Science.gov

Sample records for urban land-use intensity

  1. Urban land-use intensity extraction based on Quickbird high resolution image

    NASA Astrophysics Data System (ADS)

    Zeng, Chen; Liu, Yanfang

    2008-12-01

    The abundance of high resolution image information and the intensity of urban spatial system can be combined organically in the process of image understanding, information extraction and quota measurement. The evaluation indices of urban land use intensity extracted from Quickbird image include building density, floor ratio area, green ratio, vacancy ratio, and etc. Firstly, land use condition in the research area is acquired through the overlay of Quickbird image and Wuhan land use map. Secondly, the study adopts spectral threshold segmentation method to extract building shadow, object-oriented classification method to obtain building base area, shadow-based height reversion approach to estimate building height in typical urban residential block and object-oriented segmentation and classification approach to estimate concerned indices in city village. In the end, the comparison and discussion of urban land intensity are made according to BD and FAR in urban residential block and city village respectively. It is concluded that FAR (floor ratio area) in urban residential block can be planned higher and BD (building density) in city village should be lower according to the present planning regulations in Wuhan.

  2. Effects of land use intensity on the natural attenuation capacity of urban soils in Beijing, China.

    PubMed

    Wang, Meie; Faber, Jack H; Chen, Weiping; Li, Xiaoma; Markert, Bernd

    2015-07-01

    Urban soils are major sinks that provide the services of attenuating and detoxifying environmental pollutants. This significant ecosystem service of urban soil can be evaluated by the natural attenuation capacity (NAC). In this research, we develop a method to calculate the natural pollutant attenuation capacity of urban soils on the basis of 5 chemical and physical measurements. By selecting municipal parks soils for reference, we assessed the spatial and temporal changes of NAC in Beijing city soils under influences of rapid urbanization. Results indicated that NAC was increasingly impacted by land use in the order: parksurban soil NAC. However, their roles are opposite. It would take dozens of years to reach the maximum soil NAC by soil self-recovery. The spatial distribution of NAC in Beijing built-up area resembled the age of urbanization. Regional hot spots of NAC corresponded to the land use distribution and the urbanization progress in Beijing city. The developed index can be used to assess the impacts of urbanization on soil ecosystem services of natural attenuation of contaminants.

  3. The Interpretation of Urban Land Use Maps

    ERIC Educational Resources Information Center

    Robinson, Roger J.

    1973-01-01

    Three steps in urban land use analysis, fieldwork mapping, processing of data, and classification and delimitation of zones in an urban area, are described. An appendix presents a classification of buildings by function. (KM)

  4. A spatial panel ordered-response model with application to the analysis of urban land-use development intensity patterns

    NASA Astrophysics Data System (ADS)

    Ferdous, Nazneen; Bhat, Chandra R.

    2013-01-01

    This paper proposes and estimates a spatial panel ordered-response probit model with temporal autoregressive error terms to analyze changes in urban land development intensity levels over time. Such a model structure maintains a close linkage between the land owner's decision (unobserved to the analyst) and the land development intensity level (observed by the analyst) and accommodates spatial interactions between land owners that lead to spatial spillover effects. In addition, the model structure incorporates spatial heterogeneity as well as spatial heteroscedasticity. The resulting model is estimated using a composite marginal likelihood (CML) approach that does not require any simulation machinery and that can be applied to data sets of any size. A simulation exercise indicates that the CML approach recovers the model parameters very well, even in the presence of high spatial and temporal dependence. In addition, the simulation results demonstrate that ignoring spatial dependency and spatial heterogeneity when both are actually present will lead to bias in parameter estimation. A demonstration exercise applies the proposed model to examine urban land development intensity levels using parcel-level data from Austin, Texas.

  5. Noise levels associated with urban land use.

    PubMed

    King, Gavin; Roland-Mieszkowski, Marek; Jason, Timothy; Rainham, Daniel G

    2012-12-01

    Recent trends towards the intensification of urban development to increase urban densities and avoid sprawl should be accompanied by research into the potential for related health impacts from environmental exposure. The objective of the current study was to examine the effect of the built environment and land use on levels of environmental noise. Two different study areas were selected using a combination of small area census geography, land use information, air photography, and ground-truthing. The first study area represented residential land use and consisted of two- to three-story single-family homes. The second study area was characteristic of mixed-use urban planning with apartment buildings as well as commercial and institutional development. Study areas were subdivided into six grids, and a location was randomly selected within each grid for noise monitoring. Each location was sampled four times over a 24-h day, resulting in a total of 24 samples for each of the two areas. Results showed significant variability in noise within study areas and significantly higher levels of environmental noise in the mixed-use area. Both study areas exceeded recommended noise limits when evaluated against World Health Organization guidelines and yielded average noise events values in the moderate to serious annoyance range with the potential to obscure normal conversation and cause sleep disturbance.

  6. Noise levels associated with urban land use.

    PubMed

    King, Gavin; Roland-Mieszkowski, Marek; Jason, Timothy; Rainham, Daniel G

    2012-12-01

    Recent trends towards the intensification of urban development to increase urban densities and avoid sprawl should be accompanied by research into the potential for related health impacts from environmental exposure. The objective of the current study was to examine the effect of the built environment and land use on levels of environmental noise. Two different study areas were selected using a combination of small area census geography, land use information, air photography, and ground-truthing. The first study area represented residential land use and consisted of two- to three-story single-family homes. The second study area was characteristic of mixed-use urban planning with apartment buildings as well as commercial and institutional development. Study areas were subdivided into six grids, and a location was randomly selected within each grid for noise monitoring. Each location was sampled four times over a 24-h day, resulting in a total of 24 samples for each of the two areas. Results showed significant variability in noise within study areas and significantly higher levels of environmental noise in the mixed-use area. Both study areas exceeded recommended noise limits when evaluated against World Health Organization guidelines and yielded average noise events values in the moderate to serious annoyance range with the potential to obscure normal conversation and cause sleep disturbance. PMID:22707308

  7. Urban Dynamics: Analyzing Land Use Change in Urban Environments

    NASA Technical Reports Server (NTRS)

    Acevedo, William; Richards, Lora R.; Buchanan, Janis T.; Wegener, Whitney R.

    2000-01-01

    In FY99, the Earth Resource Observation System (EROS) staff at Ames continued managing the U.S. Geological Survey's (USGS) Urban Dynamics Research program, which has mapping and analysis activities at five USGS mapping centers. Historic land use reconstruction work continued while activities in geographic analysis and modeling were expanded. Retrospective geographic information system (GIS) development - the spatial reconstruction of a region's urban land-use history - focused on the Detroit River Corridor, California's Central Valley, and the city of Sioux Falls, South Dakota.

  8. Challenges and opportunities in mapping land use intensity globally☆

    PubMed Central

    Kuemmerle, Tobias; Erb, Karlheinz; Meyfroidt, Patrick; Müller, Daniel; Verburg, Peter H; Estel, Stephan; Haberl, Helmut; Hostert, Patrick; Jepsen, Martin R.; Kastner, Thomas; Levers, Christian; Lindner, Marcus; Plutzar, Christoph; Verkerk, Pieter Johannes; van der Zanden, Emma H; Reenberg, Anette

    2013-01-01

    Future increases in land-based production will need to focus more on sustainably intensifying existing production systems. Unfortunately, our understanding of the global patterns of land use intensity is weak, partly because land use intensity is a complex, multidimensional term, and partly because we lack appropriate datasets to assess land use intensity across broad geographic extents. Here, we review the state of the art regarding approaches for mapping land use intensity and provide a comprehensive overview of available global-scale datasets on land use intensity. We also outline major challenges and opportunities for mapping land use intensity for cropland, grazing, and forestry systems, and identify key issues for future research. PMID:24143157

  9. Effects of urban land-use on largescale stonerollers in the Mobile River Basin, Birmingham, AL

    USGS Publications Warehouse

    Iwanowicz, Deborah; Black, M.C.; Blazer, Vicki; Zappia, H.; Bryant, Wade L.

    2016-01-01

    During the spring and fall of 2001 and the spring of 2002 a study was conducted to evaluate the health of the largescale stoneroller (Campostoma oligolepis) populations in streams along an urban land-use gradient. Sites were selected from a pool of naturally similar sub-basins (eco-region, basin size, and geology) of the Mobile River basin (MRB), using an index of urban intensity derived from infrastructure, socioeconomic, and land-use data. This urban land-use gradient (ULUG) is a multimetric indicator of urban intensity, ranging from 0 (background) to 100 (intense urbanization). Campostoma sp. have been used previously as indicators of stream health and are common species found in all sites within the MRB. Endpoints used to determine the effects of urban land-use on the largescale stoneroller included total glutathione, histology, hepatic apoptosis, condition factor and external lesions. Liver glutathione levels were positively associated with increasing urban land-use (r2 = 0.94). Histopathological examination determined that some abnormalities and lesions were correlated with the ULUG and generally increased in prevalence or severity with increasing urbanization. Liver macrophage aggregates were positively correlated to the ULUG. The occurrence of nucleosomal ladders (indicating apoptotic cell death) did not correspond with urban intensity in a linear fashion. Apoptosis, as well as prevalence and severity of a myxozoan parasite, appeared to have a hormetic dose–response relationship. The majority of the biomarkers suggested fish health was compromised in areas where the ULUG ≥ 36.

  10. Effects of urban land-use on largescale stonerollers in the Mobile River Basin, Birmingham, AL.

    PubMed

    Iwanowicz, D; Black, M C; Blazer, V S; Zappia, H; Bryant, W

    2016-04-01

    During the spring and fall of 2001 and the spring of 2002 a study was conducted to evaluate the health of the largescale stoneroller (Campostoma oligolepis) populations in streams along an urban land-use gradient. Sites were selected from a pool of naturally similar sub-basins (eco-region, basin size, and geology) of the Mobile River basin (MRB), using an index of urban intensity derived from infrastructure, socioeconomic, and land-use data. This urban land-use gradient (ULUG) is a multimetric indicator of urban intensity, ranging from 0 (background) to 100 (intense urbanization). Campostoma sp. have been used previously as indicators of stream health and are common species found in all sites within the MRB. Endpoints used to determine the effects of urban land-use on the largescale stoneroller included total glutathione, histology, hepatic apoptosis, condition factor and external lesions. Liver glutathione levels were positively associated with increasing urban land-use (r(2) = 0.94). Histopathological examination determined that some abnormalities and lesions were correlated with the ULUG and generally increased in prevalence or severity with increasing urbanization. Liver macrophage aggregates were positively correlated to the ULUG. The occurrence of nucleosomal ladders (indicating apoptotic cell death) did not correspond with urban intensity in a linear fashion. Apoptosis, as well as prevalence and severity of a myxozoan parasite, appeared to have a hormetic dose-response relationship. The majority of the biomarkers suggested fish health was compromised in areas where the ULUG ≥ 36.

  11. Dynamism of Transportation and Land Use Interaction in Urban Context

    NASA Astrophysics Data System (ADS)

    Pandya, Rajesh J.; Katti, B. K.

    2012-10-01

    Transportation in urban areas is highly complex and the urban transport system is intricately linked with urban form and spatial structure. Urban transit is an important dimension of mobility, notably in high density areas. The spatial separation of human activities which creates the need for travel and goods transport is the underlying principle of transport analysis and forecasting. To understand the complex relationships between transportation and land use and to help the urban planning process, several models have been developed. Many theories, models are developed by different authors on land use and transportation interaction, which clearly indicate that change in land use transformation have a greater impact on transportation. Similarly, introducing new transportation facility or strengthening of existing transport facility makes an impact on the abutting land. In cities like Delhi, Navi Mumbai, Ahmedabad, introducing of new mass transport system or strengthening of existing transportation system had given greater impact on surrounding development. In this Paper the major theoretical approaches to explain the two-way interaction of land use and transport in metropolitan areas are summarized. The paper also reviews research on the two-way interaction between urban land use and transport, i.e. the location and mobility responses of private actors (households and firms, travelers) to changes in the urban land use and transport system at the urban regional level.

  12. Using land use change trajectories to quantify the effects of urbanization on urban heat island

    NASA Astrophysics Data System (ADS)

    Feng, Huihui; Zhao, Xiaofeng; Chen, Feng; Wu, Lichun

    2014-02-01

    This paper proposed a quantitative method of land use change trajectory, which means the succession among different land use types across time, to examine the effects of urbanization on an urban heat island (UHI). To accomplish this, multi-temporal images from Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) of Xiamen City in China from 1987 to 2007 were selected. First, the land use change trajectories were extracted based on the classified images from different years. Then the land surface temperatures (LST) were retrieved and the magnitudes of the UHI were evaluated using the UHI intensity (UHII) indicator. Finally, the indices of the contribution to UHI intensity (CUHII) were constructed and calculated to quantify the effects of each land use change trajectory on the UHI during urbanization. The results demonstrated that the land use change trajectories and CUHII are effective and useful in quantifying the effects of urbanization on UHI. In Xiamen City, a total of 2218 land use change trajectories were identified and 530 of them were the existing urban or urbanization trajectories. The UHII presents a trend of continuous increase from 0.83 °C in 1987 to 2.14 °C in 2007. With respect to the effects of urban growth on UHI, the contribution of existing urban area to UHI decreased during urbanization. Prior to 2007, the existing urban area of trajectory NO. 44444 had the most significant effect on UHI with the greatest CUHII, while the value has decreased from 55.00% in 1987 to 13.03% in 2007 because of the addition of new urbanized area. In 2007, the greatest CUHII was replaced by a trajectory from farmland to built-up area (NO. 22224) with the CUHII of 21.98%, followed by the existing urban area of trajectory NO. 44444 with the CUHII of 13.03%. These results provide not only a new methodology to assess the environmental effects of urbanization, but also decision-supports for the planning and management of cities.

  13. Cities and Urban Land Use in Advanced Placement Human Geography.

    ERIC Educational Resources Information Center

    Ford, Larry R.

    2000-01-01

    Discusses the cities and urban land use section of the Advanced Placement (AP) human geography course, focusing on the: (1) definitions of urbanism; (2) origin and evolution of cities; (3) functional character of contemporary cities; (4) built environment and social space; and (5) responses to urban growth. (CMK)

  14. Airborne lidar intensity calibration and application for land use classification

    NASA Astrophysics Data System (ADS)

    Li, Dong; Wang, Cheng; Luo, She-Zhou; Zuo, Zheng-Li

    2014-11-01

    Airborne Light Detection and Ranging (LiDAR) is an active remote sensing technology which can acquire the topographic information efficiently. It can record the accurate 3D coordinates of the targets and also the signal intensity (the amplitude of backscattered echoes) which represents reflectance characteristics of targets. The intensity data has been used in land use classification, vegetation fractional cover and leaf area index (LAI) estimation. Apart from the reflectance characteristics of the targets, the intensity data can also be influenced by many other factors, such as flying height, incident angle, atmospheric attenuation, laser pulse power and laser beam width. It is therefore necessary to calibrate intensity values before further applications. In this study, we analyze the factors affecting LiDAR intensity based on radar range equation firstly, and then applying the intensity calibration method, which includes the sensor-to-target distance and incident angle, to the laser intensity data over the study area. Finally the raw LiDAR intensity and normalized intensity data are used for land use classification along with LiDAR elevation data respectively. The results show that the classification accuracy from the normalized intensity data is higher than that from raw LiDAR intensity data and also indicate that the calibration of LiDAR intensity data is necessary in the application of land use classification.

  15. Influences of different land use spatial control schemes on farmland conversion and urban development.

    PubMed

    Zhou, Min; Tan, Shukui; Zhang, Lu

    2015-01-01

    Land use planning is always officially implemented as an effective tool to control urban development and protect farmland. However, its impact on land use change remains untested in China. Using a case study of Hang-Jia-Hu region, the main objective of this paper was to investigate the influence of different land use spatial control schemes on farmland conversion and urban development. Comparisons of farmland conversion and urban development patterns between the urban planning area and the non-urban planning area were characterized by using remote sensing, geographical information systems, and landscape metrics. Results indicated that farmland conversion in the non-urban planning area was more intensive than that in the urban planning area, and that farmland patterns was more fragmented in the non-urban planning area. Built-up land patterns in the non-urban planning area showed a trend of aggregation, while those in the urban planning area had a dual trend of fragmentation and aggregation. Existing built-up areas had less influence on built-up land sprawl in the non-urban planning area than that in the urban planning area. Built-up land sprawl in the form of continuous development in the urban planning area led to farmland conversion; and in the non-urban planning area, built-up land sprawl in the form of leapfrogging development resulted in farmland areal declines and fragmentation. We argued that it is a basic requirement to integrate land use plans in urban and non-urban planning areas for land use planning and management. PMID:25915897

  16. Influences of different land use spatial control schemes on farmland conversion and urban development.

    PubMed

    Zhou, Min; Tan, Shukui; Zhang, Lu

    2015-01-01

    Land use planning is always officially implemented as an effective tool to control urban development and protect farmland. However, its impact on land use change remains untested in China. Using a case study of Hang-Jia-Hu region, the main objective of this paper was to investigate the influence of different land use spatial control schemes on farmland conversion and urban development. Comparisons of farmland conversion and urban development patterns between the urban planning area and the non-urban planning area were characterized by using remote sensing, geographical information systems, and landscape metrics. Results indicated that farmland conversion in the non-urban planning area was more intensive than that in the urban planning area, and that farmland patterns was more fragmented in the non-urban planning area. Built-up land patterns in the non-urban planning area showed a trend of aggregation, while those in the urban planning area had a dual trend of fragmentation and aggregation. Existing built-up areas had less influence on built-up land sprawl in the non-urban planning area than that in the urban planning area. Built-up land sprawl in the form of continuous development in the urban planning area led to farmland conversion; and in the non-urban planning area, built-up land sprawl in the form of leapfrogging development resulted in farmland areal declines and fragmentation. We argued that it is a basic requirement to integrate land use plans in urban and non-urban planning areas for land use planning and management.

  17. Impact of urbanization and land-use change on climate.

    PubMed

    Kalnay, Eugenia; Cai, Ming

    2003-05-29

    The most important anthropogenic influences on climate are the emission of greenhouse gases and changes in land use, such as urbanization and agriculture. But it has been difficult to separate these two influences because both tend to increase the daily mean surface temperature. The impact of urbanization has been estimated by comparing observations in cities with those in surrounding rural areas, but the results differ significantly depending on whether population data or satellite measurements of night light are used to classify urban and rural areas. Here we use the difference between trends in observed surface temperatures in the continental United States and the corresponding trends in a reconstruction of surface temperatures determined from a reanalysis of global weather over the past 50 years, which is insensitive to surface observations, to estimate the impact of land-use changes on surface warming. Our results suggest that half of the observed decrease in diurnal temperature range is due to urban and other land-use changes. Moreover, our estimate of 0.27 degrees C mean surface warming per century due to land-use changes is at least twice as high as previous estimates based on urbanization alone.

  18. Land-use suitability analysis for urban development in Beijing.

    PubMed

    Liu, Renzhi; Zhang, Ke; Zhang, Zhijiao; Borthwick, Alistair G L

    2014-12-01

    Land-use suitability analyses are of considerable use in the planning of mega-cities. An Urban Development Land-use Suitability Mapping (UDLSM) approach has been constructed, based on opportunity and constraint criteria. Two Multi-criteria Evaluation (MCE) methods, the Ideal Point Method (IPM) and Ordered Weighted Averaging (OWA), were used to generate the opportunity map. The protection map was obtained by means of constraint criteria, utilizing the Boolean union operator. A suitability map was then generated by overlaying the opportunity and protection maps. By applying the UDLSM approach to Beijing, its urban development land-use suitability was mapped, and a sensitivity analysis undertaken to examine the robustness of the proposed approach. Indirect validation was achieved by mutual comparisons of suitability maps resulting from the two MCE methods, where the overall agreement of 91% and kappa coefficient of 0.78 indicated that both methods provide very similar spatial land-use suitability distributions. The suitability level decreases from central Beijing to its periphery, and the area classed as suitable amounts to 28% of the total area. Leading attributes of each opportunity factor for suitability were revealed, with 2256 km(2), i.e. 70%, of existing development land being overlaid by suitable areas in Beijing. Conflicting parcels of land were identified by overlaying the resultant map with two previous development blueprints for Beijing. The paper includes several recommendations aimed at improving the long-term urban development plans for Beijing.

  19. Mapping urban environmental noise: a land use regression method.

    PubMed

    Xie, Dan; Liu, Yi; Chen, Jining

    2011-09-01

    Forecasting and preventing urban noise pollution are major challenges in urban environmental management. Most existing efforts, including experiment-based models, statistical models, and noise mapping, however, have limited capacity to explain the association between urban growth and corresponding noise change. Therefore, these conventional methods can hardly forecast urban noise at a given outlook of development layout. This paper, for the first time, introduces a land use regression method, which has been applied for simulating urban air quality for a decade, to construct an urban noise model (LUNOS) in Dalian Municipality, Northwest China. The LUNOS model describes noise as a dependent variable of surrounding various land areas via a regressive function. The results suggest that a linear model performs better in fitting monitoring data, and there is no significant difference of the LUNOS's outputs when applied to different spatial scales. As the LUNOS facilitates a better understanding of the association between land use and urban environmental noise in comparison to conventional methods, it can be regarded as a promising tool for noise prediction for planning purposes and aid smart decision-making.

  20. [Impacts of rail transit in Shanghai on its urban land use change].

    PubMed

    Li, Cheng; Li, Jun-Xiang; Li, Rong; Xu, Ming-Ce; Qin, Hai

    2008-07-01

    By using the land use data interpreted with 1:50,000 color-infrared aerial photos of Shanghai collected in 1989 and 2005, and based on Geographic Information System (GIS) techniques, the impacts of urban rail transit (URT) development in Shanghai on its urban land use change was quantitatively analyzed, and a preliminary prediction of the land use change from 2010 to 2025 was made with Markov probability models. The results showed that the URT accelerated the land use change, particularly from an agricultural dominated natural landscape in 1989 to a high-value man-made urban landscape primarily composed of residence and public facilities. URT increased the land use rate in the study area. From 1989 to 2005, public facility land, green space, agriculture land, land for other uses (primarily used for construction), and water area changed greatly, with the greatest change rate of the land for other uses and the lowest one of water area. From 2010 to 2025, the areas and proportions of agriculture land and water area would keep on decreasing, while those of man-made landscapes including residence and public facilities would increase continuously. From the viewpoints of increasing land use rate and its gain, the present land use structure along Shanghai URT should be further regulated to improve the intensive and sustainable use of land resources.

  1. Classifying environmentally significant urban land uses with satellite imagery.

    PubMed

    Park, Mi-Hyun; Stenstrom, Michael K

    2008-01-01

    We investigated Bayesian networks to classify urban land use from satellite imagery. Landsat Enhanced Thematic Mapper Plus (ETM(+)) images were used for the classification in two study areas: (1) Marina del Rey and its vicinity in the Santa Monica Bay Watershed, CA and (2) drainage basins adjacent to the Sweetwater Reservoir in San Diego, CA. Bayesian networks provided 80-95% classification accuracy for urban land use using four different classification systems. The classifications were robust with small training data sets with normal and reduced radiometric resolution. The networks needed only 5% of the total data (i.e., 1500 pixels) for sample size and only 5- or 6-bit information for accurate classification. The network explicitly showed the relationship among variables from its structure and was also capable of utilizing information from non-spectral data. The classification can be used to provide timely and inexpensive land use information over large areas for environmental purposes such as estimating stormwater pollutant loads. PMID:17291679

  2. Effects of Land Use Development on Urban Open Spaces

    NASA Astrophysics Data System (ADS)

    Esbah, Hayriye; Deniz, Bulent

    City of Aydin has grown extremely due to immigration from the eastern part of Turkey, immigration from rural areas to urban areas of the city and alterations in economic and social structure of the nation. The rapid expansion of the urban area results in dramatic change in the open space system of the town. Understanding this transformation is important to generate sustainable planning in the area. The purpose of this study is to elaborate the different open space opportunities in Aydin and to detect the change in these areas. Black and white aerial photographs from 1977 and 1993 and Ikonos 2002 images are utilized for the analysis in GIS environment. First, 14 different open space types are defined and the open spaces are delineated from the aerials and satellite images. Second, the change in the area of these patches is analyzed. The results indicate that urban open spaces are negatively affected by historic land use development. The natural and agricultural patches diminished while semi-natural or man made open space patches increased. Opportunities to increase the variability in the open space types should be embraced to promote sustainability in the urban matrix. Ecological design of the man made open spaces is necessary to increase their contribution in this endeavor.

  3. [Spatial tendency of urban land use in new Yinzhou Town of Ningbo City, Zhejiang Province of East China].

    PubMed

    Jiang, Wen-Wei; Guo, Hui-Hui; Mei, Yan-Xia

    2012-03-01

    By adopting gradient analysis combining with the analysis of urban land use degree, this paper studied the spatial layout characteristics of residential and industrial lands in new Yinzhou Town, and explored the location characters of various urban land use by selecting public green land, public facilities, and road as the location advantage factors. Gradient analysis could effectively connect with the spatial layout of urban land use, and quantitatively depict the spatial character of urban land use. In the new town, there was a new urban spatial center mostly within the radius of 2 km, namely, the urban core area had obvious location advantage in the cross-shaft direction urban development. On the south of Yinzhou Avenue, the urban hinterland would be constructed soon. In the future land use of the new town, the focus would be the reasonable vicissitude of industrial land after the adjustment of industrial structure, the high-efficient intensive use of the commercial land restricted by the compulsive condition of urban core area, and the agricultural land protection in the southeastern urban-rural fringe.

  4. The ERTS-1 investigation (ER-600). Volume 5: ERTS-1 urban land use analysis

    NASA Technical Reports Server (NTRS)

    Erb, R. B.

    1974-01-01

    The Urban Land Use Team conducted a year's investigation of ERTS-1 MSS data to determine the number of Land Use categories in the Houston, Texas, area. They discovered unusually low classification accuracies occurred when a spectrally complex urban scene was classified with extensive rural areas containing spectrally homogeneous features. Separate computer processing of only data in the urbanized area increased classification accuracies of certain urban land use categories. Even so, accuracies of urban landscape were in the 40-70 percent range compared to 70-90 percent for the land use categories containing more homogeneous features (agriculture, forest, water, etc.) in the nonurban areas.

  5. Urban land use limits regional bumble bee gene flow.

    PubMed

    Jha, Shalene; Kremen, C

    2013-05-01

    Potential declines in native pollinator communities and increased reliance on pollinator-dependent crops have raised concerns about native pollinator conservation and dispersal across human-altered landscapes. Bumble bees are one of the most effective native pollinators and are often the first to be extirpated in human-altered habitats, yet little is known about how bumble bees move across fine spatial scales and what landscapes promote or limit their gene flow. In this study, we examine regional genetic differentiation and fine-scale relatedness patterns of the yellow-faced bumble bee, Bombus vosnesenskii, to investigate how current and historic habitat composition impact gene flow. We conducted our study across a landscape mosaic of natural, agricultural and urban/suburban habitats, and we show that B. vosnesenskii exhibits low but significant levels of differentiation across the study system (F(ST) = 0.019, D(est) = 0.049). Most importantly, we reveal significant relationships between pairwise F(ST) and resistance models created from contemporary land use maps. Specifically, B. vosnesenskii gene flow is most limited by commercial, industrial and transportation-related impervious cover. Finally, our fine-scale analysis reveals significant but declining relatedness between individuals at the 1-9 km spatial scale, most likely due to local queen dispersal. Overall, our results indicate that B. vosnesenskii exhibits considerable local dispersal and that regional gene flow is significantly limited by impervious cover associated with urbanization.

  6. Fractal analysis of urban environment: land use and sewer system

    NASA Astrophysics Data System (ADS)

    Gires, A.; Ochoa Rodriguez, S.; Van Assel, J.; Bruni, G.; Murla Tulys, D.; Wang, L.; Pina, R.; Richard, J.; Ichiba, A.; Willems, P.; Tchiguirinskaia, I.; ten Veldhuis, M. C.; Schertzer, D. J. M.

    2014-12-01

    Land use distribution are usually obtained by automatic processing of satellite and airborne pictures. The complexity of the obtained patterns which are furthermore scale dependent is enhanced in urban environment. This scale dependency is even more visible in a rasterized representation where only a unique class is affected to each pixel. A parameter commonly analysed in urban hydrology is the coefficient of imperviousness, which reflects the proportion of rainfall that will be immediately active in the catchment response. This coefficient is strongly scale dependent with a rasterized representation. This complex behaviour is well grasped with the help of the scale invariant notion of fractal dimension which enables to quantify the space occupied by a geometrical set (here the impervious areas) not only at a single scale but across all scales. This fractal dimension is also compared to the ones computed on the representation of the catchments with the help of operational semi-distributed models. Fractal dimensions of the corresponding sewer systems are also computed and compared with values found in the literature for natural river networks. This methodology is tested on 7 pilot sites of the European NWE Interreg IV RainGain project located in France, Belgium, Netherlands, United-Kingdom and Portugal. Results are compared between all the case study which exhibit different physical features (slope, level of urbanisation, population density...).

  7. Aggregating land use quantity and intensity to link water quality in upper catchment of Miyun Reservoir

    NASA Astrophysics Data System (ADS)

    Xu, E.

    2015-12-01

    Land use is closely related to hydrological and biochemical processes influencing the water quality. Quantifying relationship between both of them can help effectively manage land use to improve water quality. Previous studies majorly utilized land use quantity as an indicator to link water quality parameters, which lacked an insight to the influence of land use intensity. Taking upper catchment of Miyun Reservoir as a case study, we proposed a method of aggregating land use quantity and intensity to build a new land use indicator and investigated its explanation empower on water quality. Six nutrient concentrations from 52 sub-watersheds covering the whole catchment were used to characterize spatial distributions of water eutrophication. Based on spatial techniques and empirical conversion coefficients, combined remote sensing with socio-economic statistical data, land use intensity was measured and mapped visually. Then the new land use indicator was calculated and linked to nutrient concentrations by Pearson correlation coefficients. Results demonstrated that our new land use indicator incorporating intensity information can quantify the potential different nutrients exporting abilities from land uses. Comparing to traditional indicators only characterized by land use quantity, most Pearson correlation coefficients between new indicator and water nutrient concentrations increased. New information enhanced the explanatory power of land use on water nutrient concentrations. Then it can help better understand the impact of land use on water quality and guide land use management for supporting decision making.

  8. Urban Land Use Decouples Plant-Herbivore-Parasitoid Interactions at Multiple Spatial Scales

    PubMed Central

    Nelson, Amanda E.; Forbes, Andrew A.

    2014-01-01

    Intense urban and agricultural development alters habitats, increases fragmentation, and may decouple trophic interactions if plants or animals cannot disperse to needed resources. Specialist insects represent a substantial proportion of global biodiversity and their fidelity to discrete microhabitats provides a powerful framework for investigating organismal responses to human land use. We sampled site occupancy and densities for two plant-herbivore-parasitoid systems from 250 sites across a 360 km2 urban/agricultural landscape to ask whether and how human development decouples interactions between trophic levels. We compared patterns of site occupancy, host plant density, herbivory and parasitism rates of insects at two trophic levels with respect to landcover at multiple spatial scales. Geospatial analyses were used to identify landcover characters predictive of insect distributions. We found that herbivorous insect densities were decoupled from host tree densities in urban landcover types at several spatial scales. This effect was amplified for the third trophic level in one of the two insect systems: despite being abundant regionally, a parasitoid species was absent from all urban/suburban landcover even where its herbivore host was common. Our results indicate that human land use patterns limit distributions of specialist insects. Dispersal constraints associated with urban built development are specifically implicated as a limiting factor. PMID:25019962

  9. Gravel resources, urbanization, and future land use, Front Range Urban Corridor, Colorado

    USGS Publications Warehouse

    Soule, James M.; Fitch, Harold R.

    1974-01-01

    An assessment of gravel needs in Front Range Urban Corridor markets to 2000 A.D., based on forecast population increases and urbanization, indicates that adequate resources to meet anticipated needs are potentially available, if future land use does not preclude their extraction. Because of urban encroachment onto gravel-bearing lands, this basic construction material is in short supply nationally and in the Front Range Urban Corridor. Longer hauls, increased prices, and use of alternatives, especially crushed rock aggregate, have resulted. An analysis of possible sequential land uses following gravel mining indicates that a desirable use is for 'real estate' ponds and small lakes. A method for computing gravel reserves, based on planimeter measurement of area of resource-bearing lands and statistical analysis of reliability of thickness and size distribution data, was developed to compute reserves in individual markets. A discussion of the qualitative 'usability' of these reserves is then made for the individual markets.

  10. Rates, trends, causes, and consequences of urban land-use change in the United States

    USGS Publications Warehouse

    Acevedo, William; Taylor, Janis L.; Hester, Dave J.; Mladinich, Carol S.; Glavac, Sonya

    2006-01-01

    . Other economic and political incentives that shaped the urban environment included Federally backed home loans, credit and tax mechanisms that encouraged new development, and less restrictive municipal ordinances regarding building codes, environmental laws, and zoning regulations. Throughout the past two centuries land use changes associated with increasing urbanization have had impacts that resonate at local, regional, and even national scales. Landscape changes resulting from urbanization can be mapped and studied over time. Understanding these changes requires a study of the causes of change as related to social, economic, and political influences. Understanding these changes also requires analysis of how urbanization physically spreads across the landscape. The knowledge gained from studying urban land-use change can be helpful when it flows into local, regional, and national decisionmaking that relates to land-use decisions that impact the people, the economy, and the environment. Deriving a correlation between physical change and the explanations of the causes of change can help anticipate and mitigate the impacts of future change. Throughout the past two centuries changes to the Nation's urban areas are inextricably linked to population changes. The Nation's population started growing slowly along the eastern seaboard during the 17th and 18th centuries, accelerated in the second half of the 19th century, and then continued steadily spreading westward throughout the next hundred years. Currently, nearly 80 percent of the U.S. population resides in urban areas. Land area dedicated to urban use continues to expand, although differently than it has in the past. Most newly urbanized areas are much less densely populated and less intensively developed than they were 50 to 100 years ago.

  11. Green Infrastructure & Sustainable Urban Land Use Decision Analysis Workshop

    EPA Science Inventory

    Introduce green infrastructure, concepts and land use alternatives, to City of Cleveland operations staff. Discuss potential of green alternatives to impact daily operations and routine maintenance activities. Tie in sustainability concepts to long-term City planning and discu...

  12. Simulating future trends in urban stormwater quality for changing climate, urban land use and environmental controls.

    PubMed

    Borris, Matthias; Viklander, Maria; Gustafsson, Anna-Maria; Marsalek, Jiri

    2013-01-01

    The effects of climatic changes, progressing urbanization and improved environmental controls on the simulated urban stormwater quality in a northern Sweden community were studied. Future scenarios accounting for those changes were developed and their effects simulated with the Storm Water Management Model (SWMM). It was observed that the simulated stormwater quality was highly sensitive to the scenarios, mimicking progressing urbanization with varying catchment imperviousness and area. Thus, land use change was identified as one of the most influential factors and in some scenarios, urban growth caused changes in runoff quantity and quality exceeding those caused by a changing climate. Adaptation measures, including the reduction of directly connected impervious surfaces (DCIS) through the integration of more green spaces into the urban landscape, or disconnection of DCIS were effective in reducing runoff volume and pollutant loads. Furthermore, pollutant source control measures, including material substitution, were effective in reducing pollutant loads and significantly improving stormwater quality.

  13. LUMIS: A Land Use Management Information System for urban planning

    NASA Technical Reports Server (NTRS)

    Paul, C. K.

    1975-01-01

    The Land Use Management Information System (LUMIS) consists of a methodology of compiling land use maps by means of air photo interpretation techniques, digitizing these and other maps into machine-readable form, and numerically overlaying these various maps in two computer software routines to provide land use and natural resource data files referenced to the individual census block. The two computer routines are the Polygon Intersection Overlay System (PIOS) and an interactive graphics APL program. A block referenced file of land use, natural resources, geology, elevation, slope, and fault-line items has been created and supplied to the Los Angeles Department of City Planning for the City's portion of the Santa Monica Mountains. In addition, the interactive system contains one hundred and seventy-three socio-economic data items created by merging the Third Count U.S. Census Bureau tapes and the Los Angeles County Secured Assessor File. This data can be graphically displayed for each and every block, block group, or tract for six test tracts in Woodland Hills, California. Other benefits of LUMIS are the knowledge of air photo availability, flight pattern coverage and frequencies, and private photogrammetry companies flying Southern California, as well as a formal Delphi study of relevant land use informational needs in the Santa Monicas.

  14. Simulating the terrestrial carbon stock based on land-use change in urban forest area using MC1 model

    NASA Astrophysics Data System (ADS)

    Oh, S.; Lee, W.; Choi, S.; Byun, J.

    2011-12-01

    Forests are considered as one of major sinks of greenhouse gases, such as carbon, to mitigate global warming. While many studies have been conducted on the carbon-fluxes in forest, its dynamics related to the land-use changes in urban forest were not intensively studied. The objective of this study was to predict the terrestrial carbon stock depending on the land-use changes of urban forests in Korea using the MAPSS-CENTURY (MC1) model. The future climate data were prepared under the A1B scenario of Intergovernmental Panel on Climate Change (IPCC). The soil data were derived from the Digital World Soil Map from the Food and Agriculture Organization (FAO). Prepared data were interpolated by the ArcGIS software. Also, we prepared land-use change scenario in urban forest using the ArcGIS as if people extend or diminish the urban forest due to the urban planning. Through each change rate of simulations, we could check the terrestrial carbon-fluxes depending on the rate of land cover changes. The results can be used as basic information for sustainable urban forest management and it will be useful to detect the carbon stock changes under the different land use change circumstance.

  15. Atmospheric carbon exchange associated with vegetation and soils in urban and suburban land uses

    SciTech Connect

    Rowntree, R.A.

    1993-12-31

    In studies of the global C cycle prior to the 1980s, urban ecosystems were largely ignored, in part because them were inadequate measures of phytomass and soil carbon for the various land uses associated with cities. In the last decade, progress has been made in gathering urban vegetation data and recently, estimates of urban land use carbon storage and fluxes have been attempted. Demographic trends in many countries suggest that urban areas are growing. Thus it is important to discover the appropriate concepts and methods for understanding greenhouse gas fluxes from urban-related vegetation and soils.

  16. Spatial stochastic regression modelling of urban land use

    NASA Astrophysics Data System (ADS)

    Arshad, S. H. M.; Jaafar, J.; Abiden, M. Z. Z.; Latif, Z. A.; Rasam, A. R. A.

    2014-02-01

    Urbanization is very closely linked to industrialization, commercialization or overall economic growth and development. This results in innumerable benefits of the quantity and quality of the urban environment and lifestyle but on the other hand contributes to unbounded development, urban sprawl, overcrowding and decreasing standard of living. Regulation and observation of urban development activities is crucial. The understanding of urban systems that promotes urban growth are also essential for the purpose of policy making, formulating development strategies as well as development plan preparation. This study aims to compare two different stochastic regression modeling techniques for spatial structure models of urban growth in the same specific study area. Both techniques will utilize the same datasets and their results will be analyzed. The work starts by producing an urban growth model by using stochastic regression modeling techniques namely the Ordinary Least Square (OLS) and Geographically Weighted Regression (GWR). The two techniques are compared to and it is found that, GWR seems to be a more significant stochastic regression model compared to OLS, it gives a smaller AICc (Akaike's Information Corrected Criterion) value and its output is more spatially explainable.

  17. EFFECTS OF LAND USE AND SEASON ON MICROORGANISM CONCENTRATIONS IN URBAN STORMWATER RUNOFF

    EPA Science Inventory

    This study investigated differences in pathogen and indicator organism concentrations in stormwater runoff between different urban land uses and seasons. Stormwater samples collected from storm sewers draining small municipal separate storm sewer systems shown to be free of cros...

  18. Relationships between human disturbance and wildlife land use in urban habitat fragments.

    PubMed

    Markovchick-Nicholls, Lisa; Regan, Helen M; Deutschman, Douglas H; Widyanata, Astrid; Martin, Barry; Noreke, Lani; Hunt, Timothy Ann

    2008-02-01

    Habitat remnants in urbanized areas typically conserve biodiversity and serve the recreation and urban open-space needs of human populations. Nevertheless, these goals can be in conflict if human activity negatively affects wildlife. Hence, when considering habitat remnants as conservation refuges it is crucial to understand how human activities and land uses affect wildlife use of those and adjacent areas. We used tracking data (animal tracks and den or bed sites) on 10 animal species and information on human activity and environmental factors associated with anthropogenic disturbance in 12 habitat fragments across San Diego County, California, to examine the relationships among habitat fragment characteristics, human activity, and wildlife presence. There were no significant correlations of species presence and abundance with percent plant cover for all species or with different land-use intensities for all species, except the opossum (Didelphis virginiana), which preferred areas with intensive development. Woodrats (Neotoma spp.) and cougars (Puma concolor) were associated significantly and positively and significantly and negatively, respectively, with the presence and prominence of utilities. Woodrats were also negatively associated with the presence of horses. Raccoons (Procyon lotor) and coyotes (Canis latrans) were associated significantly and negatively and significantly and positively, respectively, with plant bulk and permanence. Cougars and gray foxes (Urocyon cinereoargenteus) were negatively associated with the presence of roads. Roadrunners (Geococcyx californianus) were positively associated with litter. The only species that had no significant correlations with any of the environmental variables were black-tailed jackrabbits (Lepus californicus) and mule deer (Odocoileus hemionus). Bobcat tracks were observed more often than gray foxes in the study area and bobcats correlated significantly only with water availability, contrasting with results from

  19. Spatial variability of the Rotterdam urban heat island as influenced by urban land use

    NASA Astrophysics Data System (ADS)

    Heusinkveld, Bert G.; Steeneveld, G. J.; Hove, L. W. A.; Jacobs, C. M. J.; Holtslag, A. A. M.

    2014-01-01

    Novel bicycle traverse meteorological measurements were made in Rotterdam to assess the spatial variation of temperature during a tropical day. Nocturnal spatial urban temperature differences of 7 K were found to be related to city morphology. During midday measurements, the downtown was up to 1.2 K warmer than the surrounding rural area while a city park was 4.0 K cooler than downtown. A regression analysis showed that the nocturnal measured urban heat island (UHI) can be linked to land use, namely vegetation, built-up area, and water and is most significant for vegetation. From the traverse observation data, a multiple linear regression model was constructed and independently validated with 3 year summertime UHI statistics derived from four urban fixed meteorological stations and two fixed rural stations. Wind rose analysis shows that UHI is strongest from easterly directions and that the temperature signal of the WMO station is influenced from urban directions. A regression model reproduced the nighttime spatial variability of the UHI within a fractional bias of 4.3% and was used to derive an UHI map of Rotterdam and surroundings. This map shows that high-density urban configurations lacking greenery or close to large water bodies are vulnerable to high nocturnal temperatures during heat waves. The UHI map can be used as a valuable planning tool for mitigating nocturnal urban heat stress or identifying neighborhoods at risk during heat waves.

  20. Effects of land-use intensity on arthropod species abundance distributions in grasslands.

    PubMed

    Simons, Nadja K; Gossner, Martin M; Lewinsohn, Thomas M; Lange, Markus; Türke, Manfred; Weisser, Wolfgang W

    2015-01-01

    As a rule, communities consist of few abundant and many rare species, which is reflected in the characteristic shape of species abundance distributions (SADs). The processes that shape these SADs have been a longstanding problem for ecological research. Although many studies found strong negative effects of increasing land-use intensity on diversity, few reports consider land-use effects on SADs. Arthropods (insects and spiders) were sampled on 142 grassland plots in three regions in Germany, which were managed with different modes (mowing, fertilization and/or grazing) and intensities of land use. We analysed the effect of land use on three parameters characterizing the shape of SADs: abundance decay rate (the steepness of the rank abundance curve, represented by the niche-preemption model parameter), dominance (Berger-Parker dominance) and rarity (Fisher's alpha). Furthermore, we tested the core-satellite hypothesis by comparing the species' rank within the SAD to their distribution over the land-use gradient. When data on Araneae, Cicadina, Coleoptera, Heteroptera and Orthoptera were combined, abundance decay rate increased with combined land-use intensity (including all modes). Among the single land-use modes, increasing fertilization and grazing intensity increased the decay rate of all taxa, while increasing mowing frequency significantly affected the decay rate only in interaction with fertilization. Results of single taxa differed in their details, but all significant interaction effects included fertilization intensity. Dominance generally increased with increasing fertilization and rarity decreased with increasing grazing or mowing intensity, despite small differences among taxa and regions. The majority of species found on <10% of the plots per region were generally rare (<10 individuals), which is in accordance with the core-satellite hypothesis. We found significant differences in the rarity and dominance of species between plots of low and high

  1. Geospatial Analysis of Urban Land Use Pattern Analysis for Hemorrhagic Fever Risk - a Review

    NASA Astrophysics Data System (ADS)

    Izzah, L. N.; Majid, Z.; Ariff, M. A. M.; Fook, C. K.

    2016-09-01

    Human modification of the natural environment continues to create habitats in which vectors of a wide variety of human and animal pathogens (such as Plasmodium, Aedes aegypti, Arenavirus etc.) thrive if unabated with an enormous potential to negatively affect public health. Typical examples of these modifications include impoundments, dams, irrigation systems, landfills and so on that provide enabled environment for the transmission of Hemorrhagic fever such as malaria, dengue, avian flu, Lassa fever etc. Furthermore, contemporary urban dwelling pattern appears to be associated with the prevalence of Hemorrhagic diseases in recent years. These observations are not peculiar to the developing world, as urban expansion also contributes significantly to mosquito and other vectors habitats. This habitats offer breeding ground to some vector virus populations. The key to disease control is developing an understanding of the contribution of human landscape modification to vector-borne pathogen transmission and how a balance may be achieved between human development, public health, and responsible urban land use. A comprehensive review of urban land use Pattern Analysis for Hemorrhagic fever risk has been conducted in this paper. The study found that most of the available literatures dwell more on the impact of urban land use on malaria and dengue fevers; however, studies are yet to be found discussing the implications of urban land use on the risk of Ebola, Lassa and other non-mosquito borne VHFs. A relational model for investigating the influence of urban land use change pattern on the risk of Hemorrhagic fever has been proposed in this study.

  2. Determining urban land uses through building-associated element attributes derived from lidar and aerial photographs

    NASA Astrophysics Data System (ADS)

    Meng, Xuelian

    Urban land-use research is a key component in analyzing the interactions between human activities and environmental change. Researchers have conducted many experiments to classify urban or built-up land, forest, water, agriculture, and other land-use and land-cover types. Separating residential land uses from other land uses within urban areas, however, has proven to be surprisingly troublesome. Although high-resolution images have recently become more available for land-use classification, an increase in spatial resolution does not guarantee improved classification accuracy by traditional classifiers due to the increase of class complexity. This research presents an approach to detect and separate residential land uses on a building scale directly from remotely sensed imagery to enhance urban land-use analysis. Specifically, the proposed methodology applies a multi-directional ground filter to generate a bare ground surface from lidar data, then utilizes a morphology-based building detection algorithm to identify buildings from lidar and aerial photographs, and finally separates residential buildings using a supervised C4.5 decision tree analysis based on the seven selected building land-use indicators. Successful execution of this study produces three independent methods, each corresponding to the steps of the methodology: lidar ground filtering, building detection, and building-based object-oriented land-use classification. Furthermore, this research provides a prototype as one of the few early explorations of building-based land-use analysis and successful separation of more than 85% of residential buildings based on an experiment on an 8.25-km2 study site located in Austin, Texas.

  3. Urban land use, air toxics and public health: Assessing hazardous exposures at the neighborhood scale

    SciTech Connect

    Corburn, Jason . E-mail: jtc2105@columbia.edu

    2007-03-15

    Land use data are increasingly understood as important indicators of potential environmental health risk in urban areas where micro-scale or neighborhood level hazard exposure data are not routinely collected. This paper aims to offer a method for estimating the distribution of air toxics in urban neighborhoods using land use information because actual air monitoring data rarely exist at this scale. Using Geographic Information System spatial modeling tools, we estimate air toxics concentrations across neighborhoods in New York City and statistically compare our model with the US Environmental Protection Agency's National Air Toxic Assessment and air monitoring data across three NYC neighborhoods. We conclude that land use data can act as a good proxy for estimating neighborhood scale air toxics, particularly in the absence of monitoring data. In addition, the paper suggests that land use data can expand the reach of environmental impact assessments that routinely exclude analyses of potential exposures to urban air toxics at the neighborhood scale.

  4. Urban land use: Remote sensing of ground-basin permeability

    NASA Technical Reports Server (NTRS)

    Tinney, L. R.; Jensen, J. R.; Estes, J. E.

    1975-01-01

    A remote sensing analysis of the amount and type of permeable and impermeable surfaces overlying an urban recharge basin is discussed. An effective methodology for accurately generating this data as input to a safe yield study is detailed and compared to more conventional alternative approaches. The amount of area inventoried, approximately 10 sq. miles, should provide a reliable base against which automatic pattern recognition algorithms, currently under investigation for this task, can be evaluated. If successful, such approaches can significantly reduce the time and effort involved in obtaining permeability data, an important aspect of urban hydrology dynamics.

  5. Urban and regional land use analysis: CARETS and Census Cities experiment package. [mapping land use climatology from MSS imagery

    NASA Technical Reports Server (NTRS)

    Alexander, R. H. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The arrival of the so-called energy crisis makes the portion of this experiment dealing with land use climatology of more immediate significance than before, since in addition to helping to understand the processes of climatic change associated with urbanization, the knowledge obtained may be useful in assigning an energy balance impact factor to proposed changes in land use in and around cities. Thermal maps derived from S-192 data are to be used as a measure of the energy being radiated into space from the mosaic of different surfaces in and around the city. While presenting excellent spatial sampling potential for a metropolitan area tests site, the Skylab data permit a very poor temporal sampling opportunity, owing to the large number of factors beyond the investigator's control that determine when data will be taken over a given test site. The strategy is to augment the thermal maps derived from S-192 with a modeling technique which enables the simulation of a number of components of the surface energy balance, calculated at regular time intervals throughout the day or year. Preliminary tests on the performance of the model are still underway, using airborne MSS data from NASA aircraft flights. Results look extremely promising.

  6. LAND USE CHANGE DUE TO URBANIZATION FOR THE NEUSE RIVER BASIN

    EPA Science Inventory

    The Urban Growth Model (UGM) was applied to analysis of land use change in the Neuse River Basin as part of a larger project for estimating the regional and broader impact of urbanization. UGM is based on cellular automation (CA) simulation techniques developed at the University...

  7. Perfluoroalkyl acids in urban stormwater runoff: influence of land use.

    PubMed

    Xiao, Feng; Simcik, Matt F; Gulliver, John S

    2012-12-15

    Perfluoroalkyl acids (PFAAs) are persistent organic pollutants in the environment and have been reported to have nonpoint sources. In this study, six PFAAs with different chain lengths were monitored in stormwater runoff from seven storm events (2009-2011) at various outfall locations corresponding to different watershed land uses. We found PFAA(s) in 100% of stormwater runoff samples. Monitoring results and statistical analysis show that PFAAs in stormwater runoff from residential areas mainly came from rainfall. On the other hand, non-atmospheric sources at both industrial and commercial areas contributed PFAAs in stormwater runoff. The mass flux of PFAAs from stormwater runoff in the Twin Cities (Minneapolis and St. Paul, MN) metropolitan area is estimated to be about 7.86 kg/year. In addition, for the first time, we monitored PFAAs on the particles/debris in stormwater runoff and found high-level PFOS on the particulate matter in runoff collected from both industrial and commercial areas; the levels were so high that the finding could not be explained by the solid-water partitioning or adsorption. PFOS on the particulate matter is suspected to have originated from industrial/commercial products, entering the waste stream as PFOS containing particles.

  8. Land use intensity trajectories on Amazonian pastures derived from Landsat time series

    NASA Astrophysics Data System (ADS)

    Rufin, Philippe; Müller, Hannes; Pflugmacher, Dirk; Hostert, Patrick

    2015-09-01

    Monitoring changes in land use intensity of grazing systems in the Amazon is an important prerequisite to study the complex political and socio-economic forces driving Amazonian deforestation. Remote sensing offers the potential to map pasture vegetation over large areas, but mapping pasture conditions consistently through time is not a trivial task because of seasonal changes associated with phenology and data gaps from clouds and cloud shadows. In this study, we tested spectral-temporal metrics derived from intra-annual Landsat time series to distinguish between grass-dominated and woody pastures. The abundance of woody vegetation on pastures is an indicator for management intensity, since the duration and intensity of land use steer secondary succession rates, apart from climate and soil conditions. We used the developed Landsat-based metrics to analyze pasture intensity trajectories between 1985 and 2012 in Novo Progresso, Brazil, finding that woody vegetation cover generally decreased after four to ten years of grazing activity. Pastures established in the 80s and early 90s showed a higher fraction of woody vegetation during their initial land use history than pastures established in the early 2000s. Historic intensity trajectories suggested a trend towards more intensive land use in the last decade, which aligns well with regional environmental policies and market dynamics. This study demonstrates the potential of dense Landsat time series to monitor land-use intensification on Amazonian pastures.

  9. Agricultural land use intensity and its determinants: A case study in Taibus Banner, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Hao, Haiguang; Li, Xiubin; Tan, Minghong; Zhang, Jiping; Zhang, Huiyuan

    2015-06-01

    Based on rural household survey data from Taibus Banner, in the Inner Mongolia Autonomous Region, China, this study separately categorizes agricultural land use intensity into labor intensity, capital intensity, the intensity of labor-saving inputs, and the intensity of yield-increasing inputs, and then analyzes their determinants at the household level. The findings reveal that within the study area: (1) labor intensity is higher and capital intensity is lower than in the major grain-producing and economically developed areas of eastern and central China; (2) the most widely planted crops are those with the lowest labor intensity (oats) and capital intensity (benne); (3) there are marked differences in agricultural land use intensity among households; a major factor affecting land use decision-making is the reduced need for labor intensity for those households with high opportunity costs, such as those with income earned from non-farming activities which alleviates financial constraints and allows for increased capital intensity. As a result, these households invest more in labor-saving inputs; (4) households with a larger number of workers will allocate adequate time to manage their land and thus they will not necessarily invest more in labor-saving inputs. Those households with more land to manage tend to adopt an extensive cultivation strategy. Total income has a positive impact on capital intensity and a negative impact on labor intensity. Households that derive a higher proportion of their total income through farming are more reliant upon agriculture, which necessitates significant labor and yield-increasing inputs. Finally, the authors contend that policy makers should clearly recognize the impacts of non-farming employment on agricultural land use intensity. In order to ensure long-term food security and sustainable agricultural development in China, income streams from both farming and non-farming employment should be balanced.

  10. Potential Impacts of Future Warming and Land Use Changes on Intra-Urban Heat Exposure in Houston, Texas.

    PubMed

    Conlon, Kathryn; Monaghan, Andrew; Hayden, Mary; Wilhelmi, Olga

    2016-01-01

    Extreme heat events in the United States are projected to become more frequent and intense as a result of climate change. We investigated the individual and combined effects of land use and warming on the spatial and temporal distribution of daily minimum temperature (Tmin) and daily maximum heat index (HImax) during summer in Houston, Texas. Present-day (2010) and near-future (2040) parcel-level land use scenarios were embedded within 1-km resolution land surface model (LSM) simulations. For each land use scenario, LSM simulations were conducted for climatic scenarios representative of both the present-day and near-future periods. LSM simulations assuming present-day climate but 2040 land use patterns led to spatially heterogeneous temperature changes characterized by warmer conditions over most areas, with summer average increases of up to 1.5°C (Tmin) and 7.3°C (HImax) in some newly developed suburban areas compared to simulations using 2010 land use patterns. LSM simulations assuming present-day land use but a 1°C temperature increase above the urban canopy (consistent with warming projections for 2040) yielded more spatially homogeneous metropolitan-wide average increases of about 1°C (Tmin) and 2.5°C (HImax), respectively. LSM simulations assuming both land use and warming for 2040 led to summer average increases of up to 2.5°C (Tmin) and 8.3°C (HImax), with the largest increases in areas projected to be converted to residential, industrial and mixed-use types. Our results suggest that urbanization and climate change may significantly increase the average number of summer days that exceed current threshold temperatures for initiating a heat advisory for metropolitan Houston, potentially increasing population exposure to extreme heat.

  11. Potential Impacts of Future Warming and Land Use Changes on Intra-Urban Heat Exposure in Houston, Texas

    PubMed Central

    Conlon, Kathryn; Monaghan, Andrew; Hayden, Mary; Wilhelmi, Olga

    2016-01-01

    Extreme heat events in the United States are projected to become more frequent and intense as a result of climate change. We investigated the individual and combined effects of land use and warming on the spatial and temporal distribution of daily minimum temperature (Tmin) and daily maximum heat index (HImax) during summer in Houston, Texas. Present-day (2010) and near-future (2040) parcel-level land use scenarios were embedded within 1-km resolution land surface model (LSM) simulations. For each land use scenario, LSM simulations were conducted for climatic scenarios representative of both the present-day and near-future periods. LSM simulations assuming present-day climate but 2040 land use patterns led to spatially heterogeneous temperature changes characterized by warmer conditions over most areas, with summer average increases of up to 1.5°C (Tmin) and 7.3°C (HImax) in some newly developed suburban areas compared to simulations using 2010 land use patterns. LSM simulations assuming present-day land use but a 1°C temperature increase above the urban canopy (consistent with warming projections for 2040) yielded more spatially homogeneous metropolitan-wide average increases of about 1°C (Tmin) and 2.5°C (HImax), respectively. LSM simulations assuming both land use and warming for 2040 led to summer average increases of up to 2.5°C (Tmin) and 8.3°C (HImax), with the largest increases in areas projected to be converted to residential, industrial and mixed-use types. Our results suggest that urbanization and climate change may significantly increase the average number of summer days that exceed current threshold temperatures for initiating a heat advisory for metropolitan Houston, potentially increasing population exposure to extreme heat. PMID:26863298

  12. Analysing Relationships Between Urban Land Use Fragmentation Metrics and Socio-Economic Variables

    NASA Astrophysics Data System (ADS)

    Sapena, M.; Ruiz, L. A.; Goerlich, F. J.

    2016-06-01

    Analysing urban regions is essential for their correct monitoring and planning. This is mainly accounted for the sharp increase of people living in urban areas, and consequently, the need to manage them. At the same time there has been a rise in the use of spatial and statistical datasets, such as the Urban Atlas, which offers high-resolution urban land use maps obtained from satellite imagery, and the Urban Audit, which provides statistics of European cities and their surroundings. In this study, we analyse the relations between urban fragmentation metrics derived from Land Use and Land Cover (LULC) data from the Urban Atlas dataset, and socio-economic data from the Urban Audit for the reference years 2006 and 2012. We conducted the analysis on a sample of sixty-eight Functional Urban Areas (FUAs). One-date and two-date based fragmentation indices were computed for each FUA, land use class and date. Correlation tests and principal component analysis were then applied to select the most representative indices. Finally, multiple regression models were tested to explore the prediction of socio-economic variables, using different combinations of land use metrics as explanatory variables, both at a given date and in a dynamic context. The outcomes show that demography, living conditions, labour, and transportation variables have a clear relation with the morphology of the FUAs. This methodology allows us to compare European FUAs in terms of the spatial distribution of the land use classes, their complexity, and their structural changes, as well as to preview and model different growth patterns and socio-economic indicators.

  13. Urban-field land use in southern New England: A first look

    NASA Technical Reports Server (NTRS)

    Simpson, R. B. (Principal Investigator)

    1972-01-01

    There are no author-identified significant results in this report. First look evaluation of ERTS-1 multiband imagery for urban-field land use applications revealed a great deal of potentially valuable information. The amount of land use detail which can be extracted confidently from ERTS imagery is encouraging, and the objectives of the proposed project are considered feasible providing timely cloud-free coverage is available.

  14. Assigning land use to supply wells for the statistical characterization of regional groundwater quality: Correlating urban land use and VOC occurrence

    USGS Publications Warehouse

    Johnson, T.D.; Belitz, K.

    2009-01-01

    Many national and regional groundwater studies have correlated land use "near" a well, often using a 500 m radius circle, with water quality. However, the use of a 500 m circle may seem counterintuitive given that contributing areas are expected to extend up-gradient from wells, and not be circular in shape. The objective of this study was to evaluate if a 500 m circle is adequate for assigning land use to a well for the statistical correlation between urban land use and the occurrence of volatile organic compounds (VOCs). Land use and VOC data came from 277 supply wells in four study areas in California. Land use was computed using ten different-sized circles and wedges (250 m to 10 km in radius), and three different-sized "searchlights" (1-2 km in length). We define these shapes as contributing area surrogates (CASs), recognizing that a simple shape is at best a surrogate for the actual contributing area. The presence or absence of correlation between land use and the occurrence of VOCs was evaluated using Kendall's tau (??). Values of ?? were within 10% of one another for wedges and circles ranging in size from 500 m to 2 km, with correlations remaining statistically significant (p < 0.05) for all CAS sizes and shapes, suggesting that a 500 m circular CAS is adequate for assigning land use to a well. Additional evaluation indicated that urban land use is autocorrelated at distances ranging from 8 to 36 km. Thus, urban land use in a 500 m CAS is likely to be predictive of urban land use in the actual contributing area.

  15. Simulating the Response of Urban Water Quality to Climate and Land Use Change in Partially Urbanized Basins

    NASA Astrophysics Data System (ADS)

    Sun, N.; Yearsley, J. R.; Nijssen, B.; Lettenmaier, D. P.

    2014-12-01

    Urban stream quality is particularly susceptible to extreme precipitation events and land use change. Although the projected effects of extreme events and land use change on hydrology have been resonably well studied, the impacts on urban water quality have not been widely examined due in part to the scale mismatch between global climate models and the spatial scales required to represent urban hydrology and water quality signals. Here we describe a grid-based modeling system that integrates the Distributed Hydrology Soil Vegetation Model (DHSVM) and urban water quality module adpated from EPA's Storm Water Management Model (SWMM) and Soil and water assessment tool (SWAT). Using the model system, we evaluate, for four partially urbanized catchments within the Puget Sound basin, urban water quality under current climate conditions, and projected potential changes in urban water quality associated with future changes in climate and land use. We examine in particular total suspended solids, toal nitrogen, total phosphorous, and coliform bacteria, with catchment representations at the 150-meter spatial resolution and the sub-daily timestep. We report long-term streamflow and water quality predictions in response to extreme precipitation events of varying magnitudes in the four partially urbanized catchments. Our simulations show that urban water quality is highly sensitive to both climatic and land use change.

  16. Conversion of prime agricultural land to urban land uses in Kansas City

    NASA Technical Reports Server (NTRS)

    Shaklee, R. V.

    1976-01-01

    In an expanding urban environment, agriculture and urban land uses are the two primary competitors for regional land resources. As a result of an increasing awareness of the effects which urban expansion has upon the regional environment, the conversion of prime agricultural land to urban land uses has become a point of concern to urban planners. A study was undertaken for the Kansas City Metropolitan Region, to determine the rate at which prime agricultural land has been converted to urban land uses over a five year period from 1969 to 1974. Using NASA high altitude color infrared imagery acquired over the city in October, 1969 and in May, 1974 to monitor the extent and location of urban expansion in the interim period, it was revealed that 42% of that expansion had occurred upon land classified as having prime agricultural potential. This involved a total of 10,727 acres of prime agricultural land and indicated a 7% increase over the 1969 which showed that 35% of the urban area had been developed on prime agricultural land.

  17. Increasing land-use intensity decreases floral colour diversity of plant communities in temperate grasslands.

    PubMed

    Binkenstein, Julia; Renoult, Julien P; Schaefer, H Martin

    2013-10-01

    To preserve biodiversity and ecosystem functions in a globally changing world it is crucial to understand the effect of land use on ecosystem processes such as pollination. Floral colouration is known to be central in plant-pollinator interactions. To date, it is still unknown whether land use affects the colouration of flowering plant communities. To assess the effect of land use on the diversity and composition of flower colours in temperate grasslands, we collected data on the number of flowering plant species, blossom cover and flower reflectance spectra from 69 plant communities in two German regions, Schwäbische Alb (SA) and Hainich-Dün (HD). We analysed reflectance data of flower colours as they are perceived by honeybees and studied floral colour diversity based upon spectral loci of each flowering plant species in the Maxwell triangle. Before the first mowing, flower colour diversity decreased with increasing land-use intensity in SA, accompanied by a shift of mean flower colours of communities towards an increasing proportion of white blossom cover in both regions. By changing colour characteristics of grasslands, we suggest that increasing land-use intensity can affect the flower visitor fauna in terms of visitor behaviour and diversity. These changes may in turn influence plant reproduction in grassland plant communities. Our results indicate that land use is likely to affect communication processes between plants and flower visitors by altering flower colour traits.

  18. Urban and regional land use analysis: CARETS and Census Cities experiment package

    NASA Technical Reports Server (NTRS)

    Alexander, R. H. (Principal Investigator); Milazzo, V. A.

    1973-01-01

    The author has identified the following significant results. Areas of post 1970 and 1972 land use changes were identified solely from the Skylab imagery from comparisons with 1970 land use maps. Most land use changes identified involved transition from agriculture to single family residential land use. The second most prominent changes identified from the Skylab imagery were areas presently under construction. Post 1970 changes from Skylab were compared with the 1972 changes noted from the high altitude photographs. A good correlation existed between the change polygons mapped from Skylab and those mapped from the 1972 high altitude aerial photos. In addition, there were a number of instances where additional built-up land use not noted in the 1972 aerial photo as being developed were identified on the Skylab imagery. While these cases have not been documented by field observation, by correlating these areas with the appearance of similar land use areas whose identity has been determined, we can safely say that we have been able to map further occurrences of land use change beyond existing high altitude photo coverage from the Skylab imagery. It was concluded that Skylab data can be used to detect areas of land use change within an urban setting.

  19. Downscaling climate change scenarios in an urban land use change model.

    PubMed

    Solecki, William D; Oliveri, Charles

    2004-08-01

    The objective of this paper is to describe the process through which climate change scenarios were downscaled in an urban land use model and the results of this experimentation. The land use models (Urban Growth Model [UGM] and the Land Cover Deltatron Model [LCDM]) utilized in the project are part of the SLEUTH program which uses a probabilistic cellular automata protocol. The land use change scenario experiments were developed for the 31-county New York Metropolitan Region (NYMR) of the US Mid-Atlantic Region. The Intergovernmental Panel on Climate Change (IPCC), regional greenhouse gas (GHG) emissions scenarios (Special Report on Emissions Scenarios (SRES) A2 and B2 scenarios) were used to define the narrative scenario conditions of future land use change. The specific research objectives of the land use modeling work involving the SLEUTH program were threefold: (1) Define the projected conversion probabilities and the amount of rural-to-urban land use change for the NYMR as derived by the UGM and LCDM for the years 2020 and 2050, as defined by the pattern of growth for the years 1960-1990; (2) Down-scale the IPCC SRES A2 and B2 scenarios as a narrative that could be translated into alternative growth projections; and, (3) Create two alternative future growth scenarios: A2 scenario which will be associated with more rapid land conversion than found in initial projections, and a B2 scenario which will be associated with a slower level of land conversion. The results of the modeling experiments successfully illustrate the spectrum of possible land use/land cover change scenarios for the years 2020 and 2050. The application of these results into the broader scale climate and health impact study is discussed, as is the general role of land use/land cover change models in climate change studies and associated environmental management strategies.

  20. Ecological traits affect the response of tropical forest bird species to land-use intensity.

    PubMed

    Newbold, Tim; Scharlemann, Jörn P W; Butchart, Stuart H M; Sekercioğlu, Cağan H; Alkemade, Rob; Booth, Hollie; Purves, Drew W

    2013-01-01

    Land-use change is one of the main drivers of current and likely future biodiversity loss. Therefore, understanding how species are affected by it is crucial to guide conservation decisions. Species respond differently to land-use change, possibly related to their traits. Using pan-tropical data on bird occurrence and abundance across a human land-use intensity gradient, we tested the effects of seven traits on observed responses. A likelihood-based approach allowed us to quantify uncertainty in modelled responses, essential for applying the model to project future change. Compared with undisturbed habitats, the average probability of occurrence of bird species was 7.8 per cent and 31.4 per cent lower, and abundance declined by 3.7 per cent and 19.2 per cent in habitats with low and high human land-use intensity, respectively. Five of the seven traits tested affected the observed responses significantly: long-lived, large, non-migratory, primarily frugivorous or insectivorous forest specialists were both less likely to occur and less abundant in more intensively used habitats than short-lived, small, migratory, non-frugivorous/insectivorous habitat generalists. The finding that species responses to land use depend on their traits is important for understanding ecosystem functioning, because species' traits determine their contribution to ecosystem processes. Furthermore, the loss of species with particular traits might have implications for the delivery of ecosystem services.

  1. [Simulation and prediction of urban and rural settlement growth and land use change in Yingkou City].

    PubMed

    Xi, Feng-Ming; He, Hong-Shi; Hu, Yuan-Man; Wu, Xiao-Qing; Bao, Li; Tian, Ying; Wang, Jin-Nian; Ma, Wen-Jun

    2008-07-01

    Based on the 1988, 1992, 1997, 2000, and 2004 Landsat TM remote sensing data of Yingkou City, Liaoning Province, the urban and rural settlement growth and land use change in the city from 2005 to 2030 were simulated and predicted by using the SLEUTH urban growth and land use change model with six scenarios (current trend scenario, no protection scenario, moderate protection scenario, managed growth scenario, ecologically sustainable growth scenario, and regional and urban comprehensive planning scenario). The results showed that in the city, the increased area of urban and rural settlement growth from 1988 to 2004 was 14.93 km2, and the areas of water area, orchard, mine, and agricultural land changed greatly from 1997 to 2004. From 2005 to 2030, based on ecologically sustainable growth scenario, the urban and rural settlement growth would have a slow increase, and agricultural land and forestland would be better protected; under no protection scenario, the urban and rural settlement growth would have a rapid increase, and large area of agricultural land would be lost; under current trend scenario, the agricultural land loss would be similar to that under no protective scenario, but the loss pattern could be different; under moderate protection scenario and managed growth scenario, the agricultural land would have a smaller loss; while under regional and urban comprehensive planning scenario, the urban and rural settlement growth would be mainly distributed in urban development area and urban fringe. The SLEUTH model with different scenarios could simulate how the different land management policies affect urban and rural settlement growth and land use change, which would be instructive to the coordination of Chinese urban and rural settlement development and the socialist new rural reconstruction.

  2. Land use/cover change detection and urban sprawl analysis in Bandar Abbas city, Iran.

    PubMed

    Dadras, Mohsen; Shafri, Helmi Zulhaidi Mohd; Ahmad, Noordin; Pradhan, Biswajeet; Safarpour, Sahabeh

    2014-01-01

    The process of land use change and urban sprawl has been considered as a prominent characteristic of urban development. This study aims to investigate urban growth process in Bandar Abbas city, Iran, focusing on urban sprawl and land use change during 1956-2012. To calculate urban sprawl and land use changes, aerial photos and satellite images are utilized in different time spans. The results demonstrate that urban region area has changed from 403.77 to 4959.59 hectares between 1956 and 2012. Moreover, the population has increased more than 30 times in last six decades. The major part of population growth is related to migration from other parts the country to Bandar Abbas city. Considering the speed of urban sprawl growth rate, the scale and the role of the city have changed from medium and regional to large scale and transregional. Due to natural and structural limitations, more than 80% of barren lands, stone cliffs, beach zone, and agricultural lands are occupied by built-up areas. Our results revealed that the irregular expansion of Bandar Abbas city must be controlled so that sustainable development could be achieved.

  3. Land use/cover change detection and urban sprawl analysis in Bandar Abbas city, Iran.

    PubMed

    Dadras, Mohsen; Shafri, Helmi Zulhaidi Mohd; Ahmad, Noordin; Pradhan, Biswajeet; Safarpour, Sahabeh

    2014-01-01

    The process of land use change and urban sprawl has been considered as a prominent characteristic of urban development. This study aims to investigate urban growth process in Bandar Abbas city, Iran, focusing on urban sprawl and land use change during 1956-2012. To calculate urban sprawl and land use changes, aerial photos and satellite images are utilized in different time spans. The results demonstrate that urban region area has changed from 403.77 to 4959.59 hectares between 1956 and 2012. Moreover, the population has increased more than 30 times in last six decades. The major part of population growth is related to migration from other parts the country to Bandar Abbas city. Considering the speed of urban sprawl growth rate, the scale and the role of the city have changed from medium and regional to large scale and transregional. Due to natural and structural limitations, more than 80% of barren lands, stone cliffs, beach zone, and agricultural lands are occupied by built-up areas. Our results revealed that the irregular expansion of Bandar Abbas city must be controlled so that sustainable development could be achieved. PMID:25276858

  4. Land Use/Cover Change Detection and Urban Sprawl Analysis in Bandar Abbas City, Iran

    PubMed Central

    Mohd Shafri, Helmi Zulhaidi; Ahmad, Noordin; Pradhan, Biswajeet; Safarpour, Sahabeh

    2014-01-01

    The process of land use change and urban sprawl has been considered as a prominent characteristic of urban development. This study aims to investigate urban growth process in Bandar Abbas city, Iran, focusing on urban sprawl and land use change during 1956–2012. To calculate urban sprawl and land use changes, aerial photos and satellite images are utilized in different time spans. The results demonstrate that urban region area has changed from 403.77 to 4959.59 hectares between 1956 and 2012. Moreover, the population has increased more than 30 times in last six decades. The major part of population growth is related to migration from other parts the country to Bandar Abbas city. Considering the speed of urban sprawl growth rate, the scale and the role of the city have changed from medium and regional to large scale and transregional. Due to natural and structural limitations, more than 80% of barren lands, stone cliffs, beach zone, and agricultural lands are occupied by built-up areas. Our results revealed that the irregular expansion of Bandar Abbas city must be controlled so that sustainable development could be achieved. PMID:25276858

  5. A zone-based approach to identifying urban land uses using nationally-available data

    NASA Astrophysics Data System (ADS)

    Falcone, James A.

    Accurate identification of urban land use is essential for many applications in environmental study, ecological assessment, and urban planning, among other fields. However, because physical surfaces of land cover types are not necessarily related to their use and economic function, differentiating among thematically-detailed urban land uses (single-family residential, multi-family residential, commercial, industrial, etc.) using remotely-sensed imagery is a challenging task, particularly over large areas. Because the process requires an interpretation of tone/color, size, shape, pattern, and neighborhood association elements within a scene, it has traditionally been accomplished via manual interpretation of aerial photography or high-resolution satellite imagery. Although success has been achieved for localized areas using various automated techniques based on high-spatial or high-spectral resolution data, few detailed (Anderson Level II equivalent or greater) urban land use mapping products have successfully been created via automated means for broad (multi-county or larger) areas, and no such product exists today for the United States. In this study I argue that by employing a zone-based approach it is feasible to map thematically-detailed urban land use classes over large areas using appropriate combinations of non-image based predictor data which are nationally and publicly available. The approach presented here uses U.S. Census block groups as the basic unit of geography, and predicts the percent of each of ten land use types---nine of them urban---for each block group based on a number of data sources, to include census data, nationally-available point locations of features from the USGS Geographic Names Information System, historical land cover, and metrics which characterize spatial pattern, context (e.g. distance to city centers or other features), and measures of spatial autocorrelation. The method was demonstrated over a four-county area surrounding the

  6. Preliminary Analysis of the efficacy of Artificial neural Network (ANN) and Cellular Automaton (CA) based Land Use Models in Urban Land-Use Planning

    NASA Astrophysics Data System (ADS)

    Harun, R.

    2013-05-01

    This research provides an opportunity of collaboration between urban planners and modellers by providing a clear theoretical foundations on the two most widely used urban land use models, and assessing the effectiveness of applying the models in urban planning context. Understanding urban land cover change is an essential element for sustainable urban development as it affects ecological functioning in urban ecosystem. Rapid urbanization due to growing inclination of people to settle in urban areas has increased the complexities in predicting that at what shape and size cities will grow. The dynamic changes in the spatial pattern of urban landscapes has exposed the policy makers and environmental scientists to great challenge. But geographic science has grown in symmetry to the advancements in computer science. Models and tools are developed to support urban planning by analyzing the causes and consequences of land use changes and project the future. Of all the different types of land use models available in recent days, it has been found by researchers that the most frequently used models are Cellular Automaton (CA) and Artificial Neural Networks (ANN) models. But studies have demonstrated that the existing land use models have not been able to meet the needs of planners and policy makers. There are two primary causes identified behind this prologue. First, there is inadequate understanding of the fundamental theories and application of the models in urban planning context i.e., there is a gap in communication between modellers and urban planners. Second, the existing models exclude many key drivers in the process of simplification of the complex urban system that guide urban spatial pattern. Thus the models end up being effective in assessing the impacts of certain land use policies, but cannot contribute in new policy formulation. This paper is an attempt to increase the knowledge base of planners on the most frequently used land use model and also assess the

  7. Urban land use of the Sao Paulo metropolitan area by automatic analysis of LANDSAT data

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Niero, M.; Foresti, C.

    1983-01-01

    The separability of urban land use classes in the metropolitan area of Sao Paulo was studied by means of automatic analysis of MSS/LANDSAT digital data. The data were analyzed using the media K and MAXVER classification algorithms. The land use classes obtained were: CBD/vertical growth area, residential area, mixed area, industrial area, embankment area type 1, embankment area type 2, dense vegetation area and sparse vegetation area. The spectral analysis of representative samples of urban land use classes was done using the "Single Cell" analysis option. The classes CBD/vertical growth area, residential area and embankment area type 2 showed better spectral separability when compared to the other classes.

  8. Multi-Agent Based Simulation of Optimal Urban Land Use Allocation in the Middle Reaches of the Yangtze River, China

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Huang, W.; Jin, W.; Li, S.

    2016-06-01

    The optimization of land-use allocation is one of important approaches to achieve regional sustainable development. This study selects Chang-Zhu-Tan agglomeration as study area and proposed a new land use optimization allocation model. Using multi-agent based simulation model, the future urban land use optimization allocation was simulated in 2020 and 2030 under three different scenarios. This kind of quantitative information about urban land use optimization allocation and urban expansions in future would be of great interest to urban planning, water and land resource management, and climate change research.

  9. Using geometrical, textural, and contextual information of land parcels for classification of detailed urban land use

    USGS Publications Warehouse

    Wu, S.-S.; Qiu, X.; Usery, E.L.; Wang, L.

    2009-01-01

    Detailed urban land use data are important to government officials, researchers, and businesspeople for a variety of purposes. This article presents an approach to classifying detailed urban land use based on geometrical, textural, and contextual information of land parcels. An area of 6 by 14 km in Austin, Texas, with land parcel boundaries delineated by the Travis Central Appraisal District of Travis County, Texas, is tested for the approach. We derive fifty parcel attributes from relevant geographic information system (GIS) and remote sensing data and use them to discriminate among nine urban land uses: single family, multifamily, commercial, office, industrial, civic, open space, transportation, and undeveloped. Half of the 33,025 parcels in the study area are used as training data for land use classification and the other half are used as testing data for accuracy assessment. The best result with a decision tree classification algorithm has an overall accuracy of 96 percent and a kappa coefficient of 0.78, and two naive, baseline models based on the majority rule and the spatial autocorrelation rule have overall accuracy of 89 percent and 79 percent, respectively. The algorithm is relatively good at classifying single-family, multifamily, commercial, open space, and undeveloped land uses and relatively poor at classifying office, industrial, civic, and transportation land uses. The most important attributes for land use classification are the geometrical attributes, particularly those related to building areas. Next are the contextual attributes, particularly those relevant to the spatial relationship between buildings, then the textural attributes, particularly the semivariance texture statistic from 0.61-m resolution images.

  10. [Forest distribution pattern and land use strategy along urban-rural gradient].

    PubMed

    Dong, Yibo; Liu, Maosong; Xu, Chi; Zhang, Cheng; Liu, Zhibin

    2006-08-01

    According to the buffers and urban fringes of Nanjing in 1988 and 2003, and by using landsat TM images and DEM data, 8 urban-rural gradient zones called I, II, III,......, VIII in this city were marked off, and the forest distribution pattern as well as the land use strategies along these gradient zones were studied. The results showed that in each of these zones, there was a significant positive correlation between the coverage of mountainous area and forest, and the forest coverages were obviously higher in mountainous than in flat area, with a distribution pattern of I > II, II < III, III approximately equal to IV, IV > V > VI > VII > VIII. In urbanizing area, there were three major landuse types, i. e. , urban building, ecological regulation (mainly forest stand), and agricultural production (mainly crop land). The potential value of a certain land use type became the leading cause of land use type selection. Inner city area had very low forest coverage because of its high exploitation value, and the ecological value of the outskirts within 10 km beyond the urban fringe was comparatively outstanding, with the forest coverage increased significantly. The forest coverage declined with the increasing distance to urban, because of the dominant station of the production value.

  11. LAND USE AND SEASONAL EFFECTS ON URBAN STORMWATER RUNOFF MICROORGANISM CONCENTRATIONS

    EPA Science Inventory

    Stormwater samples collected from storm sewers draining small municipal separate storm sewer systems shown to be free of cross connections within an urban watershed dominated by a single land use were analyzed for pathogens (Pseudomonas aeruginosa and Staphylococcus aureus) and i...

  12. Modeling urban land use changes in Lanzhou based on artificial neural network and cellular automata

    NASA Astrophysics Data System (ADS)

    Xu, Xibao; Zhang, Jianming; Zhou, Xiaojian

    2008-10-01

    This paper presented a model to simulate urban land use changes based on artificial neural network (ANN) and cellular automata (CA). The model was scaled down at the intra-urban level with subtle land use categorization, developed with Matlab 7.2 and loosely coupled with GIS. Urban land use system is a very complicated non-linear social system influenced by many factors. In this paper, four aspects of a totality 17 factors, including physical, social-economic, neighborhoods and policy, were considered synthetically. ANN was proposed as a solution of CA model calibration through its training to acquire the multitudinous parameters as a substitute for the complex transition rules. A stochastic perturbation parameter v was added into the model, and five different scenarios with different values of v and the threshold were designed for simulations and predictions to explore their effects on urban land use changes. Simulations of 2005 and predictions of 2015 under the five different scenarios were made and evaluated. Finally, the advantages and disadvantages of the model were discussed.

  13. Land use analysis of US urban areas using high-resolution imagery from Skylab

    NASA Technical Reports Server (NTRS)

    Gallagher, D. B. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. The S-190B imagery from Skylab 3 permitted the detection of higher levels of land use detail than any satellite imagery previously evaluated using manual interpretation techniques. Resolution approaches that of 1:100,000 scale infrared aircraft photography, especially regarding urban areas. Nonurban areas are less distinct.

  14. The Major Environmentally-Based Land Use Issues on the Urban Fringe.

    ERIC Educational Resources Information Center

    Hordon, Robert M.

    Types of land-use issues which form current problems in urban areas are discussed in this paper. The majority of these environmentally based issues revolve around the management of water. The five most often encountered water-oriented issues are denoted in rank order of importance. First, an ample water supply which is free from contamination must…

  15. Interactive Effects of Urban Land Use and Climate Change on Biogeochemical Cycles (Invited)

    NASA Astrophysics Data System (ADS)

    Pouyat, R. V.

    2009-12-01

    Urban land-use change can affect biogeochemical cycles through altered disturbance regimes, landscape management practices (e.g., irrigation and fertilization), built structures, and altered environments (heat island effect, pollution, introduction of non-native species, loss of native species). As a result, the conversion of native to urban ecological systems has been shown to significantly affect carbon, nitrogen, and water cycles at local, regional, and global scales. These changes have created novel habitats and ecosystems, which have no analogue in the history of life. Nonetheless, some of the environmental changes occurring in urban areas are analogous to the changes expected in climate by the end of the century, e.g. atmospheric increase in CO2 and an increase in air temperatures, which can be utilized as a “natural experiment” to investigate global change effects on large scale ecosystem processes. Moreover, as analogues of expected future environments, urban ecological systems may act as reservoirs of plant and animal species for adjoining landscapes that are expected to undergo relatively rapid climate changes in the next 100 years. Urban land-use change by itself may contribute to changes in regional weather patterns and long-term changes in global climate, which will depend on the net effect of converting native systems to urban systems and the comparison of per capita “footprints” between urban, suburban, and rural inhabitants. My objectives are to 1) assess the impact of changes in urban land-use on climate change and in turn how climate change may affect urban biogeochemical cycles and 2) discuss the potential for urban ecosystems to mitigate green house gas emissions.

  16. Adjusting measured peak discharges from an urbanizing watershed to reflect a stationary land use signal

    NASA Astrophysics Data System (ADS)

    Beighley, R. Edward; Moglen, Glenn E.

    2003-04-01

    A procedure to adjust gauged streamflow data from watersheds urbanized during or after their gauging period is presented. The procedure adjusts streamflow to be representative of a fixed land use condition, which may reflect current or future development conditions. Our intent is to determine what an event resulting in a peak discharge in, for example, 1950 (i.e., before urbanization) would produce on the current urban watershed. While past approaches assumed uniform spatial and temporal changes in urbanization, this study focuses on the use of geographic information systems (GIS) based methodologies for precisely locating in space and time where land use change has occurred. This information is incorporated into a hydrologic model to simulate the change in discharge as a result of changing land use conditions. In this paper, we use historical aerial photographs, GIS linked tax-map data, and recent land use/land cover data to recreate the spatial development history of eight gauged watersheds in the Baltimore-Washington, D. C., metropolitan area. Using our procedure to determine discharge series representative of the current urban watersheds, we found that the increase of the adjusted 2-year discharge ranged from 16 to 70 percent compared with the measured annual maximum discharge series. For the 100-year discharge the adjusted values ranged from 0 to 47 percent greater than the measured values. Additionally, relationships between the increase in flood flows and four measures of urbanization (increase in urban land, decrease in forested land, increase in high-density development, and the spatial development pattern) are investigated for predicting the increase in flood flows for ungauged watersheds. Watersheds with the largest increases in flood flows typically had more extensive development in the areas far removed from the outlet. In contrast, watersheds with development located nearer to the outlet typically had the smallest increases in peak discharge.

  17. Satellite-Supported Modeling of the Relationships between Urban Heat Island and Land Use/Cover Changes

    NASA Astrophysics Data System (ADS)

    Vahmani, P.; Ban-Weiss, G. A.

    2015-12-01

    Reliable assessment of the primary causes of urban heat island (UHI) and the efficiency of various heat mitigation strategies requires accurate prediction of urban temperatures and realistic representation of land surface physical characteristics in models. In this study, we expand the capabilities of the Weather Research and Forecasting (WRF) model and the Urban Canopy Model (UCM) by implementing high-resolution real-time satellite observations of green vegetation fraction (GVF), leaf area index (LAI), and albedo. We use MODIS-based GVF, LAI, and albedo to replace constant values that are assumed for urban pixels and climatological values that are used for non-urban pixels in the default WRF-UCM. Utilizing the improved model, summertime climate of Los Angeles is simulated over the span of three years (2010-2012). Next, thermal sensitivity of urban climate to anthropogenic land use/cover is assessed via replacing current urban cover with pre-development vegetation cover, consisting of shrubland and grassland. Surrounding undeveloped areas and inverse distance weighting method are utilized to estimate GVF and LAI of pre-development vegetation cover. Our analysis of diurnal and nocturnal surface and air temperatures shows cooling effects of urbanization in neighborhoods with high fractions of irrigated vegetation. However, urban warming is consistently detected over industrial/commercial and high-intensity residential areas. In addition to well-known mechanisms such as a shift in surface energy partitioning, high heat storage in urban material, and inefficiency of urban surfaces in transferring convective heat from the surface to the boundary layer, our results show decreased wind speed and sea breeze also contribute to the UHI intensity. We further evaluate the interactions between UHI and replacing irrigated and imported vegetation with non-irrigated native vegetation as a water conservation strategy in water-stressed Los Angeles metropolitan area.

  18. Urban land-use study plan for the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Squillace, P.J.; Price, C.V.

    1996-01-01

    This study plan is for Urban Land-Use Studies initiated as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. There are two Urban Land-Use Study objectives: (1) Define the water quality in recharge areas of shallow aquifers underlying areas of new residential and commercial land use in large metropolitan areas, and (2) determine which natural and human factors most strongly affect the occurrence of contaminants in these shallow aquifers. To meet objective 1, each NAWQA Study Unit will install and collect water samples from at least 30 randomly located monitoring wells in a metropolitan area. To meet objective 2, aquifer characteristics and land-use information will be documented. This includes particle-size analysis of each major lithologic unit both in the unsaturated zone and in the aquifer near the water table. The percentage of organic carbon also will be determined for each lithologic unit. Geographic information system coverages will be created that document existing land use around the wells. These data will aid NAWQA personnel in relating natural and human factors to the occurrence of contaminants. Water samples for age dating also will be collected from all monitoring wells, but the samples will be stored until the occurrence of contaminants has been determined. Age-date analysis will be done only on those samples that have no detectable concentrations of anthropogenic contaminants.

  19. Impact of Land-Use Intensity and Productivity on Bryophyte Diversity in Agricultural Grasslands

    PubMed Central

    Müller, Jörg; Klaus, Valentin H.; Kleinebecker, Till; Prati, Daniel; Hölzel, Norbert; Fischer, Markus

    2012-01-01

    While bryophytes greatly contribute to plant diversity of semi-natural grasslands, little is known about the relationships between land-use intensity, productivity, and bryophyte diversity in these habitats. We recorded vascular plant and bryophyte vegetation in 85 agricultural used grasslands in two regions in northern and central Germany and gathered information on land-use intensity. To assess grassland productivity, we harvested aboveground vascular plant biomass and analyzed nutrient concentrations of N, P, K, Ca and Mg. Further we calculated mean Ellenberg indicator values of vascular plant vegetation. We tested for effects of land-use intensity and productivity on total bryophyte species richness and on the species richness of acrocarpous (small & erect) and pleurocarpous (creeping, including liverworts) growth forms separately. Bryophyte species were found in almost all studied grasslands, but species richness differed considerably between study regions in northern Germany (2.8 species per 16 m2) and central Germany (6.4 species per 16 m2) due environmental differences as well as land-use history. Increased fertilizer application, coinciding with high mowing frequency, reduced bryophyte species richness significantly. Accordingly, productivity estimates such as plant biomass and nitrogen concentration were strongly negatively related to bryophyte species richness, although productivity decreased only pleurocarpous species. Ellenberg indicator values for nutrients proved to be useful indicators of species richness and productivity. In conclusion, bryophyte composition was strongly dependent on productivity, with smaller bryophytes that were likely negatively affected by greater competition for light. Intensive land-use, however, can also indirectly decrease bryophyte species richness by promoting grassland productivity. Thus, increasing productivity is likely to cause a loss of bryophyte species and a decrease in species diversity. PMID:23251563

  20. Water-Urban Land Use: Neglected Link in the Climate Change Triadic Relationship among Water-Energy-Land Use in California

    NASA Astrophysics Data System (ADS)

    Blanco, H. J.

    2014-12-01

    Efforts to reduce the magnitude of climate change due to GHG emissions has focused attention on how different sectors contribute to GHG emitting energy use. California has been a leader in climate change mitigation policy across the nation with its passage of the Global Warming Act of 2006, with a major focus on the energy sector. Directly linked to climate change, the Energy-Travel-Urban Land Use Nexus in California is well recognized and the density/compactness of land use is subject of 2008 state policy (Sustainable Communities and Climate Protection Act, SB 375). The Water-Energy Nexus is also well-recognized, given that about 19% of electricity use in State is water-related, and water scarcity in the State has led to increasing policy guidelines, e.g., the 2009 water conservation plan, with a target of reducing urban water use by 20% by 2020. Since 40-50% of urban water in California is consumed by outdoor water use, the character of urban land use, its compactness and density, have important effects on water use and resulting energy impacts. However, direct policy attention to the water-urban land use nexus has focused primarily on water-conserving outdoor watering devices, and landscapes. Direct policy on the character of development itself has yet to emerge, and adequate recognition of the interrelationships among energy, water use and the character of urban development has yet to occur. This paper reviews the research and policies on the water-urban land use link, as well as on the larger triadic relation. It identifies research questions, and policy issues that this neglected link poses to California and the nation.

  1. Landscaping practices, land use patterns and stormwater quantity and quality in urban watersheds

    NASA Astrophysics Data System (ADS)

    Miles, B.; Band, L. E.

    2011-12-01

    Increasing quantity and decreasing quality of urban stormwater threatens biodiversity in local streams and reservoirs, jeopardizes water supplies, and ultimately contributes to estuarine eutrophication. To estimate the effects that present and alternative landscaping practices and land use patterns may have on urban stormwater quantity and quality, simulations of existing land use/land cover using the Regional Hydro-Ecologic Simulation System (RHESSys), a process-based surface hydrology and biogeochemistry model, were developed for watersheds in Baltimore, MD (as part of the Baltimore Ecosystem Study (BES) NSF Long-Term Ecological Research (LTER) site) and Durham, NC (as part of the NSF Urban Long-Term Research Area (ULTRA) program). The influence of land use patterns and landscaping practices on nutrient export in urban watersheds has been explored as part of the BES; this work has focused on improving our understanding of how residential landscaping practices (i.e. lawn fertilization rates) vary across land use and socioeconomic gradients. Elsewhere, others have explored the political ecology of residential landscaping practices - seeking to understand the economic, political, and cultural influences on the practice of high-input residential turf-grass management. Going forward, my research will synthesize and extend this prior work. Rather than pre-supposing predominant residential land use patterns and landscaping practices (i.e. lower-density periphery development incorporating high-input turf landscapes) alternate land use and landscaping scenarios (e.g. higher-density/transit-oriented development, rain gardens, vegetable gardens, native plant/xeriscaping) will be developed through interviews/focus groups with stakeholders (citizens, public officials, developers, non-profits). These scenarios will then be applied to the RHESSys models already developed for catchments in Baltimore and Durham. The modeled scenario results will be used to identify alternate land

  2. Urban land use change detection through spatial statistical analysis using multi-temporal remote sensing data

    NASA Astrophysics Data System (ADS)

    Li, Feixue; Li, Manchun; Liang, Jian; Liu, Yongxue; Chen, Zhenjie; Chen, Dong

    2008-10-01

    Numerous remote sensing change detection methods have been used in urban land use change identification and analysis, in which image regression is regarded as effective as other approaches. Traditional image regression approaches for change detection often produce unsatisfactory results by assuming the relationships in study data in a consistent manner in place, and spatial correlation between pixels inherent in remote sensing images is usually ignored in the analysis. Geographically Weighted Regression (GWR) addresses this weakness by obtaining local parameter estimates for each observation. This paper reports preliminary results from a study applying GWR to the land use change detection in urban center and urban fringe of Nanjing city, China, using satellite images of 2000 and 2004. The results show that the use of GWR can identify the land use change, the global patterns, the local patterns, as well as the points not consistent with local patterns in the urban environment; and the under-development and over-development points are also detected by GWR model.

  3. Urban air pollution patterns, land use, and thermal landscape: an examination of the linkage using GIS.

    PubMed

    Weng, Qihao; Yang, Shihong

    2006-06-01

    This article investigates the relationship of local air pollution pattern with urban land use and with urban thermal landscape using a GIS approach. Ambient air quality measurements for sulfur dioxide, nitrogen oxide, carbon monoxide, total suspended particles, and dust level were obtained for Guangzhou City in South China between 1981 and 2000. Landsat TM images and aerial photo derived maps were used to examine city's land use and land cover at different times and changes. Landsat thermal infrared data were employed to compute land surface temperatures and to assess urban thermal patterns. Relationships among the spatial patterns of air pollution, land use, and thermal landscape were sought through GIS and correlation analyses. Results show that the spatial patterns of air pollutants probed were positively correlated with urban built-up density, and with satellite derived land surface temperature values, particularly with measurements taken during the summer. It is suggested that further studies investigate the mechanisms of this linkage, and that remote sensing of air pollution delves into how the energy interacts with the atmosphere and the environment and how sensors see pollutants. Thermal infrared imagery could play a unique role in monitoring and modeling atmospheric pollution.

  4. Urbanization suitability maps: a dynamic spatial decision support system for sustainable land use

    NASA Astrophysics Data System (ADS)

    Cerreta, M.; De Toro, P.

    2012-11-01

    Recent developments in land consumption assessment identify the need to implement integrated evaluation approaches, with particular attention to the development of multidimensional tools for guiding and managing sustainable land use. Land use policy decisions are implemented mostly through spatial planning and its related zoning. This involves trade-offs between many sectorial interests and conflicting challenges seeking win-win solutions. In order to identify a decision-making process for land use allocation, this paper proposes a methodological approach for developing a Dynamic Spatial Decision Support System (DSDSS), denominated Integrated Spatial Assessment (ISA), supported by Geographical Information Systems (GIS) combined with the Analytic Hierarchy Process (AHP). Through empirical investigation in an operative case study, an integrated evaluation approach implemented in a DSDSS helps produce "urbanization suitability maps" in which spatial analysis combined with multi-criteria evaluation methods proved to be useful for both facing the main issues relating to land consumption as well as minimizing environmental impacts of spatial planning.

  5. Anthropogenic land uses elevate metal levels in stream water in an urbanizing watershed.

    PubMed

    Yu, Shen; Wu, Qian; Li, Qingliang; Gao, Jinbo; Lin, Qiaoying; Ma, Jun; Xu, Qiufang; Wu, Shengchun

    2014-08-01

    Land use/cover change is a dominant factor affecting surface water quality in rapidly developing areas of Asia. In this study we examined relationships between land use and instream metal loadings in a rapidly developing mixed land use watershed in southeastern China. Five developing subwatersheds and one forested reference site (head water) were instrumented with timing- and rainfall-triggered autosampler and instream loadings of anthropogenic metals (Cu, Zn, Pb, Cr, Cd, and Mn) were monitored from March 2012 to December 2013. Farm land and urban land were positively, and forest and green land were negatively associated with metal loadings (except Cr) in stream water. All developing sites had higher loadings than the reference head water site. Assessed by Chinese surface water quality standard (GB3830-2002), instream loadings of Cu and Zn occasionally exceeded the Class I thresholds at monitoring points within farmland dominated subwatersheds while Mn loadings were greater than the limit for drinking water sources at all monitoring points. Farm land use highly and positively contributed to statistical models of instream loadings of Cu, Zn, Cd, and Mn while urban land use was the dominant contributor to models of Pb and Cd loadings. Rainfall played a crucial role in metal loadings in stream water as a direct source (there were significant levels of Cu and Zn in rain water) and as a driver of watershed processes (loadings were higher in wet years and seasons). Urbanization effects on metal loadings in this watershed are likely to change rapidly with development in future years. Further monitoring to characterize these changes is clearly warranted and should help to develop plans to avoid conflicts between economic development and water quality degradation in this watershed and in watersheds throughout rapidly developing areas of Asia.

  6. Exploiting Volunteered Geographic Information to Ease Land Use Mapping of AN Urban Landscape

    NASA Astrophysics Data System (ADS)

    Jokar Arsanjani, J.; Helbich, M.; Bakillah, M.

    2013-05-01

    Remote sensing techniques have eased land use/cover mapping substantially by observing the earth remotely through diminishing field surveying and in-site data collection. However, field measurement is still required to identify training sites for defining the existing land use classes, which requires visiting the study area. This paper is intended to utilize volunteered geographic information (VGI) contributions to the OpenStreetMap (OSM) project as an alternative data source instead of gathering training sites through insite visits and to evaluate how accurate land use patterns can be mapped. High resolution imagery of RapidEye with 5 meter spatial resolution is selected to derive land use patterns of Koblenz, Germany through a maximum likelihood classification technique. The achieved land use map is compared with the Global Monitoring for Environment and Security Urban Atlas (GMESUA) and a Kappa Index of 89% is achieved. The outcomes prove that VGI can be integrated within remote sensing processes to facilitate the process of earth observation and monitoring.

  7. Modeling Occurrence of Urban Mosquitos Based on Land Use Types and Meteorological Factors in Korea.

    PubMed

    Kwon, Yong-Su; Bae, Mi-Jung; Chung, Namil; Lee, Yeo-Rang; Hwang, Suntae; Kim, Sang-Ae; Choi, Young Jean; Park, Young-Seuk

    2015-10-20

    Mosquitoes are a public health concern because they are vectors of pathogen, which cause human-related diseases. It is well known that the occurrence of mosquitoes is highly influenced by meteorological conditions (e.g., temperature and precipitation) and land use, but there are insufficient studies quantifying their impacts. Therefore, three analytical methods were applied to determine the relationships between urban mosquito occurrence, land use type, and meteorological factors: cluster analysis based on land use types; principal component analysis (PCA) based on mosquito occurrence; and three prediction models, support vector machine (SVM), classification and regression tree (CART), and random forest (RF). We used mosquito data collected at 12 sites from 2011 to 2012. Mosquito abundance was highest from August to September in both years. The monitoring sites were differentiated into three clusters based on differences in land use type such as culture and sport areas, inland water, artificial grasslands, and traffic areas. These clusters were well reflected in PCA ordinations, indicating that mosquito occurrence was highly influenced by land use types. Lastly, the RF represented the highest predictive power for mosquito occurrence and temperature-related factors were the most influential. Our study will contribute to effective control and management of mosquito occurrences.

  8. Modeling Occurrence of Urban Mosquitos Based on Land Use Types and Meteorological Factors in Korea

    PubMed Central

    Kwon, Yong-Su; Bae, Mi-Jung; Chung, Namil; Lee, Yeo-Rang; Hwang, Suntae; Kim, Sang-Ae; Choi, Young Jean; Park, Young-Seuk

    2015-01-01

    Mosquitoes are a public health concern because they are vectors of pathogen, which cause human-related diseases. It is well known that the occurrence of mosquitoes is highly influenced by meteorological conditions (e.g., temperature and precipitation) and land use, but there are insufficient studies quantifying their impacts. Therefore, three analytical methods were applied to determine the relationships between urban mosquito occurrence, land use type, and meteorological factors: cluster analysis based on land use types; principal component analysis (PCA) based on mosquito occurrence; and three prediction models, support vector machine (SVM), classification and regression tree (CART), and random forest (RF). We used mosquito data collected at 12 sites from 2011 to 2012. Mosquito abundance was highest from August to September in both years. The monitoring sites were differentiated into three clusters based on differences in land use type such as culture and sport areas, inland water, artificial grasslands, and traffic areas. These clusters were well reflected in PCA ordinations, indicating that mosquito occurrence was highly influenced by land use types. Lastly, the RF represented the highest predictive power for mosquito occurrence and temperature-related factors were the most influential. Our study will contribute to effective control and management of mosquito occurrences. PMID:26492260

  9. Graph-Based Urban Land Use Mapping from High Resolution Satellite Images

    NASA Astrophysics Data System (ADS)

    Walde, I.; Hese, S.; Berger, C.; Schmullius, C.

    2012-07-01

    Due to the dynamic character of urban land use (e.g. urban sprawl) there is a demand for frequent updates for monitoring, modeling, and controlling purposes. Urban land use is an added value that can be indirectly derived with the help of various properties of land cover classes that describe a certain area and create a distinguishable structure. The goal of this project is to extract land use (LU) classes out of a structure of land cover (LC) classes from high resolution Quickbird data and additional LiDAR building height models. The study area is Rostock, a German city with more than 200.000 inhabitants. To model the properties of urban land use a graph based approach is adapted from other disciplines (industrial image processing, medicine, informatics). A graph consists of nodes and edges while nodes describe the land cover and edges define the relationship of neighboring objects. To calculate the adjacency that describes which nodes are combined with an edge several distance ranges and building height properties are tested. Furthermore the information value of planar versus non-planar graph types is analyzed. After creating the graphs specific indices are computed that evaluate how compact or connected the graphs are. In this work several graph indices are explained and applied to training areas. Results show that the distance of buildings and building height are reliable indicators for LU-categories. The separability of LU-classes improves when properties of land cover classes and graph indices are combined to a LU-signature.

  10. ICCLP: An Inexact Chance-Constrained Linear Programming Model for Land-Use Management of Lake Areas in Urban Fringes

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Qin, Xiaosheng; Guo, Huaicheng; Zhou, Feng; Wang, Jinfeng; Lv, Xiaojian; Mao, Guozhu

    2007-12-01

    Lake areas in urban fringes are under increasing urbanization pressure. Consequently, the conflict between rapid urban development and the maintenance of water bodies in such areas urgently needs to be addressed. An inexact chance-constrained linear programming (ICCLP) model for optimal land-use management of lake areas in urban fringes was developed. The ICCLP model was based on land-use suitability assessment and land evaluation. The maximum net economic benefit (NEB) was selected as the objective of land-use allocation. The total environmental capacity (TEC) of water systems and the public financial investment (PFI) at different probability levels were considered key constraints. Other constraints included in the model were land-use suitability, governmental requirements on the ratios of various land-use types, and technical constraints. A case study implementing the system was performed for the lake area of Hanyang at the urban fringe of Wuhan, central China, based on our previous study on land-use suitability assessment. The Hanyang lake area is under significant urbanization pressure. A 15-year optimal model for land-use allocation is proposed during 2006 to 2020 to better protect the water system and to gain the maximum benefits of development. Sixteen constraints were set for the optimal model. The model results indicated that NEB was between 1.48 × 109 and 8.76 × 109 or between 3.98 × 109 and 16.7 × 109, depending on the different urban-expansion patterns and land demands. The changes in total developed area and the land-use structure were analyzed under different probabilities ( q i ) of TEC. Changes in q i resulted in different urban expansion patterns and demands on land, which were the direct result of the constraints imposed by TEC and PFI. The ICCLP model might help local authorities better understand and address complex land-use systems and develop optimal land-use management strategies that better balance urban expansion and grassland

  11. Multi-taxa approach shows consistent shifts in arthropod functional traits along grassland land-use intensity gradient.

    PubMed

    Simons, Nadja K; Weisser, Wolfgang W; Gossner, Martin M

    2016-03-01

    Intensification of land use reduces biodiversity but may also shift the trait composition of communities. Understanding how land use affects single traits and community trait composition, helps to understand why some species are more affected by land use than others. Trait-based analyses are common for plants, but rare for arthropods. We collected literature-based traits for nearly 1000 insect and spider species to test how land- use intensity (including mowing, fertilization, and grazing) across 124 grasslands in three regions of Germany affects community-weighted mean traits across taxa and in single taxa. We additionally measured morphometric traits for more than 150 Heteroptera species and tested whether the weighted mean morphometric traits change with increasing land-use intensity. Community average body size decreased and community average dispersal ability increased from low to high land-use intensity. Furthermore, the relative abundance of herbivores and of specialists among herbivores decreased and the relative abundance of species using the herb layer increased with increasing land-use intensity. Community-weighted means of the morphometric traits in Heteroptera also changed from low to high land-use intensity toward longer and thinner shapes as well as longer appendices (legs, wings, and antenna). While changes in traits with increasing mowing and fertilization intensity were consistent with the combined land-use intensity, community average traits did often not change or with opposite direction under increasing grazing intensity. We conclude that high land-use intensity acts as an environmental filter selecting for on average smaller, more mobile, and less specialized species across taxa. Although trait collection across multiple arthropod taxa is laborious and needs clear trait definitions, it is essential for understanding the functional consequences of biodiversity loss due to land-use intensification. PMID:27197401

  12. Multi-taxa approach shows consistent shifts in arthropod functional traits along grassland land-use intensity gradient.

    PubMed

    Simons, Nadja K; Weisser, Wolfgang W; Gossner, Martin M

    2016-03-01

    Intensification of land use reduces biodiversity but may also shift the trait composition of communities. Understanding how land use affects single traits and community trait composition, helps to understand why some species are more affected by land use than others. Trait-based analyses are common for plants, but rare for arthropods. We collected literature-based traits for nearly 1000 insect and spider species to test how land- use intensity (including mowing, fertilization, and grazing) across 124 grasslands in three regions of Germany affects community-weighted mean traits across taxa and in single taxa. We additionally measured morphometric traits for more than 150 Heteroptera species and tested whether the weighted mean morphometric traits change with increasing land-use intensity. Community average body size decreased and community average dispersal ability increased from low to high land-use intensity. Furthermore, the relative abundance of herbivores and of specialists among herbivores decreased and the relative abundance of species using the herb layer increased with increasing land-use intensity. Community-weighted means of the morphometric traits in Heteroptera also changed from low to high land-use intensity toward longer and thinner shapes as well as longer appendices (legs, wings, and antenna). While changes in traits with increasing mowing and fertilization intensity were consistent with the combined land-use intensity, community average traits did often not change or with opposite direction under increasing grazing intensity. We conclude that high land-use intensity acts as an environmental filter selecting for on average smaller, more mobile, and less specialized species across taxa. Although trait collection across multiple arthropod taxa is laborious and needs clear trait definitions, it is essential for understanding the functional consequences of biodiversity loss due to land-use intensification.

  13. Density of insect-pollinated grassland plants decreases with increasing surrounding land-use intensity.

    PubMed

    Clough, Yann; Ekroos, Johan; Báldi, András; Batáry, Péter; Bommarco, Riccardo; Gross, Nicolas; Holzschuh, Andrea; Hopfenmüller, Sebastian; Knop, Eva; Kuussaari, Mikko; Lindborg, Regina; Marini, Lorenzo; Öckinger, Erik; Potts, Simon G; Pöyry, Juha; Roberts, Stuart Pm; Steffan-Dewenter, Ingolf; Smith, Henrik G

    2014-09-01

    Pollinator declines have raised concerns about the persistence of plant species that depend on insect pollination, in particular by bees, for their reproduction. The impact of pollinator declines remains unknown for species-rich plant communities found in temperate seminatural grasslands. We investigated effects of land-use intensity in the surrounding landscape on the distribution of plant traits related to insect pollination in 239 European seminatural grasslands. Increasing arable land use in the surrounding landscape consistently reduced the density of plants depending on bee and insect pollination. Similarly, the relative abundance of bee-pollination-dependent plants increased with higher proportions of non-arable agricultural land (e.g. permanent grassland). This was paralleled by an overall increase in bee abundance and diversity. By isolating the impact of the surrounding landscape from effects of local habitat quality, we show for the first time that grassland plants dependent on insect pollination are particularly susceptible to increasing land-use intensity in the landscape.

  14. Variations of soil lead in different land uses along the urbanization gradient in the Beijing metropolitan area.

    PubMed

    Mao, Qizheng; Huang, Ganlin; Ma, Keming; Sun, Zexiang

    2014-03-18

    Understanding the spatial pattern of soil lead (Pb) levels is essential to protecting human health. Most previous studies have examined soil Pb distributions by either urbanization gradient or land-use type. Few studies, however, have examined both factors together. It remains unclear whether the impacts of land use on soil Pb levels are consistent along the urbanization gradient. To fill this gap, we investigated variations in soil Pb level under different land-use types along the urbanization gradient in Beijing, China. We classified the degree of urbanization as the urban core, transitional zone, or suburban area and the land-use type as industrial area, roadside, residential area, institutional area, road greenbelt, park, or forest. Our results showed that the range of soil Pb levels in Beijing is <1 mg/kg-292 mg/kg, with a mean of 22 mg/kg. Along the urbanization gradient, the mean soil Pb level increased from the suburban area to the urban core. Land-use types have an impact on soil Pb levels, however, when the degree of urbanization is considered, the impact from land use on soil Pb level was only significant in the transitional zone. Parks and road greenbelts were found to have lower soil Pb, primarily due to soil restoration. Roadside and residential areas were found to have higher soil Pb because of traffic emissions, leaded paint, and previous industrial contamination. In the urban core and suburban area, the soil Pb level showed no significant differences among various land-use types. Given the results of soil Pb in various land-use types, we suggest that future studies consider the urbanization gradient in which different land-use samples are located.

  15. Variations of Soil Lead in Different Land Uses Along the Urbanization Gradient in the Beijing Metropolitan Area

    PubMed Central

    Mao, Qizheng; Huang, Ganlin; Ma, Keming; Sun, Zexiang

    2014-01-01

    Understanding the spatial pattern of soil lead (Pb) levels is essential to protecting human health. Most previous studies have examined soil Pb distributions by either urbanization gradient or land-use type. Few studies, however, have examined both factors together. It remains unclear whether the impacts of land use on soil Pb levels are consistent along the urbanization gradient. To fill this gap, we investigated variations in soil Pb level under different land-use types along the urbanization gradient in Beijing, China. We classified the degree of urbanization as the urban core, transitional zone, or suburban area and the land-use type as industrial area, roadside, residential area, institutional area, road greenbelt, park, or forest. Our results showed that the range of soil Pb levels in Beijing is <1 mg/kg–292 mg/kg, with a mean of 22 mg/kg. Along the urbanization gradient, the mean soil Pb level increased from the suburban area to the urban core. Land-use types have an impact on soil Pb levels, however, when the degree of urbanization is considered, the impact from land use on soil Pb level was only significant in the transitional zone. Parks and road greenbelts were found to have lower soil Pb, primarily due to soil restoration. Roadside and residential areas were found to have higher soil Pb because of traffic emissions, leaded paint, and previous industrial contamination. In the urban core and suburban area, the soil Pb level showed no significant differences among various land-use types. Given the results of soil Pb in various land-use types, we suggest that future studies consider the urbanization gradient in which different land-use samples are located. PMID:24646863

  16. Urban land use in Natura 2000 surrounding areas in Vilnius Region, Lithuania.

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Misiūnė, Ieva; Depellegrin, Daniel

    2015-04-01

    Urban development is one of the major causes of land degradation and pressure on protected areas. (Hansen and DeFries, 2007; Salvati and Sabbi, 2011). The urban areas in the fringe of the protected areas are a source of pollutants considered a negative disturbance to the ecosystems services and biodiversity within the protected areas. The distance between urban and protected areas is decreasing and in the future it is estimated that 88% of the world protected areas will be affected by urban growth (McDonald et al., 2008). The surrounding or buffer areas, are lands adjacent to the Natura 2000 territories, which aim to reduce the human influence within the protected areas. Presently there is no common definition of buffer area it is not clear among stakeholders (Van Dasselaar, 2013). The objective of this work is to identify the urban land use in the Natura 2000 areas in Vilnius region, Lithuania. Data from Natura 2000 areas and urban land use (Corine Land Cover 2006) in Vilnius region were collected in the European Environmental Agency website (http://www.eea.europa.eu/). In the surroundings of each Natura 2000 site, we identified the urban land use at the distances of 500, 1000 and 1500 m. The Natura 2000 sites and the urban areas occupied a total of 13.2% and 3.4% of Vilnius region, respectively. However, the urban areas are very dispersed in the territory, especially in the surroundings of Vilnius, which since the end of the XX century is growing (Pereira et al., 2014). This can represent a major threat to Natura 2000 areas ecosystem services quality and biodiversity. Overall, urban areas occupied approximately 50 km2, in the buffer area of 500 m, 95 km2 in buffer area of 1000 m and 131 km2 in the buffer area of 1500 km2. This shows that Natura 2000 surrounding areas in Vilnius region are subjected to a high urban pressure. This is especially evident in the Vilnius city and is a consequence of the uncontrolled urban development. The lack of a clear legislation

  17. Relationship study on land use spatial distribution structure and energy-related carbon emission intensity in different land use types of Guangdong, China, 1996-2008.

    PubMed

    Huang, Yi; Xia, Bin; Yang, Lei

    2013-01-01

    This study attempts to discuss the relationship between land use spatial distribution structure and energy-related carbon emission intensity in Guangdong during 1996-2008. We quantized the spatial distribution structure of five land use types including agricultural land, industrial land, residential and commercial land, traffic land, and other land through applying spatial Lorenz curve and Gini coefficient. Then the corresponding energy-related carbon emissions in each type of land were calculated in the study period. Through building the reasonable regression models, we found that the concentration degree of industrial land is negatively correlated with carbon emission intensity in the long term, whereas the concentration degree is positively correlated with carbon emission intensity in agricultural land, residential and commercial land, traffic land, and other land. The results also indicate that land use spatial distribution structure affects carbon emission intensity more intensively than energy efficiency and production efficiency do. These conclusions provide valuable reference to develop comprehensive policies for energy conservation and carbon emission reduction in a new perspective.

  18. Relationship Study on Land Use Spatial Distribution Structure and Energy-Related Carbon Emission Intensity in Different Land Use Types of Guangdong, China, 1996–2008

    PubMed Central

    Huang, Yi; Yang, Lei

    2013-01-01

    This study attempts to discuss the relationship between land use spatial distribution structure and energy-related carbon emission intensity in Guangdong during 1996–2008. We quantized the spatial distribution structure of five land use types including agricultural land, industrial land, residential and commercial land, traffic land, and other land through applying spatial Lorenz curve and Gini coefficient. Then the corresponding energy-related carbon emissions in each type of land were calculated in the study period. Through building the reasonable regression models, we found that the concentration degree of industrial land is negatively correlated with carbon emission intensity in the long term, whereas the concentration degree is positively correlated with carbon emission intensity in agricultural land, residential and commercial land, traffic land, and other land. The results also indicate that land use spatial distribution structure affects carbon emission intensity more intensively than energy efficiency and production efficiency do. These conclusions provide valuable reference to develop comprehensive policies for energy conservation and carbon emission reduction in a new perspective. PMID:23476128

  19. Hydro-ecologic responses to land use in small urbanizing watersheds within the Chesapeake Bay watershed

    NASA Astrophysics Data System (ADS)

    Moglen, Glenn E.; Nelson, Kären C.; Palmer, Margaret A.; Pizzuto, James E.; Rogers, Catriona E.; Hejazi, Mohamad I.

    Urbanization in the Chesapeake Bay watershed is having dramatic impacts on the streams and rivers that feed the Bay. Increasing imperviousness has led to higher peak flows and lower base flows. The movement of pollutants and other materials to receiving waters has increased and stream water temperatures have risen. These changes alter the structure and functioning of rivers, streams, and associated riparian corridors and result in changes in ecosystem services. We define a hydrologic disturbance index that indicates varying degrees of disturbance on a reach-by-reach basis, dependent on the aggregate amount of urbanization upstream of each reach. For current conditions this index is more variable than for future conditions, because current land use in the study watershed is more variable, containing mixtures of urban, agricultural, and forested land. In contrast, future land use is projected to be more uniformly urban, leading to a less variable but greater overall degree of hydrologic disturbance. Two effects of urbanization on fish are explored through ecological modeling: effects of streambed disturbance on food availability and effects of stream temperature on spawning. We tabulate food availability as a function of bed-mobility for 30 different fish species. We show that additional stress occurs with additional urbanization of the watershed. We show that the urban-related increase in stream temperatures may cause several warm-water species to actually gain opportunities to spawn in some cases. However, combining food availability and spawning day availability into a single index reveals highly stressful conditions for all fish species under the fully developed scenario.

  20. Impacts of land use and land cover on surface and air temperature in urban landscapes

    NASA Astrophysics Data System (ADS)

    Crum, S.; Jenerette, D.

    2015-12-01

    Accelerating urbanization affects regional climate as the result of changing land cover and land use (LCLU). Urban land cover composition may provide valuable insight into relationships among urbanization, air, and land-surface temperature (Ta and LST, respectively). Climate may alter these relationships, where hotter climates experience larger LULC effects. To address these hypotheses we examined links between Ta, LST, LCLU, and vegetation across an urban coastal to desert climate gradient in southern California, USA. Using surface temperature radiometers, continuously measuring LST on standardized asphalt, concrete, and turf grass surfaces across the climate gradient, we found a 7.2°C and 4.6°C temperature decrease from asphalt to vegetated cover in the coast and desert, respectively. There is 131% more temporal variation in asphalt than turf grass surfaces, but 37% less temporal variation in concrete than turf grass. For concrete and turf grass surfaces, temporal variation in temperature increased from coast to desert. Using ground-based thermal imagery, measuring LST for 24 h sequences over citrus orchard and industrial use locations, we found a 14.5°C temperature decrease from industrial to orchard land use types (38.4°C and 23.9°C, respectively). Additionally, industrial land use types have 209% more spatial variation than orchard (CV=0.20 and 0.09, respectively). Using a network of 300 Ta (iButton) sensors mounted in city street trees throughout the region and hyperspectral imagery data we found urban vegetation greenness, measured using the normalized difference vegetation index (NDVI), was negatively correlated to Ta at night across the climate gradient. Contrasting previous findings, the closest coupling between NDVI and Ta is at the coast from 0000 h to 0800 h (highest r2 = 0.6, P < 0.05) while relationships at the desert are weaker (highest r2 = 0.38, P < 0.05). These findings indicate that vegetation cover in urbanized regions of southern

  1. WRF model evaluation for the urban heat island assessment under varying land use/land cover and reference site conditions

    NASA Astrophysics Data System (ADS)

    Bhati, Shweta; Mohan, Manju

    2016-10-01

    Urban heat island effect in Delhi has been assessed using Weather Research and Forecasting (WRF v3.5) coupled with urban canopy model (UCM) focusing on air temperature and surface skin temperature. The estimated heat island intensities for different land use/land cover (LULC) have been compared with those derived from in situ and satellite observations. The model performs reasonably well for urban heat island intensity (UHI) estimation and is able to reproduce trend of UHI for urban areas. There is a significant improvement in model performance with inclusion of UCM which results in reduction in root mean-squared errors (RMSE) for temperatures from 1.63 °C (2.89 °C) to 1.13 °C (2.75 °C) for urban (non-urban) areas. Modification of LULC also improves performance for non-urban areas. High UHI zones and top 3 hotspots are captured well by the model. The relevance of selecting a reference point at the periphery of the city away from populated and built-up areas for UHI estimation is examined in the context of rapidly growing cities where rural areas are transforming fast into built-up areas, and reference site may not be appropriate for future years. UHI estimated by WRF model (with and without UCM) with respect to reference rural site compares well with the UHI based on observed in situ data. An alternative methodology is explored using a green area with minimum temperature within the city as a reference site. This alternative methodology works well with observed UHIs and WRF-UCM-simulated UHIs but has poor performance for WRF-simulated UHIs. It is concluded that WRF model can be applied for UHI estimation with classical methodology based on rural reference site. In general, many times WRF model performs satisfactorily, though WRF-UCM always shows a better performance. Hence, inclusion of appropriate representation of urban canopies and land use-land cover is important for improving predictive capabilities of the mesoscale models.

  2. Heavy metals in urban soils with various types of land use in Beijing, China.

    PubMed

    Xia, Xinghui; Chen, Xi; Liu, Ruimin; Liu, Hong

    2011-02-28

    Heavy metal concentrations of Cd, Cr, Cu, Ni, Pb and Zn were investigated for 127 urban soil samples collected from business area (BA), classical garden (CG), culture and education area (CEA), public green space (PGS), residential area (RA) and roadside area (RSA) in Beijing. The distribution of Cd, Cu, Pb and Zn was mainly affected by anthropogenic sources, with their mean concentrations much higher than the background values of Beijing, while Cr and Ni were from natural sources. Among the 6 types of land use, the concentrations of Cd, Cu, Pb and Zn in CG were significantly higher than those in the other 5 types of land use (p<0.05), which were due to their historical use such as pigments, wood preservation and brassware. For the other 5 types of land use except CG, the mean concentration of Cd in RSA was significantly higher than those in BA, CEA, PGS and RA (p<0.05), suggesting Cd was mainly from traffic sources. The distribution maps revealed that the concentrations of Cu, Pb and Zn showed decreasing trends from the center to the suburb of Beijing, they increased with the age of the urban area.

  3. Contrasting effects of land use intensity and exotic host plants on the specialization of interactions in plant-herbivore networks.

    PubMed

    de Araújo, Walter Santos; Vieira, Marcos Costa; Lewinsohn, Thomas M; Almeida-Neto, Mário

    2015-01-01

    Human land use tends to decrease the diversity of native plant species and facilitate the invasion and establishment of exotic ones. Such changes in land use and plant community composition usually have negative impacts on the assemblages of native herbivorous insects. Highly specialized herbivores are expected to be especially sensitive to land use intensification and the presence of exotic plant species because they are neither capable of consuming alternative plant species of the native flora nor exotic plant species. Therefore, higher levels of land use intensity might reduce the proportion of highly specialized herbivores, which ultimately would lead to changes in the specialization of interactions in plant-herbivore networks. This study investigates the community-wide effects of land use intensity on the degree of specialization of 72 plant-herbivore networks, including effects mediated by the increase in the proportion of exotic plant species. Contrary to our expectation, the net effect of land use intensity on network specialization was positive. However, this positive effect of land use intensity was partially canceled by an opposite effect of the proportion of exotic plant species on network specialization. When we analyzed networks composed exclusively of endophagous herbivores separately from those composed exclusively of exophagous herbivores, we found that only endophages showed a consistent change in network specialization at higher land use levels. Altogether, these results indicate that land use intensity is an important ecological driver of network specialization, by way of reducing the local host range of herbivore guilds with highly specialized feeding habits. However, because the effect of land use intensity is offset by an opposite effect owing to the proportion of exotic host species, the net effect of land use in a given herbivore assemblage will likely depend on the extent of the replacement of native host species with exotic ones.

  4. A Coordinated Approach to Food Safety and Land Use Law at the Urban Fringe.

    PubMed

    Miller, Stephen R

    2015-01-01

    Much has been written about the rise of the local food movement in urban and suburban areas. This essay tackles an emerging outgrowth of that movement: the growing desire of urban and suburban dwellers to engage rural areas where food is produced not only to obtain food but also as a means of tourism and cultural activity. This represents a potentially much-needed means of economic development for rural areas and small farmers who are increasingly dependent on non-farm income for survival. The problem, however, is that food safety and land use laws struggle to keep up with these changes, waffling between over-regulation and de-regulation. This essay posits a legal path forward to steer clear of regulatory extremes and to help the local food movement grow and prosper at the urban fringe. We must cultivate our garden.

  5. Mercury in urban soils with various types of land use in Beijing, China.

    PubMed

    Chen, Xi; Xia, Xinghui; Wu, Shan; Wang, Fan; Guo, Xuejun

    2010-01-01

    Mercury (Hg) concentration was investigated for 127 urban soil samples collected from business area (BA), classical garden (CG), culture and education area (CEA), public green space (PGS), residential area (RA) and roadside area (RSA) in Beijing. The median of Hg concentration in Beijing was 0.26 mg/kg. The value in CG was much higher than the other 5 types of land use, which was due to the historical use of Hg. More than 87% of the samples were not contaminated according to the guideline values of China, UK, Canada, and USEPA. Spatial distribution map revealed that Hg concentration showed a decreasing trend from the center to the suburb, it increased with the age of the urban area. Hg contamination in urban area of Beijing is marked by features of non-point sources associated with human activities, and it is most likely to be the common characteristics of Hg contamination in cities.

  6. Monitoring and Predicting Land-use Changes and the Hydrology of the Urbanized Paochiao Watershed in Taiwan Using Remote Sensing Data, Urban Growth Models and a Hydrological Model

    PubMed Central

    Lin, Yu-Pin; Lin, Yun-Bin; Wang, Yen-Tan; Hong, Nien-Ming

    2008-01-01

    Monitoring and simulating urban sprawl and its effects on land-use patterns and hydrological processes in urbanized watersheds are essential in land-use and water-resource planning and management. This study applies a novel framework to the urban growth model Slope, Land use, Excluded land, Urban extent, Transportation, and Hillshading (SLEUTH) and land-use change with the Conversion of Land use and its Effects (CLUE-s) model using historical SPOT images to predict urban sprawl in the Paochiao watershed in Taipei County, Taiwan. The historical and predicted land-use data was input into Patch Analyst to obtain landscape metrics. This data was also input to the Generalized Watershed Loading Function (GWLF) model to analyze the effects of future urban sprawl on the land-use patterns and watershed hydrology. The landscape metrics of the historical SPOT images show that land-use patterns changed between 1990–2000. The SLEUTH model accurately simulated historical land-use patterns and urban sprawl in the Paochiao watershed, and simulated future clustered land-use patterns (2001–2025). The CLUE-s model also simulated land-use patterns for the same period and yielded historical trends in the metrics of land-use patterns. The land-use patterns predicted by the SLEUTH and CLUE-s models show the significant impact urban sprawl will have on land-use patterns in the Paochiao watershed. The historical and predicted land-use patterns in the watershed tended to fragment, had regular shapes and interspersion patterns, but were relatively less isolated in 2001–2025 and less interspersed from 2005–2025 compared with land-use pattern in 1990. During the study, the variability and magnitude of hydrological components based on the historical and predicted land-use patterns were cumulatively affected by urban sprawl in the watershed; specifically, surface runoff increased significantly by 22.0% and baseflow decreased by 18.0% during 1990–2025. The proposed approach is an

  7. Spatio-temporal analysis of agricultural land-use intensity across the Western Siberian grain belt.

    PubMed

    Kühling, Insa; Broll, Gabriele; Trautz, Dieter

    2016-02-15

    The Western Siberian grain belt covers 1millionkm² in Asiatic Russia and is of global importance for agriculture. Massive land-use changes took place in that region after the dissolution of the Soviet Union and the collapse of the state farm system. Decreasing land-use intensity (LUI) in post-Soviet Western Siberia was observed on grassland due to declining livestock whilst on cropland trends of land abandonment reversed in the early 2000s. Recultivation of abandoned cropland as well as increasing fertilizer inputs and narrowing crop rotations led to increasing LUI on cropland during the last two decades. Beyond that general trend, no information is available about spatial distribution and magnitude but a crucial precondition for the development of strategies for sustainable land management. To quantify changes and patterns in LUI, we developed an intensity index that reflects the impacts of land-based agricultural production. Based on subnational yearly statistical data, we calculated two separate input-orientated indices for cropland and grassland, respectively. The indices were applied on two spatial scale: at seven provinces covering the Western Siberian grain belt (Altay Kray, Chelyabinsk, Kurgan, Novosibirsk, Omsk, Sverdlovsk and Tyumen) and at all districts of the central province Tyumen. The spatio-temporal analysis clearly showed opposite trends for the two land-use types: decreasing intensity on grassland (-0.015 LUI units per year) and intensification on cropland (+0.014 LUI units per year). Furthermore, a spatial concentration towards intensity centres occurred during transition from a planned to a market economy. A principal component analysis enabled the individual calculations of both land-use types to be combined and revealed a strong link between biophysical conditions and LUI. The findings clearly showed the need for having a different strategy for future sustainable land management for grassland (predominantly used by livestock of households

  8. EVALUATION OF LAND USE/LAND COVER DATASETS FOR URBAN WATERSHED MODELING

    SciTech Connect

    S.J. BURIAN; M.J. BROWN; T.N. MCPHERSON

    2001-08-01

    Land use/land cover (LULC) data are a vital component for nonpoint source pollution modeling. Most watershed hydrology and pollutant loading models use, in some capacity, LULC information to generate runoff and pollutant loading estimates. Simple equation methods predict runoff and pollutant loads using runoff coefficients or pollutant export coefficients that are often correlated to LULC type. Complex models use input variables and parameters to represent watershed characteristics and pollutant buildup and washoff rates as a function of LULC type. Whether using simple or complex models an accurate LULC dataset with an appropriate spatial resolution and level of detail is paramount for reliable predictions. The study presented in this paper compared and evaluated several LULC dataset sources for application in urban environmental modeling. The commonly used USGS LULC datasets have coarser spatial resolution and lower levels of classification than other LULC datasets. In addition, the USGS datasets do not accurately represent the land use in areas that have undergone significant land use change during the past two decades. We performed a watershed modeling analysis of three urban catchments in Los Angeles, California, USA to investigate the relative difference in average annual runoff volumes and total suspended solids (TSS) loads when using the USGS LULC dataset versus using a more detailed and current LULC dataset. When the two LULC datasets were aggregated to the same land use categories, the relative differences in predicted average annual runoff volumes and TSS loads from the three catchments were 8 to 14% and 13 to 40%, respectively. The relative differences did not have a predictable relationship with catchment size.

  9. Evaluation of land use/land cover datasets for urban watershed modeling

    SciTech Connect

    Burian, S. J.; Brown, M. J.; McPherson, T. N.

    2001-01-01

    Land use/land cover (LULC) data are a vital component for nonpoint source pollution modeling. Most watershed hydrology and pollutant loading models use, in some capacity, LULC information to generate runoff and pollutant loading estimates. Simple equation methods predict runoff and pollutant loads using runoff coefficients or pollutant export coefficients that are often correlated to LULC type. Complex models use input variables and parameters to represent watershed characteristics and pollutant buildup and washoff rates as a function of LULC type. Whether using simple or complex models an accurate LULC dataset with an appropriate spatial resolution and level of detail is paramount for reliable predictions. The study presented in this paper compared and evaluated several LULC dataset sources for application in urban environmental modeling. The commonly used USGS LULC datasets have coarser spatial resolution and lower levels of classification than other LULC datasets. In addition, the USGS datasets do not accurately represent the land use in areas that have undergone significant land use change during the past two decades. We performed a watershed modeling analysis of three urban catchments in Los Angeles, California, USA to investigate the relative difference in average annual runoff volumes and total suspended solids (TSS) loads when using the USGS LULC dataset versus using a more detailed and current LULC dataset. When the two LULC datasets were aggregated to the same land use categories, the relative differences in predicted average annual runoff volumes and TSS loads from the three catchments were 8 to 14% and 13 to 40%, respectively. The relative differences did not have a predictable relationship with catchment size.

  10. Evaluation of land use/land cover datasets for urban watershed modeling.

    PubMed

    Burian, S J; Brown, M J; McPherson, T N

    2002-01-01

    Land use/land cover (LULC) data are a vital component for nonpoint source pollution modeling. Most watershed hydrology and pollutant loading models use, in some capacity, LULC information to generate runoff and pollutant loading estimates. Simple equation methods predict runoff and pollutant loads using runoff coefficients or pollutant export coefficients that are often correlated to LULC type. Complex models use input variables and parameters to represent watershed characteristics and pollutant buildup and washoff rates as a function of LULC type. Whether using simple or complex models an accurate LULC dataset with an appropriate spatial resolution and level of detail is paramount for reliable predictions. The study presented in this paper compared and evaluated several LULC dataset sources for application in urban environmental modeling. The commonly used USGS LULC datasets have coarser spatial resolution and lower levels of classification than other LULC datasets. In addition, the USGS datasets do not accurately represent the land use in areas that have undergone significant land use change during the past two decades. We performed a watershed modeling analysis of three urban catchments in Los Angeles, California, USA to investigate the relative difference in average annual runoff volumes and total suspended solids (TSS) loads when using the USGS LULC dataset versus using a more detailed and current LULC dataset. When the two LULC datasets were aggregated to the same land use categories, the relative differences in predicted average annual runoff volumes and TSS loads from the three catchments were 8 to 14% and 13 to 40%, respectively. The relative differences did not have a predictable relationship with catchment size. PMID:12079113

  11. Hydrology for urban land planning--A guidebook on the hydrologic effects of urban land use

    USGS Publications Warehouse

    Leopold, Luna Bergere

    1968-01-01

    The application of current knowledge of the hydrologic effects of urbanization to the Brandywine should be viewed as a forecast of conditions which may be expected as urbanization proceeds. By making such forecasts in advance of actual urban development, the methods can be tested, data can be extended, and procedures improved as verification becomes possible.

  12. Changes in Urban Climate due to Future Land-Use Changes based on Population Changes in the Nagoya Region

    NASA Astrophysics Data System (ADS)

    Adachi, S. A.; Hara, M.; Takahashi, H. G.; Ma, X.; Yoshikane, T.; Kimura, F.

    2013-12-01

    Severe hot weather in summer season becomes a big social problem in metropolitan areas, including the Nagoya region in Japan. Surface air temperature warming is projected in the future. Therefore, the reduction of surface air temperature is an urgent issue in the urban area. Although there are several studies dealing with the effects of global climate change and urbanization to the local climate in the future, these studies tend to ignore the future population changes. This study estimates future land-use scenarios associated with the multi-projections of future population and investigates the impacts of these scenarios on the surface temperature change. The Weather Research and Forecast model ver. 3.3.1 (hereafter, WRF) was used in this study. The horizontal resolutions were 20km, 4km, and 2km, for outer, middle, and inner domains, respectively. The results from the inner domain, covering the Nagoya region, were used for the analysis. The Noah land surface model and the single-layer urban canopy model were applied to calculate the land surface processes and urban surface processes, respectively. The initial and boundary conditions were given from the NCEP/NCAR reanalysis data in August 2010. The urban area ratio used in the WRF model was calculated from the future land-use data provided by the S8 project. The land-use data was created as follows. (1) Three scenarios of population, namely, with high-fertility assumption and low-mortality assumption (POP-high), with medium-fertility assumption and medium-mortality assumption (POP-med), and with low-fertility assumption and high-mortality assumption (POP-low), are estimated using the method proposed by Ariga and Matsuhashi (2012). These scenarios are based on the future projections provided by the National Institute of Population and Social Security Research. (2) The future changes in urban area ratio were assumed to be proportional to the population change (Hanasaki et al., 2012). The averaged urban area ratio in

  13. Predicting runoff induced mass loads in urban watersheds: Linking land use and pyrethroid contamination.

    PubMed

    Chinen, Kazue; Lau, Sim-Lin; Nonezyan, Michael; McElroy, Elizabeth; Wolfe, Becky; Suffet, Irwin H; Stenstrom, Michael K

    2016-10-01

    Pyrethroid pesticide mass loadings in the Ballona Creek Watershed were calculated using the volume-concentration method with a Geographic Information Systems (GIS) to explore potential relationships between urban land use, impervious surfaces, and pyrethroid runoff flowing into an urban stream. A calibration of the GIS volume-concentration model was performed using 2013 and 2014 wet-weather sampling data. Permethrin and lambda-cyhalothrin were detected as the highest concentrations; deltamethrin, lambda-cyhalothrin, permethrin and cyfluthrin were the most frequently detected synthetic pyrethroids. Eight neighborhoods within the watershed were highlighted as target areas based on a Weighted Overlay Analysis (WOA) in GIS. Water phase concentration of synthetic pyrethroids (SPs) were calculated from the reported usage. The need for stricter BMP and consumer product controls was identified as a possible way of reducing the detections of pyrethroids in Ballona Creek. This model has significant implications for determining mass loadings due to land use influence, and offers a flexible method to extrapolate data for a limited amount of samplings for a larger watershed, particularly for chemicals that are not subject to environmental monitoring. Offered as a simple approach to watershed management, the GIS-volume concentration model has the potential to be applied to other target pesticides and is useful for simulating different watershed scenarios. Further research is needed to compare results against other similar urban watersheds situated in mediterranean climates. PMID:27475081

  14. Effects of urbanization on stream ecosystems along an agriculture-to-urban land-use gradient, Milwaukee to Green Bay, Wisconsin, 2003-2004

    USGS Publications Warehouse

    Richards, Kevin D.; Scudder, Barbara C.; Fitzpatrick, Faith A.; Steuer, Jeffery J.; Bell, Amanda H.; Peppler, Marie C.; Stewart, Jana S.; Harris, Mitchell A.

    2010-01-01

    In 2003 and 2004, 30 streams near Milwaukee and Green Bay, Wisconsin, were part of a national study by the U.S. Geological Survey to assess urbanization effects on physical, chemical, and biological characteristics along an agriculture-to-urban land-use gradient. A geographic information system was used to characterize natural landscape features that define the environmental setting and the degree of urbanization within each stream watershed. A combination of land cover, socioeconomic, and infrastructure variables were integrated into a multi-metric urban intensity index, scaled from 0 to 100, and assigned to each stream site to identify a gradient of urbanization within relatively homogeneous environmental settings. The 35 variables used to develop the final urban intensity index characterized the degree of urbanization and included road infrastructure (road area and road traffic index), 100-meter riparian land cover (percentage of impervious surface, shrubland, and agriculture), watershed land cover (percentage of impervious surface, developed/urban land, shrubland, and agriculture), and 26 socioeconomic variables (U.S. Census Bureau, 2001). Characteristics examined as part of this study included: habitat, hydrology, stream temperature, water chemistry (chloride, sulfate, nutrients, dissolved and particulate organic and inorganic carbon, pesticides, and suspended sediment), benthic algae, benthic invertebrates, and fish. Semipermeable membrane devices (SPMDs) were used to assess the potential for bioconcentration of hydrophobic organic contaminants (specifically polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine and pyrethroid insecticides) in biological membranes, such as the gills of fish. Physical habitat measurements reflective of channel enlargement, including bankfull channel size and bank erosion, increased with increasing urbanization within the watershed. In this study, percentage of riffles and streambed substrate size were

  15. Tempo-Spatial Patterns of Land Use Changes and Urban Development in Globalizing China: A Study of Beijing

    PubMed Central

    Xie, Yichun; Fang, Chuanglin; Lin, George C.S.; Gong, Hongmian; Qiao, Biao

    2007-01-01

    This study examines the temporal and spatial changes in land use as a consequence of rapid urban development in the city of Beijing. Using a combination of techniques of remote sensing and GIS, the study identifies a substantial loss of plain dryland and a phenomenal expansion of urban construction land over the recent decade. Geographically, there is a clear shifting of urban construction land from the inner city to the outskirts as a consequence of suburbanization. The outward expansion of the ring-road system is found to be one of the most important driving forces explaining the temporal and spatial pattern of land use change. The uneven distribution of population stands as another factor with significant correlation with land use change. The application of the techniques of remote sensing and GIS can enhance the precision and comparability of research on land use change and urban transformation in China.

  16. Soil humus composition - comparison between mountain grasslands and forest lands with different land-use intensity

    NASA Astrophysics Data System (ADS)

    Naydenova, Lora; Zhiyanski, Miglena; Leifeld, Jens; Filcheva, Ekaterina

    2015-04-01

    Soil humus is a dynamic characteristic greatly vulnerable to land use and climate and with important feedbacks to the atmospheric green house gas balance and the rate of climate change. The increased demand for accurate soil carbon stocks assessments and predictions of its changes as a result of land use/cover and climate change has triggered large-scale and long-term measurements of soil organic matter specifics. We studied the soil humus composition in four mountain grasslands, differentiated according to the land-use sub-type and land-use intensity and four forest lands. Two pastures - with intensive (Pi) and extensive grazing (Pe) and two meadows- managed (Mm) and unmanaged (Mu) were objects of present study. Two spruce plantations (Picea abies Karst), and two natural beech forests (Fagus sylvatica L.) - control, unmanaged for the both (Su and Bu) and with 10 % cutting intensity (Sc and Bc). Humus composition was analyzed following the methodology of Kononova-Belchikova. The aggressive and mobile fulvic acids predominated in all of the investigated plots, except Pe and Bu. Humic acids are "free" and bonded with R3O3 and no Ca-bonded humic acids were established under the grasslands, but in the soils under the two beech forest we observed Ca-bonded humic acids in small quantities. The values of total org. C and C-extracted by 0.1 N NaOH was similar in most of studied horizons. Our results showed that the highest total carbon content was localized in the organic-mineral soil horizon and decreased toward deeper soil. The highest total carbon content estimated at 14.04 % was determined in A-horizon of soil in pasture with extensive grazing, for the grasslands. The higher grazing disturbance in Pi leads to increase root biomass in patch areas and in inter-patch upper soil related with decrease of soil humus content. We supposed that the reduced amount of litter input with increased recalcitrance to decomposition provoked the reduction of organic carbon content and

  17. Land use and soil contamination with Toxoplasma gondii oocysts in urban areas.

    PubMed

    Gao, Xiang; Wang, Hongbin; Wang, Huan; Qin, Hongyu; Xiao, Jianhua

    2016-10-15

    Because soil contaminated with Toxoplasma gondii oocysts is increasingly recognized as a major source of infection for humans, in this study, we investigated the spatial pattern of soil contamination with T. gondii oocysts in urban area of northeastern Mainland China. From April 2014 to May 2015, more than 9000 soil samples were collected. Detection of T. gondii oocysts was performed applying real-time quantitative PCR. Sensitivity was improved by analyzing four replicates for each sampling point. T. gondii was detected in 30.3% of all samples. Subsequently, a maximum entropy model was used to evaluate the effect of land use and intrinsic soil properties on the risk of contamination with oocysts. Jackknife analysis revealed that the likelihood for positive results is significantly enhanced in soil originating from foci of human habitation, wood land and grass land. Furthermore, soil temperature and humidity significantly influence the probability of contamination with T. gondii oocysts. Our findings indicate that land use may affect distribution of T. gondii oocysts in urban areas.

  18. Significance of urban and agricultural land use for biocide and pesticide dynamics in surface waters.

    PubMed

    Wittmer, I K; Bader, H-P; Scheidegger, R; Singer, H; Lück, A; Hanke, I; Carlsson, C; Stamm, C

    2010-05-01

    Biocides and pesticides are designed to control the occurrence of unwanted organisms. From their point of application, these substances can be mobilized and transported to surface waters posing a threat to the aquatic environment. Historically, agricultural pesticides have received substantially more attention than biocidal compounds from urban use, despite being used in similar quantities. This study aims at improving our understanding of the influence of mixed urban and agricultural land use on the overall concentration dynamics of biocides and pesticides during rain events throughout the year. A comprehensive field study was conducted in a catchment within the Swiss plateau (25 km(2)). Four surface water sampling sites represented varying combinations of urban and agricultural sources. Additionally, the urban drainage system was studied by sampling the only wastewater treatment plant (WWTP) in the catchment, a combined sewer overflow (CSO), and a storm sewer (SS). High temporal resolution sampling was carried out during rain events from March to November 2007. The results, based on more than 600 samples analyzed for 23 substances, revealed distinct and complex concentration patterns for different compounds and sources. Five types of concentration patterns can be distinguished: a) compounds that showed elevated background concentrations throughout the year (e.g. diazinon >50 ng L(-1)), indicating a constant household source; b) compounds that showed elevated concentrations driven by rain events throughout the year (e.g. diuron 100-300 ng L(-1)), indicating a constant urban outdoor source such as facades; c) compounds with seasonal peak concentrations driven by rain events from urban and agricultural areas (e.g. mecoprop 1600 ng L(-1) and atrazine 2500 ng L(-1) respectively); d) compounds that showed unpredictably sharp peaks (e.g. atrazine 10,000 ng L(-1), diazinon 2500 ng L(-1)), which were most probably due to improper handling or even disposal of products; and

  19. Mapping of the CO2 and anthropogenic heat emission under spatially explicit urban land use scenarios

    NASA Astrophysics Data System (ADS)

    Nakamichi, K.; Yamagata, Y.; Seya, H.

    2010-12-01

    The serious further efforts on CO2 and other green house gases emission reduction by global climate change mitigation remain as an urgent global issue to be solved. From the viewpoint of urban land use measures, the realization of low-carbon city is the key to change people’s behavior to reduce CO2 emission. In this respect, a lot of studies aimed at realizing low-carbon city are progressing on a number of fronts, including city planning and transportation planning. With respect to the low-carbon city, compact city is expected to reduce CO2 emission from transportation sector. Hence many studies have been conducted with scenario analysis considering modal share change, for instance, increase of public transportation use and reduction of trip length by car. On the other hand, it is important that CO2 emission from not only transportation sector but also residential sector can be reduced by a move from a detached house to a condominium, the change of family composition types and so on. In regard to residential sector, it has been founded that CO2 emission units differ among family composition types, for example, the single-person household emit more CO2 in general. From the viewpoint of an urban climate prediction, the possible range of future land use change should be recognized as the input parameters for the climate models. In addition to CO2 emission, the anthropogenic heat emission is also important as an input data of climate models in order to evaluate the social and economic impacts of urban land use change. The objective of this study is to demonstrate a compact city scenario and a dispersion scenario in Tokyo metropolitan area, which is the largest metropolitan area in the world, and to examine future climate change mitigation policies including land use for realization of low-carbon city. We have created two scenarios of population distribution by using an urban economic model. In these scenarios we have assumed extreme cases in order to show the

  20. Soil Organic Matter Stability and Soil Carbon Storage with Changes in Land Use Intensity in Uganda

    NASA Astrophysics Data System (ADS)

    Tiemann, L. K.; Grandy, S.; Hartter, J.

    2014-12-01

    As the foundation of soil fertility, soil organic matter (SOM) formation and break-down is a critical factor of agroecosystem sustainability. In tropical systems where soils are quickly weathered, the link between SOM and soil fertility is particularly strong; however, the mechanisms controlling the stabilization and destabilization of SOM are not well characterized in tropical soils. In western Uganda, we collected soil samples under different levels of land use intensity including maize fields, banana plantations and inside an un-cultivated native tropical forest, Kibale National Park (KNP). To better understand the link between land use intensity and SOM stability we measured total soil C and N, and respiration rates during a 369 d soil incubation. In addition, we separated soils into particle size fractions, and mineral adsorbed SOM in the silt (2-50 μm ) and clay (< 2 μm) fractions was dissociated, purified and chemically characterized via pyrolysis-GC/MS. Cultivated soil C and N have declined by 22 and 48%, respectively, in comparison to uncultivated KNP soils. Incubation data indicate that over the last decade, relatively accessible and labile soil organic carbon (SOC) pools have been depleted by 55-59% in cultivated soils. As a result of this depletion, the chemical composition of SOM has been altered such that clay and silt associated SOM differed significantly between agricultural fields and KNP. In particular, nitrogen containing compounds were in lower abundance in agricultural compared to KNP soils. This suggests that N depletion due to agriculture has advanced to pools of mineral associated organic N that are typically protected from break-down. In areas where land use intensity is relatively greater, increases in polysaccharides and lipids in maize fields compared to KNP indicate increases in microbial residues and decomposition by-products as microbes mine SOM for organic N. Chemical characterization of post-incubation SOM will help us better

  1. Land use trends during rapid urbanization of the City of Aydin, Turkey.

    PubMed

    Esbah, Hayriye

    2007-04-01

    The favorable Turkish context for environmental legislation is undermined by a lack of public knowledge of the importance of sustainable development, a lack of coordination between experts in different professions and between government institutions, and a lack of the political will to make tough choices such as restricting the freedom of citizens to migrate to cities. This paper examines the specific implications of this context for the Aydin urban area in a rapidly urbanizing part of western Turkey. In the study area, urban and industrial areas both exhibited large proportional increases, largely at the expense of agricultural areas, and agricultural expansion occurred at the expense of natural areas. Compared to other areas of Turkey, the actual area of the increase was small, and the change for the study area as a whole was not striking because of the relatively recent history of urbanization and industrialization in Aydin. Nevertheless, the negative consequences of these changes may accelerate in the future if a strategy to control development and conversion of land use is not developed and implemented.

  2. ICCLP: an inexact chance-constrained linear programming model for land-use management of lake areas in urban fringes.

    PubMed

    Liu, Yong; Qin, Xiaosheng; Guo, Huaicheng; Zhou, Feng; Wang, Jinfeng; Lv, Xiaojian; Mao, Guozhu

    2007-12-01

    Lake areas in urban fringes are under increasing urbanization pressure. Consequently, the conflict between rapid urban development and the maintenance of water bodies in such areas urgently needs to be addressed. An inexact chance-constrained linear programming (ICCLP) model for optimal land-use management of lake areas in urban fringes was developed. The ICCLP model was based on land-use suitability assessment and land evaluation. The maximum net economic benefit (NEB) was selected as the objective of land-use allocation. The total environmental capacity (TEC) of water systems and the public financial investment (PFI) at different probability levels were considered key constraints. Other constraints included in the model were land-use suitability, governmental requirements on the ratios of various land-use types, and technical constraints. A case study implementing the system was performed for the lake area of Hanyang at the urban fringe of Wuhan, central China, based on our previous study on land-use suitability assessment. The Hanyang lake area is under significant urbanization pressure. A 15-year optimal model for land-use allocation is proposed during 2006 to 2020 to better protect the water system and to gain the maximum benefits of development. Sixteen constraints were set for the optimal model. The model results indicated that NEB was between $1.48 x 10(9) and $8.76 x 10(9) or between $3.98 x 10(9) and $16.7 x 10(9), depending on the different urban-expansion patterns and land demands. The changes in total developed area and the land-use structure were analyzed under different probabilities (q ( i )) of TEC. Changes in q ( i ) resulted in different urban expansion patterns and demands on land, which were the direct result of the constraints imposed by TEC and PFI. The ICCLP model might help local authorities better understand and address complex land-use systems and develop optimal land-use management strategies that better balance urban expansion and

  3. Direct and indirect effects of land use on floral resources and flower-visiting insects across an urban landscape

    USGS Publications Warehouse

    Matteson, K.C.; Grace, James B.; Minor, E.S.

    2013-01-01

    Although urban areas are often considered to have uniformly negative effects on biodiversity, cities are most accurately characterized as heterogeneous mosaics of buildings, streets, parks, and gardens that include both ‘good’ and ‘bad’ areas for wildlife. However, to date, few studies have evaluated how human impacts vary in direction and magnitude across a heterogeneous urban landscape. In this study, we assessed the distribution of floral resources and flower-visiting insects across a variety of land uses in New York City. We visited both green spaces (e.g. parks, cemeteries) and heavily developed neighborhood blocks (e.g. with high or low density residential zoning) and used structural equation modeling (SEM) to evaluate the direct and indirect effects of median income, vegetation, and development intensity on floral resources and insects in both settings. Abundance and taxonomic richness of flower-visiting insects was significantly greater in green spaces than neighborhood blocks. The SEM results indicated that heavily-developed neighborhoods generally had fewer flower-visiting insects consistent with reductions in floral resources. However, some low-density residential neighborhoods maintained high levels of floral resources and flower-visiting insects. We found that the effects of surrounding vegetation on floral resources, and thus indirect effects on insects, varied considerably between green spaces and neighborhood blocks. Along neighborhood blocks, vegetation consisted of a mosaic of open gardens and sparsely distributed trees and had a positive indirect effect on flower-visiting insects. In contrast, vegetation in urban green spaces was associated with increased canopy cover and thus had a negative indirect effect on flower-visiting insects through reductions in floral resources. In both neighborhood blocks and green spaces, vegetation had a positive direct effect on flower-visiting insects independent of the influence of vegetation on floral

  4. Evaluation of Effecting Parameters on Optimum Arrangement of Urban Land Uses and Assessment of Their Compatibility Using Adjacency Matrix

    NASA Astrophysics Data System (ADS)

    Vaezi, S.; Mesgari, M. S.; Kaviary, F.

    2015-12-01

    Todays, stability of human life is threatened by a set of parameters. So sustainable urban development theory is introduced after the stability theory to protect the urban environment. In recent years, sustainable urban development gains a lot of attraction by different sciences and totally becomes a final target for urban development planners and managers to use resources properly and to establish a balanced relationship among human, community, and nature. Proper distribution of services for decreasing spatial inequalities, promoting the quality of living environment, and approaching an urban stability requires an analytical understanding of the present situation. Understanding the present situation is the first step for making a decision and planning effectively. This paper evaluates effective parameters affecting proper arrangement of land-uses using a descriptive-analytical method, to develop a conceptual framework for understanding of the present situation of urban land-uses, based on the assessment of their compatibility. This study considers not only the local parameters, but also spatial parameters are included in this study. The results indicate that land-uses in the zone considered here are not distributed properly. Considering mentioned parameters and distributing service land-uses effectively cause the better use of these land-uses.

  5. Land Use Dynamics of the Fast-Growing Shanghai Metropolis, China (1979–2008) and its Implications for Land Use and Urban Planning Policy

    PubMed Central

    Zhang, Hao; Zhou, Li-Guo; Chen, Ming-Nan; Ma, Wei-Chun

    2011-01-01

    Through the integrated approach of remote sensing and geographic information system (GIS) techniques, four Landsat TM/ETM+ imagery acquired during 1979 and 2008 were used to quantitatively characterize the patterns of land use and land cover change (LULC) and urban sprawl in the fast-growing Shanghai Metropolis, China. Results showed that, the urban/built-up area grew on average by 4,242.06 ha yr−1. Bare land grew by 1,594.66 ha yr−1 on average. In contrast, cropland decreased by 3,286.26 ha yr−1 on average, followed by forest and shrub, water, and tidal land, which decreased by 1,331.33 ha yr−1, 903.43 ha yr−1, and 315.72 ha yr−1 on average, respectively. As a result, during 1979 and 2008 approximately 83.83% of the newly urban/built-up land was converted from cropland (67.35%), forest and shrub (9.12%), water (4.80%), and tidal land (2.19%). Another significant change was the continuous increase in regular residents, which played a very important role in contributing to local population growth and increase in urban/built-up land. This can be explained with this city’s huge demand for investment and qualified labor since the latest industrial transformation. Moreover, with a decrease in cropland, the proportion of population engaged in farming decreased 13.84%. Therefore, significant socio-economic transformation occurred, and this would lead to new demand for land resources. However, due to very scarce land resources and overload of population in Shanghai, the drive to achieve economic goals at the loss of cropland, water, and the other lands is not sustainable. Future urban planning policy aiming at ensuring a win-win balance between sustainable land use and economic growth is urgently needed. PMID:22319382

  6. Land use dynamics of the fast-growing Shanghai Metropolis, China (1979-2008) and its implications for land use and urban planning policy.

    PubMed

    Zhang, Hao; Zhou, Li-Guo; Chen, Ming-Nan; Ma, Wei-Chun

    2011-01-01

    Through the integrated approach of remote sensing and geographic information system (GIS) techniques, four Landsat TM/ETM+ imagery acquired during 1979 and 2008 were used to quantitatively characterize the patterns of land use and land cover change (LULC) and urban sprawl in the fast-growing Shanghai Metropolis, China. Results showed that, the urban/built-up area grew on average by 4,242.06 ha yr(-1). Bare land grew by 1,594.66 ha yr(-1) on average. In contrast, cropland decreased by 3,286.26 ha yr(-1) on average, followed by forest and shrub, water, and tidal land, which decreased by 1,331.33 ha yr(-1), 903.43 ha yr(-1), and 315.72 ha yr(-1) on average, respectively. As a result, during 1979 and 2008 approximately 83.83% of the newly urban/built-up land was converted from cropland (67.35%), forest and shrub (9.12%), water (4.80%), and tidal land (2.19%). Another significant change was the continuous increase in regular residents, which played a very important role in contributing to local population growth and increase in urban/built-up land. This can be explained with this city's huge demand for investment and qualified labor since the latest industrial transformation. Moreover, with a decrease in cropland, the proportion of population engaged in farming decreased 13.84%. Therefore, significant socio-economic transformation occurred, and this would lead to new demand for land resources. However, due to very scarce land resources and overload of population in Shanghai, the drive to achieve economic goals at the loss of cropland, water, and the other lands is not sustainable. Future urban planning policy aiming at ensuring a win-win balance between sustainable land use and economic growth is urgently needed.

  7. Land use dynamics of the fast-growing Shanghai Metropolis, China (1979-2008) and its implications for land use and urban planning policy.

    PubMed

    Zhang, Hao; Zhou, Li-Guo; Chen, Ming-Nan; Ma, Wei-Chun

    2011-01-01

    Through the integrated approach of remote sensing and geographic information system (GIS) techniques, four Landsat TM/ETM+ imagery acquired during 1979 and 2008 were used to quantitatively characterize the patterns of land use and land cover change (LULC) and urban sprawl in the fast-growing Shanghai Metropolis, China. Results showed that, the urban/built-up area grew on average by 4,242.06 ha yr(-1). Bare land grew by 1,594.66 ha yr(-1) on average. In contrast, cropland decreased by 3,286.26 ha yr(-1) on average, followed by forest and shrub, water, and tidal land, which decreased by 1,331.33 ha yr(-1), 903.43 ha yr(-1), and 315.72 ha yr(-1) on average, respectively. As a result, during 1979 and 2008 approximately 83.83% of the newly urban/built-up land was converted from cropland (67.35%), forest and shrub (9.12%), water (4.80%), and tidal land (2.19%). Another significant change was the continuous increase in regular residents, which played a very important role in contributing to local population growth and increase in urban/built-up land. This can be explained with this city's huge demand for investment and qualified labor since the latest industrial transformation. Moreover, with a decrease in cropland, the proportion of population engaged in farming decreased 13.84%. Therefore, significant socio-economic transformation occurred, and this would lead to new demand for land resources. However, due to very scarce land resources and overload of population in Shanghai, the drive to achieve economic goals at the loss of cropland, water, and the other lands is not sustainable. Future urban planning policy aiming at ensuring a win-win balance between sustainable land use and economic growth is urgently needed. PMID:22319382

  8. Effects of land use intensity on the full greenhouse gas balance in an Atlantic peat bog

    NASA Astrophysics Data System (ADS)

    Beetz, S.; Liebersbach, H.; Glatzel, S.; Jurasinski, G.; Buczko, U.; Höper, H.

    2012-06-01

    The assessment of emission factors for many peatlands is difficult, and reliable data on the exchange of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) between soil and atmosphere of these areas is particularly scarce. Reasons for this are the multitude of soil and land use combinations that control greenhouse gas exchange and the high effort associated with data acquisition. We investigated the greenhouse gas exchange of a peat bog restoration sequence over a period of 2 yr (July 2007-June 2009) in an Atlantic raised bog in Northwest Germany. We set up three sites representing different land use intensities: intensive grassland (mineral fertilizer, cattle manure and 4-5 cuts per year); extensive grassland (no fertilizer or manure, maximal 1 cutting per year); near-natural peat bog (almost no anthropogenic influence). We obtained seasonal and annual estimates of greenhouse gas exchange based on closed chamber measurements. CH4 and N2O fluxes were recorded bi-weekly, CO2 NEE determinations were carried out 3-4 weekly. To get annual sums the CH4 and N2O fluxes were interpolated linearly while NEE was modelled. The intensive grassland site emitted 548 ± 169 g CO2-C m-2 in the first and 817 ± 140 g CO2-C m-2 in the second year. The extensive grassland site showed a slight uptake in the first year (-148 ± 143 g CO2-C m-2), and a small emission of 88 ± 146 g CO2-C m-2 in the second year. In contrast to these agriculturally used sites, the near-natural site took up CO2-C in both years (-8 ± 68 g CO2-C m-2 and -127 ± 53 g CO2-C m-2). Under consideration of N2O and CH4 exchange, the total average greenhouse warming potential (GWP) for 2008 amounts to 441 ± 157 g m-2, 14 ± 152 g m-2 and 31 ± 68 g m-2 CO2-C-equivalent for the intensive grassland, the extensive grassland and the near-natural site, respectively. Despite inter-annual variability, rewetting contributes considerably to mitigating GHG emission from formerly drained peatlands. Already

  9. Comparative study of heavy metals concentration in topsoil of urban green space and agricultural land uses.

    PubMed

    Mirzaei, Rouhollah; Teymourzade, Safiye; Sakizadeh, Mohamad; Ghorbani, Hadi

    2015-12-01

    The main objective of this study was to determine the concentration of cadmium, chromium, copper, nickel, lead, and zinc in surface soils of two land uses including agricultural and urban green space in Semnan Province, Iran. For this purpose, the soil samples of 27 urban green space and 47 agricultural fields were collected and analyzed. The correlation coefficients, analysis of variance, principal component analysis, cluster analysis, and geoaccumulation index were utilized to compare the mean values in the two land uses and pinpoint the possible sources of contamination in the study area. The average contents of Cd, Cu, Cr, Ni, Pb, and Zn in green space soils were 0.1, 24.9, 78.7, 28.2, 22.1, and 82.1 mg/kg, respectively, while the mean concentrations of Cd, Cu, Cr, Ni, Pb, and Zn in agricultural soils were 0.3, 24.3, 83.7, 33.3, 18.1, and 80.4 mg/kg, respectively. The mean concentrations of lead, copper, and zinc were higher in urban green space in comparison with those of agricultural fields, while it was vice versa for chromium, cadmium, and nickel. In general, significant, but weak, correlations were observed between Zn with Pb (r = 0.53) and Cu (r = 0.61) and Ni with Cr (r = 0.55) and Cu(r = 0.51). The main sources of contamination turned out to be both natural and anthropogenic as the results of correlation coefficients, principal component analysis, and cluster analysis showed. That is to say, chromium and nickel had emanated from natural while the sources of cadmium, lead, and zinc could be attributed to anthropogenic activities. For the case of copper, both natural and anthropogenic activities were influential; however, the role of human activities was more effective. The results of contamination assessment showed that heavy metal contamination in agricultural land use was higher than green space indicating the role of human activities in this respect. PMID:26559555

  10. Comparative study of heavy metals concentration in topsoil of urban green space and agricultural land uses.

    PubMed

    Mirzaei, Rouhollah; Teymourzade, Safiye; Sakizadeh, Mohamad; Ghorbani, Hadi

    2015-12-01

    The main objective of this study was to determine the concentration of cadmium, chromium, copper, nickel, lead, and zinc in surface soils of two land uses including agricultural and urban green space in Semnan Province, Iran. For this purpose, the soil samples of 27 urban green space and 47 agricultural fields were collected and analyzed. The correlation coefficients, analysis of variance, principal component analysis, cluster analysis, and geoaccumulation index were utilized to compare the mean values in the two land uses and pinpoint the possible sources of contamination in the study area. The average contents of Cd, Cu, Cr, Ni, Pb, and Zn in green space soils were 0.1, 24.9, 78.7, 28.2, 22.1, and 82.1 mg/kg, respectively, while the mean concentrations of Cd, Cu, Cr, Ni, Pb, and Zn in agricultural soils were 0.3, 24.3, 83.7, 33.3, 18.1, and 80.4 mg/kg, respectively. The mean concentrations of lead, copper, and zinc were higher in urban green space in comparison with those of agricultural fields, while it was vice versa for chromium, cadmium, and nickel. In general, significant, but weak, correlations were observed between Zn with Pb (r = 0.53) and Cu (r = 0.61) and Ni with Cr (r = 0.55) and Cu(r = 0.51). The main sources of contamination turned out to be both natural and anthropogenic as the results of correlation coefficients, principal component analysis, and cluster analysis showed. That is to say, chromium and nickel had emanated from natural while the sources of cadmium, lead, and zinc could be attributed to anthropogenic activities. For the case of copper, both natural and anthropogenic activities were influential; however, the role of human activities was more effective. The results of contamination assessment showed that heavy metal contamination in agricultural land use was higher than green space indicating the role of human activities in this respect.

  11. A novel land use approach for assessment of human health: The relationship between urban structure types and cardiorespiratory disease risk.

    PubMed

    Réquia Júnior, Weeberb João; Roig, Henrique Llacer; Koutrakis, Petros

    2015-12-01

    Extensive evidence shows that in addition to lifestyle factors, environmental aspects are an important risk factor for human health. Numerous approaches have been used to estimate the relationship between environment and health. For example, the urban characteristics, especially the types of land use, are considered a potential proxy indicator to evaluate risk of disease. Although several studies have used land use variables to assess human health, none of them has used the concept of Urban Morphology by Urban Structure Types (USTs) as indicators of land use. The aim of this study was to assess the relationship between USTs and cardiorespiratory disease risks in the Federal District, Brazil. Toward this end, we used a quantile regression model to estimate risk. We used 21 types of UST. Income and population density were used as covariates in our sensitivity analysis. Our analysis showed an association between cardiorespiratory diseases risk and 10 UST variables (1 related to rural area, 6 related to residential area, 1 recreational area, 1 public area and 1 commercial area). Our findings suggest that the conventional land use method may be missing important information about the effect of land use on human health. The use of USTs can be an approach to complement the conventional method. This should be of interest to policy makers in order to enhance public health policies and to create future strategies in terms of urban planning, land use and environmental health.

  12. Quantifying suspended sediment flux in a mixed-land-use urbanizing watershed using a nested-scale study design.

    PubMed

    Zeiger, Sean; Hubbart, Jason A

    2016-01-15

    Suspended sediment (SS) remains the most pervasive water quality problem globally and yet, despite progress, SS process understanding remains relatively poor in watersheds with mixed-land-use practices. The main objective of the current work was to investigate relationships between suspended sediment and land use types at multiple spatial scales (n=5) using four years of suspended sediment data collected in a representative urbanized mixed-land-use (forest, agriculture, urban) watershed. Water samples were analyzed for SS using a nested-scale experimental watershed study design (n=836 samples×5 gauging sites). Kruskal-Wallis and Dunn's post-hoc multiple comparison tests were used to test for significant differences (CI=95%, p<0.05) in SS levels between gauging sites. Climate extremes (high precipitation/drought) were observed during the study period. Annual maximum SS concentrations exceeded 2387.6 mg/L. Median SS concentrations decreased by 60% from the agricultural headwaters to the rural/urban interface, and increased by 98% as urban land use increased. Multiple linear regression analysis results showed significant relationships between SS, annual total precipitation (positive correlate), forested land use (negative correlate), agricultural land use (negative correlate), and urban land use (negative correlate). Estimated annual SS yields ranged from 16.1 to 313.0 t km(-2) year(-1) mainly due to differences in annual total precipitation. Results highlight the need for additional studies, and point to the need for improved best management practices designed to reduce anthropogenic SS loading in mixed-land-use watersheds.

  13. Quantifying suspended sediment flux in a mixed-land-use urbanizing watershed using a nested-scale study design.

    PubMed

    Zeiger, Sean; Hubbart, Jason A

    2016-01-15

    Suspended sediment (SS) remains the most pervasive water quality problem globally and yet, despite progress, SS process understanding remains relatively poor in watersheds with mixed-land-use practices. The main objective of the current work was to investigate relationships between suspended sediment and land use types at multiple spatial scales (n=5) using four years of suspended sediment data collected in a representative urbanized mixed-land-use (forest, agriculture, urban) watershed. Water samples were analyzed for SS using a nested-scale experimental watershed study design (n=836 samples×5 gauging sites). Kruskal-Wallis and Dunn's post-hoc multiple comparison tests were used to test for significant differences (CI=95%, p<0.05) in SS levels between gauging sites. Climate extremes (high precipitation/drought) were observed during the study period. Annual maximum SS concentrations exceeded 2387.6 mg/L. Median SS concentrations decreased by 60% from the agricultural headwaters to the rural/urban interface, and increased by 98% as urban land use increased. Multiple linear regression analysis results showed significant relationships between SS, annual total precipitation (positive correlate), forested land use (negative correlate), agricultural land use (negative correlate), and urban land use (negative correlate). Estimated annual SS yields ranged from 16.1 to 313.0 t km(-2) year(-1) mainly due to differences in annual total precipitation. Results highlight the need for additional studies, and point to the need for improved best management practices designed to reduce anthropogenic SS loading in mixed-land-use watersheds. PMID:26519591

  14. Effect of land use activities on PAH contamination in urban soils of Rawalpindi and Islamabad, Pakistan.

    PubMed

    Ud Din, Ikhtiar; Rashid, Audil; Mahmood, Tariq; Khalid, Azeem

    2013-10-01

    Urbanization can increase the vulnerability of soils to various types of contamination. Increased contamination of urban soils with polycyclic aromatic hydrocarbon (PAH) could relate to increased number of petrol pump stations and mechanical workshops-a phenomenon that needs to be constantly monitored. This study was undertaken to explore the soil PAH levels in Rawalpindi and Islamabad urban areas in relation to land use activities. Composite soil samples from petrol pump stations and mechanical workshops (n = 32) areas were evaluated for five PAHs--naphthalene, phenanthrene, pyrene, benzo[a]pyrene, and indeno(1,2,3-cd)pyrene-and compared with control area locations with minimum petroleum-related activity (n = 16). Surface samples up to 3 cm depth were collected and extraction of analytes was carried out using n-hexane and dichloromethane. Prior to running the samples, standards (100 μg ml(-1)) were run on HPLC to optimize signal to noise ratio using acetonitrile as mobile phase at a flow rate of 1.25 ml/min at 40 °C. Significant differences between petrol pump stations and mechanical workshop areas were observed for individual PAH as well as with control area soil samples. Naphthalene was found to be the most abundant PAH in soil, ranging from 2.47 to 24.36 mg kg(-1). Correlation between the benzo[a]pyrene (BaP) level in soil and the total PAH concentration (r = 0.82, P < 0.0001) revealed that BaP can be used as a potential marker for PAH pollution. A clear segregation between petrogenic and pyrogenic sources of contamination was observed when low molecular weight PAHs detected in soil was plotted against high molecular weight PAHs. The former source comprised lubricants and used engine oil found at mechanical workshops, whereas the latter could be mostly attributed to vehicular emission at petrol pumps. The results indicate that PAH contamination in urban areas of Rawalpindi and Islamabad has direct relevance with land use for petroleum

  15. Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea

    NASA Astrophysics Data System (ADS)

    Jeong, Chan Ho

    2001-11-01

    Taejon Metropolitan City located in the central part of South Korea has grown and urbanized rapidly. The city depends heavily on groundwater as a water resource. Because of ubiquitous pollution sources, the quality and contamination have become important issues for the urban groundwater supply. This study has investigated the chemical characteristics and the contamination of groundwater in relation to land use. An attempt was made to distinguish anthrophogenic inputs from the influence of natural chemical weathering on the chemical composition of groundwater at Taejon. Groundwater samples collected at 170 locations in the Taejon area show very variable chemical composition of groundwater, e.g. electrical conductance ranges from 65 to 1,290 μS/cm. Most groundwater is weakly acidic and the groundwater chemistry is more influenced by land use and urbanization than by aquifer rock type. Most groundwater from green areas and new town residential districts has low electrical conductance, and is of Ca-HCO 3 type, whereas the chemical composition of groundwater from the old downtown and industrial district is shifted towards a Ca-Cl (NO 3+SO 4) type with high electrical conductance. A number of groundwater samples in the urbanized area are contaminated by high nitrate and chlorine, and exhibit high hardness. The EpCO 2, that is the CO 2 content of a water sample relative to pure water, was computed to obtain more insight into the origin of CO 2 and bicarbonate in the groundwater. The CO 2 concentration of groundwater in the urbanized area shows a rough positive relationship with the concentration of major inorganic components. The sources of nitrate, chlorine and excess CO 2 in the groundwater are likely to be municipal wastes of unlined landfill sites, leaky latrines and sewage lines. Chemical data of commercial mineral water from other Jurassic granite areas were compared to the chemical composition of the groundwater in the Taejon area. Factor analysis of the chemical

  16. Effects of land-use type on urban groundwater quality, Seoul metropolitan city, Korea

    NASA Astrophysics Data System (ADS)

    Yu, S.; Yun, S.; Chae, G.; So, C.; Kweon, S.; Lee, P.

    2001-12-01

    The progressive degradation of urban groundwater becomes an important environmental problem encountered in South Korea. This study aims to examine the relationships between land-use type and groundwater quality in Seoul metropolitan city, based on the results of hydrogeochemical monitoring. For this purpose, land-use type was divided into five categories (green zone, housing, agricultural, traffic, and industrialized). The mean concentrations of TDS (total dissolved solids) effectively reflect the degree of anthropogenic contamination and increase in the following order: green zone (152.5 mg/l), then agricultural (380.7 mg/l) and housing (384.2 mg/l), then traffic (457.0 mg/l), and finally industrialized area (554.5 mg/l). Among major dissolved solutes, the concentrations of Na, Ca, Mg, HCO3, and Cl increase with increasing TDS. In case of Na and Ca, de-icing salts and sewage are considered as major contamination sources. The corrosion of cements may also increase Ca. Nitrate concentration is characteristically very high in housing and agricultural areas, reflecting the severe contamination from domestic sewage and fertilizer. Sulfate and magnesium are enriched in industrialized area, possibly due to their derivation from industrial facilities. Chlorine ion is considered to be derived from de-chlorination of hydrocarbons as well as de-icing salts. Bicarbonate also increases with increasing TDS, for which cement dissolution and oxidation of organics are considered as source materials. However, enhanced water-rock(or construction materials) interaction also may increase the bicarbonate, because acidic wastewater in urban area is very corrosive. Trace metals and organic compounds generally does not show any distinct pattern of regional variation. However, Fe, Mn, Ni, Se, Zn, TCE, and PCE tend to increase locally in industrialized area, whereas high concentrations of Br, Ni, and Cu are found in traffic area. The groundwaters with very high concentrations of Fe, Zn, and

  17. Modelling the effects of land use changes on the streamflow of a peri-urban catchment in central Portugal

    NASA Astrophysics Data System (ADS)

    Hävermark, Saga; Santos Ferreira, Carla Sofia; Kalantari, Zahra; Di Baldassarre, Giuliano

    2016-04-01

    Many river basis around the world are rapidly changing together with societal development. Such developments may involve changes in land use, which in turn affect the surrounding environment in various ways. Since the start of industrialisation, the urban areas have extended worldwide. Urbanization can influence hydrological processes by decreasing evapotranspiration, infiltration and groundwater recharge as well as increasing runoff and overland flow. It is therefore of uttermost importance to understand the relationship between land use and hydrology. Although several studies have been investigating the impacts of urbanization on streamflow over the last decades, less is known on how urbanization affects hydrological processes in peri-urban areas, characterized by a complex mosaic of different land uses. This study aimed to model the impact of land use changes, specifically urbanization and commercial forest plantation, on the hydrological responses of the small Ribeira dos Covões peri-urban catchment (6,2 km2) located in central Portugal. The catchment has undergone rapid land use changes between 1958 and 2012 associated with the conversion of agricultural fields (cover area decreased from 48% to 4%) into woodland and urban areas, which increased from 44% to 56% and from 8% to 40%, respectively. For the study, the fully-distributed, physically-based modelling system MIKE SHE was used. The model was designed to examine both how past land use changes might have affected the streamflow and to investigate the impacts on hydrology of possible future scenarios, including a 50 %, 60 % and 70 % urban cover. To this end, a variety of data including daily rainfall since 1958 and forward, daily potential evapotranspiration from 2009 to 2013, monthly temperature averages from 1971 to 2013, land use for the years 1958, 1973, 1979, 1990, 1995, 2002, 2007 and 2012, streamflow from the hydrological years 2008 to 2013, catchment topography and soil types were used. The model

  18. Land-Use Intensity of Electricity Production: Comparison Across Multiple Sources

    NASA Astrophysics Data System (ADS)

    Swain, M.; Lovering, J.; Blomqvist, L.; Nordhaus, T.; Hernandez, R. R.

    2015-12-01

    Land is an increasingly scarce global resource that is subject to competing pressures from agriculture, human settlement, and energy development. As countries concerned about climate change seek to decarbonize their power sectors, renewable energy sources like wind and solar offer obvious advantages. However, the land needed for new energy infrastructure is also an important environmental consideration. The land requirement of different electricity sources varies considerably, but there are very few studies that offer a normalized comparison. In this paper, we use meta-analysis to calculate the land-use intensity (LUI) of the following electricity generation sources: wind, solar photovoltaic (PV), concentrated solar power (CSP), hydropower, geothermal, nuclear, biomass, natural gas, and coal. We used data from existing studies as well as original data gathered from public records and geospatial analysis. Our land-use metric includes land needed for the generation facility (e.g., power plant or wind farm) as well as the area needed to mine fuel for natural gas, coal, and nuclear power plants. Our results found the lowest total LUI for nuclear power (115 ha/TWh/y) and the highest LUI for biomass (114,817 ha/TWh/y). Solar PV and CSP had a considerably lower LUI than wind power, but both were an order of magnitude higher than fossil fuels (which ranged from 435 ha/TWh/y for natural gas to 579 ha/TWh/y for coal). Our results suggest that a large build-out of renewable electricity, though it would offer many environmental advantages over fossil fuel power sources, would require considerable land area. Among low-carbon energy sources, relatively compact sources like nuclear and solar have the potential to reduce land requirements.

  19. The impact of land use, season, age, and sex on the prevalence and intensity of Baylisascaris procyonis infections in raccoons (Procyon lotor) from Ontario, Canada.

    PubMed

    Jardine, Claire M; Pearl, David L; Puskas, Kirstie; Campbell, Doug G; Shirose, Lenny; Peregrine, Andrew S

    2014-10-01

    We assessed the impact of land use, demographic factors, and season on the prevalence and intensity of Baylisascaris procyonis infections in raccoons (Procyon lotor) in Ontario, Canada. From March to October 2012, we recorded the number of B. procyonis in the intestinal tracts of raccoons submitted to the Canadian Cooperative Wildlife Health Centre for necropsy. Logistic regression models were used to examine associations between the presence of B. procyonis and age (adult, juvenile), sex, land use (suburban/urban, rural), and season (March-June and July-October); negative binomial regression models were used to examine associations between the number of worms and the same variables. We detected B. procyonis in 38% (95% confidence interval 30-47%) of raccoons examined (n=128). In univariable models, the presence of B. procyonis was significantly associated with age, land use, and season (P<0.05). Age was not retained in the multivariable model, and the impact of sex on the presence of B. procyonis varied with land use and season. For example, from March to June, suburban/urban male raccoons were significantly more likely to be infected with B. procyonis than suburban/urban female raccoons. However, later in the summer (July-October), the opposite was true. The median number of worms in the intestinal tracts of infected raccoons was 3 (range 1-116). Worm number was significantly associated with age and season in univariable models; in the multivariable model, juvenile raccoons had significantly more worms than adults, and the impact of season on the number of worms varied with land use and sex. A better understanding of the epidemiology of B. procyonis in raccoons is important for developing appropriate strategies to reduce the risk of human exposure to B. procyonis from the environment.

  20. Apportioning riverine DIN load to export coefficients of land uses in an urbanized watershed.

    PubMed

    Shih, Yu-Ting; Lee, Tsung-Yu; Huang, Jr-Chuan; Kao, Shuh-Ji; Chang

    2016-08-01

    The apportionment of riverine dissolved inorganic nitrogen (DIN) load to individual land use on a watershed scale demands the support of accurate DIN load estimation and differentiation of point and non-point sources, but both of them are rarely quantitatively determined in small montane watersheds. We introduced the Danshui River watershed of Taiwan, a mountainous urbanized watershed, to determine the export coefficients via a reverse Monte Carlo approach from riverine DIN load. The results showed that the dynamics of N fluctuation determines the load estimation method and sampling frequency. On a monthly sampling frequency basis, the average load estimation of the methods (GM, FW, and LI) outperformed that of individual method. Export coefficient analysis showed that the forest DIN yield of 521.5kg-Nkm(-2)yr(-1) was ~2.7-fold higher than the global riverine DIN yield (mainly from temperate large rivers with various land use compositions). Such a high yield was attributable to high rainfall and atmospheric N deposition. The export coefficient of agriculture was disproportionately larger than forest suggesting that a small replacement of forest to agriculture could lead to considerable change of DIN load. The analysis of differentiation between point and non-point sources showed that the untreated wastewater (non-point source), accounting for ~93% of the total human-associated wastewater, resulted in a high export coefficient of urban. The inclusion of the treated and untreated wastewater completes the N budget of wastewater. The export coefficient approach serves well to assess the riverine DIN load and to improve the understanding of N cascade.

  1. Spatio-Temporal Dynamics of Urban Expansion in Japan Using Gridded Land Use Data, Population Census Data and DMSP Data

    NASA Astrophysics Data System (ADS)

    Bagan, H.; Yamagata, Y.

    2014-12-01

    Integration of population data, land-use data, and satellite images can be used to identify and characterize the spatio-temporal extent and expansion trends of urban growth. We provided an idea to investigate the spatio-temporal urban growth using satellite images with population data. We analyze the urban expansion in Japan from 1990 to 2005 by using gridded land-use data, population census data, and DMSP satellite images of nighttime lights. First, we mapped the DMSP nighttime lights and land-use data onto a grid based on the standard 1 km2grid cell system of Japan to determine the proportional areas of DMSP nighttime lights and urban land use within each grid cell. Then, we investigated the relationships among population density, DMSP nighttime lights area, and urban area. A rapid expansion of the urban/built-up area around megacities was associated with population increases; in contrast, population density dropped steeply in rural areas and in small towns. Spatial correlation analysis showed a strong positive correlation between population density and urban land use (r= 0.59). In addition, correlation coefficients between population density and DMSP data increased as the DMSP nighttime lights brightness value increased. We then used census population data as the base population input, and performed a linear multiple regression analysis to predict population density from the combination of urban land-use area and DMSP data in Hokkaido, Japan. Visual and numerical evaluation of the results showed that the combination of urban land-use data and DMSP data could be used to predict the spatial distribution of population density. The results from this study indicated the high correlation between these data and suggested the potentials of population density prediction using DMSP data and land use data. References Bagan, H., and Y. Yamagata. Land-cover change analysis in 50 global cities by using a combination of Landsat data and analysis of grid cell. Environmental

  2. Geo-information Based Spatio-temporal Modeling of Urban Land Use and Land Cover Change in Butwal Municipality, Nepal

    NASA Astrophysics Data System (ADS)

    Mandal, U. K.

    2014-11-01

    Unscientific utilization of land use and land cover due to rapid growth of urban population deteriorates urban condition. Urban growth, land use change and future urban land demand are key concerns of urban planners. This paper is aimed to model urban land use change essential for sustainable urban development. GI science technology was employed to study the urban change dynamics using Markov Chain and CA-Markov and predicted the magnitude and spatial pattern. It was performed using the probability transition matrix from the Markov chain process, the suitability map of each land use/cover types and the contiguity filter. Suitability maps were generated from the MCE process where weight was derived from the pair wise comparison in the AHP process considering slope, land capability, distance to road, and settlement and water bodies as criterion of factor maps. Thematic land use land cover types of 1999, 2006, and 2013 of Landsat sensors were classified using MLC algorithm. The spatial extent increase from 1999 to 2013 in built up , bush and forest was observed to be 48.30 percent,79.48 percent and 7.79 percent, respectively, while decrease in agriculture and water bodies were 30.26 percent and 28.22 percent. The predicted urban LULC for 2020 and 2027 would provide useful inputs to the decision makers. Built up and bush expansion are explored as the main driving force for loss of agriculture and river areas and has the potential to continue in future also. The abandoned area of river bed has been converted to built- up areas.

  3. Disentangling the relative importance of changes in climate and land-use intensity in driving recent bird population trends.

    PubMed

    Eglington, Sarah M; Pearce-Higgins, James W

    2012-01-01

    Threats to biodiversity resulting from habitat destruction and deterioration have been documented for many species, whilst climate change is regarded as increasingly impacting upon species' distribution and abundance. However, few studies have disentangled the relative importance of these two drivers in causing recent population declines. We quantify the relative importance of both processes by modelling annual variation in population growth of 18 farmland bird species in the UK as a function of measures of land-use intensity and weather. Modelled together, both had similar explanatory power in accounting for annual fluctuations in population growth. When these models were used to retrodict population trends for each species as a function of annual variation in land-use intensity and weather combined, and separately, retrodictions incorporating land-use intensity were more closely linked to observed population trends than retrodictions based only on weather, and closely matched the UK farmland bird index from 1970 onwards. Despite more stable land-use intensity in recent years, climate change (inferred from weather trends) has not overtaken land-use intensity as the dominant driver of bird populations.

  4. Disentangling the relative importance of changes in climate and land-use intensity in driving recent bird population trends.

    PubMed

    Eglington, Sarah M; Pearce-Higgins, James W

    2012-01-01

    Threats to biodiversity resulting from habitat destruction and deterioration have been documented for many species, whilst climate change is regarded as increasingly impacting upon species' distribution and abundance. However, few studies have disentangled the relative importance of these two drivers in causing recent population declines. We quantify the relative importance of both processes by modelling annual variation in population growth of 18 farmland bird species in the UK as a function of measures of land-use intensity and weather. Modelled together, both had similar explanatory power in accounting for annual fluctuations in population growth. When these models were used to retrodict population trends for each species as a function of annual variation in land-use intensity and weather combined, and separately, retrodictions incorporating land-use intensity were more closely linked to observed population trends than retrodictions based only on weather, and closely matched the UK farmland bird index from 1970 onwards. Despite more stable land-use intensity in recent years, climate change (inferred from weather trends) has not overtaken land-use intensity as the dominant driver of bird populations. PMID:22479304

  5. Rapid urban growth, land-use changes and air pollution in Santiago, Chile

    NASA Astrophysics Data System (ADS)

    Romero, H.; Ihl, M.; Rivera, A.; Zalazar, P.; Azocar, P.

    This paper is a contribution to the understanding of the topoclimatic and environmental geography of the basin where Santiago — one of the most polluted Latin American city - is located. In the first part, land-use change is analysed looking at the climatic transformation caused by the rapid transit from natural semiarid surface to urban areas. In the second part, seasonal weather and daily cycles of slope winds and the available ventilation are described trying to relate those patterns with the spatial distribution of air pollution. A combination of meteorological, geographical and cultural factors explain extreme air pollution events: meteorologically, Santiago is under permanent subsidence inversion layers. Geographically, the city is located in a closed basin surrounded by mountains. Culturally, the urban area has the highest population concentration (40% of the national total), industries (near 70% of the total) and vehicles, which are the main sources of smog. The urban and suburban transport system is based on a large number of buses (diesel) and private cars, both experiencing a rapid growth from the past few years. The city and specially the transport system generates high emissions of pollutant, but the natural semiarid deforested soils and slopes are also important sources. The local wind system can explain the differential spatial distribution on the concentration of air pollutants in the city and its periphery. In winter (rain season) concentrations of particulate matter are higher at the centre and the SW part of the city. The andean piedmont area (E part of the city) shows minimum values, suggesting major ventilation effects of slope and valley winds. Ozone exceeds air quality standards in summer (dry season) at all sites in the centre and periphery. However, the O 3-concentrations are higher on preferred residential areas located at the piedmont area (E part of the city), suggesting air pollution transport effects. Currently, there is no

  6. Microzonation in Urban Areas, Basic Element for Land-Use Planning, Risk Management and Sustainable Development

    NASA Astrophysics Data System (ADS)

    Torres Morales, G. F.; Dávalos Sotelo, R.; Castillo Aguilar, S.; Mora González, I.; Lermo Samaniego, J. F.; Rodriguez, M.; García Martínez, J.; Suárez, M. Leonardo; Hernández Juan, F.

    2013-05-01

    This paper presents the results of microzonification of the natural hazards for different metropolitan areas and highlights the importance of integrating these results in urban planning. The cities that have been covered for the definition of danger in the state of Veracruz are: Orizaba, Veracruz and Xalapa, as part of the production of a Geological and Hydrometeorology Hazards Atlas for the state of Veracruz, financed by the Funds for the Prevention of Natural Disasters FOPREDEN and CONACYT. The general data of each metropolitan area was integrated in a geographic information system (GIS), obtaining different theme maps, and maps of dynamic characteristics of soils in each metropolitan area. For the planning of an urban area to aspire to promote sustainable development, it is essential to have a great deal of the details on the pertinent information and the most important is that that has to do with the degree of exposure to natural phenomena. In general, microzonation investigations consider all natural phenomena that could potentially affect an area of interest and hazard maps for each of potential hazards are prepared. With all the data collected and generated and fed into a SIG, models were generated which define the areas most threatened by earthquake, flood and landslide slopes. These results were compared with maps of the main features in the urban zones and a qualitative classification of areas of high to low hazard was established. It will have the basic elements of information for urban planning and land use. This information will be made available to the authorities and the general public through an Internet portal where people can download and view maps using free software available online.;

  7. Bayesian networks and agent-based modeling approach for urban land-use and population density change: a BNAS model

    NASA Astrophysics Data System (ADS)

    Kocabas, Verda; Dragicevic, Suzana

    2013-10-01

    Land-use change models grounded in complexity theory such as agent-based models (ABMs) are increasingly being used to examine evolving urban systems. The objective of this study is to develop a spatial model that simulates land-use change under the influence of human land-use choice behavior. This is achieved by integrating the key physical and social drivers of land-use change using Bayesian networks (BNs) coupled with agent-based modeling. The BNAS model, integrated Bayesian network-based agent system, presented in this study uses geographic information systems, ABMs, BNs, and influence diagram principles to model population change on an irregular spatial structure. The model is parameterized with historical data and then used to simulate 20 years of future population and land-use change for the City of Surrey, British Columbia, Canada. The simulation results identify feasible new urban areas for development around the main transportation corridors. The obtained new development areas and the projected population trajectories with the“what-if” scenario capabilities can provide insights into urban planners for better and more informed land-use policy or decision-making processes.

  8. A Comparative Land Use-Based Analysis of Noise Pollution Levels in Selected Urban Centers of Nigeria

    PubMed Central

    Baloye, David O.; Palamuleni, Lobina G.

    2015-01-01

    Growth in the commercialization, mobility and urbanization of human settlements across the globe has greatly exposed world urban population to potentially harmful noise levels. The situation is more disturbing in developing countries like Nigeria, where there are no sacrosanct noise laws and regulations. This study characterized noise pollution levels in Ibadan and Ile-Ife, two urban areas of Southwestern Nigeria that have experienced significant increases in population and land use activities. Eight hundred noise measurements, taken at 20 different positions in the morning, afternoon, and evening of carefully selected weekdays, in each urban area, were used for this study. Findings put the average noise levels in the urban centers at between 53 dB(A) and 89 dB (A), a far cry from the World Health Organization (WHO) permissible limits in all the land use types, with highest noise pollution levels recorded for transportation, commercial, residential and educational land use types. The result of the one-way ANOVA test carried out on the dependent variable noise and fixed factor land use types reveals a statistically significant mean noise levels across the study area (F(3,34) = 15.13, p = 0.000). The study underscores noise pollution monitoring and the urgent need to control urban noise pollution with appropriate and effective policies. PMID:26426033

  9. A Comparative Land Use-Based Analysis of Noise Pollution Levels in Selected Urban Centers of Nigeria.

    PubMed

    Baloye, David O; Palamuleni, Lobina G

    2015-10-01

    Growth in the commercialization, mobility and urbanization of human settlements across the globe has greatly exposed world urban population to potentially harmful noise levels. The situation is more disturbing in developing countries like Nigeria, where there are no sacrosanct noise laws and regulations. This study characterized noise pollution levels in Ibadan and Ile-Ife, two urban areas of Southwestern Nigeria that have experienced significant increases in population and land use activities. Eight hundred noise measurements, taken at 20 different positions in the morning, afternoon, and evening of carefully selected weekdays, in each urban area, were used for this study. Findings put the average noise levels in the urban centers at between 53 dB(A) and 89 dB (A), a far cry from the World Health Organization (WHO) permissible limits in all the land use types, with highest noise pollution levels recorded for transportation, commercial, residential and educational land use types. The result of the one-way ANOVA test carried out on the dependent variable noise and fixed factor land use types reveals a statistically significant mean noise levels across the study area (F(3,34) = 15.13, p = 0.000). The study underscores noise pollution monitoring and the urgent need to control urban noise pollution with appropriate and effective policies.

  10. [Urban greenbelt eco-service value of Hangzhou City under effects of land use change: an evaluation with CITYgreen model].

    PubMed

    Zhang, Kan; Zhang, Jianying; Chen, Yingxu; Zhu, Yinmei

    2006-10-01

    Based on the Landset TM information of land use/cover change and greenbelt distribution in Hangzhou city in 1994 and 2004, and by using CITYgreen model, this paper estimated the eco-service value of urban greenbelt in the city under the effects of land use change and economic development. The results showed that in the 10 years from 1994 to 2004, the greenbelt area in the city decreased by 20. 4% , while its eco-service value increased by 168 million yuan. The annual increment of greenbelt eco-service value and GDP was 111.92% and 5. 32% , respectively. Suitable adjustment of land use pattern in the city harmonized the relationships between urban economic development and urban eco-function, and achieved higher eco-service efficiency of land utilization.

  11. Adaptation of Land-Use Demands to the Impact of Climate Change on the Hydrological Processes of an Urbanized Watershed

    PubMed Central

    Lin, Yu-Pin; Hong, Nien-Ming; Chiang, Li-Chi; Liu, Yen-Lan; Chu, Hone-Jay

    2012-01-01

    The adaptation of land-use patterns is an essential aspect of minimizing the inevitable impact of climate change at regional and local scales; for example, adapting watershed land-use patterns to mitigate the impact of climate change on a region’s hydrology. The objective of this study is to simulate and assess a region’s ability to adapt to hydrological changes by modifying land-use patterns in the Wu-Du watershed in northern Taiwan. A hydrological GWLF (Generalized Watershed Loading Functions) model is used to simulate three hydrological components, namely, runoff, groundwater and streamflow, based on various land-use scenarios under six global climate models. The land-use allocations are simulated by the CLUE-s model for the various development scenarios. The simulation results show that runoff and streamflow are strongly related to the precipitation levels predicted by different global climate models for the wet and dry seasons, but groundwater cycles are more related to land-use. The effects of climate change on groundwater and runoff can be mitigated by modifying current land-use patterns; and slowing the rate of urbanization would also reduce the impact of climate change on hydrological components. Thus, land-use adaptation on a local/regional scale provides an alternative way to reduce the impacts of global climate change on local hydrology. PMID:23202833

  12. Adaptation of land-use demands to the impact of climate change on the hydrological processes of an urbanized watershed.

    PubMed

    Lin, Yu-Pin; Hong, Nien-Ming; Chiang, Li-Chi; Liu, Yen-Lan; Chu, Hone-Jay

    2012-11-12

    The adaptation of land-use patterns is an essential aspect of minimizing the inevitable impact of climate change at regional and local scales; for example, adapting watershed land-use patterns to mitigate the impact of climate change on a region's hydrology. The objective of this study is to simulate and assess a region's ability to adapt to hydrological changes by modifying land-use patterns in the Wu-Du watershed in northern Taiwan. A hydrological GWLF (Generalized Watershed Loading Functions) model is used to simulate three hydrological components, namely, runoff, groundwater and streamflow, based on various land-use scenarios under six global climate models. The land-use allocations are simulated by the CLUE-s model for the various development scenarios. The simulation results show that runoff and streamflow are strongly related to the precipitation levels predicted by different global climate models for the wet and dry seasons, but groundwater cycles are more related to land-use. The effects of climate change on groundwater and runoff can be mitigated by modifying current land-use patterns; and slowing the rate of urbanization would also reduce the impact of climate change on hydrological components. Thus, land-use adaptation on a local/regional scale provides an alternative way to reduce the impacts of global climate change on local hydrology.

  13. Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas. Water Science and Application Series

    SciTech Connect

    Wigmosta, Mark S.; Burges, S J.

    2001-10-01

    What is the effect of urbanization and forest use on hydrologic and geomorphic processes? How can we develop land use policies that minimize adverse impacts on ecosystems while sustaining biodiversity? Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas addresses these issues and more. By featuring watersheds principally in the American Pacific Northwest, and the effects of timber harvesting and road construction on stream flow, sediment yield and landslide occurrence, scientists can advance their understanding of what constitutes appropriate management of environments with similar hydro-climatic-geomorphic settings worldwide.

  14. Effects of land use intensity on the full greenhouse gas balance in an Atlantic peat bog

    NASA Astrophysics Data System (ADS)

    Beetz, S.; Liebersbach, H.; Glatzel, S.; Jurasinski, G.; Buczko, U.; Höper, H.

    2013-02-01

    Wetlands can either be net sinks or net sources of greenhouse gases (GHGs), depending on the mean annual water level and other factors like average annual temperature, vegetation development, and land use. Whereas drained and agriculturally used peatlands tend to be carbon dioxide (CO2) and nitrous oxide (N2O) sources but methane (CH4) sinks, restored (i.e. rewetted) peatlands rather incorporate CO2, tend to be N2O neutral and release CH4. One of the aims of peatland restoration is to decrease their global warming potential (GWP) by reducing GHG emissions. We estimated the greenhouse gas exchange of a peat bog restoration sequence over a period of 2 yr (1 July 2007-30 June 2009) in an Atlantic raised bog in northwest Germany. We set up three study sites representing different land use intensities: intensive grassland (deeply drained, mineral fertilizer, cattle manure and 4-5 cuts per year); extensive grassland (rewetted, no fertilizer or manure, up to 1 cutting per year); near-natural peat bog (almost no anthropogenic influence). Daily and annual greenhouse gas exchange was estimated based on closed-chamber measurements. CH4 and N2O fluxes were recorded bi-weekly, and net ecosystem exchange (NEE) measurements were carried out every 3-4 weeks. Annual sums of CH4 and N2O fluxes were estimated by linear interpolation while NEE was modelled. Regarding GWP, the intensive grassland site emitted 564 ± 255 g CO2-C equivalents m-2 yr-1 and 850 ± 238 g CO2-C equivalents m-2 yr-1 in the first (2007/2008) and the second (2008/2009) measuring year, respectively. The GWP of the extensive grassland amounted to -129 ± 231 g CO2-C equivalents m-2 yr-1 and 94 ± 200 g CO2-C equivalents m-2 yr-1, while it added up to 45 ± 117 g CO2-C equivalents m-2 yr-1 and -101 ± 93 g CO2-C equivalents m-2 yr-1 in 2007/08 and 2008/09 for the near-natural site. In contrast, in calendar year 2008 GWP aggregated to 441 ± 201 g CO2-C equivalents m-2 yr-1, 14 ± 162 g CO2-C equivalents m-2 yr-1

  15. Different land use intensities in grassland ecosystems drive ecology of microbial communities involved in nitrogen turnover in soil.

    PubMed

    Meyer, Annabel; Focks, Andreas; Radl, Viviane; Keil, Daniel; Welzl, Gerhard; Schöning, Ingo; Boch, Steffen; Marhan, Sven; Kandeler, Ellen; Schloter, Michael

    2013-01-01

    Understanding factors driving the ecology of N cycling microbial communities is of central importance for sustainable land use. In this study we report changes of abundance of denitrifiers, nitrifiers and nitrogen-fixing microorganisms (based on qPCR data for selected functional genes) in response to different land use intensity levels and the consequences for potential turnover rates. We investigated selected grassland sites being comparable with respect to soil type and climatic conditions, which have been continuously treated for many years as intensely used meadows (IM), intensely used mown pastures (IP) and extensively used pastures (EP), respectively. The obtained data were linked to above ground biodiversity pattern as well as water extractable fractions of nitrogen and carbon in soil. Shifts in land use intensity changed plant community composition from systems dominated by s-strategists in extensive managed grasslands to c-strategist dominated communities in intensive managed grasslands. Along the different types of land use intensity, the availability of inorganic nitrogen regulated the abundance of bacterial and archaeal ammonia oxidizers. In contrast, the amount of dissolved organic nitrogen determined the abundance of denitrifiers (nirS and nirK). The high abundance of nifH carrying bacteria at intensive managed sites gave evidence that the amounts of substrates as energy source outcompete the high availability of inorganic nitrogen in these sites. Overall, we revealed that abundance and function of microorganisms involved in key processes of inorganic N cycling (nitrification, denitrification and N fixation) might be independently regulated by different abiotic and biotic factors in response to land use intensity.

  16. Urban Growth in a Fragmented Landscape: Estimating the Relationship between Landscape Pattern and Urban Land Use Change in Germany, 2000-2006

    NASA Astrophysics Data System (ADS)

    Keller, R.

    2013-12-01

    One of the highest priorities in the conservation and management of biodiversity, natural resources and other vital ecosystem services is the assessment of the mechanisms that drive urban land use change. Using key landscape indicators, this study addresses why urban land increased 6 percent overall in Germany from 2000-2006. Building on regional science and economic geography research, I develop a model of landscape change that integrates remotely sensed and other geospatial data, and socioeconomic data in a spatial autoregressive model to explain the variance in urban land use change observed in German kreise (counties) over the past decade. The results reveal three key landscape mechanisms that drive urban land use change across Germany, aligning with those observed in US studies: (1) the level of fragmentation, (2) the share of designated protected areas, and (3) the share of prime soil. First, as fragmentation of once continuous habitats in the landscape increases, extensive urban growth follows. Second, designated protected areas have the perverse effect of hastening urbanization in surrounding areas. Third, greater shares of prime, productive soil experienced less urban land take over the 6 year period, an effect that is stronger in the former East Germany, where the agricultural sector remains large. The results suggest that policy makers concentrate their conservation efforts on preexisting fragmented land with high shares of protected areas in Germany to effectively stem urban land take. Given that comparative studies of land use change are vital for the scientific community to grasp the wider global process of urbanization and coincident ecological impacts, the methodology employed here is easily exportable to land cover and land use research programs in other fields and geographic areas. Key words: Urban land use change, Ecosystem services, Landscape fragmentation, Remote sensing, Spatial regression models, GermanyOLS and Spatial Autoregressive Model

  17. Land use, urban, environmental, and cartographic applications, chapter 2, part D

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Microwave data and its use in effective state, regional, and national land use planning are dealt with. Special attention was given to monitoring land use change, especially dynamic components, and the interaction between land use and dynamic features of the environment. Disaster and environmental monitoring are also discussed.

  18. An object-based multisensoral approach for the derivation of urban land use structures in the city of Rostock, Germany

    NASA Astrophysics Data System (ADS)

    Lindner, Martin; Hese, Sören; Berger, Christian; Schmullius, Christiane

    2011-11-01

    The present work is part of the Enviland-2 research project, which investigates the synergism between radar- and optical satellite data for ENVIronment and LAND use applications. The urban work package of Enviland aims at the combined analysis of RapidEye and TerraSAR-X data for the parameterization of different urban land use structures. This study focuses on the development of a transferable, object-based rule set for the derivation of urban land use structures at block level. The data base consists of RapidEye and TerraSAR-X imagery, as well as height information of a LiDAR nDSM (normalized Digital Surface Model) and object boundaries of ATKIS (Official Topographic Cartographic Information System) vector data for a study area in the city of Rostock, Germany. The classification of various land cover units forms the basis of the analysis. Therefore, an object-based land cover classification is implemented that uses feature level fusion to combine the information of all available input data. Besides spectral values also shape and context features are employed to characterize and extract specific land cover objects as indicators for the prevalent land use. The different land use structures are then determined by typical combinations and constellations of the extracted land use indicators and land cover proportions. Accuracy assessment is done by utilizing the available ATKIS information. From this analysis the land use structure classes residential, industrial/commercial, other built-up, allotments, sports facility, forest, grassland, other green spaces, squares/parking areas and water are distinguished with an overall accuracy of 63.2 %.

  19. Four decades urban growth and land use change in Samara Russia through remote sensing and GIS techniques

    NASA Astrophysics Data System (ADS)

    Boori, Mukesh Singh; Choudhary, Komal; Kupriyanov, Alexander; Kovelskiy, Viktor

    2015-12-01

    This study illustrates the spatio-temporal dynamics of urban growth and land use changes in Samara city, Russia from 1975 to 2015. Landsat satellite imageries of five different time periods from 1975 to 2015 were acquired and quantify the changes with the help of ArcGIS 10.1 Software. By applying classification methods to the satellite images four main types of land use were extracted: water, built-up, forest and grassland. Then, the area coverage for all the land use types at different points in time were measured and coupled with population data. The results demonstrate that, over the entire study period, population was increased from 1146 thousand people to 1244 thousand from 1975 to 1990 but later on first reduce and then increase again, now 1173 thousand population. Built-up area is also change according to population. The present study revealed an increase in built-up by 37.01% from 1975 to 1995, than reduce -88.83% till 2005 and an increase by 39.16% from 2005 to 2015, along with the increase in population, migration from rural areas owing to the economic growth and technological advantages associated with urbanization. Information on urban growth, land use and land cover change study is very useful to local government and urban planners for the betterment of future plans to sustainable development of the city.

  20. Urban land use mapping by machine processing of ERTS-1 multispectral data: A San Francisco Bay area example

    NASA Technical Reports Server (NTRS)

    Ellefsen, R.; Swain, P. H.; Wray, J. R.

    1973-01-01

    The study is reported to develop computer produced urban land use maps using multispectral scanner data from a satellite is reported. Data processing is discussed along with the results of the San Francisco Bay area, which was chosen as the test area.

  1. Improving urban land use and land cover classification from high-spatial-resolution hyperspectral imagery using contextual information

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we propose approaches to improve the pixel-based support vector machine (SVM) classification for urban land use and land cover (LULC) mapping from airborne hyperspectral imagery with high spatial resolution. Class spatial neighborhood relationship is used to correct the misclassified ...

  2. Quantifying outdoor water consumption of urban land use/land cover: sensitivity to drought.

    PubMed

    Kaplan, Shai; Myint, Soe W; Fan, Chao; Brazel, Anthony J

    2014-04-01

    Outdoor water use is a key component in arid city water systems for achieving sustainable water use and ensuring water security. Using evapotranspiration (ET) calculations as a proxy for outdoor water consumption, the objectives of this research are to quantify outdoor water consumption of different land use and land cover types, and compare the spatio-temporal variation in water consumption between drought and wet years. An energy balance model was applied to Landsat 5 TM time series images to estimate daily and seasonal ET for the Central Arizona Phoenix Long-Term Ecological Research region (CAP-LTER). Modeled ET estimations were correlated with water use data in 49 parks within CAP-LTER and showed good agreement (r² = 0.77), indicating model effectiveness to capture the variations across park water consumption. Seasonally, active agriculture shows high ET (>500 mm) for both wet and dry conditions, while the desert and urban land cover types experienced lower ET during drought (<300 mm). Within urban locales of CAP-LTER, xeric neighborhoods show significant differences from year to year, while mesic neighborhoods retain their ET values (400-500 mm) during drought, implying considerable use of irrigation to sustain their greenness. Considering the potentially limiting water availability of this region in the future due to large population increases and the threat of a warming and drying climate, maintaining large water-consuming, irrigated landscapes challenges sustainable practices of water conservation and the need to provide amenities of this desert area for enhancing quality of life.

  3. Application of Spectral Mixture Analysis to Urban Land use/Land cover Extraction

    NASA Astrophysics Data System (ADS)

    Argany, M.; Sarajian, M. R.

    2009-04-01

    Remote sensing satellite imagery represent important source of information for urban analysis. But because of large spatial pixel sizes for multispectral and hyperspectral sensors that numerous disparate substances can contribute to the spectrum measured from a single pixel, spectral unmixing algorithms can be used to determine the land use/land cover and sub pixel data. In this paper, in order to determine the individual constituent materials present in pixels, the linear spectral unmixing method has been used. By using the linear spectral unmixing method, the components in mixed pixels are identified, and by performing inverse operation, the proportions of the materials are determined and the measured spectrum of a mixed pixel is decomposed into a collection of constituent spectra, or endmembers. Accordingly, a set of corresponding fractions, or abundances, that indicate the proportion of each endmember present in the pixel are specified. Endmembers normally correspond to familiar objects in the scene, and here they are green vegetation, impervious surface, soil and shade, etc. So, in the next stage endmembers have been selected using Pixel Purity Index (PPI) to find the most spectrally pure pixels. The PPI was computed by repeatedly projecting n-dimensional scatter plots on to a random unit vector. In the final stage, abundances have been extracted by an inversion algorithm and fraction images have been made. Study area in this paper is Karaj city and ETM+ image taken by Landsat satellite has been used.

  4. Water in urban planning, Salt Creek Basin, Illinois water management as related to alternative land-use practices

    USGS Publications Warehouse

    Spieker, Andrew Maute

    1970-01-01

    regarded as an area of potential recharge to the shallow aquifers. Preservation of the effectiveness of these potential recharge areas should be considered in land-use planning. Salt Creek is polluted in times of both low and high flow. Most communities in the basin in Du Page County discharge their treated sewage into the creek, whereas those in Cook County transfer their sewage to plants of the Metropolitan Sanitary District outside the basin. During periods of high runoff, combined storm runoff and overflow from sanitary sewers enter the creek. Such polluted water detracts from the stream's esthetic and recreational potential and poses a threat to ground-water supplies owing to induced recharge of polluted water to shallow aquifers. Alternative approaches .to the pollution problem include improvement of the degree of sewage treatment, detention and treatment of storm runoff, dilution of sewage through flow augmentation, or transfer of sewage from the basin to a central treatment plant. To result in an enhanced environment, the streambed would have to be cleansed of accumulated sludge deposits. The overbank flooding in Salt Creek basin every 2 to 3 years presents problems because of encroachments and developments on the flood plains. Flood plains in an urban area can be managed by identifying them, by recognizing that either their natural storage capacity or equivalent artificial capacity is needed to accommodate floods, and by planning land use accordingly. Examples of effective floodplain management include (1) preservation of greenbelts or regional parks along stream courses, (2) use of flood plains for recreation, parking lots. or other low-intensity uses, (3) use of flood-proofed commercial buildings, and (4) provision for compensatory storage to replace natural storage capacity. Results of poor flood-plain management include uncontrolled residential development and encroachment by fill into natural storage areas where no compensatory storage has been

  5. A Statistical Assessment of the Impact of Agricultural Land Use Intensity on Regional Surface Water Quality at Multiple Scales

    PubMed Central

    Zhang, Weiwei; Li, Hong; Sun, Danfeng; Zhou, Liandi

    2012-01-01

    Understanding the effects of intensive agricultural land use activities on water resources is essential for natural resource management and environmental improvement. In this paper, multi-scale nested watersheds were delineated and the relationships between two representative water quality indexes and agricultural land use intensity were assessed and quantified for the year 2000 using multi-scale regression analysis. The results show that the log-transformed nitrate-nitrogen (NO3-N) index exhibited a relationship with chemical fertilizer input intensity and several natural factors, including soil loss, rainfall and sunlight at the first order watershed scale, while permanganate index (CODMn) had a positive relationship with another two input intensities of pesticides and agricultural plastic mulch and organic manure at the fifth order watershed scale. The first order watershed and the fifth order watershed were considered as the watershed adaptive response units for NO3-N and CODMn, respectively. The adjustment of agricultural input and its intensity may be carried out inside the individual watershed adaptive response unit. The multiple linear regression model demonstrated the cause-and-effect relationship between agricultural land use intensity and stream water quality at multiple scales, which is an important factor for the maintenance of stream water quality. PMID:23202839

  6. A statistical assessment of the impact of agricultural land use intensity on regional surface water quality at multiple scales.

    PubMed

    Zhang, Weiwei; Li, Hong; Sun, Danfeng; Zhou, Liandi

    2012-11-01

    Understanding the effects of intensive agricultural land use activities on water resources is essential for natural resource management and environmental improvement. In this paper, multi-scale nested watersheds were delineated and the relationships between two representative water quality indexes and agricultural land use intensity were assessed and quantified for the year 2000 using multi-scale regression analysis. The results show that the log-transformed nitrate-nitrogen (NO(3)-N) index exhibited a relationship with chemical fertilizer input intensity and several natural factors, including soil loss, rainfall and sunlight at the first order watershed scale, while permanganate index (COD(Mn)) had a positive relationship with another two input intensities of pesticides and agricultural plastic mulch and organic manure at the fifth order watershed scale. The first order watershed and the fifth order watershed were considered as the watershed adaptive response units for NO(3)-N and COD(Mn), respectively. The adjustment of agricultural input and its intensity may be carried out inside the individual watershed adaptive response unit. The multiple linear regression model demonstrated the cause-and-effect relationship between agricultural land use intensity and stream water quality at multiple scales, which is an important factor for the maintenance of stream water quality. PMID:23202839

  7. Effects of land use on the spatial distribution of trace metals and volatile organic compounds in urban groundwater, Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Park, Seong-Sook; Kim, Soon-Oh; Yun, Seong-Taek; Chae, Gi-Tak; Yu, Soon-Young; Kim, Seungki; Kim, Young

    2005-10-01

    To investigate the urban groundwater contamination by eight trace metals and 69 volatile organic compounds (VOCs) in relation to land use in Seoul, a total of 57 groundwater samples collected from wells were examined using a non-parametric statistical analysis. Land use was classified into five categories: less-developed, residential, agricultural, traffic, and industrial. A comparison of analyzed data with US EPA and Korean standards for drinking water showed that some metals and VOCs exceeded the standards in a few localities, such as Fe ( N=5), Mn ( N=6), Cu ( N=1), TCE ( N=6), PCE ( N=8), 1,2-DCA ( N=1), and 1,2-dichloropropane ( N=1). Among the 69 investigated VOCs, 19 compounds such as some gasoline-related compounds (e.g., toluene) and chlorinated compounds (e.g., chloroform, PCE, TCE) were detected in groundwater. Non-parametric statistical analysis showed that the concentrations of most trace metals (Fe, Mn, As, Cr, Pb, Cd) and some VOCs (especially, TCE, PCE, chloroform; toluene, carbon tetrachloride, bromodichloromethane, CFC113) are significantly higher in the industrial, residential, and traffic areas ( P<0.05), indicating that anthropogenic contamination of urban groundwater by those chemicals is growing. Those chemicals can be used as effective indicators of anthropogenic contamination of groundwater in urban areas and therefore a special attention is warranted for a safe water supply in those areas. The results of this study suggest that urban groundwater quality in urban areas is closely related with land use.

  8. Soil erosion evaluation in a rapidly urbanizing city (Shenzhen, China) and implementation of spatial land-use optimization.

    PubMed

    Zhang, Wenting; Huang, Bo

    2015-03-01

    Soil erosion has become a pressing environmental concern worldwide. In addition to such natural factors as slope, rainfall, vegetation cover, and soil characteristics, land-use changes-a direct reflection of human activities-also exert a huge influence on soil erosion. In recent years, such dramatic changes, in conjunction with the increasing trend toward urbanization worldwide, have led to severe soil erosion. Against this backdrop, geographic information system-assisted research on the effects of land-use changes on soil erosion has become increasingly common, producing a number of meaningful results. In most of these studies, however, even when the spatial and temporal effects of land-use changes are evaluated, knowledge of how the resulting data can be used to formulate sound land-use plans is generally lacking. At the same time, land-use decisions are driven by social, environmental, and economic factors and thus cannot be made solely with the goal of controlling soil erosion. To address these issues, a genetic algorithm (GA)-based multi-objective optimization (MOO) approach has been proposed to find a balance among various land-use objectives, including soil erosion control, to achieve sound land-use plans. GA-based MOO offers decision-makers and land-use planners a set of Pareto-optimal solutions from which to choose. Shenzhen, a fast-developing Chinese city that has long suffered from severe soil erosion, is selected as a case study area to validate the efficacy of the GA-based MOO approach for controlling soil erosion. Based on the MOO results, three multiple land-use objectives are proposed for Shenzhen: (1) to minimize soil erosion, (2) to minimize the incompatibility of neighboring land-use types, and (3) to minimize the cost of changes to the status quo. In addition to these land-use objectives, several constraints are also defined: (1) the provision of sufficient built-up land to accommodate a growing population, (2) restrictions on the development of

  9. Associations between land use and Perkinsus marinus infection of eastern oysters in a high salinity, partially urbanized estuary

    USGS Publications Warehouse

    Gray, Brian R.; Bushek, David; Drane, J. Wanzer; Porter, Dwayne

    2009-01-01

    Infection levels of eastern oysters by the unicellular pathogen Perkinsus marinus have been associated with anthropogenic influences in laboratory studies. However, these relationships have been difficult to investigate in the field because anthropogenic inputs are often associated with natural influences such as freshwater inflow, which can also affect infection levels. We addressed P. marinus-land use associations using field-collected data from Murrells Inlet, South Carolina, USA, a developed, coastal estuary with relatively minor freshwater inputs. Ten oysters from each of 30 reefs were sampled quarterly in each of 2 years. Distances to nearest urbanized land class and to nearest stormwater outfall were measured via both tidal creeks and an elaboration of Euclidean distance. As the forms of any associations between oyster infection and distance to urbanization were unknown a priori, we used data from the first and second years of the study as exploratory and confirmatory datasets, respectively. With one exception, quarterly land use associations identified using the exploratory dataset were not confirmed using the confirmatory dataset. The exception was an association between the prevalence of moderate to high infection levels in winter and decreasing distance to nearest urban land use. Given that the study design appeared adequate to detect effects inferred from the exploratory dataset, these results suggest that effects of land use gradients were largely insubstantial or were ephemeral with duration less than 3 months.

  10. Land Use and Land Cover Change, Urban Heat Island Phenomenon, and Health Implications: A Remote Sensing Approach

    NASA Technical Reports Server (NTRS)

    Lo, C. P.; Quattrochi, Dale A.

    2003-01-01

    Land use and land cover maps of Atlanta Metropolitan Area in Georgia were produced from Landsat MSS and TM images for 1973,1979,1983,1987,1992, and 1997, spanning a period of 25 years. Dramatic changes in land use and land cover have occurred with loss of forest and cropland to urban use. In particular, low-density urban use, which includes largely residential use, has increased by over 119% between 1973 and 1997. These land use and land cover changes have drastically altered the land surface characteristics. An analysis of Landsat images revealed an increase in surface temperature and a decline in NDVI from 1973 to 1997. These changes have forced the development of a significant urban heat island effect and an increase in ground level ozone production to such an extent, that Atlanta has violated EPA's ozone level standard in recent years. The urban heat island initiated precipitation events that were identified between 1996 and 2000 tended to occur near high-density urban areas but outside the I-285 loop that traverses around the Central Business District, i.e. not in the inner city area, but some in close proximity to the highways. The health implications were investigated by comparing the spatial patterns of volatile organic compounds (VOC) and nitrogen oxides (NOx) emissions, the two ingredients that form ozone by reacting with sunlight, with those of rates of cardiovascular and chronic lower respiratory diseases. A clear core-periphery pattern was revealed for both VOC and NOx emissions, but the spatial pattern was more random in the cases of rates of cardiovascular and chronic lower respiratory diseases. Clearly, factors other than ozone pollution were involved in explaining the rates of these diseases. Further research is therefore needed to understand the health geography and its relationship to land use and land cover change as well as urban heat island effect. This paper illustrates the usefulness of a remote sensing approach for this purpose.

  11. Modeling approaches to detect land-use changes: Urbanization analyzed on a set of 43 US catchments

    NASA Astrophysics Data System (ADS)

    Salavati, Bahar; Oudin, Ludovic; Furusho-Percot, Carina; Ribstein, Pierre

    2016-07-01

    Paired catchment approach probably provides the most robust method to detect the effects of land-use change on catchments' flow characteristics. This approach is limited by the availability of two neighbor catchments with and without land-use change under similar climate conditions. This paper uses a hydrological model to detect the hydrological change caused by urbanization. This study describes (1) use a statistical method to evaluate change detection relative to variation of land use change, (2) simulation of non-urban condition for the urban catchment with an alternative approach, to this aim stream flow series of urban catchments have been reconstructed from the period that urbanization had not taken place yet, and (3) the model validation with observed data. This paper intends to compare the flow changes detected by two different approaches: a regional statistical approach (the paired-catchment approach) and a conceptual modeling approach (the residual approach) on the particular case of urbanized catchments. To investigate the sensitivity of the results to the settings of both approaches, the comparison is made on a relatively large number of 43 catchments located in the United States, with relatively large gradients in terms of geomorphology and hydroclimatic characteristics. Results show that the two approaches are generally in relative good agreement in terms of detection and quantification of changes for the three flow characteristics analyzed (mean annual flow, high and low flow characteristics). Besides, it is found that the impact of urbanization on the catchment's hydrologic response is difficult to generalize: the proportion of nonsignificant trends, significantly increasing decreasing trends are on the same order of magnitude, even if an increase in urban areas generally has a greater impact on mean flows and high flows than on low flows.

  12. Change in Environmental Benefits of Urban Land Use and Its Drivers in Chinese Cities, 2000-2010.

    PubMed

    Song, Xiaoqing; Chang, Kang-Tsung; Yang, Liang; Scheffran, Jürgen

    2016-05-26

    Driven by rising income and urban population growth, China has experienced rapid urban expansion since the 1980s. Urbanization can have positive effects on the urban environment; however, improvement of urban environment quality, especially its divergence between relatively developed and undeveloped cities in China, is currently a rather rudimentary and subjective issue. This study analyzed urban environmental benefits among China's prefectural cities based on their structure of urban land use in 2000 and 2010. First, we divided 347 prefectural cities into two groups, 81 coastal and capital cities in the relatively developed group (RD) and 266 other prefectural cities in the undeveloped group (RP). Then, we defined three areas of urban environmental benefits, including green infrastructure, industrial upgrade, and environmental management, and developed an assessment index system. Results showed that all prefectural cities saw improvement in urban environmental quality in 2000-2010. Although the RD cities had higher income and more population growth, they had less improvement than the RP cities during the same period. We also found that demographic and urban land agglomeration among RD cities restrained green infrastructure expansion, making green infrastructure unsuitable as a permanent solution to environmental improvement. It is therefore urgent for China to promote balanced improvement among the three areas of urban environmental benefits and between the RD and RP cities through regional differentiation policies.

  13. Change in Environmental Benefits of Urban Land Use and Its Drivers in Chinese Cities, 2000-2010.

    PubMed

    Song, Xiaoqing; Chang, Kang-Tsung; Yang, Liang; Scheffran, Jürgen

    2016-01-01

    Driven by rising income and urban population growth, China has experienced rapid urban expansion since the 1980s. Urbanization can have positive effects on the urban environment; however, improvement of urban environment quality, especially its divergence between relatively developed and undeveloped cities in China, is currently a rather rudimentary and subjective issue. This study analyzed urban environmental benefits among China's prefectural cities based on their structure of urban land use in 2000 and 2010. First, we divided 347 prefectural cities into two groups, 81 coastal and capital cities in the relatively developed group (RD) and 266 other prefectural cities in the undeveloped group (RP). Then, we defined three areas of urban environmental benefits, including green infrastructure, industrial upgrade, and environmental management, and developed an assessment index system. Results showed that all prefectural cities saw improvement in urban environmental quality in 2000-2010. Although the RD cities had higher income and more population growth, they had less improvement than the RP cities during the same period. We also found that demographic and urban land agglomeration among RD cities restrained green infrastructure expansion, making green infrastructure unsuitable as a permanent solution to environmental improvement. It is therefore urgent for China to promote balanced improvement among the three areas of urban environmental benefits and between the RD and RP cities through regional differentiation policies. PMID:27240386

  14. Change in Environmental Benefits of Urban Land Use and Its Drivers in Chinese Cities, 2000–2010

    PubMed Central

    Song, Xiaoqing; Chang, Kang-tsung; Yang, Liang; Scheffran, Jürgen

    2016-01-01

    Driven by rising income and urban population growth, China has experienced rapid urban expansion since the 1980s. Urbanization can have positive effects on the urban environment; however, improvement of urban environment quality, especially its divergence between relatively developed and undeveloped cities in China, is currently a rather rudimentary and subjective issue. This study analyzed urban environmental benefits among China’s prefectural cities based on their structure of urban land use in 2000 and 2010. First, we divided 347 prefectural cities into two groups, 81 coastal and capital cities in the relatively developed group (RD) and 266 other prefectural cities in the undeveloped group (RP). Then, we defined three areas of urban environmental benefits, including green infrastructure, industrial upgrade, and environmental management, and developed an assessment index system. Results showed that all prefectural cities saw improvement in urban environmental quality in 2000–2010. Although the RD cities had higher income and more population growth, they had less improvement than the RP cities during the same period. We also found that demographic and urban land agglomeration among RD cities restrained green infrastructure expansion, making green infrastructure unsuitable as a permanent solution to environmental improvement. It is therefore urgent for China to promote balanced improvement among the three areas of urban environmental benefits and between the RD and RP cities through regional differentiation policies. PMID:27240386

  15. Land-use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants.

    PubMed

    Vályi, Kriszta; Rillig, Matthias C; Hempel, Stefan

    2015-03-01

    We studied the effect of host plant identity and land-use intensity (LUI) on arbuscular mycorrhizal fungi (AMF, Glomeromycota) communities in roots of grassland plants. These are relevant factors for intraradical AMF communities in temperate grasslands, which are habitats where AMF are present in high abundance and diversity. In order to focus on fungi that directly interact with the plant at the time, we investigated root-colonizing communities. Our study sites represent an LUI gradient with different combinations of grazing, mowing, and fertilization. We used massively parallel multitag pyrosequencing to investigate AMF communities in a large number of root samples, while being able to track the identity of the host. We showed that host plants significantly differed in AMF community composition, while land use modified this effect in a plant species-specific manner. Communities in medium and low land-use sites were subsets of high land-use communities, suggesting a differential effect of land use on the dispersal of AMF species with different abundances and competitive abilities. We demonstrate that in these grasslands, there is a small group of highly abundant, generalist fungi which represent the dominating species in the AMF community.

  16. A Study on the Land Use Characteristics of Urban Medium and Small stream Depending on the Width of stream

    NASA Astrophysics Data System (ADS)

    Seok, Song Young; Ho, Song Yang; Ho, Lee Jung; Moo Jong, Park

    2015-04-01

    Due to the increase of impervious layers caused by increased rainfall and urbanization which were brought about by the climate change after the late 1990s, the flood damage in urban watersheds is rising. The recent flood damage is occurring in medium and small stream rather than in large stream. Particularly, in medium stream which pass the cities, sudden flood occurs due to the short concentration of rainfall and urban areas suffer large damage, even though the flood damage is small, since residential areas and social infrastructures are concentrated. In spite of the importance of medium and small stream to pass the cities, there is no certain standard for classification of natural or urban stream and existing studies are mostly focused on the impervious area among the land use characteristics of watersheds. Most of existing river studies are based on the watershed scale, but in most urban watersheds where stream pass, urban areas are concentrated in the confluence, so urban areas only occupy less than 10% of the whole watershed and there is a high uncertainty in the classification of urban areas, based the watershed of stream. This study aims to suggest a classification standard of medium and small stream between local stream and small stream where suffer flood damage. According to the classified medium and small stream, this study analyzed the stream area to the stream width and distance using Arcgis Buffer tool, based on the stream line, not the existing watershed scale. This study then chose urban watersheds by analyzing the river area at certain intervals from the center of the chosen medium and small stream, in different ways. Among the land use characteristics in urban areas, the impervious area was applied to the selection standard of urban watersheds and the characteristics of urban watersheds were presented by calculating the ratio of the stream area to the impervious area using the Buffer tool. Acknowledgement "This research was supported by a grant

  17. Investigation of Urban Heat Island Intensity in Istanbul

    NASA Astrophysics Data System (ADS)

    Irem Bilgen, Simge; Unal, Yurdanur S.; Yuruk, Cemre; Goktepe, Nur; Diren, Deniz; Topcu, Sema; Mentes, Sibel; Incecik, Selahattin; Guney, Caner; Ozgur Dogru, Ahmet

    2016-04-01

    and CORINE Land Cover Raster Data are used to generate the land use distribution. Furthermore, the new urban land use types are defined by considering the spatial coverage and the average height of the buildings. Effects of change in land use on daytime and nighttime urban heat island (UHI) of Istanbul is examined using the local-scale atmospheric model MUKLIMO 3. The hot spots of the Istanbul have been identified as central area especially through the southern part of Bosphorus and the historical peninsula. This work is supported by TUBITAK Project, number 114Y047. Keywords: Urban climate, urban heat island (UHI), Istanbul, MUKLIMO 3, urbanization

  18. KH-series satellite imagery and Landsat MSS data fusion in support of assessing urban land use growth

    NASA Astrophysics Data System (ADS)

    Civco, Daniel; Chabaeva, Anna; Parent, Jason

    2009-09-01

    Multi-temporal land use data, circa 1990 and 2000, have been analyzed an our urban growth model which identifies three levels of the urban extent - the impervious surface, the urbanized area, and the urban footprint - to account for the differing degrees of open space degradation associated with the city. The model also generates metrics such as cohesion, proximity, population densities, average openness, open space contiguity, and depth which quantify spatial characteristics that are indicative of urban sprawl. We plan on expanding this time-series further, and for additional cities, with mid-decadal, gap-filled Landsat ETM data, as well as resolution-enhanced Landsat MSS data from the 19070's. The cities used in this pilot project consisted of: (a) Kigali, Rwanda; (b) Portland, Oregon; (c) Tacoma, Washington; and (d) Plock, Poland. Based on research done in this project, complemented by results from other efforts, the Ehlers data fusion approach was used in the resolution enhancement of Landsat MSS imagery. In this paper, using Portland and Kigali as the principal examples, we discuss the procedures by which (a) the KH-series declassified military intelligence imagery was geometrically-corrected and registered to Landsat data, (b) the Ehlers Fusion of the KH-data with Landsat MSS, (c) the derivation of 1970's urban land use information, and (d) the calculation of select urban growth metrics. This paper illustrates the power of leveraging the high resolution of the military reconnaissance imagery with the multispectral information contained in the vintage Landsat MSS data in historical land use analyses.

  19. Land use and Hydrological Characteristics of Volcanic Urban Soils for Flood Susceptibility Modeling, Ciudad de Colima (Mexico)

    NASA Astrophysics Data System (ADS)

    Perez Gonzalez, M. L.; Capra, L.; Borselli, L.; Ortiz, A.

    2015-12-01

    The fast population rate growth and the unplanned urban development has created an increase of urban floods in the City of Colima. Land use change has transformed the hydrological behavior of the watersheds that participates on the runoff-infiltration processes that governs the pluvial concentrations. After the urban areas enlargement, 13% from 2010 to 2015, rainfall has caused significant damages to the downtown community. Therefore it is important to define the main hydraulic properties of the soils surrounding the city. The soil of the region is derived from the debris avalanche deposits of the Volcano of Colima. The volcanic soil cover is only 10 to 15 cm depth. To test the soils of the region, sampling locations were chosen after making a land use map from a Landsat image. The map was done by selecting and dividing similar surface images patterns into three main classifications: Natural (N1), Agricultural (N5) and Urban (N4) surfaces. Thirty-Three soil samples were collected and grouped in nine out of ten land use subdivisions. The 10thsubdivision, represents the completed urbanized area. The land use model is made using spot 4 1A images from the year 2010 up to year 2015. This land use evolutionary analysis will be a base to evaluate the change of the runoff-infiltration rate, direction, and concentration areas for the future flood susceptibility model. To get the parameters above, several soil analysis were performed. The results were that all the soil samples tested were classified as sandy soils. The water content values were from 7% (N4) to 45% (N1) while bulk density values for the same sample were form 0.65 (N1) to 1.50 (N4) g/cm3. The particle density and the porosity values were from 1.65 g/cm3 /5.5% (N4) - 2.65 g/cm3/ 75.40% (N1). The organic matter content was around 0.1% for urban soils and up to 6% on natural and agricultural soils. Some other test like electric conductivity and pH were performed. The obtained parameters were used to get other

  20. Land-Use Change Impacts on Intensity, Duration, and Frequency of Precipitation in the South Platte River Basin

    NASA Astrophysics Data System (ADS)

    Pina, A.; Denning, A. S.

    2014-12-01

    The Westward Expansion of the mid-1800s directly impacted the distribution of moisture in the South Platte River Basin (SPRB) by changing land surfaces from natural rangelands, grasslands, and shrublands to a disturbed state of urbanized cities, livestock pastures, and irrigated croplands. Changing land surfaces repartitions latent and sensible energy surface fluxes and inadvertently results in changes to the regional climate. In this study, we examined the impacts of land-use change on the meteorology and climate in the South Platte River Basin, a region sensitive to water-use management. WRF-ARW v3.4.1 was used to downscale the reanalysis of a climatologically normal summer (2010) to 0.5 km horizontal resolution over the SPRB. To analyze meteorological and climatological effects of land-use changes in northeastern Colorado, a control run where no changes to the input data was compared with a run which changed land-use index from anthropogenic-influenced landscapes back to their original vegetative land cover. Notable changes in the Bowen ratio around urban and irrigated lands as well as an enhancement of the mountain-valley circulation east of the Rocky Mountains were observed due to land-use changes. Output from the control run of the WRF simulation were used as a baseline for running a simulation to 2100 using a newly-developed multi-scale modeling framework based on the Community Earth System Model, which explicitly resolves convection in global climate model grid cells. Results of changing IDF curves over the 21st century can be compared with results shown in national and international documents such as the National Climate Assessment and Intergovernmental Panel on Climate Change reports and used as planning tools for optimizing the balance of water management between agriculture communities and municipalities in Colorado.

  1. Urban and regional land use analysis: CARETS and census cities experiment package

    NASA Technical Reports Server (NTRS)

    Alexander, R. (Principal Investigator); Lins, H. F., Jr.

    1974-01-01

    The author has identified the following significant results. The most significant finding has been the ability of the S-190B data to produce land use maps not far removed from the quality of high altitude aircraft photography generated maps.

  2. VARIATIONS OF MICROORGANISM CONCENTRATIONS IN URBAN STORMWATER RUNOFF WITH LAND USE AND SEASONS

    EPA Science Inventory

    Stormwater runoff samples were collected from outfalls draining small municipal separate storm sewer systems. The samples were collected from three different land use areas based on local designation (high-density residential, low-density residential, and landscaped commercial)....

  3. Urban land use monitoring from computer-implemented processing of airborne multispectral data

    NASA Technical Reports Server (NTRS)

    Todd, W. J.; Mausel, P. W.; Baumgardner, M. F.

    1976-01-01

    Machine processing techniques were applied to multispectral data obtained from airborne scanners at an elevation of 600 meters over central Indianapolis in August, 1972. Computer analysis of these spectral data indicate that roads (two types), roof tops (three types), dense grass (two types), sparse grass (two types), trees, bare soil, and water (two types) can be accurately identified. Using computers, it is possible to determine land uses from analysis of type, size, shape, and spatial associations of earth surface images identified from multispectral data. Land use data developed through machine processing techniques can be programmed to monitor land use changes, simulate land use conditions, and provide impact statistics that are required to analyze stresses placed on spatial systems.

  4. Monitoring urban expansion and its effects on land use and land cover changes in Guangzhou city, China.

    PubMed

    Wu, Yanyan; Li, Shuyuan; Yu, Shixiao

    2016-01-01

    There are widespread concerns about urban sprawl in China. In response, modeling and assessing urban expansion and subsequent land use and land cover (LULC) changes have become important approaches to support decisions about appropriate development and land resource use. Guangzhou, a major metropolitan city in South China, has experienced rapid urbanization and great economic growth in the past few decades. This study applied a series of Landsat images to assess the urban expansion and subsequent LULC changes over 35 years, from 1979 to 2013. From start to end, urban expansion increased by 1512.24 km(2) with an annual growth rate of 11.25 %. There were four stages of urban growth: low rates from 1979 to 1990, increased rates from 1990 to 2001, high rates from 2001 to 2009, and steady increased rates from 2009 to 2013. There were also three different urban growth types in these different stages: edge-expansion growth, infilling growth, and spontaneous growth. Other land cover, such as cropland, forest, and mosaics of cropland and natural vegetation, were severely impacted as a result. To analyze these changes, we used landscape metrics to characterize the changes in the spatial patterns across the Guangzhou landscape and the impacts of urban growth on other types of land cover. The significant changes in LULC and urban expansion were highly correlated with economic development, population growth, technical progress, policy elements, and other similar indexes.

  5. Monitoring urban expansion and its effects on land use and land cover changes in Guangzhou city, China.

    PubMed

    Wu, Yanyan; Li, Shuyuan; Yu, Shixiao

    2016-01-01

    There are widespread concerns about urban sprawl in China. In response, modeling and assessing urban expansion and subsequent land use and land cover (LULC) changes have become important approaches to support decisions about appropriate development and land resource use. Guangzhou, a major metropolitan city in South China, has experienced rapid urbanization and great economic growth in the past few decades. This study applied a series of Landsat images to assess the urban expansion and subsequent LULC changes over 35 years, from 1979 to 2013. From start to end, urban expansion increased by 1512.24 km(2) with an annual growth rate of 11.25 %. There were four stages of urban growth: low rates from 1979 to 1990, increased rates from 1990 to 2001, high rates from 2001 to 2009, and steady increased rates from 2009 to 2013. There were also three different urban growth types in these different stages: edge-expansion growth, infilling growth, and spontaneous growth. Other land cover, such as cropland, forest, and mosaics of cropland and natural vegetation, were severely impacted as a result. To analyze these changes, we used landscape metrics to characterize the changes in the spatial patterns across the Guangzhou landscape and the impacts of urban growth on other types of land cover. The significant changes in LULC and urban expansion were highly correlated with economic development, population growth, technical progress, policy elements, and other similar indexes. PMID:26700678

  6. Water resources: effects of land use and urbanization. (Latest citations from the NTIS data base). Published Search

    SciTech Connect

    Not Available

    1992-04-01

    The bibliography contains citations concerning the effects of land use and urban development on water supply quality and quantity. Topics include appropriate local, state, and federal government policies, and utilization of mathematical models as predictive tools. Studies performed at specific localities are included if they provide comprehensive strategies that can be applied to other locations. (Contains 250 citations and includes a subject term index and title list.)

  7. Water resources: Effects of land use and urbanization. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    Not Available

    1994-03-01

    The bibliography contains citations concerning the effects of land use and urban development on water supply quality and quantity. Topics include appropriate local, state, and federal government policies, and utilization of mathematical models as predictive tools. Studies performed at specific localities are included if they provide comprehensive strategies that can be applied to other locations. (Contains 250 citations and includes a subject term index and title list.)

  8. Impact of Land-Use and Land-Cover Change on urban air quality in representative cities of China

    NASA Astrophysics Data System (ADS)

    Sun, L.; Wei, J.; Duan, D. H.; Guo, Y. M.; Yang, D. X.; Jia, C.; Mi, X. T.

    2016-05-01

    The atmospheric particulate pollution in China is getting worse. Land-Use and Land-Cover Change (LUCC) is a key factor that affects atmospheric particulate pollution. Understanding the response of particulate pollution to LUCC is necessary for environmental protection. Eight representative cities in China, Qingdao, Jinan, Zhengzhou, Xi'an, Lanzhou, Zhangye, Jiuquan, and Urumqi were selected to analyze the relationship between particulate pollution and LUCC. The MODIS (MODerate-resolution Imaging Spectroradiometer) aerosol product (MOD04) was used to estimate atmospheric particulate pollution for nearly 10 years, from 2001 to 2010. Six land-use types, water, woodland, grassland, cultivated land, urban, and unused land, were obtained from the MODIS land cover product (MOD12), where the LUCC of each category was estimated. The response of particulate pollution to LUCC was analyzed from the above mentioned two types of data. Moreover, the impacts of time-lag and urban type changes on particulate pollution were also considered. Analysis results showed that due to natural factors, or human activities such as urban sprawl or deforestation, etc., the response of particulate pollution to LUCC shows obvious differences in different areas. The correlation between particulate pollution and LUCC is lower in coastal areas but higher in inland areas. The dominant factor affecting urban air quality in LUCC changes from ocean, to woodland, to urban land, and eventually into grassland or unused land when moving from the coast to inland China.

  9. On the intensity and type transition of land use at the basin scale using RS/GIS: a case study of the Hanjiang River Basin.

    PubMed

    Yu, Guangming; Zeng, Qun; Yang, Shan; Hu, Limei; Lin, Xiaowei; Che, Yi; Zheng, Yuge

    2010-01-01

    The purpose of this study is to investigate the land use intensity and land use change type at the basin scale in the middle and lower reaches of the Hanjiang River Basin (in Hubei Province, China) by combining the Landsat TM images in 1995 and 2000 with the land use database (in scale 1:10,000) and relative data. In this study, the basic data is acquired from the interpretation of remote sensing (RS) images. The intensity of land use and the rate of change in double-directions of land use dynamics are calculated with the support of software ARC/INFO. The intensity of land use is indicated by the intensity coefficient of land use, and the transition of land use types is quantified as the rate of change in double-direction of land use types and also expressed as the transition matrix of land use types. The results are expressed in space by Geographic Information System (GIS) software. Results of this study show that (1) the intensity of land use is high in the study region, the intensity coefficients of land use in 1995 and 2000 are 260.025 and 290.526, respectively, and the intensity of development and utilization of land is trend to increscent; and (2) the rate of land use change in double directions in the whole study region is 0.52 with great spatial variation and the differentiation of land use types. In the differentiation of land use types, the unutilized land (with the rate to 4.391) is developed fast, the grassland (with 2.836) and water area (with 1.664) are disturbed severely, and these changes will influence the eco-environment in the Hanjiang River Basin and all the Yangtze Basin. The rates of the farmland and the woodland are 0.424 and 0.344, respectively, meaning that the fundamentals of regional human-environmental system are relative stable. With this study, we can conclude that (1) the patterns of land use are increasingly changing in the study region, the environmental impacts are escalated on this stage, and the further outcomes are destined to

  10. On the intensity and type transition of land use at the basin scale using RS/GIS: a case study of the Hanjiang River Basin.

    PubMed

    Yu, Guangming; Zeng, Qun; Yang, Shan; Hu, Limei; Lin, Xiaowei; Che, Yi; Zheng, Yuge

    2010-01-01

    The purpose of this study is to investigate the land use intensity and land use change type at the basin scale in the middle and lower reaches of the Hanjiang River Basin (in Hubei Province, China) by combining the Landsat TM images in 1995 and 2000 with the land use database (in scale 1:10,000) and relative data. In this study, the basic data is acquired from the interpretation of remote sensing (RS) images. The intensity of land use and the rate of change in double-directions of land use dynamics are calculated with the support of software ARC/INFO. The intensity of land use is indicated by the intensity coefficient of land use, and the transition of land use types is quantified as the rate of change in double-direction of land use types and also expressed as the transition matrix of land use types. The results are expressed in space by Geographic Information System (GIS) software. Results of this study show that (1) the intensity of land use is high in the study region, the intensity coefficients of land use in 1995 and 2000 are 260.025 and 290.526, respectively, and the intensity of development and utilization of land is trend to increscent; and (2) the rate of land use change in double directions in the whole study region is 0.52 with great spatial variation and the differentiation of land use types. In the differentiation of land use types, the unutilized land (with the rate to 4.391) is developed fast, the grassland (with 2.836) and water area (with 1.664) are disturbed severely, and these changes will influence the eco-environment in the Hanjiang River Basin and all the Yangtze Basin. The rates of the farmland and the woodland are 0.424 and 0.344, respectively, meaning that the fundamentals of regional human-environmental system are relative stable. With this study, we can conclude that (1) the patterns of land use are increasingly changing in the study region, the environmental impacts are escalated on this stage, and the further outcomes are destined to

  11. Simulating effects of land use policies on extent of the wildland urban interface and wildfire risk in Flathead County, Montana.

    PubMed

    Paveglio, Travis B; Prato, Tony; Hardy, Michael

    2013-11-30

    This study used a wildfire loss simulation model to evaluate how different land use policies are likely to influence wildfire risk in the wildland urban interface (WUI) for Flathead County, Montana. The model accounts for the complex socio-ecological interactions among climate change, economic growth, land use change and policy, homeowner mitigations, and forest treatments in Flathead County's WUI over the five 10-year subperiods comprising the future evaluation period (i.e., 2010-2059). Wildfire risk, defined as expected residential losses from wildfire [E(RLW)], depends on the number of residential properties on parcels, the probability that parcels burn, the probability of wildfire losses to residential structures on properties given the parcels on which those properties are located burn, the average percentage of wildfire-related losses in aesthetic values of residential properties, and the total value (structures plus land) of residential properties. E(RLW) for the five subperiods is simulated for 2010 (referred to as the current), moderately restrictive, and highly restrictive land use policy scenarios, a moderate economic growth scenario and the A2 greenhouse gas emissions scenario. Results demonstrate that increasingly restrictive land use policy for Flathead County significantly reduces the amount and footprint of future residential development in the WUI. In addition, shifting from the current to a moderately restrictive land use policy for Flathead County significantly reduces wildfire risk for the WUI, but shifting from the current to a highly restrictive land use policy does not significantly reduce wildfire risk in the WUI. Both the methods and results of the study can help land and wildfire managers to better manage future wildfire risk and identify residential areas having potentially high wildfire risk.

  12. Does mixed-species flocking influence how birds respond to a gradient of land-use intensity?

    PubMed

    Mammides, Christos; Chen, Jin; Goodale, Uromi Manage; Kotagama, Sarath Wimalabandara; Sidhu, Swati; Goodale, Eben

    2015-07-22

    Conservation biology is increasingly concerned with preserving interactions among species such as mutualisms in landscapes facing anthropogenic change. We investigated how one kind of mutualism, mixed-species bird flocks, influences the way in which birds respond to different habitat types of varying land-use intensity. We use data from a well-replicated, large-scale study in Sri Lanka and the Western Ghats of India, in which flocks were observed inside forest reserves, in 'buffer zones' of degraded forest or timber plantations, and in areas of intensive agriculture. We find flocks affected the responses of birds in three ways: (i) species with high propensity to flock were more sensitive to land use; (ii) different flock types, dominated by different flock leaders, varied in their sensitivity to land use and because following species have distinct preferences for leaders, this can have a cascading effect on followers' habitat selection; and (iii) those forest-interior species that remain outside of forests were found more inside flocks than would be expected by chance, as they may use flocks more in suboptimal habitat. We conclude that designing policies to protect flocks and their leading species may be an effective way to conserve multiple bird species in mixed forest and agricultural landscapes. PMID:26156772

  13. Does mixed-species flocking influence how birds respond to a gradient of land-use intensity?

    PubMed Central

    Mammides, Christos; Chen, Jin; Goodale, Uromi Manage; Kotagama, Sarath Wimalabandara; Sidhu, Swati; Goodale, Eben

    2015-01-01

    Conservation biology is increasingly concerned with preserving interactions among species such as mutualisms in landscapes facing anthropogenic change. We investigated how one kind of mutualism, mixed-species bird flocks, influences the way in which birds respond to different habitat types of varying land-use intensity. We use data from a well-replicated, large-scale study in Sri Lanka and the Western Ghats of India, in which flocks were observed inside forest reserves, in ‘buffer zones' of degraded forest or timber plantations, and in areas of intensive agriculture. We find flocks affected the responses of birds in three ways: (i) species with high propensity to flock were more sensitive to land use; (ii) different flock types, dominated by different flock leaders, varied in their sensitivity to land use and because following species have distinct preferences for leaders, this can have a cascading effect on followers' habitat selection; and (iii) those forest-interior species that remain outside of forests were found more inside flocks than would be expected by chance, as they may use flocks more in suboptimal habitat. We conclude that designing policies to protect flocks and their leading species may be an effective way to conserve multiple bird species in mixed forest and agricultural landscapes. PMID:26156772

  14. Does mixed-species flocking influence how birds respond to a gradient of land-use intensity?

    PubMed

    Mammides, Christos; Chen, Jin; Goodale, Uromi Manage; Kotagama, Sarath Wimalabandara; Sidhu, Swati; Goodale, Eben

    2015-07-22

    Conservation biology is increasingly concerned with preserving interactions among species such as mutualisms in landscapes facing anthropogenic change. We investigated how one kind of mutualism, mixed-species bird flocks, influences the way in which birds respond to different habitat types of varying land-use intensity. We use data from a well-replicated, large-scale study in Sri Lanka and the Western Ghats of India, in which flocks were observed inside forest reserves, in 'buffer zones' of degraded forest or timber plantations, and in areas of intensive agriculture. We find flocks affected the responses of birds in three ways: (i) species with high propensity to flock were more sensitive to land use; (ii) different flock types, dominated by different flock leaders, varied in their sensitivity to land use and because following species have distinct preferences for leaders, this can have a cascading effect on followers' habitat selection; and (iii) those forest-interior species that remain outside of forests were found more inside flocks than would be expected by chance, as they may use flocks more in suboptimal habitat. We conclude that designing policies to protect flocks and their leading species may be an effective way to conserve multiple bird species in mixed forest and agricultural landscapes.

  15. Analyzing the Relative Linkages of Land Use and Hydrologic Variables with Urban Surface Water Quality using Multivariate Techniques

    NASA Astrophysics Data System (ADS)

    Ahmed, S.; Abdul-Aziz, O. I.

    2015-12-01

    We used a systematic data-analytics approach to analyze and quantify relative linkages of four stream water quality indicators (total nitrogen, TN; total phosphorus, TP; chlorophyll-a, Chla; and dissolved oxygen, DO) with six land use and four hydrologic variables, along with the potential external (upstream in-land and downstream coastal) controls in highly complex coastal urban watersheds of southeast Florida, U.S.A. Multivariate pattern recognition techniques of principle component and factor analyses, in concert with Pearson correlation analysis, were applied to map interrelations and identify latent patterns of the participatory variables. Relative linkages of the in-stream water quality variables with their associated drivers were then quantified by developing dimensionless partial least squares (PLS) regression model based on standardized data. Model fitting efficiency (R2=0.71-0.87) and accuracy (ratio of root-mean-square error to the standard deviation of the observations, RSR=0.35-0.53) suggested good predictions of the water quality variables in both wet and dry seasons. Agricultural land and groundwater exhibited substantial controls on surface water quality. In-stream TN concentration appeared to be mostly contributed by the upstream water entering from Everglades in both wet and dry seasons. In contrast, watershed land uses had stronger linkages with TP and Chla than that of the watershed hydrologic and upstream (Everglades) components for both seasons. Both land use and hydrologic components showed strong linkages with DO in wet season; however, the land use linkage appeared to be less in dry season. The data-analytics method provided a comprehensive empirical framework to achieve crucial mechanistic insights into the urban stream water quality processes. Our study quantitatively identified dominant drivers of water quality, indicating key management targets to maintain healthy stream ecosystems in complex urban-natural environments near the coast.

  16. The legacy of land-use is revealed in the biogeochemistry of urban streams

    EPA Science Inventory

    Urban streams are among the most profoundly impacted aquatic ecosystems, characterized by altered hydrology or burial, increased sediment input, and myriad pollutants. We present results from a series of urban stream studies that revealed unique geochemical and biochemical patte...

  17. Multitemporal analysis (1975-2011) of vegetation changes in urban land uses: case of the city of Bartin, Turkey.

    PubMed

    Atesoglu, Ayhan

    2015-03-01

    Land use and physical planning have an integrative function especially for environmental planning. The most important factor is vegetation for this planning. The purpose of this study was to determine vegetative changes from 1975 to 2011 in Bartin urban area. Vegetation status analysisis the best indicators for understanding the contribution of land use in urban land. In the present study Landsat satellite images data belonging to 1975-1987-2000-2011 were used, data about altitude, slope groups of the Bartin municipal border were obtained. Vegetation change analysis and visual analyses of the study area were studed. According to the results of vegetation status analysis, 537.29 ha of area (14.59%), lost its vegetation quality between 1975 and 2011. The corresponding ratio of the area included in green areas, which was out of vegetation area, remained at negative 3.33%. This result showed that urban structuring in the regions out of vegetation was quite high. When the analysis made by using a slope groups map and the results obtained in the study were taken as the basis, the sum of class 1 and 2 farmland where level and gentle slopes lands within the area of study was 1805.96 ha The results showed that vegetation contribution on the ecological quality of study area was decreasing continuously and the effect it had on urban ecosystem was negative.

  18. Polycyclic aromatic hydrocarbons in urban soils of different land uses in Beijing, China: distribution, sources and their correlation with the city's urbanization history.

    PubMed

    Liu, Shaoda; Xia, Xinghui; Yang, Lingyan; Shen, Mohai; Liu, Ruimin

    2010-05-15

    A total of 127 surface soil samples (0-20 cm) were collected from Beijing's urban district and determined for 16 polycyclic aromatic hydrocarbons (PAHs). The mean concentration of summation SigmaPAHs was 1802.6 ng g(-1) with a standard deviation of 1824.2 ng g(-1). Average summation SigmaPAHs concentration and the percentage of high-molecular weight PAHs (4-6-rings) decreased from inner city to exterior areas. This correlated with the urbanization history of Beijing's urban district and inferred an increasing trend of soil PAHs with accumulation time and age of the urban area. summation SigmaPAHs in different land uses decreased in an order as: culture and education area (CEA)>classical garden (CG), business area (BA)>residential area (RA), roadside area (RSA)>public green space (PGS). PAHs in CEA mainly came from coal combustion, while soils of RSA exhibited clear traffic emission characteristics. PAHs in other land uses came from mixed sources. Principle component analysis followed by multivariate linear regression indicated that coal combustion and vehicle emission contributed about 46.0% and 54.0% to PAHs in Beijing's urban soils, respectively. Risk assessment based on the Canadian soil criterion indicated a low contamination level of PAHs. However, higher contents in some sensitive land uses such as CEA and CG should draw enough attention. PMID:20097001

  19. Integrating Geospatial Technologies to Examine Urban Land Use Change: A Design Partnership

    ERIC Educational Resources Information Center

    Bodzin, Alec M.; Cirucci, Lori

    2009-01-01

    This article describes a design partnership that investigated how to integrate Google Earth, remotely sensed satellite and aerial imagery, with other instructional resources to investigate ground cover and land use in diverse middle school classrooms. Data analysis from the implementation study revealed that students acquired skills for…

  20. Urban Land Use Change Effects on Below and Aboveground Carbon Stocks—a Global Perspective and Future Research Needs

    NASA Astrophysics Data System (ADS)

    Pouyat, R. V.; Chen, Y.; Yesilonis, I.; Day, S.

    2014-12-01

    Land use change (LUC) has a significant impact on both above- and below-ground carbon (C) stocks; however, little is known about the net effects of urban LUC on the C cycle and climate system. Moreover, as climate change becomes an increasingly pressing concern, there is growing evidence that urban policy and management decisions can have significant regional impacts on C dynamics. Soil organic carbon (SOC) varies significantly across ecoregions at global and continental scales due to differential sensitivity of primary production, substrate quality, and organic matter decay to changes in temperature and soil moisture. These factors are highly modified by urban LUC due to vegetation removal, soil relocation and disruption, pollution, urban heat island effects, and increased atmospheric CO2 concentrations. As a result, on a global scale urban LUC differentially affects the C cycle from ecoregion to ecoregion. For urban ecosystems, the data collected thus far suggests urbanization can lead to both an increase and decrease in soil C pools and fluxes, depending on the native ecosystem being impacted by urban development. For example, in drier climates, urban landscapes accumulate higher C densities than the native ecosystems they replaced. Results suggest also that soil C storage in urban ecosystems is highly variable with very high (> 20.0) and low (< 2.0) C densities (kg m-2 to a 1 m depth) present in the landscape at any one time. Moreover, similar to non-urban soils, total SOC densities are consistently 2-fold greater than aboveground stocks. For those soils with low SOC densities, there is potential to increase C sequestration through management, but specific urban related management practices need to be evaluated. In addition, urban LUC is a human-driven process and thus can be modified or adjusted to reduce its impacts on the C cycle. For example, policies that influence development patterns, population density, management practices, and other human factors can

  1. Land Use/Land Cover Classification of Urban SAR Scenes: An Envisat/ASAR and HJ-1 Joint Approach

    NASA Astrophysics Data System (ADS)

    Aldrighi, M.; Gamba, P.; Lisini, G.

    2013-01-01

    The classification of urban areas in terms of Land-Use/Land-Cover (LULC) maps is a challenging as well as essential task in order to monitor how the urban sprawl is changing the environment. In many case, this phenomenon leads to dramatic changes, since in many parts of the world commercial as well as residential areas are replacing natural environments, such as crops and forests. In this work we present the description of a novel procedure designed to exploit coarse resolution SAR images and obtain both the built-up area extents and a LULC map of the individuated urban area. Moreover, a data fusion approach, able to combine optical (HJ-1) and SAR (ENVISAT/ASAR) data, has been introduced in order to obtain a better vegetation assessment by means of the Normalized Difference Vegetation Index (NDVI). An experimental result is presented using a data set of the Beijing megacity acquired by ENVISAT/ASAR and HJ-1.

  2. Analysing urban expansion and land use suitability for the city of Kahramanmaraş, Turkey, and its surrounding region.

    PubMed

    Doygun, Hakan; Alphan, Hakan; Kuşat Gurun, Derya

    2008-10-01

    This study aimed at quantifying changes in urban area of the city of Kahramanmaraş (K.Maraş) between 1948 and 2006, and analysing suitability of existing land use (LU) to the land potential. Urban change information was derived from two black-white monoscopic aerial photographs, and IKONOS and the QuickBird images acquired in 1948, 1985, 2000 and 2006, respectively. QuickBird image and soil map with 1:25,000 scale were used to analyze suitability of the current LU pattern to the land potential. The findings showed that the urban area of K.Maraş has expanded approximately 13 times during the past six decades. According to current LU and the soil map, productive and moderately productive soils were largely (73.2%) allocated for agricultural activities, which means that there was a strong consistency between the agricultural LU type and the land capability. However, widespread agriculture on the non-productive soils, and urbanization on the fertile agricultural lands were assessed as unsuitable from sustainable LU viewpoint. Considering this phenomenon, it is possible to say that rapid urban expansion has a growing pressure on the fertile agricultural soils. Monitoring LU changes, particularly urbanization, and developing effective LU plans based on the land capability were determined as the most important approaches to encourage sustainable use of land.

  3. A technical review of urban land use - transportation models as tools for evaluating vehicle travel reduction strategies

    SciTech Connect

    Southworth, F.

    1995-07-01

    The continued growth of highway traffic in the United States has led to unwanted urban traffic congestion as well as to noticeable urban air quality problems. These problems include emissions covered by the 1990 Clean Air Act Amendments (CAAA) and 1991 Intermodal Surface Transportation Efficiency Act (ISTEA), as well as carbon dioxide and related {open_quotes}greenhouse gas{close_quotes} emissions. Urban travel also creates a major demand for imported oil. Therefore, for economic as well as environmental reasons, transportation planning agencies at both the state and metropolitan area level are focussing a good deal of attention on urban travel reduction policies. Much discussed policy instruments include those that encourage fewer trip starts, shorter trip distances, shifts to higher-occupancy vehicles or to nonvehicular modes, and shifts in the timing of trips from the more to the less congested periods of the day or week. Some analysts have concluded that in order to bring about sustainable reductions in urban traffic volumes, significant changes will be necessary in the way our households and businesses engage in daily travel. Such changes are likely to involve changes in the ways we organize and use traffic-generating and-attracting land within our urban areas. The purpose of this review is to evaluate the ability of current analytic methods and models to support both the evaluation and possibly the design of such vehicle travel reduction strategies, including those strategies involving the reorganization and use of urban land. The review is organized into three sections. Section 1 describes the nature of the problem we are trying to model, Section 2 reviews the state of the art in operational urban land use-transportation simulation models, and Section 3 provides a critical assessment of such models as useful urban transportation planning tools. A number of areas are identified where further model development or testing is required.

  4. A spatially distributed model for the assessment of land use impacts on stream temperature in small urban watersheds

    SciTech Connect

    Sun, Ning; Yearsley, John; Voisin, Nathalie; Lettenmaier, D. P.

    2015-05-15

    Stream temperatures in urban watersheds are influenced to a high degree by anthropogenic impacts related to changes in landscape, stream channel morphology, and climate. These impacts can occur at small time and length scales, hence require analytical tools that consider the influence of the hydrologic regime, energy fluxes, topography, channel morphology, and near-stream vegetation distribution. Here we describe a modeling system that integrates the Distributed Hydrologic Soil Vegetation Model, DHSVM, with the semi-Lagrangian stream temperature model RBM, which has the capability to simulate the hydrology and water temperature of urban streams at high time and space resolutions, as well as a representation of the effects of riparian shading on stream energetics. We demonstrate the modeling system through application to the Mercer Creek watershed, a small urban catchment near Bellevue, Washington. The results suggest that the model is able both to produce realistic streamflow predictions at fine temporal and spatial scales, and to provide spatially distributed water temperature predictions that are consistent with observations throughout a complex stream network. We use the modeling construct to characterize impacts of land use change and near-stream vegetation change on stream temperature throughout the Mercer Creek system. We then explore the sensitivity of stream temperature to land use changes and modifications in vegetation along the riparian corridor.

  5. Monitoring and predicting the fecal indicator bacteria concentrations from agricultural, mixed land use and urban stormwater runoff.

    PubMed

    Paule-Mercado, M A; Ventura, J S; Memon, S A; Jahng, D; Kang, J-H; Lee, C-H

    2016-04-15

    While the urban runoff are increasingly being studied as a source of fecal indicator bacteria (FIB), less is known about the occurrence of FIB in watershed with mixed land use and ongoing land use and land cover (LULC) change. In this study, Escherichia coli (EC) and fecal streptococcus (FS) were monitored from 2012 to 2013 in agricultural, mixed and urban LULC and analyzed according to the most probable number (MPN). Pearson correlation was used to determine the relationship between FIB and environmental parameters (physicochemical and hydrometeorological). Multiple linear regressions (MLR) were used to identify the significant parameters that affect the FIB concentrations and to predict the response of FIB in LULC change. Overall, the FIB concentrations were higher in urban LULC (EC=3.33-7.39; FS=3.30-7.36log10MPN/100mL) possibly because of runoff from commercial market and 100% impervious cover (IC). Also, during early-summer season; this reflects a greater persistence and growth rate of FIB in a warmer environment. During intra-event, however, the FIB concentrations varied according to site condition. Anthropogenic activities and IC influenced the correlation between the FIB concentrations and environmental parameters. Stormwater temperature (TEMP), turbidity, and TSS positively correlated with the FIB concentrations (p>0.01), since IC increased, implying an accumulation of bacterial sources in urban activities. TEMP, BOD5, turbidity, TSS, and antecedent dry days (ADD) were the most significant explanatory variables for FIB as determined in MLR, possibly because they promoted the FIB growth and survival. The model confirmed the FIB concentrations: EC (R(2)=0.71-0.85; NSE=0.72-0.86) and FS (R(2)=0.65-0.83; NSE=0.66-0.84) are predicted to increase due to urbanization. Therefore, these findings will help in stormwater monitoring strategies, designing the best management practice for FIB removal and as input data for stormwater models.

  6. Monitoring and predicting the fecal indicator bacteria concentrations from agricultural, mixed land use and urban stormwater runoff.

    PubMed

    Paule-Mercado, M A; Ventura, J S; Memon, S A; Jahng, D; Kang, J-H; Lee, C-H

    2016-04-15

    While the urban runoff are increasingly being studied as a source of fecal indicator bacteria (FIB), less is known about the occurrence of FIB in watershed with mixed land use and ongoing land use and land cover (LULC) change. In this study, Escherichia coli (EC) and fecal streptococcus (FS) were monitored from 2012 to 2013 in agricultural, mixed and urban LULC and analyzed according to the most probable number (MPN). Pearson correlation was used to determine the relationship between FIB and environmental parameters (physicochemical and hydrometeorological). Multiple linear regressions (MLR) were used to identify the significant parameters that affect the FIB concentrations and to predict the response of FIB in LULC change. Overall, the FIB concentrations were higher in urban LULC (EC=3.33-7.39; FS=3.30-7.36log10MPN/100mL) possibly because of runoff from commercial market and 100% impervious cover (IC). Also, during early-summer season; this reflects a greater persistence and growth rate of FIB in a warmer environment. During intra-event, however, the FIB concentrations varied according to site condition. Anthropogenic activities and IC influenced the correlation between the FIB concentrations and environmental parameters. Stormwater temperature (TEMP), turbidity, and TSS positively correlated with the FIB concentrations (p>0.01), since IC increased, implying an accumulation of bacterial sources in urban activities. TEMP, BOD5, turbidity, TSS, and antecedent dry days (ADD) were the most significant explanatory variables for FIB as determined in MLR, possibly because they promoted the FIB growth and survival. The model confirmed the FIB concentrations: EC (R(2)=0.71-0.85; NSE=0.72-0.86) and FS (R(2)=0.65-0.83; NSE=0.66-0.84) are predicted to increase due to urbanization. Therefore, these findings will help in stormwater monitoring strategies, designing the best management practice for FIB removal and as input data for stormwater models. PMID:26895037

  7. Linking primary production, climate and land use along an urban-wildland transect: a satellite view

    NASA Astrophysics Data System (ADS)

    Hu, Yonghong; Jia, Gensuo; Guo, Huadong

    2009-10-01

    Variation of green vegetation cover influences local climate dynamics, exchange of water-heat between land and atmosphere, and hydrological processes. However, the mechanism of interaction between vegetation and local climate change in subtropical areas under climate warming and anthropogenic disturbances is poorly understood. We analyzed spatial-temporal trends of vegetation with moderate-resolution imaging spectroradiometer (MODIS) vegetation index datasets over three sections, namely urban, urban-rural fringe and wildland along an urban-wildland transect in a southern mega-city area in China from 2000-2008. The results show increased photosynthetic activity occurred in the wildland and the stable urban landscape in correspondence to the rising temperature, and a considerable decrease of vegetation activity in the urban-rural fringe area, apparently due to urban expansion. On analyzing the controlling factors of climate change and human drivers of vegetation cover change, we found that temperature contributed to vegetation growth more than precipitation and that rising temperature accelerated plant physiological activity. Meanwhile, human-induced dramatic modification of land cover, e.g. conversion of natural forest and cropland to built-up areas in the urban-rural fringe, has caused significant changes of green vegetation fraction and overall primary production, which may further influence local climate.

  8. Determination of the Impact of Urbanization on Agricultural Lands using Multi-temporal Satellite Sensor Images

    NASA Astrophysics Data System (ADS)

    Kaya, S.; Alganci, U.; Sertel, E.; Ustundag, B.

    2015-12-01

    Throughout the history, agricultural activities have been performed close to urban areas. Main reason behind this phenomenon is the need of fast marketing of the agricultural production to urban residents and financial provision. Thus, using the areas nearby cities for agricultural activities brings out advantage of easy transportation of productions and fast marketing. For decades, heavy migration to cities has directly and negatively affected natural grasslands, forests and agricultural lands. This pressure has caused agricultural lands to be changed into urban areas. Dense urbanization causes increase in impervious surfaces, heat islands and many other problems in addition to destruction of agricultural lands. Considering the negative impacts of urbanization on agricultural lands and natural resources, a periodic monitoring of these changes becomes indisputably important. At this point, satellite images are known to be good data sources for land cover / use change monitoring with their fast data acquisition, large area coverages and temporal resolution properties. Classification of the satellite images provides thematic the land cover / use maps of the earth surface and changes can be determined with GIS based analysis multi-temporal maps. In this study, effects of heavy urbanization over agricultural lands in Istanbul, metropolitan city of Turkey, were investigated with use of multi-temporal Landsat TM satellite images acquired between 1984 and 2011. Images were geometrically registered to each other and classified using supervised maximum likelihood classification algorithm. Resulting thematic maps were exported to GIS environment and destructed agricultural lands by urbanization were determined using spatial analysis.

  9. The impacts of urbanization on air quality over the Pearl River Delta in winter: roles of urban land use and emission distribution

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Yang, Shuai; Xu, Xiang-De; Zhang, Wei

    2014-07-01

    In this study, ideal but realistic numerical experiments are performed to explore the relative effects of changes in land use and emission distribution on air quality in the Pearl River Delta (PRD) region in winter. The experiments are accomplished using the Lagrangian particle transport and dispersion model FLEXPART coupled with the Weather Research and Forecasting model under different scenarios. Experiment results show that the maximum changes in daily mean air pollution concentration (as represented by SO2 concentration) caused by land use change alone reaches up to 2 × 10-6 g m-3, whereas changes in concentrations due to the anthropogenic emission distribution are characterized by a maximum value of 6 × 10-6 g m-3. Such results reflect that, although the impacts of land use change on air quality are non-negligible, the emission distribution exerts a more significant influence on air quality than land use change. This provides clear implications for policy makers to control urban air pollution over the PRD region, especially for the urban planning in spatial arrangements for reasonable emissions.

  10. An assessment of soil productivity loss caused by expanding urban land use using remote sensing and soil productivity models

    NASA Astrophysics Data System (ADS)

    Nizeyimana, Egide; Petersen, Gary W.; Warner, Eric D.; Shi, Xuenzheng; Imhoff, Marc L.; Lawrence, William T.; Russo, Joseph M.

    1997-01-01

    An EOS IDS project has been recently designed to assess the loss of soil productivity resulting from expanding urbanization in the U.S. and selected regions in Mexico and the Middle East using remotely sensed data and soil productivity models. The extent of urbanization will be determined by generating urban land cover layers from DMSP/OLS (Defense Meteorological Satellite Program's Operational Linescan System) nighttime imagery. This imagery will be calibrated using Landsat Thematic Mapper (TM) and population/housing census data. A range of soil/land productivity models will be evaluated using soil factors computed from the State Soil Geographic Database (STATSGO) and FAO soil databases, terrain models, climate and vegetation to rank soil mapping units based on their productivity potential. Examples of these models are the Net Primary Productivity (NPP) and FAO Fertility Capability Classification (FCC) system. The magnitude of soil productivity loss due to urbanization will finally be determined by analysis of data obtained from GIS overlays of urban land use and soil productivity layers.

  11. The hydrometeorological implications of zoning laws: Can land use regulations of urban density and sprawl improve a city's resilience?

    NASA Astrophysics Data System (ADS)

    Bou-Zeid, E.; Ryu, Y. H.; Smith, J. A.; Newburn, D. A.

    2015-12-01

    The intensification of heat waves and of the hydrological cycle due to global climate change pose particularly high risks to urban residents. Cities are already hotter than their surroundings due to the urban heat island effect and are known to result in local intensification of rainfall and flooding due to their coupled impacts on the surface and the lower atmosphere. These interacting local and global changes can adversely affect the health and well being of urban residents, and city administrators are increasing efforts to mitigate and adapt to the potential disruptions though various infrastructure and preparedness programs. However, as cities worldwide continue to expand, a key decision is how to manage that urban sprawl and regulate its spatial features to aid in the mitigation and adaptation effort. This study assesses whether alternative zoning regulations that modify the density and extent of a metropolitan region, but have a minimal impact on total population and demographic growth, have an appreciable impact on its response to extreme weather events, and as such, whether they can be used to increase urban resilience. We consider Baltimore (the city and its surrounding suburbs), which in 1967 adopted one of the first urban growth boundaries (UGBs) in the United States, as our test case. Departing from the urban extent circa 1900, we create alternative land use patterns that, compared to the actual current land use baseline, would have resulted from drastically different policy scenarios and approaches to zoning that the city would have undertaken. We consider various alternatives where the city is smaller and denser, due to stricter regulation, versus larger and less dense than the actual baseline, while maintaining the same total population. Our findings indicate that lower densities have significant benefits: compared to the current landscape and to denser patterns, they reduce both extreme temperatures during heat waves and spatio-temporal rainfall

  12. Evaluation of Land Use Regression Models Used to Predict Air Quality Concentrations in an Urban Area

    EPA Science Inventory

    Cohort studies designed to estimate human health effects of exposures to urban pollutants require accurate determination of ambient concentrations in order to minimize exposure misclassification errors. However, it is often difficult to collect concentration information at each s...

  13. Remote sensing applications for urban planning - The LUMIS project. [Land Use Management Information System

    NASA Technical Reports Server (NTRS)

    Paul, C. K.; Landini, A. J.; Diegert, C.

    1975-01-01

    The Santa Monica mountains of Los Angeles consist primarily of complexly folded sedimentary marine strata with igneous and metamorphic rocks at the eastern end of the mountains. With the increased development of the Santa Monicas, a study was conducted to determine the critical land use data items in the mountains. Two information systems developed in parallel are described. One capitalizes on the City's present computer line printer system, and the second utilizes map overlay techniques on an interactive computer terminal. Results concerning population, housing, and land improvement illustrate the successful linking of ordinal and nominal data files in the interactive system.-

  14. Monitoring Land Use Dynamics of Peri-Urban Agricultutre in Central Kenya with Rapideye Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Willkomm, M.; Dannenberg, P.

    2016-06-01

    The poster submitted to the ISPRS Congress 2016 in Prague illustrates the concept behind the research project in its initial stage. The project concerns recent dynamics of urban and peri-urban agriculture (PUA) in middle-size cities of central Kenya. On the date of submission, only general research ideas were presented due to the unavailability of remote sensing data at the early stage of the project.

  15. Detecting agricultural to urban land use change from multi-temporal MSS digital data. [Salt Lake County, Utah

    NASA Technical Reports Server (NTRS)

    Ridd, M. K.; Merola, J. A.; Jaynes, R. A.

    1983-01-01

    Conversion of agricultural land to a variety of urban uses is a major problem along the Wasatch Front, Utah. Although LANDSAT MSS data is a relatively coarse tool for discriminating categories of change in urban-size plots, its availability prompts a thorough test of its power to detect change. The procedures being applied to a test area in Salt Lake County, Utah, where the land conversion problem is acute are presented. The identity of land uses before and after conversion was determined and digital procedures for doing so were compared. Several algorithms were compared, utilizing both raw data and preprocessed data. Verification of results involved high quality color infrared photography and field observation. Two data sets were digitally registered, specific change categories internally identified in the software, results tabulated by computer, and change maps printed at 1:24,000 scale.

  16. Hotspots of land use change in Europe

    NASA Astrophysics Data System (ADS)

    Kuemmerle, Tobias; Levers, Christian; Erb, Karlheinz; Estel, Stephan; Jepsen, Martin R.; Müller, Daniel; Plutzar, Christoph; Stürck, Julia; Verkerk, Pieter J.; Verburg, Peter H.; Reenberg, Anette

    2016-06-01

    Assessing changes in the extent and management intensity of land use is crucial to understanding land-system dynamics and their environmental and social outcomes. Yet, changes in the spatial patterns of land management intensity, and thus how they might relate to changes in the extent of land uses, remains unclear for many world regions. We compiled and analyzed high-resolution, spatially-explicit land-use change indicators capturing changes in both the extent and management intensity of cropland, grazing land, forests, and urban areas for all of Europe for the period 1990–2006. Based on these indicators, we identified hotspots of change and explored the spatial concordance of area versus intensity changes. We found a clear East–West divide with regard to agriculture, with stronger cropland declines and lower management intensity in the East compared to the West. Yet, these patterns were not uniform and diverging patterns of intensification in areas highly suitable for farming, and disintensification and cropland contraction in more marginal areas emerged. Despite the moderate overall rates of change, many regions in Europe fell into at least one land-use change hotspot during 1990–2006, often related to a spatial reorganization of land use (i.e., co-occurring area decline and intensification or co-occurring area increase and disintensification). Our analyses highlighted the diverse spatial patterns and heterogeneity of land-use changes in Europe, and the importance of jointly considering changes in the extent and management intensity of land use, as well as feedbacks among land-use sectors. Given this spatial differentiation of land-use change, and thus its environmental impacts, spatially-explicit assessments of land-use dynamics are important for context-specific, regionalized land-use policy making.

  17. Hotspots of land use change in Europe

    NASA Astrophysics Data System (ADS)

    Kuemmerle, Tobias; Levers, Christian; Erb, Karlheinz; Estel, Stephan; Jepsen, Martin R.; Müller, Daniel; Plutzar, Christoph; Stürck, Julia; Verkerk, Pieter J.; Verburg, Peter H.; Reenberg, Anette

    2016-06-01

    Assessing changes in the extent and management intensity of land use is crucial to understanding land-system dynamics and their environmental and social outcomes. Yet, changes in the spatial patterns of land management intensity, and thus how they might relate to changes in the extent of land uses, remains unclear for many world regions. We compiled and analyzed high-resolution, spatially-explicit land-use change indicators capturing changes in both the extent and management intensity of cropland, grazing land, forests, and urban areas for all of Europe for the period 1990-2006. Based on these indicators, we identified hotspots of change and explored the spatial concordance of area versus intensity changes. We found a clear East-West divide with regard to agriculture, with stronger cropland declines and lower management intensity in the East compared to the West. Yet, these patterns were not uniform and diverging patterns of intensification in areas highly suitable for farming, and disintensification and cropland contraction in more marginal areas emerged. Despite the moderate overall rates of change, many regions in Europe fell into at least one land-use change hotspot during 1990-2006, often related to a spatial reorganization of land use (i.e., co-occurring area decline and intensification or co-occurring area increase and disintensification). Our analyses highlighted the diverse spatial patterns and heterogeneity of land-use changes in Europe, and the importance of jointly considering changes in the extent and management intensity of land use, as well as feedbacks among land-use sectors. Given this spatial differentiation of land-use change, and thus its environmental impacts, spatially-explicit assessments of land-use dynamics are important for context-specific, regionalized land-use policy making.

  18. Fine-Scale Exposure to Allergenic Pollen in the Urban Environment: Evaluation of Land Use Regression Approach

    PubMed Central

    Hjort, Jan; Hugg, Timo T.; Antikainen, Harri; Rusanen, Jarmo; Sofiev, Mikhail; Kukkonen, Jaakko; Jaakkola, Maritta S.; Jaakkola, Jouni J.K.

    2015-01-01

    Background: Despite the recent developments in physically and chemically based analysis of atmospheric particles, no models exist for resolving the spatial variability of pollen concentration at urban scale. Objectives: We developed a land use regression (LUR) approach for predicting spatial fine-scale allergenic pollen concentrations in the Helsinki metropolitan area, Finland, and evaluated the performance of the models against available empirical data. Methods: We used grass pollen data monitored at 16 sites in an urban area during the peak pollen season and geospatial environmental data. The main statistical method was generalized linear model (GLM). Results: GLM-based LURs explained 79% of the spatial variation in the grass pollen data based on all samples, and 47% of the variation when samples from two sites with very high concentrations were excluded. In model evaluation, prediction errors ranged from 6% to 26% of the observed range of grass pollen concentrations. Our findings support the use of geospatial data–based statistical models to predict the spatial variation of allergenic grass pollen concentrations at intra-urban scales. A remote sensing–based vegetation index was the strongest predictor of pollen concentrations for exposure assessments at local scales. Conclusions: The LUR approach provides new opportunities to estimate the relations between environmental determinants and allergenic pollen concentration in human-modified environments at fine spatial scales. This approach could potentially be applied to estimate retrospectively pollen concentrations to be used for long-term exposure assessments. Citation: Hjort J, Hugg TT, Antikainen H, Rusanen J, Sofiev M, Kukkonen J, Jaakkola MS, Jaakkola JJ. 2016. Fine-scale exposure to allergenic pollen in the urban environment: evaluation of land use regression approach. Environ Health Perspect 124:619–626; http://dx.doi.org/10.1289/ehp.1509761 PMID:26452296

  19. Urban land use and geohazards in the Itanagar Capital city, Arunachal Pradesh, India: Need for geoethics in urban disaster resilience governance in a changing climate

    NASA Astrophysics Data System (ADS)

    Acharjee, Swapna

    2013-04-01

    The capital city, Itanagar, Arunachal Pradesh, India is exposed to the multiple geohazards as the city is located in the region which experiences extreme physical phenomenon due to changing climate in the tectonically active North-Eastern Himalayas. The geohazards in Itanagar includes landslides, floods, soil erosion and earthquakes. The high decadal growth rate of 111.36% in 1991-2001 census has brought in many challenges with respect to the capital city developmental planning. Due to rapid and haphazard growth in urban land use the people residing in the city are gradually becoming more vulnerable to the geohazards in the past decades. The city condition at present has raised issues of grave concern related to effective hazard management. It is observed that geoscientific approach is violated at many places in the urban developmental activities along the central spine, the National Highway-52A of the capital city. There is an urgent need of geoscientists to apprise the urban populace about land suitability and stability in terms of rock types, soil, slope, geomorphology, groundwater condition etc. and the vulnerability of the existing urban land use to landslides, flood, soil erosion and earthquakes. In this paper major issue, critical issues and elements at risk are discussed in the context of ethics in geohazard management and developmental planning for urban disaster resilience governance in a changing climate.

  20. Spatiotemporal urban land use changes in the Changzhutan Region of Hunan Province in China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Changzhutan region in the north-central part of Hunan Province in China has experienced a rapid urbanization in the past few decades that has led to substantial changes in its environment. In 2007, the National Development and Reform Commission of China designated the metropolitan district of Ch...

  1. SEDIMENT SOURCES IN AN URBANIZING, MIXED LAND-USE WATERSHED. (R825284)

    EPA Science Inventory

    Abstract

    The Issaquah Creek watershed is a rapidly urbanizing watershed of 144 km2 in western Washington, where sediment aggradation of the main channel and delivery of fine sediment into a large downstream lake have raised increasingly frequent concern...

  2. Influence of land-use intensity on the spatial distribution of N-cycling microorganisms in grassland soils.

    PubMed

    Keil, Daniel; Meyer, Annabel; Berner, Doreen; Poll, Christian; Schützenmeister, André; Piepho, Hans-Peter; Vlasenko, Anna; Philippot, Laurent; Schloter, Michael; Kandeler, Ellen; Marhan, Sven

    2011-07-01

    A geostatistical approach using replicated grassland sites (10 m × 10 m) was applied to investigate the influence of grassland management, i.e. unfertilized pastures and fertilized mown meadows representing low and high land-use intensity (LUI), on soil biogeochemical properties and spatial distributions of ammonia-oxidizing and denitrifying microorganisms in soil. Spatial autocorrelations of the different N-cycling communities ranged between 1.4 and 7.6 m for ammonia oxidizers and from 0.3 m for nosZ-type denitrifiers to scales >14 m for nirK-type denitrifiers. The spatial heterogeneity of ammonia oxidizers and nirS-type denitrifiers increased in high LUI, but decreased for biogeochemical properties, suggesting that biotic and/or abiotic factors other than those measured are driving the spatial distribution of these microorganisms at the plot scale. Furthermore, ammonia oxidizers (amoA ammonia-oxidizing archaea and amoA ammonia-oxidizing bacteria) and nitrate reducers (napA and narG) showed spatial coexistence, whereas niche partitioning was found between nirK- and nirS-type denitrifiers. Together, our results indicate that spatial analysis is a useful tool to characterize the distribution of different functional microbial guilds with respect to soil biogeochemical properties and land-use management. In addition, spatial analyses allowed us to identify distinct distribution ranges indicating the coexistence or niche partitioning of N-cycling communities in grassland soil.

  3. Effects of habitat structure and land-use intensity on the genetic structure of the grasshopper species Chorthippus parallelus

    PubMed Central

    Wiesner, Kerstin R.; Habel, Jan Christian; Gossner, Martin M.; Loxdale, Hugh D.; Köhler, Günter; Schneider, Anja R. R.; Tiedemann, Ralph; Weisser, Wolfgang W.

    2014-01-01

    Land-use intensity (LUI) is assumed to impact the genetic structure of organisms. While effects of landscape structure on the genetics of local populations have frequently been analysed, potential effects of variation in LUI on the genetic diversity of local populations have mostly been neglected. In this study, we used six polymorphic microsatellites to analyse the genetic effects of variation in land use in the highly abundant grasshopper Chorthippus parallelus. We sampled a total of 610 individuals at 22 heterogeneous grassland sites in the Hainich-Dün region of Central Germany. For each of these grassland sites we assessed habitat size, LUI (combined index of mowing, grazing and fertilization), and the proportion of grassland adjoining the sampling site and the landscape heterogeneity (the latter two factors within a 500 m buffer zone surrounding each focal site). We found only marginal genetic differentiation among all local populations and no correlation between geographical and genetic distance. Habitat size, LUI and landscape characteristics had only weak effects on most of the parameters of genetic diversity of C. parallelus; only expected heterozygosity and the grasshopper abundances were affected by interacting effects of LUI, habitat size and landscape characteristics. The lack of any strong relationships between LUI, abundance and the genetic structure might be due to large local populations of the species in the landscape, counteracting local differentiation and potential genetic drift effects. PMID:26064535

  4. The Implementation of a Geospatial Information Technology (GIT)-Supported Land Use Change Curriculum with Urban Middle School Learners to Promote Spatial Thinking

    ERIC Educational Resources Information Center

    Bodzin, Alec M.

    2011-01-01

    This study investigated whether a geospatial information technology (GIT)-supported science curriculum helped students in an urban middle school understand land use change (LUC) concepts and enhanced their spatial thinking. Five 8th grade earth and space science classes in an urban middle school consisting of three different ability level tracks…

  5. Accounting for spatial effects in land use regression for urban air pollution modeling.

    PubMed

    Bertazzon, Stefania; Johnson, Markey; Eccles, Kristin; Kaplan, Gilaad G

    2015-01-01

    In order to accurately assess air pollution risks, health studies require spatially resolved pollution concentrations. Land-use regression (LUR) models estimate ambient concentrations at a fine spatial scale. However, spatial effects such as spatial non-stationarity and spatial autocorrelation can reduce the accuracy of LUR estimates by increasing regression errors and uncertainty; and statistical methods for resolving these effects--e.g., spatially autoregressive (SAR) and geographically weighted regression (GWR) models--may be difficult to apply simultaneously. We used an alternate approach to address spatial non-stationarity and spatial autocorrelation in LUR models for nitrogen dioxide. Traditional models were re-specified to include a variable capturing wind speed and direction, and re-fit as GWR models. Mean R(2) values for the resulting GWR-wind models (summer: 0.86, winter: 0.73) showed a 10-20% improvement over traditional LUR models. GWR-wind models effectively addressed both spatial effects and produced meaningful predictive models. These results suggest a useful method for improving spatially explicit models.

  6. Accounting for spatial effects in land use regression for urban air pollution modeling.

    PubMed

    Bertazzon, Stefania; Johnson, Markey; Eccles, Kristin; Kaplan, Gilaad G

    2015-01-01

    In order to accurately assess air pollution risks, health studies require spatially resolved pollution concentrations. Land-use regression (LUR) models estimate ambient concentrations at a fine spatial scale. However, spatial effects such as spatial non-stationarity and spatial autocorrelation can reduce the accuracy of LUR estimates by increasing regression errors and uncertainty; and statistical methods for resolving these effects--e.g., spatially autoregressive (SAR) and geographically weighted regression (GWR) models--may be difficult to apply simultaneously. We used an alternate approach to address spatial non-stationarity and spatial autocorrelation in LUR models for nitrogen dioxide. Traditional models were re-specified to include a variable capturing wind speed and direction, and re-fit as GWR models. Mean R(2) values for the resulting GWR-wind models (summer: 0.86, winter: 0.73) showed a 10-20% improvement over traditional LUR models. GWR-wind models effectively addressed both spatial effects and produced meaningful predictive models. These results suggest a useful method for improving spatially explicit models. PMID:26530819

  7. Project ATLANTA (Atlanta Land use Analysis: Temperature and Air Quality): Use of Remote Sensing and Modeling to Analyze How Urban Land Use Change Affects Meteorology and Air Quality Through Time

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.

    1999-01-01

    This paper presents an overview of Project ATLANTA (ATlanta Land use ANalysis: Temperature and Air-quality) which is an investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta, Georgia metropolitan area since the early 1970's has impacted the region's climate and air quality. The primary objectives for this research effort are: (1) To investigate and model the relationships between land cover change in the Atlanta metropolitan, and the development of the urban heat island phenomenon through time; (2) To investigate and model the temporal relationships between Atlanta urban growth and land cover change on air quality; and (3) To model the overall effects of urban development on surface energy budget characteristics across the Atlanta urban landscape through time. Our key goal is to derive a better scientific understanding of how land cover changes associated with urbanization in the Atlanta area, principally in transforming forest lands to urban land covers through time, has, and will, effect local and regional climate, surface energy flux, and air quality characteristics. Allied with this goal is the prospect that the results from this research can be applied by urban planners, environmental managers and other decision-makers, for determining how urbanization has impacted the climate and overall environment of the Atlanta area. Multiscaled remote sensing data, particularly high resolution thermal infrared data, are integral to this study for the analysis of thermal energy fluxes across the Atlanta urban landscape.

  8. Automobile dependence in cities: An international comparison of urban transport and land use patterns with implications for sustainability

    SciTech Connect

    Kenworthy, J.R.; Laube, F.B.

    1996-07-01

    Cities around the world are subject to increasing levels of environmental impact from dependence on the automobile. In the highly auto-dependent cities of the US and Australia, this is manifested in problems such as urban sprawl and its destruction of prime farming land and natural landscapes, photochemical smog that can be primarily attributed to auto emissions. On top of the more local impacts of the automobile, the global dimension should not be forgotten. Perhaps the two most pressing issues in this regard are the oil problem and the greenhouse problem. A comparison of global cities over the period 1980 to 1990 reveals large differences in automobile dependence with implications for the future sustainability of cities in different countries. This study explores some of the underlying land use, transport, and economic reasons for these different transport patterns. It briefly reviews what the sustainability agenda means for transport and land use patterns in cities and suggests a suite of targets or goals for sustainability by which cities might measure their current directions and plans.

  9. Detecting land-use/land-cover change in rural-urban fringe areas using extended change-vector analysis

    NASA Astrophysics Data System (ADS)

    He, Chunyang; Wei, Anni; Shi, Peijun; Zhang, Qiaofeng; Zhao, Yuanyuan

    2011-08-01

    Detecting land-use/land-cover (LULC) changes in rural-urban fringe areas (RUFAs) timely and accurately using satellite imagery is essential for land-use planning and management in China. Although traditional spectral-based change-vector analysis (CVA) can effectively detect LULC change in many cases, it encounters difficulties in RUFAs because of deficiencies in the spectral information of satellite images. To detect LULC changes in RUFAs effectively, this paper proposes an extended CVA approach that incorporates textural change information into the traditional spectral-based CVA. The extended CVA was applied to three different pilot RUFAs in China with different remotely sensed data, including Landsat Thematic Mapper (TM), China-Brazil Earth Resources Satellite (CBERS) and Advanced Land Observing Satellite (ALOS) images. The results demonstrated the improvement of the extended CVA compared to the traditional spectral-based CVA with the overall accuracy increased between 4.66% and 8.00% and the kappa coefficient increased between 0.10 and 0.15, respectively. The advantage of the extended CVA lies in its integration of both spectral and textural change information to detect LULC changes, allowing for effective discrimination of LULC changes that are spectrally similar but texturally different in RUFAs. The extended CVA has great potential to be widely used for LULC-change detection in RUFAs, which are often heterogeneous and fragmental in nature, with rich textural information.

  10. Texture measurements from Seasat - SAR images for urban land use interpretation

    NASA Technical Reports Server (NTRS)

    Fasler, F.

    1981-01-01

    Different grey tones in Seasat Synthetic Aperture Radar (SAR) images for the same type of urban land cover considerably impair the possibilities of establishing automatic classification procedures for these types of data. Since the orientation of the main features like street patterns and buildings with respect to the azimuth angle of the radar antenna is the crucial factor for the observed differences in grey tone, prior information on these elements and special processing of the data would be required to eliminate this effect. Another approach suggested in this paper is to make use of the textural information in the image rather than of its grey tone. For different study sites within the Los Angeles urbanized area texture measures could be derived which result in characteristic values for specific types of land cover and are largely independent of the azimuth angle effect. At the same time the results for the study area indicate an improvement of the overall separability for the different land cover types included in the analysis.

  11. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses.

    PubMed

    Trujillo-González, Juan Manuel; Torres-Mora, Marco Aurelio; Keesstra, Saskia; Brevik, Eric C; Jiménez-Ballesta, Raimundo

    2016-05-15

    Soil pollution is a key component of the land degradation process, but little is known about the impact of soil pollution on human health in the urban environment. The heavy metals Pb, Zn, Cu, Cr, Cd and Ni were analyzed by acid digestion (method EPA 3050B) and a total of 15 dust samples were collected from streets of three sectors of the city with different land uses; commercial, residential and a highway. The purpose was to measure the concentrations of heavy metals in road sediment samples taken from urban sites under different land uses, and to assess pollution through pollution indices, namely the ecological risk index and geoaccumulation index. Heavy metals concentrations (mg/kg) followed the following sequences for each sector: commercial sector Pb (1289.4)>Cu (490.2)>Zn (387.6)>Cr (60.2)>Ni (54.3); highway Zn (133.3)>Cu (126.3)>Pb (87.5)>Cr (9.4)>Ni (5.3); residential sector Zn (108.3)>Pb (26.0)>Cu (23.7)>Cr (7.3)>Ni (7.2). The geoaccumulation index indicated that the commercial sector was moderately to strongly polluted while the other sectors fell into the unpolluted category. Similarly, using the ecological risk index the commercial sector fell into the considerable category while the other sectors classified as low risk. Road dust increased along with city growth and its dynamics, additionally, road dust might cause a number of negative environmental impacts, therefore the monitoring this dust is crucial. PMID:26986764

  12. Suspended sediment export in five intensive agricultural river catchments with contrasting land use and soil drainage characteristics

    NASA Astrophysics Data System (ADS)

    Sherriff, Sophie; Rowan, John; Melland, Alice; Jordan, Phil; Fenton, Owen; hUallacháin, Daire Ó.

    2015-04-01

    Soil erosion and sediment loss from land can have a negative impact on the chemical and ecological quality of freshwater resources. In catchments dominated by agriculture, prediction of soil erosion risk is complex due to the interaction of physical characteristics such as topography, soil erodibility, hydrological connectivity and climate. Robust measurement approaches facilitate the assessment of sediment loss magnitudes in relation to a range of agricultural settings. These approaches improve our understanding of critical sediment transfer periods and inform development of evidence-based and cost-effective management strategies. The aim of this study was to i) assess the efficacy of out-of-channel (ex-situ) suspended sediment measurement approaches, ii) to quantify the variability of sediment exported from five river catchments with varying hydrology and agricultural land uses over multiple years and iii) to investigate trends in relation to physical and land use characteristics when sediment data were compared between catchments. Sediment data were collected in five intensive agricultural river catchments in Ireland (3-11 km2) which featured contrasting land uses (predominantly intensive grassland or arable) and soil drainage classes (well, moderate and poor). High-resolution suspended sediment concentration data (SSC - using a calibrated turbidity proxy) were collected ex-situ and combined with in-stream discharge data measured at each catchment outlet to estimate suspended sediment yield (SSY - t km-2 yr-1). In two catchments additional in-stream turbidity monitoring equipment replicated ex-situ measurements including site specific calibration of individual in-stream and ex-situ turbidity probes. Depth-integrated samples were collected to assess the accuracy of both approaches. Method comparison results showed that true SSC values (from depth-integrated sampling) were predominantly within the 95% confidence interval of ex-situ predicted SSC consequently

  13. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis

    PubMed Central

    Tuck, Sean L; Winqvist, Camilla; Mota, Flávia; Ahnström, Johan; Turnbull, Lindsay A; Bengtsson, Janne

    2014-01-01

    The benefits of organic farming to biodiversity in agricultural landscapes continue to be hotly debated, emphasizing the importance of precisely quantifying the effect of organic vs. conventional farming. We conducted an updated hierarchical meta-analysis of studies that compared biodiversity under organic and conventional farming methods, measured as species richness. We calculated effect sizes for 184 observations garnered from 94 studies, and for each study, we obtained three standardized measures reflecting land-use intensity. We investigated the stability of effect sizes through time, publication bias due to the ‘file drawer’ problem, and consider whether the current literature is representative of global organic farming patterns. On average, organic farming increased species richness by about 30%. This result has been robust over the last 30 years of published studies and shows no sign of diminishing. Organic farming had a greater effect on biodiversity as the percentage of the landscape consisting of arable fields increased, that is, it is higher in intensively farmed regions. The average effect size and the response to agricultural intensification depend on taxonomic group, functional group and crop type. There is some evidence for publication bias in the literature; however, our results are robust to its impact. Current studies are heavily biased towards northern and western Europe and North America, while other regions with large areas of organic farming remain poorly investigated. Synthesis and applications. Our analysis affirms that organic farming has large positive effects on biodiversity compared with conventional farming, but that the effect size varies with the organism group and crop studied, and is greater in landscapes with higher land-use intensity. Decisions about where to site organic farms to maximize biodiversity will, however, depend on the costs as well as the potential benefits. Current studies have been heavily biased towards

  14. Urgency for sustainable development in coastal urban areas with reference to weather pattern, land use, and water quality.

    PubMed

    Sheela, A M; Letha, J; Swarnalatha, K; Baiju, K V; Sankar, Divya

    2014-05-01

    Water pollution is one of the most critical problems affecting mankind. Weather pattern and land use of catchment area have significant role in quality of water bodies. Due to climate change, there is frequent variation in weather pattern all over the world. There is also rapid change in land use due to increase in population and urbanization. The study was carried out to analyze the effect of change in weather pattern during the monsoon periods of 2008 and 2012 on water quality of a tropical coastal lake system. The nature and extent of variation in different water quality parameters namely electrical conductivity (EC), magnesium (Mg), sodium (Na), chloride (Cl), sulphate (SO4), turbidity, Secchi disk depth, biochemical oxygen demand (BOD), phosphate (PO4), calcium (Ca), and water temperature as well as the effect of various land use activities in the lake basin on water quality have also been studied. There is significant reduction in precipitation, EC, Mg, Na, Cl, SO4, turbidity, and Secchi disk depths whereas a significant rise in the BOD, PO4, Ca, and water temperature were observed in 2012. This significant reduction in electrical conductivity during 2012 revealed that because of less precipitation, the lake was separated from the sea by the sandbar during most of the monsoon period and thereby interrupted the natural flushing process. This caused the accumulation of organic matter including phosphate and thereby resulting reduction in clarity and chlorophyll-a (algae) in the lake. The unsustainable development activities of Thiruvanathapuram city are mainly responsible for the degradation of water bodies. The lack of maintenance and augmentation activities namely replacement of old pipes and periodical cleaning of pipe lines of the old sewer system in the city results in the bypass of sewage into water bodies. Because of the existence of the old sewerage system, no effort has been taken by the individual establishment/house of the city to provide their own

  15. Urgency for sustainable development in coastal urban areas with reference to weather pattern, land use, and water quality.

    PubMed

    Sheela, A M; Letha, J; Swarnalatha, K; Baiju, K V; Sankar, Divya

    2014-05-01

    Water pollution is one of the most critical problems affecting mankind. Weather pattern and land use of catchment area have significant role in quality of water bodies. Due to climate change, there is frequent variation in weather pattern all over the world. There is also rapid change in land use due to increase in population and urbanization. The study was carried out to analyze the effect of change in weather pattern during the monsoon periods of 2008 and 2012 on water quality of a tropical coastal lake system. The nature and extent of variation in different water quality parameters namely electrical conductivity (EC), magnesium (Mg), sodium (Na), chloride (Cl), sulphate (SO4), turbidity, Secchi disk depth, biochemical oxygen demand (BOD), phosphate (PO4), calcium (Ca), and water temperature as well as the effect of various land use activities in the lake basin on water quality have also been studied. There is significant reduction in precipitation, EC, Mg, Na, Cl, SO4, turbidity, and Secchi disk depths whereas a significant rise in the BOD, PO4, Ca, and water temperature were observed in 2012. This significant reduction in electrical conductivity during 2012 revealed that because of less precipitation, the lake was separated from the sea by the sandbar during most of the monsoon period and thereby interrupted the natural flushing process. This caused the accumulation of organic matter including phosphate and thereby resulting reduction in clarity and chlorophyll-a (algae) in the lake. The unsustainable development activities of Thiruvanathapuram city are mainly responsible for the degradation of water bodies. The lack of maintenance and augmentation activities namely replacement of old pipes and periodical cleaning of pipe lines of the old sewer system in the city results in the bypass of sewage into water bodies. Because of the existence of the old sewerage system, no effort has been taken by the individual establishment/house of the city to provide their own

  16. Intra-urban variation of ultrafine particles as evaluated by process related land use and pollutant driven regression modelling.

    PubMed

    Ghassoun, Yahya; Ruths, Matthias; Löwner, Marc-Oliver; Weber, Stephan

    2015-12-01

    The microscale intra-urban variation of ultrafine particle concentrations (UFP, diameter Dp<100 nm) and particle number size distributions was studied by two statistical regression approaches. The models were applied to a 1 km2 study area in Braunschweig, Germany. A land use regression model (LUR) using different urban morphology parameters as input is compared to a multiple regression type model driven by pollutant and meteorological parameters (PDR). While the LUR model was trained with UFP concentration the PDR model was trained with measured particle number size distribution data. The UFP concentration was then calculated from the modelled size distributions. Both statistical approaches include explanatory variables that try to address the 'process chain' of particle emission, dilution and deposition. LUR explained 74% and 85% of the variance of UFP for the full data set with a root mean square error (RMSE) of 668 cm(-3) and 1639 cm(-3) in summer and winter, respectively. PDR explained 56% and 74% of the variance with RMSE of 4066 cm(-3) and 6030 cm(-3) in summer and winter, respectively. Both models are capable to depict the spatial variation of UFP across the study area and in different outdoor microenvironments. The deviation from measured UFP concentrations is smaller in the LUR model than in PDR. The PDR model is well suited to predict urban particle number size distributions from the explanatory variables (total particle number concentration, black carbon and wind speed). The urban morphology parameters in the LUR model are able to resolve size dependent concentration variations but not as adequately as PDR. PMID:26204051

  17. Census Cities experiment in urban change detection. [mapping of land use changes in San Francisco, Washington D.C., Phoenix, Tucson, Boston, New Haven, Cedar Rapids, and Pontiac

    NASA Technical Reports Server (NTRS)

    Wray, J. R. (Principal Investigator); Milazzo, V. A.

    1974-01-01

    The author has identified the following significant results. Mapping of 1970 and 1972 land use from high-flight photography has been completed for all test sites: San Francisco, Washington, Phoenix, Tucson, Boston, New Haven, Cedar Rapids, and Pontiac. Area analysis of 1970 and 1972 land use has been completed for each of the mandatory urban areas. All 44 sections of the 1970 land use maps of the San Francisco test site have been officially released through USGS Open File at 1:62,500. Five thousand copies of the Washington one-sheet color 1970 land use map, census tract map, and point line identification map are being printed by USGS Publication Division. ERTS-1 imagery for each of the eight test sites is being received and analyzed. Color infrared photo enlargements at 1:100,000 of ERTS-1 MSS images of Phoenix taken on October 16, 1972 and May 2, 1973 are being analyzed to determine to what level land use and land use changes can be identified and to what extent the ERTS-1 imagery can be used in updating the 1970 aircraft photo-derived land use data base. Work is proceeding on the analysis of ERTS-1 imagery by computer manipulation of ERTS-1 MSS data in digital format. ERTS-1 CCT maps at 1:24,000 are being analyzed for two dates over Washington and Phoenix. Anniversary tape sets have been received at Purdue LARS for some additional urban test sites.

  18. Impacts of land use/land cover change on regional carbon dynamics: an investigation along an urban-to-rural gradient in Massachusetts, USA

    NASA Astrophysics Data System (ADS)

    Dunn, Allison L.; Briber, Brittain M.; Reinmann, Andrew B.; Hutyra, Lucy R.

    2016-04-01

    More than half the world's population lives in cities, a fraction which is projected to increase over the next century. Land use and land cover changes associated with the urbanization process have important implications for vegetation and soil carbon cycling. The impact of urbanization on carbon dynamics is poorly understood, representing a major uncertainty in constraining regional carbon budgets. We initiated a suite of field measurements, remote sensing analyses, and modeling activities in order to investigate how urbanization alters carbon dynamics. We found that conversion of forest to urban land uses resulted in a decrease in overall biomass but a marked increase in productivity of the remaining vegetation. We also found that land use patterns had a profound impact on atmospheric carbon dioxide concentrations on daily, seasonal, and annual timescales. Our results suggest that urbanization has a profound impact on regional carbon dynamics that extends from the time of land use change out well into the future, and the trajectory of urban carbon exchange in the future strongly depends on development patterns.

  19. Assessment of urban heat island effect for different land use-land cover from micrometeorological measurements and remote sensing data for megacity Delhi

    NASA Astrophysics Data System (ADS)

    Mohan, Manju; Kikegawa, Yukihiro; Gurjar, B. R.; Bhati, Shweta; Kolli, Narendra Reddy

    2013-05-01

    Urban heat island intensities (UHI) have been assessed based on in situ measurements and satellite-derived observations for the megacity Delhi during a selected period in March 2010. A network of micrometeorological observational stations was set up across the city. Site selection for stations was based on dominant land use-land cover (LULC) classification. Observed UHI intensities could be classified into high, medium and low categories which overall correlated well with the LULC categories viz. dense built-up, medium dense built-up and green/open areas, respectively. Dense urban areas and highly commercial areas were observed to have highest UHI with maximum hourly magnitude peaking up to 10.7 °C and average daily maximum UHI reaching 8.3 °C. UHI obtained in the study was also compared with satellite-derived land surface temperatures (LST). UHI based on in situ ambient temperatures and satellite-derived land surface temperatures show reasonable comparison during nighttime in terms of UHI magnitude and hotspots. However, the relation was found to be poor during daytime. Further, MODIS-derived LSTs showed overestimation during daytime and underestimation during nighttime when compared with in situ skin temperature measurements. Impact of LULC was also reflected in the difference between ambient temperature and skin temperature at the observation stations as built-up canopies reported largest gradient between air and skin temperature. Also, a comparison of intra-city spatial temperature variations based UHI vis-à-vis a reference rural site temperature-based UHI indicated that UHI can be computed with respect to the station measuring lowest temperature within the urban area in the absence of a reference station in the rural area close to the study area. Comparison with maximum and average UHI of other cities of the world revealed that UHI in Delhi is comparable to other major cities of the world such as London, Tokyo and Beijing and calls for mitigation action

  20. Analysis of Urban-Rural Land-Use Change during 1995-2006 and Its Policy Dimensional Driving Forces in Chongqing, China

    PubMed Central

    Long, Hualou; Wu, Xiuqin; Wang, Wenjie; Dong, Guihua

    2008-01-01

    This paper analyzes the urban-rural land-use change of Chongqing and its policy dimensional driving forces from 1995 to 2006, using high-resolution Landsat TM (Thematic Mapper) data of 1995, 2000 and 2006, and socio-economic data from both research institutes and government departments. The outcomes indicated that urban-rural land-use change in Chongqing can be characterized by two major trends: First, the non-agricultural land increased substantially from 1995 to 2006, thus causing agricultural land especially farmland to decrease continuously. Second, the aggregation index of urban settlements and rural settlements shows that local urban-rural development experienced a process of changing from aggregation (1995-2000) to decentralization (2000-2006). Chongqing is a special area getting immersed in many important policies, which include the establishment of the municipality directly under the Central Government, the building of Three Gorges Dam Project, the Western China Development Program and the Grain-for-Green Programme, and bring about tremendous influences on its land-use change. By analyzing Chongqing's land-use change and its policy driving forces, some implications for its new policy of ‘Urban-rural Integrated Reform’ are obtained. That is more attentions need to be paid to curbing excessive and idle rural housing and consolidating rural construction land, and to laying out a scientific land-use plan for its rural areas taking such rural land-use issues as farmland occupation and rural housing land management into accounts, so as to coordinate and balance the urban-rural development.

  1. Analysis of Land Use/Land Cover Changes Using Remote Sensing Data and GIS at an Urban Area, Tirupati, India

    PubMed Central

    Mallupattu, Praveen Kumar; Sreenivasula Reddy, Jayarama Reddy

    2013-01-01

    Land use/land cover (LU/LC) changes were determined in an urban area, Tirupati, from 1976 to 2003 by using Geographical Information Systems (GISs) and remote sensing technology. These studies were employed by using the Survey of India topographic map 57 O/6 and the remote sensing data of LISS III and PAN of IRS ID of 2003. The study area was classified into eight categories on the basis of field study, geographical conditions, and remote sensing data. The comparison of LU/LC in 1976 and 2003 derived from toposheet and satellite imagery interpretation indicates that there is a significant increase in built-up area, open forest, plantation, and other lands. It is also noted that substantial amount of agriculture land, water spread area, and dense forest area vanished during the period of study which may be due to rapid urbanization of the study area. No mining activities were found in the study area in 1976, but a small addition of mining land was found in 2003. PMID:23781152

  2. Analysis of land use/land cover changes using remote sensing data and GIS at an urban area, Tirupati, India.

    PubMed

    Mallupattu, Praveen Kumar; Sreenivasula Reddy, Jayarama Reddy

    2013-01-01

    Land use/land cover (LU/LC) changes were determined in an urban area, Tirupati, from 1976 to 2003 by using Geographical Information Systems (GISs) and remote sensing technology. These studies were employed by using the Survey of India topographic map 57 O/6 and the remote sensing data of LISS III and PAN of IRS ID of 2003. The study area was classified into eight categories on the basis of field study, geographical conditions, and remote sensing data. The comparison of LU/LC in 1976 and 2003 derived from toposheet and satellite imagery interpretation indicates that there is a significant increase in built-up area, open forest, plantation, and other lands. It is also noted that substantial amount of agriculture land, water spread area, and dense forest area vanished during the period of study which may be due to rapid urbanization of the study area. No mining activities were found in the study area in 1976, but a small addition of mining land was found in 2003. PMID:23781152

  3. Distribution and sources of DDTs in urban soils with six types of land use in Beijing, China.

    PubMed

    Yang, Lingyan; Xia, Xinghui; Liu, Shaoda; Bu, Qingwei

    2010-02-15

    The concentrations of dichlorodiphenyltrichloroethanes (DDTs) were investigated for urban soil samples collected from business area (BU), classical garden (CL), culture and educational area (CU), large public green space (LA), residential area (RE), and roadside area (RO) in Beijing. The DDTs concentrations ranged from 0.03 to 1282.58 ng/g, with an average of 68.14+/-189.46 ng/g. The DDTs concentration in CL was much higher than that in the other five types of land use, which was due to the usage of DDTs to protect vegetation in CL, and the DDTs concentration was affected by both the usage history of DDTs and the age of the CL. Only 22% of the samples, mainly located in RO, manifested the application of technical DDTs recently. DDTs concentration showed a decreasing trend from the city center to the suburb, and it increased with the age of the urban area. DDTs were positively correlated with total organic carbon and black carbon in soils. About 81.7% of the samples met the grade I standard (50 ng/g soil) of the Chinese Environmental Quality Standard for Soils, and only 1.5% of the samples exceeded the grade III standard (1000 ng/g soil).

  4. Analysis of land use/land cover changes using remote sensing data and GIS at an urban area, Tirupati, India.

    PubMed

    Mallupattu, Praveen Kumar; Sreenivasula Reddy, Jayarama Reddy

    2013-01-01

    Land use/land cover (LU/LC) changes were determined in an urban area, Tirupati, from 1976 to 2003 by using Geographical Information Systems (GISs) and remote sensing technology. These studies were employed by using the Survey of India topographic map 57 O/6 and the remote sensing data of LISS III and PAN of IRS ID of 2003. The study area was classified into eight categories on the basis of field study, geographical conditions, and remote sensing data. The comparison of LU/LC in 1976 and 2003 derived from toposheet and satellite imagery interpretation indicates that there is a significant increase in built-up area, open forest, plantation, and other lands. It is also noted that substantial amount of agriculture land, water spread area, and dense forest area vanished during the period of study which may be due to rapid urbanization of the study area. No mining activities were found in the study area in 1976, but a small addition of mining land was found in 2003.

  5. Land use regression modeling of intra-urban residential variability in multiple traffic-related air pollutants

    PubMed Central

    Clougherty, Jane E; Wright, Rosalind J; Baxter, Lisa K; Levy, Jonathan I

    2008-01-01

    Background There is a growing body of literature linking GIS-based measures of traffic density to asthma and other respiratory outcomes. However, no consensus exists on which traffic indicators best capture variability in different pollutants or within different settings. As part of a study on childhood asthma etiology, we examined variability in outdoor concentrations of multiple traffic-related air pollutants within urban communities, using a range of GIS-based predictors and land use regression techniques. Methods We measured fine particulate matter (PM2.5), nitrogen dioxide (NO2), and elemental carbon (EC) outside 44 homes representing a range of traffic densities and neighborhoods across Boston, Massachusetts and nearby communities. Multiple three to four-day average samples were collected at each home during winters and summers from 2003 to 2005. Traffic indicators were derived using Massachusetts Highway Department data and direct traffic counts. Multivariate regression analyses were performed separately for each pollutant, using traffic indicators, land use, meteorology, site characteristics, and central site concentrations. Results PM2.5 was strongly associated with the central site monitor (R2 = 0.68). Additional variability was explained by total roadway length within 100 m of the home, smoking or grilling near the monitor, and block-group population density (R2 = 0.76). EC showed greater spatial variability, especially during winter months, and was predicted by roadway length within 200 m of the home. The influence of traffic was greater under low wind speed conditions, and concentrations were lower during summer (R2 = 0.52). NO2 showed significant spatial variability, predicted by population density and roadway length within 50 m of the home, modified by site characteristics (obstruction), and with higher concentrations during summer (R2 = 0.56). Conclusion Each pollutant examined displayed somewhat different spatial patterns within urban neighborhoods

  6. Advanced Land use Classification Considering Intra-annual Cropping patterns and Urbanization processes as a Contribution to Improve Knowledge base for Water Management.

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Tischbein, B.; Beg, M. K.

    2014-12-01

    Land use and its spatial pattern and dynamics strongly influence water resources and water demand. Therefore, integrated water resources management coordinating water supply and demand is using modeling tools in order to assess the impact of land use changes on the water balance and to conceive infrastructural and operational measures to cope with these impacts. As a consequence, the appropriateness of water management measures depends on the reliability of the output gained by the modeling tools which in turn is highly determined by the capability of the models and the quality of model inputs. This research combines the Soil and Water Assessment Tool (SWAT) and an advanced procedure for spatio-temporal detection of land use dynamics and irrigation in the Upper Kharun basin in the Chhattisgarh State in India. An on-screen visual digitization technique using the Landsat satellite images and their derivatives (NDVI and tasseled cap indices) were employed for land use classification. The land use maps prepared at different time steps within a year can be combined to produce a single multi-temporal land use classification. This approach captures and integrates all the major variations within a year in a single map and hence better represents an area with multiple crop rotations and different levels of urbanization. Urbanization and intensification of irrigation by increasing use of groundwater are major land use processes at the global scale as well as in the study region. The study reveals that an increasing pumping rate of groundwater for irrigation is the main reason for decreasing the groundwater contribution to streamflow and subsequently a lowering in discharge and water yield. On the other hand, annual surface runoff is increased significantly by an expansion in built up areas over the decades in the study area. This information (i) enhances the understanding of land use changes and their relevant drivers, and (ii) facilitates the introduction of best water and

  7. Impact of the Spatial Arrangement of Agricultural Land Use on Ecosystems Services and Peri-Urban Livelihoods at the Landscape Scale.

    NASA Astrophysics Data System (ADS)

    Inkoom, J. N.; Fürst, C.

    2014-12-01

    The relationship between agricultural land uses (ALU) and their impact on ecosystems services (ES) including biodiversity conservation is complex. This complexity has been augmented by isolated research on the impact of ALU on the landscape's capacity to provide ES in most climatically vulnerable areas of Sub-Saharan Africa. Though a considerable number of studies emphasise the nexus between specific land use types and their impact on ES, a sufficient modelling basis for an empirical consideration of spatial interactions between different agricultural land uses at the landscape scale within peri-urban areas in Sub-Saharan Africa is consistently missing. The need to assess and address significant issues regarding size, shape, spatial location, and interactivity of different land use patches in assessing land use interactions and their impact on ecosystem service provision necessitated this investigation. To formulate a methodology to correspond to this complexity, ES obtained from a characteristically agricultural and urbanizing landscapes were mapped using analytical hierarchical processes and management expert approaches. Further, landscape metrics and mean enrichment factor approaches are explored as neighbourhood assessment tools aimed at assessing the mutual impact gradient of agricultural and adjacent urban land uses on ES provision. Implementation is undertaken in GISCAME using a 2012 rapideye image classification and primary data collected on selected ES from local farmers within the VEA catchment of Upper East, Ghana. The outcome aims to provide the understanding of expected trade-offs and synergies varying ALU could pose to current and potential ES provision within urbanizing landscapes. Policy implications for observed trade-offs and synergies of ALU interaction on ES, rural livelihoods, and food security are communicated to farmers and decision makers. Keywords: Agricultural land use, neighbourhood interaction, ecosystems services, livelihoods, GISCAME.

  8. Dynamic modelling of future land use change under urbanization and climate change pressures: application to a case study in central Belgium

    NASA Astrophysics Data System (ADS)

    Jacquemin, I.; Fontaine, C. M.; Dendoncker, N.; François, L.; De Vreese, R.; Marek, A.; Mortelmans, D.; Van Herzele, A.; Devillet, G.

    2012-04-01

    version of the model developed for natural vegetation has been upgraded to include crop systems and pastures. The ABM (Murray-Rust, Journal of Land Use Science, 6(2-3):83-99, 2011) describes the management choices (e.g., crop rotation, intensive agriculture or organic farming, etc) for each land plot, as well as the possible change in their affectation (e.g., conversion of farm fields to residential areas in response to urbanization), under different socio-economic contexts described in the storyline of three scenarios depicting general societal orientations (business-as-usual; market oriented; sustainability oriented). As a result, the ABM produces a dynamic evolution of land use and management options to be passed on to the DVM for further analysis. The outputs from the DVM allow evaluating quantitatively the provision of EGS by each land plot. This DVM-ABM modelling tool is thus able to describe the future evolution of land use and land cover, as well as of EGS production, in the context of socio-economic scenarios. The model is applied to a case study area covering four municipalities located in central Belgium close to Brussels and Leuven. The area is mostly composed of agricultural fields (crops and meadows), residential areas and a large protected forest (Meerdaalbos) and is subject to intense urbanization pressure due to the proximity to Brussels.

  9. Monitoring urban expansion and land use/land cover changes of Shanghai metropolitan area during the transitional economy (1979-2009) in China.

    PubMed

    Yin, Jie; Yin, Zhane; Zhong, Haidong; Xu, Shiyuan; Hu, Xiaomeng; Wang, Jun; Wu, Jianping

    2011-06-01

    This study explored the spatio-temporal dynamics and evolution of land use/cover changes and urban expansion in Shanghai metropolitan area, China, during the transitional economy period (1979-2009) using multi-temporal satellite images and geographic information systems (GIS). A maximum likelihood supervised classification algorithm was employed to extract information from four landsat images, with the post-classification change detection technique and GIS-based spatial analysis methods used to detect land-use and land-cover (LULC) changes. The overall Kappa indices of land use/cover change maps ranged from 0.79 to 0.89. Results indicated that urbanization has accelerated at an unprecedented scale and rate during the study period, leading to a considerable reduction in the area of farmland and green land. Findings further revealed that water bodies and bare land increased, obviously due to large-scale coastal development after 2000. The direction of urban expansion was along a north-south axis from 1979 to 2000, but after 2000 this growth changed to spread from both the existing urban area and along transport routes in all directions. Urban expansion and subsequent LULC changes in Shanghai have largely been driven by policy reform, population growth, and economic development. Rapid urban expansion through clearing of vegetation has led to a wide range of eco-environmental degradation.

  10. A hybrid land use regression/AERMOD model for predicting intra-urban variation in PM2.5

    NASA Astrophysics Data System (ADS)

    Michanowicz, Drew R.; Shmool, Jessie L. C.; Tunno, Brett J.; Tripathy, Sheila; Gillooly, Sara; Kinnee, Ellen; Clougherty, Jane E.

    2016-04-01

    Characterizing near-source spatio-temporal variation is a long -standing challenge in air pollution epidemiology, and common intra-urban modeling approaches [e.g., land use regression (LUR)], do not account for short-term meteorological variation. Atmospheric dispersion modeling approaches, such as AERMOD, can account for near-source pollutant behavior by capturing source-meteorological interactions, but requires external validation and resolved background concentrations. In this study, we integrate AERMOD-based predictions for source-specific fine particle (PM2.5) concentrations into LUR models derived from total ambient PM2.5 measured at 36 unique sites selected to represent different source and elevation profiles, during summer and winter, 2012-2013 in Pittsburgh, Pennsylvania (PA). We modeled PM2.5 emissions from 207 local stationary sources in AERMOD, utilizing the monitoring locations as receptors, and hourly meteorological information matching each sampling period. Finally, we compare results of the integrated LUR/AERMOD hybrid model to those of the AERMOD + background and standard LUR models, at the full domain scale and within a 5 km2 sub-domain surrounding a large industrial facility. The hybrid model improved out-of-sample prediction accuracy by 2-10% over LUR alone, though performance differed by season, in part due to within-season temporal variability. We found differences up to 10 μg/m3 in predicted concentrations, and observed the largest differences within the industrial sub-domain. LUR underestimated concentrations from 500 to 2500 m downwind of major sources. The hybrid modeling approach we developed may help to improve intra-urban exposure estimates, particularly in regions of large industrial sources, sharp elevation gradients, or complex meteorology (e.g., frequent inversion events), such as Pittsburgh, PA. More broadly, the approach may inform the development of spatio-temporal modeling frameworks for air pollution exposure assessment for

  11. Use of an urban intensity index to assess urban effects on streams in three contrasting environmental settings

    USGS Publications Warehouse

    Tate, C.M.; Cuffney, T.F.; McMahon, G.; Giddings, E.M.P.; Coles, J.F.; Zappia, H.

    2005-01-01

    To assess the effects of urbanization on assemblages (fish, invertebrate, and algal), physical habitat, and water chemistry, we investigated the relations among varying intensities of basin urbanization and stream ecology in three metropolitan areas: the humid northeastern United States around Boston, Massachusetts; the humid southeastern United States around Birmingham, Alabama; and the semiarid western United States around Salt Lake City, Utah. A consistent process was used to develop a multimetric urban intensity index (UII) based on locally important variables (land-use/land-cover, infrastructure, and socioeconomic variables) in each study area and a common urban intensity index (CUII) based on a subset of five variables common to all study areas. The UII was used to characterize 30 basins along an urban gradient in each metropolitan area. Study basins were located within a single ecoregion in each of the metropolitan areas. The UII, ecoregions, and site characteristics provided a method for limiting the variability of natural landscape characteristics while assessing the magnitude of urban effects. Conditions in Salt Lake City (semiarid climate and water diversions) and Birmingham (topography) required nesting sites within the same basin. The UII and CUII facilitated comparisons of aquatic assemblages response to urbanization across different environmental settings. ?? 2005 by the American Fisheries Society.

  12. Changes in Land Use and Soils

    NASA Astrophysics Data System (ADS)

    Paz-González, A.; Tarquis, A.; de Abreu, C. A.; Olechko, K.; Sáa, A.; Gobin, A.; Gómez, J. A.; Kutilek, M.

    2012-04-01

    Land use change is one of the main drivers of many processes of environmental change, as it influences basic resources of the landscape including the soil. Poor land management can rapidly deteriorate vast amounts of land, which frequently becomes a major threat to rural subsistence in many developing countries. Conversely, impact of land use changes on soil also can occur so unnoticed that land managers hardly contemplate initiating ameliorative measures. Subsequently, changes in land use affect soil properties and processes at a variety of scales. For example, forest conversion to cropland and reduction of tillage intensity can prevail as main changes of land use in some regions, whereas abandon of agricultural fields can be a major concern in other regions. In non-agricultural context, changes of land use of major interest are driven by urbanization, landscaping, engineering, mining, contamination, etc. Disturbed soils are not necessarily lost to agriculture, forestry, amenity or other alternative uses. Knowledge and understanding of soil properties and processes ensures remediation or reclamation of disturbed or damaged soils. Therefore, we focus mainly on how soil properties and processes can be managed and controlled to mitigate the impact of changes in land use. Moreover, land use changes occur at different spatial and temporal scales. Currently, the most promising approaches to evaluate the complex interaction between land use and soil heterogeneity at various scales apply advanced statistical and mathematical methods.

  13. Impact of urbanization and land-use/land-cover change on diurnal temperature range: a case study of tropical urban airshed of India using remote sensing data.

    PubMed

    Mohan, Manju; Kandya, Anurag

    2015-02-15

    Diurnal temperature range (DTR) is an important climate change index. Its knowledge is important to a range of issues and themes in earth sciences central to urban climatology and human-environment interactions. The present study investigates the effect of urbanization on the land surface temperature (LST) based DTR. This study presents spatial and temporal variations of satellite based estimates of annually averaged DTR over megacity Delhi, the capital of India, which are shown for a period of 11 years during 2001-2011 and analyzes this with regard to its land-use/land-cover (LU/LC) changes and population growth. Delhi which witnessed massive urbanization in terms of population growth (decadal growth rate of Delhi during 2001-2011 was 20.96%) and major transformations in the LU/LC (built-up area crossed more than 53%) are experiencing severity in its micro and macroclimate. There was a consistent increase in the areas experiencing DTR below 11°C which typically resembled the 'urban class' viz. from 26.4% in the year 2001 to 65.3% in the year 2011 and subsequently the DTR of entire Delhi which was 12.48°C in the year 2001 gradually reduced to 10.34°C in the year 2011, exhibiting a significant decreasing trend. Rapidly urbanizing areas like Rohini, Dwarka, Vasant Kunj, Kaushambi, Khanjhawala Village, IIT, Safdarjung Airport, etc. registered a significant decreasing trend in the DTR. In the background of the converging DTR, which was primarily due to the increase in the minimum temperatures, a grim situation in terms of potentially net increase in the heat-related mortality rate especially for the young children below 15years of age is envisaged for Delhi. Considering the earlier findings that the level of risk of death remained the highest and longest for Delhi, in comparison to megacities like Sao Paulo and London, the study calls for strong and urgent heat island mitigation measures.

  14. Remote Sensing of Urban Land Cover/Land Use Change, Surface Thermal Responses, and Potential Meteorological and Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Quattrochi, D. A.; Jedlovec, G.; Meyer, P. J.

    2011-12-01

    City growth influences the development of the urban heat island (UHI), but the effect that local meteorology has on the UHI is less well known. This paper presents some preliminary findings from a study that uses multitemporal Landsat TM and ASTER data to evaluate land cover/land use change (LULCC) over the NASA Marshall Space Flight Center (MFSC) and its Huntsville, AL metropolitan area. Landsat NLCD data for 1992 and 2001 have been used to evaluate LULCC for MSFC and the surrounding urban area. Land surface temperature (LST) and emissivity derived from NLCD data have also been analyzed to assess changes in these parameters in relation to LULCC. Additionally, LULCC, LST, and emissivity have been identified from ASTER data from 2001 and 2011 to provide a comparison with the 2001 NLCD and as a measure of current conditions within the study area. As anticipated, the multi-temporal NLCD and ASTER data show that significant changes have occurred in land covers, LST, and emissivity within and around MSFC. The patterns and arrangement of these changes, however, is significant because the juxtaposition of urban land covers within and outside of MSFC provides insight on what impacts at a local to regional scale, the inter-linkage of these changes potentially have on meteorology. To further analyze these interactions between LULCC, LST, and emissivity with the lower atmosphere, a network of eleven weather stations has been established across the MSFC property. These weather stations provide data at a 10 minute interval, and these data are uplinked for use by MSFC facilities operations and the National Weather Service. The weather data are also integrated within a larger network of meteorological stations across north Alabama. Given that the MSFC weather stations will operate for an extended period of time, they can be used to evaluate how the building of new structures, and changes in roadways, and green spaces as identified in the MSFC master plan for the future, will

  15. Remote Sensing of Urban Land Cover/Land Use Change, Surface Thermal Responses, and Potential Meteorological and Climate Change Impacts

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Jedlovec, Gary; Meyer, Paul

    2011-01-01

    City growth influences the development of the urban heat island (UHI), but the effect that local meteorology has on the UHI is less well known. This paper presents some preliminary findings from a study that uses multitemporal Landsat TM and ASTER data to evaluate land cover/land use change (LULCC) over the NASA Marshall Space Flight Center (MFSC) and its Huntsville, AL metropolitan area. Landsat NLCD data for 1992 and 2001 have been used to evaluate LULCC for MSFC and the surrounding urban area. Land surface temperature (LST) and emissivity derived from NLCD data have also been analyzed to assess changes in these parameters in relation to LULCC. Additionally, LULCC, LST, and emissivity have been identified from ASTER data from 2001 and 2011 to provide a comparison with the 2001 NLCD and as a measure of current conditions within the study area. As anticipated, the multi-temporal NLCD and ASTER data show that significant changes have occurred in land covers, LST, and emissivity within and around MSFC. The patterns and arrangement of these changes, however, is significant because the juxtaposition of urban land covers within and outside of MSFC provides insight on what impacts at a local to regional scale, the inter-linkage of these changes potentially have on meteorology. To further analyze these interactions between LULCC, LST, and emissivity with the lower atmosphere, a network of eleven weather stations has been established across the MSFC property. These weather stations provide data at a 10 minute interval, and these data are uplinked for use by MSFC facilities operations and the National Weather Service. The weather data are also integrated within a larger network of meteorological stations across north Alabama. Given that the MSFC weather stations will operate for an extended period of time, they can be used to evaluate how the building of new structures, and changes in roadways, and green spaces as identified in the MSFC master plan for the future, will

  16. Spatial variations in the relationships between land use and water quality across an urbanization gradient in the watersheds of Northern Georgia, USA.

    PubMed

    Tu, Jun

    2013-01-01

    A spatial statistical technique, Geographically Weighted Regression (GWR) is applied to study the spatial variations in the relationships between four land use indicators, including percentages of urban land, forest, agricultural land, and wetland, and eight water quality indicators including specific conductance (SC), dissolved oxygen, dissolved nutrients, and dissolved organic carbon, in the watersheds of northern Georgia, USA. The results show that GWR has better model performance than ordinary least squares regression (OLS) to analyze the relationships between land use and water quality. There are great spatial variations in the relationships affected by the urbanization level of watersheds. The relationships between urban land and SC are stronger in less-urbanized watersheds, while those between urban land and dissolved nutrients are stronger in highly-urbanized watersheds. Percentage of forest is an indicator of good water quality. Agricultural land is usually associated with good water quality in highly-urbanized watersheds, but might be related to water pollution in less-urbanized watersheds. This study confirms the results obtained from a similar study in eastern Massachusetts, and so suggest that GWR technique is a very useful tool in water environmental research and also has the potential to be applied to other fields of environmental studies and management in other regions.

  17. [Research on the influence of urban land use structure and pattern on nitrogen, phosphorus of wetland water environment in Xianlin New Town of Nanjing].

    PubMed

    Cai, Chun-Xiao; Liu, Hong-Yu; Li, Yu-Feng; Wang, Cong; Hou, Ming-Hang

    2014-08-01

    The 10 typical wetlands in Xianlin New Townof Nanjing were classified into three categories, including rural wetland, suburban wetland, and urban wetland according to the influence of urbanization as well as the characteristics of wetland and LUCC of catchment regions. RDA was used to analyse the relationships between nitrogen and phosphorus in urban wetland and various types and patterns of land use. It was found that the water quality of the urban wetlands presented to be worse than that from rural wetlands, followed by sub urban wetlands. Secondly, according to all investigated wetlands, TP and TN turned out to be higher during the wet seasons than dry seasons. In addition, significant differences of TP were observed between wet and dry seasons for rural and suburban wetlands, and it was not so obvious for urban wetlands. However, the differences of TN was opposite to that of TP. Thirdly, factors affecting the water quality of wetlands were comprised of types and patterns of land use, and thus significant positive relationships were found between the concentrations of TN and TP and the impervious land, while negative correlations for meadows, woodlands and wetlands. What's more, higher remarkable differences were found in wetlands than those from meadows and woodlands. Regarding to patterns of land use, TP, TN concentrations were negatively correlated with the average patch shape in the dry and wet seasons, whereas positively relationships were observed for patch density and diversity index; furthermore, with refer to the impact of adjacent landscape, significant relationships were found between the content of TN and the patterns of land use and thus, a negative correlation in the wet season and a positive correlation in the dry season were observed, respectively.

  18. Effects of Urban Development on Water-Quality in the Piedmont of North Carolina-- The NAWQA Urban Land-Use Gradient Study

    NASA Astrophysics Data System (ADS)

    Harned, D. A.; Cuffney, T. F.; Giddings, E. M.; McMahon, G.

    2004-12-01

    A study of urban basins located in the Piedmont of North Carolina is underway as part of the U. S. Geological Survey National Water-Quality Assessment (NAWQA) to determine the relation between level of urban development and water quality. Data were collected from 30 basins on water chemistry (nutrient, pesticide, and ion concentrations), geomorphic and habitat characteristics, hydrologic stage, discharge, water temperature, pH, dissolved-oxygen concentration, specific conductance, benthic algae, invertebrate communities, and fish communities. Collection frequency for water chemistry ranged from 2 samples (at 20 sites) to 6 samples (at 10 sites). Biological data were collected in each basin twice. Investigation of the effects of urbanization on water quality must control for the effects of natural factors, while varying the degree of urbanization between study basins. A regional framework was used to control variability in natural factors that influence water-quality. The urban intensity in each basin was measured by using an index to integrate information on human influences. The Urban Index includes information about land cover, infrastructure, population, and socioeconomic characteristics. Sites were selected to represent the full gradient of undeveloped to fully urbanized basins. A preliminary review of the stream water-chemistry data indicates distinct relations between ionic composition and the Urban Index. Mean specific conductance was positively correlated with the Urban Index (Spearman correlation coefficient (r) = 0.77; 95-percent confidence limits (95CL) 0.61 - 0.93; probability (pr) <0.0001; N=30). Specific conductance ranged from 56 microsiemens (uS) at the least developed site to 607 uS at the most developed site. Dissolved sulfate (r=0.74; 95CL 0.57 - 0.91; pr <0.0001) and chloride (r=0.71; 95CL 0.52 - 0.90; pr <0.0001) were also positively correlated with the Urban Index. Sulfate ranged from 2.3 to 66 milligrams per liter (mg/L), and chloride ranged

  19. Modeling concentration patterns of agricultural and urban micropollutants in surface waters in catchment of mixed land use

    NASA Astrophysics Data System (ADS)

    Stamm, C.; Scheidegger, R.; Bader, H. P.

    2012-04-01

    Organic micropollutants detected in surface waters can originate from agricultural and urban sources. Depending on the use of the compounds, the temporal loss patterns vary substantially. Therefore models that simulate water quality in watersheds of mixed land use have to account for all relevant sources. We present here simulation results of a transport model that describes the dynamic of several biocidal compounds as well as the behaviour of human pharmaceuticals. The model consists of the sub-model Rexpo simulating the transfer of the compounds from the point of application to the stream in semi-lumped manner. The river sub-model, which is programmed in the Aquasim software, describes the fate of the compounds in the stream. Both sub-models are process-based. The Rexpo sub-model was calibrated at the scale of a small catchment of 25 km2, which is inhabited by about 12'000 people. Based on the resulting model parameters the loss dynamics of two herbicides (atrazine, isoproturon) and a compound of mixed urban and agricultural use (diuron) were predicted for two nested catchment of 212 and 1696 km2, respectively. The model output was compared to observed time-series of concentrations and loads obtained for the entire year 2009. Additionally, the fate of two pharmaceuticals with constant input (carbamazepine, diclofenac) was simulated for improving the understanding of possible degradation processes. The simulated loads and concentrations of the biocidal compounds differed by a factor of 2 to 3 from the observations. In general, the seasonal patterns were well captured by the model. However, a detailed analysis of the seasonality revealed substantial input uncertainty for the application of the compounds. The model results also demonstrated that for the dynamics of rain-driven losses of biocidal compounds the semi-lumped approach of the Rexpo sub-model was sufficient. Only for simulating the photolytic degradation of diclofenac in the stream the detailed

  20. Linking river nutrient concentrations to land use and rainfall in a paddy agriculture-urban area gradient watershed in southeast China.

    PubMed

    Xia, Yongqiu; Ti, Chaopu; She, Dongli; Yan, Xiaoyuan

    2016-10-01

    The effects of land use and land-use changes on river nutrient concentrations are not well understood, especially in the watersheds of developing countries that have a mixed land use of rice paddy fields and developing urban surfaces. Here, we present a three-year study of a paddy agricultural-urban area gradient watershed in southeast China. The annual anthropogenic nitrogen (N) input from the agricultural region to the urban region was high, yet the results showed that the monthly nutrient concentrations in the river were low in the rainy seasons. The nutrient concentrations decreased continuously as the river water passed through the traditional agriculture region (TAR; paddy rice and wheat rotation) and increased substantially in the city region (CR). The traditional agricultural reference region exported most of the nutrient loads at high flows (>1mmd(-1)), the intensified agricultural region (IAR, aquaculture and poultry farming) exported most of the nutrient loads at moderate flows (between 0.5 and 1mmd(-1)), and the CR reference area exported most of the nutrient loads under low to moderate flows. We developed a statistical model to link variations in the nutrient concentrations to the proportion of land-use types and rainfall. The statistical results showed that impervious surfaces, which we interpret as a proxy for urban activities including sewage disposal, were the most important drivers of nutrient concentrations, whereas water surfaces accounted for a substantial proportion of the nutrient sinks. Therefore, to efficiently reduce water pollution, sewage from urban areas must be addressed as a priority, although wetland restoration could also achieve substantial pollutant removal.

  1. Linking river nutrient concentrations to land use and rainfall in a paddy agriculture-urban area gradient watershed in southeast China.

    PubMed

    Xia, Yongqiu; Ti, Chaopu; She, Dongli; Yan, Xiaoyuan

    2016-10-01

    The effects of land use and land-use changes on river nutrient concentrations are not well understood, especially in the watersheds of developing countries that have a mixed land use of rice paddy fields and developing urban surfaces. Here, we present a three-year study of a paddy agricultural-urban area gradient watershed in southeast China. The annual anthropogenic nitrogen (N) input from the agricultural region to the urban region was high, yet the results showed that the monthly nutrient concentrations in the river were low in the rainy seasons. The nutrient concentrations decreased continuously as the river water passed through the traditional agriculture region (TAR; paddy rice and wheat rotation) and increased substantially in the city region (CR). The traditional agricultural reference region exported most of the nutrient loads at high flows (>1mmd(-1)), the intensified agricultural region (IAR, aquaculture and poultry farming) exported most of the nutrient loads at moderate flows (between 0.5 and 1mmd(-1)), and the CR reference area exported most of the nutrient loads under low to moderate flows. We developed a statistical model to link variations in the nutrient concentrations to the proportion of land-use types and rainfall. The statistical results showed that impervious surfaces, which we interpret as a proxy for urban activities including sewage disposal, were the most important drivers of nutrient concentrations, whereas water surfaces accounted for a substantial proportion of the nutrient sinks. Therefore, to efficiently reduce water pollution, sewage from urban areas must be addressed as a priority, although wetland restoration could also achieve substantial pollutant removal. PMID:27289141

  2. Urban stream syndrome in a small, lightly developed watershed: a statistical analysis of water chemistry parameters, land use patterns, and natural sources.

    PubMed

    Halstead, Judith A; Kliman, Sabrina; Berheide, Catherine White; Chaucer, Alexander; Cock-Esteb, Alicea

    2014-06-01

    The relationships among land use patterns, geology, soil, and major solute concentrations in stream water for eight tributaries of the Kayaderosseras Creek watershed in Saratoga County, NY, were investigated using Pearson correlation coefficients and multivariate regression analysis. Sub-watersheds corresponding to each sampling site were delineated, and land use patterns were determined for each of the eight sub-watersheds using GIS. Four land use categories (urban development, agriculture, forests, and wetlands) constituted more than 99 % of the land in the sub-watersheds. Eleven water chemistry parameters were highly and positively correlated with each other and urban development. Multivariate regression models indicated urban development was the most powerful predictor for the same eleven parameters (conductivity, TN, TP, NO[Formula: see text], Cl(-), HCO(-)3, SO9(2-)4, Na(+), K(+), Ca(2+), and Mg(2+)). Adjusted R(2) values, ranging from 19 to 91 %, indicated that these models explained an average of 64 % of the variance in these 11 parameters across the samples and 70 % when Mg(2+) was omitted. The more common R (2), ranging from 29 to 92 %, averaged 68 % for these 11 parameters and 72 % when Mg(2+) was omitted. Water quality improved most with forest coverage in stream watersheds. The strong associations between water quality variables and urban development indicated an urban source for these 11 water quality parameters at all eight sampling sites was likely, suggesting that urban stream syndrome can be detected even on a relatively small scale in a lightly developed area. Possible urban sources of Ca(2+) and HCO(-)3 are suggested.

  3. Simulation of Urban Heat Island Mitigation Strategies in Atlanta, GA Using High-Resolution Land Use/Land Cover Data Set to Enhance Meteorological Modeling

    NASA Technical Reports Server (NTRS)

    Crosson, William L.; Dembek, Scott; Estes, Maurice G., Jr.; Limaye, Ashutosh S.; Lapenta, William; Quattrochi, Dale A.; Johnson, Hoyt; Khan, Maudood

    2006-01-01

    The specification of land use/land cover (LULC) and associated land surface parameters in meteorological models at all scales has a major influence on modeled surface energy fluxes and boundary layer states. In urban areas, accurate representation of the land surface may be even more important than in undeveloped regions due to the large heterogeneity within the urban area. Deficiencies in the characterization of the land surface related to the spatial or temporal resolution of the data, the number of LULC classes defined, the accuracy with which they are defined, or the degree of heterogeneity of the land surface properties within each class may degrade the performance of the models. In this study, an experiment was conducted to test a new high-resolution LULC data set for meteorological simulations for the Atlanta, Georgia metropolitan area using a mesoscale meteorological model and to evaluate the effects of urban heat island (UHI) mitigation strategies on modeled meteorology for 2030. Simulation results showed that use of the new LULC data set reduced a major deficiency of the land use data used previously, specifically the poor representation of urban and suburban land use. Performance of the meteorological model improved substantially, with the overall daytime cold bias reduced by over 30%. UHI mitigation strategies were projected to offset much of a predicted urban warming between 2000 and 2030. In fact, for the urban core, the cooling due to UHI mitigation strategies was slightly greater than the warming associated with urbanization over this period. For the larger metropolitan area, cooling only partially offset the projected warming trend.

  4. Physical, Chemical, and Biological Methods and Data from the Urban Land-Use-Gradient Study, Des Plaines and Fox River Basins, Illinois, 1999-2001

    USGS Publications Warehouse

    Adolphson, Debbie L.; Arnold, Terri L.; Fitzpatrick, Faith A.; Harris, Mitchell A.; Richards, Kevin D.; Scudder, Barbara C.; Stewart, Jana S.

    2001-01-01

    Physical, chemical, and biological data were collected at 46 sites in the Fox and Des Plaines River Basins as part of the upper Illinois River Basin study of the U.S. Geological Survey?s National Water-Quality Assessment Program. The data, collected from 1999 to 2001, will be used to determine the effects of urbanization on streams in the Chicago, Illinois, metropolitan area. To examine the possible effects of urbanization on stream-water quality, the sampling sites were selected to represent a gradient of land use changing from agriculture into urban. Urban land use for the selected sites ranged from less than 1 percent urban to 92 percent urban. Data-collection methods are presented in the text portion of this report. Physical characteristics of the stream that were collected include descriptive and qualitative habitat and geomorphic measures. Water samples were analyzed for nutrients (nitrogen and phosphorus), 11 major ions, 46 wastewater indicators, pH, and specific conductance. Aquatic communities were sampled to identify and quantify populations of selected algae, benthic macroinvertebrates, and fish. There were 72 unique fish species collected at all of the sites. The number of benthic macroinvertebrate taxa collected at all the sites ranged from 15 to 48. The data and the associated data documentation are presented on a CD-ROM included with this report.

  5. Data concurrency is required for estimating urban heat island intensity.

    PubMed

    Zhao, Shuqing; Zhou, Decheng; Liu, Shuguang

    2016-01-01

    Urban heat island (UHI) can generate profound impacts on socioeconomics, human life, and the environment. Most previous studies have estimated UHI intensity using outdated urban extent maps to define urban and its surrounding areas, and the impacts of urban boundary expansion have never been quantified. Here, we assess the possible biases in UHI intensity estimates induced by outdated urban boundary maps using MODIS Land surface temperature (LST) data from 2009 to 2011 for China's 32 major cities, in combination with the urban boundaries generated from urban extent maps of the years 2000, 2005 and 2010. Our results suggest that it is critical to use concurrent urban extent and LST maps to estimate UHI at the city and national levels. Specific definition of UHI matters for the direction and magnitude of potential biases in estimating UHI intensity using outdated urban extent maps.

  6. Data concurrency is required for estimating urban heat island intensity.

    PubMed

    Zhao, Shuqing; Zhou, Decheng; Liu, Shuguang

    2016-01-01

    Urban heat island (UHI) can generate profound impacts on socioeconomics, human life, and the environment. Most previous studies have estimated UHI intensity using outdated urban extent maps to define urban and its surrounding areas, and the impacts of urban boundary expansion have never been quantified. Here, we assess the possible biases in UHI intensity estimates induced by outdated urban boundary maps using MODIS Land surface temperature (LST) data from 2009 to 2011 for China's 32 major cities, in combination with the urban boundaries generated from urban extent maps of the years 2000, 2005 and 2010. Our results suggest that it is critical to use concurrent urban extent and LST maps to estimate UHI at the city and national levels. Specific definition of UHI matters for the direction and magnitude of potential biases in estimating UHI intensity using outdated urban extent maps. PMID:26243476

  7. Impact of urbanization and land-use/land-cover change on diurnal temperature range: a case study of tropical urban airshed of India using remote sensing data.

    PubMed

    Mohan, Manju; Kandya, Anurag

    2015-02-15

    Diurnal temperature range (DTR) is an important climate change index. Its knowledge is important to a range of issues and themes in earth sciences central to urban climatology and human-environment interactions. The present study investigates the effect of urbanization on the land surface temperature (LST) based DTR. This study presents spatial and temporal variations of satellite based estimates of annually averaged DTR over megacity Delhi, the capital of India, which are shown for a period of 11 years during 2001-2011 and analyzes this with regard to its land-use/land-cover (LU/LC) changes and population growth. Delhi which witnessed massive urbanization in terms of population growth (decadal growth rate of Delhi during 2001-2011 was 20.96%) and major transformations in the LU/LC (built-up area crossed more than 53%) are experiencing severity in its micro and macroclimate. There was a consistent increase in the areas experiencing DTR below 11°C which typically resembled the 'urban class' viz. from 26.4% in the year 2001 to 65.3% in the year 2011 and subsequently the DTR of entire Delhi which was 12.48°C in the year 2001 gradually reduced to 10.34°C in the year 2011, exhibiting a significant decreasing trend. Rapidly urbanizing areas like Rohini, Dwarka, Vasant Kunj, Kaushambi, Khanjhawala Village, IIT, Safdarjung Airport, etc. registered a significant decreasing trend in the DTR. In the background of the converging DTR, which was primarily due to the increase in the minimum temperatures, a grim situation in terms of potentially net increase in the heat-related mortality rate especially for the young children below 15years of age is envisaged for Delhi. Considering the earlier findings that the level of risk of death remained the highest and longest for Delhi, in comparison to megacities like Sao Paulo and London, the study calls for strong and urgent heat island mitigation measures. PMID:25437763

  8. A study of the utilization of ERTS-1 data from the Wabash River Basin. [crop identification, water resources, urban land use, soil mapping, and atmospheric modeling

    NASA Technical Reports Server (NTRS)

    Landgrebe, D. A. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The most significant results were obtained in the water resources research, urban land use mapping, and soil association mapping projects. ERTS-1 data was used to classify water bodies to determine acreages and high agreement was obtained with USGS figures. Quantitative evaluation was achieved of urban land use classifications from ERTS-1 data and an overall test accuracy of 90.3% was observed. ERTS-1 data classifications of soil test sites were compared with soil association maps scaled to match the computer produced map and good agreement was observed. In some cases the ERTS-1 results proved to be more accurate than the soil association map.

  9. Project ATLANTA (ATlanta Land-use ANalysis: Temperature and Air quality): A Study of how the Urban Landscape Affects Meteorology and Air Quality Through Time

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G.; Lo, C. P.; Kidder, Stanley Q.; Hafner, Jan; Taha, Haider; Bornstein, Robert D.; Gillies, Robert R.; Gallo, Kevin P.

    1998-01-01

    It is our intent through this investigation to help facilitate measures that can be Project ATLANTA (ATlanta Land-use ANalysis: applied to mitigate climatological or air quality Temperature and Air-quality) is a NASA Earth degradation, or to design alternate measures to sustain Observing System (EOS) Interdisciplinary Science or improve the overall urban environment in the future. investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta. The primary objectives for this research effort are: 1) To In the last half of the 20th century, Atlanta, investigate and model the relationship between Atlanta Georgia has risen as the premier commercial, urban growth, land cover change, and the development industrial, and transportation urban area of the of the urban heat island phenomenon through time at southeastern United States. The rapid growth of the nested spatial scales from local to regional; 2) To Atlanta area, particularly within the last 25 years, has investigate and model the relationship between Atlanta made Atlanta one of the fastest growing metropolitan urban growth and land cover change on air quality areas in the United States. The population of the through time at nested spatial scales from local to Atlanta metropolitan area increased 27% between 1970 regional; and 3) To model the overall effects of urban and 1980, and 33% between 1980-1990 (Research development on surface energy budget characteristics Atlanta, Inc., 1993). Concomitant with this high rate of across the Atlanta urban landscape through time at population growth, has been an explosive growth in nested spatial scales from local to regional. Our key retail, industrial, commercial, and transportation goal is to derive a better scientific understanding of how services within the Atlanta region. This has resulted in land cover changes associated with urbanization in the tremendous land cover change dynamics within the Atlanta area, principally in transforming

  10. Land use/land cover change and urban expansion during 1983-2008 in the coastal area of Dakshina Kannada district, South India

    NASA Astrophysics Data System (ADS)

    Bhagyanagar, Rajagopal; Kawal, Babita M.; Dwarakish, Gowdagere S.; Surathkal, Shrihari

    2012-01-01

    Urban settlements in developing countries are, at present, growing five times as fast as those in developed countries. This paper presents the urban expansion and land use/land cover changes in the fast urbanizing coastal area of the Dakshina Kannada district in Karnataka state, South India, during the years 1983-2008 as a case study. Six Indian Remote Sensing (IRS) satellite images were used in the present work. Supervised classification was carried out using maximum likelihood algorithm. The overall accuracy of the classification varied from 79% to 86.6%, and the kappa statistics varied from 0.761 to 0.850. The results indicate that the urban/built-up area in the study area has almost tripled during the study period. During the same time, the population has increased by 215%. The major driving forces for the urbanization were the enhanced economic activity due to the port and industrialization in the area. The urban/built-up area is projected to increase to 381 km2 and the population in the study area is expected to reach 2.68 million by the year 2028. Urban growth prediction helps urban planners and policymakers provide better infrastructure services to a huge number of new urban residents.

  11. Water resources: effects of land use and urbanization. September 1981-May 1988 (Citations from the NTIS data base). Report for September 1981-May 1988

    SciTech Connect

    Not Available

    1988-05-01

    This bibliography contains citations concerning the effects of land use and urban development on water-supply quality and quantity. Topics include appropriate local, state, and federal government policies, and utilization of mathematical models as predictive tools. Studies performed at specific localities are included if they provide comprehensive strategies that can be applied to other locations. (This updated bibliography contains 123 citations, 11 of which are new entries to the previous edition.)

  12. Water resources: effects of land use and urbanization. September 1981-June 1989 (Citations from the NTIS data base). Report for September 1981-June 1989

    SciTech Connect

    Not Available

    1989-06-01

    This bibliography contains citations concerning the effects of land use and urban development on water-supply quality and quantity. Topics include appropriate local, state, and federal government policies, and utilization of mathematical models as predictive tools. Studies performed at specific localities are included if they provide comprehensive strategies that can be applied to other locations. (This updated bibliography contains 177 citations, 54 of which are new entries to the previous edition.)

  13. A land use regression application into assessing spatial variation of intra-urban fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations in City of Shanghai, China.

    PubMed

    Liu, Chao; Henderson, Barron H; Wang, Dongfang; Yang, Xinyuan; Peng, Zhong-Ren

    2016-09-15

    Intra-urban assessment of air pollution exposure has become a priority study while international attention was attracted to PM2.5 pollution in China in recent years. Land Use Regression (LUR), which has previously been proved to be a feasible way to describe the relationship between land use and air pollution level in European and American cities, was employed in this paper to explain the correlations and spatial variations in Shanghai, China. PM2.5 and NO2 concentrations at 35-45 monitoring locations were selected as dependent variables, and a total of 44 built environmental factors were extracted as independent variables. Only five factors showed significant explanatory value for both PM2.5 and NO2 models: longitude, distance from monitors to the ocean, highway intensity, waterbody area, and industrial land area for PM2.5 model; residential area, distance to the coast, industrial area, urban district, and highway intensity for NO2 model. Respectively, both PM2.5 and NO2 showed anti-correlation with coastal proximity (an indicator of clean air dilution) and correlation with highway and industrial intensity (source indicators). NO2 also showed significant correlation with local indicators of population density (residential intensity and urban classification), while PM2.5 showed significant correlation with regional dilution (longitude as a indicator of distance from polluted neighbors and local water features). Both adjusted R squared values were strong with PM2.5 (0.88) being higher than NO2 (0.62). The LUR was then used to produce continuous concentration fields for NO2 and PM2.5 to illustrate the features and, potentially, for use by future studies. Comparison to PM2.5 studies in New York and Beijing show that Shanghai PM2.5 pollutant distribution was more sensitive to geographic location and proximity to neighboring regions. PMID:27203521

  14. A land use regression application into assessing spatial variation of intra-urban fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations in City of Shanghai, China.

    PubMed

    Liu, Chao; Henderson, Barron H; Wang, Dongfang; Yang, Xinyuan; Peng, Zhong-Ren

    2016-09-15

    Intra-urban assessment of air pollution exposure has become a priority study while international attention was attracted to PM2.5 pollution in China in recent years. Land Use Regression (LUR), which has previously been proved to be a feasible way to describe the relationship between land use and air pollution level in European and American cities, was employed in this paper to explain the correlations and spatial variations in Shanghai, China. PM2.5 and NO2 concentrations at 35-45 monitoring locations were selected as dependent variables, and a total of 44 built environmental factors were extracted as independent variables. Only five factors showed significant explanatory value for both PM2.5 and NO2 models: longitude, distance from monitors to the ocean, highway intensity, waterbody area, and industrial land area for PM2.5 model; residential area, distance to the coast, industrial area, urban district, and highway intensity for NO2 model. Respectively, both PM2.5 and NO2 showed anti-correlation with coastal proximity (an indicator of clean air dilution) and correlation with highway and industrial intensity (source indicators). NO2 also showed significant correlation with local indicators of population density (residential intensity and urban classification), while PM2.5 showed significant correlation with regional dilution (longitude as a indicator of distance from polluted neighbors and local water features). Both adjusted R squared values were strong with PM2.5 (0.88) being higher than NO2 (0.62). The LUR was then used to produce continuous concentration fields for NO2 and PM2.5 to illustrate the features and, potentially, for use by future studies. Comparison to PM2.5 studies in New York and Beijing show that Shanghai PM2.5 pollutant distribution was more sensitive to geographic location and proximity to neighboring regions.

  15. Determination of impact of urbanization on agricultural land and wetland land use in Balçovas' delta by remote sensing and GIS technique.

    PubMed

    Bolca, Mustafa; Turkyilmaz, Bahar; Kurucu, Yusuf; Altinbas, Unal; Esetlili, M Tolga; Gulgun, Bahriye

    2007-08-01

    Because of their intense vegetation and the fact that they include areas of coastline, deltas situated in the vicinity of big cities are areas of greet attraction for people who wish to get away from in a crowded city. However, deltas, with their fertile soil and unique flora and fauna, need to be protected. In order for the use of such areas to be planned in a sustainable way by local authorities, there is a need for detailed data about these regions. In this study, the changes in land use of the Balçova Delta, which is to the immediate west of Turkey's third largest city Izmir, from 1957 up to the present day, were investigated. In the study, using aerial photographs taken in 1957, 1976 and 1995 and an IKONOS satellite image from the year 2005, the natural and cultural characteristics of the region and changes in the coastline were determined spatially. Through this study, which aimed to reveal the characteristics of the areas of land already lost as well as the types of land use in the Balçova delta and to determine geographically the remaining areas in need of protection, local authorities were provided with the required data support. Balçova consists of flat and fertile wetland with mainly citrus-fruit orchards and flower-producing green houses. The marsh and lagoon system situated in the coastal areas of the delta provides a habitat for wild life, in particular birds. In the Balçova Delta, which provides feeding and resting for migratory birds, freshwater sources are of vital importance for fauna and flora. The settlement area, which in 1957 was 182 ha, increased 11-fold up to the year 2005 when it reached 2,141 ha. On the other hand, great losses were determined in farming land, olive groves, forest and in the marsh and lagoon system. This unsystematic and rapid urbanization occurring in the study region is not only causing the loss of important agricultural land and wetland, but also lasting water and soil pollution. PMID:17180418

  16. Use of remotely sensed data for analysis of land-use change in a highly urbanized district of mega city, Istanbul.

    PubMed

    Musaoglu, Nebiye; Gurel, Melike; Ulugtekin, Necla; Tanik, Aysegul; Seker, Dursun Zafer

    2006-01-01

    The study forms an example on monitoring and understanding urban dynamics by using remotely sensed data. The selected region is a rapidly urbanizing district of the mega city Istanbul, Gaziosmanpasa, whose population has almost doubled between years 1990 and 2000. The significance of this district besides its urban sprawl is that 61% of its land lies within the boundaries of an important drinking water reservoir watershed of the mega city, the Alibeykoy Reservoir. The land-use/cover changes that has occurred in the years of 1987 and 2001 are analyzed by utilizing a variety of data sources including satellite images (Landsat TM image of September 1987 and Landsat ETM+ image of May 2001), aerial photographs, orthophoto maps, standard 1:25000 scale topographic maps, and various thematic maps together with ground survey. Land-use changes are analyzed on the basis of protection zones of the reservoir watershed and the conversion of bare land and forests to settlements are clearly observed despite the national regulation on watershed protection. The decline of forests within the protection zones was from 69% to 63.6% whereas the increase in settlements was from 0.8% to 3.9%. The associated impact of establishing new residential sites with insufficient infrastructure is then linked with the water quality of the reservoir that has already reached to Class III characteristics regarding the recently revised national legislation stating that any class exceeding Class II cannot be used as a drinking water supply that in turn, had consequences on regulating the water services such as upgrading the existing water treatment plant. The paper aims to help the managers, decision-makers and urban planners by informing them of the past and current land-use/cover changes, to influence the cessation of illegal urbanization through suitable decision-making and environmental policy that adhere to sustainable resource use.

  17. The legacy of land-use is revealed in the biogeochemistry of urban streams - 3-4-2014

    EPA Science Inventory

    Urban streams are among the most profoundly impacted aquatic ecosystems, characterized by altered hydrology or burial, increased sediment input, and myriad pollutants. We present results from a series of urban stream studies that revealed unique geochemical and biochemical patte...

  18. Development of a modular streamflow model to quantify runoff contributions from different land uses in tropical urban environments using Genetic Programming

    NASA Astrophysics Data System (ADS)

    Meshgi, Ali; Schmitter, Petra; Chui, Ting Fong May; Babovic, Vladan

    2015-06-01

    The decrease of pervious areas during urbanization has severely altered the hydrological cycle, diminishing infiltration and therefore sub-surface flows during rainfall events, and further increasing peak discharges in urban drainage infrastructure. Designing appropriate waster sensitive infrastructure that reduces peak discharges requires a better understanding of land use specific contributions towards surface and sub-surface processes. However, to date, such understanding in tropical urban environments is still limited. On the other hand, the rainfall-runoff process in tropical urban systems experiences a high degree of non-linearity and heterogeneity. Therefore, this study used Genetic Programming to establish a physically interpretable modular model consisting of two sub-models: (i) a baseflow module and (ii) a quick flow module to simulate the two hydrograph flow components. The relationship between the input variables in the model (i.e. meteorological data and catchment initial conditions) and its overall structure can be explained in terms of catchment hydrological processes. Therefore, the model is a partial greying of what is often a black-box approach in catchment modelling. The model was further generalized to the sub-catchments of the main catchment, extending the potential for more widespread applications. Subsequently, this study used the modular model to predict both flow components of events as well as time series, and applied optimization techniques to estimate the contributions of various land uses (i.e. impervious, steep grassland, grassland on mild slope, mixed grasses and trees and relatively natural vegetation) towards baseflow and quickflow in tropical urban systems. The sub-catchment containing the highest portion of impervious surfaces (40% of the area) contributed the least towards the baseflow (6.3%) while the sub-catchment covered with 87% of relatively natural vegetation contributed the most (34.9%). The results from the quickflow

  19. Vegetation cover and land use impacts on soil water repellency in an Urban Park located in Vilnius, Lithuania

    NASA Astrophysics Data System (ADS)

    Pereira, Paulo; Cerda, Artemi

    2015-04-01

    It is strongly recognized that vegetation cover, land use have important impacts on the degree of soil water repellency (SWR). Soil water repellency is a natural property of soils, but can be induced by natural and anthropogenic disturbances as fire and soil tillage (Doerr et al., 2000; Urbanek et al., 2007; Mataix-Solera et al., 2014). Urban parks are areas where soils have a strong human impact, with implications on their hydrological properties. The aim of this work is to study the impact of different vegetations cover and urban soils impact on SWR and the relation to other soil variables as pH, Electrical Conductivity (EC) and soil organic matter (SOM) in an urban park. The study area is located in Vilnius city (54°.68' N, 25°.25' E). It was collected 15 soil samples under different vegetation cover as Pine (Pinus Sylvestris), Birch (Alnus glutinosa), Penduculate Oak (Quercus robur), Platanus (Platanus orientalis) and other human disturbed areas as forest trails and soils collected from human planted grass. Soils were taken to the laboratory, air-dried at room temperature and sieved with the <2 mm mesh in order to remove the coarse material. Subsequently were placed in petri dishes and exposed to a controlled laboratory environment (temperature of 20C and 50% of air relative humidity) for one week to avoid potential impacts of the atmospheric conditions on SWR (Doerr, 1998). The persistence of SWR was measured using the water drop penetration time (WDPT) (Wessel, 1998). The classification of WDPT was according to Bisdom et al. (1993) <5 (wettable), 5-60 (slightly water repellent), 60-600 (strongly water repellent), 600-3600 (severely water repellent) and >3600 (extremely water repellent). The results showed significant differences among the different vegetation cover (Kruskal-Wallis H=20.64, p<0.001). The WDPT soil median values collected under Pine, Birch, Penduculate Oak, forest trails and soils from planted grass were significantly higher than Platanus

  20. Separation of land-use change induced signals from noise by means of evaluating perturbed RCM ensembles: Assessing the potential impacts of urbanization and deforestation in Central Vietnam

    NASA Astrophysics Data System (ADS)

    Laux, Patrick; Nguyen, Phuong N. B.; Cullmann, Johannes; Kunstmann, Harald

    2016-04-01

    Regional climate models (RCMs) comprise both terrestrial and atmospheric compartments and thereby allowing to study land atmosphere feedbacks, and in particular the land-use and climate change impacts. In this study, a methodological framework is developed to separate the land use change induced signals in RCM simulations from noise caused by perturbed initial boundary conditions. The framework is applied for two different case studies in SE Asia, i.e. an urbanization and a deforestation scenario, which are implemented into the Weather Research and Forecasting (WRF) model. The urbanization scenario is produced for Da Nang, one of the fastest growing cities in Central Vietnam, by converting the land-use in a 20 km, 14 km, and 9 km radius around the Da Nang meteorological station systematically from cropland to urban. Likewise, three deforestation scenarios are derived for Nong Son (Central Vietnam). Based on WRF ensemble simulations with perturbed initial conditions for 2010, the signal to-noise ratio (SNR) is calculated to identify areas with pronounced signals induced by LULCC. While clear and significant signals are found for air temperature, latent and sensible heat flux in the urbanization scenario (SNR values up to 24), the signals are not pronounced for deforestation (SNR values < 1). Albeit statistically significant signals are found for precipitation, low SNR values hinder scientifically sound inferences for climate change adaptation options. It is demonstrated that ensemble simulations with more than at least 5 ensemble members are required to derive robust LULCC adaptation strategies, particularly if precipitation is considered. This is rarely done in practice, thus potentially leading to erroneous estimates of the LULCC induced signals of water and energy fluxes, which are propagated through the regional climate - hydrological model modeling chains, and finally leading to unfavorable decision support.

  1. Analysis of impacts of urban land use and land cover on air quality in the Las Vegas region using remote sensing information and ground observations

    USGS Publications Warehouse

    Xian, G.

    2007-01-01

    Urban development in the Las Vegas Valley of Nevada (USA) has expanded rapidly over the past 50 years. The air quality in the valley has suffered owing to increases from anthropogenic emissions of carbon monoxide, ozone and criteria pollutants of particular matter. Air quality observations show that pollutant concentrations have apparent heterogeneous characteristics in the urban area. Quantified urban land use and land cover information derived from satellite remote sensing data indicate an apparent local influence of urban development density on air pollutant distributions. Multi-year observational data collected by a network of local air monitoring stations specify that ozone maximums develop in the May and June timeframe, whereas minimum concentrations generally occur from November to February. The fine particulate matter maximum occurs in July. Ozone concentrations are highest on the west and northwest sides of the valley. Night-time ozone reduction contributes to the heterogeneous features of the spatial distribution for average ozone levels in the Las Vegas metropolitan area. Decreased ozone levels associated with increased urban development density suggest that the highest ozone and lowest nitrogen oxides concentrations are associated with medium to low density urban development in Las Vegas.

  2. The Application of Satellite-Derived, High-Resolution Land Use/Land Cover Data to Improve Urban Air Quality Model Forecasts

    NASA Technical Reports Server (NTRS)

    Quattrochi, D. A.; Lapenta, W. M.; Crosson, W. L.; Estes, M. G., Jr.; Limaye, A.; Kahn, M.

    2006-01-01

    Local and state agencies are responsible for developing state implementation plans to meet National Ambient Air Quality Standards. Numerical models used for this purpose simulate the transport and transformation of criteria pollutants and their precursors. The specification of land use/land cover (LULC) plays an important role in controlling modeled surface meteorology and emissions. NASA researchers have worked with partners and Atlanta stakeholders to incorporate an improved high-resolution LULC dataset for the Atlanta area within their modeling system and to assess meteorological and air quality impacts of Urban Heat Island (UHI) mitigation strategies. The new LULC dataset provides a more accurate representation of land use, has the potential to improve model accuracy, and facilitates prediction of LULC changes. Use of the new LULC dataset for two summertime episodes improved meteorological forecasts, with an existing daytime cold bias of approx. equal to 3 C reduced by 30%. Model performance for ozone prediction did not show improvement. In addition, LULC changes due to Atlanta area urbanization were predicted through 2030, for which model simulations predict higher urban air temperatures. The incorporation of UHI mitigation strategies partially offset this warming trend. The data and modeling methods used are generally applicable to other U.S. cities.

  3. Evaluating the effect of land use land cover change in a rapidly urbanizing semi-arid watershed on estuarine freshwater inflows

    NASA Astrophysics Data System (ADS)

    Sahoo, D.; Smith, P.; Popescu, S.

    2006-12-01

    Estuarine freshwater inflows along with their associated nutrient and metal delivery are influenced by the land use/land cover (LULC) and water management practices in the contributing watershed. This study evaluates the effect of rapid urbanization in the San Antonio River Watershed on the amount of freshwater inflow reaching the San Antonio-Guadalupe estuary on the Gulf Coast of Texas. Remotely sensed data from satellite imagery provided a source of reliable data for land use classification and land cover change analysis; while long time series of the geophysical signals of stream flow and precipitation provided the data needed to assess change in flow in the watershed. LULC was determined using LANDSAT (5 TM and 7 ETM) satellite images over 20 years (1985-2003). The LANDSAT images were classified using an ENVI. ISODATA classification scheme. Changes were quantified in terms of the urban expansion that had occurred in past 20 years using an urban index. Streamflow was analyzed using 20 years (1985-2004) of average daily discharge obtained from the USGS gauging station (08188500) closest to the headwaters of the estuary. Baseflow and storm flow were partitioned from total flow using a universally used baseflow separation technique. Precipitation data was obtained from an NCDC station in the watershed. Preliminary results indicate that the most significant change in land use over the 20 year period was an increase in the total amount of impervious area in the watershed. This increase in impervious area was accompanied by an increase in both total streamflow and in baseflow over the same period. The investigation did not show a significant change in total annual precipitation from 1990 to 2004. This suggests that the increase in streamflow was more influenced by LULC than climate change. One explanation for the increase in baseflow may be an increase in return flows resulting from an increase in the total number of wastewater treatment plants in the watershed.

  4. Assessing the effects of land use spatial structure on urban heat islands using HJ-1B remote sensing imagery in Wuhan, China

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Ye, Lu-Ping; Shi, Wen-Zhong; Clarke, Keith C.

    2014-10-01

    Urban heat islands (UHIs) have attracted attention around the world because they profoundly affect biological diversity and human life. Assessing the effects of the spatial structure of land use on UHIs is essential to better understanding and improving the ecological consequences of urbanization. This paper presents the radius fractal dimension to quantify the spatial variation of different land use types around the hot centers. By integrating remote sensing images from the newly launched HJ-1B satellite system, vegetation indexes, landscape metrics and fractal dimension, the effects of land use patterns on the urban thermal environment in Wuhan were comprehensively explored. The vegetation indexes and landscape metrics of the HJ-1B and other remote sensing satellites were compared and analyzed to validate the performance of the HJ-1B. The results have showed that land surface temperature (LST) is negatively related to only positive normalized difference vegetation index (NDVI) but to Fv across the entire range of values, which indicates that fractional vegetation (Fv) is an appropriate predictor of LST more than NDVI in forest areas. Furthermore, the mean LST is highly correlated with four class-based metrics and three landscape-based metrics, which suggests that the landscape composition and the spatial configuration both influence UHIs. All of them demonstrate that the HJ-1B satellite has a comparable capacity for UHI studies as other commonly used remote sensing satellites. The results of the fractal analysis show that the density of built-up areas sharply decreases from the hot centers to the edges of these areas, while the densities of water, forest and cropland increase. These relationships reveal that water, like forest and cropland, has a significant effect in mitigating UHIs in Wuhan due to its large spatial extent and homogeneous spatial distribution. These findings not only confirm the applicability and effectiveness of the HJ-1B satellite system for

  5. Relation of Environmental characteristics to the composition of aquatic assemblages along a gradient of urban land use in New Jersey, 1996-98

    USGS Publications Warehouse

    Kennen, Jonathan G.; Ayers, Mark A.

    2002-01-01

    Community data from 36 watersheds were used to evaluate the response of fish, invertebrate, and algal assemblages in New Jersey streams to environmental characteristics along a gradient of urban land use that ranged from 3 to 96 percent. Aquatic assemblages were sampled at 36 sites during 1996-98, and more than 400 environmental attributes at multiple spatial scales were summarized. Data matrices were reduced to 43, 170, and 103 species of fish, invertebrates, and algae, respectively, by means of a predetermined joint frequency and relative abundance approach. White sucker (Catostomus commersoni) and Tessellated darter (Etheostoma olmstedi) were the most abundant fishes, accounting for more than 20 and 17 percent, respectively, of the mean abundance. Net-spinning caddisflies (Hydropsychidae) were the most commonly occurring benthic invertebrates and were found at all but one of the 36 sampling sites. Blue-green (for example, Calothrix sp. and Oscillatoria sp.) and green (for example, Protoderma viride) algae were the most widely distrib-uted algae; however, more than 81 percent of the algal taxa collected were diatoms. Principal-component and correlation analyses were used to reduce the dimensionality of the environmental data. Multiple linear regression analysis of extracted ordination axes then was used to develop models that expressed effects of increasing urban land use on the structure of aquatic assemblages. Significant environmental variables identified by using multiple linear regression analysis then were included in a direct gradient analysis. Partial canonical correspondence analysis of relativized abundance data was used to restrict further the effects of residual natural variability, and to identify relations among the environmental variables and the structure of fish, invertebrate, and algal assemblages along an urban land-use gradient. Results of this approach, combined with the results of the multiple linear regression analyses, were used to

  6. Fish assemblage responses to urban intensity gradients in contrasting metropolitan areas: Birmingham, Alabama and Boston, Massachusetts

    USGS Publications Warehouse

    Meador, M.R.; Coles, J.F.; Zappia, H.

    2005-01-01

    We examined fish assemblage responses to urban intensify gradients in two contrasting metropolitan areas: Birmingham, Alabama (BIR) and Boston, Massachusetts (BOS). Urbanization was quantified by using an urban intensity index (UII) that included multiple stream buffers and basin land uses, human population density, and road density variables. We evaluated fish assemblage responses by using species richness metrics and detrended correspondence analyses (DCA). Fish species richness metrics included total fish species richness, and percentages of endemic species richness, alien species, and fluvial specialist species. Fish species richness decreased significantly with increasing urbanization in BIR (r = -0.82, P = 0.001) and BOS (r = -0.48, P = 0.008). Percentages of endemic species richness decreased significantly with increasing urbanization only in BIR (r = - 0.71, P = 0.001), whereas percentages of fluvial specialist species decreased significantly with increasing urbanization only in BOS (r = -0.56, P = 0.002). Our DCA results for BIR indicate that highly urbanized fish assemblages are composed primarily of largescale stoneroller Campostoma oligolepis, largemouth bass Micropterus salmoides, and creek chub Semotilus atromaculatus, whereas the highly urbanized fish assemblages in BOS are dominated by yellow perch Perca flavescens, bluegill Lefomis macrochirus, yellow bullhead Ameiurus natalis, largemouth bass, pumpkinseed L. gibbosus, brown bullhead A. nebulosus, and redfin pickerel Esox americanus. Differences in fish assemblage responses to urbanization between the two areas appear to be related to differences in nutrient enrichment, habitat alterations, and invasive species. Because species richness can increase or decrease with increasing urbanization, a general response model is not applicable. Instead, response models based on species' life histories, behavior, and autecologies offer greater potential for understanding fish assemblage responses to

  7. Detailed climate-change projections for urban land-use change and green-house gas increases for Belgium with COSMO-CLM coupled to TERRA_URB

    NASA Astrophysics Data System (ADS)

    Wouters, Hendrik; Vanden Broucke, Sam; van Lipzig, Nicole; Demuzere, Matthias

    2016-04-01

    Recent research clearly show that climate modelling at high resolution - which resolve the deep convection, the detailed orography and land-use including urbanization - leads to better modelling performance with respect to temperatures, the boundary-layer, clouds and precipitation. The increasing computational power enables the climate research community to address climate-change projections with higher accuracy and much more detail. In the framework of the CORDEX.be project aiming for coherent high-resolution micro-ensemble projections for Belgium employing different GCMs and RCMs, the KU Leuven contributes by means of the downscaling of EC-EARTH global climate model projections (provided by the Royal Meteorological Institute of the Netherlands) to the Belgian domain. The downscaling is obtained with regional climate simulations at 12.5km resolution over Europe (CORDEX-EU domain) and at 2.8km resolution over Belgium (CORDEX.be domain) using COSMO-CLM coupled to urban land-surface parametrization TERRA_URB. This is done for the present-day (1975-2005) and future (2040 → 2070 and 2070 → 2100). In these high-resolution runs, both GHG changes (in accordance to RCP8.5) and urban land-use changes (in accordance to a business-as-usual urban expansion scenario) are taken into account. Based on these simulations, it is shown how climate-change statistics are modified when going from coarse resolution modelling to high-resolution modelling. The climate-change statistics of particular interest are the changes in number of extreme precipitation events and extreme heat waves in cities. Hereby, it is futher investigated for the robustness of the signal change between the course and high-resolution and whether a (statistical) translation is possible. The different simulations also allow to address the relative impact and synergy between the urban expansion and increased GHG on the climate-change statistics. Hereby, it is investigated for which climate-change statistics the

  8. Application of satellite and GIS technologies for land-cover and land-use mapping at the rural-urban fringe - A case study

    SciTech Connect

    Treitz, P.M.; Howarth, P.J.; Gong, Peng )

    1992-04-01

    SPOT HRV multispectral and panchromatic data were recorded and coregistered for a portion of the rural-urban fringe of Toronto, Canada. A two-stage digital analysis algorithm incorporating a spectral-class frequency-based contextual classification of eight land-cover and land-use classes resulted in an overall Kappa coefficient of 82.2 percent for training-area data and a Kappa coefficient of 70.3 percent for test-area data. A matrix-overlay analysis was then performed within the geographic information system (GIS) to combine the land-cover and land-use classes generated from the SPOT digital classification with zoning information for the area. The map that was produced has an estimated interpretation accuracy of 78 percent. Global Positioning System (GPS) data provided a positional reference for new road networks. These networks, in addition to the new land-cover and land-use map derived from the SPOT HRV data, provide an up-to-date synthesis of change conditions in the area. 51 refs.

  9. Relation of urban land-use and dry-weather storm and snowmelt flow characteristics to stream-water quality, Shunganunga Creek basin, Topeka, Kansas

    USGS Publications Warehouse

    Pope, L.M.; Bevans, H.E.

    1984-01-01

    Water-quality characteristics of streams draining Topeka, Kansas , and the Shunganunga Creek basin were investigated from October , 1979, through November 1981, to determine the effects of runoff from urban areas. Characteristics were determined at six sites and summarized statistically for three streamflow conditions-dry weather, storm, and snowmelt. Median concentrations of trace metals and nutrients were greater in storm streamflow than in dry-weather streamflow. Regression equations were developed to estimate median concentrations of total lead and zinc in storm streamflow from the percentage of drainage area in residential plus commercial land-use areas and from street density. Median concentrations of dissolved sodium, chloride, and solids were considerably greater in snowmelt streamflow than in dry-weather streamflow. Regression equations were also developed to estimate median concentrations of dissolved sodium, chloride, and solids from the summation of percentages of the drainage area in residential, commercial, and industrial land-use areas and from street density. Multiple-regression analysis relating storm-runoff volumes and average constituent concentrations to land-use and storm charactersitcs produced significant relations for storm-runoff volume, total lead, total zinc, and suspended sediment. (USGS)

  10. SPATIAL ANALYSIS OF AIR POLLUTION AND DEVELOPMENT OF A LAND-USE REGRESSION ( LUR ) MODEL IN AN URBAN AIRSHED

    EPA Science Inventory

    The Detroit Children's Health Study is an epidemiologic study examining associations between chronic ambient environmental exposures to gaseous air pollutants and respiratory health outcomes among elementary school-age children in an urban airshed. The exposure component of this...

  11. The Land Use and Land Cover Dichotomy: A Comparison of Two Land Classification Systems in Support of Urban Earth Science Applications

    NASA Technical Reports Server (NTRS)

    McAllister, William K.

    2003-01-01

    One is likely to read the terms 'land use' and 'land cover' in the same sentence, yet these concepts have different origins and different applications. Land cover is typically analyzed by earth scientists working with remotely sensed images. Land use is typically studied by urban planners who must prescribe solutions that could prevent future problems. This apparent dichotomy has led to different classification systems for land-based data. The works of earth scientists and urban planning practitioners are beginning to come together in the field of spatial analysis and in their common use of new spatial analysis technology. In this context, the technology can stimulate a common 'language' that allows a broader sharing of ideas. The increasing amount of land use and land cover change challenges the various efforts to classify in ways that are efficient, effective, and agreeable to all groups of users. If land cover and land uses can be identified by remote methods using aerial photography and satellites, then these ways are more efficient than field surveys of the same area. New technology, such as high-resolution satellite sensors, and new methods, such as more refined algorithms for image interpretation, are providing refined data to better identify the actual cover and apparent use of land, thus effectiveness is improved. However, the closer together and the more vertical the land uses are, the more difficult the task of identification is, and the greater is the need to supplement remotely sensed data with field study (in situ). Thus, a number of land classification methods were developed in order to organize the greatly expanding volume of data on land characteristics in ways useful to different groups. This paper distinguishes two land based classification systems, one developed primarily for remotely sensed data, and the other, a more comprehensive system requiring in situ collection methods. The intent is to look at how the two systems developed and how they

  12. Effects of urban land-use change in East China on the East Asian summer monsoon based on the CAM5.1 model

    NASA Astrophysics Data System (ADS)

    Ma, Hongyun; Jiang, Zhihong; Song, Jie; Dai, Aiguo; Yang, Xiuqun; Huo, Fei

    2016-05-01

    The effects of urban land-use change in East China on the East Asian summer monsoon (EASM) are investigated using a Community Atmosphere Model Version 5.1. The results show that the urban land-use change in East China causes spatially-varying changes in surface net radiation and heat fluxes, atmospheric circulation, and water budgets. It results in significant surface warming (cooling) and precipitation decrease (increase) in a large region north (south) of 30°N. Urban expansion agglomerated in (29°-41°N, 110°-122°E) alters the surface energy budget and warms the surface, resulting in strengthened southwesterly airflow south of 25°N and increased convergence below the mid-troposphere between 20° and 30°N. A concomitant northward downdraft associated with the increased convection generates an anomalous high pressure north of 30°N. Meanwhile, the downdraft not only produces adiabatic warming but also inhibits the dynamic condition for precipitation formation. The anomalous high pressure formed in North China prevents the southwesterly airflow from advancing northward, leading to increase the convergence and precipitation in South China. These changes reduce the meridional temperature gradient in the mid-lower troposphere and weaken the westerly airflow near 30°N. In addition, horizontal transport of vorticity north of 35°N weakens significantly, which leads to an anomalous barotropic structure of anticyclonic there. As a result, the anomalous anticyclonic circulation and descent north of 30°N are strengthened. At the same time, the anomalous cyclonic circulation and ascent south of 30°N are enhanced. These process induced by the thermal state changes due to urbanization weakens the EASM.

  13. Effects of land use, topography and socio-economic factors on river water quality in a mountainous watershed with intensive agricultural production in East china.

    PubMed

    Chen, Jiabo; Lu, Jun

    2014-01-01

    Understanding the primary effects of anthropogenic activities and natural factors on river water quality is important in the study and efficient management of water resources. In this study, analysis of Variance (ANOVA), Principal component analysis (PCA), Pearson correlations, Multiple regression analysis (MRA) and Redundancy analysis (RDA) were applied as an integrated approach in a GIS environment to explore the temporal and spatial variations in river water quality and to estimate the influence of watershed land use, topography and socio-economic factors on river water quality based on 3 years of water quality monitoring data for the Cao-E River system. The statistical analysis revealed that TN, pH and temperature were generally higher in the rainy season, whereas BOD5, DO and turbidity were higher in the dry season. Spatial variations in river water quality were related to numerous anthropogenic and natural factors. Urban land use was found to be the most important explanatory variable for BOD5, CODMn, TN, DN, NH4+-N, NO3--N, DO, pH and TP. The animal husbandry output per capita was an important predictor of TP and turbidity, and the gross domestic product per capita largely determined spatial variations in EC. The remaining unexplained variance was related to other factors, such as topography. Our results suggested that pollution control of animal waste discharge in rural settlements, agricultural runoff in cropland, industrial production pollution and domestic pollution in urban and industrial areas were important within the Cao-E River basin. Moreover, the percentage of the total overall river water quality variance explained by an individual variable and/or all environmental variables (according to RDA) can assist in quantitatively identifying the primary factors that control pollution at the watershed scale.

  14. Land Use Planning

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Computer technology, aerial photography and space imagery are being combined in a NASA community services program designed to help solve land use and natural resource planning problems. As urban areas grow, so grows the need for comprehensive, up-to-date information on which to base intelligent decisions regarding land use. State and local planners need information such as the nature of urban change, where the changes are occurring, how they affect public safety, transportation, the economy, tax assessment, sewer systems, water quality, flood hazard, noise impact and a great variety of other considerations. Most importantly they need continually updated maps. Preparing timely maps, gathering the essential data and maintaining it in orderly fashion are becoming matters of increasing difficulty. The NASA project, which has nationwide potential for improving efficiency in the planning process, is a pilot program focused on Tacoma, Washington and surrounding Pierce County. Its key element, developed by Jet Propulsion Laboratory (JPL), is a computerized Land Use Management Information System (LUMIS).

  15. Water- and sediment-quality effects on Pimephales promelas spawning vary along an agriculture-to-urban land-use gradient.

    PubMed

    Corsi, Steven R; Klaper, Rebecca D; Weber, Daniel N; Bannerman, Roger T

    2011-10-15

    Many streams in the U.S. are "impaired" due to anthropogenic influence. For watershed managers to achieve practical understanding of these impairments, a multitude of factors must be considered, including point and nonpoint-source influence on water quality. A spawning assay was developed in this study to evaluate water- and sediment-quality effects that influenced Pimephales promelas (fathead minnow) egg production over a gradient of urban and agricultural land use in 27 small watersheds in Eastern Wisconsin. Six pairs of reproducing fathead minnows were contained in separate mesh cartridges within one larger flow-through chamber. Water- and sediment quality were sampled for an array of parameters. Egg production was monitored for each pair providing an assessment of spawning success throughout the 21-day test periods. Incidences of low dissolved oxygen (DO) in many of these streams negatively impacted spawning success. Nine of 27 streams experienced DO less than 3.1mg/L and 15 streams experienced DO less than 4.8mg/L. Low DO was observed in urban and agricultural watersheds, but the upper threshold of minimum DO decreased with increasing urban development. An increase in specific conductance was related to a decrease in spawning success. In previous studies for streams in this region, specific conductance had a linear relation with chloride, suggesting the possibility that chloride could be a factor in egg production. Egg production was lower at sites with substantial urban development, but sites with low egg production were not limited to urban sites. Degradation of water- and sediment-quality parameters with increasing urban development is indicated for multiple parameters while patterns were not detected for others. Results from this study indicate that DO must be a high priority watershed management consideration for this region, specific conductance should be investigated further to determine the mechanism of the relation with egg production, and water- and

  16. Water- and sediment-quality effects on Pimephales promelas spawning vary along an agriculture-to-urban land-use gradient

    USGS Publications Warehouse

    Corsi, S.R.; Klaper, R.D.; Weber, D.N.; Bannerman, R.T.

    2011-01-01

    Many streams in the U.S. are "impaired" due to anthropogenic influence. For watershed managers to achieve practical understanding of these impairments, a multitude of factors must be considered, including point and nonpoint-source influence on water quality. A spawning assay was developed in this study to evaluate water- and sediment-quality effects that influenced Pimephales promelas (fathead minnow) egg production over a gradient of urban and agricultural land use in 27 small watersheds in Eastern Wisconsin. Six pairs of reproducing fathead minnows were contained in separate mesh cartridges within one larger flow-through chamber. Water- and sediment quality were sampled for an array of parameters. Egg production was monitored for each pair providing an assessment of spawning success throughout the 21-day test periods. Incidences of low dissolved oxygen (DO) in many of these streams negatively impacted spawning success. Nine of 27 streams experienced DO less than 3.1. mg/L and 15 streams experienced DO less than 4.8. mg/L. Low DO was observed in urban and agricultural watersheds, but the upper threshold of minimum DO decreased with increasing urban development. An increase in specific conductance was related to a decrease in spawning success. In previous studies for streams in this region, specific conductance had a linear relation with chloride, suggesting the possibility that chloride could be a factor in egg production. Egg production was lower at sites with substantial urban development, but sites with low egg production were not limited to urban sites. Degradation of water- and sediment-quality parameters with increasing urban development is indicated for multiple parameters while patterns were not detected for others. Results from this study indicate that DO must be a high priority watershed management consideration for this region, specific conductance should be investigated further to determine the mechanism of the relation with egg production, and water

  17. Monitoring urban growth and detection of land use with GIS and remote sensing: a case study of the Kyrenia region

    NASA Astrophysics Data System (ADS)

    Kara, Can; Akçit, Nuhcan

    2016-08-01

    Land-cover change is considered one of the central components in current strategies for managing natural resources and monitoring environmental changes. It is important to manage land resources in a sustainable manner which targets at compacting and consolidating urban development. From 2005 to 2015,urban growth in Kyrenia has been quite dramatic, showing a wide and scattered pattern, lacking proper plan. As a result of this unplanned/unorganized expansion, agricultural areas, vegetation and water bodies have been lost in the region. Therefore, it has become a necessity to analyze the results of this urban growth and compare the losses between land-cover changes. With this goal in mind, a case study of Kyrenia region has been carried out using a supervised image classification method and Landsat TM images acquired in 2005 and 2015 to map and extract land-cover changes. This paper tries to assess urban-growth changes detected in the region by using Remote Sensing and GIS. The study monitors the changes between different land cover types. Also, it shows the urban occupation of primary soil loss and the losses in forest areas, open areas, etc.

  18. Visitation and physical activity intensity at rural and urban parks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Less physical activity among rural residents may contribute to rural–urban health disparities. This study compared park visitation and activity intensity at 15 urban and 15 rural parks matched for acreage and amenities. Each park was observed (System for Observing Play and Recreation in Communities...

  19. Concentration patterns of agricultural pesticides and urban biocides in surface waters of a catchment of mixed land use

    NASA Astrophysics Data System (ADS)

    Stamm, C.; Wittmer, I.; Bader, H.-P.; Scheidegger, R.; Alder, A.; Lück, A.; Hanke, I.; Singer, H.

    2009-04-01

    Organic pesticides and biocides that are found in surface waters, can originate from agricultural and urban sources. For a long time, agricultural pesticides have received substantially more attention than biocidal compounds from urban use like material protection or in-can preservatives (cosmetics etc.). Recent studies however revealed that the amounts of urban biocides used may exceed those of agricultural pesticides. This study aims at comparing the input of several important pesticides and biocides into a small Swiss stream with a special focus on loss events triggered by rainfall. A set of 16 substances was selected to represent urban and agricultural sources. The selected substances are either only used as biocides (irgarol, isothiazolinones, IPBC), as pesticides (atrazine, sulcotrione, dichlofluanid, tolylfluanid) or have a mixed use (isoproturon, terbutryn, terbutylazine, mecoprop, diazinon, carbendazim) The study catchment has an area of 25 km2 and is inhabited by about 12'000 people. Four sampling sites were selected in the river system in order to reflect different urban and agricultural sources. Additionally, we sampled a combined sewer overflow, a rain sewer and the outflow of a wastewater treatment plant. At each site discharge was measured continuously from March to November 2007. During 16 rain events samples were taken by automatic devices at a high temporal resolution. The results, based on more than 500 analyzed samples, revealed distinct concentration patterns for different compounds and sources. Agricultural pesticides exhibited a strong seasonality as expected based on the application periods. During the first one or two rain events after application the concentrations reached up to several thousand ng/l during peak flow (atrazine, isoproturon). The temporal patterns of urban biocides were more diverse. Some compounds obviously stem from permanent sources independent of rainfall because they were found mostly in the outlet of the wastewater

  20. A two-sector model of land use and deforestation: Funding urban development with a tax on urban and rural employment

    SciTech Connect

    Jones, D.W.; O`Neill, R.V.

    1992-07-17

    We model a small country with an urban manufacturing sector and a rural agricultural sector. Government taxes rural and urban employment to finance urban infrastructure which contributes to urban production. The manufacturing wage is fixed, leading to urban unemployment. Expansion of cultivated area involves deforestation at frontiers. An increment to urban infrastructure may draw resources into the city but a large enough addition to infrastructure may cause the tax rate to rise by more than urban labor productivity, which would exacerbate frontier deforestation. Improvement of rural transportation raises rural wages, reduces the urban unemployment rate, and extends the area under cultivation, causing deforestation; it also reduces the employment tax rate, which permits expansion of fixed-wage urban manufacturing. Such a wide, sectoral distribution of benefits may help explain the popularity of such policies despite their damage to frontier forest resources.

  1. Facing the Urban Challenge: Reimagining Land Use in America's Distressed Older Cities--The Federal Policy Role

    ERIC Educational Resources Information Center

    Mallach, Alan

    2010-01-01

    The end of World War II heralded an era of urban disinvestment in the United States. While some cities began to rebound in the 1990s with population and economic growth, others--including large cities like Detroit, Cleveland, and St. Louis as well as many smaller cities and towns--did not, and have continued to decline. As these communities…

  2. Evaluating the effects of urbanization and land-use planning using ground-water and surface-water models

    USGS Publications Warehouse

    Hunt, R.J.; Steuer, J.J.

    2001-01-01

    Why are the effects of urbanization a concern? As the city of Middleton, Wisconsin, and its surroundings continue to develop, the Pheasant Branch watershed (fig.l) is expected to undergo urbanization. For the downstream city of Middleton, urbanization in the watershed can mean increased flood peaks, water volume and pollutant loads. More subtly, it may also reduce water that sustains the ground-water system (called "recharge") and adversely affect downstream ecosystems that depend on ground water such as the Pheasant Branch Springs (hereafter referred to as the Springs). The relation of stormwater runoff and reduced ground-water recharge is complex because the surface-water system is coupled to the underlying ground-water system. In many cases there is movement of water from one system to the other that varies seasonally or daily depending on changing conditions. Therefore, it is difficult to reliably determine the effects of urbanization on stream baseflow and spring flows without rigorous investigation. Moreover, mitigating adverse effects after development has occurred can be expensive and administratively difficult. Overlying these concerns are issues such as stewardship of the resource, the rights of the public, and land owners' rights both of those developing their land and those whose land is affected by this development. With the often- contradictory goals, a scientific basis for assessing effects of urbanization and effectiveness of mitigation measures helps ensure fair and constructive decision-making. The U.S. Geological Survey, in cooperation with the City of Middleton and Wisconsin Department of Natural Resources, completed a study that helps address these issues through modeling of the hydrologic system. This Fact Sheet discusses the results of this work.

  3. Spatial distribution of pH and organic matter in urban soils and its implications on site-specific land uses in Xuzhou, China.

    PubMed

    Mao, Yingming; Sang, Shuxun; Liu, Shiqi; Jia, Jinlong

    2014-05-01

    The spatial variation of soil pH and soil organic matter (SOM) in the urban area of Xuzhou, China, was investigated in this study. Conventional statistics, geostatistics, and a geographical information system (GIS) were used to produce spatial distribution maps and to provide information about land use types. A total of 172 soil samples were collected based on grid method in the study area. Soil pH ranged from 6.47 to 8.48, with an average of 7.62. SOM content was very variable, ranging from 3.51 g/kg to 17.12 g/kg, with an average of 8.26 g/kg. Soil pH followed a normal distribution, while SOM followed a log-normal distribution. The results of semi-variograms indicated that soil pH and SOM had strong (21%) and moderate (44%) spatial dependence, respectively. The variogram model was spherical for soil pH and exponential for SOM. The spatial distribution maps were achieved using kriging interpolation. The high pH and high SOM tended to occur in the mixed forest land cover areas such as those in the southwestern part of the urban area, while the low values were found in the eastern and the northern parts, probably due to the effect of industrial and human activities. In the central urban area, the soil pH was low, but the SOM content was high, which is mainly attributed to the disturbance of regional resident activities and urban transportation. Furthermore, anthropogenic organic particles are possible sources of organic matter after entering the soil ecosystem in urban areas. These maps provide useful information for urban planning and environmental management. PMID:24841960

  4. Developing a framework to assess the water quality and quantity impacts of climate change, shifting land use, and urbanization in a Midwestern agricultural landscape

    NASA Astrophysics Data System (ADS)

    Loheide, S. P.; Booth, E. G.; Kucharik, C. J.; Carpenter, S. R.; Gries, C.; Katt-Reinders, E.; Rissman, A. R.; Turner, M. G.

    2011-12-01

    Dynamic hydrological processes play a critical role in the structure and functioning of agricultural watersheds undergoing urbanization. Developing a predictive understanding of the complex interaction between agricultural productivity, ecosystem health, water quality, urban development, and public policy requires an interdisciplinary effort that investigates the important biophysical and social processes of the system. Our research group has initiated such a framework that includes a coordinated program of integrated scenarios, model experiments to assess the effects of changing drivers on a broad set of ecosystem services, evaluations of governance and leverage points, outreach and public engagement, and information management. Our geographic focus is the Yahara River watershed in south-central Wisconsin, which is an exemplar of water-related issues in the Upper Midwest. This research addresses three specific questions. 1) How do different patterns of land use, land cover, land management, and water resources engineering practices affect the resilience and sensitivity of ecosystem services under a changing climate? 2) How can regional governance systems for water and land use be made more resilient and adaptive to meet diverse human needs? 3) In what ways are regional human-environment systems resilient and in what ways are they vulnerable to potential changes in climate and water resources? A comprehensive program of model experiments and biophysical measurements will be utilized to evaluate changes in five freshwater ecosystem services (flood regulation, groundwater recharge, surface water quality, groundwater quality, and lake recreation) and five related ecosystem services (food crop yields, bioenergy crop yields, carbon storage in soil, albedo, and terrestrial recreation). Novel additions to existing biophysical models will allow us to simulate all components of the hydrological cycle as well as agricultural productivity, nitrogen and phosphorus transport

  5. Determination of the effects of temporal change in urban and agricultural land uses as seen in the example of the town of Akhisar, using remote sensing techniques.

    PubMed

    Gulgun, Bahriye; Yörük, Ismail; Turkyilmaz, Bahar; Bolca, Mustafa; Güneş, Asli

    2009-03-01

    Today, as a result of erratic and unplanned urbanization, towns are rapidly becoming a mass of concrete and town-dwellers are suffocated by their busy and stressful professional lives. They feel a need for places where they can find breathing-space in their free time. Green areas within towns are important spaces where townspeople are able to carry out recreational activities. These places form a link between townspeople and nature. The importance of urban green areas is increasing with every passing day due to their social, psychological, ecological, physical and economic functions and their impact on the quality of towns. In this study it has been attempted to demonstrate the pressures of urban development on agricultural land by determining the changing land use situation over the years in the district of Akhisar. In this research, an aerial photograph from year 1939 and satellite images of the town from the years 2000 and 2007 were used. Land use changes in the region were determined spatially. As a result of this study, which aims to determine in which direction urbanization is progressing in the district, the importance of town planning emerges. This study will be informative for the local authorities in their future town planning projects. With its flat and almost flat fertile arable land, the district of Akhisar occupies an important position within the province of Manisa. From the point of view of olive production the region is one of Turkey's important centres. Fifty-five percent of the olive production in the province of Manisa is realized in Akhisar. However, the results of the present study show that while agricultural areas comprised 2.5805 km(2) in 1939, these had diminished to 1.5146 km(2) in the year 2000 and had diminished to 1.0762 km(2) in the year 2007 and residential area (dense) 0.449 km(2) occupied in 1939, in the year 2000 this had risen to 1.9472 and 2.3238 km(2) in the year 2007. This planless urbanization in the study area has led to

  6. Catchment export of carbon, nitrogen, and phosphorus across an agro-urban land use gradient, Swan-Canning River system, southwestern Australia

    NASA Astrophysics Data System (ADS)

    Petrone, Kevin C.

    2010-03-01

    Coastal regions in many regions of the world are under increasing pressure from the expansion of agriculture and urbanization associated with elevated N and P loading and eutrophication of coastal estuaries. I compared how mixed land use catchments deliver dissolved and particulate forms of C, N, and P in streamflow to the Swan-Canning estuary that bisects Perth, Western Australia. Dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) composed the majority of the total C and N load, particulate C and N fluxes were minor, and P fluxes were evenly split between soluble reactive phosphorus and particulate/organic P. In contrast to current biogeochemical theory, DON export was dominant in urban and agricultural catchments in the low-gradient environment of the Swan Coastal Plain, whereas NO3 export was a greater factor in higher-gradient, forested catchments on the urban fringe. This trend suggests that hydrologic conditions that supported coastal wetlands prior to human development may still promote DON mobilization as well as dissolved inorganic nitrogen loss along hydrologic flow paths. Substantial variability in export of C, N, and P across catchments highlights the unique hydrologic properties of Australian catchments. Areal C, N, and P export was significantly related to catchment runoff which was lowest in a catchment with inland drainage, but greatest in urban catchments with impervious surfaces and shallow groundwater. The effective delivery of DOC and DON to aquatic ecosystems in urbanizing coastal catchments underscores the importance of restoration efforts that address hydrologic retention as well as the source and bioavailability of dissolved organic matter.

  7. Developing Street-Level PM2.5 and PM10 Land Use Regression Models in High-Density Hong Kong with Urban Morphological Factors.

    PubMed

    Shi, Yuan; Lau, Kevin Ka-Lun; Ng, Edward

    2016-08-01

    Monitoring street-level particulates is essential to air quality management but challenging in high-density Hong Kong due to limitations in local monitoring network and the complexities of street environment. By employing vehicle-based mobile measurements, land use regression (LUR) models were developed to estimate the spatial variation of PM2.5 and PM10 in the downtown area of Hong Kong. Sampling runs were conducted along routes measuring a total of 30 km during a selected measurement period of total 14 days. In total, 321 independent variables were examined to develop LUR models by using stepwise regression with PM2.5 and PM10 as dependent variables. Approximately, 10% increases in the model adjusted R(2) were achieved by integrating urban/building morphology as independent variables into the LUR models. Resultant LUR models show that the most decisive factors on street-level air quality in Hong Kong are frontal area index, an urban/building morphological parameter, and road network line density and traffic volume, two parameters of road traffic. The adjusted R(2) of the final LUR models of PM2.5 and PM10 are 0.633 and 0.707, respectively. These results indicate that urban morphology is more decisive to the street-level air quality in high-density cities than other cities. Air pollution hotspots were also identified based on the LUR mapping. PMID:27381187

  8. Human lead (Pb) exposure via dust from different land use settings of Pakistan: A case study from two urban mountainous cities.

    PubMed

    Eqani, Syed Ali Musstjab Akber Shah; Khalid, Ramsha; Bostan, Nazish; Saqib, Zafeer; Mohmand, Jawad; Rehan, Mohammad; Ali, Nadeem; Katsoyiannis, Ioannis A; Shen, Heqing

    2016-07-01

    The current study aims to determine the dust-borne lead (Pb) levels into outdoor dust, which were collected from the areas nearby the cities/districts of Islamabad and Swat in Pakistan. In general dust samples from all land use settings (industrial, urban and rural) showed significantly higher (p<0.05) Pb-levels (median, ppm) from Islamabad (110, 52, 24) than those of Swat district (75, 37, 21), respectively. Index of Geo-accumulation (Igeo values) indicated that industrial and urban areas of both sites were highly polluted due to severe anthropogenic influence, whereas the rural areas were in most parts unpolluted and where moderately polluted, this was mainly due to geological factors and short and/or long distance atmospheric deposition from surrounding polluted areas. According to the calculated chemical daily intake (mg/kg-day) values, dust ingestion is one of the major routes of human exposure for lead. Hazard Index (HI) values, calculated for both adult and children populations, were above unity in industrial and urban areas, indicating serious health risks especially to the children populations.

  9. Developing Street-Level PM2.5 and PM10 Land Use Regression Models in High-Density Hong Kong with Urban Morphological Factors.

    PubMed

    Shi, Yuan; Lau, Kevin Ka-Lun; Ng, Edward

    2016-08-01

    Monitoring street-level particulates is essential to air quality management but challenging in high-density Hong Kong due to limitations in local monitoring network and the complexities of street environment. By employing vehicle-based mobile measurements, land use regression (LUR) models were developed to estimate the spatial variation of PM2.5 and PM10 in the downtown area of Hong Kong. Sampling runs were conducted along routes measuring a total of 30 km during a selected measurement period of total 14 days. In total, 321 independent variables were examined to develop LUR models by using stepwise regression with PM2.5 and PM10 as dependent variables. Approximately, 10% increases in the model adjusted R(2) were achieved by integrating urban/building morphology as independent variables into the LUR models. Resultant LUR models show that the most decisive factors on street-level air quality in Hong Kong are frontal area index, an urban/building morphological parameter, and road network line density and traffic volume, two parameters of road traffic. The adjusted R(2) of the final LUR models of PM2.5 and PM10 are 0.633 and 0.707, respectively. These results indicate that urban morphology is more decisive to the street-level air quality in high-density cities than other cities. Air pollution hotspots were also identified based on the LUR mapping.

  10. A comparison between developed and developing countries in terms of urban land use change effects on nitrogen cycle: Paris and São Paulo metropolitan areas

    NASA Astrophysics Data System (ADS)

    Nardoto, Gabriela; Svirejeva-Hopkin, Anastasia; Martinelli, Luiz Antonio

    2010-05-01

    (rivers and soil). For example treated sewage effluent could be used as a source of N for some crops, especially vegetables. PMA is also a source of reactive nitrogen, emitting in total about 32 Gg of N per year, or about 3000 g of N per capita, being the major part attributed to the atmospheric emissions from transportation and energy. An important outcome of this study has been the identification of several key uncertainties regarding the N budget that require further research for either developed and developing regions studied. The following uncertainties of N cycling in an urban system need better understanding: the mechanisms of dry-deposition processes in urban systems with patchy vegetation; high NOx emissions and the increase in travel distance of smaller particles coming from modern engines; and complex patterns of air flow in the dense build-up areas. Urban soil N dynamics is very uncertain, while soil represents a major sink of N in natural ecosystems. Ultimately, the challenge is to integrate human choices and ecosystem dynamics into a multidisciplinary model of biogeochemical cycling in urban ecosystems, focusing as a first step on the quantitatively evaluating the mutual relationship between urban land-use changes and natural ecosystem from the standpoint of global N balance. To develop those schemes will require the construction of detailed ecosystem-level N balances, an in-depth understanding of the interplay of inputs, geographical and climatic factors, nonspecific management practices, and deliberate N management practices that control the fate of N in urban landscapes.

  11. Characterization of potential larval habitats for Anopheles mosquitoes in relation to urban land-use in Malindi, Kenya

    PubMed Central

    Keating, Joseph; Macintyre, Kate; Mbogo, Charles M; Githure, John I; Beier, John C

    2004-01-01

    Background This study characterized Anopheles mosquito larval habitats in relation to ecological attributes about the habitat and community-level drainage potential, and investigated whether agricultural activities within or around urban households increased the probability of water body occurrence. Malindi, a city on the coast of Kenya, was mapped using global positioning system (GPS) technology, and a geographic information system (GIS) was used to overlay a measured grid, which served as a sampling frame. Grid cells were stratified according to the level of drainage in the area, and 50 cells were randomly selected for the study. Cross-sectional household and entomological surveys were conducted during November and December 2002 within the 50 grid cells. Chi-square analysis was used to test whether water bodies differed fundamentally between well and poorly drained areas, and multi-level logistic regression was used to test whether household-level agricultural activity increased the probability of water body occurrence in the grid cell. Results Interviews were conducted with one adult in 629 households. A total of 29 water bodies were identified within the sampled areas. This study found that characteristics of water bodies were fundamentally the same in well and poorly drained areas. This study also demonstrated that household-level urban agriculture was not associated with the occurrence of water bodies in the grid cell, after controlling for potential confounders associated with distance to the city center, drainage, access to resources, and population density. Conclusions Household-level urban agricultural activity may be less important than the other types of human perturbation in terms of mosquito larval habitat creation. The fact that many larvae were coming from few sites, and few sites in general were found under relatively dry conditions suggests that mosquito habitat reduction is a reasonable and attainable goal in Malindi. PMID:15125778

  12. Mapping carbon storage in urban trees with multi-source remote sensing data: relationships between biomass, land use, and demographics in Boston neighborhoods.

    PubMed

    Raciti, Steve M; Hutyra, Lucy R; Newell, Jared D

    2014-12-01

    High resolution maps of urban vegetation and biomass are powerful tools for policy-makers and community groups seeking to reduce rates of urban runoff, moderate urban heat island effects, and mitigate the effects of greenhouse gas emissions. We developed a very high resolution map of urban tree biomass, assessed the scale sensitivities in biomass estimation, compared our results with lower resolution estimates, and explored the demographic relationships in biomass distribution across the City of Boston. We integrated remote sensing data (including LiDAR-based tree height estimates) and field-based observations to map canopy cover and aboveground tree carbon storage at ~1m spatial scale. Mean tree canopy cover was estimated to be 25.5±1.5% and carbon storage was 355Gg (28.8MgCha(-1)) for the City of Boston. Tree biomass was highest in forest patches (110.7MgCha(-1)), but residential (32.8MgCha(-1)) and developed open (23.5MgCha(-1)) land uses also contained relatively high carbon stocks. In contrast with previous studies, we did not find significant correlations between tree biomass and the demographic characteristics of Boston neighborhoods, including income, education, race, or population density. The proportion of households that rent was negatively correlated with urban tree biomass (R(2)=0.26, p=0.04) and correlated with Priority Planting Index values (R(2)=0.55, p=0.001), potentially reflecting differences in land management among rented and owner-occupied residential properties. We compared our very high resolution biomass map to lower resolution biomass products from other sources and found that those products consistently underestimated biomass within urban areas. This underestimation became more severe as spatial resolution decreased. This research demonstrates that 1) urban areas contain considerable tree carbon stocks; 2) canopy cover and biomass may not be related to the demographic characteristics of Boston neighborhoods; and 3) that recent advances

  13. Mapping Carbon Storage in Urban Trees with Multi-source Remote Sensing Data: Relationships between Biomass, Land Use, and Demographics in Boston Neighborhoods

    NASA Astrophysics Data System (ADS)

    Raciti, S. M.; Hutyra, L.

    2014-12-01

    High resolution maps of urban vegetation and biomass are powerful tools for policy-makers and community groups seeking to reduce rates of urban runoff, moderate urban heat island effects, and mitigate the effects of greenhouse gas emissions. We develop a very high resolution map of urban tree biomass, assess the scale sensitivities in biomass estimation, compare our results with lower resolution estimates, and explore the demographic relationships in biomass distribution across the City of Boston. We integrated remote sensing data (including LiDAR-based tree height estimates) and field-based observations to map canopy cover and aboveground tree carbon storage at ~1 m spatial scale. Mean tree canopy cover was estimated to be 25.5±1.5% and carbon storage was 355 Gg (28.8 Mg C ha-1) for the City of Boston. Tree biomass was highest in forest patches (110.7 Mg C ha-1), but residential (32.8 Mg C ha-1) and developed open (23.5 Mg C ha-1) land uses also contained relatively high carbon stocks. In contrast with previous studies, we did not find significant correlations between tree biomass and the demographic characteristics of Boston neighborhoods, including income, education, race, or population density. The proportion of households that rent was negatively correlated with urban tree biomass (R2=0.26, p=0.04) and correlated with Priority Planting Index values (R2=0.55, p=0.001), potentially reflecting differences in land management among rented and owner-occupied residential properties. We compared our very high resolution biomass map to lower resolution biomass products from other sources and found that those products consistently underestimated biomass within urban areas. This underestimation became more severe as spatial resolution decreased. This research demonstrates that 1) urban areas contain considerable tree carbon stocks; 2) canopy cover and biomass may not be related to the demographic characteristics of Boston neighborhoods; and 3) that recent advances in

  14. An evaluation of machine processing techniques of ERTS-1 data for user applications. [urban land use and soil association mapping in Indiana

    NASA Technical Reports Server (NTRS)

    Landgrebe, D.

    1974-01-01

    A broad study is described to evaluate a set of machine analysis and processing techniques applied to ERTS-1 data. Based on the analysis results in urban land use analysis and soil association mapping together with previously reported results in general earth surface feature identification and crop species classification, a profile of general applicability of this procedure is beginning to emerge. Put in the hands of a user who knows well the information needed from the data and also is familiar with the region to be analyzed it appears that significantly useful information can be generated by these methods. When supported by preprocessing techniques such as the geometric correction and temporal registration capabilities, final products readily useable by user agencies appear possible. In parallel with application, through further research, there is much potential for further development of these techniques both with regard to providing higher performance and in new situations not yet studied.

  15. Future land-use related water demand in California

    USGS Publications Warehouse

    Wilson, Tamara; Sleeter, Benjamin M.; Cameron, D. Richard

    2016-01-01

    Water shortages in California are a growing concern amidst ongoing drought, earlier spring snowmelt, projected future climate warming, and currently mandated water use restrictions. Increases in population and land use in coming decades will place additional pressure on already limited available water supplies. We used a state-and-transition simulation model to project future changes in developed (municipal and industrial) and agricultural land use to estimate associated water use demand from 2012 to 2062. Under current efficiency rates, total water use was projected to increase 1.8 billion cubic meters(+4.1%) driven primarily by urbanization and shifts to more water intensive crops. Only if currently mandated 25% reductions in municipal water use are continuously implemented would water demand in 2062 balance to water use levels in 2012. This is the first modeling effort of its kind to examine regional land-use related water demand incorporating historical trends of both developed and agricultural land uses.

  16. Future land-use related water demand in California

    NASA Astrophysics Data System (ADS)

    Wilson, Tamara S.; Sleeter, Benjamin M.; Cameron, D. Richard

    2016-05-01

    Water shortages in California are a growing concern amidst ongoing drought, earlier spring snowmelt, projected future climate warming, and currently mandated water use restrictions. Increases in population and land use in coming decades will place additional pressure on already limited available water supplies. We used a state-and-transition simulation model to project future changes in developed (municipal and industrial) and agricultural land use to estimate associated water use demand from 2012 to 2062. Under current efficiency rates, total water use was projected to increase 1.8 billion cubic meters (+4.1%) driven primarily by urbanization and shifts to more water intensive crops. Only if currently mandated 25% reductions in municipal water use are continuously implemented would water demand in 2062 balance to water use levels in 2012. This is the first modeling effort of its kind to examine regional land-use related water demand incorporating historical trends of both developed and agricultural land uses.

  17. Downstream cumulative effects of land use on freshwater communities

    NASA Astrophysics Data System (ADS)

    Kuglerová, L.; Kielstra, B. W.; Moore, D.; Richardson, J. S.

    2015-12-01

    Many streams and rivers are subject to disturbance from intense land use such as urbanization and agriculture, and this is especially obvious for small headwaters. Streams are spatially organized into networks where headwaters represent the tributaries and provide water, nutrients, and organic material to the main stems. Therefore perturbations within the headwaters might be cumulatively carried on downstream. Although we know that the disturbance of headwaters in urban and agricultural landscapes poses threats to downstream river reaches, the magnitude and severity of these changes for ecological communities is less known. We studied stream networks along a gradient of disturbance connected to land use intensity, from urbanized watersheds to watersheds placed in agricultural settings in the Greater Toronto Area. Further, we compared the patterns and processes found in the modified watershed to a control watershed, situated in a forested, less impacted landscape. Preliminary results suggest that hydrological modifications (flash floods), habitat loss (drainage and sewer systems), and water quality issues of small streams in urbanized and agricultural watersheds represent major disturbances and threats for aquatic and riparian biota on local as well as larger spatial scales. For example, communities of riparian plants are dominated by species typical of the land use on adjacent uplands as well as the dominant land use on the upstream contributing area, instead of riparian obligates commonly found in forested watersheds. Further, riparian communities in disturbed environments are dominated by invasive species. The changes in riparian communities are vital for various functions of riparian vegetation. Bank erosion control is suppressed, leading to severe channel transformations and sediment loadings in urbanized watersheds. Food sources for instream biota and thermal regimes are also changed, which further triggers alterations of in-stream biological communities

  18. Influence of fipronil compounds and rice-cultivation land-use intensity on macroinvertebrate communities in streams of southwestern Louisiana, USA

    USGS Publications Warehouse

    Mize, S.V.; Porter, S.D.; Demcheck, D.K.

    2008-01-01

    Laboratory tests of fipronil and its degradation products have revealed acute lethal toxicity at very low concentrations (LC50) of <0.5 ??g/L to selected aquatic macroinvertebrates. In streams draining basins with intensive rice cultivation in southwestern Louisiana, USA, concentrations of fipronil compounds were an order of magnitude larger than the LC50. The abundance (?? = -0.64; p = 0.015) and taxa richness (r2 = 0.515, p < 0.005) of macroinvertebrate communities declined significantly with increases in concentrations of fipronil compounds and rice-cultivation land-use intensity. Macroinvertebrate community tolerance scores increased linearly (r2 = 0.442, p < 0.005) with increases in the percentage of rice cultivation in the basins, indicating increasingly degraded stream conditions. Similarly, macroinvertebrate community-tolerance scores increased rapidly as fipronil concentrations approached about 1 ??g/L. Pesticide toxicity index determinations indicated that aquatic macroinvertebrates respond to a gradient of fipronil compounds in water although stream size and habitat cannot be ruled out as contributing influences.

  19. Impact of Artificial Reservoir Size, Land Use/Land Cover Patterns and Increasing Urbanization on Probable Maximum Precipitation and Flood: The Case of American River Watershed

    NASA Astrophysics Data System (ADS)

    Yigzaw, W. Y.; Hossain, F.

    2013-12-01

    Design of dams considers available historical data for flood frequency analysis. The limitation in this approach is future meteorological and hydrological variability due to land-use and land-cover (LULC) change are not considered. Future flood extremes may change, among other factors, due to strong local atmospheric feedbacks from the reservoir, surrounding LULC change, and urbanization. Probable maximum flood (PMF), which is the key design parameter for a dam, is estimated from probable maximum precipitation (PMP). Given the nonlinearity of the rainfall-runoff process, the key questions that need to be answered are How do reservoir size and/or LULC modify extreme flood patterns, specifically probable maximum flood via climatic modification of PMP? and What is the contribution of urbanization in altering reservoir inflow and PMF? Selecting the American River watershed (ARW) and Folsom Dam as a case study; PMP from the regional atmospheric modeling system (RAMS) and the distributed variable infiltration capacity (VIC) model are used to simulate PMF. The PMP values are simulated from atmospheric feedbacks for various LULC scenarios (pre-dam, current scenario, non-irrigation, reservoir-double, and different urbanization percentage). Comparison of PMF results for pre-dam and current scenario conditions showed that PMF peak flow can decrease by about 105m3/s, while comparison of current scenario with non-irrigation PMF results showed that irrigation development has increased the PMF by 125m3/s. Comparison of different urbanization percentage shows that a 100% impervious watershed has the potential of generating a flood that is close to design PMF. The design PMP produces an additional 1500m3/s peak flood compared to the actual PMF when the watershed is considered 100% impervious. On the other hand, the reservoir size had virtually no detectable impact on PMP and consequently on PMF results. Where downstream levee capacity is already under designed to handle a dam

  20. Interplay of climate and land-use change on transport dynamics of intensively managed landscapes: a catchment travel time distribution analysis

    NASA Astrophysics Data System (ADS)

    Danesh Yazdi, M.; Foufoula-Georgiou, E.; Karwan, D. L.

    2015-12-01

    Climatic trends and extensive implementation of drainage tiles in poorly drained agricultural lands have left significant fingerprints on the hydrology and water quality of the receiving streams. Tiles were initially designed to increase the crop productivity by removing excess soil moisture and improving field conditions. However, their hydro-ecological consequences have gradually emerged through observations of enhanced rates of nitrate and phosphorus delivered to the streams, as well as altered runoff volumes and timing. The Redwood River Basin (a 1,800 km2 basin located in southwest Minnesota) is an example of such a system where a considerable switch from small grains to row crops has taken place since 1970's, driving intensive tile installation culminating in a doubling of tiled length in the past two decades. Long-term hydrologic analysis of this basin shows that the daily streamflow has increased in all months after the land-use change period, and rising limbs of daily hydrographs exhibit increased dependence on precipitation during May-June. In this study we employ the recently developed theory of time-variant travel time distributions within the storage selection function framework to examine the interplay of climate and land-use change on transport dynamics. Comparison of two periods representing the tiled and untiled conditions demonstrates 18-38 days decrease in the mean travel time due to tile drainage during spring-summer, while almost no change is observed during winter showing an overall cyclic behavior over a year. Statistics of the marginal distributions also show less variability in the mean travel time for the tiled period, probably revealing the response of the more constrained engineered system. Furthermore, the relative impact of the climate and the spatial heterogeneity of the soil properties on the travel times are investigated via numerical experiments performed on nested sub-basins under untiled condition. The simulations suggest that

  1. Land-use history and management intensity as drivers of spatial variability in soil greenhouse gas fluxes in a poplar bioenergy plantation

    NASA Astrophysics Data System (ADS)

    Görres, Carolyn-Monika; Ceulemans, Reinhart

    2014-05-01

    Bioenergy crops are considered to be carbon-neutral because biomass combustion releases only carbon which has previously been extracted from the atmosphere by the plants. However, during crop growth, a significant amount of the greenhouse gases (GHG) CO2, CH4 and N2O can be produced by soil microorganisms and released to the atmosphere. Depending on crop type and management intensity, soil GHG fluxes might be so substantial that bioenergy crops could overall emit more GHG than the same amount of fossil fuels. The present knowledge about soil GHG fluxes from bioenergy crops is not sufficient to accurately quantify them. This is especially true for short rotation woody crops (SRWC) which might become more important in the future because they have a relatively high GHG mitigation potential. However, before pursuing the use of SRWC plantations for carbon sequestration and fossil fuel replacement, it is necessary to accurately assess their uptake and release of all major GHG to prevent the unconscious widespread deployment of unsustainable cultivation practices. The aim of this project is to identify drivers of spatial variability in soil GHG fluxes in a poplar SRWC plantation with special emphasis on the legacy effect of former land-use. The plantation has been established partly on former pasture and partly on former cropland, offering the unique opportunity to study soil GHG flux dynamics with respect to their dependency on former land-use type under identical climate and management conditions. The plantation is currently in its fifth vegetation season and in the first year of its third rotation. Simultaneous monitoring of soil CO2, CH4 and N2O fluxes will take place with a custom-made automated chamber system throughout the entire third rotation (three years) accompanied by soil gas concentration profile measurements. In parallel, community composition of functional groups of soil microorganisms (denitrifiers, ammonia oxidizers, methanogens) and total soil microbial

  2. Analysis of Relationship Between Urban Heat Island Effect and Land Use/cover Type Using Landsat 7 ETM+ and Landsat 8 Oli Images

    NASA Astrophysics Data System (ADS)

    Aslan, N.; Koc-San, D.

    2016-06-01

    The main objectives of this study are (i) to calculate Land Surface Temperature (LST) from Landsat imageries, (ii) to determine the UHI effects from Landsat 7 ETM+ (June 5, 2001) and Landsat 8 OLI (June 17, 2014) imageries, (iii) to examine the relationship between LST and different Land Use/Land Cover (LU/LC) types for the years 2001 and 2014. The study is implemented in the central districts of Antalya. Initially, the brightness temperatures are retrieved and the LST values are calculated from Landsat thermal images. Then, the LU/LC maps are created from Landsat pan-sharpened images using Random Forest (RF) classifier. Normalized Difference Vegetation Index (NDVI) image, ASTER Global Digital Elevation Model (GDEM) and DMSP_OLS nighttime lights data are used as auxiliary data during the classification procedure. Finally, UHI effect is determined and the LST values are compared with LU/LC classes. The overall accuracies of RF classification results were computed higher than 88 % for both Landsat images. During 13-year time interval, it was observed that the urban and industrial areas were increased significantly. Maximum LST values were detected for dry agriculture, urban, and bareland classes, while minimum LST values were detected for vegetation and irrigated agriculture classes. The UHI effect was computed as 5.6 °C for 2001 and 6.8 °C for 2014. The validity of the study results were assessed using MODIS/Terra LST and Emissivity data and it was found that there are high correlation between Landsat LST and MODIS LST data (r2 = 0.7 and r2 = 0.9 for 2001 and 2014, respectively).

  3. Study of the impact of land use and hydrogeological settings on the shallow groundwater quality in a peri-urban area of Kampala, Uganda.

    PubMed

    Kulabako, N R; Nalubega, M; Thunvik, R

    2007-08-01

    A study to assess the impacts of land use and hydrogeological characteristics on the shallow groundwater in one of Kampala's peri-urban areas (Bwaise III Parish) was undertaken for a period of 19 months. Water quality monitoring was carried out for 16 installed wells and one operational protected spring to ascertain the seasonal variation. The aspects of hydrogeological setting investigated in the study were the subsurface unconsolidated material characteristics (stratigraphy, lithology, hydraulic conductivity, porosity and chemical content), seasonal groundwater depths and spring discharge, topography and rainfall of the area. Both laboratory and field measurements were carried out to determine the soil and water characteristics. Field surveys were also undertaken to identify and locate the various land use activities that may potentially pollute. The results demonstrate that the water table in the area responds rapidly to short rains (48 h) due to the pervious (10(-5)-10(-3) ms(-1)) and shallow (<1 mbgl) vadose zone, which consists of foreign material (due to reclamation). This anthropogenically influenced vadose zone has a limited contaminant attenuation capacity resulting in water quality deterioration following the rains. There is widespread contamination of the groundwater with high organic (up to 370 mgTKN/l and 779 mgNO-3/l), thermotolerant coliforms (TTCs) and faecal streptococci (FS) (median values as high as 126E3 cfu/100 ml and 154E3 cfu/100 ml respectively) and total phosphorus (up to 13 mg/l) levels originating from multiple sources of contamination. These include animal rearing, solid waste dumping, pit latrine construction and greywater/stormwater disposal in unlined channels leading to increased localised microbial (faecal) and organic (TKN/NO-3) contamination during the rains. The spring discharge (range 1.22-1.48 m3/h) with high nitrate levels (median values of 117 and 129 mg/l in the wet and dry seasons) did not vary significantly with season (p

  4. Effects of urban land-use change on streamflow and water quality in Oakland County, Michigan, 1970-2003, as inferred from urban gradient and temporal analysis

    USGS Publications Warehouse

    Aichele, Stephen S.

    2005-01-01

    This apparent contradiction may be caused by the differences in the changes measured in each analysis. The change-through-time approach describes change from a fixed starting point of approximately 1970; the gradient approach describes the cumulative effect of all change up to approximately 2000. These findings indicate that although urbanization in Oakland County results in most of the effects observed in the literature, as evidenced in the gradient approach, relatively few of the anticipated effects have been observed during the past three decades. This relative stability despite rapid land-cover change may be related to efforts to mitigate the effects of development and a general decrease in the density of new residential development. It may also be related to external factors such as climate variability and reduced atmospheric deposition of specific chemicals. 

  5. 36 CFR 910.16 - Land use.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Land use. 910.16 Section 910... DEVELOPMENT AREA Urban Planning and Design Concerns § 910.16 Land use. (a) Development within the Development..., entertainment, and residential opportunities, as well as high quality office uses. (b) That portion of...

  6. 36 CFR 910.16 - Land use.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Land use. 910.16 Section 910... DEVELOPMENT AREA Urban Planning and Design Concerns § 910.16 Land use. (a) Development within the Development..., entertainment, and residential opportunities, as well as high quality office uses. (b) That portion of...

  7. 36 CFR 910.16 - Land use.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Land use. 910.16 Section 910... DEVELOPMENT AREA Urban Planning and Design Concerns § 910.16 Land use. (a) Development within the Development..., entertainment, and residential opportunities, as well as high quality office uses. (b) That portion of...

  8. 36 CFR 910.16 - Land use.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 3 2013-07-01 2012-07-01 true Land use. 910.16 Section 910... DEVELOPMENT AREA Urban Planning and Design Concerns § 910.16 Land use. (a) Development within the Development..., entertainment, and residential opportunities, as well as high quality office uses. (b) That portion of...

  9. Norfolk and environs: A land use perspective

    USGS Publications Warehouse

    Alexander, Robert H.; Buzzanell, Peter J.; Fitzpatrick, Katherine A.; Lins, Harry F.; McGinty, Herbert K.

    1975-01-01

    The Norfolk-Portsmouth Standard Metropolitan Statistical Area (SMSA) in southeastern Virginia was the site of intensive testing of a number of land resources assessment methods, built around the availability of remotely sensed data from the Earth Resources Technology Satellite (ERTS-I), later renamed LANDSAT I. The Norfolk tests were part of a larger experiment known as the Central Atlantic Regional Ecological Test Site (CARETS), designed to test the extent to which LANDSAT and associated high-altitude aircraft data could be used as cost-effective inputs to a regional land use information system. The Norfolk SMSA contains a variety of land uses typical of the urbanized eastern seaboard, along with typical associated problems: rapid urbanization; heavy recreational, commercial, and residential demands on fragile beaches and coastal marsh environments; industrial, transportation, and governmental land and water uses impacting on residential and agricultural areas; drainage and land stability difficulties affecting construction and other uses; and increasing difficulties in maintaining satisfactory air and water quality.

  10. Local source identification of trace metals in urban/industrial mixed land-use areas with daily PM10 limit value exceedances

    NASA Astrophysics Data System (ADS)

    Fernández-Olmo, Ignacio; Andecochea, Carlos; Ruiz, Sara; Fernández-Ferreras, José Antonio; Irabien, Angel

    2016-05-01

    This study presents the analysis of the concentration levels, inter-site variation and source identification of trace metals at three urban/industrial mixed land-use sites of the Cantabria region (northern Spain), where local air quality plans were recently approved because the number of exceedances of the daily PM10 limit value according to the Directive 2008/50/EC had been relatively high in the last decade (more than 35 instances per year). PM10 samples were collected for over three years at the Torrelavega (TORR) and Los Corrales (CORR) sites and for over two years at the Camargo (GUAR) site and analysed for the presence of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), titanium (Ti), vanadium (V), molybdenum (Mo), manganese (Mn), iron (Fe), antimony (Sb) and zinc (Zn). Analysis of enrichment factors revealed an anthropogenic origin of most of the studied elements; Zn, Cd, Mo, Pb and Cu were the most enriched elements at the three sites, with Fe and V as the least enriched elements. Positive Matrix Factorisation (PMF) and pollutant roses (Cu at TORR, Zn at CORR and Mn at GUAR) were used to identify the local sources of the studied metals. Analysis of PMF results revealed the main sources of trace metals at each site as road traffic at the TORR site, iron foundry and casting industry at the CORR site and a ferro-manganese alloy industry at the GUAR site. Other sources were also identified at these sites, but with much lower contributions, such as minor industrial sources, combustion and traffic mixed with the previous sources.

  11. Land degradation in a semi-urban catchment in Burkina Faso: monitoring land use change and soil erosion with earth observations and field surveys

    NASA Astrophysics Data System (ADS)

    Angeluccetti, Irene; Coviello, Velio; Vezza, Paolo; Grimaldi, Stefania; Steffenino, Sara; Magloire Koussoubé, Alain

    2015-04-01

    Soil erosion is currently menacing the availability of arable land in various countries worldwide. In particular the countries located in the Sahel area of Sub-Saharan Africa are extremely prone to this type of environmental degradation. The same countries rely traditionally upon subsistence farming, which makes the population more vulnerable to environmental changes. The study here presented exploits remote sensed data for identifying the main degradation processes occurring in a small catchment of central Burkina Faso (i.e., Boulbi watershed). This catchment, approximately 100 square km large, is characterized by the presence of a 30 years old dam, whose reservoir feeds 80 ha of rice-fields. This produce contributes up to 13% of the regional rice production. Nonetheless other crops, along with rain-fed rice, are grown all across the Boulbi catchment during the rainy season. Both the increasing gully erosion and the urbanization of the capital city pushing from the North are significantly threatening the farming activities. By using aerial frames acquired with a 16 years' time interval (i.e., 1996, 2012), free satellite imagery, and field surveys, the base cartography of the investigated area was updated and the most active gullies were identified. Moreover a change detection analysis was performed on both artifacts and land use features. More than 200.000 square m of erosion areas and an increase of nearly 90% in built-up areas were detected. In addition, the importance of producing up-to-date base data was proven by the exploitation of the outcomes for the production of a catchment land and water management plan.

  12. Remote Sensing Application to Land Use Classification in a Rapidly Changing Agricultural/Urban Area: City of Virginia Beach, Virginia. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Odenyo, V. A. O.

    1975-01-01

    Remote sensing data on computer-compatible tapes of LANDSAT 1 multispectral scanner imager were analyzed to generate a land use map of the City of Virginia Beach. All four bands were used in both the supervised and unsupervised approaches with the LAYSYS software system. Color IR imagery of a U-2 flight of the same area was also digitized and two sample areas were analyzed via the unsupervised approach. The relationships between the mapped land use and the soils of the area were investigated. A land use land cover map at a scale of 1:24,000 was obtained from the supervised analysis of LANDSAT 1 data. It was concluded that machine analysis of remote sensing data to produce land use maps was feasible; that the LAYSYS software system was usable for this purpose; and that the machine analysis was capable of extracting detailed information from the relatively small scale LANDSAT data in a much shorter time without compromising accuracy.

  13. Land use planning

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The organization, objectives, and accomplishments of the panel on Land Use Planning are reported. Technology developments, and projected developments are discussed along with anticipated information requirements. The issues for users, recommended remote sensing programs, and space systems are presented. It was found that remote sensing systems are useful in future land use planning. It is recommended that a change detection system for monitoring land use and critical environmental areas be developed by 1979.

  14. Action planning for healthy cities: the role of multi-criteria analysis, developed in Italy and France, for assessing health performances in land-use plans and urban development projects.

    PubMed

    Capolongo, Stefano; Lemaire, Nina; Oppio, Alessandra; Buffoli, Maddalena; Roue Le Gall, Anne

    2016-01-01

    In the last decades a growing attention has been paid to the relationship between urban planning and public health. The introduction of the social model of health has stressed the importance of the determinants of health such as socioeconomic, cultural, and environmental conditions, in addition to living and working conditions. Starting from the assumption that urban planning plays a crucial role for enhancing healthy lifestyles and environments, the paper describes two different approaches to include health issues into land use plans and urban development projects. Two different evaluation tools, defined according to the Italian and French legal framework, have been compared in order to find out whether they could be considered as an innovative answer to the instance of creating a more effective cross field of work and training among urban planners and public health professionals.

  15. Action planning for healthy cities: the role of multi-criteria analysis, developed in Italy and France, for assessing health performances in land-use plans and urban development projects.

    PubMed

    Capolongo, Stefano; Lemaire, Nina; Oppio, Alessandra; Buffoli, Maddalena; Roue Le Gall, Anne

    2016-01-01

    In the last decades a growing attention has been paid to the relationship between urban planning and public health. The introduction of the social model of health has stressed the importance of the determinants of health such as socioeconomic, cultural, and environmental conditions, in addition to living and working conditions. Starting from the assumption that urban planning plays a crucial role for enhancing healthy lifestyles and environments, the paper describes two different approaches to include health issues into land use plans and urban development projects. Two different evaluation tools, defined according to the Italian and French legal framework, have been compared in order to find out whether they could be considered as an innovative answer to the instance of creating a more effective cross field of work and training among urban planners and public health professionals. PMID:27436261

  16. Land use and climate variability amplify carbon, nutrient, and contaminant pulses: a review with management implications

    EPA Science Inventory

    Nonpoint source pollution from agriculture and urbanization is increasing globally at the same time that climate extremes have increased in frequency and intensity. We review over 160 studies and show how the interaction between land use and climate variability alters the magnit...

  17. An integrated multi-criteria scenario evaluation web tool for participatory land-use planning in urbanized areas: The Ecosystem Portfolio Model

    USGS Publications Warehouse

    Labiosa, Bill; Forney, William M.; Hearn,, Paul P.; Hogan, Dianna M.; Strong, David R.; Swain, Eric D.; Esnard, Ann-Margaret; Mitsova-Boneva, D.; Bernknopf, R.; Pearlstine, Leonard; Gladwin, Hugh

    2013-01-01

    Land-use land-cover change is one of the most important and direct drivers of changes in ecosystem functions and services. Given the complexity of the decision-making, there is a need for Internet-based decision support systems with scenario evaluation capabilities to help planners, resource managers and communities visualize, compare and consider trade-offs among the many values at stake in land use planning. This article presents details on an Ecosystem Portfolio Model (EPM) prototype that integrates ecological, socio-economic information and associated values of relevance to decision-makers and stakeholders. The EPM uses a multi-criteria scenario evaluation framework, Geographic Information Systems (GIS) analysis and spatially-explicit land-use/land-cover change-sensitive models to characterize changes in important land-cover related ecosystem values related to ecosystem services and functions, land parcel prices, and community quality-of-life (QoL) metrics. Parameters in the underlying models can be modified through the interface, allowing users in a facilitated group setting to explore simultaneously issues of scientific uncertainty and divergence in the preferences of stakeholders. One application of the South Florida EPM prototype reported in this article shows the modeled changes (which are significant) in aggregate ecological value, landscape patterns and fragmentation, biodiversity potential and ecological restoration potential for current land uses compared to the 2050 land-use scenario. Ongoing refinements to EPM, and future work especially in regard to modifiable sea level rise scenarios are also discussed.

  18. 36 CFR 910.16 - Land use.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.16 Land use. (a) Development within the Development... both reinforcement of existing retail uses and creation of new retail activities. (e) While...

  19. Effects of endogenous factors on regional land-use carbon emissions based on the Grossman decomposition model: a case study of Zhejiang Province, China.

    PubMed

    Wu, Cifang; Li, Guan; Yue, Wenze; Lu, Rucheng; Lu, Zhangwei; You, Heyuan

    2015-02-01

    The impact of land-use change on greenhouse gas emissions has become a core issue in current studies on global change and carbon cycle. However, a comprehensive evaluation of the effects of land-use changes on carbon emissions is very necessary. This paper attempted to apply the Grossman decomposition model to estimate the scale, structural, and management effects of land-use carbon emissions based on final energy consumption by establishing the relationship between the types of land use and carbon emissions in energy consumption. It was shown that land-use carbon emissions increase from 169.5624 million tons in 2000 to 637.0984 million tons in 2010, with an annual average growth rate of 14.15%. Meanwhile, land-use carbon intensity increased from 17.59 t/ha in 2000 to 64.42 t/ha in 2010, with an average annual growth rate of 13.86%. The results indicated that rapid industrialization and urbanization in Zhejiang Province promptly increased urban land and industrial land, which consequently affected land-use extensive emissions. The structural and management effects did not mitigate land-use carbon emissions. By contrast, both factors evidently affected the growth of carbon emissions because of the rigid demands of energy-intensive land-use types and the absence of land management. Results called for the policy implications of optimizing land-use structures and strengthening land-use management.

  20. Global Consequences of Land Use

    NASA Astrophysics Data System (ADS)

    Foley, Jonathan A.; DeFries, Ruth; Asner, Gregory P.; Barford, Carol; Bonan, Gordon; Carpenter, Stephen R.; Chapin, F. Stuart; Coe, Michael T.; Daily, Gretchen C.; Gibbs, Holly K.; Helkowski, Joseph H.; Holloway, Tracey; Howard, Erica A.; Kucharik, Christopher J.; Monfreda, Chad; Patz, Jonathan A.; Prentice, I. Colin; Ramankutty, Navin; Snyder, Peter K.

    2005-07-01

    Land use has generally been considered a local environmental issue, but it is becoming a force of global importance. Worldwide changes to forests, farmlands, waterways, and air are being driven by the need to provide food, fiber, water, and shelter to more than six billion people. Global croplands, pastures, plantations, and urban areas have expanded in recent decades, accompanied by large increases in energy, water, and fertilizer consumption, along with considerable losses of biodiversity. Such changes in land use have enabled humans to appropriate an increasing share of the planet's resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality, and ameliorate infectious diseases. We face the challenge of managing trade-offs between immediate human needs and maintaining the capacity of the biosphere to provide goods and services in the long term.

  1. Spatiotemporal trends of urban heat island effect along the urban development intensity gradient in China.

    PubMed

    Zhou, Decheng; Zhang, Liangxia; Hao, Lu; Sun, Ge; Liu, Yongqiang; Zhu, Chao

    2016-02-15

    Urban heat island (UHI) represents a major anthropogenic modification to the Earth system and its relationship with urban development is poorly understood at a regional scale. Using Aqua MODIS data and Landsat TM/ETM+ images, we examined the spatiotemporal trends of the UHI effect (ΔT, relative to the rural reference) along the urban development intensity (UDI) gradient in 32 major Chinese cities from 2003 to 2012. We found that the daytime and nighttime ΔT increased significantly (p<0.05, mostly in linear form) along a rising UDI for 27 and 30 out of 32 cities, respectively. More rapid increases were observed in the southeastern and northwestern parts of China in the day and night, respectively. Moreover, the ΔT trends differed greatly by season and during daytime in particular. The ΔT increased more rapidly in summer than in winter during the day and the reverse occurred at night for most cities. Inter-annually, the ΔT increased significantly in about one-third of the cities during both the day and night times from 2003 to 2012, especially in suburban areas (0.25urbanization effects on local climate cross China and offer limitations on how these certain methods should be used to quantify UHI intensity over large areas. Furthermore, the impacts of urbanization on climate are complex, thus future research efforts should focus more toward direct observation and physical-based modeling to make credible predictions of the effects. PMID:26674691

  2. Relation of urban land-use and land-surface characteristics to quantity and quality of storm runoff in two basins in California

    USGS Publications Warehouse

    Sylvester, Marc A.; Brown, William M.

    1978-01-01

    Two basins (Castro Valley Creek, in Alameda County, and Strong Ranch Slough, in Sacramento County) in the San Francisco Bay and Sacramento-San Joaquin Delta region (Bay-Delta region) were sampled intensively (3-15 minute intervals) during three storms between October 1974 and April 1975. Both basins are primarily residential, but the Strong Ranch Slough basin is almost entirely urbanized and nearly flat, while the Castro Valley Creek basin possesses some rural areas and slopes greater than 70 percent in the headwaters. Water discharge and concentrations of suspended solids, chemical oxygen demand, 5-day biochemical oxygen demand, nitrite and nitrate, total Kjeldahl nitrogen, total orthophosphorus, and settleable matter were usually greater at the Castro Valley Creek basin than at the Strong Ranch Slough basin. Concentrations of these constituents and water discharge changed more rapidly at the Castro Valley Creek basin than at the Strong Ranch Slough basin. Of the four subbasins sampled (two in each basin), constituent concentrations in runoff from a residential subbasin were usually greatest. Quantity and quality of runoff were related to environmental characteristics such as slope, perviousness, residential development and maintenance, and channel conditions. Greater water discharge and concentrations of constituents in the Castro Valley Creek basin seem to be partly due to steeper slopes, less perviousness, and smaller residential lot sizes than are in the Strong Ranch Slough basin. Erosion of steep slopes disturbed by grazing and residential development, poorly maintained dwellings and lots, and a mostly earthen drainage channel in the Castro Valley Creek basin are probably responsible for the greater concentrations of suspended solids and settleable matter in runoff from this basin. In both basins, the highest observed concentrations of suspended solids, chemical oxygen demand, 5-day biochemical oxygen demand, settleable matter, total Kjeldahl nitrogen, and

  3. Future land use plan

    SciTech Connect

    1995-08-31

    The US Department of Energy`s (DOE) changing mission, coupled with the need to apply appropriate cleanup standards for current and future environmental restoration, prompted the need for a process to determine preferred Future Land Uses for DOE-owned sites. DOE began the ``Future Land Use`` initiative in 1994 to ensure that its cleanup efforts reflect the surrounding communities` interests in future land use. This plan presents the results of a study of stakeholder-preferred future land uses for the Brookhaven National Laboratory (BNL), located in central Long Island, New York. The plan gives the Laboratory`s view of its future development over the next 20 years, as well as land uses preferred by the community were BNL ever to cease operations as a national laboratory (the post-BNL scenario). The plan provides an overview of the physical features of the site including its history, topography, geology/hydrogeology, biological inventory, floodplains, wetlands, climate, and atmosphere. Utility systems and current environmental operations are described including waste management, waste water treatment, hazardous waste management, refuse disposal and ground water management. To complement the physical descriptions of the site, demographics are discussed, including overviews of the surrounding areas, laboratory population, and economic and non-economic impacts.

  4. Land-use Leakage

    SciTech Connect

    Calvin, Katherine V.; Edmonds, James A.; Clarke, Leon E.; Bond-Lamberty, Benjamin; Kim, Son H.; Wise, Marshall A.; Thomson, Allison M.; Kyle, G. Page

    2009-12-01

    Leakage occurs whenever actions to mitigate greenhouse gas emissions in one part of the world unleash countervailing forces elsewhere in the world so that reductions in global emissions are less than emissions mitigation in the mitigating region. While many researchers have examined the concept of industrial leakage, land-use policies can also result in leakage. We show that land-use leakage is potentially as large as or larger than industrial leakage. We identify two potential land-use leakage drivers, land-use policies and bioenergy. We distinguish between these two pathways and run numerical experiments for each. We also show that the land-use policy environment exerts a powerful influence on leakage and that under some policy designs leakage can be negative. International “offsets” are a potential mechanism to communicate emissions mitigation beyond the borders of emissions mitigating regions, but in a stabilization regime designed to limit radiative forcing to 3.7 2/m2, this also implies greater emissions mitigation commitments on the part of mitigating regions.

  5. Quantitative analysis of urban sprawl in Tripoli using Pearson's Chi-Square statistics and urban expansion intensity index

    NASA Astrophysics Data System (ADS)

    Al-sharif, Abubakr A. A.; Pradhan, Biswajeet; Zulhaidi Mohd Shafri, Helmi; Mansor, Shattri

    2014-06-01

    Urban expansion is a spatial phenomenon that reflects the increased level of importance of metropolises. The remotely sensed data and GIS have been widely used to study and analyze the process of urban expansions and their patterns. The capital of Libya (Tripoli) was selected to perform this study and to examine its urban growth patterns. Four satellite imageries of the study area in different dates (1984, 1996, 2002 and 2010) were used to conduct this research. The main goal of this work is identification and analyzes the urban sprawl of Tripoli metropolitan area. Urban expansion intensity index (UEII) and degree of freedom test were used to analyze and assess urban expansions in the area of study. The results show that Tripoli has sprawled urban expansion patterns; high urban expansion intensity index; and its urban development had high degree of freedom according to its urban expansion history during the time period (1984-2010). However, the novel proposed hypothesis used for zones division resulted in very good insight understanding of urban expansion direction and the effect of the distance from central business of district (CBD).

  6. 24 CFR 1710.209 - Title and land use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Title and land use. 1710.209... URBAN DEVELOPMENT (INTERSTATE LAND SALES REGISTRATION PROGRAM) LAND REGISTRATION Reporting Requirements § 1710.209 Title and land use. (a) General information. (1) State whether the developer has reserved...

  7. 24 CFR 1710.209 - Title and land use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Title and land use. 1710.209... URBAN DEVELOPMENT (INTERSTATE LAND SALES REGISTRATION PROGRAM) LAND REGISTRATION Reporting Requirements § 1710.209 Title and land use. (a) General information. (1) State whether the developer has reserved...

  8. 24 CFR 1710.209 - Title and land use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Title and land use. 1710.209... URBAN DEVELOPMENT (INTERSTATE LAND SALES REGISTRATION PROGRAM) LAND REGISTRATION Reporting Requirements § 1710.209 Title and land use. (a) General information. (1) State whether the developer has reserved...

  9. 24 CFR 1710.209 - Title and land use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Title and land use. 1710.209... URBAN DEVELOPMENT (INTERSTATE LAND SALES REGISTRATION PROGRAM) LAND REGISTRATION Reporting Requirements § 1710.209 Title and land use. (a) General information. (1) State whether the developer has reserved...

  10. 24 CFR 1710.209 - Title and land use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Title and land use. 1710.209... URBAN DEVELOPMENT (INTERSTATE LAND SALES REGISTRATION PROGRAM) LAND REGISTRATION Reporting Requirements § 1710.209 Title and land use. (a) General information. (1) State whether the developer has reserved...

  11. A Comparison of Natural and Urban Characteristics and the Development of Urban Intensity Indices Across Six Geographic Settings

    USGS Publications Warehouse

    Falcone, James A.; Stewart, Jana; Sobieszczyk, Steven; Dupree, Jean; McMahon, Gerard; Buell, Gary

    2007-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment Program, the effects of urbanization on stream ecosystems have been intensively investigated in six metropolitan areas in the United States. Approximately 30 watersheds in each area, ranging in size from 4 to 560 square kilometers (median is 50 square kilometers), and spanning a development gradient from very low to very high urbanization, were examined near Atlanta, Georgia; Raleigh, North Carolina; Denver, Colorado; Dallas-Fort Worth, Texas; Portland, Oregon; and Milwaukee-Green Bay, Wisconsin. These six studies are a continuation of three previous studies in Boston, Massachusetts; Birmingham, Alabama; and Salt Lake City, Utah. In each study, geographic information system data for approximately 300 variables were assembled to (a) characterize the environmental settings of the areas and (b) establish a consistent multimetric urban intensity index based on locally important land-cover, infrastructure, and socioeconomic variables. This paper describes the key features of urbanization and the urban intensity index for the study watersheds within each area, how they differ across study areas, and the relation between the environmental setting and the characteristics of urbanization. A number of features of urbanization were identified that correlated very strongly to population density in every study area. Of these, road density had the least variability across diverse geographic settings and most closely matched the multimetric nature of the urban intensity index. A common urban intensity index was derived that ranks watersheds across all six study areas. Differences in local natural settings and urban geography were challenging in (a) identifying consistent urban gradients in individual study areas and (b) creating a common urban intensity index that matched the site scores of the local urban intensity index in all areas. It is intended that the descriptions of the similarities and differences

  12. Summary of data pertaining to land use, rainfall, dryfall, stream discharge, and storm runoff collected as part of a study of the effects of urban runoff on Rapid Creek, Rapid City area, South Dakota

    USGS Publications Warehouse

    Goddard, K.E.; Lockner, T.K.; Harms, L.L.; Smith, M.H.

    1989-01-01

    The objectives of a 3-year study of urban runoff in the Rapid City area of South Dakota were to characterize the effects of urban runoff from rainfall on the water quality of Rapid Creek, and to evaluate the effects of the runoff on the existing cold-water fishery. In order to meet these objectives, it was necessary to obtain detailed data pertaining to land use, rainfall, dryfall, stream discharge, and storm runoff. This report describes the rationale behind the data collection program, describes the methods used to collect and analyze the data, and presents the data collected and summarized during the study. Six watersheds were investigated, ranging in size from 1 ,610 to 20,990 acres. Water quality data from 6 sites for about 30 rainstorms that occurred between June 1980 and July 1982 are presented. (USGS)

  13. Influence of watershed-climate interactions on stream temperature, sediment yield, and metabolism along a land use intensity gradient in Indonesian Borneo

    NASA Astrophysics Data System (ADS)

    Carlson, Kimberly M.; Curran, Lisa M.; Ponette-González, Alexandra G.; Ratnasari, Dessy; Ruspita; Lisnawati, Neli; Purwanto, Yadi; Brauman, Kate A.; Raymond, Peter A.

    2014-06-01

    Oil palm plantation expansion into tropical forests may alter physical and biogeochemical inputs to streams, thereby changing hydrological function. In West Kalimantan, Indonesia, we assessed streams draining watersheds characterized by five land uses: intact forest, logged forest, mixed agroforest, and young (<3 years) and mature (>10 years) oil palm plantation. We quantified suspended sediments, stream temperature, and metabolism using high-frequency submersible sonde measurements during month-long intervals between 2009 and 2012. Streams draining oil palm plantations had markedly higher sediment concentrations and yields, and stream temperatures, compared to other streams. Mean sediment concentrations were fourfold to 550-fold greater in young oil palm than in all other streams and remained elevated even under base flow conditions. After controlling for precipitation, the mature oil palm stream exhibited significantly greater sediment yield than other streams. Young and mature oil palm streams were 3.9°C and 3.0°C warmer than the intact forest stream (25°C). Across all streams, base flow periods were significantly warmer than times of stormflow, and these differences were especially large in oil palm catchments. Ecosystem respiration rates were also influenced by low precipitation. During an El Niño-Southern Oscillation-associated drought, the mature oil palm stream consumed a maximum 21 g O2 m-2 d-1 in ecosystem respiration, in contrast with 2.8 ± 3.1 g O2 m-2 d-1 during nondrought sampling. Given that 23% of Kalimantan's land area is occupied by watersheds similar to those studied here, our findings inform potential hydrologic outcomes of regional periodic drought coupled with continued oil palm plantation expansion.

  14. Modeling future water demand in California from developed and agricultural land uses

    NASA Astrophysics Data System (ADS)

    Wilson, T. S.; Sleeter, B. M.; Cameron, D. R.

    2015-12-01

    Municipal and urban land-use intensification in coming decades will place increasing pressure on water resources in California. The state is currently experiencing one of the most extreme droughts on record. This coupled with earlier spring snowmelt and projected future climate warming will increasingly constrain already limited water supplies. The development of spatially explicit models of future land use driven by empirical, historical land use change data allow exploration of plausible LULC-related water demand futures and potential mitigation strategies. We utilized the Land Use and Carbon Scenario Simulator (LUCAS) state-and-transition simulation model to project spatially explicit (1 km) future developed and agricultural land use from 2012 to 2062 and estimated the associated water use for California's Mediterranean ecoregions. We modeled 100 Monte Carlo simulations to better characterize and project historical land-use change variability. Under current efficiency rates, total water demand was projected to increase 15.1% by 2062, driven primarily by increases in urbanization and shifts to more water intensive crops. Developed land use was projected to increase by 89.8%-97.2% and result in an average 85.9% increase in municipal water use, while agricultural water use was projected to decline by approximately 3.9%, driven by decreases in row crops and increases in woody cropland. In order for water demand in 2062 to balance to current demand levels, the currently mandated 25% reduction in urban water use must remain in place in conjunction with a near 7% reduction in agricultural water use. Scenarios of land-use related water demand are useful for visualizing alternative futures, examining potential management approaches, and enabling better informed resource management decisions.

  15. Land Use in Saskatchewan.

    ERIC Educational Resources Information Center

    Saskatchewan Dept. of the Environment, Regina. Public Information and Education Branch.

    Information on land use in Saskatchewan is provided in this updated report by the Policy, Planning, and Research Branch of Saskatchewan Environment. Chapter I discusses the physical, economic, and cultural geography of Saskatchewan and traces the history of settlement in this province. Chapter II provides information on the province's resource…

  16. Evaluating the effects of land use on headwater wetland amphibian assemblages in coastal Alabama

    USGS Publications Warehouse

    Alix, Diane M.; Anderson, Christopher J.; Grand, James B.; Guyer, Craig

    2014-01-01

    Anthropogenic land use is known to impact aquatic ecosystems in several ways, including increased frequency and intensity of floods, stream channel incision, sedimentation, and loss of microtopography. Amphibians are susceptible to changes in wetland and surrounding habitats. This study evaluated amphibian assemblages of fifteen headwater slope wetlands in coastal Alabama across a gradient of land uses. Amphibians were surveyed on a seasonal basis and land use was delineated within wetland watersheds and within a 200-m buffer surrounding each wetland. Amphibian presence/absence and land use data were used to develop species occupancy models. Both urban and agricultural land use were shown to influence amphibian occurrence. Species richness ranged from five to ten species across sites; however, five species only occurred in wetlands surrounded by forested lands. Many species were detected more frequently on these wetlands compared to wetlands surrounded by urban or mixed land uses. Occupancy models showed Acris gryllus was negatively associated with the amount of agriculture within a buffer around the wetland. Hyla squirella, Lithobates clamitans, and L. sphenocephalus were positively associated with agricultural land within a watershed. Anaxyrus terrestris and the non-native Eleutherodactylus planirostris were positively associated with the amount of impervious surface area within the wetland buffer.

  17. Long-term water monitoring in two Mediterranean lagoons as an indicator of land-use changes and intense precipitation events (Adra, Southeastern Spain)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rodríguez, Miguel; Benavente, José; Alcalá, Francisco J.; Paracuellos, Mariano

    2011-02-01

    During recent historical times the Adra river delta, a detrital coastal aquifer of nearly 32 km 2 located in a semi-arid, mountainous area of SE Spain, has undergone different changes caused by human activity. Within this context, both the river dynamics in the plain and the geomorphology of the coastline have at various times resulted in the formation of small lagoons. At present only two small (<0.5 km 2) lagoons exist, at the eastern edge of the aquifer, which, although closely surrounded by commercial market-garden greenhouses, are protected under international agreements. During the last 30 years of the twentieth century traditional agricultural irrigation techniques have undergone significant changes to improve their efficiency. Surface-water resources in the Adra river basin are regulated via the Beninar reservoir. In addition, the use of groundwater is increasing progressively. Both these factors affect the recharge of the coastal aquifer. To monitor these changes measurements of electrical conductivity and water level fluctuations have been recorded in these lagoons for the last 35 years (1975-2010). A comparison of the hydrochemical characteristics of the water in the lagoons and of the surrounding groundwater from 2003 to 2010 shows marked differences induced by the different hydrological dynamics in each lagoon, as well as by the hydrogeological impact of changes in land use in the delta. The increase in water demand is a consequence of the extension of irrigated areas from the fluvio-deltaic plain to its slopes, originally occupied by unirrigated crops. A reduction in irrigation return-flow is linked to the use of new irrigation techniques. These modifications affect both the recharge regime of the aquifer and its water quality. Moreover, extreme precipitation events, which are characteristic of Mediterranean semi-arid environments, can affect the lagoons' hydrological dynamics to a considerable extent. One such example is the unusually rainy period

  18. An analysis of Milwaukee county land use

    NASA Technical Reports Server (NTRS)

    Todd, W. J.; Mausel, P. E.

    1973-01-01

    The identification and classification of urban and suburban phenomena through analysis of remotely-acquired sensor data can provide information of great potential value to many regional analysts. Such classifications, particularly those using spectral data obtained from satellites such as the first Earth Resources Technology Satellite (ERTS-1) orbited by NASA, allow rapid frequent and accurate general land use inventories that are of value in many types of spatial analyses. In this study, Milwaukee County, Wisconsin was classified into several broad land use categories on the basis of computer analysis of four bands of ERTS spectral data (ERTS Frame Number E1017-16093). Categories identified were: (1) road-central business district, (2) grass (green vegetation), (3) suburban, (4) wooded suburb, (5) heavy industry, (6) inner city, and (7) water. Overall, 90 percent accuracy was attained in classification of these urban land use categories.

  19. RESEARCH FOR MANAGING URBAN WATERSHED MICROBIAL CONTAMINATION (PROJECT 1: MANAGING URBAN WATERSHED PATHOGEN CONTAMINATION: 2. EFFECT OF LAND USE AND SEASON ON MICROORGANISM CONCENTRATION ON URBAN STORMWATER RUNOFF; 3. MICROORGANISM DIE-OFF RATES UNDER VARIOUS CONDITIONS.

    EPA Science Inventory

    The Water Supply and Water Resources Division (WSWRD) developed a document entitled Managing Urban Watershed Pathogen Contamination (EPA 600/R-03/111). This document provides information to support specific steps of the total maximum daily load (TMDL) process for meeting water q...

  20. Ecologically based municipal land use planning

    SciTech Connect

    Honachefsky, W.B.

    2000-07-01

    The book presents compelling evidence and sound arguments that make the case for sound land use policies that will reduce sprawl. The book provides easily understood solutions for municipal land planners dealing with urban sprawl; discusses ecological resources; emphasizes the use of new environmental indicators; and includes the use of the Geographic Information System (GIS) to problem solving.

  1. Land Use. Ag Ed Environmental Education Series.

    ERIC Educational Resources Information Center

    Tulloch, Rodney W.

    Land use is the subject of the student resource unit to be used with high school vocational agriculture students. Uses of the land in an urban environment, suburban environment, rural environment (as cropland, forest, and others), recreation and parks, and other environments are described. The supply of and demand for land is discussed.…

  2. Land Use and Land Cover Changes and Urban Sprawl in Riyadh, Saudi Arabia: AN Analysis Using Multi-Temporal Landsat Data and SHANNON'S Entropy Index

    NASA Astrophysics Data System (ADS)

    Rahman, M. T.

    2016-06-01

    The city of Riyadh, Saudi Arabia has experienced rapid population growth and urban expansion over the past several decades. Due to such growth, the capital city faces many short and long-term social and environmental consequences. In order to monitor and mitigate some of these consequences, it is essential to examine the past changes and historical growth of the city. It is also essential to measure its urban sprawl over the past few decades. The objective of this study is to fulfil these goals. It does so by first examining the historical growth of the city of Riyadh. To do so, Landsat data over the past two and half decades are classified using a combination of supervised and unsupervised classification techniques. Based on the classification results, the study then uses Shannon's Entropy to measure the urban sprawl in the city. The results show that from 1990-2009, the urban built-up area of the city has increased by 90% in the western, south-eastern, and northern parts. The Shannon's entropy values show that the city is dispersing towards the outskirts of the city. The results from this study will assist city planners and government officials to plan, reduce, and perhaps mitigate some of the social and environmental consequences and enable the growth of the city in a sustainable manner in the near future.

  3. Land use and energy

    SciTech Connect

    Robeck, K.E.; Ballou, S.W.; South, D.W.; Davis, M.J.; Chiu, S.Y.; Baker, J.E.; Dauzvardis, P.A.; Garvey, D.B.; Torpy, M.F.

    1980-07-01

    This report provides estimates of the amount of land required by past and future energy development in the United States and examines major federal legislation that regulates the impact of energy facilities on land use. An example of one land use issue associated with energy development - the potential conflict between surface mining and agriculture - is illustrated by describing the actual and projected changes in land use caused by coal mining in western Indiana. Energy activities addressed in the report include extraction of coal, oil, natural gas, uranium, oil shale, and geothermal steam; uranium processing; preparation of synfuels from coal; oil refineries; fossil-fuel, nuclear, and hydro-electric power plants; biomass energy farms; and disposal of solid wastes generated during combustion of fossil fuels. Approximately 1.1 to 3.3 x 10/sup 6/ acres were devoted to these activities in the United States in 1975. As much as 1.8 to 2.0 x 10/sup 6/ additional acres could be required by 1990 for new, nonbiomass energy development. The production of grain for fuel ethanol could require an additional 16.9 to 55.7 x 10/sup 6/ acres by 1990. Federal laws that directly or indirectly regulate the land-use impacts of energy facilities include the National Environmental Protection Act, Clean Air Act, Federal Water Pollution Control Act, Surface Mining Control and Reclamation Act, and Coastal Zone Management Act. The major provisions of these acts, other relevant federal regulations, and similar state and local regulatons are described in this report. Federal legislation relating to air quality, water quality, and the management of public lands has the greatest potential to influence the location and timing of future energy development in the United States.

  4. Energy and land use

    SciTech Connect

    Not Available

    1981-12-01

    This report addresses the land use impacts of past and future energy development and summarizes the major federal and state legislation which influences the potential land use impacts of energy facilities and can thus influence the locations and timing of energy development. In addition, this report describes and presents the data which are used to measure, and in some cases, predict the potential conflicts between energy development and alternative uses of the nation's land resources. The topics section of this report is divided into three parts. The first part describes the myriad of federal, state and local legislation which have a direct or indirect impact upon the use of land for energy development. The second part addresses the potential land use impacts associated with the extraction, conversion and combustion of energy resources, as well as the disposal of wastes generated by these processes. The third part discusses the conflicts that might arise between agriculture and energy development as projected under a number of DOE mid-term (1990) energy supply and demand scenarios.

  5. Techniques for detecting effects of urban and rural land-use practices on stream-water chemistry in selected watersheds in Texas, Minnesota,and Illinois

    USGS Publications Warehouse

    Walker, J.F.

    1993-01-01

    Selected statistical techniques were applied to three urban watersheds in Texas and Minnesota and three rural watersheds in Illinois. For the urban watersheds, single- and paired-site data-collection strategies were considered. The paired-site strategy was much more effective than the singlesite strategy for detecting changes. Analysis of storm load regression residuals demonstrated the potential utility of regressions for variability reduction. For the rural watersheds, none of the selected techniques were effective at identifying changes, primarily due to a small degree of management-practice implementation, potential errors introduced through the estimation of storm load, and small sample sizes. A Monte Carlo sensitivity analysis was used to determine the percent change in water chemistry that could be detected for each watershed. In most instances, the use of regressions improved the ability to detect changes.

  6. Urban land use/land cover mapping with high-resolution SAR imagery by integrating support vector machines into object-based analysis

    NASA Astrophysics Data System (ADS)

    Hu, Hongtao; Ban, Yifang

    2008-10-01

    This paper investigates the capability of high-resolution SAR data for urban landuse/land-cover mapping by integrating support vector machines (SVMs) into object-based analysis. Five-date RADARSAT fine-beam C-HH SAR images with a pixel spacing of 6.25 meter were acquired over the rural-urban fringe of the Great Toronto Area (GTA) during May to August in 2002. First, the SAR images were segmented using multi-resolution segmentation algorithm and two segmentation levels were created. Next, a range of spectral, shape and texture features were selected and calculated for all image objects on both levels. The objects on the lower level then inherited features of their super objects. In this way, the objects on the lower level received detailed descriptions about their neighbours and contexts. Finally, SVM classifiers were used to classify the image objects on the lower level based on the selected features. For training the SVM, sample image objects on the lower level were used. One-against-one approach was chosen to apply SVM to multiclass classification of SAR images in this research. The results show that the proposed method can achieve a high accuracy for the classification of high-resolution SAR images over urban areas.

  7. Effects of grass species and grass growth on atmospheric nitrogen deposition to a bog ecosystem surrounded by intensive agricultural land use

    PubMed Central

    Hurkuck, Miriam; Brümmer, Christian; Mohr, Karsten; Spott, Oliver; Well, Reinhard; Flessa, Heinz; Kutsch, Werner L

    2015-01-01

    We applied a 15N dilution technique called “Integrated Total Nitrogen Input” (ITNI) to quantify annual atmospheric N input into a peatland surrounded by intensive agricultural practices over a 2-year period. Grass species and grass growth effects on atmospheric N deposition were investigated using Lolium multiflorum and Eriophorum vaginatum and different levels of added N resulting in increased biomass production. Plant biomass production was positively correlated with atmospheric N uptake (up to 102.7 mg N pot−1) when using Lolium multiflorum. In contrast, atmospheric N deposition to Eriophorum vaginatum did not show a clear dependency to produced biomass and ranged from 81.9 to 138.2 mg N pot−1. Both species revealed a relationship between atmospheric N input and total biomass N contents. Airborne N deposition varied from about 24 to 55 kg N ha−1 yr−1. Partitioning of airborne N within the monitor system differed such that most of the deposited N was found in roots of Eriophorum vaginatum while the highest share was allocated in aboveground biomass of Lolium multiflorum. Compared to other approaches determining atmospheric N deposition, ITNI showed highest airborne N input and an up to fivefold exceedance of the ecosystem-specific critical load of 5–10 kg N ha−1 yr−1. PMID:26257870

  8. Effects of grass species and grass growth on atmospheric nitrogen deposition to a bog ecosystem surrounded by intensive agricultural land use.

    PubMed

    Hurkuck, Miriam; Brümmer, Christian; Mohr, Karsten; Spott, Oliver; Well, Reinhard; Flessa, Heinz; Kutsch, Werner L

    2015-07-01

    We applied a (15)N dilution technique called "Integrated Total Nitrogen Input" (ITNI) to quantify annual atmospheric N input into a peatland surrounded by intensive agricultural practices over a 2-year period. Grass species and grass growth effects on atmospheric N deposition were investigated using Lolium multiflorum and Eriophorum vaginatum and different levels of added N resulting in increased biomass production. Plant biomass production was positively correlated with atmospheric N uptake (up to 102.7 mg N pot(-1)) when using Lolium multiflorum. In contrast, atmospheric N deposition to Eriophorum vaginatum did not show a clear dependency to produced biomass and ranged from 81.9 to 138.2 mg N pot(-1). Both species revealed a relationship between atmospheric N input and total biomass N contents. Airborne N deposition varied from about 24 to 55 kg N ha(-1) yr(-1). Partitioning of airborne N within the monitor system differed such that most of the deposited N was found in roots of Eriophorum vaginatum while the highest share was allocated in aboveground biomass of Lolium multiflorum. Compared to other approaches determining atmospheric N deposition, ITNI showed highest airborne N input and an up to fivefold exceedance of the ecosystem-specific critical load of 5-10 kg N ha(-1) yr(-1).

  9. Effects of grass species and grass growth on atmospheric nitrogen deposition to a bog ecosystem surrounded by intensive agricultural land use.

    PubMed

    Hurkuck, Miriam; Brümmer, Christian; Mohr, Karsten; Spott, Oliver; Well, Reinhard; Flessa, Heinz; Kutsch, Werner L

    2015-07-01

    We applied a (15)N dilution technique called "Integrated Total Nitrogen Input" (ITNI) to quantify annual atmospheric N input into a peatland surrounded by intensive agricultural practices over a 2-year period. Grass species and grass growth effects on atmospheric N deposition were investigated using Lolium multiflorum and Eriophorum vaginatum and different levels of added N resulting in increased biomass production. Plant biomass production was positively correlated with atmospheric N uptake (up to 102.7 mg N pot(-1)) when using Lolium multiflorum. In contrast, atmospheric N deposition to Eriophorum vaginatum did not show a clear dependency to produced biomass and ranged from 81.9 to 138.2 mg N pot(-1). Both species revealed a relationship between atmospheric N input and total biomass N contents. Airborne N deposition varied from about 24 to 55 kg N ha(-1) yr(-1). Partitioning of airborne N within the monitor system differed such that most of the deposited N was found in roots of Eriophorum vaginatum while the highest share was allocated in aboveground biomass of Lolium multiflorum. Compared to other approaches determining atmospheric N deposition, ITNI showed highest airborne N input and an up to fivefold exceedance of the ecosystem-specific critical load of 5-10 kg N ha(-1) yr(-1). PMID:26257870

  10. The Great Plains low-level jet (LLJ) during the atmospheric radiation measurement (ARM) intensive observation period (IOP)-4 and simulations of land use pattern effect on the LLJ

    SciTech Connect

    Wu, Y.; Raman, S.

    1996-04-01

    The Great Plains low-level jet (LLJ) is an important element of the low-level atmospheric circulation. It transports water vapor from the Gulf of Mexico, which in turn affects the development of weather over the Great Plains of the central United States. The LLJ is generally recognized as a complex response of the atmospheric boundary layer to the diurnal cycle of thermal forcing. Early studies have attributed the Great Plains LLJ to the diurnal oscillations of frictional effect, buoyancy over sloping terrain, and the blocking effects of the Rocky Mountains. Recent investigations show that the speed of the LLJ is also affected by the soil type and soil moisture. Some studies also suggest that synoptic patterns may play an important role in the development of the LLJ. Land surface heterogeneties significantly affect mesoscale circulations by generating strong contrasts in surface thermal fluxes. Thus one would expect that the land use pattern should have effects on the LLJ`s development and structure. In this study, we try to determine the relative roles of the synoptic forcing, planetary boundary layers (PBL) processes, and the land use pattern in the formation of the LLJ using the observations from the Atmospheric Radiation Measurement (ARM) Intensive Operation Period (IOP)-4 and numerical sensitivity tests.

  11. Rainfall and runoff quantity and quality characteristics of four urban land-use catchments in Fresno, California, October 1981 to April 1983

    USGS Publications Warehouse

    Oltmann, R.N.; Shulters, M.V.

    1987-01-01

    Rainfall and runoff quantity and quality were monitored for industrial, single-dwelling residential, multiple-dwelling residential, and commercial land-use catchments in Fresno, California, during 1981-82 and 1982-83 rain seasons. Storm-composite rainfall and discrete runoff samples were analyzed for physical, inorganic, organic, and biological constituents. Atmospheric dry-deposition- and street-surface particulate samples also were collected and analyzed. Except for the industrial catchment, highest runoff concentrations for most constituents occurred during initial storm runoff and then decreased throughout the remainder of the storm; constituent concentrations for the industrial catchment fluctuated greatly. Statistical testing of runoff-quality data showed higher concentration for most constituents for the industrial catchment. Lead showed lower concentrations for the industrial catchment than for the other three catchments. Event mean concentration (EMC) for most constituents for all but the industrial catchment were highest for the first two or three storms of the rain season after which they became almost constant; the industrial constituent EMC 's generally did not show any pattern. The organophosphorus compounds, parathion, diazinon, and malathion were the most prevalent pesticides detected in rainfall. Other pesticides detected in rainfall included chlordane, lindane, methoxychlor, endosulfan, and 2 ,4-D. Of these, only methoxychlor and endosulfan were not consistently detected in the runoff. (USGS)

  12. Modeling historical changes in nutrient delivery and water quality of the Zenne River (1790s-2010): The role of land use, waterscape and urban wastewater management

    NASA Astrophysics Data System (ADS)

    Garnier, Josette; Brion, Natacha; Callens, Julie; Passy, Paul; Deligne, Chloé; Billen, Gilles; Servais, Pierre; Billen, Claire

    2013-12-01

    The Seneque/Riverstrahler model has been used to explore the effect of human-induced changes in drainage network morphology and land use on organic and nutrient pollutions, for the last 20 years and back to the 1890s and 1790s. With the development of human civilization, past environmental constraints differed compared to today. Research has sought to reconstruct (i) point sources (domestic and industrial), using statistics and archives from these periods, and (ii) diffuse sources via landscape and riverscape analysis based both on maps and agricultural statistics from the periods concerned.This study shows that a maximum of pollution occurred in the 1890s at the height of the industrial period, due more to the industrial load than to the domestic load. This substantial organic and nutrient pollution might have lasted up to very recently, when the Brussels Northern wastewater treatment plant began operation in 2007, significantly reducing the organic and nutrient load of the Zenne River, returning to a background pollution level assessed herein for the 1790s before industrialization expanded.

  13. Role of snow cover on urban heat island intensity investigated by urban canopy model with snow effects

    NASA Astrophysics Data System (ADS)

    Sato, T.; Mori, K.

    2015-12-01

    Urban heat islands have been investigated around the world including snowy regions. However, the relationship between urban heat island and snow cover remains unclear. This study examined the effect of snow cover in urban canopy on energy budget in urban areas of Sapporo, north Japan by 1km mesh WRF experiments. The modified urban canopy model permits snow cover in urban canopy by the modification of surface albedo, surface emissivity, and thermal conductivity for roof and road according to snow depth and snow water equivalent. The experiments revealed that snow cover in urban canopy decreases urban air temperature more strongly for daily maximum temperature (0.4-0.6 K) than for daily minimum temperature (0.1-0.3 K). The high snow albedo reduces the net radiation at building roof, leading to decrease in sensible heat flux. Interestingly, the cooling effect of snow cover compensates the warming effect by anthropogenic heat release in Sapporo, suggesting the importance of snow cover treatment in urban canopy model as well as estimating accurate anthropogenic heat distributions. In addition, the effect of road snow clearance tends to increase nocturnal surface air temperature in urban areas. A possible role of snow cover on urban heat island intensity was evaluated by two experiments with snow cover (i.e., realistic condition) and without snow cover in entire numerical domain. The snow cover decreases surface air temperature more in rural areas than in urban areas, which was commonly seen throughout a day, with stronger magnitude during nighttime than daytime, resulting in intensifying urban heat island by 4.0 K for daily minimum temperature.

  14. Land Use and Change

    NASA Technical Reports Server (NTRS)

    Irwin, Daniel E.

    2004-01-01

    The overall purpose of this training session is to familiarize Central American project cooperators with the remote sensing and image processing research that is being conducted by the NASA research team and to acquaint them with the data products being produced in the areas of Land Cover and Land Use Change and carbon modeling under the NASA SERVIR project. The training session, therefore, will be both informative and practical in nature. Specifically, the course will focus on the physics of remote sensing, various satellite and airborne sensors (Landsat, MODIS, IKONOS, Star-3i), processing techniques, and commercial off the shelf image processing software.

  15. A Coupled SD and CLUE-S Model for Exploring the Impact of Land Use Change on Ecosystem Service Value: A Case Study in Baoshan District, Shanghai, China

    NASA Astrophysics Data System (ADS)

    Wu, Meng; Ren, Xiangyu; Che, Yue; Yang, Kai

    2015-08-01

    Most of the cities in developing countries are experiencing rapid urbanization. Land use change driven by urban sprawl, population growth, and intensified socio-economic activities have led to a steep decline of ecosystem service value (ESV) in rapid urbanization areas, and decision-makers often ignore some valuable ecosystem service functions and values in land use planning. In this paper, we attempt to build a modeling framework which integrated System Dynamics model with Conversion of Land Use and its Effects at Small Extent model to simulate the dynamics of ESV of landscape and explore the potential impacts of land use change on ESV. We take Baoshan district of Shanghai as an example which is a fast urbanization area of metropolitan in China. The results of the study indicate that: (1) The integrated methodology can improve the characterization and presentation of the dynamics of ESV, which may give insight into understanding the possible impacts of land use change on ESV and provide information for land use planning. (2) Land use polices can affect the magnitude and location of ESV both directly and indirectly. Land use changes tend to weaken and simplify ecosystem service functions and values of landscape at urban rural fringe where land use change is more intensive. (3) The application of the methodology has proved that the integration of currently existing models within a single modeling framework could be a beneficial exploration, and should be encouraged and enhanced in the future research on the changing dynamics of ESV due to the complexity of ecosystem services and land use system.

  16. A Coupled SD and CLUE-S Model for Exploring the Impact of Land Use Change on Ecosystem Service Value: A Case Study in Baoshan District, Shanghai, China.

    PubMed

    Wu, Meng; Ren, Xiangyu; Che, Yue; Yang, Kai

    2015-08-01

    Most of the cities in developing countries are experiencing rapid urbanization. Land use change driven by urban sprawl, population growth, and intensified socio-economic activities have led to a steep decline of ecosystem service value (ESV) in rapid urbanization areas, and decision-makers often ignore some valuable ecosystem service functions and values in land use planning. In this paper, we attempt to build a modeling framework which integrated System Dynamics model with Conversion of Land Use and its Effects at Small Extent model to simulate the dynamics of ESV of landscape and explore the potential impacts of land use change on ESV. We take Baoshan district of Shanghai as an example which is a fast urbanization area of metropolitan in China. The results of the study indicate that: (1) The integrated methodology can improve the characterization and presentation of the dynamics of ESV, which may give insight into understanding the possible impacts of land use change on ESV and provide information for land use planning. (2) Land use polices can affect the magnitude and location of ESV both directly and indirectly. Land use changes tend to weaken and simplify ecosystem service functions and values of landscape at urban rural fringe where land use change is more intensive. (3) The application of the methodology has proved that the integration of currently existing models within a single modeling framework could be a beneficial exploration, and should be encouraged and enhanced in the future research on the changing dynamics of ESV due to the complexity of ecosystem services and land use system. PMID:25924787

  17. A Coupled SD and CLUE-S Model for Exploring the Impact of Land Use Change on Ecosystem Service Value: A Case Study in Baoshan District, Shanghai, China.

    PubMed

    Wu, Meng; Ren, Xiangyu; Che, Yue; Yang, Kai

    2015-08-01

    Most of the cities in developing countries are experiencing rapid urbanization. Land use change driven by urban sprawl, population growth, and intensified socio-economic activities have led to a steep decline of ecosystem service value (ESV) in rapid urbanization areas, and decision-makers often ignore some valuable ecosystem service functions and values in land use planning. In this paper, we attempt to build a modeling framework which integrated System Dynamics model with Conversion of Land Use and its Effects at Small Extent model to simulate the dynamics of ESV of landscape and explore the potential impacts of land use change on ESV. We take Baoshan district of Shanghai as an example which is a fast urbanization area of metropolitan in China. The results of the study indicate that: (1) The integrated methodology can improve the characterization and presentation of the dynamics of ESV, which may give insight into understanding the possible impacts of land use change on ESV and provide information for land use planning. (2) Land use polices can affect the magnitude and location of ESV both directly and indirectly. Land use changes tend to weaken and simplify ecosystem service functions and values of landscape at urban rural fringe where land use change is more intensive. (3) The application of the methodology has proved that the integration of currently existing models within a single modeling framework could be a beneficial exploration, and should be encouraged and enhanced in the future research on the changing dynamics of ESV due to the complexity of ecosystem services and land use system.

  18. Nitrogen Loadings from Different Land Uses at University of Florida Determined by High-Resolution in situ Nitrate Sensors

    NASA Astrophysics Data System (ADS)

    Luo, J.; Hochmuth, G.; Clark, M. W.

    2013-12-01

    Nitrogen loadings based on different land uses have been studied in many ecosystems, but few focus in a small scale which can help better identifying the specific nitrogen sources. A nitrogen budget is being developed at the University of Florida in Gainesville, Florida. This study will use in situ nitrate sensors to collect continuous nitrate data, which will bring another way to interpret watershed hydrology and biogeochemical processes. The study areas include three sub-basins with different types of land uses (recreational with intensive fertilization management, urban with reclaimed water irrigation, urban without irrigation) in Lake Alice watershed and the outfall point in Lake Alice where the flow discharges to the groundwater. Two in situ nitrate sensors (SUNAs) are being deployed in different types of land uses each time for a week period taking NO3--N readings every 15 minutes. Continuous time series data will be compared to determine if the NO3--N concentration from one land use is different from the other land use. The weekly N loads are calculated as the summation of the products of daily average concentrations and daily average flow over a week. The results showed the weekly time series data of NO3--N concentrations in the land use of recreation are significantly higher than other land use types, so are the estimated N loads.

  19. Rainfall and runoff quantity and quality characteristics of four urban land-use catchments in Fresno, California, October 1981 to April 1983

    USGS Publications Warehouse

    Oltmann, Richard N.; Shulters, Michael V.

    1989-01-01

    Rainfall and runoff quantity and quality were monitored for industrial, single-dwelling residential, multiple-dwelling residential, and commercial land-use catchments during the 1981-82 and 1982-83 rain seasons. Storm-composite rainfall and discrete run6ff samples were analyzed for numerous inorganic, biological, physical, and organic constituents. Atmospheric dry-deposition and street-surface particulate samples also were collected and analyzed. With the exception of the industrial catchment, the highest runoff concentrations for most constituents occurred during the initial storm runoff and then decreased throughout the remainder of the storm, independent of hydraulic conditions. Metal concentrations were high during initial runoff, but also increased as flow increased. Constituent concentrations for the industrial catchment fluctuated greatly during storms. Statistical tests showed higher ammonia plus organic nitrogen, ammonia, pH, and phenol concentrations in rainfall at the industrial site than at the single-dwelling residential and laboratory sites. Statistical testing of runoff quality data showed higher concentrations for the industrial catchment than for the two residential and commercial catchments for most constituents. Total recoverable lead was one of the few constituents that had lower concentrations for the industrial catchment than for the other three catchments. The two residential catchments showed no significant difference in runoff concentrations for 50 of the 57 constituents used in the statistical analysis. The commercial catchment runoff concentrations for most constituents generally were similar to the residential catchments. Although constituent concentrations generally were higher for the industrial catchment than for the commercial catchment, constituent storm loads from the commercial catchment were similar to the industrial catchment because of the greater runoff volume from the highly impervious commercial catchment. Between 10 and 50

  20. Land use change and human health

    NASA Astrophysics Data System (ADS)

    Patz, Jonathan A.; Norris, Douglas E.

    Disease emergence events have been documented following several types of land use change. This chapter reviews several health-relevant land use changes recognized today, including: 1) urbanization and urban sprawl; 2) water projects and agricultural development; 3) road construction and deforestation in the tropics; and 4) regeneration of temperate forests. Because habitat or climatic change substantially affects intermediate invertebrate hosts involved in many prevalent diseases, this chapter provides a basic description of vector-borne disease biology as a foundation for analyzing the effects of land use change. Urban sprawl poses health challenges stemming from heat waves exacerbated by the "urban heat island" effect, as well as from water contamination due to expanses of impervious road and concrete surfaces. Dams, irrigation and agricultural development have long been associated with diseases such as schistosomiasis and filariasis. Better management methods are required to address the trade-offs between expanded food production and altered habitats promoting deadly diseases. Deforestation can increase the nature and number of breeding sites for vector-borne diseases, such as malaria and onchocerciasis. Human host and disease vector interaction further increases risk, as can a change in arthropod-vector species composition.

  1. Change of atmospheric condition in an urbanized area of Japan from the viewpoint of rainfall intensity.

    PubMed

    Aikawa, Masahide; Hiraki, Takatoshi; Eiho, Jiro

    2009-01-01

    The atmospheric condition in an urbanized area of Japan was examined from the viewpoint of a 14-year trend in the rainfall intensity. To cancel the wide-area meteorological phenomena such as a typhoon and a front, the rainfall datasets obtained not only in an urban area but also in a rural area was studied. The rainfall datasets collected on a 0.5 mm rainfall basis was used. The rainfall intensity dominantly increased in urban area, while that in rural area neither increased nor decreased. An increasing trend was clearly observed for rainfall with precipitation amounts of 5 and 10 mm. Rainfall with precipitation amounts of 15 and 20 mm showed neither an increasing nor a decreasing trend. The results of this study show that there is a high probability of a connection between the urbanization and the change of rainfall intensity.

  2. Development and Applications of a Comprehensive Land Use Classification and Map for the US

    PubMed Central

    Theobald, David M.

    2014-01-01

    Land cover maps reasonably depict areas that are strongly converted by human activities, but typically are unable to resolve low-density but widespread development patterns. Data products specifically designed to resolve land uses complement land cover datasets and likely improve our ability to understand the extent and complexity of human modification. Methods for developing a comprehensive land use classification system are described, and a map of land use for the conterminous United States is presented to reveal what we are doing on the land. The comprehensive, detailed and high-resolution dataset was developed through spatial analysis of nearly two-dozen publicly-available, national spatial datasets – predominately based on census housing, employment, and infrastructure, as well as land cover from satellite imagery. This effort resulted in 79 land use classes that fit within five main land use groups: built-up, production, recreation, conservation, and water. Key findings from this study are that built-up areas occupy 13.6% of mainland US, but that the majority of this occurs as low-density exurban/rural residential (9.1% of the US), while more intensive built-up land uses occupy 4.5%. For every acre of urban and suburban residential land, there are 0.13 commercial, 0.07 industrial, 0.48 institutional, and 0.29 acres of interstates/highways. This database can be used to address a variety of natural resource applications, and I provide three examples here: an entropy index of the diversity of land uses for smart-growth planning, a power-law scaling of metropolitan area population to developed footprint, and identifying potential conflict areas by delineating the urban interface. PMID:24728210

  3. Development and applications of a comprehensive land use classification and map for the US.

    PubMed

    Theobald, David M

    2014-01-01

    Land cover maps reasonably depict areas that are strongly converted by human activities, but typically are unable to resolve low-density but widespread development patterns. Data products specifically designed to resolve land uses complement land cover datasets and likely improve our ability to understand the extent and complexity of human modification. Methods for developing a comprehensive land use classification system are described, and a map of land use for the conterminous United States is presented to reveal what we are doing on the land. The comprehensive, detailed and high-resolution dataset was developed through spatial analysis of nearly two-dozen publicly-available, national spatial datasets--predominantly based on census housing, employment, and infrastructure, as well as land cover from satellite imagery. This effort resulted in 79 land use classes that fit within five main land use groups: built-up, production, recreation, conservation, and water. Key findings from this study are that built-up areas occupy 13.6% of mainland US, but that the majority of this occurs as low-density exurban/rural residential (9.1% of the US), while more intensive built-up land uses occupy 4.5%. For every acre of urban and suburban residential land, there are 0.13 commercial, 0.07 industrial, 0.48 institutional, and 0.29 acres of interstates/highways. This database can be used to address a variety of natural resource applications, and I provide three examples here: an entropy index of the diversity of land uses for smart-growth planning, a power-law scaling of metropolitan area population to developed footprint, and identifying potential conflict areas by delineating the urban interface. PMID:24728210

  4. Unraveling Landscape Complexity: Land Use/Land Cover Changes and Landscape Pattern Dynamics (1954-2008) in Contrasting Peri-Urban and Agro-Forest Regions of Northern Italy.

    PubMed

    Smiraglia, D; Ceccarelli, T; Bajocco, S; Perini, L; Salvati, L

    2015-10-01

    This study implements an exploratory data analysis of landscape metrics and a change detection analysis of land use and population density to assess landscape dynamics (1954-2008) in two physiographic zones (plain and hilly-mountain area) of Emilia Romagna, northern Italy. The two areas are characterized by different landscape types: a mixed urban-rural landscape dominated by arable land and peri-urban settlements in the plain and a traditional agro-forest landscape in the hilly-mountain area with deciduous and conifer forests, scrublands, meadows, and crop mosaic. Urbanization and, to a lesser extent, agricultural intensification were identified as the processes underlying landscape change in the plain. Land abandonment determining natural forestation and re-forestation driven by man was identified as the process of change most representative of the hilly-mountain area. Trends in landscape metrics indicate a shift toward more fragmented and convoluted patterns in both areas. Number of patches, the interspersion and juxtaposition index, and the large patch index are the metrics discriminating the two areas in terms of landscape patterns in 1954. In 2008, mean patch size, edge density, interspersion and juxtaposition index, and mean Euclidean nearest neighbor distance were the metrics with the most different spatial patterns in the two areas. The exploratory data analysis of landscape metrics contributed to link changes over time in both landscape composition and configuration providing a comprehensive picture of landscape transformations in a wealthy European region. Evidence from this study are hoped to inform sustainable land management designed for homogeneous landscape units in similar socioeconomic contexts.

  5. Unraveling Landscape Complexity: Land Use/Land Cover Changes and Landscape Pattern Dynamics (1954-2008) in Contrasting Peri-Urban and Agro-Forest Regions of Northern Italy

    NASA Astrophysics Data System (ADS)

    Smiraglia, D.; Ceccarelli, T.; Bajocco, S.; Perini, L.; Salvati, L.

    2015-10-01

    This study implements an exploratory data analysis of landscape metrics and a change detection analysis of land use and population density to assess landscape dynamics (1954-2008) in two physiographic zones (plain and hilly-mountain area) of Emilia Romagna, northern Italy. The two areas are characterized by different landscape types: a mixed urban-rural landscape dominated by arable land and peri-urban settlements in the plain and a traditional agro-forest landscape in the hilly-mountain area with deciduous and conifer forests, scrublands, meadows, and crop mosaic. Urbanization and, to a lesser extent, agricultural intensification were identified as the processes underlying landscape change in the plain. Land abandonment determining natural forestation and re-forestation driven by man was identified as the process of change most representative of the hilly-mountain area. Trends in landscape metrics indicate a shift toward more fragmented and convoluted patterns in both areas. Number of patches, the interspersion and juxtaposition index, and the large patch index are the metrics discriminating the two areas in terms of landscape patterns in 1954. In 2008, mean patch size, edge density, interspersion and juxtaposition index, and mean Euclidean nearest neighbor distance were the metrics with the most different spatial patterns in the two areas. The exploratory data analysis of landscape metrics contributed to link changes over time in both landscape composition and configuration providing a comprehensive picture of landscape transformations in a wealthy European region. Evidence from this study are hoped to inform sustainable land management designed for homogeneous landscape units in similar socioeconomic contexts.

  6. Arizona land use experiment

    NASA Technical Reports Server (NTRS)

    Winikka, C. C.; Schumann, H. H.

    1975-01-01

    Utilization of new sources of statewide remote sensing data, taken from high-altitude aircraft and from spacecraft is discussed along with incorporation of information extracted from these sources into on-going land and resources management programs in Arizona. Statewide cartographic applications of remote sensor data taken by NASA high-altitude aircraft include the development of a statewide semi-analytic control network, the production of nearly 1900 orthophotoquads (image maps) that are coincident in scale and area with the U.S. Geological Survey (USGS) 7. 5 minute topographic quadrangle map series, and satellite image maps of Arizona produced from LANDSAt multispectral scanner imagery. These cartographic products are utilized for a wide variety of experimental and operational earth resources applications. Applications of the imagery, image maps, and derived information discussed include: soils and geologic mapping projects, water resources investigations, land use inventories, environmental impact studies, highway route locations and mapping, vegetation cover mapping, wildlife habitat studies, power plant siting studies, statewide delineation of irrigation cropland, position determination of drilling sites, pictorial geographic bases for thematic mapping, and court exhibits.

  7. Land use habits impair US waters

    SciTech Connect

    Selzer, L.A.; Wilcher, L.S.

    1994-08-01

    Preventing nonpoint source pollution begins with personal responsiblity. Land use practices, including construction, agriculture, urban runoff and chemical use in both rural and urban areas, are among the principal causes of nonpoint source pollution. In April 1993, approximately 370,000 Milwaukee, Wis., residents fell ill after ingesting contaminated drinking water. Some people with compromised immune systems died. The culprit was a tiny parasitic microorganism that breeds in the intestines and manure of cattle. Health officials speculate that the parasite hitchhiked across the floor of the watershed to the city`s water supply-a classic example of nonpoint source pollution. This paper describes several efforts to reduce nonpoint source pollution.

  8. Remote sensing, land use, and demography - A look at people through their effects on the land

    NASA Technical Reports Server (NTRS)

    Paul, C. K.; Landini, A. J.

    1976-01-01

    Relevant causes of failure by the remote sensing community in the urban scene are analyzed. The reasons for the insignificant role of remote sensing in urban land use data collection are called the law of realism, the incompatibility of remote sensing and urban management system data formats is termed the law of nominal/ordinal systems compatibility, and the land use/population correlation dilemma is referred to as the law of missing persons. The study summarizes the three laws of urban land use information for which violations, avoidance, or ignorance have caused the decline of present remote sensing research. Particular attention is given to the rationale for urban land use information and for remote sensing. It is shown that remote sensing of urban land uses compatible with the three laws can be effectively developed by realizing the 10 percent contribution of remote sensing to urban land use planning data collection.

  9. Monitoring land use change using remote sensing and GIS

    NASA Astrophysics Data System (ADS)

    Xie, Yunlin; Peng, Mingjun

    2008-12-01

    Rapid land use change has take place in Wuhan, the largest mega-city in central China during the last decade. Remotely sensed imagery together with geographical information system have long been utilized to monitor spatial and temporal land use change. The aim of this paper is to find out the land use change and the trend of urban growth in Wuhan, China using satellite images. The Landsat TM image acquired in 1991 and the Landsat ETM image acquired in 2002 were used to monitor land use change in Wuhan. The images were geo-referenced according to Gauss-Kruger projection with Krasovsky spheroid, by using 1:50, 000 topographical maps. The image processing is implemented by using Erdas Imagine package. The RMS error has been controlled under the limit of 1 pixel. The geo-referenced images were classified as seven land use types: cultivated land, forest land, grassland, urban and villages, transportation, water bodies and barren land. Two land use maps were produced for each date. The geo-referenced, classified images were compared pixel by pixel to locate and quantify land use changes that took place from 1991 to 2002 period. The further change detection analysis in a later stage is performed in ArcGIS. The transition matrix was produced and the quantitative information on the size of land use change from one type to another was compiles. The results of study indicate that the conversion of land use from cultivated land to urban was prominent, the rapid urban sprawl has occupied lots of cultivated land and water bodies, the urban area significantly increased 30%, most of which are converted from cultivated land. these valuable cultivated land need careful protection by providing land use plans to guide urban growth going toward the right directions. The results obtained from this application also indicate that the use of satellite imageries is very useful for mapping land use changes, and the monitoring land use change is essential for land use planning and urban

  10. Quantifying urban intensity in drainage basins for assessing stream ecological conditions

    USGS Publications Warehouse

    McMahon, G.; Cuffney, T.F.

    2000-01-01

    Three investigations are underway, as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program, to study the relation between varying levels of urban intensity in drainage basins and in-stream water quality, measured by physical, chemical, and biological factors. These studies are being conducted in the vicinities of Boston (Massachusetts), Salt Lake City (Utah), and Birmingham (Alabama), areas where rapid urbanization is occurring. For each study, water quality will be sampled in approximately 30 drainage basins that represent a gradient of urban intensity. This paper focuses on the methods used to characterize and select the basins used in the studies. It presents a methodology for limiting the variability of natural landscape characteristics in the potential study drainage basins and for ranking the magnitude of human influence, or urbanization, based on land cover, infrastructure, and socioeconomic data in potential study basins. Basin characterization efforts associated with the Boston study are described for illustrative purposes.

  11. The potential for hail and intense rainfall enhancement over urban areas: improving urban extreme weather risk assessment

    NASA Astrophysics Data System (ADS)

    Ntelekos, A. A.; Smith, J. A.; Krajewski, W. F.; Foote, M.

    2009-04-01

    Urban communities and their infrastructure are particularly vulnerable to the impacts of organized thunderstorm systems. Current models of urban extreme weather risk do not fully represent the complexity of the hydrometeorological processes involved, particularly in relation to intense convective precipitation and severe weather. Hail is a severe thunderstorm hazard that can be extremely damaging to property (especially automobiles, buildings and agriculture) over and in proximity to urban environments. This study identifies some of the mechanisms that future generations of catastrophe models should consider incorporating in their representation of hydrometeorlogical hazards in urban areas. In addition, such information could help to inform planning policy and improve urban resilience to extreme events. Evidence is provided that urban environments, through the existence of high-rise buildings and densely build-up areas, but also through air-pollution (aerosols) can potentially lead to an enhancement of both flooding and hail. Conclusions are drawn from two separate studies over the heavily urbanized corridor of the northeastern United States but could be expanded to apply to other urban areas. Observational and modelling (Weather Research and Forecasting - WRF) analyses of an extreme thunderstorm over the Baltimore, Maryland metropolitan area on 7 July 2004 provided evidence that the urban canopy redistributed heavy rainfall and convergence centres in the vicinity of the urban environment. Modelling analyses suggest that convective rainfall around the urban core was increased by about 30% due to the heterogeneities of land surface processes associated with the city of Baltimore. Chesapeake Bay also played an important role in rainfall distribution by acting as a divergence zone for northerly winds. Cloud-to-ground lightning analyses show that the city of Baltimore and the Chesapeake Bay combined played a role in the distribution of lightning in the periphery of the

  12. High-resolution stochastic generation of extreme rainfall intensity for urban drainage modelling applications

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Blumensaat, Frank; Molnar, Peter; Fatichi, Simone; Burlando, Paolo

    2016-04-01

    Urban drainage response is highly dependent on the spatial and temporal structure of rainfall. Therefore, measuring and simulating rainfall at a high spatial and temporal resolution is a fundamental step to fully assess urban drainage system reliability and related uncertainties. This is even more relevant when considering extreme rainfall events. However, the current space-time rainfall models have limitations in capturing extreme rainfall intensity statistics for short durations. Here, we use the STREAP (Space-Time Realizations of Areal Precipitation) model, which is a novel stochastic rainfall generator for simulating high-resolution rainfall fields that preserve the spatio-temporal structure of rainfall and its statistical characteristics. The model enables a generation of rain fields at 102 m and minute scales in a fast and computer-efficient way matching the requirements for hydrological analysis of urban drainage systems. The STREAP model was applied successfully in the past to generate high-resolution extreme rainfall intensities over a small domain. A sub-catchment in the city of Luzern (Switzerland) was chosen as a case study to: (i) evaluate the ability of STREAP to disaggregate extreme rainfall intensities for urban drainage applications; (ii) assessing the role of stochastic climate variability of rainfall in flow response and (iii) evaluate the degree of non-linearity between extreme rainfall intensity and system response (i.e. flow) for a small urban catchment. The channel flow at the catchment outlet is simulated by means of a calibrated hydrodynamic sewer model.

  13. Characterization of streamflow, salinity, and selenium loading and land-use change in Montrose Arroyo, western Colorado, from 1992 to 2013

    USGS Publications Warehouse

    Richards, Rodney J.; Moore, Jennifer L.

    2015-01-01

    Land use was characterized for 1992, 2002, and 2009 for site MA3. The common land-use change in the MA3 subwatershed was a conversion from previously irrigated agricultural land to urban land use. The MA3 subwatershed had 124 acres of irrigated land use converted to urban land use and 27.1 acres of unirrigated desert converted to urban land use from 1992 to 2009. Consistent with findings in previous land-use change reports, salinity and dissolved-selenium loading at site MA3 showed significant decreases as irrigated land was converted to urban land use.

  14. Change in agricultural land use constrains adaptation of national wildlife refuges to climate change

    USGS Publications Warehouse

    Hamilton, Christopher M.; Thogmartin, Wayne E.; Radeloff, Volker C.; Plantinga, Andrew J.; Heglund, Patricia J.; Martinuzzi, Sebastian; Pidgeon, Anna M.

    2015-01-01

    Land-use change around protected areas limits their ability to conserve biodiversity by altering ecological processes such as natural hydrologic and disturbance regimes, facilitating species invasions, and interfering with dispersal of organisms. This paper informs USA National Wildlife Refuge System conservation planning by predicting future land-use change on lands within 25 km distance of 461 refuges in the USA using an econometric model. The model contained two differing policy scenarios, namely a ‘business-as-usual’ scenario and a ‘pro-agriculture’ scenario. Regardless of scenario, by 2051, forest cover and urban land use were predicted to increase around refuges, while the extent of range and pasture was predicted to decrease; cropland use decreased under the business-as-usual scenario, but increased under the pro-agriculture scenario. Increasing agricultural land value under the pro-agriculture scenario slowed an expected increase in forest around refuges, and doubled the rate of range and pasture loss. Intensity of land-use change on lands surrounding refuges differed by regions. Regional differences among scenarios revealed that an understanding of regional and local land-use dynamics and management options was an essential requirement to effectively manage these conserved lands. Such knowledge is particularly important given the predicted need to adapt to a changing global climate.

  15. Land use policy and forests

    SciTech Connect

    Sunder, S.S.

    1992-12-31

    This paper sketches the background to the current forest policy in India, making comparisons with other countries. In the tropics, the relationship between land, climate and forests is such that if the soil is allowed to deteriorate or is lost, degradation of both land and vegetation becomes complete. Unfortunately in some of the developing countries in the tropics, biotic pressures are also intense. The situation is worsening in spite of the lofty aims propagated by the National Forest Policies. In India, the first policy is nearly a century old, but the country is today worse off regarding its forests than when it was originally proposed. The three successive policies, and also the policies of a few other developing countries in S.E. Asia, are briefly analyzed. The failure of the policies in India is perhaps due to (a) their addressing themselves to Government forests rather than to the land and soil in general, (b) a lack of a scientific land use policy, and (c) their having neither legal backing nor support from other sectors. For these reasons, the definition forest has come to imply land area constituted as reserve forests, and not general tree cover. In developed countries, the situation is different. In addition to Government forests, there are forests in the private sector; a result of legal prescriptions and sets of incentives and disincentives. A suggestion is made that in the tropics, forest policy should rest mainly on the sustainable use of land.

  16. Land use in the northern Coachella Valley

    NASA Technical Reports Server (NTRS)

    Bale, J. B.; Bowden, L. W.

    1973-01-01

    Satellite imagery has proved to have great utility for monitoring land use change and as a data source for regional planning. In California, open space desert resources are under severe pressure to serve as a source for recreational gratification to individuals living in the heavily populated southern coastal plain. Concern for these sensitive arid environments has been expressed by both federal and state agencies. The northern half of the Coachella Valley has historically served as a focal point for weekend recreational activity and second homes. Since demand in this area has remained high, land use change from rural to urban residential has been occurring continuously since 1968. This area of rapid change is an ideal site to illustrate the utility of satellite imagery as a data source for planning information, and has served as the areal focus of this investigation.

  17. Model-based study of the role of rainfall and land use-land cover in the changes in the occurrence and intensity of Niger red floods in Niamey between 1953 and 2012

    NASA Astrophysics Data System (ADS)

    Casse, Claire; Gosset, Marielle; Vischel, Théo; Quantin, Guillaume; Alkali Tanimoun, Bachir

    2016-07-01

    Since 1950, the Niger River basin has gone through three main climatic periods: a wet period (1950-1960), an extended drought (1970-1980) and since 1990 a recent partial recovery of annual rainfall. Hydrological changes co-occur with these rainfall fluctuations. In most of the basin, the rainfall deficit caused an enhanced discharge deficit, but in the Sahelian region the runoff increased despite the rainfall deficit. Since 2000 the Sahelian part of the Niger has been hit by an increase of flood hazards during the so-called red flood period. In Niamey city, the highest river levels and the longest flooded period ever recorded occurred in 2003, 2010, 2012 and 2013, with heavy casualties and property damage. The reasons for these changes, and the relative role of climate versus land use-land cover (LULC) changes are still debated and are investigated in this paper. The evolution of the Niger red flood in Niamey from 1950 to 2012 is analysed based on long-term records of rainfall (three data sets based on in situ and/or satellite data) and discharge, and a hydrological model. The model is first run with the present LULC conditions in order to analyse solely the effect of rainfall variability. The impact of LULC and drainage area modification is investigated in a second step. The simulations based on the current surface conditions are able to reproduce the observed trend in the red flood occurrence and intensity since the 1980s. This has been verified with three independent rainfall data sets and implies that rainfall variability is the main driver for the red flood intensification observed over the last 30 years. The simulation results since 1953 have revealed that LULC and drainage area changes need to be invoked to explain the changes over a 60-year period.

  18. New methods to assess severity and likelihood of urban flood risk from intense rainfall

    NASA Astrophysics Data System (ADS)

    Fewtrell, Tim; Foote, Matt; Bates, Paul; Ntelekos, Alexandros

    2010-05-01

    Flooding from intense local rainfall can contribute a significant proportion of total damages and losses experienced, particularly in urban areas, where sewerage overcharging, localised river flooding, and overland flow, can conspire to cause significant loss potential to concentrations of assets and populations. Events such as the Summer 2007 floods in the UK have shown that there is a significant risk to key urban centres. However, current approaches to the quantitative assessment of flood risk, and the estimation of the potential frequency and severity of events, poorly represent flood risk from intense, localised rainfall. This causes problems not only for insurers and reinsurers, but also for urban planners, local authorities and emergency services where assessment of localised impacts from intense rainfall flooding form a key component of risk assessment needs. The localised nature of pluvial flooding, and the importance of complex terrain, drainage and pathways in determining water ponding within urban areas, makes the modelling of urban pluvial flood risk particularly problematic. Current approaches, usually through statistical means, or simple flood risk ‘maps' based on conventional topographic information, provide some information to assist risk decisions, but lack the level of detail necessary for accurate representation of the flood extents and depths in relation to the properties and other assets exposed. New techniques including ground based lasers-canner (LIDAR) provide a potential source for ultra-high resolution (centimetre) terrain information, which can be incorporated within urban scale hydrological-hydraulic model to provide appropriate resolution flood models. The corresponding development of new, efficient hydraulic models [Paul, Tim to add a bit here] with the ability to handle the high spatial and temporal resolutions required of urban flood provides a new modelling environment with which to tackle urban flood risk assessment, including

  19. Impact of Urbanization on Precipitation Distribution and Intensity over Lake Victoria Basin

    NASA Astrophysics Data System (ADS)

    Gudoshava, M.; Semazzi, F. H. M.

    2014-12-01

    In this study, sensitivity simulations on the impact of rapid urbanization over Lake Victoria Basin in East Africa were done using a Regional Climate Model (RegCM4.4-rc29) with the Hostetler lake model activated. The simulations were done for the rainy seasons that is the long rains (March-April-May) and short rains (October-November-December). Africa is projected to have a surge in urbanization with an approximate rate of 590% in 2030 over their 2000 levels. The Northern part of Lake Victoria Basin and some parts of Rwanda and Burundi are amongst the regions with high urbanization projections. Simulations were done with the land cover for 2000 and the projected 2030 urbanization levels. The results showed that increasing the urban fraction over the northern part of the basin modified the physical parameters such as albedo, moisture and surface energy fluxes, aerodynamic roughness and surface emissivity, thereby altering the precipitation distribution, intensity and frequency in the region. The change in the physical parameters gave a response of an average increase in temperature of approximately 2oC over the urbanized region. A strong convergence zone was formed over the urbanized region and thereby accelerating the lake-breeze front towards the urbanized region center. Precipitation in the urbanized region and regions immediate to the area increased by approximately 4mm/day, while drying up the southern (non-urbanized) side of the basin. The drying up of the southern side of the basin could be a result of divergent flow and subsidence that suppresses vertical development of storms.

  20. Assessing the consequence of land use change on agricultural productivity in China

    NASA Astrophysics Data System (ADS)

    Yan, Huimin; Liu, Jiyuan; Huang, He Qing; Tao, Bo; Cao, Mingkui

    2009-05-01

    China's cultivated land has been undergoing dramatic changes along with its rapidly growing economy and population. The impacts of land use transformation on food production at the national scale, however, have been poorly understood due to the lack of detailed spatially explicit agricultural productivity information on cropland change and crop productivity. This study evaluates the effect of the cropland transformation on agricultural productivity by combining the land use data of China for the period of 1990-2000 from TM images and a satellite-based NPP (net primary production) model driven with NOAA/AVHRR data. The cropland area of China has a net increase of 2.79 Mha in the study period, which causes a slightly increased agricultural productivity (6.96 Mt C) at the national level. Although the newly cultivated lands compensated for the loss from urban expansion, but the contribution to production is insignificant because of the low productivity. The decrease in crop production resulting from urban expansion is about twice of that from abandonment of arable lands to forests and grasslands. The productivity of arable lands occupied by urban expansion was 80% higher than that of the newly cultivated lands in the regions with unfavorable natural conditions. Significance of cropland transformation impacts is spatially diverse with the differences in land use change intensity and land productivity across China. The increase in arable land area and yet decline in land quality may reduce the production potential and sustainability of China's agro-ecosystems.

  1. Modeling land-use change

    SciTech Connect

    1995-12-31

    Tropical land-use change is generally considered to be the greatest net contributor of carbon dioxide to the atmosphere after fossil-fuel burning. However, estimates vary widely, with one major cause of variation being that terrestrial ecosystems are both a source and a sink for carbon. This article describes two spatially explicit models which simulate rates and patterns of tropical land-use change: GEOMOD1, based on intuitive assumptions about how people develop land over time, and GEOMOD2, based on a statistical analysis of how people have actually used the land. The models more closely estimate the connections between atmospheric carbon dioxide, deforestation, and other land use changes.

  2. Comparing and modelling land use organization in cities

    PubMed Central

    Lenormand, Maxime; Picornell, Miguel; Cantú-Ros, Oliva G.; Louail, Thomas; Herranz, Ricardo; Barthelemy, Marc; Frías-Martínez, Enrique; San Miguel, Maxi; Ramasco, José J.

    2015-01-01

    The advent of geolocated information and communication technologies opens the possibility of exploring how people use space in cities, bringing an important new tool for urban scientists and planners, especially for regions where data are scarce or not available. Here we apply a functional network approach to determine land use patterns from mobile phone records. The versatility of the method allows us to run a systematic comparison between Spanish cities of various sizes. The method detects four major land use types that correspond to different temporal patterns. The proportion of these types, their spatial organization and scaling show a strong similarity between all cities that breaks down at a very local scale, where land use mixing is specific to each urban area. Finally, we introduce a model inspired by Schelling's segregation, able to explain and reproduce these results with simple interaction rules between different land uses. PMID:27019730

  3. How Will America Grow? A Citizen Guide to Land-Use Planning.

    ERIC Educational Resources Information Center

    Citizens Advisory Committee on Environmental Quality.

    Citizens are encouraged to learn about and become involved in land use and growth issues in their communities. Intended as a follow-up of an earlier report by the Committee's Task Force on Land Use and Urban Growth which outlined philosophical, legal, and policy aspects of land-use planning, the document suggests planning guidelines for citizen…

  4. A Basic Introduction to Land Use Control Law and Doctrine. Publication 6.

    ERIC Educational Resources Information Center

    Roberts, E. F.

    Divided into four sections, this paper discusses the historical development of land-use control law and doctrine. Entitled "Genesis of the Zoning Mechanism", Part 1 discusses zoning in terms of: a by-product of urbanization: common law land-use controls (public and private nuisance laws); private property as restraint on land-use legislation…

  5. Synthesis of China's land use in the past 300 years

    NASA Astrophysics Data System (ADS)

    Miao, Lijuan; Zhu, Feng; He, Bin; Ferrat, Marion; Liu, Qiang; Cao, Xue; Cui, Xuefeng

    2013-01-01

    China's land use has undergone many changes over the past 300 years due to the significant transformations caused by natural and human factors and their impact on regional climate and the environment. This comprehensive review of recent state-of-the-art studies of China's land-use changes during that period concentrates on cropland, forest, grassland and urban areas. While most small-scale studies have reconstructed information from historical archive data and focused on a specific time period, large-scale studies have tended to rely on inverse modeling techniques to interpret land-use change dynamics based on remote-sensing data for example, the global land-use products of the History Database of the Global Environment (HYDE) and Center for Sustainability and the Global Environment (SAGE) datasets. All studies have shown that the cropland areas in China increased between 1700 and 1950, although they indicate different magnitudes and rates. A decrease in forest coverage was also reported in all studies. Little information was available on urban and grassland areas over the same period. Rapid urbanization in China has been particularly evident in the past 50 years. Meanwhile, spatially explicit reconstructions of historical land-use change in China since 1700 remain highly uncertain due to the lack of reliable data. Extensive work on primary data collection is required, including land-use records and drivers for future change.

  6. Techniques for land use change detection using Landsat imagery

    NASA Technical Reports Server (NTRS)

    Angelici, G. L.; Bryant, N. A.; Friedman, S. Z.

    1977-01-01

    A variety of procedures were developed for the delineation of areas of land use change using Landsat Multispectral Scanner data and the generation of statistics revealing the nature of the changes involved (i.e., number of acres changed from rural to urban). Techniques of the Image Based Information System were utilized in all stages of the procedure, from logging the Landsat data and registering two frames of imagery, to extracting the changed areas and printing tabulations of land use change in acres. Two alternative methods of delineating land use change are presented while enumerating the steps of the entire process. The Houston, Texas urban area, and the Orlando, Florida urban area, are used as illustrative examples of various procedures.

  7. Distribution patterns and sources of metals and PAHs in an intensely urbanized area: The Acerra-Pomigliano-Marigliano conurbation (Italy)

    NASA Astrophysics Data System (ADS)

    Albanese, Stefano; Lima, Annamaria; Rezza, Carmela; Ferullo, Giampiero; De Vivo, Benedetto; Chen, Wei; Qi, Shihua

    2014-05-01

    agricultural intensive land use. PAHs distribution pattern showed anomalous values across the whole study area. Especially, Benzo[a]pyrene values exceeds the trigger limits established by the Italian Environmental law (D.Lgs. 152/2006) in most of the analyzed soils and the diagnostic ratios calculated among several PAHs compounds suggested that the biomass burning in the rural sector of the study area could be a relevant source of pollution. The palm oil fuelled power plant in the northern sector of Acerra could not be excluded as a source of PAHs in the environment. [1] Albanese et al (2007) JGE 93, 21-34. [2] Cicchella et al (2008) GEEA 8 (1), 19-29. [3] De Vivo et al (2006) Aracne Editrice, Roma. 324 pp.

  8. Maximum urban heat island intensity in a medium-sized coastal Mediterranean city

    NASA Astrophysics Data System (ADS)

    Papanastasiou, Dimitris K.; Kittas, Constantinos

    2012-02-01

    This paper studies the maximum intensity of the urban heat island (UHI) that develops in Volos urban area, a medium-sized coastal city in central Greece. The maximum temperature difference between the city center and a suburb is 3.4°C and 3.1°C during winter and summer, respectively, while during both seasons the average maximum UHI intensity is 2.0°C. The UHI usually starts developing after sunset during both seasons. It could be attributed to the different nocturnal radiative cooling rate and to the different anthropogenic heat emission rate that are observed at the city center and at the suburb, as well as to meteorological conditions. The analysis reveals that during both seasons the daily maximum hourly (DMH) UHI intensity is positively correlated with solar radiation and with previous day's maximum hourly UHI intensity and negatively correlated with wind speed. It is also negatively correlated with relative humidity during winter but positively correlated with it during summer. This difference could be attributed to the different mechanisms that mainly drive humidity levels (i.e., evaporation in winter and sea breeze (SB) in summer). Moreover, it is found that SB development triggers a delay in UHI formation in summer. The impact of atmospheric pollution on maximum UHI intensity is also examined. An increase in PM10 concentration is associated with an increase in maximum UHI intensity during winter and with a decrease during summer. The impact of PM10 on UHI is caused by the attenuation of the incoming and the outgoing radiation. Additionally, this study shows that the weekly cycle of the city activities induces a weekly variation in maximum UHI intensity levels. The weekly range of DMH UHI intensity is not very large, being more pronounced during winter (0.4°C). Moreover, a first attempt is made to predict the DMH UHI intensity by applying regression models, whose success is rather promising.

  9. Land Use Change Around Nature Reserves: Implications for Sustaining Biodiversity

    NASA Astrophysics Data System (ADS)

    Hansen, A. J.; Defries, R.; Curran, L.; Liu, J.; Reid, R.; Turner, B.

    2004-12-01

    The effects of land use change outside of reserves on biodiversity within reserves is not well studied. This paper draws on research from Yellowstone, East Africa, Yucatan, Borneo, and Wolong, China to examine land use effects on nature reserves. Objectives are: quantify rates of change in land use around reserves; examine consequences for biodiversity within the context of specific ecological mechanisms; and draw implications for regional management. Within each of the study regions, semi-natural habitats around nature reserves have been converted to agricultural, rural residential, or urban land uses. Rates vary from 0.2-0.4 %/yr in Yucatan, to 9.5 %/yr in Borneo. Such land use changes may be important because nature reserves are often parts of larger ecosystems that are defined by flows in energy, materials, and organisms. Land use outside of reserves may disrupt these flows and alter biodiversity within reserves. Ecological mechanisms that connect biodiversity to these land use changes include habitat size, ecological flows, crucial habitats, and edge effects. For example, the effective size of the East African study area has been reduced by 45% by human activities. Based on the species area relationship, this reduction in habitat area will lead to a loss of 14% of bird and mammal species. A major conclusion is that the viability of nature reserves can best be ensured by managing them in the context of the surrounding region. Knowledge of the ecological mechanisms by which land use influences nature reserves provides design criteria for this regional management.

  10. Land-use Effect on Stream Organic Matter Composition in Two Metropolitan Areas in USA

    NASA Astrophysics Data System (ADS)

    Duan, S.; Kaushal, S.; Amon, R. M.; Brinkmeyer, R.

    2011-12-01

    Urbanization is a form of land-use change that is increasing in coastal watersheds and may affect the quantity and quality of organic carbon delivered to streams and coastal ocean. Here, we examine the changes in optical and isotopic characteristics of organic matter in streams (Gwynns Fall and Buffalo Bayou) draining Baltimore and Houston Metropolitan Areas (USA), relative to nearby less affected forested watersheds. A summer longitudinal sampling in Gwynns Fall along a rural-urban gradient showed increases in dissolved organic carbon (DOC) and fluorescent protein to humic ratio but a decrease in specific UV absorption (SUVA). Parallel Factor modeling shows dominance of terrestrial component of DOC, and the ratio of an unknown component to the component of humic substance was high in urban watersheds and it was positively correlated impervious surface cover (an index of urbanization). Incubation experiments with leaves and stream algae suggest origin of decayed leaf leachate of this component. Conversely, DOM in Buffalo Bayou showed higher intensity of protein-like fluorescence, and the intensity increased longitudinal along a rural-urban gradient but decreased from low-flows to a flooding event. The difference in fluorescent organic matter composition between the two streams probably reflected different management of wastewater in watersheds. Surface sediment collected at sites of sub-watersheds of Gwynns Fall showed changes in particle size, elemental and isotopic composition with land use. Sediment incubations showed that higher temperature (due to urban heat island effect) enhanced loss of labile organic matter and release of refractory organic matter into stream water. Release of reactive soluble phosphorus, loss of nitrogen and reduction of sulfate also occurred at high incubating temperatures, along with mineralization of sediment organic matter. Bed sediment collected along Buffalo Bayou displayed a longitudinal decrease in N-15, probably reflecting the

  11. Land use mapping and modelling for the Phoenix Quadrangle

    NASA Technical Reports Server (NTRS)

    Place, J. L. (Principal Investigator)

    1974-01-01

    The author has identified the following significant results. The mapping of generalized land use (level 1) from ERTS 1 images was shown to be feasible with better than 95% accuracy in the Phoenix quadrangle. The accuracy of level 2 mapping in urban areas is still a problem. Updating existing maps also proved to be feasible, especially in water categories and agricultural uses; however, expanding urban growth has presented with accuracy. ERTS 1 film images indicated where areas of change were occurring, thus aiding focusing-in for more detailed investigation. ERTS color composite transparencies provided a cost effective source of information for land use mapping of very large regions at small map scales.

  12. Land use classification in Bolivia

    NASA Technical Reports Server (NTRS)

    Brockmann, C. E.; Brooner, W. G.

    1975-01-01

    The Bolivian LANDSAT Program is an integrated, multidisciplinary project designed to provide thematic analysis of LANDSAT, Skylab, and other remotely sensed data for natural resource management and development in Bolivia, is discussed. Among the first requirements in the program is the development of a legend, and appropriate methodologies, for the analysis and classification of present land use based on landscape cover. The land use legend for Bolivia consists of approximately 80 categories in a hierarchical organization which may be collapsed for generalization, or expanded for greater detail. The categories, and their definitions, provide for both a graphic and textual description of the complex and diverse landscapes found in Bolivia, and are designed for analysis from LANDSAT and other remotely sensed data at scales of 1:1,000,000 and 1:250,000. Procedures and example products developed are described and illustrated, for the systematic analysis and mapping of present land use for all of Bolivia.

  13. Influences of upland and riparian land use patterns on stream biotic integrity

    USGS Publications Warehouse

    Snyder, C.D.; Young, J.A.; Villella, R.; Lemarie, D.P.

    2003-01-01

    We explored land use, fish assemblage structure, and stream habitat associations in 20 catchments in Opequon Creek watershed, West Virginia. The purpose was to determine the relative importance of urban and agriculture land use on stream biotic integrity, and to evaluate the spatial scale (i.e., whole-catchment vs riparian buffer) at which land use effects were most pronounced. We found that index of biological integrity (IBI) scores were strongly associated with extent of urban land use in individual catchments. Sites that received ratings of poor or very poor based on IBI scores had > 7% of urban land use in their respective catchments. Habitat correlations suggested that urban land use disrupted flow regime, reduced water quality, and altered stream channels. In contrast, we found no meaningful relationship between agricultural land use and IBI at either whole-catchment or riparian scales despite strong correlations between percent agriculture and several important stream habitat measures, including nitrate concentrations, proportion of fine sediments in riffles, and the abundance of fish cover. We also found that variation in gradient (channel slope) influenced responses of fish assemblages to land use. Urban land use was more disruptive to biological integrity in catchments with steeper channel slopes. Based on comparisons of our results in the topographically diverse Opequon Creek watershed with results from watersheds in flatter terrains, we hypothesize that the potential for riparian forests to mitigate effects of deleterious land uses in upland portions of the watershed is inversely related to gradient.

  14. Land Use Control Implementation Plan

    NASA Technical Reports Server (NTRS)

    Starr, Andrew Scott

    2015-01-01

    This Land Use Control Implementation Plan (LUCIP) has been prepared to inform current and potential future users of Building M7-505 of institutional controls that have been implemented at the site. Although there are no current unacceptable risks to human health or the environment associated with Building M7-505, institutional land use controls (LUCs) are necessary to prohibit the use of groundwater from the site. LUCs are also necessary to prevent access to soil under electrical equipment in the northwest portion of the site. Controls necessary to prevent human exposure will include periodic inspection, condition certification, and agency notification.

  15. The Biogeohydroclimatology of Land Use

    NASA Astrophysics Data System (ADS)

    Jackson, R. B.

    2008-05-01

    When John Donne wrote his Meditation XVII, which includes the famous"No man is an island" passage, he was thinking about connections between people; no human being is isolated from another. Donne might just as well have been writing about the science of land use, however. What happens on one plot of land clearly affects what happens on another, whether downhill, downstream, or downwind. I will explore the consequences of land use for mass and energy fluxes, focusing on pasture, crop, and forest transitions in the Americas. I'll discuss my own work, some work of collaborators, and a few examples from the literature. No man is an island.

  16. Remote sensing. [land use mapping

    NASA Technical Reports Server (NTRS)

    Jinich, A.

    1979-01-01

    Various imaging techniques are outlined for use in mapping, land use, and land management in Mexico. Among the techniques discussed are pattern recognition and photographic processing. The utilization of information from remote sensing devices on satellites are studied. Multispectral band scanners are examined and software, hardware, and other program requirements are surveyed.

  17. Land-Use Change Trends in the Interior Lowland Ecoregion

    USGS Publications Warehouse

    Varanka, Dalia E.; Shaver, David K.

    2007-01-01

    This report describes land-cover trends in the Interior River Lowland ecoregion, located primarily in southern Illinois and includes the confluence areas of the Mississippi, Missouri, Ohio, Illinois, and Wabash Rivers, and their tributaries. Land-cover change statistics were tabulated from forty 10 kilometers (km) by 10-km multi-spectral remote-sensing sample areas collected from 1973 to 2000 and classified into nine primary land-cover categories. The results indicated stable land use. Agricultural land use increased, but acreage was lost to urbanization, especially in the St. Louis area. Recreational and conservation land uses are underrepresented relative to population demand. Findings were comparable to results of other land use research.

  18. Characteristic variogram for land use in Multispectral Images

    NASA Astrophysics Data System (ADS)

    Mera, E.; Condal, A.; Rios, C.; Da Silva, L.

    2016-05-01

    In remote sensing is the concept of spectral signature in multispectral imagery to recognize different land uses in the area; This study proposes the existence of a characteristic variogram for land use in multispectral images. To test this idea we proceeded to work with a sector of a scene image of multispectral Landsat 7 ETM +, in 6 of their bands (1- 450nm to 520nm, 2 - 520nm to 600nm, 3 - 630nm to 690nm, 4 - 760nm to 900nm 5 - over 1550nm to 1.750nm and 7 - 2.080nm to 2.350nm), corresponding to two uses of urban land and agricultural, the omnidirectional variogram for each band was analyzed and modal variogram for each land use was established in the stripe set. Of the analyzed claims data for each land use is a model characteristic and modal cross variogram how their wavelengths.

  19. Modelling past land use using archaeological and pollen data

    NASA Astrophysics Data System (ADS)

    Pirzamanbein, Behnaz; Lindström, johan; Poska, Anneli; Gaillard-Lemdahl, Marie-José

    2016-04-01

    Accurate maps of past land use are necessary for studying the impact of anthropogenic land-cover changes on climate and biodiversity. We develop a Bayesian hierarchical model to reconstruct the land use using Gaussian Markov random fields. The model uses two observations sets: 1) archaeological data, representing human settlements, urbanization and agricultural findings; and 2) pollen-based land estimates of the three land-cover types Coniferous forest, Broadleaved forest and Unforested/Open land. The pollen based estimates are obtained from the REVEALS model, based on pollen counts from lakes and bogs. Our developed model uses the sparse pollen-based estimations to reconstruct the spatial continuous cover of three land cover types. Using the open-land component and the archaeological data, the extent of land-use is reconstructed. The model is applied on three time periods - centred around 1900 CE, 1000 and, 4000 BCE over Sweden for which both pollen-based estimates and archaeological data are available. To estimate the model parameters and land use, a block updated Markov chain Monte Carlo (MCMC) algorithm is applied. Using the MCMC posterior samples uncertainties in land-use predictions are computed. Due to lack of good historic land use data, model results are evaluated by cross-validation. Keywords. Spatial reconstruction, Gaussian Markov random field, Fossil pollen records, Archaeological data, Human land-use, Prediction uncertainty

  20. Leaf breakdown in streams differing in catchment land use

    USGS Publications Warehouse

    Paul, M.J.; Meyer, J.L.; Couch, C.A.

    2006-01-01

    1. The impact of changes in land use on stream ecosystem function is poorly understood. We studied leaf breakdown, a fundamental process of stream ecosystems, in streams that represent a range of catchment land use in the Piedmont physiographic province of the south-eastern United States. 2. We placed bags of chalk maple (Acer barbatum) leaves in similar-sized streams in 12 catchments of differing dominant land use: four forested, three agricultural, two suburban and three urban catchments. We measured leaf mass, invertebrate abundance and fungal biomass in leaf bags over time. 3. Leaves decayed significantly faster in agricultural (0.0465 day-1) and urban (0.0474 day-1) streams than in suburban (0.0173 day-1) and forested (0.0100 day-1) streams. Additionally, breakdown rates in the agricultural and urban streams were among the fastest reported for deciduous leaves in any stream. Nutrient concentrations in agricultural streams were significantly higher than in any other land-use type. Fungal biomass associated with leaves was significantly lower in urban streams; while shredder abundance in leaf bags was significantly higher in forested and agricultural streams than in suburban and urban streams. Storm runoff was significantly higher in urban and suburban catchments that had higher impervious surface cover than forested or agricultural catchments. 4. We propose that processes accelerating leaf breakdown in agricultural and urban streams were not the same: faster breakdown in agricultural streams was due to increased biological activity as a result of nutrient enrichment, whereas faster breakdown in urban streams was a result of physical fragmentation resulting from higher storm runoff. ?? 2006 The Authors.

  1. Experiments in Globalisation, Food Security and Land Use Decision Making

    PubMed Central

    Brown, Calum; Murray-Rust, Dave; van Vliet, Jasper; Alam, Shah Jamal; Verburg, Peter H.; Rounsevell, Mark D.

    2014-01-01

    The globalisation of trade affects land use, food production and environments around the world. In principle, globalisation can maximise productivity and efficiency if competition prompts specialisation on the basis of productive capacity. In reality, however, such specialisation is often constrained by practical or political barriers, including those intended to ensure national or regional food security. These are likely to produce globally sub-optimal distributions of land uses. Both outcomes are subject to the responses of individual land managers to economic and environmental stimuli, and these responses are known to be variable and often (economically) irrational. We investigate the consequences of stylised food security policies and globalisation of agricultural markets on land use patterns under a variety of modelled forms of land manager behaviour, including variation in production levels, tenacity, land use intensity and multi-functionality. We find that a system entirely dedicated to regional food security is inferior to an entirely globalised system in terms of overall production levels, but that several forms of behaviour limit the difference between the two, and that variations in land use intensity and functionality can substantially increase the provision of food and other ecosystem services in both cases. We also find emergent behaviour that results in the abandonment of productive land, the slowing of rates of land use change and the fragmentation or, conversely, concentration of land uses following changes in demand levels. PMID:25437010

  2. Experiments in globalisation, food security and land use decision making.

    PubMed

    Brown, Calum; Murray-Rust, Dave; van Vliet, Jasper; Alam, Shah Jamal; Verburg, Peter H; Rounsevell, Mark D

    2014-01-01

    The globalisation of trade affects land use, food production and environments around the world. In principle, globalisation can maximise productivity and efficiency if competition prompts specialisation on the basis of productive capacity. In reality, however, such specialisation is often constrained by practical or political barriers, including those intended to ensure national or regional food security. These are likely to produce globally sub-optimal distributions of land uses. Both outcomes are subject to the responses of individual land managers to economic and environmental stimuli, and these responses are known to be variable and often (economically) irrational. We investigate the consequences of stylised food security policies and globalisation of agricultural markets on land use patterns under a variety of modelled forms of land manager behaviour, including variation in production levels, tenacity, land use intensity and multi-functionality. We find that a system entirely dedicated to regional food security is inferior to an entirely globalised system in terms of overall production levels, but that several forms of behaviour limit the difference between the two, and that variations in land use intensity and functionality can substantially increase the provision of food and other ecosystem services in both cases. We also find emergent behaviour that results in the abandonment of productive land, the slowing of rates of land use change and the fragmentation or, conversely, concentration of land uses following changes in demand levels.

  3. Recent Changes in Floodplain Urban Development and in Intense Rainfall Patterns: Evidence and Effects for the Reclamation Network in North-Eastern Italy

    NASA Astrophysics Data System (ADS)

    Tarolli, P.; Sofia, G.; Prosdocimi, M.; Dalla Fontana, G.

    2014-12-01

    Within the wide approach of watershed management, the crucial role of floodplains in hydrological processes and runoff generation, in particular during flood events, is well known. The recent changes in land use and/or intense rainfall patterns associated to climate changes, however, add complexity to the analysis of the hydrologic response. This study investigates and displays evidences and effects of land use changes and climatic changes in a small floodplain area in the north east of Italy. As in other countries in Europe, over the past half-century, intense urban and agricultural land uses changed the drainage networks, causing serious hydraulic dysfunctions. In this work we focused the research on the network drainage density and storage capacity, considering that they are the main requirements for hydraulic infrastructures and that the storage of water is crucial for any water management strategy. The effects of the changes in the network parameters have been then further investigated using the Network Saturation Index (NSI) that quantifies how fast an area is saturated by a design rainfall and can give an idea of the delay of the watershed response respect to the rainfall peak. Over the past half-century, the study site witnessed a drastic reduction of the storage volume, resulting in shorter times for saturation especially for storm events having a shorter return period and for events that were less critical in the past. For our case study, climatic evidence shows that the rainfall regime is highly irregular, with intense events taking an increasing role in determining the total precipitation over the past half-century. Considering this climatic trend that cannot be controlled, our study suggests to carefully plan the changes in the drainage networks, as these changes might seriously constrain the functionality of the reclamation system, especially for rather frequent rainfall events not necessarily associated with extreme meteorological conditions or with

  4. Influence of land use on hyporheos in catchment of the Jarama River (central Spain)

    NASA Astrophysics Data System (ADS)

    Iepure, S.; Martínez-Hernández, V.; Herrera, S.; de Bustamante, I.; Rasines, R.

    2012-04-01

    -benthos species), as indicate the expected diversity pattern after the simulation procedure for taxonomic distinctness. Crustacean diversity (Shannon index) was greatest in less extensive agricultural land-use sites where riparian zone is slightly developed, while intensive agricultural activities cause a decline of water quality and therefore of crustacean richness. Intensively urban industrial land-use yield highly contaminated hyporheic water with heavy metals and VOC (i.e. toluene, benzene). Complementarily, the streams geomorphology and low rates of water flow favour the deposition of fine sediments that clog the interstices, generate a reverse dynamic of river channel and induce a reduction of groundwater discharge. In results, the hyporheic is unsuitable for hyporheos that are missing or harbour reduced populations of exclusively surface-water taxa. There are sites of intermediate biodiversity including hypogeans, located in natural regional parks thriving well-established riparian zone and relatively good water quality. The differences among sites in the Jarama basin indicate the impact that changes in land-use have upon the hyporheic ecology as shown the pattern of crustacean community distribution, diversity and ecological structure. We suggest that in rehabilitation processes of streams sectors require the understanding and recognition of the potential roles of the hyporheic zone and its biota in the whole stream ecosystem.

  5. Different Patterns of the Urban Heat Island Intensity from Cluster Analysis

    NASA Astrophysics Data System (ADS)

    Silva, F. B.; Longo, K.

    2014-12-01

    This study analyzes the different variability patterns of the Urban Heat Island intensity (UHII) in the Metropolitan Area of Rio de Janeiro (MARJ), one of the largest urban agglomerations in Brazil. The UHII is defined as the difference in the surface air temperature between the urban/suburban and rural/vegetated areas. To choose one or more stations that represent those areas we used the technique of cluster analysis on the air temperature observations from 14 surface weather stations in the MARJ. The cluster analysis aims to classify objects based on their characteristics, gathering similar groups. The results show homogeneity patterns between air temperature observations, with 6 homogeneous groups being defined. Among those groups, one might be a natural choice for the representative urban area (Central station); one corresponds to suburban area (Afonsos station); and another group referred as rural area is compound of three stations (Ecologia, Santa Cruz and Xerém) that are located in vegetated regions. The arithmetic mean of temperature from the three rural stations is taken to represent the rural station temperature. The UHII is determined from these homogeneous groups. The first UHII is estimated from urban and rural temperature areas (Case 1), whilst the second UHII is obtained from suburban and rural temperature areas (Case 2). In Case 1, the maximum UHII occurs in two periods, one in the early morning and the other at night, while the minimum UHII occurs in the afternoon. In Case 2, the maximum UHII is observed during afternoon/night and the minimum during dawn/early morning. This study demonstrates that the stations choice reflects different UHII patterns, evidencing that distinct behaviors of this phenomenon can be identified.

  6. Land Use on the Island of Oahu, Hawaii, 1998

    USGS Publications Warehouse

    Klasner, Frederick L.; Mikami, Clinton D.

    2003-01-01

    A hierarchical land-use classification system for Hawaii was developed, and land use on the island of Oahu was mapped. The land-use classification system emphasizes agriculture, developed (urban), and barren/mining uses. Areas with other land uses (conservation, forest reserve, natural areas, wetlands, water, and barren [sand, rock, or soil] regions, and unmanaged vegetation [native or exotic]) were defined as 'other.' Multiple sources of digital orthophotographs from 1998 and 1999 were used as source data. The 1998 island of Oahu land-use data are provided in digital format at http://water.usgs.gov/lookup/getspatial?oahu_lu98 for use in a Geographic Information System (GIS), at 1:24,000-scale with minimum mapping units of 2 hectares (4.9 acres) area and 30-meters (98.4 feet) feature width. In 1998, a total of 59,195 acres (15.4 percent) of the island of Oahu were classified as agricultural land use; 98,663 acres (25.7 percent) were classified as developed; 1,522 acres (0.4 percent) were classified as barren/mining; and 224,331 acres (58.5 percent) were classified as other. An accuracy assessment identified 98 percent accuracy for all land-use classes. In windward (moister) areas, dense vegetation and canopy cover along with rapid recolonization by vegetation potentially obscured land use from photo-interpretation. While in leeward (drier) areas, sparse vegetative cover and slower vegetation recolonization may have resulted in more frequent recognition of apparent land-use patterns.

  7. Derivation of Nationally Consistent Indices Representing Urban Intensity Within and Across Nine Metropolitan Areas of the Conterminous United States

    USGS Publications Warehouse

    Cuffney, Thomas F.; Falcone, James A.

    2009-01-01

    Two nationally consistent multimetric indices of urban intensity were developed to support studies of the effects of urbanization on streams in nine metropolitan areas of the conterminous United States: Atlanta, Georgia; Birmingham, Alabama; Boston, Massachusetts; Dallas-Fort Worth, Texas; Denver, Colorado; Milwaukee-Green Bay, Wisconsin; Portland, Oregon; Raleigh, North Carolina; and Salt Lake City, Utah. These studies were conducted as a part of the U.S. Geological Survey's National Water-Quality Assessment Program. These urban intensity indices were used to define gradients of urbanization and to interpret biological, physical, and chemical changes along these gradients. Ninety census, land-cover, and infrastructure variables obtained from nationally available databases were evaluated. Only variables that exhibited a strong and consistent linear relation with 2000 population density were considered for use in the indices. Housing-unit density (HUDEN), percentage of basin area in developed land (P_NLCD1_2), and road density (ROADDEN) were selected as the best representatives of census, land-cover, and infrastructure variables. The metropolitan area national urban intensity index (MA-NUII) was scaled to represent urban intensity within each metropolitan area and ranged from 0 (little or no urban) to 100 (maximum urban) for sites within each metropolitan area. The national urban intensity index (NUII) was scaled to represent urban intensity across all nine metropolitan areas and ranged from 0 to 100 for all sites. The rates at which HUDEN, P_NLCD1_2, and ROADDEN changed with changes in population density varied among metropolitan areas. Therefore, these variables were adjusted to obtain a more uniform rate of response across metropolitan areas in the derivation of the NUII. The NUII indicated that maximum levels of urban intensity occurred in the West and Midwest rather than in the East primarily because small inner-city streams in eastern metropolitan areas are

  8. Study of USGS/NASA land use classification system. [compatibility of land use classification system with computer processing techniques employed for land use mapping from ERTS data

    NASA Technical Reports Server (NTRS)

    Spann, G. W.; Faust, N. L.

    1974-01-01

    It is known from several previous investigations that many categories of land-use can be mapped via computer processing of Earth Resources Technology Satellite data. The results are presented of one such experiment using the USGS/NASA land-use classification system. Douglas County, Georgia, was chosen as the test site for this project. It was chosen primarily because of its recent rapid growth and future growth potential. Results of the investigation indicate an overall land-use mapping accuracy of 67% with higher accuracies in rural areas and lower accuracies in urban areas. It is estimated, however, that 95% of the State of Georgia could be mapped by these techniques with an accuracy of 80% to 90%.

  9. Impact of land use changes on surface warming in China

    NASA Astrophysics Data System (ADS)

    Zhang, Jingyong; Dong, Wenjie; Wu, Lingyun; Wei, Jiangfeng; Chen, Peiyan; Lee, Dong-Kyou

    2005-06-01

    Land use changes such as urbanization, agriculture, pasturing, deforestation, desertification and irrigation can change the land surface heat flux directly, and also change the atmospheric circulation indirectly, and therefore affect the local temperature. But it is difficult to separate their effects from climate trends such as greenhouse-gas effects. Comparing the decadal trends of the observation station data with those of the NCEP/NCAR Reanalysis (NNR) data provides a good method to separate the effects because the NNR is insensitive to land surface changes. The effects of urbanization and other land use changes over China are estimated by using the difference between the station and the NNR surface temperature trends. Our results show that urbanization and other land use changes may contribute to the observed 0.12°C (10yr)-1 increase for daily mean surface temperature, and the 0.20°C (10yr)-1 and 0.03°C (10 yr)-1 increases for the daily minimum and maximum surface temperatures, respectively. The urban heat island effect and the effects of other land-use changes may also play an important role in the diurnal temperature range change. The spatial pattern of the differences in trends shows a marked heterogeneity. The land surface degradation such as deforestation and desertification due to human activities over northern China, and rapidly-developed urbanization over southern China, may have mostly contributed to the increases at stations north of about 38°N and in Southeast China, respectively. Furthermore, the vegetation cover increase due to irrigation and fertilization may have contributed to the decreasing trend of surface temperature over the lower Yellow River Basin. The study illustrates the possible impacts of land use changes on surface temperature over China.

  10. Assessing land-use effects on water quality, in-stream habitat, riparian ecosystems and biodiversity in Patagonian northwest streams.

    PubMed

    Miserendino, María Laura; Casaux, Ricardo; Archangelsky, Miguel; Di Prinzio, Cecilia Yanina; Brand, Cecilia; Kutschker, Adriana Mabel

    2011-01-01

    Changes in land-use practices have affected the integrity and quality of water resources worldwide. In Patagonia there is a strong concern about the ecological status of surface waters because these changes are rapidly occurring in the region. To test the hypothesis that greater intensity of land-use will have negative effects on water quality, stream habitat and biodiversity we assessed benthic macroinvertebrates, riparian/littoral invertebrates, fish and birds from the riparian corridor and environmental variables of 15 rivers (Patagonia) subjected to a gradient of land-use practices (non-managed native forest, managed native forest, pine plantations, pasture, urbanization). A total of 158 macroinvertebrate taxa, 105 riparian/littoral invertebrate taxa, 5 fish species, 34 bird species, and 15 aquatic plant species, were recorded considering all sites. Urban land-use produced the most significant changes in streams including physical features, conductivity, nutrients, habitat condition, riparian quality and invertebrate metrics. Pasture and managed native forest sites appeared in an intermediate situation. The highest values of fish and bird abundance and diversity were observed at disturbed sites; this might be explained by the opportunistic behavior displayed by these communities which let them take advantage of increased trophic resources in these environments. As expected, non-managed native forest sites showed the highest integrity of ecological conditions and also great biodiversity of benthic communities. Macroinvertebrate metrics that reflected good water quality were positively related to forest land cover and negatively related to urban and pasture land cover. However, by offering stream edge areas, pasture sites still supported rich communities of riparian/littoral invertebrates, increasing overall biodiversity. Macroinvertebrates were good indicators of land-use impact and water quality conditions and resulted useful tools to early alert of

  11. Assessing land-use effects on water quality, in-stream habitat, riparian ecosystems and biodiversity in Patagonian northwest streams.

    PubMed

    Miserendino, María Laura; Casaux, Ricardo; Archangelsky, Miguel; Di Prinzio, Cecilia Yanina; Brand, Cecilia; Kutschker, Adriana Mabel

    2011-01-01

    Changes in land-use practices have affected the integrity and quality of water resources worldwide. In Patagonia there is a strong concern about the ecological status of surface waters because these changes are rapidly occurring in the region. To test the hypothesis that greater intensity of land-use will have negative effects on water quality, stream habitat and biodiversity we assessed benthic macroinvertebrates, riparian/littoral invertebrates, fish and birds from the riparian corridor and environmental variables of 15 rivers (Patagonia) subjected to a gradient of land-use practices (non-managed native forest, managed native forest, pine plantations, pasture, urbanization). A total of 158 macroinvertebrate taxa, 105 riparian/littoral invertebrate taxa, 5 fish species, 34 bird species, and 15 aquatic plant species, were recorded considering all sites. Urban land-use produced the most significant changes in streams including physical features, conductivity, nutrients, habitat condition, riparian quality and invertebrate metrics. Pasture and managed native forest sites appeared in an intermediate situation. The highest values of fish and bird abundance and diversity were observed at disturbed sites; this might be explained by the opportunistic behavior displayed by these communities which let them take advantage of increased trophic resources in these environments. As expected, non-managed native forest sites showed the highest integrity of ecological conditions and also great biodiversity of benthic communities. Macroinvertebrate metrics that reflected good water quality were positively related to forest land cover and negatively related to urban and pasture land cover. However, by offering stream edge areas, pasture sites still supported rich communities of riparian/littoral invertebrates, increasing overall biodiversity. Macroinvertebrates were good indicators of land-use impact and water quality conditions and resulted useful tools to early alert of

  12. Open and reproducible global land use classification

    NASA Astrophysics Data System (ADS)

    Nüst, Daniel; Václavík, Tomáš; Pross, Benjamin

    2015-04-01

    Researchers led by the Helmholtz Centre for Environmental research (UFZ) developed a new world map of land use systems based on over 30 diverse indicators (http://geoportal.glues.geo.tu-dresden.de/stories/landsystemarchetypes.html) of land use intensity, climate and environmental and socioeconomic factors. They identified twelve land system archetypes (LSA) using a data-driven classification algorithm (self-organizing maps) to assess global impacts of land use on the environment, and found unexpected similarities across global regions. We present how the algorithm behind this analysis can be published as an executable web process using 52°North WPS4R (https://wiki.52north.org/bin/view/Geostatistics/WPS4R) within the GLUES project (http://modul-a.nachhaltiges-landmanagement.de/en/scientific-coordination-glues/). WPS4R is an open source collaboration platform for researchers, analysts and software developers to publish R scripts (http://www.r-project.org/) as a geo-enabled OGC Web Processing Service (WPS) process. The interoperable interface to call the geoprocess allows both reproducibility of the analysis and integration of user data without knowledge about web services or classification algorithms. The open platform allows everybody to replicate the analysis in their own environments. The LSA WPS process has several input parameters, which can be changed via a simple web interface. The input parameters are used to configure both the WPS environment and the LSA algorithm itself. The encapsulation as a web process allows integration of non-public datasets, while at the same time the publication requires a well-defined documentation of the analysis. We demonstrate this platform specifically to domain scientists and show how reproducibility and open source publication of analyses can be enhanced. We also discuss future extensions of the reproducible land use classification, such as the possibility for users to enter their own areas of interest to the system and

  13. Seismic hazards and land-use planning

    USGS Publications Warehouse

    Nichols, Donald R.; Buchanan-Banks, Jane M.

    1974-01-01

    Basic earth-science data are necessary for a realistic assessment of seismic hazards and as a basis for limiting corrective land-use controls only to those areas of greatest hazard. For example, the location, character, and amount of likely displacement and activity of surface faulting can be predicted if detailed geologic maps and seismic data are available and are augmented by field studies at critical localities. Because few structures can withstand displacement of their foundations, they should be located off active fault traces, the distance varying with the character of faulting, the certainty with which fault traces are known, and the importance of the structure. Recreational activities and other nonoccupancy land uses should be considered for fault zone areas where land is under pressure for development; elsewhere, such areas should remain as open space. Two methods of predicting ground shaking effects have applications to land-use decisions: (1) Relative earthquake effects can be related to firmness of the ground and can be used in a gross way to allocate population density in the absence of more sophisticated analyses; and (2) intensity maps, based on, (a) damage from former earthquakes, or (b) a qualitative analyses of geologic units added to a design earthquake, can be helpful both for general and specific plans. Theoretical models are used with caution to predict ground motion for critical structures to be located at specific sites with unique foundation conditions. Fully adequate methods of assessing possible shaking remain to be developed. Where land-use decisions do not reflect likely ground shaking effects, stringent building codes are needed, particularly for important structures. Ground failure (landsliding, ground cracking and lurching, differential settlement, sand boils, and subsidence) commonly results from liquefaction, loss of soil strength, or compaction. Areas suspected of being most likely to fail should not be developed unless detailed

  14. Land Use, Residential Density, and Walking

    PubMed Central

    Rodríguez, Daniel A.; Evenson, Kelly R.; Diez Roux, Ana V.; Brines, Shannon J.

    2009-01-01

    Background The neighborhood environment may play a role in encouraging sedentary patterns, especially for middle-aged and older adults. Purpose Associations between walking and neighborhood population density, retail availability, and land use distribution were examined using data from a cohort of adults aged 45 to 84 years old. Methods Data from a multi-ethnic sample of 5529 adult residents of Baltimore MD, Chicago IL, Forsyth County NC, Los Angeles CA, New York NY, and St. Paul MN, enrolled in the Multi-Ethnic Study of Atherosclerosis in 2000–2002 were linked to secondary land use and population data. Participant reports of access to destinations and stores and objective measures of the percentage of land area in parcels devoted to retail land uses, the population divided by land area in parcels, and the mixture of uses for areas within 200m of each participant's residence were examined. Multinomial logistic regression was used to investigate associations of self-reported and objective neighborhood characteristics with walking. All analyses were conducted in 2008 and 2009. Results After adjustment for individual-level characteristics and neighborhood connectivity, higher density, greater land area devoted to retail uses, and self-reported measures of proximity of destinations and ease of walking to places were each related to walking. In models including all land use measures, population density was positively associated with walking to places and with walking for exercise for more than 90 min/wk both relative to no walking. Availability of retail was associated with walking to places relative to not walking, having a more proportional mix of land uses was associated with walking for exercise for more than 90 min/wk, while self-reported ease of access to places was related to higher levels of exercise walking both relative to not walking. Conclusions Residential density and the presence of retail uses are related to various walking behaviors. Efforts to

  15. Spatiotemporal trends of terrestrial vegetation activity along the urban development intensity gradient in China's 32 major cities.

    PubMed

    Zhou, Decheng; Zhao, Shuqing; Liu, Shuguang; Zhang, Liangxia

    2014-08-01

    Terrestrial vegetation plays many pivotal roles in urban systems. However, the impacts of urbanization on vegetation are poorly understood. Here we examined the spatiotemporal trends of the vegetation activity measured by MODIS Enhanced Vegetation Index (EVI) along Urban Development Intensity (UDI) gradient in 32 major Chinese cities from 2000 to 2012. We also proposed to use a new set of concepts (i.e., actual, theoretical, and positive urbanization effects) to better understand and quantify the impacts of urbanization on vegetation activities. Results showed that the EVI decreased significantly along a rising UDI for 28 of 32 cities (p<0.05) in linear, convex or concave form, signifying the urbanization impacts on vegetation varied across cities and UDI zones within a city. Further, the actual urbanization effects were much weaker than the theoretical estimates because of the offsetting positive effects generated by multiple urban environmental and anthropogenic factors. Examining the relative changes of EVI in various UDI zones against that in the rural area (ΔEVI), which effectively removed the effects of climate variability, demonstrated that ΔEVI decreased markedly from 2000 to 2012 for about three-quarters of the cities in the exurban (0.05urban (0.5urban core (0.75urban and urban core of many cities could primarily be attributed to the importance of positive effects derived from the urban environment and the improvement of management and maintenance of urban green space. More work is needed to quantify mechanistically the detailed negative and positive effects of urban environmental factors and management practices on vegetation activities.

  16. Effects of land use and hydrogeology on the water quality of alluvial aquifers in eastern Iowa and southern Minnesota, 1997