development and replanting with native grasses, while permitting the predicted and inevitable growth elsewhere. This is meant to add to the body of knowledge about forecasting the impact potential of urbanization on sediment delivery to streams for sustainable development, which can be accomplished in a virtual environment. Copyright ?? 2008 by Bellwether Publishing, Ltd. All rights reserved.
Modelling spatial patterns of urban growth in Africa
Linard, Catherine; Tatem, Andrew J.; Gilbert, Marius
2013-01-01
The population of Africa is predicted to double over the next 40 years, driving exceptionally high urban expansion rates that will induce significant socio-economic, environmental and health changes. In order to prepare for these changes, it is important to better understand urban growth dynamics in Africa and better predict the spatial pattern of rural-urban conversions. Previous work on urban expansion has been carried out at the city level or at the global level with a relatively coarse 5–10 km resolution. The main objective of the present paper was to develop a modelling approach at an intermediate scale in order to identify factors that influence spatial patterns of urban expansion in Africa. Boosted Regression Tree models were developed to predict the spatial pattern of rural-urban conversions in every large African city. Urban change data between circa 1990 and circa 2000 available for 20 large cities across Africa were used as training data. Results showed that the urban land in a 1 km neighbourhood and the accessibility to the city centre were the most influential variables. Results obtained were generally more accurate than results obtained using a distance-based urban expansion model and showed that the spatial pattern of small, compact and fast growing cities were easier to simulate than cities with lower population densities and a lower growth rate. The simulation method developed here will allow the production of spatially detailed urban expansion forecasts for 2020 and 2025 for Africa, data that are increasingly required by global change modellers. PMID:25152552
Scale effect challenges in urban hydrology highlighted with a distributed hydrological model
NASA Astrophysics Data System (ADS)
Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire
2018-01-01
Hydrological models are extensively used in urban water management, development and evaluation of future scenarios and research activities. There is a growing interest in the development of fully distributed and grid-based models. However, some complex questions related to scale effects are not yet fully understood and still remain open issues in urban hydrology. In this paper we propose a two-step investigation framework to illustrate the extent of scale effects in urban hydrology. First, fractal tools are used to highlight the scale dependence observed within distributed data input into urban hydrological models. Then an intensive multi-scale modelling work is carried out to understand scale effects on hydrological model performance. Investigations are conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model is implemented at 17 spatial resolutions ranging from 100 to 5 m. Results clearly exhibit scale effect challenges in urban hydrology modelling. The applicability of fractal concepts highlights the scale dependence observed within distributed data. Patterns of geophysical data change when the size of the observation pixel changes. The multi-scale modelling investigation confirms scale effects on hydrological model performance. Results are analysed over three ranges of scales identified in the fractal analysis and confirmed through modelling. This work also discusses some remaining issues in urban hydrology modelling related to the availability of high-quality data at high resolutions, and model numerical instabilities as well as the computation time requirements. The main findings of this paper enable a replacement of traditional methods of model calibration
by innovative methods of model resolution alteration
based on the spatial data variability and scaling of flows in urban hydrology.
Assessment of sustainable urban transport development based on entropy and unascertained measure.
Li, Yancang; Yang, Jing; Shi, Huawang; Li, Yijie
2017-01-01
To find a more effective method for the assessment of sustainable urban transport development, the comprehensive assessment model of sustainable urban transport development was established based on the unascertained measure. On the basis of considering the factors influencing urban transport development, the comprehensive assessment indexes were selected, including urban economical development, transport demand, environment quality and energy consumption, and the assessment system of sustainable urban transport development was proposed. In view of different influencing factors of urban transport development, the index weight was calculated through the entropy weight coefficient method. Qualitative and quantitative analyses were conducted according to the actual condition. Then, the grade was obtained by using the credible degree recognition criterion from which the urban transport development level can be determined. Finally, a comprehensive assessment method for urban transport development was introduced. The application practice showed that the method can be used reasonably and effectively for the comprehensive assessment of urban transport development.
Modeling fractal cities using the correlated percolation model.
NASA Astrophysics Data System (ADS)
Makse, Hernán A.; Havlin, Shlomo; Stanley, H. Eugene
1996-03-01
Cities grow in a way that might be expected to resemble the growth of two-dimensional aggregates of particles, and this has led to recent attempts to model urban growth using ideas from the statistical physics of clusters. In particular, the model of diffusion limited aggregation (DLA) has been invoked to rationalize the apparently fractal nature of urban morphologies(M. Batty and P. Longley, Fractal Cities) (Academic, San Diego, 1994). The DLA model predicts that there should exist only one large fractal cluster, which is almost perfectly screened from incoming 'development units' (representing, for example, people, capital or resources), so that almost all of the cluster growth takes place at the tips of the cluster's branches. We show that an alternative model(H. A. Makse, S. Havlin, H. E. Stanley, Nature 377), 608 (1995), in which development units are correlated rather than being added to the cluster at random, is better able to reproduce the observed morphology of cities and the area distribution of sub-clusters ('towns') in an urban system, and can also describe urban growth dynamics. Our physical model, which corresponds to the correlated percolation model in the presence of a density gradient, is motivated by the fact that in urban areas development attracts further development. The model offers the possibility of predicting the global properties (such as scaling behavior) of urban morphologies.
Racial Prejudice and Locational Equilibrium in an Urban Area.
ERIC Educational Resources Information Center
Yinger, John
Racial prejudice is said to influence strongly the locational decisions of households in urban areas. This paper introduces racial prejudice into a model of an urban area and derives several results about residential location. A previously developed long-run model of an urban area adds a locational dimension to a model of the housing market under…
24 CFR 3285.1 - Administration.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Administration. 3285.1 Section 3285.1 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS General § 3285.1 Administration. (a) Scope. These...
24 CFR 3285.1 - Administration.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Administration. 3285.1 Section 3285.1 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS General § 3285.1 Administration. (a) Scope. These...
24 CFR 3285.1 - Administration.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Administration. 3285.1 Section 3285.1 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS General § 3285.1 Administration. (a) Scope. These...
Code of Federal Regulations, 2010 CFR
2010-07-01
... communities, relocation, urban renewal, model cities, rehabilitation loans and grants, neighborhood facilities... Understanding Between the Department Of Housing And Urban Development And the General Services Administration... Department Of Housing And Urban Development And the General Services Administration Concerning Low- And...
NASA Astrophysics Data System (ADS)
Aryaningsih, NN; Irianto, Kt; Marsa Arsana, Md; Juli Suarbawa, Kt
2018-01-01
The rapid increased of urban population can not be controlled by the city government. This will have an impact on the emergence of new poverty in urban areas, due to inadequate of the job opportunities and skills. Government programs for poverty alleviation can reduce some rural poverty, but have not been able to overcome poverty in urban areas. The diversity of urban issues and needs is greater than in rural areas. Therefore, it is necessary to conduct the research with the aim to build urban poverty reduction model through the development of entrepreneurship spirit and business competence. This research was conducted by investigation method, and questionnaire. Questionnaires are arranged with rating scale measurements. The validity and reliability of the questionnaire were tested by factor analysis. Model construction is constructed from various informant analyzes and descriptive statistical analysis. The results show that poverty alleviation model is very effective done by developing spirit of entrepreneurship and business competence.
Urban-Water Harmony model to evaluate the urban water management.
Ding, Yifan; Tang, Deshan; Wei, Yuhang; Yin, Sun
2014-01-01
Water resources in many urban areas are under enormous stress due to large-scale urban expansion and population explosion. The decision-makers are often faced with the dilemma of either maintaining high economic growth or protecting water resources and the environment. Simple criteria of water supply and drainage do not reflect the requirement of integrated urban water management. The Urban-Water Harmony (UWH) model is based on the concept of harmony and offers a more integrated approach to urban water management. This model calculates four dimensions, namely urban development, urban water services, water-society coordination, and water environment coordination. And the Analytic Hierarchy Process has been used to determine the indices weights. We applied the UWH model to Beijing, China for an 11-year assessment. Our findings show that, despite the severe stress inherent in rapid development and water shortage, the urban water relationship of Beijing is generally evolving in a positive way. The social-economic factors such as the water recycling technologies contribute a lot to this change. The UWH evaluation can provide a reasonable analysis approach to combine various urban and water indices to produce an integrated and comparable evaluation index. This, in turn, enables more effective water management in decision-making processes.
NASA Astrophysics Data System (ADS)
Krayenhoff, E. S.; Georgescu, M.; Moustaoui, M.
2016-12-01
Surface climates are projected to warm due to global climate change over the course of the 21st century, and demographic projections suggest urban areas in the United States will continue to expand and develop, with associated local climate outcomes. Interactions between these two drivers of urban heat have not been robustly quantified to date. Here, simulations with the Weather Research and Forecasting model (coupled to a Single-Layer Urban Canopy Model) are performed at 20 km resolution over the continental U.S. for two 10-year periods: contemporary (2000-2009) and end-of-century (2090-2099). Present and end of century urban land use are derived from the Environmental Protection Agency's Integrated Climate and Land-Use Scenarios. Modelled effects on urban climates are evaluated regionally. Sensitivity to climate projection (Community Climate System Model 4.0, RCP 4.5 vs. RCP 8.5) and associated urban development scenarios are assessed. Effects on near-surface urban air temperature of RCP8.5 climate change are greater than those attributable to the corresponding urban development in many regions. Interaction effects vary by region, and while of lesser magnitude, are not negligible. Moreover, urban development and its interactions with RCP8.5 climate change modify the distribution of convective precipitation over the eastern US. Interaction effects result from the different meteorological effects of urban areas under current and future climate. Finally, the potential for design implementations such as green roofs and high albedo roofs to offset the projected warming is considered. Impacts of these implementations on precipitation are also assessed.
NASA Astrophysics Data System (ADS)
Al-garni, Abdullah M.
Urban information systems are economic resources that can benefit decision makers in the planning, development, and management of urban projects and resources. In this research, a conceptual model-based prototype Urban Geographic Information System (UGIS) is developed. The base maps used in developing the system and acquiring visual attributes are obtained from aerial photographs. The system is a multi-purpose parcel-based one that can serve many urban applications such as public utilities, health centres, schools, population estimation, road engineering and maintenance, and many others. A modern region in the capital city of Saudi Arabia is used for the study. The developed model is operational for one urban application (population estimation) and is tested for that particular application. The results showed that the system has a satisfactory accuracy and that it may well be promising for other similar urban applications in countries with similar demographic and social characteristics.
Soulard, Christopher E.; Acevedo, William; Stehman, Stephen V.
2018-01-01
Quantifying change in urban land provides important information to create empirical models examining the effects of human land use. Maps of developed land from the National Land Cover Database (NLCD) of the conterminous United States include rural roads in the developed land class and therefore overestimate the amount of urban land. To better map the urban class and understand how urban lands change over time, we removed rural roads and small patches of rural development from the NLCD developed class and created four wall-to-wall maps (1992, 2001, 2006, and 2011) of urban land. Removing rural roads from the NLCD developed class involved a multi-step filtering process, data fusion using geospatial road and developed land data, and manual editing. Reference data classified as urban or not urban from a stratified random sample was used to assess the accuracy of the 2001 and 2006 urban and NLCD maps. The newly created urban maps had higher overall accuracy (98.7 percent) than the NLCD maps (96.2 percent). More importantly, the urban maps resulted in lower commission error of the urban class (23 percent versus 57 percent for the NLCD in 2006) with the trade-off of slightly inflated omission error (20 percent for the urban map, 16 percent for NLCD in 2006). The removal of approximately 230,000 km2 of rural roads from the NLCD developed class resulted in maps that better characterize the urban footprint. These urban maps are more suited to modeling applications and policy decisions that rely on quantitative and spatially explicit information regarding urban lands.
Modeling urban building energy use: A review of modeling approaches and procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wenliang; Zhou, Yuyu; Cetin, Kristen
With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. This paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. This is followed by a discussion of challenging issues associated with model preparation and calibration.« less
Modeling urban building energy use: A review of modeling approaches and procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wenliang; Zhou, Yuyu; Cetin, Kristen
With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. Our paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. We then follow this with a discussion of challenging issues associated with model preparation and calibration.« less
Modeling urban building energy use: A review of modeling approaches and procedures
Li, Wenliang; Zhou, Yuyu; Cetin, Kristen; ...
2017-11-13
With rapid urbanization and economic development, the world has been experiencing an unprecedented increase in energy consumption and greenhouse gas (GHG) emissions. While reducing energy consumption and GHG emissions is a common interest shared by major developed and developing countries, actions to enable these global reductions are generally implemented at the city scale. This is because baseline information from individual cities plays an important role in identifying economical options for improving building energy efficiency and reducing GHG emissions. Numerous approaches have been proposed for modeling urban building energy use in the past decades. Our paper aims to provide an up-to-datemore » review of the broad categories of energy models for urban buildings and describes the basic workflow of physics-based, bottom-up models and their applications in simulating urban-scale building energy use. Because there are significant differences across models with varied potential for application, strengths and weaknesses of the reviewed models are also presented. We then follow this with a discussion of challenging issues associated with model preparation and calibration.« less
24 CFR 3285.703 - Smoke alarms.
Code of Federal Regulations, 2010 CFR
2010-04-01
... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.703 Smoke... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Smoke alarms. 3285.703 Section 3285.703 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued...
24 CFR 3285.502 - Expanding rooms.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Expanding rooms. 3285.502 Section 3285.502 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued... DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Optional Features § 3285.502 Expanding rooms. The...
Global Urban Mapping and Modeling for Sustainable Urban Development
NASA Astrophysics Data System (ADS)
Zhou, Y.; Li, X.; Asrar, G.; Yu, S.; Smith, S.; Eom, J.; Imhoff, M. L.
2016-12-01
In the past several decades, the world has experienced fast urbanization, and this trend is expected to continue for decades to come. Urbanization, one of the major land cover and land use changes (LCLUC), is becoming increasingly important in global environmental changes, such as urban heat island (UHI) growth and vegetation phenology change. Better scientific insights and effective decision-making unarguably require reliable science-based information on spatiotemporal changes in urban extent and their environmental impacts. In this study, we developed a globally consistent 20-year urban map series to evaluate the time-reactive nature of global urbanization from the nighttime lights remote sensing data, and projected future urban expansion in the 21st century by employing an integrated modeling framework (Zhou et al. 2014, Zhou et al. 2015). We then evaluated the impacts of urbanization on building energy use and vegetation phenology that affect both ecosystem services and human health. We extended the modeling capability of building energy use in the Global Change Assessment Model (GCAM) with consideration of UHI effects by coupling the remote sensing based urbanization modeling and explored the impact of UHI on building energy use. We also investigated the impact of urbanization on vegetation phenology by using an improved phenology detection algorithm. The derived spatiotemporal information on historical and potential future urbanization and its implications in building energy use and vegetation phenology will be of great value in sustainable urban design and development for building energy use and human health (e.g., pollen allergy), especially when considered together with other factors such as climate variability and change. Zhou, Y., S. J. Smith, C. D. Elvidge, K. Zhao, A. Thomson & M. Imhoff (2014) A cluster-based method to map urban area from DMSP/OLS nightlights. Remote Sensing of Environment, 147, 173-185. Zhou, Y., S. J. Smith, K. Zhao, M. Imhoff, A. Thomson, B. Bond-Lamberty, G. R. Asrar, X. Zhang, C. He & C. D. Elvidge (2015) A global map of urban extent from nightlights. Environmental Research Letters, 10, 054011.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Xiao, R.; Li, X.
2015-12-01
Peri-urban area is a new type region under the impacts of both rural Industrialization and the radiation of metropolitan during rapid urbanization. Due to its complex natural and social characteristics and unique development patterns, many problems such as environmental pollution and land use waste emerged, which became an urgent issue to be addressed. Study area in this paper covers three typical peri-urban districts (Pudong, Fengxian and Jinshan), which around the Shanghai inner city. By coupling cellular automata and multi-agent system model as the basic tools, this research focus on modelling the urban land expansion and driving mechanism in peri-urban area. The big data is aslo combined with the Bayesian maximum entropy method (BME) for spatiotemporal prediction of multi-source data, which expand the dataset of urban expansion models. Data assimilation method is used to optimize the parameters of the coupling model and minimize the uncertainty of observations, improving the precision of future simulation in peri-urban area. By setting quantitative parameters, the coupling model can effectively improve the simulation of the process of urban land expansion under different policies and management schemes, in order to provide scientificimplications for new urbanization strategy. In this research, we precise the urban land expansion simulation and prediction for peri-urban area, expand the scopes and selections of data acquisition measurements and methods, develop the new applications of the data assimilation method in geographical science, provide a new idea for understanding the inherent rules of urban land expansion, and give theoretical and practical support for the peri-urban area in urban planning and decision making.
A sustainable city implantation for Vienna, Austria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levine, R.S.; Radmard, T.; Dumreicher, H.
1995-11-01
This paper presents a prototype of the Sustainable City Implantation of the future, which the city of Vienna, Austria is interested in considering as a solution to a long standing urban problem. Developed conceptually through numerous architectural design studio projects and field studies the Sustainable City Implantation is inspired by the historic medieval Italian hilltown. This city-as-a-hill prototype, rendered through sophisticated and flexible computer models, offers the promise of overcoming many of the puzzles and conundrums plaguing urban designers and social ecologists in their efforts to find the proper form and scale for charting the pathway to sustainability in naturemore » and the built environment. The new holistic, people centered, urban model has been developed to be able to synthesize new urban concepts with technological means to develop humane, sustainable cities. This preliminary study develops and verifies this model together with its process for a significant urban site in the city of Vienna.« less
NASA Astrophysics Data System (ADS)
Batty, M.; Axhausen, K. W.; Giannotti, F.; Pozdnoukhov, A.; Bazzani, A.; Wachowicz, M.; Ouzounis, G.; Portugali, Y.
2012-11-01
Here we sketch the rudiments of what constitutes a smart city which we define as a city in which ICT is merged with traditional infrastructures, coordinated and integrated using new digital technologies. We first sketch our vision defining seven goals which concern: developing a new understanding of urban problems; effective and feasible ways to coordinate urban technologies; models and methods for using urban data across spatial and temporal scales; developing new technologies for communication and dissemination; developing new forms of urban governance and organisation; defining critical problems relating to cities, transport, and energy; and identifying risk, uncertainty, and hazards in the smart city. To this, we add six research challenges: to relate the infrastructure of smart cities to their operational functioning and planning through management, control and optimisation; to explore the notion of the city as a laboratory for innovation; to provide portfolios of urban simulation which inform future designs; to develop technologies that ensure equity, fairness and realise a better quality of city life; to develop technologies that ensure informed participation and create shared knowledge for democratic city governance; and to ensure greater and more effective mobility and access to opportunities for urban populations. We begin by defining the state of the art, explaining the science of smart cities. We define six scenarios based on new cities badging themselves as smart, older cities regenerating themselves as smart, the development of science parks, tech cities, and technopoles focused on high technologies, the development of urban services using contemporary ICT, the use of ICT to develop new urban intelligence functions, and the development of online and mobile forms of participation. Seven project areas are then proposed: Integrated Databases for the Smart City, Sensing, Networking and the Impact of New Social Media, Modelling Network Performance, Mobility and Travel Behaviour, Modelling Urban Land Use, Transport and Economic Interactions, Modelling Urban Transactional Activities in Labour and Housing Markets, Decision Support as Urban Intelligence, Participatory Governance and Planning Structures for the Smart City. Finally we anticipate the paradigm shifts that will occur in this research and define a series of key demonstrators which we believe are important to progressing a science of smart cities.
NASA Astrophysics Data System (ADS)
Abanina, E. N.; Pandakov, K. G.; Agapov, D. A.; Sorokina, Yu V.; Vasiliev, E. H.
2017-05-01
Modern cities and towns are often characterized by poor administration, which could be the reason of environmental degradation, the poverty growth, decline in economic growth and social isolation. In these circumstances it is really important to conduct fresh researches forming new ways of sustainable development of administrative districts. This development of the urban areas depends on many interdependent factors: ecological, economic, social. In this article we show some theoretical aspects of forming a model of environmental progress of the urbanized areas. We submit some model containing four levels including natural resources capacities of the territory, its social features, economic growth and human impact. The author describes the interrelations of elements of the model. In this article the program of environmental development of a city is offered and it could be used in any urban area.
Bayesian methods to estimate urban growth potential
Smith, Jordan W.; Smart, Lindsey S.; Dorning, Monica; Dupéy, Lauren Nicole; Méley, Andréanne; Meentemeyer, Ross K.
2017-01-01
Urban growth often influences the production of ecosystem services. The impacts of urbanization on landscapes can subsequently affect landowners’ perceptions, values and decisions regarding their land. Within land-use and land-change research, very few models of dynamic landscape-scale processes like urbanization incorporate empirically-grounded landowner decision-making processes. Very little attention has focused on the heterogeneous decision-making processes that aggregate to influence broader-scale patterns of urbanization. We examine the land-use tradeoffs faced by individual landowners in one of the United States’ most rapidly urbanizing regions − the urban area surrounding Charlotte, North Carolina. We focus on the land-use decisions of non-industrial private forest owners located across the region’s development gradient. A discrete choice experiment is used to determine the critical factors influencing individual forest owners’ intent to sell their undeveloped properties across a series of experimentally varied scenarios of urban growth. Data are analyzed using a hierarchical Bayesian approach. The estimates derived from the survey data are used to modify a spatially-explicit trend-based urban development potential model, derived from remotely-sensed imagery and observed changes in the region’s socioeconomic and infrastructural characteristics between 2000 and 2011. This modeling approach combines the theoretical underpinnings of behavioral economics with spatiotemporal data describing a region’s historical development patterns. By integrating empirical social preference data into spatially-explicit urban growth models, we begin to more realistically capture processes as well as patterns that drive the location, magnitude and rates of urban growth.
Modelling the effect of urbanization on the transmission of an infectious disease.
Zhang, Ping; Atkinson, Peter M
2008-01-01
This paper models the impact of urbanization on infectious disease transmission by integrating a CA land use development model, population projection matrix model and CA epidemic model in S-Plus. The innovative feature of this model lies in both its explicit treatment of spatial land use development, demographic changes, infectious disease transmission and their combination in a dynamic, stochastic model. Heuristically-defined transition rules in cellular automata (CA) were used to capture the processes of both land use development with urban sprawl and infectious disease transmission. A population surface model and dwelling distribution surface were used to bridge the gap between urbanization and infectious disease transmission. A case study is presented involving modelling influenza transmission in Southampton, a dynamically evolving city in the UK. The simulation results for Southampton over a 30-year period show that the pattern of the average number of infection cases per day can depend on land use and demographic changes. The modelling framework presents a useful tool that may be of use in planning applications.
Urban dispersion and air quality simulation models applied at various horizontal scales require different levels of fidelity for specifying the characteristics of the underlying surfaces. As the modeling scales approach the neighborhood level (~1 km horizontal grid spacing), the...
Driving factors of urban land growth in Guangzhou and its implications for sustainable development
NASA Astrophysics Data System (ADS)
Cui, Xuezhu; Li, Shaoying; Wang, Xuetong; Xue, Xiaolong
2018-04-01
Since 2000, China's urban land has expanded at a dramatic speed because of the country's rapid urbanization. The country has been experiencing unbalanced development between rural and urban areas, causing serious challenges such as agricultural security and land resources waste. Effectively evaluating the driving factors of urban land growth is essential for improving efficient land use management and sustainable urban development. This study established a principal component regression model based on eight indicators to identify their influences on urban land growth in Guangzhou. The results provided a grouping analysis of the driving factors, and found that economic growth, urban population, and transportation development are the driving forces of urban land growth of Guangzhou, while the tertiary industry has an opposite effect. The findings led to further suggestions and recommendations for urban sustainable development. Hence, local governments should design relevant policies for achieving the rational development of urban land use and strategic planning on urban sustainable development.
Demonstration of reduced-order urban scale building energy models
Heidarinejad, Mohammad; Mattise, Nicholas; Dahlhausen, Matthew; ...
2017-09-08
The aim of this study is to demonstrate a developed framework to rapidly create urban scale reduced-order building energy models using a systematic summary of the simplifications required for the representation of building exterior and thermal zones. These urban scale reduced-order models rely on the contribution of influential variables to the internal, external, and system thermal loads. OpenStudio Application Programming Interface (API) serves as a tool to automate the process of model creation and demonstrate the developed framework. The results of this study show that the accuracy of the developed reduced-order building energy models varies only up to 10% withmore » the selection of different thermal zones. In addition, to assess complexity of the developed reduced-order building energy models, this study develops a novel framework to quantify complexity of the building energy models. Consequently, this study empowers the building energy modelers to quantify their building energy model systematically in order to report the model complexity alongside the building energy model accuracy. An exhaustive analysis on four university campuses suggests that the urban neighborhood buildings lend themselves to simplified typical shapes. Specifically, building energy modelers can utilize the developed typical shapes to represent more than 80% of the U.S. buildings documented in the CBECS database. One main benefits of this developed framework is the opportunity for different models including airflow and solar radiation models to share the same exterior representation, allowing a unifying exchange data. Altogether, the results of this study have implications for a large-scale modeling of buildings in support of urban energy consumption analyses or assessment of a large number of alternative solutions in support of retrofit decision-making in the building industry.« less
Demonstration of reduced-order urban scale building energy models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidarinejad, Mohammad; Mattise, Nicholas; Dahlhausen, Matthew
The aim of this study is to demonstrate a developed framework to rapidly create urban scale reduced-order building energy models using a systematic summary of the simplifications required for the representation of building exterior and thermal zones. These urban scale reduced-order models rely on the contribution of influential variables to the internal, external, and system thermal loads. OpenStudio Application Programming Interface (API) serves as a tool to automate the process of model creation and demonstrate the developed framework. The results of this study show that the accuracy of the developed reduced-order building energy models varies only up to 10% withmore » the selection of different thermal zones. In addition, to assess complexity of the developed reduced-order building energy models, this study develops a novel framework to quantify complexity of the building energy models. Consequently, this study empowers the building energy modelers to quantify their building energy model systematically in order to report the model complexity alongside the building energy model accuracy. An exhaustive analysis on four university campuses suggests that the urban neighborhood buildings lend themselves to simplified typical shapes. Specifically, building energy modelers can utilize the developed typical shapes to represent more than 80% of the U.S. buildings documented in the CBECS database. One main benefits of this developed framework is the opportunity for different models including airflow and solar radiation models to share the same exterior representation, allowing a unifying exchange data. Altogether, the results of this study have implications for a large-scale modeling of buildings in support of urban energy consumption analyses or assessment of a large number of alternative solutions in support of retrofit decision-making in the building industry.« less
Assessment of sustainable urban transport development based on entropy and unascertained measure
Li, Yancang; Yang, Jing; Li, Yijie
2017-01-01
To find a more effective method for the assessment of sustainable urban transport development, the comprehensive assessment model of sustainable urban transport development was established based on the unascertained measure. On the basis of considering the factors influencing urban transport development, the comprehensive assessment indexes were selected, including urban economical development, transport demand, environment quality and energy consumption, and the assessment system of sustainable urban transport development was proposed. In view of different influencing factors of urban transport development, the index weight was calculated through the entropy weight coefficient method. Qualitative and quantitative analyses were conducted according to the actual condition. Then, the grade was obtained by using the credible degree recognition criterion from which the urban transport development level can be determined. Finally, a comprehensive assessment method for urban transport development was introduced. The application practice showed that the method can be used reasonably and effectively for the comprehensive assessment of urban transport development. PMID:29084281
A socio-technical model to explore urban water systems scenarios.
de Haan, Fjalar J; Ferguson, Briony C; Deletic, Ana; Brown, Rebekah R
2013-01-01
This article reports on the ongoing work and research involved in the development of a socio-technical model of urban water systems. Socio-technical means the model is not so much concerned with the technical or biophysical aspects of urban water systems, but rather with the social and institutional implications of the urban water infrastructure and vice versa. A socio-technical model, in the view purported in this article, produces scenarios of different urban water servicing solutions gaining or losing influence in meeting water-related societal needs, like potable water, drainage, environmental health and amenity. The urban water system is parameterised with vectors of the relative influence of each servicing solution. The model is a software implementation of the Multi-Pattern Approach, a theory on societal systems, like urban water systems, and how these develop and go through transitions under various internal and external conditions. Acknowledging that social dynamics comes with severe and non-reducible uncertainties, the model is set up to be exploratory, meaning that for any initial condition several possible future scenarios are produced. This article gives a concise overview of the necessary theoretical background, the model architecture and some initial test results using a drainage example.
Contribution of future urbanisation expansion to flood risk changes
NASA Astrophysics Data System (ADS)
Bruwier, Martin; Mustafa, Ahmed; Archambeau, Pierre; Erpicum, Sébastien; Pirotton, Michel; Teller, Jacques; Dewals, Benjamin
2016-04-01
The flood risk is expected to increase in the future due to climate change and urban development. Climate change modifies flood hazard and urban development influences exposure and vulnerability to floods. While the influence of climate change on flood risk has been studied widely, the impact of urban development also needs to be considered in a sustainable flood risk management approach. The main goal of this study is the determination of the sensitivity of future flood risk to different urban development scenarios at a relatively short-time horizon in the River Meuse basin in Wallonia (Belgium). From the different scenarios, the expected impact of urban development on flood risk is assessed. Three urban expansion scenarios are developed up to 2030 based on a coupled cellular automata (CA) and agent-based (AB) urban expansion model: (i) business-as-usual, (ii) restrictive and (iii) extreme expansion scenarios. The main factor controlling these scenarios is the future urban land demand. Each urban expansion scenario is developed by considering or not high and/or medium flood hazard zones as a constraint for urban development. To assess the model's performance, it is calibrated for the Meuse River valley (Belgium) to simulate urban expansion between 1990 and 2000. Calibration results are then assessed by comparing the 2000 simulated land-use map and the actual 2000 land-use map. The flood damage estimation for each urban expansion scenario is determined for five flood discharges by overlaying the inundation map resulting from a hydraulic computation and the urban expansion map and by using damage curves and specific prices. The hydraulic model Wolf2D has been extensively validated by comparisons between observations and computational results during flood event .This study focuses only on mobile and immobile prices for urban lands, which are associated to the most severe damages caused by floods along the River Meuse. These findings of this study offers tools to drive urban expansion based on numerous policies visions to mitigate future flood risk along the Meuse River. In particular, we assess the impacts on future flood risk of the prohibition of urban development in high and/or medium flood hazard zones. Acknowledgements The research was funded through the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation.
Feng, Yongjiu; Liu, Yan
2016-09-01
The world's coastal regions are experiencing rapid urbanization coupled with increased risk of ecological damage and storm surge related to global climate and sea level rising. This urban development issue is particularly important in China, where many emerging coastal cities are being developed. Lingang New City, southeast of Shanghai, is an excellent example of a coastal city that is increasingly vulnerable to environmental change. Sustainable urban development requires planning that classifies and allocates coastal lands using objective procedures that incorporate changing environmental conditions. In this paper, we applied cellular automata (CA) modeling based on self-adaptive genetic algorithm (SAGA) to predict future scenarios and explore sustainable urban development options for Lingang. The CA model was calibrated using the 2005 initial status, 2015 final status, and a set of spatial variables. We implemented specific ecological and environmental conditions as spatial constraints for the model and predicted four 2030 scenarios: (a) an urban planning-oriented Plan Scenario; (b) an ecosystem protection-oriented Eco Scenario; (c) a storm surge-affected Storm Scenario; and (d) a scenario incorporating both ecosystem protection and the effects of storm surge, called the Ecostorm Scenario. The Plan Scenario has been taken as the baseline, with the Lingang urban area increasing from 45.8 km(2) in 2015 to 66.8 km(2) in 2030, accounting for 23.9 % of the entire study area. The simulated urban land size of the Plan Scenario in 2030 was taken as the target to accommodate the projected population increase in this city, which was then applied in the remaining three development scenarios. We used CA modeling to reallocate the urban cells to other unconstrained areas in response to changing spatial constraints. Our predictions should be helpful not only in assessing and adjusting the urban planning schemes for Lingang but also for evaluating urban planning in coastal cities elsewhere.
NASA Astrophysics Data System (ADS)
Chen, Y.
2017-12-01
Urbanization is the world development trend for the past century, and the developing countries have been experiencing much rapider urbanization in the past decades. Urbanization brings many benefits to human beings, but also causes negative impacts, such as increasing flood risk. Impact of urbanization on flood response has long been observed, but quantitatively studying this effect still faces great challenges. For example, setting up an appropriate hydrological model representing the changed flood responses and determining accurate model parameters are very difficult in the urbanized or urbanizing watershed. In the Pearl River Delta area, rapidest urbanization has been observed in China for the past decades, and dozens of highly urbanized watersheds have been appeared. In this study, a physically based distributed watershed hydrological model, the Liuxihe model is employed and revised to simulate the hydrological processes of the highly urbanized watershed flood in the Pearl River Delta area. A virtual soil type is then defined in the terrain properties dataset, and its runoff production and routing algorithms are added to the Liuxihe model. Based on a parameter sensitive analysis, the key hydrological processes of a highly urbanized watershed is proposed, that provides insight into the hydrological processes and for parameter optimization. Based on the above analysis, the model is set up in the Songmushan watershed where there is hydrological data observation. A model parameter optimization and updating strategy is proposed based on the remotely sensed LUC types, which optimizes model parameters with PSO algorithm and updates them based on the changed LUC types. The model parameters in Songmushan watershed are regionalized at the Pearl River Delta area watersheds based on the LUC types of the other watersheds. A dozen watersheds in the highly urbanized area of Dongguan City in the Pearl River Delta area were studied for the flood response changes due to urbanization, and the results show urbanization has big impact on the watershed flood responses. The peak flow increased a few times after urbanization which is much higher than previous reports.
Measuring directional urban spatial interaction in China: A migration perspective
Li, Fangzhou; Feng, Zhiming; Li, Peng; You, Zhen
2017-01-01
The study of urban spatial interaction is closely linked to that of economic geography, urban planning, regional development, and so on. Currently, this topic is generating a great deal of interest among researchers who are striving to find accurate ways to measure urban spatial interaction. Classical spatial interaction models lack theoretical guidance and require complicated parameter-adjusting processes. The radiation model, however, as proposed by Simini et al. with rigorous formula derivation, can simulate directional urban spatial interaction. We applied the radiation model in China to simulate the directional migration number among 337 nationwide research units, comprising 4 municipalities and 333 prefecture-level cities. We then analyzed the overall situation in Chinese cities, the interaction intensity hierarchy, and the prime urban agglomerations from the perspective of migration. This was done to ascertain China’s urban spatial interaction and regional development from 2000 to 2010 to reveal ground realities. PMID:28141853
Measuring directional urban spatial interaction in China: A migration perspective.
Li, Fangzhou; Feng, Zhiming; Li, Peng; You, Zhen
2017-01-01
The study of urban spatial interaction is closely linked to that of economic geography, urban planning, regional development, and so on. Currently, this topic is generating a great deal of interest among researchers who are striving to find accurate ways to measure urban spatial interaction. Classical spatial interaction models lack theoretical guidance and require complicated parameter-adjusting processes. The radiation model, however, as proposed by Simini et al. with rigorous formula derivation, can simulate directional urban spatial interaction. We applied the radiation model in China to simulate the directional migration number among 337 nationwide research units, comprising 4 municipalities and 333 prefecture-level cities. We then analyzed the overall situation in Chinese cities, the interaction intensity hierarchy, and the prime urban agglomerations from the perspective of migration. This was done to ascertain China's urban spatial interaction and regional development from 2000 to 2010 to reveal ground realities.
The application of a Web-geographic information system for improving urban water cycle modelling.
Mair, M; Mikovits, C; Sengthaler, M; Schöpf, M; Kinzel, H; Urich, C; Kleidorfer, M; Sitzenfrei, R; Rauch, W
2014-01-01
Research in urban water management has experienced a transition from traditional model applications to modelling water cycles as an integrated part of urban areas. This includes the interlinking of models of many research areas (e.g. urban development, socio-economy, urban water management). The integration and simulation is realized in newly developed frameworks (e.g. DynaMind and OpenMI) and often assumes a high knowledge in programming. This work presents a Web based urban water management modelling platform which simplifies the setup and usage of complex integrated models. The platform is demonstrated with a small application example on a case study within the Alpine region. The used model is a DynaMind model benchmarking the impact of newly connected catchments on the flooding behaviour of an existing combined sewer system. As a result the workflow of the user within a Web browser is demonstrated and benchmark results are shown. The presented platform hides implementation specific aspects behind Web services based technologies such that the user can focus on his main aim, which is urban water management modelling and benchmarking. Moreover, this platform offers a centralized data management, automatic software updates and access to high performance computers accessible with desktop computers and mobile devices.
Urbanization impacts on mammals across urban-forest edges and a predictive model of edge effects.
Villaseñor, Nélida R; Driscoll, Don A; Escobar, Martín A H; Gibbons, Philip; Lindenmayer, David B
2014-01-01
With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula). We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis) had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1) habitat quality/preference, (2) species response with the proximity to the adjacent habitat, and (3) spillover extent/sensitivity to adjacent habitat boundaries. This framework will allow scientists, managers and planners better understand and predict both species responses across edges and impacts of development in mosaic landscapes.
Urbanization Impacts on Mammals across Urban-Forest Edges and a Predictive Model of Edge Effects
Villaseñor, Nélida R.; Driscoll, Don A.; Escobar, Martín A. H.; Gibbons, Philip; Lindenmayer, David B.
2014-01-01
With accelerating rates of urbanization worldwide, a better understanding of ecological processes at the wildland-urban interface is critical to conserve biodiversity. We explored the effects of high and low-density housing developments on forest-dwelling mammals. Based on habitat characteristics, we expected a gradual decline in species abundance across forest-urban edges and an increased decline rate in higher contrast edges. We surveyed arboreal mammals in sites of high and low housing density along 600 m transects that spanned urban areas and areas turn on adjacent native forest. We also surveyed forest controls to test whether edge effects extended beyond our edge transects. We fitted models describing richness, total abundance and individual species abundance. Low-density housing developments provided suitable habitat for most arboreal mammals. In contrast, high-density housing developments had lower species richness, total abundance and individual species abundance, but supported the highest abundances of an urban adapter (Trichosurus vulpecula). We did not find the predicted gradual decline in species abundance. Of four species analysed, three exhibited no response to the proximity of urban boundaries, but spilled over into adjacent urban habitat to differing extents. One species (Petaurus australis) had an extended negative response to urban boundaries, suggesting that urban development has impacts beyond 300 m into adjacent forest. Our empirical work demonstrates that high-density housing developments have negative effects on both community and species level responses, except for one urban adapter. We developed a new predictive model of edge effects based on our results and the literature. To predict animal responses across edges, our framework integrates for first time: (1) habitat quality/preference, (2) species response with the proximity to the adjacent habitat, and (3) spillover extent/sensitivity to adjacent habitat boundaries. This framework will allow scientists, managers and planners better understand and predict both species responses across edges and impacts of development in mosaic landscapes. PMID:24810286
The water balance of the urban Salt Lake Valley: a multiple-box model validated by observations
NASA Astrophysics Data System (ADS)
Stwertka, C.; Strong, C.
2012-12-01
A main focus of the recently awarded National Science Foundation (NSF) EPSCoR Track-1 research project "innovative Urban Transitions and Arid-region Hydro-sustainability (iUTAH)" is to quantify the primary components of the water balance for the Wasatch region, and to evaluate their sensitivity to climate change and projected urban development. Building on the multiple-box model that we developed and validated for carbon dioxide (Strong et al 2011), mass balance equations for water in the atmosphere and surface are incorporated into the modeling framework. The model is used to determine how surface fluxes, ground-water transport, biological fluxes, and meteorological processes regulate water cycling within and around the urban Salt Lake Valley. The model is used to evaluate the hypotheses that increased water demand associated with urban growth in Salt Lake Valley will (1) elevate sensitivity to projected climate variability and (2) motivate more attentive management of urban water use and evaporative fluxes.
Sun, Qiang
2017-06-01
As the largest developing country in the world, China has witnessed fast-paced urbanization over the past three decades with rapid economic growth. In fact, urbanization has been not only shown to promote economic growth and improve the livelihood of people but also can increase demands of regional logistics. Therefore, a better understanding of the relationship between urbanization and regional logistics is important for China's future sustainable development. The development of urban residential area and heterogeneous, modern society as well regional logistics are running two abreast. The regional logistics can promote the development of new-type urbanization jointly by promoting industrial concentration and logistics demand, enhancing the residents' quality of life and improving the infrastructure and logistics technology. In this paper, the index system and evaluation model for evaluating the development of regional logistics and the new-type urbanization are constructed. Further, the econometric analysis is utilized such as correlation analysis, co-integration test, and error correction model to explore relationships of the new-type urbanization development and regional logistics development in Liaoning Province. The results showed that there was a long-term stable equilibrium relationship between the new-type urbanization and regional logistics. The findings have important implications for Chinese policymakers that on the path towards a sustainable urbanization and regional reverse, this must be taken into consideration. The paper concludes providing some strategies that might be helpful to the policymakers in formulating development policies for sustainable urbanization.
NASA Astrophysics Data System (ADS)
Liu, Z.; Li, Y.
2018-04-01
This paper from the perspective of the Neighbor cellular space, Proposed a new urban space expansion model based on a new multi-objective gray decision and CA. The model solved the traditional cellular automata conversion rules is difficult to meet the needs of the inner space-time analysis of urban changes and to overcome the problem of uncertainty in the combination of urban drivers and urban cellular automata. At the same time, the study takes Pidu District as a research area and carries out urban spatial simulation prediction and analysis, and draws the following conclusions: (1) The design idea of the urban spatial expansion model proposed in this paper is that the urban driving factor and the neighborhood function are tightly coupled by the multi-objective grey decision method based on geographical conditions. The simulation results show that the simulation error of urban spatial expansion is less than 5.27 %. The Kappa coefficient is 0.84. It shows that the model can better capture the inner transformation mechanism of the city. (2) We made a simulation prediction for Pidu District of Chengdu by discussing Pidu District of Chengdu as a system instance.In this way, we analyzed the urban growth tendency of this area.presenting a contiguous increasing mode, which is called "urban intensive development". This expansion mode accorded with sustainable development theory and the ecological urbanization design theory.
[Employment and urban growth; an application of Czamanski's model to the Mexican case].
Verduzco Chavez, B
1991-01-01
The author applies the 1964 model developed by Stanislaw Czamanski, based on theories of urban growth and industrial localization, to the analysis of urban growth in Mexico. "The advantages of this model in its application as a support instrument in the process of urban planning when the information available is incomplete are...discussed...." Census data for 44 cities in Mexico are used. (SUMMARY IN ENG) excerpt
Projecting land-use and land cover change in a subtropical urban watershed
John J. Lagrosa IV; Wayne C. Zipperer; Michael G. Andreu
2018-01-01
Urban landscapes are heterogeneous mosaics that develop via significant land-use and land cover (LULC) change. Current LULC models project future landscape patterns, but generally avoid urban landscapes due to heterogeneity. To project LULC change for an urban landscape, we parameterize an established LULC model (Dyna-CLUE) under baseline conditions (continued current...
Development of river flood model in lower reach of urbanized river basin
NASA Astrophysics Data System (ADS)
Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio
2014-05-01
Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in the region.
Research on application of intelligent computation based LUCC model in urbanization process
NASA Astrophysics Data System (ADS)
Chen, Zemin
2007-06-01
Global change study is an interdisciplinary and comprehensive research activity with international cooperation, arising in 1980s, with the largest scopes. The interaction between land use and cover change, as a research field with the crossing of natural science and social science, has become one of core subjects of global change study as well as the front edge and hot point of it. It is necessary to develop research on land use and cover change in urbanization process and build an analog model of urbanization to carry out description, simulation and analysis on dynamic behaviors in urban development change as well as to understand basic characteristics and rules of urbanization process. This has positive practical and theoretical significance for formulating urban and regional sustainable development strategy. The effect of urbanization on land use and cover change is mainly embodied in the change of quantity structure and space structure of urban space, and LUCC model in urbanization process has been an important research subject of urban geography and urban planning. In this paper, based upon previous research achievements, the writer systematically analyzes the research on land use/cover change in urbanization process with the theories of complexity science research and intelligent computation; builds a model for simulating and forecasting dynamic evolution of urban land use and cover change, on the basis of cellular automation model of complexity science research method and multi-agent theory; expands Markov model, traditional CA model and Agent model, introduces complexity science research theory and intelligent computation theory into LUCC research model to build intelligent computation-based LUCC model for analog research on land use and cover change in urbanization research, and performs case research. The concrete contents are as follows: 1. Complexity of LUCC research in urbanization process. Analyze urbanization process in combination with the contents of complexity science research and the conception of complexity feature to reveal the complexity features of LUCC research in urbanization process. Urban space system is a complex economic and cultural phenomenon as well as a social process, is the comprehensive characterization of urban society, economy and culture, and is a complex space system formed by society, economy and nature. It has dissipative structure characteristics, such as opening, dynamics, self-organization, non-balance etc. Traditional model cannot simulate these social, economic and natural driving forces of LUCC including main feedback relation from LUCC to driving force. 2. Establishment of Markov extended model of LUCC analog research in urbanization process. Firstly, use traditional LUCC research model to compute change speed of regional land use through calculating dynamic degree, exploitation degree and consumption degree of land use; use the theory of fuzzy set to rewrite the traditional Markov model, establish structure transfer matrix of land use, forecast and analyze dynamic change and development trend of land use, and present noticeable problems and corresponding measures in urbanization process according to research results. 3. Application of intelligent computation research and complexity science research method in LUCC analog model in urbanization process. On the basis of detailed elaboration of the theory and the model of LUCC research in urbanization process, analyze the problems of existing model used in LUCC research (namely, difficult to resolve many complexity phenomena in complex urban space system), discuss possible structure realization forms of LUCC analog research in combination with the theories of intelligent computation and complexity science research. Perform application analysis on BP artificial neural network and genetic algorithms of intelligent computation and CA model and MAS technology of complexity science research, discuss their theoretical origins and their own characteristics in detail, elaborate the feasibility of them in LUCC analog research, and bring forward improvement methods and measures on existing problems of this kind of model. 4. Establishment of LUCC analog model in urbanization process based on theories of intelligent computation and complexity science. Based on the research on abovementioned BP artificial neural network, genetic algorithms, CA model and multi-agent technology, put forward improvement methods and application assumption towards their expansion on geography, build LUCC analog model in urbanization process based on CA model and Agent model, realize the combination of learning mechanism of BP artificial neural network and fuzzy logic reasoning, express the regulation with explicit formula, and amend the initial regulation through self study; optimize network structure of LUCC analog model and methods and procedures of model parameters with genetic algorithms. In this paper, I introduce research theory and methods of complexity science into LUCC analog research and presents LUCC analog model based upon CA model and MAS theory. Meanwhile, I carry out corresponding expansion on traditional Markov model and introduce the theory of fuzzy set into data screening and parameter amendment of improved model to improve the accuracy and feasibility of Markov model in the research on land use/cover change.
On the Nexus of the Spatial Dynamics of Global Urbanization and the Age of the City
Scheuer, Sebastian; Haase, Dagmar; Volk, Martin
2016-01-01
A number of concepts exist regarding how urbanization can be described as a process. Understanding this process that affects billions of people and its future development in a spatial manner is imperative to address related issues such as human quality of life. In the focus of spatially explicit studies on urbanization is typically a city, a particular urban region, an agglomeration. However, gaps remain in spatially explicit global models. This paper addresses that issue by examining the spatial dynamics of urban areas over time, for a full coverage of the world. The presented model identifies past, present and potential future hotspots of urbanization as a function of an urban area's spatial variation and age, whose relation could be depicted both as a proxy and as a path of urban development. PMID:27490199
On the Nexus of the Spatial Dynamics of Global Urbanization and the Age of the City.
Scheuer, Sebastian; Haase, Dagmar; Volk, Martin
2016-01-01
A number of concepts exist regarding how urbanization can be described as a process. Understanding this process that affects billions of people and its future development in a spatial manner is imperative to address related issues such as human quality of life. In the focus of spatially explicit studies on urbanization is typically a city, a particular urban region, an agglomeration. However, gaps remain in spatially explicit global models. This paper addresses that issue by examining the spatial dynamics of urban areas over time, for a full coverage of the world. The presented model identifies past, present and potential future hotspots of urbanization as a function of an urban area's spatial variation and age, whose relation could be depicted both as a proxy and as a path of urban development.
Characterization and spatial modeling of urban sprawl in the Wuhan Metropolitan Area, China
NASA Astrophysics Data System (ADS)
Zeng, Chen; Liu, Yaolin; Stein, Alfred; Jiao, Limin
2015-02-01
Urban sprawl has led to environmental problems and large losses of arable land in China. In this study, we monitor and model urban sprawl by means of a combination of remote sensing, geographical information system and spatial statistics. We use time-series data to explore the potential socio-economic driving forces behind urban sprawl, and spatial models in different scenarios to explore the spatio-temporal interactions. The methodology is applied to the city of Wuhan, China, for the period from 1990 to 2013. The results reveal that the built-up land has expanded and has dispersed in urban clusters. Population growth, and economic and transportation development are still the main causes of urban sprawl; however, when they have developed to certain levels, the area affected by construction in urban areas (Jian Cheng Qu (JCQ)) and the area of cultivated land (ACL) tend to be stable. Spatial regression models are shown to be superior to the traditional models. The interaction among districts with the same administrative status is stronger than if one of those neighbors is in the city center and the other in the suburban area. The expansion of urban built-up land is driven by the socio-economic development at the same period, and greatly influenced by its spatio-temporal neighbors. We conclude that the integration of remote sensing, a geographical information system, and spatial statistics offers an excellent opportunity to explore the spatio-temporal variation and interactions among the districts in the sprawling metropolitan areas. Relevant regulations to control the urban sprawl process are suggested accordingly.
NASA Experimental Program to Stimulate Competitive Research: South Carolina
NASA Technical Reports Server (NTRS)
Sutton, Michael A.
2004-01-01
The use of an appropriate relationship model is critical for reliable prediction of future urban growth. Identification of proper variables and mathematic functions and determination of the weights or coefficients are the key tasks for building such a model. Although the conventional logistic regression model is appropriate for handing land use problems, it appears insufficient to address the issue of interdependency of the predictor variables. This study used an alternative approach to simulation and modeling urban growth using artificial neural networks. It developed an operational neural network model trained using a robust backpropagation method. The model was applied in the Myrtle Beach region of South Carolina, and tested with both global datasets and areal datasets to examine the strength of both regional models and areal models. The results indicate that the neural network model not only has many theoretic advantages over other conventional mathematic models in representing the complex urban systems, but also is practically superior to the logistic model in its capability to predict urban growth with better - accuracy and less variation. The neural network model is particularly effective in terms of successfully identifying urban patterns in the rural areas where the logistic model often falls short. It was also found from the area-based tests that there are significant intra-regional differentiations in urban growth with different rules and rates. This suggests that the global modeling approach, or one model for the entire region, may not be adequate for simulation of a urban growth at the regional scale. Future research should develop methods for identification and subdivision of these areas and use a set of area-based models to address the issues of multi-centered, intra- regionally differentiated urban growth.
Exploration of Urban Spatial Planning Evaluation Based on Humanland Harmony
NASA Astrophysics Data System (ADS)
Hu, X. S.; Ma, Q. R.; Liang, W. Q.; Wang, C. X.; Xiong, X. Q.; Han, X. H.
2017-09-01
This study puts forward a new concept, "population urbanization level forecast - driving factor analysis - urban spatial planning analysis" for achieving efficient and intensive development of urbanization considering human-land harmony. We analyzed big data for national economic and social development, studied the development trends of population urbanization and its influencing factors using the grey system model in Chengmai county of Hainan province, China. In turn, we calculated the population of Chengmai coming years based on the forecasting urbanization rate and the corresponding amount of urban construction land, and evaluated the urban spatial planning with GIS spatial analysis method in the study area. The result shows that the proposed concept is feasible for evaluation of urban spatial planning, and is meaningful for guiding the rational distribution of urban space, controlling the scale of development, improving the quality of urbanization and thus promoting highly-efficient and intensive use of limited land resource.
Effects of air pollution on thermal structure and dispersion in an urban planetary boundary layer
NASA Technical Reports Server (NTRS)
Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.
1977-01-01
The short-term effects of urbanization and air pollution on the transport processes in the urban planetary boundary layer (PBL) are studied. The investigation makes use of an unsteady two-dimensional transport model which has been developed by Viskanta et al., (1976). The model predicts pollutant concentrations and temperature in the PBL. The potential effects of urbanization and air pollution on the thermal structure in the urban PBL are considered, taking into account the results of numerical simulations modeling the St. Louis, Missouri metropolitan area.
Brief introductory guide to agent-based modeling and an illustration from urban health research.
Auchincloss, Amy H; Garcia, Leandro Martin Totaro
2015-11-01
There is growing interest among urban health researchers in addressing complex problems using conceptual and computation models from the field of complex systems. Agent-based modeling (ABM) is one computational modeling tool that has received a lot of interest. However, many researchers remain unfamiliar with developing and carrying out an ABM, hindering the understanding and application of it. This paper first presents a brief introductory guide to carrying out a simple agent-based model. Then, the method is illustrated by discussing a previously developed agent-based model, which explored inequalities in diet in the context of urban residential segregation.
Brief introductory guide to agent-based modeling and an illustration from urban health research
Auchincloss, Amy H.; Garcia, Leandro Martin Totaro
2017-01-01
There is growing interest among urban health researchers in addressing complex problems using conceptual and computation models from the field of complex systems. Agent-based modeling (ABM) is one computational modeling tool that has received a lot of interest. However, many researchers remain unfamiliar with developing and carrying out an ABM, hindering the understanding and application of it. This paper first presents a brief introductory guide to carrying out a simple agent-based model. Then, the method is illustrated by discussing a previously developed agent-based model, which explored inequalities in diet in the context of urban residential segregation. PMID:26648364
NASA Astrophysics Data System (ADS)
Wang, Ruichen; Lu, Jingyang; Xu, Yiran; Shen, Dan; Chen, Genshe; Pham, Khanh; Blasch, Erik
2018-05-01
Due to the progressive expansion of public mobile networks and the dramatic growth of the number of wireless users in recent years, researchers are motivated to study the radio propagation in urban environments and develop reliable and fast path loss prediction models. During last decades, different types of propagation models are developed for urban scenario path loss predictions such as the Hata model and the COST 231 model. In this paper, the path loss prediction model is thoroughly investigated using machine learning approaches. Different non-linear feature selection methods are deployed and investigated to reduce the computational complexity. The simulation results are provided to demonstratethe validity of the machine learning based path loss prediction engine, which can correctly determine the signal propagation in a wireless urban setting.
Impact of future urban growth on regional climate changes in the Seoul Metropolitan Area, Korea.
Kim, Hyunsu; Kim, Yoo-Keun; Song, Sang-Keun; Lee, Hwa Woon
2016-11-15
The influence of changes in future urban growth (e.g., land use changes) on the future climate variability in the Seoul metropolitan area (SMA), Korea was evaluated using the WRF model and an urban growth model (SLEUTH). The land use changes in the study area were simulated using the SLEUTH model under three different urban growth scenarios: (1) current development trends scenario (SC 1), (2) managed development scenario (SC 2) and (3) ecological development scenario (SC 3). The maximum difference in the ratio of urban growth between SC 1 and SC 3 (SC 1 - SC 3) for 50years (2000-2050) was approximately 6.72%, leading to the largest differences (0.01°C and 0.03ms(-1), respectively) in the mean air temperature at 2m (T2) and wind speed at 10m (WS10). From WRF-SLEUTH modeling, the effects of future urban growth (or future land use changes) in the SMA are expected to result in increases in the spatial mean T2 and WS10 of up to 1.15°C and 0.03ms(-1), respectively, possibly due to thermal circulation caused by the thermal differences between urban and rural regions. Copyright © 2016 Elsevier B.V. All rights reserved.
Advance strategy for climate change adaptation and mitigation in cities
NASA Astrophysics Data System (ADS)
Varquez, A. C. G.; Kanda, M.; Darmanto, N. S.; Sueishi, T.; Kawano, N.
2017-12-01
An on-going 5-yr project financially supported by the Ministry of Environment, Japan, has been carried out to specifically address the issue of prescribing appropriate adaptation and mitigation measures to climate change in cities. Entitled "Case Study on Mitigation and Local Adaptation to Climate Change in an Asian Megacity, Jakarta", the project's relevant objectives is to develop a research framework that can consider both urbanization and climate change with the main advantage of being readily implementable for all cities around the world. The test location is the benchmark city, Jakarta, Indonesia, with the end focus of evaluating the benefits of various mitigation and adaptation strategies in Jakarta and other megacities. The framework was designed to improve representation of urban areas when conducting climate change investigations in cities; and to be able to quantify separately the impacts of urbanization and climate change to all cities globally. It is comprised of a sophisticated, top-down, multi-downscaling approach utilizing a regional model (numerical weather model) and a microscale model (energy balance model and CFD model), with global circulation models (GCM) as input. The models, except the GCM, were configured to reasonably consider land cover, urban morphology, and anthropogenic heating (AH). Equally as important, methodologies that can collect and estimate global distribution of urban parametric and AH datasets are continually being developed. Urban growth models, climate scenario matrices that match representative concentration pathways with shared socio-economic pathways, present distribution of socio-demographic indicators such as population and GDP, existing GIS datasets of urban parameters, are utilized. From these tools, future urbanization (urban morphological parameters and AH) can be introduced into the models. Sensitivity using various combinations of GCM and urbanization can be conducted. Furthermore, since the models utilize parameters that can be readily modified to suit certain countermeasures, adaptation and mitigation strategies can be evaluated using thermal comfort and other social indicators. With the approaches introduced through this project, a deeper understanding of urban-climate interactions in the changing global climate can be achieved.
NASA Astrophysics Data System (ADS)
Habibi, H.; Norouzi, A.; Habib, A.; Seo, D. J.
2016-12-01
To produce accurate predictions of flooding in urban areas, it is necessary to model both natural channel and storm drain networks. While there exist many urban hydraulic models of varying sophistication, most of them are not practical for real-time application for large urban areas. On the other hand, most distributed hydrologic models developed for real-time applications lack the ability to explicitly simulate storm drains. In this work, we develop a storm drain model that can be coupled with distributed hydrologic models such as the National Weather Service Hydrology Laboratory's Distributed Hydrologic Model, for real-time flash flood prediction in large urban areas to improve prediction and to advance the understanding of integrated response of natural channels and storm drains to rainfall events of varying magnitude and spatiotemporal extent in urban catchments of varying sizes. The initial study area is the Johnson Creek Catchment (40.1 km2) in the City of Arlington, TX. For observed rainfall, the high-resolution (500 m, 1 min) precipitation data from the Dallas-Fort Worth Demonstration Network of the Collaborative Adaptive Sensing of the Atmosphere radars is used.
Stochastic model to forecast ground-level ozone concentration at urban and rural areas.
Dueñas, C; Fernández, M C; Cañete, S; Carretero, J; Liger, E
2005-12-01
Stochastic models that estimate the ground-level ozone concentrations in air at an urban and rural sampling points in South-eastern Spain have been developed. Studies of temporal series of data, spectral analyses of temporal series and ARIMA models have been used. The ARIMA model (1,0,0) x (1,0,1)24 satisfactorily predicts hourly ozone concentrations in the urban area. The ARIMA (2,1,1) x (0,1,1)24 has been developed for the rural area. In both sampling points, predictions of hourly ozone concentrations agree reasonably well with measured values. However, the prediction of hourly ozone concentrations in the rural point appears to be better than that of the urban point. The performance of ARIMA models suggests that this kind of modelling can be suitable for ozone concentrations forecasting.
Shi, Yuan; Lau, Kevin Ka-Lun; Ng, Edward
2017-08-01
Urban air quality serves as an important function of the quality of urban life. Land use regression (LUR) modelling of air quality is essential for conducting health impacts assessment but more challenging in mountainous high-density urban scenario due to the complexities of the urban environment. In this study, a total of 21 LUR models are developed for seven kinds of air pollutants (gaseous air pollutants CO, NO 2 , NO x , O 3 , SO 2 and particulate air pollutants PM 2.5 , PM 10 ) with reference to three different time periods (summertime, wintertime and annual average of 5-year long-term hourly monitoring data from local air quality monitoring network) in Hong Kong. Under the mountainous high-density urban scenario, we improved the traditional LUR modelling method by incorporating wind availability information into LUR modelling based on surface geomorphometrical analysis. As a result, 269 independent variables were examined to develop the LUR models by using the "ADDRESS" independent variable selection method and stepwise multiple linear regression (MLR). Cross validation has been performed for each resultant model. The results show that wind-related variables are included in most of the resultant models as statistically significant independent variables. Compared with the traditional method, a maximum increase of 20% was achieved in the prediction performance of annual averaged NO 2 concentration level by incorporating wind-related variables into LUR model development. Copyright © 2017 Elsevier Inc. All rights reserved.
Integrated Modelling and Performance Analysis of Green Roof Technologies in Urban Environments
NASA Astrophysics Data System (ADS)
Liu, Xi; Mijic, Ana; Maksimovic, Cedo
2014-05-01
As a result of the changing global climate and increase in urbanisation, the behaviour of the urban environment has been significantly altered, causing an increase in both the frequency of extreme weather events, such as flooding and drought, and also the associated costs. Moreover, uncontrolled or inadequately planned urbanisation can exacerbate the damage. The Blue-Green Dream (BGD) project therefore develops a series of components for urban areas that link urban vegetated areas (green infrastructure) with existing urban water (blue) systems, which will enhance the synergy of urban blue and green systems and provide effective, multifunctional BGD solutions to support urban adaptation to future climatic changes. Coupled with new urban water management technologies and engineering, multifunctional benefits can be gained. Some of the technologies associated with BGD solutions include green roofs, swales that might deal with runoff more effectively and urban river restoration that can produce benefits similar to those produced from sustainable urban drainage systems (SUDS). For effective implementation of these technologies, however, appropriate tools and methodologies for designing and modelling BGD solutions are required to be embedded within urban drainage models. Although several software packages are available for modelling urban drainage, the way in which green roofs and other BGD solutions are integrated into these models is not yet fully developed and documented. This study develops a physically based mass and energy balance model to monitor, test and quantitatively evaluate green roof technology for integrated BGD solutions. The assessment of environmental benefits will be limited to three aspects: (1) reduction of the total runoff volume, (2) delay in the initiation of runoff, and (3) reduction of building energy consumption, rather than water quality, visual, social or economic impacts. This physically based model represents water and heat dynamics in a layered soil profile covered with vegetation which can be used to simulate the physical behaviour of different green roof systems in response to rainfall under various climatic conditions. Because it is a physically based model, this model could be generalised to other atmosphere-plant-soil systems. The validity of this mass and energy balance approach will be demonstrated by comparing its outcomes with observations from a green roof experimental site in London, UK.
Forecasting urban growth across the United States-Mexico border
Norman, L.M.; Feller, M.; Phillip, Guertin D.
2009-01-01
The sister-city area of Nogales, Arizona, and Nogales, Sonora, Mexico, is known collectively as Ambos (both) Nogales. This area was historically one city and was administratively divided by the Gadsden Purchase in 1853. These arid-lands have limited and sensitive natural resources. Environmental planning can support sustainable development to accommodate the predicted influx of population. The objective of this research is to quantify the amount of predicted urban growth for the Ambos Nogales watershed to support future planning for sustainable development. Two modeling regimes are explored. Our goal is to identify possible growth patterns associated with the twin-city area as a whole and with the two cities modeled as separate entities. We analyzed the cross-border watershed using regression analysis from satellite images from 1975, 1983, 1996, and 2002 and created urban area classifications. We used these classifications as input to the urban growth model, SLEUTH, to simulate likely patterns of development and define projected conversion probabilities. Model results indicate that the two cities are undergoing very different patterns of change and identify locations of expected growth based on historical development. Growth in Nogales, Arizona is stagnant while the urban area in Nogales, Sonora is exploding. This paper demonstrates an application that portrays how future binational urban growth could develop and affect the environment. This research also provides locations of potential growth for use in city planning.
Dynamics of the Urban Water-Energy Nexuses of Mumbai and London
NASA Astrophysics Data System (ADS)
De Stercke, S.; Mijic, A.; Buytaert, W.; Chaturvedi, V.
2016-12-01
Both in developing as well as industrialized countries, cities are seeing their populations increase as more people concentrate in urban settlements. This burdens existing water and energy systems, which are also increasingly stressed on the supply side due to availability, and policy goals. In addition to the water and energy embedded in the electricity, fuels and water delivered to the city, the linkages in the urban environment itself are important and in magnitude they significantly exceed those upstream in the case of industrialized countries. However, little research has been published on urban water-energy linkages in developing countries. For cities in general, there is also a dearth of studies on the dynamics of these linkages with urban growth and socioeconomic development, and hence of the mutual influence of the urban water and energy systems. System dynamics modeling was used to understand and simulate these dynamics, building on modeling techniques from the water, energy, and urban systems literature. For each of the two characteristically different cities of Mumbai and London a model was constructed and calibrated with data from various public sources and personal interviews. The differences between the two cases are discussed by means of the models. Transition pathways to sustainable cities with respect to water use, energy use and greenhouse gas emissions are illustrated for each city. Furthermore, uncertainties and model sensitivity, and their implications, are presented. Finally, applicability of either or a hybrid of these models to other cities is investigated.
Rural development and urban migration: can we keep them down on the farm?
Rhoda, R
1983-01-01
This study tests the hypothesis that rural development projects and programs reduce rural-urban migration. The author presents various factors in the social theories of migration, including those relating to origin and destination, intervening obstacles such as distance, and personal factors. 3 economic models of migration are the human capital or cost-benefit approach, the expected income model, and the intersectoral linkage model. Empirical studies of migration indicate that: 1) rural areas with high rates of out-migration tend to have high population densities or high ratios of labor to arable land, 2) distance inhibits migration, 3) rural-urban migration is positively correlated with family income level, and 4) selectivity differences in socioeconomic status between migrants and nonmigrants often are grouped into development packages which might include irrigation, new varieties of seed, subsidized credit, increased extension, and improved marketing arrangements. The migration impacts of some of these efforts are described: 1) land reform usually is expected to slow rural out-migration because it normally increases labor utilization in rural areas, but this is a limited effect, 2) migration effects of the Green Revolution technology are mainly in rural-rural migration, and 3) agricultural mechanization may stimulate rural-urban migration in the long run. Development of rural social services migh have various effects on rural-urban migration. Better rural education, which improves the chances of urban employment, will stimulate rural-urban migration, while successful rural family planning programs will have a negative effect in the long run as there will be reduced population pressure on arable land. Better rural health services might reduce the incentive for rural-urban migration as well. It is suggested that governments reconsider policies which rely on rural development to curb rural-urban migration and alleviate problems of urban poverty and underemployment.
Torija, Antonio J; Ruiz, Diego P; Ramos-Ridao, Angel F
2014-06-01
To ensure appropriate soundscape management in urban environments, the urban-planning authorities need a range of tools that enable such a task to be performed. An essential step during the management of urban areas from a sound standpoint should be the evaluation of the soundscape in such an area. In this sense, it has been widely acknowledged that a subjective and acoustical categorization of a soundscape is the first step to evaluate it, providing a basis for designing or adapting it to match people's expectations as well. In this sense, this work proposes a model for automatic classification of urban soundscapes. This model is intended for the automatic classification of urban soundscapes based on underlying acoustical and perceptual criteria. Thus, this classification model is proposed to be used as a tool for a comprehensive urban soundscape evaluation. Because of the great complexity associated with the problem, two machine learning techniques, Support Vector Machines (SVM) and Support Vector Machines trained with Sequential Minimal Optimization (SMO), are implemented in developing model classification. The results indicate that the SMO model outperforms the SVM model in the specific task of soundscape classification. With the implementation of the SMO algorithm, the classification model achieves an outstanding performance (91.3% of instances correctly classified). © 2013 Elsevier B.V. All rights reserved.
PALM-USM v1.0: A new urban surface model integrated into the PALM large-eddy simulation model
NASA Astrophysics Data System (ADS)
Resler, Jaroslav; Krč, Pavel; Belda, Michal; Juruš, Pavel; Benešová, Nina; Lopata, Jan; Vlček, Ondřej; Damašková, Daša; Eben, Kryštof; Derbek, Přemysl; Maronga, Björn; Kanani-Sühring, Farah
2017-10-01
Urban areas are an important part of the climate system and many aspects of urban climate have direct effects on human health and living conditions. This implies that reliable tools for local urban climate studies supporting sustainable urban planning are needed. However, a realistic implementation of urban canopy processes still poses a serious challenge for weather and climate modelling for the current generation of numerical models. To address this demand, a new urban surface model (USM), describing the surface energy processes for urban environments, was developed and integrated as a module into the PALM large-eddy simulation model. The development of the presented first version of the USM originated from modelling the urban heat island during summer heat wave episodes and thus implements primarily processes important in such conditions. The USM contains a multi-reflection radiation model for shortwave and longwave radiation with an integrated model of absorption of radiation by resolved plant canopy (i.e. trees, shrubs). Furthermore, it consists of an energy balance solver for horizontal and vertical impervious surfaces, and thermal diffusion in ground, wall, and roof materials, and it includes a simple model for the consideration of anthropogenic heat sources. The USM was parallelized using the standard Message Passing Interface and performance testing demonstrates that the computational costs of the USM are reasonable on typical clusters for the tested configurations. The module was fully integrated into PALM and is available via its online repository under the GNU General Public License (GPL). The USM was tested on a summer heat-wave episode for a selected Prague crossroads. The general representation of the urban boundary layer and patterns of surface temperatures of various surface types (walls, pavement) are in good agreement with in situ observations made in Prague. Additional simulations were performed in order to assess the sensitivity of the results to uncertainties in the material parameters, the domain size, and the general effect of the USM itself. The first version of the USM is limited to the processes most relevant to the study of summer heat waves and serves as a basis for ongoing development which will address additional processes of the urban environment and lead to improvements to extend the utilization of the USM to other environments and conditions.
Environmental Flow Modeling Challenges for Rapidly Urbanizing Watersheds
It is a challenge for land use planners and water resource managers to balance water needs that support urban growth and economic development of a growing population and yet maintain ecological flow needs. Urban growth and the associated water resources development in a watershed...
Li, Yu; Zheng, Ji; Li, Fei; Jin, Xueting; Xu, Chen
2017-01-01
Municipal infrastructure is a fundamental facility for the normal operation and development of an urban city and is of significance for the stable progress of sustainable urbanization around the world, especially in developing countries. Based on the municipal infrastructure data of the prefecture-level cities in China, municipal infrastructure development is assessed comprehensively using a FA (factor analysis) model, and then the stochastic model STIRPAT (stochastic impacts by regression on population, affluence and technology) is examined to investigate key factors that influence municipal infrastructure of cities in various stages of urbanization and economy. This study indicates that the municipal infrastructure development in urban China demonstrates typical characteristics of regional differentiation, in line with the economic development pattern. Municipal infrastructure development in cities is primarily influenced by income, industrialization and investment. For China and similar developing countries under transformation, national public investment remains the primary driving force of economy as well as the key influencing factor of municipal infrastructure. Contribution from urbanization and the relative consumption level, and the tertiary industry is still scanty, which is a crux issue for many developing countries under transformation. With economic growth and the transformation requirements, the influence of the conventional factors such as public investment and industrialization on municipal infrastructure development would be expected to decline, meanwhile, other factors like the consumption and tertiary industry driven model and the innovation society can become key contributors to municipal infrastructure sustainability.
Li, Yu; Zheng, Ji; Li, Fei; Jin, Xueting; Xu, Chen
2017-01-01
Municipal infrastructure is a fundamental facility for the normal operation and development of an urban city and is of significance for the stable progress of sustainable urbanization around the world, especially in developing countries. Based on the municipal infrastructure data of the prefecture-level cities in China, municipal infrastructure development is assessed comprehensively using a FA (factor analysis) model, and then the stochastic model STIRPAT (stochastic impacts by regression on population, affluence and technology) is examined to investigate key factors that influence municipal infrastructure of cities in various stages of urbanization and economy. This study indicates that the municipal infrastructure development in urban China demonstrates typical characteristics of regional differentiation, in line with the economic development pattern. Municipal infrastructure development in cities is primarily influenced by income, industrialization and investment. For China and similar developing countries under transformation, national public investment remains the primary driving force of economy as well as the key influencing factor of municipal infrastructure. Contribution from urbanization and the relative consumption level, and the tertiary industry is still scanty, which is a crux issue for many developing countries under transformation. With economic growth and the transformation requirements, the influence of the conventional factors such as public investment and industrialization on municipal infrastructure development would be expected to decline, meanwhile, other factors like the consumption and tertiary industry driven model and the innovation society can become key contributors to municipal infrastructure sustainability. PMID:28787031
The southern megalopolis: using the past to predict the future of urban sprawl in the Southeast U.S.
Terando, Adam; Costanza, Jennifer; Belyea, Curtis; Dunn, Robert R.; McKerrow, Alexa; Collazo, Jaime
2014-01-01
The future health of ecosystems is arguably as dependent on urban sprawl as it is on human-caused climatic warming. Urban sprawl strongly impacts the urban ecosystems it creates and the natural and agro-ecosystems that it displaces and fragments. Here, we project urban sprawl changes for the next 50 years for the fast-growing Southeast U.S. Previous studies have focused on modeling population density, but the urban extent is arguably as important as population density per se in terms of its ecological and conservation impacts. We develop simulations using the SLEUTH urban growth model that complement population-driven models but focus on spatial pattern and extent. To better capture the reach of low-density suburban development, we extend the capabilities of SLEUTH by incorporating street-network information. Our simulations point to a future in which the extent of urbanization in the Southeast is projected to increase by 101% to 192%. Our results highlight areas where ecosystem fragmentation is likely, and serve as a benchmark to explore the challenging tradeoffs between ecosystem health, economic growth and cultural desires.
The Southern Megalopolis: Using the Past to Predict the Future of Urban Sprawl in the Southeast U.S
Terando, Adam J.; Costanza, Jennifer; Belyea, Curtis; Dunn, Robert R.; McKerrow, Alexa; Collazo, Jaime A.
2014-01-01
The future health of ecosystems is arguably as dependent on urban sprawl as it is on human-caused climatic warming. Urban sprawl strongly impacts the urban ecosystems it creates and the natural and agro-ecosystems that it displaces and fragments. Here, we project urban sprawl changes for the next 50 years for the fast-growing Southeast U.S. Previous studies have focused on modeling population density, but the urban extent is arguably as important as population density per se in terms of its ecological and conservation impacts. We develop simulations using the SLEUTH urban growth model that complement population-driven models but focus on spatial pattern and extent. To better capture the reach of low-density suburban development, we extend the capabilities of SLEUTH by incorporating street-network information. Our simulations point to a future in which the extent of urbanization in the Southeast is projected to increase by 101% to 192%. Our results highlight areas where ecosystem fragmentation is likely, and serve as a benchmark to explore the challenging tradeoffs between ecosystem health, economic growth and cultural desires. PMID:25054329
Marcus, Lars
2018-01-01
The world is witnessing unprecedented urbanization, bringing extreme challenges to contemporary practices in urban planning and design. This calls for improved urban models that can generate new knowledge and enhance practical skill. Importantly, any urban model embodies a conception of the relation between humans and the physical environment. In urban modeling this is typically conceived of as a relation between human subjects and an environmental object, thereby reproducing a humans-environment dichotomy. Alternative modeling traditions, such as space syntax that originates in architecture rather than geography, have tried to overcome this dichotomy. Central in this effort is the development of new representations of urban space, such as in the case of space syntax, the axial map. This form of representation aims to integrate both human behavior and the physical environment into one and the same description. Interestingly, models based on these representations have proved to better capture pedestrian movement than regular models. Pedestrian movement, as well as other kinds of human flows in urban space, is essential for urban modeling, since increasingly flows of this kind are understood as the driver in urban processes. Critical for a full understanding of space syntax modeling is the ontology of its' representations, such as the axial map. Space syntax theory here often refers to James Gibson's "Theory of affordances," where the concept of affordances, in a manner similar to axial maps, aims to bridge the subject-object dichotomy by neither constituting physical properties of the environment or human behavior, but rather what emerges in the meeting between the two. In extension of this, the axial map can be interpreted as a representation of how the physical form of the environment affords human accessibility and visibility in urban space. This paper presents a close examination of the form of representations developed in space syntax methodology, in particular in the light of Gibson's "theory of affordances." The overarching aim is to contribute to a theoretical framework for urban models based on affordances, which may support the overcoming of the subject-object dichotomy in such models, here deemed essential for a greater social-ecological sustainability of cities.
Remote sensing assessment of carbon storage by urban forest
NASA Astrophysics Data System (ADS)
Kanniah, K. D.; Muhamad, N.; Kang, C. S.
2014-02-01
Urban forests play a crucial role in mitigating global warming by absorbing excessive CO2 emissions due to transportation, industry and house hold activities in the urban environment. In this study we have assessed the role of trees in an urban forest, (Mutiara Rini) located within the Iskandar Development region in south Johor, Malaysia. We first estimated the above ground biomass/carbon stock of the trees using allometric equations and biometric data (diameter at breast height of trees) collected in the field. We used remotely sensed vegetation indices (VI) to develop an empirical relationship between VI and carbon stock. We used five different VIs derived from a very high resolution World View-2 satellite data. Results show that model by [1] and Normalized Difference Vegetation Index are correlated well (R2 = 0.72) via a power model. We applied the model to the entire study area to obtain carbon stock of urban forest. The average carbon stock in the urban forest (mostly consisting of Dipterocarp species) is ~70 t C ha-1. Results of this study can be used by the Iskandar Regional Development Authority to better manage vegetation in the urban environment to establish a low carbon city in this region.
Development of an urban truck travel model for the Phoenix metropolitan area
DOT National Transportation Integrated Search
1992-02-01
The primary objectives of the Phoenix urban truck travel model project were to conduct a travel survey of commercial vehicles operating within the Phoenix metropolitan area and to use the data collected in this survey to develop commerial vehicle tri...
Dynamic modeling of Tampa Bay urban development using parallel computing
Xian, G.; Crane, M.; Steinwand, D.
2005-01-01
Urban land use and land cover has changed significantly in the environs of Tampa Bay, Florida, over the past 50 years. Extensive urbanization has created substantial change to the region's landscape and ecosystems. This paper uses a dynamic urban-growth model, SLEUTH, which applies six geospatial data themes (slope, land use, exclusion, urban extent, transportation, hillside), to study the process of urbanization and associated land use and land cover change in the Tampa Bay area. To reduce processing time and complete the modeling process within an acceptable period, the model is recoded and ported to a Beowulf cluster. The parallel-processing computer system accomplishes the massive amount of computation the modeling simulation requires. SLEUTH calibration process for the Tampa Bay urban growth simulation spends only 10 h CPU time. The model predicts future land use/cover change trends for Tampa Bay from 1992 to 2025. Urban extent is predicted to double in the Tampa Bay watershed between 1992 and 2025. Results show an upward trend of urbanization at the expense of a decline of 58% and 80% in agriculture and forested lands, respectively.
Project Canada West. Canadian Urban Dynamics: A Model for Student Involvement in the Urban Setting.
ERIC Educational Resources Information Center
Western Curriculum Project on Canada Studies, Edmonton (Alberta).
This is a progress report of a project in the process of developing an interdisciplinary secondary school curriculum on the Canadian urban environment. The primary goal is to encourage constructive involvement in urban life and community decision-making, and develop a personal and social competence that will engender a greater commitment to the…
Air quality: from observation to applied studies
NASA Astrophysics Data System (ADS)
Weber, Christiane H.; Wania, Annett; Hirsch, Jacky; Bruse, Michael
2004-10-01
Air qualities studies in urban areas embrace several directions that are strongly associated with urban complexity. In the last centuries cities evolution implied changes in urbanization trends: urban sprawl has modified the relationship between cities and surroundings settlements. The existence and protection of urban green and open areas is promoted as a mean to improve the quality of life of their citizens and increase the satisfactory level of the inhabitants against pollution and noise adverse effects. This paper outlines the methods and approaches used in the EU research project Benefits of Urban Green Space (BUGS). The main target of BUGS is to assess the role of urban green spaces in alleviating the adverse effects of urbanization trends by developing an integrative methodology, ranging from participatory planning tools to numerical simulation models. The influence of urban structures on atmospheric pollutants distribution is investigated as a multi-scale problem ranging from micro to macro/regional scale. Traditionally, air quality models are applied on a single scale, seldom considering the joint effects of traffic network and urban development together. In BUGS, several numerical models are applied to cope with urban complexity and to provide quantitative and qualitative results. The differing input data requirements for the various models demanded a methodology which ensures a coherent data extraction and application procedure. In this paper, the stepwise procedure used for BUGS is presented after a general presentation of the research project and the models implied. A discussion part will highlight the statements induced by the choices made and a conclusive part bring to the stage some insights for future investigations.
A Culturally Responsive Practice Model for Urban Indian Child Welfare Services.
ERIC Educational Resources Information Center
Mindell, Robert; Vidal de Haymes, Maria; Francisco, Dale
2003-01-01
Describes a collaboration among a university, a state child welfare agency, and a Native American community organization to develop a culturally driven practice model for urban, Native American child welfare. Identifies challenges and opportunities in addressing the needs of urban Native American communities. Concludes with principles for…
Modeling urbanization patterns at a global scale with generative adversarial networks
NASA Astrophysics Data System (ADS)
Albert, A. T.; Strano, E.; Gonzalez, M.
2017-12-01
Current demographic projections show that, in the next 30 years, global population growth will mostly take place in developing countries. Coupled with a decrease in density, such population growth could potentially double the land occupied by settlements by 2050. The lack of reliable and globally consistent socio-demographic data, coupled with the limited predictive performance underlying traditional urban spatial explicit models, call for developing better predictive methods, calibrated using a globally-consistent dataset. Thus, richer models of the spatial interplay between the urban built-up land, population distribution and energy use are central to the discussion around the expansion and development of cities, and their impact on the environment in the context of a changing climate. In this talk we discuss methods for, and present an analysis of, urban form, defined as the spatial distribution of macroeconomic quantities that characterize a city, using modern machine learning methods and best-available remote-sensing data for the world's largest 25,000 cities. We first show that these cities may be described by a small set of patterns in radial building density, nighttime luminosity, and population density, which highlight, to first order, differences in development and land use across the world. We observe significant, spatially-dependent variance around these typical patterns, which would be difficult to model using traditional statistical methods. We take a first step in addressing this challenge by developing CityGAN, a conditional generative adversarial network model for simulating realistic urban forms. To guide learning and measure the quality of the simulated synthetic cities, we develop a specialized loss function for GAN optimization that incorporates standard spatial statistics used by urban analysis experts. Our framework is a stark departure from both the standard physics-based approaches in the literature (that view urban forms as fractals with a scale-free behavior), and the traditional statistical learning approaches (whereby values of individual pixels are modeled as functions of locally-defined, hand-engineered features). This is a first-of-its-kind analysis of urban forms using data at a planetary scale.
An examination of land use impacts of flooding induced by sea level rise
NASA Astrophysics Data System (ADS)
Song, Jie; Fu, Xinyu; Gu, Yue; Deng, Yujun; Peng, Zhong-Ren
2017-03-01
Coastal regions become unprecedentedly vulnerable to coastal hazards that are associated with sea level rise. The purpose of this paper is therefore to simulate prospective urban exposure to changing sea levels. This article first applied the cellular-automaton-based SLEUTH model (Project Gigalopolis, 2016) to calibrate historical urban dynamics in Bay County, Florida (USA) - a region that is greatly threatened by rising sea levels. This paper estimated five urban growth parameters by multiple-calibration procedures that used different Monte Carlo iterations to account for modeling uncertainties. It then employed the calibrated model to predict three scenarios of urban growth up to 2080 - historical trend, urban sprawl, and compact development. We also assessed land use impacts of four policies: no regulations; flood mitigation plans based on the whole study region and on those areas that are prone to experience growth; and the protection of conservational lands. This study lastly overlaid projected urban areas in 2030 and 2080 with 500-year flooding maps that were developed under 0, 0.2, and 0.9 m sea level rise. The calibration results that a substantial number of built-up regions extend from established coastal settlements. The predictions suggest that total flooded area of new urbanized regions in 2080 would be more than 25 times that under the flood mitigation policy, if the urbanization progresses with few policy interventions. The joint model generates new knowledge in the domain between land use modeling and sea level rise. It contributes to coastal spatial planning by helping develop hazard mitigation schemes and can be employed in other international communities that face combined pressure of urban growth and climate change.
An Assessment of the Impact of Urbanization on Soil Erosion in Inner Mongolia.
Wang, Li-Yan; Xiao, Yi; Rao, En-Ming; Jiang, Ling; Xiao, Yang; Ouyang, Zhi-Yun
2018-03-19
Inner Mongolia, an autonomous region of the People's Republic of China, has experienced severe soil erosion following a period of rapid economic development and urbanization. To investigate how urbanization has influenced the extent of soil erosion in Inner Mongolia, we used urbanization and soil erosion data from 2000 through 2010 to determine the relationship between urbanization and soil erosion patterns. Two empirical equations-the Revised Universal Soil Loss Equation (RUSLE) and the Revised Wind Erosion Equation (RWEQ)-were used to estimate the intensity of soil erosion, and we performed backward linear regression to model how it changed with greater urbanization. There was an apparent increase in the rate of urbanization and a decrease in the area affected by soil erosion in 2010 compared to the corresponding values for 2000. The urban population stood at 11.32 million in 2010, which represented a 16.47% increase over that in 2000. The area affected by soil erosion in 2000 totaled 704,817 km², yet it had decreased to 674,135 km² by 2010. However, a path of modest urban development (rural-urban mitigation) and reasonable industrial structuring (the development of GDP-2) may partially reduce urbanization's ecological pressure and thus indirectly reduce the threat of soil erosion to human security. Therefore, to better control soil erosion in Inner Mongolia during the process of urbanization, the current model of economic development should be modified to improve the eco-efficiency of urbanization, while also promoting new modes of urbanization that are environmentally sustainable, cost-effective, and conserve limited resources.
ERIC Educational Resources Information Center
Kim, Sangwon; Orpinas, Pamela; Kamphaus, Randy; Kelder, Steven H.
2011-01-01
This study empirically derived a multiple risk factors model of the development of aggression among middle school students in urban, low-income neighborhoods, using Hierarchical Linear Modeling (HLM). Results indicated that aggression increased from sixth to eighth grade. Additionally, the influences of four risk domains (individual, family,…
24 CFR 1000.112 - How will HUD determine whether to approve model housing activities?
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false How will HUD determine whether to approve model housing activities? 1000.112 Section 1000.112 Housing and Urban Development Regulations... Activities § 1000.112 How will HUD determine whether to approve model housing activities? HUD will review all...
Application of the ACASA model for urban development studies
NASA Astrophysics Data System (ADS)
Marras, S.; Pyles, R. D.; Falk, M.; Snyder, R. L.; Paw U, K. T.; Blecic, I.; Trunfio, G. A.; Cecchini, A.; Spano, D.
2012-04-01
Since urban population is growing fast and urban areas are recognized as the major source of CO2 emissions, more attention has being dedicated to the topic of urban sustainability and its connection with the climate. Urban flows of energy, water and carbon have an important impact on climate change and their quantification is pivotal in the city design and management. Large effort has been devoted to quantitative estimates of the urban metabolism components, and several advanced models have been developed and used at different spatial and temporal scales for this purpose. However, it is necessary to develop suitable tools and indicators to effectively support urban planning and management with the goal of achieving a more sustainable metabolism in the urban environment. In this study, the multilayer model ACASA (Advanced Canopy-Atmosphere-Soil Algorithm) was chosen to simulate the exchanges of heat, water vapour and CO2 within and above urban canopy. After several calibration and evaluation tests over natural and agricultural ecosystems, the model was recently modified for application in urban and peri-urban areas. New equations to account for the anthropogenic contribution to heat exchange and carbon production, as well as key parameterizations of leaf-facet scale interactions to separate both biogenic and anthropogenic flux sources and sinks, were added to test changes in land use or urban planning strategies. The analysis was based on the evaluation of the ACASA model performance in estimating urban metabolism components at local scale. Simulated sensible heat, latent heat, and carbon fluxes were compared with in situ Eddy Covariance measurements collected in the city centre of Florence (Italy). Statistical analysis was performed to test the model accuracy and reliability. Model sensitivity to soil types and increased population density values was conducted to investigate the potential use of ACASA for evaluating the impact of planning alternative scenarios. In this contest, an in progress application of ACASA for estimating carbon exchanges alternative scenarios is represented by its integration in a software framework composed by: (i) a Cellular Automata model to simulate the urban land-use dynamics; (ii) a transportation model, able to estimate the variation of the transportation network load; (iii) the ACASA model, and (iv) the mesoscale weather model WRF for the estimation of the relevant urban metabolism components at regional scale. The CA module is able to produce future land use maps, which represent a spatial distribution of the aggregate land-use demand consistent with the main rules governing the functioning of an urban system. Such future land use maps, together with the street network including the current traffic data, are used by the transportation module for estimating future traffic data coherent with the assumed land uses trends. All these information are then used by the coupled model WRF-ACASA for estimating future maps of CO2 fluxes in the urban area under consideration, allowing to estimate the impact of future planning strategies in reducing C emissions. The in-progress application of this system to the city of Florence is presented here.
NASA Astrophysics Data System (ADS)
Tkáč, Štefan
2015-11-01
To achieve the smart growth and equitable development in the region, urban planners should consider also lateral energies represented by the energy urban models like further proposed EEPGC focused on energy distribution via connections among micro-urban structures, their onsite renewable resources and the perception of micro-urban structures as decentralized energy carriers based on pre industrialized era. These structures are still variously bound when part of greater patterns. After the industrial revolution the main traded goods became energy in its various forms. The EEPGC is focused on sustainable energy transportation distances between the villages and the city, described by the virtual "energy circles". This more human scale urbanization, boost the economy in micro-urban areas, rising along with clean energy available in situ that surely gives a different perspective to human quality of life in contrast to overcrowded multicultural mega-urban structures facing generations of problems and struggling to survive as a whole.
NASA Astrophysics Data System (ADS)
Shao, Yang
This research focuses on the application of remote sensing, geographic information systems, statistical modeling, and spatial analysis to examine the dynamics of urban land cover, urban structure, and population-environment interactions in Bangkok, Thailand, with an emphasis on rural-to-urban migration from rural Nang Rong District, Northeast Thailand to the primate city of Bangkok. The dissertation consists of four main sections: (1) development of remote sensing image classification and change-detection methods for characterizing imperviousness for Bangkok, Thailand from 1993-2002; (2) development of 3-D urban mapping methods, using high spatial resolution IKONOS satellite images, to assess high-rises and other urban structures; (3) assessment of urban spatial structure from 2-D and 3-D perspectives; and (4) an analysis of the spatial clustering of migrants from Nang Rong District in Bangkok and the neighborhood environments of migrants' locations. Techniques are developed to improve the accuracy of the neural network classification approach for the analysis of remote sensing data, with an emphasis on the spectral unmixing problem. The 3-D building heights are derived using the shadow information on the high-resolution IKONOS image. The results from the 2-D and 3-D mapping are further examined to assess urban structure and urban feature identification. This research contributes to image processing of remotely-sensed images and urban studies. The rural-urban migration process and migrants' settlement patterns are examined using spatial statistics, GIS, and remote sensing perspectives. The results show that migrants' spatial clustering in urban space is associated with the source village and a number of socio-demographic variables. In addition, the migrants' neighborhood environments in urban setting are modeled using a set of geographic and socio-demographic variables, and the results are scale-dependent.
Li, Ke; Zhang, Peng; Crittenden, John C; Guhathakurta, Subhrajit; Chen, Yongsheng; Fernando, Harindra; Sawhney, Anil; McCartney, Peter; Grimm, Nancy; Kahhat, Ramzy; Joshi, Himanshu; Konjevod, Goran; Choi, Yu-Jin; Fonseca, Ernesto; Allenby, Braden; Gerrity, Daniel; Torrens, Paul M
2007-07-15
To encourage sustainable development, engineers and scientists need to understand the interactions among social decision-making, development and redevelopment, land, energy and material use, and their environmental impacts. In this study, a framework that connects these interactions was proposed to guide more sustainable urban planning and construction practices. Focusing on the rapidly urbanizing setting of Phoenix, Arizona, complexity models and deterministic models were assembled as a metamodel, which is called Sustainable Futures 2100 and were used to predict land use and development, to quantify construction material demands, to analyze the life cycle environmental impacts, and to simulate future ground-level ozone formation.
24 CFR 92.206 - Eligible project costs.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Eligible project costs. 92.206 Section 92.206 Housing and Urban Development Office of the Secretary, Department of Housing and Urban... participating jurisdiction and the Model Energy Code referred to in § 92.251; (2) For rehabilitation, costs: (i...
Xiao, Feng; Gulliver, John S; Simcik, Matt F
2013-12-15
The contamination of urban lakes by anthropogenic pollutants such as perfluorooctane sulfonate (PFOS) is a worldwide environmental problem. Large-scale, long-term monitoring of urban lakes requires careful prioritization of available resources, focusing efforts on potentially impaired lakes. Herein, a database of PFOS concentrations in 304 fish caught from 28 urban lakes was used for development of an urban-lake prioritization framework by means of exploratory data analysis (EDA) with the aid of a geographical information system. The prioritization scheme consists of three main tiers: preliminary classification, carried out by hierarchical cluster analysis; predictor screening, fulfilled by a regression tree method; and model development by means of a neural network. The predictive performance of the newly developed model was assessed using a training/validation splitting method and determined by an external validation set. The application of the model in the U.S. state of Minnesota identified 40 urban lakes that may contain elevated levels of PFOS; these lakes were not previously considered in PFOS monitoring programs. The model results also highlight ongoing industrial/commercial activities as a principal determinant of PFOS pollution in urban lakes, and suggest vehicular traffic as an important source and surface runoff as a primary pollution carrier. In addition, the EDA approach was further compared to a spatial interpolation method (kriging), and their advantages and disadvantages were discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
a Quadtree Organization Construction and Scheduling Method for Urban 3d Model Based on Weight
NASA Astrophysics Data System (ADS)
Yao, C.; Peng, G.; Song, Y.; Duan, M.
2017-09-01
The increasement of Urban 3D model precision and data quantity puts forward higher requirements for real-time rendering of digital city model. Improving the organization, management and scheduling of 3D model data in 3D digital city can improve the rendering effect and efficiency. This paper takes the complexity of urban models into account, proposes a Quadtree construction and scheduling rendering method for Urban 3D model based on weight. Divide Urban 3D model into different rendering weights according to certain rules, perform Quadtree construction and schedule rendering according to different rendering weights. Also proposed an algorithm for extracting bounding box extraction based on model drawing primitives to generate LOD model automatically. Using the algorithm proposed in this paper, developed a 3D urban planning&management software, the practice has showed the algorithm is efficient and feasible, the render frame rate of big scene and small scene are both stable at around 25 frames.
Integrated urban water cycle management: the UrbanCycle model.
Hardy, M J; Kuczera, G; Coombes, P J
2005-01-01
Integrated urban water cycle management presents a new framework in which solutions to the provision of urban water services can be sought. It enables new and innovative solutions currently constrained by the existing urban water paradigm to be implemented. This paper introduces the UrbanCycle model. The model is being developed in response to the growing and changing needs of the water management sector and in light of the need for tools to evaluate integrated watercycle management approaches. The key concepts underpinning the UrbanCycle model are the adoption of continuous simulation, hierarchical network modelling, and the careful management of computational complexity. The paper reports on the integration of modelling capabilities across the allotment, and subdivision scales, enabling the interactions between these scales to be explored. A case study illustrates the impacts of various mitigation measures possible under an integrated water management framework. The temporal distribution of runoff into ephemeral streams from a residential allotment in Western Sydney is evaluated and linked to the geomorphic and ecological regimes in receiving waters.
An Assessment of the Impact of Urbanization on Soil Erosion in Inner Mongolia
Xiao, Yi; Rao, En-Ming; Jiang, Ling; Xiao, Yang; Ouyang, Zhi-Yun
2018-01-01
Inner Mongolia, an autonomous region of the People’s Republic of China, has experienced severe soil erosion following a period of rapid economic development and urbanization. To investigate how urbanization has influenced the extent of soil erosion in Inner Mongolia, we used urbanization and soil erosion data from 2000 through 2010 to determine the relationship between urbanization and soil erosion patterns. Two empirical equations—the Revised Universal Soil Loss Equation (RUSLE) and the Revised Wind Erosion Equation (RWEQ)—were used to estimate the intensity of soil erosion, and we performed backward linear regression to model how it changed with greater urbanization. There was an apparent increase in the rate of urbanization and a decrease in the area affected by soil erosion in 2010 compared to the corresponding values for 2000. The urban population stood at 11.32 million in 2010, which represented a 16.47% increase over that in 2000. The area affected by soil erosion in 2000 totaled 704,817 km2, yet it had decreased to 674,135 km2 by 2010. However, a path of modest urban development (rural–urban mitigation) and reasonable industrial structuring (the development of GDP-2) may partially reduce urbanization’s ecological pressure and thus indirectly reduce the threat of soil erosion to human security. Therefore, to better control soil erosion in Inner Mongolia during the process of urbanization, the current model of economic development should be modified to improve the eco-efficiency of urbanization, while also promoting new modes of urbanization that are environmentally sustainable, cost-effective, and conserve limited resources. PMID:29562707
USDA-ARS?s Scientific Manuscript database
Assessing the performance of Low Impact Development (LID) practices at a catchment scale is important in managing urban watersheds. Few modeling tools exist that are capable of explicitly representing the hydrological mechanisms of LIDs while considering the diverse land uses of urban watersheds. ...
Research on monocentric model of urbanization by agent-based simulation
NASA Astrophysics Data System (ADS)
Xue, Ling; Yang, Kaizhong
2008-10-01
Over the past years, GIS have been widely used for modeling urbanization from a variety of perspectives such as digital terrain representation and overlay analysis using cell-based data platform. Similarly, simulation of urban dynamics has been achieved with the use of Cellular Automata. In contrast to these approaches, agent-based simulation provides a much more powerful set of tools. This allows researchers to set up a counterpart for real environmental and urban systems in computer for experimentation and scenario analysis. This Paper basically reviews the research on the economic mechanism of urbanization and an agent-based monocentric model is setup for further understanding the urbanization process and mechanism in China. We build an endogenous growth model with dynamic interactions between spatial agglomeration and urban development by using agent-based simulation. It simulates the migration decisions of two main types of agents, namely rural and urban households between rural and urban area. The model contains multiple economic interactions that are crucial in understanding urbanization and industrial process in China. These adaptive agents can adjust their supply and demand according to the market situation by a learning algorithm. The simulation result shows this agent-based urban model is able to perform the regeneration and to produce likely-to-occur projections of reality.
Characterization and Low-Dimensional Modeling of Urban Fluid Flow
2014-10-06
4 2 Wind Tunnel , Apparatus and Data Processing 7 2.1 Modelling of the Atmospheric Boundary Layer...was demonstrated. Most notably, wind tunnel experiments were performed at a number of different angles of incidence, providing for the first time a...Coceal and Belcher [2004] developed an urban canopy model for mean winds in urban areas that compares well with data from wind tunnel experiments
iTree-Hydro: Snow hydrology update for the urban forest hydrology model
Yang Yang; Theodore A. Endreny; David J. Nowak
2011-01-01
This article presents snow hydrology updates made to iTree-Hydro, previously called the Urban Forest EffectsâHydrology model. iTree-Hydro Version 1 was a warm climate model developed by the USDA Forest Service to provide a process-based planning tool with robust water quantity and quality predictions given data limitations common to most urban areas. Cold climate...
Modelling urban growth in the Indo-Gangetic plain using nighttime OLS data and cellular automata
NASA Astrophysics Data System (ADS)
Roy Chowdhury, P. K.; Maithani, Sandeep
2014-12-01
The present study demonstrates the applicability of the Operational Linescan System (OLS) sensor in modelling urban growth at regional level. The nighttime OLS data provides an easy, inexpensive way to map urban areas at a regional scale, requiring a very small volume of data. A cellular automata (CA) model was developed for simulating urban growth in the Indo-Gangetic plain; using OLS data derived maps as input. In the proposed CA model, urban growth was expressed in terms of causative factors like economy, topography, accessibility and urban infrastructure. The model was calibrated and validated based on OLS data of year 2003 and 2008 respectively using spatial metrics measures and subsequently the urban growth was predicted for the year 2020. The model predicted high urban growth in North Western part of the study area, in south eastern part growth would be concentrated around two cities, Kolkata and Howrah. While in the middle portion of the study area, i.e., Jharkhand, Bihar and Eastern Uttar Pradesh, urban growth has been predicted in form of clusters, mostly around the present big cities. These results will not only provide an input to urban planning but can also be utilized in hydrological and ecological modelling which require an estimate of future built up areas especially at regional level.
NASA Astrophysics Data System (ADS)
Wang, Jun; Feng, Jinming; Yan, Zhongwei
2015-09-01
In this study, we investigated how different degrees of urbanization affect local and regional rainfall using high-resolution simulations based on the Weather Research and Forecasting Model. The extreme rainfall event of 21 July 2012 in Beijing was simulated for three representative urban land use distributions (no urbanization, early urbanization level of 1980, and recent urbanization level of 2009). Results suggest that urban modification of rainfall is potentially sensitive to urban land use condition. Rainfall was increased significantly over the downwind Beijing metropolis because of the effects of early urbanization; however, recent conditions of high urban development caused no significant increase. Further comparative analysis revealed that positive urban thermodynamical effects (i.e., urban warming, increased sensible heat transportation, and enhanced convergence and vertical motions) play major roles in urban modification of rainfall during the early urbanization stage. However, after cities expand to a certain extent (i.e., urban agglomeration), the regional moisture depression induced by the prevalence of impervious urban land has an effect on atmospheric instability energy, which might negate the city's positive impact on regional rainfall. Additional results from regional climate simulations for 10 Julys confirm this supposition. Given the explosive urban population growth and increasing demand for freshwater in cities, the potential negative effects of the urban environment on precipitation are worth investigation, particularly in rapidly developing countries and regions.
Agent-based model to rural urban migration analysis
NASA Astrophysics Data System (ADS)
Silveira, Jaylson J.; Espíndola, Aquino L.; Penna, T. J. P.
2006-05-01
In this paper, we analyze the rural-urban migration phenomenon as it is usually observed in economies which are in the early stages of industrialization. The analysis is conducted by means of a statistical mechanics approach which builds a computational agent-based model. Agents are placed on a lattice and the connections among them are described via an Ising-like model. Simulations on this computational model show some emergent properties that are common in developing economies, such as a transitional dynamics characterized by continuous growth of urban population, followed by the equalization of expected wages between rural and urban sectors (Harris-Todaro equilibrium condition), urban concentration and increasing of per capita income.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.
1999-01-01
This paper presents an overview of Project ATLANTA (ATlanta Land use ANalysis: Temperature and Air-quality) which is an investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta, Georgia metropolitan area since the early 1970's has impacted the region's climate and air quality. The primary objectives for this research effort are: (1) To investigate and model the relationships between land cover change in the Atlanta metropolitan, and the development of the urban heat island phenomenon through time; (2) To investigate and model the temporal relationships between Atlanta urban growth and land cover change on air quality; and (3) To model the overall effects of urban development on surface energy budget characteristics across the Atlanta urban landscape through time. Our key goal is to derive a better scientific understanding of how land cover changes associated with urbanization in the Atlanta area, principally in transforming forest lands to urban land covers through time, has, and will, effect local and regional climate, surface energy flux, and air quality characteristics. Allied with this goal is the prospect that the results from this research can be applied by urban planners, environmental managers and other decision-makers, for determining how urbanization has impacted the climate and overall environment of the Atlanta area. Multiscaled remote sensing data, particularly high resolution thermal infrared data, are integral to this study for the analysis of thermal energy fluxes across the Atlanta urban landscape.
NASA Astrophysics Data System (ADS)
Kawano, N.; Varquez, A. C. G.; Dong, Y.; Kanda, M.
2016-12-01
Numerical model such as Weather Research and Forecasting model coupled with single-layer Urban Canopy Model (WRF-UCM) is one of the powerful tools to investigate urban heat island. Urban parameters such as average building height (Have), plain area index (λp) and frontal area index (λf), are necessary inputs for the model. In general, these parameters are uniformly assumed in WRF-UCM but this leads to unrealistic urban representation. Distributed urban parameters can also be incorporated into WRF-UCM to consider a detail urban effect. The problem is that distributed building information is not readily available for most megacities especially in developing countries. Furthermore, acquiring real building parameters often require huge amount of time and money. In this study, we investigated the potential of using globally available satellite-captured datasets for the estimation of the parameters, Have, λp, and λf. Global datasets comprised of high spatial resolution population dataset (LandScan by Oak Ridge National Laboratory), nighttime lights (NOAA), and vegetation fraction (NASA). True samples of Have, λp, and λf were acquired from actual building footprints from satellite images and 3D building database of Tokyo, New York, Paris, Melbourne, Istanbul, Jakarta and so on. Regression equations were then derived from the block-averaging of spatial pairs of real parameters and global datasets. Results show that two regression curves to estimate Have and λf from the combination of population and nightlight are necessary depending on the city's level of development. An index which can be used to decide which equation to use for a city is the Gross Domestic Product (GDP). On the other hand, λphas less dependence on GDP but indicated a negative relationship to vegetation fraction. Finally, a simplified but precise approximation of urban parameters through readily-available, high-resolution global datasets and our derived regressions can be utilized to estimate a global distribution of urban parameters for later incorporation into a weather model, thus allowing us to acquire a global understanding of urban climate (Global Urban Climatology). Acknowledgment: This research was supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan.
NASA Astrophysics Data System (ADS)
Geldiyev, P.
2017-12-01
Rapid urban development and changing climate influences the frequency and magnitude of flooding in Houston area. This proposed project aims to evaluate the flooding risks with the current and future land use changes by 2040 for one subbasin of the San Jacinto Brazos/Neches-Trinity Coastal basin. Surface environments and streamflow data of the Clear Creek are analyzed and stimulated to discuss the possible impact of urbanization on the occurrence of floods. The streamflow data is analyzed and simulated with the application of the Geographic Information Systems and its extensions. Both hydrologic and hydraulic models of the Clear Creek are created with the use of HEC-HMS and HEC-RAS software. Both models are duplicated for the year 2040, based on projected 2040 Landcover Maps developed by Houston and Galveston Area Council. This project examines a type of contemporary hydrologic disturbance and the interaction between land cover and changes in hydrological processes. Expected results will be very significant for urban development and flooding management.
NASA Astrophysics Data System (ADS)
Dong, L.
2017-12-01
Abstract: The original urban surface structure changed a lot because of the rapid development of urbanization. Impermeable area has increased a lot. It causes great pressure for city flood control and drainage. Songmushan reservoir basin with high degree of urbanization is taken for an example. Pixel from Landsat is decomposed by Linear spectral mixture model and the proportion of urban area in it is considered as impervious rate. Based on impervious rate data before and after urbanization, an physically based distributed hydrological model, Liuxihe Model, is used to simulate the process of hydrology. The research shows that the performance of the flood forecasting of high urbanization area carried out with Liuxihe Model is perfect and can meet the requirement of the accuracy of city flood control and drainage. The increase of impervious area causes conflux speed more quickly and peak flow to be increased. It also makes the time of peak flow advance and the runoff coefficient increase. Key words: Liuxihe Model; Impervious rate; City flood control and drainage; Urbanization; Songmushan reservoir basin
In September 2013, EPA announced the release of the final report, Watershed Modeling to Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to Potential Climate Change and Urban Development in 20 U.S. Watersheds.
Watershed modeling was conducted in ...
Using urban forest assessment tools to model bird habitat potential
Susannah B. Lerman; Keith H. Nislow; David J. Nowak; Stephen DeStefano; David I. King; D. Todd Jones-Farrand
2014-01-01
The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat...
Application of GIS to modified models of vehicle emission dispersion
NASA Astrophysics Data System (ADS)
Jin, Taosheng; Fu, Lixin
This paper reports on a preliminary study of the forecast and evaluation of transport-related air pollution dispersion in urban areas. Some modifications of the traditional Gauss dispersion models are provided, and especially a crossroad model is built, which considers the great variation of vehicle emission attributed to different driving patterns at the crossroad. The above models are combined with a self-developed geographic information system (GIS) platform, and a simulative system with graphical interfaces is built. The system aims at visually describing the influences on the urban environment by urban traffic characteristics and therefore gives a reference to the improvement of urban air quality. Due to the introduction of a self-developed GIS platform and a creative crossroad model, the system is more effective, flexible and accurate. Finally, a comparison of the simulated (predicted) and observed hourly concentration is given, which indicates a good simulation.
Evaluating the compatibility of multi-functional and intensive urban land uses
NASA Astrophysics Data System (ADS)
Taleai, M.; Sharifi, A.; Sliuzas, R.; Mesgari, M.
2007-12-01
This research is aimed at developing a model for assessing land use compatibility in densely built-up urban areas. In this process, a new model was developed through the combination of a suite of existing methods and tools: geographical information system, Delphi methods and spatial decision support tools: namely multi-criteria evaluation analysis, analytical hierarchy process and ordered weighted average method. The developed model has the potential to calculate land use compatibility in both horizontal and vertical directions. Furthermore, the compatibility between the use of each floor in a building and its neighboring land uses can be evaluated. The method was tested in a built-up urban area located in Tehran, the capital city of Iran. The results show that the model is robust in clarifying different levels of physical compatibility between neighboring land uses. This paper describes the various steps and processes of developing the proposed land use compatibility evaluation model (CEM).
Validation of urban freeway models. [supporting datasets
DOT National Transportation Integrated Search
2015-01-01
The goal of the SHRP 2 Project L33 Validation of Urban Freeway Models was to assess and enhance the predictive travel time reliability models developed in the SHRP 2 Project L03, Analytic Procedures for Determining the Impacts of Reliability Mitigati...
NASA Astrophysics Data System (ADS)
Jørgensen, Claus; Mark, Ole; Djordjevic, Slobodan; Hammond, Michael; Khan, David M.; Erichsen, Anders; Dorrit Enevoldsen, Ann; Heinicke, Gerald; Helwigh, Birgitte
2015-04-01
Indroduction Urban flooding due to rainfall exceeding the design capacity of drainage systems is a global problem and it has significant economic and social consequences. While the cost of the direct flood damages of urban flooding is well understood, the indirect damages, like the water borne diseases is in general still poorly understood. Climate changes are expected to increase the frequency of urban flooding in many countries which is likely to increase water borne diseases. Diarrheal diseases are most prevalent in developing countries, where poor sanitation, poor drinking water and poor surface water quality causes a high disease burden and mortality, especially during floods. The level of water borne diarrhea in countries with well-developed water and waste water infrastructure has been reduced to an acceptable level, and the population in general do not consider waste water as being a health risk. Hence, exposure to wastewater influenced urban flood water still has the potential to cause transmission of diarrheal diseases. When managing urban flooding and planning urban climate change adaptations, health risks are rarely taken into consideration. This paper outlines a novel methodology for linking dynamic urban flood modelling with Quantitative Microbial Risk Assessment (QMRA). This provides a unique possibility for understanding the interaction between urban flooding and the health risks caused by direct human contact with flood water and provides an option for reducing the burden of disease in the population through the use of intelligent urban flood risk management. Methodology We have linked hydrodynamic urban flood modelling with quantitative microbial risk assessment (QMRA) to determine the risk of infection caused by exposure to wastewater influenced urban flood water. The deterministic model MIKE Flood, which integrates the sewer network model in MIKE Urban and the 2D surface model MIKE21, was used to calculate the concentration of pathogens in the flood water, based on either measured waste water pathogen concentrations or on assumptions regarding the prevalence of infections in the population. The exposure (dosage) to pathogens was estimated by multiplying the concentration with literature values for the ingestion of water for different exposure groups (e.g. children, adults). The probability of infection was determined by applying dose response relations and MonteCarlo simulation. The methodology is demonstrated on two cases, i.e one case from a developing country with poor sanitation and one case from a developed country, where climate adaptation is the main issue: The risk of cholera in the City of Dhaka, Bangladesh during a flood event 2004, and the risk of bacterial and viral infections of during a flood event in Copenhagen, Denmark in 2011. Results PIC The historical flood events in Dhaka (2004) and Copenhagen (2011) were successfully modelled. The urban flood model was successfully coupled to QMRA. An example of the results of the quantitative microbial risk assessment given as the average estimated risk of cholera infection for children below 5 years living in slum areas in Dhaka is shown in the figure. Similarly, the risk of infection during the flood event in Copenhagen will be presented in the article. Conclusions We have developed a methodology for the dynamic modeling of the risk of infection during waste water influenced urban flooding. The outcome of the modelling exercise indicates that direct contact with polluted flood water is a likely route of transmission of cholera in Dhaka, and bacterial and viral infectious diseases in Copenhagen. It demonstrates the applicability and the potential for linking urban flood models with QMRA in order to identify interventions to reduce the burden of disease on the population in Dhaka City and Copenhagen.
The Model of Landscape Development in Big Cities Of Central Java
NASA Astrophysics Data System (ADS)
Darmawan, E.; Murtini, T. W.
2018-05-01
The existence of urban parks as a part of urban green space is very important for the environment and the citizen of the city, and inseparable part from the urban landscape. In its development, the existence of an urban parks could create a safe, comfortable, productive, and visually aesthetical environment. The problem arising now is a view that the urban parks are often unsuitable with the surrounding. Therefore, the parks are not functional and does not have significant visual. So that, this research is aimed to reveal model of landscape development in big cities in Central Java. The method used is descriptive qualitative that can describe the detail of problem, in determining the plan to overcome the problem. The research location will focused on big cities in Central Java with potential landscape that can be improved. The results of the research will be composed in an international scientific journals and is expected to be a reference in the field of urban landscape arrangement.
Spatio-Temporal Dynamics of Urbanization in China: Historical and Future
NASA Astrophysics Data System (ADS)
Zhou, Y.; Smith, S.; Zhao, K.; Imhoff, M. L.; Thomson, A. M.; Eom, J.; Yu, S.; Bond-Lamberty, B. P.
2014-12-01
One way humans affect the Earth is by clearing lands and building cities, a process intricately coupled with population growth. The transformation of terrestrial environments by urbanization has been accelerating during the past 30 years. China, for instance, has experienced urbanization at an unprecedented rate, with the urban population increasing from ~20% to 50% between 1980 and 2010. This urban expansion has resulted in a range of environmental and socioeconomic consequences, such as released carbon, reduced habitats, and threatened biodiversity. Improved information on historical and future urbanization is essential to understand these environmental effects, and to promote a sustainable urbanization in China. Supported by urban maps derived from nightlights remote sensing data and socio-economic drivers, we developed an integrated modeling framework to project future urban expansion in China by integrating a top-down macro-scale statistical model with a bottom-up urban growth model (three examples in Figure 1). With the models calibrated and validated using historical data, we explored annual urban growth at the province level and urban sprawl at the grid level (1-km) over the next two decades under a number of socio-economic scenarios. The results of this study will be of great value with practical implications for a sustainable urbanization (e.g. mitigation of urban heat island).
NASA Astrophysics Data System (ADS)
Suhaili Mansor, Nur; Zulhaidi Mohd Shafri, Helmi; Mansor, Shattri; Paradhan, Biswajeet
2014-06-01
Specifically, the integration between social sciences and natural science are fundamental in our understanding of the economic, social and technological transformations that have drastically changed the society. This study will be based on the municipality of Sungai Petani, Kedah as it has been most influenced by urbanization and urban development. Urban development in Sungai Petani is closely associated with a tremendous increase in demand for land, which is highly related to population growth, human movement and their social mobility. The qualitative case study taken will rely on the visual interpretation technique that would allow the researcher to develop a map of urban changes detection. The potential application of GIS information to estimate socioeconomic indicators and the modelling of socio-economic activities that are explored in this study is hoped to increase further our understanding of the impacts of development and urbanization on social life.
Geospatial Modelling Approach for 3d Urban Densification Developments
NASA Astrophysics Data System (ADS)
Koziatek, O.; Dragićević, S.; Li, S.
2016-06-01
With growing populations, economic pressures, and the need for sustainable practices, many urban regions are rapidly densifying developments in the vertical built dimension with mid- and high-rise buildings. The location of these buildings can be projected based on key factors that are attractive to urban planners, developers, and potential buyers. Current research in this area includes various modelling approaches, such as cellular automata and agent-based modelling, but the results are mostly linked to raster grids as the smallest spatial units that operate in two spatial dimensions. Therefore, the objective of this research is to develop a geospatial model that operates on irregular spatial tessellations to model mid- and high-rise buildings in three spatial dimensions (3D). The proposed model is based on the integration of GIS, fuzzy multi-criteria evaluation (MCE), and 3D GIS-based procedural modelling. Part of the City of Surrey, within the Metro Vancouver Region, Canada, has been used to present the simulations of the generated 3D building objects. The proposed 3D modelling approach was developed using ESRI's CityEngine software and the Computer Generated Architecture (CGA) language.
Marcus, Lars
2018-01-01
The world is witnessing unprecedented urbanization, bringing extreme challenges to contemporary practices in urban planning and design. This calls for improved urban models that can generate new knowledge and enhance practical skill. Importantly, any urban model embodies a conception of the relation between humans and the physical environment. In urban modeling this is typically conceived of as a relation between human subjects and an environmental object, thereby reproducing a humans-environment dichotomy. Alternative modeling traditions, such as space syntax that originates in architecture rather than geography, have tried to overcome this dichotomy. Central in this effort is the development of new representations of urban space, such as in the case of space syntax, the axial map. This form of representation aims to integrate both human behavior and the physical environment into one and the same description. Interestingly, models based on these representations have proved to better capture pedestrian movement than regular models. Pedestrian movement, as well as other kinds of human flows in urban space, is essential for urban modeling, since increasingly flows of this kind are understood as the driver in urban processes. Critical for a full understanding of space syntax modeling is the ontology of its' representations, such as the axial map. Space syntax theory here often refers to James Gibson's “Theory of affordances,” where the concept of affordances, in a manner similar to axial maps, aims to bridge the subject-object dichotomy by neither constituting physical properties of the environment or human behavior, but rather what emerges in the meeting between the two. In extension of this, the axial map can be interpreted as a representation of how the physical form of the environment affords human accessibility and visibility in urban space. This paper presents a close examination of the form of representations developed in space syntax methodology, in particular in the light of Gibson's “theory of affordances.“ The overarching aim is to contribute to a theoretical framework for urban models based on affordances, which may support the overcoming of the subject-object dichotomy in such models, here deemed essential for a greater social-ecological sustainability of cities. PMID:29731726
NASA Astrophysics Data System (ADS)
Shafizadeh-Moghadam, Hossein; Helbich, Marco
2015-03-01
The rapid growth of megacities requires special attention among urban planners worldwide, and particularly in Mumbai, India, where growth is very pronounced. To cope with the planning challenges this will bring, developing a retrospective understanding of urban land-use dynamics and the underlying driving-forces behind urban growth is a key prerequisite. This research uses regression-based land-use change models - and in particular non-spatial logistic regression models (LR) and auto-logistic regression models (ALR) - for the Mumbai region over the period 1973-2010, in order to determine the drivers behind spatiotemporal urban expansion. Both global models are complemented by a local, spatial model, the so-called geographically weighted logistic regression (GWLR) model, one that explicitly permits variations in driving-forces across space. The study comes to two main conclusions. First, both global models suggest similar driving-forces behind urban growth over time, revealing that LRs and ALRs result in estimated coefficients with comparable magnitudes. Second, all the local coefficients show distinctive temporal and spatial variations. It is therefore concluded that GWLR aids our understanding of urban growth processes, and so can assist context-related planning and policymaking activities when seeking to secure a sustainable urban future.
NASA Astrophysics Data System (ADS)
McGregor Petgrave, Dahlia M.
Many teachers are not adequately prepared to help urban students who have trouble understanding conceptual ideas in biology because these students have little connection to the natural world. This study explored potential professional development strategies to help urban biology teachers use concept maps effectively with various topics in the biology curriculum. A grounded theory approach was used to develop a substantive professional development model for urban biology teachers. Qualitative data were collected through 16 semi-structured interviews of professional developers experienced in working with concept maps in the urban context. An anonymous online survey was used to collect quantitative data from 56 professional developers and teachers to support the qualitative data. The participants were from New York City, recruited through the NY Biology-Chemistry Professional Development Mentor Network and the NY Biology Teachers' Association. According to the participants, map construction, classroom applications, lesson planning, action research, follow-up workshops, and the creation of learning communities are the most effective professional development strategies. The interviewees also proposed English language learning strategies such as picture maps, native word maps, and content reading materials with underlined words. This study contributes to social change by providing a professional development model to use in planning workshops for urban teachers. Urban teachers improve their own conceptual understanding of biology while learning how to implement concept mapping strategies in the classroom. Students whose teachers are better prepared to teach biology in a conceptual manner have the potential of growing into more scientifically literate citizens.
ERIC Educational Resources Information Center
Gaum, Wilma G.; van Rooyen, Hugo G.
1997-01-01
Describes research to develop curriculum guidelines for a distance education course in urban agriculture. The course, designed to train the teacher, is based on an eclectic curriculum design model. The course is aimed at the socioeconomic empowerment of urban farmers and is based on sustainable ecological-agricultural principles, an…
ERIC Educational Resources Information Center
McPartland, James; Balfanz, Robert; Jordan, Will; Legters, Nettie
1998-01-01
A case study of a large nonselective urban high school in Baltimore (Maryland) describes the design and implementation of a comprehensive package of school reforms, the Talent Development Model with Career Academies. Qualitative and quantitative evidence is provided on significant improvements in school climate, student attendance, promotion…
Selected Urban Simulations and Games. IFF Working Paper WP-4.
ERIC Educational Resources Information Center
Nagelberg, Mark; Little, Dennis L.
Summary descriptions of selected urban simulations and games that have been developed outside the Institute For The Future are presented. The operating characteristics and potential applications of each model are described. These include (1) the history of development, (2) model and player requirements, (3) a description of the environment being…
We present an integrated assessment model to predict potential unintended consequences of urban development on the sustainability of seagrasses and preservation of ecosystem services, such as catchable fish, in Tampa Bay. Ecosystem services are those ecological functions and pro...
UPDATE ON EPA'S URBAN WATERSHED MANAGEMENT BRANCH MODELING ACTIVITIES
This paper provides the Stormwater Management Model (SWMM) user community with a description of the Environmental Protection Agency (EPA's) Office of Research and Development (ORD) approach to urban watershed modeling research and provides an update on current ORD SWMM-related pr...
Street Level Hydrology: An Urban Application of the WRF-Hydro Framework in Denver, Colorado
NASA Astrophysics Data System (ADS)
Read, L.; Hogue, T. S.; Salas, F. R.; Gochis, D.
2015-12-01
Urban flood modeling at the watershed scale carries unique challenges in routing complexity, data resolution, social and political issues, and land surface - infrastructure interactions. The ability to accurately trace and predict the flow of water through the urban landscape enables better emergency response management, floodplain mapping, and data for future urban infrastructure planning and development. These services are of growing importance as urban population is expected to continue increasing by 1.84% per year for the next 25 years, increasing the vulnerability of urban regions to damages and loss of life from floods. Although a range of watershed-scale models have been applied in specific urban areas to examine these issues, there is a trend towards national scale hydrologic modeling enabled by supercomputing resources to understand larger system-wide hydrologic impacts and feedbacks. As such it is important to address how urban landscapes can be represented in large scale modeling processes. The current project investigates how coupling terrain and infrastructure routing can improve flow prediction and flooding events over the urban landscape. We utilize the WRF-Hydro modeling framework and a high-resolution terrain routing grid with the goal of compiling standard data needs necessary for fine scale urban modeling and dynamic flood forecasting in the urban setting. The city of Denver is selected as a case study, as it has experienced several large flooding events in the last five years and has an urban annual population growth rate of 1.5%, one of the highest in the U.S. Our work highlights the hydro-informatic challenges associated with linking channel networks and drainage infrastructure in an urban area using the WRF-Hydro modeling framework and high resolution urban models for short-term flood prediction.
Transportation Impact Evaluation System
DOT National Transportation Integrated Search
1979-11-01
This report specifies a framework for spatial analysis and the general modelling steps required. It also suggests available urban and regional data sources, along with some typical existing urban and regional models. The goal is to develop a computer...
Morgan, S; Smedts, A; Campbell, N; Sager, R; Lowe, M; Strasser, S
2009-01-01
The Northern Territory (NT) of Australia is a unique setting for training medical students. This learning environment is characterised by Aboriginal health and an emphasis on rural and remote primary care practice. For over a decade the NT Clinical School (NTCS) of Flinders University has been teaching undergraduate medical students in the NT. Community based medical education (CBME) has been demonstrated to be an effective method of learning medicine, particularly in rural settings. As a result, it is rapidly gaining popularity in Australia and other countries. The NTCS adopted this model some years ago with the implementation of its Rural Clinical School; however, urban models of CBME are much less well developed than those in rural areas. There is considerable pressure to better incorporate CBME into medical student teaching environment, particularly because of the projected massive increase in student numbers over the next few years. To date, the community setting of urban Darwin, the NT capital city, has not been well utilised for medical student training. In 2008, the NTCS enrolled its first cohort of students in a new hybrid CBME program based in urban Darwin. This report describes the process and challenges involved in development of the program, including justification for a hybrid model and the adaptation of a rural model to an urban setting. Relationships were established and formalised with key partners and stakeholders, including GPs and general practices, Aboriginal medical services, community based healthcare providers and other general practice and community organisations. Other significant issues included curriculum development and review, development of learning materials and the establishment of robust evaluation methods. Development of the CBME model in Darwin posed a number of key challenges. Although the experience of past rural programs was useful, a number of distinct differences were evident in the urban setting. Change leadership and inter-professional collaboration were key strengths in the implementation and ongoing evaluation of the program. The program will provide important information about medical student training in urban community settings, and help inform other clinical schools considering the adoption of similar models.
NASA Astrophysics Data System (ADS)
Hävermark, Saga; Santos Ferreira, Carla Sofia; Kalantari, Zahra; Di Baldassarre, Giuliano
2016-04-01
Many river basis around the world are rapidly changing together with societal development. Such developments may involve changes in land use, which in turn affect the surrounding environment in various ways. Since the start of industrialisation, the urban areas have extended worldwide. Urbanization can influence hydrological processes by decreasing evapotranspiration, infiltration and groundwater recharge as well as increasing runoff and overland flow. It is therefore of uttermost importance to understand the relationship between land use and hydrology. Although several studies have been investigating the impacts of urbanization on streamflow over the last decades, less is known on how urbanization affects hydrological processes in peri-urban areas, characterized by a complex mosaic of different land uses. This study aimed to model the impact of land use changes, specifically urbanization and commercial forest plantation, on the hydrological responses of the small Ribeira dos Covões peri-urban catchment (6,2 km2) located in central Portugal. The catchment has undergone rapid land use changes between 1958 and 2012 associated with the conversion of agricultural fields (cover area decreased from 48% to 4%) into woodland and urban areas, which increased from 44% to 56% and from 8% to 40%, respectively. For the study, the fully-distributed, physically-based modelling system MIKE SHE was used. The model was designed to examine both how past land use changes might have affected the streamflow and to investigate the impacts on hydrology of possible future scenarios, including a 50 %, 60 % and 70 % urban cover. To this end, a variety of data including daily rainfall since 1958 and forward, daily potential evapotranspiration from 2009 to 2013, monthly temperature averages from 1971 to 2013, land use for the years 1958, 1973, 1979, 1990, 1995, 2002, 2007 and 2012, streamflow from the hydrological years 2008 to 2013, catchment topography and soil types were used. The model was calibrated for the hydrological years 2008 to 2010 and validated for the three following years using streamflow data. The impact of future land use changes was analysed by investigating the impact of the size and location of the urban areas within the catchment. Modelling results are expected to support the decision making process in planning and developing new urban areas.
Mapping urban environmental noise: a land use regression method.
Xie, Dan; Liu, Yi; Chen, Jining
2011-09-01
Forecasting and preventing urban noise pollution are major challenges in urban environmental management. Most existing efforts, including experiment-based models, statistical models, and noise mapping, however, have limited capacity to explain the association between urban growth and corresponding noise change. Therefore, these conventional methods can hardly forecast urban noise at a given outlook of development layout. This paper, for the first time, introduces a land use regression method, which has been applied for simulating urban air quality for a decade, to construct an urban noise model (LUNOS) in Dalian Municipality, Northwest China. The LUNOS model describes noise as a dependent variable of surrounding various land areas via a regressive function. The results suggest that a linear model performs better in fitting monitoring data, and there is no significant difference of the LUNOS's outputs when applied to different spatial scales. As the LUNOS facilitates a better understanding of the association between land use and urban environmental noise in comparison to conventional methods, it can be regarded as a promising tool for noise prediction for planning purposes and aid smart decision-making.
Urban Landscape Characterization Using Remote Sensing Data For Input into Air Quality Modeling
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Khan, Maudood
2005-01-01
The urban landscape is inherently complex and this complexity is not adequately captured in air quality models that are used to assess whether urban areas are in attainment of EPA air quality standards, particularly for ground level ozone. This inadequacy of air quality models to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well these models predict ozone pollutant levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban growth projections as improved inputs to meteorological and air quality models focusing on the Atlanta, Georgia metropolitan area as a case study. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the Community Multiscale Air Quality (CMAQ) modeling schemes. Use of these data have been found to better characterize low density/suburban development as compared with USGS 1 km land use/land cover data that have traditionally been used in modeling. Air quality prediction for future scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission. This allows the State Environmental Protection agency to evaluate how these transportation plans will affect future air quality.
Urban hydrogeology in Indonesia: A highlight from Jakarta
NASA Astrophysics Data System (ADS)
Lubis, R. F.
2018-02-01
In many cities in the developing countries, groundwater is an important source of public water supply. The interaction between groundwater systems and urban environments has become an urgent challenge for many developing cities in the world, Indonesia included. Contributing factors are, but not limited to, the continuous horizontal and vertical expansion of cities, population growth, climate change, water scarcity and groundwater quality degradation. Jakarta as the capital city of Indonesia becomes a good example to study and implement urban hydrogeology. Urban hydrogeology is a science for investigating groundwater at the hydrological cycle and its change, water regime and quality within the urbanized landscape and zones of its impact. The present paper provides a review of urban groundwater studies in Jakarta in the context of urban water management, advances in hydrogeological investigation, monitoring and modelling since the city was established. The whole study emphasizes the necessity of an integrated urban groundwater management and development supporting hydrogeological techniques for urban areas.
Wang, Tianqiong; Riti, Joshua Sunday; Shu, Yang
2018-05-08
The adoption and ratification of relevant policies, particularly the household enrolment system metamorphosis in China, led to rising urbanization growth. As the leading developing economy, China has experienced a drastic and rapid increase in the rate of urbanization, energy use, economic growth and greenhouse gas (GHG) pollution for the past 30 years. The knowledge of the dynamic interrelationships among these trends has a plethora of implications ranging from demographic, energy, and environmental and sustainable development policies. This study analyzes the role of urbanization in decoupling GHG emissions, energy, and income in China while considering the critical contribution of energy use. As a contribution to the extant body of literature, the present research introduces a new phenomenon called "the environmental urbanization Kuznets curve" (EUKC), which shows that at the early stage of urbanization, the environment degrades however, after a threshold point the technique effects surface and environmental degradation reduces with rise in urbanization. Applying the autoregressive distributed lag model and the vector error correction model, the paper finds the presence of inverted U-shaped curve between urbanization and GHG emission of CO 2 , while the same hypothesis cannot be found between income and GHG emission of CO 2 . Energy use in all the models contributes to GHG emission of CO 2 . In decoupling greenhouse gas emissions, urbanization, energy, and income, articulated and well-implemented energy and urbanization policies should be considered.
Introduction to Global Urban Climatology
NASA Astrophysics Data System (ADS)
Varquez, A. C. G.; Kanda, M.; Kawano, N.; Darmanto, N. S.; Dong, Y.
2016-12-01
Urban heat island (UHI) is a widely investigated phenomenon in the field of urban climate characterized by the warming of urban areas relative to its surrounding rural environs. Being able to understand the mechanism behind the UHI formation of a city and distinguish its impact from that of global climate change is indispensable when identifying adaptation and mitigation strategies. However, the lack of UHI studies many cities especially for developing countries makes it difficult to generalize the mechanism for UHI formation. Thus, there is an impending demand for studies that focus on the simultaneous analyses of UHI and its trends throughout the world. Hence, we propose a subfield of urban climatology, called "global urban climatology" (GUC), which mainly focuses on the uniform understanding of urban climates across all cities, globally. By using globally applicable methodologies to quantify and compare urban heat islands of cities with diverse backgrounds, including their geography, climate, socio-demography, and other factors, a universal understanding of the mechanisms underlying the formation of the phenomenon can be established. The implementation of GUC involves the use of globally acquired historical observation networks, gridded meteorological parameters from climate models, global geographic information system datasets; the construction of a distributed urban parameter database; and the development of techniques necessary to model the urban climate. Research under GUC can be categorized into three approaches. The collaborative approach (1st) relies on the collection of data from micro-scale experiments conducted worldwide with the aid or development of professional social networking platforms; the analytical approach (2nd) relies on the use of global weather station datasets and their corresponding objectively analysed global outputs; and the numerical approach (3rd) relies on the global estimation of high-resolution urban-representative parameters as inputs to global weather modelling. The GUC concept, the pathways through which GUC assessments can be undertaken, and current implementations are introduced. Acknowledgment: This research was supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan.
NASA Astrophysics Data System (ADS)
Campbell, Diarmad; de Beer, Johannes; Lawrence, David; van der Meulen, Michiel; Mielby, Susie; Hay, David; Scanlon, Ray; Campenhout, Ignace; Taugs, Renate; Eriksson, Ingelov
2014-05-01
Sustainable urbanisation is the focus of SUB-URBAN, a European Cooperation in Science and Technology (COST) Action TU1206 - A European network to improve understanding and use of the ground beneath our cities. This aims to transform relationships between experts who develop urban subsurface geoscience knowledge - principally national Geological Survey Organisations (GSOs), and those who can most benefit from it - urban decision makers, planners, practitioners and the wider research community. Under COST's Transport and Urban Development Domain, SUB-URBAN has established a network of GSOs and other researchers in over 20 countries, to draw together and evaluate collective urban geoscience research in 3D/4D characterisation, prediction and visualisation. Knowledge exchange between researchers and City-partners within 'SUB-URBAN' is already facilitating new city-scale subsurface projects, and is developing a tool-box of good-practice guidance, decision-support tools, and cost-effective methodologies that are appropriate to local needs and circumstances. These are intended to act as catalysts in the transformation of relationships between geoscientists and urban decision-makers more generally. As a result, the importance of the urban sub-surface in the sustainable development of our cities will be better appreciated, and the conflicting demands currently placed on it will be acknowledged, and resolved appropriately. Existing city-scale 3D/4D model exemplars are being developed by partners in the UK (Glasgow, London), Germany (Hamburg) and France (Paris). These draw on extensive ground investigation (10s-100s of thousands of boreholes) and other data. Model linkage enables prediction of groundwater, heat, SuDS, and engineering properties. Combined subsurface and above-ground (CityGML, BIMs) models are in preparation. These models will provide valuable tools for more holistic urban planning; identifying subsurface opportunities and saving costs by reducing uncertainty in ground conditions. A key area of interest, and one of potential collaboration with COST Action TU1208, is in characterising and parameterising the very near urban subsurface, and especially the anthropogenic deposits, to assist decision-making by civil engineers, and others. Anthropogenic deposits may be many metres thick, are typically very heterogeneous, have complex histories of accumulation, and may including important archaeological assets. They display complex stratigraphies which are difficult to resolve using traditional methodologies, even with extensive invasive ground investigation. Ground Penetrating Radar, and other non-destructive methods of ground investigation hold considerable promise in greatly improving the resolution, understanding, and modelling, of these and other near-surface deposits in particular. This work is a contribution both to COST Action TU1208 "Civil Engineering Applications of Ground Penetrating Radar" and to COST Action TU1206 "SUB-URBAN - A European network to improve understanding and use of the ground beneath our cities"
Technical Description of Urban Microscale Modeling System: Component 1 of CRTI Project 02-0093RD
2007-03-01
0093RD which involved (1) development and implementation of a com- putational fluid dynamics model for the simulation of urban flow in an arbitrary...resource will serve as a nation-wide general problem- solving tool for first-responders involved with CBR incidents in the urban environment and...predictions with experimental data obtained from a comprehensive full-scale urban field experiment conducted in Oklahoma City, Oklahoma in July 2003 (Joint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehleringer, James; Randerson, James; Lai, Chun-Ta
The objective of the proposed research was to collect data and develop models to improve our understanding of the role of drought and fire impacts on the terrestrial carbon cycle in the western US, including impacts associated with urban systems as they impacted regional carbon cycles. Using data we collected and a synthesis of other measurements, we developed new ways (a) to evaluate the representation of drought stress and fire emissions in the Community Land Model, (b) to model net ecosystem exchange combining ground level atmospheric observations with boundary layer theory, (c) to model upstream impacts of fire and fossilmore » fuel emissions on atmospheric carbon dioxide observations, and (d) to model carbon dioxide observations within urban systems and at the urban-wildland interfaces of forest ecosystems.« less
Model of urban water management towards water sensitive city: a literature review
NASA Astrophysics Data System (ADS)
Maftuhah, D. I.; Anityasari, M.; Sholihah, M.
2018-04-01
Nowadays, many cities are facing with complex issues such as climate change, social, economic, culture, and environmental problems, especially urban water. In other words, the city has to struggle with the challenge to make sure its sustainability in all aspects. This research focuses on how to ensure the city sustainability and resilience on urban water management. Many research were not only conducted in urban water management, but also in sustainability itself. Moreover, water sustainability shifts from urban water management into water sensitive city. This transition needs comprehensive aspects such as social, institutional dynamics, technical innovation, and local contents. Some literatures about model of urban water management and the transition towards water sensitivity had been reviewed in this study. This study proposed discussion about model of urban water management and the transition towards water sensitive city. Research findings suggest that there are many different models developed in urban water management, but they are not comprehensive yet and only few studies discuss about the transition towards water sensitive and resilience city. The drawbacks of previous research can identify and fulfill the gap of this study. Therefore, the paper contributes a general framework for the urban water management modelling studies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... a proposal to provide assistance to non low-income Indian families or a model housing activity? 1000.116 Section 1000.116 Housing and Urban Development Regulations Relating to Housing and Urban... URBAN DEVELOPMENT NATIVE AMERICAN HOUSING ACTIVITIES Affordable Housing Activities § 1000.116 What...
NASA Astrophysics Data System (ADS)
Mosleh, L.; Negahban-Azar, M.
2017-12-01
The integrated urban water management has become a necessity due to the high rate of urbanization, water scarcity, and climate variability. Climate and demographic changes, shifting the social attitude toward the water usage, and insufficiencies in system resilience increase the pressure on the water resources. Alongside with the water management, modeling urban water systems have progressed from traditional view to comprise alternatives such as decentralized water and wastewater systems, fit-for-purpose practice, graywater/rainwater reuse, and green infrastructure. While there are review papers available focusing on the technical part of the models, they seem to be more beneficial for model developers. Some of the models analyze a number of scenarios considering factors such as climate change and demography and their future impacts. However, others only focus on quality and quantity of water in a supply/demand approach. For example, optimizing the size of water or waste water store, characterizing the supply and quantity of urban stormwater and waste water, and link source of water to demand. A detailed and practical comparison of such models has become a necessity for the practitioner and policy makers. This research compares more than 7 most commonly used integrated urban water cycle models and critically reviews their capabilities, input requirements, output and their applications. The output of such detailed comparison will help the policy makers for the decision process in the built environment to compare and choose the best models that meet their goals. The results of this research show that we need a transition from developing/using integrated water cycle models to integrated system models which incorporate urban water infrastructures and ecological and economic factors. Such models can help decision makers to reflect other important criteria but with the focus on urban water management. The research also showed that there is a need in exploring sustainability, comprising water energy-nexus, and considering ecosystem services in the models. In addition, socio-economic factors such as public acceptance can be added to such models. Finally, the reliability and resilience of urban water management scenarios should be addressed under different uncertainties such as climate variability.
Charecterisation and Modelling Urbanisation Pattern in Sillicon Valley of India
NASA Astrophysics Data System (ADS)
Aithal, B. H.
2015-12-01
Urbanisation and Urban sprawl has led to environmental problems and large losses of arable land in India. In this study, we characterise pattern of urban growth and model urban sprawl by means of a combination of remote sensing, geographical information system, spatial metrics and CA based modelling. This analysis uses time-series data to explore and derive the potential political-socio-economic- land based driving forces behind urbanisation and urban sprawl, and spatial models in different scenarios to explore the spatio-temporal interactions and development. The study area applied is Greater Bangalore, for the period from 1973 to 2015. Further water bodies depletion, vegetation depletion, tree cover were also analysed to obtain specific region based results effecting global climate and regional balance. Agents were integrated successfully into modelling aspects to understand and foresee the landscape pattern change in urban morphology. The results reveal built-up paved surfaces has expanded towards the outskirts and have expanded into the buffer regions around the city. Population growth, economic, industrial developments in the city core and transportation development are still the main causes of urban sprawl in the region. Agent based model are considered to be to the traditional models. Agent Based modelling approach as seen in this paper clearly shown its effectiveness in capturing the micro dynamics and influence in its neighbourhood mapping. Greenhouse gas emission inventory has shown important aspects such as domestic sector to be one of the major impact categories in the region. Further tree cover reduced drastically and is evident from the statistics and determines that if city is in verge of creating a chaos in terms of human health and desertification. Study concludes that integration of remote sensing, GIS, and agent based modelling offers an excellent opportunity to explore the spatio-temporal variation and visulaisation of sprawling metropolitan region. This study give a complete overview of urbanisation and effects being caused due to urban sprawl in the region and help planners and city managers in understanding the future pockets and scenarios of urban growth.
NASA Astrophysics Data System (ADS)
Radło-Kulisiewicz, M.
2015-12-01
The practical importance of Geographical Information Systems in urban planning and managing of urban areas is becoming much more explicit. Managing small cities usually needs simple GIS spatial analysis tools to support planners' decisions. Otherwise, the urban dynamic is bigger and factors affecting changes in city are combined. These analyses are not sufficient and then a need for more advanced and sophisticated solutions can appear. The aim of this article is to introduce popular techniques for urban modelling and underlying importance of GIS as an environment for creating simple models, which let t easy decisions in creating vision of a city be taken. The Article touches on the following issues related to the planning and management of urban space; from the applicable standards concerning materials planning in Poland, through the possibilities that give us network solutions useful at the municipal and country level, to existing techniques in modelling cities in the world. The background for these questions are the Geographical Information Systems (their role in this respect), that naturally fit into this theme. The ability to analyze multi-source data at different levels of detail, in different variants and ranges, predispose the GIS to environmental urban management. While also taking into account social - economic factors, integrated with GIS predictive modeling techniques, allows us to understand dependencies that navigate complex urban phenomena. City management in an integrated and thoughtful manner and will reduce the costs associated with the expansion of the urban fabric and avoid the chaos of urban development.
NASA Astrophysics Data System (ADS)
Wang, Qianlu
2017-10-01
Urban infrastructure and urbanization influence each other, and quantitative analysis of the relationship between them will play a significant role in promoting the social development. The paper based on the data of infrastructure and the proportion of urban population in Shanghai from 1988 to 2013, use the econometric analysis of co-integration test, error correction model and Granger causality test method, and empirically analyze the relationship between Shanghai's infrastructure and urbanization. The results show that: 1) Shanghai Urban infrastructure has a positive effect for the development of urbanization and narrowing the population gap; 2) when the short-term fluctuations deviate from long-term equilibrium, the system will pull the non-equilibrium state back to equilibrium with an adjust intensity 0.342670. And hospital infrastructure is not only an important variable for urban development in short-term, but also a leading infrastructure in the process of urbanization in Shanghai; 3) there has Granger causality between road infrastructure and urbanization; and there is no Granger causality between water infrastructure and urbanization, hospital and school infrastructures of social infrastructure have unidirectional Granger causality with urbanization.
NASA Astrophysics Data System (ADS)
Lien, F. S.; Yee, E.; Ji, H.; Keats, A.; Hsieh, K. J.
2006-06-01
The release of chemical, biological, radiological, or nuclear (CBRN) agents by terrorists or rogue states in a North American city (densely populated urban centre) and the subsequent exposure, deposition and contamination are emerging threats in an uncertain world. The modeling of the transport, dispersion, deposition and fate of a CBRN agent released in an urban environment is an extremely complex problem that encompasses potentially multiple space and time scales. The availability of high-fidelity, time-dependent models for the prediction of a CBRN agent's movement and fate in a complex urban environment can provide the strongest technical and scientific foundation for support of Canada's more broadly based effort at advancing counter-terrorism planning and operational capabilities.The objective of this paper is to report the progress of developing and validating an integrated, state-of-the-art, high-fidelity multi-scale, multi-physics modeling system for the accurate and efficient prediction of urban flow and dispersion of CBRN (and other toxic) materials discharged into these flows. Development of this proposed multi-scale modeling system will provide the real-time modeling and simulation tool required to predict injuries, casualties and contamination and to make relevant decisions (based on the strongest technical and scientific foundations) in order to minimize the consequences of a CBRN incident in a populated centre.
On Models of Racial Prejudice and Urban Residential Structure.
ERIC Educational Resources Information Center
Courant, Paul N.; Yinger, John
Economists have studied the effects of racial prejudice on urban residential structure using a set of models that focus on conditions at the border between the black and white areas. This paper reviews the theoretical literature on these border models and investigates their generality. Section 1 considers the border model developed by Bailey in…
Diurnal changes in urban boundary layer environment induced by urban greening
NASA Astrophysics Data System (ADS)
Song, Jiyun; Wang, Zhi-Hua
2016-11-01
Urban green infrastructure has been widely used for mitigating adverse environmental problems as well as enhancing urban sustainability of cities worldwide. Here we develop an integrated urban-land-atmosphere modeling framework with the land surface processes parameterized by an advanced urban canopy model and the atmospheric processes parameterized by a single column model. The model is then applied to simulate a variety of forms of green infrastructure, including urban lawns, shade trees, green and cool roofs, and their impact on environmental changes in the total urban boundary layer (UBL) for a stereotypical desert city, viz. Phoenix, Arizona. It was found that green roofs have a relatively uniform cooling effect proportional to their areal coverage. In particular, a reduction of UBL temperature of 0.3 °C and 0.2 °C per 10% increase of green roof coverage was observed at daytime and nighttime, respectively. In contrast, the effect of greening of street canyons is constrained by the overall abundance of green infrastructure and the energy available for evapotranspiration. In addition, the increase in urban greening causes boundary-layer height to decrease during daytime but increase at nighttime, leading to different trends of changes in urban air quality throughout a diurnal cycle.
Pfeil-McCullough, Erin; Bain, Daniel J; Bergman, Jeffery; Crumrine, Danielle
2015-12-01
Emerald ash borer is expected to kill thousands of ash trees in the eastern U.S. This research develops tools to predict the effect of ash tree loss from the urban canopy on landslide susceptibility in Pittsburgh, PA. A spatial model was built using the SINMAP (Stability INdex MAPping) model coupled with spatially explicit scenarios of tree loss (0%, 25%, 50%, and 75% loss of ash trees from the canopy). Ash spatial distributions were estimated via Monte Carlo methods and available vegetation plot data. Ash trees are most prevalent on steeper slopes, likely due to urban development patterns. Therefore, ash loss disproportionately increases hillslope instability. A 75% loss of ash resulted in roughly 800 new potential landslide initiation locations. Sensitivity testing reveals that variations in rainfall rates, and friction angles produce minor changes to model results relative to the magnitude of parameter variation, but reveal high model sensitivity to soil density and root cohesion values. The model predictions demonstrate the importance of large canopy species to urban hillslope stability, particularly on steep slopes and in areas where soils tend to retain water. To improve instability predictions, better characterization of urban soils, particularly spatial patterns of compaction and species specific root cohesion is necessary. The modeling framework developed in this research will enhance assessment of changes in landslide risk due to tree mortality, improving our ability to design economically and ecologically sustainable urban systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Hur, Sungchul; Nam, Kisung; Kim, Jungsoo; Kwak, Changjae
2018-01-01
An urban runoff model that is able to compute the runoff, the pollutant loadings, and the concentrations of water-quality constituents in urban drainages during the first flush was developed. This model, which is referred to as FFC-QUAL, was modified from the existing ILLUDAS model and added for use during the water-quality analysis process for dry and rainy periods. For the dry period, the specifications of the coefficients for the discharge and water quality were used. During rainfall, we used the Clark and time-area methods for the runoff analyses of pervious and impervious areas to consider the effects of the subbasin shape; moreover, four pollutant accumulation methods and the washoff equation for computing the water quality each time were used. According to the verification results, FFC-QUAL provides generally similar output as the measured data for the peak flow, total runoff volume, total loadings, peak concentration, and time of peak concentration for three rainfall events in the Gunja subbasin. In comparison with the ILLUDAS, SWMM, and MOUSE models, there is little difference between these models and the model developed in this study. The proposed model should be useful in urban watersheds because of its simplicity and its capacity to model common pollutants (e.g., biological oxygen demand, chemical oxygen demand, Escherichia coli, suspended solids, and total nitrogen and phosphorous) in runoff. The proposed model can also be used in design studies to determine how changes in infrastructure will affect the runoff and pollution loads. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Future Urban Climate Projection in A Tropical Megacity Based on Global and Regional Scenarios
NASA Astrophysics Data System (ADS)
Darmanto, N. S.; Varquez, A. C. G.; Kanda, M.
2017-12-01
Cities in Asian developing countries experience rapid transformation in urban morphology and energy consumption, which correspondingly affects urban climate. Weather Research and Forecasting (WRF) Model coupled with improved single-layer urban canopy model incorporating realistic distribution of urban parameters and anthropogenic heat emission (AHE) in the tropic Jakarta Greater Area was conducted. Simulation was conducted during the dry months from 2006 to 2015 and agreed well with point and satellite observation. The same technology coupled with pseudo global warming (PGW) method based on representative concentration pathways (RCP) scenario 2.6 and 8.5 was conducted to produce futuristic climate condition in 2050. Projected urban morphology and AHE in 2050s were constructed using regional urban growing model with shared socioeconomic pathways (SSP) among its inputs. Compact future urban configuration, based on SSP1, was coupled to RCP2.6. Unrestrained future urban configuration, based on SSP3, was coupled to RCP8.5. Results show that background warming from RCP 2.6 and 8.5 will increase background temperature by 0.55°C and 1.2°C throughout the region, respectively. Future projection of urban sprawl results to an additional 0.3°C and 0.5°C increase on average, with maximum increase of 1.1°C and 1.3°C due to urban effect for RCP2.6/compact and RCP8.5/unrestrained, respectively. Higher moisture content in urban area is indicated in the future due to higher evaporation. Change in urban roughness is likely affect slower wind velocity in urban area and sea breeze front inland penetration the future compare with current condition. Acknowledgement: This research was supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan.
Kabaria, Caroline W; Gilbert, Marius; Noor, Abdisalan M; Snow, Robert W; Linard, Catherine
2017-01-26
Although malaria has been traditionally regarded as less of a problem in urban areas compared to neighbouring rural areas, the risk of malaria infection continues to exist in densely populated, urban areas of Africa. Despite the recognition that urbanization influences the epidemiology of malaria, there is little consensus on urbanization relevant for malaria parasite mapping. Previous studies examining the relationship between urbanization and malaria transmission have used products defining urbanization at global/continental scales developed in the early 2000s, that overestimate actual urban extents while the population estimates are over 15 years old and estimated at administrative unit level. This study sought to discriminate an urbanization definition that is most relevant for malaria parasite mapping using individual level malaria infection data obtained from nationally representative household-based surveys. Boosted regression tree (BRT) modelling was used to determine the effect of urbanization on malaria transmission and if this effect varied with urbanization definition. In addition, the most recent high resolution population distribution data was used to determine whether population density had significant effect on malaria parasite prevalence and if so, could population density replace urban classifications in modelling malaria transmission patterns. The risk of malaria infection was shown to decline from rural areas through peri-urban settlements to urban central areas. Population density was found to be an important predictor of malaria risk. The final boosted regression trees (BRT) model with urbanization and population density gave the best model fit (Tukey test p value <0.05) compared to the models with urbanization only. Given the challenges in uniformly classifying urban areas across different countries, population density provides a reliable metric to adjust for the patterns of malaria risk in densely populated urban areas. Future malaria risk models can, therefore, be improved by including both population density and urbanization which have both been shown to have significant impact on malaria risk in this study.
MOBILE EMISSIONS ASSESSMENT SYSTEM FOR URBAN AND REGIONAL EVALUATION
A working research model for Atlanta, GA has been developed by Georgia Tech, and is called the Mobile Emissions Assessment System for Urban and Regional Evaluation (MEASURE). The EPA Office of Research and Development has developed an additional implementation of the MEASURE res...
Urban development applications project. Urban technology transfer study
NASA Technical Reports Server (NTRS)
1975-01-01
Technology transfer is defined along with reasons for attempting to transfer technology. Topics discussed include theoretical models, stages of the innovation model, communication process model, behavior of industrial organizations, problem identification, technology search and match, establishment of a market mechanism, applications engineering, commercialization, and management of technology transfer.
A discrete-space urban model with environmental amenities
Liaila Tajibaeva; Robert G. Haight; Stephen Polasky
2008-01-01
This paper analyzes the effects of providing environmental amenities associated with open space in a discrete-space urban model and characterizes optimal provision of open space across a metropolitan area. The discrete-space model assumes distinct neighborhoods in which developable land is homogeneous within a neighborhood but heterogeneous across neighborhoods. Open...
NASA Astrophysics Data System (ADS)
Fallah-Shorshani, Masoud; Shekarrizfard, Maryam; Hatzopoulou, Marianne
2017-03-01
The development and use of dispersion models that simulate traffic-related air pollution in urban areas has risen significantly in support of air pollution exposure research. In order to accurately estimate population exposure, it is important to generate concentration surfaces that take into account near-road concentrations as well as the transport of pollutants throughout an urban region. In this paper, an integrated modelling chain was developed to simulate ambient Nitrogen Dioxide (NO2) in a dense urban neighbourhood while taking into account traffic emissions, the regional background, and the transport of pollutants within the urban canopy. For this purpose, we developed a hybrid configuration including 1) a street canyon model, which simulates pollutant transfer along streets and intersections, taking into account the geometry of buildings and other obstacles, and 2) a Gaussian puff model, which resolves the transport of contaminants at the top of the urban canopy and accounts for regional meteorology. Each dispersion model was validated against measured concentrations and compared against the hybrid configuration. Our results demonstrate that the hybrid approach significantly improves the output of each model on its own. An underestimation appears clearly for the Gaussian model and street-canyon model compared to observed data. This is due to ignoring the building effect by the Gaussian model and undermining the contribution of other roads by the canyon model. The hybrid approach reduced the RMSE (of observed vs. predicted concentrations) by 16%-25% compared to each model on its own, and increased FAC2 (fraction of predictions within a factor of two of the observations) by 10%-34%.
Policy Model of Sustainable Infrastructure Development (Case Study : Bandarlampung City, Indonesia)
NASA Astrophysics Data System (ADS)
Persada, C.; Sitorus, S. R. P.; Marimin; Djakapermana, R. D.
2018-03-01
Infrastructure development does not only affect the economic aspect, but also social and environmental, those are the main dimensions of sustainable development. Many aspects and actors involved in urban infrastructure development requires a comprehensive and integrated policy towards sustainability. Therefore, it is necessary to formulate an infrastructure development policy that considers various dimensions of sustainable development. The main objective of this research is to formulate policy of sustainable infrastructure development. In this research, urban infrastructure covers transportation, water systems (drinking water, storm water, wastewater), green open spaces and solid waste. This research was conducted in Bandarlampung City. This study use a comprehensive modeling, namely the Multi Dimensional Scaling (MDS) with Rapid Appraisal of Infrastructure (Rapinfra), it uses of Analytic Network Process (ANP) and it uses system dynamics model. The findings of the MDS analysis showed that the status of Bandarlampung City infrastructure sustainability is less sustainable. The ANP analysis produces 8 main indicators of the most influential in the development of sustainable infrastructure. The system dynamics model offered 4 scenarios of sustainable urban infrastructure policy model. The best scenario was implemented into 3 policies consist of: the integrated infrastructure management, the population control, and the local economy development.
ERIC Educational Resources Information Center
Yacoob, May; Brantly, Eugene; Whiteford, Linda
In October 1992, the Water and Sanitation for Health (WASH) Project held a workshop to explore how the U.S. Agency for International Development (USAID) could incorporate community participation as a core element in projects to improve water supply, sanitation, and other environmental conditions of peri-urban areas in developing countries. The…
NASA Astrophysics Data System (ADS)
Wurm, Michael; Taubenböck, Hannes; Dech, Stefan
2010-10-01
Dynamics of urban environments are a challenge to a sustainable development. Urban areas promise wealth, realization of individual dreams and power. Hence, many cities are characterized by a population growth as well as physical development. Traditional, visual mapping and updating of urban structure information of cities is a very laborious and cost-intensive task, especially for large urban areas. For this purpose, we developed a workflow for the extraction of the relevant information by means of object-based image classification. In this manner, multisensoral remote sensing data has been analyzed in terms of very high resolution optical satellite imagery together with height information by a digital surface model to retrieve a detailed 3D city model with the relevant land-use / land-cover information. This information has been aggregated on the level of the building block to describe the urban structure by physical indicators. A comparison between the indicators derived by the classification and a reference classification has been accomplished to show the correlation between the individual indicators and a reference classification of urban structure types. The indicators have been used to apply a cluster analysis to group the individual blocks into similar clusters.
NASA Astrophysics Data System (ADS)
Aithal, B. H.
2015-12-01
Abstract: Urbanisation has gained momentum with globalization in India. Policy decisions to set up commercial, industrial hubs have fuelled large scale migration, added with population upsurge has contributed to the fast growing urban region that needs to be monitored in order to design sustainable urban cities. Unplanned urbanization have resulted in the growth of peri-urban region referred to as urban sprawl, are often devoid of basic amenities and infrastructure leading to large scale environmental problems that are evident. Remote sensing data acquired through space borne sensors at regular interval helps in understanding urban dynamics aided by Geoinformatics which has proved very effective in mapping and monitoring for sustainable urban planning. Cellular automata (CA) is a robust approach for the spatially explicit simulation of land-use land cover dynamics. CA uses rules, states, conditions that are vital factors in modelling urbanisation. This communication effectively introduces simulation assistances of CA with the agent based modelling supported by its fuzzy characteristics and weightages through analytical hierarchal process (AHP). This has been done considering perceived agents such as industries, natural resource etc. Respective agent's role in development of a particular regions into an urban area has been examined with weights and its influence of each of these agents based on its characteristics functions. Validation was performed obtaining a high kappa coefficient indicating the quality and the allocation performance of the model & validity of the model to predict future projections. The prediction using the proposed model was performed for 2030. Further environmental sustainability of each of these cities are explored such as water features, environment, greenhouse gas emissions, effects on human human health etc., Modeling suggests trend of various land use classes transformation with the spurt in urban expansions based on specific regions and policies providing a visual spatial information to both urban planners and city managers. Further environmental sustainability assessment indicates dwindling natural resources and increase in thermal discomfort to the living population thereby indicating need for balanced and planned development.
Arnaiz-Schmitz, C; Schmitz, M F; Herrero-Jáuregui, C; Gutiérrez-Angonese, J; Pineda, F D; Montes, C
2018-01-15
Socio-ecological systems maintain reciprocal interactions between biophysical and socioeconomic structures. As a result of these interactions key essential services for society emerge. Urban expansion is a direct driver of land change and cause serious shifts in socio-ecological relationships and the associated lifestyles. The framework of rural-urban gradients has proved to be a powerful tool for ecological research about urban influences on ecosystems and on sociological issues related to social welfare. However, to date there has not been an attempt to achieve a classification of municipalities in rural-urban gradients based on socio-ecological interactions. In this paper, we developed a methodological approach that allows identifying and classifying a set of socio-ecological network configurations in the Region of Madrid, a highly dynamic cultural landscape considered one of the European hotspots in urban development. According to their socio-ecological links, the integrated model detects four groups of municipalities, ordered along a rural-urban gradient, characterized by their degree of biophysical and socioeconomic coupling and different indicators of landscape structure and social welfare. We propose the developed model as a useful tool to improve environmental management schemes and land planning from a socio-ecological perspective, especially in territories subject to intense urban transformations and loss of rurality. Copyright © 2017 Elsevier B.V. All rights reserved.
Forecasting relative impacts of land use on anadromous fish habitat to guide conservation planning.
Lohse, Kathleen A; Newburn, David A; Opperman, Jeff J; Merenlender, Adina M
2008-03-01
Land use change can adversely affect water quality and freshwater ecosystems, yet our ability to predict how systems will respond to different land uses, particularly rural-residential development, is limited by data availability and our understanding of biophysical thresholds. In this study, we use spatially explicit parcel-level data to examine the influence of land use (including urban, rural-residential, and vineyard) on salmon spawning substrate quality in tributaries of the Russian River in California. We develop a land use change model to forecast the probability of losses in high-quality spawning habitat and recommend priority areas for incentive-based land conservation efforts. Ordinal logistic regression results indicate that all three land use types were negatively associated with spawning substrate quality, with urban development having the largest marginal impact. For two reasons, however, forecasted rural-residential and vineyard development have much larger influences on decreasing spawning substrate quality relative to urban development. First, the land use change model estimates 10 times greater land use conversion to both rural-residential and vineyard compared to urban. Second, forecasted urban development is concentrated in the most developed watersheds, which already have poor spawning substrate quality, such that the marginal response to future urban development is less significant. To meet the goals of protecting salmonid spawning habitat and optimizing investments in salmon recovery, we suggest investing in watersheds where future rural-residential development and vineyards threaten high-quality fish habitat, rather than the most developed watersheds, where land values are higher.
Integrative sensing and prediction of urban water for sustainable cities (iSPUW)
NASA Astrophysics Data System (ADS)
Seo, D. J.; Fang, N. Z.; Yu, X.; Zink, M.; Gao, J.; Kerkez, B.
2014-12-01
We describe a newly launched project in the Dallas-Fort Worth Metroplex (DFW) area to develop a cyber-physical prototype system that integrates advanced sensing, modeling and prediction of urban water, to support its early adoption by a spectrum of users and stakeholders, and to educate a new generation of future sustainability scientists and engineers. The project utilizes the very high-resolution precipitation and other sensing capabilities uniquely available in DFW as well as crowdsourcing and cloud computing to advance understanding of the urban water cycle and to improve urban sustainability from transient shocks of heavy-to-extreme precipitation under climate change and urbanization. All available water information from observations and models will be fused objectively via advanced data assimilation to produce the best estimate of the state of the uncertain system. Modeling, prediction and decision support tools will be developed in the ensemble framework to increase the information content of the analysis and prediction and to support risk-based decision making.
Qiu, Si Qi; Yue, Wen Ze
2018-05-01
Under the background of rapid urbanization, we took the contradiction between the rapid urbanization and resource environment protection as the starting point, conducted some theoretical research on urban growth boundary. Based on the definition of urban development boundary, we took Yiwu City, Zhejiang Province as a typical instance. Firstly, this study delimited the ecological boundary as ecological basic constraint area, using the methods of ecological red line discrimination and ecological sensitivity evaluation. Furthermore, the MCE-CA model was used in simulating the city size in 2020, making some adjustments to the moderate and low ecological-sensitive areas in the eco-sensitivity assessing, and delimiting the size of urban growth boundary and elastic control zones. The results showed that the ecological constraint area with a total area of385.2 km 2 and outside of the ecological boundary was the security line of urban development and construction. The urban growth boundary with a total area of 163.3 km 2 was not only the spatial boundary that could be constructed now, but also could meet the future development and construction. The district between the ecological boundary and urban growth boundary was an elastic control zone, in which urban development activities were allowed, but the size of construction could not exceed 8.5% of the total urban development boundary area. Our results delimited the urban development boundary under the rigidity and elasticity, which could guide the urban space development and provide a theoretical reference for China.
NASA Astrophysics Data System (ADS)
Ferdous, Nazneen; Bhat, Chandra R.
2013-01-01
This paper proposes and estimates a spatial panel ordered-response probit model with temporal autoregressive error terms to analyze changes in urban land development intensity levels over time. Such a model structure maintains a close linkage between the land owner's decision (unobserved to the analyst) and the land development intensity level (observed by the analyst) and accommodates spatial interactions between land owners that lead to spatial spillover effects. In addition, the model structure incorporates spatial heterogeneity as well as spatial heteroscedasticity. The resulting model is estimated using a composite marginal likelihood (CML) approach that does not require any simulation machinery and that can be applied to data sets of any size. A simulation exercise indicates that the CML approach recovers the model parameters very well, even in the presence of high spatial and temporal dependence. In addition, the simulation results demonstrate that ignoring spatial dependency and spatial heterogeneity when both are actually present will lead to bias in parameter estimation. A demonstration exercise applies the proposed model to examine urban land development intensity levels using parcel-level data from Austin, Texas.
Modeling urban land development as a continuum to address fine-grained habitat heterogeneity
P.N. Manley; S.A. Parks; Lori Campbell; M.D. Schlesinger
2009-01-01
Natural landscapes are increasingly subjected to impacts associated with urbanization, resulting in loss and degradation of native ecosystems and biodiversity. Traditional classification approaches to the characterization of urbanization may prove inadequate in some human-modified...
Urban air quality estimation study, phase 1
NASA Technical Reports Server (NTRS)
Diamante, J. M.; Englar, T. S., Jr.; Jazwinski, A. H.
1976-01-01
Possibilities are explored for applying estimation theory to the analysis, interpretation, and use of air quality measurements in conjunction with simulation models to provide a cost effective method of obtaining reliable air quality estimates for wide urban areas. The physical phenomenology of real atmospheric plumes from elevated localized sources is discussed. A fluctuating plume dispersion model is derived. Individual plume parameter formulations are developed along with associated a priori information. Individual measurement models are developed.
Study on data model of large-scale urban and rural integrated cadastre
NASA Astrophysics Data System (ADS)
Peng, Liangyong; Huang, Quanyi; Gao, Dequan
2008-10-01
Urban and Rural Integrated Cadastre (URIC) has been the subject of great interests for modern cadastre management. It is highly desirable to develop a rational data model for establishing an information system of URIC. In this paper, firstly, the old cadastral management mode in China was introduced, the limitation was analyzed, and the conception of URIC and its development course in China were described. Afterwards, based on the requirements of cadastre management in developed region, the goal of URIC and two key ideas for realizing URIC were proposed. Then, conceptual management mode was studied and a data model of URIC was designed. At last, based on the raw data of land use survey with a scale of 1:1000 and urban conversional cadastral survey with a scale of 1:500 in Jiangyin city, a well-defined information system of URIC was established according to the data model and an uniform management of land use and use right and landownership in urban and rural area was successfully realized. Its feasibility and practicability was well proved.
Zhou, Xuefan; Chen, Hong
2018-04-24
Urban growth and development caused by urbanization influence the urban heat island (UHI) phenomenon. With the rapid development of urbanization, China's major cities are facing more serious climate change problems, especially the UHI phenomenon. Proper planning and urban design of compact cities may improve the ventilation of street canyons and change the heat balance in the urban canopy and thus mitigate the UHI phenomenon. The aim of this study is to evaluate and discuss the mitigation of UHI with different types of land-use and land-cover (LUCC), as well as different development patterns for compact cities. To this end, we applied the weather research and forecasting model (WRF) with urban canopy model (WRF/UCM) in this study. To evaluate the impact of LUCC changes on the UHI, we set 2 cases based on land use and land cover statistical data from 1965 and 2008 of Wuhan. Also, to evaluate the impact of urban morphology changes on the UHI, we designed 2 hypothetical cases based on 2 different urban developing patterns, one is high rise case and another is high density case, to simulate the impact of urban morphology on the UHI. As for the results of this study, with different LUCC of 1965 and 2008, UHI intensity of Wuhan increased by 0.2 °C-0.4 °C in average. Moreover, the critical wind speed which can mitigate UHI of case 1965 is much lower than case 2008. With different urban morphology, the high-rise case may lead to lower UHI intensity at the pedestrian level due to the shading effects of high-rise buildings. However, the critical value of wind speed in the high-rise case was almost 1.5-2 times greater than that of the high-density case, which illustrates the reduced possibility of mitigating the UHI phenomenon for high-rise buildings in Wuhan City. Copyright © 2018 Elsevier B.V. All rights reserved.
SUSTAIN:Urban Modeling Systems Integrating Optimization and Economics
The System for Urban Stormwater Treatment and Analysis INtegration (SUSTAIN) was developed by the U.S. Environmental Protection Agency to support practitioners in developing cost-effective management plans for municipal storm water programs and evaluating and selecting Best Manag...
The Urban Mission: Linking Fresno State and the Community
ERIC Educational Resources Information Center
Culver-Dockins, Natalie; McCarthy, Mary Ann; Brogan, Amy; Karsevar, Kent; Tatsumura, Janell; Whyte, Jenny; Woods, R. Sandie
2011-01-01
The "four spheres" model of transformation, as viewed through the lens of the urban mission of California State University, Fresno, is examined through current projects in economic development, infrastructure development, human development, and the fourth sphere, which encompasses the broad vision. Local projects will be highlighted.
Modeling of facade leaching in urban catchments
NASA Astrophysics Data System (ADS)
Coutu, S.; Del Giudice, D.; Rossi, L.; Barry, D. A.
2012-12-01
Building facades are protected from microbial attack by incorporation of biocides within them. Flow over facades leaches these biocides and transports them to the urban environment. A parsimonious water quantity/quality model applicable for engineered urban watersheds was developed to compute biocide release from facades and their transport at the urban basin scale. The model couples two lumped submodels applicable at the basin scale, and a local model of biocide leaching at the facade scale. For the facade leaching, an existing model applicable at the individual wall scale was utilized. The two lumped models describe urban hydrodynamics and leachate transport. The integrated model allows prediction of biocide concentrations in urban rivers. It was applied to a 15 km2urban hydrosystem in western Switzerland, the Vuachère river basin, to study three facade biocides (terbutryn, carbendazim, diuron). The water quality simulated by the model matched well most of the pollutographs at the outlet of the Vuachère watershed. The model was then used to estimate possible ecotoxicological impacts of facade leachates. To this end, exceedance probabilities and cumulative pollutant loads from the catchment were estimated. Results showed that the considered biocides rarely exceeded the relevant predicted no-effect concentrations for the riverine system. Despite the heterogeneities and complexity of (engineered) urban catchments, the model application demonstrated that a computationally "light" model can be employed to simulate the hydrograph and pollutograph response within them. It thus allows catchment-scale assessment of the potential ecotoxicological impact of biocides on receiving waters.
A web GIS based integrated flood assessment modeling tool for coastal urban watersheds
NASA Astrophysics Data System (ADS)
Kulkarni, A. T.; Mohanty, J.; Eldho, T. I.; Rao, E. P.; Mohan, B. K.
2014-03-01
Urban flooding has become an increasingly important issue in many parts of the world. In this study, an integrated flood assessment model (IFAM) is presented for the coastal urban flood simulation. A web based GIS framework has been adopted to organize the spatial datasets for the study area considered and to run the model within this framework. The integrated flood model consists of a mass balance based 1-D overland flow model, 1-D finite element based channel flow model based on diffusion wave approximation and a quasi 2-D raster flood inundation model based on the continuity equation. The model code is written in MATLAB and the application is integrated within a web GIS server product viz: Web Gram Server™ (WGS), developed at IIT Bombay, using Java, JSP and JQuery technologies. Its user interface is developed using open layers and the attribute data are stored in MySQL open source DBMS. The model is integrated within WGS and is called via Java script. The application has been demonstrated for two coastal urban watersheds of Navi Mumbai, India. Simulated flood extents for extreme rainfall event of 26 July, 2005 in the two urban watersheds of Navi Mumbai city are presented and discussed. The study demonstrates the effectiveness of the flood simulation tool in a web GIS environment to facilitate data access and visualization of GIS datasets and simulation results.
Research on assessment methods for urban public transport development in China.
Zou, Linghong; Dai, Hongna; Yao, Enjian; Jiang, Tian; Guo, Hongwei
2014-01-01
In recent years, with the rapid increase in urban population, the urban travel demands in Chinese cities have been increasing dramatically. As a result, developing comprehensive urban transport systems becomes an inevitable choice to meet the growing urban travel demands. In urban transport systems, public transport plays the leading role to promote sustainable urban development. This paper aims to establish an assessment index system for the development level of urban public transport consisting of a target layer, a criterion layer, and an index layer. Review on existing literature shows that methods used in evaluating urban public transport structure are dominantly qualitative. To overcome this shortcoming, fuzzy mathematics method is used for describing qualitative issues quantitatively, and AHP (analytic hierarchy process) is used to quantify expert's subjective judgment. The assessment model is established based on the fuzzy AHP. The weight of each index is determined through the AHP and the degree of membership of each index through the fuzzy assessment method to obtain the fuzzy synthetic assessment matrix. Finally, a case study is conducted to verify the rationality and practicability of the assessment system and the proposed assessment method.
Urban Form Energy Use and Emissions in China: Preliminary Findings and Model Proof of Concept
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aden, Nathaniel; Qin, Yining; Fridley, David
Urbanization is reshaping China's economy, society, and energy system. Between 1990 and 2008 China added more than 300 million new urban residents, bringing the total urbanization rate to 46%. The ongoing population shift is spurring energy demand for new construction, as well as additional residential use with the replacement of rural biomass by urban commercial energy services. This project developed a modeling tool to quantify the full energy consequences of a particular form of urban residential development in order to identify energy- and carbon-efficient modes of neighborhood-level development and help mitigate resource and environmental implications of swelling cities. LBNL developedmore » an integrated modeling tool that combines process-based lifecycle assessment with agent-based building operational energy use, personal transport, and consumption modeling. The lifecycle assessment approach was used to quantify energy and carbon emissions embodied in building materials production, construction, maintenance, and demolition. To provide more comprehensive analysis, LBNL developed an agent-based model as described below. The model was applied to LuJing, a residential development in Jinan, Shandong Province, to provide a case study and model proof of concept. This study produced results data that are unique by virtue of their scale, scope and type. Whereas most existing literature focuses on building-, city-, or national-level analysis, this study covers multi-building neighborhood-scale development. Likewise, while most existing studies focus exclusively on building operational energy use, this study also includes embodied energy related to personal consumption and buildings. Within the boundaries of this analysis, food is the single largest category of the building energy footprint, accounting for 23% of the total. On a policy level, the LCA approach can be useful for quantifying the energy and environmental benefits of longer average building lifespans. In addition to prospective analysis for standards and certification, urban form modeling can also be useful in calculating or verifying ex post facto, bottom-up carbon emissions inventories. Emissions inventories provide a benchmark for evaluating future outcomes and scenarios as well as an empirical basis for valuing low-carbon technologies. By highlighting the embodied energy and emissions of building materials, the LCA approach can also be used to identify the most intensive aspects of industrial production and the supply chain. The agent based modeling aspect of the model can be useful for understanding how policy incentives can impact individual behavior and the aggregate effects thereof. The most useful elaboration of the urban form assessment model would be to further generalize it for comparative analysis. Scenario analysis could be used for benchmarking and identification of policy priorities. If the model is to be used for inventories, it is important to disaggregate the energy use data for more accurate emissions modeling. Depending on the policy integration of the model, it may be useful to incorporate occupancy data for per-capita results. On the question of density and efficiency, it may also be useful to integrate a more explicit spatial scaling mechanism for modeling neighborhood and city-level energy use and emissions, i.e. to account for scaling effects in public infrastructure and transportation.« less
The potential impacts of development on wildlands in El Dorado County, California
Shawn C. Saving; Gregory B. Greenwood
2002-01-01
We modeled future development in rapidly urbanizing El Dorado County, California, to assess ecological impacts of expanding urbanization and effectiveness of standard policy mitigation efforts. Using raster land cover data and county parcel data, we constructed a footprint of current development and simulated future development using a modified stochastic flood-fill...
ERIC Educational Resources Information Center
Pan, Lu; Ye, Jingzhong
2017-01-01
Over the past 30 years in China, the development ideology--a model of economic development that is characterized by urbanization, industrialization, and modernization--has brought about many changes and consequences, including increased migration by the rural population, sharp adjustments in urban-rural education policy, the decline of rural…
Swarm Intelligence for Urban Dynamics Modelling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gerard H. E.
2009-04-16
In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.
Swarm Intelligence for Urban Dynamics Modelling
NASA Astrophysics Data System (ADS)
Ghnemat, Rawan; Bertelle, Cyrille; Duchamp, Gérard H. E.
2009-04-01
In this paper, we propose swarm intelligence algorithms to deal with dynamical and spatial organization emergence. The goal is to model and simulate the developement of spatial centers using multi-criteria. We combine a decentralized approach based on emergent clustering mixed with spatial constraints or attractions. We propose an extension of the ant nest building algorithm with multi-center and adaptive process. Typically, this model is suitable to analyse and simulate urban dynamics like gentrification or the dynamics of the cultural equipment in urban area.
Remote Sensing Characterization of the Urban Landscape for Improvement of Air Quality Modeling
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Estes, Maurice G., Jr.; Khan, Maudood
2005-01-01
The urban landscape is inherently complex and this complexity is not adequately captured in air quality models, particularly the Community Multiscale Air Quality (CMAQ) model that is used to assess whether urban areas are in attainment of EPA air quality standards, primarily for ground level ozone. This inadequacy of the CMAQ model to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well the model predicts ozone pollutant levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban growth projections as improved inputs to the meteorology component of the CMAQ model focusing on the Atlanta, Georgia metropolitan area as a case study. These growth projections include "business as usual" and "smart growth" scenarios out to 2030. The growth projections illustrate the effects of employing urban heat island mitigation strategies, such as increasing tree canopy and albedo across the Atlanta metro area, in moderating ground-level ozone and air temperature, compared to "business as usual" simulations in which heat island mitigation strategies are not applied. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the (CMAQ) modeling schemes. Use of these data has been found to better characterize low densityhburban development as compared with USGS 1 km land use/land cover data that have traditionally been used in modeling. Air quality prediction for fiture scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission, the regional planning agency for the area. This allows the state Environmental Protection agency to evaluate how these transportation plans will affect fbture air quality.
Downscaling modelling system for multi-scale air quality forecasting
NASA Astrophysics Data System (ADS)
Nuterman, R.; Baklanov, A.; Mahura, A.; Amstrup, B.; Weismann, J.
2010-09-01
Urban modelling for real meteorological situations, in general, considers only a small part of the urban area in a micro-meteorological model, and urban heterogeneities outside a modelling domain affect micro-scale processes. Therefore, it is important to build a chain of models of different scales with nesting of higher resolution models into larger scale lower resolution models. Usually, the up-scaled city- or meso-scale models consider parameterisations of urban effects or statistical descriptions of the urban morphology, whereas the micro-scale (street canyon) models are obstacle-resolved and they consider a detailed geometry of the buildings and the urban canopy. The developed system consists of the meso-, urban- and street-scale models. First, it is the Numerical Weather Prediction (HIgh Resolution Limited Area Model) model combined with Atmospheric Chemistry Transport (the Comprehensive Air quality Model with extensions) model. Several levels of urban parameterisation are considered. They are chosen depending on selected scales and resolutions. For regional scale, the urban parameterisation is based on the roughness and flux corrections approach; for urban scale - building effects parameterisation. Modern methods of computational fluid dynamics allow solving environmental problems connected with atmospheric transport of pollutants within urban canopy in a presence of penetrable (vegetation) and impenetrable (buildings) obstacles. For local- and micro-scales nesting the Micro-scale Model for Urban Environment is applied. This is a comprehensive obstacle-resolved urban wind-flow and dispersion model based on the Reynolds averaged Navier-Stokes approach and several turbulent closures, i.e. k -É linear eddy-viscosity model, k - É non-linear eddy-viscosity model and Reynolds stress model. Boundary and initial conditions for the micro-scale model are used from the up-scaled models with corresponding interpolation conserving the mass. For the boundaries a kind of Dirichlet condition is chosen to provide the values based on interpolation from the coarse to the fine grid. When the roughness approach is changed to the obstacle-resolved one in the nested model, the interpolation procedure will increase the computational time (due to additional iterations) for meteorological/ chemical fields inside the urban sub-layer. In such situations, as a possible alternative, the perturbation approach can be applied. Here, the effects of main meteorological variables and chemical species are considered as a sum of two components: background (large-scale) values, described by the coarse-resolution model, and perturbations (micro-scale) features, obtained from the nested fine resolution model.
A FEDERATED PARTNERSHIP FOR URBAN METEOROLOGICAL AND AIR QUALITY MODELING
Recently, applications of urban meteorological and air quality models have been performed at resolutions on the order of km grid sizes. This necessitated development and incorporation of high resolution landcover data and additional boundary layer parameters that serve to descri...
Malmir, Maryam; Zarkesh, Mir Masoud Kheirkhah; Monavari, Seyed Masoud; Jozi, Seyed Ali; Sharifi, Esmail
2016-08-01
The ever-increasing development of cities due to population growth and migration has led to unplanned constructions and great changes in urban spatial structure, especially the physical development of cities in unsuitable places, which requires conscious guidance and fundamental organization. It is therefore necessary to identify suitable sites for future development of cities and prevent urban sprawl as one of the main concerns of urban managers and planners. In this study, to determine the suitable sites for urban development in the county of Ahwaz, the effective biophysical and socioeconomic criteria (including 27 sub-criteria) were initially determined based on literature review and interviews with certified experts. In the next step, a database of criteria and sub-criteria was prepared. Standardization of values and unification of scales in map layers were done using fuzzy logic. The criteria and sub-criteria were weighted by analytic network process (ANP) in the Super Decision software. Next, the map layers were overlaid using weighted linear combination (WLC) in the GIS software. According to the research findings, the final land suitability map was prepared with five suitability classes of very high (5.86 %), high (31.93 %), medium (38.61 %), low (17.65 %), and very low (5.95 %). Also, in terms of spatial distribution, suitable lands for urban development are mainly located in the central and southern parts of the Ahwaz County. It is expected that integration of fuzzy logic and ANP model will provide a better decision support tool compared with other models. The developed model can also be used in the land suitability analysis of other cities.
NASA Astrophysics Data System (ADS)
Haris, H.; Chow, M. F.; Usman, F.; Sidek, L. M.; Roseli, Z. A.; Norlida, M. D.
2016-03-01
Urbanization is growing rapidly in Malaysia. Rapid urbanization has known to have several negative impacts towards hydrological cycle due to decreasing of pervious area and deterioration of water quality in stormwater runoff. One of the negative impacts of urbanization is the congestion of the stormwater drainage system and this situation leading to flash flood problem and water quality degradation. There are many urban stormwater management softwares available in the market such as Storm Water Drainage System design and analysis program (DRAINS), Urban Drainage and Sewer Model (MOUSE), InfoWorks River Simulation (InfoWork RS), Hydrological Simulation Program-Fortran (HSPF), Distributed Routing Rainfall-Runoff Model (DR3M), Storm Water Management Model (SWMM), XP Storm Water Management Model (XPSWMM), MIKE-SWMM, Quality-Quantity Simulators (QQS), Storage, Treatment, Overflow, Runoff Model (STORM), and Hydrologic Engineering Centre-Hydrologic Modelling System (HEC-HMS). In this paper, we are going to discuss briefly about several softwares and their functionality, accessibility, characteristics and components in the quantity analysis of the hydrological design software and compare it with MSMA Design Aid and Database. Green Infrastructure (GI) is one of the main topics that has widely been discussed all over the world. Every development in the urban area is related to GI. GI can be defined as green area build in the develop area such as forest, park, wetland or floodway. The role of GI is to improve life standard such as water filtration or flood control. Among the twenty models that have been compared to MSMA SME, ten models were selected to conduct a comprehensive review for this study. These are known to be widely accepted by water resource researchers. These ten tools are further classified into three major categories as models that address the stormwater management ability of GI in terms of quantity and quality, models that have the capability of conducting the economic analysis of GI and models that can address both stormwater management and economic aspects together.
Assessing the effects of urbanization and climate change on groundwater management in China
NASA Astrophysics Data System (ADS)
Hua, S.; Zheng, C.
2017-12-01
Groundwater is expected to be more vulnerable in the future due to climate change coupled with rapid urbanization. Thus, protecting future groundwater resources under the impact of urbanization and climate change is necessary towards more sustainable groundwater resource development. This study is intended to shed lights on how water managers may plan for the adverse effects of urbanization and climate change on groundwater quality. A new approach is presented in which the groundwater vulnerability under future climate change scenarios is employed as a constraint to urban expansion. An original form of the Land Transformation Model (LTM) and a revised LTM simulation are applied to model the urbanization. The results indicated that there would be a notable and uneven urban growth between 2010 and 2050. Future groundwater vulnerability is expected to shift significantly under future climate change scenarios. The results of the revised LTM project more urban expansion in the central regions of China, while those of the original LTM project urban expansion in throughout China, although the two projections have the same areas of expansion. The urban expansion simulated by the original LTM follows the historical trend under the drivers of socioeconomic, political and geographic factors. However, the revised LTM drives the urban expansion to the regions with relatively lower groundwater vulnerability, in contrast to the historical trend. This study demonstrates that the integration of LTM and future groundwater vulnerability in the urban planning can better protect the groundwater resource and promote more sustainable socioeconomic development. The methodology developed in this study provides water managers and city planners a useful groundwater management tool for mitigating the risks associated with rapid urbanization and climate change.
Modeling Urban Growth Spatial Dynamics: Case studies of Addis Ababa and Dar es Salaam
NASA Astrophysics Data System (ADS)
Buchta, Katja; Abo El Wafa, Hany; Printz, Andreas; Pauleit, Stephan
2013-04-01
Rapid urbanization, and consequently, the dramatic spatial expansion of mostly informal urban areas increases the vulnerability of African cities to the effects of climate change such as sea level rise, more frequent flooding, droughts and heat waves. The EU FP 7 funded project CLUVA (Climate Change and Urban Vulnerability in Africa, www.cluva.eu) aims to develop strategies for minimizing the risks of natural hazards caused by climate change and to improve the coping capacity of African cities. Green infrastructure may play a particular role in climate change adaptation by providing ecosystem services for flood protection, stormwater retention, heat island moderation and provision of food and fuel wood. In this context, a major challenge is to gain a better understanding of the spatial and temporal dynamics of the cities and how these impact on green infrastructure and hence their vulnerability. Urban growth scenarios for two African cities, namely Addis Ababa, Ethiopia and Dar es Salaam, Tanzania, were developed based on a characterization of their urban morphology. A population growth driven - GIS based - disaggregation modeling approach was applied. Major impact factors influencing the urban dynamics were identified both from literature and interviews with local experts. Location based factors including proximity to road infrastructure and accessibility, and environmental factors including slope, surface and flood risk areas showed a particular impact on urban growth patterns. In Addis Ababa and Dar es Salaam, population density scenarios were modeled comparing two housing development strategies. Results showed that a densification scenario significantly decreases the loss of agricultural and green areas such as forests, bushland and sports grounds. In Dar es Salaam, the scenario of planned new settlements with a population density of max. 350 persons per hectare would lead until 2025 to a loss of agricultural land (-10.1%) and green areas (-6.6%). On the other hand, 12.4% of agricultural land and 16.1% of green areas would be lost in the low density development scenario of unplanned settlements of max. 150 persons per hectare. Relocating the population living in flood prone areas in the case of Addis Ababa and keeping those areas free from further settlements in the case of Dar es Salaam would result in even lower losses (agricultural land: -10.0%, green areas: -5.6%) as some flood prone areas overlap with agricultural/ green areas. The scenario models introduced in this research can be used by planners as tools to understand and manage the different outcomes of distinctive urban development strategies on growth patterns and how they interact with different climate change drivers such as loss of green infrastructure and effects such as frequent flooding hazards. Due to the relative simplicity of their structure and the single modeling environment, the models can be transferred to similar cities with minor modifications accommodating the different conditions of each city. Already, in Addis Ababa the results of the model will be used in the current revision of the Master plan of the city. Keywords: GIS, modeling, Urban Dynamics, Dar es Salaam, Addis Ababa, urbanization
Urban bioclimatology in developing countries.
Jauregui, E
1993-11-15
A brief review of the literature on urban human bioclimatology in the tropics is undertaken. Attempts to chart human bioclimatic conditions on the regional/local scale have been made in several developing countries. The effective temperature scheme (with all its limitations) is the one that has been most frequently applied. The possibilities of application of bioclimatic models based on human heat balance for the tropical urban environment are discussed.
NASA Astrophysics Data System (ADS)
Demuzere, Matthias; Coutts, Andrew; Goehler, Maren; Broadbent, Ashley; Wouters, Hendrik; van Lipzig, Nicole; Gebert, Luke
2015-04-01
Urban vegetation is generally considered as a key tool to modify the urban energy balance through enhanced evapotranspiration (ET). Given that vegetation is most effective when it is healthy, stormwater harvesting and retention strategies (such as water sensitive urban design) could be used to support vegetation and promote ET. This study presents the implementation of a vegetated lined bio-filtration system (BFS) combined with a rainwater tank (RWT) and urban irrigation system in the single-layer urban canopy model Community Land Model-Urban. Runoff from roof and impervious road surface fractions is harvested and used to support an adequate soil moisture level for vegetation in the BFS. In a first stage, modelled soil moisture dynamics are evaluated and found reliable compared to observed soil moisture levels from biofiltration pits in Smith Street, Melbourne (Australia). Secondly, the impact of BFS, RWT and urban irrigation on ET is illustrated for a two-month period in 2012 using varying characteristics for all components. Results indicate that (i) a large amount of stormwater is potentially available for indoor and outdoor water demands, including irrigation of urban vegetation, (ii) ET from the BFS is an order of magnitude larger compared to the contributions from the impervious surfaces, even though the former only covers 10% of the surface fraction and (iii) attention should be paid to the cover fraction and soil texture of the BFS, size of the RWT and the surface fractions contributing to the collection of water in the RWT. Overall, this study reveals that this model development can effectuate future research with state-of-the-art urban climate models to further explore the benefits of vegetated biofiltration systems as a water sensitive urban design tool optimised with an urban irrigation system to maintain healthy vegetation.
A Watershed-scale Design Optimization Model for Stormwater Best Management Practices
U.S. Environmental Protection Agency developed a decision-support system, System for Urban Stormwater Treatment and Analysis Integration (SUSTAIN), to evaluate alternative plans for stormwater quality management and flow abatement techniques in urban and developing areas. SUSTAI...
NASA Astrophysics Data System (ADS)
Wu, Xushu; Wang, Zhaoli; Guo, Shenglian; Liao, Weilin; Zeng, Zhaoyang; Chen, Xiaohong
2017-04-01
One major threat to cities at present is the increased inundation hazards owing to changes in climate and accelerated human activity. Future evolution of urban inundation is still an unsolved issue, given large uncertainties in future environmental conditions within urbanized areas. Developing model techniques and urban inundation projections are essential for inundation management. In this paper, we proposed a 2D hydrodynamic inundation model by coupling SWMM and LISFLOOD-FP models, and revealed how future urban inundation would evolve for different storms, sea level rise and subsidence scenarios based on the developed model. The Shiqiao Creek District (SCD) in Dongguan City was used as the case study. The model ability was validated against the June 13th, 2008 inundation event, which occurred in SCD, and proved capable of simulating dynamic urban inundation. Scenario analyses revealed a high degree of consistency in the inundation patterns among different storms, with larger magnitudes corresponding to greater return periods. Inundations across SCD generally vary as a function of storm intensity, but for lowlands or regions without drainage facilities inundations tend to aggravate over time. In riverfronts, inundations would exacerbate with sea level rise or subsidence; however, the inland inundations are seemingly insensitive to both factors. For the combined scenario of 100-yr storm, 0.5 m subsidence and 0.7 m sea level rise, the riverside inundations would occur much in advance, whilst catastrophic inundations sweep across SCD. Furthermore, the optimal low-impact development found for this case study includes 0.2 km2 of permeable pavements, 0.1 km2 of rain barrels and 0.7 km2 of green roofs.
NASA Astrophysics Data System (ADS)
Kanta, L.; Giacomoni, M.; Shafiee, M. E.; Berglund, E.
2014-12-01
The sustainability of water resources is threatened by urbanization, as increasing demands deplete water availability, and changes to the landscape alter runoff and the flow regime of receiving water bodies. Utility managers typically manage urban water resources through the use of centralized solutions, such as large reservoirs, which may be limited in their ability balance the needs of urbanization and ecological systems. Decentralized technologies, on the other hand, may improve the health of the water resources system and deliver urban water services. For example, low impact development technologies, such as rainwater harvesting, and water-efficient technologies, such as low-flow faucets and toilets, may be adopted by households to retain rainwater and reduce demands, offsetting the need for new centralized infrastructure. Decentralized technologies may create new complexities in infrastructure and water management, as decentralization depends on community behavior and participation beyond traditional water resources planning. Messages about water shortages and water quality from peers and the water utility managers can influence the adoption of new technologies. As a result, feedbacks between consumers and water resources emerge, creating a complex system. This research develops a framework to simulate the diffusion of water-efficient innovations and the sustainability of urban water resources, by coupling models of households in a community, hydrologic models of a water resources system, and a cellular automata model of land use change. Agent-based models are developed to simulate the land use and water demand decisions of individual households, and behavioral rules are encoded to simulate communication with other agents and adoption of decentralized technologies, using a model of the diffusion of innovation. The framework is applied for an illustrative case study to simulate water resources sustainability over a long-term planning horizon.
NASA Astrophysics Data System (ADS)
Lee, T.; Lee, C.; Kim, H.
2016-12-01
Abstract Song-do international city was constructed by reclaiming land from the coastal waters of Yeonsu-gu, Incheon Metropolitan City, Republic of Korea. The □-shaped cyclic artificial water way has been considered for improving water quality, waterfront and internal drainage in Song-do international city. By improving water quality, various marine facilities, such as marina, artificial beach, marine terminal, and so on, will be set up around the artificial water way for the waterfront. Since the water stage of the artificial water way changes depending on water gates operations, it is necessary to develop an urban inundation warning model to evaluate safeties of the waterfront facilities and its passengers. By considering characteristics of urban watershed, we calculate discharge flowing into the water way using XP-SWMM model. As a result of estimating 100-year flood frequency, although there are slight differences in drainage sections, the maximum flood discharge occurs in 90-min rainfall duration. In order to consider impacts of tide and hydraulic structure, we establish Inland drainage plans through the analysis of unsteady flow using HEC-RAS. The urban inundation warning model is configured to issue a warning when the water plain elevation exceeds EL. 1.5m which is usually managed at EL. 1.0m. In this study, the design flood stage of artificial water way and urban inundation warning model are developed for Song-do international city, and therefore it is expected that a reliability of management and operation of the waterfront facilities is improved. Keywords : Artificial Water Way; Waterfront; Urban Inundation Warning Model. Acknowlegement This research was supported by a grant [MPSS-NH-2015-79] through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.
Kashuba, Roxolana; McMahon, Gerard; Cuffney, Thomas F.; Qian, Song; Reckhow, Kenneth; Gerritsen, Jeroen; Davies, Susan
2012-01-01
In realization of the aforementioned advantages, a Bayesian network model was constructed to characterize the effect of urban development on aquatic macroinvertebrate stream communities through three simultaneous, interacting ecological pathways affecting stream hydrology, habitat, and water quality across watersheds in the Northeastern United States. This model incorporates both empirical data and expert knowledge to calculate the probabilities of attaining desired aquatic ecosystem conditions under different urban stress levels, environmental conditions, and management options. Ecosystem conditions are characterized in terms of standardized Biological Condition Gradient (BCG) management endpoints. This approach to evaluating urban development-induced perturbations in watersheds integrates statistical and mechanistic perspectives, different information sources, and several ecological processes into a comprehensive description of the system that can be used to support decision making. The completed model can be used to infer which management actions would lead to the highest likelihood of desired BCG tier achievement. For example, if best management practices (BMP) were implemented in a highly urbanized watershed to reduce flashiness to medium levels and specific conductance to low levels, the stream would have a 70-percent chance of achieving BCG Tier 3 or better, relative to a 24-percent achievement likelihood for unmanaged high urban land cover. Results are reported probabilistically to account for modeling uncertainty that is inherent in sources such as natural variability and model simplification error.
NASA Astrophysics Data System (ADS)
Liu, Z.; Liu, S.; Xue, Y.; Oleson, K. W.
2013-12-01
One of the most significant urbanization in the world occurred in Great Beijing Area of China during the past several decades. The land use and land cover changes modifies the land surface physical characteristics, including the anthropogenic heat and thermo-dynamic conduction. All of those play important roles in the urban regional climate changes. We developed a single layer urban canopy module based on the Community Land Surface Model Urban Module (CLMU). We have made further improvements in the urban module: the energy balances on the five surface conditions are considered separately: building roof, sun side and shade side wall, pervious and impervious land surface. Over each surface, a method to calculate sky view factor (SVF) is developed based on the physically process while most urban models simply provide an empirical value; A new scheme for calculating the latent heat flux is applied on both wall and impervious land; anthropogenic heat is considered in terms of industrial production, domestic wastes, vehicle and air condition. All of these developments improve the accuracy of surface energy balance processing in urban area. The urban effect on summer convective precipitation under the unstable atmospheric condition in the Great Beijing Area was investigated by simulating a heavy rainfall event in July 21st 2012. In this storm, strong meso-scale convective complexes (MCC) brought precipitation of averagely 164 mm within 6 hours, which is the record of past 60 years in the region. Numerical simulating experiment was set up by coupling MCLMU with WRF. Several condition/blank control cases were also set up. The horizontal resolution in all simulations was 2 km. While all of the control results drastically underestimate the urban precipitation, the result of WRF-MCLMU is much closer to the observation though still underestimated. More sensitive experiments gave a preliminary conclusion of how the urban canopy physics processing affects the local precipitation: the existence of large area of impervious surfaces restrain the surface evaporation and latent heat flux in urban while the anthropogenic heat and enhanced sensible heat flux warm up the lower atmospheric layer and strengthen the vertical stratification instability; In this storm event, the water supply of the MCC was thought to be sufficient, thus the instability of the vertical stratification was the key factor for precipitation.
Saidi, Kais; Mbarek, Mounir Ben
2017-05-01
This study attempts to empirically examine the impact of financial development, income, trade openness, and urbanization on carbon dioxide emissions for the panel of emerging economies using the time series data over the period 1990-2013. Results showed a positive monotonic relationship between income and CO 2 emissions. All models do not support the EKC hypothesis which assumes an inverted U-shaped relationship between income and environmental degradation. Financial development has a long-run negative impact on carbon emissions, implying that financial development minimizes environmental degradation. This means that financial development can be used as an implement to keep the degradation environmental clean by introducing financial reforms. The urbanization decreases the CO 2 emissions; therefore, it is important for the policymakers and urban planners in these countries to slow the rapid increase in urbanization.
NASA Astrophysics Data System (ADS)
Schertzer, D. J. M.; Versini, P. A.; Tchiguirinskaia, I.
2017-12-01
Urban areas are facing an expected increase in intensity and frequency of extreme weather events due to climate change. Combined with unsustainable urbanization, this should exacerbate the environmental consequences related to the water cycle as stormwater management issues, urban heat island increase and biodiversity degradation. Blue Green Solutions (BGS), such as green roofs, vegetated swales or urban ponds, appear to be particularly efficient to reduce the potential impact of new and existing urban developments with respect to these issues. Based on this statement, the French ANR EVNATURB project aims to develop a platform to assess the eco-systemic services provided by BGS and related with the previously mentioned issues. By proposing a multi-disciplinary consortium coupling monitoring, modelling and prospecting, it attempts to tackle several scientific issues currently limiting BGS wide implementation. Based on high resolution monitored sites and modelling tools, space-time variability of the related physical processes will be studied over a wide range of scales (from the material to the district scale), as well as local social-environmental stakes and constraints, to better consider the complexity of the urban environment. The EVNATURB platform developed during the project is intended for every stakeholder involved in urban development projects (planners, architects, engineering and environmental certification companies…) and will help them to implement BGS and evaluate which ones are the most appropriate for a particular project depending on its environmental objectives and constraints, and particularly for obtaining environmental certification.
EPA has released for independent external peer review and public comment a draft report titled, Watershed Modeling to Assess the Sensitivity of Streamflow, Nutrient, and Sediment Loads to Potential Climate Change and Urban Development in 20 U.S. Watersheds. This is a draft...
PHOTOCHEMICAL PRODUCTS IN URBAN MIXTURES ENHANCE INFLAMMATORY RESPONSES IN LUNG CELLS
Complex urban air mixtures that realistically mimic urban smog can be generated for investigating adverse health effects. "Smog chambers" have been used for over 30 yr to conduct experiments for developing and testing photochemical models that predict ambient ozone (O(3)) concent...
NASA Astrophysics Data System (ADS)
Wouters, Hendrik; Blahak, Ulrich; Helmert, Jürgen; Raschendorfer, Matthias; Demuzere, Matthias; Fay, Barbara; Trusilova, Kristina; Mironov, Dmitrii; Reinert, Daniel; Lüthi, Daniel; Machulskaya, Ekaterina
2015-04-01
In order to address urban climate at the regional scales, a new efficient urban land-surface parametrization TERRA_URB has been developed and coupled to the atmospheric numerical model COSMO-CLM. Hereby, several new advancements for urban land-surface models are introduced which are crucial for capturing the urban surface-energy balance and its seasonal dependency in the mid-latitudes. This includes a new PDF-based water-storage parametrization for impervious land, the representation of radiative absorption and emission by greenhouse gases in the infra-red spectrum in the urban canopy layer, and the inclusion of heat emission from human activity. TERRA_URB has been applied in offline urban-climate studies during European observation campaigns at Basel (BUBBLE), Toulouse (CAPITOUL), and Singapore, and currently applied in online studies for urban areas in Belgium, Germany, Switzerland, Helsinki, Singapore, and Melbourne. Because of its computational efficiency, high accuracy and its to-the-point conceptual easiness, TERRA_URB has been selected to become the standard urban parametrization of the atmospheric numerical model COSMO(-CLM). This allows for better weather forecasts for temperature and precipitation in cities with COSMO, and an improved assessment of urban outdoor hazards in the context of global climate change and urban expansion with COSMO-CLM. We propose additional extensions to TERRA_URB towards a more robust representation of cities over the world including their structural design. In a first step, COSMO's standard EXTernal PARarameter (EXTPAR) tool is updated for representing the cities into the land cover over the entire globe. Hereby, global datasets in the standard EXTPAR tool are used to retrieve the 'Paved' or 'sealed' surface Fraction (PF) referring to the presence of buildings and streets. Furthermore, new global data sets are incorporated in EXTPAR for describing the Anthropogenic Heat Flux (AHF) due to human activity, and optionally the Surface Area Index (SAI) derived from the Floor Space Index (FSI). In a second step, it is focussed on the urban/rural contrast in terms of turbulent transport in the surface layer by means of model sensivity experiments: On the theoretical basis of the TKE-based surface-layer transfer scheme of COSMO, we investigate the consistency between empirical functions for thermal roughness lengths and the urban/rural canopy morphology.
Liu, Yi; Chen, Jining; He, Weiqi; Tong, Qingyuan; Li, Wangfeng
2010-04-15
Urban planning has been widely applied as a regulatory measure to guide a city's construction and management. It represents official expectations on future population and economic growth and land use over the urban area. No doubt, significant variations often occur between planning schemes and actual development; in particular in China, the world's largest developing country experiencing rapid urbanization and industrialization. This in turn leads to difficulty in estimating the environmental consequences of the urban plan. Aiming to quantitatively analyze the uncertain environmental impacts of the urban plan's implementation, this article developed an integrated methodology combining a scenario analysis approach and a stochastic simulation technique for strategic environmental assessment (SEA). Based on industrial development scenarios, Monte Carlo sampling is applied to generate all possibilities of the spatial distribution of newly emerged industries. All related environmental consequences can be further estimated given the industrial distributions as input to environmental quality models. By applying a HSY algorithm, environmentally unacceptable urban growth, regarding both economic development and land use spatial layout, can be systematically identified, providing valuable information to urban planners and decision makers. A case study in Dalian Municipality, Northeast China, is used to illustrate applicability of this methodology. The impacts of Urban Development Plan for Dalian Municipality (2003-2020) (UDP) on atmospheric environment are also discussed in this article.
Li, Jing-Zhi; Zhu, Xiang; Li, Jing-Bao; Xu, Mei
2013-06-01
By using analytic hierarchy process and entropy method, the evaluation index system and the response relationship model of comprehensive development level of urbanization and comprehensive development and utilization potential of water resources in Dongting Lake District were constructed, with the key affecting factors, their change characteristics, and response characteristics from 2001 to 2010 analyzed. During the study period, the Dongting Lake District was undergoing a rapid development of urbanization, and at a scale expansion stage. The economic and social development level was lagged behind the population and area increase, and the quality and efficiency of urbanization were still needed to be improved. With the advance of urbanization, the water consumption increased yearly, and the water resources utilization efficiency and management level improved steadily. However, the background condition of water resources and their development and utilization level were more affected by hydrological environment rather than urbanization. To a certain extent, the development of urbanization in 2001, 2002, 2005, 2006, 2007, 2009 was slowed down by the shortage of water resources. At present, Dongting Lake region was confronted with the dual task of improving the level and quality of urbanization, and hence, it would be necessary to reform the traditional epitaxial expansion of urbanization and to enhance the water resource support capability.
NASA Astrophysics Data System (ADS)
Liu, Helin; Silva, Elisabete A.; Wang, Qian
2016-07-01
This paper presents an extension to the agent-based model "Creative Industries Development-Urban Spatial Structure Transformation" by incorporating GIS data. Three agent classes, creative firms, creative workers and urban government, are considered in the model, and the spatial environment represents a set of GIS data layers (i.e. road network, key housing areas, land use). With the goal to facilitate urban policy makers to draw up policies locally and optimise the land use assignment in order to support the development of creative industries, the improved model exhibited its capacity to assist the policy makers conducting experiments and simulating different policy scenarios to see the corresponding dynamics of the spatial distributions of creative firms and creative workers across time within a city/district. The spatiotemporal graphs and maps record the simulation results and can be used as a reference by the policy makers to adjust land use plans adaptively at different stages of the creative industries' development process.
Halstead, Judith A; Kliman, Sabrina; Berheide, Catherine White; Chaucer, Alexander; Cock-Esteb, Alicea
2014-06-01
The relationships among land use patterns, geology, soil, and major solute concentrations in stream water for eight tributaries of the Kayaderosseras Creek watershed in Saratoga County, NY, were investigated using Pearson correlation coefficients and multivariate regression analysis. Sub-watersheds corresponding to each sampling site were delineated, and land use patterns were determined for each of the eight sub-watersheds using GIS. Four land use categories (urban development, agriculture, forests, and wetlands) constituted more than 99 % of the land in the sub-watersheds. Eleven water chemistry parameters were highly and positively correlated with each other and urban development. Multivariate regression models indicated urban development was the most powerful predictor for the same eleven parameters (conductivity, TN, TP, NO[Formula: see text], Cl(-), HCO(-)3, SO9(2-)4, Na(+), K(+), Ca(2+), and Mg(2+)). Adjusted R(2) values, ranging from 19 to 91 %, indicated that these models explained an average of 64 % of the variance in these 11 parameters across the samples and 70 % when Mg(2+) was omitted. The more common R (2), ranging from 29 to 92 %, averaged 68 % for these 11 parameters and 72 % when Mg(2+) was omitted. Water quality improved most with forest coverage in stream watersheds. The strong associations between water quality variables and urban development indicated an urban source for these 11 water quality parameters at all eight sampling sites was likely, suggesting that urban stream syndrome can be detected even on a relatively small scale in a lightly developed area. Possible urban sources of Ca(2+) and HCO(-)3 are suggested.
Urban Impact at the Urban-Agricultural Interface in Madison, WI: an Ecosystem Modeling Approach
NASA Astrophysics Data System (ADS)
Logan, K. E.; Kucharik, C. J.; Schneider, A.
2009-12-01
Global population and the proportion of people living in urban areas both continue to grow while average urban density is decreasing worldwide. Because urban areas are often located in the most agriculturally productive lands, expansion of the built environment can cause sharp reductions in land available for cultivation. Conversion of land to urban use also significantly alters climate variables. Urban materials differ from natural land covers in terms of albedo, thermal properties, and permeability, altering energy and water cycles. Anthropogenic heat emissions also alter the energy balance in and around a city. Preliminary analysis of urban impacts around Madison, WI, a small city located in a thriving agricultural region, was performed using the National Land Cover Database (NLCD), MODIS albedo products, ground-based observations, and a simulation of urban expansion, within a geographic information system (GIS). Population of the county is expected to increase by 58% while urban density is projected to decrease by 49% between 1992 and 2030, reflecting projected worldwide patterns. Carbon stored in the top 25cm of soil was found to be over 2.5 times greater in remnant prairies than in croplands and was calculated to be even less in urban areas; projected urban development may thus lead to large losses in carbon storage. Albedo measurements also show a significant decrease with urban development. Projected urban expansion between 2001 and 2030 is expected to convert enough agricultural lands to urban areas to result in a loss of 247,000 tons of crop yield in Dane County alone, based on current yields. For a more complete analysis of these impacts, urban parameters are incorporated into a terrestrial ecosystem model known as Agro-IBIS. This approach allows for detailed comparison of energy balance and biogeochemical cycles between local crop systems, lawns, and impervious city surfaces. Changes in these important cycles, in soil carbon storage, and in crop productivity/yield for 1992 - 2001 and projected 2030 development around Madison, WI will be shown.
Modeling flood reduction effects of low impact development at a watershed scale.
Ahiablame, Laurent; Shakya, Ranish
2016-04-15
Low impact development (LID) is a land development approach that seeks to mimic a site's pre-development hydrology. This study is a case study that assessed flood reduction capabilities of large-scale adoption of LID practices in an urban watershed in central Illinois using the Personal Computer Storm Water Management Model (PCSWMM). Two flood metrics based on runoff discharge were developed to determine action flood (43 m(3)/s) and major flood (95 m(3)/s). Four land use scenarios for urban growth were evaluated to determine the impacts of urbanization on runoff and flooding. Flood attenuation effects of porous pavement, rain barrel, and rain garden at various application levels were also evaluated as retrofitting technologies in the study watershed over a period of 30 years. Simulation results indicated that increase in urban land use from 50 to 94% between 1992 and 2030 increased average annual runoff and flood events by more than 30%, suggesting that urbanization without sound management would increase flood risks. The various implementation levels of the three LID practices resulted in 3-47% runoff reduction in the study watershed. Flood flow events that include action floods and major floods were also reduced by 0-40%, indicating that LID practices can be used to mitigate flood risk in urban watersheds. The study provides an insight into flood management with LID practices in existing urban areas. Copyright © 2016 Elsevier Ltd. All rights reserved.
Urban growth simulation from "first principles".
Andersson, Claes; Lindgren, Kristian; Rasmussen, Steen; White, Roger
2002-08-01
General and mathematically transparent models of urban growth have so far suffered from a lack in microscopic realism. Physical models that have been used for this purpose, i.e., diffusion-limited aggregation, dielectric breakdown models, and correlated percolation all have microscopic dynamics for which analogies with urban growth appear stretched. Based on a Markov random field formulation we have developed a model that is capable of reproducing a variety of important characteristic urban morphologies and that has realistic microscopic dynamics. The results presented in this paper are particularly important in relation to "urban sprawl," an important aspect of which is aggressively spreading low-density land uses. This type of growth is increasingly causing environmental, social, and economical problems around the world. The microdynamics of our model, or its "first principles," can be mapped to human decisions and motivations and thus potentially also to policies and regulations. We measure statistical properties of macrostates generated by the urban growth mechanism that we propose, and we compare these to empirical measurements as well as to results from other models. To showcase the open-endedness of the model and to thereby relate our work to applied urban planning we have also included a simulated city consisting of a large number of land use classes in which also topographical data have been used.
24 CFR 3285.501 - Home installation manual supplements.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Home installation manual... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Optional Features § 3285.501 Home installation manual supplements. Supplemental instructions for optional equipment or features must...
24 CFR 3285.501 - Home installation manual supplements.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Home installation manual... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Optional Features § 3285.501 Home installation manual supplements. Supplemental instructions for optional equipment or features must...
24 CFR 3285.501 - Home installation manual supplements.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Home installation manual... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Optional Features § 3285.501 Home installation manual supplements. Supplemental instructions for optional equipment or features must...
24 CFR 3285.501 - Home installation manual supplements.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Home installation manual... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Optional Features § 3285.501 Home installation manual supplements. Supplemental instructions for optional equipment or features must...
24 CFR 3285.501 - Home installation manual supplements.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Home installation manual... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Optional Features § 3285.501 Home installation manual supplements. Supplemental instructions for optional equipment or features must...
24 CFR 3285.701 - Electrical crossovers.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Electrical crossovers. 3285.701... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section require...
24 CFR 3285.701 - Electrical crossovers.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Electrical crossovers. 3285.701... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section require...
24 CFR 3285.701 - Electrical crossovers.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Electrical crossovers. 3285.701... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section require...
24 CFR 3285.701 - Electrical crossovers.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Electrical crossovers. 3285.701... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Electrical Systems and Equipment § 3285.701 Electrical crossovers. Multi-section homes with electrical wiring in more than one section require...
NASA Astrophysics Data System (ADS)
Ribeiro, F. N. D.; Soares, J.; Oliveira, A. P.; Miranda, R. M.; Chen, F.
2015-12-01
The gradual replacement of natural by built surfaces and the ongoing emission of particulate matter and other pollutants that happens in urban environments, besides degrading the environment, influence the local weather and climate patterns. Urban areas have different albedo, heat and hydraulic capacity and conductivity, roughness, emissivity, and transmissivity, when compared to naturally vegetated areas. This set of characteristics may change the surface energy budget, air temperature, humidity, atmospheric chemical composition, wind direction and velocity, and therefore the planetary boundary layer (PBL) development. The effects of urbanization on the PBL have been studied in many mid-latitude areas, however in the tropical or subtropical areas they are scarce. The MCITY Brazil project developed in 2 cities of Brazil, Sao Paulo (23°32' S) and Rio de Janeiro (latitude 22° 55' S), has provided the necessary data to properly investigate the effects of urbanization in these two cities. The project included a campaign of soundings launched every 3 hours for 10 consecutive days in August (Austral winter) from an airport at the north part of the city of Sao Paulo, that allowed the study of the PBL development, and also the measurements of the components of the energy budget equation by micrometeorological towers. Therefore, the goal of this work is to simulate the development of the PBL in the metropolitan area of Sao Paulo during winter, comparing its characteristics in urbanized and non urbanized sites, in order to assess the impact of urbanization on the development of the PBL in this area. The model used is the Weather Research and Forecast (WRF) with a single layer urban canopy parameterization (SLUCM) and realistic anthropogenic heat diurnal evolution. Preliminary results showed that the model is able to reproduce the PBL development during the campaign, including the passage of a cold-frontal system. The urban PBL reaches greater heights during the day than the PBL in non urban sites, suggesting that the urban sites generate more turbulence. Daytime urban PBL height reaches up to 2000 m and nighttime is usually less than 200 m. The surface turbulent fluxes and the energy budget near the surface will also be compared to observations and discussed.
NASA Astrophysics Data System (ADS)
Moustris, Konstantinos; Tsiros, Ioannis X.; Tseliou, Areti; Nastos, Panagiotis
2018-04-01
The present study deals with the development and application of artificial neural network models (ANNs) to estimate the values of a complex human thermal comfort-discomfort index associated with urban heat and cool island conditions inside various urban clusters using as only inputs air temperature data from a standard meteorological station. The index used in the study is the Physiologically Equivalent Temperature (PET) index which requires as inputs, among others, air temperature, relative humidity, wind speed, and radiation (short- and long-wave components). For the estimation of PET hourly values, ANN models were developed, appropriately trained, and tested. Model results are compared to values calculated by the PET index based on field monitoring data for various urban clusters (street, square, park, courtyard, and gallery) in the city of Athens (Greece) during an extreme hot weather summer period. For the evaluation of the predictive ability of the developed ANN models, several statistical evaluation indices were applied: the mean bias error, the root mean square error, the index of agreement, the coefficient of determination, the true predictive rate, the false alarm rate, and the Success Index. According to the results, it seems that ANNs present a remarkable ability to estimate hourly PET values within various urban clusters using only hourly values of air temperature. This is very important in cases where the human thermal comfort-discomfort conditions have to be analyzed and the only available parameter is air temperature.
Moustris, Konstantinos; Tsiros, Ioannis X; Tseliou, Areti; Nastos, Panagiotis
2018-04-11
The present study deals with the development and application of artificial neural network models (ANNs) to estimate the values of a complex human thermal comfort-discomfort index associated with urban heat and cool island conditions inside various urban clusters using as only inputs air temperature data from a standard meteorological station. The index used in the study is the Physiologically Equivalent Temperature (PET) index which requires as inputs, among others, air temperature, relative humidity, wind speed, and radiation (short- and long-wave components). For the estimation of PET hourly values, ANN models were developed, appropriately trained, and tested. Model results are compared to values calculated by the PET index based on field monitoring data for various urban clusters (street, square, park, courtyard, and gallery) in the city of Athens (Greece) during an extreme hot weather summer period. For the evaluation of the predictive ability of the developed ANN models, several statistical evaluation indices were applied: the mean bias error, the root mean square error, the index of agreement, the coefficient of determination, the true predictive rate, the false alarm rate, and the Success Index. According to the results, it seems that ANNs present a remarkable ability to estimate hourly PET values within various urban clusters using only hourly values of air temperature. This is very important in cases where the human thermal comfort-discomfort conditions have to be analyzed and the only available parameter is air temperature.
Hybrid Modeling Based on Scsg-Br and Orthophoto
NASA Astrophysics Data System (ADS)
Zhou, G.; Huang, Y.; Yue, T.; Li, X.; Huang, W.; He, C.; Wu, Z.
2018-05-01
With the development of digital city, digital applications are more and more widespread, while the urban buildings are more complex. Therefore, establishing an effective data model is the key to express urban building models accurately. In addition, the combination of 3D building model and remote sensing data become a trend to build digital city there are a large amount of data resulting in data redundancy. In order to solve the limitation of single modelling of constructive solid geometry (CSG), this paper presents a mixed modelling method based on SCSG-BR for urban buildings representation. On one hand, the improved CSG method, which is called as "Spatial CSG (SCSG)" representation method, is used to represent the exterior shape of urban buildings. On the other hand, the boundary representation (BR) method represents the topological relationship between geometric elements of urban building, in which the textures is considered as the attribute data of the wall and the roof of urban building. What's more, the method combined file database and relational database is used to manage the data of three-dimensional building model, which can decrease the complex processes in texture mapping. During the data processing, the least-squares algorithm with constraints is used to orthogonalize the building polygons and adjust the polygons topology to ensure the accuracy of the modelling data. Finally, this paper matches the urban building model with the corresponding orthophoto. This paper selects data of Denver, Colorado, USA to establish urban building realistic model. The results show that the SCSG-BR method can represent the topological relations of building more precisely. The organization and management of urban building model data reduce the redundancy of data and improve modelling speed. The combination of orthophoto and urban building model further strengthens the application in view analysis and spatial query, which enhance the scope of digital city applications.
Wang, Shijin; Li, Cunfang
2018-01-01
Towns and cities are not only the focus of attention for their consumption of energy and resources; they are also scrutinized closely for their emissions of greenhouse gases. China's urbanization level now exceeds 50%, but there is still much disparity compared with the level of urbanization in developed countries. This study selects China's urban population and carbon emissions data for the years 1980-2014 and discusses the timing and cause effect of urbanization and the corresponding carbon emissions using the Granger causality test and an error correction model (ECM) then uses STIRPAT models to extract six indicators to measure the quality of urbanization, namely, the level of urbanization, area of built-up regions, added value of tertiary industries, disposable income per capita, green areas per capita, and energy intensity. These six indicators represent population agglomeration, the expansion of urban areas, industrial agglomeration, quality of life improvements, ecological conservation, and technological improvements, respectively. The study divides 29 provinces in China into three groups based on the quality of urbanization and analyzes the impacts of the six indicators of urbanization quality on carbon emissions. The findings show that the impacts of different factors on carbon emissions vary substantially among the provinces. Finally, the study uses the findings to give suggestions on how to develop low-carbon urbanization.
How do slums change the relationship between urbanization and the carbon intensity of well-being?
McGee, Julius Alexander; Ergas, Christina; Greiner, Patrick Trent; Clement, Matthew Thomas
2017-01-01
This study examines how the relationship between urbanization (measured as the percentage of total population living in urban areas) and the carbon intensity of well-being (CIWB) (measured as a ratio of carbon dioxide emissions and life expectancy) in most nations from 1960-2013 varies based on the economic context and whereabouts of a substantial portion of a nation's urban population. To accomplish this, we use the United Nations' (UN) definition of slum households to identify developing countries that have substantial slum populations, and estimate a Prais-Winsten regression model with panel-corrected standard errors (PCSE), allowing for disturbances that are heteroskedastic and contemporaneously correlated across panels. Our findings indicate that the rate of increase in CIWB for countries without substantial slum populations begins to slow down at higher levels of urbanization, however, the association between urbanization and CIWB is much smaller in countries with substantial slum populations. Overall, while urbanization is associated with increases in CIWB, the relationship between urban development and CIWB is vastly different in developed nations without slums than in under-developed nations with slums.
How do slums change the relationship between urbanization and the carbon intensity of well-being?
McGee, Julius Alexander
2017-01-01
This study examines how the relationship between urbanization (measured as the percentage of total population living in urban areas) and the carbon intensity of well-being (CIWB) (measured as a ratio of carbon dioxide emissions and life expectancy) in most nations from 1960–2013 varies based on the economic context and whereabouts of a substantial portion of a nation’s urban population. To accomplish this, we use the United Nations’ (UN) definition of slum households to identify developing countries that have substantial slum populations, and estimate a Prais-Winsten regression model with panel-corrected standard errors (PCSE), allowing for disturbances that are heteroskedastic and contemporaneously correlated across panels. Our findings indicate that the rate of increase in CIWB for countries without substantial slum populations begins to slow down at higher levels of urbanization, however, the association between urbanization and CIWB is much smaller in countries with substantial slum populations. Overall, while urbanization is associated with increases in CIWB, the relationship between urban development and CIWB is vastly different in developed nations without slums than in under-developed nations with slums. PMID:29220352
Social influence, agent heterogeneity and the emergence of the urban informal sector
NASA Astrophysics Data System (ADS)
García-Díaz, César; Moreno-Monroy, Ana I.
2012-02-01
We develop an agent-based computational model in which the urban informal sector acts as a buffer where rural migrants can earn some income while queuing for higher paying modern-sector jobs. In the model, the informal sector emerges as a result of rural-urban migration decisions of heterogeneous agents subject to social influence in the form of neighboring effects of varying strengths. Besides using a multinomial logit choice model that allows for agent idiosyncrasy, explicit agent heterogeneity is introduced in the form of socio-demographic characteristics preferred by modern-sector employers. We find that different combinations of the strength of social influence and the socio-economic composition of the workforce lead to very different urbanization and urban informal sector shares. In particular, moderate levels of social influence and a large proportion of rural inhabitants with preferred socio-demographic characteristics are conducive to a higher urbanization rate and a larger informal sector.
NASA Astrophysics Data System (ADS)
Ghodsi, Seyed Hamed; Kerachian, Reza; Estalaki, Siamak Malakpour; Nikoo, Mohammad Reza; Zahmatkesh, Zahra
2016-02-01
In this paper, two deterministic and stochastic multilateral, multi-issue, non-cooperative bargaining methodologies are proposed for urban runoff quality management. In the proposed methodologies, a calibrated Storm Water Management Model (SWMM) is used to simulate stormwater runoff quantity and quality for different urban stormwater runoff management scenarios, which have been defined considering several Low Impact Development (LID) techniques. In the deterministic methodology, the best management scenario, representing location and area of LID controls, is identified using the bargaining model. In the stochastic methodology, uncertainties of some key parameters of SWMM are analyzed using the info-gap theory. For each water quality management scenario, robustness and opportuneness criteria are determined based on utility functions of different stakeholders. Then, to find the best solution, the bargaining model is performed considering a combination of robustness and opportuneness criteria for each scenario based on utility function of each stakeholder. The results of applying the proposed methodology in the Velenjak urban watershed located in the northeastern part of Tehran, the capital city of Iran, illustrate its practical utility for conflict resolution in urban water quantity and quality management. It is shown that the solution obtained using the deterministic model cannot outperform the result of the stochastic model considering the robustness and opportuneness criteria. Therefore, it can be concluded that the stochastic model, which incorporates the main uncertainties, could provide more reliable results.
NASA Astrophysics Data System (ADS)
Zheng, Y.; Luo, X.; Lin, Z.
2016-12-01
The urban environment has a variety of Persistent Toxic Substances (PTS), such as Polycyclic Aromatic Hydrocarbons (PAHs) and mercury. Soil in pervious lands and dust deposited on impervious surfaces are two major sinks of PTSs in urbanized areas, which could contribute significant nonpoint source loadings of PTSs to adjacent waterbodies during rainfall-runoff events and therefore jeopardize aquatic ecosystems. However, PTSs have been much less understood regarding their export mechanisms in urban land uses, and efforts to model nonpoint source pollution processes of PTSs have been rare. We designed and performed in-lab rainfall-runoff simulation experiments to investigate transport of PAHs and mercury by runoff from urban soils. Organic petrology analysis (OPA) techniques were introduced to analyze the soil and sediment compositions. Our study revealed the limitation of the classic enrichment theory which attributes enrichment of pollutants in eroded sediment solely to the sediment's particle size distribution and adopts simple relationships between enrichment ratio and sediment flux. We found that carbonaceous materials (CMs) in soil are the direct and major sorbents for PAHs and mercury, and highly different in content, mobility and adsorption capacity for the PTSs. Anthropogenic CMs like black carbon components largely control the transport of soil PAHs, while humic substances have a dominant influence on the transport of soil mercury. A model was further developed to estimate the enrichment ratio of PAHs, which innovatively applies the fugacity concept.We also conducted field studies on export of PAHs by runoff from urban roads. A variable time-step model was developed to simulate the continuous cycles of PAH buildup and washoff on urban roads. The dependence of the pollution level on antecedent weather conditions was investigated and embodied in the model. The applicability of this approach and its value to environmental management was demonstrated by a case study in Beijing, China. Overall, our studies advanced the understanding of nonpoint source pollution of PTSs in the urban environment. The quantitative approaches developed can help improve existing nonpoint source pollution models. The study results also have important implications to watershed water quality management.
Willuweit, Lars; O'Sullivan, John J
2013-12-15
Population growth, urbanisation and climate change represent significant pressures on urban water resources, requiring water managers to consider a wider array of management options that account for economic, social and environmental factors. The Dynamic Urban Water Simulation Model (DUWSiM) developed in this study links urban water balance concepts with the land use dynamics model MOLAND and the climate model LARS-WG, providing a platform for long term planning of urban water supply and water demand by analysing the effects of urbanisation scenarios and climatic changes on the urban water cycle. Based on potential urbanisation scenarios and their effects on a city's water cycle, DUWSiM provides the functionality for assessing the feasibility of centralised and decentralised water supply and water demand management options based on forecasted water demand, stormwater and wastewater generation, whole life cost and energy and potential for water recycling. DUWSiM has been tested using data from Dublin, the capital of Ireland, and it has been shown that the model is able to satisfactorily predict water demand and stormwater runoff. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ogunyemi, Omolola; Teklehaimanot, Senait; Patty, Lauren; Moran, Erin; George, Sheba
2013-01-01
Screening guidelines for diabetic patients recommend yearly eye examinations to detect diabetic retinopathy and other forms of diabetic eye disease. However, annual screening rates for retinopathy in US urban safety net settings remain low. Using data gathered from a study of teleretinal screening in six urban safety net clinics, we assessed whether predictive modeling could be of value in identifying patients at risk of developing retinopathy. We developed and examined the accuracy of two predictive modeling approaches for diabetic retinopathy in a sample of 513 diabetic individuals, using routinely available clinical variables from retrospective medical record reviews. Bayesian networks and radial basis function (neural) networks were learned using ten-fold cross-validation. The predictive models were modestly predictive with the best model having an AUC of 0.71. Using routinely available clinical variables to predict patients at risk of developing retinopathy and to target them for annual eye screenings may be of some usefulness to safety net clinics.
Development of a Model for Minority Recruitment at the United States Naval Academy.
ERIC Educational Resources Information Center
Corpin, Owen D.
The study proposes a recruiting model, which is a coordinated and integrated recruiting effort employing the professional aid of the National Urban League and an expanded minority recruiting staff at the Naval Academy. The model aims to promote interest in the Academy's professional naval education among the black urban community. It is hoped this…
Hong, Nian; Zhu, Panfeng; Liu, An
2017-12-01
Urban road stormwater is an alternative water resource to mitigate water shortage issues in the worldwide. Heavy metals deposited (build-up) on urban road surface can enter road stormwater runoff, undermining stormwater reuse safety. As heavy metal build-up loads perform high variabilities in terms of spatial distribution and is strongly influenced by surrounding land uses, it is essential to develop an approach to identify hot-spots where stormwater runoff could include high heavy metal concentrations and hence cannot be reused if it is not properly treated. This study developed a robust modelling approach to estimating heavy metal build-up loads on urban roads using land use fractions (representing percentages of land uses within a given area) by an artificial neural network (ANN) model technique. Based on the modelling results, a series of heavy metal load spatial distribution maps and a comprehensive ecological risk map were generated. These maps provided a visualization platform to identify priority areas where the stormwater can be safely reused. Additionally, these maps can be utilized as an urban land use planning tool in the context of effective stormwater reuse strategy implementation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-05
... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT 24 CFR Parts 3280 and 3282 [Docket No. FR-5343-IN-01... Housing Programs, Department of Housing and Urban Development, 451 Seventh Street, SW., Room 9164... provided that the consensus committee was to develop the original proposed model installation standards for...
Zhao, Yabo; Wang, Shaojian; Zhou, Chunshan
2016-11-15
Better understanding the relationship between urbanization (U) and the eco-environment (E) is necessary to coordinate the development of them. Using a comprehensive index system for U and E with statistic data, and an improved environmental Kuznets curve (EKC) model and dynamic coordination coupling degree (CCD) model, this study addressed the relationship between U and E in the Yangtze River Delta (YRD) in the period 1980-2013. The main conclusions were as follows: (1) Economic urbanization and eco-environment endowment were the highest weighted factors in the U and E system respectively, and thus constitute the key factors. (2) Differentiated inverted-U curves were shown to exist in the relation between U and E across the cities studied, thereby confirming the improved EKC hypothesis. We further found economically developed areas to have higher urbanization levels than less developed areas at the point at which the curve inflects, less developed areas have higher eco-environmental pressure at inflection. Before the appearance of the inflection point, a striking positive correlation was observed between eco-environmental pressure and the urbanization level, while a negative correlation was found to follow it. (3) A dynamic coordination coupling relation was found to exist between U and E, which conforms to an S-shaped curve. The coordination coupling process in the YRD has gradually moved from a "low-grade symbiosis" stage into a "break-in development" stage, but the pattern of coordination belonging to the eco-environment part of the relation was found to always show some lag. The dynamic CCD model showed a difference in the spatial distribution of CCD, presenting higher values in the periphery of the region, and lower values in the center during the study period. The improved EKC and coupling analysis detailed in this study may help Chinese decision makers to formulate sustainable measures to balance urbanization development and eco-environment protection. Copyright © 2016 Elsevier B.V. All rights reserved.
Ca-Pri a Cellular Automata Phenomenological Research Investigation: Simulation Results
NASA Astrophysics Data System (ADS)
Iannone, G.; Troisi, A.
2013-05-01
Following the introduction of a phenomenological cellular automata (CA) model capable to reproduce city growth and urban sprawl, we develop a toy model simulation considering a realistic framework. The main characteristic of our approach is an evolution algorithm based on inhabitants preferences. The control of grown cells is obtained by means of suitable functions which depend on the initial condition of the simulation. New born urban settlements are achieved by means of a logistic evolution of the urban pattern while urban sprawl is controlled by means of the population evolution function. In order to compare model results with a realistic urban framework we have considered, as the area of study, the island of Capri (Italy) in the Mediterranean Sea. Two different phases of the urban evolution on the island have been taken into account: a new born initial growth as induced by geographic suitability and the simulation of urban spread after 1943 induced by the population evolution after this date.
Tracer Flux Balance at an Urban Canyon Intersection
NASA Astrophysics Data System (ADS)
Carpentieri, Matteo; Robins, Alan G.
2010-05-01
Despite their importance for pollutant dispersion in urban areas, the special features of dispersion at street intersections are rarely taken into account by operational air quality models. Several previous studies have demonstrated the complex flow patterns that occur at street intersections, even with simple geometry. This study presents results from wind-tunnel experiments on a reduced scale model of a complex but realistic urban intersection, located in central London. Tracer concentration measurements were used to derive three-dimensional maps of the concentration field within the intersection. In combination with a previous study (Carpentieri et al., Boundary-Layer Meteorol 133:277-296, 2009) where the velocity field was measured in the same model, a methodology for the calculation of the mean tracer flux balance at the intersection was developed and applied. The calculation highlighted several limitations of current state-of-the-art canyon dispersion models, arising mainly from the complex geometry of the intersection. Despite its limitations, the proposed methodology could be further developed in order to derive, assess and implement street intersection dispersion models for complex urban areas.
The short pipe path – safe water, energy & nutrient recovery
The step-by-step refinement of our urban water systems has yielded unsustainable, centralized urban water services in many developed regions of the world. These large systems also provide the wrong role model and promote conservative thinking for the rapidly developing regions of...
Differentiating Impacts of Watershed Development from Superfund Sites on Stream Macroinvertebrates
Urbanization effect models were developed and verified at whole watershed scales to predict and differentiate between effects on aquatic life from diffuse, non-point source (NPS) urbanization in the watershed and effects of known local, site-specific origin point sources, contami...
24 CFR 3285.406 - Flood hazard areas.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Flood hazard areas. 3285.406... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Anchorage Against Wind § 3285.406 Flood hazard areas. Refer to § 3285.302 for anchoring requirements in flood hazard areas. ...
24 CFR 3285.902 - Moving manufactured home to location.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Moving manufactured home to... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Optional Information for Manufacturer's Installation Instructions § 3285.902 Moving manufactured home to location. It is recommended...
24 CFR 3285.902 - Moving manufactured home to location.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Moving manufactured home to... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Optional Information for Manufacturer's Installation Instructions § 3285.902 Moving manufactured home to location. It is recommended...
24 CFR 3285.902 - Moving manufactured home to location.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Moving manufactured home to... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Optional Information for Manufacturer's Installation Instructions § 3285.902 Moving manufactured home to location. It is recommended...
24 CFR 3285.902 - Moving manufactured home to location.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Moving manufactured home to... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Optional Information for Manufacturer's Installation Instructions § 3285.902 Moving manufactured home to location. It is recommended...
24 CFR 3285.902 - Moving manufactured home to location.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Moving manufactured home to... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Optional Information for Manufacturer's Installation Instructions § 3285.902 Moving manufactured home to location. It is recommended...
NASA Astrophysics Data System (ADS)
Moody, M.; Bailey, B.; Stoll, R., II
2017-12-01
Understanding how changes in the microclimate near individual plants affects the surface energy budget is integral to modeling land-atmosphere interactions and a wide range of near surface atmospheric boundary layer phenomena. In urban areas, the complex geometry of the urban canopy layer results in large spatial deviations of turbulent fluxes further complicating the development of models. Accurately accounting for this heterogeneity in order to model urban energy and water use requires a sub-plant level understanding of microclimate variables. We present analysis of new experimental field data taken in and around two Blue Spruce (Picea pungens) trees at the University of Utah in 2015. The test sites were chosen in order study the effects of heterogeneity in an urban environment. An array of sensors were placed in and around the conifers to quantify transport in the soil-plant-atmosphere continuum: radiative fluxes, temperature, sap fluxes, etc. A spatial array of LEMS (Local Energy Measurement Systems) were deployed to obtain pressure, surrounding air temperature and relative humidity. These quantities are used to calculate the radiative and turbulent fluxes. Relying on measurements alone is insufficient to capture the complexity of microclimate distribution as one reaches sub-plant scales. A spatially-explicit radiation and energy balance model previously developed for deciduous trees was extended to include conifers. The model discretizes the tree into isothermal sub-volumes on which energy balances are performed and utilizes incoming radiation as the primary forcing input. The radiative transfer component of the model yields good agreement between measured and modeled upward longwave and shortwave radiative fluxes. Ultimately, the model was validated through an examination of the full energy budget including radiative and turbulent fluxes through isolated Picea pungens in an urban environment.
Ecological planning of urbanized areas in the south of the Far East (Birobidzhan city as an example)
NASA Astrophysics Data System (ADS)
Kalmanova, V. B.
2018-01-01
Ecological planning of urbanized areas is an urgent demand of the time, because more than 70% of Russia’s population lives in cities. The article describes that the city’s ecological planning is an important part of the area’s organization in its development strategy. The principles and features of the urban area’s ecological organization are proposed. The basis for environmental planning is the ecological and functional zoning of urban areas. The algorithm of ecological-functional zoning is developed to optimize the quality of the urban environment. Based on it, it is possible to identify the planning structure’s features, justify anthropogenic pressure on the natural components of the urban environment, etc. The article briefly presents the possibility of using the main conditions of the ecological framework in the planning of urban areas. Considering the perspective trends of the formation and development of cities in the south of the Far East, the ecological problems caused by regional natural and anthropogenic causes (features of relief, climate, functional-planning structure) are considered. The need for environmental planning of cities in the south of the Far East is shown. The results of the ecological framework’s formation of Birobidzhan city based on its ecological and functional zoning are described. The total area of open unreformed spaces in the city is calculated to be 60.8%, which can serve as the main elements of the ecological framework and perspective reserve areas for ecological planning. The cartographic model of Birobidzhan’s ecological framework is presented, which is the result and model of this type of planning. The practical use of the proposed model will facilitate the adoption of effective management decisions aimed at stabilized development of the city.
Estimation of flood-frequency characteristics of small urban streams in North Carolina
Robbins, J.C.; Pope, B.F.
1996-01-01
A statewide study was conducted to develop methods for estimating the magnitude and frequency of floods of small urban streams in North Carolina. This type of information is critical in the design of bridges, culverts and water-control structures, establishment of flood-insurance rates and flood-plain regulation, and for other uses by urban planners and engineers. Concurrent records of rainfall and runoff data collected in small urban basins were used to calibrate rainfall-runoff models. Historic rain- fall records were used with the calibrated models to synthesize a long- term record of annual peak discharges. The synthesized record of annual peak discharges were used in a statistical analysis to determine flood- frequency distributions. These frequency distributions were used with distributions from previous investigations to develop a database for 32 small urban basins in the Blue Ridge-Piedmont, Sand Hills, and Coastal Plain hydrologic areas. The study basins ranged in size from 0.04 to 41.0 square miles. Data describing the size and shape of the basin, level of urban development, and climate and rural flood charac- teristics also were included in the database. Estimation equations were developed by relating flood-frequency char- acteristics to basin characteristics in a generalized least-squares regression analysis. The most significant basin characteristics are drainage area, impervious area, and rural flood discharge. The model error and prediction errors for the estimating equations were less than those for the national flood-frequency equations previously reported. Resulting equations, which have prediction errors generally less than 40 percent, can be used to estimate flood-peak discharges for 2-, 5-, 10-, 25-, 50-, and 100-year recurrence intervals for small urban basins across the State assuming negligible, sustainable, in- channel detention or basin storage.
Ensuring living condition for ageing population by public-private partnership (PPP)
NASA Astrophysics Data System (ADS)
Konjar, Miha; Nikšič, Matej; Grom, Janez Peter; Mujkić, Sabina; Fikfak, Alenka
2018-03-01
Lack of financial resources has become one of the main issues in fulfilling social and physical needs in urban development. The declining levels of public resources make the collaboration between public and private investors necessary. When facing the challenges of ageing population, shared investment may contribute to the appropriate development of sheltered housing to meet the goals of spatial planning as well as certain standards at the level of urban design. By ensuring appropriate living conditions for all generations such urban PPP projects may contribute to the fulfilment of the public interest. The paper presents practice of PPP implementation in Ljubljana, Slovenia, where local authority with the collaboration of private partners ensured more than 400 sheltered apartments in the last years. Examples show the extension of the idea from the 70s onwards in finding new models of housing for the aging population. The development of new models can be a good example of strengthening the cooperation between public and private partners in the field of urban development practice.
NASA Astrophysics Data System (ADS)
Balk, D.; Leyk, S.; Jones, B.; Clark, A.; Montgomery, M.
2017-12-01
Geographers and demographers have contributed much to understanding urban population and urban place. Yet, we nevertheless remain ill-prepared to fully understand past urban processes and our urban future, and importantly, connect that knowledge to pressing concerns such as climate and environmental change. This is largely due to well-known data limitations and inherent inconsistencies in the urban definition across countries and over time and spatial scales, and because urban models and definitions arise out of disciplinary silos. This paper provides a new framework for urban inquiry in that it combines urban definitions used by the U.S. Census Bureau from 1990-2010 with newly available satellite-based (mostly Landsat) data on built-up area from the Global Human Settlement Layer (GHSL). We identify areas of agreement and disagreement, as well as the population distribution underlying various GHSL derived built-up land thresholds. Our analysis allows for a systematic means of discerning peri-urban areas from other types of urban development, as well as examines differences in these patterns at the national and Metropolitan Statistical Area (MSA)-level. While we find overwhelming areas of agreement - about 70% of the census-designated urban population can be characterized as living on land that is at least 50% built-up - we also learn much of the significant heterogeneity in levels and patterns of growth between different MSAs. We further compare the US results with those for India and Mexico. This research unlocks the potential of such alternative measures for creating globally and temporally consistent proxies of urban land and may guide further research on consistent modeling of spatial demographic urban change, highly urgent for future work to distinguish between fine-scale levels of urban development and to forecast urban expansion.
Urban compaction vs city sprawl: impact of road traffic on air quality in the greater Paris
NASA Astrophysics Data System (ADS)
Etuman Arthur, Elessa; Isabelle, Coll; Vincent, Viguie; Nicolas, Coulombel; Julie, Prud'homme
2017-04-01
Urban pollution remains a major sanitary and economic concern. In France, particulate pollution is known to cause 48,000 premature deaths every year (Santé Publique France, 2016), while the economic cost of air pollution reaches almost 25 billion euros per year (CGDD, 2012). In the Greater Paris, despite strengthened emission standards, restricted traffic areas, car-sharing and incentives for electric vehicle use, road transport plays a substantial role in the exposure of inhabitants to high levels of pollutants. In this context, urban planning could possibly constitute an innovative strategy to reduce emissions from road traffic, through its actions on transport demand, travel distances, modal shift (public transportation, cycling, walking...) or even proximity to emitters. We have developed a multi-scalar modeling of urban pollution by coupling an urban economic growth model NEDUM (CIRED), a model for urban mobility (LISA), a traffic emission model (LISA) and the CHIMERE Chemistry-Transport model (CTM) for air quality simulation (LISA). The innovative aspect of this modeling system is to integrate into a classic CTM the mechanisms underlying the dynamics of an urban system. This way, we establish a quantitative and comprehensive link between a given urban scenario, the associated public and individual transport matrix, and local air quality. We then make it possible to highlight the levers of energy consumption reductions inside compact or sprawled cities. We have been working on the Ile de France region (centered on the Paris agglomeration) which relies on a broad urban structure of megacity, a high density of housing and an expanding urban peripheral zone, clearly raising the issue of transport demand, mobility and traffic congestion. Two scenarios, considering opposite urban development policies from the 1960s to 2010, have been simulated over the whole modelling chain. The first one promotes a dense and compact city while the second favors city spread, though restricted by a green belt. In our results, we compare the local air quality simulated in these scenarios with our reference situation (the current 2010 situation). The spreading or densification of the city contribute a little to the air quality and therefore a reflection on a real mix of the urban canvas is probably an influencing factor for the reduction of the motorized mobility. We should also consider more advanced scenarios (in the course of production) for the reduction of individual transport like encouraging car-pooling, which has a maximum daily trip reduction potential of 16% in urban areas (CGDD, 2014).
Models for Experimental High Density Housing
NASA Astrophysics Data System (ADS)
Bradecki, Tomasz; Swoboda, Julia; Nowak, Katarzyna; Dziechciarz, Klaudia
2017-10-01
The article presents the effects of research on models of high density housing. The authors present urban projects for experimental high density housing estates. The design was based on research performed on 38 examples of similar housing in Poland that have been built after 2003. Some of the case studies show extreme density and that inspired the researchers to test individual virtual solutions that would answer the question: How far can we push the limits? The experimental housing projects show strengths and weaknesses of design driven only by such indexes as FAR (floor attenuation ratio - housing density) and DPH (dwellings per hectare). Although such projects are implemented, the authors believe that there are reasons for limits since high index values may be in contradiction to the optimum character of housing environment. Virtual models on virtual plots presented by the authors were oriented toward maximising the DPH index and DAI (dwellings area index) which is very often the main driver for developers. The authors also raise the question of sustainability of such solutions. The research was carried out in the URBAN model research group (Gliwice, Poland) that consists of academic researchers and architecture students. The models reflect architectural and urban regulations that are valid in Poland. Conclusions might be helpful for urban planners, urban designers, developers, architects and architecture students.
Research on Assessment Methods for Urban Public Transport Development in China
Zou, Linghong; Guo, Hongwei
2014-01-01
In recent years, with the rapid increase in urban population, the urban travel demands in Chinese cities have been increasing dramatically. As a result, developing comprehensive urban transport systems becomes an inevitable choice to meet the growing urban travel demands. In urban transport systems, public transport plays the leading role to promote sustainable urban development. This paper aims to establish an assessment index system for the development level of urban public transport consisting of a target layer, a criterion layer, and an index layer. Review on existing literature shows that methods used in evaluating urban public transport structure are dominantly qualitative. To overcome this shortcoming, fuzzy mathematics method is used for describing qualitative issues quantitatively, and AHP (analytic hierarchy process) is used to quantify expert's subjective judgment. The assessment model is established based on the fuzzy AHP. The weight of each index is determined through the AHP and the degree of membership of each index through the fuzzy assessment method to obtain the fuzzy synthetic assessment matrix. Finally, a case study is conducted to verify the rationality and practicability of the assessment system and the proposed assessment method. PMID:25530756
NASA Astrophysics Data System (ADS)
Miller, J. D.; Rickards, N. J.; Kjeldsen, T. R.; Hutchins, M.; Rowland, C.; Prudhomme, C.; Maliko, T.; Fidal, J.; Hagen-Zanker, A.
2016-12-01
The UK population is set to increase by 16% by 2035; it is therefore increasingly important to understand the impact this may have on urban populations, and in turn how this will affect river flow regimes and water quality in urban areas. A growing population is likely to lead to an increase in urban land use and impervious surfaces, the implications of which are not yet fully understood for issues such as future flood risk. The aim of this paper is to develop a greater understanding of the impacts of both an increasing population and urban extent in the context of a changing climate, and to assess the effect these may have on urban streamflow regimes and water security in the future. Flows are modelled for selected catchments in the Thames basin using URBMOD, a lumped rainfall runoff model that is able to represent both pervious and impervious surfaces, reducing infiltration in catchments where there is a greater urban extent. The model uses daily catchment average rainfall and evapotranspiration derived from gridded data, and is calibrated against long-term river flow records. Historic satellite imagery is used to train cellular automata land use models, which are then applied under different scenarios of urban development up to 2035. These changes in land use are combined with a range of climate change scenarios to give an indication of how urban flow regimes may be altered in the Thames basin over the next 20 years. Results suggest an intensification of the hydrological regime in the majority of catchments, with increases in high flow magnitudes (Q10) of up to 5%. The trend for low flows (Q90) is less clear, with some catchments displaying reductions of around 4%, whilst others show slight increased flows. We identify the main drivers behind these changes, from which the fine-scale impacts of urbanisation on water resources can be better understood. Research findings are being used to inform a regional-scale model, coupling water quantity and quality and providing insight to urban planners and stakeholders on the future urban hydrological regime in the Thames basin. Similar approaches are being used to assess impacts of anthropogenic drivers on water resources in the Cauvery basin in India, whereby the applicability of the model under very different climate and urban morphology will be tested.
NASA Astrophysics Data System (ADS)
Xu, Xibao; Zhang, Jianming; Zhou, Xiaojian
2006-10-01
This paper presents a model integrating GIS, cellular automata (CA) and genetic algorithm (GA) in urban spatial optimization. The model involves three objectives of the maximization of land-use efficiency, the maximization of urban spatial harmony and appropriate proportion of each land-use type. CA submodel is designed with standard Moore neighbor and three transition rules to maximize the land-use efficiency and urban spatial harmony, according to the land-use suitability and spatial harmony index. GA submodel is designed with four constraints and seven steps for the maximization of urban spatial harmony and appropriate proportion of each land-use type, including encoding, initializing, calculating fitness, selection, crossover, mutation and elitism. GIS is used to prepare for the input data sets for the model and perform spatial analysis on the results, while CA and GA are integrated to optimize urban spatial structure, programmed with Matlab 7 and coupled with GIS loosely. Lanzhou, a typical valley-basin city with fast urban development, is chosen as the case study. At the end, a detail analysis and evaluation of the spatial optimization with the model are made, and it proves to be a powerful tool in optimizing urban spatial structure and make supplement for urban planning and policy-makers.
Egger, C; Maurer, M
2015-04-15
Urban drainage design relying on observed precipitation series neglects the uncertainties associated with current and indeed future climate variability. Urban drainage design is further affected by the large stochastic variability of precipitation extremes and sampling errors arising from the short observation periods of extreme precipitation. Stochastic downscaling addresses anthropogenic climate impact by allowing relevant precipitation characteristics to be derived from local observations and an ensemble of climate models. This multi-climate model approach seeks to reflect the uncertainties in the data due to structural errors of the climate models. An ensemble of outcomes from stochastic downscaling allows for addressing the sampling uncertainty. These uncertainties are clearly reflected in the precipitation-runoff predictions of three urban drainage systems. They were mostly due to the sampling uncertainty. The contribution of climate model uncertainty was found to be of minor importance. Under the applied greenhouse gas emission scenario (A1B) and within the period 2036-2065, the potential for urban flooding in our Swiss case study is slightly reduced on average compared to the reference period 1981-2010. Scenario planning was applied to consider urban development associated with future socio-economic factors affecting urban drainage. The impact of scenario uncertainty was to a large extent found to be case-specific, thus emphasizing the need for scenario planning in every individual case. The results represent a valuable basis for discussions of new drainage design standards aiming specifically to include considerations of uncertainty. Copyright © 2015 Elsevier Ltd. All rights reserved.
LAND USE CHANGE DUE TO URBANIZATION FOR THE NEUSE RIVER BASIN
The Urban Growth Model (UGM) was applied to analysis of land use change in the Neuse River Basin as part of a larger project for estimating the regional and broader impact of urbanization. UGM is based on cellular automation (CA) simulation techniques developed at the University...
The Effect of Urban Sprawls on Timber Harvesting
Stephen A. Barlow; Ian A Munn; David A. Cleaves; David L. Evans
1998-01-01
In Mississippi and Alabama, urban population growth is pushing development into rural areas. To study the impact of urbanization on timber harvesting, census and forest inventory data were combined in a geographic information system, and a logistic regression model was used to estimate the relationship between several variables and harvest probabilities....
An R Package for Open, Reproducible Analysis of Urban Water Systems, With Application to Chicago
Urban water systems consist of natural and engineered flows of water interacting in complex ways. System complexity can be understood via mass conservative models that account for the interrelationships among all major flows and storages. We have developed a generic urban water s...
Agent-based model for rural-urban migration: A dynamic consideration
NASA Astrophysics Data System (ADS)
Cai, Ning; Ma, Hai-Ying; Khan, M. Junaid
2015-10-01
This paper develops a dynamic agent-based model for rural-urban migration, based on the previous relevant works. The model conforms to the typical dynamic linear multi-agent systems model concerned extensively in systems science, in which the communication network is formulated as a digraph. Simulations reveal that consensus of certain variable could be harmful to the overall stability and should be avoided.
A Monte-Carlo Bayesian framework for urban rainfall error modelling
NASA Astrophysics Data System (ADS)
Ochoa Rodriguez, Susana; Wang, Li-Pen; Willems, Patrick; Onof, Christian
2016-04-01
Rainfall estimates of the highest possible accuracy and resolution are required for urban hydrological applications, given the small size and fast response which characterise urban catchments. While significant progress has been made in recent years towards meeting rainfall input requirements for urban hydrology -including increasing use of high spatial resolution radar rainfall estimates in combination with point rain gauge records- rainfall estimates will never be perfect and the true rainfall field is, by definition, unknown [1]. Quantifying the residual errors in rainfall estimates is crucial in order to understand their reliability, as well as the impact that their uncertainty may have in subsequent runoff estimates. The quantification of errors in rainfall estimates has been an active topic of research for decades. However, existing rainfall error models have several shortcomings, including the fact that they are limited to describing errors associated to a single data source (i.e. errors associated to rain gauge measurements or radar QPEs alone) and to a single representative error source (e.g. radar-rain gauge differences, spatial temporal resolution). Moreover, rainfall error models have been mostly developed for and tested at large scales. Studies at urban scales are mostly limited to analyses of propagation of errors in rain gauge records-only through urban drainage models and to tests of model sensitivity to uncertainty arising from unmeasured rainfall variability. Only few radar rainfall error models -originally developed for large scales- have been tested at urban scales [2] and have been shown to fail to well capture small-scale storm dynamics, including storm peaks, which are of utmost important for urban runoff simulations. In this work a Monte-Carlo Bayesian framework for rainfall error modelling at urban scales is introduced, which explicitly accounts for relevant errors (arising from insufficient accuracy and/or resolution) in multiple data sources (in this case radar and rain gauge estimates typically available at present), while at the same time enabling dynamic combination of these data sources (thus not only quantifying uncertainty, but also reducing it). This model generates an ensemble of merged rainfall estimates, which can then be used as input to urban drainage models in order to examine how uncertainties in rainfall estimates propagate to urban runoff estimates. The proposed model is tested using as case study a detailed rainfall and flow dataset, and a carefully verified urban drainage model of a small (~9 km2) pilot catchment in North-East London. The model has shown to well characterise residual errors in rainfall data at urban scales (which remain after the merging), leading to improved runoff estimates. In fact, the majority of measured flow peaks are bounded within the uncertainty area produced by the runoff ensembles generated with the ensemble rainfall inputs. REFERENCES: [1] Ciach, G. J. & Krajewski, W. F. (1999). On the estimation of radar rainfall error variance. Advances in Water Resources, 22 (6), 585-595. [2] Rico-Ramirez, M. A., Liguori, S. & Schellart, A. N. A. (2015). Quantifying radar-rainfall uncertainties in urban drainage flow modelling. Journal of Hydrology, 528, 17-28.
A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area
Clarke, K.C.; Hoppen, S.; Gaydos, L.
1997-01-01
In this paper we describe a cellular automaton (CA) simulation model developed to predict urban growth as part of a project for estimating the regional and broader impact of urbanization on the San Francisco Bay area's climate. The rules of the model are more complex than those of a typical CA and involve the use of multiple data sources, including topography, road networks, and existing settlement distributions, and their modification over time. In addition, the control parameters of the model are allowed to self-modify: that is, the CA adapts itself to the circumstances it generates, in particular, during periods of rapid growth or stagnation. In addition, the model was written to allow the accumulation of probabilistic estimates based on Monte Carlo methods. Calibration of the model has been accomplished by the use of historical maps to compare model predictions of urbanization, based solely upon the distribution in year 1900, with observed data for years 1940, 1954, 1962, 1974, and 1990. The complexity of this model has made calibration a particularly demanding step. Lessons learned about the methods, measures, and strategies developed to calibrate the model may be of use in other environmental modeling contexts. With the calibration complete, the model is being used to generate a set of future scenarios for the San Francisco Bay area along with their probabilities based on the Monte Carlo version of the model. Animated dynamic mapping of the simulations will be used to allow visualization of the impact of future urban growth.
NASA Astrophysics Data System (ADS)
Varnakovida, Pariwate
It is now well-recognized that, at local, regional, and global scales, land use changes are significantly altering land cover, perhaps at an accelerating pace. Further, the world's scientific community is increasingly recognizing what, in retrospect, should have been obvious, that human behavior and agency is a critical driver of Land Cover and Land Use Change. In this research, using recently developed computer modeling procedures and a rich case study, I develop spatially-explicit model-based simulations of LULCC scenarios within the rubric of sustainability science for Nang Rong town, Thailand. The research draws heavily on recent work in geography and complexity theory. A series of scenarios were built to explore different development trajectories based upon empirically observed relationships. The development models incorporate a) history and spatial pattern of village settlement; b) road development and changing geographic accessibility; c) population; d) biophysical characteristics and e) social drivers. This research uses multi-temporal and spatially-explicit data, analytic results, and dynamic modeling approaches combined with to describe, explain, and explore LULCC as the consequences of different production theories for rural, small town urbanization in the South East Asian context. Two Agent Based models were built: 1) Settlement model and 2) Land-use model. The Settlement model suggests that new development will emerge along the existing road network especially along the major highway and in close proximity to the urban center. If the population doubles in 2021, the settlement process may inhibit development along some corridors creating low density sprawl. The Land-use model under the urban expansion scenario suggests that new settlements will occur in close proximity to the town center and roads; even though, the area is suitable for rice farming or located on a flood plain. The Land-use model under the cash-crop expansion scenario captures that new agriculture will occur on the flood plain and other areas suitable for rice farming. The Land-use model under the King's Theory scenario suggests that agriculture agents occupied more disperse lands than the cash-crops scenario. In addition, the King's Theory scenario provided more access to water surface than other scenarios and was the most sustainable development plan. These products offer a better understanding of the urban growth and LULCC at a regional scale and will potentially guide more systematic and effective resource management and policy decisions. Although this research focuses on a specific site, the methods employed are applicable to other rural regions with similar characteristics.
COST MODEL FOR LARGE URBAN SCHOOLS.
ERIC Educational Resources Information Center
O'BRIEN, RICHARD J.
THIS DOCUMENT CONTAINS A COST SUBMODEL OF AN URBAN EDUCATIONAL SYSTEM. THIS MODEL REQUIRES THAT PUPIL POPULATION AND PROPOSED SCHOOL BUILDING ARE KNOWN. THE COST ELEMENTS ARE--(1) CONSTRUCTION COSTS OF NEW PLANTS, (2) ACQUISITION AND DEVELOPMENT COSTS OF BUILDING SITES, (3) CURRENT OPERATING EXPENSES OF THE PROPOSED SCHOOL, (4) PUPIL…
Urban green spaces are potentially important to biodiversity conservation because they represent habitat islands in a mosaic of development, and could harbor high biodiversity or provide connectivity to nearby habitat. Presence only species distribution models (SDMs) represent a ...
Effects of urbanization on the water quality of lakes in Eagan, Minnesota
Ayers, M.A.; Payne, G.A.; Have, Mark A.
1980-01-01
Three phosphorus-prediction models developed during the study are applicable to shallow (less than about 12 feet), nonstratifying lakes and ponds. The data base was not sufficient to select an appropriate model to predict the effects of future loading from continuing urbanization on the deeper lakes.
NASA Astrophysics Data System (ADS)
Sharma, A.; Woodruff, S.; Budhathoki, M.; Hamlet, A. F.; Fernando, H. J. S.; Chen, F.
2017-12-01
Urban areas provide organized, engineered, sociological and economical infrastructure designed to provide a high quality of life, but the implementation and management of urban infrastructure has been a continued challenge. Increasing urbanization, warming climate, as well as anthropogenic heat emissions that accompany urban development generates "stress". This rapidly increasing `urban stress' affects the sustainability of cities, making populations more vulnerable to extreme hazards, such as heat. Cities are beginning to extensively use green roofs as a potential urban heat mitigation strategy. This study explores the potential of green roofs to reduce summertime temperatures in the most vulnerable neighborhoods of the Chicago metropolitan area by combining social vulnerability indices (a function of exposure, sensitivity and adaptive capacity), and temperatures from mesoscale model. Numerical simulations using urbanized version the Advanced Research Weather Research and Forecasting (WRF) model were performed to measure rooftop temperatures, a representative variable for exposure in this study. The WRF simulations were dynamically coupled with a green roof algorithm as a part of urban parameterization within WRF. Specifically, the study examines roof surface temperature with changing green roof fractions and how would they help reduce exposure to heat stress for vulnerable urban communities. This study shows an example of applied research that can directly benefit urban communities and be used by urban planners to evaluate mitigation strategies.
Cuffney, T.F.; Kashuba, R.; Qian, S.S.; Alameddine, I.; Cha, Y.K.; Lee, B.; Coles, J.F.; McMahon, G.
2011-01-01
Multilevel hierarchical regression was used to examine regional patterns in the responses of benthic macroinvertebrates and algae to urbanization across 9 metropolitan areas of the conterminous USA. Linear regressions established that responses (intercepts and slopes) to urbanization of invertebrates and algae varied among metropolitan areas. Multilevel hierarchical regression models were able to explain these differences on the basis of region-scale predictors. Regional differences in the type of land cover (agriculture or forest) being converted to urban and climatic factors (precipitation and air temperature) accounted for the differences in the response of macroinvertebrates to urbanization based on ordination scores, total richness, Ephemeroptera, Plecoptera, Trichoptera richness, and average tolerance. Regional differences in climate and antecedent agriculture also accounted for differences in the responses of salt-tolerant diatoms, but differences in the responses of other diatom metrics (% eutraphenic, % sensitive, and % silt tolerant) were best explained by regional differences in soils (mean % clay soils). The effects of urbanization were most readily detected in regions where forest lands were being converted to urban land because agricultural development significantly degraded assemblages before urbanization and made detection of urban effects difficult. The effects of climatic factors (temperature, precipitation) on background conditions (biogeographic differences) and rates of response to urbanization were most apparent after accounting for the effects of agricultural development. The effects of climate and land cover on responses to urbanization provide strong evidence that monitoring, mitigation, and restoration efforts must be tailored for specific regions and that attainment goals (background conditions) may not be possible in regions with high levels of prior disturbance (e.g., agricultural development). ?? 2011 by The North American Benthological Society.
ERIC Educational Resources Information Center
Lehmann, Martin; Fryd, Ole
2008-01-01
Purpose: The purpose of this paper is to describe and discuss the development and the structure of a new international master on the subject of urban quality development and management (UQDM), and explore the potential of the process and the outcome in serving as models adoptable by faculty at other universities. Design/methodology/approach: The…
Economic development through natural resource extraction is the primary driver of land use change. Land use change generally occurs as a result of urban development (residential, commercial, and industrial), agriculture (pasture and crop production), forestry (wood for constructi...
24 CFR 3285.104 - Moving manufactured home to location.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Moving manufactured home to... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Pre-Installation Considerations § 3285.104 Moving manufactured home to location. Refer to § 3285.902 for considerations related to...
24 CFR 3285.104 - Moving manufactured home to location.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Moving manufactured home to... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Pre-Installation Considerations § 3285.104 Moving manufactured home to location. Refer to § 3285.902 for considerations related to...
24 CFR 3285.104 - Moving manufactured home to location.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Moving manufactured home to... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Pre-Installation Considerations § 3285.104 Moving manufactured home to location. Refer to § 3285.902 for considerations related to...
24 CFR 3285.104 - Moving manufactured home to location.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Moving manufactured home to... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Pre-Installation Considerations § 3285.104 Moving manufactured home to location. Refer to § 3285.902 for considerations related to...
24 CFR 3285.104 - Moving manufactured home to location.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Moving manufactured home to... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Pre-Installation Considerations § 3285.104 Moving manufactured home to location. Refer to § 3285.902 for considerations related to...
NASA Astrophysics Data System (ADS)
Comer, Joanne; Indiana Olbert, Agnieszka; Nash, Stephen; Hartnett, Michael
2017-02-01
Urban developments in coastal zones are often exposed to natural hazards such as flooding. In this research, a state-of-the-art, multi-scale nested flood (MSN_Flood) model is applied to simulate complex coastal-fluvial urban flooding due to combined effects of tides, surges and river discharges. Cork city on Ireland's southwest coast is a study case. The flood modelling system comprises a cascade of four dynamically linked models that resolve the hydrodynamics of Cork Harbour and/or its sub-region at four scales: 90, 30, 6 and 2 m. Results demonstrate that the internalization of the nested boundary through the use of ghost cells combined with a tailored adaptive interpolation technique creates a highly dynamic moving boundary that permits flooding and drying of the nested boundary. This novel feature of MSN_Flood provides a high degree of choice regarding the location of the boundaries to the nested domain and therefore flexibility in model application. The nested MSN_Flood model through dynamic downscaling facilitates significant improvements in accuracy of model output without incurring the computational expense of high spatial resolution over the entire model domain. The urban flood model provides full characteristics of water levels and flow regimes necessary for flood hazard identification and flood risk assessment.
NASA Astrophysics Data System (ADS)
Wright, O.; Istanbulluoglu, E.
2012-12-01
The conversion of forested areas to impervious surfaces, lawns and pastures alters the natural hydrology of an area by increasing the flashiness of stormwater generated runoff, resulting in increased streamflow peaks and volumes. Currently, most of the stormwater from developed areas in the Puget Sound region remains uncontrolled. The lack of adequate stormwater facilities along with increasing urbanization and population growth illustrates the importance of understanding urban watershed behavior and best management practices (BMPs) that improve changes in hydrology. In this study, we developed a lumped urban ecohydrology model that represents vegetation dynamics, connects pervious and impervious surfaces and implements various BMP scenarios. The model is implemented in an urban headwater subcatchment located in the Newaukum Creek Basin. We evaluate the hydrologic impact of controlling runoff at the source and disconnecting impervious surfaces from the storm drain using rain barrels and bioretention cells. BMP scenarios consider the basin's land use/land coverage, the response of different impervious surface types, the potential for BMP placement, the size and drainage area for BMPs, and the mitigation needs to meet in-stream flow goals.
Description and evaluation of the QUIC bio-slurry scheme: droplet evaporation and surface deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zajic, Dragan; Brown, Michael J; Nelson, Matthew A
2010-01-01
The Quick Urban and Industrial Complex (QUIC) dispersion modeling system was developed with the goal of improving the transport and dispersion modeling capabilities within urban areas. The modeling system has the ability to rapidly obtain a detailed 3D flow field around building clusters and uses an urbanized Lagrangian random-walk approach to account for transport and dispersion (e.g., see Singh et al., 2008; Williams et al., 2009; and Gowardhan et al., 2009). In addition to wind-tunnel testing, the dispersion modeling system has been evaluated against full-scale urban tracer experiments performed in Salt Lake City, Oklahoma City, and New York City (Gowardhanmore » et al., 2006; Gowardhan et al., 2009; Allwine et al., 2008) and the wind model output to measurements taken in downtown Oklahoma City.« less
NASA Astrophysics Data System (ADS)
Wu, Bo; Xie, Linfu; Hu, Han; Zhu, Qing; Yau, Eric
2018-05-01
Photorealistic three-dimensional (3D) models are fundamental to the spatial data infrastructure of a digital city, and have numerous potential applications in areas such as urban planning, urban management, urban monitoring, and urban environmental studies. Recent developments in aerial oblique photogrammetry based on aircraft or unmanned aerial vehicles (UAVs) offer promising techniques for 3D modeling. However, 3D models generated from aerial oblique imagery in urban areas with densely distributed high-rise buildings may show geometric defects and blurred textures, especially on building façades, due to problems such as occlusion and large camera tilt angles. Meanwhile, mobile mapping systems (MMSs) can capture terrestrial images of close-range objects from a complementary view on the ground at a high level of detail, but do not offer full coverage. The integration of aerial oblique imagery with terrestrial imagery offers promising opportunities to optimize 3D modeling in urban areas. This paper presents a novel method of integrating these two image types through automatic feature matching and combined bundle adjustment between them, and based on the integrated results to optimize the geometry and texture of the 3D models generated from aerial oblique imagery. Experimental analyses were conducted on two datasets of aerial and terrestrial images collected in Dortmund, Germany and in Hong Kong. The results indicate that the proposed approach effectively integrates images from the two platforms and thereby improves 3D modeling in urban areas.
NASA Astrophysics Data System (ADS)
Qin, H. P.; Yu, X. Y.; Khu, S. T.
2009-04-01
Many urban catchments in developing countries are undergoing fast economic growth, population expansion and land use/cover change. Due to the mixture of agricultural/industrial/residential land use or different urbanization level as well as lack of historical monitoring data in the developing area, storm-water runoff pollution modeling is faced with challenges of considerable spatial variations and data insufficiency. Shiyan Reservoir catchment is located in the rapidly urbanizing coastal region of Southeast China. It has six sub-catchments with largely different land use patterns and urbanization levels. A simple semi-distributed model was used to simulate the storm-water runoff pollution process during storm event in the catchment. The model adopted modified IHACRES model and exponential wash-off functions to describe storm-runoff and pollutant wash-off processes, respectively, in each of six sub-catchments. Temporary hydrological and water quality monitoring sites were set at the downstream section of each sub-catchment in Feb-May 2007, spanning non-rain and rain seasons. And the model was calibrated for storm-runoff and water quality data during two typical storm events with rainfall amount of 10mm/4hr and 73mm/5hr, respectively. The results indicated that the Nash-Sutcliffe (NS) coefficients are greater than 0.65 and 0.55 respectively for storm-runoff model calibration and validation. However although NS coefficients can reach 0.7~0.9 for pollutant wash-off model calibration based on measured data in each storm event, the simulation data can not fit well with the measured data in model validation. According to field survey observation, many litters and residuals were found to distribute in disorder in some sub-catchments or their drainage systems and to instantaneously wash off into the surface water when the rainfall amount and intensity are large enough. In order to improve storm-water runoff pollution simulation in the catchment, the variations of pollutant source and wash off processes in different storm intensity should be consider in future monitoring and model development. Keywords: storm runoff; wash off; urbanization; catchment modeling; litter; residual
NASA Astrophysics Data System (ADS)
Darmanto, N. S.; Varquez, A. C. G.; Kanda, M.; Takakuwa, S.
2016-12-01
Economic development in Southeast Asia megacities leads to rapid transformation into more complicated urban configurations. These configurations, including building geometry, enhance aerodynamic drag thus reducing near-surface wind speeds. Roughness parameters representing building geometry, along with anthropogenic heat emissions, contribute to the formation of urban heat islands (UHI). All these have been reproduced successfully in the Weather Research and Forecasting (WRF) Model coupled with an improved single-layer urban canopy model incorporating a realistic distribution of urban parameters and anthropogenic heat emission in the Jakarta Greater Area. We apply this technology to climate change studies by introducing future urbanization defined by urban sprawl, vertical rise in buildings, and increase anthropogenic heat emission (AHE) due to population changes, into futuristic climate modelling. To simulate 2050s future climate, pseudo-global warming method was used which relied on current and ensembles of 5 CMIP5 GCMs for 2 representative concentration pathways (RCP), 2.6 and 8.5. To determine future urbanization level, 2050 population growth and energy consumption were estimated from shared socioeconomic pathways (SSP). This allows the estimation of future urban sprawl, building geometry, and AHE using the SLEUTH urban growth model and spatial growth assumptions. Two cases representing combinations of RCP and SSP were simulated in WRF: RCP2.6-SSP1 and RCP8.5-SSP3. Each case corresponds to best and worst-case scenarios of implementing adaptation and mitigation strategies, respectively. It was found that 2-m temperature of Jakarta will increase by 0.62°C (RCP2.6) and 1.44°C (RCP8.5) solely from background climate change; almost on the same magnitude as the background temperature increase of RCP2.6 (0.5°C) and RCP8.5 (1.2°C). Compared with previous studies, the result indicates that the effect of climate change on UHI in tropical cities may be lesser than cities located in the mid-latitudes. However, it is expected that the combined effect of urbanization and climate change will result to significant changes on future urban temperature. ACK: This research was supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan.
Zhang, Wenting; Wang, Haijun; Han, Fengxiang; Gao, Juan; Nguyen, Thuminh; Chen, Yarong; Huang, Bo; Zhan, F Benjamin; Zhou, Lequn; Hong, Song
2014-11-01
Urban growth is an unavoidable process caused by economic development and population growth. Traditional urban growth models represent the future urban growth pattern by repeating the historical urban growth regulations, which can lead to a lot of environmental problems. The Yangtze watershed is the largest and the most prosperous economic area in China, and it has been suffering from rapid urban growth from the 1970s. With the built-up area increasing from 23,238 to 31,054 km(2) during the period from 1980 to 2005, the watershed has suffered from serious nonpoint source (NPS) pollution problems, which have been mainly caused by the rapid urban growth. To protect the environment and at the same time maintain the economic development, a multiobjective optimization (MOP) is proposed to tradeoff the multiple objectives during the urban growth process of the Yangtze watershed. In particular, the four objectives of minimization of NPS pollution, maximization of GDP value, minimization of the spatial incompatibility between the land uses, and minimization of the cost of land-use change are considered by the MOP approach. Conventionally, a genetic algorithm (GA) is employed to search the Pareto solution set. In our MOP approach, a two-dimensional GA, rather than the traditional one-dimensional GA, is employed to assist with the search for the spatial optimization solution, where the land-use cells in the two-dimensional space act as genes in the GA. Furthermore, to confirm the superiority of the MOP approach over the traditional prediction approaches, a widely used urban growth prediction model, cellular automata (CA), is also carried out to allow a comparison with the Pareto solution of MOP. The results indicate that the MOP approach can make a tradeoff between the multiple objectives and can achieve an optimal urban growth pattern for Yangtze watershed, while the CA prediction model just represents the historical urban growth pattern as the future growth pattern. Moreover, according to the spatial clustering index, the urban growth pattern predicted through MOP is more reasonable. In summary, the proposed model provides a set of Pareto urban growth solutions, which compromise environmental and economic issues for the Yangtze watershed.
Urban Modification of Convection and Rainfall in Complex Terrain
NASA Astrophysics Data System (ADS)
Freitag, B. M.; Nair, U. S.; Niyogi, D.
2018-03-01
Despite a globally growing proportion of cities located in regions of complex terrain, interactions between urbanization and complex terrain and their meteorological impacts are not well understood. We utilize numerical model simulations and satellite data products to investigate such impacts over San Miguel de Tucumán, Argentina. Numerical modeling experiments show urbanization results in 20-30% less precipitation downwind of the city and an eastward shift in precipitation upwind. Our experiments show that changes in surface energy, boundary layer dynamics, and thermodynamics induced by urbanization interact synergistically with the persistent forcing of atmospheric flow by complex terrain. With urbanization increasing in mountainous regions, land-atmosphere feedbacks can exaggerate meteorological forcings leading to weather impacts that require important considerations for sustainable development of urban regions within complex terrain.
Growth Scenarios for the City of Guangzhou, China: Transferability and Confirmability
NASA Astrophysics Data System (ADS)
Lehner, A.; Kraus, V.; Wei, C.; Steinnocher, K.
2016-09-01
This work deals with the development of urban growth scenarios and the prevision of the spatial distribution of built-up area and population for the urban area of the city of Guangzhou in China. Using freely-available data, including remotely sensed data as well as census data from the ground, expenditure of time and costs shall remain low. Guangzhou, one of the biggest cities within the Pearl River Delta, has faced an enormous economic and urban growth during the last three decades. Due to its economical and spatial characteristics it is a promising candidate for urban growth scenarios. The monitoring and prediction of urban growth comprises data of population and give them a spatial representation. The model, originally applied for the Indian city Ahmedabad, is used for urban growth scenarios. Therefore, transferability and confirmability of the model are evaluated. Challenges that may occur by transferring a model for urban growth from one region to another are discussed. With proposing the use of urban remote sensing and freely available data, urban planners shall be fitted with a comprehensible and simple tool to be able to contribute to the future challenge Smart Growth.
Mapping behavioral landscapes for animal movement: a finite mixture modeling approach
Tracey, Jeff A.; Zhu, Jun; Boydston, Erin E.; Lyren, Lisa M.; Fisher, Robert N.; Crooks, Kevin R.
2013-01-01
Because of its role in many ecological processes, movement of animals in response to landscape features is an important subject in ecology and conservation biology. In this paper, we develop models of animal movement in relation to objects or fields in a landscape. We take a finite mixture modeling approach in which the component densities are conceptually related to different choices for movement in response to a landscape feature, and the mixing proportions are related to the probability of selecting each response as a function of one or more covariates. We combine particle swarm optimization and an Expectation-Maximization (EM) algorithm to obtain maximum likelihood estimates of the model parameters. We use this approach to analyze data for movement of three bobcats in relation to urban areas in southern California, USA. A behavioral interpretation of the models revealed similarities and differences in bobcat movement response to urbanization. All three bobcats avoided urbanization by moving either parallel to urban boundaries or toward less urban areas as the proportion of urban land cover in the surrounding area increased. However, one bobcat, a male with a dispersal-like large-scale movement pattern, avoided urbanization at lower densities and responded strictly by moving parallel to the urban edge. The other two bobcats, which were both residents and occupied similar geographic areas, avoided urban areas using a combination of movements parallel to the urban edge and movement toward areas of less urbanization. However, the resident female appeared to exhibit greater repulsion at lower levels of urbanization than the resident male, consistent with empirical observations of bobcats in southern California. Using the parameterized finite mixture models, we mapped behavioral states to geographic space, creating a representation of a behavioral landscape. This approach can provide guidance for conservation planning based on analysis of animal movement data using statistical models, thereby linking connectivity evaluations to empirical data.
NASA Astrophysics Data System (ADS)
Versini, Pierre-Antoine; Tchiguirinskaia, Ioulia; Schertzer, Daniel
2016-04-01
Concentrating buildings and socio-economic activities, urban areas are particularly vulnerable to hydrological risks. Modification in climate may intensify already existing issues concerning stormwater management (due to impervious area) and water supply (due to the increase of the population). In this context, water use efficiency and best water management practices are key-issues in the urban environment already stressed. Blue and green infrastructures are nature-based solutions that provide synergy of the blue and green systems to provide multifunctional solutions and multiple benefits: increased amenity, urban heat island improvement, biodiversity, reduced energy requirements... They are particularly efficient to reduce the potential impact of new and existing developments with respect to stormwater and/or water supply issues. The Multi-Hydro distributed rainfall-runoff model represents an adapted tool to manage the impacts of such infrastructures at the urban basin scale. It is a numerical platform that makes several models interact, each of them representing a specific portion of the water cycle in an urban environment: surface runoff and infiltration depending on a land use classification, sub-surface processes and sewer network drainage. Multi-Hydro is still being developed at the Ecole des Ponts (open access from https://hmco.enpc.fr/Tools-Training/Tools/Multi-Hydro.php) to take into account the wide complexity of urban environments. The latest advancements have made possible the representation of several blue and green infrastructures (green roof, basin, swale). Applied in a new urban development project located in the Paris region, Multi-Hydro has been used to simulate the impact of blue and green infrastructures implementation. It was particularly focused on their ability to fulfil regulation rules established by local stormwater managers in order to connect the parcel to the sewer network. The results show that a combination of several blue and green infrastructures, if they are widely implemented, could represent an efficient tool to ensure regulation rules at the parcel scale.
NASA Astrophysics Data System (ADS)
Peng, F.; Wong, M. S.; Nichol, J. E.; Chan, P. W.
2016-06-01
Rapid urban development between the 1960 and 2010 decades have changed the urban landscape and pattern in the Kowloon Peninsula of Hong Kong. This paper aims to study the changes of urban morphological parameters between the 1985 and 2010 and explore their influences on the urban heat island (UHI) effect. This study applied a mono-window algorithm to retrieve the land surface temperature (LST) using Landsat Thematic Mapper (TM) images from 1987 to 2009. In order to estimate the effects of local urban morphological parameters to LST, the global surface temperature anomaly was analysed. Historical 3D building model was developed based on aerial photogrammetry technique using aerial photographs from 1964 to 2010, in which the urban digital surface models (DSMs) including elevations of infrastructures and buildings have been generated. Then, urban morphological parameters (i.e. frontal area index (FAI), sky view factor (SVF)), vegetation fractional cover (VFC), global solar radiation (GSR), Normalized Difference Built-Up Index (NDBI), wind speed were derived. Finally, a linear regression method in Waikato Environment for Knowledge Analysis (WEKA) was used to build prediction model for revealing LST spatial patterns. Results show that the final apparent surface temperature have uncertainties less than 1 degree Celsius. The comparison between the simulated and actual spatial pattern of LST in 2009 showed that the correlation coefficient is 0.65, mean absolute error (MAE) is 1.24 degree Celsius, and root mean square error (RMSE) is 1.51 degree Celsius of 22,429 pixels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xiaoma; Zhou, Yuyu; Asrar, Ghassem R.
Abstract: Urban heat island (UHI), a major concern worldwide, affects human health and energy use. With current and anticipated rapid urbanization, improved understanding of the response of UHI to urbanization is important for impact analysis and developing effective adaptation measures and mitigation strategies. Current studies mainly focus on a single or a few big cities and knowledge on the response of UHI to urbanization for large areas is very limited. Modelling UHI caused by urbanization for large areas that encompass multiple metropolitans remains a major scientific challenge/opportunity. As a major indicator of urbanization, urban area size lends itself well formore » representation in prognostic models to investigate the impacts of urbanization on UHI and the related socioeconomic and environmental effects. However, we have little knowledge on how UHI responds to the increase of urban area size, namely urban expansion, and its spatial and temporal variation over large areas. In this study, we investigated the relationship between surface UHI (SUHI) and urban area size in the climate and ecological context, and its spatial and temporal variations, based on a panel analysis of about 5000 urban areas of 10 km2 or larger, in the conterminous U.S. We found statistically significant positive relationship between SUHI and urban area size, and doubling the urban area size led to a SUHI increase of higher than 0.7 °C. The response of SUHI to the increase of urban area size shows spatial and temporal variations, with stronger SUHI increase in the Northern region of U.S., and during daytime and summer. Urban area size alone can explain as much as 87% of the variance of SUHI among cities studied, but with large spatial and temporal variations. Urban area size shows higher association with SUHI in regions where the thermal characteristics of land cover surrounding the urban are more homogeneous, such as in Eastern U.S., and in the summer months. This study provides a practical approach for large-scale assessment and modeling of the impact of urbanization on SUHI, both spatially and temporally, for developing mitigation/adaptation measures, especially in anticipated warmer climate conditions for the rest of this century.« less
Changing Urban Carbon Metabolism over Time: Historical Trajectory and Future Pathway.
Chen, Shaoqing; Chen, Bin
2017-07-05
Cities are expected to play a major role in carbon emissions mitigation. A key step in decoupling urban economy from carbon emissions is to understand the full impact of socioeconomic development on urban metabolism over time. Herein, we establish a system-based framework for modeling the variation of urban carbon metabolism through time by integrating a metabolic flow inventory, input-output model, and network analysis. Using Beijing as a case study, we track the historical trajectory of carbon flows embodied in urban final consumption over 1985-2012. We find that while the tendency of increase in direct carbon emission continues within this time frame, consumption-based carbon footprint might have peaked around 2010. Significant transitions in emission intensity and roles sectors play in transferring carbon over the period are important signs of decoupling urban development from carbonization. Our further analysis of driving factors reveals a strong competition between efficiency gains and consumption level rise, showing a cumulative contribution of -584% and 494% to total carbon footprint, respectively. Projection into a future pathway suggests there is still a great potential for carbon mitigation for the city, but a strong mitigation plan is required to achieve such decarbonization before 2030. By bridging temporal metabolic model and socioeconomic planning, this framework fills one of the main gaps between monitoring of urban metabolism and design of a low-carbon economy.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Johnson, Hoyt; Khan, Maudood
2006-01-01
The growth of cities, both in population and areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 60 percent of the world s population will live in cities. Urban expansion has profound impacts on a host of biophysical, environmental, and atmospheric processes within an urban ecosystems perspective. A reduction in air quality over cities is a major result of these impacts. Because of its complexity, the urban landscape is not adequately captured in air quality models such as the Community Multiscale Air Quality (CMAQ) model that is used to assess whether urban areas are in attainment of EPA air quality standards, primarily for ground level ozone. This inadequacy of the CMAQ model to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well the model predicts ozone levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban spatial growth modeling (SGM) projections as improved inputs to a meteorological/air quality modeling system focusing on the Atlanta, Georgia metropolitan area as a case study. These growth projections include business as usual and smart growth scenarios out to 2030. The growth projections illustrate the effects of employing urban heat island mitigation strategies, such as increasing tree canopy and albedo across the Atlanta metro area, which in turn, are used to model how air temperature can potentially be moderated as impacts on elevating ground-level ozone, as opposed to not utilizing heat island mitigation strategies. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the CMAQ modeling schemes. Use of these data has been found to better characterize low density/suburban development as compared with USGS lkm land use/land cover data that have traditionally been used in modeling. Air quality prediction for future scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission, the regional planning agency for the area. This allows the Georgia Environmental Protection Division to evaluate how these transportation plans will affect future air quality. The coupled SGM and air quality modeling approach provides insight on what the impacts of Atlanta s growth will be on the local and regional environment and exists as a mechanism that can be used by policy makers to make rational decisions on urban growth and sustainability for the metropolitan area in the future.
NASA Astrophysics Data System (ADS)
Quattrochi, D. A.; Estes, M. G.; Crosson, W. L.; Johnson, H.; Khan, M.
2006-05-01
The growth of cities, both in population and areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 60 percent of the world's population will live in cities. Urban expansion has profound impacts on a host of biophysical, environmental, and atmospheric processes within an urban ecosystems perspective. A reduction in air quality over cities is a major result of these impacts. Because of its complexity, the urban landscape is not adequately captured in air quality models such as the Community Multiscale Air Quality (CMAQ) model that is used to assess whether urban areas are in attainment of EPA air quality standards, primarily for ground level ozone. This inadequacy of the CMAQ model to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well the model predicts ozone levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban spatial growth modeling (SGM) projections as improved inputs to a meteorological/air quality modeling system focusing on the Atlanta, Georgia metropolitan area as a case study. These growth projections include "business as usual" and "smart growth" scenarios out to 2030. The growth projections illustrate the effects of employing urban heat island mitigation strategies, such as increasing tree canopy and albedo across the Atlanta metro area, which in turn, are used to model how air temperature can potentially be moderated as impacts on elevating ground-level ozone, as opposed to not utilizing heat island mitigation strategies. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the CMAQ modeling schemes. Use of these data has been found to better characterize low density/suburban development as compared with USGS 1km land use/land cover data that have traditionally been used in modeling. Air quality prediction for future scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission, the regional planning agency for the area. This allows the Georgia Environmental Protection Division to evaluate how these transportation plans will affect future air quality. The coupled SGM and air quality modeling approach provides insight on what the impacts of Atlanta's growth will be on the local and regional environment and exists as a mechanism that can be used by policy makers to make rational decisions on urban growth and sustainability for the metropolitan area in the future.
Early childhood development in deprived urban settlements.
Nair, M K C; Radhakrishnan, S Rekha
2004-03-01
Poverty, the root cause of the existence of slums or settlement colonies in urban areas has a great impact on almost all aspects of life of the urban poor, especially the all-round development of children. Examples from countries, across the globe provide evidence of improved early child development, made possible through integrated slum improvement programs, are few in numbers. The observed 2.5% prevalence of developmental delay in the less than 2 year olds of deprived urban settlements, the presence of risk factors for developmental delay like low birth weight, birth asphyxia, coupled with poor environment of home and alternate child care services, highlights the need for simple cost effective community model for promoting early child development. This review on early child development focuses on the developmental status of children in the deprived urban settlements, who are yet to be on the priority list of Governments and international agencies working for the welfare of children, the contributory nature-nurture factors and replicable working models like infant stimulation, early detection of developmental delay in infancy itself, developmental screening of toddlers, skill assessment for preschool children, school readiness programs, identification of mental sub-normality and primary education enhancement program for primary school children. Further, the review probes feasible intervention strategies through community owned early child care and development facilities, utilizing existing programs like ICDS, Urban Basic Services and by initiating services like Development Friendly Well Baby Clinics, Community Extension services, Child Development Referral Units at district hospitals and involving trained manpower like anganwadi/creche workers, public health nurses and developmental therapists. With the decentralization process the local self-government at municipalities and city corporations are financially equipped to be the prime movers to initiate, monitor and promote early child development programs, to emerge as a part and parcel of community owned sustainable development process.
From Hopelessness to Hope: Social Justice Pedagogy in Urban Education and Youth Development
ERIC Educational Resources Information Center
Cammarota, Julio
2011-01-01
This article reviews the social justice youth development (SJYD) model conceptualized to facilitate and enhance urban youth awareness of their personal potential, community responsibility, and broader humanity. The SJYD requires the healing of youth identities by involving them in social justice activities that counter oppressive conditions…
24 CFR 3285.305 - Clearance under homes.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Clearance under homes. 3285.305... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Foundations § 3285.305 Clearance under homes. A minimum clearance of 12 inches must be maintained between the lowest member of the main frame...
24 CFR 3285.305 - Clearance under homes.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Clearance under homes. 3285.305... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Foundations § 3285.305 Clearance under homes. A minimum clearance of 12 inches must be maintained between the lowest member of the main frame...
24 CFR 3285.305 - Clearance under homes.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Clearance under homes. 3285.305... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Foundations § 3285.305 Clearance under homes. A minimum clearance of 12 inches must be maintained between the lowest member of the main frame...
24 CFR 3285.6 - Final leveling of manufactured home.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Final leveling of manufactured home... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS General § 3285.6 Final leveling of manufactured home. The manufactured home must be adequately leveled prior to completion of the...
24 CFR 3285.6 - Final leveling of manufactured home.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Final leveling of manufactured home... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS General § 3285.6 Final leveling of manufactured home. The manufactured home must be adequately leveled prior to completion of the...
24 CFR 3285.6 - Final leveling of manufactured home.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Final leveling of manufactured home... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS General § 3285.6 Final leveling of manufactured home. The manufactured home must be adequately leveled prior to completion of the...
24 CFR 3285.305 - Clearance under homes.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Clearance under homes. 3285.305... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Foundations § 3285.305 Clearance under homes. A minimum clearance of 12 inches must be maintained between the lowest member of the main frame...
24 CFR 3285.802 - Structural interconnection of multi-section homes.
Code of Federal Regulations, 2011 CFR
2011-04-01
...-section homes. 3285.802 Section 3285.802 Housing and Urban Development Regulations Relating to Housing and..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Exterior and Interior Close-Up § 3285.802 Structural interconnection of multi-section homes. (a) For multi-section homes...
24 CFR 3285.802 - Structural interconnection of multi-section homes.
Code of Federal Regulations, 2010 CFR
2010-04-01
...-section homes. 3285.802 Section 3285.802 Housing and Urban Development Regulations Relating to Housing and..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Exterior and Interior Close-Up § 3285.802 Structural interconnection of multi-section homes. (a) For multi-section homes...
24 CFR 3285.6 - Final leveling of manufactured home.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Final leveling of manufactured home... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS General § 3285.6 Final leveling of manufactured home. The manufactured home must be adequately leveled prior to completion of the...
24 CFR 3285.802 - Structural interconnection of multi-section homes.
Code of Federal Regulations, 2013 CFR
2013-04-01
...-section homes. 3285.802 Section 3285.802 Housing and Urban Development Regulations Relating to Housing and..., DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Exterior and Interior Close-Up § 3285.802 Structural interconnection of multi-section homes. (a) For multi-section homes...
24 CFR 3285.6 - Final leveling of manufactured home.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Final leveling of manufactured home... HOUSING AND URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS General § 3285.6 Final leveling of manufactured home. The manufactured home must be adequately leveled prior to completion of the...
24 CFR 3285.305 - Clearance under homes.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Clearance under homes. 3285.305... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Foundations § 3285.305 Clearance under homes. A minimum clearance of 12 inches must be maintained between the lowest member of the main frame...
24 CFR 3285.605 - Fuel supply system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Fuel supply system. 3285.605... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Ductwork and Plumbing and Fuel Supply Systems § 3285.605 Fuel supply system. (a) Proper supply pressure. The gas piping system in the home is...
24 CFR 3285.204 - Ground moisture control.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Ground moisture control. 3285.204... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Site Preparation § 3285.204 Ground... materials, a vapor retarder must be installed to cover the ground under the home, unless the home is...
24 CFR 3285.204 - Ground moisture control.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Ground moisture control. 3285.204... URBAN DEVELOPMENT MODEL MANUFACTURED HOME INSTALLATION STANDARDS Site Preparation § 3285.204 Ground... materials, a vapor retarder must be installed to cover the ground under the home, unless the home is...
Urban change detection procedures using Landsat digital data
NASA Technical Reports Server (NTRS)
Jensen, J. R.; Toll, D. L.
1982-01-01
Landsat multispectral scanner data was applied to an urban change detection problem in Denver, CO. A dichotomous key yielding ten stages of residential development at the urban fringe was developed. This heuristic model allowed one to identify certain stages of development which are difficult to detect when performing digital change detection using Landsat data. The stages of development were evaluated in terms of their spectral and derived textural characteristics. Landsat band 5 (0.6-0.7 micron) and texture data produced change detection maps which were approximately 81 percent accurate. Results indicated that the stage of development and the spectral/textural features affect the change in the spectral values used for change detection. These preliminary findings will hopefully prove valuable for improved change detection at the urban fringe.
An urban energy performance evaluation system and its computer implementation.
Wang, Lei; Yuan, Guan; Long, Ruyin; Chen, Hong
2017-12-15
To improve the urban environment and effectively reflect and promote urban energy performance, an urban energy performance evaluation system was constructed, thereby strengthening urban environmental management capabilities. From the perspectives of internalization and externalization, a framework of evaluation indicators and key factors that determine urban energy performance and explore the reasons for differences in performance was proposed according to established theory and previous studies. Using the improved stochastic frontier analysis method, an urban energy performance evaluation and factor analysis model was built that brings performance evaluation and factor analysis into the same stage for study. According to data obtained for the Chinese provincial capitals from 2004 to 2013, the coefficients of the evaluation indicators and key factors were calculated by the urban energy performance evaluation and factor analysis model. These coefficients were then used to compile the program file. The urban energy performance evaluation system developed in this study was designed in three parts: a database, a distributed component server, and a human-machine interface. Its functions were designed as login, addition, edit, input, calculation, analysis, comparison, inquiry, and export. On the basis of these contents, an urban energy performance evaluation system was developed using Microsoft Visual Studio .NET 2015. The system can effectively reflect the status of and any changes in urban energy performance. Beijing was considered as an example to conduct an empirical study, which further verified the applicability and convenience of this evaluation system. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sanchez, Margaux; Ambros, Albert; Milà, Carles; Salmon, Maëlle; Balakrishnan, Kalpana; Sambandam, Sankar; Sreekanth, V; Marshall, Julian D; Tonne, Cathryn
2018-09-01
Land-use regression (LUR) has been used to model local spatial variability of particulate matter in cities of high-income countries. Performance of LUR models is unknown in less urbanized areas of low-/middle-income countries (LMICs) experiencing complex sources of ambient air pollution and which typically have limited land use data. To address these concerns, we developed LUR models using satellite imagery (e.g., vegetation, urbanicity) and manually-collected data from a comprehensive built-environment survey (e.g., roads, industries, non-residential places) for a peri-urban area outside Hyderabad, India. As part of the CHAI (Cardiovascular Health effects of Air pollution in Telangana, India) project, concentrations of fine particulate matter (PM 2.5 ) and black carbon were measured over two seasons at 23 sites. Annual mean (sd) was 34.1 (3.2) μg/m 3 for PM 2.5 and 2.7 (0.5) μg/m 3 for black carbon. The LUR model for annual black carbon explained 78% of total variance and included both local-scale (energy supply places) and regional-scale (roads) predictors. Explained variance was 58% for annual PM 2.5 and the included predictors were only regional (urbanicity, vegetation). During leave-one-out cross-validation and cross-holdout validation, only the black carbon model showed consistent performance. The LUR model for black carbon explained a substantial proportion of the spatial variability that could not be captured by simpler interpolation technique (ordinary kriging). This is the first study to develop a LUR model for ambient concentrations of PM 2.5 and black carbon in a non-urban area of LMICs, supporting the applicability of the LUR approach in such settings. Our results provide insights on the added value of manually-collected built-environment data to improve the performance of LUR models in settings with limited data availability. For both pollutants, LUR models predicted substantial within-village variability, an important feature for future epidemiological studies. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Transforming City Schools through Art: Approaches to Meaningful K-12 Learning
ERIC Educational Resources Information Center
Hutzel, Karen; Bastos, Flavia M. C.; Cozier, Kimberly J.
2012-01-01
This anthology places art at the center of meaningful urban education reform. Providing a fresh perspective on urban education, the contributors describe a positive, asset-based community development model designed to tap into the teaching/learning potential already available in urban cities. Rather than focusing on a lack of resources, this…
Hydrological processes at the urban residential scale
Q. Xiao; E.G. McPherson; J.R. Simpson; S.L. Ustin
2007-01-01
In the face of increasing urbanization, there is growing interest in application of microscale hydrologic solutions to minimize storm runoff and conserve water at the source. In this study, a physically based numerical model was developed to understand hydrologic processes better at the urban residential scale and the interaction of these processes among different...
Sound field simulation and acoustic animation in urban squares
NASA Astrophysics Data System (ADS)
Kang, Jian; Meng, Yan
2005-04-01
Urban squares are important components of cities, and the acoustic environment is important for their usability. While models and formulae for predicting the sound field in urban squares are important for their soundscape design and improvement, acoustic animation tools would be of great importance for designers as well as for public participation process, given that below a certain sound level, the soundscape evaluation depends mainly on the type of sounds rather than the loudness. This paper first briefly introduces acoustic simulation models developed for urban squares, as well as empirical formulae derived from a series of simulation. It then presents an acoustic animation tool currently being developed. In urban squares there are multiple dynamic sound sources, so that the computation time becomes a main concern. Nevertheless, the requirements for acoustic animation in urban squares are relatively low compared to auditoria. As a result, it is important to simplify the simulation process and algorithms. Based on a series of subjective tests in a virtual reality environment with various simulation parameters, a fast simulation method with acceptable accuracy has been explored. [Work supported by the European Commission.
NASA Astrophysics Data System (ADS)
Giannaros, Christos; Nenes, Athanasios; Giannaros, Theodore M.; Kourtidis, Konstantinos; Melas, Dimitrios
2018-03-01
This study presents a comprehensive modeling approach for simulating the spatiotemporal distribution of urban air temperatures with a modeling system that includes the Weather Research and Forecasting (WRF) model and the Single-Layer Urban Canopy Model (SLUCM) with a modified treatment of the impervious surface temperature. The model was applied to simulate a 3-day summer heat wave event over the city of Athens, Greece. The simulation, using default SLUCM parameters, is capable of capturing the observed diurnal variation of urban temperatures and the Urban Heat Island (UHI) in the greater Athens Area (GAA), albeit with systematic biases that are prominent during nighttime hours. These biases are particularly evident over low-intensity residential areas, and they are associated with the surface and urban canopy properties representing the urban environment. A series of sensitivity simulations unravels the importance of the sub-grid urban fraction parameter, surface albedo, and street canyon geometry in the overall causation and development of the UHI effect. The sensitivities are then used to determine optimal values of the street canyon geometry, which reproduces the observed temperatures throughout the simulation domain. The optimal parameters, apart from considerably improving model performance (reductions in mean temperature bias from 0.30 °C to 1.58 °C), are also consistent with actual city building characteristics - which gives confidence that the model set-up is robust, and can be used to study the UHI in the GAA in the anticipated warmer conditions in the future.
Ogunyemi, Omolola; Teklehaimanot, Senait; Patty, Lauren; Moran, Erin; George, Sheba
2013-01-01
Introduction Screening guidelines for diabetic patients recommend yearly eye examinations to detect diabetic retinopathy and other forms of diabetic eye disease. However, annual screening rates for retinopathy in US urban safety net settings remain low. Methods Using data gathered from a study of teleretinal screening in six urban safety net clinics, we assessed whether predictive modeling could be of value in identifying patients at risk of developing retinopathy. We developed and examined the accuracy of two predictive modeling approaches for diabetic retinopathy in a sample of 513 diabetic individuals, using routinely available clinical variables from retrospective medical record reviews. Bayesian networks and radial basis function (neural) networks were learned using ten-fold cross-validation. Results The predictive models were modestly predictive with the best model having an AUC of 0.71. Discussion Using routinely available clinical variables to predict patients at risk of developing retinopathy and to target them for annual eye screenings may be of some usefulness to safety net clinics. PMID:23920536
Designing and implementing a regional urban modeling system using the SLEUTH cellular urban model
Jantz, Claire A.; Goetz, Scott J.; Donato, David I.; Claggett, Peter
2010-01-01
This paper presents a fine-scale (30 meter resolution) regional land cover modeling system, based on the SLEUTH cellular automata model, that was developed for a 257000 km2 area comprising the Chesapeake Bay drainage basin in the eastern United States. As part of this effort, we developed a new version of the SLEUTH model (SLEUTH-3r), which introduces new functionality and fit metrics that substantially increase the performance and applicability of the model. In addition, we developed methods that expand the capability of SLEUTH to incorporate economic, cultural and policy information, opening up new avenues for the integration of SLEUTH with other land-change models. SLEUTH-3r is also more computationally efficient (by a factor of 5) and uses less memory (reduced 65%) than the original software. With the new version of SLEUTH, we were able to achieve high accuracies at both the aggregate level of 15 sub-regional modeling units and at finer scales. We present forecasts to 2030 of urban development under a current trends scenario across the entire Chesapeake Bay drainage basin, and three alternative scenarios for a sub-region within the Chesapeake Bay watershed to illustrate the new ability of SLEUTH-3r to generate forecasts across a broad range of conditions.
NASA Astrophysics Data System (ADS)
Liu, Z.; Xue, Y.; Liu, S.; Oleson, K. W.
2012-12-01
The urbanization causes one of the most significant land cover changes. Especially over the eastern China from Beijing to Shanghai, the great urbanization occurs during the past half century.It modifies the physical characteristics of land surface, including land surface albedo, surface roughness length and aerodynamicresistanceand thermodynamic conduction over land. All of these play very important role in regional climate change. Afteremploying several WRF/Urban models to tests land use and land cover change(LUCC) caused by urbanization in East Asia, we decided to introducea urban canopy submodule,the Community Land surface Model urban scheme(CLMU)to the WRF and coupled with the WRF-SSiB3 regional climate model. The CLMU and SSIB share the similar principal to treat the surface energy and water balances and aerodynamic resistance between land and atmosphere. In the urban module, the energy balances on the five surface conditions are considered separately: building roof, sun side building wall, shade side building wall, pervious land surface and impervious road. The surface turbulence calculation is based on Monin-Obukhov similarity theory. We have made further improvements for the urban module. Over each surface condition, a method to calculate sky view factor (SVF) is developed based on the physically process while most urban models simply provide an empirical value for SVF. Our approach along with other improvement in short and long wave radiation transfer improves the accuracy of long-wave and shortwave radiation processing over urban surface. The force-restore approximation is employed to calculate the temperature of each outer surfaces of building. The inner side temperature is used as the restore term and was assigned as a tuning constant. Based on the nature of the force-restore method and our tests, we decide to employ the air mean temperature of last 72 hours as a restore term, which substantially improve the surface energy balance. We evaluate the ability of the newly coupled model by two runs: one without and one with the urban canopy module. The coupled model is integrated from March through September, covering a summer monsoon season. The preliminary results show more significant urban heat island (UHI) effect over urban areas with the urban canopy model. The existence of the UHIs enhances the convection in lower atmosphere, affects the water vapor transportation and precipitation of the surrounding area, consistent with the phenomena that occur in urban areas. We further test the effect of urbanization on the monsoon by introducing two maps, one with and one without urbanization and the effect of the urbanization on the monsoon evolution and low level circulation will be discussed in the presentation.
Ma, Yukun; Liu, An; Egodawatta, Prasanna; McGree, James; Goonetilleke, Ashantha
2017-01-01
Among the numerous pollutants present in urban road dust, polycyclic aromatic hydrocarbons (PAHs) are among the most toxic chemical pollutants and can pose cancer risk to humans. The primary aim of the study was to develop a quantitative model to assess the cancer risk from PAHs in urban road dust based on traffic and land use factors and thereby to characterise the risk posed by PAHs in fine (<150μm) and coarse (>150μm) particles. The risk posed by PAHs was quantified as incremental lifetime cancer risk (ILCR), which was modelled as a function of traffic volume and percentages of different urban land uses. The study outcomes highlighted the fact that cancer risk from PAHs in urban road dust is primarily influenced by PAHs associated with fine solids. Heavy PAHs with 5 to 6 benzene rings, especially dibenzo[a,h]anthracene (D[a]A) and benzo[a]pyrene (B[a]P) in the mixture contribute most to the risk. The quantitative model developed based on traffic and land use factors will contribute to informed decision making in relation to the management of risk posed by PAHs in urban road dust. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Kan; Zhang, Jianying; Chen, Yingxu; Zhu, Yinmei
2006-10-01
Based on the Landset TM information of land use/cover change and greenbelt distribution in Hangzhou city in 1994 and 2004, and by using CITYgreen model, this paper estimated the eco-service value of urban greenbelt in the city under the effects of land use change and economic development. The results showed that in the 10 years from 1994 to 2004, the greenbelt area in the city decreased by 20. 4% , while its eco-service value increased by 168 million yuan. The annual increment of greenbelt eco-service value and GDP was 111.92% and 5. 32% , respectively. Suitable adjustment of land use pattern in the city harmonized the relationships between urban economic development and urban eco-function, and achieved higher eco-service efficiency of land utilization.
NASA Astrophysics Data System (ADS)
Li, M.; Zhu, X.; Shen, C.; Chen, D.; Guo, W.
2012-07-01
With the certain regulation of unified real estate registration taken by the Property Law and the step-by-step advance of simultaneous development in urban and rural in China, it is the premise and foundation to clearly specify property rights and their relations in promoting the integrated management of urban and rural land. This paper aims at developing a cadastral domain model oriented at unified real estate registration of China from the perspective of legal and spatial, which set up the foundation for unified real estate registration, and facilitates the effective interchange of cadastral information and the administration of land use. The legal cadastral model is provided based on the analysis of gap between current model and the demand of unified real estate registration, which implies the restrictions between different rights. Then the new cadastral domain model is constructed based on the legal cadastral domain model and CCDM (van Oosterom et al., 2006), which integrate real estate rights of urban land and rural land. Finally, the model is validated by a prototype system. The results show that the model is applicable for unified real estate registration in China.
Modeling sedimentation-filtration basins for urban watersheds using Soil and Water Assessment Tool
USDA-ARS?s Scientific Manuscript database
Sedimentation-filtration (SedFil) basins are one of the storm-water best management practices (BMPs) that are intended to mitigate water quality problems in urban creeks and rivers. A new physically based model of variably saturated flows was developed for simulating flow and sediment in SedFils wi...
Classroom Age Composition and Developmental Change in 70 Urban Preschool Classrooms
ERIC Educational Resources Information Center
Moller, Arlen C.; Forbes-Jones, Emma; Hightower, A. Dirk
2008-01-01
A multilevel modeling approach was used to investigate the influence of age composition in 70 urban preschool classrooms. A series of hierarchical linear models demonstrated that greater variance in classroom age composition was negatively related to development on the Child Observation Record (COR) Cognitive, Motor, and Social subscales. This was…
Numerous urban canopy schemes have recently been developed for mesoscale models in order to approximate the drag and turbulent production effects of a city on the air flow. However, little data exists by which to evaluate the efficacy of the schemes since "area-averaged&quo...
Business-Education Cooperation: A Review of Selected Urban Programs.
ERIC Educational Resources Information Center
Neubauer, Antonia
Brief descriptions of individual models of business/education cooperation in ten U.S. cities are presented in this report. The models were either developed under the aegis of local Chambers of Commerce or depict major urban partnerships of which the Chambers are a part. Cities with such programs include Boston, Cincinnati, Dallas, Hartford,…
Predicting the effect of urban noise on the active space of avian vocal signals.
Parris, Kirsten M; McCarthy, Michael A
2013-10-01
Urbanization changes the physical environment of nonhuman species but also markedly changes their acoustic environment. Urban noise interferes with acoustic communication in a range of animals, including birds, with potentially profound impacts on fitness. However, a mechanistic theory to predict which species of birds will be most affected by urban noise is lacking. We develop a mathematical model to predict the decrease in the active space of avian vocal signals after moving from quiet forest habitats to noisy urban habitats. We find that the magnitude of the decrease is largely a function of signal frequency. However, this relationship is not monotonic. A metaregression of observed increases in the frequency of birdsong in urban noise supports the model's predictions for signals with frequencies between 1.5 and 4 kHz. Using results of the metaregression and the model described above, we show that the expected gain in active space following observed frequency shifts is up to 12% and greatest for birds with signals at the lower end of this frequency range. Our generally applicable model, along with three predictions regarding the behavioral and population-level responses of birds to urban noise, represents an important step toward a theory of acoustic communication in urban habitats.
NASA Astrophysics Data System (ADS)
Srinivasan, Veena; Gorelick, Steven M.; Goulder, Lawrence
2010-07-01
In this paper, we discuss a challenging water resources problem in a developing world city, Chennai, India. The goal is to reconstruct past system behavior and diagnose the causes of a major water crisis. In order to do this, we develop a hydrologic-engineering-economic model to address the complexity of urban water supply arising from consumers' dependence on multiple interconnected sources of water. We integrate different components of the urban water system: water flowing into the reservoir system; diversion and distribution by the public water utility; groundwater flow in the aquifer beneath the city; supply, demand, and prices in the informal tanker-truck-based water market; and consumer behavior. Both the economic and physical impacts of consumers' dependence on multiple sources of water are quantified. The model is calibrated over the period 2002-2006 using a range of hydrologic and socio-economic data. The model's results highlight the inadequacy of the reservoir system and the buffering role played by the urban aquifer and consumers' coping investments during multiyear droughts.
A microscale three-dimensional urban energy balance model for studying surface temperatures
NASA Astrophysics Data System (ADS)
Krayenhoff, E. Scott; Voogt, James A.
2007-06-01
A microscale three-dimensional (3-D) urban energy balance model, Temperatures of Urban Facets in 3-D (TUF-3D), is developed to predict urban surface temperatures for a variety of surface geometries and properties, weather conditions, and solar angles. The surface is composed of plane-parallel facets: roofs, walls, and streets, which are further sub-divided into identical square patches, resulting in a 3-D raster-type model geometry. The model code is structured into radiation, conduction and convection sub-models. The radiation sub-model uses the radiosity approach and accounts for multiple reflections and shading of direct solar radiation. Conduction is solved by finite differencing of the heat conduction equation, and convection is modelled by empirically relating patch heat transfer coefficients to the momentum forcing and the building morphology. The radiation and conduction sub-models are tested individually against measurements, and the complete model is tested against full-scale urban surface temperature and energy balance observations. Modelled surface temperatures perform well at both the facet-average and the sub-facet scales given the precision of the observations and the uncertainties in the model inputs. The model has several potential applications, such as the calculation of radiative loads, and the investigation of effective thermal anisotropy (when combined with a sensor-view model).
Remote Sensing Technologies and Geospatial Modelling Hierarchy for Smart City Support
NASA Astrophysics Data System (ADS)
Popov, M.; Fedorovsky, O.; Stankevich, S.; Filipovich, V.; Khyzhniak, A.; Piestova, I.; Lubskyi, M.; Svideniuk, M.
2017-12-01
The approach to implementing the remote sensing technologies and geospatial modelling for smart city support is presented. The hierarchical structure and basic components of the smart city information support subsystem are considered. Some of the already available useful practical developments are described. These include city land use planning, urban vegetation analysis, thermal condition forecasting, geohazard detection, flooding risk assessment. Remote sensing data fusion approach for comprehensive geospatial analysis is discussed. Long-term city development forecasting by Forrester - Graham system dynamics model is provided over Kiev urban area.
Landscaping practices, land use patterns and stormwater quantity and quality in urban watersheds
NASA Astrophysics Data System (ADS)
Miles, B.; Band, L. E.
2011-12-01
Increasing quantity and decreasing quality of urban stormwater threatens biodiversity in local streams and reservoirs, jeopardizes water supplies, and ultimately contributes to estuarine eutrophication. To estimate the effects that present and alternative landscaping practices and land use patterns may have on urban stormwater quantity and quality, simulations of existing land use/land cover using the Regional Hydro-Ecologic Simulation System (RHESSys), a process-based surface hydrology and biogeochemistry model, were developed for watersheds in Baltimore, MD (as part of the Baltimore Ecosystem Study (BES) NSF Long-Term Ecological Research (LTER) site) and Durham, NC (as part of the NSF Urban Long-Term Research Area (ULTRA) program). The influence of land use patterns and landscaping practices on nutrient export in urban watersheds has been explored as part of the BES; this work has focused on improving our understanding of how residential landscaping practices (i.e. lawn fertilization rates) vary across land use and socioeconomic gradients. Elsewhere, others have explored the political ecology of residential landscaping practices - seeking to understand the economic, political, and cultural influences on the practice of high-input residential turf-grass management. Going forward, my research will synthesize and extend this prior work. Rather than pre-supposing predominant residential land use patterns and landscaping practices (i.e. lower-density periphery development incorporating high-input turf landscapes) alternate land use and landscaping scenarios (e.g. higher-density/transit-oriented development, rain gardens, vegetable gardens, native plant/xeriscaping) will be developed through interviews/focus groups with stakeholders (citizens, public officials, developers, non-profits). These scenarios will then be applied to the RHESSys models already developed for catchments in Baltimore and Durham. The modeled scenario results will be used to identify alternate land use patterns and landscaping practices that would: (1) help to reduce non-point sources of nutrient pollution in urban watersheds; and (2) be likely to gain public support. This research will inform sustainable development policy while furthering interdisciplinary research in the fields of planning and water resource management.
Internal and International Migration Across the Urban Hierarchy in Albania.
Lerch, Mathias
2016-01-01
The interactions between the processes of urbanization and international migration in less developed and transition countries have important repercussions for socioeconomic development, but are not well understood. Based on the retrospective data from the Albanian Living Standards Measurement Survey 2008, we first assess the geography of migration in terms of the rural-urban continuum, the urban hierarchy and the outside world since 1990. We then investigate the spatio-temporal diffusion of rural-to-urban and international movements using survival models. Results reveal an immediate onset of large-scale rural exodus, despite the post-communist crisis. Internal migrants mainly moved to the capital, bypassing secondary cities, and were predominantly female. Initially, international migrants were primarily men who tended to originate from the main urban agglomerations. The diffusion of opportunities to emigrate down the urban hierarchy and across the sexes then redirected the rural exodus abroad, despite domestic economic development. This evolution in population mobility is related to the gendered patterns and interlinkages of the two flows, as well as to rising inequalities within the urban hierarchy.
An Applied Mereology of the City: Unifying Science and Philosophy for Urban Planning.
Epting, Shane
2016-10-01
Based on their research showing that growing cities follow basic principles, two theoretical physicists, Luis Bettencourt and Geoffrey West, call for researchers and professionals to contribute to a grand theory of urban sustainability. In their research, they develop a 'science of the city' to help urban planners address problems that arise from population increases. Although they provide valuable insights for understanding urban sustainability issues, they do not give planners a manageable way to approach such problems. I argue that developing an applied mereology to understand the concept of 'city identity' gives planners a theoretical device for addressing urban affairs, including ethical concerns. In turn, I devise a model of city identity to show how a 'philosophy of the city' contributes to a grand theory of urban sustainability.
Impacts of urbanisation on urban-rural water cycle: a China case study
NASA Astrophysics Data System (ADS)
Wang, Mingna; Singh, Shailesh Kumar; Zhang, Jun-e.; Khu, Soon Thiam
2016-04-01
Urbanization, which essentially create more impervious surface, is an inevitable part of modern societal development throughout the world. It produces several changes in the natural hydrological cycle by adding several processes. A better understanding of the impacts of urbanization, will allow policy makers to balance development and environment sustainability needs. It also helps underdeveloped countries make strategic decisions in their development process. The objective of this study is to understand and quantify the sensitivity of the urban-rural water cycle to urbanisation. A coupled hydrological model, MODCYCLE, was set up to simulate the effect of changes in landuse on daily streamflow and groundwater and applied to the Tianjin municipality, a rapidly urbanising mega-city on the east coast of China. The model uses landuse, land cover, soil, meteorological and climatic data to represent important parameters in the catchment. The fraction of impervious surface was used as a surrogate to quantify the degree of landuse change. In this work, we analysed the water cycle process under current urbanization situation in Tianjin. A number of different future development scenarios on based on increasing urbanisation intensity is explored. The results show that the expansion of urban areas had a great influence on generation of flow process and on ET, and the surface runoff was most sensitive to urbanisation. The results of these scenarios-based study about future urbanisation on hydrological system will help planners and managers in taking proper decisions regarding sustainable development.
Development of urban water consumption models for the City of Los Angeles
NASA Astrophysics Data System (ADS)
Mini, C.; Hogue, T. S.; Pincetl, S.
2011-12-01
Population growth and rapid urbanization coupled with uncertain climate change are causing new challenges for meeting urban water needs. In arid and semi-arid regions, increasing drought periods and decreasing precipitation have led to water supply shortages and cities are struggling with trade-offs between the water needs of growing urban populations and the well-being of urban ecosystems. The goal of the current research is to build models that can represent urban water use patterns in semi-arid cities by identifying the determinants that control both total and outdoor residential water use over the Los Angeles urban domain. The initial database contains monthly water use records aggregated to the zip code level collected from the Los Angeles Department of Water and Power (LADWP) from 2000 to 2010. Residential water use was normalized per capita and was correlated with socio-demographic, economic, climatic and vegetation characteristics across the City for the 2000-2010 period. Results show that ethnicity, per capita income, and the average number of persons per household are linearly related to total water use per capita. Inter-annual differences in precipitation and implementation of conservation measures affect water use levels across the City. The high variability in water use patterns across the City also appears strongly influenced by income and education levels. The temporal analysis of vegetation indices in the studied neighborhoods shows little correlation between precipitation patterns and vegetation greenness. Urban vegetation appears well-watered, presenting the same greenness activity over the study period despite an overall decrease in water use across the City. We hypothesize that over-watering is occurring and that outdoor water use represents a significant part of the residential water budget in various regions of the City. A multiple regression model has been developed that integrates these fundamental controlling factors to simulate residential water use patterns across the City. The performance of the linear regression model is being tested and compared with other algorithm-based simulations for improved modeling of urban water consumption in the region. Ultimately, projects results will contribute to the implementation of sustainable strategies targeted to specific urban areas for a growing population under uncertain climate variability.
Impacts of urbanization on carbon balance in terrestrial ecosystems of the Southern United States.
Zhang, Chi; Tian, Hanqin; Chen, Guangsheng; Chappelka, Arthur; Xu, Xiaofeng; Ren, Wei; Hui, Dafeng; Liu, Mingliang; Lu, Chaoqun; Pan, Shufen; Lockaby, Graeme
2012-05-01
Using a process-based Dynamic Land Ecosystem Model, we assessed carbon dynamics of urbanized/developed lands in the Southern United States during 1945-2007. The results indicated that approximately 1.72 (1.69-1.77) Pg (1P = 10(15)) carbon was stored in urban/developed lands, comparable to the storage of shrubland or cropland in the region. Urbanization resulted in a release of 0.21 Pg carbon to the atmosphere during 1945-2007. Pre-urbanization vegetation type and time since land conversion were two primary factors determining the extent of urbanization impacts on carbon dynamics. After a rapid decline of carbon storage during land conversion, an urban ecosystem gradually accumulates carbon and may compensate for the initial carbon loss in 70-100 years. The carbon sequestration rate of urban ecosystem diminishes with time, nearly disappearing in two centuries after land conversion. This study implied that it is important to take urbanization effect into account for assessing regional carbon balance. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Demuzere, Matthias; Harshan, Suraj; Järvi, Leena; Roth, Matthias; Betham Grimmond, Christine Susan; Masson, Valéry; Oleson, Keith; Velasco Saldana, Hector Erik; Wouters, Hendrik
2017-04-01
This paper provides the first comparative evaluation of four urban land surface models for a tropical residential neighbourhood in Singapore. The simulations are performed offline, for an 11-month period, using the bulk scheme TERRA_URB and three models of intermediate complexity (CLM, SURFEX and SUEWS). In addition, information from three different parameter lists are added to quantify the impact (interaction) of (between) external parameter settings and model formulations on the modelled urban energy balance components. Overall, the models' performance using the reference parameters aligns well with previous findings for mid- and high-latitude sites against (for) which the models are generally optimised (evaluated). The various combinations of models and different parameter values suggest that error statistics tend to be more dominated by the choice of the latter than the choice of model. Stratifying the observation period into dry / wet periods and hours since selected precipitation events reveals that the models' skill generally deteriorates during dry periods while e.g. CLM/SURFEX has a positive bias in the latent heat flux directly after a precipitation event. It is shown that the latter is due to simple representation of water intercepted on the impervious surfaces. In addition, the positive bias in modelled outgoing longwave radiation is attributed to neglecting the interactions between water vapor and radiation between the surface and the tower sensor. These findings suggest that future developments in urban climate research should continue the integration of more physically-based processes in urban canopy models, ensure the consistency between the observed and modelled atmospheric properties and focus on the correct representation of urban morphology and thermal and radiative characteristics.
Jiang, Oun-ou; Deng, Xiang-zheng; Ke, Xin-li; Zhao, Chun-hong; Zhang, Wei
2014-12-01
The sizes and number of cities in China are increasing rapidly and complicated changes of urban land use system have occurred as the social economy develops rapidly. This study took the urban agglomeration of Pearl River Delta Region as the study area to explore the driving mechanism of dynamic changes of urban area in the urbanization process under the joint influence of natural environment and social economic conditions. Then the CA (cellular automata) model was used to predict and simulate the urban area changes until 2030 under the designed scenarios of planning and RCPs (representative concentration pathways). The results indicated that urbanization was mainly driven by the non-agricultural population growth and social-economic development, and the transportation had played a fundamental role in the whole process, while the areas with high elevation or steep slope restricted the urbanization. Besides, the urban area would keep an expanding trend regardless of the scenarios, however, the expanding speed would slow down with different inflection points under different scenarios. The urban expansion speed increased in the sequence of the planning scenario, MESSAGE scenario and AIM scenario, and that under the MESSAGE climate scenario was more consistent with the current urban development trend. In addition, the urban expansion would mainly concentrate in regions with the relatively high urbanization level, e.g., Guangzhou, Dongguan, Foshan, Shenzhen, Zhanjiang and Chaoshan.
Kouyi, G Lipeme; Fraisse, D; Rivière, N; Guinot, V; Chocat, B
2009-01-01
Many investigations have been carried out in order to develop models which allow the linking of complex physical processes involved in urban flooding. The modelling of the interactions between overland flows on streets and flooding flows from rivers and sewer networks is one of the main objectives of recent and current research programs in hydraulics and urban hydrology. This paper outlines the original one-dimensional linking of heavy rainfall-runoff in urban areas and flooding flows from rivers and sewer networks under the RIVES project framework (Estimation of Scenario and Risks of Urban Floods). The first part of the paper highlights the capacity of Canoe software to simulate the street flows. In the second part, we show the original method of connection which enables the modelling of interactions between processes in urban flooding. Comparisons between simulated results and the results of Despotovic et al. or Gomez & Mur show a good agreement for the calibrated one-dimensional connection model. The connection operates likes a manhole with the orifice/weir coefficients used as calibration parameters. The influence of flooding flows from river was taken into account as a variable water depth boundary condition.
Mapping Stormwater Retention in the Cities: A Flexible Model for Data-Scarce Environments
NASA Astrophysics Data System (ADS)
Hamel, P.; Keeler, B.
2014-12-01
There is a growing demand for understanding and mapping urban hydrological ecosystem services, including stormwater retention for flood mitigation and water quality improvement. Progress in integrated urban water management and low impact development in Western countries increased our understanding of how grey and green infrastructure interact to enhance these services. However, valuation methods that account for a diverse group of beneficiaries are typically not made explicit in urban water management models. In addition, the lack of spatial data on the stormwater network in developing countries makes it challenging to apply state-of-the-art models needed to understand both the magnitude and spatial distribution of the stormwater retention service. To fill this gap, we designed the Urban InVEST stormwater retention model, a tool that complements the suite of InVEST software models to quantify and map ecosystem services. We present the model structure emphasizing the data requirements from a user's perspective and the representation of services and beneficiaries. We illustrate the model application with two case studies in a data-rich (New York City) and data-scarce environment. We discuss the difference in the level of information obtained when less resources (data, time, or expertise) are available, and how this affects multiple ecosystem service assessments that the tool is ultimately designed for.
ERIC Educational Resources Information Center
Terry, James V.; Hess, Robert D.
In 1970, the U.S. Office of Education, through the Bureau of Educational Personnel Development, initiated a program promoting community-school collaboration, which was called the Urban/Rural School Development Program. Designed to train educational personnel at a small number of schools in low-income communities characterized by student…
Effects of LiDAR point density and landscape context on the retrieval of urban forest biomass
NASA Astrophysics Data System (ADS)
Singh, K. K.; Chen, G.; McCarter, J. B.; Meentemeyer, R. K.
2014-12-01
Light Detection and Ranging (LiDAR), as an alternative to conventional optical remote sensing, is being increasingly used to accurately estimate aboveground forest biomass ranging from individual tree to stand levels. Recent advancements in LiDAR technology have resulted in higher point densities and better data accuracies, which however pose challenges to the procurement and processing of LiDAR data for large-area assessments. Reducing point density cuts data acquisition costs and overcome computational challenges for broad-scale forest management. However, how does that impact the accuracy of biomass estimation in an urban environment containing a great level of anthropogenic disturbances? The main goal of this study is to evaluate the effects of LiDAR point density on the biomass estimation of remnant forests in the rapidly urbanizing regions of Charlotte, North Carolina, USA. We used multiple linear regression to establish the statistical relationship between field-measured biomass and predictor variables (PVs) derived from LiDAR point clouds with varying densities. We compared the estimation accuracies between the general Urban Forest models (no discrimination of forest type) and the Forest Type models (evergreen, deciduous, and mixed), which was followed by quantifying the degree to which landscape context influenced biomass estimation. The explained biomass variance of Urban Forest models, adjusted R2, was fairly consistent across the reduced point densities with the highest difference of 11.5% between the 100% and 1% point densities. The combined estimates of Forest Type biomass models outperformed the Urban Forest models using two representative point densities (100% and 40%). The Urban Forest biomass model with development density of 125 m radius produced the highest adjusted R2 (0.83 and 0.82 at 100% and 40% LiDAR point densities, respectively) and the lowest RMSE values, signifying the distance impact of development on biomass estimation. Our evaluation suggests that reducing LiDAR point density is a viable solution to regional-scale forest biomass assessment without compromising the accuracy of estimation, which may further be improved using development density.
Roads to ruin: conservation threats to a sentinel species across an urban gradient.
Feist, Blake E; Buhle, Eric R; Baldwin, David H; Spromberg, Julann A; Damm, Steven E; Davis, Jay W; Scholz, Nathaniel L
2017-12-01
Urbanization poses a global challenge to species conservation. This is primarily understood in terms of physical habitat loss, as agricultural and forested lands are replaced with urban infrastructure. However, aquatic habitats are also chemically degraded by urban development, often in the form of toxic stormwater runoff. Here we assess threats of urbanization to coho salmon throughout developed areas of the Puget Sound Basin in Washington, USA. Puget Sound coho are a sentinel species for freshwater communities and also a species of concern under the U.S. Endangered Species Act. Previous studies have demonstrated that stormwater runoff is unusually lethal to adult coho that return to spawn each year in urban watersheds. To further explore the relationship between land use and recurrent coho die-offs, we measured mortality rates in field surveys of 51 spawning sites across an urban gradient. We then used spatial analyses to measure landscape attributes (land use and land cover, human population density, roadways, traffic intensity, etc.) and climatic variables (annual summer and fall precipitation) associated with each site. Structural equation modeling revealed a latent urbanization gradient that was associated with road density and traffic intensity, among other variables, and positively related to coho mortality. Across years within sites, mortality increased with summer and fall precipitation, but the effect of rainfall was strongest in the least developed areas and was essentially neutral in the most urbanized streams. We used the best-supported structural equation model to generate a predictive mortality risk map for the entire Puget Sound Basin. This map indicates an ongoing and widespread loss of spawners across much of the Puget Sound population segment, particularly within the major regional north-south corridor for transportation and development. Our findings identify current and future urbanization-related threats to wild coho, and show where green infrastructure and similar clean water strategies could prove most useful for promoting species conservation and recovery. © 2017 by the Ecological Society of America.
Taylor, Jeremy J; Grant, Kathryn E; Amrhein, Kelly; Carter, Jocelyn Smith; Farahmand, Farahnaz; Harrison, Aubrey; Thomas, Kina J; Carleton, Russell A; Lugo-Hernandez, Eduardo; Katz, Brian N
2014-12-01
The current study used confirmatory factor analysis (CFA) to compare the fit of 2 factor structures for the Children's Depression Inventory (CDI) in an urban community sample of low-income youth. Results suggest that the 6-factor model developed by Craighead and colleagues (1998) was a strong fit to the pattern of symptoms reported by low-income urban youth and was a superior fit with these data than the original 5-factor model of the CDI (Kovacs, 1992). Additionally, results indicated that all 6 factors from the Craighead model contributed to the measurement of depression, including School Problems and Externalizing Problems especially for older adolescents. This pattern of findings may reflect distinct contextual influences of urban poverty on the manifestation and measurement of depression in youth. (c) 2014 APA, all rights reserved.
Spatial assessment of landscape ecological connectivity in different urban gradient.
Park, Sohyun
2015-07-01
Urbanization has resulted in remnant natural patches within cities that often have no connectivity among themselves and to natural reserves outside the urban area. Protecting ecological connectivity in fragmented urban areas is becoming crucial in maintaining urban biodiversity and securing critical habitat levels and configurations under continual development pressures. Nevertheless, few studies have been undertaken for urban landscapes. This study aims to assess ecological connectivity for a group of species that represent the urban desert landscape in the Phoenix metropolitan area and to compare the connectivity values along the different urban gradient. A GIS-based landscape connectivity model which relies upon ecological connectivity index (ECI) was developed and applied to this region. A GIS-based concentric buffering technique was employed to delineate conceptual boundaries for urban, suburban, and rural zones. The research findings demonstrated that urban habitats and potential habitat patches would be significantly influenced by future urban development. Particularly, the largest loss of higher connectivity would likely to be anticipated in the "in-between areas" where urban, suburban, and rural zones overlap one another. The connectivity maps would be useful to provide spatial identification regarding connectivity patterns and vulnerability for urban and suburban activities in this area. This study provides planners and landscape architects with a spatial guidance to minimize ecological fragmentation, which ultimately leads to urban landscape sustainability. This study suggests that conventional planning practices which disregard the ecological processes in urban landscapes need to integrate landscape ecology into planning and design strategies.
Urban-rural migration: uncertainty and the effect of a change in the minimum wage.
Ingene, C A; Yu, E S
1989-01-01
"This paper extends the neoclassical, Harris-Todaro model of urban-rural migration to the case of production uncertainty in the agricultural sector. A unique feature of the Harris-Todaro model is an exogenously determined minimum wage in the urban sector that exceeds the rural wage. Migration occurs until the rural wage equals the expected urban wage ('expected' due to employment uncertainty). The effects of a change in the minimum wage upon regional outputs, resource allocation, factor rewards, expected profits, and expected national income are explored, and the influence of production uncertainty upon the obtained results are delineated." The geographical focus is on developing countries. excerpt
Aggregate supply and demand modeling using GIS methods for the front range urban corridor, Colorado
NASA Astrophysics Data System (ADS)
Karakas, Ahmet; Turner, Keith
2004-07-01
The combined use of allocation modeling and geographical information system (GIS) technologies for providing quantitative assessments of aggregate supply and demand is evaluated using representative data for the Front Range Urban Corridor (FRUC) in Colorado. The FRUC extends from the Colorado-Wyoming border to south of Colorado Springs, and includes Denver and the major urban growth regions of Colorado. In this area, aggregate demand is high and is increasing in response to population growth. Neighborhood opposition to the establishment of new pits and quarries and the depletion of many deposits are limiting aggregate supplies. Many sources are already covered by urban development or eliminated from production by zoning. Transport of aggregate by rail from distant resources may be required in the future. Two allocation-modeling procedures are tested in this study. Network analysis procedures provided within the ARC/INFO software, are unsatisfactory. Further aggregate allocation modeling used a model specifically designed for this task; a modified version of an existing Colorado School of Mines allocation model allows for more realistic market analyses. This study evaluated four scenarios. The entire region was evaluated with a scenario reflecting the current market and by a second scenario in which some existing suppliers were closed down and new potential suppliers were activated. The conditions within the Denver metropolitan area were studied before and after the introduction of three possible rail-to-truck aggregate distribution centers. GIS techniques are helpful in developing the required database to describe the Front Range Urban Corridor aggregate market conditions. GIS methods allow the digital representation of the regional road network, and the development of a distance matrix relating all suppliers and purchasers.
Urban development control based on transportation carrying capacity
NASA Astrophysics Data System (ADS)
Miharja, M.; Sjafruddin, A. H.
2017-06-01
Severe transportation problems in Indonesian urban areas are stimulated by one fundamental factor, namely lack of awareness on transportation carrying capacity in these areas development control. Urban land use development towards more physical coverage is typically not related with the capability of transportation system to accommodate additional trips volume. Lack of clear connection between development permit with its implication on the transportation side has led to a phenomenon of exceeding transport demand over supply capacity. This paper discusses the concept of urban land use development control which will be related with transport carrying capacity. The discussion would cover both supply and demand sides of transportation. From supply side, the analysis regarding the capacity of transport system would take both existing as well as potential road network capacity could be developed. From demand side, the analysis would be through the control of a maximum floor area and public transport provision. Allowed maximum floor area for development would be at the level of generating traffic at reasonable volume. Ultimately, the objective of this paper is to introduce model to incorporate transport carrying capacity in Indonesian urban land use development control.
NASA Astrophysics Data System (ADS)
Löwe, Roland; Urich, Christian; Sto. Domingo, Nina; Mark, Ole; Deletic, Ana; Arnbjerg-Nielsen, Karsten
2017-07-01
We present a new framework for flexible testing of flood risk adaptation strategies in a variety of urban development and climate scenarios. This framework couples the 1D-2D hydrodynamic simulation package MIKE FLOOD with the agent-based urban development model DAnCE4Water and provides the possibility to systematically test various flood risk adaptation measures ranging from large infrastructure changes over decentralised water management to urban planning policies. We have tested the framework in a case study in Melbourne, Australia considering 9 scenarios for urban development and climate and 32 potential combinations of flood adaptation measures. We found that the performance of adaptation measures strongly depended on the considered climate and urban development scenario and the other implementation measures implemented, suggesting that adaptive strategies are preferable over one-off investments. Urban planning policies proved to be an efficient means for the reduction of flood risk, while implementing property buyback and pipe increases in a guideline-oriented manner was too costly. Random variations in location and time point of urban development could have significant impact on flood risk and would in some cases outweigh the benefits of less efficient adaptation strategies. The results of our setup can serve as an input for robust decision making frameworks and thus support the identification of flood risk adaptation measures that are economically efficient and robust to variations of climate and urban layout.
Li, Chunlin; Liu, Miao; Hu, Yuanman; Han, Rongqing; Shi, Tuo; Qu, Xiuqi; Wu, Yilin
2018-02-05
As urbanization progresses, increasingly impervious surfaces have changed the hydrological processes in cities and resulted in a major challenge for urban stormwater control. This study uses the urban stormwater model to evaluate the performance and costs of low impact development (LID) scenarios in a micro urban catchment. Rainfall-runoff data of three rainfall events were used for model calibration and validation. The pre-developed (PreDev) scenario, post-developed (PostDev) scenario, and three LID scenarios were used to evaluate the hydrologic performance of LID measures. Using reduction in annual runoff as the goal, the best solutions for each LID scenario were selected using cost-effectiveness curves. The simulation results indicated that the three designed LID scenarios could effectively reduce annual runoff volumes and pollutant loads compared with the PostDev scenario. The most effective scenario (MaxPerf) reduced annual runoff by 53.4%, followed by the sponge city (SpoPerf, 51.5%) and economy scenarios (EcoPerf, 43.1%). The runoff control efficiency of the MaxPerf and SpoPerf scenarios increased by 23.9% and 19.5%, respectively, when compared with the EcoPerf scenario; however, the costs increased by 104% and 83.6%. The reduction rates of four pollutants (TSS, TN, TP, and COD) under the MaxPerf scenario were 59.8-61.1%, followed by SpoPerf (53.9-58.3%) and EcoPerf (42.3-45.4%), and the costs of the three scenarios were 3.74, 3.47, and 1.83 million yuan, respectively. These results can provide guidance to urban stormwater managers in future urban planning to improve urban water security.
Evaluating the Hydrologic Performance of Low Impact Development Scenarios in a Micro Urban Catchment
Li, Chunlin; Liu, Miao; Hu, Yuanman; Han, Rongqing; Shi, Tuo; Qu, Xiuqi; Wu, Yilin
2018-01-01
As urbanization progresses, increasingly impervious surfaces have changed the hydrological processes in cities and resulted in a major challenge for urban stormwater control. This study uses the urban stormwater model to evaluate the performance and costs of low impact development (LID) scenarios in a micro urban catchment. Rainfall-runoff data of three rainfall events were used for model calibration and validation. The pre-developed (PreDev) scenario, post-developed (PostDev) scenario, and three LID scenarios were used to evaluate the hydrologic performance of LID measures. Using reduction in annual runoff as the goal, the best solutions for each LID scenario were selected using cost-effectiveness curves. The simulation results indicated that the three designed LID scenarios could effectively reduce annual runoff volumes and pollutant loads compared with the PostDev scenario. The most effective scenario (MaxPerf) reduced annual runoff by 53.4%, followed by the sponge city (SpoPerf, 51.5%) and economy scenarios (EcoPerf, 43.1%). The runoff control efficiency of the MaxPerf and SpoPerf scenarios increased by 23.9% and 19.5%, respectively, when compared with the EcoPerf scenario; however, the costs increased by 104% and 83.6%. The reduction rates of four pollutants (TSS, TN, TP, and COD) under the MaxPerf scenario were 59.8–61.1%, followed by SpoPerf (53.9–58.3%) and EcoPerf (42.3–45.4%), and the costs of the three scenarios were 3.74, 3.47 and 1.83 million yuan, respectively. These results can provide guidance to urban stormwater managers in future urban planning to improve urban water security. PMID:29401747
Li, Wenliang; Zhou, Yuyu; Cetin, Kristen S.; ...
2018-03-24
Urban buildings account for up to 75% of total energy use in the United States (U.S.). Understanding urban building energy use is important for developing feasible options to mitigate energy use and greenhouse gas emissions. In this study, an improved bottom-up building energy use model, named City Building Energy Use Model (CityBEUM), was developed to estimate building energy use for all buildings in Polk County, Iowa. First, 28 commercial and 6 residential building prototypes were designed by combing Assessor's parcel data and building footprint data. Then, the EnergyPlus in the CityBEUM was calibrated for all building prototypes using the U.S.more » Energy Information Administration's survey data, monthly utility meter data, and actual weather data. Finally, spatial and temporal variations of building energy use in the study area were estimated using the CityBEUM. Results indicate that the spatial variation of building energy use in the study area can be captured using the CityBEUM. With the monthly-calibrated model, the temporal pattern of urban building energy use can be well represented. The comparison of building energy use using the Typical Meteorological Year and actual weather data demonstrates the importance of using actual weather data in building energy modeling for an improved temporal representation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wenliang; Zhou, Yuyu; Cetin, Kristen S.
Urban buildings account for up to 75% of total energy use in the United States (U.S.). Understanding urban building energy use is important for developing feasible options to mitigate energy use and greenhouse gas emissions. In this study, an improved bottom-up building energy use model, named City Building Energy Use Model (CityBEUM), was developed to estimate building energy use for all buildings in Polk County, Iowa. First, 28 commercial and 6 residential building prototypes were designed by combing Assessor's parcel data and building footprint data. Then, the EnergyPlus in the CityBEUM was calibrated for all building prototypes using the U.S.more » Energy Information Administration's survey data, monthly utility meter data, and actual weather data. Finally, spatial and temporal variations of building energy use in the study area were estimated using the CityBEUM. Results indicate that the spatial variation of building energy use in the study area can be captured using the CityBEUM. With the monthly-calibrated model, the temporal pattern of urban building energy use can be well represented. The comparison of building energy use using the Typical Meteorological Year and actual weather data demonstrates the importance of using actual weather data in building energy modeling for an improved temporal representation.« less
Balsells, M; Barroca, B; Amdal, J R; Diab, Y; Becue, V; Serre, D
2013-01-01
Recent changes in cities and their environments, caused by rapid urbanisation and climate change, have increased both flood probability and the severity of flooding. Consequently, there is a need for all cities to adapt to climate and socio-economic changes by developing new strategies for flood risk management. Following a risk paradigm shift from traditional to more integrated approaches, and considering the uncertainties of future urban development, one of the main emerging tasks for city managers becomes the development of resilient cities. However, the meaning of the resilience concept and its operability is still not clear. The goal of this research is to study how urban engineering and design disciplines can improve resilience to floods in urban neighbourhoods. This paper presents the conceptual Spatial Decision Support System (DS3) model which we consider a relevant tool to analyse and then implement resilience into neighbourhood design. Using this model, we analyse and discuss alternative stormwater management options at the neighbourhood scale in two specific areas: Rotterdam and New Orleans. The results obtained demonstrate that the DS3 model confirmed in its framework analysis that stormwater management systems can positively contribute to the improved flood resilience of a neighbourhood.
ERIC Educational Resources Information Center
Goldstone, Jack A.
1984-01-01
A model of the impact of urban networks on monetary circulation is developed. The author argues that considering the effects of urbanization and occupational specialization on the velocity of money provides a fuller understanding of English inflation from 1500-1650 than traditional explanations focusing on population growth or changes in the money…
Residents and urban greenways: Modeling support for the Atlanta BeltLine
Nathan P. Palardy; B. Bynum Boley; Cassandra Johnson Gaither
2018-01-01
Urban greenways have received significant attention due to their many publicized benefits and costs that make them contentious recreational developments. Most prior studies have approached urban greenways from a demand-side perspective solely focused on their users. This study adds to the literature by taking a supply-side approach to assessing resident attitudes...
ERIC Educational Resources Information Center
Lee, Robert E.
2018-01-01
Attracting and retaining high-quality teachers is especially challenging in urban districts. It is in these communities where teacher candidates must begin their preparation. This article provides a conceptual framework and programmatic examples used to develop a community-based urban teacher preparation model within a third hybrid space where…
Augmented by Reality: The Pedagogical Praxis of Urban Planning as a Pathway to Ecological Thinking
ERIC Educational Resources Information Center
Beckett, Kelly L.; Shaffer, David Williamson
2005-01-01
In this article, we present a study focused on developing students' understanding of the ecology through participation in a technology-supported urban planning simulation--specifically, 11 high school students in Madison, Wisconsin acted as urban planners to redesign a local shopping street using a Geographic Information System (GIS) model. This…
ERIC Educational Resources Information Center
Shakespear, Eileen; Beardsley, Linda; Newton, Anne
The Urban Teacher Training Collaborative (UTTC) is a school-university, school-based, Master of Arts in Teaching Program developed by Tufts University and three small Boston Public Schools. The program reflects partners' understanding of the needs of urban students and teachers. It presents an innovative model for teacher training similar to the…
Claggett, Peter; Jantz, Claire A.; Goetz, S.J.; Bisland, C.
2004-01-01
Natural resource lands in the Chesapeake Bay watershed are increasingly susceptible to conversion into developed land uses, particularly as the demand for residential development grows. We assessed development pressure in the Baltimore-Washington, DC region, one of the major urban and suburban centers in the watershed. We explored the utility of two modeling approaches for forecasting future development trends and patterns by comparing results from a cellular automata model, SLEUTH (slope, land use, excluded land, urban extent, transportation), and a supply/demand/allocation model, the Western Futures Model. SLEUTH can be classified as a land-cover change model and produces projections on the basis of historic trends of changes in the extent and patterns of developed land and future land protection scenarios. The Western Futures Model derives forecasts from historic trends in housing units, a U.S. Census variable, and exogenously supplied future population projections. Each approach has strengths and weaknesses, and combining the two has advantages and limitations. ?? 2004 Kluwer Academic Publishers.
Claggett, Peter R; Jantz, Claire A; Goetz, Scott J; Bisland, Carin
2004-06-01
Natural resource lands in the Chesapeake Bay watershed are increasingly susceptible to conversion into developed land uses, particularly as the demand for residential development grows. We assessed development pressure in the Baltimore-Washington, DC region, one of the major urban and suburban centers in the watershed. We explored the utility of two modeling approaches for forecasting future development trends and patterns by comparing results from a cellular automata model, SLEUTH (slope, land use, excluded land, urban extent, transportation), and a supply/demand/allocation model, the Western Futures Model. SLEUTH can be classified as a land-cover change model and produces projections on the basis of historic trends of changes in the extent and patterns of developed land and future land protection scenarios. The Western Futures Model derives forecasts from historic trends in housing units, a U.S. Census variable, and exogenously supplied future population projections. Each approach has strengths and weaknesses, and combining the two has advantages and limitations.
Water Use by Urban Landscapes in Semi-Arid Environments
NASA Astrophysics Data System (ADS)
Litvak, E.; Pataki, D. E.
2017-12-01
Water use by urban trees and lawns constitutes a significant yet uncertain portion of urban water budgets. Reducing this uncertainty is essential for developing effective water conservation strategies that are critically needed in dry regions. Landscape water use is particularly difficult to estimate in semi-arid cities with diverse plant compositions and large proportions of non-native species sustained by irrigation. We developed an empirical model of urban evapotranspiration based on in situ measurements of 11 lawns and 108 trees that we previously collected in the greater Los Angeles area. The model in its current state considers urban landscapes as two-component systems comprised of lawns and trees, which have contrasting patterns of water use. Turfgrass lawns consume large amounts of irrigation water (up to 10 mm/d) that may be effectively reduced by the shade from trees. Trees consume much smaller amounts of water at common urban planting densities (0.1-2.6 mm/d), and provide shade over lawns. We estimated water use by irrigated landscapes in Los Angeles by combining this model with remotely sensed estimates of vegetation cover and ground-based vegetation surveys and weather data. According to our estimates, water use by Los Angeles landscapes was close to potential evapotranspiration ( 1,100 mm/yr), with turfgrass responsible for 64-84% of total water use. Landscape water use linearly increased with median household income across Los Angeles, where wealthier parts of the city were consistently more vegetated than less affluent parts. Our results indicate extremely high water use by urban landscapes in semi-arid environments, largely owing to high spatial coverage of excessively irrigated lawns. These results have important implications for constraining municipal water budgets and developing water-saving landscaping practices.
NASA Astrophysics Data System (ADS)
Farooqui, Mohmmed Zuber
Tropospheric ozone is one of the major air pollution problems affecting urban areas of United States as well as other countries in the world. Analysis of surface observed ozone levels in south and central Texas revealed several days exceeding 8-hour average ozone National Ambient of Air Quality Standards (NAAQS) over the past decade. Two major high ozone episodes were identified during September of 1999 and 2002. A photochemical modeling framework for the high ozone episodes in 1999 and 2002 were developed for the Corpus Christi urban airshed. The photochemical model was evaluated as per U.S. Environmental Protection Agency (EPA) recommended statistical methods and the models performed within the limits set by EPA. An emission impact assessment of various sources within the urban airshed was conducted using the modeling framework. It was noted that by nudging MM5 with surface observed meteorological parameters and sea-surface temperature, the coastal meteorological predictions improved. Consequently, refined meteorology helped the photochemical model to better predict peak ozone levels in urban airsheds along the coastal margins of Texas including in Corpus Christi. The emissions assessment analysis revealed that Austin and San Antonio areas were significantly affected by on-road mobile emissions from light-duty gasoline and heavy-duty diesel vehicles. The urban areas of San Antonio, Austin, and Victoria areas were estimated to be NOx sensitive. Victoria was heavily influenced by point sources in the region while Corpus Christi was influenced by both point and non-road mobile sources and was identified to be sensitive to VOC emissions. A rise in atmospheric temperature due to climate change potentially increase ozone exceedances and the peak ozone levels within the study region and this will be a major concern for air quality planners. This study noted that any future increase in ambient temperature would result in a significant increase in the urban and regional ozone levels within the modeling domain and it would also enhance the transported levels of ozone across the region. Overall, the photochemical modeling framework helped in evaluating the impact of various parameters affecting ozone air quality; and, it has the potential to be a tool for policy-makers to develop effective emissions control strategies under various regulatory and climate conditions.
Short, T.M.; Giddings, E.M.P.; Zappia, H.; Coles, J.F.
2005-01-01
Relations between stream habitat and urban land-use intensity were examined in 90 stream reaches located in or near the metropolitan areas of Salt Lake City, Utah (SLC); Birmingham, Alabama (BIR); and Boston, Massachusetts (BOS). Urban intensity was based on a multi-metric index (urban intensity index or UII) that included measures of land cover, socioeconomic organization, and urban infrastructure. Twenty-eight physical variables describing channel morphology, hydraulic properties, and streambed conditions were examined. None of the habitat variables was significantly correlated with urbanization intensity in all three study areas. Urbanization effects on stream habitat were less apparent for streams in SLC and BIR, owing to the strong influence of basin slope (SLC) and drought conditions (BIR) on local flow regimes. Streamflow in the BOS study area was not unduly influenced by similar conditions of climate and physiography, and habitat conditions in these streams were more responsive to urbanization. Urbanization in BOS contributed to higher discharge, channel deepening, and increased loading of fine-grained particles to stream channels. The modifying influence of basin slope and climate on hydrology of streams in SLC and BIR limited our ability to effectively compare habitat responses among different urban settings and identify common responses that might be of interest to restoration or water management programs. Successful application of land-use models such as the UII to compare urbanization effects on stream habitat in different environmental settings must account for inherent differences in natural and anthropogenic factors affecting stream hydrology and geomorphology. The challenge to future management of urban development is to further quantify these differences by building upon existing models, and ultimately develop a broader understanding of urbanization effects on aquatic ecosystems. ?? 2005 by the American Fisheries Society.
Capital, population and urban patterns.
Zhang, W
1994-04-01
The author develops an approach to urban dynamics with endogenous capital and population growth, synthesizing the Alonso location model, the two-sector neoclassical growth model, and endogenous population theory. A dynamic model for an isolated island economy with endogenous capital, population, and residential structure is developed on the basis of Alonso's residential model and the two-sector neoclassical growth model. The model describes the interdependence between residential structure, economic growth, population growth, and economic structure over time and space. It has a unique long-run equilibrium, which may be either stable or unstable, depending upon the population dynamics. Applying the Hopf theorem, the author also shows that when the system is unstable, the economic geography exhibits permanent endogenous oscillations.
NASA Astrophysics Data System (ADS)
Konstantinov, Pavel; Varentsov, Mikhail; Platonov, Vladimir; Samsonov, Timofey; Zhdanova, Ekaterina; Chubarova, Natalia
2017-04-01
The main goal of this investigation is to develop a kind of "urban reanalysis" - the database of meteorological and radiation fields under Moscow megalopolis for period 1981-2014 with high spatial resolution. Main meteorological fields for Moscow region are reproduced with COSMO_CLM regional model (including urban parameters) with horizontal resolution 1x1 km. Time resolution of output fields is 1 hour. For radiation fields is quite useful to calculate SVF (Sky View Factor) for obtaining losses of UV radiation in complex urban conditions. Usually, the raster-based SVF analysis the shadow-casting algorithm proposed by Richens (1997) is popular (see Ratti and Richens 2004, Gal et al. 2008, for example). SVF image is obtained by combining shadow images obtained from different directions. An alternative is to use raster-based SVF calculation similar to vector approach using digital elevation model of urban relief. Output radiation field includes UV-radiation with horizontal resolution 1x1 km This study was financially supported by the Russian Foundation for Basic Research within the framework of the scientific project no. 15-35-21129 _mol_a_ved and project no 15-35-70006 mol_a_mos References: 1. Gal, T., Lindberg, F., and Unger, J., 2008. Computing continuous sky view factors using 3D urban raster and vector databases: comparison and application to urban climate. Theoretical and applied climatology, 95 (1-2), 111-123. 2. Richens, P., 1997. Image processing for urban scale environmental modelling. In: J.D. Spitler and J.L.M. Hensen, eds. th Intemational IBPSA Conference Building Simulation, Prague. 3. Ratti, C. and Richens, P., 2004. Raster analysis of urban form. Environment and Planning B: Planning and Design, 31 (2), 297-309.
Overcoming the hurdles to providing urban health care in the 21st century.
Guerra, Fernando A; Crockett, Susan A
2004-12-01
The delivery of health care services to urban populations in the United States is a system of rapidly increasing complexity. With the emergence of superspecialized physicians, a scientific approach to disease management has received great emphasis. Those providing health care at the population level may also apply this evidence-based approach. Analysis of the process of health care delivery in its entirety is complicated, confusing, and may be fraught with bias. In this article, a powerful instrument for providing a scientific approach to urban health care health policy development is introduced. This tool allows for analysis and assessment of hurdles to health care delivery to urban populations by dividing the process into elements of "administration," "provision," and "utilization" (APU). This APU triangle model, while intuitive, also allows a more definitive analysis by parts than would be possible to make of the whole. Using this model, the authors explore some of the hurdles faced by each element as well as some potential solutions. Although this model is presented in the context of urban hurdles to health care, it is equally applicable to rural environments or other service-delivery systems. In conclusion, this article discusses the emergence of the role of the public health department as the facilitator and manager between sectors of the community not traditionally connected in a collaborative health care model. Thus, the urban public health department coordinates efforts to surmount the hurdles and provides the venue for analysis, development, and employment of successful strategies.
Zank, Ben; Bagstad, Kenneth J.; Voigt, Brian; Villa, Ferdinando
2016-01-01
Urban expansion and its associated landscape modifications are important drivers of changes in ecosystem service (ES). This study examined the effects of two alternative land use-change development scenarios in the Puget Sound region of Washington State on natural capital stocks and ES flows. Land-use change model outputs served as inputs to five ES models developed using the Artificial Intelligence for Ecosystem Services (ARIES) platform. While natural capital stocks declined under managed (1.3–5.8%) and unmanaged (2.8–11.8%) development scenarios, ES flows increased by 18.5–56% and 23.2–55.7%, respectively. Human development of natural landscapes reduced their capacity for service provision, while simultaneously adding beneficiaries, particularly along the urban fringe. Using global and local Moran’s I, we identified three distinct patterns of change in ES due to projected landuse change. For services with location-dependent beneficiaries – open space proximity, viewsheds, and flood regulation – urbanization led to increased clustering and hot-spot intensities. ES flows were greatest in the managed land-use change scenario for open space proximity and flood regulation, and in the unmanaged land-use change scenario for viewsheds—a consequence of the differing ES flow mechanisms underpinning these services. We observed a third pattern – general declines in service provision – for carbon storage and sediment retention, where beneficiaries in our analysis were not location dependent. Contrary to past authors’ finding of ES declines under urbanization, a more nuanced analysis that maps and quantifies ES provision, beneficiaries, and flows better identifies gains and losses for specific ES beneficiaries as urban areas expand.
Bach, Peter M; McCarthy, David T; Urich, Christian; Sitzenfrei, Robert; Kleidorfer, Manfred; Rauch, Wolfgang; Deletic, Ana
2013-01-01
With global change bringing about greater challenges for the resilient planning and management of urban water infrastructure, research has been invested in the development of a strategic planning tool, DAnCE4Water. The tool models how urban and societal changes impact the development of centralised and decentralised (distributed) water infrastructure. An algorithm for rigorous assessment of suitable decentralised stormwater management options in the model is presented and tested on a local Melbourne catchment. Following detailed spatial representation algorithms (defined by planning rules), the model assesses numerous stormwater options to meet water quality targets at a variety of spatial scales. A multi-criteria assessment algorithm is used to find top-ranking solutions (which meet a specific treatment performance for a user-defined percentage of catchment imperviousness). A toolbox of five stormwater technologies (infiltration systems, surface wetlands, bioretention systems, ponds and swales) is featured. Parameters that set the algorithm's flexibility to develop possible management options are assessed and evaluated. Results are expressed in terms of 'utilisation', which characterises the frequency of use of different technologies across the top-ranking options (bioretention being the most versatile). Initial results highlight the importance of selecting a suitable spatial resolution and providing the model with enough flexibility for coming up with different technology combinations. The generic nature of the model enables its application to other urban areas (e.g. different catchments, local municipal regions or entire cities).
NASA Astrophysics Data System (ADS)
Armas, Iuliana; Bostenaru Dan, Maria
2010-05-01
The COST action TU0801 "Semantic enrichment of 3D city models for sustainable urban development" aims at using ontologies to enrich three dimensional models of cities. Such models can be used for various purposes, one of them being disaster management. COST actions are European networks of nationally funded projects, the European Science Foundation funding the networking activities. Romania adhered to the above mentioned COST action in 2009, the nationally funded project being concerned with the use of GIS for the vulnerability to hazards of the city of Bucharest. Among the networking activites Romanian representatives participated in are a training school on 3D GIS for disaster management (with two trainees) and a working group and management committee meeting. It is aimed to further develop the issues of usability and guidance of semantically enriched city models as task from the working group within the Action for the nationally funded project. In this contribution there will be shown how it is aimed to achieve this. One of the issues is on how to extrude GIS to achieve a simple 3D representation for a pilot area in the historic centre of Bucharest. Another one is on how to use this for the study of urbanism aspects, ranging from visual urban composition to the complex 3D aspects in restoration projects, including addition of new floors to buildings.
Concept of ‘Good Urban Governance’ and Its Application in Sustainable Urban Planning
NASA Astrophysics Data System (ADS)
Badach, Joanna; Dymnicka, Małgorzata
2017-10-01
Contemporary urban theory and practice in the post-industrial era is increasingly often turning towards an approach based on sustainable development. That concept bearing the traits of a paradigm has grown on the ground of broad quest for an alternative to the existing development model of the industrial civilisation. It has gained wide social acceptance and is the basis for many development and environmental programmes at the level of national and local government. It puts in a new light the socio-cultural, ecological and energy-related aspects of space as well as its value and aesthetics. A model of governing the city called ‘good urban governance’ is in a very close relation with the concept of sustainable development. It is based on the principles of inclusiveness, citizenship, accountability, processuality and effectiveness. Although this approach is not entirely novel, it stays valid and open to new challenges connected with satisfying human needs in the urban built environment on the basis of new contemporary conceptualisations such as ‘smart governance’, ‘governing the smart city’, ‘network governance’ and ‘governance networks’. The advantages of this approach based on the assumption of multidimensionality and subjectivity, matching the various and seemingly contradicting interests with a sense of responsibility for the quality of life in the urban environment are often underlined both in literature and in academic debate. The aim of this article is an attempt to present selected practices in spatial planning which employ the principles of the idea of co-governance. It will include various methodological assumptions and criteria applied in ‘good urban governance’. The intention will be to show its new research and application possibilities in countries like Poland where the idea of governance and sustainable development remains a matter of theory.
Rodriguez-Alvarez, María Soledad; Weir, Mark H; Pope, Joanna M; Seghezzo, Lucas; Rajal, Verónica B; Salusso, María Mónica; Moraña, Liliana B
2015-10-01
Argentina is a developing Latin American nation that has an aim of achieving the United Nations Millennium Development Goals for potable water supplies. Their current regulations however, limit the continued development of improved potable water quality and infrastructure from a microbiological viewpoint. This is since the current regulations are focused solely to pathogenic Eschericia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and fecal indicators. Regions of lower socioeconomic status such as peri-urban areas are particularly at risk due to lessened financial and political ability to influence their environmental quality and infrastructure needs. Therefore, a combined microbiological sampling, analysis and quantitative microbial risk assessment (QMRA) modeling effort were engaged for a peri-urban area of Salta Argentina. Drinking water samples from home taps were analyzed and a QMRA model was developed, results of which were compared against a general 1:10,000 risk level for lack of a current Argentinian standard. This QMRA model was able to demonstrate that the current regulations were being achieved for E. coli but were less than acceptable for P. aeruginosa in some instances. Appropriate health protections are far from acceptable for Giardia for almost all water sources. Untreated water sources were sampled and analyzed then QMRA modeled as well, since a significant number of the community (∼9%) still use them for potable water supplies. For untreated water E. coli risks were near 1:10,000, however, P. aeruginosa and Giardia risks failed to be acceptable in almost all instances. The QMRA model and microbiological analyses demonstrate the need for improved regulatory efforts for the peri-urban area along with improved investment in their water infrastructure. Copyright © 2015 Elsevier GmbH. All rights reserved.
Predicting Fecal Indicator Bacteria Fate and Removal in Urban Stormwater at the Watershed Scale
NASA Astrophysics Data System (ADS)
Wolfand, J.; Hogue, T. S.; Luthy, R. G.
2016-12-01
Urban stormwater is a major cause of water quality impairment, resulting in surface waters that fail to meet water quality standards and support their designated uses. Of the many stormwater pollutants, fecal indicator bacteria are particularly important to track because they are directly linked to pathogens which jeopardize public health; yet, their fate and transport in urban stormwater is poorly understood. Monitoring fecal bacteria in stormwater is possible, but due to the high variability of fecal indicators both spatially and temporally, single grab or composite samples do not fully capture fecal indicator loading. Models have been developed to predict fecal indicator bacteria at the watershed scale, but they are often limited to agricultural areas, or areas that receive frequent rainfall. Further, it is unclear whether best management practices (BMPs), such as bioretention or engineered wetlands, are able to reduce bacteria to meet water quality standards at watershed outlets. This research seeks to develop a model to predict fecal indicator bacteria in urban stormwater in a semi-arid climate at the watershed scale. Using the highly developed Ballona Creek watershed (89 mi2) located in Los Angeles County as a case study, several existing mechanistic models are coupled with a hydrologic model to predict fecal indicator concentrations (E. coli, enterococci, fecal coliform, and total coliform) at the outfall of Ballona Creek watershed, Santa Monica Bay. The hydrologic model was developed using InfoSWMM Sustain, calibrated for flow from WY 1998-2006 (NSE = 0.94; R2 = 0.95), and validated from WY 2007-2015 (NSE = 0.93; R2 = 0.95). The developed coupled model is being used to predict fecal indicator fate and transport and evaluate how BMPs can be optimized to reduce fecal indicator loading to surface waters and recreational beaches.
NASA Astrophysics Data System (ADS)
Wattenbach, M.; Delgado, J. M.; Roessner, S.; Bochow, M.; Güntner, A.; Kropp, J.; Cantu Ros, A. G.; Hattermann, F.; Kolbe, T.; Sodoudi, S.; Cubasch, U. Ulrich; Zeitz, J.; Ross, L.; Böckel, K.; Fang, C.; Bo, L.; Pan, G.
2012-04-01
As the world's biggest economy, China is becoming the biggest consumer of resources globally. Given this trend, the over-proportional fast increase in urbanization presents China with fundamental problems. Among the most urgent ones is the increasing loss of agricultural land as urbanization takes place in the most productive regions along the coast. The latter is being responsible for a shift in agriculture production towards climatically less favorable areas. At the same time, the loss of green areas in and around growing cities is increasing the effect of the urban heat island. The perception of the potential risks related to this phenomenon, in the context of climate change, has led the Shanghai city administration to increase its urban-greening efforts, expanding the per capita area of green from 1m2 in 1990 to 12.5m2 in 2008. In this context, this paper aims at identifying the influence of urban and peri-urban agriculture (UPA) on the sustainability of the urban regions of Shanghai and Nanjing. In particular, it focuses on the effects of UPA on the greenhouse gas (GHG) emissions, soil nutrients and water balances, local climate and the structure and functions of the urbanized areas. We propose an interdisciplinary framework combining remote sensing, model simulations and GHG field observations and targeted at identifying "win-win" strategies for sustainable planning pathways showing high potentials for UPA. The framework is based on spatial scenario modeling, automatic classification of urban structure types and on a prototype of a high-quality spatial database consisting of a 3D city model. Dynamic boundary conditions for climate and urban development are provided by state of the art models. These approaches meet the needs of stakeholders and planners in China. A special emphasis is put on interdependencies between small holder farming in the urban and peri-urban zone and climate change adaptation and mitigation strategies focusing on improved management of local water and nutrient cycles. The whole database generated will be structured and made accessible for planners and stakeholders in the form of a 3D city visualization model.
ERIC Educational Resources Information Center
Ciampa, Katia
2016-01-01
This article describes how one urban elementary school's professional development workshop on technology helped teachers grow in their knowledge and practice of a digital reading and writing workshop model. Created in partnership with university faculty, school administration, and elementary teachers, this whole-school professional development…
As part of its continuing development and evaluation, the QUIC model (Quick Urban & Industrial Complex) was used to study flow and dispersion in complex terrain for two cases. First, for a small area of lower Manhattan near the World Trade Center site, comparisons were made bet...
As part of its continuing development and evaluation, the QUIC model (Quick Urban & Industrial Complex) was used to study flow and dispersion in complex terrain for two cases. First, for a small area of lower Manhattan near the World Trade Center site, comparisons were made bet...
Strategies for Balanced Rural-Urban Growth. Agricultural Information Bulletin No. 392.
ERIC Educational Resources Information Center
Edwards, Clark
Summarizing an Economic Research Service (ERS) publication, this guide to a balanced rural-urban growth describes the results of a computer based ERS model which examined seven strategies to improve rural economic development. Based on 1960-70 trends, the model is described as asking how much would be required of each of the following strategies…
Moskell, Christine; Allred, Shorna Broussard
2013-03-01
Community psychology (CP) research on the natural environment lacks a theoretical framework for analyzing the complex relationship between human systems and the natural world. We introduce other academic fields concerned with the interactions between humans and the natural environment, including environmental sociology and coupled human and natural systems. To demonstrate how the natural environment can be included within CP's ecological framework, we propose an ecological model of urban forest stewardship action. Although ecological models of behavior in CP have previously modeled health behaviors, we argue that these frameworks are also applicable to actions that positively influence the natural environment. We chose the environmental action of urban forest stewardship because cities across the United States are planting millions of trees and increased citizen participation in urban tree planting and stewardship will be needed to sustain the benefits provided by urban trees. We used the framework of an ecological model of behavior to illustrate multiple levels of factors that may promote or hinder involvement in urban forest stewardship actions. The implications of our model for the development of multi-level ecological interventions to foster stewardship actions are discussed, as well as directions for future research to further test and refine the model.
NASA Astrophysics Data System (ADS)
Rai, A.; Minsker, B. S.
2014-12-01
Urbanization over the last century has degraded our natural water resources by increasing storm-water runoff, reducing nutrient retention, and creating poor ecosystem health downstream. The loss of tree canopy and expansion of impervious area and storm sewer systems have significantly decreased infiltration and evapotranspiration, increased stream-flow velocities, and increased flood risk. These problems have brought increasing attention to catchment-wide implementation of green infrastructure (e.g., decentralized green storm water management practices such as bioswales, rain gardens, permeable pavements, tree box filters, cisterns, urban wetlands, urban forests, stream buffers, and green roofs) to replace or supplement conventional storm water management practices and create more sustainable urban water systems. Current green infrastructure (GI) practice aims at mitigating the negative effects of urbanization by restoring pre-development hydrology and ultimately addressing water quality issues at an urban catchment scale. The benefits of green infrastructure extend well beyond local storm water management, as urban green spaces are also major contributors to human health. Considerable research in the psychological sciences have shown significant human health benefits from appropriately designed green spaces, yet impacts on human wellbeing have not yet been formally considered in GI design frameworks. This research is developing a novel computational green infrastructure (GI) design framework that integrates hydrologic requirements with criteria for human wellbeing. A supervised machine learning model is created to identify specific patterns in urban green spaces that promote human wellbeing; the model is linked to RHESSYS model to evaluate GI designs in terms of both hydrologic and human health benefits. An application of the models to Dead Run Watershed in Baltimore showed that image mining methods were able to capture key elements of human preferences that could improve tree-based GI design. Hydrologic benefits associated with these features were substantial, indicating that increased urban tree coverage and a more integrated GI design approach can significantly increase both human and hydrologic benefits.
Ayhan, E; Erden, O; Gormus, E T
2008-12-01
Nowadays, cities are developing and changing rapidly due to the increases in the population and immigration. Rapid changing brings obligation to control the cities by planning. The satellite images and the aerial photographs enable us to track the urban development and provide the opportunity to get the current data about urban. With the help of these images, cities may have interrogated dynamic structures. This study is composed of three steps. In the first step, orthophoto images have been generated in order to track urban developments by using the aerial photographs and the satellite images. In this step, the panchromatic (PAN), the multi spectral (MS) and the pan-sharpened image of IKONOS satellite have been used as input satellite data and the accuracy of orthophoto images has been investigated in detail, in terms of digital elevation model (DEM), control points, input images and their properties. In the second step, a 3D city model with database has been generated with the help of orthophoto images and the vector layouts. And in the last step, up to date urban information obtained from 3D city model. This study shows that it is possible to detect the unlicensed buildings and the areas which are going to be nationalized and it also shows that it is easy to document the existing alterations in the cities with the help of current development plans and orthophoto images. And since accessing updated data is very essential to control development and monitor the temporal alterations in urban areas, in this study it is proven that the orthophoto images generated by using aerial photos and satellite images are very reliable to use in obtaining topographical information, in change detection and in city planning. When digital orthophoto images used with GIS, they provide quick decision control mechanisms and quick data collection. Besides, they help to find efficient solutions in a short time in the planning applications.
An Integrated Approach for Urban Earthquake Vulnerability Analyses
NASA Astrophysics Data System (ADS)
Düzgün, H. S.; Yücemen, M. S.; Kalaycioglu, H. S.
2009-04-01
The earthquake risk for an urban area has increased over the years due to the increasing complexities in urban environments. The main reasons are the location of major cities in hazard prone areas, growth in urbanization and population and rising wealth measures. In recent years physical examples of these factors are observed through the growing costs of major disasters in urban areas which have stimulated a demand for in-depth evaluation of possible strategies to manage the large scale damaging effects of earthquakes. Understanding and formulation of urban earthquake risk requires consideration of a wide range of risk aspects, which can be handled by developing an integrated approach. In such an integrated approach, an interdisciplinary view should be incorporated into the risk assessment. Risk assessment for an urban area requires prediction of vulnerabilities related to elements at risk in the urban area and integration of individual vulnerability assessments. However, due to complex nature of an urban environment, estimating vulnerabilities and integrating them necessities development of integrated approaches in which vulnerabilities of social, economical, structural (building stock and infrastructure), cultural and historical heritage are estimated for a given urban area over a given time period. In this study an integrated urban earthquake vulnerability assessment framework, which considers vulnerability of urban environment in a holistic manner and performs the vulnerability assessment for the smallest administrative unit, namely at neighborhood scale, is proposed. The main motivation behind this approach is the inability to implement existing vulnerability assessment methodologies for countries like Turkey, where the required data are usually missing or inadequate and decision makers seek for prioritization of their limited resources in risk reduction in the administrative districts from which they are responsible. The methodology integrates socio-economical, structural, coastal, ground condition, organizational vulnerabilities, as well as accessibility to critical services within the framework. The proposed framework has the following eight components: Seismic hazard analysis, soil response analysis, tsunami inundation analysis, structural vulnerability analysis, socio-economic vulnerability analysis, accessibility to critical services, GIS-based integrated vulnerability assessment, and visualization of vulnerabilities in 3D virtual city model The integrated model for various vulnerabilities obtained for the urban area is developed in GIS environment by using individual vulnerability assessments for considered elements at risk and serve for establishing the backbone of the spatial decision support system. The stages followed in the model are: Determination of a common mapping unit for each aspect of urban earthquake vulnerability, formation of a geo-database for the vulnerabilities, evaluation of urban vulnerability based on multi attribute utility theory with various weighting algorithms, mapping of the evaluated integrated earthquake risk in geographic information systems (GIS) in the neighborhood scale. The framework is also applicable to larger geographical mapping scales, for example, the building scale. When illustrating the results in building scale, 3-D visualizations with remote sensing data is used so that decision-makers can easily interpret the outputs. The proposed vulnerability assessment framework is flexible and can easily be applied to urban environments at various geographical scales with different mapping units. The obtained total vulnerability maps for the urban area provide a baseline for the development of risk reduction strategies for the decision makers. Moreover, as several aspects of elements at risk for an urban area is considered through vulnerability analyses, effect on changes in vulnerability conditions on the total can easily be determined. The developed approach also enables decision makers to monitor temporal and spatial changes in the urban environment due to implementation of risk reduction strategies.
Urban growth and landscape connectivity threats assessment at Saguaro National Park, Arizona, USA
Perkl, Ryan; Norman, Laura M.; Mitchell, David; Feller, Mark R.; Smith, Garrett; Wilson, Natalie R.
2018-01-01
Urban and exurban expansion results in habitat and biodiversity loss globally. We hypothesize that a coupled-model approach could connect urban planning for future cities with landscape ecology to consider wildland habitat connectivity. Our work combines urban growth simulations with models of wildlife corridors to examine how species will be impacted by development to test this hypothesis. We leverage a land use change model (SLEUTH) with structural and functional landscape-connectivity modeling techniques to ascertain the spatial extent and locations of connectivity related threats to a national park in southern Arizona, USA, and describe how protected areas might be impacted by urban expansion. Results of projected growth significantly altered structural connectivity (80%) when compared to current (baseline) corridor conditions. Moreover, projected growth impacted functional connectivity differently amongst species, indicating resilience of some species and near-complete displacement of others. We propose that implementing a geospatial-design-based model will allow for a better understanding of the impacts management decisions have on wildlife populations. The application provides the potential to understand both human and environmental impacts of land-system dynamics, critical for long-term sustainability.
A Backward-Lagrangian-Stochastic Footprint Model for the Urban Environment
NASA Astrophysics Data System (ADS)
Wang, Chenghao; Wang, Zhi-Hua; Yang, Jiachuan; Li, Qi
2018-02-01
Built terrains, with their complexity in morphology, high heterogeneity, and anthropogenic impact, impose substantial challenges in Earth-system modelling. In particular, estimation of the source areas and footprints of atmospheric measurements in cities requires realistic representation of the landscape characteristics and flow physics in urban areas, but has hitherto been heavily reliant on large-eddy simulations. In this study, we developed physical parametrization schemes for estimating urban footprints based on the backward-Lagrangian-stochastic algorithm, with the built environment represented by street canyons. The vertical profile of mean streamwise velocity is parametrized for the urban canopy and boundary layer. Flux footprints estimated by the proposed model show reasonable agreement with analytical predictions over flat surfaces without roughness elements, and with experimental observations over sparse plant canopies. Furthermore, comparisons of canyon flow and turbulence profiles and the subsequent footprints were made between the proposed model and large-eddy simulation data. The results suggest that the parametrized canyon wind and turbulence statistics, based on the simple similarity theory used, need to be further improved to yield more realistic urban footprint modelling.
An Investigation on the Sensitivity of the Parameters of Urban Flood Model
NASA Astrophysics Data System (ADS)
M, A. B.; Lohani, B.; Jain, A.
2015-12-01
Global climatic change has triggered weather patterns which lead to heavy and sudden rainfall in different parts of world. The impact of heavy rainfall is severe especially on urban areas in the form of urban flooding. In order to understand the effect of heavy rainfall induced flooding, it is necessary to model the entire flooding scenario more accurately, which is now becoming possible with the availability of high resolution airborne LiDAR data and other real time observations. However, there is not much understanding on the optimal use of these data and on the effect of other parameters on the performance of the flood model. This study aims at developing understanding on these issues. In view of the above discussion, the aim of this study is to (i) understand that how the use of high resolution LiDAR data improves the performance of urban flood model, and (ii) understand the sensitivity of various hydrological parameters on urban flood modelling. In this study, modelling of flooding in urban areas due to heavy rainfall is carried out considering Indian Institute of Technology (IIT) Kanpur, India as the study site. The existing model MIKE FLOOD, which is accepted by Federal Emergency Management Agency (FEMA), is used along with the high resolution airborne LiDAR data. Once the model is setup it is made to run by changing the parameters such as resolution of Digital Surface Model (DSM), manning's roughness, initial losses, catchment description, concentration time, runoff reduction factor. In order to realize this, the results obtained from the model are compared with the field observations. The parametric study carried out in this work demonstrates that the selection of catchment description plays a very important role in urban flood modelling. Results also show the significant impact of resolution of DSM, initial losses and concentration time on urban flood model. This study will help in understanding the effect of various parameters that should be part of a flood model for its accurate performance.
Monitoring Urban Land Cover/land Use Change in Algiers City Using Landsat Images (1987-2016)
NASA Astrophysics Data System (ADS)
Bouchachi, B.; Zhong, Y.
2017-09-01
Monitoring the Urban Land Cover/Land Use change detection is important as one of the main driving forces of environmental change because Urbanization is the biggest changes in form of Land, resulting in a decrease in cultivated areas. Using remote sensing ability to solve land resources problems. The purpose of this research is to map the urban areas at different times to monitor and predict possible urban changes, were studied the annual growth urban land during the last 29 years in Algiers City. Improving the productiveness of long-term training in land mapping, were have developed an approach by the following steps: 1) pre-processing for improvement of image characteristics; 2) extract training sample candidates based on the developed methods; and 3) Derive maps and analyzed of Algiers City on an annual basis from 1987 to 2016 using a Supervised Classifier Support Vector Machine (SVMs). Our result shows that the strategy of urban land followed in the region of Algiers City, developed areas mostly were extended to East, West, and South of Central Regions. The urban growth rate is linked with National Office of Statistics data. Future studies are required to understand the impact of urban rapid lands on social, economy and environmental sustainability, it will also close the gap in data of urbanism available, especially on the lack of reliable data, environmental and urban planning for each municipality in Algiers, develop experimental models to predict future land changes with statistically significant confidence.
Using Remote Sensing Data and Research Results for Urban Heat Island Mitigation
NASA Technical Reports Server (NTRS)
Estes, Maury; Luvall, Jeffrey
1999-01-01
This paper provides information on the characteristics of the urban heat island, research designed to provide the data needed to develop effective urban heat island reduction strategies, and the development of local working groups to develop implementation plans. As background, an overview of research results on the urban heat island phenomenon and the resultant effect on energy usage and air quality will be explored. The use of more reflective roofing materials, paving materials, tree planting, and other initiatives will be explored as a basis for strategies to mitigate urban heat islands and improve the urban environment. Current efforts to use aircraft remote sensing data in Atlanta, Baton Rouge, Sacramento, and Salt Lake City and our work with non-profit organizations designated to lead public education and strategic development efforts will be presented. Efforts to organize working groups comprised of key stakeholders, the process followed in communicating research results, and methodology for soliciting feedback and incorporating ideas into local plans, policies and decision-making will be discussed. Challenges in developing and transferring data products and research results to stakeholders will be presented. It is our ultimate goal that such efforts be integrated into plans and/or decision models that encourage sustainable development.
Computer Simulation of an Electric Trolley Bus
DOT National Transportation Integrated Search
1979-12-01
This report describes a computer model developed at the Transportation Systems Center (TSC) to simulate power/propulsion characteristics of an urban trolley bus. The work conducted in this area is sponsored by the Urban Mass Transportation Administra...
NASA Astrophysics Data System (ADS)
Lee, S. J.; Lee, W. K.
2017-12-01
The study on the analysis of carbon storage capacity of urban green spaces with increasing urban forest. Modern cities have experienced rapid economic development since Industrial Revolution in the 18th century. The rapid economic growth caused an exponential concentration of population to the cities and decrease of green spaces due to the conversion of forest and agricultural lands to build-up areas with rapid urbanization. As green areas including forests, grasslands, and wetlands provide diverse economic, environmental, and cultural benefits, the decrease of green areas might be a huge loss. Also, the process of urbanization caused pressure on the urban environment more than its natural capacity, which accelerates global climate change. This study tries to see the relations between carbon budget and ecosystem services according to the urbanization. For calculating carbon dynamics, this study used VISIT(Vegetation Integrated Simulator for trace gases) model. And the value that ecosystem provides is explained with the concept of ecosystem service and calculated by InVEST model. Study sites are urban and peri-urban areas in Northeast Asia. From the result of the study, the effect of the urbanization can be understood in regard to carbon storage and ecosystem services.
A Regional Categorization for "New-Type Urbanization" in China.
Fang, Chuanglin; Ma, Haitao; Wang, Jing
2015-01-01
Regional differences in the character of urbanization in China are substantial. The promotion of what has been termed "new-type urbanization" cannot, as a result of these regional differences, be expected to follow a universal approach--rather, such a development must objectively adhere to locational and category-specific principles and adopt differentiated urbanization development models. Regional categorization is often used in geography, but is rarely deployed in research addressing human and social problems relating to urbanization. In March 2014, China published the National New-type Urbanization Plan (2014-2020), which calls for the scientific and reasonable planning of "new-type urbanization," and appropriate regional categorizations are urgently needed in order to guide this reform. Responding to this challenge, this research engaged in the design of a "dominantly quantitative analysis, qualitatively supplemented" method in order to divide China into 5 main regions and 47 sub-regions in terms of new-type urbanization. The paper discusses the features and key problems of each region. This study introduces a new method for regional categorization, thereby remedying the lack of regional categorization in relation to "new-type urbanization" in China, and ultimately promoting the development of regional categorization in the humanities as a valuable reference for healthy and sustainable Chinese urbanization.
Turbulent Dispersion Modelling in a Complex Urban Environment - Data Analysis and Model Development
2010-02-01
Technology Laboratory (Dstl) is used as a benchmark for comparison. Comparisons are also made with some more practically oriented computational fluid dynamics...predictions. To achieve clarity in the range of approaches available for practical models of con- taminant dispersion in urban areas, an overview of...complexity of those methods is simplified to a degree that allows straightforward practical implementation and application. Using these results as a
NASA Astrophysics Data System (ADS)
Byrd, K. B.; Kreitler, J.; Labiosa, W.
2010-12-01
A scenario represents an account of a plausible future given logical assumptions about how conditions change over discrete bounds of space and time. Development of multiple scenarios provides a means to identify alternative directions of urban growth that account for a range of uncertainty in human behavior. Interactions between human and natural processes may be studied by coupling urban growth scenario outputs with biophysical change models; if growth scenarios encompass a sufficient range of alternative futures, scenario assumptions serve to constrain the uncertainty of biophysical models. Spatially explicit urban growth models (map-based) produce output such as distributions and densities of residential or commercial development in a GIS format that can serve as input to other models. Successful fusion of growth model outputs with other model inputs requires that both models strategically address questions of interest, incorporate ecological feedbacks, and minimize error. The U.S. Geological Survey (USGS) Puget Sound Ecosystem Portfolio Model (PSEPM) is a decision-support tool that supports land use and restoration planning in Puget Sound, Washington, a 35,500 sq. km region. The PSEPM couples future scenarios of urban growth with statistical, process-based and rule-based models of nearshore biophysical changes and ecosystem services. By using a multi-criteria approach, the PSEPM identifies cross-system and cumulative threats to the nearshore environment plus opportunities for conservation and restoration. Sub-models that predict changes in nearshore biophysical condition were developed and existing models were integrated to evaluate three growth scenarios: 1) Status Quo, 2) Managed Growth, and 3) Unconstrained Growth. These decadal scenarios were developed and projected out to 2060 at Oregon State University using the GIS-based ENVISION model. Given land management decisions and policies under each growth scenario, the sub-models predicted changes in 1) fecal coliform in shellfish growing areas, 2) sediment supply to beaches, 3) State beach recreational visits, 4) eelgrass habitat suitability, 5) forage fish habitat suitability, and 6) nutrient loadings. In some cases thousands of shoreline units were evaluated with multiple predictive models, creating a need for streamlined and consistent database development and data processing. Model development over multiple disciplines demonstrated the challenge of merging data types from multiple sources that were inconsistent in spatial and temporal resolution, classification schemes, and topology. Misalignment of data in space and time created potential for error and misinterpretation of results. This effort revealed that the fusion of growth scenarios and biophysical models requires an up-front iterative adjustment of both scenarios and models so that growth model outputs provide the needed input data in the correct format. Successful design of data flow across models that includes feedbacks between human and ecological systems was found to enhance the use of the final data product for decision making.
Monitoring the Urban Tree Cover for Urban Ecosystem Services - The Case of Leipzig, Germany
NASA Astrophysics Data System (ADS)
Banzhaf, E.; Kollai, H.
2015-04-01
Urban dynamics such as (extreme) growth and shrinkage bring about fundamental challenges for urban land use and related changes. In order to achieve a sustainable urban development, it is crucial to monitor urban green infrastructure at microscale level as it provides various urban ecosystem services in neighbourhoods, supporting quality of life and environmental health. We monitor urban trees by means of a multiple data set to get a detailed knowledge on its distribution and change over a decade for the entire city. We have digital orthophotos, a digital elevation model and a digital surface model. The refined knowledge on the absolute height above ground helps to differentiate tree tops. Grounded on an object-based image analysis scheme a detailed mapping of trees in an urbanized environment is processed. Results show high accuracy of tree detection and avoidance of misclassification due to shadows. The study area is the City of Leipzig, Germany. One of the leading German cities, it is home to contiguous community allotments that characterize the configuration of the city. Leipzig has one of the most well-preserved floodplain forests in Europe.
Tame, C; Cundy, A B; Royse, K R; Smith, M; Moles, N R
2013-11-15
Improvements in computing speed and capacity and the increasing collection and digitisation of geological data now allow geoscientists to produce meaningful 3D spatial models of the shallow subsurface in many large urban areas, to predict ground conditions and reduce risk and uncertainty in urban planning. It is not yet clear how useful this 3D modelling approach is at smaller urban scales, where poorly characterised anthropogenic deposits (artificial/made ground and fill) form the dominant subsurface material and where the availability of borehole and other geological data is less comprehensive. This is important as it is these smaller urban sites, with complex site history, which frequently form the focus of urban regeneration and redevelopment schemes. This paper examines the extent to which the 3D modelling approach previously utilised at large urban scales can be extended to smaller less well-characterised urban sites, using a historic landfill site in Sheepcote Valley, Brighton, UK as a case study. Two 3D models were generated and compared using GSI3D™ software, one using borehole data only, one combining borehole data with local geological maps and results from a desk study (involving collation of available site data, including ground contour plans). These models clearly delimit the overall subsurface geology at the site, and allow visualisation and modelling of the anthropogenic deposits present. Shallow geophysical data collected from the site partially validate the 3D modelled data, and can improve GSI3D™ outputs where boundaries of anthropogenic deposits may not be clearly defined by surface, contour or borehole data. Attribution of geotechnical and geochemical properties to the 3D model is problematic without intrusive investigations and sampling. However, combining available borehole data, shallow geophysical methods and site histories may allow attribution of generic fill properties, and consequent reduction of urban development risk and uncertainty. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William; Khan, Maudood
2006-01-01
The growth of cities, both in population and areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 80 percent of the world s population will live in cities. Directly aligned with the expansion of cities is urban sprawl. Urban expansion has profound impacts on a host of biophysical, environmental, and atmospheric processes. A reduction in air quality over cities is a major result of these impacts. Strategies that can be directly or indirectly implemented to help remediate air quality problems in cities and that can be accepted by political decision makers and the general public are now being explored to help bring down air pollutants and improve air quality. The urban landscape is inherently complex and this complexity is not adequately captured in air quality models, particularly the Community Multiscale Air Quality (CMAQ) model that is used to assess whether urban areas are in attainment of EPA air quality standards, primarily for ground level ozone. This inadequacy of the CMAQ model to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well the model predicts ozone pollutant levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban spatial growth modeling (SGM) projections as improved inputs to the meteorology component of the CMAQ model focusing on the Atlanta, Georgia metropolitan area as a case study. These growth projections include "business as usual" and "smart growth" scenarios out to 2030. The growth projections illustrate the effects of employing urban heat island mitigation strategies, such as increasing tree canopy and albedo across the Atlanta metro area, which in turn, are used to model how ozone and air temperature can potentially be moderated as impacts on elevating ground-level ozone, as opposed to not utilizing heat island mitigation strategies. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the (CMAQ) modeling schemes. Use of these data have been found to better characterize low density/suburban development as compared with USGS 1km land use/land cover data that have traditionally been used in modeling. Air quality prediction for future scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission, the regional planning agency for the area. This allows the State Environmental Protection agency to evaluate how these transportation plans will affect future air quality. The coupled SGM and air quality modeling approach provides insight on what the impacts of Atlanta s growth will be on the local and regional environment and exists as a mechanism that can be used by policy makers to make rationale decisions on urban growth and sustainability for the metropolitan area in the future.
Study of City Landscape Heritage Using Lidar Data and 3d-City Models
NASA Astrophysics Data System (ADS)
Rubinowicz, P.; Czynska, K.
2015-04-01
In contemporary town planning protection of urban landscape is a significant issue. It regards especially those cities, where urban structures are the result of ages of evolution and layering of historical development process. Specific panoramas and other strategic views with historic city dominants can be an important part of the cultural heritage and genius loci. Other hand, protection of such expositions introduces limitations for future based city development. Digital Earth observation techniques creates new possibilities for more accurate urban studies, monitoring of urbanization processes and measuring of city landscape parameters. The paper examines possibilities of application of Lidar data and digital 3D-city models for: a) evaluation of strategic city views, b) mapping landscape absorption limits, and c) determination protection zones, where the urbanization and buildings height should be limited. In reference to this goal, the paper introduces a method of computational analysis of the city landscape called Visual Protection Surface (VPS). The method allows to emulate a virtual surface above the city including protection of a selected strategic views. The surface defines maximum height of buildings in such a way, that no new facility can be seen in any of selected views. The research includes also analyses of the quality of simulations according the form and precision of the input data: airborne Lidar / DSM model and more advanced 3D-city models (incl. semantic of the geometry, like in CityGML format). The outcome can be a support for professional planning of tall building development. Application of VPS method have been prepared by a computer program developed by the authors (C++). Simulations were carried out on an example of the city of Dresden.
An u-Service Model Based on a Smart Phone for Urban Computing Environments
NASA Astrophysics Data System (ADS)
Cho, Yongyun; Yoe, Hyun
In urban computing environments, all of services should be based on the interaction between humans and environments around them, which frequently and ordinarily in home and office. This paper propose an u-service model based on a smart phone for urban computing environments. The suggested service model includes a context-aware and personalized service scenario development environment that can instantly describe user's u-service demand or situation information with smart devices. To do this, the architecture of the suggested service model consists of a graphical service editing environment for smart devices, an u-service platform, and an infrastructure with sensors and WSN/USN. The graphic editor expresses contexts as execution conditions of a new service through a context model based on ontology. The service platform deals with the service scenario according to contexts. With the suggested service model, an user in urban computing environments can quickly and easily make u-service or new service using smart devices.
Prediction of Land use changes using CA in GIS Environment
NASA Astrophysics Data System (ADS)
Kiavarz Moghaddam, H.; Samadzadegan, F.
2009-04-01
Urban growth is a typical self-organized system that results from the interaction between three defined systems; developed urban system, natural non-urban system and planned urban system. Urban growth simulation for an artificial city is carried out first. It evaluates a number of urban sprawl parameters including the size and shape of neighborhood besides testing different types of constraints on urban growth simulation. The results indicate that circular-type neighborhood shows smoother but faster urban growth as compared to nine-cell Moore neighborhood. Cellular Automata is proved to be very efficient in simulating the urban growth simulation over time. The strength of this technology comes from the ability of urban modeler to implement the growth simulation model, evaluating the results and presenting the output simulation results in visual interpretable environment. Artificial city simulation model provides an excellent environment to test a number of simulation parameters such as neighborhood influence on growth results and constraints role in driving the urban growth .Also, CA rules definition is critical stage in simulating the urban growth pattern in a close manner to reality. CA urban growth simulation and prediction of Tehran over the last four decades succeeds to simulate specified tested growth years at a high accuracy level. Some real data layer have been used in the CA simulation training phase such as 1995 while others used for testing the prediction results such as 2002. Tuning the CA growth rules is important through comparing the simulated images with the real data to obtain feedback. An important notice is that CA rules need also to be modified over time to adapt to the urban growth pattern. The evaluation method used on region basis has its advantage in covering the spatial distribution component of the urban growth process. Next step includes running the developed CA simulation over classified raster data for three years in a developed ArcGIS extention. A set of crisp rules are defined and calibrated based on real urban growth pattern. Uncertainty analysis is performed to evaluate the accuracy of the simulated results as compared to the historical real data. Evaluation shows promising results represented by the high average accuracies achieved. The average accuracy for the predicted growth images 1964 and 2002 is over 80 %. Modifying CA growth rules over time to match the growth pattern changes is important to obtain accurate simulation. This modification is based on the urban growth relationship for Tehran over time as can be seen in the historical raster data. The feedback obtained from comparing the simulated and real data is crucial in identifying the optimal set of CA rules for reliable simulation and calibrating growth steps.
Flood-frequency relations for urban streams in Georgia; 1994 update
Inman, Ernest J.
1995-01-01
A statewide study of flood magnitude and frequency in urban areas of Georgia was made to develop methods of estimating flood characteristics at ungaged urban sites. A knowledge of the magnitude and frequency of floods is needed for the design of highway drainage structures, establishing flood- insurance rates, and other uses by urban planners and engineers. A U.S. Geological Survey rainfall-runoff model was calibrated for 65 urban drainage basins ranging in size from 0.04 to 19.1 square miles in 10 urban areas of Georgia. Rainfall-runoff data were collected for a period of 5 to 7 years at each station beginning in 1973 in Metropolitan Atlanta and ending in 1993 in Thomasville, Ga. Calibrated models were used to synthesize long-term annual flood peak discharges for these basins from existing Long-term rainfall records. The 2- to 500-year flood-frequency estimates were developed for each basin by fitting a Pearson Type III frequency distribution curve to the logarithms of these annual peak discharges. Multiple-regression analyses were used to define relations between the station flood-frequency data and several physical basin characteristics, of which drainage area and total impervious area were the most statistically significant. Using theseregression equations and basin characteristics, the magnitude and frequency of floods at ungaged urban basins can be estimated throughout Georgia.
Urban Growth Modeling Using AN Artificial Neural Network a Case Study of Sanandaj City, Iran
NASA Astrophysics Data System (ADS)
Mohammady, S.; Delavar, M. R.; Pahlavani, P.
2014-10-01
Land use activity is a major issue and challenge for town and country planners. Modelling and managing urban growth is a complex problem. Cities are now recognized as complex, non-linear and dynamic process systems. The design of a system that can handle these complexities is a challenging prospect. Local governments that implement urban growth models need to estimate the amount of urban land required in the future given anticipated growth of housing, business, recreation and other urban uses within the boundary. There are so many negative implications related with the type of inappropriate urban development such as increased traffic and demand for mobility, reduced landscape attractively, land use fragmentation, loss of biodiversity and alterations of the hydrological cycle. The aim of this study is to use the Artificial Neural Network (ANN) to make a powerful tool for simulating urban growth patterns. Our study area is Sanandaj city located in the west of Iran. Landsat imageries acquired at 2000 and 2006 are used. Dataset were used include distance to principle roads, distance to residential areas, elevation, slope, distance to green spaces and distance to region centers. In this study an appropriate methodology for urban growth modelling using satellite remotely sensed data is presented and evaluated. Percent Correct Match (PCM) and Figure of Merit were used to evaluate ANN results.
NASA Astrophysics Data System (ADS)
Taylor, Robert Vanderlei
Our cities are experiencing unprecedented growth while net global temperatures continue to trend warmer making sustainable urban development and energy conservation pressing public issues. This research explores how urban landscaping -- in particular trees and buildings -- affect summer electricity use in residential homes. I studied the interactions of urban shade and temperature to explore how vegetation distribution and intensity could play a meaningful role in heat mitigation in urban environments. Only a few studies have reconciled modeled electricity savings from tree shade with actual electricity consumption data. This research proposes a methodology for modeling the isolated effects of urban shade (tree shade vs building shade) on buildings' summertime electricity consumption from micro to mesoscales, empirically validating the modeled shade with actual electricity billing data, and comparing the electric energetic impact of tree shade effects with building shade effects. This proposed methodology seeks to resolve three primary research questions: 1) What are the modeled quantities of urban shade associated with the area of interest (AOI)? 2) To what extent do the effects of shading from trees and buildings mitigate summertime heat in the AOI? 2) To what extent do the shade effects from trees and buildings reduce summertime electricity consumption in the AOI?
Spatiotemporal analysis of urban environment based on the vegetation-impervious surface-soil model
NASA Astrophysics Data System (ADS)
Guo, Huadong; Huang, Qingni; Li, Xinwu; Sun, Zhongchang; Zhang, Ying
2014-01-01
This study explores a spatiotemporal comparative analysis of urban agglomeration, comparing the Greater Toronto and Hamilton Area (GTHA) of Canada and the city of Tianjin in China. The vegetation-impervious surface-soil (V-I-S) model is used to quantify the ecological composition of urban/peri-urban environments with multitemporal Landsat images (3 stages, 18 scenes) and LULC data from 1985 to 2005. The support vector machine algorithm and several knowledge-based methods are applied to get the V-I-S component fractions at high accuracies. The statistical results show that the urban expansion in the GTHA occurred mainly between 1985 and 1999, and only two districts revealed increasing trends for impervious surfaces for the period from 1999 to 2005. In contrast, Tianjin has been experiencing rapid urban sprawl at all stages and this has been accelerating since 1999. The urban growth patterns in the GTHA evolved from a monocentric and dispersed pattern to a polycentric and aggregated pattern, while in Tianjin it changed from monocentric to polycentric. Central Tianjin has become more centralized, while most other municipal areas have developed dispersed patterns. The GTHA also has a higher level of greenery and a more balanced ecological environment than Tianjin. These differences in the two areas may play an important role in urban planning and decision-making in developing countries.
Child overweight and undernutrition in Thailand: is there an urban effect?
Firestone, Rebecca; Punpuing, Sureeporn; Peterson, Karen E; Acevedo-Garcia, Dolores; Gortmaker, Steven L
2011-05-01
An urban advantage in terms of lower risk of child undernutrition has been observed in many developing countries, but child obesity is often more prevalent in urban than rural areas. This study aimed to assess whether urban-rural disparities in undernutrition and obesity were attributable to concentrations of socioeconomically advantaged children into urban communities or to specific aspects of the urban environment. A sample of 4610 children ages 2-10 years was derived from the 2004 Round of the Kanchanaburi Demographic Surveillance System, monitoring health and demographic change in the province of Kanchanaburi, Thailand. We used multi-level logistic regression to model the odds of short stature, underweight, and obesity for children in 102 communities. Models tested whether child socioeconomic conditions accounted for urban-rural disparities or if aspects of the social and physical environment accounted for disparities, adjusting for child characteristics. 27.8% of children were underweight, while 19.9% had short stature, and 8.3% were obese. Bivariate associations showed urban residence associated with lower risk of undernutrition and a greater risk of obesity. Urban-rural disparities in odds of short stature and underweight were accounted for by child socioeconomic characteristics. Urban residence persisted as a risk factor for obesity after adjusting for child characteristics. Community wealth concentration, television coverage, and sanitation coverage were independently associated with greater risk of obesity. Undernutrition was strongly associated with household poverty, while household affluence and characteristics of the urban environment were associated with odds of obesity. Further research is needed to characterize how urban environments contribute to children's risks of obesity in developing countries. Copyright © 2011 Elsevier Ltd. All rights reserved.
Climates of U.S. cities in the 21st century
NASA Astrophysics Data System (ADS)
Krayenhoff, E. S.; Georgescu, M.; Moustaoui, M.
2017-12-01
Urban climates are projected to warm over the 21st century due to global climate change and urban development. To assess this projected warming, Weather Research and Forecasting (WRF) model simulations are performed at 20 km resolution over the contiguous U.S. for three 10-year periods: contemporary (2000-2009), mid-century (2050-2059), and end-of-century (2090-2099). Urban land use projections are derived from the EPA's ICLUS data set, and future climate projections are based on two global climate models and two greenhouse gas emissions scenarios. The potential for design implementations such as `green' roofs and high albedo roofs to offset the projected warming is considered. Effects of urban expansion, urban densification and infrastructure adaptation on urban climate are compared over the century. Assessment considers impacts at both seasonal and diurnal scales, isolates fair weather impacts, and considers multiple climate variables: air temperature, precipitation, humidity, wind speed, and surface energy budget partitioning.
NASA Astrophysics Data System (ADS)
Hong, Yoon-Seok; Rosen, Michael R.
2002-03-01
An urban fractured-rock aquifer system, where disposal of storm water is via 'soak holes' drilled directly into the top of fractured-rock basalt, has a highly dynamic nature where theories or knowledge to generate the model are still incomplete and insufficient. Therefore, formulating an accurate mechanistic model, usually based on first principles (physical and chemical laws, mass balance, and diffusion and transport, etc.), requires time- and money-consuming tasks. Instead of a human developing the mechanistic-based model, this paper presents an approach to automatic model evolution in genetic programming (GP) to model dynamic behaviour of groundwater level fluctuations affected by storm water infiltration. This GP evolves mathematical models automatically that have an understandable structure using function tree representation by methods of natural selection ('survival of the fittest') through genetic operators (reproduction, crossover, and mutation). The simulation results have shown that GP is not only capable of predicting the groundwater level fluctuation due to storm water infiltration but also provides insight into the dynamic behaviour of a partially known urban fractured-rock aquifer system by allowing knowledge extraction of the evolved models. Our results show that GP can work as a cost-effective modelling tool, enabling us to create prototype models quickly and inexpensively and assists us in developing accurate models in less time, even if we have limited experience and incomplete knowledge for an urban fractured-rock aquifer system affected by storm water infiltration.
NASA Astrophysics Data System (ADS)
Hossain, S., Jr.
2015-12-01
Rainfall induced flooding during rainy season is a regular phenomenon in Dhaka City. Almost every year a significant part of the city suffers badly with drainage congestion. There are some highly dense areas with lower ground elevation which submerge under water even with an intense precipitation of few hours. The higher areas also suffer with the drainage problem due to inadequate maintenance of the system and encroachment or illegal filling up of the drainage canals and lakes. Most part of the city suffered from long term urban flooding during historical extreme rainfall events in September 2004, 2007 and July 2009. The situation is likely to worsen in the future due to Climate Change, which may lead to more frequent and intense precipitation. To assess the major and minor drainage systems and elements of the urban basins using the hydrodynamic modelling and, through this, identifying the flooding events and areas, taking into account the current situation and future flood or drainage scenarios. Stormwater modeling has a major role in preventing issues such as flash floods and urban water-quality problems. Stormwater models of a lowered spatial resolution would thus appear valuable if only their ability to provide realistic results could be proved. The present scenario of urban morphology of Dhaka city and existing drainage system is complex for hydrological and hydrodynamic modeling. Furthermore limitations of background data and uncertain future urban scenarios may confine the potential outputs of a model. Although several studies were carried out including modeling for drainage master planning, a detail model for whole DAP (Detaile Area Plan) of Dhaka city area is not available. The model developed under this study is covering the existing drainage system in the study area as well as natural flows in the fringe area. A good number of models are available for hydrological and hydraulic analysis of urban areas. These are MIKE 11, MOUSE, HEC-RAS, HEC HMS and EPA SWMM. EPA-SWMM is used for the study area which is mostly developed and consists pipe networks, open channels and water bodies. This study proposes a methodology for rapid catchment delineation and stormwater management model (SWMM) set-up in a large urban area with model calibration and validation.
On storm movement and its applications
NASA Astrophysics Data System (ADS)
Niemczynowicz, Janusz
Rainfall-runoff models applicable for design and analysis of sewage systems in urban areas are further developed in order to represent better different physical processes going on on an urban catchment. However, one important part of the modelling procedure, the generation of the rainfall input is still a weak point. The main problem is lack of adequate rainfall data which represent temporal and spatial variations of the natural rainfall process. Storm movement is a natural phenomenon which influences urban runoff. However, the rainfall movement and its influence on runoff generation process is not represented in presently available urban runoff simulation models. Physical description of the rainfall movement and its parameters is given based on detailed measurements performed on twelve gauges in Lund, Sweden. The paper discusses the significance of the rainfall movement on the runoff generation process and gives suggestions how the rainfall movement parameters may be used in runoff modelling.
Effects of LiDAR point density and landscape context on estimates of urban forest biomass
NASA Astrophysics Data System (ADS)
Singh, Kunwar K.; Chen, Gang; McCarter, James B.; Meentemeyer, Ross K.
2015-03-01
Light Detection and Ranging (LiDAR) data is being increasingly used as an effective alternative to conventional optical remote sensing to accurately estimate aboveground forest biomass ranging from individual tree to stand levels. Recent advancements in LiDAR technology have resulted in higher point densities and improved data accuracies accompanied by challenges for procuring and processing voluminous LiDAR data for large-area assessments. Reducing point density lowers data acquisition costs and overcomes computational challenges for large-area forest assessments. However, how does lower point density impact the accuracy of biomass estimation in forests containing a great level of anthropogenic disturbance? We evaluate the effects of LiDAR point density on the biomass estimation of remnant forests in the rapidly urbanizing region of Charlotte, North Carolina, USA. We used multiple linear regression to establish a statistical relationship between field-measured biomass and predictor variables derived from LiDAR data with varying densities. We compared the estimation accuracies between a general Urban Forest type and three Forest Type models (evergreen, deciduous, and mixed) and quantified the degree to which landscape context influenced biomass estimation. The explained biomass variance of the Urban Forest model, using adjusted R2, was consistent across the reduced point densities, with the highest difference of 11.5% between the 100% and 1% point densities. The combined estimates of Forest Type biomass models outperformed the Urban Forest models at the representative point densities (100% and 40%). The Urban Forest biomass model with development density of 125 m radius produced the highest adjusted R2 (0.83 and 0.82 at 100% and 40% LiDAR point densities, respectively) and the lowest RMSE values, highlighting a distance impact of development on biomass estimation. Our evaluation suggests that reducing LiDAR point density is a viable solution to regional-scale forest assessment without compromising the accuracy of biomass estimates, and these estimates can be further improved using development density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Ning; Yearsley, John; Baptiste, Marisa
While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modeling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid-based spatially distributed model, DHSVM-WQ, is an outgrowth of the Distributed Hydrology-Soil-Vegetation Model (DHSVM) that incorporates modules for assessing hydrology and water quality in urbanized watersheds at a high spatial and temporal resolution.more » DHSVM-WQ simulates surface runoff quality and in-stream processes that control the transport of nonpoint-source (NPS) pollutants into urban streams. We configure DHSVM-WQ for three partially urbanized catchments in the Puget Sound region to evaluate the water quality responses to current conditions and projected changes in climate and/or land use over the next century. Here we focus on total suspended solids (TSS) and total phosphorus (TP) from nonpoint sources (runoff), as well as stream temperature. The projection of future land use is characterized by a combination of densification in existing urban or partially urban areas, and expansion of the urban footprint. The climate change scenarios consist of individual and concurrent changes in temperature and precipitation. Future precipitation is projected to increase in winter and decrease in summer, while future temperature is projected to increase throughout the year. Our results show that urbanization has a much greater effect than climate change on both the magnitude and seasonal variability of streamflow, TSS and TP loads largely due to substantially increased streamflow, and particularly winter flow peaks. Water temperature is more sensitive to climate warming scenarios than to urbanization and precipitation changes. Future urbanization and climate change together are predicted to significantly increase annual mean streamflow (up to 55%), water temperature (up to 1.9 ºC), TSS load (up to 182%), and TP load (up to 74%).« less
UFORE (i-Tree Eco) Analysis of Chicago
Cherie LeBlanc Fisher; David Nowak
2010-01-01
The USDA Forest Service and City of Chicago conducted a UFORE (now called i-Tree Eco) analysis of Chicago's urban forest in the summer of 2007. The UFORE (Urban FORest Effects) model developed by the Forest Service uses on-the-ground sampling data to understand the composition of on urban forest and calculate the forest's impacts on air pollution and energy...
Research on the Effectiveness of Information Technology in Reducing the Rural-Urban Knowledge Divide
ERIC Educational Resources Information Center
Chen, Ruey-Shin; Liu, I-Fan
2013-01-01
To strengthen the information technology skills of students living in remote areas, the Ministry of Education of Taiwan advocated the 2008 Country Development Plan to diminish the gap between urban and rural education development. This study proposes a hypothetical model to evaluate the effectiveness of the government policy in decreasing the…
Language of poverty strategies: Implemented in the urban elementary science classroom
NASA Astrophysics Data System (ADS)
Jeanpierre, Bobby Jo
2000-08-01
This research study reports the results of school-based staff development models used at three urban elementary schools that had liaison teachers assisting classroom teachers in implementing instructional strategies in science teaching from "Language of Poverty," a curriculum framework designed to address the academic needs of disadvantaged students. The case study of two urban elementary schools and six classroom teachers, and survey and interview data results of a third school, uncovered insights into several areas of science teaching in urban settings. One conclusion is that in spite of substantial allocation of resources and assistance, teachers did not translate instructional strategies from "Language of Poverty" curriculum into their classroom practices in a way that would foster urban disadvantaged students' understanding of "big science concepts." A second conclusion is that the school-based staff development models were limited in their ability to address the diverse professional needs of all of its staff. Third, as it relates to students, discipline issues occurred in these urban classrooms across ethnicity and gender. And in addition to teachers being knowledgeable of relevant social and cultural group norms' application of this knowledge in an appropriate and consistent manner is needed to effectively address discipline concerns.
Integrating transit and urban form : final report, December 2008.
DOT National Transportation Integrated Search
2008-09-01
This study develops an integrated behavioral model of transit patronage and urban form. Although herein focused on transit, the framework can be easily generalized to study other forms of travel. Advanced econometric methods are used to test specific...
A web-based 3D visualisation and assessment system for urban precinct scenario modelling
NASA Astrophysics Data System (ADS)
Trubka, Roman; Glackin, Stephen; Lade, Oliver; Pettit, Chris
2016-07-01
Recent years have seen an increasing number of spatial tools and technologies for enabling better decision-making in the urban environment. They have largely arisen because of the need for cities to be more efficiently planned to accommodate growing populations while mitigating urban sprawl, and also because of innovations in rendering data in 3D being well suited for visualising the urban built environment. In this paper we review a number of systems that are better known and more commonly used in the field of urban planning. We then introduce Envision Scenario Planner (ESP), a web-based 3D precinct geodesign, visualisation and assessment tool, developed using Agile and Co-design methods. We provide a comprehensive account of the tool, beginning with a discussion of its design and development process and concluding with an example use case and a discussion of the lessons learned in its development.
NASA Astrophysics Data System (ADS)
Cowden, J. R.; Watkins, D. W.; Mihelcic, J. R.; Fry, L. M.
2007-12-01
Urban populations now exceed rural populations worldwide, creating unique challenges in providing basic services, especially in developing countries where informal or illegal settlements grow in peri-urban areas. West Africa is an acute example of the problems created by rapid urban growth, with high levels of urban poverty and low water and sanitation access rates. Although considerable effort has been made in providing improved water access and urban services to slum communities, research indicates that clean water access rates are not keeping up with urbanization rates in several areas of the world and that rapidly growing slum communities are beginning to overwhelm many prior water improvements projects. In the face of these challenges, domestic rainwater harvesting is proposed as a technologically appropriate and economically viable option for enhancing water supplies to urban slum households. However, assessing the reliability, potential health impacts, and overall cost-effectiveness of these systems on a regional level is difficult for several reasons. First, long daily rainfall records are not readily available in much of the developing world, including many regions of sub-Saharan Africa. Second, significant uncertainties exist in the relevant cost, water use, and health data. Third, to estimate the potential future impacts at the regional scale, various global change scenarios should be investigated. Finally, in addition to these technical challenges, there is also a need to develop relatively simple and transparent assessment methods for informing policy makers. A procedure is presented for assessment of domestic rainwater harvesting systems using a combination of scenario, sensitivity, and trade-off analyses. Using data from West Africa, simple stochastic weather models are developed to generate rainfall sequences for the region, which are then used to estimate the reliability of providing a range of per capita water supplies. Next, a procedure is proposed for quantifying the health impacts of improved water supplies, and sensitivity analysis of cost and health data provides an indication of cost- effectiveness. Climate change impacts are assessed via weather model parameter adjustment according to statistical downscaling of general circulation model output. Future work involving the interpolation of model parameters to ungaged sites, incorporation of additional global change scenarios (e.g., population, emissions), and extension of the procedure to a full Monte Carlo analysis will be discussed as time allows.
Urban Growth Modeling Using Anfis Algorithm: a Case Study for Sanandaj City, Iran
NASA Astrophysics Data System (ADS)
Mohammady, S.; Delavar, M. R.; Pijanowski, B. C.
2013-10-01
Global urban population has increased from 22.9% in 1985 to 47% in 2010. In spite of the tendency for urbanization worldwide, only about 2% of Earth's land surface is covered by cities. Urban population in Iran is increasing due to social and economic development. The proportion of the population living in Iran urban areas has consistently increased from about 31% in 1956 to 68.4% in 2006. Migration of the rural population to cities and population growth in cities have caused many problems, such as irregular growth of cities, improper placement of infrastructure and urban services. Air and environmental pollution, resource degradation and insufficient infrastructure, are the results of poor urban planning that have negative impact on the environment or livelihoods of people living in cities. These issues are a consequence of improper land use planning. Models have been employed to assist in our understanding of relations between land use and its subsequent effects. Different models for urban growth modeling have been developed. Methods from computational intelligence have made great contributions in all specific application domains and hybrid algorithms research as a part of them has become a big trend in computational intelligence. Artificial Neural Network (ANN) has the capability to deal with imprecise data by training, while fuzzy logic can deal with the uncertainty of human cognition. ANN learns from scratch by adjusting the interconnections between layers and Fuzzy Inference Systems (FIS) is a popular computing framework based on the concept of fuzzy set theory, fuzzy logic, and fuzzy reasoning. Fuzzy logic has many advantages such as flexibility and at the other sides, one of the biggest problems in fuzzy logic application is the location and shape and of membership function for each fuzzy variable which is generally being solved by trial and error method. In contrast, numerical computation and learning are the advantages of neural network, however, it is not easy to obtain the optimal structure. Since, in this type of fuzzy logic, neural network has been used, therefore, by using a learning algorithm the parameters have been changed until reach the optimal solution. Adaptive Neuro Fuzzy Inference System (ANFIS) computing due to ability to understand nonlinear structures is a popular framework for solving complex problems. Fusion of ANN and FIS has attracted the growing interest of researchers in various scientific and engineering areas due to the growing need of adaptive intelligent systems to solve the real world problems. In this research, an ANFIS method has been developed for modeling land use change and interpreting the relationship between the drivers of urbanization. Our study area is the city of Sanandaj located in the west of Iran. Landsat images acquired in 2000 and 2006 have been used for model development and calibration. The parameters used in this study include distance to major roads, distance to residential regions, elevation, number of urban pixels in a 3 by 3 neighborhood and distance to green space. Percent Correct Match (PCM) and Figure of Merit were used to assess model goodness of fit were 93.77% and 64.30%, respectively.
NASA Astrophysics Data System (ADS)
Aburas, Maher Milad; Ho, Yuek Ming; Ramli, Mohammad Firuz; Ash'aari, Zulfa Hanan
2017-07-01
The creation of an accurate simulation of future urban growth is considered one of the most important challenges in urban studies that involve spatial modeling. The purpose of this study is to improve the simulation capability of an integrated CA-Markov Chain (CA-MC) model using CA-MC based on the Analytical Hierarchy Process (AHP) and CA-MC based on Frequency Ratio (FR), both applied in Seremban, Malaysia, as well as to compare the performance and accuracy between the traditional and hybrid models. Various physical, socio-economic, utilities, and environmental criteria were used as predictors, including elevation, slope, soil texture, population density, distance to commercial area, distance to educational area, distance to residential area, distance to industrial area, distance to roads, distance to highway, distance to railway, distance to power line, distance to stream, and land cover. For calibration, three models were applied to simulate urban growth trends in 2010; the actual data of 2010 were used for model validation utilizing the Relative Operating Characteristic (ROC) and Kappa coefficient methods Consequently, future urban growth maps of 2020 and 2030 were created. The validation findings confirm that the integration of the CA-MC model with the FR model and employing the significant driving force of urban growth in the simulation process have resulted in the improved simulation capability of the CA-MC model. This study has provided a novel approach for improving the CA-MC model based on FR, which will provide powerful support to planners and decision-makers in the development of future sustainable urban planning.
Rapid modification of urban land surface temperature during rainfall
NASA Astrophysics Data System (ADS)
Omidvar, H.; Bou-Zeid, E.; Song, J.; Yang, J.; Arwatz, G.; Wang, Z.; Hultmark, M.; Kaloush, K.
2017-12-01
We study the runoff dynamics and heat transfer over urban pavements during rainfall. A kinematic wave approach is combined with heat storage and transfer schemes to develop a model for impervious (with runoff) and pervious (without runoff) pavements. The resulting framework is a numerical prognostic model that can simulate the temperature fields in the subsurface and runoff layers to capture the rapid cooling of the surface, as well as the thermal pollution advected in the runoff. Extensive field measurements were then conducted over experimental pavements in Arizona to probe the physics and better represent the relevant processes in the model, and then to validate the model. The experimental data and the model results were in very good agreements, and their joint analysis elucidated the physics of the rapid heat transfer from the subsurface to the runoff layer. Finally, we apply the developed model to investigate how the various hydrological and thermal properties of the pavements, as well as ambient environmental conditions, modulate the surface and runoff thermal dynamics, what is the relative importance of each of them, and how we can apply the model mitigate the adverse impacts of urbanization.
Impacts of Urbanization in the Coastal Tropical City of San Juan, Puerto Rico
NASA Technical Reports Server (NTRS)
Comarazamy, Daniel E.; Gonzalez, Jorge E.; Luvall, Jeffrey C.; Rickman, Douglass
2007-01-01
Urban sprawl in tropical locations is rapidly accelerating and it is more evident in islands where a large percentage of the population resides along the coasts. This paper focuses on the analysis of the impacts of land use and land cover for urbanization in the tropical coastal city of San Juan, in the Caribbean island of Puerto Rico. A mesoscale numerical model, the Regional Atmospheric Modeling System (RAMS), is used to study the impacts of land use for urbanization in the environment including specific characteristics of the urban heat island in the San Juan Metropolitan Area (SJMA), one of the most noticeable urban cores of the Caribbean. The research also makes use of the observations obtained during the airborne San Juan Atlas Mission. Surface and raw insonde data from the mission are used to validate the atmospheric model yielding satisfactory results. Airborne high resolution remote sensing data are used to update the model's surface characteristics in order to obtain a more accurate and detailed configuration of the SJMA and perform a climate impact analysis based on land cover/land use (LCLU) changes. The impact analysis showed that the presence of the urban landscape of San Juan has an impact reflected in higher air temperatures over the area occupied by the city, with positive values of up to 2.5 degrees C, for the simulations that have specified urban LCLU indexes in the model's bottom boundary. One interesting result of the impact analysis was the finding of a precipitation disturbance shown as a difference in total accumulated rainfall between the present urban landscape and with a potential natural vegetation, apparently induced by the presence of the urban area. Results indicate that the urban-enhanced cloud formation and precipitation development occur mainly downwind of the city, including the accumulated precipitation. This spatial pattern can be explained by the presence of a larger urbanized area in the southwest sector of the city, and of the approaching northeasterly trade winds.
A Conceptual Approach for Optimising Bus Stop Spacing
NASA Astrophysics Data System (ADS)
Johar, Amita; Jain, S. S.; Garg, P. k.
2017-06-01
An efficient public transportation system is essential of any country. The growth, development and shape of the urban areas are mainly due to availability of good transportation (Shah et al. in Inst Town Plan India J 5(3):50-59, 1). In developing countries, like India, travel by local bus in a city is very common. The accidents, congestion, pollution and appropriate location of bus stops are the major problems arising in metropolitan cities. Among all the metropolitan cities in India, Delhi has highest percentage of growth of population and vehicles. Therefore, it is important to adopt efficient and effective ways to improve mobility in different metropolitan cities in order to overcome the problem and to reduce the number of private vehicles on the road. The primary objective of this paper is to present a methodology for developing a model for optimum bus stop spacing (OBSS). It describes the evaluation of existing urban bus route, data collection, development of model for optimizing urban bus route and application of model. In this work, the bus passenger generalized cost method is used to optimize the spacing between bus stops. For the development of model, a computer program is required to be written. The applicability of the model has been evaluated by taking the data of urban bus route of Delhi Transport Corporation (DTC) in Excel sheet in first phase. Later on, it is proposed to develop a programming in C++ language. The developed model is expected to be useful to transport planner for rational design of the spacing of bus stops to save travel time and to generalize operating cost. After analysis it is found that spacing between the bus stop comes out to be between 250 and 500 m. The Proposed Spacing of bus stops is done considering the points that they don't come nearer to metro/rail station, entry or exit of flyover and near traffic signal.
Venkatesh, G; Sægrov, Sveinung; Brattebø, Helge
2014-09-15
Urban water services are challenged from many perspectives and different stakeholders demand performance improvements along economic, social and environmental dimensions of sustainability. In response, urban water utilities systematically give more attention to criteria such as water safety, climate change adaptation and mitigation, environmental life cycle assessment (LCA), total cost efficiency, and on how to improve their operations within the water-energy-carbon nexus. The authors of this paper collaborated in the development of a 'Dynamic Metabolism Model' (DMM). The model is developed for generic use in the sustainability assessment of urban water services, and it has been initially tested for the city of Oslo, Norway. The purpose has been to adopt a holistic systemic perspective to the analysis of metabolism and environmental impacts of resource flows in urban water and wastewater systems, in order to offer a tool for the examination of future strategies and intervention options in such systems. This paper describes the model and its application to the city of Oslo for the analysis time period 2013-2040. The external factors impacting decision-making and interventions are introduced along with realistic scenarios developed for the testing, after consultation with officials at the Oslo Water and Wastewater Works (Norway). Possible interventions that the utility intends to set in motion are defined and numerically interpreted for incorporation into the model, and changes in the indicator values over the time period are determined. This paper aims to demonstrate the effectiveness and usefulness of the DMM, as a decision-support tool for water-wastewater utilities. The scenarios considered and interventions identified do not include all possible scenarios and interventions that can be relevant for water-wastewater utilities. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ozatac, Nesrin; Gokmenoglu, Korhan K; Taspinar, Nigar
2017-07-01
This study investigates the environmental Kuznets curve (EKC) hypothesis for the case of Turkey from 1960 to 2013 by considering energy consumption, trade, urbanization, and financial development variables. Although previous literature examines various aspects of the EKC hypothesis for the case of Turkey, our model augments the basic model with several covariates to develop a better understanding of the relationship among the variables and to refrain from omitted variable bias. The results of the bounds test and the error correction model under autoregressive distributed lag mechanism suggest long-run relationships among the variables as well as proof of the EKC and the scale effect in Turkey. A conditional Granger causality test reveals that there are causal relationships among the variables. Our findings can have policy implications including the imposition of a "polluter pays" mechanism, such as the implementation of a carbon tax for pollution trading, to raise the urban population's awareness about the importance of adopting renewable energy and to support clean, environmentally friendly technology.
Measuring the impact of urbanization on scenic quality: land use change in the northeast
Robert O. Brush; James F. Palmer
1979-01-01
The changes in scenic quality resulting from urbanization are explored for a region in the Northeast. The relative contributions to scenic quality of certain landscape features are examined by developing regression models for the region and for town landscapes within that region. The models provide empirical evidence of the importance of trees for maintaining high...
ERIC Educational Resources Information Center
Holton, Valerie L.; Early, Jennifer L.; Resler, Meghan; Trussell, Audrey; Howard, Catherine
2016-01-01
Using Kotter's model of change as a framework, this case study will describe the structure and efforts of a centralized unit within an urban, research university to deepen and extend the institutionalization of community engagement. The change model will be described along with details about the implemented strategies and practices that fall…
Regional/Urban Air Quality Modeling Assessment over China Using the Models-3/CMAQ System
NASA Astrophysics Data System (ADS)
Fu, J. S.; Jang, C. C.; Streets, D. G.; Li, Z.; Wang, L.; Zhang, Q.; Woo, J.; Wang, B.
2004-12-01
China is the world's most populous country with a fast growing economy that surges in energy comsumption. It has become the second largest energy consumer after the United States although the per capita level is much lower than those found in developed or developing countries. Air pollution has become one of the most important problems of megacities such as Beijing and Shanghai and has serious impacts on public health, causes urban and regional haze. The Models-3/CMAQ modeling application that has been conducted to simulate multi-pollutants in China is presented. The modeling domains cover East Asia (36-kmx36-km) including Japan, South Korea, Korea DPR, Indonesia, Thailand, India and Mongolia, East China (12-kmx12-km) and Beijing/Tianjing, Shanghai (4-kmx4-km). For this study, the Asian emission inventory based on the emission estimates of the year 2000 that supported the NASA TRACE-P program is used. However, the TRACE-P emission inventory was developed for a different purpose such as global modeling. TRACE-P emission inventory may not be practical in urban area. There is no China national emission inventory available. Therefore, TRACE-P emission inventory is used on the East Asia and East China domains. The 8 districts of Beijing and Shanghai local emissions inventory are used to replace TRACE-P in 4-km domains. The meteorological data for the Models-3/CMAQ run are extracted from MM5. The model simulation is performed during the period January 1-20 and July 1-20, 2001 that presented the winter and summer time for China areas. The preliminary model results are shown O3 concentrations are in the range of 80 -120 ppb in the urban area. Lower urban O3 concentrations are shown in Beijing areas, possibly due to underestimation of urban man-made VOC emissions in the TRACE-P inventory and local inventory. High PM2.5 (70ug/m3 in summer and 150ug/m3 in winter) were simulated over metropolitan & downwind areas with significant secondary constituents. More comprehensive simulations in the Beijing, Shanghai areas are presented with sensitivity analysis. A comparison against available ozone and PM measurement data in Beijing, Shanghai is presented. The local emission inventory improvement in China is to be suggested to investigate. The modeling configuration of the Beijing 4-km x 4-km domain is to demonstrate the development of cost-effective control strategies for the air pollution control such as 2008 Olympic Game air quality management plan.
NASA Astrophysics Data System (ADS)
Li, Xiao Ju; Yao, Kun; Dai, Jun Yu; Song, Yun Long
2018-05-01
The underground space, also known as the “fourth dimension” of the city, reflects the efficient use of urban development intensive. Urban traffic link tunnel is a typical underground limited-length space. Due to the geographical location, the special structure of space and the curvature of the tunnel, high-temperature smoke can easily form the phenomenon of “smoke turning” and the fire risk is extremely high. This paper takes an urban traffic link tunnel as an example to focus on the relationship between curvature and the temperature near the fire source, and use the pyrosim built different curvature fire model to analyze the influence of curvature on the temperature of the fire, then using SPSS Multivariate regression analysis simulate curvature of the tunnel and fire temperature data. Finally, a prediction model of urban traffic link tunnel curvature on fire temperature was proposed. The regression model analysis and test show that the curvature is negatively correlated with the tunnel temperature. This model is feasible and can provide a theoretical reference for the urban traffic link tunnel fire protection design and the preparation of the evacuation plan. And also, it provides some reference for other related curved tunnel curvature design and smoke control measures.
Assessing the urban water balance: the Urban Water Flow Model and its application in Cyprus.
Charalambous, Katerina; Bruggeman, Adriana; Lange, Manfred A
2012-01-01
Modelling the urban water balance enables the understanding of the interactions of water within an urban area and allows for better management of water resources. However, few models today provide a comprehensive overview of all water sources and uses. The objective of the current paper was to develop a user-friendly tool that quantifies and visualizes all water flows, losses and inefficiencies in urban environments. The Urban Water Flow Model was implemented in a spreadsheet and includes a water-savings application that computes the contributions of user-selected saving options to the overall water balance. The model was applied to the coastal town of Limassol, Cyprus, for the hydrologic years 2003/04-2008/09. Data were collected from the different authorities and hydrologic equations and estimations were added to complete the balance. Average precipitation was 363 mm/yr, amounting to 25.4 × 10(6)m(3)/yr, more than double the annual potable water supply to the town. Surface runoff constituted 29.6% of all outflows, while evapotranspiration from impervious areas was 21.6%. Possible potable water savings for 2008/09 were estimated at 5.3 × 10(3) m(3), which is 50% of the total potable water provided to the area. This saving would also result in a 6% reduction of surface runoff.
Production of biofuels and biomolecules in the framework of circular economy: A regional case study.
Jacquet, Nicolas; Haubruge, Eric; Richel, Aurore
2015-12-01
Faced to the economic and energetic context of our society, it is widely recognised that an alternative to fossil fuels and oil-based products will be needed in the nearest future. In this way, development of urban biorefinery could bring many solutions to this problem. Study of the implementation of urban biorefinery highlights two sustainable configurations that provide solutions to the Walloon context by promoting niche markets, developing circular economy and reducing transport of supply feedstock. First, autonomous urban biorefineries are proposed, which use biological waste for the production of added value molecules and/or finished products and are energetically self-sufficient. Second, integrated urban biorefineries, which benefit from an energy supply from a nearby industrial activity. In the Walloon economic context, these types of urban biorefineries could provide solutions by promoting niche markets, developing a circular economy model, optimise the transport of supply feedstock and contribute to the sustainable development. © The Author(s) 2015.
Friend or Foe? Urbanization and the Biosphere
NASA Astrophysics Data System (ADS)
Schneider, A.
2008-12-01
The environmental influence of urban areas is still often assumed to be negligible at global scales. Although local environmental conditions such as the urban heat island effect are well-documented, surprisingly little work has focused on cross-scale interactions, or the ways in which local urban processes cumulatively impact global changes. Given the rapid rates of rural-urban migration, economic development and urban spatial expansion, improved systems for measuring, monitoring and modeling the global environmental impacts of cities should receive far greater scientific attention. This presentation will summarize urban environmental issues and impacts at local, regional and global scales and introduce the fundamental concepts and tools needed to measure and respond to these problems. Newly available datasets for the distribution and intensity of urban land use will be introduced, demonstrating the importance of clearly defining 'urbanized' land for empirical studies at the global scale. The negative environmental impacts of urban development will be compared with the often over-looked "positives" of urban growth from a global environmental perspective. Progress in understanding and forecasting the global impacts of urban areas will require systematic global urban research designs that treat cities as urban systems, anthropogenic biomes and urban ecoregions. The challenges and opportunities of global environmental research on urban areas have important implications not only for current research but also for educating the next generation of earth system scientists.
Altarejos, R G
1990-01-01
Due to a combination of rapid population growth and high levels of rural-urban migration, overcrowding will be common in many cities around the world in the 21st century. Currently at 5.3 billion, the global population is expected to increase to 6 billion by the year 2000, and to 9 billion by 2025. Experts predict that urban centers will bear the brunt of the population growth. Rural areas have seen declines in the standard of living, partly due to natural disasters, civil war, and economic policies favoring urban centers. In search of jobs, better access to education, and health services, rural populations will flock to cities. But the rapid growth of cities will inevitably lead to the creation of slums, which will hamper urban development. Urban demographers predict that by the end of the century, 1/2 of the world's population will be urban, and 1/5 of these people will be concentrated in "mega cities," populations of 4 million or more. International migration will play a significant role, as people cross borders in search of opportunity. But contrary to the traditional model of urban growth, much of it will take place in developing countries. According to a 1985 study, developed nations had an urbanization level of 71%, compared to 31% in developing countries. However, experts calculate that by 2025, these levels will practically even out, with an urbanization level of 74% for developing countries and 77% for developed countries. By 2025, 25 cities will have populations of over 9 million, including Mexico City (25.8), Sao Paulo (24.0), Tokyo (20.2), Calcutta (16.5), Greater Bombay (16.0), and New York (15.8).
Modeling multi-source flooding disaster and developing simulation framework in Delta
NASA Astrophysics Data System (ADS)
Liu, Y.; Cui, X.; Zhang, W.
2016-12-01
Most Delta regions of the world are densely populated and with advanced economies. However, due to impact of the multi-source flooding (upstream flood, rainstorm waterlogging, storm surge flood), the Delta regions is very vulnerable. The academic circles attach great importance to the multi-source flooding disaster in these areas. The Pearl River Delta urban agglomeration in south China is selected as the research area. Based on analysis of natural and environmental characteristics data of the Delta urban agglomeration(remote sensing data, land use data, topographic map, etc.), hydrological monitoring data, research of the uneven distribution and process of regional rainfall, the relationship between the underlying surface and the parameters of runoff, effect of flood storage pattern, we use an automatic or semi-automatic method for dividing spatial units to reflect the runoff characteristics in urban agglomeration, and develop an Multi-model Ensemble System in changing environment, including urban hydrologic model, parallel computational 1D&2D hydrodynamic model, storm surge forecast model and other professional models, the system will have the abilities like real-time setting a variety of boundary conditions, fast and real-time calculation, dynamic presentation of results, powerful statistical analysis function. The model could be optimized and improved by a variety of verification methods. This work was supported by the National Natural Science Foundation of China (41471427); Special Basic Research Key Fund for Central Public Scientific Research Institutes.
Longwave infrared observation of urban landscapes
NASA Technical Reports Server (NTRS)
Goward, S. N.
1981-01-01
An investigation is conducted regarding the feasibility to develop improved methods for the identification and analysis of urban landscapes on the basis of a utilization of longwave infrared observations. Attention is given to landscape thermal behavior, urban thermal properties, modeled thermal behavior of pavements and buildings, and observed urban landscape thermal emissions. The differential thermal behavior of buildings, pavements, and natural areas within urban landscapes is found to suggest that integrated multispectral solar radiant reflectance and terrestrial radiant emissions data will significantly increase potentials for analyzing urban landscapes. In particular, daytime satellite observations of the considered type should permit better identification of urban areas and an analysis of the density of buildings and pavements within urban areas. This capability should enhance the utility of satellite remote sensor data in urban applications.
NASA Astrophysics Data System (ADS)
Epting, Jannis; García-Gil, Alejandro; Huggenberger, Peter; Vázquez-Suñe, Enric; Mueller, Matthias H.
2017-05-01
The shallow subsurface in urban areas is increasingly used by shallow geothermal energy systems as a renewable energy resource and as a cheap cooling medium, e.g. for building air conditioning. In combination with further anthropogenic activities, this results in altered thermal regimes in the subsurface and the so-called subsurface urban heat island effect. Successful thermal management of urban groundwater resources requires understanding the relative contributions of the different thermal parameters and boundary conditions that result in the "present thermal state" of individual urban groundwater bodies. To evaluate the "present thermal state" of urban groundwater bodies, good quality data are required to characterize the hydraulic and thermal aquifer parameters. This process also involved adequate monitoring systems which provide consistent subsurface temperature measurements and are the basis for parameterizing numerical heat-transport models. This study is based on previous work already published for two urban groundwater bodies in Basel (CH) and Zaragoza (ES), where comprehensive monitoring networks (hydraulics and temperature) as well as calibrated high-resolution numerical flow- and heat-transport models have been analyzed. The "present thermal state" and how it developed according to the different hydraulic and thermal boundary conditions is compared to a "potential natural state" in order to assess the anthropogenic thermal changes that have already occurred in the urban groundwater bodies we investigated. This comparison allows us to describe the various processes concerning groundwater flow and thermal regimes for the different urban settings. Furthermore, the results facilitate defining goals for specific aquifer regions, including future aquifer use and urbanization, as well as evaluating the thermal use potential for these regions. As one example for a more sustainable thermal use of subsurface water resources, we introduce the thermal management concept of the "relaxation factor", which is a first approach to overcome the present policy of "first come, first served". Remediation measures to regenerate overheated urban aquifers are also introduced. The transferability of the applied methods to other urban areas is discussed. It is shown that an appropriate selection of locations for monitoring hydraulic and thermal boundary conditions make it possible to implement representative interpretations of groundwater flow and thermal regimes as well as to set up high-resolution numerical flow- and heat-transport models. Those models are the basis for the sustainable management of thermal resources.
Real-Time and High-Fidelity Simulation Environment for Autonomous Ground Vehicle Dynamics
NASA Technical Reports Server (NTRS)
Cameron, Jonathan; Myint, Steven; Kuo, Calvin; Jain, Abhi; Grip, Havard; Jayakumar, Paramsothy; Overholt, Jim
2013-01-01
This paper reports on a collaborative project between U.S. Army TARDEC and Jet Propulsion Laboratory (JPL) to develop a unmanned ground vehicle (UGV) simulation model using the ROAMS vehicle modeling framework. Besides modeling the physical suspension of the vehicle, the sensing and navigation of the HMMWV vehicle are simulated. Using models of urban and off-road environments, the HMMWV simulation was tested in several ways, including navigation in an urban environment with obstacle avoidance and the performance of a lane change maneuver.
ERIC Educational Resources Information Center
Holbein, Marie; Woong, Lim; Annis, Kathy; Doll, Victoria
2016-01-01
The purpose of this study was to investigate the impact of an 8þ million dollar U.S. Department of Education grant on the climate of a Professional Development School (PDS) network where pre-service candidates in the Urban Education (UE) option were placed for their clinical internship experiences. The setting for the study was a network of seven…
SUSTAIN - A BMP PROCESS AND PLACEMENT TOOL FOR URBAN WATERSHEDS
Watershed and stormwater managers need modeling tools to evaluate how best to address environmental quality restoration and protection needs in urban and developing areas. Significant investments are needed to protect and restore water quality, address total maximum daily loads (...
SUSTAIN - A BMP PROCESS AND PLACEMENT TOOL FOR URBAN WATERSHEDS
Watershed and stormwater managers need modeling tools to evaluate how best to address environmental quality restoration and protection needs in urban and developing areas. Significant investments are needed to protect and restore water quality, address total maximum daily loads ...
OPTIMIZATION OF INTEGRATED URBAN WET-WEATHER CONTROL STRATEGIES
An optimization method for urban wet weather control (WWC) strategies is presented. The developed optimization model can be used to determine the most cost-effective strategies for the combination of centralized storage-release systems and distributed on-site WWC alternatives. T...
Peak health and the need for more sustainable urban water systems
Large centralized urban water services in developed countries like the USA still provide significant environmental impact via loss of ecological water services, energy use, loss of nutrients from agricultural production, and eutrophication issues. Current climate models predict t...
Urban Planning and Sustainable Development in The 21st Century, Conceptual and Management Issues
NASA Astrophysics Data System (ADS)
Azpeitia Santander, Arturo; Azkarate Garai-Olaun, Agustín
2016-10-01
Urban areas in historic cities resemble a living organism that evolves in parallel to social transformation processes, shaping the material substrate that expresses identity and collective memory. In the twenty-first century, exponential population growth, globalization and the information society have resulted in many of these socio-economic processes accelerating, with consequences that we are not yet able to discern in their entirety. In this context, cities need to adapt to the general dynamics of urban development by incorporating the environmental, economic and social aspects of the "sustainability paradigm". With good planning, urban heritage is a key sustainable resource that needs promoting as part of the existing territorial competitiveness in a scenario marked by an increase in rivalry between cities. This requires the development of a conceptual framework that, based on a global, holistic and integrative approach, covers equity and social justice, respect for human rights, the gender perspective, public health and environmental quality, among other aspects. In this sense, the purpose of this paper is to study the concept of landscape applied to urban planning in greater depth, paying special attention to the analysis of the notion of Historic Urban Landscapes from a critical point of view, since the economic pressures arising from the reality of today's globalized world pose a serious threat that hinders their custody and protection, complicating this new comprehensive approach: how to bring this new systemic and transversal concept to the current regulatory framework in order to achieve real legal protection and effective governance models in urban areas? What should be the acceptable limits to ensure that "managing this change" does not result in public spaces being at the service of the interests of financial capitalism? These, along with many other questions, make the work of the professionals in charge of urban conservation more challenging in their aim to establish a sustainable dialogue to clear the complex equation between historical city and development. With a view to try to answer these and other questions, this paper sets out need to design comprehensive urban policy and legislative frameworks coordinated, and sets out proposals regarding the development of acceptable change limitation methods and indicators, and the application of the concept of buffer zones to the conservation of urban heritage that can become the basis for urban management policies and models.
Sunde, Michael G; He, Hong S; Hubbart, Jason A; Urban, Michael A
2018-08-15
Future urban development and climatic changes are likely to affect hydrologic regimes in many watersheds. Quantifying potential water regime changes caused by these stressors is therefore crucial for enabling decision makers to develop viable environmental management strategies. This study presents an approach that integrates mid-21st century impervious surface growth estimates derived from the Imperviousness Change Analysis Tool with downscaled climate model projections and a hydrologic model Soil and Water Assessment Tool to characterize potential water regime changes in a mixed-use watershed in central Missouri, USA. Results for the climate change only scenario showed annual streamflow and runoff decreases (-10.7% and -9.2%) and evapotranspiration increases (+6.8%), while results from the urbanization only scenario showed streamflow and runoff increases (+3.8% and +9.3%) and evapotranspiration decreases (-2.4%). Results for the combined impacts scenario suggested that climatic changes could have a larger impact than urbanization on annual streamflow, (overall decrease of -6.1%), and could largely negate surface runoff increases caused by urbanization. For the same scenario, climatic changes exerted a stronger influence on annual evapotranspiration than urbanization (+3.9%). Seasonal results indicated that the relative influences of urbanization and climatic changes vary seasonally. Climatic changes most greatly influenced streamflow and runoff during winter and summer, and evapotranspiration during summer. During some seasons the directional change for hydrologic processes matched for both stressors. This work presented a practicable approach for investigating the relative influences of mid-21st century urbanization and climatic changes on the hydrology of a representative mixed-use watershed, adding to a limited body of research on this topic. This was done using a transferrable approach that can be adapted for watersheds in other regions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Smidt, Samuel J; Tayyebi, Amin; Kendall, Anthony D; Pijanowski, Bryan C; Hyndman, David W
2018-07-01
Urbanization onto adjacent farmlands directly reduces the agricultural area available to meet the resource needs of a growing society. Soil conservation is a common objective in urban planning, but little focus has been placed on targeting soil value as a metric for conservation. This study assigns commodity and water storage values to the agricultural soils across all of the watersheds in Michigan's Lower Peninsula to evaluate how cities might respond to a soil conservation-based urbanization strategy. Land Transformation Model (LTM) simulations representing both traditional and soil conservation-based urbanization, are used to forecast urban area growth from 2010 to 2050 at five year intervals. The expansion of urban areas onto adjacent farmland is then evaluated to quantify the conservation effects of soil-based development. Results indicate that a soil-based protection strategy significantly conserves total farmland, especially more fertile soils within each soil type. In terms of revenue, ∼$88 million (in current dollars) would be conserved in 2050 using soil-based constraints, with the projected savings from 2011 to 2050 totaling more than $1.5 billion. Soil-based urbanization also increased urban density for each major metropolitan area. For example, there were 94,640 more acres directly adjacent to urban land by 2050 under traditional development compared to the soil-based urbanization strategy, indicating that urban sprawl was more tightly contained when including soil value as a metric to guide development. This study indicates that implementing a soil-based urbanization strategy would better satisfy future agricultural resource needs than traditional urban planning. Copyright © 2018. Published by Elsevier Ltd.
Urban Dynamics: Analyzing Land Use Change in Urban Environments
NASA Technical Reports Server (NTRS)
Acevedo, William; Richards, Lora R.; Buchanan, Janis T.; Wegener, Whitney R.
2000-01-01
In FY99, the Earth Resource Observation System (EROS) staff at Ames continued managing the U.S. Geological Survey's (USGS) Urban Dynamics Research program, which has mapping and analysis activities at five USGS mapping centers. Historic land use reconstruction work continued while activities in geographic analysis and modeling were expanded. Retrospective geographic information system (GIS) development - the spatial reconstruction of a region's urban land-use history - focused on the Detroit River Corridor, California's Central Valley, and the city of Sioux Falls, South Dakota.
Brittain, Ross A; Craft, Christopher B
2012-02-01
We modeled changes in area of five habitats, tidal-freshwater forest, salt marsh, maritime shrub-scrub (shrub), maritime broadleaf forest (oak) and maritime narrowleaf (pine) forest, in coastal Georgia, USA, to evaluate how simultaneous habitat loss due to predicted changes in sea level rise (SLR) and urban development will affect priority bird species of the south Atlantic coastal plain by 2100. Development rates, based on regional growth plans, were modeled at 1% and 2.5% annual urban growth, while SLR rates, based on the Intergovernmental Panel on Climate Change's A1B mean and maximum scenarios, were modeled at 52 cm and 82 cm, respectively. SLR most greatly affected the shrub habitat with predicted losses of 35-43%. Salt marsh and tidal forest also were predicted to lose considerable area to SLR (20-45 and 23-35%, respectively), whereas oak and pine forests had lesser impact from SLR, 18-22% and 11-15%, respectively. Urban development resulted in losses of considerable pine (48-49%) and oak (53-55%) habitat with lesser loss of shrub habitat (21-24%). Under maximum SLR and urban growth, shrub habitat may lose up to 59-64% compared to as much as 62-65% pine forest and 74-75% oak forest. Conservation efforts should focus on protection of shrub habitat because of its small area relative to other terrestrial habitats and use by Painted Buntings (Passerina ciris), a Partners In Flight (PIF) extremely high priority species. Tidal forests also deserve protection because they are a likely refuge for forest species, such as Northern Parula and Acadian Flycatcher, with the decline of oak and pine forests due to urban development.
NASA Astrophysics Data System (ADS)
He, Yingqing; Ai, Bin; Yao, Yao; Zhong, Fajun
2015-06-01
Cellular automata (CA) have proven to be very effective for simulating and predicting the spatio-temporal evolution of complex geographical phenomena. Traditional methods generally pose problems in determining the structure and parameters of CA for a large, complex region or a long-term simulation. This study presents a self-adaptive CA model integrated with an artificial immune system to discover dynamic transition rules automatically. The model's parameters are allowed to be self-modified with the application of multi-temporal remote sensing images: that is, the CA can adapt itself to the changed and complex environment. Therefore, urban dynamic evolution rules over time can be efficiently retrieved by using this integrated model. The proposed AIS-based CA model was then used to simulate the rural-urban land conversion of Guangzhou city, located in the core of China's Pearl River Delta. The initial urban land was directly classified from TM satellite image in the year 1990. Urban land in the years 1995, 2000, 2005, 2009 and 2012 was correspondingly used as the observed data to calibrate the model's parameters. With the quantitative index figure of merit (FoM) and pattern similarity, the comparison was further performed between the AIS-based model and a Logistic CA model. The results indicate that the AIS-based CA model can perform better and with higher precision in simulating urban evolution, and the simulated spatial pattern is closer to the actual development situation.
Monitoring trends of urban development and environmental impact of Beijing, 1999-2006.
Liu, Gengyuan; Yang, Zhifeng; Chen, Bin; Ulgiati, Sergio
2011-08-15
The high rates of environmental change and accelerated species loss in the urban development process should be quantified to rebalance the social and environmental dimensions of sustainability. In this study, an emergy-based environmental impact assessment model is designed according to the framework of the Eco-Indicator 99 for monitoring the negative effects on human well-being and ecosystem integrity in the urban development system of Beijing from 1999 to 2006. The environmental impact assessment model is based on the sustainability promotion perspective, and emphasizes the determinants of human health and ecosystem integrity in the urban development process. It is vital that the links among human health, ecosystem integrity and urban sustainability are therefore considered especially from the perspective of a supply-side environmental cost evaluation (including ecological service supply, ecological and economic losses and investment for treatment). Results suggest that: (1) out of all the pollutants, ecological services were mainly used to dilute sulfur dioxide and NH(3)-N; (2) nitrogen dioxide and greenhouse gases released by the urban system contribute heavily to both ecological and economic losses evaluated in emergy terms; and (3) emissions impact, mainly from airborne pollutants, with small contribution from waterborne emissions, generally increases from 1999 to 2006, undermining the sustainability of Beijing. The emergy synthesis proves to be very appropriate to account for large-scale and indirect costs generated by pollution as side effects of economic activity. Such knowledge is a necessary pre-requisite to perform a reliable cost-benefit evaluation of urban sustainability strategies, and provide guidance for policy decision making to maximize benefits and minimize negative impacts. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wittmer, I. K.; Bader, H.-P.; Scheidegger, R.; Stamm, C.
2016-02-01
During rain events, biocides and plant protection products are transported from agricultural fields but also from urban sources to surface waters. Originally designed to be biologically active, these compounds may harm organisms in aquatic ecosystems. Although several models allow either urban or agricultural storm events to be predicted, only few combine these two sources, and none of them include biocide losses from building envelopes. This study therefore aims to develop a model designed to predict water and substance flows from urban and agricultural sources to surface waters. We developed a model based on physical principles for water percolation and substance flow including micro- (also called matrix-) and macropore-flows for the agricultural areas together with a model representing sources, sewer systems and a wastewater treatment plant for urban areas. In a second step, the combined model was applied to a catchment where an extensive field study had been conducted. The modelled and measured discharge and compound results corresponded reasonably well in terms of quantity and dynamics. The total cumulative discharge was only slightly lower than the total measured discharge (factor 0.94). The total modelled losses of the agriculturally used herbicide atrazine were slightly lower (∼25%) than the measured losses when the soil pore water distribution coefficient (describing the partition between soil particles and pore water) (Kd) was kept constant and slightly higher if it was increased with time. The modelled urban losses of diuron from facades were within a factor of three with respect to the measured values. The results highlighted the change in importance of the flow components during a rain event from urban sources during the most intensive rain period towards agricultural ones over a prolonged time period. Applications to two other catchments, one neighbouring and one on another continent showed that the model can be applied using site specific data for land use, pesticide application, weather and literature data for soil related parameters such as saturated water content, hydraulic conductivity or lateral distances of the drainage pipes without any further calibration of parameters. This is a promising basis for using the model in a wide range of catchments.
Shooshtarian, Mohammad Reza; Dehghani, Mansooreh; Margherita, Ferrante; Gea, Oliveri Conti; Mortezazadeh, Shima
2018-04-01
This study aggregated Land Change Modeller (LCM) as a useful model in GIS with an extended Groundwater Quality Index (GWQI) developed by fuzzy Multi-Criteria Group Decision-Making models to investigate the effect of land use change and conversion on groundwater quality being supplied for drinking. The model's performance was examined through an applied study in Shiraz, Iran, in a five year period (2011 to 2015). Four land use maps including urban, industrial, garden, and bare were employed in LCM model and the impact of change in area and their conversion to each other on GWQI changes was analysed. The correlation analysis indicated that increase in the urban land use area and conversion of bare to the residential/industrial land uses, had a relation with water quality decrease. Integration of LCM and GWQI can accurately and logically provide a numerical analysis of the possible impact of land use change and conversion, as one of the influencing factors, on the groundwater quality. Hence, the methodology could be used in urban development planning and management in macro level. Copyright © 2018. Published by Elsevier Ltd.
Urban water infrastructure optimization to reduce environmental impacts and costs.
Lim, Seong-Rin; Suh, Sangwon; Kim, Jung-Hoon; Park, Hung Suck
2010-01-01
Urban water planning and policy have been focusing on environmentally benign and economically viable water management. The objective of this study is to develop a mathematical model to integrate and optimize urban water infrastructures for supply-side planning and policy: freshwater resources and treated wastewater are allocated to various water demand categories in order to reduce contaminants in the influents supplied for drinking water, and to reduce consumption of the water resources imported from the regions beyond a city boundary. A case study is performed to validate the proposed model. An optimal urban water system of a metropolitan city is calculated on the basis of the model and compared to the existing water system. The integration and optimization decrease (i) average concentrations of the influents supplied for drinking water, which can improve human health and hygiene; (ii) total consumption of water resources, as well as electricity, reducing overall environmental impacts; (iii) life cycle cost; and (iv) water resource dependency on other regions, improving regional water security. This model contributes to sustainable urban water planning and policy. 2009 Elsevier Ltd. All rights reserved.
Habilomatis, George; Chaloulakou, Archontoula
2013-10-01
Recently, a branch of particulate matter research concerns on ultrafine particles found in the urban environment, which originate, to a significant extent, from traffic sources. In urban street canyons, dispersion of ultrafine particles affects pedestrian's short term exposure and resident's long term exposure as well. The aim of the present work is the development and the evaluation of a composite lattice Boltzmann model to study the dispersion of ultrafine particles, in urban street canyon microenvironment. The proposed model has the potential to penetrate into the physics of this complex system. In order to evaluate the model performance against suitable experimental data, ultrafine particles levels have been monitored on an hourly basis for a period of 35 days, in a street canyon, in Athens area. The results of the comparative analysis are quite satisfactory. Furthermore, our modeled results are in a good agreement with the results of other computational and experimental studies. This work is a first attempt to study the dispersion of an air pollutant by application of the lattice Boltzmann method. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Falk, M.; Pyles, R. D.; Marras, S.; Spano, D.; Paw U, K. T.
2011-12-01
The number of urban metabolism studies has increased in recent years, due to the important impact that energy, water and carbon exchange over urban areas have on climate change. Urban modeling is therefore crucial in the future design and management of cities. This study presents the ACASA model coupled to the Weather Research and Forecasting (WRF-ARW) mesoscale model to simulate urban fluxes at a horizontal resolution of 200 meters for urban areas of roughly 100 km^2. As part of the European Project "BRIDGE", these regional simulations were used in combination with remotely sensed data to provide constraints on the land surface types and the exchange of carbon and energy fluxes from urban centers. Surface-atmosphere exchanges of mass and energy were simulated using the Advanced Canopy Atmosphere Soil Algorithm (ACASA). ACASA is a multi-layer high-order closure model, recently modified to work over natural, agricultural as well as urban environments. In particular, improvements were made to account for the anthropogenic contribution to heat and carbon production. For two cities four climate change and four urban planning scenarios were simulated: The climate change scenarios include a base scenario (Sc0: 2008 Commit in IPCC), a medium emission scenario (Sc1: IPCC A2), a worst case emission scenario (Sce2: IPCC A1F1) and finally a best case emission scenario (Sce3: IPCC B1). The urban planning scenarios include different development scenarios such as smart growth. The two cities are a high latitude city, Helsinki (Finland) and an historic city, Florence (Italy). Helsinki is characterized by recent, rapid urbanization that requires a substantial amount of energy for heating, while Florence is representative of cities in lower latitudes, with substantial cultural heritage and a comparatively constant architectural footprint over time. In general, simulated fluxes matched the point observations well and showed consistent improvement in the energy partitioning over urban regions. We present comparisons of observed (EC) tower flux observations from the Florence (Ximeniano) site for 1-9 April, 2008 with results from two sets of high-resolution simulations: the first using dynamically-downscaled input/boundary conditions (Model-0) and the second using fully nested WRF-ACASA (Model-1). In each simulation the model physics are the same; only the WRF domain configuration differs. Preliminary results (Figure 1) indicate a degree of parity (and a slight statistical improvement), in the performances of Model-1 vs. that of Model-0 with respect to observed. Figure 1 (below) shows air temperature values from observed and both model estimates. Additional results indicate that care must be taken to configure the WRF domain, as performance appears to be sensitive to model configuration.
NASA Technical Reports Server (NTRS)
Sequera, Pedro; McDonald, Kyle C.; Gonzalez, Jorge; Arend, Mark; Krakauer, Nir; Bornstein, Robert; Luvll, Jeffrey
2012-01-01
The need for comprehensive studies of the relationships between past and projected changes of regional climate and human activity in comple x urban environments has been well established. The HyspIRI preparato ry airborne activities in California, associated science and applicat ions research, and eventually HyspIRI itself provide an unprecedented opportunity for development and implementation of an integrated data and modeling analysis system focused on coastal urban environments. We will utilize HyspIRI preparatory data collections in developing ne w remote sensing-based tools for investigating the integrated urban e nvironment, emphasizing weather, climate, and energy demands in compl ex coastal cities.
ERIC Educational Resources Information Center
Hyatt, Susan Brin
2010-01-01
As a political and economic philosophy, neoliberalism has been used to reshape schools and universities, making them far more responsive to the pressures of the market. The principles associated with neoliberalism have also extended to programmes for urban economic development, particularly with respect to the large-scale gentrification of…
Urban development results in changes to land use and land cover and, consequently, to biogenic and anthropogenic emissions, meteorological processes, and processes such as dry deposition that influence future predictions of air quality. This study examines the impacts of alter...
A neural network based model for urban noise prediction.
Genaro, N; Torija, A; Ramos-Ridao, A; Requena, I; Ruiz, D P; Zamorano, M
2010-10-01
Noise is a global problem. In 1972 the World Health Organization (WHO) classified noise as a pollutant. Since then, most industrialized countries have enacted laws and local regulations to prevent and reduce acoustic environmental pollution. A further aim is to alert people to the dangers of this type of pollution. In this context, urban planners need to have tools that allow them to evaluate the degree of acoustic pollution. Scientists in many countries have modeled urban noise, using a wide range of approaches, but their results have not been as good as expected. This paper describes a model developed for the prediction of environmental urban noise using Soft Computing techniques, namely Artificial Neural Networks (ANN). The model is based on the analysis of variables regarded as influential by experts in the field and was applied to data collected on different types of streets. The results were compared to those obtained with other models. The study found that the ANN system was able to predict urban noise with greater accuracy, and thus, was an improvement over those models. The principal component analysis (PCA) was also used to try to simplify the model. Although there was a slight decline in the accuracy of the results, the values obtained were also quite acceptable.
NASA Astrophysics Data System (ADS)
Warner, T. T.; Swerdlin, S. P.; Chen, F.; Hayden, M.
2009-05-01
The innovative use of Computational Fluid-Dynamics (CFD) models to define the building- and street-scale atmospheric environment in urban areas can benefit society in a number of ways. Design criteria used by architectural climatologists, who help plan the livable cities of the future, require information about air movement within street canyons for different seasons and weather regimes. Understanding indoor urban air- quality problems and their mitigation, especially for older buildings, requires data on air movement and associated dynamic pressures near buildings. Learning how heat waves and anthropogenic forcing in cities collectively affect the health of vulnerable residents is a problem in building thermodynamics, human behavior, and neighborhood-scale and street-canyon-scale atmospheric sciences. And, predicting the movement of plumes of hazardous material released in urban industrial or transportation accidents requires detailed information about vertical and horizontal air motions in the street canyons. These challenges are closer to being addressed because of advances in CFD modeling, the coupling of CFD models with models of indoor air motion and air quality, and the coupling of CFD models with mesoscale weather-prediction models. This paper will review some of the new knowledge and technologies that are being developed to meet these atmospheric-environment needs of our growing urban populations.
Dominant control of agriculture and irrigation on urban heat island in India.
Kumar, Rahul; Mishra, Vimal; Buzan, Jonathan; Kumar, Rohini; Shindell, Drew; Huber, Matthew
2017-10-25
As is true in many regions, India experiences surface Urban Heat Island (UHI) effect that is well understood, but the causes of the more recently discovered Urban Cool Island (UCI) effect remain poorly constrained. This raises questions about our fundamental understanding of the drivers of rural-urban environmental gradients and hinders development of effective strategies for mitigation and adaptation to projected heat stress increases in rapidly urbanizing India. Here we show that more than 60% of Indian urban areas are observed to experience a day-time UCI. We use satellite observations and the Community Land Model (CLM) to identify the impact of irrigation and prove for the first time that UCI is caused by lack of vegetation and moisture in non-urban areas relative to cities. In contrast, urban areas in extensively irrigated landscapes generally experience the expected positive UHI effect. At night, UHI warming intensifies, occurring across a majority (90%) of India's urban areas. The magnitude of rural-urban temperature contrasts is largely controlled by agriculture and moisture availability from irrigation, but further analysis of model results indicate an important role for atmospheric aerosols. Thus both land-use decisions and aerosols are important factors governing, modulating, and even reversing the expected urban-rural temperature gradients.
Urban Typologies: Towards an ORNL Urban Information System (UrbIS)
NASA Astrophysics Data System (ADS)
KC, B.; King, A. W.; Sorokine, A.; Crow, M. C.; Devarakonda, R.; Hilbert, N. L.; Karthik, R.; Patlolla, D.; Surendran Nair, S.
2016-12-01
Urban environments differ in a large number of key attributes; these include infrastructure, morphology, demography, and economic and social variables, among others. These attributes determine many urban properties such as energy and water consumption, greenhouse gas emissions, air quality, public health, sustainability, and vulnerability and resilience to climate change. Characterization of urban environments by a single property such as population size does not sufficiently capture this complexity. In addressing this multivariate complexity one typically faces such problems as disparate and scattered data, challenges of big data management, spatial searching, insufficient computational capacity for data-driven analysis and modelling, and the lack of tools to quickly visualize the data and compare the analytical results across different cities and regions. We have begun the development of an Urban Information System (UrbIS) to address these issues, one that embraces the multivariate "big data" of urban areas and their environments across the United States utilizing the Big Data as a Service (BDaaS) concept. With technological roots in High-performance Computing (HPC), BDaaS is based on the idea of outsourcing computations to different computing paradigms, scalable to super-computers. UrbIS aims to incorporate federated metadata search, integrated modeling and analysis, and geovisualization into a single seamless workflow. The system includes web-based 2D/3D visualization with an iGlobe interface, fast cloud-based and server-side data processing and analysis, and a metadata search engine based on the Mercury data search system developed at Oak Ridge National Laboratory (ORNL). Results of analyses will be made available through web services. We are implementing UrbIS in ORNL's Compute and Data Environment for Science (CADES) and are leveraging ORNL experience in complex data and geospatial projects. The development of UrbIS is being guided by an investigation of urban heat islands (UHI) using high-dimensional clustering and statistics to define urban typologies (types of cities) in an investigation of how UHI vary with urban type across the United States.
Fractal simulation of urbanization for the analysis of vulnerability to natural hazards
NASA Astrophysics Data System (ADS)
Puissant, Anne; Sensier, Antoine; Tannier, Cécile; Malet, Jean-Philippe
2016-04-01
Since 50 years, mountain areas are affected by important land cover/use changes characterized by the decrease of pastoral activities, reforestation and urbanization with the development of tourism activities and infrastructures. These natural and anthropogenic transformations have an impact on the socio-economic activities but also on the exposure of the communities to natural hazards. In the context of the ANR Project SAMCO which aims at enhancing the overall resilience of societies on the impacts of mountain risks, the objective of this research was to help to determine where to locate new residential developments for different scenarios of land cover/use (based on the Prelude European Project) for the years 2030 and 2050. The Planning Support System (PSS), called MUP-City, based on a fractal multi-scale modeling approach is used because it allows taking into account local accessibility to some urban and rural amenities (Tannier et al., 2012). For this research, an experiment is performed on a mountain area in the French Alps (Barcelonnette Basin) to generate three scenarios of urban development with MUP-City at the scale of 1:10:000. The results are assessed by comparing the localization of residential developments with urban areas predicted by land cover and land use scenarios generated by cellular automata modelling (LCM and Dyna-clue) (Puissant et al., 2015). Based on these scenarios, the evolution of vulnerability is estimated.
Assessments of urban growth in the Tampa Bay watershed using remote sensing data
Xian, G.; Crane, M.
2005-01-01
Urban development has expanded rapidly in the Tampa Bay area of west-central Florida over the past century. A major effect associated with this population trend is transformation of the landscape from natural cover types to increasingly impervious urban land. This research utilizes an innovative approach for mapping urban extent and its changes through determining impervious surfaces from Landsat satellite remote sensing data. By 2002, areas with subpixel impervious surface greater than 10% accounted for approximately 1800 km2, or 27 percent of the total watershed area. The impervious surface area increases approximately three-fold from 1991 to 2002. The resulting imperviousness data are used with a defined suite of geospatial data sets to simulate historical urban development and predict future urban and suburban extent, density, and growth patterns using SLEUTH model. Also examined is the increasingly important influence that urbanization and its associated imperviousness extent have on the individual drainage basins of the Tampa Bay watershed.
Relation Decomposing between Urbanization and Consumption of Water-Energy Sources
NASA Astrophysics Data System (ADS)
Wang, Y.; Xiao, W.; Wang, Y.; Zhao, Y.; Wang, J., , Dr; Jiang, D.; Wang, H.
2017-12-01
Abstract: Water resources and energy, important subsystems of city, are the basic guarantee for the normal operation of city, which play an important role to brace the urbanization. The interdependence between them are increasing along with the rapid development of China's economy. The relationship between urbanization and consumption of energy and water have become the focal point of the scholars, but the research have more attention to the impact of urbanization on two subsystems separately, and do not reveal the effects of urbanization on the water-energy nexus. Thus, there is little consideration upon the different characteristics of China's several regions in water and energy consumption in urbanization. In this paper, the STIRPAT model is built to reveal the relationship between urbanization and the consumption of water and energy. Also, the influence of urbanization on different main body of water and energy consumption are discussed. The different regional main factors of water and energy in the process of urbanization are identified through water and energy panel data of China's thirty provinces. Finally, through the regression analysis of total water consumption data of agriculture, industry, service industry with total energy consumption data, the relationship of water and energy in the process of urban development are analyzed.
[Urban ecological risk assessment: a review].
Wang, Mei-E; Chen, Wei-Ping; Peng, Chi
2014-03-01
With the development of urbanization and the degradation of urban living environment, urban ecological risks caused by urbanization have attracted more and more attentions. Based on urban ecology principles and ecological risk assessment frameworks, contents of urban ecological risk assessment were reviewed in terms of driven forces, risk resources, risk receptors, endpoints and integrated approaches for risk assessment. It was suggested that types and degrees of urban economical and social activities were the driven forces for urban ecological risks. Ecological functional components at different levels in urban ecosystems as well as the urban system as a whole were the risk receptors. Assessment endpoints involved in changes of urban ecological structures, processes, functional components and the integrity of characteristic and function. Social-ecological models should be the major approaches for urban ecological risk assessment. Trends for urban ecological risk assessment study should focus on setting a definite protection target and criteria corresponding to assessment endpoints, establishing a multiple-parameter assessment system and integrative assessment approaches.
NASA Astrophysics Data System (ADS)
Miles, B.; Band, L. E.
2012-12-01
Water sustainability has been recognized as a fundamental problem of science whose solution relies in part on high-performance computing. Stormwater management is a major concern of urban sustainability. Understanding interactions between urban landcover and stormwater nutrient pollution requires consideration of fine-scale residential stormwater management, which in turn requires high-resolution LIDAR and landcover data not provided through national spatial data infrastructure, as well as field observation at the household scale. The objectives of my research are twofold: (1) advance understanding of the relationship between residential stormwater management practices and the export of nutrient pollution from stormwater in urbanized ecosystems; and (2) improve the informatics workflows used in community ecohydrology modeling as applied to heterogeneous urbanized ecosystems. In support of these objectives, I present preliminary results from initial work to: (1) develop an ecohydrology workflow platform that automates data preparation while maintaining data provenance and model metadata to yield reproducible workflows and support model benchmarking; (2) perform field observation of existing patterns of residential rooftop impervious surface connectivity to stormwater networks; and (3) develop Regional Hydro-Ecological Simulation System (RHESSys) models for watersheds in Baltimore, MD (as part of the Baltimore Ecosystem Study (BES) NSF Long-Term Ecological Research (LTER) site) and Durham, NC (as part of the NSF Urban Long-Term Research Area (ULTRA) program); these models will be used to simulate nitrogen loading resulting from both baseline residential rooftop impervious connectivity and for disconnection scenarios (e.g. roof drainage to lawn v. engineered rain garden, upslope v. riparian). This research builds on work done as part of the NSF EarthCube Layered Architecture Concept Award where a RHESSys workflow is being implemented in an iRODS (integrated Rule-Oriented Data System) environment. Modeling the ecohydrology of urban ecosystems in a reliable and reproducible manner requires a flexible scientific workflow platform that allows rapid prototyping with large-scale spatial datasets and model refinement integrating expert knowledge with local datasets and household surveys.
Kashuba, Roxolana; Cha, YoonKyung; Alameddine, Ibrahim; Lee, Boknam; Cuffney, Thomas F.
2010-01-01
Multilevel hierarchical modeling methodology has been developed for use in ecological data analysis. The effect of urbanization on stream macroinvertebrate communities was measured across a gradient of basins in each of nine metropolitan regions across the conterminous United States. The hierarchical nature of this dataset was harnessed in a multi-tiered model structure, predicting both invertebrate response at the basin scale and differences in invertebrate response at the region scale. Ordination site scores, total taxa richness, Ephemeroptera, Plecoptera, Trichoptera (EPT) taxa richness, and richness-weighted mean tolerance of organisms at a site were used to describe invertebrate responses. Percentage of urban land cover was used as a basin-level predictor variable. Regional mean precipitation, air temperature, and antecedent agriculture were used as region-level predictor variables. Multilevel hierarchical models were fit to both levels of data simultaneously, borrowing statistical strength from the complete dataset to reduce uncertainty in regional coefficient estimates. Additionally, whereas non-hierarchical regressions were only able to show differing relations between invertebrate responses and urban intensity separately for each region, the multilevel hierarchical regressions were able to explain and quantify those differences within a single model. In this way, this modeling approach directly establishes the importance of antecedent agricultural conditions in masking the response of invertebrates to urbanization in metropolitan regions such as Milwaukee-Green Bay, Wisconsin; Denver, Colorado; and Dallas-Fort Worth, Texas. Also, these models show that regions with high precipitation, such as Atlanta, Georgia; Birmingham, Alabama; and Portland, Oregon, start out with better regional background conditions of invertebrates prior to urbanization but experience faster negative rates of change with urbanization. Ultimately, this urbanization-invertebrate response example is used to detail the multilevel hierarchical construction methodology, showing how the result is a set of models that are both statistically more rigorous and ecologically more interpretable than simple linear regression models.
SUSTAIN - A USEPA BMP PROCESS AND PLACEMENT TOOL FOR URBAN WATERSHEDS
Watershed and stormwater managers need modeling tools to evaluate how best to address environmental quality restoration and protection needs in urban and developing areas. Significant investments are needed to protect and restore water quality, address total maximum daily loads (...
LABORATORY-SCALE SIMULATION OF RUNOFF RESPONSE FROM PERVIOUS-IMPERVIOUS SYSTEMS
Urban development yields landscapes that are composites of impervious and pervious areas, with a consequent reduction in infiltration and increase in stormwater runoff. Although basic rainfall-runoff models are used in the vast majority of runoff prediction in urban landscapes, t...
Constraining the uncertainty in emissions over India with a regional air quality model evaluation
NASA Astrophysics Data System (ADS)
Karambelas, Alexandra; Holloway, Tracey; Kiesewetter, Gregor; Heyes, Chris
2018-02-01
To evaluate uncertainty in the spatial distribution of air emissions over India, we compare satellite and surface observations with simulations from the U.S. Environmental Protection Agency (EPA) Community Multi-Scale Air Quality (CMAQ) model. Seasonally representative simulations were completed for January, April, July, and October 2010 at 36 km × 36 km using anthropogenic emissions from the Greenhouse Gas-Air Pollution Interaction and Synergies (GAINS) model following version 5a of the Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants project (ECLIPSE v5a). We use both tropospheric columns from the Ozone Monitoring Instrument (OMI) and surface observations from the Central Pollution Control Board (CPCB) to closely examine modeled nitrogen dioxide (NO2) biases in urban and rural regions across India. Spatial average evaluation with satellite retrievals indicate a low bias in the modeled tropospheric column (-63.3%), which reflects broad low-biases in majority non-urban regions (-70.1% in rural areas) across the sub-continent to slightly lesser low biases reflected in semi-urban areas (-44.7%), with the threshold between semi-urban and rural defined as 400 people per km2. In contrast, modeled surface NO2 concentrations exhibit a slight high bias of +15.6% when compared to surface CPCB observations predominantly located in urban areas. Conversely, in examining extremely population dense urban regions with more than 5000 people per km2 (dense-urban), we find model overestimates in both the column (+57.8) and at the surface (+131.2%) compared to observations. Based on these results, we find that existing emission fields for India may overestimate urban emissions in densely populated regions and underestimate rural emissions. However, if we rely on model evaluation with predominantly urban surface observations from the CPCB, comparisons reflect model high biases, contradictory to the knowledge gained using satellite observations. Satellites thus serve as an important emissions and model evaluation metric where surface observations are lacking, such as rural India, and support improved emissions inventory development.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G.; Lo, C. P.; Kidder, Stanley Q.; Hafner, Jan; Taha, Haider; Bornstein, Robert D.; Gillies, Robert R.; Gallo, Kevin P.
1998-01-01
It is our intent through this investigation to help facilitate measures that can be Project ATLANTA (ATlanta Land-use ANalysis: applied to mitigate climatological or air quality Temperature and Air-quality) is a NASA Earth degradation, or to design alternate measures to sustain Observing System (EOS) Interdisciplinary Science or improve the overall urban environment in the future. investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta. The primary objectives for this research effort are: 1) To In the last half of the 20th century, Atlanta, investigate and model the relationship between Atlanta Georgia has risen as the premier commercial, urban growth, land cover change, and the development industrial, and transportation urban area of the of the urban heat island phenomenon through time at southeastern United States. The rapid growth of the nested spatial scales from local to regional; 2) To Atlanta area, particularly within the last 25 years, has investigate and model the relationship between Atlanta made Atlanta one of the fastest growing metropolitan urban growth and land cover change on air quality areas in the United States. The population of the through time at nested spatial scales from local to Atlanta metropolitan area increased 27% between 1970 regional; and 3) To model the overall effects of urban and 1980, and 33% between 1980-1990 (Research development on surface energy budget characteristics Atlanta, Inc., 1993). Concomitant with this high rate of across the Atlanta urban landscape through time at population growth, has been an explosive growth in nested spatial scales from local to regional. Our key retail, industrial, commercial, and transportation goal is to derive a better scientific understanding of how services within the Atlanta region. This has resulted in land cover changes associated with urbanization in the tremendous land cover change dynamics within the Atlanta area, principally in transforming forest lands to metropolitan region, wherein urbanization has urban land covers through time, has, and will, effect consumed vast acreas of land adjacent to the city local and regional climate, surface energy flux, and air proper and has pushed the rural/urban fringe farther quality characteristics. Allied with this goal is the and farther away from the original Atlanta urban core. prospect that the results from this research can be An enormous transition of land from forest and applied by urban planners, environmental managers agriculture to urban land uses has occurred in the and other decision-makers, for determining how Atlanta area in the last 25 years, along with subsequent urbanization has impacted the climate and overall
Teachers Supporting Teachers in Urban Schools: What Iterative Research Designs Can Teach Us.
Shernoff, Elisa S; Maríñez-Lora, Ane M; Frazier, Stacy L; Jakobsons, Lara J; Atkins, Marc S; Bonner, Deborah
2011-12-01
Despite alarming rates and negative consequences associated with urban teacher attrition, mentoring programs often fail to target the strongest predictors of attrition: effectiveness around classroom management and engaging learners; and connectedness to colleagues. Using a mixed-method iterative development framework, we highlight the process of developing and evaluating the feasibility of a multi-component professional development model for urban early career teachers. The model includes linking novices with peer-nominated key opinion leader teachers and an external coach who work together to (1) provide intensive support in evidence-based practices for classroom management and engaging learners, and (2) connect new teachers with their larger network of colleagues. Fidelity measures and focus group data illustrated varying attendance rates throughout the school year and that although seminars and professional learning communities were delivered as intended, adaptations to enhance the relevance, authenticity, level, and type of instrumental support were needed. Implications for science and practice are discussed.
Baek, Sang-Soo; Choi, Dong-Ho; Jung, Jae-Woon; Lee, Hyung-Jin; Lee, Hyuk; Yoon, Kwang-Sik; Cho, Kyung Hwa
2015-12-01
Currently, continued urbanization and development result in an increase of impervious areas and surface runoff including pollutants. Also one of the greatest issues in pollutant emissions is the first flush effect (FFE), which implies a greater discharge rate of pollutant mass in the early part in the storm. Low impact development (LID) practices have been mentioned as a promising strategy to control urban stormwater runoff and pollution in the urban ecosystem. However, this requires many experimental and modeling efforts to test LID characteristics and propose an adequate guideline for optimizing LID management. In this study, we propose a novel methodology to optimize the sizes of different types of LID by conducting intensive stormwater monitoring and numerical modeling in a commercial site in Korea. The methodology proposed optimizes LID size in an attempt to moderate FFE on a receiving waterbody. Thereby, the main objective of the optimization is to minimize mass first flush (MFF), which is an indicator for quantifying FFE. The optimal sizes of 6 different LIDs ranged from 1.2 mm to 3.0 mm in terms of runoff depths, which significantly moderate the FFE. We hope that the new proposed methodology can be instructive for establishing LID strategies to mitigate FFE. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Johnson, T. E.; Weaver, C. P.; Butcher, J.; Parker, A.
2011-12-01
Watershed modeling was conducted in 20 large (15,000-60,000 km2), U.S. watersheds to address gaps in our knowledge of the sensitivity of U.S. streamflow, nutrient (N and P) and sediment loading to potential future climate change, and methodological challenges associated with integrating existing tools (e.g., climate models, watershed models) and datasets to address these questions. Climate change scenarios are based on dynamically downscaled (50x50 km2) output from four of the GCMs used in the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report for the period 2041-2070 archived by the North American Regional Climate Change Assessment Program (NARCCAP). To explore the potential interaction of climate change and urbanization, model simulations also include urban and residential development scenarios for each of the 20 study watersheds. Urban and residential development scenarios were acquired from EPA's national-scale Integrated Climate and Land Use Scenarios (ICLUS) project. Watershed modeling was conducted using the Hydrologic Simulation Program-FORTRAN (HSPF) and Soil and Water Assessment Tool (SWAT) models. Here we present a summary of results for 5 of the study watersheds; the Minnesota River, the Susquehanna River, the Apalachicola-Chattahoochee-Flint, the Salt/Verde/San Pedro, and the Willamette River Basins. This set of results provide an overview of the response to climate change in different regions of the U.S., the different sensitivities of different streamflow and water quality endpoints, and illustrate a number of methodological issues including the sensitivities and uncertainties associated with use of different watershed models, approaches for downscaling climate change projections, and interaction between climate change and other forcing factors, specifically urbanization and changes in atmospheric CO2 concentration.
Integrated rural development programs: a skeptical perspective.
Ruttan, V W
1975-11-01
In examining integrated rural development programs the question that arises is why is it possible to identify several relatively successful small-scale or pilot rural development projects yet so difficult to find examples of successful rural development programs. 3 bodies of literature offer some insight into the morphology of rural development projects, programs, and processes: the urban-industrial impact hypothesis; the theory of induced technical change; and the new models of institutional change that deal with institution building and the economics of bureaucratic behavior. The urban-industrial impact hypothesis helps in the clarification of the relationships between the development of rural areas and the development of the total society of which rural areas are a part. It is useful in understanding the spatial dimensions of rural development where rural development efforts are likely to be most successful. Formulation of the hypothesis generated a series of empirical studies designed to test its validity. The effect of these studies has been the development of a rural development model in which the rural community is linked to the urban-industrial economy through a series of market relationships. Both the urban economy's rate of growth and the efficiency of the intersector product and factor markets place significant constraints on the possibilities of rural area development. It is not possible to isolate development processes in the contemporary rural community in a developing society from development processes in the larger society. The induced technical change theory provides a guide as to what must be done to gain access to efficient sources of economic growth, the new resources and incomes that are necessary to sustain rural development. Design of a successful rural development strategy involves a combination of technical and institutional change. The ability of rural areas to respond to the opportunities for economic growth generated by local urban-industrial development, or by the expansion of national and international markets, depends on the capacity for adaptive responses on the part of cultural, political, and economic institutions as well as on technical innovations which can generate substantial new income flows in response to the new economic opportunities. Improvements in the welfare of the rural population in poor regions will call for institutional innovations which effectively link urban and rural areas through a series of nonmarket and market relationships. A major implication of the models is that given the "markets" in which they operate, bureaucracies will be successful in capturing a relatively large share of the economic gains generated by their activities.
NASA Astrophysics Data System (ADS)
Fu, Xiangwen; Liu, Junfeng; Ban-Weiss, George A.; Zhang, Jiachen; Huang, Xin; Ouyang, Bin; Popoola, Olalekan; Tao, Shu
2017-09-01
Street canyons are ubiquitous in urban areas. Traffic-related air pollutants in street canyons can adversely affect human health. In this study, an urban-scale traffic pollution dispersion model is developed considering street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. In the model, vehicle exhausts generated from traffic flows first disperse inside street canyons along the micro-scale wind field generated by computational fluid dynamics (CFD) model. Then, pollutants leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing. We found that an increase in building height leads to heavier pollution inside canyons and lower pollution outside canyons at pedestrian level, resulting in higher domain-averaged concentrations over the area. In addition, canyons with highly even or highly uneven building heights on each side of the street tend to lower the urban-scale air pollution concentrations at pedestrian level. Further, increasing street widths tends to lead to lower pollutant concentrations by reducing emissions and enhancing ventilation simultaneously. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry while considering traffic demand as well as local weather patterns may significantly reduce inhalation of unhealthy air by urban residents.
NASA Astrophysics Data System (ADS)
Koutiva, Ifigeneia; Makropoulos, Christos
2015-04-01
The urban water system's sustainable evolution requires tools that can analyse and simulate the complete cycle including both physical and cultural environments. One of the main challenges, in this regard, is the design and development of tools that are able to simulate the society's water demand behaviour and the way policy measures affect it. The effects of these policy measures are a function of personal opinions that subsequently lead to the formation of people's attitudes. These attitudes will eventually form behaviours. This work presents the design of an ABM tool for addressing the social dimension of the urban water system. The created tool, called Urban Water Agents' Behaviour (UWAB) model, was implemented, using the NetLogo agent programming language. The main aim of the UWAB model is to capture the effects of policies and environmental pressures to water conservation behaviour of urban households. The model consists of agents representing urban households that are linked to each other creating a social network that influences the water conservation behaviour of its members. Household agents are influenced as well by policies and environmental pressures, such as drought. The UWAB model simulates behaviour resulting in the evolution of water conservation within an urban population. The final outcome of the model is the evolution of the distribution of different conservation levels (no, low, high) to the selected urban population. In addition, UWAB is implemented in combination with an existing urban water management simulation tool, the Urban Water Optioneering Tool (UWOT) in order to create a modelling platform aiming to facilitate an adaptive approach of water resources management. For the purposes of this proposed modelling platform, UWOT is used in a twofold manner: (1) to simulate domestic water demand evolution and (2) to simulate the response of the water system to the domestic water demand evolution. The main advantage of the UWAB - UWOT model integration is that it allows the investigation of the effects of different water demand management strategies to an urban population's water demand behaviour and ultimately the effects of these policies to the volume of domestic water demand and the water resources system. The proposed modelling platform is optimised to simulate the effects of water policies during the Athens drought period of 1988-1994. The calibrated modelling platform is then applied to evaluate scenarios of water supply, water demand and water demand management strategies.
NASA Astrophysics Data System (ADS)
Sailor, David J.; Georgescu, Matei; Milne, Jeffrey M.; Hart, Melissa A.
2015-10-01
Given increasing utility of numerical models to examine urban impacts on meteorology and climate, there exists an urgent need for accurate representation of seasonally and diurnally varying anthropogenic heating data, an important component of the urban energy budget for cities across the world. Incorporation of anthropogenic heating data as inputs to existing climate modeling systems has direct societal implications ranging from improved prediction of energy demand to health assessment, but such data are lacking for most cities. To address this deficiency we have applied a standardized procedure to develop a national database of seasonally and diurnally varying anthropogenic heating profiles for 61 of the largest cities in the United Stated (U.S.). Recognizing the importance of spatial scale, the anthropogenic heating database developed includes the city scale and the accompanying greater metropolitan area. Our analysis reveals that a single profile function can adequately represent anthropogenic heating during summer but two profile functions are required in winter, one for warm climate cities and another for cold climate cities. On average, although anthropogenic heating is 40% larger in winter than summer, the electricity sector contribution peaks during summer and is smallest in winter. Because such data are similarly required for international cities where urban climate assessments are also ongoing, we have made a simple adjustment accounting for different international energy consumption rates relative to the U.S. to generate seasonally and diurnally varying anthropogenic heating profiles for a range of global cities. The methodological approach presented here is flexible and straightforwardly applicable to cities not modeled because of presently unavailable data. Because of the anticipated increase in global urban populations for many decades to come, characterizing this fundamental aspect of the urban environment - anthropogenic heating - is an essential element toward continued progress in urban climate assessment.
Greenhouse gas emissions from integrated urban drainage systems: Where do we stand?
NASA Astrophysics Data System (ADS)
Mannina, Giorgio; Butler, David; Benedetti, Lorenzo; Deletic, Ana; Fowdar, Harsha; Fu, Guangtao; Kleidorfer, Manfred; McCarthy, David; Steen Mikkelsen, Peter; Rauch, Wolfgang; Sweetapple, Chris; Vezzaro, Luca; Yuan, Zhiguo; Willems, Patrick
2018-04-01
As sources of greenhouse gas (GHG) emissions, integrated urban drainage systems (IUDSs) (i.e., sewer systems, wastewater treatment plants and receiving water bodies) contribute to climate change. This paper, produced by the International Working Group on Data and Models, which works under the IWA/IAHR Joint Committee on Urban Drainage, reviews the state-of-the-art and modelling tools developed recently to understand and manage GHG emissions from IUDS. Further, open problems and research gaps are discussed and a framework for handling GHG emissions from IUDSs is presented. The literature review reveals that there is a need to strengthen already available mathematical models for IUDS to take GHG into account.
Estimating tuberculosis incidence from primary survey data: a mathematical modeling approach.
Pandey, S; Chadha, V K; Laxminarayan, R; Arinaminpathy, N
2017-04-01
There is an urgent need for improved estimations of the burden of tuberculosis (TB). To develop a new quantitative method based on mathematical modelling, and to demonstrate its application to TB in India. We developed a simple model of TB transmission dynamics to estimate the annual incidence of TB disease from the annual risk of tuberculous infection and prevalence of smear-positive TB. We first compared model estimates for annual infections per smear-positive TB case using previous empirical estimates from China, Korea and the Philippines. We then applied the model to estimate TB incidence in India, stratified by urban and rural settings. Study model estimates show agreement with previous empirical estimates. Applied to India, the model suggests an annual incidence of smear-positive TB of 89.8 per 100 000 population (95%CI 56.8-156.3). Results show differences in urban and rural TB: while an urban TB case infects more individuals per year, a rural TB case remains infectious for appreciably longer, suggesting the need for interventions tailored to these different settings. Simple models of TB transmission, in conjunction with necessary data, can offer approaches to burden estimation that complement those currently being used.
Dynamic fuzzy modeling of storm water infiltration in urban fractured aquifers
Hong, Y.-S.; Rosen, Michael R.; Reeves, R.R.
2002-01-01
In an urban fractured-rock aquifer in the Mt. Eden area of Auckland, New Zealand, disposal of storm water is via "soakholes" drilled directly into the top of the fractured basalt rock. The dynamic response of the groundwater level due to the storm water infiltration shows characteristics of a strongly time-varying system. A dynamic fuzzy modeling approach, which is based on multiple local models that are weighted using fuzzy membership functions, has been developed to identify and predict groundwater level fluctuations caused by storm water infiltration. The dynamic fuzzy model is initialized by the fuzzy clustering algorithm and optimized by the gradient-descent algorithm in order to effectively derive the multiple local models-each of which is associated with a locally valid model that represents the groundwater level state as a response to different intensities of rainfall events. The results have shown that even if the number of fuzzy local models derived is small, the fuzzy modeling approach developed provides good prediction results despite the highly time-varying nature of this urban fractured-rock aquifer system. Further, it allows interpretable representations of the dynamic behavior of the groundwater system due to storm water infiltration.
Simulating Urban Tree Effects on Air, Water, and Heat Pollution Mitigation: iTree-Hydro Model
NASA Astrophysics Data System (ADS)
Yang, Y.; Endreny, T. A.; Nowak, D.
2011-12-01
Urban and suburban development changes land surface thermal, radiative, porous, and roughness properties and pollutant loading rates, with the combined effect leading to increased air, water, and heat pollution (e.g., urban heat islands). In this research we present the USDA Forest Service urban forest ecosystem and hydrology model, iTree Eco and Hydro, used to analyze how tree cover can deliver valuable ecosystem services to mitigate air, water, and heat pollution. Air pollution mitigation is simulated by dry deposition processes based on detected pollutant levels for CO, NO2, SO2, O3 and atmospheric stability and leaf area indices. Water quality mitigation is simulated with event mean concentration loading algorithms for N, P, metals, and TSS, and by green infrastructure pollutant filtering algorithms that consider flow path dispersal areas. Urban cooling considers direct shading and indirect evapotranspiration. Spatially distributed estimates of hourly tree evapotranspiration during the growing season are used to estimate human thermal comfort. Two main factors regulating evapotranspiration are soil moisture and canopy radiation. Spatial variation of soil moisture is represented by a modified urban topographic index and radiation for each tree is modified by considering aspect, slope and shade from surrounding buildings or hills. We compare the urban cooling algorithms used in iTree-Hydro with the urban canopy and land surface physics schemes used in the Weather Research and Forecasting model. We conclude by identifying biophysical feedbacks between tree-modulated air and water quality environmental services and how these may respond to urban heating and cooling. Improvements to this iTree model are intended to assist managers identify valuable tree services for urban living.
NASA Astrophysics Data System (ADS)
Tallis, Matthew; Freer-Smith, Peter; Sinnett, Danielle; Aylott, Matthew; Taylor, Gail
2010-05-01
In the urban environment atmospheric pollution by PM10 (particulate matter with a diameter less than 10 x 10-6 m) is a problem that can have adverse effects on human health, particularly increasing rates of respiratory disease. The main contributors to atmospheric PM10 in the urban environment are road traffic, industry and power production. The urban tree canopy is a receptor for removing PM10s from the atmosphere due to the large surface areas generated by leaves and air turbulence created by the structure of the urban forest. In this context urban greening has long been known as a mechanism to contribute towards PM10 removal from the air, furthermore, tree canopy cover has a role in contributing towards a more sustainable urban environment. The work reported here has been carried out within the BRIDGE project (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism). The aim of this project is to assess the fluxes of energy, water, carbon dioxide and particulates within the urban environment and develope a DSS (Decision Support System) to aid urban planners in sustainable development. A combination of published urban canopy cover data from ground, airborne and satellite based surveys was used. For each of the 33 London boroughs the urban canopy was classified to three groups, urban woodland, street trees and garden trees and each group quantified in terms of ground cover. The total [PM10] for each borough was taken from the LAEI (London Atmospheric Emissions Inventory 2006) and the contribution to reducing [PM10] was assessed for each canopy type. Deposition to the urban canopy was assessed using the UFORE (Urban Forest Effects Model) approach. Deposition to the canopy, boundary layer height and percentage reduction of the [PM10] in the atmosphere was assessed using both hourly meterological data and [PM10] and seasonal data derived from annual models. Results from hourly and annual data were compared with measured values. The model was then applied to future predictions of annual [PM10] and future canopy cover scenarios for London. The contribution of each canopy type subjected to the different atmospheric [PM10] of the 33 London boroughs now and in the future will be discussed. Implementing these findings into a decision support system (DSS) for sustainable urban planning will also be discussed.
ERIC Educational Resources Information Center
Grant, Kathryn E.; Farahmand, Farahnaz; Meyerson, David A.; Dubois, David L.; Tolan, Patrick H.; Gaylord-Harden, Noni K.; Barnett, Alexandra; Horwath, Jordan; Doxie, Jackie; Tyler, Donald; Harrison, Aubrey; Johnson, Sarah; Duffy, Sophia
2014-01-01
This manuscript summarizes an iterative process used to develop a new intervention for low-income urban youth at risk for negative academic outcomes (e.g., disengagement, failure, drop-out). A series of seven steps, building incrementally one upon the other, are described: 1) identify targets of the intervention; 2) develop logic model; 3)…
Application of virtual reality GIS in urban planning: an example in Huangdao district
NASA Astrophysics Data System (ADS)
Han, Yong; Qiao, Xin; Sun, Weichen; Zhang, Litao
2007-06-01
As an important development direction of GIS, Virtual Reality GIS was founded in 1950s. After 1990s, due to the fast development of its theory and the computer technology, Virtual Reality has been applied to many fields: military, aerospace, design, manufactory, information management, business, construction, city management, medical, education, etc.. The most famous project is the Virtual Los Angeles implemented by the Urban Simulation Team (UST) of UCLA. The main focus of the UST is a long-term effort to build a real-time Virtual Reality model of the entire Los Angeles basin for use by architects, urban planners, emergency response teams, and the government entities. When completed, the entire Virtual L.A. model will cover an area well in excess of 10000 square miles and will elegantly scale from satellite images to street level views accurate enough to allow the signs in the window of the shops and the graffiti on the walls to be legible. Till now, the virtual L.A. has been applied to urban environments and design analysis, transportation studies, historic reconstruction and education, etc. Compared to the early development abroad, the development of Virtual Reality GIS in China is relatively late. It is researched in some universities in early years. But recently, it has been attended by the populace and been used in many social fields: urban planning, environmental protection, historic protection and recovery, real estate, tourism, education etc.. The application of Virtual Reality in urban planning of Huangdao District, Qingdao City is introduced in this paper.
Wind Tunnel Measurements of Turbulent Boundary Layer over Hypothetical Urban Roughness Elements
NASA Astrophysics Data System (ADS)
Ho, Y. K.; Liu, C. H.
2012-04-01
Urban morphology affects the near-ground atmospheric boundary layer that in turn modifies the wind flows and pollutant dispersion over urban areas. A number of numerical models (large-eddy simulation, LES and k-ɛ turbulence models) have been developed to elucidate the transport processes in and above urban street canyons. To complement the modelling results, we initiated a wind tunnel study to examine the influence of idealized urban roughness on the flow characteristics and pollutant dispersion mechanism over 2D idealized street canyons placed in cross flows. Hot-wire anemometry (HWA) was employed in this study to measure the flows over 2D street canyons in the wind tunnel in our university. Particular focus in the beginning stage was on the fabrication of hot-wire probes, data acquisition system, and signal processing technique. Employing the commonly adopted hot-wire universal function, we investigated the relationship in between and developed a scaling factor which could generalize the output of our hot-wire probes to the standardized one as each hot-wire probes has its unique behaviour. Preliminary experiments were performed to measure the wind flows over street canyons of unity aspect ratio. Vertical profiles of the ensemble average velocity and fluctuations at three different segments over the street canyons were collected. The results were then compared with our LES that show a good argument with each other. Additional experiments are undertaken to collect more data in order to formulate the pollutant dispersion mechanism of street canyons and urban areas.
NASA Astrophysics Data System (ADS)
Agugiaro, G.; Robineau, J.-L.; Rodrigues, P.
2017-09-01
Growing urbanisation, its related environmental impacts, and social inequalities in cities are challenges requiring a holistic urban planning perspective that takes into account the different aspects of sustainable development. One crucial point is to reconcile urban planning with environmental targets, which include decreasing energy demand and CO2 emissions, and increasing the share of renewable energy. Within this context, the project CI-NERGY aims to develop urban energy modelling, simulation and optimisation methods and tools to support decision making in urban planning. However, there are several barriers to the implementation of such tools, such as: fragmentation of involved disciplines, different stakeholders, multiplicity of scales in a city and extreme heterogeneity of data regarding all the processes to be addressed. Project CI-NERGY aims, among other goals, at overcoming these barriers, and focuses on two case study cities, Geneva in Switzerland and Vienna in Austria. In particular, project CI-NERGY faces several challenges starting with different cities, heterogeneous data sources and simulation tools, diverse user groups and their individual needs. This paper describes the experiences gathered during the project. After giving a brief overview of the project, the two case study cities, Geneva and Vienna, are briefly presented, and the focus shifts then on overall system architecture of the project, ranging from urban data modelling topics to the implementation of a Service-Oriented Architecture. Some of the challenges faced, the solutions found, as well some plans for future improvements are described and commented.
Rainfall-runoff simulation in urban hydology - An indoor physical model
NASA Astrophysics Data System (ADS)
Isidoro, Jorge; Silveira, Alexandre; da Silva, António; Gonçalves, Flávio; de Deus, Fábio; dos Reis, Simone
2015-04-01
According to the UN the current levels of urbanization are unprecedented and so is the number and size of the world's largest cities. Moreover, in the next four decades, all of the world's population growth is most likely to take place in urban areas. This growth will include a draw in some of the rural population through rural to urban migration. The increase in size of individual concentrations of people (e.g., cities) is a consequence of the urbanization process that has an important role on the rainfall-runoff process. This reality implies more attention to the study of urban flooding, among other natural hazards. This work aims to present a laboratory (indoor) physical model at a 1:100 scale of an urban area under simulated rainfall (pressurized nozzles). The model, a V-shaped rectangular area (2.00m × 4.00m) with the ability to adjust its longitudinal and transversal slopes, allows placing blocks simulating several geometries of buildings. This model was conceived and developed at the Institute of Science and Technology of the Federal University of Alfenas (MG) in Brazil, where it is used for research and teaching activities. Several experiments were completed in order to simulate the rainfall-runoff process over an impervious area with and without buildings, with distinct longitudinal and transversal slopes. Significant differences were found in the shape of the resulting hydrographs. This work will allow assessing the possibility of scaling the results obtained with this indoor model to a larger-scale (1:25 to 1:10) outdoor model which is currently being designed.
24 CFR 200.926b - Model codes.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Model codes. 200.926b Section 200... DEVELOPMENT GENERAL INTRODUCTION TO FHA PROGRAMS Minimum Property Standards § 200.926b Model codes. (a) Incorporation by reference. The following model code publications are incorporated by reference in accordance...