Huang, J; Du, P; Ao, C; Ho, M; Lei, M; Zhao, D; Wang, Z
2007-12-01
Statistical analysis of stormwater runoff data enables general identification of runoff characteristics. Six catchments with different urban surface type including roofs, roadway, park, and residential/commercial in Macau were selected for sampling and study during the period from June 2005 to September 2006. Based on univariate statistical analysis of data sampled, major pollutants discharged from different urban surface type were identified. As for iron roof runoff, Zn is the most significant pollutant. The major pollutants from urban roadway runoff are TSS and COD. Stormwater runoff from commercial/residential and Park catchments show high level of COD, TN, and TP concentration. Principal component analysis was further done for identification of linkages between stormwater quality and urban surface types. Two potential pollution sources were identified for study catchments with different urban surface types. The first one is referred as nutrients losses, soil losses and organic pollutants discharges, the second is related to heavy metals losses. PCA was proved to be a viable tool to explain the type of pollution sources and its mechanism for different urban surface type catchments.
Weathering of radiocaesium contamination on urban streets, walls and roofs.
Andersson, K G; Roed, J; Fogh, C L
2002-01-01
Recent investigations in Russia have emphasised the significance of dose contributions from contamination on urban streets and roof pavings, and, typically to a lesser extent, walls in the urban environment. The crucial factor determining the magnitude of these contributions is the retention of the contamination by the different types of urban surface. Since the Chernobyl accident, a series of long-term field studies has been carried out on urban streets, walls and roofs, to examine the weathering processes of 137Cs on the various surface types. The derived time-functions are applied to estimate resultant long-term doses to inhabitants of an urban centre. The paper highlights the effect on caesium retention of surface material characteristics.
The influence of surface type on the absorbed radiation by a human under hot, dry conditions
NASA Astrophysics Data System (ADS)
Hardin, A. W.; Vanos, J. K.
2018-01-01
Given the predominant use of heat-retaining materials in urban areas, numerous studies have addressed the urban heat island mitigation potential of various "cool" options, such as vegetation and high-albedo surfaces. The influence of altered radiational properties of such surfaces affects not only the air temperature within a microclimate, but more importantly the interactions of long- and short-wave radiation fluxes with the human body. Minimal studies have assessed how cool surfaces affect thermal comfort via changes in absorbed radiation by a human ( R abs) using real-world, rather than modeled, urban field data. The purpose of the current study is to assess the changes in the absorbed radiation by a human—a critical component of human energy budget models—based on surface type on hot summer days (air temperatures > 38.5∘C). Field tests were conducted using a high-end microclimate station under predominantly clear sky conditions over ten surfaces with higher sky view factors in Lubbock, Texas. Three methods were used to measure and estimate R abs: a cylindrical radiation thermometer (CRT), a net radiometer, and a theoretical estimation model. Results over dry surfaces suggest that the use of high-albedo surfaces to reduce overall urban heat gain may not improve acute human thermal comfort in clear conditions due to increased reflected radiation. Further, the use of low-cost instrumentation, such as the CRT, shows potential in quantifying radiative heat loads within urban areas at temporal scales of 5-10 min or greater, yet further research is needed. Fine-scale radiative information in urban areas can aid in the decision-making process for urban heat mitigation using non-vegetated urban surfaces, with surface type choice is dependent on the need for short-term thermal comfort, or reducing cumulative heat gain to the urban fabric.
Characterizing the fabric of the urban environment: A case study of Greater Houston, Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Leanna Shea; Akbari, Hashem; Taha, Haider
2003-01-15
In this report, the materials and various surface types that comprise a city are referred to as the ''urban fabric.'' Urban fabric data are needed in order to estimate the impact of light-colored surfaces (roofs and pavements) and urban vegetation (trees, grass, shrubs) on the meteorology and air quality of a city, and to design effective urban environmental implementation programs. We discuss the results of a semi-automatic Monte-Carlo statistical approach used to develop data on surface-type distribution and city-fabric makeup (percentage of various surface-types) using aerial color orthophotography. The digital aerial photographs for Houston covered a total of about 52more » km2 (20 mi2). At 0.30-m resolution, there were approximately 5.8 x 108 pixels of data. Four major land-use types were examined: (1) commercial, (2) industrial, (3) educational, and (4) residential. On average, for the regions studied, vegetation covers about 39 percent of the area, roofs cover about 21 percent, and paved surfaces cover about 29 percent. For the most part, trees shade streets, parking lots, grass, and sidewalks. At ground level, i.e., view from below the vegetation canopies, paved surfaces cover about 32 percent of the study area. GLOBEIS model data from University of Texas and land-use/land-cover (LULC) information from the United States Geological Survey (USGS) were used to extrapolate these results from neighborhood scales to Greater Houston. It was found that in an area of roughly 3,430 km2, defining most of Greater Houston, over 56 percent is residential. The total roof area is about 740 km2, and the total paved surface area (roads, parking areas, sidewalks) covers about 1000 km2. Vegetation covers about 1,320 km2.« less
Monitoring the effects of land use/landcover changes on urban heat island
NASA Astrophysics Data System (ADS)
Gee, Ong K.; Sarker, Md Latifur Rahman
2013-10-01
Urban heat island effects are well known nowadays and observed in cities throughout the World. The main reason behind the effects of urban heat island (UHI) is the transformation of land use/ land cover, and this transformation is associated with UHI through different actions: i) removal of vegetated areas, ii) land reclamation from sea/river, iii) construction of new building as well as other concrete structures, and iv) industrial and domestic activity. In rapidly developing cities, urban heat island effects increases very hastily with the transformation of vegetated/ other types of areas into urban surface because of the increasing population as well as for economical activities. In this research the effect of land use/ land cover on urban heat island was investigated in two growing cities in Asia i.e. Singapore and Johor Bahru, (Malaysia) using 10 years data (from 1997 to 2010) from Landsat TM/ETM+. Multispectral visible band along with indices such as Normalized Difference Vegetation Index (NDVI), Normalized Difference Build Index (NDBI), and Normalized Difference Bareness Index (NDBaI) were used for the classification of major land use/land cover types using Maximum Likelihood Classifiers. On the other hand, land surface temperature (LST) was estimated from thermal image using Land Surface Temperature algorithm. Emissivity correction was applied to the LST map using the emissivity values from the major land use/ land cover types, and validation of the UHI map was carried out using in situ data. Results of this research indicate that there is a strong relationship between the land use/land cover changes and UHI. Over this 10 years period, significant percentage of non-urban surface was decreased but urban heat surface was increased because of the rapid urbanization. With the increase of UHI effect it is expected that local urban climate has been modified and some heat related health problem has been exposed, so appropriate measure should be taken in order to reduce UHI effects as soon as possible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuang, Wenhui; Liu, Yue; Dou, Yinyin
Understanding how landscape components affect the urban heat islands is crucial for urban ecological planning and sustainable development. The purpose of this research was to quantify the spatial pattern of land surface temperatures (LSTs) and associated heat fluxes in relation to land-cover types in Beijing, China, using portable infrared thermometers, thermal infrared imagers, and the moderate resolution imaging spectroradiometer. The spatial differences and the relationships between LSTs and the hierarchical landscape structure were analyzed with in situ observations of surface radiation and heat fluxes. Large LST differences were found among various land-use/land-cover types, urban structures, and building materials. Within themore » urban area, the mean LST of urban impervious surfaces was about 6–12°C higher than that of the urban green space. LSTs of built-up areas were on average 3–6°C higher than LSTs of rural areas. The observations for surface radiation and heat fluxes indicated that the differences were caused by different fractions of sensible heat or latent heat flux in net radiation. LSTs decreased with increasing elevation and normalized difference vegetation index. Variations in building materials and urban structure significantly influenced the spatial pattern of LSTs in urban areas. By contrast, elevation and vegetation cover are the major determinants of the LST pattern in rural areas. In summary, to alleviate urban heat island intensity, urban planners and policy makers should pay special attention to the selection of appropriate building materials, the reasonable arrangement of urban structures, and the rational design of landscape components.« less
Kuang, Wenhui; Liu, Yue; Dou, Yinyin; ...
2014-12-06
Understanding how landscape components affect the urban heat islands is crucial for urban ecological planning and sustainable development. The purpose of this research was to quantify the spatial pattern of land surface temperatures (LSTs) and associated heat fluxes in relation to land-cover types in Beijing, China, using portable infrared thermometers, thermal infrared imagers, and the moderate resolution imaging spectroradiometer. The spatial differences and the relationships between LSTs and the hierarchical landscape structure were analyzed with in situ observations of surface radiation and heat fluxes. Large LST differences were found among various land-use/land-cover types, urban structures, and building materials. Within themore » urban area, the mean LST of urban impervious surfaces was about 6–12°C higher than that of the urban green space. LSTs of built-up areas were on average 3–6°C higher than LSTs of rural areas. The observations for surface radiation and heat fluxes indicated that the differences were caused by different fractions of sensible heat or latent heat flux in net radiation. LSTs decreased with increasing elevation and normalized difference vegetation index. Variations in building materials and urban structure significantly influenced the spatial pattern of LSTs in urban areas. By contrast, elevation and vegetation cover are the major determinants of the LST pattern in rural areas. In summary, to alleviate urban heat island intensity, urban planners and policy makers should pay special attention to the selection of appropriate building materials, the reasonable arrangement of urban structures, and the rational design of landscape components.« less
Thermal Characteristics of Urban Landscapes
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Quattrochi, Dale A.
1998-01-01
Although satellite data are very useful for analysis of the urban heat island effect at a coarse scale, they do not lend themselves to developing a better understanding of which surfaces across the city contribute or drive the development of the urban heat island effect. Analysis of thermal energy responses for specific or discrete surfaces typical of the urban landscape (e.g., asphalt, building rooftops, vegetation) requires measurements at a very fine spatial scale (i.e., less than 15 m) to adequately resolve these surfaces and their attendant thermal energy regimes. Additionally, very fine scale spatial resolution thermal infrared data, such as that obtained from aircraft, are very useful for demonstrating to planning officials, policy makers, and the general populace the benefits of the urban forest. These benefits include mitigating the urban heat island effect, making cities more aesthetically pleasing and more habitable environments, and aid in overall cooling of the community. High spatial resolution thermal data are required to quantify how artificial surfaces within the city contribute to an increase in urban heating and the benefit of cool surfaces (e.g., surface coatings that reflect much of the incoming solar radiation as opposed to absorbing it thereby lowering urban temperatures). The TRN (thermal response number) is a technique using aircraft remotely sensed surface temperatures to quantify the thermal response of urban surfaces. The TRN was used to quantify the thermal response of various urban surface types ranging from completely vegetated surfaces to asphalt and concrete parking lots for Huntsville, AL.
Utility of Thermal Infrared Satellite Data For Urban Landscapes
NASA Astrophysics Data System (ADS)
Xian, G.; Crane, M.; Granneman, B.
2006-12-01
Urban landscapes are comprised of a variety of surfaces that are characterized by contrasting radiative, thermal, aerodynamic, and moisture properties. These different surfaces possess diverse physical and thermal attributes that directly influence surface energy balance and our ability to determine surface characteristics in urban areas. Reflectance properties obtained from satellite imagery have proven useful for mapping urban land use and land cover change, as well as ecosystem health. Landsat reflectance bands are commonly used in regression tree models to generate linear equations that correspond to distinct land surface materials. However, urban land cover is generally a heterogeneous mix of bare soil, vegetation, rock, and anthropogenic impervious surfaces. Surface temperature obtained from satellite thermal infrared bands provides valuable information about surface biophysical properties and radiant thermal characteristics of land cover elements, especially for urban environments. This study demonstrates the improved characterization of land cover conditions for Seattle, Washington, and Las Vegas, Nevada, that were achieved by using both the reflectance and thermal bands of Landsat Enhanced Thematic Mapper Plus (ETM+) data. Including the thermal band in the image analysis increased the accuracy of discriminating cover types in heterogeneous landscapes with extreme contrasts, especially for mixed pixels at the urban interface.
Xian, G.; Crane, M.; McMahon, C.
2008-01-01
Urban development has expanded rapidly in Las Vegas, Nevada of the United States, over the last fifty years. A major environmental change associated with this urbanization trend is the transformation of the landscape from natural cover types to increasingly anthropogenic impervious surface. This research utilizes remote sensing data from both the Landsat and Terra-Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instruments in conjunction with digital orthophotography to estimate urban extent and its temporal changes by determining sub-pixel impervious surfaces. Percent impervious surface area has shown encouraging agreement with urban land extent and development density. Results indicate that total urban land-use increases approximately 110 percent from 1984 to 2002. Most of the increases are associated with medium-to high-density urban development. Places having significant increases in impervious surfaces are in the northwestern and southeastern parts of Las Vegas. Most high-density urban development, however, appears in central Las Vegas. Impervious surface conditions for 2002 measured from Landsat and ASTER satellite data are compared in terms of their accuracy.
An Improved Simulation of the Diurnally Varying Street Canyon Flow
NASA Astrophysics Data System (ADS)
Yaghoobian, Neda; Kleissl, Jan; Paw U, Kyaw Tha
2012-11-01
The impact of diurnal variation of temperature distribution over building and ground surfaces on the wind flow and scalar transport in street canyons is numerically investigated using the PArallelized LES Model (PALM). The Temperature of Urban Facets Indoor-Outdoor Building Energy Simulator (TUF-IOBES) is used for predicting urban surface heat fluxes as boundary conditions for a modified version of PALM. TUF-IOBES dynamically simulates indoor and outdoor building surface temperatures and heat fluxes in an urban area taking into account weather conditions, indoor heat sources, building and urban material properties, composition of the building envelope (e.g. windows, insulation), and HVAC equipment. Temperature (and heat flux) distribution over urban surfaces of the 3-D raster-type geometry of TUF-IOBES makes it possible to provide realistic, high resolution boundary conditions for the numerical simulation of flow and scalar transport in an urban canopy. Compared to some previous analyses using uniformly distributed thermal forcing associated with urban surfaces, the present analysis shows that resolving non-uniform thermal forcings can provide more detailed and realistic patterns of the local air flow and pollutant dispersion in urban canyons.
NASA Astrophysics Data System (ADS)
Heene, V.; Buchholz, S.; Kossmann, M.
2016-12-01
Numerical studies of thermal conditions in cities based on model simulations of idealized urban domains are carried out to investigate how changes in the characteristics of urban areas influence street level air temperatures. The simulated modifications of the urban characteristics represent possible adaptation measures for heat reduction in cities, which are commonly used in urban planning. Model simulations are performed with the thermodynamic version of the 3-dimensional micro-scale urban climate model MUKLIMO_3. The simulated idealized urban areas are designed in a simplistic way, i. e. defining homogeneous squared cities of one settlement type, without orography and centered in the model domain. To assess the impact of different adaptation measures the characteristics of the urban areas have been systematically modified regarding building height, albedo of building roof and impervious surfaces, fraction of impervious surfaces between buildings, and percentage of green roofs. To assess the impact of green and blue infrastructure in cities, different configurations for parks and lakes have been investigated - e. g. varying size and distribution within the city. The experiments are performed for different combinations of typical German settlement types and surrounding rural types under conditions of a typical summer day in July. The adaptation measures implemented in the experiments show different impacts for different settlement types mainly due to the differences in building density, building height or impervious surface fraction. Parks and lakes implemented as adaptation measure show strong potential to reduce daytime air temperature, with cooling effects on their built-up surroundings. At night lakes generate negative and positive effects on air temperature, depending on water temperature. In general, all adaptation measures implemented in experiments reveal different impacts on day and night air temperature.
NASA Astrophysics Data System (ADS)
Aktaruzzaman, Md.; Schmitt, Theo G.
2011-11-01
This paper addresses the issue of a detailed representation of an urban catchment in terms of hydraulic and hydrologic attributes. Modelling of urban flooding requires a detailed knowledge of urban surface characteristics. The advancement in spatial data acquisition technology such as airborne LiDAR (Light Detection and Ranging) has greatly facilitated the collection of high-resolution topographic information. While the use of the LiDAR-derived Digital Surface Model (DSM) has gained popularity over the last few years as input data for a flood simulation model, the use of LiDAR intensity data has remained largely unexplored in this regard. LiDAR intensity data are acquired along with elevation data during the data collection mission by an aircraft. The practice of using of just aerial images with RGB (Red, Green and Blue) wavebands is often incapable of identifying types of surface under the shadow. On the other hand, LiDAR intensity data can provide surface information independent of sunlight conditions. The focus of this study is the use of intensity data in combination with aerial images to accurately map pervious and impervious urban areas. This study presents an Object-Based Image Analysis (OBIA) framework for detecting urban land cover types, mainly pervious and impervious surfaces in order to improve the rainfall-runoff modelling. Finally, this study shows the application of highresolution DSM and land cover maps to flood simulation software in order to visualize the depth and extent of urban flooding phenomena.
The managed clearing: An overlooked land-cover type in urbanizing regions?
Singh, Kunwar K; Madden, Marguerite; Gray, Josh; Meentemeyer, Ross K
2018-01-01
Urban ecosystem assessments increasingly rely on widely available map products, such as the U.S. Geological Service (USGS) National Land Cover Database (NLCD), and datasets that use generic classification schemes to detect and model large-scale impacts of land-cover change. However, utilizing existing map products or schemes without identifying relevant urban class types such as semi-natural, yet managed land areas that account for differences in ecological functions due to their pervious surfaces may severely constrain assessments. To address this gap, we introduce the managed clearings land-cover type-semi-natural, vegetated land surfaces with varying degrees of management practices-for urbanizing landscapes. We explore the extent to which managed clearings are common and spatially distributed in three rapidly urbanizing areas of the Charlanta megaregion, USA. We visually interpreted and mapped fine-scale land cover with special attention to managed clearings using 2012 U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) images within 150 randomly selected 1-km2 blocks in the cities of Atlanta, Charlotte, and Raleigh, and compared our maps with National Land Cover Database (NLCD) data. We estimated the abundance of managed clearings relative to other land use and land cover types, and the proportion of land-cover types in the NLCD that are similar to managed clearings. Our study reveals that managed clearings are the most common land cover type in these cities, covering 28% of the total sampled land area- 6.2% higher than the total area of impervious surfaces. Managed clearings, when combined with forest cover, constitutes 69% of pervious surfaces in the sampled region. We observed variability in area estimates of managed clearings between the NAIP-derived and NLCD data. This suggests using high-resolution remote sensing imagery (e.g., NAIP) instead of modifying NLCD data for improved representation of spatial heterogeneity and mapping of managed clearings in urbanizing landscapes. Our findings also demonstrate the need to more carefully consider managed clearings and their critical ecological functions in landscape- to regional-scale studies of urbanizing ecosystems.
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Rickman, Doug; Quattroch, Dale; Estes. Maury
2007-01-01
Although satellite data are very useful for analysis of the urban heat island effect at a coarse scale, they do not lend themselves to developing a better understanding of which surfaces across the city contribute or drive the development of the urban heat island effect. Analysis of thermal energy responses for specific or discrete surfaces typical of the urban landscape (e.g., asphalt, building rooftops, vegetation) requires measurements at a very fine spatial scale (i.e., < 15m) to adequately resolve these surfaces and their attendant thermal energy regimes. Additionally, very fine scale spatial resolution thermal infrared data, such as that obtained from aircraft, are very useful for demonstrating to planning officials, policy makers, and the general populace the benefits of the urban forest. These benefits include mitigating the urban heat island effect, making cities more aesthetically pleasing and more habitable environments, and aid in overall cooling of the community. High spatial resolution thermal data are required to quantify how artificial surfaces within the city contribute to an increase in urban heating and the benefit of cool surfaces (e.g., surface coatings that reflect much of the incoming solar radiation as opposed to absorbing it thereby lowering urban temperatures). The TRN (thermal response number)(Luvall and Holbo 1989) is a technique using aircraft remotely sensed surface temperatures to quantify the thermal response of urban surfaces. The TRN was used to quantify the thermal response of various urban surface types ranging from completely vegetated surfaces to asphalt and concrete parking lots for several cities in the United States.
Relationships between aerodynamic roughness and land use and land cover in Baltimore, Maryland
Nicholas, F.W.; Lewis, J.E.
1980-01-01
Urbanization changes the radiative, thermal, hydrologic, and aerodynamic properties of the Earth's surface. Knowledge of these surface characteristics, therefore, is essential to urban climate analysis. Aerodynamic or surface roughness of urban areas is not well documented, however, because of practical constraints in measuring the wind profile in the presence of large buildings. Using an empirical method designed by Lettau, and an analysis of variance of surface roughness values calculated for 324 samples averaging 0.8 hectare (ha) of land use and land cover sample in Baltimore, Md., a strong statistical relation was found between aerodynamic roughness and urban land use and land cover types. Assessment of three land use and land cover systems indicates that some of these types have significantly different surface roughness characteristics. The tests further indicate that statistically significant differences exist in estimated surface roughness values when categories (classes) from different land use and land cover classification systems are used as surrogates. A Level III extension of the U.S. Geological Survey Level II land use and land cover classification system provided the most reliable results. An evaluation of the physical association between the aerodynamic properties of land use and land cover and the surface climate by numerical simulation of the surface energy balance indicates that changes in surface roughness within the range of values typical of the Level III categories induce important changes in the surface climate.
The managed clearing: An overlooked land-cover type in urbanizing regions?
Madden, Marguerite; Gray, Josh; Meentemeyer, Ross K.
2018-01-01
Urban ecosystem assessments increasingly rely on widely available map products, such as the U.S. Geological Service (USGS) National Land Cover Database (NLCD), and datasets that use generic classification schemes to detect and model large-scale impacts of land-cover change. However, utilizing existing map products or schemes without identifying relevant urban class types such as semi-natural, yet managed land areas that account for differences in ecological functions due to their pervious surfaces may severely constrain assessments. To address this gap, we introduce the managed clearings land-cover type–semi-natural, vegetated land surfaces with varying degrees of management practices–for urbanizing landscapes. We explore the extent to which managed clearings are common and spatially distributed in three rapidly urbanizing areas of the Charlanta megaregion, USA. We visually interpreted and mapped fine-scale land cover with special attention to managed clearings using 2012 U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) images within 150 randomly selected 1-km2 blocks in the cities of Atlanta, Charlotte, and Raleigh, and compared our maps with National Land Cover Database (NLCD) data. We estimated the abundance of managed clearings relative to other land use and land cover types, and the proportion of land-cover types in the NLCD that are similar to managed clearings. Our study reveals that managed clearings are the most common land cover type in these cities, covering 28% of the total sampled land area– 6.2% higher than the total area of impervious surfaces. Managed clearings, when combined with forest cover, constitutes 69% of pervious surfaces in the sampled region. We observed variability in area estimates of managed clearings between the NAIP-derived and NLCD data. This suggests using high-resolution remote sensing imagery (e.g., NAIP) instead of modifying NLCD data for improved representation of spatial heterogeneity and mapping of managed clearings in urbanizing landscapes. Our findings also demonstrate the need to more carefully consider managed clearings and their critical ecological functions in landscape- to regional-scale studies of urbanizing ecosystems. PMID:29432442
NASA Technical Reports Server (NTRS)
Lo, Chor Pang
1996-01-01
The main objective of this research is to apply airborne high-resolution thermal infrared imagery for urban heat island studies, using Huntsville, AL, a medium-sized American city, as the study area. The occurrence of urban heat islands represents human-induced urban/rural contrast, which is caused by deforestation and the replacement of the land surface by non-evaporating and non-porous materials such as asphalt and concrete. The result is reduced evapotranspiration and more rapid runoff of rain water. The urban landscape forms a canopy acting as a transitional zone between the atmosphere and the land surface. The composition and structure of this canopy have a significant impact on the thermal behavior of the urban environment. Research on the trends of surface temperature at rapidly growing urban sites in the United States during the last 30 to 50 years suggests that significant urban heat island effects have caused the temperatures at these sites to rise by 1 to 2 C. Urban heat islands have caused changes in urban precipitation and temperature that are at least similar to, if not greater than, those predicted to develop over the next 100 years by global change models. Satellite remote sensing, particularly NOAA AVHRR thermal data, has been used in the study of urban heat islands. Because of the low spatial resolution (1.1 km at nadir) of the AVHRR data, these studies can only examine and map the phenomenon at the macro-level. The present research provides the rare opportunity to utilize 5-meter thermal infrared data acquired from an airplane to characterize more accurately the thermal responses of different land cover types in the urban landscape as input to urban heat island studies.
Remote Sensing of Atlanta's Urban Sprawl and the Distribution of Land Cover and Surface Temperatures
NASA Technical Reports Server (NTRS)
Laymon, Charles A.; Estes, Maurice G., Jr.; Quattrochi, Dale A.; Arnold, James E. (Technical Monitor)
2001-01-01
Between 1973 and 1992, an average of 20 ha of forest was lost each day to urban expansion of Atlanta, Georgia. Urban surfaces have very different thermal properties than natural surfaces-storing solar energy throughout the day and continuing to release it as sensible heat well after sunset. The resulting heat island effect serves as catalysts for chemical reactions from vehicular exhaust and industrialization leading to a deterioration in air quality. In this study, high spatial resolution multispectral remote sensing data has been used to characterize the type, thermal properties, and distribution of land surface materials throughout the Atlanta metropolitan area. Ten-meter data were acquired with the Advanced Thermal and Land Applications Sensor (ATLAS) on May 11 and 12, 1997. ATLAS is a 15-channel multispectral scanner that incorporates the Landsat TM bands with additional bands in the middle reflective infrared and thermal infrared range. The high spatial resolution permitted discrimination of discrete surface types (e.g., concrete, asphalt), individual structures (e.g., buildings, houses) and their associated thermal characteristics. There is a strong temperature contrast between vegetation and anthropomorphic features. Vegetation has a modal temperature at about 20 C, whereas asphalt shingles, pavement, and buildings have a modal temperature of about 39 C. Broad-leaf vegetation classes are indistinguishable on a thermal basis alone. There is slightly more variability (plus or minus 5 C) among the urban surfaces. Grasses, mixed vegetation and mixed urban surfaces are intermediate in temperature and are characterized by broader temperature distributions with modes of about 29 C. Thermal maps serve as a basis for understanding the distribution of "hotspots", i.e., how landscape features and urban fabric contribute the most heat to the lower atmosphere.
Remote Sensing of Atlanta's Urban Sprawl and the Distribution of Land Cover and Surface Temperature
NASA Technical Reports Server (NTRS)
Laymon, Charles A.; Estes, Maurice G., Jr.; Quattrochi, Dale A.; Goodman, H. Michael (Technical Monitor)
2001-01-01
Between 1973 and 1992, an average of 20 ha of forest was lost each day to urban expansion of Atlanta, Georgia. Urban surfaces have very different thermal properties than natural surfaces-storing solar energy throughout the day and continuing to release it as sensible heat well after sunset. The resulting heat island effect serves as catalysts for chemical reactions from vehicular exhaust and industrialization leading to a deterioration in air quality. In this study, high spatial resolution multispectral remote sensing data has been used to characterize the type, thermal properties, and distribution of land surface materials throughout the Atlanta metropolitan area. Ten-meter data were acquired with the Advanced Thermal and Land Applications Sensor (ATLAS) on May 11 and 12, 1997. ATLAS is a 15-channel multispectral scanner that incorporates the Landsat TM bands with additional bands in the middle reflective infrared and thermal infrared range. The high spatial resolution permitted discrimination of discrete surface types (e.g., concrete, asphalt), individual structures (e.g., buildings, houses) and their associated thermal characteristics. There is a strong temperature contrast between vegetation and anthropomorphic features. Vegetation has a modal temperature at about 20 C, whereas asphalt shingles, pavement, and buildings have a modal temperature of about 39 C. Broad-leaf vegetation classes are indistinguishable on a thermal basis alone. There is slightly more variability (+/-5 C) among the urban surfaces. Grasses, mixed vegetation and mixed urban surfaces are intermediate in temperature and are characterized by broader temperature distributions with modes of about 29 C. Thermal maps serve as a basis for understanding the distribution of "hotspots", i.e., how landscape features and urban fabric contribute the most heat to the lower atmosphere.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.
1999-01-01
As an entity, the city is a manifestation of human "management" of the land. The act of city-building, however, drastically alters the biophysical environment, which ultimately, impacts local and regional land-atmosphere energy exchange processes. Because of the complexity of both the urban landscape and the attendant energy fluxes that result from urbanization, remote sensing offers the only real way to synoptically quantify these processes. One of the more important land-atmosphere fluxes that occurs over cities relates to the way that thermal energy is partitioned across the heterogeneous urban landscape. The individual land cover and surface material types that comprise the city, such as pavements and buildings, each have their own thermal energy regimes. As the collective urban landscape, the individual thermal energy responses from specific surfaces come together to form the urban heat island phenomena, which prevails as a dome of elevated air temperatures over cities. Although the urban heat island has been known to exist for well over 150 years, it is not understood how differences in thermal energy responses for land covers across the city interact to produce this phenomenon, or how the variability in thermal energy responses from different surface types drive its development. Additionally, it can be hypothesized that as cities grow in size through time, so do their urban heat islands. The interrelationships between urban sprawl and the respective growth of the urban heat island, however, have not been investigated. Moreover, little is known of the consequential effects of urban growth, land cover change, and the urban heat island as they impact local and regional meteorology and air quality.
Ossola, Alessandro; Hahs, Amy Kristin; Livesley, Stephen John
2015-08-15
Urban ecosystems have traditionally been considered to be pervious features of our cities. Their hydrological properties have largely been investigated at the landscape scale and in comparison with other urban land use types. However, hydrological properties can vary at smaller scales depending upon changes in soil, surface litter and vegetation components. Management practices can directly and indirectly affect each of these components and the overall habitat complexity, ultimately affecting hydrological processes. This study aims to investigate the influence that habitat components and habitat complexity have upon key hydrological processes and the implications for urban habitat management. Using a network of urban parks and remnant nature reserves in Melbourne, Australia, replicate plots representing three types of habitat complexity were established: low-complexity parks, high-complexity parks, and high-complexity remnants. Saturated soil hydraulic conductivity in low-complexity parks was an order of magnitude lower than that measured in the more complex habitat types, due to fewer soil macropores. Conversely, soil water holding capacity in low-complexity parks was significantly higher compared to the two more complex habitat types. Low-complexity parks would generate runoff during modest precipitation events, whereas high-complexity parks and remnants would be able to absorb the vast majority of rainfall events without generating runoff. Litter layers on the soil surface would absorb most of precipitation events in high-complexity parks and high-complexity remnants. To minimize the incidence of stormwater runoff from urban ecosystems, land managers could incrementally increase the complexity of habitat patches, by increasing canopy density and volume, preserving surface litter and maintaining soil macropore structure. Copyright © 2015 Elsevier Ltd. All rights reserved.
Assessments of urban growth in the Tampa Bay watershed using remote sensing data
Xian, G.; Crane, M.
2005-01-01
Urban development has expanded rapidly in the Tampa Bay area of west-central Florida over the past century. A major effect associated with this population trend is transformation of the landscape from natural cover types to increasingly impervious urban land. This research utilizes an innovative approach for mapping urban extent and its changes through determining impervious surfaces from Landsat satellite remote sensing data. By 2002, areas with subpixel impervious surface greater than 10% accounted for approximately 1800 km2, or 27 percent of the total watershed area. The impervious surface area increases approximately three-fold from 1991 to 2002. The resulting imperviousness data are used with a defined suite of geospatial data sets to simulate historical urban development and predict future urban and suburban extent, density, and growth patterns using SLEUTH model. Also examined is the increasingly important influence that urbanization and its associated imperviousness extent have on the individual drainage basins of the Tampa Bay watershed.
Evaluating Vegetation Type Effects on Land Surface Temperature at the City Scale
NASA Astrophysics Data System (ADS)
Wetherley, E. B.; McFadden, J. P.; Roberts, D. A.
2017-12-01
Understanding the effects of different plant functional types and urban materials on surface temperatures has significant consequences for climate modeling, water management, and human health in cities. To date, doing so at the urban scale has been complicated by small-scale surface heterogeneity and limited data. In this study we examined gradients of land surface temperature (LST) across sub-pixel mixtures of different vegetation types and urban materials across the entire Los Angeles, CA, metropolitan area (4,283 km2). We used AVIRIS airborne hyperspectral imagery (36 m resolution, 224 bands, 0.35 - 2.5 μm) to estimate sub-pixel fractions of impervious, pervious, tree, and turfgrass surfaces, validating them with simulated mixtures constructed from image spectra. We then used simultaneously imaged LST retrievals collected at multiple times of day to examine how temperature changed along gradients of the sub-pixel mixtures. Diurnal in situ LST measurements were used to confirm image values. Sub-pixel fractions were well correlated with simulated validation data for turfgrass (r2 = 0.71), tree (r2 = 0.77), impervious (r2 = 0.77), and pervious (r2 = 0.83) surfaces. The LST of pure pixels showed the effects of both the diurnal cycle and the surface type, with vegetated classes having a smaller diurnal temperature range of 11.6°C whereas non-vegetated classes had a diurnal range of 16.2°C (similar to in situ measurements collected simultaneously with the imagery). Observed LST across fractional gradients of turf/impervious and tree/impervious sub-pixel mixtures decreased linearly with increasing vegetation fraction. The slopes of decreasing LST were significantly different between tree and turf mixtures, with steeper slopes observed for turf (p < 0.05). These results suggest that different physiological characteristics and different access to irrigation water of urban trees and turfgrass results in significantly different LST effects, which can be detected at large scales in fractional mixture analysis.
Factors Contributing to the Off-Target Transport of Pyrethroid Insecticides From Urban Surfaces
Jorgenson, Brant C.; Wissel-Tyson, Christopher; Young, Thomas M.
2013-01-01
Pyrethroid insecticides used in an urban and suburban context have been found in urban creek sediments and associated with toxicity in aquatic bioassays. The objectives of this study were to evaluate the main factors contributing to the off-target transport of pyrethroid insecticides from surfaces typical of residential landscapes. Controlled rainfall simulations over concrete, bare soil, and turf plots treated individually with pyrethroid insecticides in a suspension concentrate, an emulsifiable concentrate, or a granule formulation were conducted at different rainfall intensities and different product set-time intervals. Pyrethroid mass washoff varied by several orders of magnitude between experimental treatments. Suspension concentrate product application to concrete yielded significantly greater washoff than any other treatment; granule product application to turf yielded the least washoff. Fractional losses at 10 L of runoff ranged from 25.9% to 0.011% of pyrethroid mass applied and 10 L nominal mass losses ranged from 3,970 to 0.18 μg. Mass washoff depended principally on formulation and surface type combination and to a lesser degree set-time interval and rainfall intensity. Treatment effects were analyzed by ANOVA on main factors of formulation, surface type, and set time. Factor effects were not purely additive; a significant interaction between formulation and surface type was noted. PMID:22784034
Understanding Climate Variability of Urban Ecosystems Through the Lens of Citizen Science
NASA Astrophysics Data System (ADS)
Ripplinger, J.; Jenerette, D.; Wang, J.; Chandler, M.; Ge, C.; Koutzoukis, S.
2017-12-01
The Los Angeles megacity is vulnerable to climate warming - a process that locally exacerbates the urban heat island effect as it intensifies with size and density of the built-up area. We know that large-scale drivers play a role, but in order to understand local-scale climate variation, more research is needed on the biophysical and sociocultural processes driving the urban climate system. In this study, we work with citizen scientists to deploy a high-density network of microsensors across a climate gradient to characterize geographic variation in neighborhood meso- and micro-climates. This research asks: How do urbanization, global climate, and vegetation interact across multiple scales to affect local-scale experiences of temperature? Additionally, citizen scientist-led efforts generated research questions focused on examining microclimatic differences among yard groundcover types (rock mulch vs. lawn vs. artificial turf) and also on variation in temperature related to tree cover. Combining sensor measurements with Weather Research and Forecasting (WRF) spatial models and satellite-based temperature, we estimate spatially-explicit maps of land surface temperature and air temperature to illustrate the substantial difference between surface and air urban heat island intensities and the variable degree of coupling between land surface and air temperature in urban areas. Our results show a strong coupling between air temperature variation and landcover for neighborhoods, with significant detectable signatures from tree cover and impervious surface. Temperature covaried most strongly with urbanization intensity at nighttime during peak summer season, when daily mean air temperature ranged from 12.8C to 30.4C across all groundcover types. The combined effects of neighborhood geography and vegetation determine where and how temperature and tree canopy vary within a city. This citizen science-enabled research shows how large-scale climate drivers and urbanization intensity jointly influence the nature and magnitude of coupling between air temperature and tree cover, and demonstrate how urban vegetation provides an important ecosystem service in cities by decreasing the intensity of local urban heat islands.
Urban Soil: Assessing Ground Cover Impact on Surface Temperature and Thermal Comfort.
Brandani, Giada; Napoli, Marco; Massetti, Luciano; Petralli, Martina; Orlandini, Simone
2016-01-01
The urban population growth, together with the contemporary deindustrialization of metropolitan areas, has resulted in a large amount of available land with new possible uses. It is well known that urban green areas provide several benefits in the surrounding environment, such as the improvement of thermal comfort conditions for the population during summer heat waves. The purpose of this study is to provide useful information on thermal regimes of urban soils to urban planners to be used during an urban transformation to mitigate surface temperatures and improve human thermal comfort. Field measurements of solar radiation, surface temperature (), air temperature (), relative humidity, and wind speed were collected on four types of urban soils and pavements in the city of Florence during summer 2014. Analysis of days under calm, clear-sky condition is reported. During daytime, sun-to-shadow differences for , apparent temperature index (ATI), and were significantly positive for all surfaces. Conversely, during nighttime, differences among all surfaces were significantly negative, whereas ATI showed significantly positive differences. Moreover, was significantly negative for grass and gravel. Relative to the shaded surfaces, was higher on white gravel and grass than gray sandstone and asphalt during nighttime, whereas gray sandstone was always the warmest surface during daytime. Conversely, no differences were found during nighttime for ATI and measured over surfaces that were exposed to sun during the day, whereas showed higher values on gravel than grass and asphalt during nighttime. An exposed surface warms less if its albedo is high, leading to a significant reduction of during daytime. These results underline the importance of considering the effects of surface characteristics on surface temperature and thermal comfort. This would be fundamental for addressing urban environment issues toward the heat island mitigation considering also the impact of urban renovation on microclimate. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Urban Surface Radiative Energy Budgets Determined Using Aircraft Scanner Data
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.; Estes, Maury G.; Arnold, James E. (Technical Monitor)
2002-01-01
It is estimated that by the year 2025, 80% of the world's population will live in cities. The extent of these urban areas across the world can be seen in an image of city lights from the Defense Meteorological Satellite Program. In many areas of North America and Europe, it is difficult to separate individual cities because of the dramatic growth and sprawl of urbanized areas. This conversion of the natural landscape vegetation into man-made urban structures such as roads and buildings drastically alter the regional surface energy budgets, hydrology, precipitation patterns, and meteorology. One of the earliest recognized and measured phenomena of urbanization is the urban heat island (UHI) which was reported as early as 1833 for London and 1862 for Paris. The urban heat island results from the energy that is absorbed by man-made materials during the day and is released at night resulting in the heating of the air within the urban area. The magnitude of the air temperature difference between the urban and surrounding countryside is highly dependent on the structure of the urban area, amount of solar immolation received during the day, and atmospheric conditions during the night. These night time air temperature differences can be in the range of 2 to 5 C. or greater. Although day time air temperature differences between urban areas and the countryside exists during the day, atmospheric mixing and stability reduce the magnitude. This phenomena is not limited to large urban areas, but also occurs in smaller metropolitan areas. The UHI has significant impacts on the urban air quality, meteorology, energy use, and human health. The UPI can be mitigated through increasing the amount of vegetation and modification of urban surfaces using high albedo materials for roofs and paved surfaces. To understand why the urban heat island phenomenon exists it is useful to define the surface in terms of the surface energy budget. Surface temperature and albedo is a major component of the surface energy budget. Knowledge of it is important in any attempt to describe the radiative and mass fluxes which occur at the surface. Use of energy terms in modeling surface energy budgets allows the direct comparison of various land surfaces encountered in a urban landscape, from vegetated (forest and herbaceous) to non-vegetated (bare soil, roads, and buildings). These terms are also easily measured using remote sensing from aircraft or satellite platforms allowing one to examine the spacial variability. The partitioning of energy budget terms depends on the surface type. In natural landscapes, the partitioning is dependent on canopy biomass, leaf area index, aerodynamic roughness, and moisture status, all of which are influenced by the development stage of the ecosystem. In urban landscapes, coverage by man-made materials substantially alters the surface face energy budget. The remotely sensed data obtained from aircraft and satellites, when properly calibrated allows the measurement of important terms in the radiative surface energy budget a urban landscape scale.
NASA Astrophysics Data System (ADS)
Shiflett, S. A.; Anderson, R. G.; Jenerette, D.
2014-12-01
Urbanization substantially affects energy, surface and air temperature, and hydrology due to extensive modifications in land surface properties such as vegetation, albedo, thermal capacity and soil moisture. The magnitude and direction of these alterations depends heavily on the type of urbanization that occurs. We investigated energy balance variation in a local network of agricultural and urban ecosystems using the eddy covariance method to better understand how vegetation fraction and degree of urbanization affects energy exchanges between the land surface and the atmosphere. We deployed eddy flux systems within a well-irrigated, agricultural citrus orchard, a moderately developed urban zone with a substantial amount of local vegetative cover, and an intensely developed urban zone with minimal vegetative cover and increased impervious surfaces relative to the other two sites. Latent energy (LE) fluxes in the agricultural area ranged from 7.9 ± 1.4 W m-2 (nighttime) to 168.7 ± 6.2 W m-2 (daytime) compared to 10.2 ± 3.5 W m-2 and 40.6 ± 4.1 W m-2, respectively, for the moderately developed urban area. Sensible energy (H) fluxes ranged from -9.1 ± 1.0 W m-2 (nighttime) to 119 ± 7.0 W m-2 (daytime) in the agricultural area compared to 9.6 ± 2.6 W m-2 and 134 ± 6.0 W m-2, respectively, for the moderately developed urban zone. Daytime LE is reduced with increasing urbanization; however, daily cycles of LE are less recognizable in urban areas compared to distinct daily cycles obtained above a mature citrus crop. In contrast, both daytime and nighttime H increases with increasing degree of urbanization. Reduction in vegetation and increases in impervious surfaces along an urbanization gradient leads to alterations in energy balance, which are associated with microclimate and water use changes.
The Influence of Roof Material on Diurnal Urban Canyon Breathing
NASA Astrophysics Data System (ADS)
Abuhegazy, Mohamed; Yaghoobian, Neda
2017-11-01
Improvements in building energy use, air quality in urban canyons and in general urban microclimates require understanding the complex interaction between urban morphology, materials, climate, and inflow conditions. Review of the literature indicates that despite a long history of valuable urban microclimate studies, more comprehensive approaches are needed to address energy, and heat and flow transport in urban areas. In this study, a more comprehensive simulation of the diurnally varying street canyon flow and associated heat transport is numerically investigated, using Large-eddy Simulation (LES). We use computational modeling to examine the impact of diurnal variation of the heat fluxes from urban surfaces on the air flow and temperature distribution in street canyons with a focus on the role of roof materials and their temperature footprints. A detailed building energy model with a three-dimensional raster-type geometry provides urban surface heat fluxes as thermal boundary conditions for the LES to determine the key aero-thermodynamic factors that affect urban street ventilation.
Impacts of land use and land cover on surface and air temperature in urban landscapes
NASA Astrophysics Data System (ADS)
Crum, S.; Jenerette, D.
2015-12-01
Accelerating urbanization affects regional climate as the result of changing land cover and land use (LCLU). Urban land cover composition may provide valuable insight into relationships among urbanization, air, and land-surface temperature (Ta and LST, respectively). Climate may alter these relationships, where hotter climates experience larger LULC effects. To address these hypotheses we examined links between Ta, LST, LCLU, and vegetation across an urban coastal to desert climate gradient in southern California, USA. Using surface temperature radiometers, continuously measuring LST on standardized asphalt, concrete, and turf grass surfaces across the climate gradient, we found a 7.2°C and 4.6°C temperature decrease from asphalt to vegetated cover in the coast and desert, respectively. There is 131% more temporal variation in asphalt than turf grass surfaces, but 37% less temporal variation in concrete than turf grass. For concrete and turf grass surfaces, temporal variation in temperature increased from coast to desert. Using ground-based thermal imagery, measuring LST for 24 h sequences over citrus orchard and industrial use locations, we found a 14.5°C temperature decrease from industrial to orchard land use types (38.4°C and 23.9°C, respectively). Additionally, industrial land use types have 209% more spatial variation than orchard (CV=0.20 and 0.09, respectively). Using a network of 300 Ta (iButton) sensors mounted in city street trees throughout the region and hyperspectral imagery data we found urban vegetation greenness, measured using the normalized difference vegetation index (NDVI), was negatively correlated to Ta at night across the climate gradient. Contrasting previous findings, the closest coupling between NDVI and Ta is at the coast from 0000 h to 0800 h (highest r2 = 0.6, P < 0.05) while relationships at the desert are weaker (highest r2 = 0.38, P < 0.05). These findings indicate that vegetation cover in urbanized regions of southern California, USA decrease Ta and LST and spatial variation in LST, while built surfaces and land uses have the opposite effect. Furthermore these relationships are regulated by regional climate patterns, with decreases in Ta and LST being strongest in the coastal sub-region.
NASA Astrophysics Data System (ADS)
Zareie, Sajad; Khosravi, Hassan; Nasiri, Abouzar; Dastorani, Mostafa
2016-11-01
Land surface temperature (LST) is one of the key parameters in the physics of land surface processes from local to global scales, and it is one of the indicators of environmental quality. Evaluation of the surface temperature distribution and its relation to existing land use types are very important to the investigation of the urban microclimate. In arid and semi-arid regions, understanding the role of land use changes in the formation of urban heat islands is necessary for urban planning to control or reduce surface temperature. The internal factors and environmental conditions of Yazd city have important roles in the formation of special thermal conditions in Iran. In this paper, we used the temperature-emissivity separation (TES) algorithm for LST retrieving from the TIRS (Thermal Infrared Sensor) data of the Landsat Thematic Mapper (TM). The root mean square error (RMSE) and coefficient of determination (R2) were used for validation of retrieved LST values. The RMSE of 0.9 and 0.87 °C and R2 of 0.98 and 0.99 were obtained for the 1998 and 2009 images, respectively. Land use types for the city of Yazd were identified and relationships between land use types, land surface temperature and normalized difference vegetation index (NDVI) were analyzed. The Kappa coefficient and overall accuracy were calculated for accuracy assessment of land use classification. The Kappa coefficient values are 0.96 and 0.95 and the overall accuracy values are 0.97 and 0.95 for the 1998 and 2009 classified images, respectively. The results showed an increase of 1.45 °C in the average surface temperature. The results of this study showed that optical and thermal remote sensing methodologies can be used to research urban environmental parameters. Finally, it was found that special thermal conditions in Yazd were formed by land use changes. Increasing the area of asphalt roads, residential, commercial and industrial land use types and decreasing the area of the parks, green spaces and fallow lands in Yazd caused a rise in surface temperature during the 11-year period.
NASA Technical Reports Server (NTRS)
Zhang, Ping; Imhoff, Marc L.; Bounoua, Lahouri; Wolfe, Robert E.
2011-01-01
Impervious surface area (ISA) from the National Land Cover Database (NLCD) 2001 and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) signature and its relationship to settlement size and shape, development intensity distribution, and land cover composition for 42 urban settlements embedded in forest biomes in the Northeastern United States. Development intensity zones, based on percent ISA, are defined for each urban area emanating outward from the urban core to nearby rural areas and are used to stratify land surface temperature. The stratification is further constrained by biome type and elevation to insure objective intercomparisons between urban zones within an urban settlement and between settlements. Stratification based on ISA allows the definition of hierarchically ordered urban zones that are consistent across urban settlements and scales. In addition to the surrounding ecological context, we find that the settlement size and shape as well as the development intensity distribution significantly influence the amplitude of summer daytime UHI. Within the Northeastern US temperate broadleaf mixed forest, UHI magnitude is positively related to the logarithm of the urban area size. Our study indicates that for similar urban area sizes, the development intensity distribution is one of the major drivers of UHI. In addition to urban area size and development intensity distribution, this analysis shows that both the shape of the urban area and the land cover composition in the surrounding rural area play an important role in modulating the UHI magnitude in different urban settlements. Our results indicate that remotely sensed urban area size and shape as well as the development intensity distribution influence UHI amplitude across regional scales.
Richard V. Pouyat; Ian D. Yesilonis; Miklos Dombos; Katalin Szlavecz; Heikki Setala; Sarel Cilliers; Erzsebet Hornung; D. Johan Kotze; Stephanie Yarwood
2015-01-01
As part of the Global Urban Soil Ecology and Education Network and to test the urban ecosystem convergence hypothesis, we report on soil pH, organic carbon (OC), total nitrogen (TN), phosphorus (P), and potassium (K) measured in four soil habitat types (turfgrass, ruderal, remnant, and reference) in five metropolitan areas (Baltimore, Budapest,...
NASA Astrophysics Data System (ADS)
Kalantar, B.; Mansor, S.; Khuzaimah, Z.; Sameen, M. Ibrahim; Pradhan, B.
2017-09-01
Knowledge of surface albedo at individual roof scale is important for mitigating urban heat islands and understanding urban climate change. This study presents a method for quantifying surface albedo of individual roofs in a complex urban area using the integration of Landsat 8 and airborne LiDAR data. First, individual roofs were extracted from airborne LiDAR data and orthophotos using optimized segmentation and supervised object based image analysis (OBIA). Support vector machine (SVM) was used as a classifier in OBIA process for extracting individual roofs. The user-defined parameters required in SVM classifier were selected using v-fold cross validation method. After that, surface albedo was calculated for each individual roof from Landsat images. Finally, thematic maps of mean surface albedo of individual roofs were generated in GIS and the results were discussed. Results showed that the study area is covered by 35% of buildings varying in roofing material types and conditions. The calculated surface albedo of buildings ranged from 0.16 to 0.65 in the study area. More importantly, the results indicated that the types and conditions of roofing materials significantly effect on the mean value of surface albedo. Mean albedo of new concrete, old concrete, new steel, and old steel were found to be equal to 0.38, 0.26, 0.51, and 0.44 respectively. Replacing old roofing materials with new ones should highly prioritized.
Investigation of the effect of sealed surfaces on local climate in urban areas
NASA Astrophysics Data System (ADS)
Weihs, Philipp; Hasel, Stefan; Mursch-Radlgruber, Erich; Gützer, Christian; Krispel, Stefan; Peyerl, Martin; Trimmel, Heidi
2015-04-01
Local climate is driven by the interaction between energy balance and energy transported by advected air. Short-wave and long-wave radiation are major components in this interaction. Some few studies (e.g. Santamouris et al.) showed that adjusting the grade of reflection of surfaces is an efficient way to influence temperature. The present study investigates the influence of high albedo concrete surfaces on local climate. The first step of the study consisted of experimental investigations: routine measurements of the short and longwave radiation balance, of the ground and of the air temperature and humidity at different heights above 6 different types of sealed surfaces were performed. During this measurement campaign the above mentioned components were measured over a duration of 4 months above two conventional asphalt surfaces, one conventional concrete and three newly developed concrete surfaces with increased reflectances. Measured albedo values amounted to 0.12±0.02 for the asphalt surfaces and to maximum values of 0.56 for high albedo concrete. The maximum difference in surface temperature between the asphalt surfaces and the high albedo concrete surfaces amounted to 15°C. In addition the emission constants of the different sealed surfaces were also determined and were compared to values from literature.. In a second step the urban energy balance model Envi_Met was used to simulate the surface temperature of the six surfaces. The simulated surface temperatures were compared to the measured surface temperatures and statements as to uncertainties of the model simulations were made In a third step, Envi_Met was used to simulate the local climate of an urban district in Vienna. The surface and air temperature and the SW, LW fluxes were calculated for different types of sealed surfaces. By performing calculations of thermal stress indices (UTCI, PMV), statements as to the influence of the type of sealed surface on thermal stress on humans was made.
NASA Astrophysics Data System (ADS)
Wright, O.; Istanbulluoglu, E.
2012-12-01
The conversion of forested areas to impervious surfaces, lawns and pastures alters the natural hydrology of an area by increasing the flashiness of stormwater generated runoff, resulting in increased streamflow peaks and volumes. Currently, most of the stormwater from developed areas in the Puget Sound region remains uncontrolled. The lack of adequate stormwater facilities along with increasing urbanization and population growth illustrates the importance of understanding urban watershed behavior and best management practices (BMPs) that improve changes in hydrology. In this study, we developed a lumped urban ecohydrology model that represents vegetation dynamics, connects pervious and impervious surfaces and implements various BMP scenarios. The model is implemented in an urban headwater subcatchment located in the Newaukum Creek Basin. We evaluate the hydrologic impact of controlling runoff at the source and disconnecting impervious surfaces from the storm drain using rain barrels and bioretention cells. BMP scenarios consider the basin's land use/land coverage, the response of different impervious surface types, the potential for BMP placement, the size and drainage area for BMPs, and the mitigation needs to meet in-stream flow goals.
The Impacts of Urbanization on Meteorology and Air Quality in the Los Angeles Basin
NASA Astrophysics Data System (ADS)
Li, Y.; Zhang, J.; Sailor, D.; Ban-Weiss, G. A.
2017-12-01
Urbanization has a profound influence on regional meteorology in mega cities like Los Angeles. This influence is driven by changes in land surface physical properties and urban processes, and their corresponding influence on surface-atmosphere coupling. Changes in meteorology from urbanization in turn influences air quality through weather-dependent chemical reaction, pollutant dispersion, etc. Hence, a real-world representation of the urban land surface properties and urban processes should be accurately resolved in regional climate-chemistry models for better understanding the role of urbanization on changing urban meteorology and associated pollutant dynamics. By incorporating high-resolution land surface data, previous research has improved model-observation comparisons of meteorology in urban areas including the Los Angeles basin, and indicated that historical urbanization has increased urban temperatures and altered wind flows significantly. However, the impact of urban expansion on air quality has been less studied. Thus, in this study, we aim to evaluate the effectiveness of resolving high-resolution heterogeneity in urban land surface properties and processes for regional weather and pollutant concentration predictions. We coupled the Weather Research and Forecasting model with Chemistry to the single-layer Urban Canopy Model to simulate a typical summer period in year 2012 for Southern California. Land cover type and urban fraction were determined from National Land Cover Data. MODIS observations were used to determine satellite-derived albedo, green vegetation fraction, and leaf area index. Urban morphology was determined from GIS datasets of 3D building geometries. An urban irrigation scheme was also implemented in the model. Our results show that the improved model captures the diurnal cycle of 2m air temperature (T2) and Ozone (O3) concentrations. However, it tends to overestimate wind speed and underestimate T2, which leads to an underestimation of O3 and fine particulate matter concentrations. By comparing simulations assuming current land cover of the Los Angeles basin versus pre-urbanization land cover, we find that land cover change through urbanization has led to important shifts in regional air pollution via the aforementioned physical and chemical mechanisms.
Du, Hongyu; Wang, Duoduo; Wang, Yuanyuan; Zhao, Xiaolei; Qin, Fei; Jiang, Hong; Cai, Yongli
2016-11-15
Urban heat islands (UHIs) reflect the localized impact of human activities on thermal fields. In this study, we assessed the surface UHI and its relationship with types of land, meteorological conditions, anthropogenic heat sources and urban areas in the Yangtze River Delta Urban Agglomeration (YRDUA) with the aid of remote sensing data, statistical data and meteorological data. The results showed that the UHI intensity in YRDUA was the strongest (0.84°C) in summer, followed by 0.81°C in autumn, 0.78°C in spring and 0.53°C in winter. The daytime UHI intensity is 0.98°C, which is higher than the nighttime UHI intensity of 0.50°C. Then, the relationship between the UHI intensity and several factors such as meteorological conditions, anthropogenic heat sources and the urban area were analysed. The results indicated that there was an insignificant correlation between population density and the UHI intensity. Energy consumption, average temperature and urban area had a significant positive correlation with UHI intensity. However, the average wind speed and average precipitation were significantly negatively correlated with UHI intensity. This study provides insight into the regional climate characteristics and a scientific basis for city layout. Copyright © 2016 Elsevier B.V. All rights reserved.
A microscale three-dimensional urban energy balance model for studying surface temperatures
NASA Astrophysics Data System (ADS)
Krayenhoff, E. Scott; Voogt, James A.
2007-06-01
A microscale three-dimensional (3-D) urban energy balance model, Temperatures of Urban Facets in 3-D (TUF-3D), is developed to predict urban surface temperatures for a variety of surface geometries and properties, weather conditions, and solar angles. The surface is composed of plane-parallel facets: roofs, walls, and streets, which are further sub-divided into identical square patches, resulting in a 3-D raster-type model geometry. The model code is structured into radiation, conduction and convection sub-models. The radiation sub-model uses the radiosity approach and accounts for multiple reflections and shading of direct solar radiation. Conduction is solved by finite differencing of the heat conduction equation, and convection is modelled by empirically relating patch heat transfer coefficients to the momentum forcing and the building morphology. The radiation and conduction sub-models are tested individually against measurements, and the complete model is tested against full-scale urban surface temperature and energy balance observations. Modelled surface temperatures perform well at both the facet-average and the sub-facet scales given the precision of the observations and the uncertainties in the model inputs. The model has several potential applications, such as the calculation of radiative loads, and the investigation of effective thermal anisotropy (when combined with a sensor-view model).
Van Nguyen, On; Kawamura, Kensuke; Trong, Dung Phan; Gong, Zhe; Suwandana, Endan
2015-07-01
Temporal changes in the land surface temperature (LST) in urbanization areas are important for studying an urban heat island (UHI) and regional climate change. This study examined the LST trends under different land use categories in the Red River Delta, Vietnam, using the Moderate Resolution Imaging Spectroradiometer (MODIS) LST product (MOD11A2) and land cover type product (MCD12Q1) for 11 years (2002-2012). Smoothened time-series MODIS LST data were reconstructed by the Harmonic Analysis of Time Series (HANTS) algorithm. The reconstructed LST (maximum and minimum temperatures) was assessed using the hourly air temperature dataset in two land-based meteorological stations provided by the National Climatic Data Center (NCDC). Significant correlation was obtained between MODIS LST and the air temperature for the daytime (R (2) = 0.73, root mean square error [RMSE] = 1.66 °C) and night time (R (2) = 0.84, RMSE = 1.79 °C). Statistical analysis also showed that LST trends vary strongly depending on the land cover type. Forest, wetland, and cropland had a slight tendency to decline, whereas cropland and urban had sharper increases. In urbanized areas, these increasing trends are even more obvious. This is undeniable evidence of the negative impact of urbanization on a surface urban heat island (SUHI) and global warming.
Spatial temporal analysis of urban heat hazard in Tangerang City
NASA Astrophysics Data System (ADS)
Wibowo, Adi; Kuswantoro; Ardiansyah; Rustanto, Andry; Putut Ash Shidiq, Iqbal
2016-11-01
Urban heat is a natural phenomenon which might caused by human activities. The human activities were represented by various types of land-use such as urban and non-urban area. The aim of this study is to identify the urban heat behavior in Tangerang City as it might threats the urban environment. This study used three types of remote sensing data namely, Landsat TM, Landsat ETM+ and Landsat OLI-TIRS, to capture the urban heat behavior and to analysis the urban heat signature of Tangerang City in 2001, 2012, 2013, 2014, 2015 and 2016. The result showed that urban heat signature change dynamically each month based on the sun radiation. The urban heat island covered only small part of Tangerang City in 2001, but it was significantly increased and reached 50% of the area in 2012. Based on the result on urban heat signature, the threshold for threatening condition is 30 oC which recognized from land surface temperature (LST). The effective temperature (ET) index explains that condition as warm, uncomfortable, increase stress due to sweating and blood flow and may causing cardiovascular disorder.
Identifying dominant controls on the water balance of partly sealed surfaces
NASA Astrophysics Data System (ADS)
Schuetz, Tobias; Schübl, Marleen; Siebert, Caroline; Weiler, Markus
2017-04-01
It is the challenge of modern urban development to obtain a near natural state for the urban water balance. For this purpose permeable alternatives to conventional surface sealing have been established during the last decades. A wealth of studies - under laboratory as well as field conditions - has emerged around the globe to examine the hydrological characteristics of different types of pavements. The main results of these studies - measured infiltration and evaporation rates, vary to a great extent between single studies and pavement types due to methodological approaches and local conditions. Within this study we analyze the controls of water balance components of partly sealed urban surfaces derived from an extensive literature review and a series of infiltration experiments conducted on historical and modern pavements within the city of Freiburg, Germany. Measured values published in 48 studies as well as the results of 30 double-ring infiltration experiments were compiled and sorted according to the measured parameter, the pavement type, pavement condition, age of the pavement, porosity of the pavement material and joint filling material as well as joint proportion of joint pavements. The main influencing factors on infiltration / hydraulic conductivity, evaporation rates and groundwater recharge of permeable pavements were identified and quantified using multiple linear regression methods. The analysis showed for both the literature study and our own infiltration experiments that condition and age of the pavement have the major influence on the pavement's infiltration capacity and that maintenance plays an important role for the long-term effectiveness of permeable pavements. For pavements with joints, the porosity of the pavement material seemed to have a stronger influence on infiltration capacity than the proportion of joint surface for which a clear influence could not be observed. Evaporation rates were compared for different surface categories as not enough measured values for different pavement types have been published. The highest evaporation can be expected for joint filling aggregates such as gravel and sand followed by bare soil (as reference), porous pavements and lastly non-porous pavements. The proportion of precipitation lost due to evaporation/evapotranspiration processes was expectedly highest on turf grid pavements, while maximum groundwater recharge rates were identified under non-porous pavements. Our results improve the tools available for urban water management controlling the state of urban water balances from a dominant surface runoff component to either dominant evaporation or groundwater components.
Multiple-Primitives Hierarchical Classification of Airborne Laser Scanning Data in Urban Areas
NASA Astrophysics Data System (ADS)
Ni, H.; Lin, X. G.; Zhang, J. X.
2017-09-01
A hierarchical classification method for Airborne Laser Scanning (ALS) data of urban areas is proposed in this paper. This method is composed of three stages among which three types of primitives are utilized, i.e., smooth surface, rough surface, and individual point. In the first stage, the input ALS data is divided into smooth surfaces and rough surfaces by employing a step-wise point cloud segmentation method. In the second stage, classification based on smooth surfaces and rough surfaces is performed. Points in the smooth surfaces are first classified into ground and buildings based on semantic rules. Next, features of rough surfaces are extracted. Then, points in rough surfaces are classified into vegetation and vehicles based on the derived features and Random Forests (RF). In the third stage, point-based features are extracted for the ground points, and then, an individual point classification procedure is performed to classify the ground points into bare land, artificial ground and greenbelt. Moreover, the shortages of the existing studies are analyzed, and experiments show that the proposed method overcomes these shortages and handles more types of objects.
NASA Astrophysics Data System (ADS)
Lim, T. C.
2016-12-01
Empirical evidence has shown linkages between urbanization, hydrological regime change, and degradation of water quality and aquatic habitat. Percent imperviousness, has long been suggested as the dominant source of these negative changes. However, recent research identifying alternative pathways of runoff production at the watershed scale have called into question percent impervious surface area's primacy in urban runoff production compared to other aspects of urbanization including change in vegetative cover, imported water and water leakages, and the presence of drainage infrastructure. In this research I show how a robust statistical methodology can detect evidence of variable source area (VSA)-type hydrologic response associated with incremental hydraulic connectivity in watersheds. I then use logistic regression to explore how evidence of VSA-type response relates to the physical and meterological characteristics of the watershed. I find that impervious surface area is highly correlated with development, but does not add significant explanatory power beyond percent developed in predicting VSA-type response. Other aspects of development morphology, including percent developed open space and type of drainage infrastructure also do not add to the explanatory power of undeveloped land in predicting VSA-type response. Within only developed areas, the effect of developed open space was found to be more similar to that of total impervious area than to undeveloped land. These findings were consistent when tested across a national cross-section of urbanized watersheds, a higher resolution dataset of Baltimore Metropolitan Area watersheds, and a subsample of watersheds confirmed not to be served by combined sewer systems. These findings suggest that land development policies that focus on lot coverage should be revisited, and more focus should be placed on preserving native vegetation and soil conditions alongside development.
Impact of Urban Growth on Surface Climate: A Case Study in Oran, Algeria
NASA Technical Reports Server (NTRS)
Bounoua, Lahouari; Safia, Abdelmounaine; Masek, Jeffrey; Peters-Lidars, Christaq; Imhoff, Marc L.
2008-01-01
We develop a land use map discriminating urban surfaces from other cover types over a semiarid region in North Africa and use it in a land surface model to assess the impact of urbanized land on surface energy, water and carbon balances. Unlike in temperate climates where urbanization creates a marked heat island effect, this effect is not strongly marked in semiarid regions. During summer, the urban class results in an additional warming of 1.45 C during daytime and 0.81 C at night compared to that simulated for needleleaf trees under similar climate conditions. Seasonal temperatures show urban areas warmer than their surrounding during summer and slightly cooler in winter. The hydrological cycle is practically "shut down" during summer and characterized by relatively large amount of runoff in winter. We estimate the annual amount of carbon uptake to 1.94 million metric tons with only 11.9% assimilated during the rainy season. However, if urbanization expands to reach 50% of the total area excluding forests, the annual total carbon uptake will decline by 35% and the July mean temperature would increase only 0.10 C, compared to current situation. In contrast, if urbanization expands to 50% of the total land excluding forests and croplands but all short vegetation is replaced by native broadleaf deciduous trees, the annual carbon uptake would increase 39% and the July mean temperature would decrease by 0.9 C, compared to current configuration. These results provide guidelines for urban planners and land use managers and indicate possibilities for mitigating the urban heat.
NASA Astrophysics Data System (ADS)
Sukeyasu, T.; Ueyama, M.; Ando, T.; Kosugi, Y.; Kominami, Y.
2017-12-01
The urban heat island is associated with land cover changes and increases in anthropogenic heat fluxes. Clear understanding of the surface energy budget at urban area is the most important for evaluating the urban heat island. In this study, we develop a model based on remotely-sensed data for the Kansai area in Japan and clarify temporal transitions and spatial distributions of the surface energy flux from 2000 to 2016. The model calculated the surface energy fluxes based on various satellite and GIS products. The model used land surface temperature, surface emissivity, air temperature, albedo, downward shortwave radiation and land cover/use type from the moderate resolution imaging spectroradiometer (MODIS) under cloud free skies from 2000 to 2016 over the Kansai area in Japan (34 to 35 ° N, 135 to 136 ° E). Net radiation was estimated by a radiation budget of upward/downward shortwave and longwave radiation. Sensible heat flux was estimated by a bulk aerodynamic method. Anthropogenic heat flux was estimated by the inventory data. Latent heat flux was examined with residues of the energy budget and parameterization of bulk transfer coefficients. We validated the model using observed fluxes from five eddy-covariance measurement sites: three urban sites and two forested sites. The estimated net radiation roughly agreed with the observations, but the sensible heat flux were underestimated. Based on the modeled spatial distributions of the fluxes, the daytime net radiation in the forested area was larger than those in the urban area, owing to higher albedo and land surface temperatures in the urban area than the forested area. The estimated anthropogenic heat flux was high in the summer and winter periods due to increases in energy-requirements.
S.R. Drescher; A.J. Lewitus; S.D. Brown
2006-01-01
Urbanization is escalating in many coastal areas of the US and is associated with deteriorating water quality. Often the associated changes in land use result in an overabundance of nutrients and other types of pollution entering ground and surface waters. It is important that we understand biogeochemical transformation processes on urbanizing watersheds if we are to...
NASA Astrophysics Data System (ADS)
Triantafyllou, A. G.; Kalogiros, J.; Krestou, A.; Leivaditou, E.; Zoumakis, N.; Bouris, D.; Garas, S.; Konstantinidis, E.; Wang, Q.
2018-03-01
This paper provides the performance evaluation of the meteorological component of The Air Pollution Model (TAPM), a nestable prognostic model, in predicting meteorological variables in urban areas, for both its surface layer and atmospheric boundary layer (ABL) turbulence parameterizations. The model was modified by incorporating four urban land surface types, replacing the existing single urban surface. Control runs were carried out over the wider area of Kozani, an urban area in NW Greece. The model was evaluated for both surface and ABL meteorological variables by using measurements of near-surface and vertical profiles of wind and temperature. The data were collected by using monitoring surface stations in selected sites as well as an acoustic sounder (SOnic Detection And Ranging (SODAR), up to 300 m above ground) and a radiometer profiler (up to 600 m above ground). The results showed the model demonstrated good performance in predicting the near-surface meteorology in the Kozani region for both a winter and a summer month. In the ABL, the comparison showed that the model's forecasts generally performed well with respect to the thermal structure (temperature profiles and ABL height) but overestimated wind speed at the heights of comparison (mostly below 200 m) up to 3-4 ms-1.
NASA Astrophysics Data System (ADS)
Pierini, N.; Vivoni, E. R.; Schreiner-McGraw, A.; Lopez-Castrillo, I.
2015-12-01
The urbanization process transforms a natural landscape into a built environment with many engineered surfaces, leading to significant impacts on surface energy and water fluxes across multiple spatial and temporal scales. Nevertheless, the effects of different urban land covers on energy and water fluxes has been rarely quantified across the large varieties of construction materials, landscaping and vegetation types, and industrial, commercial and residential areas in cities. In this study, we deployed a mobile eddy covariance tower at three different locations in the Phoenix, Arizona, metropolitan area to capture a variety of urban land covers. The three locations each represent a common urban class in Phoenix: 1) a dense, xeric landscape (gravel cover and native plants with drip-irrigation systems near tall buildings); 2) a high-density urban site (asphalt-paved parking lot near a high-traffic intersection); and 3) a suburban mesic landscape (sprinkler-irrigated turf grass in a suburban neighborhood). At each site, we measured meteorological variables, including air temperature and relative humidity at three heights, precipitation and pressure, surface temperature, and soil moisture and temperature (where applicable), to complement the eddy covariance measurements of radiation, energy, carbon dioxide and water vapor fluxes. We evaluated the tower footprint at each site to characterize the contributing surface area to the flux measurements, including engineered and landscaping elements, as a function of time for each deployment. The different sites allowed us to compare how turbulent fluxes of water vapor and carbon dioxide vary for these representative urban land covers, in particular with respect to the role of precipitation events and irrigation. While the deployments covered different seasons, from winter to summer in 2015, the variety of daily conditions allowed quantification of the differential response to precipitation events during the winter, pre-monsoon, and monsoon seasons in relation to irrigation input or lack thereof. As desert urban areas continue to grow worldwide, it is essential to gain an improved understanding of how the energy and water balances vary across the built environment and their implications on urban climate, energy, hydrologic conditions, and air quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari, Hashem; Rose, Leanna Shea
2001-10-30
Urban fabric data are needed in order to estimate the impactof light-colored surfaces (roofs and pavements) and urban vegetation(trees, grass, shrubs) on the meteorology and air quality of a city, andto design effective implementation programs. In this report, we discussthe result of a semi-automatic Monte-Carlo statistical approach used todevelop data on surface-type distribution and city-fabric makeup(percentage of various surface-types) using aerial colororthophotography. The digital aerial photographs for metropolitan Chicagocovered a total of about 36 km2 (14 mi2). At 0.3m resolution, there wereapproximately 3.9 x 108 pixels of data. Four major land-use types wereexamined: commercial, industrial, residential, andtransportation/communication. On average, formore » the areas studied, atground level vegetation covers about 29 percent of the area (ranging 4 80percent); roofs cover about 25 percent (ranging 8 41 percent), and pavedsurfaces about 33 percent (ranging 12 59 percent). For the most part,trees shade streets, parking lots, grass, and side-walks. In commercialareas, paved surfaces cover 50 60 percent of the area. In residentialareas, on average, paved surfaces cover about 27percent of the area.Land-use/land-cover (LULC) data from the United States Geological Surveywas used to extrapolate these results from neighborhood scales tometropolitan Chicago. In an area of roughly 2500 km2, defining most ofmetropolitan Chicago, over 53 percent is residential. The total roof areais about 680 km2, and the total paved surfaces (roads, parking areas,sidewalks) are about 880 km2. The total vegetated area is about 680km2.« less
Regulating urban surface runoff through nature-based solutions - An assessment at the micro-scale.
Zölch, Teresa; Henze, Lisa; Keilholz, Patrick; Pauleit, Stephan
2017-08-01
Urban development leads to changes of surface cover that disrupt the hydrological cycle in cities. In particular, impermeable surfaces and the removal of vegetation reduce the ability to intercept, store and infiltrate rainwater. Consequently, the volume of stormwater runoff and the risk of local flooding rises. This is further amplified by the anticipated effects of climate change leading to an increased frequency and intensity of heavy rain events. Hence, urban adaptation strategies are required to mitigate those impacts. A nature-based solution, more and more promoted in politics and academia, is urban green infrastructure as it contributes to the resilience of urban ecosystems by providing services to maintain or restore hydrological functions. However, this poses a challenge to urban planners in deciding upon effective adaptation measures as they often lack information on the performance of green infrastructure to moderate surface runoff. It remains unclear what type of green infrastructure (e.g. trees, green roofs), offers the highest potential to reduce discharge volumes and to what extent. Against this background, this study provides an approach to gather quantitative evidence on green infrastructure's regulation potential. We use a micro-scale scenario modelling approach of different variations of green cover under current and future climatic conditions. The scenarios are modelled with MIKE SHE, an integrated hydrological simulation tool, and applied to a high density residential area of perimeter blocks in Munich, Germany. The results reveal that both trees and green roofs increase water storage capacities and hence reduce surface runoff, although the main contribution of trees lies in increasing interception and evapotranspiration, whereas green roofs allow for more retention through water storage in their substrate. With increasing precipitation intensities as projected under climate change their regulating potential decreases due to limited water storage capacities. The performance of both types stays limited to a maximum reduction of 2.4% compared to the baseline scenario, unless the coverage of vegetation and permeable surfaces is significantly increased as a 14.8% reduction is achieved by greening all roof surfaces. We conclude that the study provides empirical support for the effectiveness of urban green infrastructure as nature-based solution to stormwater regulation and assists planners and operators of sewage systems in selecting the most effective measures for implementation and estimation of their effects. Copyright © 2017 Elsevier Inc. All rights reserved.
Characterizing the fabric of the urban environment: A case study of Salt Lake City, Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akbari, Hashem; Rose, L. Shea
2001-02-28
Urban fabric data are needed in order to estimate the impact of light-colored surfaces (roofs and pavements) and urban vegetation (trees, grass, shrubs) on the meteorology and air quality of a city, and to design effective implementation programs. In this report, we discuss the result of a semi-automatic Monte-Carlo statistical approach used to develop data on surface-type distribution and city-fabric makeup (percentage of various surface-types) using aerial color orthophotography. The digital aerial photographs for Salt Lake City covered a total of about 34 km2 (13 mi2). At 0.50-m resolution, there were approximately 1.4 x 108 pixels of data. Four majormore » land-use types were examined: (1) commercial, (2) industrial, (3) educational, and (4) residential. On average, for the areas studied, vegetation covers about 46 percent of the area (ranging 44-51 percent), roofs cover about 21 percent (ranging 15-24 percent), and paved surfaces about 26 percent (ranging 21-28 percent). For the most part, trees shade streets, parking lots, grass, and sidewalks. In most non-residential areas, paved surfaces cover 46-66 percent of the area. In residential areas, on average, paved surfaces cover about 32 percent of the area. Land-use/land-cover (LU/LC) data from the United States Geological Survey were used to extrapolate these results from neighborhood scales to metropolitan Salt Lake City. In an area of roughly 560 km2, defining most of metropolitan Salt Lake City, over 60 percent is residential. The total roof area is about 110 km2, and the total paved surface area (roads, parking areas, sidewalks) covers about 170 km2. The total vegetated area covers about 230 km2.« less
A Remote Sensing Approach for Urban Environmental Decision-Making: An Atlanta, Georgia Case Study
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Luvall, Jeffrey C.; Rickman, Douglas L.; Laymon, Charles A.; Estes, Maurice G., Jr.; Howell, Burgess F.; Arnold, James E. (Technical Monitor)
2002-01-01
Unquestionably, urbanization causes tremendous changes in land cover and land use, as well as impacting a host of environmental characteristics. For example, unlike natural surfaces, urban surfaces have very different thermal energy properties whereby they store solar energy throughout the day and continue to release it as heat well after sunset. This effect, known as the 'Urban Heat Island', serves as a catalyst for chemical reactions from vehicular exhaust and industrial activities leading to the deterioration in air quality, especially exacerbating the production of ground level ozone. 'Cool Community' strategies that utilize remote sensing data, are now being implemented as a way to reduce the impacts of the urban heat island and its subsequent environmental impacts. This presentation focuses on how remote sensing data have been used to provide descriptive and quantitative data for characterizing the Atlanta, Georgia metropolitan area - particularly for measuring surface energy fluxes, such as the thermal or "heat" energy that emanates from different land cover types across the Atlanta urban landscape. In turn, this information is useful for developing a better understanding of how the thermal characteristics of the city surface affect the urban heat island phenomena and, ultimately, air quality and other environmental parameters over the Atlanta metropolitan region. Additionally, this paper also provides insight on how remote sensing, with its synoptic approach, can be used to provide urban planners, local, state, and federal government officials, and other decision-makers, as well as the general public, with information to better manage urban areas as sustainable environments.
Urban cover mapping using digital, high-resolution aerial imagery
Soojeong Myeong; David J. Nowak; Paul F. Hopkins; Robert H. Brock
2003-01-01
High-spatial resolution digital color-infrared aerial imagery of Syracuse, NY was analyzed to test methods for developing land cover classifications for an urban area. Five cover types were mapped: tree/shrub, grass/herbaceous, bare soil, water and impervious surface. Challenges in high-spatial resolution imagery such as shadow effect and similarity in spectral...
NASA Astrophysics Data System (ADS)
Bae, J.; Ryu, Y.
2017-12-01
The expansion of urban artificial structures has altered the spatial distribution of soil organic carbon (SOC) stocks. The majority of the urban soil studies within the land-cover types, however, focused on top soils despite the potential of deep soils to store large amounts of SOC. Here, we investigate vertical distribution of SOC stocks in both impervious surfaces (n = 11) and adjacent green spaces (n = 8) to a depth of 4 m with in an apartment complex area, Seoul, Republic of Korea. We found that more than six times differences in SOC stocks were observed at 0-1 m depth between the impervious surfaces (1.90 kgC m-2) and the green spaces (12.03 kgC m-2), but no significant differences appeared when comparing them at the depth of 0-4 m. We found "cultural layers" with the largest SOC stocks at 1-2 m depth in the impervious surfaces (15.85 kgC m-2) and 2-3 m depths in urban green spaces (12.52 kgC m-2). Thus, the proportions of SOC stocks at the 0-1 m depth to the total of 0-4 m depth were 6.83% in impervious surfaces and 32.15% in urban green spaces, respectively. The 13C and 15N stable isotope data with historical aerial photographs revealed that the cropland which existed before 1978 formed the SOC in the cultural layers. Our results highlight that impervious surface could hold large amount of SOC stock which has been overlooked in urban carbon cycles. We believe this finding will help city planners and policy makers to develop carbon management programs better towards sustainable urban ecosystems.
NASA Astrophysics Data System (ADS)
Sati, Ankur Prabhat; Mohan, Manju
2017-10-01
An estimated 50% of the global population lives in the urban areas, and this percentage is projected to reach around 69% by the year 2050 (World Urbanization Prospects 2009). There is a considerable growth of urban and built-up area during the recent decades over National Capital Region (NCR) of India (17-fold increase in the urban extent). The proposed study estimates the land use land cover changes particularly changes to urban class from other land use types such as croplands, shrubland, open areas, and water bodies and quantify these changes for a span of about five decades. Further, the impact of these land use/land cover changes is examined on spatial and temporal variations of meteorological parameters using the Weather Research and Forecast (WRF) Model. The urbanized areas appear to be one of the regions with highest changes in the values of the fluxes and temperatures where during daytime, the surface sensible heat flux values show a noticeable increase of 60-70 W m-2 which commensurate with increase in urbanization. Similarly, the nighttime LST and T2m show an increase of 3-5 and 2-3 K, respectively. The diurnal temperature range (DTR) of LST and surface temperature also shows a decrease of about 5 and 2-3 K, respectively, with increasing urbanization. Significant decrease in the magnitude of surface winds and relative humidity is also observed over the areas converted to urban form over a period of half a century. The impacts shown here have serious implications on human health, energy consumption, ventilation, and atmospheric pollution.
NASA Technical Reports Server (NTRS)
Quattrochi, D. A.; Ridd, M. K.
1993-01-01
This study employs data from the airborne Thermal Infrared Multispectral Scanner (TIMS) to measure thermal (i.e., longwave) energy responses, emitted or upwelling, from discrete surfaces that are typical of the city landscape within Salt Lake City, Utah, over a single diurnal time period (i.e., a single day, night-time sequence). These data are used to quantify the disposition of thermal energy for selected urban surfaces during the daytime and night-time, and the amount of change in thermal response or flux recorded between day and night. An analysis is presented on the thermal interrelationships observed for common urban materials for day, night, and flux, as identified from the TIMS data through the delineation of discrete surface type polygons. The results from the study illustrate that such factors as heat capacity, thermal conductivity, and the amount of soil moisture available have a profound impact on the magnitude of thermal energy emanating from a specific surface and on the dynamics of longwave energy response between day and night.
NASA Astrophysics Data System (ADS)
Reyes, B.; Vahmani, P.; Hogue, T. S.; Maxwell, R. M.
2013-05-01
Irrigation can significantly alter land surface properties including increases in evapotranspiration (ET) and latent heat flux and a decrease in land surface temperatures that have a wide range of effects on the hydrologic cycle. However, most irrigation in land surface modeling studies has generally been limited to large-scale cropland applications while ignoring the, relatively, much smaller use of irrigation in urban areas. Although this assumption may be valid in global studies, as we seek to apply models at higher resolutions and at more local scales, irrigation in urban areas can become a key factor in land-atmosphere interactions. Landscape irrigation can account for large portions of residential urban water use, especially in semi-arid environments (e.g. ~50% in Los Angeles, CA). Previous modeling efforts in urbanized semi-arid regions have shown that disregarding irrigation leads to inaccurate representation of the energy budget. The current research models a 49.5-km2 (19.11-mi2) domain near downtown Los Angeles in the Ballona Creek watershed at a high spatial and temporal resolution using a coupled hydrologic (ParFlow) and land surface model (CLM). Our goals are to (1) provide a sensitivity analysis for urban irrigation parameters including sensitivity to total volume and timing of irrigation, (2) assess the effects of irrigation on varying land cover types on the energy budget, and (3) evaluate if residential water use data is useful in providing estimates for irrigation in land surface modeling. Observed values of land surface parameters from remote sensing products (Land Surface Temperature and ET), water use data from the Los Angeles Department of Water and Power (LADWP), and modeling results from an irrigated version of the NOAH-Urban Canopy Model are being used for comparison and evaluation. Our analysis provides critical information on the degree to which urban irrigation should be represented in high-resolution, semi-arid urban land surface modeling of the region. This research also yields robust upper-boundary conditions for further analysis and modeling in Los Angeles.
The Urban Heat Island Impact in Consideration of Spatial Pattern of Urban Landscape and Structure
NASA Astrophysics Data System (ADS)
Kim, J.; Lee, D. K.; Jeong, W.; Sung, S.; Park, J.
2015-12-01
Preceding study has established a clear relationship between land surface temperature and area of land covers. However, only few studies have specifically examined the effects of spatial patterns of land covers and urban structure. To examine how much the local climate is affected by the spatial pattern in highly urbanized city, we investigated the correlation between land surface temperature and spatial patterns of land covers. In the analysis of correlation, we categorized urban structure to four different land uses: Apartment residential area, low rise residential area, industrial area and central business district. Through this study, we aims to examine the types of residential structure and land cover pattern for reducing urban heat island and sustainable development. Based on land surface temperature, we investigated the phenomenon of urban heat island through using the data of remote sensing. This study focused on Daegu in Korea. This city, one of the hottest city in Korea has basin form. We used high-resolution land cover data and land surface temperature by using Landsat8 satellite image to examine 100 randomly selected sample sites of 884.15km2 (1)In each land use, we quantified several landscape-levels and class-level landscape metrics for the sample study sites. (2)In addition, we measured the land surface temperature in 3 year hot summer seasons (July to September). Then, we investigated the pattern of land surface temperature for each land use through Ecognition package. (3)We deducted the Pearson correlation coefficients between land surface temperature and each landscape metrics. (4)We analyzed the variance among the four land uses. (5)Using linear regression, we determined land surface temperature model for each land use. (6)Through this analysis, we aims to examine the best pattern of land cover and artificial structure for reducing urban heat island effect in highly urbanized city. The results of linear regression showed that proportional land cover of grass, tree, water and impervious surfaces well explained the temperature in apartment residential areas. In contrast, the changes in the pattern of water, grass, tree and impervious surfaces were the best to determine the temperature in low rise residential area, central business district and industrial area.
Exploring the mid-infrared region for urban remote sensing: seasonal and view angle effects
NASA Astrophysics Data System (ADS)
Krehbiel, C. P.; Kovalskyy, V.; Henebry, G. M.
2013-12-01
Spanning 3-5 microns, the mid-infrared (MIR) region is the mixing zone between reflected sunlight and emitted earthlight in roughly equal proportions. While the MIR has been utilized in atmospheric remote sensing, its potential in terrestrial remote sensing--particularly urban remote sensing, has yet to be realized. One major advantage of the MIR is the ability to penetrate most anthropogenic haze and smog. Green vegetation appears MIR-dark, urban building materials appear MIR-grey, and bare soil and dried vegetation appear MIR-bright. Thus, there is an intrinsic seasonality in MIR radiance dynamics due both to surface type differences and to seasonal change in insolation. These factors merit exploration into the potential applications of the MIR for monitoring urban change. We investigated MIR radiance dynamics in relation to (1) the spectral properties of land cover types, (2) time of year and (3) sensor view zenith angle (VZA). We used Aqua MODIS daily swaths for band 23 (~ 4.05 μm) at 1 km spatial resolution from 2009-2010 and the NLCD Percent Impervious Surface Area (%ISA) 30 m product from 2001 and 2006. We found the effects of time of year, sensor VZA, and %ISA to be three principal factors influencing MIR radiance dynamics. We focused on analyzing the relationship between MIR radiance and %ISA over eight major cities in the Great Plains of the USA. This region is characterized by four distinct seasons, relatively flat terrain, and isolated urban centers situated within a vegetated landscape. We used west-east transects beginning in the agricultural areas outside of each city, passing through the urban core and extending back out into the agricultural periphery to observe the spatial pattern of MIR radiance and how it changes seasonally. Sensor VZA influences radiance dynamics by affecting the proportion of surface elements detected--especially pertinent at the coarse spatial resolution (~1 km) of MODIS. For example, smaller VZAs (<30°) capture more spatial detail than larger VZAs (>30°). Larger VZAs detect a larger proportion of crop canopies and less soil surface, and thus generally exhibit lower radiance and less variation than smaller VZAs. Future work should focus on how best to account for (1) land surface phenology, (2) the proportion of impervious surface, and (3) sensor viewing geometry to generate high signal-to-noise ratio composites and advance change detection and urban growth monitoring.
Modeling The Urban Impact On Semiarid Surface Climate: A Case Study In Marrakesh, Morocco
NASA Technical Reports Server (NTRS)
Lachir, Asia; Bounoua, Lahouari; Zhang, Ping; Thome, Kurtis; Messouli, Mohamed
2016-01-01
We combine Landsat and MODIS data in the Simple Biosphere Model to assess the impact of urbanization on surface climate in a semiarid city in North Africa. The model simulates highest temperatures in urban class, with spring average maximum temperature differences to other land cover classes ranging between 1.6 C and 6.0 C. During summer, these maximum temperature differences are smallest (0.5 C) with barelands and highest (8.3 C) with irrigated lawns. This excess heating is simulated above and beyond a seasonal temperature average of about 30 C during spring and 44 C during summer. On annual mean, a full urbanization scenario decreases the carbon fixation by 0.13 MtC and increases the daytime mean surface temperature by 1.3 C. This may boost the city energy consumption by 5.72%. Under a 'smart growth' scenario, whereby the city expands on barelands to cover 50% of the study region and all remaining barelands converted to orchards, the carbon fixation is enhanced by 0.04 MtC with a small daytime temperature increase of 0.2 C. Our results indicate that vegetation can mitigate the urban heating. The hydrological cycle indicates that highest ratio of surface runoff to precipitation (43.8%) occurs in urban areas, versus only 16.7 % for all cover types combined.
Modeling the Urban Impact on Semiarid Surface Climate: A Case Study in Marrakech, Morocco
NASA Technical Reports Server (NTRS)
Lachir, Asia; Bounoua, Lahouari; Zhang, Ping; Thome, Kurtis; Moussouli, Mohamed
2016-01-01
We combine Landsat and MODIS data in the Simple Biosphere Model to assess the impact of urbanization on surface climate in a semiarid city in North Africa. The model simulates highest temperatures in urban class, with spring average maximum temperature differences to other land cover classes ranging between 1.6 C and 6.0 C. During summer, these maximum temperature differences are smallest (0.5 C) with barelands and highest (8.3 C) with irrigated lawns. This excess heating is simulated above and beyond a seasonal temperature average of about 30 C during spring and 44 C during summer. On annual mean, a full urbanization scenario decreases the carbon fixation by 0.13 MtC and increases the daytime mean surface temperature by 1.3 C. This may boost the city energy consumption by 5.72%. Under a 'smart growth' scenario, whereby the city expands on barelands to cover 50% of the study region and all remaining barelands converted to orchards, the carbon fixation is enhanced by 0.04 MtC with a small daytime temperature increase of 0.2 C. Our results indicate that vegetation can mitigate the urban heating. The hydrological cycle indicates that highest ratio of surface runoff to precipitation (43.8%) occurs in urban areas, versus only 16.7 % for all cover types combined.
Charters, F J; Cochrane, T A; O'Sullivan, A D
2017-09-01
Characterising stormwater runoff quality provides useful insights into the dynamics of pollutant generation and wash off rates. These can be used to prioritise stormwater management strategies. This study examined the effects of a low intensity rainfall climate on zinc contributions from different impermeable urban surface types. First flush (FF) and steady state samples were collected from seven different surfaces for characterisation, and the data were also used to calibrate an event-based pollutant load model to predict individual 'hotspot' surfaces across the catchment. Unpainted galvanised roofs generated very high concentrations of zinc, primarily in the more biologically available dissolved form. An older, unpainted galvanised roof had FF concentrations averaging 32,338 μg/L, while the new unpainted roof averaged 4,782 μg/L. Roads and carparks also had elevated zinc, but FF concentrations averaged only 822-1,584 μg/L. Modelling and mapping expected zinc loads from individual impermeable surfaces across the catchment identified specific commercial roof surfaces to be targeted for zinc management. The results validate a policy strategy to replace old galvanised roof materials and avoid unpainted galvanised roofing in future urban development for better urban water quality outcomes. In the interim, readily-implemented treatment options are required to help mitigate chronic zinc impacts on receiving waterways.
NASA Astrophysics Data System (ADS)
Ferreira, C. S. S.; Walsh, R. P. D.; Shakesby, R. A.; Keizer, J. J.; Soares, D.; González-Pelayo, O.; Coelho, C. O. A.; Ferreira, A. J. D.
2016-02-01
Forest hydrology has been widely investigated, but the impacts of different woodland types on hydrological processes within a peri-urban catchment mosaic are poorly understood. This paper investigates overland flow generation processes in three different types of woodland in a small (6.2 km2) catchment in central Portugal that has undergone strong urban development over the past 50 years. A semi-natural oak stand and a sparse eucalyptus stand on partly abandoned peri-urban land and a dense eucalyptus plantation were each instrumented with three 16 m2 runoff plots and 15 throughfall gauges, which were monitored at c. 1- to 2-week intervals over two hydrological years. In addition, surface soil moisture content (0-5 cm) and hydrophobicity (0-2 cm, 2-5 cm and 5-7 cm) were measured at the same time as overland flow and throughfall. Although all three woodland types produced relatively little overland flow (<3% of the incident rainfall overall), the dense eucalypt stand produced twice as much overland flow as the sparse eucalypt and oak woodland types. This contrast in overland flow can be attributed to infiltration-excess processes operating in storms following dry antecedent weather when severe hydrophobicity was widespread in the dense eucalypt plantation, whereas it was of moderate and low severity and less widespread in the sparse eucalypt and oak woodlands, respectively. In contrast, under wet conditions greater (albeit still small) percentages of overland flow were produced in oak woodland than in the two eucalypt plantations; this was probably linked to saturation-excess overland flow being generated more readily at the oak site as a result of its shallower soil. Differences in water retention in surface depressions affected overland flow generation and downslope flow transport. Implications of the seasonal differentials in overland flow generation between the three distinct woodland types for the hydrological response of peri-urban catchments are addressed.
Impervious Surfaces Alter Soil Bacterial Communities in Urban Areas: A Case Study in Beijing, China
Hu, Yinhong; Dou, Xiaolin; Li, Juanyong; Li, Feng
2018-01-01
The rapid expansion of urbanization has caused land cover change, especially the increasing area of impervious surfaces. Such alterations have significant effects on the soil ecosystem by impeding the exchange of gasses, water, and materials between soil and the atmosphere. It is unclear whether impervious surfaces have any effects on soil bacterial diversity and community composition. In the present study, we conducted an investigation of bacterial communities across five typical land cover types, including impervious surfaces (concrete), permeable pavement (bricks with round holes), shrub coverage (Buxus megistophylla Levl.), lawns (Festuca elata Keng ex E. Alexeev), and roadside trees (Sophora japonica Linn.) in Beijing, to explore the response of bacteria to impervious surfaces. The soil bacterial communities were addressed by high-throughput sequencing of the bacterial 16S rRNA gene. We found that Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, and Firmicutes were the predominant phyla in urban soils. Soil from impervious surfaces presented a lower bacterial diversity, and differed greatly from other types of land cover. Soil bacterial diversity was predominantly affected by Zn, dissolved organic carbon (DOC), and soil moisture content (SMC). The composition of the bacterial community was similar under shrub coverage, roadside trees, and lawns, but different from beneath impervious surfaces and permeable pavement. Variance partitioning analysis showed that edaphic properties contributed to 12% of the bacterial community variation, heavy metal pollution explained 3.6% of the variation, and interaction between the two explained 33% of the variance. Together, our data indicate that impervious surfaces induced changes in bacterial community composition and decrease of bacterial diversity. Interactions between edaphic properties and heavy metals were here found to change the composition of the bacterial community and diversity across areas with different types of land cover, and soil properties play a more important role than heavy metals. PMID:29545776
NASA Astrophysics Data System (ADS)
Shuster, W.; Schifman, L. A.; Herrmann, D.
2017-12-01
Green infrastructure represents a broad set of site- to landscape-scale practices that can be flexibly implemented to increase sewershed retention capacity, and can thereby improve on the management of water quantity and quality. Although much green infrastructure presents as formal engineered designs, urbanized landscapes with highly-interspersed pervious surfaces (e.g., right-of-way, parks, lawns, vacant land) may offer ecosystem services as passive, infiltrative green infrastructure. Yet, infiltration and drainage processes are regulated by soil surface conditions, and then the layering of subsoil horizons, respectively. Drawing on a unique urban soil taxonomic and hydrologic dataset collected in 12 cities (each city representing a major soil order), we determined how urbanization processes altered the sequence of soil horizons (compared to pre-urbanized reference soil pedons) and modeled the hydrologic implications of these shifts in layering with an unsaturated zone code (HYDRUS2D). We found that the different layering sequences in urbanized soils render different types and extents of supporting (plant-available soil water), provisioning (productive vegetation), and regulating (runoff mitigation) ecosystem services.
PALM-USM v1.0: A new urban surface model integrated into the PALM large-eddy simulation model
NASA Astrophysics Data System (ADS)
Resler, Jaroslav; Krč, Pavel; Belda, Michal; Juruš, Pavel; Benešová, Nina; Lopata, Jan; Vlček, Ondřej; Damašková, Daša; Eben, Kryštof; Derbek, Přemysl; Maronga, Björn; Kanani-Sühring, Farah
2017-10-01
Urban areas are an important part of the climate system and many aspects of urban climate have direct effects on human health and living conditions. This implies that reliable tools for local urban climate studies supporting sustainable urban planning are needed. However, a realistic implementation of urban canopy processes still poses a serious challenge for weather and climate modelling for the current generation of numerical models. To address this demand, a new urban surface model (USM), describing the surface energy processes for urban environments, was developed and integrated as a module into the PALM large-eddy simulation model. The development of the presented first version of the USM originated from modelling the urban heat island during summer heat wave episodes and thus implements primarily processes important in such conditions. The USM contains a multi-reflection radiation model for shortwave and longwave radiation with an integrated model of absorption of radiation by resolved plant canopy (i.e. trees, shrubs). Furthermore, it consists of an energy balance solver for horizontal and vertical impervious surfaces, and thermal diffusion in ground, wall, and roof materials, and it includes a simple model for the consideration of anthropogenic heat sources. The USM was parallelized using the standard Message Passing Interface and performance testing demonstrates that the computational costs of the USM are reasonable on typical clusters for the tested configurations. The module was fully integrated into PALM and is available via its online repository under the GNU General Public License (GPL). The USM was tested on a summer heat-wave episode for a selected Prague crossroads. The general representation of the urban boundary layer and patterns of surface temperatures of various surface types (walls, pavement) are in good agreement with in situ observations made in Prague. Additional simulations were performed in order to assess the sensitivity of the results to uncertainties in the material parameters, the domain size, and the general effect of the USM itself. The first version of the USM is limited to the processes most relevant to the study of summer heat waves and serves as a basis for ongoing development which will address additional processes of the urban environment and lead to improvements to extend the utilization of the USM to other environments and conditions.
[Analysis of first flush effect of typical underlying surface runoff in Beijing urban city].
Ren, Yu-Fen; Wang, Xiao-Ke; Ouyang, Zhi-Yun; Hou, Pei-Qiang
2013-01-01
Rapid increase of the urban impervious underlying surfaces causes a great increase of urban runoff and the accumulation of pollutants on the roof and road surfaces brings many pollutants into the drainage system with the runoff, and it thus becomes a great threat to the urban water environment. To know the runoff pollution process and to build scientific basis for pollutant control, runoff processes from the roof and road surfaces were monitored and analyzed from 2004 to 2006, and the runoff EMC (Event Mean Concentration) was calculated. It was found that two types of runoff were seriously polluted by COD and TN. The COD and TN of roof runoff exceeded the fifth level of the surface water environmental quality standard (GB 3838-2002) by 3.64 and 4.80 times, respectively, and the COD and TN of road runoff exceeded by 3.73 and 1.07 times, respectively. M (V) curve was used to determine the relation between runoff volume and runoff pollution load. Various degrees of the first flush phenomenon were found for TSS, COD, TN and TP in roof runoff. But this phenomenon occurred only for TSS and TP of the road runoff, and on the whole it was not obvious. Properties of the underlying surfaces, rainfall intensity, and pollutant accumulation are all important factors affecting the roof and road runoff pollutant emission characteristics.
NASA Astrophysics Data System (ADS)
Ríos, B.; Torres-Jardón, R.; Ramírez-Arriaga, E.; Martínez-Bernal, A.; Rosas, I.
2016-05-01
Pollen is an important cause of allergic respiratory ailments in the Mexico City Metropolitan Area (MCMA). However, very little is known if ambient air temperature correlates with the early blooming of plants observed in other urban areas around the world. A research study was conducted during the dry season of 2012-2013 at three representative sites of the MCMA with different urban characteristics with the aim to understand the relationships between the profusion and diversity of pollen against temperature and other meteorological variables and degree of urbanization. Pollen samples were collected using a Hirst-type trap sampler in the sites: Merced (highly urbanized), Iztapalapa (medium-high urbanized) and Coyoacan (moderately urbanized). Urbanization levels were determined using a composite index based on population density, proportion of surface covered by construction and asphalt, and urban heat island intensity. A set of representative pollen sampling tapes were assayed under a light microscope at magnification of ×1,000 and converted to grains per cubic meter. The most representative pollen types found in the three sites were, regardless of urbanization levels were: Fraxinus, Cupressaceae/Taxodiaceae, Casuarina, Alnus, Myrtaceae, and Pinus. Total pollen concentration was greatest in the moderately urbanized area, although earlier blooming took place at the highly urbanized zone. Total pollen concentration in the medium-high urbanized site has the lowest because the green areas in this zone of MCMA are few. In a diurnal basis, the most abundant pollen types peaked near midday or in the afternoon evening at the three sites. A Spearman test showed a positive correlation among bihourly pollen concentrations, temperature and relative humidity in all sites, but wind speed just correlated in Iztapalapa and Coyoacan. The results obtained suggest that Urban Heat Island Intensity can disturb flowering periods and pollen concentrations, largely in the highly urbanized areas. A principal components analysis established that the concentrations of each pollen type differed across the urbanization gradients. Additionally, it was found that a large number of allergenic pollens are produced by ornamental trees, some only recently introduced by urban planners.
NASA Astrophysics Data System (ADS)
Krehbiel, C. P.; Jackson, T.; Henebry, G. M.
2014-12-01
Earth is currently in an era of rapid urban growth with >50% of global population living in urban areas. Urbanization occurs alongside urban population growth, as cities expand to meet the demands of increasing population. Consequently, there is a need for remote sensing research to detect, monitor, and measure urbanization and its impacts on the biosphere. Here we used MODIS and Landsat data products to (1) detect urbanization-related land cover changes, (2) investigate urbanization-related impacts on land surface phenology (LSP) across rural to urban gradients and (3) explore fractional vegetation and impervious surface area regionally across the US Great Plains and within 14 cities in this region. We used the NLCD Percent Impervious Surface Area (%ISA) and Land Cover Type (LCT) products from 2001, 2006, and 2011 for 30m classification of the peri-urban environment. We investigated the impacts of urbanization-related land cover change on urban LSP at 30m resolution using the NDVI product from Web Enabled Landsat Data (http://weld.cr.usgs.gov) with accumulated growing degree-days calculated from first-order weather stations. We fitted convex quadratic LSP models to a decade (2003-2012) of observations to yield these phenometrics: modeled peak NDVI, time (thermal and calendar) to modeled peak, duration of season (DOS), and model fit. We compared our results to NDVI from MODIS NBAR (500m) and we explored the utility of 4 μm radiance (MODIS band 23) at 1 km resolution to characterize fractional vegetation dynamics in and around urbanized areas. Across all 14 cities we found increases in urbanized area (>25 %ISA) exceeding 10% from 2001-2011. Using LSP phenometrics, we were able to detect changes from cropland to suburban LCTs. In general we found negative relationships between DOS and distance from city center. We found a distinct seasonal cycle of MIR radiance over cropland LCTs due to the spectral contrast between bare soils and green vegetation.
Urban Canopy Effects in Regional Climate Simulations - An Inter-Model Comparison
NASA Astrophysics Data System (ADS)
Halenka, T.; Huszar, P.; Belda, M.; Karlicky, J.
2017-12-01
To assess the impact of cities and urban surfaces on climate, the modeling approach is often used with inclusion of urban parameterization in land-surface interactions. This is especially important when going to higher resolution, which is common trend both in operational weather prediction and regional climate modelling. Model description of urban canopy related meteorological effects can, however, differ largely given especially the underlying surface models and the urban canopy parameterizations, representing a certain uncertainty. To assess this uncertainty is important for adaptation and mitigation measures often applied in the big cities, especially in connection to climate change perspective, which is one of the main task of the new project OP-PPR Proof of Concept UK. In this study we contribute to the estimation of this uncertainty by performing numerous experiments to assess the urban canopy meteorological forcing over central Europe on climate for the decade 2001-2010, using two regional climate models (RegCM4 and WRF) in 10 km resolution driven by ERA-Interim reanalyses, three surface schemes (BATS and CLM4.5 for RegCM4 and Noah for WRF) and five urban canopy parameterizations available: one bulk urban scheme, three single layer and a multilayer urban scheme. Effects of cities on urban and remote areas were evaluated. There are some differences in sensitivity of individual canopy model implementations to the UHI effects, depending on season and size of the city as well. Effect of reducing diurnal temperature range in cities (around 2 °C in summer mean) is noticeable in all simulations, independent to urban parameterization type and model, due to well-known warmer summer city nights. For the adaptation and mitigation purposes, rather than the average urban heat island intensity the distribution of it is more important providing the information on extreme UHI effects, e.g. during heat waves. We demonstrate that for big central European cities this effect can approach 10°C, even for not so big ones these extreme effects can go above 5°C.
Peng, Jian; Ma, Jing; Liu, Qianyuan; Liu, Yanxu; Hu, Yi'na; Li, Yingru; Yue, Yuemin
2018-09-01
As an important theme in global climate change and urban sustainable development, the changes of land surface temperature (LST) and surface urban heat island (SUHI) have been more and more focused by urban ecologists. This study used land-use data to identify the urban-rural areas in 285 cities in China and comparatively analyzed LST in urban-rural areas with the perspective of spatial-temporal dynamics heterogeneity. The results showed that, 98.9% of the cities exhibited SUHI effect in summer nighttime and the effect was stronger in northern cities than that in southern cities. In 2010, the mean SUHI intensity was the largest in summer daytime, with 4.6% of the cities having extreme SUHI of over 4°C. From 2001 to 2010, the nighttime LST of most cities increased more quickly in urban areas compared with rural areas, with an increasing tendency of the urban-rural LST difference. The difference in the urban- rural LST change rate was concentrated in the range of 0-0.1°C/year for 68.0% of cities in winter and 70.8% of cities in summer. For the higher LST increasing in urban areas compared with rural areas, there were more cities in summer than winter, indicating that the summer nighttime was the key temporal period for SUHI management. Based on the change slope of urban-rural LST, cities were clustered into four types and the vital and major zones for urban thermal environment management were identified in China. The vital zone included cities in Hunan, Hubei and other central rising provinces as well as the Beibu Gulf of Guangxi Province. The major zone included most of the cities in Central Plain Urban Agglomeration, Yangtze River Delta and Pearl River Delta. These results can provide scientific basis for SUHI adaptation in China. Copyright © 2018 Elsevier B.V. All rights reserved.
Botta, Fabrizio; Fauchon, Nils; Blanchoud, Hélène; Chevreuil, Marc; Guery, Bénédicte
2012-01-01
This paper presents first results of Phyt'Eaux Cités, a program put in place by the local water supply agency, the SEDIF (Syndicat des Eaux d'Ile-de-France), in collaboration with 73 local authorities, private societies and institutional offices (365 km(2)). The challenges included: measurement of the previous surface water contamination, control of urban pesticide applications, prevention of pesticide hazard on users and finally a overall reduction of surface water contamination. An inquiry on urban total pesticide amount was coupled with a surface water bi-weekly monitoring to establish the impact of more than 200 molecules upon the Orge River. For 2007, at least 4400 kg and 92 type of pesticides (essentially herbicides) were quantified for all urban users in the Phyt'Eaux Cités perimeter. At the outlet of the Orge River (bi-weekly sampling in 2007), 11 molecules were always detected above 0.1 μg L(-1). They displayed the mainly urban origin of pesticide surface water contamination. Amitrole, AMPA (Aminomethyl Phosphonic Acid), demethyldiuron, diuron, glyphosate and atrazine were quantified with a 100% of frequency in 2007 and 2008 at the Orge River outlet. During the year, peaks of contamination were also registered for MCCP, 2,4 MCPA, 2,4 D, triclopyr, dichlorprop, diflufènican, active substances used in large amount in the urban area. However, some other urban molecules, such as isoxaben or flazasulfuron, were detected with low frequency. During late spring and summer, contamination patterns and load were dominated by glyphosate, amitrole and diuron, essentially applied by cities and urban users. Both isoproturon and chlortoluron were quantified during autumn and winter months according to upstream agricultural practices. In conclusion, 3 years after the beginning of this programme, the cities reduced the use of 68% of the total pesticide amount. An improvement on surface water quality was found from 2008 and during 2009 for all pesticides. In particular, glyphosate showed a decrease of the load above 60% in 2008, partly related to the Phyt'Eaux Cités action. Copyright © 2011 Elsevier Ltd. All rights reserved.
Soil chemical and physical properties that differentiate urban land-use and cover types
R.V. Pouyat; I.D. Yesilonis; J. Russell-Anelli; N.K. Neerchal
2007-01-01
We investigated the effects of land use and cover and surface geology on soil properties in Baltimore, MD, with the objectives to: (i) measure the physical and chemical properties of surface soils (0?10 cm) by land use and cover; and (ii) ascertain whether land use and cover explain differences in these properties relative to surface geology. Mean and median values of...
Wang, Wenfeng; Ndungu, Anne Wairimu; Li, Zhen; Wang, Jun
2017-01-01
Microplastics have been considered as an emerging pollutant in the aquatic environment. However, research about microplastic pollution in inland freshwaters of China is insufficient. The present study investigated the levels of microplastics in surface water of 20 urban lakes and urban reaches of the Hanjiang River and Yangtze River of Wuhan, the largest city in central China. Microplastic concentrations ranged from 1660.0±639.1 to 8925±1591n/m 3 for the studied waters, with the highest concentration found in Bei Lake. Microplastic abundance in lakes varied markedly in space, and negatively correlated with the distance from the city center (p<0.001), which confirmed the important role of anthropogenic factors in microplastic distribution. Urban reaches of the Hanjiang River and Yangtze River were found to have relatively lower levels of microplastics than most of the studied lakes. The major type of microplastics among the studied waters was colored plastic, with fiber being the most frequent shape. More than 80% of microplastics in number had a size of <2mm. Polyethylene terephthalate and polypropylene were the dominant polymer-types of microplastics analyzed. This study provided important reference for better understanding microplastic levels in inland freshwaters. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Leandro, J.; Schumann, A.; Pfister, A.
2016-04-01
Some of the major challenges in modelling rainfall-runoff in urbanised areas are the complex interaction between the sewer system and the overland surface, and the spatial heterogeneity of the urban key features. The former requires the sewer network and the system of surface flow paths to be solved simultaneously. The latter is still an unresolved issue because the heterogeneity of runoff formation requires high detailed information and includes a large variety of feature specific rainfall-runoff dynamics. This paper discloses a methodology for considering the variability of building types and the spatial heterogeneity of land surfaces. The former is achieved by developing a specific conceptual rainfall-runoff model and the latter by defining a fully distributed approach for infiltration processes in urban areas with limited storage capacity dependent on OpenStreetMaps (OSM). The model complexity is increased stepwise by adding components to an existing 2D overland flow model. The different steps are defined as modelling levels. The methodology is applied in a German case study. Results highlight that: (a) spatial heterogeneity of urban features has a medium to high impact on the estimated overland flood-depths, (b) the addition of multiple urban features have a higher cumulative effect due to the dynamic effects simulated by the model, (c) connecting the runoff from buildings to the sewer contributes to the non-linear effects observed on the overland flood-depths, and (d) OSM data is useful in identifying pounding areas (for which infiltration plays a decisive role) and permeable natural surface flow paths (which delay the flood propagation).
Characterization of individual complex particles in urban atmospheric environment
NASA Astrophysics Data System (ADS)
Suzuki, K.; Takii, T.; Tomiyasu, B.; Nihei, Y.
2006-07-01
The origins of carrier particles of complex particles (iron-rich particles) collected from the urban atmospheric environment near to road traffic and a railroad were investigated from the detailed surface information using FE-SEM/EDS and TOF-SIMS analyses. From the FE-SEM/EDS analyses, the iron-rich particles were classified into two typical types (spherical type and non-spherical type). From the TOF-SIMS measurements, the characteristic secondary ions of spherical type of iron-rich particles were 23Na + and 39K +. The minor components of non-spherical type were Al, Ca and Ba. On the other hand, we carried out TOF-SIMS measurement to materials of rail origin and brake origin. From the comparison of these spectra pattern, it seemed that the spherical type of iron-rich particles was emitted from the rail origin. We concluded that the origin of non-spherical type of iron-rich particles were brake pad of vehicles.
NASA Astrophysics Data System (ADS)
Myint, S. W.; Zheng, B.; Fan, C.; Kaplan, S.; Brazel, A.; Middel, A.; Smith, M.
2014-12-01
While the relationship between fractional cover of anthropogenic and vegetation features and the urban heat island has been well studied, the effect of spatial arrangements (e.g., clustered, dispersed) of these features on urban warming or cooling are not well understood. The goal of this study is to examine if and how spatial configuration of land cover features influence land surface temperatures (LST) in urban areas. This study focuses on Phoenix, AZ and Las Vegas, NV that have undergone dramatic urban expansion. The data used to classify detailed urban land cover types include Geoeye-1 (Las Vegas) and QuickBird (Phoenix). The Geoeye-1 image (3 m resolution) was acquired on October 12, 2011 and the QuickBird image (2.4 m resolution) was taken on May 29, 2007. Classification was performed using object based image analysis (OBIA). We employed a spatial autocorrelation approach (i.e., Moran's I) that measures the spatial dependence of a point to its neighboring points and describes how clustered or dispersed points are arranged in space. We used Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired over Phoenix (daytime on June 10, 2011 and nighttime on October 17, 2011) and Las Vegas (daytime on July 6, 2005 and nighttime on August 27, 2005) to examine daytime and nighttime LST with regards to the spatial arrangement of anthropogenic and vegetation features. We spatially correlate Moran's I values of each land cover per surface temperature, and develop regression models. The spatial configuration of grass and trees shows strong negative correlations with LST, implying that clustered vegetation lowers surface temperatures more effectively. In contrast, a clustered spatial arrangement of anthropogenic land-cover features, especially impervious surfaces, significantly elevates surface temperatures. Results from this study suggest that the spatial configuration of anthropogenic and vegetation features influence urban warming and cooling.
NASA Astrophysics Data System (ADS)
Hashimoto, Makiko; Nakajima, Teruyuki
2017-06-01
We developed a satellite remote sensing algorithm to retrieve the aerosol optical properties using satellite-received radiances for multiple wavelengths and pixels. Our algorithm utilizes spatial inhomogeneity of surface reflectance to retrieve aerosol properties, and the main target is urban aerosols. This algorithm can simultaneously retrieve aerosol optical thicknesses (AOT) for fine- and coarse-mode aerosols, soot volume fraction in fine-mode aerosols (SF), and surface reflectance over heterogeneous surfaces such as urban areas that are difficult to obtain by conventional pixel-by-pixel methods. We applied this algorithm to radiances measured by the Greenhouse Gases Observing Satellite/Thermal and Near Infrared Sensor for Carbon Observations-Cloud and Aerosol Image (GOSAT/TANSO-CAI) at four wavelengths and were able to retrieve the aerosol parameters in several urban regions and other surface types. A comparison of the retrieved AOTs with those from the Aerosol Robotic Network (AERONET) indicated retrieval accuracy within ±0.077 on average. It was also found that the column-averaged SF and the aerosol single scattering albedo (SSA) underwent seasonal changes as consistent with the ground surface measurements of SSA and black carbon at Beijing, China.
Deacon, Jeffrey R.; Soule, Sally A.; Smith, Thor E.
2005-01-01
A study of selected water-quality and macroinvertebrate community data was conducted at 10 stream sites in the Seacoast region of New Hampshire to determine if a relation is present between stream quality and the extent of urbanization in a watershed. Watersheds with similar characteristics, but varying in their degree of urban development, were studied. The percent of impervious surface, the percent of urban land use in a watershed, and the percent of urban land use in two types of stream buffers were compared and correlated with stream-quality variables. Specific conductance, turbidity, nitrite plus nitrate yields, and selected macroinvertebrate community data were significantly correlated with most measures of urbanization used in this study; however, concentrations and total phosphorus yields were not statistically correlated with most measures of urbanization in this study. The measures of urbanization that had the highest correlations with stream-quality variables were those measures that were associated with the percent of urban land in buffer zones near and upstream of a sampling site. A water-quality and habitat conditions score was negatively correlated with the percent of urban land in a 1-kilometer radial buffer of the sampling site (rho (r) = -0.86; p < 0.001), the percent of impervious surface (r = -0.70; p < 0.05), and the percent of urban land in the watershed (r = -0.67; p < 0.05). A biological condition score also was negatively correlated with the percent of urban land in a 1-kilometer radial buffer of the sampling site (r = -0.95; p < 0.0001), the percent of impervious surface (r = -0.75; p < 0.05), and the percent of urban land in the watershed (r = -0.79; p < 0.01). The percent of urban land in a 25-meter stream buffer along the stream corridor also had negative correlations with a water-quality and habitat conditions score (r = -0.80; p < 0.01) and a biological condition score (r = -0.86; p < 0.01). Mean Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa richness showed a response to urbanization in a watershed, indicating that EPT taxa richness may be an appropriate metric to evaluate the effects of urban land use on small streams in this region. Results from this study indicate that the percent of urban land use in buffer zones and the percent of impervious surface in a watershed can be used as indicators of stream quality.
Lee, Cholyoung; Kim, Kyehyun; Lee, Hyuk
2018-01-15
Impervious surfaces are mainly artificial structures such as rooftops, roads, and parking lots that are covered by impenetrable materials. These surfaces are becoming the major causes of nonpoint source (NPS) pollution in urban areas. The rapid progress of urban development is increasing the total amount of impervious surfaces and NPS pollution. Therefore, many cities worldwide have adopted a stormwater utility fee (SUF) that generates funds needed to manage NPS pollution. The amount of SUF is estimated based on the impervious ratio, which is calculated by dividing the total impervious surface area by the net area of an individual land parcel. Hence, in order to identify the exact impervious ratio, large-scale impervious surface maps (ISMs) are necessary. This study proposes and assesses various methods for generating large-scale ISMs for urban areas by using existing GIS data. Bupyeong-gu, a district in the city of Incheon, South Korea, was selected as the study area. Spatial data that were freely offered by national/local governments in S. Korea were collected. First, three types of ISMs were generated by using the land-cover map, digital topographic map, and orthophotographs, to validate three methods that had been proposed conceptually by Korea Environment Corporation. Then, to generate an ISM of higher accuracy, an integration method using all data was proposed. Error matrices were made and Kappa statistics were calculated to evaluate the accuracy. Overlay analyses were performed to examine the distribution of misclassified areas. From the results, the integration method delivered the highest accuracy (Kappa statistic of 0.99) compared to the three methods that use a single type of spatial data. However, a longer production time and higher cost were limiting factors. Among the three methods using a single type of data, the land-cover map showed the highest accuracy with a Kappa statistic of 0.91. Thus, it was judged that the mapping method using the land-cover map is more appropriate than the others. In conclusion, it is desirable to apply the integration method when generating the ISM with the highest accuracy. However, if time and cost are constrained, it would be effective to primarily use the land-cover map. Copyright © 2017 Elsevier Ltd. All rights reserved.
Urban land use: Remote sensing of ground-basin permeability
NASA Technical Reports Server (NTRS)
Tinney, L. R.; Jensen, J. R.; Estes, J. E.
1975-01-01
A remote sensing analysis of the amount and type of permeable and impermeable surfaces overlying an urban recharge basin is discussed. An effective methodology for accurately generating this data as input to a safe yield study is detailed and compared to more conventional alternative approaches. The amount of area inventoried, approximately 10 sq. miles, should provide a reliable base against which automatic pattern recognition algorithms, currently under investigation for this task, can be evaluated. If successful, such approaches can significantly reduce the time and effort involved in obtaining permeability data, an important aspect of urban hydrology dynamics.
NASA Technical Reports Server (NTRS)
Kim, Mijin; Kim, Jhoon; Wong, Man Sing; Yoon, Jongmin; Lee, Jaehwa; Wu, Dong L.; Chan, P.W.; Nichol, Janet E.; Chung, Chu-Yong; Ou, Mi-Lim
2014-01-01
Despite continuous efforts to retrieve aerosol optical depth (AOD) using a conventional 5-channelmeteorological imager in geostationary orbit, the accuracy in urban areas has been poorer than other areas primarily due to complex urban surface properties and mixed aerosol types from different emission sources. The two largest error sources in aerosol retrieval have been aerosol type selection and surface reflectance. In selecting the aerosol type from a single visible channel, the season-dependent aerosol optical properties were adopted from longterm measurements of Aerosol Robotic Network (AERONET) sun-photometers. With the aerosol optical properties obtained fromthe AERONET inversion data, look-up tableswere calculated by using a radiative transfer code: the Second Simulation of the Satellite Signal in the Solar Spectrum (6S). Surface reflectance was estimated using the clear sky composite method, awidely used technique for geostationary retrievals. Over East Asia, the AOD retrieved from the Meteorological Imager showed good agreement, although the values were affected by cloud contamination errors. However, the conventional retrieval of the AOD over Hong Kong was largely underestimated due to the lack of information on the aerosol type and surface properties. To detect spatial and temporal variation of aerosol type over the area, the critical reflectance method, a technique to retrieve single scattering albedo (SSA), was applied. Additionally, the background aerosol effect was corrected to improve the accuracy of the surface reflectance over Hong Kong. The AOD retrieved froma modified algorithmwas compared to the collocated data measured by AERONET in Hong Kong. The comparison showed that the new aerosol type selection using the critical reflectance and the corrected surface reflectance significantly improved the accuracy of AODs in Hong Kong areas,with a correlation coefficient increase from0.65 to 0.76 and a regression line change from tMI [basic algorithm] = 0.41tAERONET + 0.16 to tMI [new algorithm] = 0.70tAERONET + 0.01.
Colorado Front Range fuel photo series
Michael A. Battaglia; Jonathan M. Dodson; Wayne D. Shepperd; Mark J. Platten; Owen M. Tallmadge
2005-01-01
This photo series was developed to help fire managers estimate ground and surface fuel loads that exist in cover types of the Southern Colorado Front Range wildland-urban interface. Photos and associated data representing low, medium, and high fuel loadings from this study are presented by forest type, along with examples of typical or median fuel loadings that were...
Zhang, Xinping; Wang, Dexiang; Hao, Hongke; Zhang, Fangfang; Hu, Youning
2017-07-26
In this study Yan'an City, a typical hilly valley city, was considered as the study area in order to explain the relationships between the surface urban heat island (SUHI) and land use/land cover (LULC) types, the landscape pattern metrics of LULC types and land surface temperature (LST) and remote sensing indexes were retrieved from Landsat data during 1990-2015, and to find factors contributed to the green space cool island intensity (GSCI) through field measurements of 34 green spaces. The results showed that during 1990-2015, because of local anthropogenic activities, SUHI was mainly located in lower vegetation cover areas. There was a significant suburban-urban gradient in the average LST, as well as its heterogeneity and fluctuations. Six landscape metrics comprising the fractal dimension index, percentage of landscape, aggregation index, division index, Shannon's diversity index, and expansion intensity of the classified LST spatiotemporal changes were paralleled to LULC changes, especially for construction land, during the past 25 years. In the urban area, an index-based built-up index was the key positive factor for explaining LST increases, whereas the normalized difference vegetation index and modified normalized difference water index were crucial factors for explaining LST decreases during the study periods. In terms of the heat mitigation performance of green spaces, mixed forest was better than pure forest, and the urban forest configuration had positive effects on GSCI. The results of this study provide insights into the importance of species choice and the spatial design of green spaces for cooling the environment.
Zhang, Xinping; Hao, Hongke; Zhang, Fangfang; Hu, Youning
2017-01-01
In this study Yan’an City, a typical hilly valley city, was considered as the study area in order to explain the relationships between the surface urban heat island (SUHI) and land use/land cover (LULC) types, the landscape pattern metrics of LULC types and land surface temperature (LST) and remote sensing indexes were retrieved from Landsat data during 1990–2015, and to find factors contributed to the green space cool island intensity (GSCI) through field measurements of 34 green spaces. The results showed that during 1990–2015, because of local anthropogenic activities, SUHI was mainly located in lower vegetation cover areas. There was a significant suburban-urban gradient in the average LST, as well as its heterogeneity and fluctuations. Six landscape metrics comprising the fractal dimension index, percentage of landscape, aggregation index, division index, Shannon’s diversity index, and expansion intensity of the classified LST spatiotemporal changes were paralleled to LULC changes, especially for construction land, during the past 25 years. In the urban area, an index-based built-up index was the key positive factor for explaining LST increases, whereas the normalized difference vegetation index and modified normalized difference water index were crucial factors for explaining LST decreases during the study periods. In terms of the heat mitigation performance of green spaces, mixed forest was better than pure forest, and the urban forest configuration had positive effects on GSCI. The results of this study provide insights into the importance of species choice and the spatial design of green spaces for cooling the environment. PMID:28933770
Establishing sustainable strategies in urban underground engineering.
Curiel-Esparza, Jorge; Canto-Perello, Julian; Calvo, Maria A
2004-07-01
Growth of urban areas, the corresponding increased demand for utility services and the possibility of new types of utility systems are overcrowding near surface underground space with urban utilities. Available subsurface space will continue to diminish to the point where utilidors (utility tunnels) may become inevitable. Establishing future sustainable strategies in urban underground engineering consists of the ability to lessen the use of traditional trenching. There is an increasing interest in utility tunnels for urban areas as a sustainable technique to avoid congestion of the subsurface. One of the principal advantages of utility tunnels is the substantially lower environmental impact compared with common trenches. Implementing these underground facilities is retarded most by the initial cost and management procedures. The habitual procedure is to meet problems as they arise in current practice. The moral imperative of sustainable strategies fails to confront the economic and political conflicts of interest. Municipal engineers should act as a key enabler in urban underground sustainable development.
Estimating Urban Gross Primary Productivity at High Spatial Resolution
NASA Astrophysics Data System (ADS)
Miller, David Lauchlin
Gross primary productivity (GPP) is an important metric of ecosystem function and is the primary way carbon is transferred from the atmosphere to the land surface. Remote sensing techniques are commonly used to estimate regional and global GPP for carbon budgets. However, urban areas are typically excluded from such estimates due to a lack of parameters specific to urban vegetation and the modeling challenges that arise in mapping GPP across heterogeneous urban land cover. In this study, we estimated typical midsummer GPP within and among vegetation and land use types in the Minneapolis-Saint Paul, Minnesota metropolitan region by deriving light use efficiency parameters specific to urban vegetation types using in situ flux observations and WorldView-2 high spatial resolution satellite imagery. We produced a land cover classification using the satellite imagery, canopy height data from airborne lidar, and leaf-off color-infrared aerial orthophotos, and used regional GIS layers to mask certain land cover/land use types. The classification for built-up and vegetated urban land cover classes distinguished deciduous trees, evergreen trees, turf grass, and golf grass from impervious and soil surfaces, with an overall classification accuracy of 80% (kappa = 0.73). The full study area had 52.1% vegetation cover. The light use efficiency for each vegetation class, with the exception of golf grass, tended to be low compared to natural vegetation light use efficiencies in the literature. The mapped GPP estimates were within 11% of estimates from independent tall tower eddy covariance measurements. The order of the mapped vegetation classes for the full study area in terms of mean GPP from lowest to highest was: deciduous trees (2.52 gC m -2 d-1), evergreen trees (5.81 gC m-2 d-1), turf grass (6.05 gC m-2 d-1), and golf grass (11.77 gC m-2 d-1). Turf grass GPP had a larger coefficient of variation (0.18) than the other vegetation classes (˜0.10). Mean land use GPP for the full study area varied as a function of percent vegetation cover. Urban GPP in general, both including and excluding non-vegetated areas, tended to be low relative to natural forests and grasslands. Our results demonstrate that, at the scale of neighborhoods and city blocks within heterogeneous urban landscapes, high spatial resolution GPP estimates are valuable to develop comparisons such as within and among vegetation cover classes and land use types.
Impact of Land Use/Land Cover Conditions on WRF Model Evaluation for Heat Island Assessment
NASA Astrophysics Data System (ADS)
Bhati, S.; Mohan, M.
2017-12-01
Urban heat island effect has been assessed using Weather Research and Forecasting model (WRF v3.5) focusing on air temperature and surface skin temperature in the sub-tropical urban Indian megacity of Delhi. Impact of urbanization related changes in land use/land cover (LULC) on model outputs has been analyzed. Four simulations have been carried out with different types of LULC data viz. (1) USGS , (2) MODIS, (3) user-modified USGS and (4) user modified land use data coupled with urban canopy model (UCM) for incorporation of canopy features. Heat island intensities have been estimated based on these simulations and subsequently compared with those derived from in-situ and satellite observations. There is a significant improvement in model performance with modification of LULC and inclusion of UCM. Overall, RMSEs for near surface temperature improved from 6.3°C to 3.9°C and index of agreement for mean urban heat island intensities (UHI) improved from 0.4 to 0.7 with modified land use coupled with UCM. In general, model is able to capture the magnitude of UHI as well as high UHI zones well. The study highlights the importance of appropriate and updated representation of landuse-landcover and urban canopies for improving predictive capabilities of the mesoscale models.
Using Remotely Sensed Data to Map Urban Vulnerability to Heat
NASA Technical Reports Server (NTRS)
Stefanov, William L.
2010-01-01
This slide presentation defines remote sensing, and presents examples of remote sensing and astronaut photography, which has been a part of many space missions. The presentation then reviews the project aimed at analyzing urban vulnerability to climate change, which is to test the hypotheses that Exposure to excessively warm weather threatens human health in all types of climate regimes; Heat kills and sickens multitudes of people around the globe every year -- directly and indirectly, and Climate change, coupled with urban development, will impact human health. Using Multiple Endmember Spectral Mixing Analysis (MESMA), and the Phoenix urban area as the example, the Normalized Difference Vegetation Index (NDVI) is calculated, a change detection analysis is shown, and surface temperature is shown.
Effects of urban form on the urban heat island effect based on spatial regression model.
Yin, Chaohui; Yuan, Man; Lu, Youpeng; Huang, Yaping; Liu, Yanfang
2018-09-01
The urban heat island (UHI) effect is becoming more of a concern with the accelerated process of urbanization. However, few studies have examined the effect of urban form on land surface temperature (LST) especially from an urban planning perspective. This paper used spatial regression model to investigate the effects of both land use composition and urban form on LST in Wuhan City, China, based on the regulatory planning management unit. Landsat ETM+ image data was used to estimate LST. Land use composition was calculated by impervious surface area proportion, vegetated area proportion, and water proportion, while urban form indicators included sky view factor (SVF), building density, and floor area ratio (FAR). We first tested for spatial autocorrelation of urban LST, which confirmed that a traditional regression method would be invalid. A spatial error model (SEM) was chosen because its parameters were better than a spatial lag model (SLM). The results showed that urban form metrics should be the focus for mitigation efforts of UHI effects. In addition, analysis of the relationship between urban form and UHI effect based on the regulatory planning management unit was helpful for promoting corresponding UHI effect mitigation rules in practice. Finally, the spatial regression model was recommended to be an appropriate method for dealing with problems related to the urban thermal environment. Results suggested that the impact of urbanization on the UHI effect can be mitigated not only by balancing various land use types, but also by optimizing urban form, which is even more effective. This research expands the scientific understanding of effects of urban form on UHI by explicitly analyzing indicators closely related to urban detailed planning at the level of regulatory planning management unit. In addition, it may provide important insights and effective regulation measures for urban planners to mitigate future UHI effects. Copyright © 2018 Elsevier B.V. All rights reserved.
Hu, Yuanan; Liu, Xueping; Bai, Jinmei; Shih, Kaimin; Zeng, Eddy Y; Cheng, Hefa
2013-09-01
Heavy metals in the surface soils from lands of six different use types in one of the world's most densely populated regions, which is also a major global manufacturing base, were analyzed to assess the impact of urbanization and industrialization on soil pollution. A total of 227 surface soil samples were collected and analyzed for major heavy metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) by using microwave-assisted acid digestion and inductively coupled plasma-mass spectrometry (ICP-MS). Multivariate analysis combined with enrichment factors showed that surface soils from the region (>7.2 × 10(4) km(2)) had mean Cd, Cu, Zn, and As concentrations that were over two times higher than the background values, with Cd, Cu, and Zn clearly contributed by anthropogenic sources. Soil pollution by Pb was more widespread than the other heavy metals, which was contributed mostly by anthropogenic sources. The results also indicate that Mn, Co, Fe, Cr, and Ni in the surface soils were primarily derived from lithogenic sources, while Hg and As contents in the surface soils were controlled by both natural and anthropogenic sources. The pollution level and potential ecological risk of the surface soils both decreased in the order of: urban areas > waste disposal/treatment sites ∼ industrial areas > agricultural lands ∼ forest lands > water source protection areas. These results indicate the significant need for the development of pollution prevention and reduction strategies to reduce heavy metal pollution for regions undergoing fast industrialization and urbanization.
OVERVIEW OF EPA'S WET-WEATHER FLOW RESEARCH PROGRAM
Surface waters receive three types of urban wet-weather flow discharges: combined-sewer overflow (CSO), stormwater, and sanitary-sewer overflow (SSO); all are principally untreated discharges that occur during storm-flow events. WWFs have proven to generate a substantial amount o...
NASA Astrophysics Data System (ADS)
Wong, Man Sing; Nichol, Janet E.; Lee, Kwon Ho
2011-03-01
Aerosol retrieval algorithms for the MODerate Resolution Imaging Spectroradiometer (MODIS) have been developed to estimate aerosol and microphysical properties of the atmosphere, which help to address aerosol climatic issues at global scale. However, higher spatial resolution aerosol products for urban areas have not been well-researched mainly due to the difficulty of differentiating aerosols from bright surfaces in urban areas. Here, an aerosol retrieval algorithm using the MODIS 500-m resolution bands is described, to retrieve aerosol properties over Hong Kong and the Pearl River Delta region. The rationale of our technique is to first estimate the aerosol reflectances by decomposing the top-of-atmosphere reflectances from surface reflectances and Rayleigh path reflectances. For the determination of surface reflectances, a Minimum Reflectance Technique (MRT) is used, and MRT images are computed for different seasons. For conversion of aerosol reflectance to aerosol optical thickness (AOT), comprehensive Look Up Tables specific to the local region are constructed, which consider aerosol properties and sun-viewing geometry in the radiative transfer calculations. Four local aerosol types, namely coastal urban, polluted urban, dust, and heavy pollution, were derived using cluster analysis on 3 years of AERONET measurements in Hong Kong. The resulting 500 m AOT images were found to be highly correlated with ground measurements from the AERONET (r2 = 0.767) and Microtops II sunphotometers (r2 = 0.760) in Hong Kong. This study further demonstrates the application of the fine resolution AOT images for monitoring inter-urban and intra-urban aerosol distributions and the influence of trans-boundary flows. These applications include characterization of spatial patterns of AOT within the city, and detection of regional biomass burning sources.
Andrés-Doménech, Ignacio; Hernández-Crespo, Carmen; Martín, Miguel; Andrés-Valeri, Valerio C
2018-01-15
Knowledge about pollutant wash-off from urban impervious surfaces is a key feature for developing effective management strategies. Accordingly, further information is required about urban areas under semi-arid climate conditions at the sub-catchment scale. This is important for designing source control systems for pollution. In this study, a characterization of pollutant wash-off has been performed over sixteen months, at the sub-catchment scale for urban roads as impervious surfaces. The study was conducted in Valencia, Spain, a city with a Mediterranean climate. The results show high event mean concentrations for suspended solids (98mg/l), organic matter (142mgCOD/l, 25mgBOD 5 /l), nutrients (3.7mgTN/l, 0.4mgTP/l), and metals (0.23, 0.32, 0.62 and 0.17mg/l for Cu, Ni, Pb, and Zn, respectively). The results of the runoff characterization highlight the need to control this pollution at its source, separately from wastewater because of their different characteristics. The wash-off, defined in terms of mobilized mass (g/m 2 ) fits well with both process-based and statistical models, with the runoff volume and rainfall depth being the main explanatory variables. Based on these results and using information collected from hydrographs and pollutographs, an approach for sizing sustainable urban drainage systems (SuDS), focusing on water quality and quantity variables, has been proposed. By setting a concentration-based target (TSS discharged to receiving waters <35mg/l), the results indicate that for a SuDS type detention basin (DB), an off-line configuration performs better than an on-line configuration. The resulting design criterion, expressed as SuDS volume per unit catchment area, assuming a DB type SuDS, varies between 7 and 10l/m 2 . Copyright © 2017 Elsevier B.V. All rights reserved.
Identifying anthropogenic anomalies in air, surface and groundwater temperatures in Germany.
Benz, Susanne A; Bayer, Peter; Blum, Philipp
2017-04-15
Human activity directly influences ambient air, surface and groundwater temperatures. The most prominent phenomenon is the urban heat island effect, which has been investigated particularly in large and densely populated cities. This study explores the anthropogenic impact on the thermal regime not only in selected urban areas, but on a countrywide scale for mean annual temperature datasets in Germany in three different compartments: measured surface air temperature, measured groundwater temperature, and satellite-derived land surface temperature. Taking nighttime lights as an indicator of rural areas, the anthropogenic heat intensity is introduced. It is applicable to each data set and provides the difference between measured local temperature and median rural background temperature. This concept is analogous to the well-established urban heat island intensity, but applicable to each measurement point or pixel of a large, even global, study area. For all three analyzed temperature datasets, anthropogenic heat intensity grows with increasing nighttime lights and declines with increasing vegetation, whereas population density has only minor effects. While surface anthropogenic heat intensity cannot be linked to specific land cover types in the studied resolution (1km×1km) and classification system, both air and groundwater show increased heat intensities for artificial surfaces. Overall, groundwater temperature appears most vulnerable to human activity, albeit the different compartments are partially influenced through unrelated processes; unlike land surface temperature and surface air temperature, groundwater temperatures are elevated in cultivated areas as well. At the surface of Germany, the highest anthropogenic heat intensity with 4.5K is found at an open-pit lignite mine near Jülich, followed by three large cities (Munich, Düsseldorf and Nuremberg) with annual mean anthropogenic heat intensities >4K. Overall, surface anthropogenic heat intensities >0K and therefore urban heat islands are observed in communities down to a population of 5000. Copyright © 2017 Elsevier B.V. All rights reserved.
Yang, Qiquan; Huang, Xin; Li, Jiayi
2017-08-24
The urban heat island (UHI) effect exerts a great influence on the Earth's environment and human health and has been the subject of considerable attention. Landscape patterns are among the most important factors relevant to surface UHIs (SUHIs); however, the relationship between SUHIs and landscape patterns is poorly understood over large areas. In this study, the surface UHI intensity (SUHII) is defined as the temperature difference between urban and suburban areas, and the landscape patterns are quantified by the urban-suburban differences in several typical landscape metrics (ΔLMs). Temperature and land-cover classification datasets based on satellite observations were applied to analyze the relationship between SUHII and ΔLMs in 332 cities/city agglomerations distributed in different climatic zones of China. The results indicate that SUHII and its correlations with ΔLMs are profoundly influenced by seasonal, diurnal, and climatic factors. The impacts of different land-cover types on SUHIs are different, and the landscape patterns of the built-up and vegetation (including forest, grassland, and cultivated land) classes have the most significant effects on SUHIs. The results of this study will help us to gain a deeper understanding of the relationship between the SUHI effect and landscape patterns.
Xian, George; Crane, Mike
2006-01-01
Remote sensing data from both Landsat 5 and Landsat 7 systems were utilized to assess urban area thermal characteristics in Tampa Bay watershed of west-central Florida, and the Las Vegas valley of southern Nevada. To quantitatively determine urban land use extents and development densities, sub-pixel impervious surface areas were mapped for both areas. The urban–rural boundaries and urban development densities were defined by selecting certain imperviousness threshold values and Landsat thermal bands were used to investigate urban surface thermal patterns. Analysis results suggest that urban surface thermal characteristics and patterns can be identified through qualitatively based urban land use and development density data. Results show the urban area of the Tampa Bay watershed has a daytime heating effect (heat-source), whereas the urban surface in Las Vegas has a daytime cooling effect (heat-sink). These thermal effects strongly correlated with urban development densities where higher percent imperviousness is usually associated with higher surface temperature. Using vegetation canopy coverage information, the spatial and temporal distributions of urban impervious surface and associated thermal characteristics are demonstrated to be very useful sources in quantifying urban land use, development intensity, and urban thermal patterns.
Mapping Global Urban Extent and Intensity for Environmental Monitoring and Modeling
NASA Astrophysics Data System (ADS)
Schneider, A.; Friedl, M. A.
2007-05-01
The human dimensions of global environmental change have received increased attention in policy, decision- making, research, and even the media. However, the influence of urban areas in global change processes is still often assumed to be negligible. Although local environmental conditions such as the urban heat island effect are well-documented, little or no work has focused on cross-scale interactions, or the ways in which local urban processes cumulatively impact global changes. Given the rapid rates of rural-urban migration, economic development and urban spatial expansion, it is becoming increasingly clear that the `ecological footprint' of cities may play a critical role in environmental changes at regional and global scales. Our understanding of the cumulative impacts of urban areas on natural systems has been limited foremost by a lack of reliable, accurate data on current urban form and extent at the global scale. The data sets that have emerged to fill this gap (LandScan, GRUMP, nighttime lights) suffer from a number of limitations that prevent widespread use. Building on our early efforts with MODIS data, our current work focuses on: (1) completing a new, validated map of global urban extent; and (2) developing methods to estimate the subpixel fraction of impervious surface, vegetation, and other land cover types within urbanized areas using coarse resolution satellite imagery. For the first task, a technique called boosting is used to improve classification accuracy and provides a means to integrate 500 m resolution MODIS data with ancillary data sources. For the second task, we present an approach for estimating percent cover that relies on continuous training data for a full range of city types. These exemplars are used as inputs to fuzzy neural network and regression tree algorithms to predict fractional amounts of land cover types with increased accuracy. Preliminary results for a global sample of 100 cities (which vary in population size, level of economic development, and spatial extent) show good agreement with the expected morphology in each region.
NASA Astrophysics Data System (ADS)
Rivera, V. A.; Hernandez-Gonzalez, L. M.; Phillips, C. B.; Nair, A.; Negri, M. C.; Gnaedinger, K. J.; Miller, W. M.; Packman, A. I.
2017-12-01
Changing regional climate applies stresses to urban areas in the form of altered weather patterns, requiring new strategies for stormwater runoff management and flood mitigation. At the same time, the proportion of people residing in urban areas is increasing and cities are turning to greenspace as a tool for managing runoff. Gensburg Markham Prairie (GMP), located in Markham, Illinois south of Chicago, is an urban prairie nature preserve and a U.S. National Natural Landmark. Owned by Northeastern Illinois University and managed by the Nature Conservancy, GMP receives runoff from surrounding urban areas and provides valuable stormwater storage, while also hosting high biodiversity and providing critical habitat for sensitive and endemic. A successful management strategy for GMP should preserve both of these valuable ecosystem services. To understand GMP's role within the urban environment, we installed a suite of instruments in 2016 and 2017 to measure surface and groundwater levels, rainfall, soil moisture, and electrical conductivity throughout the prairie. This monitoring network includes 40 sensors collecting high frequency data (every 30 minutes). We are also collecting monthly distributed surface and groundwater samples to quantify a range of anions and cations that signal potentially detrimental anthropogenic impacts on the prairie. In addition, we are using historical and ongoing plant distribution surveys to explore the interactions between spatial patterns in vegetation and water dynamics in the prairie. The high measurement frequency and large diversity of sensor types supports holistic investigation of the response of the prairie to diverse events, including summer thunderstorms, winter road salt runoff, and spring snowmelt. The 18 months of data collected to date reveals clear patterns in response to weather events with influence from soil type and spatial variables. We are using time-series analysis with MODFLOW modelling to explore surface-groundwater interactions within the site and the effects of seasonality on the prairie's capacity for storage of stormwater runoff. This analysis supports development of management strategies to preserve the prairie's ecological diversity and provide a basis for regional-scale design of green infrastructure for flood control.
NASA Astrophysics Data System (ADS)
Xie, Shilin; Lu, Fei; Cao, Lei; Zhou, Weiqi; Ouyang, Zhiyun
2016-07-01
Understanding the factors that influence the characteristics of avian communities using urban parks at both the patch and landscape level is important to focus management effort towards enhancing bird diversity. Here, we investigated this issue during the breeding season across urban parks in Beijing, China, using high-resolution satellite imagery. Fifty-two bird species were recorded across 29 parks. Analysis of residence type of birds showed that passengers were the most prevalent (37%), indicating that Beijing is a major node in the East Asian-Australasian Flyway. Park size was crucial for total species abundance, but foliage height diversity was the most important factor influencing avian species diversity. Thus, optimizing the configuration of vertical vegetation structure in certain park areas is critical for supporting avian communities in urban parks. Human visitation also showed negative impact on species diversity. At the landscape level, the percentage of artificial surface and largest patch index of woodland in the buffer region significantly affected total species richness, with insectivores and granivores being more sensitive to the landscape pattern of the buffer region. In conclusion, urban birds in Beijing are influenced by various multi-scale factors; however, these effects vary with different feeding types.
Xie, Shilin; Lu, Fei; Cao, Lei; Zhou, Weiqi; Ouyang, Zhiyun
2016-07-11
Understanding the factors that influence the characteristics of avian communities using urban parks at both the patch and landscape level is important to focus management effort towards enhancing bird diversity. Here, we investigated this issue during the breeding season across urban parks in Beijing, China, using high-resolution satellite imagery. Fifty-two bird species were recorded across 29 parks. Analysis of residence type of birds showed that passengers were the most prevalent (37%), indicating that Beijing is a major node in the East Asian-Australasian Flyway. Park size was crucial for total species abundance, but foliage height diversity was the most important factor influencing avian species diversity. Thus, optimizing the configuration of vertical vegetation structure in certain park areas is critical for supporting avian communities in urban parks. Human visitation also showed negative impact on species diversity. At the landscape level, the percentage of artificial surface and largest patch index of woodland in the buffer region significantly affected total species richness, with insectivores and granivores being more sensitive to the landscape pattern of the buffer region. In conclusion, urban birds in Beijing are influenced by various multi-scale factors; however, these effects vary with different feeding types.
Attribution of local climate zones using a multitemporal land use/land cover classification scheme
NASA Astrophysics Data System (ADS)
Wicki, Andreas; Parlow, Eberhard
2017-04-01
Worldwide, the number of people living in an urban environment exceeds the rural population with increasing tendency. Especially in relation to global climate change, cities play a major role considering the impacts of extreme heat waves on the population. For urban planners, it is important to know which types of urban structures are beneficial for a comfortable urban climate and which actions can be taken to improve urban climate conditions. Therefore, it is essential to differ between not only urban and rural environments, but also between different levels of urban densification. To compare these built-up types within different cities worldwide, Stewart and Oke developed the concept of local climate zones (LCZ) defined by morphological characteristics. The original LCZ scheme often has considerable problems when adapted to European cities with historical city centers, including narrow streets and irregular patterns. In this study, a method to bridge the gap between a classical land use/land cover (LULC) classification and the LCZ scheme is presented. Multitemporal Landsat 8 data are used to create a high accuracy LULC map, which is linked to the LCZ by morphological parameters derived from a high-resolution digital surface model and cadastral data. A bijective combination of the different classification schemes could not be achieved completely due to overlapping threshold values and the spatially homogeneous distribution of morphological parameters, but the attribution of LCZ to the LULC classification was successful.
NASA Astrophysics Data System (ADS)
Liu, Hua
A new synthesis of remote sensing and landscape ecology approaches was developed to establish relationships between the landscape patterns and land surface temperatures (LST) in the city of Indianapolis, Indiana, United States. Land use and land cover (LULC) and LST images were derived from Terra Satellite's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. An analytical procedure using landscape metrics was developed, applying configuration analysis of landscape patterns and land surface temperature zones. Detailed landscape pattern analyses at the landscape and class scales were conducted using landscape metrics in the City of Indianapolis. The effects of spatial resolution on the identification of the relationship were examined in the same city. The best level of equalization between the LULC and LST maps was determined based on minimum distance analysis in landscape metrics space. The analyses of relationships between the landscape patterns and land surface temperatures, and scaling effects were applied to the spread of West Nile Virus (WNV) in the City of Chicago, Illinois. Results show that urban, forest, and grassland were the main landscape components in Indianapolis. They possessed relatively higher fractal dimensions but lower spatial aggregation levels in April 5, 2004, June 16, 2001, and October 3, 2000, but not in February 6, 2006. Obvious seasonal differences existed with the most distinct landscape pattern detected on February 6, 2006. Urban was the dominant LULC type in high-temperature zones, while water and vegetation mainly fell in low-temperature zones. For each individual date, the metrics of LST zones apparently corresponded to the metrics of LULC types. In the study of scaling-up effect analysis, Patch Percentage, Patch Density, and Landscape Shape index were found to be able to effectively quantify the spatial changes of LULC types and temperature zones at different scales without contradiction. Urban, forest, and grassland in each season were more easily affected by the process in Patch Density and Landscape Shape index. Ninety meters was believed to be the optimal spatial resolution to examine relationships between landscape patterns and LSTs in the City of Indianapolis. In the study of the spread of West Nile Virus in the City of Chicago, WNV was found to have been spread throughout all of Cook County since 2001. Landscape factors, like landscape aggregation index and areas of urban, grass, and water showed a strong correlation with the number of WNV infections. Socioeconomic conditions, like population above 65 years old also showed a strong relationship with the spread of WNV in Cook County. Thermal conditions of water had a lower but still significant correlation to the spread of WNV. This research offers an opportunity to explore the mechanism of interaction between urban landscape patterns and land surface temperatures at different spatial scales, and show the effects of landscape pattern and land surface temperature on the spread of West Nile Virus. This study can be useful for urban planning and environmental management practices in the studied areas. It also contributes to public health management and protection.
NASA Astrophysics Data System (ADS)
Aoyagi, Toshinori; Takahashi, Shunji
2012-02-01
To investigate how a three-dimensional structure such as an urban canyon can affect urban surface warming, we developed an urban multilayer radiation scheme. The complete consideration of multiple scattering of shortwave and longwave radiation using the radiosity method is an important feature of the present scheme. A brief description of this scheme is presented, followed by evaluations that compare its results with observations of the effective albedo and radiative temperature for urban blocks. Next, we calculate the urban surface warming potential (USWP), defined as the difference between the daily mean radiative temperature of urban surfaces (which are assumed to be black bodies), including their canyon effects and the daily mean temperature of a flat surface with the same material properties, under a radiative equilibrium state. Assuming standard material properties (albedo and emissivity of 0.4 and 0.9, respectively), we studied the sensitivity of the USWP to various aspect ratios of building heights to road widths. The results show that the temporally-averaged surface temperature of an urban area can be higher than that of a flat surface. In addition, we determined the overestimation of the effective temperature of urban surfaces induced by the overestimation of the radiation distribution to the walls when one uses a single-layer scheme for urban block arrays that have a low sky-view factor less than around 0.5.
NASA Astrophysics Data System (ADS)
Zhou, Z.; Smith, J. A.; Yang, L.; Baeck, M. L.; Liu, S.; Ten Veldhuis, M. C.
2016-12-01
The objective of this study is to develop a broad characterization of land surface and hydrometeorological controls of urban flood frequency. We focus on a collection of "small" urban watersheds (with drainage area ranging from 7 to 200 km2) in Charlotte metropolitan region, North Carolina. These watersheds are contrasted by a variety of land surface properties, such as size, shape, land use/land cover type, impervious coverage pattern, stormwater infrastructure, etc. We carried out empirical analyses based on long-term (15 years), high-resolution (1 15 minutes) instantaneous USGS stream gaging observations as well as bias-corrected, high-resolution (1 km2, 15 min) radar rainfall fields developed through the Hydro-NEXRAD system. Extreme floods in Charlotte urban watersheds are primarily induced by a mixture of flood agents including warm season thunderstorms and tropical cyclones, which ultimately contributed to the upper-tail properties of flood frequency. Flood response in urban watersheds is dominantly dictated by space-time characteristics of rainfall, with relatively significant correlation between runoff and rainfall over more developed watersheds. The roles of antecedent soil moisture and stormwater management infrastructure in flood response are also contrasted across the urban watersheds. The largest variability of flood response, in terms of flood peak and timing, exists in the watershed at a scale of 100 km2. The scale-dependent hydrological response is closely related to the pattern and evolution of urban development across watersheds. Our analyses show the complexities of urban flood response in Charlotte metropolitan region. There are no simple metrics that could perfectly explain the contrasts in flood response across urban watersheds. Future research is directed towards sophisticated modeling studies for a predictive understanding of flood frequency in urban watersheds.
The Impact of Temporal Aggregation of Land Surface Temperature Data for Urban Heat Island Monitoring
NASA Astrophysics Data System (ADS)
Hu, L.; Brunsell, N. A.
2012-12-01
Temporally composited remote sensing products are widely used in monitoring the urban heat island (UHI). In order to quantify the impact of temporal aggregation for assessing the UHI, we examined MODIS land surface temperature (LST) products for 11 years focusing on Houston, Texas and its surroundings. By using the daily LST from 2000 to 2010, the urban and rural daily LST were presented for the 8-day period and annual comparisons for both day and night. Statistics based on the rural-urban LST differences show that the 8-day composite mean UHI effects are generally more intensive than that calculated by daily UHI images. Moreover, the seasonal pattern shows that the summer daytime UHI has the largest magnitude and variation while nighttime UHI magnitudes are much smaller and less variable. Regression analyses enhance the results showing an apparently higher UHI derived from 8-day composite dataset. The summer mean UHI maps were compared, indicating a land cover related pattern. We introduced yearly MODIS land cover type product to explore the spatial differences caused by temporal aggression of LST product. The mean bias caused by land cover types are calculated about 0.5 ~ 0.7K during the daytime, and less than 0.1K at night. The potential causes of the higher UHI are discussed. The analysis shows that the land-atmosphere interactions, which result in the regional cloud formation, are the primary reason.
Assessment of urban heat Island for Craiova from satellite-based LST
NASA Astrophysics Data System (ADS)
Udristioiu, Mihaela Tinca; Velea, Liliana; Bojariu, Roxana; Sararu, Silviu Constantin
2017-12-01
The urban heat island is defined as an excess of heating in urban areas compared with surrounding rural zones which is illustrated by higher surface and air temperatures in the inner part of the cities. The aim of this study is to identify the UHI effect for Craiova - the largest city in the South-Western part of Romania - and to assess its intensity during summer. To this end, MODIS Land surface temperature (LST) for day and night for summer months (June, July, August), in the interval 2002-2017, as well as yearly Land Cover Type (LCT) data also from MODIS were employed. Furthermore, measurements of air and soil temperature from meteorological station Craiova, available from the National Meteorological Administration database, were used to investigate their relation with LST. The analysis shows that in the urban area of Craiova the long-term summer mean LST is about 4 °C (2 °C), higher than in the rural area during daytime (nighttime). During high temperatures episodes, the mean daytime LST reaches 45-47 °C in the city, while the difference from the rural surrounding area is of 2-3 °C. A high correlation (0.77-0.83) is found between LST and air temperature for all land-use types in the area considered. Both LST and 2m-air temperature time-series manifest an increasing linear tendency over the period considered, being more pronounced during the day.
High resolution urban morphology data for urban wind flow modeling
NASA Astrophysics Data System (ADS)
Cionco, Ronald M.; Ellefsen, Richard
The application of urban forestry methods and technologies to a number of practical problems can be further enhanced by the use and incorporation of localized, high resolution wind and temperature fields into their analysis methods. The numerical simulation of these micrometeorological fields will represent the interactions and influences of urban structures, vegetation elements, and variable terrain as an integral part of the dynamics of an urban domain. Detailed information of the natural and man-made components that make up the urban area is needed to more realistically model meteorological fields in urban domains. Simulating high resolution wind and temperatures over and through an urban domain utilizing detailed morphology data can also define and quantify local areas where urban forestry applications can contribute to better solutions. Applications such as the benefits of planting trees for shade purposes can be considered, planned, and evaluated for their impact on conserving energy and cooling costs as well as the possible reconfiguration or removal of trees and other barriers for improved airflow ventilation and similar processes. To generate these fields, a wind model must be provided, as a minimum, the location, type, height, structural silhouette, and surface roughness of these components, in order to account for the presence and effects of these land morphology features upon the ambient airflow. The morphology of Sacramento, CA has been characterized and quantified in considerable detail primarily for wind flow modeling, simulation, and analyses, but can also be used for improved meteorological analyses, urban forestry, urban planning, and other urban related activities. Morphology methods previously developed by Ellefsen are applied to the Sacramento scenario with a high resolution grid of 100 m × 100 m. The Urban Morphology Scheme defines Urban Terrain Zones (UTZ) according to how buildings and other urban elements are structured and placed with respect to each other. The urban elements within the 100 m × 100 m cells (one hectare) are further described and digitized as building height, building footprint (in percent), reflectivity of its roof, pitched roof or flat, building's long axis orientation, footprint of impervious surface and its reflectivity, footprint of canopy elements, footprint of woodlots, footprint of grass area, and footprint of water surface. A variety of maps, satellite images, low level aerial photographs, and street level photographs are the raw data used to quantify these urban properties. The final digitized morphology database resides in a spreadsheet ready for use on ordinary personal computers.
Topoclimatological survey of Switzerland
NASA Technical Reports Server (NTRS)
Winiger, M. (Principal Investigator)
1982-01-01
The application of Heat Capacity Mapping Mission data to subsynoptic climate analysis of Switzerland was examined. The data included the surface temperature distributions of urban heat islands and the Swiss Alps. Analog and digital data evaluation procedures are described as well as the ground truth acquisition and comparison program. The dependence of the temperature distributions on topography and surface coverage types is assessed. The results indicate that air temperature inversion zones are detectable.
NASA Astrophysics Data System (ADS)
Liu, Z.; Xue, Y.; Liu, S.; Oleson, K. W.
2012-12-01
The urbanization causes one of the most significant land cover changes. Especially over the eastern China from Beijing to Shanghai, the great urbanization occurs during the past half century.It modifies the physical characteristics of land surface, including land surface albedo, surface roughness length and aerodynamicresistanceand thermodynamic conduction over land. All of these play very important role in regional climate change. Afteremploying several WRF/Urban models to tests land use and land cover change(LUCC) caused by urbanization in East Asia, we decided to introducea urban canopy submodule,the Community Land surface Model urban scheme(CLMU)to the WRF and coupled with the WRF-SSiB3 regional climate model. The CLMU and SSIB share the similar principal to treat the surface energy and water balances and aerodynamic resistance between land and atmosphere. In the urban module, the energy balances on the five surface conditions are considered separately: building roof, sun side building wall, shade side building wall, pervious land surface and impervious road. The surface turbulence calculation is based on Monin-Obukhov similarity theory. We have made further improvements for the urban module. Over each surface condition, a method to calculate sky view factor (SVF) is developed based on the physically process while most urban models simply provide an empirical value for SVF. Our approach along with other improvement in short and long wave radiation transfer improves the accuracy of long-wave and shortwave radiation processing over urban surface. The force-restore approximation is employed to calculate the temperature of each outer surfaces of building. The inner side temperature is used as the restore term and was assigned as a tuning constant. Based on the nature of the force-restore method and our tests, we decide to employ the air mean temperature of last 72 hours as a restore term, which substantially improve the surface energy balance. We evaluate the ability of the newly coupled model by two runs: one without and one with the urban canopy module. The coupled model is integrated from March through September, covering a summer monsoon season. The preliminary results show more significant urban heat island (UHI) effect over urban areas with the urban canopy model. The existence of the UHIs enhances the convection in lower atmosphere, affects the water vapor transportation and precipitation of the surrounding area, consistent with the phenomena that occur in urban areas. We further test the effect of urbanization on the monsoon by introducing two maps, one with and one without urbanization and the effect of the urbanization on the monsoon evolution and low level circulation will be discussed in the presentation.
Managed Clearings: an Unaccounted Land-cover in Urbanizing Regions
NASA Astrophysics Data System (ADS)
Singh, K. K.; Madden, M.; Meentemeyer, R. K.
2016-12-01
Managed clearings (MC), such as lawns, public parks and grassy transportation medians, are a common and ecologically important land cover type in urbanizing regions, especially those characterized by sprawl. We hypothesize that MC is underrepresented in land cover classification schemes and data products such as NLCD (National Land Cover Database) data, which may impact environmental assessments and models of urban ecosystems. We visually interpreted and mapped fine scale land cover with special attention to MC using 2012 NAIP (National Agriculture Imagery Program) images and compared the output with NLCD data. Areas sampled were 50 randomly distributed 1*1km blocks of land in three cities of the Char-lanta mega-region (Atlanta, Charlotte, and Raleigh). We estimated the abundance of MC relative to other land cover types, and the proportion of land-cover types in NLCD data that are similar to MC. We also assessed if the designations of recreation, transportation, and utility in MC inform the problem differently than simply tallying MC as a whole. 610 ground points, collected using the Google Earth, were used to evaluate accuracy of NLCD data and visual interpretation for consistency. Overall accuracy of visual interpretation and NLCD data was 78% and 58%, respectively. NLCD data underestimated forest and MC by 14.4km2 and 6.4km2, respectively, while overestimated impervious surfaces by 10.2km2 compared to visual interpretation. MC was the second most dominant land cover after forest (40.5%) as it covered about 28% of the total area and about 13% higher than impervious surfaces. Results also suggested that recreation in MC constitutes up to 90% of area followed by transportation and utility. Due to the prevalence of MC in urbanizing regions, the addition of MC to the synthesis of land-cover data can help delineate realistic cover types and area proportions that could inform ecologic/hydrologic models, and allow for accurate prediction of ecological phenomena.
NASA Astrophysics Data System (ADS)
Tian, L.; Shu, A. P.; Huang, L.
2017-12-01
Along with accelerating in Chinese urbanization, a increasing number of urban construction projects have been built, which cause the growth of impervious surface ratio in cities. Large areas of impervious surface hinders city normal natural water cycles, increases surface runoff coefficient, brings flood peak forward, and increases risk of flooding . Therefore, with the view of reducing risk of urban waterlogging disaster, improving water resource cyclic utilization, and maximizing recovery of urban eco-hydrological process, China begins to promote Sponge city construction using LID as core idea. The paper take five kinds of collecting and utilization rainwater measure as research example, analysis their characteristic ,take investment cost, economic benefit and enviromental benefit as principle of assessment. The weight of the evaluation criterion are gained by entropy method. The final evaluation of urban stormwater measures configuration mode based on the low impact development with PROMETHEE method . The sensitivity of evaluation criterion are analysised by GAIA. Finally, the examples are given to explain the feasibility . The result shows that comprehensive benefit of the mode containing green roof, permeable pavement, Sunken green space and rainwater harvesting tank is the highest. It turn out that reasonable and various types rainwater measures and high land utilization is significant for increasing the its comprehensive efficiency. Besides, the environmental benefit of urban rainwater measures is significantly greater than the economic benefit. There is a positive correlation between plant significantly greater than the economic benefit. There is a positive correlation between plant shallow groove, sunken green space and comprehensive benefit of rainwater measure. Because they can effectively removes water pollutants in stormwater. The studies not only have a great significance in optimizing configuration mode of urban rainwater measures, but also push development of the sponge city construction and propel exploration in developmental model of ideal city forward.
NASA Astrophysics Data System (ADS)
Wang, Xueqian; Guo, Weidong; Qiu, Bo; Liu, Ye; Sun, Jianning; Ding, Aijun
2017-04-01
Anthropogenic land use has a significant impact on climate change. Located in the typical East Asian monsoon region, the land-atmosphere interaction in the lower reaches of the Yangtze River is even more complicated due to intensive human activities and different types of land use in this region. To better understand these effects on microclimate change, we compare differences in land surface temperature (Ts) for three land types around Nanjing from March to August, 2013, and then quantify the contribution of land surface factors to these differences (ΔTs) by considering the effects of surface albedo, roughness length, and evaporation. The atmospheric background contribution to ΔTs is also considered based on differences in air temperature (ΔTa). It is found that the cropland cooling effect decreases Ts by 1.76° and the urban heat island effect increases Ts by 1.25°. They have opposite impacts but are both significant in this region. Various changes in surface factors affect radiation and energy distribution and eventually modify Ts. It is the evaporative cooling effect that plays the most important role in this region and accounts for 1.40° of the crop cooling and 2.29° of the urban warming. Moreover, the background atmospheric circulation is also an indispensable part in land-atmosphere feedback induced by land use change and reinforces both these effects.
Estoque, Ronald C; Murayama, Yuji; Myint, Soe W
2017-01-15
Due to its adverse impacts on urban ecological environment and the overall livability of cities, the urban heat island (UHI) phenomenon has become a major research focus in various interrelated fields, including urban climatology, urban ecology, urban planning, and urban geography. This study sought to examine the relationship between land surface temperature (LST) and the abundance and spatial pattern of impervious surface and green space in the metropolitan areas of Bangkok (Thailand), Jakarta (Indonesia), and Manila (Philippines). Landsat-8 OLI/TIRS data and various geospatial approaches, including urban-rural gradient, multiresolution grid-based, and spatial metrics-based techniques, were used to facilitate the analysis. We found a significant strong correlation between mean LST and the density of impervious surface (positive) and green space (negative) along the urban-rural gradients of the three cities, depicting a typical UHI profile. The correlation of impervious surface density with mean LST tends to increase in larger grids, whereas the correlation of green space density with mean LST tends to increase in smaller grids, indicating a stronger influence of impervious surface and green space on the variability of LST in larger and smaller areas, respectively. The size, shape complexity, and aggregation of the patches of impervious surface and green space also had significant relationships with mean LST, though aggregation had the most consistent strong correlation. On average, the mean LST of impervious surface is about 3°C higher than that of green space, highlighting the important role of green spaces in mitigating UHI effects, an important urban ecosystem service. We recommend that the density and spatial pattern of urban impervious surfaces and green spaces be considered in landscape and urban planning so that urban areas and cities can have healthier and more comfortable living urban environments. Copyright © 2016 Elsevier B.V. All rights reserved.
Catastrophic incidents can generate a large number of samples with analytically diverse types including forensic, clinical, environmental, food, and others. Environmental samples include water, wastewater, soil, air, urban building and infrastructure materials, and surface resid...
Xia, Yongqiu; Ti, Chaopu; She, Dongli; Yan, Xiaoyuan
2016-10-01
The effects of land use and land-use changes on river nutrient concentrations are not well understood, especially in the watersheds of developing countries that have a mixed land use of rice paddy fields and developing urban surfaces. Here, we present a three-year study of a paddy agricultural-urban area gradient watershed in southeast China. The annual anthropogenic nitrogen (N) input from the agricultural region to the urban region was high, yet the results showed that the monthly nutrient concentrations in the river were low in the rainy seasons. The nutrient concentrations decreased continuously as the river water passed through the traditional agriculture region (TAR; paddy rice and wheat rotation) and increased substantially in the city region (CR). The traditional agricultural reference region exported most of the nutrient loads at high flows (>1mmd(-1)), the intensified agricultural region (IAR, aquaculture and poultry farming) exported most of the nutrient loads at moderate flows (between 0.5 and 1mmd(-1)), and the CR reference area exported most of the nutrient loads under low to moderate flows. We developed a statistical model to link variations in the nutrient concentrations to the proportion of land-use types and rainfall. The statistical results showed that impervious surfaces, which we interpret as a proxy for urban activities including sewage disposal, were the most important drivers of nutrient concentrations, whereas water surfaces accounted for a substantial proportion of the nutrient sinks. Therefore, to efficiently reduce water pollution, sewage from urban areas must be addressed as a priority, although wetland restoration could also achieve substantial pollutant removal. Copyright © 2016. Published by Elsevier B.V.
Impacts of urban landscape patterns on urban thermal variations in Guangzhou, China
NASA Astrophysics Data System (ADS)
Chen, Youjun; Yu, Shixiao
2017-02-01
One of the key impacts of rapid urbanization on the environment is the effect of surface urban thermal variations (SUTV). Understanding the effects of urban landscape features on SUTV is crucial for improving the ecology and sustainability of cities. In this study, an investigation was conducted to detect urban landscape patterns and assess their impact on surface temperature. Landsat images: Thematic Mapper was used to calculate land surface temperature (LST) in Guangzhou, the capital city of Guangdong Province in southern China. SUTV zones, including surface urban heat islands (SUHI) and surface urban heat sinks (SUHS), were then empirically identified. The composition and configuration of landscape patterns were measured by a series of spatial metrics at the class and landscape levels in the SUHI and SUHS zones. How both landscape composition and configuration influence urban thermal characteristics was then analysed. It was found that landscape composition has the strongest effect on SUTV, but that urban landscape configuration also influences SUTV. These findings are helpful for achieving a comprehensive understanding of how urban landscape patterns impact SUTV and can help in the design of effective urban landscape patterns to minimize the effects of SUHI.
Wind Tunnel Study on Flows over Various Two-dimensional Idealized Urban-liked Surfaces
NASA Astrophysics Data System (ADS)
Ho, Yat-Kiu; Liu, Chun-Ho
2013-04-01
Extensive human activities (e.g. increased traffic emissions) emit a wide range of pollutants resulting in poor urban area air quality. Unlike open, flat and homogenous rural terrain, urban surface is complicated by the presence of buildings, obstacles and narrow streets. The irregular urban surfaces thus form a random roughness that further modifies the near-surface flows and pollutant dispersion. In this study, a physical modelling approach is employed to commence a series of wind tunnel experiments to study the urban-area air pollution problems. The flow characteristics over different hypothetical urban roughness surfaces were studied in a wind tunnel in isothermal conditions. Preliminary experiments were conducted based on six types of idealized two-dimensional (2D) street canyon models with various building-height-to-street-width (aspect) ratios (ARs) 1, 1/2, 1/4, 1/8, 1/10 and 1/12. The main instrumentation is an in-house 90o X-hotwire anemometry. In each set of configuration, a sampling street canyon was selected near the end of the streamwise domain. Its roof level, i.e. the transverse between the mid points of the upstream and downstream buildings, was divided into eight segments. The measurements were then recorded on the mid-plane of the spannwise domain along the vertical profile (from building roof level to the ceiling of wind tunnel) of the eight segments. All the data acquisition processes were handled by the NI data acquisition modules, NI 9239 and CompactDAQ-9188 hardware. Velocity calculation was carried out in the post-processing stage on a digital computer. The two-component flow velocities and velocity fluctuations were calculated at each sampling points, therefore, for each model, a streamwise average of eight vertical profiles of mean velocity and velocity fluctuations was presented. A plot of air-exchange rate (ACH) against ARs was also presented in order to examine the ventilation performance of different tested models. Preliminary results show that the near-ground turbulence behaviour (2 to 5 times of the building height) is relatively sensitive to the changes in ARs. The wider the streets (decrease in AR), the higher the turbulence level was observed. A similar behaviour is observed on the ventilation performance in which the ACH was increased with decreasing AR. Interestingly, a peak ACH value was observed around AR = 1/10 and was slightly dropped thereafter at AR = 1/12. The observation is in line with our previous large-eddy simulation (LES) results. These findings indicate that variability of urban-like surfaces is important to the near-ground turbulent boundary layer structure. Additional measurements on the flows and dispersions over building surfaces will be undertaken on a variety of ARs and building height variations to elucidate the complex transport and pollutant dispersion mechanism in urban areas.
Convergent surface water distributions in U.S. cities
M.K. Steele; J.B. Heffernan; N. Bettez; J. Cavender-Bares; P.M. Groffman; J.M. Grove; S. Hall; S.E. Hobbie; K. Larson; J.L. Morse; C. Neill; K.C. Nelson; J. O' Neil-Dunne; L. Ogden; D.E. Pataki; C. Polsky; R. Roy Chowdhury
2014-01-01
Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and...
Quantifying the impact of human activity on temperatures in Germany
NASA Astrophysics Data System (ADS)
Benz, Susanne A.; Bayer, Peter; Blum, Philipp
2017-04-01
Human activity directly influences ambient air, surface and groundwater temperatures. Alterations of surface cover and land use influence the ambient thermal regime causing spatial temperature anomalies, most commonly heat islands. These local temperature anomalies are primarily described within the bounds of large and densely populated urban settlements, where they form so-called urban heat islands (UHI). This study explores the anthropogenic impact not only for selected cities, but for the thermal regime on a countrywide scale, by analyzing mean annual temperature datasets in Germany in three different compartments: measured surface air temperature (SAT), measured groundwater temperature (GWT), and satellite-derived land surface temperature (LST). As a universal parameter to quantify anthropogenic heat anomalies, the anthropogenic heat intensity (AHI) is introduced. It is closely related to the urban heat island intensity, but determined for each pixel (for satellite-derived LST) or measurement point (for SAT and GWT) of a large, even global, dataset individually, regardless of land use and location. Hence, it provides the unique opportunity to a) compare the anthropogenic impact on temperatures in air, surface and subsurface, b) to find main instances of anthropogenic temperature anomalies within the study area, in this case Germany, and c) to study the impact of smaller settlements or industrial sites on temperatures. For all three analyzed temperature datasets, anthropogenic heat intensity grows with increasing nighttime lights and declines with increasing vegetation, whereas population density has only minor effects. While surface anthropogenic heat intensity cannot be linked to specific land cover types in the studied resolution (1 km × 1 km) and classification system, both air and groundwater show increased heat intensities for artificial surfaces. Overall, groundwater temperature appears most vulnerable to human activity; unlike land surface temperature and surface air temperature, groundwater temperatures are elevated in cultivated areas as well. At the surface of Germany, the highest anthropogenic heat intensity with 4.5 K is found at an open-pit lignite mine near Jülich, followed by three large cities (Munich, Düsseldorf and Nuremberg) with annual mean anthropogenic heat intensities > 4 K. Overall, surface anthropogenic heat intensities > 0 K and therefore urban heat islands are observed in communities down to a population of 5,000.
Aerosol Radiative Forcing in Asian Continental Outflow
NASA Technical Reports Server (NTRS)
Pueschel, R.; Kinne, S.; Redemann, J.; Gore, Warren J. (Technical Monitor)
2000-01-01
Aerosols in elevated layers were sampled with FSSP-probes and wire impactors over the Pacific ocean aboard the NASA DC-8 aircraft. Analyses of particle size and morphology identifies two distinctly different aerosol types for cases when the mid-visible extinctions exceed 0.2/km. Smaller sizes (effective radii of 0.2 um) and moderate absorption (mid-visible single scattering albedo of.935) are typical for urban-industrial pollution. Larger sizes (effective radii of 0.7 um) and weak absorption (mid-visible single scattering albedo of 0.985) identify dust. This aerosol classification is in agreement with its origin as determined by airmass back trajectory analysis. Based on lidar vertical profiling, aerosol dominated by dust and urban-industrial pollution above 3km were assigned mid-visible optical depths of 0.50 and 0.27, respectively. Radiative transfer simulations, considering a 50% cloud-cover below the aerosol layers, suggest (on a daily tP C)C> basis) small reductions (-4W/m2) to the energy budget at the top of the atmosphere for both aerosol types. For c' 0 dust, more backscattering of sunlight (weaker solar absorption) is compensated by a stronger greenhouse effect due to larger sizes. Forced reductions to the energy budget at the surface are 12W/m2 for both aerosol types. In contrast, impacts on heating rates within the aerosol layers are quite different: While urban-industrial aerosol warms the layer (at +0.6K/day as solar heating dominates), dust cools (at -0.5K/day as infrared cooling dominates). Sensitivity tests show the dependence of the aerosol climatic impact on the optical depth, particle size, absorptivity, and altitude of the layers, as well as clouds and surface properties. Climatic cooling can be eliminated (1) for the urban-industrial aerosol if absorption is increased to yield a mid-visible single scattering albedo of 0.89, or if the ocean is replaced by a land surface; (2) for the dust aerosol if the effective radius is increased from 0.7 to 1.2 um. The removal of low-level clouds doubles the cooling at the top of the atmosphere to about -8W/m2.
Scintillometer measurements above the urban area of London
NASA Astrophysics Data System (ADS)
Pauscher, Lukas; Salmond, Jennifer; Grimmond, C. S. B.; Foken, Thomas
2010-05-01
The spatial heterogeneity of urban surfaces presents a particular challenge to the measurement of turbulent fluxes. This is particularly true close to the urban surface (in the roughness sub-layer (RSL)) where the mosaic of roof top and street canyon surfaces present a complex three dimensional source area. Scintillometery, which offers the ability to make path-averaged measurements of turbulent fluxes of heat and momentum, provides an alternative approach to obtaining more spatially representative data sets in the RSL. In this study three Scintec small aperture scintillometers (SLS 20) were used to measure the sensible heat flux (QH) at a densely built up site at Strand Campus, King's College London, UK. Two different surfaces (courtyard and rooftop) characteristic of the urban environment were investigated simultaneously. One of the SLS was aligned just atop a courtyard (z/zH= 0.9), while the other two were set up in two different heights (z/zH= 1 and z/zH= 1.25) above a rooftop line. Where zH is the mean building height and z is the measurement height above ground level. Special consideration was given to the estimation of the displacement height and the influence of the Monin-Obukov function used for the analysis. To estimate the contribution of the different surface types to the observed fluxes a footprint analysis was carried out for the two rooftop SLS and the eddy covariance system. Fluxes from the two SLS above the rooftop generally agreed well with each other and exhibited a pronounced diurnal cycle. They also showed similar patterns and magnitudes as those measured by an eddy covariance system located close by. In contrast, diurnal flux patterns derived from the measurements atop the courtyard showed marked differences, especially during day time when fluxes often remained smaller.
NASA Astrophysics Data System (ADS)
Lee, J. H.
2015-12-01
Urban forests are known for mitigating the urban heat island effect and heat-related health issues by reducing air and surface temperature. Beyond the amount of the canopy area, however, little is known what kind of spatial patterns and structures of urban forests best contributes to reducing temperatures and mitigating the urban heat effects. Previous studies attempted to find the relationship between the land surface temperature and various indicators of vegetation abundance using remote sensed data but the majority of those studies relied on two dimensional area based metrics, such as tree canopy cover, impervious surface area, and Normalized Differential Vegetation Index, etc. This study investigates the relationship between the three-dimensional spatial structure of urban forests and urban surface temperature focusing on vertical variance. We use a Landsat-8 Thermal Infrared Sensor image (acquired on July 24, 2014) to estimate the land surface temperature of the City of Sacramento, CA. We extract the height and volume of urban features (both vegetation and non-vegetation) using airborne LiDAR (Light Detection and Ranging) and high spatial resolution aerial imagery. Using regression analysis, we apply empirical approach to find the relationship between the land surface temperature and different sets of variables, which describe spatial patterns and structures of various urban features including trees. Our analysis demonstrates that incorporating vertical variance parameters improve the accuracy of the model. The results of the study suggest urban tree planting is an effective and viable solution to mitigate urban heat by increasing the variance of urban surface as well as evaporative cooling effect.
Xie, Shilin; Lu, Fei; Cao, Lei; Zhou, Weiqi; Ouyang, Zhiyun
2016-01-01
Understanding the factors that influence the characteristics of avian communities using urban parks at both the patch and landscape level is important to focus management effort towards enhancing bird diversity. Here, we investigated this issue during the breeding season across urban parks in Beijing, China, using high-resolution satellite imagery. Fifty-two bird species were recorded across 29 parks. Analysis of residence type of birds showed that passengers were the most prevalent (37%), indicating that Beijing is a major node in the East Asian–Australasian Flyway. Park size was crucial for total species abundance, but foliage height diversity was the most important factor influencing avian species diversity. Thus, optimizing the configuration of vertical vegetation structure in certain park areas is critical for supporting avian communities in urban parks. Human visitation also showed negative impact on species diversity. At the landscape level, the percentage of artificial surface and largest patch index of woodland in the buffer region significantly affected total species richness, with insectivores and granivores being more sensitive to the landscape pattern of the buffer region. In conclusion, urban birds in Beijing are influenced by various multi-scale factors; however, these effects vary with different feeding types. PMID:27404279
NASA Astrophysics Data System (ADS)
Salamanca, Francisco; Zhang, Yizhou; Barlage, Michael; Chen, Fei; Mahalov, Alex; Miao, Shiguang
2018-03-01
We have augmented the existing capabilities of the integrated Weather Research and Forecasting (WRF)-urban modeling system by coupling three urban canopy models (UCMs) available in the WRF model with the new community Noah with multiparameterization options (Noah-MP) land surface model (LSM). The WRF-urban modeling system's performance has been evaluated by conducting six numerical experiments at high spatial resolution (1 km horizontal grid spacing) during a 15 day clear-sky summertime period for a semiarid urban environment. To assess the relative importance of representing urban surfaces, three different urban parameterizations are used with the Noah and Noah-MP LSMs, respectively, over the two major cities of Arizona: Phoenix and Tucson metropolitan areas. Our results demonstrate that Noah-MP reproduces somewhat better than Noah the daily evolution of surface skin temperature and near-surface air temperature (especially nighttime temperature) and wind speed. Concerning the urban areas, bulk urban parameterization overestimates nighttime 2 m air temperature compared to the single-layer and multilayer UCMs that reproduce more accurately the daily evolution of near-surface air temperature. Regarding near-surface wind speed, only the multilayer UCM was able to reproduce realistically the daily evolution of wind speed, although maximum winds were slightly overestimated, while both the single-layer and bulk urban parameterizations overestimated wind speed considerably. Based on these results, this paper demonstrates that the new community Noah-MP LSM coupled to an UCM is a promising physics-based predictive modeling tool for urban applications.
Ballantyne, Mark; Pickering, Catherine Marina
2015-08-15
Recreational trails are one of the most common types of infrastructure used for nature-based activities such as hiking and mountain biking worldwide. Depending on their design, location, construction, maintenance and use, these trails differ in their environmental impacts. There are few studies, however, comparing the impacts of different trail types including between formal management-created trails and informal visitor-created trails. Although both types of trails can be found in remote natural areas, dense networks of them often occur in forests close to cities where they experience intense visitor use. To assess the relative impacts of different recreational trails in urban forests, we compared the condition of the trail surface, loss of forest strata and changes in tree structure caused by seven types of trails (total network 46.1 km) traversing 17 remnants of an endangered urban forest in Australia. After mapping and classifying all trails, we assessed their impact on the forest condition at 125 sites (15 sites per trail type, plus 15 control sites within undisturbed forest). On the trail sites, the condition of the trail surface, distance from the trail edge to four forest strata (litter, understory, midstorey and tree cover) and structure of the tree-line were assessed. Informal trails generally had poorer surface conditions and were poorly-designed and located. Per site, formal and informal trails resulted in similar loss of forest strata, with wider trails resulting in greater loss of forest. Because there were more informal trails, however, they accounted for the greatest cumulative forest loss. Structural impacts varied, with the widest informal trails and all formal hardened trails resulting in similar reductions in canopy cover and tree density but an increase in saplings. These structural impacts are likely a function of the unregulated and intense use of large informal trails, and disturbance from the construction and maintenance of formal trails. The results demonstrate that different types of recreational trails vary in the type and range of impacts they cause to forests. They highlight the importance of careful consideration towards management options when dealing with trail networks especially in areas of high conservation value. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tallis, Matthew; Freer-Smith, Peter; Sinnett, Danielle; Aylott, Matthew; Taylor, Gail
2010-05-01
In the urban environment atmospheric pollution by PM10 (particulate matter with a diameter less than 10 x 10-6 m) is a problem that can have adverse effects on human health, particularly increasing rates of respiratory disease. The main contributors to atmospheric PM10 in the urban environment are road traffic, industry and power production. The urban tree canopy is a receptor for removing PM10s from the atmosphere due to the large surface areas generated by leaves and air turbulence created by the structure of the urban forest. In this context urban greening has long been known as a mechanism to contribute towards PM10 removal from the air, furthermore, tree canopy cover has a role in contributing towards a more sustainable urban environment. The work reported here has been carried out within the BRIDGE project (SustainaBle uRban plannIng Decision support accountinG for urban mEtabolism). The aim of this project is to assess the fluxes of energy, water, carbon dioxide and particulates within the urban environment and develope a DSS (Decision Support System) to aid urban planners in sustainable development. A combination of published urban canopy cover data from ground, airborne and satellite based surveys was used. For each of the 33 London boroughs the urban canopy was classified to three groups, urban woodland, street trees and garden trees and each group quantified in terms of ground cover. The total [PM10] for each borough was taken from the LAEI (London Atmospheric Emissions Inventory 2006) and the contribution to reducing [PM10] was assessed for each canopy type. Deposition to the urban canopy was assessed using the UFORE (Urban Forest Effects Model) approach. Deposition to the canopy, boundary layer height and percentage reduction of the [PM10] in the atmosphere was assessed using both hourly meterological data and [PM10] and seasonal data derived from annual models. Results from hourly and annual data were compared with measured values. The model was then applied to future predictions of annual [PM10] and future canopy cover scenarios for London. The contribution of each canopy type subjected to the different atmospheric [PM10] of the 33 London boroughs now and in the future will be discussed. Implementing these findings into a decision support system (DSS) for sustainable urban planning will also be discussed.
Thermal repellent properties of surface coating using silica
NASA Astrophysics Data System (ADS)
Lee, Y. Y.; Halim, M. S.; Aminudin, E.; Guntor, N. A.
2017-11-01
Extensive land development in urban areas is completely altering the surface profile of human living environment. As cities growing rapidly, impervious building and paved surfaces are replacing the natural landscape. In the developing countries with tropical climate, large masses of building elements, such as brick wall and concrete members, absorb and store large amount of heat, which in turn radiate back to the surrounding air during the night time. This bubble of heat is known as urban heat island (UHI). The use of high albedo urban surfaces is an inexpensive measure that can reduce surrounded temperature. Thus, the main focus of this study is to investigate the ability of silica, SiO2, with high albedo value, to be used as a thermal-repelled surface coating for brick wall. Three different silica coatings were used, namely silicone resin, silicone wax and rain repellent and one exterior commercial paint (jota shield paint) that commercially available in the market were applied on small-scale brick wall models. An uncoated sample also had been fabricated as a control sample for comparison. These models were placed at the outdoor space for solar exposure. Outdoor environment measurement was carried out where the ambient temperature, surface temperature, relative humidity and UV reflectance were recorded. The effect of different type of surface coating on temperature variation of the surface brick wall and the thermal performance of coatings as potential of heat reduction for brick wall have been studied. Based on the results, model with silicone resin achieved the lowest surface temperature which indicated that SiO2 can be potentially used to reduce heat absorption on the brick wall and further retains indoor passive thermal comfortability.
On the urban land-surface impact on climate over Central Europe
NASA Astrophysics Data System (ADS)
Huszar, Peter; Halenka, Tomas; Belda, Michal; Zemankova, Katerina; Zak, Michal
2014-05-01
For the purpose of qualifying and quantifying the impact of cities and in general the urban surfaces on climate over central Europe, the surface parameterization in regional climate model RegCM4 has been extended with the Single Layer Urban Canopy Model (SLUCM) for urban and suburban land surface. This can be used both in dynamic scale within BATS scheme and in a more detailed SUBBATS scale to treat the surface processes on a higher resolution subgrid. A set of experiments was performed over the period of 2005-2009 over central Europe, either without considering urban surfaces and with the SLUCM treatment. Results show a statistically significant impact of urbanized surfaces on temperature (up to 1.5 K increase in summer), on the boundary layer height (ZPBL, increases up to 50 m). Urbanization further influences surface wind with a winter decrease up to -0,6 m s-1 and both increases and decreases in summer depending the location with respect to cities and daytime (changes up to 0.3 ms-1). Urban surfaces significantly reduce evaporation and thus the humidity over the surface. This impacts in our simulations the summer precipitation rate showing decrease over cities up to - 2 mm day-1. We further showed, that significant temperature increases are not limited to the urban canopy layer but spawn the whole boundary layer. Above that, a small but statistically significant temperature decrease is modeled. The comparison with observational data showed significant improvement in modeling the monthly surface temperatures in summer and the models better describe the diurnal temperature variation reducing the afternoon and evening bias due to the UHI development, which was not captured by the model if one does not apply the urban parameterization. Sensitivity experiments were carried out as well to quantify the response of the meteorological conditions to changes in the parameters specific to the urban environment such as street width, building height, albedo of the roofs, anthropogenic heat release etc. and showed that the results are rather robust and the choice of the key SLUCM parameters impacts the results only slightly (mainly temperature, ZPBL and wind velocity). Further, the important conclusion is that statistically significant impacts are modeled not only over large urbanized areas (cities), but the influence of cities is evident over remote rural areas as well with minor or without any urban surfaces. We show that this is the result of the combined effect of the distant influence of surrounding cities and the influence of the minor local urban surface coverage.
Urban watersheds characteristically have high impervious surface cover, resulting in high surface runoff and low infiltration following storms. In response, urban streams experience “flashy” stormflows, reduced baseflows, bank erosion, channel widening, and sedimentation. Urban ...
Co-location and Self-Similar Topologies of Urban Infrastructure Networks
NASA Astrophysics Data System (ADS)
Klinkhamer, Christopher; Zhan, Xianyuan; Ukkusuri, Satish; Elisabeth, Krueger; Paik, Kyungrock; Rao, Suresh
2016-04-01
The co-location of urban infrastructure is too obvious to be easily ignored. For reasons of practicality, reliability, and eminent domain, the spatial locations of many urban infrastructure networks, including drainage, sanitary sewers, and road networks, are well correlated. However, important questions dealing with correlations in the network topologies of differing infrastructure types remain unanswered. Here, we have extracted randomly distributed, nested subnets from the urban drainage, sanitary sewer, and road networks in two distinctly different cities: Amman, Jordan; and Indianapolis, USA. Network analyses were performed for each randomly chosen subnet (location and size), using a dual-mapping approach (Hierarchical Intersection Continuity Negotiation). Topological metrics for each infrastructure type were calculated and compared for all subnets in a given city. Despite large differences in the climate, governance, and populace of the two cities, and functional properties of the different infrastructure types, these infrastructure networks are shown to be highly spatially homogenous. Furthermore, strong correlations are found between topological metrics of differing types of surface and subsurface infrastructure networks. Also, the network topologies of each infrastructure type for both cities are shown to exhibit self-similar characteristics (i.e., power law node-degree distributions, [p(k) = ak-γ]. These findings can be used to assist city planners and engineers either expanding or retrofitting existing infrastructure, or in the case of developing countries, building new cities from the ground up. In addition, the self-similar nature of these infrastructure networks holds significant implications for the vulnerability of these critical infrastructure networks to external hazards and ways in which network resilience can be improved.
Regional climate model assessment of the urban land-surface forcing over central Europe
NASA Astrophysics Data System (ADS)
Huszar, P.; Halenka, T.; Belda, M.; Zak, M.; Sindelarova, K.; Miksovsky, J.
2014-07-01
For the purpose of qualifying and quantifying the climate impact of cities and urban surfaces in general on climate of central Europe, the surface parameterization in regional climate model RegCM4 has been extended with the Single Layer Urban Canopy Model (SLUCM). A set of experiments was performed over the period of 2005-2009 for central Europe, either without considering urban surfaces or with the SLUCM treatment. Results show a statistically significant impact of urbanized surfaces on temperature (up to 1.5 K increase in summer) as well as on the boundary layer height (increases up to 50 m). Urbanization further influences surface wind with a winter decrease up to -0.6 m s-1, though both increases and decreases were detected in summer depending on the location relative to the cities and daytime (changes up to 0.3 m s-1). Urban surfaces significantly reduce evaporation and thus the humidity over the surface. This impacts the simulated summer precipitation rate, showing decrease over cities up to -2 mm day-1. Significant temperature increases are simulated over higher elevations as well, not only within the urban canopy layer. With the urban parameterization, the climate model better describes the diurnal temperature variation, reducing the cold afternoon and evening bias of RegCM4. Sensitivity experiments were carried out to quantify the response of the meteorological conditions to changes in the parameters specific to the urban environment such as street width, building height, albedo of the roofs and anthropogenic heat release. The results proved to be rather robust and the choice of the key SLUCM parameters impacts them only slightly (mainly temperature, boundary layer height and wind velocity). Statistically significant impacts are modeled not only over large urbanized areas, but the influence of the cities is also evident over rural areas without major urban surfaces. It is shown that this is the result of the combined effect of the distant influence of the cities and the influence of the minor local urban surface coverage.
Regional climate model assessment of the urban land-surface forcing over central Europe
NASA Astrophysics Data System (ADS)
Huszar, P.; Halenka, T.; Belda, M.; Zak, M.; Sindelarova, K.; Miksovsky, J.
2014-11-01
For the purpose of qualifying and quantifying the climate impact of cities and urban surfaces in general on climate of central Europe, the surface parameterization in regional climate model RegCM4 has been extended with the Single-layer Urban Canopy Model (SLUCM). A set of experiments was performed over the period of 2005-2009 for central Europe, either without considering urban surfaces or with the SLUCM treatment. Results show a statistically significant impact of urbanized surfaces on temperature (up to 1.5 K increase in summer) as well as on the boundary layer height (increases up to 50 m). Urbanization further influences surface wind with a winter decrease up to -0.6 m s-1, though both increases and decreases were detected in summer depending on the location relative to the cities and daytime (changes up to 0.3 m s-1). Urban surfaces significantly reduce the humidity over the surface. This impacts the simulated summer precipitation rate, showing a decrease over cities of up to -2 mm day-1. Significant temperature increases are simulated over higher altitudes as well, not only within the urban canopy layer. With the urban parameterization, the climate model better describes the diurnal temperature variation, reducing the cold afternoon and evening bias of RegCM4. Sensitivity experiments were carried out to quantify the response of the meteorological conditions to changes in the parameters specific to the urban environment, such as street width, building height, albedo of the roofs and anthropogenic heat release. The results proved to be rather robust and the choice of the key SLUCM parameters impacts them only slightly (mainly temperature, boundary layer height and wind velocity). Statistically significant impacts are modelled not only over large urbanized areas, but the influence of the cities is also evident over rural areas without major urban surfaces. It is shown that this is the result of the combined effect of the distant influence of the cities and the influence of the minor local urban surface coverage.
Davis, Harley T.; Aelion, C. Marjorie; McDermott, Suzanne; Lawson, Andrew B.
2009-01-01
Determining sources of neurotoxic metals in rural and urban soils is important for mitigating human exposure. Surface soil from four areas with significant clusters of mental retardation and developmental delay (MR/DD) in children, and one control site were analyzed for nine metals and characterized by soil type, climate, ecological region, land use and industrial facilities using readily-available GIS-based data. Kriging, principal component analysis (PCA) and cluster analysis (CA) were used to identify commonalities of metal distribution. Three MR/DD areas (one rural and two urban) had similar soil types and significantly higher soil metal concentrations. PCA and CA results suggested that Ba, Be and Mn were consistently from natural sources; Pb and Hg from anthropogenic sources; and As, Cr, Cu, and Ni from both sources. Arsenic had low commonality estimates, was highly associated with a third PCA factor, and had a complex distribution, complicating mitigation strategies to minimize concentrations and exposures. PMID:19361902
[Pollution load and the first flush effect of BOD5 and COD in urban runoff of Wenzhou City].
Wang, Jun; Bi, Chun-juan; Chen, Zhen-lou; Zhou, Dong
2013-05-01
Four typical rainfalls were monitored in two different research areas of Wenzhou Municipality. Concentrations of BOD5 and COD in six different urban runoffs were measured. In addition the event mean concentration (EMC), M (V) curve and BOD5/COD of pollutant were calculated. The results showed that concentrations of BOD5 and COD in different urban runoffs of Wenzhou ranged from ND to 69.21 mg x L(-1) and ND to 636 mg x L(-1). Concentrations of BOD5 and COD in different urban runoffs were decreasing over time, so it is greatly significant to manage the initial runoff for reducing organic pollution. Judged by EMC of BOD5 and COD in these five rainfalls, concentrations of pollutant in some urban runoffs were out of the integrated wastewater discharge standard. If these runoffs flowed into river, it would cause environmental pressure to the next level receiving water bodies. According to the M (V) curve, the first flush effect of COD in most urban runoffs was common; while the first flush effect of BOD5 was same as that of COD. The result also showed that organic pollution was serious at the beginning of runoff. The underlying surface type could affect the concentration of BOD5 and COD in urban runoff. While the results of BOD5/COD also suggested that biodegradation was considered as one of the effective ways to decrease the pollution load of organics in urban runoff, and the best management plans (BMPs) should be selected for various urban runoff types for the treatment of organic pollution.
NASA Astrophysics Data System (ADS)
Trlica, A.; Hutyra, L.; Wang, J.; Schaaf, C.; Erb, A.
2016-12-01
The urban built environment creates key changes in the biophysical character of the landscape, including the creation of Urban Heat Islands (UHIs) with increased near-surface temperatures in and around cities. Alteration in surface albedo is believed to partially drive UHIs through greater absorption of solar energy, but few empirical studies have specifically quantified albedo across a heterogeneous urban landscape, or investigated linkages between albedo, the UHI, and other surface socio-biophysical characteristics at a high enough spatial resolution to discern urban-scale features. This study used data derived from observations by Landsat and other remote sensing platforms to measure albedo across a varied urban landscape centered on Boston, Massachusetts, and examined the relationship between albedo, several key indicators of urban surface character (canopy cover, impervious fraction, and population density) and land surface temperature at resolutions of both 30 and 500 m. Albedo tended to be lower in areas with highest urbanization intensity indicators compared to rural undeveloped areas, and areas with lower albedo tended also to have higher median daytime summer surface temperatures. A k-means classification utilizing all the data available for each pixel revealed several distinct patterns of urban land cover corresponding mainly to the density of population and constructed surfaces and their impact on tree canopy cover. Mean 30-m summer surface temperatures ranged from 40.0 °C (SD = 2.6) in urban core areas to 26.2 °C (SD = 1.1) in nearby forest, but we only observed correspondingly large albedo decreases in the highest density urban core, with mean albedo of 0.116 (SD = 0.015) compared with 0.155 (SD = 0.015) in forest. Observations show that lower albedo in the Boston metropolitan region may be an important component of the local UHI in the most densely built-up urban core regions, while the UHI temperature effect in less densely settled peripheral regions is more likely to be driven primarily by reduced evapotranspiration due to diminished tree canopy and greater impervious surface coverage. These results empirically characterize surface albedo across a suite of land cover categories and biophysical characteristics and reveal how albedo relates to surface temperatures in this urbanized region.
Observing the Vertical Dimensions of Singapore's Urban Heat Island
NASA Astrophysics Data System (ADS)
Chow, W. T. L.; Ho, D. X. Q.
2015-12-01
In numerous cities, measurements of urban warmth in most urban heat island (UHI) studies are generally constrained towards surface or near-surface (<2 m above ground) levels across horizontal variations in land use and land cover. However, there has been hitherto limited attention towards the measurement of vertical temperature profiles extending from the urban surface through to the urban boundary layer. Knowledge of these profiles, through how they vary over different local urban morphologies, and develop with respect to synoptic meteorological conditions, are important towards several aspects of UHI research; these include validating modelling urban canopy lapse rate profiles or estimating the growth of urban plumes. In this study, we utilised temperature sensors attached onto remote controlled aerial quadcopter platforms to measure urban temperature and humidity profiles in Singapore, which is a rapidly urbanizing major tropical metropolis. These profiles were measured from the surface to ~100 m above ground level, a height which includes all of the urban canopy and parts of the urban boundary layer. Initial results indicate significant variations in stability measured over different land uses (e.g. urban park, high-rise residential, commercial); these profiles are also temporally dynamic, depending on the time of day and larger-scale weather conditions.
NASA Astrophysics Data System (ADS)
Tang, Ting; Seuntjens, Piet; van Griensven, Ann; Bronders, Jan
2016-04-01
Urban areas can significantly contribute to pesticide contamination in surface water. However, pesticide behaviours in urban areas, particularly on hard surfaces, are far less studied than those in agricultural areas. Pesticide application on hard surfaces (e.g. roadsides and walkways) is of particular concern due to the high imperviousness and therefore high pesticide runoff potential. Experimental studies have shown that pesticide behaviours on and interactions with hard surfaces are important factors controlling the pesticide runoff potential, and therefore the magnitude and timing of peak concentrations in surface water. We conceptualized pesticide behaviours on hard surfaces and incorporated the conceptualization into a new pesticide runoff model. The pesticide runoff model was implemented in a catchment hydrological model WetSpa-Python (Water and Energy Transfer between Soil, Plants and Atmosphere, Python version). The conceptualization for pesticide processes on hard surfaces accounts for the differences in pesticide behaviour on different hard surfaces. Four parameters are used to describe the partitioning and wash-off of each pesticide on hard surfaces. We tested the conceptualization using experimental dataset for five pesticides on two types of hard surfaces, namely concrete and asphalt. The conceptualization gave good performance in accounting for the wash-off pattern for the modelled pesticides and surfaces, according to quantitative evaluations using the Nash-Sutcliffe efficiency and percent bias. The resulting pesticide runoff model WetSpa-PST (WetSpa for PeSTicides) can simulate pesticides and their metabolites at the catchment scale. Overall, it includes four groups of pesticide processes, namely pesticide application, pesticide interception by plant foliage, pesticide processes on land surfaces (including partitioning, degradation and wash-off on hard surface; partitioning, dissipation, infiltration and runoff in soil) and pesticide processes in depression storage (including degradation, infiltration and runoff). Processes on hard surfaces employs the conceptualization described in the paragraph above. The WetSpa-PST model can account for various spatial details of the urban features in a catchment, such as asphalt, concrete and roof areas. The distributed feature also allows users to input detailed pesticide application data of both non-point and point origins. Thanks to the Python modelling framework prototype used in the WetSpa-Python model, processes in the WetSpa-PST model can be simulated at different time steps depending on data availability and the characteristic temporal scale of each process. This helps to increase the computational accuracy during heavy rainfall events, especially for the associated fast transport of pesticides into surface water. Overall, the WetSpa-PST model has good potential in predicting effects of management options on pesticide releases from heavily urbanized catchments.
Preliminary results of the aerosol optical depth retrieval in Johor, Malaysia
NASA Astrophysics Data System (ADS)
Lim, H. Q.; Kanniah, K. D.; Lau, A. M. S.
2014-02-01
Monitoring of atmospheric aerosols over the urban area is important as tremendous amounts of pollutants are released by industrial activities and heavy traffic flow. Air quality monitoring by satellite observation provides better spatial coverage, however, detailed aerosol properties retrieval remains a challenge. This is due to the limitation of aerosol retrieval algorithm on high reflectance (bright surface) areas. The aim of this study is to retrieve aerosol optical depth over urban areas of Iskandar Malaysia; the main southern development zone in Johor state, using Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m resolution data. One of the important steps is the aerosol optical depth retrieval is to characterise different types of aerosols in the study area. This information will be used to construct a Look Up Table containing the simulated aerosol reflectance and corresponding aerosol optical depth. Thus, in this study we have characterised different aerosol types in the study area using Aerosol Robotic Network (AERONET) data. These data were processed using cluster analysis and the preliminary results show that the area is consisting of coastal urban (65%), polluted urban (27.5%), dust particles (6%) and heavy pollution (1.5%) aerosols.
NASA Astrophysics Data System (ADS)
Guo, Weidong; Wang, Xueqian; Sun, Jianning; Ding, Aijun; Zou, Jun
2016-04-01
The mid- to lower Yangzi River Valley is located within the typical monsoon zone. Rapid urbanization, industrialization, and development of agriculture have led to fast and complicated land use and land cover changes in this region. To investigate land-atmosphere interaction in this region where human activities and monsoon climate are highly interactive with each other, micro-meteorological elements over four different surface types, i.e. urban surface represented by the observational site at Communist Party School in Nanjing (hereafter DX), suburban surface represented by the ground site at Xianling (XL), and grassland and farmland represented by field sites at Lishui County (LS-grass and LS-crop), are analyzed and their differences are revealed. Impacts of different surface parameters applied for different surface types on the radiation budget and surface-atmosphere heat, water, and mass exchanges are investigated. Results indicate that (1) the largest differences in daily average surface air temperature (Ta), surface skin temperature (Ts), and relative humidity (RH) , which are found during the dry periods between DX and LS-crop, can be up to 3.21°C, 7.26°C, and 22.79% respectively. During the growing season, the diurnal ranges of the above three elements are the smallest at DX and the largest at LS-grass, XL and LS-crop; (2) differences in radiative fluxes are mainly reflected in upward shortwave radiation (USR) that is related to surface albedo and upward longwave radiation (ULR) that is related to Ts. USR is the smallest and ULR is the largest at DX. During the growing season, the average difference in ULR between the DX site and other sites with vegetation cover can be up to 20Wm-2. The USR variability is the largest at LS-crop, while the diurnal variation of ULR is the same as that of Ts at all the four sites; (3) the differences in daily average sensible heat (H) and latent heat (LE) between DX and LS-crop are larger than 45 and 95Wm-2, respectively. The proportion of latent heat flux in the net radiation (LE/Rn) keeps increasing with the change of season from the spring to summer. XL site demonstrates a distinct forest feature; (4) surface albedo is small while the Bowen ratio is large at DX (an urban site). The urban heat island effect results in higher Ta and Ts at DX site that is 2°C higher than that at other sites in the nighttime. It is found that surface albedo and roughness length variability both increase at LS-crop during the harvest season and straw burning periods. LE is dominant due to irrigation. Negative H is observed since evaporative cooling leads to low Ts. Daily variability of Ts and Ta is the lowest at LS-crop while RH is the largest. In the summer, the grassland albedo at XL site gradually becomes larger than that at the sites in Lishui. Since the forest-like effects becomes more distinct at XL, LE/Rn increases rapidly. Thereby, although Ts is higher at XL than that at LS-grass , there is no large difference in Ta between the two sites.
Trend Assessment of Spatio-Temporal Change of Tehran Heat Island Using Satellite Images
NASA Astrophysics Data System (ADS)
Saradjian, M. R.; Sherafati, Sh.
2015-12-01
Numerous investigations on Urban Heat Island (UHI) show that land cover change is the main factor of increasing Land Surface Temperature (LST) in urban areas, especially conversion of vegetation and bare soil to concrete, asphalt and other man-made structures. On the other hand, other human activities like those which cause to burning fossil fuels, that increase the amount of carbon dioxide, may raise temperature in global scale in comparison with small scales (urban areas). In this study, multiple satellite images with different spatial and temporal resolutions have been used to determine Land Surface Temperature (LST) variability in Tehran metropolitan area. High temporal resolution of AVHRR images have been used as the main data source when investigating temperature variability in the urban area. The analysis shows that UHI appears more significant at afternoon and night hours. But the urban class temperature is almost equal to its surrounding vegetation and bare soil classes at around noon. It also reveals that there is no specific difference in UHI intense during the days throughout the year. However, it can be concluded that in the process of city expansion in years, UHI has been grown both spatially and in magnitude. In order to locate land-cover types and relate them to LST, Thematic Mapper (TM) images have been exploited. The influence of elevation on the LST has also been studied, using digital elevation model derived from SRTM database.
A global analysis of the urban heat island effect based on multisensor satellite data
NASA Astrophysics Data System (ADS)
Xiao, J.; Frolking, S. E.; Milliman, T. E.; Schneider, A.; Friedl, M. A.
2017-12-01
Human population is rapidly urbanizing. In much of the world, cities are prone to hotter weather than surrounding rural areas - so-called `urban heat islands' - and this effect can have mortal consequences during heat waves. During the daytime, when the surface energy balance is driven by incoming solar radiation, the magnitude of urban warming is strongly influenced by surface albedo and the capacity to evaporate water (i.e., there is a strong relationship between vegetated land fraction and the ratio of sensible to latent heat loss or Bowen ratio). At nighttime, urban cooling is often inhibited by the thermal inertia of the built environment and anthropogenic heat exhaust from building and transportation energy use. We evaluated a suite of global remote sensing data sets representing a range of urban characteristics against MODIS-derived land-surface temperature differences between urban and surrounding rural areas. We included two new urban datasets in this analysis - MODIS-derived change in global urban extent and global urban microwave backscatter - along with several MODIS standard products and DMSP/OLS nighttime lights time series data. The global analysis spanned a range of urban characteristics that likely influence the magnitude of daytime and/or nighttime urban heat islands - urban size, population density, building density, state of development, impervious fraction, eco-climatic setting. Specifically, we developed new satellite datasets and synthesizing these with existing satellite data into a global database of urban land surface parameters, used two MODIS land surface temperature products to generate time series of daytime and nighttime urban heat island effects for 30 large cities across the globe, and empirically analyzed these data to determine specifically which remote sensing-based characterizations of global urban areas have explanatory power with regard to both daytime and nighttime urban heat islands.
Han, Guifeng; Xu, Jianhua
2013-07-01
Using SPOT/VGT NDVI time series images (2002-2009) and MODIS/LST images (2002-2009) smoothed by a Savitzky-Golay filter, the land surface phenology (LSP) and land surface temperature (LST), respectively, are extracted for six cities in the Yangtze River Delta, China, including Shanghai, Hangzhou, Nanjing, Changzhou, Wuxi, and Suzhou. The trends of the averaged LSP and LST are analyzed, and the relationship between these values is revealed along the urban-rural gradient. The results show that urbanization advances the start of the growing season, postpones the end of the growing season, prolongs the growing season length (GSL), and reduces the difference between maximal NDVI and minimal NDVI in a year (NDVIamp). More obvious changes occur in surface vegetation phenology as the urbanized area is approached. The LST drops monotonously and logarithmically along the urban-rural gradient. Urbanization generally affects the LSP of the surrounding vegetation within 6 km to the urban edge. Except for GSL, the difference in the LSP between urban and rural areas has a significant logarithmic relationship with the distance to the urban edge. In addition, there is a very strong linear relationship between the LSP and the LST along the urban-rural gradient, especially within 6 km to the urban edge. The correlations between LSP and gross domestic product and population density reveal that human activities have considerable influence on the land surface vegetation growth.
Jiang, L.; Liao, M.; Lin, H.; Yang, L.
2009-01-01
A wide range of urban ecosystem studies, including urban hydrology, urban climate, land use planning and watershed resource management, require accurate and up‐to‐date geospatial data of urban impervious surfaces. In this study, the potential of the synergistic use of optical and InSAR data in urban impervious surface mapping at the sub‐pixel level was investigated. A case study in Hong Kong was conducted for this purpose by applying a classification and regression tree (CART) algorithm to SPOT 5 multispectral imagery and ERS‐2 SAR data. Validated by reference data derived from high‐resolution colour‐infrared (CIR) aerial photographs, our results show that the addition of InSAR feature information can improve the estimation of impervious surface percentage (ISP) in comparison with using SPOT imagery alone. The improvement is especially notable in separating urban impervious surface from the vacant land/bare ground, which has been a difficult task in ISP modelling with optical remote sensing data. In addition, the results demonstrate the potential to map urban impervious surface by using InSAR data alone. This allows frequent monitoring of world's cities located in cloud‐prone and rainy areas.
NASA Astrophysics Data System (ADS)
Hu, Yonghong; Jia, Gensuo; Pohl, Christine; Zhang, Xiaoxuan; van Genderen, John
2016-02-01
Radiative forcing (RF) induced by land use (mainly surface albedo) change is still not well understood in climate change science, especially the effects of changes in urban albedo due to rapid urbanization on the urban radiation budget. In this study, a modified RF derivation approach based on Landsat images was used to quantify changes in the solar radiation budget induced by variations in surface albedo in Beijing from 2001 to 2009. Field radiation records from a Beijing meteorological station were used to identify changes in RF at the local level. There has been rapid urban expansion over the last decade, with the urban land area increasing at about 3.3 % annually from 2001 to 2009. This has modified three-dimensional urban surface properties, resulting in lower albedo due to complex building configurations of urban centers and higher albedo on flat surfaces of suburban areas and cropland. There was greater solar radiation (6.93 × 108 W) in the urban center in 2009 than in 2001. However, large cropland and urban fringe areas caused less solar radiation absorption. RF increased with distance from the urban center (less than 14 km) and with greater urbanization, with the greatest value being 0.41 W/m2. The solar radiation budget in urban areas was believed to be mainly influenced by urban structural changes in the horizontal and vertical directions. Overall, the results presented herein indicate that cumulative urbanization impacts on the natural radiation budget could evolve into an important driver of local climate change.
NASA Astrophysics Data System (ADS)
Lee, S.-H.; Kim, S.-W.; Angevine, W. M.; Bianco, L.; McKeen, S. A.; Senff, C. J.; Trainer, M.; Tucker, S. C.; Zamora, R. J.
2010-10-01
The impact of urban surface parameterizations in the WRF (Weather Research and Forecasting) model on the simulation of local meteorological fields is investigated. The Noah land surface model (LSM), a modified LSM, and a single-layer urban canopy model (UCM) have been compared, focusing on urban patches. The model simulations were performed for 6 days from 12 August to 17 August during the Texas Air Quality Study 2006 field campaign. Analysis was focused on the Houston-Galveston metropolitan area. The model simulated temperature, wind, and atmospheric boundary layer (ABL) height were compared with observations from surface meteorological stations (Continuous Ambient Monitoring Stations, CAMS), wind profilers, the NOAA Twin Otter aircraft, and the NOAA Research Vessel Ronald H. Brown. The UCM simulation showed better results in the comparison of ABL height and surface temperature than the LSM simulations, whereas the original LSM overestimated both the surface temperature and ABL height significantly in urban areas. The modified LSM, which activates hydrological processes associated with urban vegetation mainly through transpiration, slightly reduced warm and high biases in surface temperature and ABL height. A comparison of surface energy balance fluxes in an urban area indicated the UCM reproduces a realistic partitioning of sensible heat and latent heat fluxes, consequently improving the simulation of urban boundary layer. However, the LSMs have a higher Bowen ratio than the observation due to significant suppression of latent heat flux. The comparison results suggest that the subgrid heterogeneity by urban vegetation and urban morphological characteristics should be taken into account along with the associated physical parameterizations for accurate simulation of urban boundary layer if the region of interest has a large fraction of vegetation within the urban patch. Model showed significant discrepancies in the specific meteorological conditions when nocturnal low-level jets exist and a thermal internal boundary layer over water forms.
NASA Astrophysics Data System (ADS)
Green, Daniel; Pattison, Ian; Yu, Dapeng
2017-04-01
Surface water (pluvial) flooding occurs when excess rainfall from intense precipitation events is unable to infiltrate into the subsurface or drain via natural or artificial drainage channels. Surface water flood events pose a major hazard to urban regions across the world, with nearly two thirds of flood damages in the UK being caused by surface water flood events. The perceived risk of surface water flooding appears to have increased in recent years due to several factors, including (i) precipitation increases associated with climatic change and variability; (ii) population growth meaning more people are occupying flood risk areas, and; (iii) land-use changes. Because urban areas are often associated with a high proportion of impermeable land-uses (e.g. tarmacked or paved surfaces and buildings) and a reduced coverage of vegetated, permeable surfaces, urban surface water flood risk during high intensity precipitation events is often exacerbated. To investigate the influence of urbanisation and terrestrial factors on surface water flood outputs, rainfall intensity, catchment slope, permeability, building density/layout scenarios were designed within a novel, 9m2 physical modelling environment. The two-tiered physical model used consists of (i) a low-cost, nozzle-type rainfall simulator component which is able to simulate consistent, uniformly distributed rainfall events of varying duration and intensity, and; (ii) a reconfigurable, modular plot surface. All experiments within the physical modelling environment were subjected to a spatiotemporally uniform 45-minute simulated rainfall event, while terrestrial factors on the physical model plot surface were altered systematically to investigate their hydrological response on modelled outflow and depth profiles. Results from the closed, controlled physical modelling experiments suggest that meteorological factors, such as the duration and intensity of simulated rainfall, and terrestrial factors, such as model slope, surface permeability and building density have a significant influence on physical model hydrological outputs. For example, changes in building density across the urban model catchment are shown to result in hydrographs having (i) a more rapid rising limb; (ii) higher peak discharges; (iii) a reduction in the total hydrograph time, and; (iv) a faster falling limb, with the dense building scenario having a 22% increase in peak discharge when compared to the no building scenario. Furthermore, the layout of buildings across the plot surface and their proximity to the outflow unit (i.e. downstream, upstream or to the side of the physical model outlet) is shown to influence outflow hydrograph response, with downstream concentrated building scenarios resulting in a delay in hydrograph onset time and a reduction in the time of the total outflow hydrograph event.
Xian, George
2008-01-01
By using both high-resolution orthoimagery and medium-resolution Landsat satellite imagery with other geospatial information, several land surface parameters including impervious surfaces and land surface temperatures for three geographically distinct urban areas in the United States – Seattle, Washington, Tampa Bay, Florida, and Las Vegas, Nevada, are obtained. Percent impervious surface is used to quantitatively define the spatial extent and development density of urban land use. Land surface temperatures were retrieved by using a single band algorithm that processes both thermal infrared satellite data and total atmospheric water vapor content. Land surface temperatures were analyzed for different land use and land cover categories in the three regions. The heterogeneity of urban land surface and associated spatial extents were shown to influence surface thermal conditions because of the removal of vegetative cover, the introduction of non-transpiring surfaces, and the reduction in evaporation over urban impervious surfaces. Fifty years of in situ climate data were integrated to assess regional climatic conditions. The spatial structure of surface heating influenced by landscape characteristics has a profound influence on regional climate conditions, especially through urban heat island effects.
Study on temporal and spatial variations of urban land use based on land change data
NASA Astrophysics Data System (ADS)
Jiang, Ping; Liu, Yanfang; Fan, Min; Zhang, Yang
2009-10-01
With the rapid development of urbanization, demands of urban land increase in succession, hence, to analyze temporal and spatial variations of urban land use becomes more and more important. In this paper, the principle of trend surface analysis and formula of urban land sprawl index ( ULSI) are expatiated at first, and then based on land change data of Jiayu county, the author fits quadratic trend surface by choosing urban land area as dependent variable and urbanization and GDP as independent variables from 1996 to 2006, draws isoline of trend surface and residual values; and then urban land sprawl indexes of towns are calculated on the basis of urban land area of 1996 and 2006 and distribution map of ULSI is plotted. After analyzing those results, we can conclude that there is consanguineous relationship between urban land area and urbanization, economic level etc.
NASA Astrophysics Data System (ADS)
Song, J.; Wang, Z.
2013-12-01
Studying urban land-atmospheric interactions by coupling an urban canopy model with a single column atmospheric models Jiyun Song and Zhi-Hua Wang School of Sustainable Engineering and the Built Environment, Arizona State University, PO Box 875306, Tempe, AZ 85287-5306 Landuse landcover changes in urban area will modify surface energy budgets, turbulent fluxes as well as dynamic and thermodynamic structures of the overlying atmospheric boundary layer (ABL). In order to study urban land-atmospheric interactions, we coupled a single column atmospheric model (SCM) to a cutting-edge single layer urban canopy model (SLUCM). Modification of surface parameters such as the fraction of vegetation and engineered pavements, thermal properties of building and pavement materials, and geometrical features of street canyon, etc. in SLUCM dictates the evolution of surface balance of energy, water and momentum. The land surface states then provide lower boundary conditions to the overlying atmosphere, which in turn modulates the modification of ABL structure as well as vertical profiles of temperature, humidity, wind speed and tracer gases. The coupled SLUCM-SCM model is tested against field measurements of surface layer fluxes as well as profiles of temperature and humidity in the mixed layer under convective conditions. After model test, SLUCM-SCM is used to simulate the effect of changing urban land surface conditions on the evolution of ABL structure and dynamics. Simulation results show that despite the prescribed atmospheric forcing, land surface states impose significant impact on the physics of the overlying vertical atmospheric layer. Overall, this numerical framework provides a useful standalone modeling tool to assess the impacts of urban land surface conditions on the local hydrometeorology through land-atmospheric interactions. It also has potentially far-reaching implications to urban ecohydrological services for cities under future expansion and climate challenges.
Detection of urban expansion in an urban-rural landscape with multitemporal QuickBird images
Lu, Dengsheng; Hetrick, Scott; Moran, Emilio; Li, Guiying
2011-01-01
Accurately detecting urban expansion with remote sensing techniques is a challenge due to the complexity of urban landscapes. This paper explored methods for detecting urban expansion with multitemporal QuickBird images in Lucas do Rio Verde, Mato Grosso, Brazil. Different techniques, including image differencing, principal component analysis (PCA), and comparison of classified impervious surface images with the matched filtering method, were used to examine urbanization detection. An impervious surface image classified with the hybrid method was used to modify the urbanization detection results. As a comparison, the original multispectral image and segmentation-based mean-spectral images were used during the detection of urbanization. This research indicates that the comparison of classified impervious surface images with matched filtering method provides the best change detection performance, followed by the image differencing method based on segmentation-based mean spectral images. The PCA is not a good method for urban change detection in this study. Shadows and high spectral variation within the impervious surfaces represent major challenges to the detection of urban expansion when high spatial resolution images are used. PMID:21799706
[Soil meso- and micro-fauna community structures in different urban forest types in Shanghai, China.
Jin, Shi Ke; Wang, Juan Juan; Zhu, Sha; Zhang, Qi; Li, Xiang; Zheng, Wen Jing; You, Wen Hui
2016-07-01
Soil meso- and micro-fauna of four urban forest types in Shanghai were investigated in four months which include April 2014, July 2014, October 2014 and January 2015. A total of 2190 soil fauna individuals which belong to 6 phyla, 15 classes and 22 groups were collected. The dominant groups were Nematoda and Arcari, accounting for 56.0% and 21.8% of the total in terms of individual numbers respectively. The common groups were Enchytraeidae, Rotatoria, Collembola and Hymenoptera and they accounted for 18.7% of the total in terms of individual numbers. There was a significant difference (P<0.05) among soil meso- and micro-fauna density in the four urban forest types and the largest density was found in Metasequoia glyptostroboides forest, the smallest in Cinnamomum camphora forest. The largest groupe number was found in near-nature forest, the smallest was found in M. glyptostroboides forest. There was obvious seasonal dynamics in each urban forest type and green space which had larger density in autumn and larger groupe number in summer and autumn. In soil profiles, the degree of surface accumulation of soil meso- and micro-fauna in C. camphora forest was higher than in other forests and the vertical distribution of soil meso- and micro-fauna in near-nature forest was relatively homogeneous in four layers. Density-group index was ranked as: near-nature forest (6.953)> C. camphora forest (6.351)> Platanus forest (6.313)>M. glyptostroboides forest (5.910). The community diversity of soil fauna in each vegetation type could be displayed preferably by this index. It could be inferred through redundancy analysis (RDA) that the soil bulk density, organic matter and total nitrogen were the main environmental factors influencing soil meso- and micro-fauna community structure in urban forest. The positive correlations occurred between the individual number of Arcari, Enchytraeidae and soil organic matter and total nitrogen, as well as between the individual number of Diptera larvae, Rotatoria and soil water content.
Can Aerosol Offset Urban Heat Island Effect?
NASA Astrophysics Data System (ADS)
Jin, M. S.; Shepherd, J. M.
2009-12-01
The Urban Heat Island effect (UHI) refers to urban skin or air temperature exceeding the temperatures in surrounding non-urban regions. In a warming climate, the UHI may intensify extreme heat waves and consequently cause significant health and energy problems. Aerosols reduce surface insolation via the direct effect, namely, scattering and absorbing sunlight in the atmosphere. Combining the National Aeronautics and Space Administration (NASA) AERONET (AErosol RObotic NETwork) observations over large cities together with Weather Research and Forecasting Model (WRF) simulations, we find that the aerosol direct reduction of surface insolation range from 40-100 Wm-2, depending on seasonality and aerosol loads. As a result, surface skin temperature can be reduced by 1-2C while 2-m surface air temperature by 0.5-1C. This study suggests that the aerosol direct effect is a competing mechanism for the urban heat island effect (UHI). More importantly, both aerosol and urban land cover effects must be adequately represented in meteorological and climate modeling systems in order to properly characterize urban surface energy budgets and UHI.
NASA Astrophysics Data System (ADS)
Yang, Jian; He, Yuhong
2017-02-01
Quantifying impervious surfaces in urban and suburban areas is a key step toward a sustainable urban planning and management strategy. With the availability of fine-scale remote sensing imagery, automated mapping of impervious surfaces has attracted growing attention. However, the vast majority of existing studies have selected pixel-based and object-based methods for impervious surface mapping, with few adopting sub-pixel analysis of high spatial resolution imagery. This research makes use of a vegetation-bright impervious-dark impervious linear spectral mixture model to characterize urban and suburban surface components. A WorldView-3 image acquired on May 9th, 2015 is analyzed for its potential in automated unmixing of meaningful surface materials for two urban subsets and one suburban subset in Toronto, ON, Canada. Given the wide distribution of shadows in urban areas, the linear spectral unmixing is implemented in non-shadowed and shadowed areas separately for the two urban subsets. The results indicate that the accuracy of impervious surface mapping in suburban areas reaches up to 86.99%, much higher than the accuracies in urban areas (80.03% and 79.67%). Despite its merits in mapping accuracy and automation, the application of our proposed vegetation-bright impervious-dark impervious model to map impervious surfaces is limited due to the absence of soil component. To further extend the operational transferability of our proposed method, especially for the areas where plenty of bare soils exist during urbanization or reclamation, it is still of great necessity to mask out bare soils by automated classification prior to the implementation of linear spectral unmixing.
The impact of rainfall on total gaseous mercury (TGM) flux from pavement and street dirt surfaces was investigated in an effort to determine the influence of wet weather events on mercury transport in urban watersheds. Street dirt and pavement are common urban ground surfaces tha...
Herbaceous plants as filters: immobilization of particulates along urban street corridors.
Weber, Frauke; Kowarik, Ingo; Säumel, Ina
2014-03-01
Among air pollutants, particulate matter (PM) is considered to be the most serious threat to human health. Plants provide ecosystem services in urban areas, including reducing levels of PM by providing a surface for deposition and immobilization. While previous studies have mostly addressed woody species, we focus on herbaceous roadside vegetation and assess the role of species traits such as leaf surface roughness or hairiness for the immobilization of PM. We found that PM deposition patterns on plant surfaces reflect site-specific traffic densities and that strong differences in particulate deposition are present among species. The amount of immobilized PM differed according to particle type and size and was related to specific plant species traits. Our study suggests that herbaceous vegetation immobilizes a significant amount of the air pollutants relevant to human health and that increasing biodiversity of roadside vegetation supports air filtration and thus healthier conditions along street corridors. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chang, Ni-Bin; Xuan, Zhemin; Wimberly, Brent
2011-09-01
Soil moisture and evapotranspiration (ET) is affected by both water and energy balances in the soilvegetation- atmosphere system, it involves many complex processes in the nexus of water and thermal cycles at the surface of the Earth. These impacts may affect the recharge of the upper Floridian aquifer. The advent of urban hydrology and remote sensing technologies opens new and innovative means to undertake eventbased assessment of ecohydrological effects in urban regions. For assessing these landfalls, the multispectral Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing images can be used for the estimation of such soil moisture change in connection with two other MODIS products - Enhanced Vegetation Index (EVI), Land Surface Temperature (LST). Supervised classification for soil moisture retrieval was performed for Tampa Bay area on the 2 kmx2km grid with MODIS images. Machine learning with genetic programming model for soil moisture estimation shows advances in image processing, feature extraction, and change detection of soil moisture. ET data that were derived by Geostationary Operational Environmental Satellite (GOES) data and hydrologic models can be retrieved from the USGS web site directly. Overall, the derived soil moisture in comparison with ET time series changes on a seasonal basis shows that spatial and temporal variations of soil moisture and ET that are confined within a defined region for each type of surfaces, showing clustered patterns and featuring space scatter plot in association with the land use and cover map. These concomitant soil moisture patterns and ET fluctuations vary among patches, plant species, and, especially, location on the urban gradient. Time series plots of LST in association with ET, soil moisture and EVI reveals unique ecohydrological trends. Such ecohydrological assessment can be applied for supporting the urban landscape management in hurricane-stricken regions.
NASA Astrophysics Data System (ADS)
Wurm, Michael; Taubenböck, Hannes; Dech, Stefan
2010-10-01
Dynamics of urban environments are a challenge to a sustainable development. Urban areas promise wealth, realization of individual dreams and power. Hence, many cities are characterized by a population growth as well as physical development. Traditional, visual mapping and updating of urban structure information of cities is a very laborious and cost-intensive task, especially for large urban areas. For this purpose, we developed a workflow for the extraction of the relevant information by means of object-based image classification. In this manner, multisensoral remote sensing data has been analyzed in terms of very high resolution optical satellite imagery together with height information by a digital surface model to retrieve a detailed 3D city model with the relevant land-use / land-cover information. This information has been aggregated on the level of the building block to describe the urban structure by physical indicators. A comparison between the indicators derived by the classification and a reference classification has been accomplished to show the correlation between the individual indicators and a reference classification of urban structure types. The indicators have been used to apply a cluster analysis to group the individual blocks into similar clusters.
Wang, Bo; Zhao, Shuang; Xia, Dun-sheng; Yu, Ye; Tian, Shi-li; Jia, Jia; Jiang, Xiao-rong
2011-05-01
The contents of As, Co, Cr, Cu, Ni, Pb, V and Zn in the surface sediments from 8 rivers in urban area in Lanzhou were monitored by ecological risk which was assessed by the potential ecological Håkanson index, and the index of geoaccumulation (Igeo), sediment enrichment factor (R), and environmental magnetism. The results showed that: (1) the potential ecological risk of heavy metals of As, Co, Ni, V in surface sediments from 8 rivers were low, which belonged to low ecological risk. But the risk of heave metals Cr, Pb, Zn in surface sediments from Yuer river was high, which belonged to middle ecological risk, and in downstream of Yuer river, the element of Cu belonged to high ecological risk. (2) The rivers in Lanzhou could be divided into four groups according to the heavy mental pollution degree: first type, such as Paihong river, Shier river, Yuer river and Shuimo river, called downstream concentrate type; second type, such as Qili river, called upstream concentrate type; third type, such as Luoguo river and Dasha river, called less affected type; fourth type, Lanni river, which polluted heavily in up and downstream; (3) The correlation analysis between magnetic parameters and element contents show that the parameters which mainly reflect the concentration of the magnetic minerals (X, SIRM, Ms) have close association with Cr, Ni, Pb, Zn, Cu, So we can infer that the magnetic minerals in deposits samples mainly came from electroplating effluent, motor vehicle emission, and domestic sewage. SIRM/X shows a strong correlation with Cr, Ni, Pb, Zn, indicating the distribution of anthropogenic particulates. (4) The magnetic minerals(X, SIRM, Ms) have a strong correlation with the geoaccumulation (Igeo) than potential ecological risk index and enrichment factor (R). These results suggest a possible approach for source identification of magnetic material in pollution studies and the validity of using magnetic measurements to mapping the polluted area.
REAL-TIME high-resolution urban surface water flood mapping to support flood emergency management
NASA Astrophysics Data System (ADS)
Guan, M.; Yu, D.; Wilby, R.
2016-12-01
Strong evidence has shown that urban flood risks will substantially increase because of urbanisation, economic growth, and more frequent weather extremes. To effectively manage these risks require not only traditional grey engineering solutions, but also a green management solution. Surface water flood risk maps based on return period are useful for planning purposes, but are limited for application in flood emergencies, because of the spatiotemporal heterogeneity of rainfall and complex urban topography. Therefore, a REAL-TIME urban surface water mapping system is highly beneficial to increasing urban resilience to surface water flooding. This study integrated numerical weather forecast and high-resolution urban surface water modelling into a real-time multi-level surface water mapping system for Leicester City in the UK. For rainfall forecast, the 1km composite rain radar from the Met Office was used, and we used the advanced rainfall-runoff model - FloodMap to predict urban surface water at both city-level (10m-20m) and street-level (2m-5m). The system is capable of projecting 3-hour urban surface water flood, driven by rainfall derived from UK Met Office radar. Moreover, this system includes real-time accessibility mapping to assist the decision-making of emergency responders. This will allow accessibility (e.g. time to travel) from individual emergency service stations (e.g. Fire & Rescue; Ambulance) to vulnerable places to be evaluated. The mapping results will support contingency planning by emergency responders ahead of potential flood events.
NASA Astrophysics Data System (ADS)
Lee, S.-H.; Kim, S.-W.; Angevine, W. M.; Bianco, L.; McKeen, S. A.; Senff, C. J.; Trainer, M.; Tucker, S. C.; Zamora, R. J.
2011-03-01
The performance of different urban surface parameterizations in the WRF (Weather Research and Forecasting) in simulating urban boundary layer (UBL) was investigated using extensive measurements during the Texas Air Quality Study 2006 field campaign. The extensive field measurements collected on surface (meteorological, wind profiler, energy balance flux) sites, a research aircraft, and a research vessel characterized 3-dimensional atmospheric boundary layer structures over the Houston-Galveston Bay area, providing a unique opportunity for the evaluation of the physical parameterizations. The model simulations were performed over the Houston metropolitan area for a summertime period (12-17 August) using a bulk urban parameterization in the Noah land surface model (original LSM), a modified LSM, and a single-layer urban canopy model (UCM). The UCM simulation compared quite well with the observations over the Houston urban areas, reducing the systematic model biases in the original LSM simulation by 1-2 °C in near-surface air temperature and by 200-400 m in UBL height, on average. A more realistic turbulent (sensible and latent heat) energy partitioning contributed to the improvements in the UCM simulation. The original LSM significantly overestimated the sensible heat flux (~200 W m-2) over the urban areas, resulting in warmer and higher UBL. The modified LSM slightly reduced warm and high biases in near-surface air temperature (0.5-1 °C) and UBL height (~100 m) as a result of the effects of urban vegetation. The relatively strong thermal contrast between the Houston area and the water bodies (Galveston Bay and the Gulf of Mexico) in the LSM simulations enhanced the sea/bay breezes, but the model performance in predicting local wind fields was similar among the simulations in terms of statistical evaluations. These results suggest that a proper surface representation (e.g. urban vegetation, surface morphology) and explicit parameterizations of urban physical processes are required for accurate urban atmospheric numerical modeling.
NASA Astrophysics Data System (ADS)
Ledford, S. H.; Lautz, L.
2014-12-01
The salinization of freshwater in the Northeastern United States from road salt application is well documented by the observed long-term increases in chloride concentrations in groundwater over the last fifty years. However, the processes controlling exchange of chloride between surface water and groundwater have not been fully investigated, particularly in urban streams where stream-groundwater interactions can be reduced due to bank armoring and channelization. Our research builds on previous findings that showed the potential for an urban riparian floodplain to buffer seasonal changes in chloride concentrations in an urban stream, resulting in smaller annual ranges of chloride in areas with intact riparian floodplains. A reach of Meadowbrook Creek, in Syracuse, New York, that is disconnected from the groundwater had large seasonal shifts in chloride concentration, varying from 2173 mg/L Cl- in the winter to 161.2 mg/L Cl- in the summer. This is in contrast to a downstream reach of the stream that receives groundwater discharge from a riparian floodplain, where chloride concentrations ranged from 657.0 mg/L in the winter to 252.0 mg/L in the summer. We originally hypothesized that winter snowmelt events caused overbank flooding of saline surface water, which recharged the floodplain groundwater, causing salinization. This saline water was then slowly discharged as baseflow throughout the year and was replaced with freshwater overbank events in the summer. However, a three dimensional model of the floodplain created using Visual MODFLOW indicates that surface water-groundwater interactions, such as hyporheic exchange, may have a greater control on winter salt input than overbank events, while summer flooding recharges the aquifer with freshwater. The model was compared to riparian aquifer samples collected from May 2013 until June 2014 to qualitatively study the impact of different types of surface water-groundwater interactions (e.g. groundwater recharge and discharge, hyporheic interaction) on salt storage and to identify the mechanisms by which urban riparian floodplains buffer seasonal variability of stream chloride concentrations in urban systems impacted by road salt.
Hong, Youwei; Yu, Shen; Yu, Guangbin; Liu, Yi; Li, Guilin; Wang, Min
2012-06-01
Organic pollutants, especially synthetic organic compounds, can indicate paces of anthropogenic activities. Effects of urbanization on polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) distributions in surface sediment were conducted in urban sections of the Grand Canal, China, consisting of a four-level urbanization gradient. The four-level urbanization gradients include three countryside towns, two small-size cities, three medium-size cities, and a large-size city. Diagnostic ratio analysis and factor analysis-multiple linear regression model were used for source apportionment of PAHs. Sediment quality guidelines (SQGs) of USA and Canada were employed to assess ecological risks of PAHs and PCBs in surface sediments of the Canal. Ranges of PAH and PCB concentrations in surface sediments were 0.66-22 mg/kg and 0.5-93 μg/kg, respectively. Coal-related sources were primary PAH sources and followed by vehicular emission. Total concentration, composition, and source apportionment of PAHs exhibited urbanization gradient effects. Total PCB concentrations increased with the urbanization gradient, while total PAHs concentration in surface sediments presented an inverted U Kuznets curve with the urbanization gradient. Elevated concentrations of both PAHs and PCBs ranged at effect range low levels or interim SQG, assessed by USA and Canadian SQGs. PAHs and PCBs in surface sediments of the Grand Canal showed urbanization gradient effects and low ecological risks.
NASA Technical Reports Server (NTRS)
Bounoua, L.; Zhang, P.; Imhoff, M.; Santanello, J.; Kumar, S.; Shepherd, M.; Quattrochi, D.; Silva, J.; Rosenzweigh, C.; Gaffin, S.;
2013-01-01
Urbanization is one of the most important and long lasting forms of land transformation. Urbanization affects the surface climate in different ways: (1) by reduction of the vegetation fraction causing subsequent reduction in photosynthesis and plant s water transpiration, (2) by alternation of surface runoff and infiltration and their impacts on soil moisture and the water table, (3) by change in the surface albedo and surface energy partitioning, and (4) by transformation of the surface roughness length and modification of surface fluxes. Land cover and land use change maps including urban areas have been developed and will be used in a suite of land surface models of different complexity to assess the impacts of urbanization on the continental US surface climate. These maps and datasets based on a full range of available satellite data and ground observations will be used to characterize distant-past (pre-urban), recent-past (2001), present (2010), and near future (2020) land cover and land use changes. The main objective of the project is to assess the impacts of these land transformation on past, current and near-future climate and the potential feedbacks from these changes on the atmospheric, hydrologic, biological, and socio-economic properties beyond the immediate metropolitan regions of cities and their near suburbs. The WRF modeling system will be used to explore the nature and the magnitude of the two-way interactions between urban lands and the atmosphere and assess the overall regional dynamic effect of urban expansion on the northeastern US weather and climate
Effectiveness of Different Urban Heat Island Mitigation Methods and Their Regional Impacts
NASA Astrophysics Data System (ADS)
Zhang, N.
2017-12-01
Cool roofs and green roofs are two popular methods to mitigate urban heat island and improve urban climate. The effectiveness of different urban heat island mitigation strategies in the summer of 2013 in the Yangtze River Delta, China is investigated using the WRF (Weather Research and Forecasting) model coupled with a physically based urban canopy model. The modifications to the roof surface changed the urban surface radiation balance and then modified the local surface energy budget. Both cool roofs and green roofs led to lower surface skin temperature and near-surface air temperature. Increasing the roof albedo to 0.5 caused a similar effectiveness as covering 25% of urban roofs with vegetation; increasing roof albedo to 0.7 caused a similar near-surface air temperature decrease as 75% green roof coverage. The near-surface relative humidity increased in both cool roof and green roof experiments because of the combination of the impacts of increases in specific humidity and decreases in air temperature. The regional impacts of cool roofs and green roofs were evaluated using the regional effect index. The regional effect could be found in both near-surface air temperature and surface specific/relative humidity when the percentage of roofs covered with high albedo materials or green roofs reached a higher fraction (greater than 50%). The changes in the vertical profiles of temperature cause a more stable atmospheric boundary layer over the urban area; at the same time, the crossover phenomena occurred above the boundary layer due to the decrease in vertical wind speed.
Simulation of Urban Rainfall-Runoff in Piedmont Cities: A Case Study in Jinan City, China
NASA Astrophysics Data System (ADS)
Chang, X.; Xu, Z.; Zhao, G.; Li, H.
2017-12-01
During the past decades, frequent flooding disasters in urban areas resulted in catastrophic impacts such as human life casualties and property damages especially in piedmont cities due to its specific topography. In this study, a piedmont urban flooding model was developed in the Huangtaiqiao catchment based on SWMM. The sub-catchments in this piedmont area were divided into mountainous area, plain area and main urban area according to the variations of underlying surface topography. The impact of different routing mode and channel roughness on simulation results was quantitatively analyzed under different types of scenarios, and genetic algorithm was used to optimize model parameters. Results show that the simulation is poor (with a mean Nash coefficient of 0.61) when using the traditional routing mode in SWMM model, which usually ignores terrain variance in piedmont area. However, when the difference of routing mode, percent routed and channel roughness are considered, the prediction precision of model were significantly increased (with a mean Nash coefficient of 0.86), indicating that the difference of surface topography significantly affects the simulation results in piedmont cities. The relevant results would provide the scientific basis and technical support for rainfall-runoff simulation, flood control and disaster alleviation in piedmont cities.
Automatic extraction of tree crowns from aerial imagery in urban environment
NASA Astrophysics Data System (ADS)
Liu, Jiahang; Li, Deren; Qin, Xunwen; Yang, Jianfeng
2006-10-01
Traditionally, field-based investigation is the main method to investigate greenbelt in urban environment, which is costly and low updating frequency. In higher resolution image, the imagery structure and texture of tree canopy has great similarity in statistics despite the great difference in configurations of tree canopy, and their surface structures and textures of tree crown are very different from the other types. In this paper, we present an automatic method to detect tree crowns using high resolution image in urban environment without any apriori knowledge. Our method catches unique structure and texture of tree crown surface, use variance and mathematical expectation of defined image window to position the candidate canopy blocks coarsely, then analysis their inner structure and texture to refine these candidate blocks. The possible spans of all the feature parameters used in our method automatically generate from the small number of samples, and HOLE and its distribution as an important characteristics are introduced into refining processing. Also the isotropy of candidate image block and holes' distribution is integrated in our method. After introduction the theory of our method, aerial imageries were used ( with a resolution about 0.3m ) to test our method, and the results indicate that our method is an effective approach to automatically detect tree crown in urban environment.
Mapping Impervious Surfaces Globally at 30m Resolution Using Global Land Survey Data
NASA Technical Reports Server (NTRS)
DeColstoun, Eric Brown; Huang, Chengquan; Tan, Bin; Smith, Sarah Elizabeth; Phillips, Jacqueline; Wang, Panshi; Ling, Pui-Yu; Zhan, James; Li, Sike; Taylor, Michael P.;
2013-01-01
Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (approx. 2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified archive of the National Geospatial Intelligence Agency (NGA). For each continental area several million training pixels are derived by analysts using image segmentation algorithms and tools and then aggregated to the 30m resolution of Landsat. Here we will discuss the production/testing of this massive data set for Europe, North and South America and Africa, including assessments of the 2010 surface reflectance data. This type of analysis is only possible because of the availability of long term 30m data sets from GLS and shows much promise for integration of Landsat 8 data in the future.
Mapping Impervious Surfaces Globally at 30m Resolution Using Landsat Global Land Survey Data
NASA Astrophysics Data System (ADS)
Brown de Colstoun, E.; Huang, C.; Wolfe, R. E.; Tan, B.; Tilton, J.; Smith, S.; Phillips, J.; Wang, P.; Ling, P.; Zhan, J.; Xu, X.; Taylor, M. P.
2013-12-01
Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (~2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified archive of the National Geospatial Intelligence Agency (NGA). For each continental area several million training pixels are derived by analysts using image segmentation algorithms and tools and then aggregated to the 30m resolution of Landsat. Here we will discuss the production/testing of this massive data set for Europe, North and South America and Africa, including assessments of the 2010 surface reflectance data. This type of analysis is only possible because of the availability of long term 30m data sets from GLS and shows much promise for integration of Landsat 8 data in the future.
Global Learning Spectral Archive- A new Way to deal with Unknown Urban Spectra -
NASA Astrophysics Data System (ADS)
Jilge, M.; Heiden, U.; Habermeyer, M.; Jürgens, C.
2015-12-01
Rapid urbanization processes and the need of identifying urban materials demand urban planners and the remote sensing community since years. Urban planners cannot overcome the issue of up-to-date information of urban materials due to time-intensive fieldwork. Hyperspectral remote sensing can facilitate this issue by interpreting spectral signals to provide information of occurring materials. However, the complexity of urban areas and the occurrence of diverse urban materials vary due to regional and cultural aspects as well as the size of a city, which makes identification of surface materials a challenging analysis task. For the various surface material identification approaches, spectral libraries containing pure material spectra are commonly used, which are derived from field, laboratory or the hyperspectral image itself. One of the requirements for successful image analysis is that all spectrally different surface materials are represented by the library. Currently, a universal library, applicable in every urban area worldwide and taking each spectral variability into account, is and will not be existent. In this study, the issue of unknown surface material spectra and the demand of an urban site-specific spectral library is tackled by the development of a learning spectral archive tool. Starting with an incomplete library of labelled image spectra from several German cities, surface materials of pure image pixels will be identified in a hyperspectral image based on a similarity measure (e.g. SID-SAM). Additionally, unknown image spectra of urban objects are identified based on an object- and spectral-based-rule set. The detected unknown surface material spectra are entered with additional metadata, such as regional occurrence into the existing spectral library and thus, are reusable for further studies. Our approach is suitable for pure surface material detection of urban hyperspectral images that is globally applicable by taking incompleteness into account. The generically development enables the implementation of different hyperspectral sensors.
Fitzpatrick, Faith A.; Peppler, Marie C.
2010-01-01
The relation of urbanization to stream habitat and geomorphic characteristics was examined collectively and individually for nine metropolitan areas of the United States?Portland, Oregon; Salt Lake City, Utah; Denver, Colorado; Dallas?Forth Worth, Texas; Milwaukee?Green Bay, Wisconsin; Birmingham, Alabama; Atlanta, Georgia; Raleigh, North Carolina; and Boston, Massachusetts. The study was part of a larger study conducted by the U.S. Geological Survey from 1999 to 2004 to examine the effects of urbanization on the physical, chemical, and biological components of stream ecosystems. The objectives of the current study were to determine how stream habitat and geomorphic characteristics relate to different aspects of urbanization across a variety of diverse environmental settings and spatial scales. A space-for-time rural-to-urban land-cover gradient approach was used. Reach-scale habitat data and geomorphic characteristic data were collected once during low flow and included indicators of potential habitat degradation such as measures of channel geometry and hydraulics, streambed substrate, low-flow reach volume (an estimate of base-flow conditions), habitat complexity, and riparian/bank conditions. Hydrologic metrics included in the analyses were those expected to be altered by increases in impervious surfaces, such as high-flow frequency and duration, flashiness, and low-flow duration. Other natural and human features, such as reach-scale channel engineering, geologic setting, and slope, were quantified to identify their possible confounding influences on habitat relations with watershed-scale urbanization indicators. Habitat and geomorphic characteristics were compared to several watershed-scale indicators of urbanization, natural landscape characteristics, and hydrologic metrics by use of correlation analyses and stepwise linear regression. Habitat and geomorphic characteristics were related to percentages of impervious surfaces only in some metropolitan areas and environmental settings. The relations between watershed-scale indicators of urbanization and stream habitat depended on physiography and climate, hydrology, pre-urban channel alterations, reach-scale slope and presence of bedrock, and amount of bank stabilization and grade control. Channels increased in size with increasing percentages of impervious surfaces in southeastern and midwestern metropolitan areas regardless of whether the pre-existing land use was forest or agriculture. The amount of enlargement depended on annual precipitation and frequency of high-flow events. The lack of a relation between channel enlargement and increasing impervious surfaces in other metropolitan areas was thought to be confounded by pre-urbanization hydrologic and channel alterations. Direct relations of channel shape and streambed substrate to urbanization were variable or lacking, probably because the type, amount, and source of sediment are dependent on the phase of urbanization. Reach-scale slope also was important for determining variations in streambed substrate and habitat complexity (percentage of riffles and runs). Urbanization-associated changes in reach-scale riparian vegetation varied geographically, partially depending on pre-existing riparian vegetation characteristics. Bank erosion increased in Milwaukee?Green Bay and Boston urban streams, and bank erosion also increased with an increase in a streamflow flashiness index. However, potential relations likely were confounded by the frequent use of channel stabilization and bank protection in urban settings. Low-flow reach volume did not decrease with increasing urbanization, but instead was related to natural landscape characteristics and possibly other unmeasured factors. The presence of intermittent bedrock in some sampled reaches likely limited some geomorphic responses to urbanization, such as channel bed erosion. Results from this study emphasize the importance of including a wide range of landscape variables at m
NASA Astrophysics Data System (ADS)
Ding, Jing; Zhang, Yufen; Han, Suqin; Xiao, Zhimei; Wang, Jiao; Feng, Yinchang
2018-05-01
Aerosol and water vapor radiative forcings, shortwave atmospheric heating rates and longwave atmospheric cooling rates were determined based on in situ physical and chemical measurements of aerosol, associated with the Mie theory and a radiative transfer model, LOWTRAN7, during the two haze episodes in the winter of 2013 in Tianjin, China. The aerosol types considered in LOWTRAN7 included rural, urban, marine, desert and custom aerosols. The default ratio of the absorption coefficient to the extinction coefficient for urban aerosol in LOWTRAN7 was approximately double of those found in this work, implying the weaker absorption ability of aerosols in the North China Plain (NCP). Moreover, the aerosol is assumed to be evenly distributed below 1 km of planetary boundary layer (PBL) on hazy days in LOWTRAN7. If the default urban aerosol optical properties and extinction profile in LOWTRAN7 is employed directly, a larger energy imbalance between the atmosphere and surface is generated and the warming effect of the aerosol is magnified. Hence, modified urban aerosol optical properties were established to replace the corresponding parameters' database in LOWTRAN7. The aerosol extinction profiles were obtained based on a 255-m meteorological tower and observed results from the studies about Tianjin. In the NCP, the aerosol had little impact on atmospheric counter radiation. The water vapor is the crucial factor that affects atmospheric counter radiation. Both modified high shortwave heating rates and longwave cooling rates occur near the surface due to the abundance of aerosol and water vapor. The modified net atmospheric heating rate near the surface is 1.2 K d-1 on hazy days and 0.3 K d-1 on non-hazy days. Compared with the default urban aerosol optical properties and its vertical distribution in LOWTRAN7, the feedback effect of the modified urban aerosol on the boundary layer may not necessarily result in a stable lower atmosphere, but depends on the aerosol light absorption ability and its vertical distribution.
Yang, Limin; Xian, George Z.; Klaver, Jacqueline M.; Deal, Brian
2003-01-01
We developed a Sub-pixel Imperviousness Change Detection (SICD) approach to detect urban land-cover changes using Landsat and high-resolution imagery. The sub-pixel percent imperviousness was mapped for two dates (09 March 1993 and 11 March 2001) over western Georgia using a regression tree algorithm. The accuracy of the predicted imperviousness was reasonable based on a comparison using independent reference data. The average absolute error between predicted and reference data was 16.4 percent for 1993 and 15.3 percent for 2001. The correlation coefficient (r) was 0.73 for 1993 and 0.78 for 2001, respectively. Areas with a significant increase (greater than 20 percent) in impervious surface from 1993 to 2001 were mostly related to known land-cover/land-use changes that occurred in this area, suggesting that the spatial change of an impervious surface is a useful indicator for identifying spatial extent, intensity, and, potentially, type of urban land-cover/land-use changes. Compared to other pixel-based change-detection methods (band differencing, rationing, change vector, post-classification), information on changes in sub-pixel percent imperviousness allow users to quantify and interpret urban land-cover/land-use changes based on their own definition. Such information is considered complementary to products generated using other change-detection methods. In addition, the procedure for mapping imperviousness is objective and repeatable, hence, can be used for monitoring urban land-cover/land-use change over a large geographic area. Potential applications and limitations of the products developed through this study in urban environmental studies are also discussed.
NASA Technical Reports Server (NTRS)
Gao, Feng; DeColstoun, Eric Brown; Ma, Ronghua; Weng, Qihao; Masek, Jeffrey G.; Chen, Jin; Pan, Yaozhong; Song, Conghe
2012-01-01
Cities have been expanding rapidly worldwide, especially over the past few decades. Mapping the dynamic expansion of impervious surface in both space and time is essential for an improved understanding of the urbanization process, land-cover and land-use change, and their impacts on the environment. Landsat and other medium-resolution satellites provide the necessary spatial details and temporal frequency for mapping impervious surface expansion over the past four decades. Since the US Geological Survey opened the historical record of the Landsat image archive for free access in 2008, the decades-old bottleneck of data limitation has gone. Remote-sensing scientists are now rich with data, and the challenge is how to make best use of this precious resource. In this article, we develop an efficient algorithm to map the continuous expansion of impervious surface using a time series of four decades of medium-resolution satellite images. The algorithm is based on a supervised classification of the time-series image stack using a decision tree. Each imerpervious class represents urbanization starting in a different image. The algorithm also allows us to remove inconsistent training samples because impervious expansion is not reversible during the study period. The objective is to extract a time series of complete and consistent impervious surface maps from a corresponding times series of images collected from multiple sensors, and with a minimal amount of image preprocessing effort. The approach was tested in the lower Yangtze River Delta region, one of the fastest urban growth areas in China. Results from nearly four decades of medium-resolution satellite data from the Landsat Multispectral Scanner (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper plus (ETM+) and China-Brazil Earth Resources Satellite (CBERS) show a consistent urbanization process that is consistent with economic development plans and policies. The time-series impervious spatial extent maps derived from this study agree well with an existing urban extent polygon data set that was previously developed independently. The overall mapping accuracy was estimated at about 92.5% with 3% commission error and 12% omission error for the impervious type from all images regardless of image quality and initial spatial resolution.
Observed surface wind speed declining induced by urbanization in East China
NASA Astrophysics Data System (ADS)
Li, Zhengquan; Song, Lili; Ma, Hao; Xiao, Jingjing; Wang, Kuo; Chen, Lian
2018-02-01
Monthly wind data from 506 meteorological stations and ERA-Interim reanalysis during 1991-2015, are used to examine the surface wind trend over East China. Furthermore, combining the urbanization information derived from the DMSP/OLS nighttime light data during 1992-2013, the effects of urbanization on surface wind change are investigated by applying the observation minus reanalysis (OMR) method. The results show that the observed surface wind speed over East China is distinctly weakening with a rate of -0.16 m s-1 deca-1 during 1991-2015, while ERA-Interim wind speed does not have significant decreasing or increasing trend in the same period. The observed surface wind declining is mainly attributed to underlying surface changes of stations observational areas that were mostly induced by the urbanization in East China. Moreover, the wind declining intensity is closely related to the urbanization rhythms. The OMR annual surface wind speeds of Rhythm-VS, Rhythm-S, Rhythm-M, Rhythm-F and Rhythm-VF, have decreasing trends with the rates of -0.02 to -0.09, -0.16 to -0.26, -0.22 to -0.30, -0.26 to -0.36 and -0.33 to -0.51 m s-1 deca-1, respectively. The faster urbanization rhythm is, the stronger wind speed weakening presents. Additionally urban expansion is another factor resulted in the observed surface wind declining.
NASA Astrophysics Data System (ADS)
Chow, Winston; Ho, Dawn
2016-04-01
In numerous cities, measurements of urban warmth in most urban heat island (UHI) studies are generally constrained towards surface or near-surface (<2 m above surface level) levels across horizontal variations in land use and land cover. However, there has been hitherto limited attention towards the measurement of vertical temperature profiles extending from the urban surface, urban canopy layer through to the urban boundary layer. Knowledge of these profiles, through (a.) how they vary over different local urban morphologies, and (b.) develop with respect to synoptic meteorological conditions, are important towards several aspects of UHI research; these include validating modelling urban canopy lapse rate profiles or estimating the growth of urban plumes. In this novel study, we utilised temperature sensor-loggers attached onto remote controlled aerial quadcopter platforms to measure urban temperature profiles up to 100 m above ground level in Singapore, which is a rapidly urbanizing major tropical metropolis. Three different land use/land cover categories were sampled; a high-rise residential estate, a university campus, and an urban park/green-space. Sorties were flown repeatedly at four different times - sunrise, noon, sunset and midnight. Initial results indicate significant variations in intra-site stability and inversion development between the urban canopy and boundary layers. These profiles are also temporally dynamic, depending on the time of day and larger-scale weather conditions.
Integrated remote sensing for multi-temporal analysis of urban land cover-climate interactions
NASA Astrophysics Data System (ADS)
Savastru, Dan M.; Zoran, Maria A.; Savastru, Roxana S.
2016-08-01
Climate change is considered to be the biggest environmental threat in the future in the South- Eastern part of Europe. In frame of predicted global warming, urban climate is an important issue in scientific research. Surface energy processes have an essential role in urban weather, climate and hydrosphere cycles, as well in urban heat redistribution. This paper investigated the influences of urban growth on thermal environment in relationship with other biophysical variables in Bucharest metropolitan area of Romania. Remote sensing data from Landsat TM/ETM+ and time series MODIS Terra/Aqua sensors have been used to assess urban land cover- climate interactions over period between 2000 and 2015 years. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also analyzed in relation with the Normalized Difference Vegetation Index (NDVI) at city level. Based on these parameters, the urban growth, and urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters have been analyzed. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.
NASA Astrophysics Data System (ADS)
Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Tautan, Marina N.; Baschir, Laurentiu V.
2013-10-01
In frame of global warming, the field of urbanization and urban thermal environment are important issues among scientists all over the world. This paper investigated the influences of urbanization on urban thermal environment as well as the relationships of thermal characteristics to other biophysical variables in Bucharest metropolitan area of Romania based on satellite remote sensing imagery Landsat TM/ETM+, time series MODIS Terra/Aqua data and IKONOS acquired during 1990 - 2012 period. Vegetation abundances and percent impervious surfaces were derived by means of linear spectral mixture model, and a method for effectively enhancing impervious surface has been developed to accurately examine the urban growth. The land surface temperature (Ts), a key parameter for urban thermal characteristics analysis, was also retrieved from thermal infrared band of Landsat TM/ETM+, from MODIS Terra/Aqua datasets. Based on these parameters, the urban growth, urban heat island effect (UHI) and the relationships of Ts to other biophysical parameters have been analyzed. Results indicated that the metropolitan area ratio of impervious surface in Bucharest increased significantly during two decades investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, Ts possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at the regional scale, respectively. This analysis provided an integrated research scheme and the findings can be very useful for urban ecosystem modeling.
NASA Astrophysics Data System (ADS)
Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Chen, Bangqian; Liu, Fang; Zhang, Geli; Zhang, Yao; Wang, Jie; Wu, Xiaocui
2017-02-01
Built-up area supports human settlements and activities, and its spatial distribution and temporal dynamics have significant impacts on ecosystem services and global environment change. To date, most of urban remote sensing has generated the maps of impervious surfaces, and limited effort has been made to explicitly identify the area, location and density of built-up in the complex and fragmented landscapes based on the freely available datasets. In this study, we took the lower Yangtze River Delta (Landsat Path/Row: 118/038), China, where extensive urbanization and industrialization have occurred, as a case study site. We analyzed the structure and optical features of typical land cover types from (1) the HH and HV gamma-naught imagery from the Advanced Land Observation Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR), and (2) time series Landsat imagery. We proposed a pixel- and rule-based decision tree approach to identify and map built-up area at 30-m resolution from 2007 to 2010, using PALSAR HH gamma-naught and Landsat annual maximum Normalized Difference Vegetation Index (NDVImax). The accuracy assessment showed that the resultant annual maps of built-up had relatively high user (87-93%) and producer accuracies (91-95%) from 2007 to 2010. The built-up area was 2805 km2 in 2010, about 16% of the total land area of the study site. The annual maps of built-up in 2007-2010 show relatively small changes in the urban core regions, but large outward expansion along the peri-urban regions. The average annual increase of built-up areas was about 80 km2 per year from 2007 to 2010. Our annual maps of built-up in the lower Yangtze River Delta clearly complement the existing maps of impervious surfaces in the region. This study provides a promising new approach to identify and map built-up area, which is critical to investigate the interactions between human activities and ecosystem services in urban-rural systems.
NASA Astrophysics Data System (ADS)
Kingfield, D.; de Beurs, K.
2014-12-01
It has been demonstrated through various case studies that multispectral satellite imagery can be utilized in the identification of damage caused by a tornado through the change detection process. This process involves the difference in returned surface reflectance between two images and is often summarized through a variety of ratio-based vegetation indices (VIs). Land cover type plays a large contributing role in the change detection process as the reflectance properties of vegetation can vary based on several factors (e.g. species, greenness, density). Consequently, this provides the possibility for a variable magnitude of loss, making certain land cover regimes less reliable in the damage identification process. Furthermore, the tradeoff between sensor resolution and orbital return period may also play a role in the ability to detect catastrophic loss. Moderate resolution imagery (e.g. Moderate Resolution Imaging Spectroradiometer (MODIS)) provides relatively coarse surface detail with a higher update rate which could hinder the identification of small regions that underwent a dynamic change. Alternatively, imagery with higher spatial resolution (e.g. Landsat) have a longer temporal return period between successive images which could result in natural recovery underestimating the absolute magnitude of damage incurred. This study evaluates the role of land cover type and sensor resolution on four high-end (EF3+) tornado events occurring in four different land cover groups (agriculture, forest, grassland, urban) in the spring season. The closest successive clear images from both Landsat 5 and MODIS are quality controlled for each case. Transacts of surface reflectance across a homogenous land cover type both inside and outside the damage swath are extracted. These metrics are synthesized through the calculation of six different VIs to rank the calculated change metrics by land cover type, sensor resolution and VI.
An inter-model comparison of urban canopy effects on climate
NASA Astrophysics Data System (ADS)
Halenka, Tomas; Karlicky, Jan; Huszar, Peter; Belda, Michal; Bardachova, Tatsiana
2017-04-01
The role of cities is increasing and will continue to increase in future, as the population within the urban areas is growing faster, with the estimate for Europe of about 84% living in urban areas in about mid of 21st century. To assess the impact of cities and, in general, urban surfaces on climate, using of modeling approach is well appropriate. Moreover, with higher resolution, urban areas becomes to be better resolved in the regional models and their relatively significant impacts should not be neglected. Model descriptions of urban canopy related meteorological effects can, however, differ largely given the odds in the driving models, the underlying surface models and the urban canopy parameterizations, representing a certain uncertainty. In this study we try to contribute to the estimation of this uncertainty by performing numerous experiments to assess the urban canopy meteorological forcing over central Europe on climate for the decade 2001-2010, using two driving models (RegCM4 and WRF) in 10 km resolution driven by ERA-Interim reanalyses, three surface schemes (BATS and CLM4.5 for RegCM4 and Noah for WRF) and five urban canopy parameterizations available: one bulk urban scheme, three single layer and a multilayer urban scheme. Actually, in RegCM4 we used our implementation of the Single Layer Urban Canopy Model (SLUCM) in BATS scheme and CLM4.5 option with urban parameterization based on SLUCM concept as well, in WRF we used all the three options, i.e. bulk, SLUCM and more complex and sophisticated Building Environment Parameterization (BEP) connected with Building Energy Model (BEM). As a reference simulations, runs with no urban areas and with no urban parameterizations were performed. Effects of cities on urban and rural areas were evaluated. Effect of reducing diurnal temperature range in cities (around 2 °C in summer) is noticeable in all simulation, independent to urban parameterization type and model. Also well-known warmer summer city nights appear in all simulations. Further, winter boundary layer increase by 100-200 m, together with wind reduction, is visible in all simulations. The spatial distribution of the night-time temperature response of models to urban canopy forcing is rather similar in each set-up, showing temperature increases up to 3°C in summer. In general, much lower increase are modeled for day-time conditions, which can be even slightly negative due to dominance of shadowing in urban canyons, especially in the morning hours. The winter temperature response, driven mainly by anthropogenic heat (AH) is strong in urban schemes where the building-street energy exchange is more resolved and is smaller, where AH is simply prescribed as additive flux to the sensible heat. Somewhat larger differences between the models are encountered for the response of wind and the height of planetary boundary layer (ZPBL), with dominant increases from a few 10 m up to 250 m depending on the model. The comparison of observation of diurnal temperature amplitude from ECAD data with model results and hourly data from Prague with model hourly values show improvement when urban effects are considered. Larger spread encountered for wind and turbulence (as ZPBL) should be considered when choices of urban canopy schemes are made, especially in connection with modeling transport of pollutants within/from cities. Another conclusion is that choosing more complex urban schemes does not necessary improves model performance and using simpler and computationally less demanding (e.g. single layer) urban schemes, is often sufficient.
U.S. Constructed Area Approaches the Size of Ohio
NASA Astrophysics Data System (ADS)
Elvidge, Christopher D.; Milesi, Cristina; Dietz, John B.; Tuttle, Benjamin T.; Sutton, Paul C.; Nemani, Ramakrishna; Vogelmann, James E.
2004-06-01
The construction and maintenance of impervious surfaces-buildings, roads, parking lots, roofs, etc.-constitutes a major human alteration of the land surface, changing the local hydrology, climate, and carbon cycling. Three types of national coverage data were used to model the spatial distribution and density of impervious surface area (ISA) for the conterminous U.S.A. The results (Figure 1) indicate that total ISA of the 48 states and Washington, D.C., is 112,610 km2 (+/- 12,725 km2), which is slightly smaller than the state of Ohio (116,534 km2) and slightly larger than the area of herbaceous wetlands (98,460 km2) of the conterminous United States. The same characteristics that make impervious surfaces ideal for use in construction produce a series of effects on the environment. Impervious surfaces alter sensible and latent heat fluxes, causing urban heat islands. In heavily vegetated areas, the proliferation of ISA reduces the sequestration of carbon from the atmosphere. ISA alters the character of watersheds by increasing the frequency and magnitude of surface runoff pulses. Watershed effects of ISA begin to be detectable once 10% of the surface is covered by impervious surfaces, altering the shape of stream channels, raising water temperatures, and sweeping urban debris and pollutants into aquatic environments. Consequences of ISA include reduced numbers and diversity of species in fish and aquatic insects, and degradation of wetlands and riparian zones.
NASA Astrophysics Data System (ADS)
Wang, Jun; Feng, Jinming; Yan, Zhongwei; Hu, Yonghong; Jia, Gensuo
2013-04-01
In this paper, the Weather Research and Forecasting (WRF) model coupled to the Urban Canopy Model (UCM) is employed to simulate the impact of urbanization on the regional climate over three vast city agglomerations in China. Based on high resolution land use and land cover data, two scenarios are designed to represent the non-urban and current urban land use distributions. By comparing the results of two nested, high resolution numerical experiments, the spatial and temporal changes on surface air temperature, heat stress index, surface energy budget and precipitation due to urbanization are analyzed and quantified. Urban expansion increases the surface air temperature in urban areas by about 1? and this climatic forcing of urbanization on temperature is more pronounced in summer and nighttime than other seasons and daytime. The heat stress intensity, which reflects the combined effects of temperature and humidity, is enhanced by about 0.5 units in urban areas. The regional incoming solar radiation increases after urban expansion, which may be caused by the reduction of cloud fraction. The increased temperature and roughness of the urban surface lead to enhanced convergence. Meanwhile, the planetary boundary layer is deepened and water vapor is mixed more evenly in the lower atmosphere. The deficit of water vapor leads to less convective available potential energy and more convective inhibition energy. Finally, these combined effects may reduce the rainfall amount over urban area mainly in summer and change the regional precipitation pattern to a certain extent.
NASA Astrophysics Data System (ADS)
Liu, Z.; Liu, S.; Xue, Y.; Oleson, K. W.
2013-12-01
One of the most significant urbanization in the world occurred in Great Beijing Area of China during the past several decades. The land use and land cover changes modifies the land surface physical characteristics, including the anthropogenic heat and thermo-dynamic conduction. All of those play important roles in the urban regional climate changes. We developed a single layer urban canopy module based on the Community Land Surface Model Urban Module (CLMU). We have made further improvements in the urban module: the energy balances on the five surface conditions are considered separately: building roof, sun side and shade side wall, pervious and impervious land surface. Over each surface, a method to calculate sky view factor (SVF) is developed based on the physically process while most urban models simply provide an empirical value; A new scheme for calculating the latent heat flux is applied on both wall and impervious land; anthropogenic heat is considered in terms of industrial production, domestic wastes, vehicle and air condition. All of these developments improve the accuracy of surface energy balance processing in urban area. The urban effect on summer convective precipitation under the unstable atmospheric condition in the Great Beijing Area was investigated by simulating a heavy rainfall event in July 21st 2012. In this storm, strong meso-scale convective complexes (MCC) brought precipitation of averagely 164 mm within 6 hours, which is the record of past 60 years in the region. Numerical simulating experiment was set up by coupling MCLMU with WRF. Several condition/blank control cases were also set up. The horizontal resolution in all simulations was 2 km. While all of the control results drastically underestimate the urban precipitation, the result of WRF-MCLMU is much closer to the observation though still underestimated. More sensitive experiments gave a preliminary conclusion of how the urban canopy physics processing affects the local precipitation: the existence of large area of impervious surfaces restrain the surface evaporation and latent heat flux in urban while the anthropogenic heat and enhanced sensible heat flux warm up the lower atmospheric layer and strengthen the vertical stratification instability; In this storm event, the water supply of the MCC was thought to be sufficient, thus the instability of the vertical stratification was the key factor for precipitation.
What land covers are effective in mitigating a heat island in urban building rooftop?
NASA Astrophysics Data System (ADS)
Lee, S.; Ryu, Y.
2014-12-01
Since the 20th century, due to the rapid urbanization many urban environment problems have got blossomed and above all heat island has been recognized as an important issue. There are several causes of urban heat island, but land cover change occupies the largest portion of them. Owing to urban expansion, vegetation is changed into asphalt pavements and concrete buildings, which reduces latent heat flux. To mitigate the problems, people enlarge vegetation covers such as planting street trees, making rooftop gardens and constructing parks or install white roofs that feature high albedo on a building. While the white roofs reflect about 70% of solar radiation and absorb less radiation, vegetation has low albedo but cools the air through transpiration and fixes carbon dioxide through photosynthesis. There are some studies concerning which one is more effective to mitigate heat island between the green roof and white roof. This study compares the green roof and white roof and additionally considers carbon fixation that has not been treated in other studies. Furthermore, this study ascertains an efficiency of solar-cell panel that is used for building roof recently. The panel produces electric power but has low albedo which could warm the air. The experiment is conducted at the rooftop in Seoul, Korea and compares green roof (grass), white roof (painted cover), black roof (solar panel) and normal painted roof. Surface temperature and albedo are observed for the four roof types and incoming shortwave, outgoing longwave and carbon flux are measured in green roof solely. In the case of solar panels, the electricity generation is calculated from the incoming radiation. We compute global warming potentials for the four roof types and test which roof type is most effective in reducing global warming potential.
Ren, Ming-Yi; Yang, Li-Yuan; Wang, Long-Feng; Han, Xue-Mei; Dai, Jie-Rui; Pang, Xu-Gui
2018-01-01
Surface soil samples collected from Nansi Lake catchment were analyzed for mercury (Hg) to determine its spatial trends and environmental impacts. Results showed that the average soil Hg contents were 0.043 mg kg -1 . A positive correlation was shown between TOC and soil Hg contents. The main type of soil with higher TOC contents and lower pH values showed higher soil Hg contents. Soil TOC contents and CV values were both higher in the eastern catchment. The eastern part of the catchment, where the industry is developed, had relatively high soil Hg contents and a banding distribution of high Hg contents was corresponded with the southwest-northeast economic belt. Urban soils had higher Hg contents than rural soils. The urbanization pattern that soil Hg contents presented a decreasing trend from city center to suburb was shown clearly especially in the three cities. Soil Hg contents in Jining City showed a good consistency with the urban land expansion. The spatial trends of soil Hg contents in the catchment indicated that the type and the intensity of human activities have a strong influence on the distribution of Hg in soils. Calculated risk indices showed that the western part of the catchment presented moderately polluted condition and the eastern part of the catchment showed moderate to strong pollution level. The area with high ecological risk appeared mainly along the economic belt.
[Pollution load and the first flush effect of phosphorus in urban runoff of Wenzhou City].
Zhou, Dong; Chen, Zhen-lou; Bi, Chun-juan
2012-08-01
Five typical rainfalls were monitored in two different research areas of Wenzhou municipality. The pH and concentrations of total phosphorus (TP), dissolved phosphorus (DP), particulate phosphorus (PP), total inorganic carbon (TIC), total organic carbon (TOC), total suspended substances (TSS), BOD5 and COD in six different kinds of urban runoff were measured. The results showed that, the concentrations of TP, DP and PP in different kinds of urban runoff of Wenzhou ranged from 0.01 to 4.32 mg x L(-1), ND to 0.88 mg x L(-1) and ND to 4.31 mg x L(-1), respectively. In the early stages of runoff process PP was dominated, while in the later, the proportion of DP in most of the runoff samples would show a rising trend, especially in roof and outlet runoff. Judged by the event mean concentration (EMC) of TP and DP in these five rainfalls, some kinds of urban runoff could cause environmental pressure to the next level receiving water bodies. Meanwhile, the differences among the TP and DP content (maximum, minimum and mean content) in various urban runoffs were significant, and so were the differences among various rainfall events. According to the M (V) curve, the first flush effect of TP in most kinds of urban runoff was common; while the first flush effect of DP was more difficult to occur comparing with TP. Not only the underlying surface types but also many physico-chemical properties of runoff could affect the concentration of TP in urban runoff. All the results also suggested that different best management plans (BMPs) should be selected for various urban runoff types for the treatment of phosphorus pollution, and reducing the concentration of TSS is considered as one of the effective ways to decrease the pollution load of phosphorus in urban runoff.
The urban impact on the regional climate of Dresden
NASA Astrophysics Data System (ADS)
Sändig, B.; Renner, E.
2010-09-01
The principal objective of this research is to clarify the impact of urban elements such as buildings and streets on the regional climate and air quality in the framework of the BMBF-project "Regionales Klimaanpassungsprogramm f¨ur die Modellregion Dresden" (REGKLAM). Drawing on the example of Dresden this work explores how the presence of cities influences the atmospheric flow and the characteristics of the boundary layer. Persuing this target, an urban surface exchange parameterisation module (Martilli et al., 2002) was implemented in a high resolution version of the COSMO model, the forecast model of the German Weather Service (DWD). Using a mesoscale model for this regional climate study implies the advantage of embedding the focused area in a realistic large scale situation via downscaling by means of one way nesting and allows to simulate the urban impact for different IPCC-szenarios. The urban module is based on the assumption that a city could be represented by a bunch of "urban classes". Each urban class is characterised by specific properties such as typical street directions or probability of finding a building in a special height. Based on urban structure data of Dresden (vector shape-files containing the outlines of all buildings and the respective heights) an automated method of extracting the relevant geometrical input parameters for the urban module was developed. By means of this model setup we performed case studies, in which we investigate the interactions between the city structure and the meteorological variables with regard to special synoptical situations such as the Bohemian wind, a typical flow pattern of cold air, sourced from the Bohemian Basin, in the Elbe Valley, which acts then like a wind channel. Another focal point is formed by the investigation of different types of artificial cities ranging from densely builtup areas to suburban areas in order to illuminating the impact of the city type on the dynamical and thermal properties of the atmosphere.
City landscape changes effects on land surface temperature in Bucharest metropolitan area
NASA Astrophysics Data System (ADS)
Savastru, Dan M.; Zoran, Maria A.; Savastru, Roxana S.; Dida, Adrian I.
2017-10-01
This study investigated the influences of city land cover changes and extreme climate events on land surface temperature in relationship with several biophysical variables in Bucharest metropolitan area of Romania through satellite and in-situ monitoring data. Remote sensing data from IKONOS, Landsat TM/ETM+ and time series MODIS Terra/Aqua and NOAA AVHRR sensors have been used to assess urban land cover- temperature interactions over 2000 - 2016 period. Time series Thermal InfraRed (TIR) satellite remote sensing data in synergy with meteorological data (air temperatureAT, precipitations, wind, solar radiation, etc.) were applied mainly for analyzing land surface temperature (LST) pattern and its relationship with surface landscape characteristics, assessing urban heat island (UHI), and relating urban land cover temperatures (LST). The land surface temperature, a key parameter for urban thermal characteristics analysis, was also analyzed in relation with the Normalized Difference Vegetation Index (NDVI) at city level. Results show that in the metropolitan area ratio of impervious surface in Bucharest increased significantly during investigated period, the intensity of urban heat island and heat wave events being most significant. The correlation analyses revealed that, at the pixel-scale, LST and AT possessed a strong positive correlation with percent impervious surfaces and negative correlation with vegetation abundances at metropolitan scale respectively. The NDVI was significantly correlated with precipitation. The spatial average air temperatures in urban test areas rise with the expansion of the urban size.
NASA Astrophysics Data System (ADS)
Wang, Jun; Feng, Jinming; Yan, Zhongwei; Hu, Yonghong; Jia, Gensuo
2012-11-01
In this paper, the Weather Research and Forecasting Model, coupled to the Urban Canopy Model, is employed to simulate the impact of urbanization on the regional climate over three vast city agglomerations in China. Based on high-resolution land use and land cover data, two scenarios are designed to represent the nonurban and current urban land use distributions. By comparing the results of two nested, high-resolution numerical experiments, the spatial and temporal changes on surface air temperature, heat stress index, surface energy budget, and precipitation due to urbanization are analyzed and quantified. Urban expansion increases the surface air temperature in urban areas by about 1°C, and this climatic forcing of urbanization on temperature is more pronounced in summer and nighttime than other seasons and daytime. The heat stress intensity, which reflects the combined effects of temperature and humidity, is enhanced by about 0.5 units in urban areas. The regional incoming solar radiation increases after urban expansion, which may be caused by the reduction of cloud fraction. The increased temperature and roughness of the urban surface lead to enhanced convergence. Meanwhile, the planetary boundary layer is deepened, and water vapor is mixed more evenly in the lower atmosphere. The deficit of water vapor leads to less convective available potential energy and more convective inhibition energy. Finally, these combined effects may reduce the rainfall amount over urban areas, mainly in summer, and change the regional precipitation pattern to a certain extent.
Hsu, Tiffany; Joice, Regina; Vallarino, Jose; Abu-Ali, Galeb; Hartmann, Erica M.; Shafquat, Afrah; DuLong, Casey; Baranowski, Catherine; Gevers, Dirk; Green, Jessica L.; Spengler, John D.
2016-01-01
ABSTRACT Public transit systems are ideal for studying the urban microbiome and interindividual community transfer. In this study, we used 16S amplicon and shotgun metagenomic sequencing to profile microbial communities on multiple transit surfaces across train lines and stations in the Boston metropolitan transit system. The greatest determinant of microbial community structure was the transit surface type. In contrast, little variation was observed between geographically distinct train lines and stations serving different demographics. All surfaces were dominated by human skin and oral commensals such as Propionibacterium, Corynebacterium, Staphylococcus, and Streptococcus. The detected taxa not associated with humans included generalists from alphaproteobacteria, which were especially abundant on outdoor touchscreens. Shotgun metagenomics further identified viral and eukaryotic microbes, including Propionibacterium phage and Malassezia globosa. Functional profiling showed that Propionibacterium acnes pathways such as propionate production and porphyrin synthesis were enriched on train holding surfaces (holds), while electron transport chain components for aerobic respiration were enriched on touchscreens and seats. Lastly, the transit environment was not found to be a reservoir of antimicrobial resistance and virulence genes. Our results suggest that microbial communities on transit surfaces are maintained from a metapopulation of human skin commensals and environmental generalists, with enrichments corresponding to local interactions with the human body and environmental exposures. IMPORTANCE Mass transit environments, specifically, urban subways, are distinct microbial environments with high occupant densities, diversities, and turnovers, and they are thus especially relevant to public health. Despite this, only three culture-independent subway studies have been performed, all since 2013 and all with widely differing designs and conclusions. In this study, we profiled the Boston subway system, which provides 238 million trips per year overseen by the Massachusetts Bay Transportation Authority (MBTA). This yielded the first high-precision microbial survey of a variety of surfaces, ridership environments, and microbiological functions (including tests for potential pathogenicity) in a mass transit environment. Characterizing microbial profiles for multiple transit systems will become increasingly important for biosurveillance of antibiotic resistance genes or pathogens, which can be early indicators for outbreak or sanitation events. Understanding how human contact, materials, and the environment affect microbial profiles may eventually allow us to rationally design public spaces to sustain our health in the presence of microbial reservoirs. Author Video: An author video summary of this article is available. PMID:27822528
Contrasting effects of urbanization and agriculture on surface temperature in eastern China
Decheng Zhou; Dan Li; Ge Sun; Liangxia Zhang; Yongqiang Liu; Lu Hao
2016-01-01
The combined effect of urbanization and agriculture, two most pervasive land use activities, on the surface climate remains poorly understood. Using Moderate Resolution Imaging Spectroradiometer data over 2010â2015 and forests as reference, we showed that urbanization warmed the land surface temperature (LST), especially during the daytime and in growing seasons (...
NASA Technical Reports Server (NTRS)
Loughner, Christopher P.; Allen, Dale J.; Zhang, Da-Lin; Pickering, Kenneth E.; Dickerson, Russell R.; Landry, Laura
2012-01-01
Urban heat island (UHI) effects can strengthen heat waves and air pollution episodes. In this study, the dampening impact of urban trees on the UHI during an extreme heat wave in the Washington, D.C., and Baltimore, Maryland, metropolitan area is examined by incorporating trees, soil, and grass into the coupled Weather Research and Forecasting model and an urban canopy model (WRF-UCM). By parameterizing the effects of these natural surfaces alongside roadways and buildings, the modified WRF-UCM is used to investigate how urban trees, soil, and grass dampen the UHI. The modified model was run with 50% tree cover over urban roads and a 10% decrease in the width of urban streets to make space for soil and grass alongside the roads and buildings. Results show that, averaged over all urban areas, the added vegetation decreases surface air temperature in urban street canyons by 4.1 K and road-surface and building-wall temperatures by 15.4 and 8.9 K, respectively, as a result of tree shading and evapotranspiration. These temperature changes propagate downwind and alter the temperature gradient associated with the Chesapeake Bay breeze and, therefore, alter the strength of the bay breeze. The impact of building height on the UHI shows that decreasing commercial building heights by 8 m and residential building heights by 2.5 m results in up to 0.4-K higher daytime surface and near-surface air temperatures because of less building shading and up to 1.2-K lower nighttime temperatures because of less longwave radiative trapping in urban street canyons.
Ma, Jun; Liu, Yi; Yu, Guangbin; Li, Hongbo; Yu, Shen; Jiang, Yueping; Li, Guilin; Lin, Jinchang
2016-05-15
Spatial patterns of metal distribution along urban-rural or multi-city gradients indicate that the urbanization process directly lead to metal enrichment and contamination in the environments. However, it has not yet looked at homogenization dynamics of an urban-rural gradient pattern over time with urbanization process in an area. This study monitored anthropogenic metals (Cr, Cu, Pb, and Zn) in surface sediments from channels of a newly-opened National Wetland Park to elucidate the urbanization-driven dissolution of urban-rural gradient pattern between 2008 and 2011. Sixty-eight surface sediment samples were taken from these channels in July of both 2008 and 2011. Results showed that a spatial distribution pattern of total metal contents along the gradient of urbanization influence, evident in 2008, was homogenized in 2011 with the area development. The lead stable isotope ratio analysis identified anthropogenic Pb origins from vehicular exhausts, cements, and coal flying ashes, which elevated metal contents in the inner channels via atmospheric deposition. Specific hazard quotients of the metal contamination in surface sediment were also assessed and enhanced over time in the study wetland park. These findings suggest that emissions from traffic, construction, and energy generation contribute metal loadings in the urbanizing environment. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hamdi, R.; Schayes, G.
2005-07-01
The Martilli's urban parameterization scheme is improved and implemented in a mesoscale model in order to take into account the typical effects of a real city on the air temperature near the ground and on the surface exchange fluxes. The mesoscale model is run on a single column using atmospheric data and radiation recorded above roof level as forcing. Here, the authors validate the Martilli's urban boundary layer scheme using measurements from two mid-latitude European cities: Basel, Switzerland and Marseilles, France. For Basel, the model performance is evaluated with observations of canyon temperature, surface radiation, and energy balance fluxes obtained during the Basel urban boundary layer experiment (BUBBLE). The results show that the urban parameterization scheme is able to reproduce the generation of the Urban Heat Island (UHI) effect over urban area and represents correctly most of the behavior of the fluxes typical of the city center of Basel, including the large heat uptake by the urban fabric and the positive sensible heat flux at night. For Marseilles, the model performance is evaluated with observations of surface temperature, canyon temperature, surface radiation, and energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) and its urban boundary layer (UBL) campaign. At both urban sites, vegetation cover is less than 20%, therefore, particular attention was directed to the ability of the Martilli's urban boundary layer scheme to reproduce the observations for the Marseilles city center, where the urban parameters and the synoptic forcing are totally different from Basel. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model correctly simulates the net radiation, canyon temperature, and the partitioning between the turbulent and storage heat fluxes.
Mallin, Michael A; Johnson, Virginia L; Ensign, Scott H
2009-12-01
Water quality data at 12 sites within an urban, a suburban, and a rural stream were collected contemporaneously during four wet and eight dry periods. The urban stream yielded the highest biochemical oxygen demand (BOD), orthophosphate, total suspended sediment (TSS), and surfactant concentrations, while the most rural stream yielded the highest total organic carbon concentrations. Percent watershed development and percent impervious surface coverage were strongly correlated with BOD (biochemical oxygen demand), orthophosphate, and surfactant concentrations but negatively with total organic carbon. Excessive fecal coliform abundance most frequently occurred in the most urbanized catchments. Fecal coliform bacteria, TSS, turbidity, orthophosphate, total phosphorus, and BOD were significantly higher during rain events compared to nonrain periods. Total rainfall preceding sampling was positively correlated with turbidity, TSS, BOD, total phosphorus, and fecal coliform bacteria concentrations. Turbidity and TSS were positively correlated with phosphorus, fecal coliform bacteria, BOD, and chlorophyll a, which argues for better sedimentation controls under all landscape types.
NASA Technical Reports Server (NTRS)
Vandooren, G. A. J.; Herben, M. H. A. J.; Brussaard, G.; Sforza, M.; Poiaresbaptista, J. P. V.
1993-01-01
A model for the prediction of the electromagnetic field strength in an urban environment is presented. The ray model, that is based on the Uniform Theory of Diffraction (UTD), includes effects of the non-perfect conductivity of the obstacles and their surface roughness. The urban environment is transformed into a list of standardized obstacles that have various shapes and material properties. The model is capable of accurately predicting the field strength in the urban environment by calculating different types of wave contributions such as reflected, edge and corner diffracted waves, and combinations thereof. Also, antenna weight functions are introduced to simulate the spatial filtering by the mobile antenna. Communication channel parameters such as signal fading, time delay profiles, Doppler shifts and delay-Doppler spectra can be derived from the ray-tracing procedure using post-processing routines. The model has been tested against results from scaled measurements at 50 GHz and proves to be accurate.
Meyer, Michael L; Huey, Greg M
2006-05-01
This study utilized telemetric systems to sample microbes and pathogens in forest, burned forest, rangeland, and urban watersheds to assess surface water quality in northern New Mexico. Four sites included remote mountainous watersheds, prairie rangelands, and a small urban area. The telemetric system was linked to dataloggers with automated event monitoring equipment to monitor discharge, turbidity, electrical conductivity, water temperature, and rainfall during base flow and storm events. Site data stored in dataloggers was uploaded to one of three types of telemetry: 1) radio in rangeland and urban settings; 2) a conventional phone/modem system with a modem positioned at the urban/forest interface; and 3) a satellite system used in a remote mountainous burned forest watershed. The major variables affecting selection of each system were site access, distance, technology, and cost. The systems were compared based on operation and cost. Utilization of telecommunications systems in this varied geographic area facilitated the gathering of hydrologic and water quality data on a timely basis.
NASA Astrophysics Data System (ADS)
Offerle, Brian
Urban environmental problems related to air quality, thermal stress, issues of water demand and quality, all of which are linked directly or indirectly to urban climate, are emerging as major environmental concerns at the start of the 21st century. Thus there are compelling social, political and economic, and scientific reasons that make the study and understanding of the fundamental causes of urban climates critically important. This research addresses these topics through an intensive study of the surface energy balance of Lodz, Poland. The research examines the temporal variability in long-term measurements of urban surface-atmosphere exchange at a downtown location and the spatial variability of this exchange over distinctly different neighborhoods using shorter-term observations. These observations provide the basis for an evaluation of surface energy balance models. Monthly patterns in energy exchange are consistent from year-to-year with variability determined by net radiation and the timing and amount of precipitation. Spatial variability can be determined from plan area fractions of vegetation and impervious surface, though heat storage exerts a strong control on shorter term variability of energy exchange, within and between locations in an urban area. Anthropogenic heat fluxes provide most of the energy driving surface-atmosphere exchange in winter, From a modeling perspective, sensible heat fluxes can be reliably determined from radiometrically sensed surface temperatures and spatially representative surface-atmosphere exchange in an urban area can be determined from satellite remote sensing products. Models of the urban surface energy balance showed good agreement with mean values of energy exchange and under most conditions represented the temporal variability due to synoptic and shorter time scale forcing well.
Johnston, Marie R; Balster, Nick J; Zhu, Jun
2016-01-01
Prairie gardens have become a common addition to residential communities in the midwestern United States because prairie vegetation is native to the region, requires fewer resources to maintain than turfgrass, and has been promoted to help remediate urban soil. Although prairie systems typically have deeper and more diverse root systems than traditional turfgrass, no one has tested the effect of this vegetation type on the physical properties of urban soil. We hypothesized that residential prairie gardens would yield lower soil bulk density (BD), lower penetration resistance (PR), greater soil organic matter (SOM), and greater saturated hydraulic conductivity () compared with turfgrass lawns. To test this hypothesis, we examined 12 residential properties in Madison, WI, where homeowners had established a prairie garden within their turfgrass lawn. Despite a consistent trend in the difference between vegetation types, no significant main effects were found (i.e., a difference between vegetation types when averaged over depth) for any of the four soil properties measured in this study. Differences were found with depth and depended on a significant interaction with vegetation type. At the surface depth (0-0.15 m), soil beneath prairie gardens had 10% lower mean BD, 15% lower mean PR, 25% greater level of SOM, and 33% greater compared with soil beneath the adjacent lawns. These differences were not detected at deeper sampling intervals of 0.15 to 0.30 m and 0.30 to 0.45 m. Although not statistically significant, the consistent trend and direction among soil variables suggest that residential prairie gardens had changed the surface soil at a rate that marginally outpaced turfgrass and calls for controlled experiments to identify the mechanisms that might enhance these trends. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Use of GLOBE Observations to Derive a Landsat 8 Split Window Algorithm for Urban Heat Island
NASA Astrophysics Data System (ADS)
Fagerstrom, L.; Czajkowski, K. P.
2017-12-01
Surface temperature has been studied to investigate the warming of urban climates, also known as urban heat islands, which can impact urban planning, public health, pollution levels, and energy consumption. However, the full potential of remotely sensed images is limited when analyzing land surface temperature due to the daunting task of correcting for atmospheric effects. Landsat 8 has two thermal infrared sensors. With two bands in the infrared region, a split window algorithm (SWA), can be applied to correct for atmospheric effects. This project used in situ surface temperature measurements from NASA's ground observation program, the Global Learning and Observations to Benefit the Environment (GLOBE), to derive the correcting coefficients for use in the SWA. The GLOBE database provided land surface temperature data that coincided with Landsat 8 overpasses. The land surface temperature derived from Landsat 8 SWA can be used to analyze for urban heat island effect.
Assessing local climate zones in arid cities: The case of Phoenix, Arizona and Las Vegas, Nevada
NASA Astrophysics Data System (ADS)
Wang, Chuyuan; Middel, Ariane; Myint, Soe W.; Kaplan, Shai; Brazel, Anthony J.; Lukasczyk, Jonas
2018-07-01
The local climate zone (LCZ) classification scheme is a standardization framework to describe the form and function of cities for urban heat island (UHI) studies. This study classifies and evaluates LCZs for two arid desert cities in the Southwestern United States - Phoenix and Las Vegas - following the World Urban Database and Access Portal Tools (WUDAPT) method. Both cities are classified into seven built type LCZs and seven land-cover type LCZs at 100-m resolution using Google Earth, Saga GIS, and Landsat 8 scenes. Average surface cover properties (building fraction, impervious fraction, pervious fraction) and sky view factors of classified LCZs are then evaluated and compared to pre-defined LCZ representative ranges from the literature, and their implications on the surface UHI (SUHI) effect are explained. Results suggest that observed LCZ properties in arid desert environments do not always match the proposed value ranges from the literature, especially with regard to sky view factor (SVF) upper boundaries. Although the LCZ classification scheme was originally designed to describe local climates with respect to air temperature, our analysis shows that much can be learned from investigating land surface temperature (LST) in these zones. This study serves as a substantial new resource laying a foundation for assessing the SUHI in cities using the LCZ scheme, which could inform climate simulations at local and regional scales.
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Rickman, Douglas L.; Gonzalez, Jorge; Schiller, Steve
2006-01-01
The additional heating of the air over the city is the result of the replacement of naturally vegetated surfaces with those composed of asphalt, concrete, rooftops and other manmade materials. The temperatures of these artificial surfaces can be 20 to 40 0 C higher than vegetated surfaces. Materials such as asphalt store much of the sun s energy and remains hot long after sunset. This produces a dome of elevated air temperatures 5 to 8 C greater over the city, compared to the air temperatures over adjacent rural areas. This effect is called the "urban heat island". Urban landscapes are a complex mixture of vegetated and nonvegetated surfaces. It is difficult to take enough temperature measurements over a large city area to characterize the complexity of urban radiant surface temperature variability. However, the use of remotely sensed thermal data from airborne scanners are ideal for the task. The NASA Airborne Thermal and Land Applications Sensor (ATLAS) operates in the visual and IR bands was used in February 2004 to collect data from San Juan, Puerto Rico with the main objective of investigating the Urban Heat Island (UHI) in tropical cities. In this presentation we will examine the techniques of analyzing remotely sensed data for measuring the effect of various urban surfaces on their contribution to the urban heat island effect. Results from data collected from other US cities of Sacramento, Salt Lake City and Baton Rouge will be used to compare the "urban fabric" among the cities.
Yang, Limin; Huang, Chengquan; Homer, Collin G.; Wylie, Bruce K.; Coan, Michael
2003-01-01
A wide range of urban ecosystem studies, including urban hydrology, urban climate, land use planning, and resource management, require current and accurate geospatial data of urban impervious surfaces. We developed an approach to quantify urban impervious surfaces as a continuous variable by using multisensor and multisource datasets. Subpixel percent impervious surfaces at 30-m resolution were mapped using a regression tree model. The utility, practicality, and affordability of the proposed method for large-area imperviousness mapping were tested over three spatial scales (Sioux Falls, South Dakota, Richmond, Virginia, and the Chesapeake Bay areas of the United States). Average error of predicted versus actual percent impervious surface ranged from 8.8 to 11.4%, with correlation coefficients from 0.82 to 0.91. The approach is being implemented to map impervious surfaces for the entire United States as one of the major components of the circa 2000 national land cover database.
NASA Astrophysics Data System (ADS)
Iino, Shota; Ito, Riho; Doi, Kento; Imaizumi, Tomoyuki; Hikosaka, Shuhei
2017-10-01
In the developing countries, urban areas are expanding rapidly. With the rapid developments, a short term monitoring of urban changes is important. A constant observation and creation of urban distribution map of high accuracy and without noise pollution are the key issues for the short term monitoring. SAR satellites are highly suitable for day or night and regardless of atmospheric weather condition observations for this type of study. The current study highlights the methodology of generating high-accuracy urban distribution maps derived from the SAR satellite imagery based on Convolutional Neural Network (CNN), which showed the outstanding results for image classification. Several improvements on SAR polarization combinations and dataset construction were performed for increasing the accuracy. As an additional data, Digital Surface Model (DSM), which are useful to classify land cover, were added to improve the accuracy. From the obtained result, high-accuracy urban distribution map satisfying the quality for short-term monitoring was generated. For the evaluation, urban changes were extracted by taking the difference of urban distribution maps. The change analysis with time series of imageries revealed the locations of urban change areas for short-term. Comparisons with optical satellites were performed for validating the results. Finally, analysis of the urban changes combining X-band, L-band and C-band SAR satellites was attempted to increase the opportunity of acquiring satellite imageries. Further analysis will be conducted as future work of the present study
Urban Runoff and Nutrients Loading Control from Sustainable BMPs (Invited)
NASA Astrophysics Data System (ADS)
Xiao, Q.
2009-12-01
Climate change alters hydrodynamic and nutrient dynamic in both large and small geographic scales. These changes in our freshwater system directly affect drinking water, food production, business, and all aspects of our life. Along with climate change is increasing urbanization which alters natural landscape. Urban runoff has been identified as one of many potential drivers of the decline of pelagic fishes in san Francisco Bay-Delta region. Recent found of Pyrethroids in American River has increased scientists, public, and policy makers’ concern about our fresh water system. Increasing our understanding about the fundamental hydrodynamic, nutrient dynamics, and the transport mechanics of runoff and nutrients are important for future water resource and ecosystem management. Urbanization has resulted in significantly increasing the amount of impervious land cover. Most impervious land covers are hydrophobic that alters surface runoff because of the effects on surface retention storage, rainfall interception, and infiltration. Large volumes of excess storm runoff from urbanized areas cause flooding, water pollution, groundwater recharge deficits, destroyed habitat, beach closures, and toxicity to aquatic organisms. Parking lot alone accounts for more than 11% of these impervious surfaces. Contrast to impervious parking lot, turfgrass can accouter for 12% of urban land in California. Irrigated urban landscapes create considerable benefits to our daily living. However, the use of fertilizers and pesticides has caused environmental problems. Preventing fertilizers and pesticides from entering storm drains is an important goal for both landscape and storm runoff managers. Studies of urban runoff have found that the most fertilizers and pesticides are from dry weather runoff which conveys pollutants to sidewalks, streets, and storm drains. Controlling surface runoff is critical to preventing these pollutants from entering storm drains and water bodies. Large scale construction of runoff retention basins and treatment facilities to meet TMDL (Total Maximum Daily Load) regulations are not cost-effective or practical. An alternative approach is to control runoff and nutrients on-site through installation of decentralized BMPs that detain and infiltrate runoff before it reaches storm drains. Recent developed green-infrastructure which integrating engineered soil and trees to reduce runoff and nutrients loading is a self-sustained best management practice (BMP). This BMP has been testing and used in urban runoff control. In Davis, CA this type of BMPs were installed in a parking lot and a residential property to evaluate the system’s effectiveness on reducing storm runoff and pollutant loading from the parking lot and irrigated landscape. Storm runoff and pollutant loading were measured and monitored during February 2007 thru May 2009 from the parking lot. The BMP reduced surface runoff and nutrients by 88.8% and 95.3%, respectively. In the residential irrigated landscape, the dry-weather runoff was monitored during 2007 irrigation season, the BMP captured almost all dry weather runoff. The performance of these BMPs demonstrated their potential use for reducing runoff and nutrients loading. Control urban runoff from these 23% landscape (i.e., parking lot and irrigated turf grass) could largely alter the runoff and nutrients transport and their dynamic in our water system.
Yan, Hai; Fan, Shuxin; Guo, Chenxiao; Hu, Jie; Dong, Li
2014-01-01
The effects of land cover on urban-rural and intra-urban temperature differences have been extensively documented. However, few studies have quantitatively related air temperature to land cover composition at a local scale which may be useful to guide landscape planning and design. In this study, the quantitative relationships between air temperature and land cover composition at a neighborhood scale in Beijing were investigated through a field measurement campaign and statistical analysis. The results showed that the air temperature had a significant positive correlation with the coverage of man-made surfaces, but the degree of correlation varied among different times and seasons. The different land cover types had different effects on air temperature, and also had very different spatial extent dependence: with increasing buffer zone size (from 20 to 300 m in radius), the correlation coefficient of different land cover types varied differently, and their relative impacts also varied among different times and seasons. At noon in summer, ∼37% of the variations in temperature were explained by the percentage tree cover, while ∼87% of the variations in temperature were explained by the percentage of building area and the percentage tree cover on summer night. The results emphasize the key role of tree cover in attenuating urban air temperature during daytime and nighttime in summer, further highlighting that increasing vegetation cover could be one effective way to ameliorate the urban thermal environment. PMID:25010134
NASA Technical Reports Server (NTRS)
Carroll, Mark L.; Brown, Molly E.; Wooten, Margaret R.; Donham, Joel E.; Hubbard, Alfred B.; Ridenhour, William B.
2016-01-01
As our climate changes through time there is an ever-increasing need to quantify how and where it is changing so that mitigation strategies can be implemented. Urban areas have a disproportionate amount of warming due, in part, to the conductive properties of concrete and asphalt surfaces, surface albedo, heat capacity, lack of water, etc. that make up an urban environment. The NASA Climate Adaptation Science Investigation working group at Goddard Space Flight Center in Greenbelt, MD, conducted a study to collect temperature and humidity data at 15 min intervals from 12 sites at the center. These sites represent the major surface types at the center: asphalt, building roof, grass field, forest, and rain garden. The data show a strong distinction in the thermal properties of these surfaces at the center and the difference between the average values for the center compared to a local meteorological station. The data have been submitted to Oak Ridge National Laboratory Distributed Active Archive Center (ORNL-DAAC) for archival in comma separated value (csv) file format (Carroll et al.,2016) and can be found by following this link: http:daac.ornl.govcgi-bindsviewer.pl?ds_id1319.
Measuring Thermal Characteristics of Urban Landscapes
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.
1999-01-01
The additional heating of the air over the city is the result of the replacement of naturally vegetated surfaces with those composed of asphalt, concrete, rooftops and other man-made materials. The temperatures of these artificial surfaces can be 20 to 40 C higher than vegetated surfaces. Materials such as asphalt store much of the sun's energy and remains hot long after sunset. This produces a dome of elevated air temperatures 5 to 8 C greater over the city, compared to the air temperatures over adjacent rural areas. This effect is called the "urban heat island". Urban landscapes are a complex mixture of vegetated and nonvegetated surfaces. It is difficult to take enough temperature measurements over a large city area to characterize the complexity of urban radiant surface temperature variability. However, the use of remotely sensed thermal data from airborne scanners are ideal for the task. In a study funded by NASA, a series of flights over Huntsville, Alabama were performed in September 1994 and over Atlanta, Georgia in May 1997. Analysis of thermal energy responses for specific or discrete surfaces typical of the urban landscape (e.g., asphalt, building rooftops, vegetation) requires measurements at a very fine spatial scale (i.e., <15 m) to adequately resolve these surfaces and their attendant thermal energy regimes. Additionally, very fine scale spatial resolution thermal infrared data, such as that obtained from aircraft, are very useful for demonstrating to planning officials, policy makers, and the general populace, what the benefits are of the urban forest in both mitigating the urban heat island effect, in making cities more aesthetically pleasing and more habitable environments, and in overall cooling of the community. In this presentation we will examine the techniques of analyzing remotely sensed data for measuring the effect of various urban surfaces on their contribution to the urban heat island effect.
NASA Astrophysics Data System (ADS)
Yang, Xiucheng; Chen, Li
2017-04-01
Urban surface water is characterized by complex surface continents and small size of water bodies, and the mapping of urban surface water is currently a challenging task. The moderate-resolution remote sensing satellites provide effective ways of monitoring surface water. This study conducts an exploratory evaluation on the performance of the newly available Sentinel-2A multispectral instrument (MSI) imagery for detecting urban surface water. An automatic framework that integrates pixel-level threshold adjustment and object-oriented segmentation is proposed. Based on the automated workflow, different combinations of visible, near infrared, and short-wave infrared bands in Sentinel-2 image via different water indices are first compared. Results show that object-level modified normalized difference water index (MNDWI with band 11) and automated water extraction index are feasible in urban surface water mapping for Sentinel-2 MSI imagery. Moreover, comparative results are obtained utilizing optimal MNDWI from Sentinel-2 and Landsat 8 images, respectively. Consequently, Sentinel-2 MSI achieves the kappa coefficient of 0.92, compared with that of 0.83 from Landsat 8 operational land imager.
Untreated runoff quality from roof and road surfaces in a low intensity rainfall climate.
Charters, Frances J; Cochrane, Thomas A; O'Sullivan, Aisling D
2016-04-15
Sediment and heavy metals in stormwater runoff are key pollutants of urban waterways, and their presence in stormwater is driven by climatic factors such as rainfall intensity. This study describes the total suspended solids (TSS) and heavy metal concentrations found in runoff from four different urban surfaces within a residential/institutional catchment, in a climate where rainfall is typically of low intensity (<5.1mm·h(-1)). The results were compared to untreated runoff quality from a compilation of international studies. The road runoff had the highest TSS concentrations, while copper and galvanized roof runoff had the highest copper and zinc concentrations, respectively. Pollutant concentrations were found to be significantly different between surfaces; quantification and prediction of pollutant contributions from urban surfaces should thus take account of the different surface materials, instead of being aggregated into more generalized categories such as land use. The TSS and heavy metal concentrations were found to be at the low to medium end of ranges observed internationally, except for total copper and zinc concentrations generated by dissolution of copper and galvanized roofing material respectively; these concentrations were at least as high as those reported internationally. TSS wash-off from the roofs was seen to be a source-limited process, where all available TSS is washed off during the rain event despite the low intensity rainfall, whereas both road TSS and heavy metals wash-off from roof and road surfaces appeared to all be transport-limited and therefore some carryover of pollutants occurs between rain events. A first flush effect was seen from most surfaces for TSS, but not for heavy metals. This study demonstrates that in low intensity rainfall climates, quantification of untreated runoff quality from key individual surface types in a catchment are needed to enable development of targeted and appropriately sized stormwater treatment systems. Copyright © 2016 Elsevier B.V. All rights reserved.
Trends of urban surface temperature and heat island characteristics in the Mediterranean
NASA Astrophysics Data System (ADS)
Benas, Nikolaos; Chrysoulakis, Nektarios; Cartalis, Constantinos
2017-11-01
Urban air temperature studies usually focus on the urban canopy heat island phenomenon, whereby the city center experiences higher near surface air temperatures compared to its surrounding non-urban areas. The Land Surface Temperature (LST) is used instead of urban air temperature to identify the Surface Urban Heat Island (SUHI). In this study, the nighttime LST and SUHI characteristics and trends in the seventeen largest Mediterranean cities were investigated, by analyzing satellite observations for the period 2001-2012. SUHI averages and trends were based on an innovative approach of comparing urban pixels to randomly selected non-urban pixels, which carries the potential to better standardize satellite-derived SUHI estimations. A positive trend for both LST and SUHI for the majority of the examined cities was documented. Furthermore, a 0.1 °C decade-1 increase in urban LST corresponded to an increase in SUHI by about 0.04 °C decade-1. A longitudinal differentiation was found in the urban LST trends, with higher positive values appearing in the eastern Mediterranean. Examination of urban infrastructure and development factors during the same period revealed correlations with SUHI trends, which can be used to explain differences among cities. However, the majority of the cities examined show considerably increased trends in terms of the enhancement of SUHI. These findings are considered important so as to promote sustainable urbanization, as well as to support the development of heat island adaptation and mitigation plans in the Mediterranean.
NASA Astrophysics Data System (ADS)
Meierdiercks, K. L.; Smith, J. A.; Miller, A. J.
2006-12-01
The impact of urban development on watershed-scale hydrology is examined in a small urban watershed in the Metropolitan Baltimore area. Analyses focus on Dead Run, a 14.3 km2 tributary of the Gwynns Falls, which is the principal study watershed of the Baltimore Ecosystem Study. Field observations of rainfall and discharge have been collected for storms occurring in the 2003, 2004, and 2005 warm seasons including the flood of record for the USGS Dead Run at Franklintown gage (7 July 2004), in which 5 inches of rain fell in less than 4 hours. Dead Run has stream gages at 6 locations with drainage areas ranging from 1.2 to 14.3 km2. Hydrologic response to storm events varies greatly in each of the subwatersheds due to the diverse development types located there. These subwatersheds range in land use from medium-density residential, with and without stormwater management control, to commercial/light industrial with large impervious lots and an extensive network of stormwater management ponds. The unique response of each subwatershed is captured using field observations in conjunction with the EPA Stormwater Management Model (SWMM), which routes storm runoff over the land surface and through the drainage network of a watershed. Of particular importance to flood response is the structure of the drainage network (both surface channels and storm drain network) and its connectivity to preferential flow paths within the watershed. The Dead Run drainage network has been delineated using geospatial data derived from aerial photography and engineering planning drawings. Model analyses are used to examine the characteristics of flow paths that control flood response in urban watersheds. These analyses aim to identify patterns in urban flow pathways and use those patterns to predict response in other urban watersheds.
Silva, Carmen Paz; García, Cristóbal E; Estay, Sergio A; Barbosa, Olga
2015-01-01
There is mounting evidence that urban areas influence biodiversity. Generalizations however require that multiple urban areas on multiple continents be examined. Here we evaluated the role of urban areas on avian diversity for a South American city, allowing us to examine the effects of urban features common worldwide, using the city of Valdivia, Chile as case study. We assessed the number of birds and their relative abundance in 152 grid cells of equal size (250 m2) distributed across the city. We estimated nine independent variables: land cover diversity (DC), building density (BD), impervious surface (IS),municipal green space (MG),non-municipal green space (NG), domestic garden space (DG), distance to the periphery (DP), social welfare index (SW), and vegetation diversity (RV). Impervious surface represent 41.8% of the study area, while municipal green, non-municipal green and domestic garden represent 11.6%, 23.6% and 16% of the non- man made surface. Exotic vegetation species represent 74.6% of the total species identified across the city. We found 32 bird species, all native with the exception of House Sparrow and Rock Pigeon. The most common species were House Sparrow and Chilean Swallow. Total bird richness responds negatively to IS and MG, while native bird richness responds positively to NG and negatively to BD, IS DG and, RV. Total abundance increase in areas with higher values of DC and BD, and decrease in areas of higher values of IS, SW and VR. Native bird abundance responds positively to NG and negatively to BD, IS MG, DG and RV. Our results suggest that not all the general patterns described in previous studies, conducted mainly in the USA, Europe, and Australia, can be applied to Latin American cities, having important implications for urban planning. Conservation efforts should focus on non-municipal areas, which harbor higher bird diversity, while municipal green areas need to be improved to include elements that can enhance habitat quality for birds and other species. These findings are relevant for urban planning in where both types of green space need to be considered, especially non-municipal green areas, which includes wetlands, today critically threatened by urban development.
García, Cristóbal E.; Estay, Sergio A.
2015-01-01
There is mounting evidence that urban areas influence biodiversity. Generalizations however require that multiple urban areas on multiple continents be examined. Here we evaluated the role of urban areas on avian diversity for a South American city, allowing us to examine the effects of urban features common worldwide, using the city of Valdivia, Chile as case study. We assessed the number of birds and their relative abundance in 152 grid cells of equal size (250 m2) distributed across the city. We estimated nine independent variables: land cover diversity (DC), building density (BD), impervious surface (IS),municipal green space (MG),non-municipal green space (NG), domestic garden space (DG), distance to the periphery (DP), social welfare index (SW), and vegetation diversity (RV). Impervious surface represent 41.8% of the study area, while municipal green, non-municipal green and domestic garden represent 11.6%, 23.6% and 16% of the non- man made surface. Exotic vegetation species represent 74.6% of the total species identified across the city. We found 32 bird species, all native with the exception of House Sparrow and Rock Pigeon. The most common species were House Sparrow and Chilean Swallow. Total bird richness responds negatively to IS and MG, while native bird richness responds positively to NG and negatively to BD, IS DG and, RV. Total abundance increase in areas with higher values of DC and BD, and decrease in areas of higher values of IS, SW and VR. Native bird abundance responds positively to NG and negatively to BD, IS MG, DG and RV. Our results suggest that not all the general patterns described in previous studies, conducted mainly in the USA, Europe, and Australia, can be applied to Latin American cities, having important implications for urban planning. Conservation efforts should focus on non-municipal areas, which harbor higher bird diversity, while municipal green areas need to be improved to include elements that can enhance habitat quality for birds and other species. These findings are relevant for urban planning in where both types of green space need to be considered, especially non-municipal green areas, which includes wetlands, today critically threatened by urban development. PMID:26422260
Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs
Edmondson, J. L.; Stott, I.; Davies, Z. G.; Gaston, K. J.; Leake, J. R.
2016-01-01
Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health. PMID:27641002
Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs.
Edmondson, J L; Stott, I; Davies, Z G; Gaston, K J; Leake, J R
2016-09-19
Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.
Soil surface temperatures reveal moderation of the urban heat island effect by trees and shrubs
NASA Astrophysics Data System (ADS)
Edmondson, J. L.; Stott, I.; Davies, Z. G.; Gaston, K. J.; Leake, J. R.
2016-09-01
Urban areas are major contributors to air pollution and climate change, causing impacts on human health that are amplified by the microclimatological effects of buildings and grey infrastructure through the urban heat island (UHI) effect. Urban greenspaces may be important in reducing surface temperature extremes, but their effects have not been investigated at a city-wide scale. Across a mid-sized UK city we buried temperature loggers at the surface of greenspace soils at 100 sites, stratified by proximity to city centre, vegetation cover and land-use. Mean daily soil surface temperature over 11 months increased by 0.6 °C over the 5 km from the city outskirts to the centre. Trees and shrubs in non-domestic greenspace reduced mean maximum daily soil surface temperatures in the summer by 5.7 °C compared to herbaceous vegetation, but tended to maintain slightly higher temperatures in winter. Trees in domestic gardens, which tend to be smaller, were less effective at reducing summer soil surface temperatures. Our findings reveal that the UHI effects soil temperatures at a city-wide scale, and that in their moderating urban soil surface temperature extremes, trees and shrubs may help to reduce the adverse impacts of urbanization on microclimate, soil processes and human health.
The Use of ATLAS Data to Quantify Surface Radiative Budgets in Four US Cities
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey; Gonzalez, Jorge; Rickman, Douglas; Quattrochi, Dale; Schiller, Steve; Comarazamy, Daniel; Estes, Maury
2011-01-01
The additional heating of the air over the city is the result of the replacement of naturally vegetated surfaces with those composed of asphalt, concrete, rooftops and other manmade materials. The temperatures of these artificial surfaces can be 20 to 40 C higher than vegetated surfaces. This produces a dome of elevated air temperatures 5 to 8 C greater over the city, compared to the air temperatures over adjacent rural areas. This effect is called the "urban heat island". Urban landscapes are a complex mixture of vegetated and non-vegetated surfaces. It is difficult to take enough temperature measurements over a large city area to. The use of remotely sensed data from airborne scanners is ideal to characterize the complexity of urban albedo and radiant surface temperatures. The National Aeronautics and Space Administration (NASA) Airborne Thermal and Land Applications Sensor (ATLAS) operates in the visual and IR bands was used to collect data from Salt Lake City, UT, Sacramento, CA, Baton Rouge, LA. And San Juan, Puerto Rico with the main objective of investigating the Urban Heat Island (UHI). In this presentation we will examine the techniques of analyzing remotely sensed data for measuring the effect of various urban surfaces on their contribution to the urban heat island effect.
Seasonal temperature responses to land-use change in the western United States
Kueppers, L.M.; Snyder, M.A.; Sloan, L.C.; Cayan, D.; Jin, J.; Kanamaru, H.; Kanamitsu, M.; Miller, N.L.; Tyree, Mary; Du, H.; Weare, B.
2008-01-01
In the western United States, more than 79 000??km2 has been converted to irrigated agriculture and urban areas. These changes have the potential to alter surface temperature by modifying the energy budget at the land-atmosphere interface. This study reports the seasonally varying temperature responses of four regional climate models (RCMs) - RSM, RegCM3, MM5-CLM3, and DRCM - to conversion of potential natural vegetation to modern land-cover and land-use over a 1-year period. Three of the RCMs supplemented soil moisture, producing large decreases in the August mean (- 1.4 to - 3.1????C) and maximum (- 2.9 to - 6.1????C) 2-m air temperatures where natural vegetation was converted to irrigated agriculture. Conversion to irrigated agriculture also resulted in large increases in relative humidity (9% to 36% absolute change). Modeled changes in the August minimum 2-m air temperature were not as pronounced or consistent across the models. Converting natural vegetation to urban land-cover produced less pronounced temperature effects in all models, with the magnitude of the effect dependent upon the preexisting vegetation type and urban parameterizations. Overall, the RCM results indicate that the temperature impacts of land-use change are most pronounced during the summer months, when surface heating is strongest and differences in surface soil moisture between irrigated land and natural vegetation are largest. ?? 2007 Elsevier B.V. All rights reserved.
Liu, Lu; Guan, Dongsheng; Peart, M R
2012-09-01
Air pollution is a serious health problem throughout the world, exacerbating a wide range of respiratory and vascular illnesses in urban areas. The mass artificial plantation is very helpful to absorb dust and reduce pollution for conservation of the urban environment. The foliar surface of plants is an important receptor of atmospheric pollutants. Therefore, selection of suitable plant species for urban environment is very important. The dust-retaining capability of urban trees in Guangzhou was determined at four different types of urban area, and the morphological traits of their leaves such as wax, cuticle, stomata, and trichomes were observed under a scanning electron microscope. It was determined that the dust-retaining capability of any given tree species is significantly different in the same place. Of the four studied tree species in the industrial area (IA) and commercial/traffic areas (CTA) type urban areas, the highest amounts of dust removed by Mangifera indica Linn was 12.723 and 1.482 g/m(2), respectively. However, in contrast, the equivalent maxima for Bauhinia blakeana is only 2.682 g/m(2) and 0.720 g/m(2), respectively. Different plant species have different leaf morphology. The leaf of M. indica has deep grooves and high stomata density which are in favor of dust-retained, and thus, their dust-retained capability is stronger, while B. blakeana has the cells and epicuticular wax with its stomata arranging regularly, resulting in poor dust catching capability. Leaf size was also shown to be related to dust capture for the four studied tree species. The dust removal capacity of individual tree species should be taken into account in the management of greening plantation in and around an urban area. It was also shown that temporal variation in dust accumulation occurred over the 28-day observation period and this was discussed. Furthermore, spatial contrasts in dust accumulation were evidenced by the data. This reflected the differing pollution loadings of the four urban-type areas. The highest amount of dust accumulation was associated with the industrial area in which shipyard and steelworks occurred whilst the lowest dust accumulation was associated with the grounds of the University which was the control area.
Urban land use monitoring from computer-implemented processing of airborne multispectral data
NASA Technical Reports Server (NTRS)
Todd, W. J.; Mausel, P. W.; Baumgardner, M. F.
1976-01-01
Machine processing techniques were applied to multispectral data obtained from airborne scanners at an elevation of 600 meters over central Indianapolis in August, 1972. Computer analysis of these spectral data indicate that roads (two types), roof tops (three types), dense grass (two types), sparse grass (two types), trees, bare soil, and water (two types) can be accurately identified. Using computers, it is possible to determine land uses from analysis of type, size, shape, and spatial associations of earth surface images identified from multispectral data. Land use data developed through machine processing techniques can be programmed to monitor land use changes, simulate land use conditions, and provide impact statistics that are required to analyze stresses placed on spatial systems.
NASA Astrophysics Data System (ADS)
Wouters, Hendrik; Blahak, Ulrich; Helmert, Jürgen; Raschendorfer, Matthias; Demuzere, Matthias; Fay, Barbara; Trusilova, Kristina; Mironov, Dmitrii; Reinert, Daniel; Lüthi, Daniel; Machulskaya, Ekaterina
2015-04-01
In order to address urban climate at the regional scales, a new efficient urban land-surface parametrization TERRA_URB has been developed and coupled to the atmospheric numerical model COSMO-CLM. Hereby, several new advancements for urban land-surface models are introduced which are crucial for capturing the urban surface-energy balance and its seasonal dependency in the mid-latitudes. This includes a new PDF-based water-storage parametrization for impervious land, the representation of radiative absorption and emission by greenhouse gases in the infra-red spectrum in the urban canopy layer, and the inclusion of heat emission from human activity. TERRA_URB has been applied in offline urban-climate studies during European observation campaigns at Basel (BUBBLE), Toulouse (CAPITOUL), and Singapore, and currently applied in online studies for urban areas in Belgium, Germany, Switzerland, Helsinki, Singapore, and Melbourne. Because of its computational efficiency, high accuracy and its to-the-point conceptual easiness, TERRA_URB has been selected to become the standard urban parametrization of the atmospheric numerical model COSMO(-CLM). This allows for better weather forecasts for temperature and precipitation in cities with COSMO, and an improved assessment of urban outdoor hazards in the context of global climate change and urban expansion with COSMO-CLM. We propose additional extensions to TERRA_URB towards a more robust representation of cities over the world including their structural design. In a first step, COSMO's standard EXTernal PARarameter (EXTPAR) tool is updated for representing the cities into the land cover over the entire globe. Hereby, global datasets in the standard EXTPAR tool are used to retrieve the 'Paved' or 'sealed' surface Fraction (PF) referring to the presence of buildings and streets. Furthermore, new global data sets are incorporated in EXTPAR for describing the Anthropogenic Heat Flux (AHF) due to human activity, and optionally the Surface Area Index (SAI) derived from the Floor Space Index (FSI). In a second step, it is focussed on the urban/rural contrast in terms of turbulent transport in the surface layer by means of model sensivity experiments: On the theoretical basis of the TKE-based surface-layer transfer scheme of COSMO, we investigate the consistency between empirical functions for thermal roughness lengths and the urban/rural canopy morphology.
Urban Heat Island in the city of Bari (Italy) ant its relationship with morphological features
NASA Astrophysics Data System (ADS)
Ceppi, C.; Balena, P.; Loconte, P.; Mancini, F.
2012-04-01
The investigation of an Urban Heat Island (UHI) and its relationship with the wide range of factors able to explain its behavior is a very difficult task: the main trouble is represented by the spatial variability of the urban temperature due to the extreme heterogeneousness of the urban coverage and morphological features. In literature it is known that the local surface temperatures are influenced by the changing characteristics in urban surface and modification of land surface processes affecting the surface energy balance and the shape of boundary layer. The whole processes could lead to distinct urban climates. This work is mainly focused on the mechanisms which are actually connecting the urban morphology with the surface temperature as derived by satellite data provided from the ASTER sensor. Urban morphology could be described by several factors depending on the selected scale of analysis. At the macroscale the UHI is more related to the land-use, environmental context and boundary conditions. At the microscale the surface characteristics, urban density, ratio between green and built areas and, construction and built typology are more involved in addition to the composite indicators such as the Sky View factor and the elevation of the built texture. The case study of the city of Bari is faced. It is a medium sized city in the southern Italy, characterized by the presence of a pervasive waterfront and presence of "lame", a natural erosive furrows shallow that are typical of the Apulia country side. Such ephemeral streams convey the stormwater from the plateau of the hilly Murgia areas to the sea. Moreover, the urban complexity of the city exacerbates the spatial variability of the phenomenon. The first step aim at the investigating of the relationship between the thermal behavior and the above mentioned factors by the construction of a set of homogeneous morphological units. The classification is built both in the urban and rural zone. The second step focuses on the development of a spatial statistical analysis based on qualitative and quantitative indicators able to link the classes of urban morphology with the satellite-based surface temperature. The relationships highlighted by such a spatial analysis can be used to model the urban climate and, consequently, develop a new kind of planning more addressed towards the mitigation of the UHI phenomenon.
Zhang, Di; Cao, Shan-Ping; Sun, Jian-Lin; Zeng, Hui
2014-02-01
188 surface soil samples were collected in Shenzhen of China to determine the occurrence and spatial differentiation of polycyclic aromatic hydrocarbons (PAHs), based on which we studied the correlation between PAHs concentrations and urbanization levels, as well as the PAHs ecological risk. The total concentrations of 28 PAHs (sigma28 PAHs), 16 EPA PAHs (sigma 16 PAHs) and 7 carcinogenic PAHs (sigma7 CarPAHs) ranged from 5 to 7939 ng x g(-1), 2 to 6745 ng x g(-1) and not detected to 3786 ng x g(-1), respectively. 8 kinds of land use types according to sigma16 PAHs average levels in descending order were: transportation lands, commercial lands, industrial lands, agricultural lands, residential lands, urban green space, orchards and woodland. And sigma16 PAHs of construction and non-construction lands samples were mainly derived from combustion of various fossil fuels with contribution of 75.1% and 68.2%, respectively. Significant positive correlation was also found between PAHs concentrations of high molecular weight and urbanization levels. And PAHs pollution in the top soils of Shenzhen was at a low-end level of the world.
NASA Astrophysics Data System (ADS)
Yılmaz, Erkan
2016-04-01
In this study, the seasonal variation of the surface temperature of Ankara urban area and its enviroment have been analyzed by using Landsat 7 image. The Landsat 7 images of each month from 2007 to 2011 have been used to analyze the annually changes of the surface temperature. The land cover of the research area was defined with supervised classification method on the basis of the satellite image belonging to 2008 July. After determining the surface temperatures from 6-1 bands of satellite images, the monthly mean surface temperatures were calculated for land cover classification for the period between 2007 and 2011. According to the results obtained, the surface temperatures are high in summer and low in winter from the airtemperatures. all satellite images were taken at 10:00 am, it is found that urban areas are cooler than rural areas at 10:00 am. Regarding the land cover classification, the water surfaces are the coolest surfaces during the whole year.The warmest areas are the grasslands and dry farming areas. While the parks are warmer than the urban areas during the winter, during the summer they are cooler than artificial land covers. The urban areas with higher building density are the cooler surfaces after water bodies.
Characterizing continuous urban growth using composited time-series Landsat data
NASA Astrophysics Data System (ADS)
Song, X. P.; Sexton, J. O.; Huang, C.; Feng, M.; Channan, S.; Baker, M. E.; Townshend, J. R.
2014-12-01
Impervious surfaces are land cover features through which water cannot penetrate into the soil. As an indicator of urban land use, impervious surface cover (ISC) is disproportionally important to human beings-although covering only 0.5% of the Earth's terrestrial surface, cities support over 50% the Earth's population. The increasing demand for built-up space by a growing urban population has been driving land use change in urban areas worldwide. An increase in ISC can significantly impact the biophysical characteristics of land surface, such as altering the local surface energy balance, or transforming regional hydrological systems. Remotely sensed data is commonly used as the primary data source for extracting impervious surface information for monitoring urban growth, but current studies often lack the sufficient temporal resolution or thematic detail to reveal the long-term, nonlinear development of impervious surfaces over time. In a previous study (Sexton et al. 2013), we created an annual stack of 30-m percent ISC estimates for the Washington DC-Baltimore metropolitan region from 1984 to 2010 by compositing all available Landsat images in the USGS archive. Here we developed a robust time-series method to detect impervious surface change. The method employs a customized logistic function for every pixel to model the continuous process of urban growth. It quantifies the fractional intensity of ISC change at the sub-pixel level and also characterizes the timing and length (in years) of urban development. The new method detects change based on a sequence of observations before, during and after change and thus is highly resistant to random noises. Our results showed that the DC-Baltimore metropolitan region experienced an accelerated growth pathway from the late 1980s to the late 2000s. The majority of urban and sub-urban development occurred at scales finer than the Landsat resolution (30 m), with a region-wide mean intensity of 46% ISC increase. Our study demonstrates the value of the long-term and fine temporal resolution data offered by the Landsat archive, and also highlights the possible limitations of Landsat's spatial resolution in characterizing continuous urban development.
Analysis of Global Urban Temperature Trends and Urbanization Impacts
NASA Astrophysics Data System (ADS)
Lee, K. I.; Ryu, J.; Jeon, S. W.
2018-04-01
Due to urbanization, urban areas are shrinking green spaces and increasing concrete, asphalt pavement. So urban climates are different from non-urban areas. In addition, long-term macroscopic studies of urban climate change are becoming more important as global urbanization affects global warming. To do this, it is necessary to analyze the effect of urbanization on the temporal change in urban temperature with the same temperature data and standards for urban areas around the world. In this study, time series analysis was performed with the maximum, minimum, mean and standard values of surface temperature during the from 1980 to 2010 and analyzed the effect of urbanization through linear regression analysis with variables (population, night light, NDVI, urban area). As a result, the minimum value of the surface temperature of the urban area reflects an increase by a rate of 0.28K decade-1 over the past 31 years, the maximum value reflects an increase by a rate of 0.372K decade-1, the mean value reflects an increase by a rate of 0.208 decade-1, and the standard deviation reflects a decrease by rate of 0.023K decade-1. And the change of surface temperature in urban areas is affected by urbanization related to land cover such as decrease of greenery and increase of pavement area, but socioeconomic variables are less influential than NDVI in this study. This study are expected to provide an approach to future research and policy-planning for urban temperature change and urbanization impacts.
Effects of urban tree canopy loss on land surface temperature magnitude and timing
Arthur Elmes; John Rogan; Christopher Williams; Samuel Ratick; David Nowak; Deborah Martin
2017-01-01
Urban Tree Canopy (UTC) plays an important role in moderating the Surface Urban Heat Island (SUHI) effect, which poses threats to human health due to substantially increased temperatures relative to rural areas. UTC coverage is associated with reduced urban temperatures, and therefore benefits both human health and reducing energy use in cities. Measurement of this...
NASA Astrophysics Data System (ADS)
Jiang, S.; Wang, K.; Wang, J.; Zhou, C.; Wang, X.; Lee, X.
2017-12-01
This study compared the diurnal and seasonal cycles of atmospheric and surface urban heat islands (UHIs) based on hourly air temperatures (Ta) collected at 65 out of 262 stations in Beijing and land surface temperature (Ts) derived from Moderate Resolution Imaging Spectroradiometer in the years 2013-2014. We found that the nighttime atmospheric and surface UHIs referenced to rural cropland stations exhibited significant seasonal cycles, with the highest in winter. However, the seasonal variations in the nighttime UHIs referenced to mountainous forest stations were negligible, because mountainous forests have a higher nighttime Ts in winter and a lower nighttime T a in summer than rural croplands. Daytime surface UHIs showed strong seasonal cycles, with the highest in summer. The daytime atmospheric UHIs exhibited a similar but less seasonal cycle under clear-sky conditions, which was not apparent under cloudy-sky conditions. Atmospheric UHIs in urban parks were higher in daytime. Nighttime atmospheric UHIs are influenced by energy stored in urban materials during daytime and released during nighttime. The stronger anthropogenic heat release in winter causes atmospheric UHIs to increase with time during winter nights, but decrease with time during summer nights. The percentage of impervious surfaces is responsible for 49%-54% of the nighttime atmospheric UHI variability and 31%-38% of the daytime surface UHI variability. However, the nighttime surface UHI was nearly uncorrelated with the percentage of impervious surfaces around the urban stations.
Continental-scale Sensitivity of Water Yield to Changes in Impervious Cover
NASA Astrophysics Data System (ADS)
Caldwell, P.; Sun, G.; McNulty, S.; Cohen, E.; Moore Myers, J.
2012-12-01
Projected land conversion from native forest, grassland, and shrubland to urban impervious cover will alter watershed water balances by reducing groundwater recharge and evapotranspiration, increasing surface runoff, and potentially altering regional weather patterns. These hydrologic changes have important ecohydrological implications to local watersheds, including stream channel habitat degradation and the loss of aquatic biodiversity. Many observational studies have evaluated the impact of urbanization on water yield in small catchments downstream of specific urban areas. However it is often difficult to separate the impact of impervious cover from other impacts of urbanization such as leaking water infrastructure, irrigation runoff, water supply withdrawals, and effluent discharge. In addition, the impact of impervious cover has not been evaluated at scales large enough to assess spatial differences in water yield sensitivity to changes in impervious cover. The objective of this study was to assess the sensitivity of water yield to impervious cover across the conterminous U.S., and to identify locations where water yield will be most impacted by future urbanization. We used the Water Supply Stress Index (WaSSI) model to simulate monthly water yield as impacted by impervious cover for the approximately 82,000 12-digit HUC watersheds across the conterminous U.S. WaSSI computed infiltration, surface runoff, soil moisture, and baseflow processes explicitly for ten vegetative land cover classes and impervious cover in each watershed using the 2006 National Land Cover Dataset estimates of impervious cover. Our results indicate that impervious cover has increased total water yield in urban areas (relative to native vegetation), and that the increase was most significant during the growing season. The proportion of stream flow that occurred as baseflow decreased, even though total water yield increased as a result of impervious cover. Water yield was most sensitive to changes in impervious cover in areas where annual evapotranspiration is high relative to precipitation (e.g. the Southwestern States, Texas, and Florida). Water yield was less sensitive in areas with low evapotranspiration relative to precipitation (e.g. Pacific Northwest and Northeastern States). Additionally, water yield was most impacted when high evapotranspiration land cover types (e.g. forests) were converted to impervious cover than when lower evapotranspiration land cover types (e.g. grassland) were converted. Using projections of future impervious cover provided by the U.S. EPA Integrated Climate and Land Use Scenarios project, water yield in urban areas of the Southwest, Texas, and Florida will be the most impacted by 2050, in part because these areas are projected to have significant increases in impervious cover, but also because they are in areas where evapotranspiration is high relative to precipitation. Our study suggests that watershed management should consider the climate-driven sensitivity of water yield to increases in impervious cover and the type of land cover being converted in addition to the magnitude of projected increases in impervious cover when evaluating impacts of urbanization on water resources.
Bibby, Rebecca L; Webster-Brown, Jenny G
2005-05-01
Suspended particulate matter (SPM) is an important transport agent for metal contaminants in streams, particularly during high flow periods such as storm events. For highly contaminated urban catchments in the greater Auckland (New Zealand) area, trace metal partitioning between the dissolved phase and SPM was determined, and SPM characterised in terms of its Si, Al, Fe, Mn, Zn, Cu, Pb, TOC, TON and PO(4) concentrations, as well as particle size, abundance, type and surface area. This data was compared to similar data from representative non-urban catchments in the Auckland region, the Kaipara River and Waikato River catchments, to identify any significant differences in the SPM and its potential trace metal adsorption capacity. Trace metal partitioning was assessed by way of a distribution coefficient: K(D)=[Me(SPM)]/[Me(DISS)]. Auckland urban SPM comprises quartz, feldspars and clay minerals, with Fe-oxides and minor Mn-oxides. No particles of anthropogenic origin, other than glass shards, were observed. No change in urban SPM particle size or SSA was observed with seasonal change in temperature, but the nature of the SPM was observed to change with flow regime. The abundance of finer particles, SSA and Al content of the SPM increased under moderate flow conditions; however, Si/Al ratios remained constant, confirming the importance of aluminosilicate detrital minerals in surface run-off. The SPM Fe content was observed to decrease with increased flow and was attributed to dilution of SPM Fe-oxide of groundwater origin. The Kaipara River SPM was found to be mineralogically, chemically and biologically similar to the urban SPM. However, major differences between urban catchment SPM and SPM from the much larger (non-urban) Waikato River were observed, and attributed to a higher abundance of diatoms. The Fe content of the Waikato River SPM was consistently lower (<5%), and the Si/Al ratio and Mn content was higher. Such differences observed between urban and non-urban SPM did not appear to affect the partitioning of Zn and Cu; however, Pb in the Kaipara and Waikato Rivers was found to be more associated with the dissolved phase. This is likely to reflect higher particulate Pb inputs to urban systems.
The Urban Heat Island Behavior of a Large Northern Latitude Metropolitan Area
NASA Astrophysics Data System (ADS)
Twine, T. E.; Snyder, P. K.; Hertel, W.; Mykleby, P.
2012-12-01
Urban heat islands (UHIs) occur when urban and suburban areas experience elevated temperatures relative to their rural surroundings because of differences in vegetation cover, buildings and other development, and infrastructure. Most cities in the United States are warming at twice the rate of the outlying rural areas and the planet as a whole. Temperatures in the urban center can be 2-5°C warmer during the daytime and as much as 10°C at night. Urban warming is responsible for excessive energy consumption, heat-related health effects, an increase in urban pollution, degradation of urban ecosystems, changes in the local meteorology, and an increase in thermal pollution into urban water bodies. One mitigation strategy involves manipulating the surface energy budget to either reduce the amount of solar radiation absorbed at the surface or offset absorbed energy through latent cooling. Options include using building materials with different properties of reflectivity and emissivity, increasing the reflectivity of parking lots, covering roofs with vegetation, and increasing the amount of vegetation overall through tree planting or increasing green space. The goal of the Islands in the Sun project is to understand the formation and behavior of urban heat islands and to mitigate their effects through sensible city engineering and design practices. As part of this project, we have been characterizing the UHI of the Twin Cities Metropolitan Area (TCMA), a 16,000 square kilometer urban and suburban region located in east central Minnesota that includes the two cities of Minneapolis and Saint Paul, and evaluating mitigation strategies for reducing urban warming. Annually, the TCMA has a modest 2-3°C UHI that is especially apparent in winter when the urban core can be up to 5-6°C warmer than the surrounding countryside. We present an analysis of regional temperature variations from a dense network of sensors located throughout the TCMA. We focus on the diurnal and seasonal behavior of the TCMA UHI with an emphasis on the contribution of different land use types on the UHI. We also present a comparison of thermal and radiative properties of two different roofing materials with data collected from the roof of the Science Museum of Minnesota in Saint Paul, MN. The impact of the TCMA UHI on thermal pollution into local water bodies is also investigated.
Analysis of Urban Terrain Data for Use in the Development of an Urban Camouflage Pattern
1990-02-01
the entire lightness gamut , but concentrated in the red, orange, yellow and neutral regions of color space. 20. DISTRIBUTION I AVAILABILITY OF...le·nents grouped by color. ) Summary of Scenes Filmed for Urban Camouflage Study. 01Jtirnum Number of Do·nains Separated by Type; Sele:::ted CIELAB ...Values for All Urban Scenes. Selected CIELAB Values for Type I Urban Scenes. Selected CIELAB Values for Type II Urban Scenes. v Page 3 6 7 8 9
A Simple and Universal Aerosol Retrieval Algorithm for Landsat Series Images Over Complex Surfaces
NASA Astrophysics Data System (ADS)
Wei, Jing; Huang, Bo; Sun, Lin; Zhang, Zhaoyang; Wang, Lunche; Bilal, Muhammad
2017-12-01
Operational aerosol optical depth (AOD) products are available at coarse spatial resolutions from several to tens of kilometers. These resolutions limit the application of these products for monitoring atmospheric pollutants at the city level. Therefore, a simple, universal, and high-resolution (30 m) Landsat aerosol retrieval algorithm over complex urban surfaces is developed. The surface reflectance is estimated from a combination of top of atmosphere reflectance at short-wave infrared (2.22 μm) and Landsat 4-7 surface reflectance climate data records over densely vegetated areas and bright areas. The aerosol type is determined using the historical aerosol optical properties derived from the local urban Aerosol Robotic Network (AERONET) site (Beijing). AERONET ground-based sun photometer AOD measurements from five sites located in urban and rural areas are obtained to validate the AOD retrievals. Terra MODerate resolution Imaging Spectrometer Collection (C) 6 AOD products (MOD04) including the dark target (DT), the deep blue (DB), and the combined DT and DB (DT&DB) retrievals at 10 km spatial resolution are obtained for comparison purposes. Validation results show that the Landsat AOD retrievals at a 30 m resolution are well correlated with the AERONET AOD measurements (R2 = 0.932) and that approximately 77.46% of the retrievals fall within the expected error with a low mean absolute error of 0.090 and a root-mean-square error of 0.126. Comparison results show that Landsat AOD retrievals are overall better and less biased than MOD04 AOD products, indicating that the new algorithm is robust and performs well in AOD retrieval over complex surfaces. The new algorithm can provide continuous and detailed spatial distributions of AOD during both low and high aerosol loadings.
A Regional Categorization for "New-Type Urbanization" in China.
Fang, Chuanglin; Ma, Haitao; Wang, Jing
2015-01-01
Regional differences in the character of urbanization in China are substantial. The promotion of what has been termed "new-type urbanization" cannot, as a result of these regional differences, be expected to follow a universal approach--rather, such a development must objectively adhere to locational and category-specific principles and adopt differentiated urbanization development models. Regional categorization is often used in geography, but is rarely deployed in research addressing human and social problems relating to urbanization. In March 2014, China published the National New-type Urbanization Plan (2014-2020), which calls for the scientific and reasonable planning of "new-type urbanization," and appropriate regional categorizations are urgently needed in order to guide this reform. Responding to this challenge, this research engaged in the design of a "dominantly quantitative analysis, qualitatively supplemented" method in order to divide China into 5 main regions and 47 sub-regions in terms of new-type urbanization. The paper discusses the features and key problems of each region. This study introduces a new method for regional categorization, thereby remedying the lack of regional categorization in relation to "new-type urbanization" in China, and ultimately promoting the development of regional categorization in the humanities as a valuable reference for healthy and sustainable Chinese urbanization.
Exclusions for resolving urban badger damage problems: outcomes and consequences.
Ward, Alastair I; Finney, Jason K; Beatham, Sarah E; Delahay, Richard J; Robertson, Peter A; Cowan, David P
2016-01-01
Increasing urbanisation and growth of many wild animal populations can result in a greater frequency of human-wildlife conflicts. However, traditional lethal methods of wildlife control are becoming less favoured than non-lethal approaches, particularly when problems involve charismatic species in urban areas. Eurasian badgers ( Meles meles ) excavate subterranean burrow systems (setts), which can become large and complex. Larger setts within which breeding takes place and that are in constant use are known as main setts. Smaller, less frequently occupied setts may also exist within the social group's range. When setts are excavated in urban environments they can undermine built structures and can limit or prevent safe use of the area by people. The most common approach to resolving these problems in the UK is to exclude badgers from the problem sett, but exclusions suffer a variable success rate. We studied 32 lawful cases of badger exclusions using one-way gates throughout England to evaluate conditions under which attempts to exclude badgers from their setts in urban environments were successful. We aimed to identify ways of modifying practices to improve the chances of success. Twenty of the 32 exclusion attempts were successful, but success was significantly less likely if a main sett was to be excluded in comparison with another type of sett and if vegetation was not completely removed from the sett surface prior to exclusion attempts. We recommend that during exclusions all vegetation is removed from the site, regardless of what type of sett is involved, and that successful exclusion of badgers from a main sett might require substantially more effort than other types of sett.
Nitrogen dynamics at the groundwater-surface water interface of a degraded urban stream (journal)
Urbanization degrades stream ecosystems by altering hydrology and nutrient dynamics, yet relatively little effort has been devoted to understanding biogeochemistry of urban streams at the ground water-surface water interface. This zone may be especially important for nitrogen re...
NASA Astrophysics Data System (ADS)
Luvall, J. C.
2016-12-01
It is estimated that by the year 2025, 80% of the world's population will live in cities. This conversion of the natural landscape vegetation into man-made urban structures such as roads and buildings drastically alter the regional surface energy budgets, hydrology, precipitation patterns, and meteorology. The urban heat island (UHI) results from the energy that is absorbed by man-made materials during the day and is released at night resulting in the heating of the air within the urban area. The magnitude of the air temperature differences between the urban and surrounding countryside can be 2-8 o C. The UHI was one of the earliest recognized and measured phenomena of urbanization which was reported as early as 1833 for London (Howard, 1833) and 1862 for Paris. Research studies from many cities have documented that these effects range from decreases in air quality, increased energy consumption, and alteration of regional climate to direct effects on human health. To understand why the UHI phenomena exists, it is useful to define the surface in terms of the surface energy budget. Surface temperature and albedo are major components of the surface energy budget. Knowledge of it is important in any attempt to describe the radiative and mass fluxes that occur at the surface. Use of energy terms in modeling surface energy budgets allows the direct comparison of various land surfaces encountered in an urban landscape, from vegetated (forest and herbaceous) to non-vegetated (bare soil, roads, and buildings). These terms are also easily measured using remote sensing from aircraft or satellite platforms allowing one to examine the spatial variability of the urban surface. Planned NASA space borne missions include an ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) a five channel, 37x 50m resolution thermal instrument on space station and a Hyperspectral Infrared Imager (HyspIRI), a 30m resolution hyperspectral and 60m resolution multispectral channel mid/thermal infrared instrument. These instruments build on a long heritage of NASA funded research using aircraft based urban remote sensing instruments to develop techniques for assessing the UHI. HyspIRI will provide the global datasets necessary to monitor and study the impacts of urbanization on a global scale.
NASA Astrophysics Data System (ADS)
Giovannini, L.; de Franceschi, M.; Zardi, D.
2009-04-01
The results of a research project, aiming at providing tools and criteria to evaluate the temperature field inside an urban street canyon, are presented. Temperature measurements have been carried out, both in summertime and in wintertime, inside a North-South oriented urban canyon in the city of Trento (Italy) in the Alps, with sensors placed at various heights on the front of buildings flanking the street and on top of traffic lights in the middle of the canyon. The results have been analyzed in comparison with data from an automated weather station placed close to the street canyon, at 33 m above ground level and taken as a reference for the above roof-top level. During sunny days a well defined cycle was identified in the daily evolution of air temperature measured by the sensors inside the urban canyon, which was primarily influenced by direct solar radiation. As expected, during the morning the East-facing sensors warmed up faster than the other ones, while in the afternoon the West-facing instruments were the warmest. In most cases the air temperature inside the canyon was higher than above roof level, with differences depending on weather conditions and hour of the day. The dataset allowed to characterize the microclimate of the urban canopy layer and provided a basis for testing the ability of a simple numerical model to simulate the thermal structure inside the urban canyon. The model displays the following characteristics: assignment of distinct surface types (road, walls and roofs), in order to better simulate their physical properties; computation of radiative exchanges inside the canyon based on view factors between the different surfaces and explicitly treating both the solar reflections and the shadows; storage heat flux simulated by means of the heat conduction equation. The model requires as input the geometry parameters of the street and the values of meteorological variables measured above roof level. The main outputs are the heat fluxes determined by the surface energy balance (road, building fronts), the surface temperatures and the average air temperature inside the urban canyon. The comparison between the results of the model and the measurements made during the field experiments displays a good agreement, with an average error of 0.3-0.4 °C on the evaluation of the mean air temperature inside the street canyon. This result is remarkable, especially considering the low level of complexity of the numerical code and the simplifying assumptions made.
Jefferson, Anne J.; Bhaskar, Aditi S.; Hopkins, Kristina G.; Fanelli, Rosemary; Avellaneda, Pedro M.; McMillan, Sara K.
2017-01-01
Deleterious effects of urban stormwater are widely recognized. In several countries, regulations have been put into place to improve the conditions of receiving water bodies, but planning and engineering of stormwater control is typically carried out at smaller scales. Quantifying cumulative effectiveness of many stormwater control measures on a watershed scale is critical to understanding how small-scale practices translate to urban river health. We review 100 empirical and modelling studies of stormwater management effectiveness at the watershed scale in diverse physiographic settings. Effects of networks with stormwater control measures (SCMs) that promote infiltration and harvest have been more intensively studied than have detention-based SCM networks. Studies of peak flows and flow volumes are common, whereas baseflow, groundwater recharge, and evapotranspiration have received comparatively little attention. Export of nutrients and suspended sediments have been the primary water quality focus in the United States, whereas metals, particularly those associated with sediments, have received greater attention in Europe and Australia. Often, quantifying cumulative effects of stormwater management is complicated by needing to separate its signal from the signal of urbanization itself, innate watershed characteristics that lead to a range of hydrologic and water quality responses, and the varying functions of multiple types of SCMs. Biases in geographic distribution of study areas, and size and impervious surface cover of watersheds studied also limit our understanding of responses. We propose hysteretic trajectories for how watershed function responds to increasing imperviousness and stormwater management. Even where impervious area is treated with SCMs, watershed function may not be restored to its predevelopment condition because of the lack of treatment of all stormwater generated from impervious surfaces; non-additive effects of individual SCMs; and persistence of urban effects beyond impervious surfaces. In most cases, pollutant load decreases largely result from run-off reductions rather than lowered solute or particulate concentrations. Understanding interactions between natural and built landscapes, including stormwater management strategies, is critical for successfully managing detrimental impacts of stormwater at the watershed scale.
[Effect of antecedent dry period on water quality of urban storm runoff pollution].
Bian, Bo
2009-12-01
Identified the main factor influencing urban rainfall-runoff pollution provides a scientific basis for urban rainfall-runoff pollution control and management. Therefore, starting in May 2006, a study was conducted to characterize water quality from representative land uses types in Zhenjiang to analyse the effect of antecedent dry period on stormwater runoff quality. The results show that the beginning of rainfall, with the increase of antecedent dry periods, the percentages of less than 40 microm is increased, the correlation of the water quality parameters (TN, TP, Zn, Pb, Cu, TSS and COD) and antecedent dry period shows a significant positive correlation, dissolved pollutants in the initial period surface runoff is increased. These findings show that facilitating the recognition of antecedent dry periods is the main factor influencing the change in concentration and partitioning of pollutants to provide the scientific basis for non-point source pollution control and management.
Characterizing Urban Heat Islands of Global Settlements Using MODIS and Nighttime Lights Products
NASA Technical Reports Server (NTRS)
Zhang, Ping; Imhoff, Marc L.; Wolfe, Robert E.; Bounoua, Lahouari
2010-01-01
Impervious surface area (ISA) from the National Geophysical Data Center (NGDC) and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) signature on LST amplitude and its relationship to development intensity, size, and ecological setting for more than 3000 urban settlements over the globe. Development intensity zones based on fractional ISA are defined for each urban area emanating outward from the urban core to the nearby non-urban rural areas and used to stratify sampling for LST. Sampling is further constrained by biome type and elevation data to insure objective inter-comparisons between zones and between cities in different biomes. We find that the ecological context and settlement size significantly influence the amplitude of summer daytime UHI. Globally, an average of 3.8 C UHI is found in cities built in biomes dominated by forests; 1.9 C UHI in cities embedded in grass/shrub biomes, and only a weak UHI or sometimes an Urban Heat Sink (UHS) in cities in and and semi-arid biomes. Overall, the amplitude of the UHI is negatively correlated (R = -0.66) to the difference in vegetation density between urban and rural zones represented by MODIS Normalized Difference Vegetation Index (NDVI). Globally averaged, the daytime UHI amplitude for all settlement is 2.6 C in summer and 1.4 C in winter. Globally, the average summer daytime UHI is 4.7 C for settlements larger than 500 square kilometers, compared to 2.5 C for settlements smaller than 50 square kilometers and larger than 10 square kilometers. The stratification of cities by size indicates that the aggregated amount of ISA is the primary driver of UHI amplitude with variations between ecological contexts and latitudinal zones. More than 60% of the total LST variances is explained by ISA for urban settlements within forests at mid-to-high latitudes. This percentage will increase to more than 80% when only USA settlements are examined.
Thermal behaviour of an urban lake during summer
NASA Astrophysics Data System (ADS)
Solcerova, Anna; van de Ven, Frans
2015-04-01
One of the undesirable effects of urbanisation is higher summer air temperatures in cites compared to rural areas. One of the most important self-cooling mechanism of cities is presence of water. Comparative studies showed that from all urban land-use types open water is the most efficient in reducing the heat in its surrounding. Urban water bodies vary from small ponds to big lakes and rivers, but already the presence of a swimming pool in a garden resulted in lower temperatures in the area. Moving and still water both exhibit slightly different patterns with respect to the environment. While ponds tend to respond more to air temperature changes, faster flowing rivers are expected to have more stable temperature over time. There are two major components of cooling effect of a surface water:(1) through evaporation, and (2) by storing heat and increasing its own temperature. This study shows results from a detailed temperature measurements, using Distributed Temperature Sensing (DTS), in an urban lake in Delft (The Netherlands). A two meter tall construction measuring temperature with 2 mm vertical spatial resolution was placed partly in the water, reaching all the way to the muddy underlayer, and partly in the air. Data from continuous two month measurement campaign show the development of water temperature with respect to solar radiation, air temperature, rain and inflow of rainwater from surrounding streets, etc. Most interesting is the 1-2 cm thick layer of colder air right above the water surface. This layer reaches values lower than both the air and the water, which suggests that certain part of the potential cooling capacity of open water is restricted by a small layer of air just above its surface.
Runoff and Infiltration Dynamics on Pervious Paver Surfaces
USDA-ARS?s Scientific Manuscript database
When natural or agricultural land is converted for (sub)urban or commercial use, the addition of impervious surfaces becomes a dominating factor in the new urban hydrologic regime. To help minimize the negative hydrologic effects of this land use change, urban best management practices (BMPs) are co...
NASA Astrophysics Data System (ADS)
Demuzere, Matthias; Coutts, Andrew; Goehler, Maren; Broadbent, Ashley; Wouters, Hendrik; van Lipzig, Nicole; Gebert, Luke
2015-04-01
Urban vegetation is generally considered as a key tool to modify the urban energy balance through enhanced evapotranspiration (ET). Given that vegetation is most effective when it is healthy, stormwater harvesting and retention strategies (such as water sensitive urban design) could be used to support vegetation and promote ET. This study presents the implementation of a vegetated lined bio-filtration system (BFS) combined with a rainwater tank (RWT) and urban irrigation system in the single-layer urban canopy model Community Land Model-Urban. Runoff from roof and impervious road surface fractions is harvested and used to support an adequate soil moisture level for vegetation in the BFS. In a first stage, modelled soil moisture dynamics are evaluated and found reliable compared to observed soil moisture levels from biofiltration pits in Smith Street, Melbourne (Australia). Secondly, the impact of BFS, RWT and urban irrigation on ET is illustrated for a two-month period in 2012 using varying characteristics for all components. Results indicate that (i) a large amount of stormwater is potentially available for indoor and outdoor water demands, including irrigation of urban vegetation, (ii) ET from the BFS is an order of magnitude larger compared to the contributions from the impervious surfaces, even though the former only covers 10% of the surface fraction and (iii) attention should be paid to the cover fraction and soil texture of the BFS, size of the RWT and the surface fractions contributing to the collection of water in the RWT. Overall, this study reveals that this model development can effectuate future research with state-of-the-art urban climate models to further explore the benefits of vegetated biofiltration systems as a water sensitive urban design tool optimised with an urban irrigation system to maintain healthy vegetation.
NASA Astrophysics Data System (ADS)
Liu, Xiaojuan; Tian, Guangjin; Feng, Jinming; Ma, Bingran; Wang, Jun; Kong, Lingqiang
2018-06-01
The impacts of three periods of urban land expansion during 1990-2010 on near-surface air temperature in summer in Beijing were simulated in this study, and then the interrelation between heat waves and urban warming was assessed. We ran the sensitivity tests using the mesoscaleWeather Research and Forecasting model coupled with a single urban canopy model, as well as high-resolution land cover data. The warming area expanded approximately at the same scale as the urban land expansion. The average regional warming induced by urban expansion increased but the warming speed declined slightly during 2000-2010. The smallest warming occurred at noon and then increased gradually in the afternoon before peaking at around 2000 LST—the time of sunset. In the daytime, urban warming was primarily caused by the decrease in latent heat flux at the urban surface. Urbanization led to more ground heat flux during the day and then more release at night, which resulted in nocturnal warming. Urban warming at night was higher than that in the day, although the nighttime increment in sensible heat flux was smaller. This was because the shallower planetary boundary layer at night reduced the release efficiency of near-surface heat. The simulated results also suggested that heat waves or high temperature weather enhanced urban warming intensity at night. Heat waves caused more heat to be stored in the surface during the day, greater heat released at night, and thus higher nighttime warming. Our results demonstrate a positive feedback effect between urban warming and heat waves in urban areas.
Fortel, Laura; Henry, Mickaël; Guilbaud, Laurent; Guirao, Anne Laure; Kuhlmann, Michael; Mouret, Hugues; Rollin, Orianne; Vaissière, Bernard E.
2014-01-01
Background Wild bees are important pollinators that have declined in diversity and abundance during the last decades. Habitat destruction and fragmentation associated with urbanization are reported as part of the main causes of this decline. Urbanization involves dramatic changes of the landscape, increasing the proportion of impervious surface while decreasing that of green areas. Few studies have investigated the effects of urbanization on bee communities. We assessed changes in the abundance, species richness, and composition of wild bee community along an urbanization gradient. Methodology/Principal Findings Over two years and on a monthly basis, bees were sampled with colored pan traps and insect nets at 24 sites located along an urbanization gradient. Landscape structure within three different radii was measured at each study site. We captured 291 wild bee species. The abundance of wild bees was negatively correlated with the proportion of impervious surface, while species richness reached a maximum at an intermediate (50%) proportion of impervious surface. The structure of the community changed along the urbanization gradient with more parasitic species in sites with an intermediate proportion of impervious surface. There were also greater numbers of cavity-nesting species and long-tongued species in sites with intermediate or higher proportion of impervious surface. However, urbanization had no effect on the occurrence of species depending on their social behavior or body size. Conclusions/Significance We found nearly a third of the wild bee fauna known from France in our study sites. Indeed, urban areas supported a diverse bee community, but sites with an intermediate level of urbanization were the most speciose ones, including greater proportion of parasitic species. The presence of a diverse array of bee species even in the most urbanized area makes these pollinators worthy of being a flagship group to raise the awareness of urban citizens about biodiversity. PMID:25118722
Fortel, Laura; Henry, Mickaël; Guilbaud, Laurent; Guirao, Anne Laure; Kuhlmann, Michael; Mouret, Hugues; Rollin, Orianne; Vaissière, Bernard E
2014-01-01
Wild bees are important pollinators that have declined in diversity and abundance during the last decades. Habitat destruction and fragmentation associated with urbanization are reported as part of the main causes of this decline. Urbanization involves dramatic changes of the landscape, increasing the proportion of impervious surface while decreasing that of green areas. Few studies have investigated the effects of urbanization on bee communities. We assessed changes in the abundance, species richness, and composition of wild bee community along an urbanization gradient. Over two years and on a monthly basis, bees were sampled with colored pan traps and insect nets at 24 sites located along an urbanization gradient. Landscape structure within three different radii was measured at each study site. We captured 291 wild bee species. The abundance of wild bees was negatively correlated with the proportion of impervious surface, while species richness reached a maximum at an intermediate (50%) proportion of impervious surface. The structure of the community changed along the urbanization gradient with more parasitic species in sites with an intermediate proportion of impervious surface. There were also greater numbers of cavity-nesting species and long-tongued species in sites with intermediate or higher proportion of impervious surface. However, urbanization had no effect on the occurrence of species depending on their social behavior or body size. We found nearly a third of the wild bee fauna known from France in our study sites. Indeed, urban areas supported a diverse bee community, but sites with an intermediate level of urbanization were the most speciose ones, including greater proportion of parasitic species. The presence of a diverse array of bee species even in the most urbanized area makes these pollinators worthy of being a flagship group to raise the awareness of urban citizens about biodiversity.
NASA Astrophysics Data System (ADS)
Hamdi, R.; Schayes, G.
2007-08-01
Martilli's urban parameterization scheme is improved and implemented in a mesoscale model in order to take into account the typical effects of a real city on the air temperature near the ground and on the surface exchange fluxes. The mesoscale model is run on a single column using atmospheric data and radiation recorded above roof level as forcing. Here, the authors validate Martilli's urban boundary layer scheme using measurements from two mid-latitude European cities: Basel, Switzerland and Marseilles, France. For Basel, the model performance is evaluated with observations of canyon temperature, surface radiation, and energy balance fluxes obtained during the Basel urban boundary layer experiment (BUBBLE). The results show that the urban parameterization scheme represents correctly most of the behavior of the fluxes typical of the city center of Basel, including the large heat uptake by the urban fabric and the positive sensible heat flux at night. For Marseilles, the model performance is evaluated with observations of surface temperature, canyon temperature, surface radiation, and energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) and its urban boundary layer (UBL) campaign. At both urban sites, vegetation cover is less than 20%, therefore, particular attention was directed to the ability of Martilli's urban boundary layer scheme to reproduce the observations for the Marseilles city center, where the urban parameters and the synoptic forcing are totally different from Basel. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model correctly simulates the net radiation, canyon temperature, and the partitioning between the turbulent and storage heat fluxes.
Albedo, Land Cover, and Daytime Surface Temperature Variation Across an Urbanized Landscape
NASA Astrophysics Data System (ADS)
Trlica, A.; Hutyra, L. R.; Schaaf, C. L.; Erb, A.; Wang, J. A.
2017-11-01
Land surface albedo is a key parameter controlling the local energy budget, and altering the albedo of built surfaces has been proposed as a tool to mitigate high near-surface temperatures in the urban heat island. However, most research on albedo in urban landscapes has used coarse-resolution data, and few studies have attempted to relate albedo to other urban land cover characteristics. This study provides an empirical description of urban summertime albedo using 30 m remote sensing measurements in the metropolitan area around Boston, Massachusetts, relating albedo to metrics of impervious cover fraction, tree canopy coverage, population density, and land surface temperature (LST). At 30 m spatial resolution, median albedo over the study area (excluding open water) was 0.152 (0.112-0.187). Trends of lower albedo with increasing urbanization metrics and temperature emerged only after aggregating data to 500 m or the boundaries of individual towns, at which scale a -0.01 change in albedo was associated with a 29 (25-35)% decrease in canopy cover, a 27 (24-30)% increase in impervious cover, and an increase in population from 11 to 386 km-2. The most intensively urbanized towns in the region showed albedo up to 0.035 lower than the least urbanized towns, and mean mid-morning LST 12.6°C higher. Trends in albedo derived from 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) measurements were comparable, but indicated a strong contribution of open water at this coarser resolution. These results reveal linkages between albedo and urban land cover character, and offer empirical context for climate resilient planning and future landscape functional changes with urbanization.
Local Climate Zones Classification to Urban Planning in the Mega City of São Paulo - SP, Brazil
NASA Astrophysics Data System (ADS)
Gonçalves Santos, Rafael; Saraiva Lopes, António Manuel; Prata-Shimomura, Alessandra
2017-04-01
Local Climate Zones Classification to Urban Planning in the Mega city of São Paulo - SP, Brazil Tropical megacities have presented a strong trend in growing urban. Urban management in megacities has as one of the biggest challenges is the lack of integration of urban climate and urban planning to promote ecologically smart cities. Local Climatic Zones (LCZs) are considered as important and recognized tool for urban climate management. Classes are local in scale, climatic in nature, and zonal in representation. They can be understood as regions of uniform surface cover, structure, material and human activity that have to a unique climate response. As an initial tool to promote urban climate planning, LCZs represent a simple composition of different land coverages (buildings, vegetation, soils, rock, roads and water). LCZs are divided in 17 classes, they are based on surface cover (built fraction, soil moisture, albedo), surface structure (sky view factor, roughness height) and cultural activity (anthropogenic heat flux). The aim of this study is the application of the LCZs classification system in the megacity of São Paulo, Brazil. Located at a latitude of 23° 21' and longitude 46° 44' near to the Tropic of Capricorn, presenting humid subtropical climate (Cfa) with diversified topographies. The megacity of São Paulo currently concentrates 11.890.000 inhabitants is characterized by large urban conglomerates with impermeable surfaces and high verticalization, having as result high urban heat island intensity. The result indicates predominance in urban zones of Compact low-rise, Compact Mid-rise, Compact High-rise and Open Low-rise. Non-urban regions are mainly covered by dense vegetation and water. The LCZs classification system promotes significant advantages for climate sensitive urban planning in the megacity of São Paulo. They offers new perspectives to the management of temperature and urban ventilation and allows the formulation of urban planning guidelines and climatic. Key words: Local Climatic Zones; Urban Panning; Megacities; São Paulo.
Xie, Tian; Wang, Meie; Chen, Weiping; Uwizeyimana, Herman
2018-06-01
Earthworms play an important role in soil processes and functions. However, few studies have focused on their community patterns in perturbed systems, especially in an urban environment with a high turnover rate of land cover. In this study, we collected and identified the earthworms in the residential areas in metropolitan Beijing. We further investigated the effects of urban soil properties, urbanization and landscape patterns on the earthworm communities. The results showed that both the abundance and biomass of earthworms in residential areas in metropolitan was relatively low. The abundance of earthworms was negatively correlated with soil organic carbon (SOC) in this study. Soil moisture and pH could be considered as the most important edaphic variables that affected earthworm communities. The construction age of residential areas significantly influenced the earthworm abundance. Moreover, the earthworm community composition responded differently to urban landscape features at different scales. The percentage of impervious and green space surface, the amount of landscape cover types, patch density and landscape fragment significantly affected the earthworm assemblages. Our result discovered that the edaphic properties, urbanization as well as landscape patterns might be the potential factors that influenced the earthworm community patterns. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Kim, Hongsuk H.
1991-01-01
The phenomenon of urban heat island was investigated by the use of LANDSAT Thematic Mapper data sets collected over the metropolitan area of Washington DC (U.S.). By combining the retrieved spectral albedos and temperatures, urban modification on radiation budgets of five surface categories were analyzed. The surface radiation budget imagery of the area show that urban heating is attributable to a large heat flux from the rapidly heating surfaces of asphalt, bare soil and short grass. In summer, symptoms of diurnal heating begin to appear by mid morning and can be about 10 degrees warmer than nearby woodlands in summer.
NASA Astrophysics Data System (ADS)
Sun, Cheng; Wu, Zhi-feng; Lv, Zhi-qiang; Yao, Na; Wei, Jian-bing
2013-04-01
There is a widespread concern about urban sprawl. It has negative impacts on natural resources, economic health, and community character. Without a universal definition of urban sprawl, its quantification and modeling is difficult. Traditionally, urban sprawl was described using qualitative terms, and landscape patterns. Quantitative methods are required to help local, regional and state land use planners to better identify, understand and address it. In this study, an integrated approach of remote sensing and GIS was used to identify three urban growth types of infilling growth, outlying growth and edge-expansion growth at the city of Guangzhou, China. Spatial metrics were used to characterize long-term trends and patterns of urban growth. Result shows that the proposed method can identify and visualize different urban growth types. Infilling growth is the dominant expansion type. Edge-expansion is concentrated at suburban areas. Outlying growth mainly occurs relatively far from the urban core. The analysis shows that initially the urban area expands mainly as outlying growth, causing increased fragmentation and dispersion of urban areas. Next, growth filled in vacant non-urban area inwards, resulting into a more compact and aggregated urban pattern. The study shows an improved understanding of urban growth, and helps to provide an effective way for urban planning.
NASA Astrophysics Data System (ADS)
Hernández, H. J.; Gutiérrez, M. A.; Acuña, M. P.
2016-06-01
Latin America is one of the world's most urbanised regions, with more than 80% of inhabitants living in urban areas and over 50 cities with at least 1 million inhabitants. The concept of urban structure types (UST) allows the dynamics of a growing urban environment to be captured in its quantity and quality. They are defined as areas of homogenous appearance in the urban matrix with a recognisable mixture of built-up areas and open spaces. We used the vegetation-impervious-soil (V-I-S) model approach to classify and monitor different types of USTs in Santiago (~800 km2), Chile between 1985 and 2015. The V-I-S model is based on a simplification of the large diversity of urban land cover types in three general categories: vegetation, impervious surfaces and soil. These categories were obtained by processing Landsat-5 TM and Landsat-8 OLI images. First, we applied standard radiometric calibration and co-registration methods to all datasets. Second, using a linear spectral unmixing algorithm we performed a soft classification of urban land cover types (end members): trees, shrubs, herbaceous plants, soils, buildings, roads and water bodies. All end members were validated using a combination of photointerpretation on high-resolution images (~1 m) and field data collection (only for 2015). In each pixel we used the resulting probability scores, logically grouped, to obtain final values for each V-I-S component. Third, we used statistical clustering of V-I-S values to create a set of eight pixel groups, which we interpreted as USTs and mapped them for each date. The overall accuracy for V-I-S components in 1985 and 2015 were 78% and 82%, respectively, and errors did not exhibit any spatial correlation. The main sources of differentiation between USTs were the trade-off proportions between vegetation and impervious components, whereas soil proportions remained near 5% across the city in both dates. To analyse the change in UST spatial configuration between dates, we used a set of selected landscape metrics and discussed their use as indicators for sustainable urban development. These indicators relate to the dispersion pattern of urban growth, the connectivity of open green space and the complexity in the composition of the UST types within the different sectors of the city. We were able to identify, using the dynamics exhibited by the USTs, three main zones: (1) city centre, where USTs of high-intensity development predominate, (2) eastern high-income areas whose spatial structure is marked by a relatively high urbanisation intensity with a very large proportion of vegetated spaces, and (3) peripheral areas, with significant changes in composition and configuration of USTs, in recent decades, showing high rates of urbanisation, shifting from low-medium to high densities. We concluded that these patterns and their dynamics are mainly determined by the spatial socio-economic stratification of the population.
Reconstruction and simplification of urban scene models based on oblique images
NASA Astrophysics Data System (ADS)
Liu, J.; Guo, B.
2014-08-01
We describe a multi-view stereo reconstruction and simplification algorithms for urban scene models based on oblique images. The complexity, diversity, and density within the urban scene, it increases the difficulty to build the city models using the oblique images. But there are a lot of flat surfaces existing in the urban scene. One of our key contributions is that a dense matching algorithm based on Self-Adaptive Patch in view of the urban scene is proposed. The basic idea of matching propagating based on Self-Adaptive Patch is to build patches centred by seed points which are already matched. The extent and shape of the patches can adapt to the objects of urban scene automatically: when the surface is flat, the extent of the patch would become bigger; while the surface is very rough, the extent of the patch would become smaller. The other contribution is that the mesh generated by Graph Cuts is 2-manifold surface satisfied the half edge data structure. It is solved by clustering and re-marking tetrahedrons in s-t graph. The purpose of getting 2- manifold surface is to simply the mesh by edge collapse algorithm which can preserve and stand out the features of buildings.
Modeling the Surface Energy Balance of the Core of an Old Mediterranean City: Marseille.
NASA Astrophysics Data System (ADS)
Lemonsu, A.; Grimmond, C. S. B.; Masson, V.
2004-02-01
The Town Energy Balance (TEB) model, which parameterizes the local-scale energy and water exchanges between urban surfaces and the atmosphere by treating the urban area as a series of urban canyons, coupled to the Interactions between Soil, Biosphere, and Atmosphere (ISBA) scheme, was run in offline mode for Marseille, France. TEB's performance is evaluated with observations of surface temperatures and surface energy balance fluxes collected during the field experiments to constrain models of atmospheric pollution and transport of emissions (ESCOMPTE) urban boundary layer (UBL) campaign. Particular attention was directed to the influence of different surface databases, used for input parameters, on model predictions. Comparison of simulated canyon temperatures with observations resulted in improvements to TEB parameterizations by increasing the ventilation. Evaluation of the model with wall, road, and roof surface temperatures gave good results. The model succeeds in simulating a sensible heat flux larger than heat storage, as observed. A sensitivity comparison using generic dense city parameters, derived from the Coordination of Information on the Environment (CORINE) land cover database, and those from a surface database developed specifically for the Marseille city center shows the importance of correctly documenting the urban surface. Overall, the TEB scheme is shown to be fairly robust, consistent with results from previous studies.
NASA Astrophysics Data System (ADS)
Geldiyev, P.
2017-12-01
Rapid urban development and changing climate influences the frequency and magnitude of flooding in Houston area. This proposed project aims to evaluate the flooding risks with the current and future land use changes by 2040 for one subbasin of the San Jacinto Brazos/Neches-Trinity Coastal basin. Surface environments and streamflow data of the Clear Creek are analyzed and stimulated to discuss the possible impact of urbanization on the occurrence of floods. The streamflow data is analyzed and simulated with the application of the Geographic Information Systems and its extensions. Both hydrologic and hydraulic models of the Clear Creek are created with the use of HEC-HMS and HEC-RAS software. Both models are duplicated for the year 2040, based on projected 2040 Landcover Maps developed by Houston and Galveston Area Council. This project examines a type of contemporary hydrologic disturbance and the interaction between land cover and changes in hydrological processes. Expected results will be very significant for urban development and flooding management.
NASA Astrophysics Data System (ADS)
Goyal, A.; Yadav, H.; Tyagi, H.; Gosain, A. K.; Khosa, R.
2017-12-01
Increased imperviousness due to rapid urbanization have changed the urban hydrological cycle. As watersheds are urbanized, infiltration and groundwater recharge have decreased, surface runoff hydrograph shows higher peak indicating large volumes of surface runoff in lesser time durations. The ultimate panacea is to reduce the peak of hydrograph or increase the retention time of surface flow. SWMM is widely used hydrologic and hydraulic software which helps to simulate the urban storm water management with the provision to apply different techniques to prevent flooding. A model was setup to simulate the surface runoff and channel flow in a small urban catchment. It provides the temporal and spatial information of flooding in a catchment. Incorporating the detention storages in the drainage network helps achieve reduced flooding. Detention storages provided with predefined algorithms were for controlling the pluvial flooding in urban watersheds. The algorithm based on control theory, automated the functioning of detention storages ensuring that the storages become active on occurrence of flood in the storm water drains and shuts down when flooding is over. Detention storages can be implemented either at source or at several downstream control points. The proposed piece of work helps to mitigate the wastage of rainfall water, achieve desirable groundwater and attain a controlled urban storm water management system.
Analyzing the causes of urban waterlogging and sponge city technology in China
NASA Astrophysics Data System (ADS)
Ning, Yun-Fang; Dong, Wen-Yi; Lin, Lu-Sheng; Zhang, Qian
2017-03-01
With the rapid development of social economy in China, increased urban population, and rapid urbanization cause serious problems, for example, a heavy rain in the city inevitably leads to waterlogging, which poses a great threat to the livelihood and property security. Disaster due to urban flood is a key problem that restricts the development of urban ecology in China. The reason is the sharp increase of impermeable surface ratio in urban areas, leading to a decrease in rainfall infiltration and increase in surface runoff. To effectively solve the urban waterlogging, China proposed the construction of sponge city. This paper analyzes and summarizes the reasons for the formation of urban waterlogging, and introduces the concept of the sponge city technology to prevent waterlogging.
Modeling Impact of Urbanization in US Cities Using Simple Biosphere Model SiB2
NASA Technical Reports Server (NTRS)
Zhang, Ping; Bounoua, Lahouari; Thome, Kurtis; Wolfe, Robert
2016-01-01
We combine Landsat- and the Moderate Resolution Imaging Spectroradiometer (MODIS)-based products, as well as climate drivers from Phase 2 of the North American Land Data Assimilation System (NLDAS-2) in a Simple Biosphere land surface model (SiB2) to assess the impact of urbanization in continental USA (excluding Alaska and Hawaii). More than 300 cities and their surrounding suburban and rural areas are defined in this study to characterize the impact of urbanization on surface climate including surface energy, carbon budget, and water balance. These analyses reveal an uneven impact of urbanization across the continent that should inform upon policy options for improving urban growth including heat mitigation and energy use, carbon sequestration and flood prevention.
Ghandehari, Masoud; Emig, Thorsten; Aghamohamadnia, Milad
2018-02-02
Despite decades of research seeking to derive the urban energy budget, the dynamics of thermal exchange in the densely constructed environment is not yet well understood. Using New York City as a study site, we present a novel hybrid experimental-computational approach for a better understanding of the radiative heat transfer in complex urban environments. The aim of this work is to contribute to the calculation of the urban energy budget, particularly the stored energy. We will focus our attention on surface thermal radiation. Improved understanding of urban thermodynamics incorporating the interaction of various bodies, particularly in high rise cities, will have implications on energy conservation at the building scale, and for human health and comfort at the urban scale. The platform presented is based on longwave hyperspectral imaging of nearly 100 blocks of Manhattan, in addition to a geospatial radiosity model that describes the collective radiative heat exchange between multiple buildings. Despite assumptions in surface emissivity and thermal conductivity of buildings walls, the close comparison of temperatures derived from measurements and computations is promising. Results imply that the presented geospatial thermodynamic model of urban structures can enable accurate and high resolution analysis of instantaneous urban surface temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, zhifeng; He, Chunyang; Zhou, Yuyu
Urbanization has transformed the world’s landscapes, resulting in a series of ecological and environmental problems. To assess urbanization impacts and improve sustainability, one of the first questions that we must address is: how much of the world’s land has been urbanized? Unfortunately, the estimates of the global urban land reported in the literature vary widely from less than 1% to 3% primarily because different definitions of urban land were used. To evade confusion, here we propose a hierarchical framework for representing and communicating the spatial extent of the world’s urbanized land at the global, regional, and more local levels. Themore » hierarchical framework consists of three spatially nested definitions: “urban area” that is delineated by administrative boundaries, “built-up area” that is dominated by artificial surfaces, and “impervious surface area” that is devoid of life. These are really three different measures of urbanization. In 2010, the global urban land was close to 3%, the global built-up area was 0.65%, and the global impervious surface area was 0.45%, of the word’s total land area (excluding Antarctica and Greenland). We argue that this hierarchy of urban land measures, in particular the ratios between them, can also facilitate better understanding the biophysical and socioeconomic processes and impacts of urbanization.« less
Figueira, Vânia; Serra, Elizabete A; Vaz-Moreira, Ivone; Brandão, Teresa R S; Manaia, Célia M
2012-03-01
This study aimed at assessing the role of ubiquitous (non-Escherichia coli) Enterobacteriaceae in the dissemination of antimicrobial resistance through the urban water cycle. Enterobacteriaceae isolated from a municipal wastewater treatment plant (111 isolates), urban water streams (33 isolates) and drinking water (123 isolates) were compared in terms of: (i) genera distribution, (ii) resistance to 12 antibiotics, and (iii) class 1 and class 2 integrons. The predominant bacterial genera were the same in the different types of water, although with a distinct pattern of species. The most prevalent resistance phenotypes were observed for amoxicillin, ticarcillin, cephalothin and sulphamethoxazole (24-59% in the three types of water). No resistance against ceftazidime or meropenem was observed. Resistance to cephalothin, amoxicillin and sulphamethoxazole was significantly more prevalent in drinking water, water streams and wastewater, respectively, than in the other types of water. It was possible to recognize antibiotic-resistance associations, namely for the pairs streptomycin-tetracycline (positive) and ticarcillin-cephalotin (negative). Class 1 and/or class 2 integrons with similar gene cassettes were detected in the three types of water. This study demonstrated that Enterobacteriaceae are important vehicles of antibiotic resistance, namely in drinking water.
The use of NOAA AVHRR data for assessment of the urban heat sland effect
Gallo, K.P.; McNab, A. L.; Karl, Thomas R.; Brown, Jesslyn F.; Hood, J. J.; Tarpley, J.D.
1993-01-01
A vegetation index and a radiative surface temperature were derived from satellite data acquired at approximately 1330 LST for each of 37 cities and for their respective nearby rural regions from 28 June through 8 August 1991. Urbanrural differences for the vegetation index and the surface temperatures were computed and then compared to observed urbanrural differences in minimum air temperatures. The purpose of these comparisons was to evaluate the use of satellite data to assess the influence of the urban environment on observed minimum air temperatures (the urban heat island effect). The temporal consistency of the data, from daily data to weekly, biweekly, and monthly intervals, was also evaluated. The satellite-derived normalized difference (ND) vegetation-index data, sampled over urban and rural regions composed of a variety of land surface environments, were linearly related to the difference in observed urban and rural minimum temperatures. The relationship between the ND index and observed differences in minimum temperature was improved when analyses were restricted by elevation differences between the sample locations and when biweekly or monthly intervals were utilized. The difference in the ND index between urban and rural regions appears to be an indicator of the difference in surface properties (evaporation and heat storage capacity) between the two environments that are responsible for differences in urban and rural minimum temperatures. The urban and rural differences in the ND index explain a greater amount of the variation observed in minimum temperature differences than past analyses that utilized urban population data. The use of satellite data may contribute to a globally consistent method for analysis of urban heat island bias.
Geographic Analysis and Monitoring Program
Campbell, Jon C.
2007-01-01
The surface of the Earth is changing rapidly, at local, regional, national, and global scales, with significant repercussions for people, the economy, and the environment. Some changes have natural causes, such as wildland fires or hurricanes, while other changes on the land, such as resource extraction, agricultural practices, and urban growth, are human-induced processes. There are other types of changes that are a combination of natural and human-induced factors; landslides and floods, for example, are fundamentally natural processes that are often intensified or accelerated by human land use practices. Whatever their cause, land-surface changes can have profound environmental and economic impacts.
Urban effects on regional climate: a case study in the Phoenix and Tucson ‘sun’ corridor
Zhao Yang,; Francina Dominguez,; Hoshin Gupta,; Xubin Zeng,; Norman, Laura M.
2016-01-01
Land use and land cover change (LULCC) due to urban expansion alter the surface albedo, heat capacity, and thermal conductivity of the surface. Consequently, the energy balance in urban regions is different from that of natural surfaces. To evaluate the changes in regional climate that could arise due to projected urbanization in the Phoenix-Tucson corridor, Arizona, we applied the coupled WRF-NOAH-UCM (which includes a detailed urban radiation scheme) to this region. Land cover changes were represented using land cover data for 2005 and projections to 2050, and historical North American Regional Reanalysis (NARR) data were used to specify the lateral boundary conditions. Results suggest that temperature changes will be well defined, reflecting the urban heat island (UHI) effect within areas experiencing LULCC. Changes in precipitation are less robust, but seem to indicate reductions in precipitation over the mountainous regions northeast of Phoenix and decreased evening precipitation over the newly-urbanized area.
Xu, Shenlai
2009-04-01
A landscape index LI is proposed to evaluate the intensity of the daytime surface urban heat island (SUHI) effect at a local scale. Three aspects of this landscape index are crucial: the source landscape, the sink landscape, and the contribution of source and sink landscapes to the intensity of the SUHI. Source and sink landscape types are identified using the thermo-band of Landsat 7 with a spatial resolution of 60 m, along with appropriate threshold values for the Normalized Difference Vegetation Index, Modified Normalized Difference Water Index, and Normalized Difference Built-up Index. The landscape index was defined as the ratio of the contributions of the source and sink landscapes to the intensity of the SUHI. The intensity of the daytime SUHI is assessed with the help of the landscape index. Our analysis indicates the landscape index can be used to evaluate and compare the intensity of the daytime SUHI for different areas.
Spatio-temporal dynamics of sediment sources in a peri-urban Mediterranean catchment
NASA Astrophysics Data System (ADS)
Ferreira, Carla; Walsh, Rory; Blake, William; Kikuchi, Ryunosuke; Ferreira, António
2017-04-01
Sediment fluxes driven by hydrological processes lead to natural soil losses, but human activities, such as urbanization, influence hydrology and promote erosion, altering the landscape and sediment fluxes. In peri-urban areas, comprising a mixture of semi-natural and man-made land-uses, understanding sediment fluxes is still a research challenge. This study investigates spatial and temporal dynamics of fluvial sediments in a rapidly urbanizing catchment. Specific objectives are to understand the main sources of sediments relating to different types of urban land disturbance, and their variability driven by (i) weather, season and land-use changes through time, and (ii) sediment particle size. The study was carried out Ribeira dos Covões, a peri-urban catchment (6.2km2) in central Portugal. The climate is humid Mediterranean, with mean annual temperature and rainfall of 15˚ C and 892 mm, respectively. The geology comprises sandstone (56%), limestone (41%) and alluvial deposits (3%). The catchment has an average slope of 9˚ , but includes steep slopes of up to 46˚ . The land-use is a complex mosaic of woodland (56%), urban (40%) and agricultural (4%) land parcels, resulting from urbanization occurring progressively since 1973. Urbanization since 2010 has mainly comprised the building of a major road, covering 1% of the catchment area, and the ongoing construction of an enterprise park, occupying 5% of the catchment. This study uses a multi-proxy sediment fingerprinting approach, based on X-Ray Fluorescence (XRF) analyses to characterize the elemental geochemistry of sediments collected within the stream network after three storm events in 2012 and 2015. A range of statistical techniques, including hierarchical cluster analysis, was used to identify discriminant sediment properties and similarities between fine bed-sediment samples of tributaries and downstream sites. Quantification of sediment supply from upstream sub-catchments was undertaken using a Bayesian unmixing model. Geochemical signatures of sub-catchment sediment varied significantly with lithology and type of urban influence, but a tendency for limestone sub-catchments to be more urbanized made it difficult to isolate the influence of each factor. Nevertheless, differences in sub-catchment geochemistry between the survey dates indicate significant changes through time in both the relative importance and character of urban impacts. In 2012 the sandstone sub-catchment provided 88%, 92% and 93% of the <63μm, 63μm-125μm and 125μm-2000μm sediment, respectively, with most sediment deriving from the enterprise park site undergoing deforestation and construction. Most of the remaining sediment derived from the construction of the major road in the limestone sub-catchment. In 2015, however, sediment losses within the catchment appear to have been significantly reduced by planned and accidental retention basins below the enterprise park and major road construction sites, respectively. Nevertheless, the landscape disturbance provided by these constructional sites was of much greater importance than sediment mobilization in urban areas with paved roads and other impervious surfaces. The greatest heavy metal concentrations, however, were recorded in sediments deriving from road runoff. Despite the positive impact of retention basins in reducing sediment delivery from human disturbed areas, sediment connectivity could be reduced further by dispersing and filtering upslope runoff from urban surfaces more systematically into woodland sink areas.
Groundwater and surface water dynamics of Na and Cl in an urban stream: effects of road salts
AbstractRoad salts are a growing environmental and health concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na and Cl in an urban stream, Minebank Run (MBR), MD. We observed an increasing salinity trend in this restored stream. Current b...
Effect of age and rainfall pH on contaminant yields from metal roofs.
Wicke, Daniel; Cochrane, Thomas A; O'Sullivan, Aisling D; Cave, Simon; Derksen, Mark
2014-01-01
Metal roofs are recognized for conveying significant metal loads to urban streams through stormwater runoff. Metal concentrations in urban runoff depend on roof types and prevailing weather conditions but the combined effects of roof age and rainfall pH on metal mobilization are not well understood. To investigate these effects on roof runoff, water quality was analysed from galvanized iron and copper roofs following rainfall events and also from simulating runoff using a rainfall simulator on specially constructed roof modules. Zinc and copper yields under different pH regimes were investigated for two roof materials and two different ages. Metal mobilization from older roofs was greater than new roofs with 55-year-old galvanized roof surfaces yielding more Zn, on average increasing by 45% and 30% under a rainfall pH of 4 and 8, respectively. Predominantly dissolved (85-95%) Zn and Cu concentrations in runoff exponentially increased as the rainfall pH decreased. Results also confirmed that copper guttering and downpipes associated with galvanized steel roof systems can substantially increase copper levels in roof runoff. Understanding the dynamics of roof surfaces as a function of weathering and rainfall pH regimes can help developers with making better choices about roof types and materials for stormwater improvement.
Identifying and quantifying urban recharge: a review
NASA Astrophysics Data System (ADS)
Lerner, David N.
2002-02-01
The sources of and pathways for groundwater recharge in urban areas are more numerous and complex than in rural environments. Buildings, roads, and other surface infrastructure combine with man-made drainage networks to change the pathways for precipitation. Some direct recharge is lost, but additional recharge can occur from storm drainage systems. Large amounts of water are imported into most cities for supply, distributed through underground pipes, and collected again in sewers or septic tanks. The leaks from these pipe networks often provide substantial recharge. Sources of recharge in urban areas are identified through piezometry, chemical signatures, and water balances. All three approaches have problems. Recharge is quantified either by individual components (direct recharge, water-mains leakage, septic tanks, etc.) or holistically. Working with individual components requires large amounts of data, much of which is uncertain and is likely to lead to large uncertainties in the final result. Recommended holistic approaches include the use of groundwater modelling and solute balances, where various types of data are integrated. Urban recharge remains an under-researched topic, with few high-quality case studies reported in the literature.
Land use change and human health
NASA Astrophysics Data System (ADS)
Patz, Jonathan A.; Norris, Douglas E.
Disease emergence events have been documented following several types of land use change. This chapter reviews several health-relevant land use changes recognized today, including: 1) urbanization and urban sprawl; 2) water projects and agricultural development; 3) road construction and deforestation in the tropics; and 4) regeneration of temperate forests. Because habitat or climatic change substantially affects intermediate invertebrate hosts involved in many prevalent diseases, this chapter provides a basic description of vector-borne disease biology as a foundation for analyzing the effects of land use change. Urban sprawl poses health challenges stemming from heat waves exacerbated by the "urban heat island" effect, as well as from water contamination due to expanses of impervious road and concrete surfaces. Dams, irrigation and agricultural development have long been associated with diseases such as schistosomiasis and filariasis. Better management methods are required to address the trade-offs between expanded food production and altered habitats promoting deadly diseases. Deforestation can increase the nature and number of breeding sites for vector-borne diseases, such as malaria and onchocerciasis. Human host and disease vector interaction further increases risk, as can a change in arthropod-vector species composition.
Bektaş Balçik, Filiz
2014-02-01
For the past 60 years, Istanbul has been experiencing an accelerated urban expansion. This urban expansion is leading to the replacement of natural surfaces by various artificial materials. This situation has a critical impact on the environment due to the alteration of heat energy balance. In this study, the effect upon the urban heat island (UHI) of Istanbul was analyzed using 2009 dated Landsat 5 Thematic Mapper (TM) data. An Index Based Built-up Index (IBI) was used to derive artificial surfaces in the study area. To produce the IBI index, Soil-Adjusted Vegetation Index, Normalized Difference Built-up Index, and Modified Normalized Difference Water Index were calculated. Land surface temperature (LST) distribution was derived from Landsat 5 TM images using a mono-window algorithm. In addition, 24 transects were selected, and different regression models were applied to explore the correlation between LST and IBI index. The results show that artificial surfaces have a positive exponential relationship with LST rather than a simple linear one. An ecological evaluation index of the region was calculated to explore the impact of both the vegetated land and the artificial surfaces on the UHI. Therefore, the quantitative relationship of urban components (artificial surfaces, vegetation, and water) and LST was examined using multivariate statistical analysis, and the correlation coefficient was obtained as 0.829. This suggested that the areas with a high rate of urbanization will accelerate the rise of LST and UHI in Istanbul.
Downscaling of Seasonal Landsat-8 and MODIS Land Surface Temperature (LST) in Kolkata, India
NASA Astrophysics Data System (ADS)
Garg, R. D.; Guha, S.; Mondal, A.; Lakshmi, V.; Kundu, S.
2017-12-01
The quality of life of urban people is affected by urban heat environment. The urban heat studies can be carried out using remotely sensed thermal infrared imagery for retrieving Land Surface Temperature (LST). Currently, high spatial resolution (<200 m) thermal images are limited and their temporal resolution is low (e.g., 17 days of Landsat-8). Coarse spatial resolution (1000 m) and high temporal resolution (daily) thermal images of MODIS (Moderate Resolution Imaging Spectroradiometer) are frequently available. The present study is to downscale spatially coarser resolution of the thermal image to fine resolution thermal image using regression based downscaling technique. This method is based on the relationship between (LST) and vegetation indices (e.g., Normalized Difference Vegetation Index or NDVI) over a heterogeneous landscape. The Kolkata metropolitan city, which experiences a tropical wet-and-dry type of climate has been selected for the study. This study applied different seasonal open source satellite images viz., Landsat-8 and Terra MODIS. The Landsat-8 images are aggregated at 960 m resolution and downscaled into 480, 240 120 and 60 m. Optical and thermal resolution of Landsat-8 and MODIS are 30 m and 60 m; 250 m and 1000 m respectively. The homogeneous land cover areas have shown better accuracy than heterogeneous land cover areas. The downscaling method plays a crucial role while the spatial resolution of thermal band renders it unable for advanced study. Key words: Land Surface Temperature (LST), Downscale, MODIS, Landsat, Kolkata
NASA Astrophysics Data System (ADS)
Shahtahmassebi, Amir Reza; Song, Jie; Zheng, Qing; Blackburn, George Alan; Wang, Ke; Huang, Ling Yan; Pan, Yi; Moore, Nathan; Shahtahmassebi, Golnaz; Sadrabadi Haghighi, Reza; Deng, Jing Song
2016-04-01
A substantial body of literature has accumulated on the topic of using remotely sensed data to map impervious surfaces which are widely recognized as an important indicator of urbanization. However, the remote sensing of impervious surface growth has not been successfully addressed. This study proposes a new framework for deriving and summarizing urban expansion and re-densification using time series of impervious surface fractions (ISFs) derived from remotely sensed imagery. This approach integrates multiple endmember spectral mixture analysis (MESMA), analysis of regression residuals, spatial statistics (Getis_Ord) and urban growth theories; hence, the framework is abbreviated as MRGU. The performance of MRGU was compared with commonly used change detection techniques in order to evaluate the effectiveness of the approach. The results suggested that the ISF regression residuals were optimal for detecting impervious surface changes while Getis_Ord was effective for mapping hotspot regions in the regression residuals image. Moreover, the MRGU outputs agreed with the mechanisms proposed in several existing urban growth theories, but importantly the outputs enable the refinement of such models by explicitly accounting for the spatial distribution of both expansion and re-densification mechanisms. Based on Landsat data, the MRGU is somewhat restricted in its ability to measure re-densification in the urban core but this may be improved through the use of higher spatial resolution satellite imagery. The paper ends with an assessment of the present gaps in remote sensing of impervious surface growth and suggests some solutions. The application of impervious surface fractions in urban change detection is a stimulating new research idea which is driving future research with new models and algorithms.
Effects of urbanization on heavy metal accumulation in surface soils, Beijing.
Wang, Meie; Liu, Rui; Chen, Weiping; Peng, Chi; Markert, Bernd
2018-02-01
Urbanization processes affect the accumulation of heavy metals in urban soils. Effects of urbanization on heavy metal accumulation in soils were studied using Beijing as an example. It has been suggested that the ecological function of vegetation covers shifting from natural to agricultural settings and then to urban greenbelts could increase the zinc (Zn) concentrations of soils successively. The Zn concentration of urban soils was significantly correlated to the percentage of the impervious land surface at the 500m×500m spatial scale. For urban parks, the age or years since the development accounted for 80% of the variances of cadmium (Cd) and Zn in soils. The population density, however, did not affect the heavy metal distributions in urban soils. To conclude, the urban age turned out to be a notable factor in quantifying heavy metal accumulation in urban soils. Copyright © 2017. Published by Elsevier B.V.
Mayo, John W.
2008-01-01
The conversion of agricultural land to urban residential land is associated with rapid population growth in the Grand Valley of western Colorado. Information regarding the effects of this land-use conversion on deep percolation, irrigation-water application, and associated salt loading to the Colorado River is needed to support water-resource planning and conservation efforts. The Natural Resources Conservation Service (NRCS) assessed deep percolation and estimated salt loading derived from irrigated agricultural lands in the Grand Valley in a 1985 to 2002 monitoring and evaluation study (NRCS M&E). The U.S. Geological Survey (USGS), in cooperation with the Colorado River Salinity Control Forum and the Mesa Conservation District, quantified the current (2005-2006) deep percolation and irrigation-water application characteristics of 1/4-acre residential lots and 5-acre estates, urban parks, and urban orchard grass fields in the Grand Valley, and compared the results to NRCS M&E results from alfalfa-crop sites. In addition, pond seepage from three irrigation-water holding ponds was estimated. Salt loading was estimated for the urban study results and the NRCS M&E results by using standard salt-loading factors. A daily soil-moisture balance calculation technique was used at all urban study irrigated sites. Deep percolation was defined as any water infiltrating below the top 12 inches of soil. Deep percolation occurred when the soil-moisture balance in the first 12 inches of soil exceeded the field capacity for the soil type at each site. Results were reported separately for urban study bluegrass-only sites and for all-vegetation type (bluegrass, native plants, and orchard grass) sites. Deep percolation and irrigation-water application also were estimated for a complete irrigation season at three subdivisions by using mean site data from each subdivision. It was estimated that for the three subdivisions, 37 percent of the developed acreage was irrigated (the balance being impermeable surfaces).
Urbanization alters communities of flying arthropods in parks and gardens of a medium-sized city.
Lagucki, Edward; Burdine, Justin D; McCluney, Kevin E
2017-01-01
Urbanization transforms undeveloped landscapes into built environments, causing changes in communities and ecological processes. Flying arthropods play important roles in these processes as pollinators, decomposers, and predators, and can be important in structuring food webs. The goal of this study was to identify associations between urbanization and the composition of communities of flying (and floating) arthropods within gardens and parks in a medium-sized mesic city. We predicted that flying arthropod abundance and diversity would respond strongly to percent impervious surface and distance to city center, measurements of urbanization. Flying arthropods were sampled from 30 gardens and parks along an urbanization gradient in Toledo, Ohio, during July and August 2016, using elevated pan traps. A variety of potential predictor variables were also recorded at each site. We collected a total of 2,369 individuals representing nine orders. We found that flying arthropod community composition was associated with percent impervious surface and canopy cover. Overall flying arthropod abundance was negatively associated with percent impervious surface and positively associated with distance to city center. Hymenoptera (bees, wasps, ants), Lepidoptera (moths, butterflies), and Araneae (spiders) were positively associated with distance to city center. Hemiptera (true bugs), Diptera (flies), and Araneae were negatively associated with percent impervious surface. Both distance to city center and percent impervious surface are metrics of urbanization, and this study shows how these factors influence flying arthropod communities in urban gardens and city parks, including significant reductions in taxa that contain pollinators and predators important to urban agriculture and forestry. A variety of environmental factors also showed significant associations with responses (e.g. canopy cover and soil moisture), suggesting these factors may underlie or modulate the urbanization effects. More research is needed to determine mechanisms of change.
Urbanization alters communities of flying arthropods in parks and gardens of a medium-sized city
Lagucki, Edward
2017-01-01
Urbanization transforms undeveloped landscapes into built environments, causing changes in communities and ecological processes. Flying arthropods play important roles in these processes as pollinators, decomposers, and predators, and can be important in structuring food webs. The goal of this study was to identify associations between urbanization and the composition of communities of flying (and floating) arthropods within gardens and parks in a medium-sized mesic city. We predicted that flying arthropod abundance and diversity would respond strongly to percent impervious surface and distance to city center, measurements of urbanization. Flying arthropods were sampled from 30 gardens and parks along an urbanization gradient in Toledo, Ohio, during July and August 2016, using elevated pan traps. A variety of potential predictor variables were also recorded at each site. We collected a total of 2,369 individuals representing nine orders. We found that flying arthropod community composition was associated with percent impervious surface and canopy cover. Overall flying arthropod abundance was negatively associated with percent impervious surface and positively associated with distance to city center. Hymenoptera (bees, wasps, ants), Lepidoptera (moths, butterflies), and Araneae (spiders) were positively associated with distance to city center. Hemiptera (true bugs), Diptera (flies), and Araneae were negatively associated with percent impervious surface. Both distance to city center and percent impervious surface are metrics of urbanization, and this study shows how these factors influence flying arthropod communities in urban gardens and city parks, including significant reductions in taxa that contain pollinators and predators important to urban agriculture and forestry. A variety of environmental factors also showed significant associations with responses (e.g. canopy cover and soil moisture), suggesting these factors may underlie or modulate the urbanization effects. More research is needed to determine mechanisms of change. PMID:28890848
NASA Astrophysics Data System (ADS)
Carroll, Mark L.; Brown, Molly E.; Wooten, Margaret R.; Donham, Joel E.; Hubbard, Alfred B.; Ridenhour, William B.
2016-09-01
As our climate changes through time there is an ever-increasing need to quantify how and where it is changing so that mitigation strategies can be implemented. Urban areas have a disproportionate amount of warming due, in part, to the conductive properties of concrete and asphalt surfaces, surface albedo, heat capacity, lack of water, etc. that make up an urban environment. The NASA Climate Adaptation Science Investigation working group at Goddard Space Flight Center in Greenbelt, MD, conducted a study to collect temperature and humidity data at 15 min intervals from 12 sites at the center. These sites represent the major surface types at the center: asphalt, building roof, grass field, forest, and rain garden. The data show a strong distinction in the thermal properties of these surfaces at the center and the difference between the average values for the center compared to a local meteorological station. The data have been submitted to Oak Ridge National Laboratory Distributed Active Archive Center (ORNL-DAAC) for archival in comma separated value (csv) file format (Carroll et al., 2016) and can be found by following this link: http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1319.
Christenson, Elizabeth; Bain, Robert; Wright, Jim; Aondoakaa, Stephen; Hossain, Rifat; Bartram, Jamie
2014-08-15
Reducing inequalities is a priority from a human rights perspective and in water and public health initiatives. There are periodic calls for differential national and global standards for rural and urban areas, often justified by the suggestion that, for a given water source type, safety is worse in urban areas. For instance, initially proposed post-2015 water targets included classifying urban but not rural protected dug wells as unimproved. The objectives of this study were to: (i) examine the influence of urban extent definition on water safety in Nigeria, (ii) compare the frequency of thermotolerant coliform (TTC) contamination and prevalence of sanitary risks between rural and urban water sources of a given type and (iii) investigate differences in exposure to contaminated drinking-water in rural and urban areas. We use spatially referenced data from a Nigerian national randomized sample survey of five improved water source types to assess the extent of any disparities in urban-rural safety. We combined the survey data on TTC and sanitary risk with map layers depicting urban versus rural areas according to eight urban definitions. When examining water safety separately for each improved source type, we found no significant urban-rural differences in TTC contamination and sanitary risk for groundwater sources (boreholes and protected dug wells) and inconclusive findings for piped water and stored water. However, when improved and unimproved source types were combined, TTC contamination was 1.6 to 2.3 times more likely in rural compared to urban water sources depending on the urban definition. Our results suggest that different targets for urban and rural water safety are not justified and that rural dwellers are more exposed to unsafe water than urban dwellers. Additionally, urban-rural analyses should assess multiple definitions or indicators of urban to assess robustness of findings and to characterize a gradient that disaggregates the urban-rural dichotomy. Copyright © 2014 Elsevier B.V. All rights reserved.
Tang, Guowen; Liu, Mengyang; Zhou, Qian; He, Haixia; Chen, Kai; Zhang, Haibo; Hu, Jiahui; Huang, Qinghui; Luo, Yongming; Ke, Hongwei; Chen, Bin; Xu, Xiangrong; Cai, Minggang
2018-09-01
Microplastics and polycyclic aromatic hydrocarbons (PAHs) were investigated to study the influence of human activities and to find their possible relationship on the coastal environments, where the coastal areas around Xiamen are undergoing intensive processes of industrialization and urbanization in the southeast China. The abundance of microplastics in Xiamen coastal areas was 103 to 2017particles/m 3 in surface seawater and 76 to 333 particles/kg in sediments. Concentrations of dissolved PAHs varied from 18.1 to 248ng/L in surface seawater. The abundances of microplastics from the Western Harbor in surface seawater and sediments were higher than those from other areas. Foams were dominated in surface seawater samples, however, no foams were found in sediments samples. The microscope selection and FTIR analysis suggested that polyethylene (PE) and polypropylene (PP) were dominant microplastics. The cluster analysis results demonstrated that fibers and granules had the similar sources, and films had considerably correlation with all types of PAHs (3 or 4-ring PAHs and alkylated PAHs). Plastic film mulch from agriculture practice might be a potential source of microplastics in study areas. Results of our study support that river runoff, watershed area, population and urbanization rate influence the distribution of microplastics in estuarine surface water, and the prevalence of microplastic pollution calls for monitoring microplastics at a national scale. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gerçek, D.; Güven, İ. T.; Oktay, İ. Ç.
2016-06-01
Along with urbanization, sealing of vegetated land and evaporation surfaces by impermeable materials, lead to changes in urban climate. This phenomenon is observed as temperatures several degrees higher in densely urbanized areas compared to the rural land at the urban fringe particularly at nights, so-called Urban Heat Island. Urban Heat Island (UHI) effect is related with urban form, pattern and building materials so far as it is associated with meteorological conditions, air pollution, excess heat from cooling. UHI effect has negative influences on human health, as well as other environmental problems such as higher energy demand, air pollution, and water shortage. Urban Heat Island (UHI) effect has long been studied by observations of air temperature from thermometers. However, with the advent and proliferation of remote sensing technology, synoptic coverage and better representations of spatial variation of surface temperature became possible. This has opened new avenues for the observation capabilities and research of UHIs. In this study, "UHI effect and its relation to factors that cause it" is explored for İzmit city which has been subject to excess urbanization and industrialization during the past decades. Spatial distribution and variation of UHI effect in İzmit is analysed using Landsat 8 and ASTER day & night images of 2015 summer. Surface temperature data derived from thermal bands of the images were analysed for UHI effect. Higher temperatures were classified into 4 grades of UHIs and mapped both for day and night. Inadequate urban form, pattern, density, high buildings and paved surfaces at the expanse of soil ground and vegetation cover are the main factors that cause microclimates giving rise to spatial variations in temperatures across cities. These factors quantified as land surface/cover parameters for the study include vegetation index (NDVI), imperviousness (NDISI), albedo, solar insolation, Sky View Factor (SVF), building envelope, distance to sea, and traffic space density. These parameters that cause variation in intra-city temperatures were evaluated for their relationship with different grades of UHIs. Zonal statistics of UHI classes and variations in average value of parameters were interpreted. The outcomes that highlight local temperature peaks are proposed to the attention of the decision makers for mitigation of Urban Heat Island effect in the city at local and neighbourhood scale.
Green roof impact on the hydrological cycle components
NASA Astrophysics Data System (ADS)
Lamera, Carlotta; Rulli, Maria Cristina; Becciu, Gianfranco; Rosso, Renzo
2013-04-01
In the last decades the importance of storm water management in urban areas has increased considerably, due to both urbanization extension and to a greater concern for environment pollution. Traditional storm water control practices, based on the "all to the sewer" attitude, rely on conveyance to route storm water runoff from urban impervious surfaces towards the nearby natural water bodies. In recent years, infiltration facilities are receiving an increasing attention, due to their particular efficiency in restoring a balance in hydrological cycle quite equal to quite pre-urbanization condition. In particular, such techniques are designed to capture, temporarily retain and infiltrate storm water, promote evapotranspiration and harvest water at the source, encouraging in general evaporation, evapotranspiration, groundwater recharge and the re-use of storm water. Green roofs are emerging as an increasingly popular Sustainable Urban Drainage Systems (SUDS) technique for urban storm water management. Indeed, they are able to operate hydrologic control over storm water runoff: they allow a significant reduction of peak flows and runoff volumes collected by drainage system, with a consequent reduction of flooding events and pollution masses discharges by CSO. Furthermore green roofs have a positive influence on the microclimate in urban areas by helping in lower urban air temperatures and mitigate the heat island effect. Last but not least, they have the advantage of improving the thermal insulation of buildings, with significant energy savings. A detailed analysis of the hydrological dynamics, connected both with the characteristics of the climatic context and with the green roof technical design, is essential in order to obtain a full characterization of the hydrologic behavior of a green roof system and its effects on the urban water cycle components. The purpose of this paper is to analysis the hydrological effects and urban benefits of the vegetation cover of a building by installing green roofs and, thus, providing a conversion of rooftops in pervious areas; the objective is modeling hydrological fluxes (interception, evapotranspiration, soil water fluxes in the surface and hypodermic components) in relation to climate forcing, basic technology components and geometric characteristics of green roof systems (thickness of the stratigraphy, soil layers and materials, vegetation typology and density). The sensitivity analysis of hydrological processes at different hydrological, climatic and geometric parameters has allowed to draw some general guidelines useful in the design and construction of this type of drainage systems.
Characterizing Urban Heat Islands of Global Settlements Using MODIS and Nighttime Lights Products
NASA Technical Reports Server (NTRS)
Zhang, Ping; Imhoff, Marc L.; Wolfe, Robert E.; Bounoua, Lahouari
2010-01-01
Impervious surface area (ISA) from the National Geophysical Data Center (NGDC) and land surface temperature (LST) from the Moderate Resolution Imaging Spectroradiometer (MODIS) averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) signature on LST amplitude and its relationship with development intensity, size, and ecological setting for more than 3000 urban settlements globally. Development intensity zones based on fractional ISA are defined for each urban area emanating outward from the urban core to the nearby nonurban rural areas and used to stratify sampling for LST. Sampling is further constrained by biome type and elevation data to ensure objective intercomparisons between zones and between cities in different biomes. We find that the ecological context and settlement size significantly influence the amplitude of summer daytime UHI. Globally, an average of 3.8 C UHI is found in cities built in biomes dominated by forests; 1.9 C UHI in cities embedded in grass shrubs biomes; and only a weak UHI or sometimes an urban heat sink (UHS) in cities in arid and semi-arid biomes. Overall, the amplitude of the UHI is negatively correlated (R = -0.66) with the difference in vegetation density between urban and rural zones represented by the MODIS normalized difference vegetation index (NDVI). Globally averaged, the daytime UHI amplitude for all settlements is 2.6 C in summer and 1.4 C in winter. Globally, the average summer daytime UHI is 4.7 C for settlements larger than 500 square kilometers compared with 2.5 C for settlements smaller than 50 square kilometers and larger than 10 square kilometers. The stratification of cities by size indicates that the aggregated amount of ISA is the primary driver of UHI amplitude, with variations between ecological contexts and latitudinal zones. More than 60% of the total LST variance is explained by ISA for urban settlements within forests at mid to high latitudes. This percentage will increase to more than 80% when only settlements in the US are examined.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Luvall, Jeffrey C.; Rickman, Douglas L.; Estes, Maurice G., Jr.; Laymon, Charles A.; Crosson, William; Howell, Burgess F.; Gillani, Noor V.; Arnold, James E. (Technical Monitor)
2002-01-01
The growth of cities, both in population and in areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 80% of the world's population will live in cities. One of the more egregious side effects of urbanization is the deterioration in air quality as a result of increased vehicular traffic, industrialization and related activities. In the United States alone, under the more stringent air quality guidelines established by the U.S. Environmental Protection Agency (EPA) in 1997, nearly 300 counties in 34 states will not meet the new air quality standards for ground level ozone. The mitigation of one the physical/environmental characteristics of urbanization known as the urban heat island (UHI) effect, is now being looked at more closely as a possible way to bring down ground level ozone levels in cities and assist states in improving air quality. The UHI results from the replacement of "natural" land covers (e.g., trees, grass) with urban land surface types, such as pavement and buildings. Heat stored in these surfaces is released into the air and results in a "dome" of elevated air temperatures that presides over cities. The effect of this dome of elevated air temperatures is known as the UHI, which is most prevalent about 2-3 hours after sunset on days with intense solar radiation and calm winds. Given the local and regional impacts of the UHI, there are significant potential affects on human health, particularly as related to heat stress and ozone on body temperature regulation and on the cardiovascular and respiratory systems. In this study we are using airborne and satellite remote sensing data to analyze how differences in the urban landscape influence or drive the development of the UHI over four U.S. cities. Additionally, we are assessing what the potential impact is on risks to human health, and developing mitigation strategies to make urban areas more environmentally sustainable.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Luvall, Jeffrey C.; Rickman, Douglas L.; Estes, Maurice G., Jr.; Laymon, Charles A.; Crosson, William; Howell, Burgess F.; Gillani, Noor V.; Arnold, James E. (Technical Monitor)
2001-01-01
The growth of cities, both in population and in areal extent, appears as an inexorable process. Urbanization continues at a rapid rate, and it is estimated that by the year 2025, 80% of the world's population will live in cities. One of the more egregious side effects of urbanization is the deterioration in air quality as a result of increased vehicular traffic, industrialization and related activities. In the United States alone, under the more stringent air quality guidelines established by the U.S. Environmental Protection Agency (EPA) in 1997, nearly 300 counties in 34 states will not meet the new air quality standards for ground level ozone. The mitigation of one the physical/environmental characteristics of urbanization known as the urban heat island (UHI) effect, is now being looked at more closely as a possible way to bring down ground level ozone levels in cities and assist states in improving air quality. The UHI results from the replacement of "natural" land covers (e.g., trees, grass) with urban land surface types, such as pavement and buildings. Heat stored in these surfaces is released into the air and results in a "dome" of elevated air temperatures that presides over cities. The effect of this dome of elevated air temperatures is known as the UHI, which is most prevalent about 2-3 hours after sunset on days with intense solar radiation and calm winds. Given the local and regional impacts of the UHI, there are significant potential affects on human health, particularly as related to heat stress and ozone on body temperature regulation and on the cardiovascular and respiratory systems. In this study we are using airborne and satellite remote sensing data to analyze how differences in the urban landscape influence or drive the development of the UHI over four U.S. cities. Additionally, we are assessing what the potential impact is on risks to human health, and developing mitigation strategies to make urban areas more environmentally sustainable.
NASA Technical Reports Server (NTRS)
Moody, Eric G.; King, Michael D.; Platnick, Steven; Schaaf, Crystal B.; Gao, Feng
2004-01-01
Land surface albedo is an important parameter in describing the radiative properties of the earth s surface as it represents the amount of incoming solar radiation that is reflected from the surface. The amount and type of vegetation of the surface dramatically alters the amount of radiation that is reflected; for example, croplands that contain leafy vegetation will reflect radiation very differently than blacktop associated with urban areas. In addition, since vegetation goes through a growth, or phenological, cycle, the amount of radiation that is reflected changes over the course of a year. As a result, albedo is both temporally and spatially dependant upon global location as there is a distribution of vegetated surface types and growing conditions. Land surface albedo is critical for a wide variety of earth system research projects including but not restricted to remote sensing of atmospheric aerosol and cloud properties from space, ground-based analysis of aerosol optical properties from surface-based sun/sky radiometers, biophysically-based land surface modeling of the exchange of energy, water, momentum, and carbon for various land use categories, and surface energy balance studies. These projects require proper representation of the surface albedo s spatial, spectral, and temporal variations, however, these representations are often lacking in datasets prior to the latest generation of land surface albedo products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snyder, M.A.; Kueppers, L.M.; Sloan, L.C.
In the western United States, more than 30,500 square miles has been converted to irrigated agriculture and urban areas. This study compares the climate responses of four regional climate models (RCMs) to these past land-use changes. The RCMs used two contrasting land cover distributions: potential natural vegetation, and modern land cover that includes agriculture and urban areas. Three of the RCMs represented irrigation by supplementing soil moisture, producing large decreases in August mean (-2.5 F to -5.6 F) and maximum (-5.2 F to -10.1 F) 2-meter temperatures where natural vegetation was converted to irrigated agriculture. Conversion to irrigated agriculture alsomore » resulted in large increases in relative humidity (9 percent 36 percent absolute change). Only one of the RCMs produced increases in summer minimum temperature. Converting natural vegetation to urban land cover produced modest but discernable climate effects in all models, with the magnitude of the effects dependent upon the preexisting vegetation type. Overall, the RCM results indicate that land use change impacts are most pronounced during the summer months, when surface heating is strongest and differences in surface moisture between irrigated land and natural vegetation are largest. The irrigation effect on summer maximum temperatures is comparable in magnitude (but opposite in sign) to predicted future temperature change due to increasing greenhouse gas concentrations.« less
Constraining the uncertainty in emissions over India with a regional air quality model evaluation
NASA Astrophysics Data System (ADS)
Karambelas, Alexandra; Holloway, Tracey; Kiesewetter, Gregor; Heyes, Chris
2018-02-01
To evaluate uncertainty in the spatial distribution of air emissions over India, we compare satellite and surface observations with simulations from the U.S. Environmental Protection Agency (EPA) Community Multi-Scale Air Quality (CMAQ) model. Seasonally representative simulations were completed for January, April, July, and October 2010 at 36 km × 36 km using anthropogenic emissions from the Greenhouse Gas-Air Pollution Interaction and Synergies (GAINS) model following version 5a of the Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants project (ECLIPSE v5a). We use both tropospheric columns from the Ozone Monitoring Instrument (OMI) and surface observations from the Central Pollution Control Board (CPCB) to closely examine modeled nitrogen dioxide (NO2) biases in urban and rural regions across India. Spatial average evaluation with satellite retrievals indicate a low bias in the modeled tropospheric column (-63.3%), which reflects broad low-biases in majority non-urban regions (-70.1% in rural areas) across the sub-continent to slightly lesser low biases reflected in semi-urban areas (-44.7%), with the threshold between semi-urban and rural defined as 400 people per km2. In contrast, modeled surface NO2 concentrations exhibit a slight high bias of +15.6% when compared to surface CPCB observations predominantly located in urban areas. Conversely, in examining extremely population dense urban regions with more than 5000 people per km2 (dense-urban), we find model overestimates in both the column (+57.8) and at the surface (+131.2%) compared to observations. Based on these results, we find that existing emission fields for India may overestimate urban emissions in densely populated regions and underestimate rural emissions. However, if we rely on model evaluation with predominantly urban surface observations from the CPCB, comparisons reflect model high biases, contradictory to the knowledge gained using satellite observations. Satellites thus serve as an important emissions and model evaluation metric where surface observations are lacking, such as rural India, and support improved emissions inventory development.
A Global Characterization of Urban Heat Islands
NASA Astrophysics Data System (ADS)
Chakraborty, T.; Lee, X.
2017-12-01
The urban heat island (UHI) effect refers to the higher temperatures in urban areas, and it is one of the most well-known consequences of urbanization on local climate. In the present study, we define a new simplified urban-boundary (SUB) algorithm to quantify the daytime and nighttime surface UHIs on a global scale based on 16 years of MODIS Land Surface Temperature (LST) data. The results from the algorithm are validated against previous studies and used to determine the diurnal, monthly, and long-term variation in the surface UHI for over 9000 urban clusters situated in the different Koppen-Geiger climate zones,namely equatorial, arid, warm temperate, snow, and polar. Thus, the variability of the surface UHI for each climate class is determined using a consistent methodology for the first time. The 16-year mean global daytime surface UHI is 0.71 ± 0.93 °C at 1030 LT and 1.00 ± 1.17 °C at 1330 LT, while the nighttime surface UHI is 0.51 ± 0.50 °C at 2230 LT and 0.42 ± 0.52 °C at 0130 LT. This is in good agreement with the results from previous studies, which have looked at the UHI for multiple cities. Summer surface UHI is larger than winter surface UHI across all climate zones. The annual daytime surface UHI is highest in the polar urban clusters (1.77 ± 1.61 °C), followed by snow (1.39 ± 1.17 °C), equatorial (1.21 ± 1.32 °C), warm temperate (1.02 ± 0.98 °C), and arid (0.18 ± 1.27 °C). Urban clusters in the arid climate are found to show different diurnal and seasonal patterns, with higher nighttime surface UHI (0.65 ± 0.58 °C) and two seasonal peaks during the year. The diurnal variation in surface UHI is highest in the polar zone (1.16 °C) and lowest in the arid zone (0.57 °C). The inter-seasonality is also highest in the polar Zone (2.20 °C) and lowest in the arid zone (0.80 °C). Finally, we investigate the change in the surface UHI in more than a decade (2001 to 2013 for MODIS TERRA and 2003 to 2013 for MODIS AQUA) and find a gradual increase in the UHI magnitude in the equatorial (0.05 °C/decade) and snow (0.12 °C/decade) climate zones. Our results imply that city planners and policy makers should take the background climate zone of a city into account when trying to mitigate the impact of thermal stress in urban areas.
CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Temperature
water temperature changes associated with urbanization, heated surface runoff associated with urbanization, how temperature changes associated with urbanization can affect stream biota, interactive effects of urbanizaiton and climate change.
NASA Astrophysics Data System (ADS)
Erener, A.
2013-04-01
Automatic extraction of urban features from high resolution satellite images is one of the main applications in remote sensing. It is useful for wide scale applications, namely: urban planning, urban mapping, disaster management, GIS (geographic information systems) updating, and military target detection. One common approach to detecting urban features from high resolution images is to use automatic classification methods. This paper has four main objectives with respect to detecting buildings. The first objective is to compare the performance of the most notable supervised classification algorithms, including the maximum likelihood classifier (MLC) and the support vector machine (SVM). In this experiment the primary consideration is the impact of kernel configuration on the performance of the SVM. The second objective of the study is to explore the suitability of integrating additional bands, namely first principal component (1st PC) and the intensity image, for original data for multi classification approaches. The performance evaluation of classification results is done using two different accuracy assessment methods: pixel based and object based approaches, which reflect the third aim of the study. The objective here is to demonstrate the differences in the evaluation of accuracies of classification methods. Considering consistency, the same set of ground truth data which is produced by labeling the building boundaries in the GIS environment is used for accuracy assessment. Lastly, the fourth aim is to experimentally evaluate variation in the accuracy of classifiers for six different real situations in order to identify the impact of spatial and spectral diversity on results. The method is applied to Quickbird images for various urban complexity levels, extending from simple to complex urban patterns. The simple surface type includes a regular urban area with low density and systematic buildings with brick rooftops. The complex surface type involves almost all kinds of challenges, such as high dense build up areas, regions with bare soil, and small and large buildings with different rooftops, such as concrete, brick, and metal. Using the pixel based accuracy assessment it was shown that the percent building detection (PBD) and quality percent (QP) of the MLC and SVM depend on the complexity and texture variation of the region. Generally, PBD values range between 70% and 90% for the MLC and SVM, respectively. No substantial improvements were observed when the SVM and MLC classifications were developed by the addition of more variables, instead of the use of only four bands. In the evaluation of object based accuracy assessment, it was demonstrated that while MLC and SVM provide higher rates of correct detection, they also provide higher rates of false alarms.
Road salts are a growing environmental concern in urban watersheds. We examined groundwater (GW) and surface water (SW) dynamics of Na+ and Cl− in Minebank Run (MBR), an urban stream in Maryland, USA. We observed an increasing salinity trend in this restored stream. Current basef...
NASA Astrophysics Data System (ADS)
Moore, J.; Bird, D. L.; Dobbis, S. K.; Woodward, G.
2016-12-01
Urban areas and associated impervious surface cover (ISC) are among the fastest growing land use types. Rapid growth of urban lands has significant implications for geochemical cycling and solute sources to streams, estuaries, and coastal waters. However, little work has been done to investigate the impacts of urbanization on Critical Processes, including on the export of solutes from urban watersheds. Despite observed elevated solute concentrations in urban streams in some previous studies, neither solute sources nor total solute fluxes have been quantified due to mixed bedrock geology, lack of a forested reference watershed, or the presence of point sources that confounded separation of anthropologic and natural sources. We investigated the geochemical signal of the urban built environment (e.g., roads, parking lots, buildings) in a set of five USGS-gaged watersheds across a rural (forested) to urban gradient in the Maryland Piedmont. These watersheds have ISC ranging from 0 to 25%, no point sources, and similar felsic bedrock chemistry. Weathering from the urban built environment and ISC produces dramatically higher solute concentrations in urban watersheds than in the forested watershed. Higher solute concentrations result in chemical weathering fluxes from urban watersheds that are 11-13 times higher than the forested watershed and are similar to fluxes from mountainous, weathering-limited watersheds rather than fluxes from transport-limited, dilute streams like the forested watershed. Weathering of concrete in urban watersheds produces geochemistry similar to weathering-limited watersheds with high concentrations of Ca2+, Mg2+, and DIC, which is similar to stream chemistry due to carbonate weathering. Road salt dissolution results in high Na+ and Cl- concentrations similar to evaporite weathering. Quantifying processes causing elevated solute fluxes from urban areas is essential to understanding cycling of Ca2+, Mg2+, and DIC in urban streams and in downgradient estuarine or coastal waters.
Construction and Analysis of Long-Term Surface Temperature Dataset in Fujian Province
NASA Astrophysics Data System (ADS)
Li, W. E.; Wang, X. Q.; Su, H.
2017-09-01
Land surface temperature (LST) is a key parameter of land surface physical processes on global and regional scales, linking the heat fluxes and interactions between the ground and atmosphere. Based on MODIS 8-day LST products (MOD11A2) from the split-window algorithms, we constructed and obtained the monthly and annual LST dataset of Fujian Province from 2000 to 2015. Then, we analyzed the monthly and yearly time series LST data and further investigated the LST distribution and its evolution features. The average LST of Fujian Province reached the highest in July, while the lowest in January. The monthly and annual LST time series present a significantly periodic features (annual and interannual) from 2000 to 2015. The spatial distribution showed that the LST in North and West was lower than South and East in Fujian Province. With the rapid development and urbanization of the coastal area in Fujian Province, the LST in coastal urban region was significantly higher than that in mountainous rural region. The LST distributions might affected by the climate, topography and land cover types. The spatio-temporal distribution characteristics of LST could provide good references for the agricultural layout and environment monitoring in Fujian Province.
Surface water polycyclic aromatic hydrocarbons (PAH) in urban areas of Nanjing, China.
Wang, Chunhui; Zhou, Shenglu; Wu, Shaohua; Song, Jing; Shi, Yaxing; Li, Baojie; Chen, Hao
2017-10-01
The concentration, sources and environmental risks of polycyclic aromatic hydrocarbons (PAHs) in surface water in urban areas of Nanjing were investigated. The range of ∑ 16 PAHs concentration is between 4,076 and 29,455 ng/L, with a mean of 17,212 ng/L. The composition of PAHs indicated that 2- and 3-ring PAHs have the highest proportion in all PAHs, while the 5- and 6-ring PAHs were the least in proportion. By diagnostic ratio analysis, combustion and petroleum were a mixture input that contributed to the water PAH in urban areas of Nanjing. Positive matrix factorization quantitatively identified four factors, including coke oven, coal combustion, oil source, and vehicle emission, as the main sources. Toxic equivalency factors of BaP (BaP eq ) evaluate the environmental risks of PAHs and indicate the PAH concentration in surface water in urban areas of Nanjing had been polluted and might cause potential environmental risks. Therefore, the PAH contamination in surface water in urban areas of Nanjing should draw considerable attention.
Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality
NASA Technical Reports Server (NTRS)
Levy, Robert C.; Remer, Lorraine A.; Kahn, Ralph A.; Chu, D. Allen; Mattoo, Shana; Holben, Brent N.; Schafer, Joel S.
2011-01-01
The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region.
Agricultural landscapes are being urbanized throughout the United States, resulting in the degradation of aquatic systems. Fundamental changes in watershed hydrology result from the construction of impervious surfaces (roofs, streets, sidewalks). As impervious surface area ...
NASA Astrophysics Data System (ADS)
Cavan, Gina; Lindley, Sarah; Kibassa, Deusdedit; Shemdoe, Riziki; Capuano, Paolo; De Paola, Francesco; Renner, Florian; Pauleit, Stephan
2013-04-01
Urban green structure provides important regulating ecosystem services, such as temperature and flood regulation, and thus, has the potential to increase the resilience of African cities to climate change. Green structures within urban areas are not only limited to discrete units associated with recreational parks, agricultural areas and open spaces: they also exist within zones which have other primary functions, such as church yards, along transport routes, and within residential areas. Differing characteristics of urban areas can be conceptualised and subsequently mapped through the idea of urban morphology types. Urban morphology types are classifications which combine facets of urban form and function. When mapped, UMT units provide biophysically relevant meso-scale geographical zones which can be used as the basis for understanding climate-related impacts and adaptations. For example, they support the assessment of urban temperature patterns and the temperature regulating services provided by urban green structures. There are some examples of the use of UMTs for assessing regulating ecosystem services in European cities but little similar knowledge is available in an African context. This paper outlines the concept of urban morphology types (UMTs) and how they were applied to African case study cities (Cavan et al., 2012). It then presents the methods used to understand temperature regulating ecosystem services across an example African case study city, including (i) a GIS-based assessment of urban green structures, and (ii) applying an energy balance model to estimate current and future surface temperatures under climate change projections. The assessment is carried out for Dar es Salaam, Tanzania. Existing evidence suggests increases in both mean and extreme temperatures in the city. Historical analysis of the number of hot days per year suggests a rise from a maximum of 47 days per year in the period 1961-87 to 72 days per year in 2003-2011 (Giugni et al., 2012). Mean temperatures in the climate zone are estimated to increase by at least 1°C between 1971-2000 and 2021-2050(CSIR, 2012). Dar es Salaam is represented using around 1700 UMT units mapped across 43 UMT categories for the year 2008. Modelled surface temperature profiles for the city are presented, including an assessment of the potential impact of changing green structure cover within selected UMT categories. Provisional recommendations are made concerning the potential contribution of green structures as a climate adaptation response to the increasing temperatures in Dar es Salaam, which could be relevant for other African cities in similar climate zones. References Cavan, G., Lindley, S., Yeshitela, K., Nebebe, A., Woldegerima, T., Shemdoe, R., Kibassa, D., Pauleit, S., Renner, R., Printz, A., Buchta, K., Coly, A., Sall, F., Ndour, N. M., Ouédraogo, Y., Samari, B. S., Sankara, B. T., Feumba, R. A., Ngapgue, J. N., Ngoumo, M. T., Tsalefac, M., Tonye, E. (2012) CLUVA deliverable D2.7 Green infrastructure maps for selected case studies and a report with an urban green infrastructure mapping methodology adapted to African cities. http://www.cluva.eu/deliverables/CLUVA_D2.7.pdf. Accessed 18/12/12. CSIR (2012) CLUVA deliverable D1.5 Regional climate change simulations available for the selected areas http://www.cluva.eu/deliverables/CLUVA_D1.5.pdf. Accessed 8/1/13. Giugni, M., Adamo, P., Capuano, P., De Paola, F., Di Ruocco, A., Giordano, S., Iavazzo, P., Sellerino, M., Terracciano, S., Topa, M. E. (2012) CLUVA deliverable D.1.2 Hazard scenarios for test cities using available data. http://www.cluva.eu/deliverables/CLUVA_D1.2.pdf. Accessed 8/1/13
Urso, L; Kaiser, J C; Andersson, K G; Andorfer, H; Angermair, G; Gusel, C; Tandler, R
2013-04-01
After an accidental radioactive contamination by aerosols in inhabited areas, the radiation exposure to man is determined by complex interactions between different factors such as dry or wet deposition, different types of ground surfaces, chemical properties of the radionuclides involved and building development as well as dependence on bomb construction e.g. design and geometry. At short-term, the first rainfall is an important way of natural decontamination: deposited radionuclides are washed off from surfaces and in urban areas the resulting contaminated runoff enters the sewer system and is collected in a sewage plant. Up to now the potential exposure caused by this process has received little attention and is estimated here with simulation models. The commercial rainfall-runoff model for urban sewer systems KANAL++ has been extended to include transport of radionuclides from surfaces through the drainage to various discharge facilities. The flow from surfaces is modeled by unit hydrographs, which produce boundary conditions for a system of 1d coupled flow and transport equations in a tube system. Initial conditions are provided by a map of surface contamination which is produced by geo-statistical interpolation of γ-dose rate measurements taking into account the detector environment. The corresponding methodology is implemented in the Inhabited Area Monitoring Module (IAMM) software module as part of the European decision system JRODOS. A hypothetical scenario is considered where a Radiation Dispersal Device (RDD) with Cs-137 is detonated in a small inhabited area whose drainage system is realistically modeled. The transition of deposited radionuclides due to rainfall into the surface runoff is accounted for by different nuclide-specific entrainment coefficients for paved and unpaved surfaces. The concentration of Cs-137 in water is calculated at the nodes of the drainage system and at the sewage treatment plant. The external exposure to staff of the treatment plant is estimated. For Cs-137 radiation levels in the plant are low since wash-off of cesium from surfaces is an ineffective process. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Belyaev, Vladimir; Feoktistov, Artem; Huygens, Dries; Shamshurina, Eugenia; Golosov, Valentin
2014-05-01
Understanding hydrological response and geomorphic behavior of small catchments in urban environments, especially those experiencing urban expansion, represents serious and important problem which has not yet been given an adequate research attention. Urbanization exerts profound and diverse impacts on catchment characteristics, particularly by increasing surface runoff coefficients, peak flow discharges and rates of flash flood waves propagation as a result of widespread appearance of buildings and paved surfaces with practically zero infiltration capacities. Another essential influence of urbanization on small catchment hydrological regimes is associated with significant changes of natural topography (from relatively minor modifications such as grading of steeper slopes to complete transformations including total filling of gullies and small valleys, transfer of small streams from surface into underground pipes or collectors, etc.) combined with creation of systems of concrete-protected surface drainages and underground storm flow sewages. Such activities can result in substantial changes of runoff- and sediment-contributing areas for the remaining gullies and small valleys in comparison to the pre-urbanization conditions, causing dramatic increase of fluvial activity in some of those and much lower flow discharges in others. In addition, gullies and small valleys in urban settlements often become sites of dumping for both dry and liquid domestic and industrial wastes, thus being major pathways for dissolved and particle-bound pollutant transfer into perennial streams and rivers. All the problems listed require detailed hydrological and geomorphic investigations in order to provide sound basis for developing appropriate measures aimed to control and decrease urban erosion, sediment redistribution, pollution of water bodies, damage to constructions and communications. Recent advances in sediment tracing and fingerprinting techniques provide promising opportunities for distinguishing contributions of different sediment sources into catchment sediment budgets on a reliable quantitative basis. In combination with microstratigraphic differentiation and dating of sediment in continuous deposition zones by 137Cs depth distribution curves and available land use records, spatial and temporal variability of sediment sources and sinks can be reconstructed for the last several decades. That is especially important for catchments which experienced profound land use changes such as transition from pristine or agriculture-dominated to urbanized environment. The example presented here describes the results of reconstruction of changing sediment source types, contributions and spatial patterns for small reservoir catchment within the city of Kursk (Sredenerusskaya Upland, Central European Russia). Combination of compound specific stable isotopes, 137Cs, sediment grain size composition, land use information for several time intervals and daily rainfall record for the Kursk meteorological station (conveniently located within the study catchment) have been employed in order to evaluate major sediment sources within the catchment, their spatial pattern and temporal changes and compare those to history of reservoir sedimentation. The reservoir is situated on the Kur River - small river which gave its name to the city itself. The dam and reservoir were constructed and put into operation in 1969, thus the beginning of its infill is located stratigraphically later than the main peak of the global 137Cs fallout. It has been found that transition from dominantly agricultural land use to urbanized conditions caused decrease of contribution of soil erosion from cultivated land and increase of that of the active gullies into reservoir sedimentation. However, it is important to note that during extreme runoff events contribution of sediment originated from soil erosion on arable land still remains dominant, even though its area within the catchment recently became very limited.
Multi-sensor analysis of urban ecosystems
Gallo, Kevin P.; Ji, Lei
2004-01-01
This study examines the synthesis of multiple space-based sensors to characterize the urban environment Single scene data (e.g., ASTER visible and near-IR surface reflectance, and land surface temperature data), multi-temporal data (e.g., one year of 16-day MODIS and AVHRR vegetation index data), and DMSP-OLS nighttime light data acquired in the early 1990s and 2000 were evaluated for urban ecosystem analysis. The advantages of a multi-sensor approach for the analysis of urban ecosystem processes are discussed.
Mao, Qizheng; Huang, Ganlin; Ma, Keming; Sun, Zexiang
2014-01-01
Understanding the spatial pattern of soil lead (Pb) levels is essential to protecting human health. Most previous studies have examined soil Pb distributions by either urbanization gradient or land-use type. Few studies, however, have examined both factors together. It remains unclear whether the impacts of land use on soil Pb levels are consistent along the urbanization gradient. To fill this gap, we investigated variations in soil Pb level under different land-use types along the urbanization gradient in Beijing, China. We classified the degree of urbanization as the urban core, transitional zone, or suburban area and the land-use type as industrial area, roadside, residential area, institutional area, road greenbelt, park, or forest. Our results showed that the range of soil Pb levels in Beijing is <1 mg/kg–292 mg/kg, with a mean of 22 mg/kg. Along the urbanization gradient, the mean soil Pb level increased from the suburban area to the urban core. Land-use types have an impact on soil Pb levels, however, when the degree of urbanization is considered, the impact from land use on soil Pb level was only significant in the transitional zone. Parks and road greenbelts were found to have lower soil Pb, primarily due to soil restoration. Roadside and residential areas were found to have higher soil Pb because of traffic emissions, leaded paint, and previous industrial contamination. In the urban core and suburban area, the soil Pb level showed no significant differences among various land-use types. Given the results of soil Pb in various land-use types, we suggest that future studies consider the urbanization gradient in which different land-use samples are located. PMID:24646863
Mao, Qizheng; Huang, Ganlin; Ma, Keming; Sun, Zexiang
2014-03-18
Understanding the spatial pattern of soil lead (Pb) levels is essential to protecting human health. Most previous studies have examined soil Pb distributions by either urbanization gradient or land-use type. Few studies, however, have examined both factors together. It remains unclear whether the impacts of land use on soil Pb levels are consistent along the urbanization gradient. To fill this gap, we investigated variations in soil Pb level under different land-use types along the urbanization gradient in Beijing, China. We classified the degree of urbanization as the urban core, transitional zone, or suburban area and the land-use type as industrial area, roadside, residential area, institutional area, road greenbelt, park, or forest. Our results showed that the range of soil Pb levels in Beijing is <1 mg/kg-292 mg/kg, with a mean of 22 mg/kg. Along the urbanization gradient, the mean soil Pb level increased from the suburban area to the urban core. Land-use types have an impact on soil Pb levels, however, when the degree of urbanization is considered, the impact from land use on soil Pb level was only significant in the transitional zone. Parks and road greenbelts were found to have lower soil Pb, primarily due to soil restoration. Roadside and residential areas were found to have higher soil Pb because of traffic emissions, leaded paint, and previous industrial contamination. In the urban core and suburban area, the soil Pb level showed no significant differences among various land-use types. Given the results of soil Pb in various land-use types, we suggest that future studies consider the urbanization gradient in which different land-use samples are located.
An ecohydrologic model for a shallow groundwater urban environment.
Arden, Sam; Ma, Xin Cissy; Brown, Mark
2014-01-01
The urban environment is a patchwork of natural and artificial surfaces that results in complex interactions with and impacts to natural hydrologic cycles. Evapotranspiration is a major hydrologic flow that is often altered through urbanization, although the mechanisms of change are sometimes difficult to tease out due to difficulty in effectively simulating soil-plant-atmosphere interactions. This paper introduces a simplified yet realistic model that is a combination of existing surface runoff and ecohydrology models designed to increase the quantitative understanding of complex urban hydrologic processes. Results demonstrate that the model is capable of simulating the long-term variability of major hydrologic fluxes as a function of impervious surface, temperature, water table elevation, canopy interception, soil characteristics, precipitation and complex mechanisms of plant water uptake. These understandings have potential implications for holistic urban water system management.
Evaluation of urban sprawl and urban landscape pattern in a rapidly developing region.
Lv, Zhi-Qiang; Dai, Fu-Qiang; Sun, Cheng
2012-10-01
Urban sprawl is a worldwide phenomenon happening particularly in rapidly developing regions. A study on the spatiotemporal characteristics of urban sprawl and urban pattern is useful for the sustainable management of land management and urban land planning. The present research explores the spatiotemporal dynamics of urban sprawl in the context of a rapid urbanization process in a booming economic region of southern China from 1979 to 2005. Three urban sprawl types are distinguished by analyzing overlaid urban area maps of two adjacent study years which originated from the interpretation of remote sensed images and vector land use maps. Landscape metrics are used to analyze the spatiotemporal pattern of urban sprawl for each study period. Study results show that urban areas have expanded dramatically, and the spatiotemporal landscape pattern configured by the three sprawl types changed obviously. The different sprawl type patterns in five study periods have transformed significantly, with their proportions altered both in terms of quantity and of location. The present research proves that urban sprawl quantification and pattern analysis can provide a clear perspective of the urbanization process during a long time period. Particularly, the present study on urban sprawl and sprawl patterns can be used by land use and urban planners.
Application of spatially gridded temperature and land cover data sets for urban heat island analysis
Gallo, Kevin; Xian, George Z.
2014-01-01
Two gridded data sets that included (1) daily mean temperatures from 2006 through 2011 and (2) satellite-derived impervious surface area, were combined for a spatial analysis of the urban heat-island effect within the Dallas-Ft. Worth Texas region. The primary advantage of using these combined datasets included the capability to designate each 1 × 1 km grid cell of available temperature data as urban or rural based on the level of impervious surface area within the grid cell. Generally, the observed differences in urban and rural temperature increased as the impervious surface area thresholds used to define an urban grid cell were increased. This result, however, was also dependent on the size of the sample area included in the analysis. As the spatial extent of the sample area increased and included a greater number of rural defined grid cells, the observed urban and rural differences in temperature also increased. A cursory comparison of the spatially gridded temperature observations with observations from climate stations suggest that the number and location of stations included in an urban heat island analysis requires consideration to assure representative samples of each (urban and rural) environment are included in the analysis.
Microbial Community Patterns Associated with Automated Teller Machine Keypads in New York City.
Bik, Holly M; Maritz, Julia M; Luong, Albert; Shin, Hakdong; Dominguez-Bello, Maria Gloria; Carlton, Jane M
2016-01-01
In densely populated urban environments, the distribution of microbes and the drivers of microbial community assemblages are not well understood. In sprawling metropolitan habitats, the "urban microbiome" may represent a mix of human-associated and environmental taxa. Here we carried out a baseline study of automated teller machine (ATM) keypads in New York City (NYC). Our goal was to describe the biodiversity and biogeography of both prokaryotic and eukaryotic microbes in an urban setting while assessing the potential source of microbial assemblages on ATM keypads. Microbial swab samples were collected from three boroughs (Manhattan, Queens, and Brooklyn) during June and July 2014, followed by generation of Illumina MiSeq datasets for bacterial (16S rRNA) and eukaryotic (18S rRNA) marker genes. Downstream analysis was carried out in the QIIME pipeline, in conjunction with neighborhood metadata (ethnicity, population, age groups) from the NYC Open Data portal. Neither the 16S nor 18S rRNA datasets showed any clustering patterns related to geography or neighborhood demographics. Bacterial assemblages on ATM keypads were dominated by taxonomic groups known to be associated with human skin communities ( Actinobacteria , Bacteroides , Firmicutes , and Proteobacteria ), although SourceTracker analysis was unable to identify the source habitat for the majority of taxa. Eukaryotic assemblages were dominated by fungal taxa as well as by a low-diversity protist community containing both free-living and potentially pathogenic taxa ( Toxoplasma , Trichomonas ). Our results suggest that ATM keypads amalgamate microbial assemblages from different sources, including the human microbiome, eukaryotic food species, and potentially novel extremophilic taxa adapted to air or surfaces in the built environment. DNA obtained from ATM keypads may thus provide a record of both human behavior and environmental sources of microbes. IMPORTANCE Automated teller machine (ATM) keypads represent a specific and unexplored microhabitat for microbial communities. Although the number of built environment and urban microbial ecology studies has expanded greatly in recent years, the majority of research to date has focused on mass transit systems, city soils, and plumbing and ventilation systems in buildings. ATM surfaces, potentially retaining microbial signatures of human inhabitants, including both commensal taxa and pathogens, are interesting from both a biodiversity perspective and a public health perspective. By focusing on ATM keypads in different geographic areas of New York City with distinct population demographics, we aimed to characterize the diversity and distribution of both prokaryotic and eukaryotic microbes, thus making a unique contribution to the growing body of work focused on the "urban microbiome." In New York City, the surface area of urban surfaces in Manhattan far exceeds the geographic area of the island itself. We have only just begun to describe the vast array of microbial taxa that are likely to be present across diverse types of urban habitats.
NASA Astrophysics Data System (ADS)
Manago, K. F.; Hogue, T. S.; Litvak, E.; Pataki, D. E.
2016-12-01
California experienced its most severe drought on record in 2013 and 2014, forcing the governor to call for the first statewide reductions in urban water use. This led to numerous water conservation efforts including turf removal and restrictions on outdoor irrigation. The decrease in irrigation across the city of Los Angeles has had major effects on regional hydrologic fluxes. Previous studies have found that conservation efforts have decreased streamflow but little work has been done on the impact of reduced irrigation on Evapotranspiration (ET). ET is one of the most difficult variables to measure as a result of its heterogeneity both spatially and temporally; yet, it is imperative in characterizing energy and hydrologic processes and in aiding water management decisions. Estimating ET is further complicated in urban regions where land cover composition is extremely variable, even at small scales. Irrigated landscape and impervious surfaces are two of the most common land cover types associated with urbanization, but they have opposite effects on ET. While numerous studies have evaluated changes in ET caused by urbanization, they have all produced varying results. This is expected as changes to ET are highly dependent on land cover composition. In this study, we modeled the relationship between ET and urban land cover change in Los Angeles. We utilized empirical equations derived from in situ measurements to calculate tree and irrigated turfgrass ET and compared the results to estimates based on remote-sensing and California Irrigation Management Information System (CIMIS) network of weather stations. We found that unshaded turfgrass largely increased ET compared to impervious surfaces, which reveals lavish irrigation practices. Trees also increased ET, but they provided shade that decreased ET from turf grass. With much of the western United States facing drought and water supply uncertainty due to climate change, understanding and predicting how land cover impacts ET under various scenarios is imperative for informed water management and efficient conservation solutions.
NASA Astrophysics Data System (ADS)
Lipson, Mathew J.; Hart, Melissa A.; Thatcher, Marcus
2017-03-01
Intercomparison studies of models simulating the partitioning of energy over urban land surfaces have shown that the heat storage term is often poorly represented. In this study, two implicit discrete schemes representing heat conduction through urban materials are compared. We show that a well-established method of representing conduction systematically underestimates the magnitude of heat storage compared with exact solutions of one-dimensional heat transfer. We propose an alternative method of similar complexity that is better able to match exact solutions at typically employed resolutions. The proposed interface conduction scheme is implemented in an urban land surface model and its impact assessed over a 15-month observation period for a site in Melbourne, Australia, resulting in improved overall model performance for a variety of common material parameter choices and aerodynamic heat transfer parameterisations. The proposed scheme has the potential to benefit land surface models where computational constraints require a high level of discretisation in time and space, for example at neighbourhood/city scales, and where realistic material properties are preferred, for example in studies investigating impacts of urban planning changes.
Characteristics of Surface Urban Heat Island (SUHI) over the Gangetic Plain of Bihar, India
NASA Astrophysics Data System (ADS)
Barat, Archisman; Kumar, Sunny; Kumar, Praveen; Parth Sarthi, P.
2018-05-01
The rapid urbanisation impacts on environment, climate, agriculture, water resources trigger several problems to human beings. The present study is carried out to estimate intensity and trend of Urban Heat Island (UHI) as Surface UHI (SUHI) over towns/cities of the Gangetic plain of the state of Bihar, India, in which urban areas show relatively greater Land Surface Temperature (LST) than its rural surroundings especially during night times. The LST data (2001-14) of Moderate Resolution Imaging Spectroradiometer (MODIS) is used for five major towns/cities of Bihar namely, Bhagalpur, Gaya, Patna, Purnea and Muzzaffarpur. Each city is classified into Urban, Suburban and Rural zones as per land cover of the area. During winter months (January, February, November and December), UHI is more intense over all towns/cities. Mann-Kendall Test is applied on Surface Urban Heat Island Intensity (SUHII) in which MK-Test Statistic (S) shows a significant increasing trend. This trend would alarm a risk to increase in air pollution, heat related biohazards, energy demand in the region. This study shows the need of urban greening and proper town planning over the considered areas to mitigate the changes.
2013-01-01
Background Interruption of vector-borne transmission of Trypanosoma cruzi remains an unrealized objective in many Latin American countries. The task of vector control is complicated by the emergence of vector insects in urban areas. Methods Utilizing data from a large-scale vector control program in Arequipa, Peru, we explored the spatial patterns of infestation by Triatoma infestans in an urban and peri-urban landscape. Multilevel logistic regression was utilized to assess the associations between household infestation and household- and locality-level socio-environmental measures. Results Of 37,229 households inspected for infestation, 6,982 (18.8%; 95% CI: 18.4 – 19.2%) were infested by T. infestans. Eighty clusters of infestation were identified, ranging in area from 0.1 to 68.7 hectares and containing as few as one and as many as 1,139 infested households. Spatial dependence between infested households was significant at distances up to 2,000 meters. Household T. infestans infestation was associated with household- and locality-level factors, including housing density, elevation, land surface temperature, and locality type. Conclusions High levels of T. infestans infestation, characterized by spatial heterogeneity, were found across extensive urban and peri-urban areas prior to vector control. Several environmental and social factors, which may directly or indirectly influence the biology and behavior of T. infestans, were associated with infestation. Spatial clustering of infestation in the urban context may both challenge and inform surveillance and control of vector reemergence after insecticide intervention. PMID:24171704
Quantifying Water and Energy Fluxes Over Different Urban Land Covers in Phoenix, Arizona
NASA Astrophysics Data System (ADS)
Templeton, Nicole P.; Vivoni, Enrique R.; Wang, Zhi-Hua; Schreiner-McGraw, Adam P.
2018-02-01
The impact of urbanization on water and energy fluxes varies according to the characteristics of the urban patch type. Nevertheless, urban flux observations are limited, particularly in arid climates, given the wide variety of land cover present in cities. To help address this need, a mobile eddy covariance tower was deployed at three locations in Phoenix, Arizona, to sample the surface energy balance at a parking lot, a xeric landscaping (irrigated trees with gravel) and a mesic landscaping (irrigated turf grass). These deployments were compared to a stationary eddy covariance tower in a suburban neighborhood. A comparison of the observations revealed key differences between the mobile and reference sites tied to the urban land cover within the measurement footprints. For instance, the net radiation varied substantially among the sites in manners consistent with albedo and shallow soil temperature differences. The partitioning of available energy between sensible and latent heat fluxes was modulated strongly by the presence of outdoor water use, with the irrigated turf grass exhibiting the highest evaporative fraction. At this site, we identified a lack of sensitivity of turbulent flux partitioning to precipitation events, which suggests that frequent outdoor water use removes water limitations in an arid climate, thus leading to mesic conditions. Other urban land covers with less irrigation, however, exhibited sensitivity to the occurrence of precipitation, as expected for an arid climate. As a result, quantifying the frequency and magnitude of outdoor water use is critical for understanding evapotranspiration losses in arid urban areas.
Beyond Impervious: Urban Land-Cover Pattern Variation and Implications for Watershed Management
NASA Astrophysics Data System (ADS)
Beck, Scott M.; McHale, Melissa R.; Hess, George R.
2016-07-01
Impervious surfaces degrade urban water quality, but their over-coverage has not explained the persistent water quality variation observed among catchments with similar rates of imperviousness. Land-cover patterns likely explain much of this variation, although little is known about how they vary among watersheds. Our goal was to analyze a series of urban catchments within a range of impervious cover to evaluate how land-cover varies among them. We then highlight examples from the literature to explore the potential effects of land-cover pattern variability for urban watershed management. High-resolution (1 m2) land-cover data were used to quantify 23 land-cover pattern and stormwater infrastructure metrics within 32 catchments across the Triangle Region of North Carolina. These metrics were used to analyze variability in land-cover patterns among the study catchments. We used hierarchical clustering to organize the catchments into four groups, each with a distinct landscape pattern. Among these groups, the connectivity of combined land-cover patches accounted for 40 %, and the size and shape of lawns and buildings accounted for 20 %, of the overall variation in land-cover patterns among catchments. Storm water infrastructure metrics accounted for 8 % of the remaining variation. Our analysis demonstrates that land-cover patterns do vary among urban catchments, and that trees and grass (lawns) are divergent cover types in urban systems. The complex interactions among land-covers have several direct implications for the ongoing management of urban watersheds.
Li, Yangjie; Chen, Zhenlou; Lou, Huanjie; Wang, Dongqi; Deng, Huanguang; Wang, Chu
2014-09-01
The purpose of this research was to thoroughly analyze the influences of environmental factors on denitrification processes in urban riparian soils. Besides, the study was also carried out to identify whether the denitrification processes in urban riparian soils could control nonpoint source nitrogen pollution in urban areas. The denitrification rates (DR) over 1 year were measured using an acetylene inhibition technique during the incubation of intact soil cores from six urban riparian sites, which could be divided into three types according to their vegetation. The soil samples were analyzed to determine the soil organic carbon (SOC), soil total nitrogen (STN), C/N ratio, extractable NO3 (-)-N and NH4 (+)-N, pH value, soil water content (SWC), and the soil nitrification potential to evaluate which of these factors determined the final outcome of denitrification. A nitrate amendment experiment further indicated that the riparian DR was responsive to added nitrate. Although the DRs were very low (0.099 ~ 33.23 ng N2O-N g(-1) h(-1)) due to the small amount of nitrogen moving into the urban riparian zone, the spatial and temporal patterns of denitrification differed significantly. The extractable NO3 (-)-N proved to be the dominant factor influencing the spatial distribution of denitrification, whereas the soil temperature was a determinant of the seasonal DR variation. The six riparian sites could also be divided into two types (a nitrate-abundant and a nitrate-stressed riparian system) according to the soil NO3 (-)-N concentration. The DR in nitrate-abundant riparian systems was significantly higher than that in the nitrate-stressed riparian systems. The DR in riparian zones that were covered with bushes and had adjacent cropland was higher than in grass-covered riparian sites. Furthermore, the riparian DR decreased with soil depth, which was mainly attributed to the concentrated nitrate in surface soils. The DR was not associated with the SOC, STN, C/N ratio, and pH. Nitrate supply and temperature finally decided the spatiotemporal distribution patterns of urban riparian denitrification. Considering both the low DR of existing riparian soils and the significance of nonpoint source nitrogen pollution, the substantial denitrification potential of urban riparian soils should be utilized to reduce nitrogen pollution using proper engineering measures that would collect the polluted urban rainfall runoff and make it flow through the riparian zones.
Surface water areas significantly impacted 2014 dengue outbreaks in Guangzhou, China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Huaiyu; Huang, Shanqian
Dengue transmission in urban areas is strongly influenced by a range of biological and environmental factors, yet the key drivers still need further exploration. To better understand mechanisms of environment–mosquito–urban dengue transmission, we propose an empirical model parameterized and cross-validated from a unique dataset including viral gene sequences, vector dynamics and human dengue cases in Guangzhou, China, together with a 36-year urban environmental change maps investigated by spatiotemporal satellite image fusion. The dengue epidemics in Guangzhou are highly episodic and were not associated with annual rainfall over time. Our results indicate that urban environmental changes, especially variations in surface areamore » covered by water in urban areas, can substantially alter the virus population and dengue transmission. The recent severe dengue outbreaks in Guangzhou may be due to the surge in an artificial lake construction, which could increase infection force between vector (mainly Aedes albopictus) and host when urban water area significantly increased. Impacts of urban environmental change on dengue dynamics may not have been thoroughly investigated in the past studies and more work needs to be done to better understand the consequences of urbanization processes in our changing world. - Highlights: • Urban dengue outbreak is associated with water area in Guangzhou, 1978–2014. • Surface water area can alter population size of dengue virus in urban area. • Urban dengue outbreak is not associated with annual rainfall in Guangzhou. • Spatiotemporal satellite image fusion can investigate urban environmental change. • Urban environmental change could induce virus, vector, and dengue epidemic change.« less
A numerical study of the effect of urbanization on the climate of Las Vegas metropolitan area
NASA Astrophysics Data System (ADS)
Kamal, S. M.; Huang, H. P.; Myint, S. W.
2014-12-01
Las Vegas is one of the fastest growing desert cities. Its developed area has doubled in the last 30 years. An accurate prediction of the effect of urbanization on the climate of the city is crucial for resource management and planning. In this study, we use the Weather Research and Forecasting (WRF) model coupled with a land surface and urban canopy model to investigate the effects of urbanization on the regional climate pattern around Las Vegas. High resolution numerical simulations are performed with a 3 km resolution over the metropolitan area. With identical lateral boundary conditions, three land-use land-cover maps, representing 2006, 1992 and hypothetical 1900, are used in multiple simulations. The differences in the simulated climate among those cases are used to quantify the urban effect. The simulated surface air temperature is validated against observational data from the weather station at the McCarran airport. It is found that urbanization affects substantial warming during the night but a minor cooling during the day. Detailed diagnostics of the surface energy budget are performed to help interpret this result. In addition, the emerging urban structures are found to have a mechanical effect of slowing down the climatological wind field over the urban area. The change in wind, in turn, leads to a secondary modification of the temperature structure within the air shed of the city. This finding suggests the need to combine the mechanical and thermodynamic effects to construct a complete picture of the influence of land cover on urban climate. In all cases of the simulations, it is also demonstrated that urbanization influences surface air temperature mainly within the metropolitan area.
Zhang, Jinqu; Wang, Yunpeng
2008-01-01
Ten cities with different population and urban sizes located in the Pearl River Delta, Guangdong Province, P.R. China were selected to study the relationships between the spatial extent of surface urban heat islands (SUHI) and five urban characteristic factors such as urban size, development area, water proportion, mean NDVI (Normalized Vegetation Index) and population density, etc. The spatial extent of SUHI was quantified by using the hot island area (HIA). All the cities are almost at the same latitude, showing similar climate and solar radiation, the influence of which could thus be eliminated during our computation and comparative study. The land surface temperatures (LST) were retrieved from the data of Landsat 7 Enhanced Thematic Mapper Plus (ETM+) band 6 using a mono-window algorithm. A variance-segmenting method was proposed to compute HIA for each city from the retrieved LST. Factors like urban size, development area and water proportion were extracted directly from the classification images of the same ETM+ data and the population density factor is from the official census. Correlation and regression analyses were performed to study the relationships between the HIA and the related factors, and the results show that HIA is highly correlated to urban size (r=0.95), population density (r=0.97) and development area (r=0.83) in this area. It was also proved that a weak negative correlation existed between HIA and both mean NDVI and water proportion for each city. Linear functions between HIA and its related factors were established, respectively. The HIA can reflect the spatial extent and magnitude of the surface urban heat island effect, and can be used as reference in the urban planning. PMID:27873939
NASA Astrophysics Data System (ADS)
Peng, F.; Wong, M. S.; Nichol, J. E.; Chan, P. W.
2016-06-01
Rapid urban development between the 1960 and 2010 decades have changed the urban landscape and pattern in the Kowloon Peninsula of Hong Kong. This paper aims to study the changes of urban morphological parameters between the 1985 and 2010 and explore their influences on the urban heat island (UHI) effect. This study applied a mono-window algorithm to retrieve the land surface temperature (LST) using Landsat Thematic Mapper (TM) images from 1987 to 2009. In order to estimate the effects of local urban morphological parameters to LST, the global surface temperature anomaly was analysed. Historical 3D building model was developed based on aerial photogrammetry technique using aerial photographs from 1964 to 2010, in which the urban digital surface models (DSMs) including elevations of infrastructures and buildings have been generated. Then, urban morphological parameters (i.e. frontal area index (FAI), sky view factor (SVF)), vegetation fractional cover (VFC), global solar radiation (GSR), Normalized Difference Built-Up Index (NDBI), wind speed were derived. Finally, a linear regression method in Waikato Environment for Knowledge Analysis (WEKA) was used to build prediction model for revealing LST spatial patterns. Results show that the final apparent surface temperature have uncertainties less than 1 degree Celsius. The comparison between the simulated and actual spatial pattern of LST in 2009 showed that the correlation coefficient is 0.65, mean absolute error (MAE) is 1.24 degree Celsius, and root mean square error (RMSE) is 1.51 degree Celsius of 22,429 pixels.
An analytically based numerical method for computing view factors in real urban environments
NASA Astrophysics Data System (ADS)
Lee, Doo-Il; Woo, Ju-Wan; Lee, Sang-Hyun
2018-01-01
A view factor is an important morphological parameter used in parameterizing in-canyon radiative energy exchange process as well as in characterizing local climate over urban environments. For realistic representation of the in-canyon radiative processes, a complete set of view factors at the horizontal and vertical surfaces of urban facets is required. Various analytical and numerical methods have been suggested to determine the view factors for urban environments, but most of the methods provide only sky-view factor at the ground level of a specific location or assume simplified morphology of complex urban environments. In this study, a numerical method that can determine the sky-view factors ( ψ ga and ψ wa ) and wall-view factors ( ψ gw and ψ ww ) at the horizontal and vertical surfaces is presented for application to real urban morphology, which are derived from an analytical formulation of the view factor between two blackbody surfaces of arbitrary geometry. The established numerical method is validated against the analytical sky-view factor estimation for ideal street canyon geometries, showing a consolidate confidence in accuracy with errors of less than 0.2 %. Using a three-dimensional building database, the numerical method is also demonstrated to be applicable in determining the sky-view factors at the horizontal (roofs and roads) and vertical (walls) surfaces in real urban environments. The results suggest that the analytically based numerical method can be used for the radiative process parameterization of urban numerical models as well as for the characterization of local urban climate.
Quantifying urban land cover change between 2001 and 2006 in the Gulf of Mexico region
Xian, George Z.; Homer, Collin G.; Bunde, Brett; Danielson, Patrick; Dewitz, Jon; Fry, Joyce; Pu, Ruiliang
2012-01-01
We estimated urbanization rates (2001–2006) in the Gulf of Mexico region using the National Land Cover Database (NLCD) 2001 and 2006 impervious surface products. An improved method was used to update the NLCD impervious surface product in 2006 and associated land cover transition between 2001 and 2006. Our estimation reveals that impervious surface increased 416 km2 with a growth rate of 5.8% between 2001 and 2006. Approximately 1110.1 km2 of non-urban lands were converted into urban land, resulting in a 3.2% increase in the region. Hay/pasture, woody wetland, and evergreen forest represented the three most common land cover classes that transitioned to urban. Among these land cover transitions, more than 50% of the urbanization occurred within 50 km of the coast. Our analysis shows that the close-to-coast land cover transition trend, especially within 10 km off the coast, potentially imposes substantial long-term impacts on regional landscape and ecological conditions.
NASA Technical Reports Server (NTRS)
Shepherd, J. Marshall; Starr, David O'C (Technical Monitor)
2001-01-01
A recent paper by Shepherd and Pierce (conditionally accepted to Journal of Applied Meteorology) used rainfall data from the Precipitation Radar on NASA's Tropical Rainfall Measuring Mission's (TRMM) satellite to identify warm season rainfall anomalies downwind of major urban areas. A convective-mesoscale model with extensive land-surface processes is employed to (a) determine if an urban heat island (UHI) thermal perturbation can induce a dynamic response to affect rainfall processes and (b) quantify the impact of the following three factors on the evolution of rainfall: (1) urban surface roughness, (2) magnitude of the UHI temperature anomaly, and (3) physical size of the UHI temperature anomaly. The sensitivity experiments are achieved by inserting a slab of land with urban properties (e.g. roughness length, albedo, thermal character) within a rural surface environment and varying the appropriate lower boundary condition parameters. Early analysis suggests that urban surface roughness (through turbulence and low-level convergence) may control timing and initial location of UHI-induced convection. The magnitude of the heat island appears to be closely linked to the total rainfall amount with minor impact on timing and location. The physical size of the city may predominantly impact on the location of UHI-induced rainfall anomaly. The UHI factor parameter space will be thoroughly investigated with respect to their effects on rainfall amount, location, and timing. This study extends prior numerical investigations of the impact of urban surfaces on meteorological processes, particularly rainfall development. The work also contains several novel aspects, including the application of a high-resolution (less than I km) cloud-mesoscale model to investigate urban-induce rainfall process; investigation of thermal magnitude of the UHI on rainfall process; and investigation of UHI physical size on rainfall processes.
NASA Astrophysics Data System (ADS)
Guzmán, G.; Hoyos Ortiz, C. D.
2017-12-01
Urban heat island effect commonly refers to temperature differences between urban areas and their countrysides due to urbanization. These temperature differences are evident at surface, and within the canopy and the boundary layer. This effect is heterogeneous within the city, and responds to urban morphology, prevailing materials, amount of vegetation, among others, which are also important in the urban balance of energy. In order to study the relationship between land surface temperature (LST) and urban coverage over Aburrá Valley, which is a narrow valley locate at tropical Andes in northern South America, Landsat 8 mission products of LST, density of vegetation (normalized difference vegetation index, NDVI), and a proxy of soil humidity are derived and used. The results are analyzed from the point of view of dominant urban form and settlement density at scale of neighborhoods, and also from potential downward solar radiation received at the surface. Besides, specific sites were chosen to obtain LST from thermal imaging using an unmanned aerial vehicle to characterize micro-scale patterns and to validate Landast retrievals. Direct relationships between LST, NDVI, soil humidity, and duration of insolation are found, showing the impact of the current spatial distribution of land uses on surface temperature over Aburrá Valley. In general, the highest temperatures correspond to neighborhoods with large, flat-topped buildings in commercial and industrial areas, and low-rise building in residential areas with scarce vegetation, all on the valley bottom. Landsat images are in the morning for the Aburrá Valley, for that reason the coldest temperatures are prevalent at certain orientation of the hillslope, according with the amount of radiation received from sunrise to time of data.
NASA Technical Reports Server (NTRS)
Crosson, William L.; Dembek, Scott; Estes, Maurice G., Jr.; Limaye, Ashutosh S.; Lapenta, William; Quattrochi, Dale A.; Johnson, Hoyt; Khan, Maudood
2006-01-01
The specification of land use/land cover (LULC) and associated land surface parameters in meteorological models at all scales has a major influence on modeled surface energy fluxes and boundary layer states. In urban areas, accurate representation of the land surface may be even more important than in undeveloped regions due to the large heterogeneity within the urban area. Deficiencies in the characterization of the land surface related to the spatial or temporal resolution of the data, the number of LULC classes defined, the accuracy with which they are defined, or the degree of heterogeneity of the land surface properties within each class may degrade the performance of the models. In this study, an experiment was conducted to test a new high-resolution LULC data set for meteorological simulations for the Atlanta, Georgia metropolitan area using a mesoscale meteorological model and to evaluate the effects of urban heat island (UHI) mitigation strategies on modeled meteorology for 2030. Simulation results showed that use of the new LULC data set reduced a major deficiency of the land use data used previously, specifically the poor representation of urban and suburban land use. Performance of the meteorological model improved substantially, with the overall daytime cold bias reduced by over 30%. UHI mitigation strategies were projected to offset much of a predicted urban warming between 2000 and 2030. In fact, for the urban core, the cooling due to UHI mitigation strategies was slightly greater than the warming associated with urbanization over this period. For the larger metropolitan area, cooling only partially offset the projected warming trend.
NASA Astrophysics Data System (ADS)
Han, Songjun; Tang, Qiuhong; Xu, Di; Yang, Zhiyong
2018-03-01
A large proportion of meteorological stations in mainland China are located in or near either urban or agricultural lands that were established throughout the period of rapid urbanization and agricultural development (1961-2006). The extent of the impacts of urbanization and agricultural development on observed air temperature changes across different climate regions remains elusive. This study evaluates the surface air temperature trends observed by 598 meteorological stations in relation to the urbanization and agricultural development over the arid northwest, semi-arid intermediate, and humid southeast regions of mainland China based on linear regressions of temperature trends on the fractions of urban and cultivated land within a 3-km radius of the stations. In all three regions, the stations surrounded by large urban land tend to experience rapid warming, especially at minimum temperature. This dependence is particularly significant in the southeast region, which experiences the most intense urbanization. In the northwest and intermediate regions, stations surrounded by large cultivated land encounter less warming during the main growing season, especially at the maximum temperature changes. These findings suggest that the observed surface warming has been affected by urbanization and agricultural development represented by urban and cultivated land fractions around stations in with land cover changes in their proximity and should thus be considered when analyzing regional temperature changes in mainland China.
NASA Astrophysics Data System (ADS)
Schmid, P. E.; Niyogi, D.
2012-12-01
The Indianapolis region exhibits a precipitation distribution indicative of urban weather modification: negative bias upwind and positive bias downwind. The causes for such a distribution within an urban area arise from a combination of land-surface heterogeneity and urban aerosol-cloud interaction. This study investigates the causes of the precipitation distribution with a 120-day simulation using the Regional Atmospheric Modeling System (RAMS) coupled with the Town Energy Budget (TEB) model. Using a nested grid with a maximum resolution of 500m, a seasonal simulation of May through August, 2008 is conducted. Land surface conditions are varied, removing, expanding, and intensifying the Indianapolis urban area. Aerosol conditions are scaled by a three-dimensional combination of MODIS and CALIPSO observations, and varied in concentration and plume extent. Results from the study demonstrate the paradigm of urban precipitation modification on a seasonal time scale. The boundary between the rural and urban land surfaces weakens approaching systems upwind, decreasing precipitation in the city center. A larger urban extent diminishes the systems further. The aerosol plume downwind increases cloud lifetimes via cloud-nucleating aerosol, then invigorates precipitation via large drizzle-invigorating aerosols. The overall effect reproduces the observed negative precipitation bias upwind and positive bias downwind of the urban center. A lower concentration of aerosols leads to a higher proportion of stratiform rain over a larger area, whereas a higher concentration of aerosols leads to more convective rain and heavy rain events. This manifests in a weekly cycle of precipitation with rain most likely on weekends, and with less frequent but heavier rain events most likely during midweek, when aerosol concentrations are the highest. More intense urbanization, via both land surface and aerosol effects, creates more frequent heavy rainfall events and exacerbates dry-periods, potentially leading to premature drought onset. The wetter than average May, June, and July received more total rainfall from the heavy rainfall events, while the dry August became drier due to lack of stratiform precipitation. Smart planning solutions can partially mitigate the urban precipitation problem. In a simulation where a more intense urban Indianapolis is surrounded by a greenbelt and green roofs are implemented in the city, the urban precipitation bias becomes less significant. Upwind, the greenbelt provides surface moisture and mitigates how much precipitation systems weaken. Downwind, the greenbelt slows the transport of drizzle-invigorating aerosol, reducing the heavy rain events. The green roofs reduce the urban-rural gradient and slow the initial weakening of systems.
Leaf breakdown in streams differing in catchment land use
Paul, M.J.; Meyer, J.L.; Couch, C.A.
2006-01-01
1. The impact of changes in land use on stream ecosystem function is poorly understood. We studied leaf breakdown, a fundamental process of stream ecosystems, in streams that represent a range of catchment land use in the Piedmont physiographic province of the south-eastern United States. 2. We placed bags of chalk maple (Acer barbatum) leaves in similar-sized streams in 12 catchments of differing dominant land use: four forested, three agricultural, two suburban and three urban catchments. We measured leaf mass, invertebrate abundance and fungal biomass in leaf bags over time. 3. Leaves decayed significantly faster in agricultural (0.0465 day-1) and urban (0.0474 day-1) streams than in suburban (0.0173 day-1) and forested (0.0100 day-1) streams. Additionally, breakdown rates in the agricultural and urban streams were among the fastest reported for deciduous leaves in any stream. Nutrient concentrations in agricultural streams were significantly higher than in any other land-use type. Fungal biomass associated with leaves was significantly lower in urban streams; while shredder abundance in leaf bags was significantly higher in forested and agricultural streams than in suburban and urban streams. Storm runoff was significantly higher in urban and suburban catchments that had higher impervious surface cover than forested or agricultural catchments. 4. We propose that processes accelerating leaf breakdown in agricultural and urban streams were not the same: faster breakdown in agricultural streams was due to increased biological activity as a result of nutrient enrichment, whereas faster breakdown in urban streams was a result of physical fragmentation resulting from higher storm runoff. ?? 2006 The Authors.
Dreelin, Erin A; Ives, Rebecca L; Molloy, Stephanie; Rose, Joan B
2014-10-14
Cryptosporidium and Giardia pose a threat to human health in rural environments where water supplies are commonly untreated and susceptible to contamination from agricultural animal waste/manure, animal wastewater, septic tank effluents and septage. Our goals for this paper are to: (1) explore the prevalence of these protozoan parasites, where they are found, in what quantities, and which genotypes are present; (2) examine relationships between disease and land use comparing human health risks between rural and urban environments; and (3) synthesize available information to gain a better understanding of risk and risk management for rural water supplies. Our results indicate that Cryptosporidium and Giardia were more prevalent in rural versus urban environments based on the number of positive samples. Genotyping showed that both the human and animal types of the parasites are found in rural and urban environments. Rural areas had a higher incidence of disease compared to urban areas based on the total number of disease cases. Cryptosporidiosis and giardiasis were both positively correlated (p < 0.001) with urban area, population size, and population density. Finally, a comprehensive strategy that creates knowledge pathways for data sharing among multiple levels of management may improve decision-making for protecting rural water supplies.
Dreelin, Erin A.; Ives, Rebecca L.; Molloy, Stephanie; Rose, Joan B.
2014-01-01
Cryptosporidium and Giardia pose a threat to human health in rural environments where water supplies are commonly untreated and susceptible to contamination from agricultural animal waste/manure, animal wastewater, septic tank effluents and septage. Our goals for this paper are to: (1) explore the prevalence of these protozoan parasites, where they are found, in what quantities, and which genotypes are present; (2) examine relationships between disease and land use comparing human health risks between rural and urban environments; and (3) synthesize available information to gain a better understanding of risk and risk management for rural water supplies. Our results indicate that Cryptosporidium and Giardia were more prevalent in rural versus urban environments based on the number of positive samples. Genotyping showed that both the human and animal types of the parasites are found in rural and urban environments. Rural areas had a higher incidence of disease compared to urban areas based on the total number of disease cases. Cryptosporidiosis and giardiasis were both positively correlated (p < 0.001) with urban area, population size, and population density. Finally, a comprehensive strategy that creates knowledge pathways for data sharing among multiple levels of management may improve decision-making for protecting rural water supplies. PMID:25317981
Using pan-sharpened high resolution satellite data to improve impervious surfaces estimation
NASA Astrophysics Data System (ADS)
Xu, Ru; Zhang, Hongsheng; Wang, Ting; Lin, Hui
2017-05-01
Impervious surface is an important environmental and socio-economic indicator for numerous urban studies. While a large number of researches have been conducted to estimate the area and distribution of impervious surface from satellite data, the accuracy for impervious surface estimation (ISE) is insufficient due to high diversity of urban land cover types. This study evaluated the use of panchromatic (PAN) data in very high resolution satellite image for improving the accuracy of ISE by various pan-sharpening approaches, with a further comprehensive analysis of its scale effects. Three benchmark pan-sharpening approaches, Gram-Schmidt (GS), PANSHARP and principal component analysis (PCA) were applied to WorldView-2 in three spots of Hong Kong. The on-screen digitization were carried out based on Google Map and the results were viewed as referenced impervious surfaces. The referenced impervious surfaces and the ISE results were then re-scaled to various spatial resolutions to obtain the percentage of impervious surfaces. The correlation coefficient (CC) and root mean square error (RMSE) were adopted as the quantitative indicator to assess the accuracy. The accuracy differences between three research areas were further illustrated by the average local variance (ALV) which was used for landscape pattern analysis. The experimental results suggested that 1) three research regions have various landscape patterns; 2) ISE accuracy extracted from pan-sharpened data was better than ISE from original multispectral (MS) data; and 3) this improvement has a noticeable scale effects with various resolutions. The improvement was reduced slightly as the resolution became coarser.
Using Landsat, MODIS, and a Biophysical Model to Evaluate LST in Urban Centers
NASA Technical Reports Server (NTRS)
Al-Hamdan, Mohammad Z.; Quattrochi, Dale A.; Bounoua, Lahouari; Lachir, Asia; Zhang, Ping
2016-01-01
In this paper, we assessed and compared land surface temperature (LST) in urban centers using data from Landsat, MODIS, and the Simple Biosphere model (SiB2). We also evaluated the sensitivity of the models LST to different land cover types, fractions (percentages), and emissivities compared to reference points derived from Landsat thermal data. This was demonstrated in three climatologically- and morphologically-different cities of Atlanta, GA, New York, NY, and Washington, DC. Our results showed that in these cities SiB2 was sensitive to both the emissivity and the land cover type and fraction, but much more sensitive to the latter. The practical implications of these results are rather significant since they imply that the SiB2 model can be used to run different scenarios for evaluating urban heat island (UHI) mitigation strategies. This study also showed that using detailed emissivities per land cover type and fractions from Landsat-derived data caused a convergence of the model results towards the Landsat-derived LST for most of the studied cases. This study also showed that SiB2 LSTs are closer in magnitude to Landsat-derived LSTs than MODIS-derived LSTs. It is important, however, to emphasize that both Landsat and MODIS LSTs are not direct observations and, as such, do not represent a ground truth. More studies will be needed to compare these results to in situ LST data and provide further validation.
A method of extracting impervious surface based on rule algorithm
NASA Astrophysics Data System (ADS)
Peng, Shuangyun; Hong, Liang; Xu, Quanli
2018-02-01
The impervious surface has become an important index to evaluate the urban environmental quality and measure the development level of urbanization. At present, the use of remote sensing technology to extract impervious surface has become the main way. In this paper, a method to extract impervious surface based on rule algorithm is proposed. The main ideas of the method is to use the rule-based algorithm to extract impermeable surface based on the characteristics and the difference which is between the impervious surface and the other three types of objects (water, soil and vegetation) in the seven original bands, NDWI and NDVI. The steps can be divided into three steps: 1) Firstly, the vegetation is extracted according to the principle that the vegetation is higher in the near-infrared band than the other bands; 2) Then, the water is extracted according to the characteristic of the water with the highest NDWI and the lowest NDVI; 3) Finally, the impermeable surface is extracted based on the fact that the impervious surface has a higher NDWI value and the lowest NDVI value than the soil.In order to test the accuracy of the rule algorithm, this paper uses the linear spectral mixed decomposition algorithm, the CART algorithm, the NDII index algorithm for extracting the impervious surface based on six remote sensing image of the Dianchi Lake Basin from 1999 to 2014. Then, the accuracy of the above three methods is compared with the accuracy of the rule algorithm by using the overall classification accuracy method. It is found that the extraction method based on the rule algorithm is obviously higher than the above three methods.
CADDIS Volume 2. Sources, Stressors and Responses: Urbanization - Stormwater Runoff
Introduction to impervious surfaces associated with urbanization, overview of effects vs. total imperviousness, overview of how impervious surfaces affect biotic condition, summary of threshold values of impervious cover for stream biotic condition.
GROUND WATER CONTAMINATION POTENTIAL FROM STORMWATER INFILTRATION
Prior to urbanization, ground water recharge resulted from infiltration of precipitation through pervious surfaces, including grasslands and woods. This infiltration water was relatively uncontaminated. With urbanization, the permeable soil surface area through which recharge by...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-22
... Collection: Title: Office of Urban Indian Health Programs (OUIHP) Uniform Data System (UDS). Type of... Respondents: Title V urban Indian health programs. The table below provides: Types of data collection... Proposed Information Collection: Office of Urban Indian Health Programs; Uniform Data System AGENCY: Indian...
Elemental composition and size distribution of particulates in Cleveland, Ohio
NASA Technical Reports Server (NTRS)
King, R. B.; Fordyce, J. S.; Neustadter, H. E.; Leibecki, H. F.
1975-01-01
Measurements were made of the elemental particle size distribution at five contrasting urban environments with different source-type distributions in Cleveland, Ohio. Air quality conditions ranged from normal to air pollution alert levels. A parallel network of high-volume cascade impactors (5-state) were used for simultaneous sampling on glass fiber surfaces for mass determinations and on Whatman-41 surfaces for elemental analysis by neutron activation for 25 elements. The elemental data are assessed in terms of distribution functions and interrelationships and are compared between locations as a function of resultant wind direction in an attempt to relate the findings to sources.
Elemental composition and size distribution of particulates in Cleveland, Ohio
NASA Technical Reports Server (NTRS)
Leibecki, H. F.; King, R. B.; Fordyce, J. S.; Neustadter, H. E.
1975-01-01
Measurements have been made of the elemental particle size distribution at five contrasting urban environments with different source-type distributions in Cleveland, Ohio. Air quality conditions ranged from normal to air pollution alert levels. A parallel network of high-volume cascade impactors (5-stage) were used for simultaneous sampling on glass fiber surfaces for mass determinations and on Whatman-41 surfaces for elemental analysis by neutron activation for 25 elements. The elemental data are assessed in terms of distribution functions and interrelationships and are compared between locations as a function of resultant wind direction in an attempt to relate the findings to sources.
Priority organic pollutants in the urban water cycle (Toulouse, France).
Sablayrolles, C; Breton, A; Vialle, C; Vignoles, C; Montréjaud-Vignoles, M
2011-01-01
Application of the European Water Framework Directive requires Member States to have better understanding of the quality of surface waters in order to improve knowledge of priority pollutants. Xenobiotics in urban receiving waters are an emerging concern. This study proposes a screening campaign of nine molecular species of xenobiotics in a separated sewer system. Five sites were investigated over one year in Toulouse (France) using quantitative monitoring. For each sample, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, nonylphenols, diethelhexylphthalate, linear alkylbenzene sulphonates, methyl tert-butylether, total hydrocarbons, estradiol and ethinylestradiol were analysed. Ground, rain and roof collected water concentrations are similar to treated wastewater levels. Run-off water was the most polluted of the five types investigated, discharged into the aquatic environment. The wastewater treatment plant reduced xenobiotic concentrations by 66% before discharge into the environment. Regarding environmental quality standards, observed concentrations in waters were in compliance with standards. The results show that xenobiotic concentrations are variable over time and space in all urban water compartments.
Sun, Qiang
2017-06-01
As the largest developing country in the world, China has witnessed fast-paced urbanization over the past three decades with rapid economic growth. In fact, urbanization has been not only shown to promote economic growth and improve the livelihood of people but also can increase demands of regional logistics. Therefore, a better understanding of the relationship between urbanization and regional logistics is important for China's future sustainable development. The development of urban residential area and heterogeneous, modern society as well regional logistics are running two abreast. The regional logistics can promote the development of new-type urbanization jointly by promoting industrial concentration and logistics demand, enhancing the residents' quality of life and improving the infrastructure and logistics technology. In this paper, the index system and evaluation model for evaluating the development of regional logistics and the new-type urbanization are constructed. Further, the econometric analysis is utilized such as correlation analysis, co-integration test, and error correction model to explore relationships of the new-type urbanization development and regional logistics development in Liaoning Province. The results showed that there was a long-term stable equilibrium relationship between the new-type urbanization and regional logistics. The findings have important implications for Chinese policymakers that on the path towards a sustainable urbanization and regional reverse, this must be taken into consideration. The paper concludes providing some strategies that might be helpful to the policymakers in formulating development policies for sustainable urbanization.
Bioremediation of weathered-building stone surfaces.
Webster, Alison; May, Eric
2006-06-01
Atmospheric pollution and weathering of stone surfaces in urban historic buildings frequently results in disfigurement or damage by salt crust formation (often gypsum), presenting opportunities for bioremediation using microorganisms. Conventional techniques for the removal of these salt crusts from stone have several disadvantages: they can cause colour changes; adversely affect the movement of salts within the stone structure; or remove excessive amounts of the original surface. Although microorganisms are commonly associated with detrimental effects to the integrity of stone structures, there is growing evidence that they can be used to treat this type of stone deterioration in objects of historical and cultural significance. In particular, the ability and potential of different microorganisms to either remove sulfate crusts or form sacrificial layers of calcite that consolidate mineral surfaces have been demonstrated. Current research suggests that bioremediation has the potential to offer an additional technology to conservators working to restore stone surfaces in heritage buildings.
NASA Technical Reports Server (NTRS)
Dicristofaro, D. C. (Principal Investigator)
1980-01-01
A one dimensional boundary layer model was used in conjunction with satellite derived infrared surface temperatures to deduce values of moisture availability, thermal inertia, heat and evaporative fluxes. The Penn State satellite image display system, a sophisticated image display facility, was used to remotely sense these various parameters for three cases: St. Louis, Missouri; the Land Between the Lakes, Kentucky; and Clarksville, Tennessee. The urban centers displayed the maximum daytime surface temperatures which correspond to the minimum values of moisture availability. The urban center of St. Louis and the bodies of water displayed the maximum nighttime surface temperatures which correspond to the maximum thermal inertia values. It is shown that moisture availability and thermal inertia are very much responsible for the formation of important temperature variations over the urban rural complex.
Horsák, Michal; Lososová, Zdeňka; Čejka, Tomáš; Juřičková, Lucie; Chytrý, Milan
2013-01-01
The effects of non-native species invasions on community diversity and biotic homogenization have been described for various taxa in urban environments, but not for land snails. Here we relate the diversity of native and non-native land-snail urban faunas to urban habitat types and macroclimate, and analyse homogenization effects of non-native species across cities and within the main urban habitat types. Land-snail species were recorded in seven 1-ha plots in 32 cities of ten countries of Central Europe and Benelux (224 plots in total). Each plot represented one urban habitat type characterized by different management and a specific disturbance regime. For each plot, we obtained January, July and mean annual temperature and annual precipitation. Snail species were classified into either native or non-native. The effects of habitat type and macroclimate on the number of native and non-native species were analysed using generalized estimating equations; the homogenization effect of non-native species based on the Jaccard similarity index and homogenization index. We recorded 67 native and 20 non-native species. Besides being more numerous, native species also had much higher beta diversity than non-natives. There were significant differences between the studied habitat types in the numbers of native and non-native species, both of which decreased from less to heavily urbanized habitats. Macroclimate was more important for the number of non-native than native species; however in both cases the effect of climate on diversity was overridden by the effect of urban habitat type. This is the first study on urban land snails documenting that non-native land-snail species significantly contribute to homogenization among whole cities, but both the homogenization and diversification effects occur when individual habitat types are compared among cities. This indicates that the spread of non-native snail species may cause biotic homogenization, but it depends on scale and habitat type. PMID:23936525
Horsák, Michal; Lososová, Zdeňka; Čejka, Tomáš; Juřičková, Lucie; Chytrý, Milan
2013-01-01
The effects of non-native species invasions on community diversity and biotic homogenization have been described for various taxa in urban environments, but not for land snails. Here we relate the diversity of native and non-native land-snail urban faunas to urban habitat types and macroclimate, and analyse homogenization effects of non-native species across cities and within the main urban habitat types. Land-snail species were recorded in seven 1-ha plots in 32 cities of ten countries of Central Europe and Benelux (224 plots in total). Each plot represented one urban habitat type characterized by different management and a specific disturbance regime. For each plot, we obtained January, July and mean annual temperature and annual precipitation. Snail species were classified into either native or non-native. The effects of habitat type and macroclimate on the number of native and non-native species were analysed using generalized estimating equations; the homogenization effect of non-native species based on the Jaccard similarity index and homogenization index. We recorded 67 native and 20 non-native species. Besides being more numerous, native species also had much higher beta diversity than non-natives. There were significant differences between the studied habitat types in the numbers of native and non-native species, both of which decreased from less to heavily urbanized habitats. Macroclimate was more important for the number of non-native than native species; however in both cases the effect of climate on diversity was overridden by the effect of urban habitat type. This is the first study on urban land snails documenting that non-native land-snail species significantly contribute to homogenization among whole cities, but both the homogenization and diversification effects occur when individual habitat types are compared among cities. This indicates that the spread of non-native snail species may cause biotic homogenization, but it depends on scale and habitat type.
Evaluation of an urban land surface scheme over a tropical suburban neighborhood
NASA Astrophysics Data System (ADS)
Harshan, Suraj; Roth, Matthias; Velasco, Erik; Demuzere, Matthias
2017-07-01
The present study evaluates the performance of the SURFEX (TEB/ISBA) urban land surface parametrization scheme in offline mode over a suburban area of Singapore. Model performance (diurnal and seasonal characteristics) is investigated using measurements of energy balance fluxes, surface temperatures of individual urban facets, and canyon air temperature collected during an 11-month period. Model performance is best for predicting net radiation and sensible heat fluxes (both are slightly overpredicted during daytime), but weaker for latent heat (underpredicted during daytime) and storage heat fluxes (significantly underpredicted daytime peaks and nighttime storage). Daytime surface temperatures are generally overpredicted, particularly those containing horizontal surfaces such as roofs and roads. This result, together with those for the storage heat flux, point to the need for a better characterization of the thermal and radiative characteristics of individual urban surface facets in the model. Significant variation exists in model behavior between dry and wet seasons, the latter generally being better predicted. The simple vegetation parametrization used is inadequate to represent seasonal moisture dynamics, sometimes producing unrealistically dry conditions.
NASA Astrophysics Data System (ADS)
Estoque, Ronald C.; Murayama, Yuji
2017-11-01
Since it was first described about two centuries ago and due to its adverse impacts on urban ecological environment and the overall livability of cities, the urban heat island (UHI) phenomenon has been, and still is, an important research topic across various fields of study. However, UHI studies on cities in mountain regions are still lacking. This study aims to contribute to this endeavor by monitoring and examining the formation of surface UHI (SUHI) in a tropical mountain city of Southeast Asia -Baguio City, the summer capital of the Philippines- using Landsat data (1987-2015). Based on mean surface temperature difference between impervious surface (IS) and green space (GS1), SUHI intensity (SUHII) in the study area increased from 2.7 °C in 1987 to 3.4 °C in 2015. Between an urban zone (>86% impervious) and a rural zone (<10% impervious) along the urban-rural gradient, it increased from 4.0 °C in 1987 to 8.2 °C in 2015. These results are consistent with the rapid urbanization of the area over the same period, which resulted in a rapid expansion of impervious surfaces and substantial loss of green spaces. Together with landscape composition variables (e.g. fraction of IS), topographic variables (e.g. hillshade) can help explain a significant amount of spatial variations in surface temperature in the area (R2 = 0.56-0.85) (p < 0.001). The relative importance of the 'fraction of IS' variable also increased, indicating that its unique explanatory and predictive power concerning the spatial variations of surface temperature increases as the city size becomes bigger and SUHI gets more intense. Overall, these results indicate that the cool temperature of the study area being situated in a mountain region did not hinder the formation of SUHI. Thus, the formation and effects of UHIs, including possible mitigation and adaptation measures, should be considered in landscape planning for the sustainable urban development of the area.
Multi-channel Analysis of Passive Surface Waves (MAPS)
NASA Astrophysics Data System (ADS)
Xia, J.; Cheng, F. Mr; Xu, Z.; Wang, L.; Shen, C.; Liu, R.; Pan, Y.; Mi, B.; Hu, Y.
2017-12-01
Urbanization is an inevitable trend in modernization of human society. In the end of 2013 the Chinese Central Government launched a national urbanization plan—"Three 100 Million People", which aggressively and steadily pushes forward urbanization. Based on the plan, by 2020, approximately 100 million people from rural areas will permanently settle in towns, dwelling conditions of about 100 million people in towns and villages will be improved, and about 100 million people in the central and western China will permanently settle in towns. China's urbanization process will run at the highest speed in the urbanization history of China. Environmentally friendly, non-destructive and non-invasive geophysical assessment method has played an important role in the urbanization process in China. Because human noise and electromagnetic field due to industrial life, geophysical methods already used in urban environments (gravity, magnetics, electricity, seismic) face great challenges. But humanity activity provides an effective source of passive seismic methods. Claerbout pointed out that wavefileds that are received at one point with excitation at the other point can be reconstructed by calculating the cross-correlation of noise records at two surface points. Based on this idea (cross-correlation of two noise records) and the virtual source method, we proposed Multi-channel Analysis of Passive Surface Waves (MAPS). MAPS mainly uses traffic noise recorded with a linear receiver array. Because Multi-channel Analysis of Surface Waves can produces a shear (S) wave velocity model with high resolution in shallow part of the model, MPAS combines acquisition and processing of active source and passive source data in a same flow, which does not require to distinguish them. MAPS is also of ability of real-time quality control of noise recording that is important for near-surface applications in urban environment. The numerical and real-world examples demonstrated that MAPS can be used for accurate and fast imaging of high-frequency surface wave energy, and some examples also show that high quality imaging similar to those with active sources can be generated only by the use of a few minutes of noise. The use of cultural noise in town, MAPS can image S-wave velocity structure from the ground surface to hundreds of meters depth.
NASA Astrophysics Data System (ADS)
Noh, Seong Jin; Lee, Seungsoo; An, Hyunuk; Kawaike, Kenji; Nakagawa, Hajime
2016-11-01
An urban flood is an integrated phenomenon that is affected by various uncertainty sources such as input forcing, model parameters, complex geometry, and exchanges of flow among different domains in surfaces and subsurfaces. Despite considerable advances in urban flood modeling techniques, limited knowledge is currently available with regard to the impact of dynamic interaction among different flow domains on urban floods. In this paper, an ensemble method for urban flood modeling is presented to consider the parameter uncertainty of interaction models among a manhole, a sewer pipe, and surface flow. Laboratory-scale experiments on urban flood and inundation are performed under various flow conditions to investigate the parameter uncertainty of interaction models. The results show that ensemble simulation using interaction models based on weir and orifice formulas reproduces experimental data with high accuracy and detects the identifiability of model parameters. Among interaction-related parameters, the parameters of the sewer-manhole interaction show lower uncertainty than those of the sewer-surface interaction. Experimental data obtained under unsteady-state conditions are more informative than those obtained under steady-state conditions to assess the parameter uncertainty of interaction models. Although the optimal parameters vary according to the flow conditions, the difference is marginal. Simulation results also confirm the capability of the interaction models and the potential of the ensemble-based approaches to facilitate urban flood simulation.
NASA Astrophysics Data System (ADS)
Thouron, L.; Seigneur, C.; Kim, Y.; Legorgeu, C.; Roustan, Y.; Bruge, B.
2017-10-01
Urban areas can be subject not only to poor air quality, but also to contamination of other environmental media by air pollutants. Here, we address the potential transfer of selected air pollutants (two metals and three PAH) to urban surfaces. To that end, we simulate meteorology and air pollution from Europe to a Paris suburban neighborhood, using a four-level one-way nesting approach. The meteorological and air quality simulations use urban canopy sub-models in order to better represent the effect of the urban morphology on the air flow, atmospheric dispersion, and deposition of air pollutants to urban surfaces. This modeling approach allows us to distinguish air pollutant deposition among various urban surfaces (roofs, roads, and walls). Meteorological model performance is satisfactory, showing improved results compared to earlier simulations, although precipitation amounts are underestimated. Concentration simulation results are also satisfactory for both metals, with a fractional bias <0.5. Concentrations of benzo[a]pyrene are overestimated, probably because continental emissions may be overestimated. Concentrations of benzo[b]fluoranthene and indeno[1,2,3,cd]pyrene are underestimated, in part because of null boundary conditions. PAH deposition fluxes are consistent with earlier measurements obtained in the Greater Paris region. The model simulation results suggest that both wet and dry deposition processes need to be considered when estimating the transfer of air pollutants to other environmental media. Dry deposition fluxes to various urban surfaces are mostly uniform for PAH, which are entirely present in fine particles. However, there is significantly less wall deposition compared to deposition to roofs and roads for trace metals, due to their coarse fraction. Meteorology, particle size distribution, and urban morphology are all important factors affecting air pollutant deposition. Future work should focus on the collection of data suitable to evaluate the performance of atmospheric models for both wet and dry deposition with fine spatial resolution.
Shift in the microbial community composition of surface water and sediment along an urban river.
Wang, Lan; Zhang, Jing; Li, Huilin; Yang, Hong; Peng, Chao; Peng, Zhengsong; Lu, Lu
2018-06-15
Urban rivers represent a unique ecosystem in which pollution occurs regularly, leading to significantly altered of chemical and biological characteristics of the surface water and sediments. However, the impact of urbanization on the diversity and structure of the river microbial community has not been well documented. As a major tributary of the Yangtze River, the Jialing River flows through many cities. Here, a comprehensive analysis of the spatial microbial distribution in the surface water and sediments in the Nanchong section of Jialing River and its two urban branches was conducted using 16S rRNA gene-based Illumina MiSeq sequencing. The results revealed distinct differences in surface water bacterial composition along the river with a differential distribution of Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes and Acidobacteria (P < 0.05). The bacterial diversity in sediments was significantly higher than their corresponding water samples. Additionally, archaeal communities showed obvious spatial variability in the surface water. The construction of the hydropower station resulted in increased Cyanobacteria abundance in the upstream (32.2%) compared to its downstream (10.3%). Several taxonomic groups of potential fecal indicator bacteria, like Flavobacteria and Bacteroidia, showed an increasing trend in the urban water. PICRUSt metabolic inference analysis revealed a growing number of genes associated with xenobiotic metabolism and nitrogen metabolism in the urban water, indicating that urban discharges might act as the dominant selective force to alter the microbial communities. Redundancy analysis suggested that the microbial community structure was influenced by several environmental factors. TP (P < 0.01) and NO 3 - (P < 0.05), and metals (Zn, Fe) (P < 0.05) were the most significant drivers determining the microbial community composition in the urban river. These results highlight that river microbial communities exhibit spatial variation in urban areas due to the joint influence of chemical variables associated with sewage discharging and construction of hydropower stations. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Docherty, K. M.; Lemmer, K. M.; Domingue, K. D.; Spring, A.; Kerber, T. V.; Mooney, M. M.
2017-12-01
Airborne transport of microbial communities is a key component of the global ecosystem because it serves as a mechanism for dispersing microbial life between all surface habitats on the planet. However, most of our understanding of airborne microbial distribution is derived from samples collected near the ground. Little is understood about how the vertical layers of the air may act as a habitat filter or how local terrestrial ecosystems contribute to a vast airborne microbial seedbank. Specifically, urbanization may fundamentally alter the terrestrial sources of airborne microbial biodiversity. To address this question, we conducted airborne sampling at minimally disturbed natural sites and paired urban sites in 4 different North American ecosystems: shortgrass steppe, desert scrub, eastern deciduous forest, and northern mesic forest. All natural area sites were co-located with NEON/Ameriflux tower sites collecting atmospheric data. We developed an airborne sampling platform that uses tethered helikites at 3 replicate locations within each ecosystem to launch remote-controlled sampler payloads. We designed sampler payloads to collect airborne bacteria and fungi from 150, 30 and 2 m above the ground. Payload requirements included: ability to be disinfected and remain contaminant-free during transport, remote open/close functionality, payload weight under 6 lbs and automated collection of weather data. After sampling for 6 hours at each location, we extracted DNA collected by the samplers. We also extracted DNA from soil and plant samples collected from each location, and characterized ground vegetation. We conducted bacterial 16S amplicon-based sequencing using Mi-Seq and sequence analysis using QIIME. We used ArcGIS to determine percent land use coverage. Our results demonstrate that terrestrial ecosystem type is the most important factor contributing to differences in airborne bacterial community composition, and that communities differed by ecosystem. The signature of the specific ecosystem, and whether it was located in a natural or urban area, was evident in both near-surface and higher altitude samples. This suggests that continued urbanization and increases in impervious surface area can fundamentally change sources of atmospheric biodiversity and distribution patterns.
A Regional Categorization for “New-Type Urbanization” in China
Fang, Chuanglin; Ma, Haitao; Wang, Jing
2015-01-01
Regional differences in the character of urbanization in China are substantial. The promotion of what has been termed “new-type urbanization” cannot, as a result of these regional differences, be expected to follow a universal approach—rather, such a development must objectively adhere to locational and category-specific principles and adopt differentiated urbanization development models. Regional categorization is often used in geography, but is rarely deployed in research addressing human and social problems relating to urbanization. In March 2014, China published the National New-type Urbanization Plan (2014–2020), which calls for the scientific and reasonable planning of “new-type urbanization,” and appropriate regional categorizations are urgently needed in order to guide this reform. Responding to this challenge, this research engaged in the design of a “dominantly quantitative analysis, qualitatively supplemented” method in order to divide China into 5 main regions and 47 sub-regions in terms of new-type urbanization. The paper discusses the features and key problems of each region. This study introduces a new method for regional categorization, thereby remedying the lack of regional categorization in relation to “new-type urbanization” in China, and ultimately promoting the development of regional categorization in the humanities as a valuable reference for healthy and sustainable Chinese urbanization. PMID:26237405
NASA Astrophysics Data System (ADS)
Falk, M.; Pyles, R. D.; Marras, S.; Spano, D.; Paw U, K. T.
2011-12-01
The number of urban metabolism studies has increased in recent years, due to the important impact that energy, water and carbon exchange over urban areas have on climate change. Urban modeling is therefore crucial in the future design and management of cities. This study presents the ACASA model coupled to the Weather Research and Forecasting (WRF-ARW) mesoscale model to simulate urban fluxes at a horizontal resolution of 200 meters for urban areas of roughly 100 km^2. As part of the European Project "BRIDGE", these regional simulations were used in combination with remotely sensed data to provide constraints on the land surface types and the exchange of carbon and energy fluxes from urban centers. Surface-atmosphere exchanges of mass and energy were simulated using the Advanced Canopy Atmosphere Soil Algorithm (ACASA). ACASA is a multi-layer high-order closure model, recently modified to work over natural, agricultural as well as urban environments. In particular, improvements were made to account for the anthropogenic contribution to heat and carbon production. For two cities four climate change and four urban planning scenarios were simulated: The climate change scenarios include a base scenario (Sc0: 2008 Commit in IPCC), a medium emission scenario (Sc1: IPCC A2), a worst case emission scenario (Sce2: IPCC A1F1) and finally a best case emission scenario (Sce3: IPCC B1). The urban planning scenarios include different development scenarios such as smart growth. The two cities are a high latitude city, Helsinki (Finland) and an historic city, Florence (Italy). Helsinki is characterized by recent, rapid urbanization that requires a substantial amount of energy for heating, while Florence is representative of cities in lower latitudes, with substantial cultural heritage and a comparatively constant architectural footprint over time. In general, simulated fluxes matched the point observations well and showed consistent improvement in the energy partitioning over urban regions. We present comparisons of observed (EC) tower flux observations from the Florence (Ximeniano) site for 1-9 April, 2008 with results from two sets of high-resolution simulations: the first using dynamically-downscaled input/boundary conditions (Model-0) and the second using fully nested WRF-ACASA (Model-1). In each simulation the model physics are the same; only the WRF domain configuration differs. Preliminary results (Figure 1) indicate a degree of parity (and a slight statistical improvement), in the performances of Model-1 vs. that of Model-0 with respect to observed. Figure 1 (below) shows air temperature values from observed and both model estimates. Additional results indicate that care must be taken to configure the WRF domain, as performance appears to be sensitive to model configuration.
Richards, Kevin D.; Scudder, Barbara C.; Fitzpatrick, Faith A.; Steuer, Jeffery J.; Bell, Amanda H.; Peppler, Marie C.; Stewart, Jana S.; Harris, Mitchell A.
2010-01-01
In 2003 and 2004, 30 streams near Milwaukee and Green Bay, Wisconsin, were part of a national study by the U.S. Geological Survey to assess urbanization effects on physical, chemical, and biological characteristics along an agriculture-to-urban land-use gradient. A geographic information system was used to characterize natural landscape features that define the environmental setting and the degree of urbanization within each stream watershed. A combination of land cover, socioeconomic, and infrastructure variables were integrated into a multi-metric urban intensity index, scaled from 0 to 100, and assigned to each stream site to identify a gradient of urbanization within relatively homogeneous environmental settings. The 35 variables used to develop the final urban intensity index characterized the degree of urbanization and included road infrastructure (road area and road traffic index), 100-meter riparian land cover (percentage of impervious surface, shrubland, and agriculture), watershed land cover (percentage of impervious surface, developed/urban land, shrubland, and agriculture), and 26 socioeconomic variables (U.S. Census Bureau, 2001). Characteristics examined as part of this study included: habitat, hydrology, stream temperature, water chemistry (chloride, sulfate, nutrients, dissolved and particulate organic and inorganic carbon, pesticides, and suspended sediment), benthic algae, benthic invertebrates, and fish. Semipermeable membrane devices (SPMDs) were used to assess the potential for bioconcentration of hydrophobic organic contaminants (specifically polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and organochlorine and pyrethroid insecticides) in biological membranes, such as the gills of fish. Physical habitat measurements reflective of channel enlargement, including bankfull channel size and bank erosion, increased with increasing urbanization within the watershed. In this study, percentage of riffles and streambed substrate size were more strongly related to local geologic setting, slope, watershed topography, and river-engineering practices than to urbanization. Historical local river-engineering features such as channelization, bank stabilization, and grade controls may have confounded relations among habitat characteristics and urbanization. A number of hydrologic-condition metrics (including flashiness and duration of high flow during pre- or post-ice periods) showed strong relations to the urban intensity index. Hydrologic-condition metrics cannot be used alone to predict habitat or geomorphic change. Chloride and SPMD measures of potential toxicity and polycyclic aromatic hydrocarbon concentrations showed the strongest positive correlations to urbanization including increases in road infrastructure, percentage of impervious surface in the watershed, urban land cover, and land-distribution related to urban land cover. This suggests that automobiles and the infrastructure required to support automobiles are a significant source of these compounds in this study area. Chloride in spring and summer showed a significant positive correlation with the urban intensity index; concentrations increased with increasing road infrastructure, urban land cover, and a number of landscape variables related to urbanization. Spring concentrations of sulfate, prometon, and diazinon correlated to fewer urban characteristics than chloride, including increases in road infrastructure, percentage of impervious surface, and urban land cover. Changes in biological communities correlated to the urban intensity index or individual urban-associated variables. Decreased percentages of pollution-sensitive diatoms and diatoms requiring high dissolved-oxygen saturation correlated to increases in the percentage of developed urban land, total impervious surface, stream flashiness, population density, road-area density, and decreases in the percentage of wetland in the watershed. Invertebrate taxa richness and Coleop
The urban heat island in the city of Poznań as derived from Landsat 5 TM
NASA Astrophysics Data System (ADS)
Majkowska, Agnieszka; Kolendowicz, Leszek; Półrolniczak, Marek; Hauke, Jan; Czernecki, Bartosz
2017-05-01
To study urban heat island (UHI), Landsat 5 TM data and in situ measurements of air temperature from nine points in Poznań (Poland) for the period June 2008-May 2013 were used. Based on data from measurement points located in different types of land use, the surface urban heat island (SUHI) maps were created. All available and quality-controlled Landsat 5 TM images from 15 unique days were used to obtain the characteristics of land surface temperature (LST) and UHI intensity. In addition, spatial analysis of UHI was conducted on the basis of Corine Land Cover 2006 dataset. In situ measurements at a height of 2 m above ground level show that the UHI is a common occurrence in Poznań with a mean annual intensity of 1.0 °C. The UHI intensity is greater during the warm half of the year. Moreover, results based on the remote sensing data and the Corine Land Cover 2006 indicate that the highest value of the mean LST anomalies (3.4 °C) is attained by the continuous urban fabric, while the lowest value occurs within the broad-leaved forests (-3.1 °C). To re-count from LST to the air temperature at a height of 2 m above ground level ( T agl), linear and non-linear regression models were created. For both models, coefficients of determination equal about 0.80, with slightly higher value for the non-linear approach, which was applied to estimate the T agl spatial variability over the city of Poznań.
NASA Astrophysics Data System (ADS)
Gawuc, L.; Łobocki, L.; Kaminski, J. W.
2017-12-01
Land surface temperature (LST) is a key parameter in various applications for urban environments research. However, remotely-sensed radiative surface temperature is not equivalent to kinetic nor aerodynamic surface temperature (Becker and Li, 1995; Norman and Becker, 1995). Thermal satellite observations of urban areas are also prone to angular anisotropy which is directly connected with the urban structure and relative sun-satellite position (Hu et al., 2016). Sensible heat flux (Qh) is the main component of surface energy balance in urban areas. Retrieval of Qh, requires observations of, among others, a temperature gradient. The lower level of temperature measurement is commonly replaced by remotely-sensed radiative surface temperature (Chrysoulakis, 2003; Voogt and Grimmond, 2000; Xu et al., 2008). However, such replacement requires accounting for the differences between aerodynamic and radiative surface temperature (Chehbouni et al., 1996; Sun and Mahrt, 1995). Moreover, it is important to avoid micro-scale processes, which play a major role in the roughness sublayer. This is due to the fact that Monin-Obukhov similarity theory is valid only in dynamic sublayer. We will present results of the analyses of the impact of urban morphology and land cover on the seasonal changes of sensible heat flux (Qh). Qh will be retrieved by two approaches. First will be based on satellite observations of radiative surface temperature and second will be based on in-situ observations of kinetic road temperature. Both approaches will utilize wind velocity, and air temperature observed in-situ. We will utilize time series of MODIS LST observations for the period of 2005-2014 as well as simultaneous in-situ observations collected by road weather network (9 stations). Ground stations are located across the city of Warsaw, outside the city centre in low-rise urban structure. We will account for differences in urban morphology and land cover in the proximity of ground stations. We will utilize DEM and Urban Atlas LULC database and freely available visible aerial and satellite imagery. All the analyses will be conducted for single pixels, which will be closest to the locations of the ground stations (nearest neighbour approach). Appropriate figures showing the seasonal variability of Qh will be presented.
NASA Astrophysics Data System (ADS)
Gawuć, Lech
2017-04-01
Urban Heat Island (UHI) is a direct consequence of altered energy balance in urban areas (Oke 1982). There has been a significant effort put into an understanding of air temperature variability in urban areas and underlying mechanisms (Arnfield 2003, Grimmond 2006, Stewart 2011, Barlow 2014). However, studies that are concerned on surface temperature are less frequent. Therefore, Voogt & Oke (2003) proposed term "Surface Urban Heat Island (SUHI)", which is analogical to UHI and it is defined as a difference in land surface temperature (LST) between urban and rural areas. SUHI is a phenomenon that is not only concerned with high spatial variability, but also with high temporal variability (Weng and Fu 2014). In spite of the fact that satellite remote sensing techniques give a full spatial pattern over a vast area, such measurements are strictly limited to cloudless conditions during a satellite overpass (Sobrino et al., 2012). This significantly reduces the availability and applicability of satellite LST observations, especially over areas and seasons with high cloudiness occurrence. Also, the surface temperature is influenced by synoptic conditions (e.g., wind and humidity) (Gawuc & Struzewska 2016). Hence, utilising single observations is not sufficient to obtain a full image of spatiotemporal variability of urban LST and SUHI intensity (Gawuc & Struzewska 2016). One of the possible solutions would be a utilisation of time-series of LST data, which could be useful to monitor the UHI growth of individual cities and thus, to reveal the impact of urbanisation on local climate (Tran et al., 2006). The relationship between UHI and synoptic conditions have been summarised by Arnfield (2003). However, similar analyses conducted for urban LST and SUHI are lacking. We will present analyses of the relationship between time series of remotely-sensed LST and SUHI intensity and in-situ meteorological observations collected by road weather stations network, namely: road surface kinetic temperature, wind speed, air temperature, soil temperature at a depth of 30 cm, road surface condition, relative humidity. Also, as there are wind speed and temperature observations at different heights available, we will calculate sensible heat flux in order to relate it to the intensity of SUHI.
NASA Astrophysics Data System (ADS)
Miller, D. L.; Roberts, D. A.; Clarke, K. C.; Peters, E. B.; Menzer, O.; Lin, Y.; McFadden, J. P.
2017-12-01
Gross primary productivity (GPP) is commonly estimated with remote sensing techniques over large regions of Earth; however, urban areas are typically excluded due to a lack of light use efficiency (LUE) parameters specific to urban vegetation and challenges stemming from the spatial heterogeneity of urban land cover. In this study, we estimated GPP during the middle of the growing season, both within and among vegetation and land use types, in the Minneapolis-Saint Paul, Minnesota metropolitan region (52.1% vegetation cover). We derived LUE parameters for specific urban vegetation types using estimates of GPP from eddy covariance and tree sap flow-based CO2 flux observations and fraction of absorbed photosynthetically active radiation derived from 2-m resolution WorldView-2 satellite imagery. We produced a pixel-based hierarchical land cover classification of built-up and vegetated urban land cover classes distinguishing deciduous broadleaf trees, evergreen needleleaf trees, turf grass, and golf course grass from impervious and soil surfaces. The overall classification accuracy was 80% (kappa = 0.73). The mapped GPP estimates were within 12% of estimates from independent tall tower eddy covariance measurements. Mean GPP estimates ( ± standard deviation; g C m-2 day-1) for the entire study area from highest to lowest were: golf course grass (11.77 ± 1.20), turf grass (6.05 ± 1.07), evergreen needleleaf trees (5.81 ± 0.52), and deciduous broadleaf trees (2.52 ± 0.25). Turf grass GPP had a larger coefficient of variation (0.18) than the other vegetation classes ( 0.10). Mean land use GPP for the full study area varied as a function of percent vegetation cover. Urban GPP in general, both including and excluding non-vegetated areas, was less than half that of literature estimates for nearby natural forests and grasslands.
Numerical Study of the Effect of Urbanization on the Climate of Desert Cities
NASA Astrophysics Data System (ADS)
Kamal, Samy
This study uses the Weather Research and Forecasting (WRF) model to simulate and predict the changes in local climate attributed to the urbanization for five desert cities. The simulations are performed in the fashion of climate downscaling, constrained by the surface boundary conditions generated from high resolution land-use maps. For each city, the land-use maps of 1985 and 2010 from Landsat satellite observation, and a projected land-use map for 2030, are used to represent the past, present, and future. An additional set of simulations for Las Vegas, the largest of the five cities, uses the NLCD 1992 and 2006 land-use maps and an idealized historical land-use map with no urban coverage for 1900. The study finds that urbanization in Las Vegas produces a classic urban heat island (UHI) at night but a minor cooling during the day. A further analysis of the surface energy balance shows that the decrease in surface Albedo and increase effective emissivity play an important role in shaping the local climate change over urban areas. The emerging urban structures slow down the diurnal wind circulation over the city due to an increased effective surface roughness. This leads to a secondary modification of temperature due to the interaction between the mechanical and thermodynamic effects of urbanization. The simulations for the five desert cities for 1985 and 2010 further confirm a common pattern of the climatic effect of urbanization with significant nighttime warming and moderate daytime cooling. This effect is confined to the urban area and is not sensitive to the size of the city or the detail of land cover in the surrounding areas. The pattern of nighttime warming and daytime cooling remains robust in the simulations for the future climate of the five cities using the projected 2030 land-use maps. Inter-city differences among the five urban areas are discussed.
NASA Astrophysics Data System (ADS)
Daniel, M.; Lemonsu, Aude; Déqué, M.; Somot, S.; Alias, A.; Masson, V.
2018-06-01
Most climate models do not explicitly model urban areas and at best describe them as rock covers. Nonetheless, the very high resolutions reached now by the regional climate models may justify and require a more realistic parameterization of surface exchanges between urban canopy and atmosphere. To quantify the potential impact of urbanization on the regional climate, and evaluate the benefits of a detailed urban canopy model compared with a simpler approach, a sensitivity study was carried out over France at a 12-km horizontal resolution with the ALADIN-Climate regional model for 1980-2009 time period. Different descriptions of land use and urban modeling were compared, corresponding to an explicit modeling of cities with the urban canopy model TEB, a conventional and simpler approach representing urban areas as rocks, and a vegetated experiment for which cities are replaced by natural covers. A general evaluation of ALADIN-Climate was first done, that showed an overestimation of the incoming solar radiation but satisfying results in terms of precipitation and near-surface temperatures. The sensitivity analysis then highlighted that urban areas had a significant impact on modeled near-surface temperature. A further analysis on a few large French cities indicated that over the 30 years of simulation they all induced a warming effect both at daytime and nighttime with values up to + 1.5 °C for the city of Paris. The urban model also led to a regional warming extending beyond the urban areas boundaries. Finally, the comparison to temperature observations available for Paris area highlighted that the detailed urban canopy model improved the modeling of the urban heat island compared with a simpler approach.
Influence of landscape mosaic on streamflow of a peri-urban catchment under Mediterranean climate
NASA Astrophysics Data System (ADS)
Ferreira, Carla; Walsh, Rory; Ferreira, António
2017-04-01
Peri-urban areas tend to be characterized by patchy landscape mosaics of different land-uses. Although the impact of land-use changes on catchment hydrology have been widely investigated, the impact of mixed land-use patterns on the streamflow of peri-urban areas is still poorly understood. This study aims to (i) explore and quantify streamflow delivery from sub-catchments characterized by distinct landscape mosaics; (ii) assess the impact of different urbanization styles on hydrograph properties; and (iii) explore the influence of urbanization type on flow connectivity and stream discharge. The study was carried out in Ribeira dos Covões, a small (6.2km2) peri-urban catchment in central Portugal. The climate is Mediterranean, with a mean annual rainfall of 892mm. Catchment geology comprises sandstone (56%), limestone (41%) and alluvial deposits (3%). Soils developed on sandstone are generally deep (>3m) Fluvisols and Podsols, whereas on limestone the Leptic Cambisols are typically shallow (<0.4m). Forest is the dominant land-use (56%), but urban areas cover an extensive area (40%), whereas agricultural land has declined to a very small area (4%). The urban area comprises contrasting urban styles, notably older discontinuous urban areas with buildings separated by gardens of low population density (<25 inhabitants km-2), and recent well-defined continuous urban cores dominated by apartment blocks and of high population density (9900 inhabitants km-2). The study uses hydrological data recorded over three hydrological years, starting in November 2010, in a monitoring network comprising eight streamflow gauging stations (instrumented with water level recorders) and five rainfall gauges. The gauging stations provide information on the discharge response to rainstorms of the catchment outlet and upstream sub-catchments of different size, urban pattern (in terms of percentage urban land-use and impervious area, distance to the stream network, and storm water management), and lithology (either sandstone or limestone). Annual storm runoff coefficients were lowest (13.7%) in catchments dominated by forest (>80%) and greatest (17.3-17.6%) in the most urbanized sub-catchments (49-53% urban). Impervious area seems to control streamflow particularly during dry periods. Winter runoff (streamflow per unit area) was 2-4 times higher than summer runoff in highly urbanized areas, but was 21-fold higher in winter than in summer in the least urbanized sub-catchment, indicating greater flow connectivity in winter, enhanced by increased soil moisture. Lithology also played an important role on hydrology, with sandstone sub-catchments exhibiting greater annual baseflow index values (23-46%) than found in limestone ones (<5%). For sub-catchments underlain by both lithologies, linear relationships were found between storm runoff coefficients and percentage urban and percentage impervious area, but with greater runoff responses in the sandstone ones. Nevertheless, linear regression lines for both lithologies get close to each other when the extent of urban areas reached about 50%. The proximity of urban areas to the stream network and whether urban storm runoff is directly piped to the stream network were important parameters influencing peak flows and response time. Landscape mosaics that include land-use patches of high soil permeability tend to provide locations of surface water retention and enhanced infiltration, thereby breaking flow connectivity between hillslope urban surfaces and the stream network. This kind of spatial pattern should be considered for urban planning, in order to minimize flood hazards.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Luvall, Jeffrey C.
2006-01-01
Although the study of the Urban Heat Island (UHI) effect dates back to the early 1800's when Luke Howard discovered London s heat island, it has only been with the advent of thermal remote sensing systems that the extent, characteristics, and impacts of the UHI have become to be understood. Analysis of the UHI effect is important because above all, this phenomenon can directly influence the health and welfare of urban residents. For example, in 1995, over 700 people died in Chicago due to heat-related causes. UHI s are characterized by increased temperature in comparison to rural areas and mortality rates during a heat wave increase exponentially with the maximum temperature, an effect that is exacerbated by the UHI. Aside from the direct impacts of the UHI on temperature, UHI s can produce secondary effects on local meteorology, including altering local wind patterns, increased development of clouds and fog, and increasing rates of precipitation either over, or downwind, of cities. Because of the extreme heterogeneity of the urban surface, in combination with the sprawl associated with urban growth, thermal infrared (TIR) remote sensing data have become of significant importance in understanding how land cover and land use characteristics affect the development and intensification of the UHI. TIR satellite data have been used extensively to analyze the surface temperature regimes of cities to help observe and measure the impacts of surface temperatures across the urban landscape. However, the spatial scales at which satellite TIR data are collected are for the most part, coarse, with the finest readily available TIR data collected by the Landsat ETM+ sensor at 60m spatial resolution. For many years, we have collected high spatial resolution (10m) data using an airborne multispectral TIR sensor over a number of cities across the United States. These high resolution data have been used to develop an understanding of how discrete surfaces across the urban environment (e.g., rooftops, pavements) interact from a surface-lower atmosphere energy flux perspective, to force the development of the UHI. Moreover, the airborne TIR sensor we used in our UHI studies was a multispectral sensor that had six channels in the 8-12pm range. The advantages of collecting multispectral TIR data became readily evident as a valuable tool for better calculation of unique surface thermal energy responses for urban materials over the 8-12 micrometer region, and also for getting a better handle on surface emissivity characteristics for these discrete surfaces. In this presentation, we will provide evidence on the virtues of how high spatial resolution multispectral TIR data can provide for better analysis of the UHI that cannot now be attained via TIR data obtained from satellites. Furthermore, we wish to provide compelling evidence on why future TIR satellite sensors should collect data at fine spatial resolutions (e.g. less than or equal to 30m) to better allow for measurement of surface thermal energy fluxes from discrete urban surfaces, and to better understand how surface fluxes from different urban materials in cities around the world in different climatic regimes, affect development of the UHI characteristics.
Assessment of the landslide and flood risks in São Paulo City, Brazil
NASA Astrophysics Data System (ADS)
Vieira, Bianca; Listo, Fabrízio
2010-05-01
In Brazilian cities, especially during summer, the landslides and floods cause disaster and economic losses. Aricanduva basin is one of the most critical in the Metropolitan Region of São Paulo (RMSP), where many types of morphodynamic processes occur. This is the largest river basin in São Paulo City. The current situation is characterized by intense urbanization, soil sealing and consequent reduction of soil infiltration, increasing the frequency of flood events in this area. Thus, the main objective of this paper is to map risk areas of landslides and floods in the sub-basin Limoeiro, located in the head of the Aricanduva basin. For mapping the risk areas, we prepared a record field to floods and landslides, based on several studies. Initially, it were identified the natural indicators (vegetation, topography, surface cover and drainage) and anthropogenic (urban pattern, soil cover, building types, occupation density, road conditions, infrastructure, drainage systems, distance between houses and slope, at the top and base, and the drainage channel). On the second step of this research, we identified the evidences of mass movements (scars, cracks, subsidence, trees, poles and inclined walls). Thus, on the basis of this analysis it was possible to define the risk probability: R1 (low or no risk), R2 (moderate), R3 (high) and, R4 (very high). Subsequently, by means of oblique photographs (taken from helicopter flight) it was possible to define risk areas in the basin. In all the sectors identified, were recorded approximately 903 urban settlements. The results showed that from the 25 sectors of risk, 14 sectors (56%) presented landslide risk and 11 (44%), flood risk. Of the sectors that showed landslide risk areas, 21% have very high probability (R4), 21% high (R3), 29% moderate (R2) and 29% low (R1). The sectors at flood risk presented 45% of very high probability (R4), 10% high (R3), 18% moderate (R2) and 27% low (R1). There is large presence of sediments from landslides, debris and remnants of buildings. The drainage systems are precarious and there is runoff on the surface and sewage pipes on soil surface. Some houses were built without keeping safe distance from the top and bottom of the slope, increasing landslide risk. Others were built very close to the stream. There are cracks in the houses and walls and trees inclined by mass movements and riverbank erosion. In general, the urban occupation, after deforesting, characterized by land fragmentation and by settlements without urban infrastructure, occurred in the terrain less favorable to the occupation, where a natural susceptibility to landslides and flood processes exists. Thus, we believe that this mapping can help the identification of the active processes (landslides and floods) and the assessment of risk areas. Therefore, these maps can be used by public administration on identifying areas more appropriate to urban occupation.
Seasonal albedo of an urban/rural landscape from satellite observations
NASA Technical Reports Server (NTRS)
Brest, Christopher L.
1987-01-01
Using data from 27 calibrated Landsat observations of the Hartford, Connecticut area, the spatial distribution and seasonal variation of surface reflectance and albedo were examined. Mean values of visible reflectance, near-IR reflectance, and albedo are presented (for both snow-free and snow-cover observations) according to 14 land use/land cover categories. A diversity of albedo values was found to exist in this type of environment, associated with land cover. Many land-cover categories display a seasonal dependence, with intracategory seasonal differences being of comparable magnitude to intercategory differences. Key factors in determining albedo (and its seasonal dynamics) are the presence or absence of vegetation and the canopy structure. Snow-cover/snow-free differences range from a few percent (for urban land covers) to over 40 percent (for low-canopy vegetation).
Characterization of Black Carbon Mixing State
Sedlacek, Arthur; S, Satheesh; Springston, Stephen
2013-11-06
This measurement characterizes the types of BC emissions that result in nearsurface BC containing particles in a region that is dominated by biomass and open pit/stove cooking. Specifically, examine three primary BC emission sources: (i) urban setting (e.g., fossil fuel emissions); and (ii) biomass burning. Source (i) are captured at the Indian Institute of Science (IISc) in Bangalore. Biomass emissions (ii) contains a series of 12 day measurement excursions to the rural area surrounding Bangalore.
NASA Astrophysics Data System (ADS)
Nazarian, Negin; Martilli, Alberto; Kleissl, Jan
2018-03-01
As urbanization progresses, more realistic methods are required to analyze the urban microclimate. However, given the complexity and computational cost of numerical models, the effects of realistic representations should be evaluated to identify the level of detail required for an accurate analysis. We consider the realistic representation of surface heating in an idealized three-dimensional urban configuration, and evaluate the spatial variability of flow statistics (mean flow and turbulent fluxes) in urban streets. Large-eddy simulations coupled with an urban energy balance model are employed, and the heating distribution of urban surfaces is parametrized using sets of horizontal and vertical Richardson numbers, characterizing thermal stratification and heating orientation with respect to the wind direction. For all studied conditions, the thermal field is strongly affected by the orientation of heating with respect to the airflow. The modification of airflow by the horizontal heating is also pronounced for strongly unstable conditions. The formation of the canyon vortices is affected by the three-dimensional heating distribution in both spanwise and streamwise street canyons, such that the secondary vortex is seen adjacent to the windward wall. For the dispersion field, however, the overall heating of urban surfaces, and more importantly, the vertical temperature gradient, dominate the distribution of concentration and the removal of pollutants from the building canyon. Accordingly, the spatial variability of concentration is not significantly affected by the detailed heating distribution. The analysis is extended to assess the effects of three-dimensional surface heating on turbulent transfer. Quadrant analysis reveals that the differential heating also affects the dominance of ejection and sweep events and the efficiency of turbulent transfer (exuberance) within the street canyon and at the roof level, while the vertical variation of these parameters is less dependent on the detailed heating of urban facets.
NASA Astrophysics Data System (ADS)
Iabchoon, Sanwit; Wongsai, Sangdao; Chankon, Kanoksuk
2017-10-01
Land use and land cover (LULC) data are important to monitor and assess environmental change. LULC classification using satellite images is a method widely used on a global and local scale. Especially, urban areas that have various LULC types are important components of the urban landscape and ecosystem. This study aims to classify urban LULC using WorldView-3 (WV-3) very high-spatial resolution satellite imagery and the object-based image analysis method. A decision rules set was applied to classify the WV-3 images in Kathu subdistrict, Phuket province, Thailand. The main steps were as follows: (1) the image was ortho-rectified with ground control points and using the digital elevation model, (2) multiscale image segmentation was applied to divide the image pixel level into image object level, (3) development of the decision ruleset for LULC classification using spectral bands, spectral indices, spatial and contextual information, and (4) accuracy assessment was computed using testing data, which sampled by statistical random sampling. The results show that seven LULC classes (water, vegetation, open space, road, residential, building, and bare soil) were successfully classified with overall classification accuracy of 94.14% and a kappa coefficient of 92.91%.
Influence of Different Factors on Relative Air Humidity in Zaragoza, Spain
NASA Astrophysics Data System (ADS)
Cuadrat, José M.
2015-03-01
In this study, the spatial patterns of relative air humidity and its relation to urban, geographical and meteorological factors in the city of Zaragoza (Spain) is discussed. We created a relative humidity database by means of 32 urban transects. Data were taken on different days and with different weather types. This data set was used to map the mean spatial distribution of urban dry island (UDI). Using stepwise multiple regression analysis and Landsat ETM+ images the relationships between mean UDI and the main geographic-urban factors: topography, land cover and surface reflectivity, have been analyzed. Different spatial patterns of UDI were determined using Principal Component Analysis (Varimax rotation). The three components extracted accounted for 91% of the total variance. PC1 accounted for the most general patterns (similar to mean UDI); PC2 showed a shift of dry areas to the SE and PC3 a shift to NW. Using data on wind direction in Zaragoza, we have found that the displacement of dry areas to the SE (PC 2) was greater during NW winds while the shift to the NW (PC 3) was produced mainly by SE winds.
Sui, Jin Ling; Liu, Miao; Li, Chun Lin; Hu, Yuan Man; Wu, Yi Lin; Liu, Chong
2017-03-18
With the expansion of urban area, many cities are facing urban water environment issues, i.e., water resources shortage, lack of groundwater reserves, water pollution, urban waterlogging. For resolving these urban issues, 'sponge city' was proposed in 2015 in China. Liaodong Bay area of Panjin City in Liaoning Province of China was chosen as case study. Based on 'Sponge City Construction Technology Guide: Low Impact Development Rainwater System Building (Trial)', the underlying surface and types of land use in the typical area were analyzed. Sponge city plan of the study area was designed through combining topography, hydrology, rainfall intensity and other factors, and selecting LID measures. The results showed that when the study area reached the ove-rall target control rate (the control rate of the total annual runoff was >75%), the subsidence greenbelt rate was 1%-31%, with a total area of 13.73 km 2 ; the pervious pavement rate was 1%-13%, with a total area of 2.29 km 2 . This study could provide a case study for planning and designing of 'sponge city', proposing new ideas and methods for the research on landscape pattern and process.
Liscum, Fred; Brown, D.W.; Kasmarek, M.C.
1997-01-01
The study area, a metropolitan area in southeast Texas about 45 miles north of the Gulf of Mexico, has been undergoing extensive urban development since the 1950s. The Houston Urban Runoff Program was begun by the U.S. Geological Survey in water year 1964 to define the magnitude and frequency of flood peaks, to determine the impact of continuing urban development on surface-water hydrologic responses, and to determine variations in stream water quality for different flow conditions, seasons, and urban development. An extensive data base has been developed.During water years 1964-89, the Houston Urban Runoff Program collected information from a total of 54 U.S. Geological Survey streamflow-gaging stations, 30 U.S. Geological Survey water-quality sampling sites, and 102 rain gages (operated by the U.S. Geological Survey, the National Weather Service, and local agencies). In addition, basin characteristics were developed to aid in understanding the effects of urban development on surface-water hydrologic responses.Surface-water hydrologic data on diskettes describe the 54 U.S. Geological Survey streamflow-gaging stations, list annual peaks (and where available, peaks above an arbitrary base) for 50 streamflow sites, tabulate 1,125 storm hydrographs from 43 sites, and document 102 waterquality parameters determined from 3,242 available samples.
Technical geothermal potential of urban subsurface influenced by land surface effects
NASA Astrophysics Data System (ADS)
Rivera, Jaime A.; Blum, Philipp; Bayer, Peter
2016-04-01
Changes in land use are probably one of the most notorious anthropogenic perturbations in urban environments. They significantly change the coupled thermal regime at the ground surface leading in most cases to increased ground surface temperatures (GST). The associated elevated vertical heat fluxes act at different scales and can influence the thermal conditions in several tens of meters in the subsurface. Urban subsurface thus often stores a higher amount of heat than less affected rural surroundings. The stored heat is regarded as a potential source of low-enthalpy geothermal energy to supply the heating energy demands in urban areas. In this work, we explore the technical geothermal potential of urban subsurface via ground coupled heat pumps with borehole heat exchangers (BHE). This is tackled by semi-analytical line-source equations. The commonly used response factors or g-functions are modified to include transient land surface effects. By including this additional source of heat, the new formulation allows to analyse the effect of pre-existing urban warming as well as different exploitation schemes fulfilling standard renewable and sustainable criteria. In our generalized reference scenario, it is demonstrated that energy gains for a single BHE may be up to 40 % when compared to non-urbanized conditions. For a scenario including the interaction of multiple BHEs, results indicate that it would be possible to supply between 6 % and 27 % of the heating demands in Central European urban settlements in a renewable way. The methodology is also applied to a study case of the city of Zurich, Switzerland, where the detailed evolution of land use is available.
The Urban Environmental Monitoring/100 Cities Project: Legacy of the First Phase and Next Steps
NASA Technical Reports Server (NTRS)
Stefanov, William L.; Wentz, Elizabeth A.; Brazel, Anthony; Netzband, Maik; Moeller, Matthias
2009-01-01
The Urban Environmental Monitoring (UEM) project, now known as the 100 Cities Project, at Arizona State University (ASU) is a baseline effort to collect and analyze remotely sensed data for 100 urban centers worldwide. Our overarching goal is to use remote sensing technology to better understand the consequences of rapid urbanization through advanced biophysical measurements, classification methods, and modeling, which can then be used to inform public policy and planning. Urbanization represents one of the most significant alterations that humankind has made to the surface of the earth. In the early 20th century, there were less than 20 cities in the world with populations exceeding 1 million; today, there are more than 400. The consequences of urbanization include the transformation of land surfaces from undisturbed natural environments to land that supports different forms of human activity, including agriculture, residential, commercial, industrial, and infrastructure such as roads and other types of transportation. Each of these land transformations has impacted, to varying degrees, the local climatology, hydrology, geology, and biota that predate human settlement. It is essential that we document, to the best of our ability, the nature of land transformations and the consequences to the existing environment. The focus in the UEM project since its inception has been on rapid urbanization. Rapid urbanization is occurring in hundreds of cities worldwide as population increases and people migrate from rural communities to urban centers in search of employment and a better quality of life. The unintended consequences of rapid urbanization have the potential to cause serious harm to the environment, to human life, and to the resulting built environment because rapid development constrains and rushes decision making. Such rapid decision making can result in poor planning, ineffective policies, and decisions that harm the environment and the quality of human life. Slower, more thought-out, decision making could result in more favorable outcomes. The harm to the environment includes poor air quality, soil erosion, polluted rivers and aquifers, and loss of wildlife habitat. Human life is then threatened because of increased potential for disease spreading, human conflict, environmental hazards, and diminished quality of life. The built environment is potentially threatened when cities are built in areas that can be impacted by events such as hurricanes, tsunamis, earthquakes, fires, and landslides. Our goals include assessing the threat of such events on cities and the people living there.
NASA Astrophysics Data System (ADS)
Zhao, Chunhong
2018-04-01
The Local Climate Zones (LCZs) concept was initiated in 2012 to improve the documentation of Urban Heat Island (UHI) observations. Despite the indispensable role and initial aim of LCZs concept in metadata reporting for atmospheric UHI research, its role in surface UHI investigation also needs to be emphasized. This study incorporated LCZs concept to study surface UHI effect for San Antonio, Texas. LCZ map was developed by a GIS-based LCZs classification scheme with the aid of airborne Lidar dataset and other freely available GIS data. Then, the summer LST was calculated based Landsat imagery, which was used to analyse the relations between LST and LCZs and the statistical significance of the differences of LST among the typical LCZs, in order to test if LCZs are able to efficiently facilitate SUHI investigation. The linkage of LCZs and land surface temperature (LST) indicated that the LCZs mapping can be used to compare and investigate the SUHI. Most of the pairs of LCZs illustrated significant differences in average LSTs with considerable significance. The intra-urban temperature comparison among different urban classes contributes to investigate the influence of heterogeneous urban morphology on local climate formation.
NASA Astrophysics Data System (ADS)
Wang, Wei; Yao, Xinfeng; Ji, Minhe
2016-01-01
Despite recent rapid advancement in remote sensing technology, accurate mapping of the urban landscape in China still faces a great challenge due to unusually high spectral complexity in many big cities. Much of this complication comes from severe spectral confusion of impervious surfaces with polluted water bodies and bright bare soils. This paper proposes a two-step land cover decomposition method, which combines optical and thermal spectra from different seasons to cope with the issue of urban spectral complexity. First, a linear spectral mixture analysis was employed to generate fraction images for three preliminary endmembers (high albedo, low albedo, and vegetation). Seasonal change analysis on land surface temperature induced from thermal infrared spectra and coarse component fractions obtained from the first step was then used to reduce the confusion between impervious surfaces and nonimpervious materials. This method was tested with two-date Landsat multispectral data in Shanghai, one of China's megacities. The results showed that the method was capable of consistently estimating impervious surfaces in highly complex urban environments with an accuracy of R2 greater than 0.70 and both root mean square error and mean average error less than 0.20 for all test sites. This strategy seemed very promising for landscape mapping of complex urban areas.
NASA Technical Reports Server (NTRS)
Alonso, Juan J.; Arneson, Heather M.; Melton, John E.; Vegh, Michael; Walker, Cedric; Young, Larry A.
2017-01-01
There are substantial future challenges related to sustaining and improving efficient, cost-effective, and environmentally friendly transportation options for urban regions. Over the past several decades there has been a worldwide trend towards increasing urbanization of society. Accompanying this urbanization are increasing surface transportation infrastructure costs and, despite public infrastructure investments, increasing surface transportation "gridlock." In addition to this global urbanization trend, there has been a substantial increase in concern regarding energy sustainability, fossil fuel emissions, and the potential implications of global climate change. A recently completed study investigated the feasibility of an aviation solution for future urban transportation (refs. 1, 2). Such an aerial transportation system could ideally address some of the above noted concerns related to urbanization, transportation gridlock, and fossil fuel emissions (ref. 3). A metro/regional aerial transportation system could also provide enhanced transportation flexibility to accommodate extraordinary events such as surface (rail/road) transportation network disruptions and emergency/disaster relief responses.
NASA Astrophysics Data System (ADS)
Chang, Tsang-Jung; Wang, Chia-Ho; Chen, Albert S.
2015-05-01
In this study, we developed a novel approach to simulate dynamic flow interactions between storm sewers and overland surface for different land covers in urban areas. The proposed approach couples the one-dimensional (1D) sewer flow model (SFM) and the two-dimensional (2D) overland flow model (OFM) with different techniques depending on the land cover type of the study areas. For roads, pavements, plazas, and so forth where rainfall becomes surface runoff before entering the sewer system, the rainfall-runoff process is simulated directly in the 2D OFM, and the runoff is drained to the sewer network via inlets, which is regarded as the input to 1D SFM. For green areas on which rainfall falls into the permeable ground surface and the generated direct runoff traverses terrain, the deduction rate is applied to the rainfall for reflecting the soil infiltration in the 2D OFM. For flat building roofs with drainage facilities allowing rainfall to drain directly from the roof to sewer networks, the rainfall-runoff process is simulated using the hydrological module in the 1D SFM where no rainfall is applied to these areas in the 2D OFM. The 1D SFM is used for hydraulic simulations in the sewer network. Where the flow in the drainage network exceeds its capacity, a surcharge occurs and water may spill onto the ground surface if the pressure head in a manhole exceeds the ground elevation. The overflow discharge from the sewer system is calculated by the 1D SFM and considered a point source in the 2D OFM. The overland flow will return into the sewer network when it reaches an inlet that connects to an un-surcharged manhole. In this case, the inlet is considered as a point sink in the 2D OFM and an inflow to a manhole in the 1D SFM. The proposed approach was compared to other five urban flood modelling techniques with four rainfall events that had previously recorded inundation areas. The merits and drawbacks of each modelling technique were compared and discussed. Based on the simulated results, the proposed approach was found to simulate floodings closer to the survey records than other approaches because the physical rainfall-runoff phenomena in urban environment were better reflected.
A Century of the Evolution of the Urban Area in Shenyang, China
Liu, Miao; Xu, Yanyan; Hu, Yuanman; Li, Chunlin; Sun, Fengyun; Chen, Tan
2014-01-01
Analyzing spatiotemporal characteristics of the historical urbanization process is essential in understanding the dynamics of urbanization and scientifically planned urban development. Based on historical urban area maps and remote sensing images, this study examined the urban expansion of Shenyang from 1910 to 2010 using area statistics, typology identification, and landscape metrics approaches. The population and gross domestic product were analyzed as driving factors. The results showed that the urban area of Shenyang increased 43.39-fold during the study period and that the growth rate has accelerated since the 1980s. Three urban growth types were distinguished: infilling, edge-expansion, and spontaneous growth. Edge-expansion was the primary growth type. Infilling growth became the main growth type in the periods 1946–70, 1988–97, and 2004–10. Spontaneous growth was concentrated in the period of 1997 to 2000. The results of landscape metrics indicate that the urban landscape of Shenyang originally was highly aggregated, but has become increasingly fragmented. The urban fringe area was the traditional hot zone of urbanization. Shenyang was mainly located north of the Hun River before 1980; however, the south side of the river has been the hot zone of urbanization since the 1980s. The increase of urban area strongly correlated with the growth of GDP and population. Over a long time scale, the urbanization process has been affected by major historical events. PMID:24893167
Energy Costs of Urban Water Supply Systems: Evidence from India (Invited)
NASA Astrophysics Data System (ADS)
Malghan, D.; Mehta, V. K.; Goswami, R.
2013-12-01
For the first time in human history more people around the globe now live in urban centres rather than in rural settings. Although India's urban population proportion at 31% is still below the global average, it has been urbanizing rapidly. The population growth rate in urban India is more than two-and-half times that of rural India. The current Indian urban population, of over 370 million people, exceeds that of the total population of every other country on the planet with the exception of China. Supplying water to India's burgeoning urban agglomerations poses a challenge in terms of social equity, biophysical sustainability, and economic efficiency. A typical Indian city relies on both surface and ground water sources. Several Indian cities import surface water from distances that now exceed a hundred kilometres and across gradients of up to three thousand metres. While the depleting groundwater levels as a result of rapidly growing demand from urban India is at least anecdotally understood even when reliable estimates are not available, the energy costs of supplying water to urban India has thus far not received academic or policy attention it deserves. We develop a simple framework to integrate distributed groundwater models with water consumption data to estimate the energy and emissions associated with supplying water to urban centres. We assemble a unique data set from seventy five of the largest urban agglomerations in India and derive estimated values of energy consumption and carbon emissions associated with water provision in urban India. Our analysis shows that in every major city, the energy cost associated with long distance import of surface water significantly exceeds groundwater extraction. However, with rapidly depleting groundwater levels, we estimate inflection points for select cities when energy costs of groundwater extraction will exceed energy required to import surface water into the city. In addition to the national snapshot, we also perform detailed, spatially explicit analysis for the city of Bangalore which is an urban agglomeration that is home to more than ten million people. Combining a distributed groundwater model with data from the public utility supplying water to the city, and a large primary household survey data (n=29000), we develop a high resolution map for the city showing the water-energy nexus for across different parts of the city. The city of Bangalore imports nearly as much surface water (from a river source hundred kilometres away and across a gradient of 500 metres) as the annual rainfall falling on the city. The leakage from the vast wast water supply network and return flows are major components of the groundwater recharge budget, and our case study helps highlight how a nuanced understanding of urban hydrology is crucial to estimating the energy costs of urban water supply.
NASA Astrophysics Data System (ADS)
Salmi, H. Al; Abdulmuttalib, H. M.
2012-07-01
Urban Sustainability expresses the level of conservation of a city while living a town or consuming its urban resources, but the measurement of urban sustainability depends on what are considered important indicators of conservation besides the permitted levels of consumption in accordance with adopted criteria. This criterion should have common factors that are shared for all the members tested or cities to be evaluated as in this particular case for Abu Dhabi, but also have specific factors that are related to the geographic place, community and culture, that is the measures of urban sustainability specific to a middle east climate, community and culture where GIS Vector and Raster analysis have a role or add a value in urban sustainability measurements or grading are considered herein. Scenarios were tested using various GIS data types to replicate urban history (ten years period), current status and expected future of Abu Dhabi City setting factors to climate, community needs and culture. The useful Vector or Raster GIS data sets that are related to every scenario where selected and analysed in the sense of how and how much it can benefit the urban sustainability ranking in quantity and quality tests, this besides assessing the suitable data nature, type and format, the important topology rules to be considered, the useful attributes to be added, the relationships which should be maintained between data types of a geo- database, and specify its usage in a specific scenario test, then setting weights to each and every data type representing some elements of a phenomenon related to urban suitability factor. The results of assessing the role of GIS analysis provided data collection specifications such as the measures of accuracy reliable to a certain type of GIS functional analysis used in an urban sustainability ranking scenario tests. This paper reflects the prior results of the research that is conducted to test the multidiscipline evaluation of urban sustainability using different indicator metrics, that implement vector GIS Analysis and Raster GIS analysis as basic tools to assist the evaluation and increase of its reliability besides assessing and decomposing it, after which a hypothetical implementation of the chosen evaluation model represented by various scenarios was implemented on the planned urban sustainability factors for a certain period of time to appraise the expected future grade of urban sustainability and come out with advises associated with scenarios for assuring gap filling and relative high urban future sustainability. The results this paper is reflecting are concentrating on the elements of vector and raster GIS analysis that assists the proper urban sustainability grading within the chosen model, the reliability of spatial data collected; analysis selected and resulted spatial information. Starting from selecting some important indicators to comprise the model which include regional culture, climate and community needs an example of what was used is Energy Demand & Consumption (Cooling systems). Thus, this factor is related to the climate and it's regional specific as the temperature varies around 30-45 degrees centigrade in city areas, GIS 3D Polygons of building data used to analyse the volume of buildings, attributes "building heights", estimate the number of floors from the equation, following energy demand was calculated and consumption for the unit volume, and compared it in scenario with possible sustainable energy supply or using different environmental friendly cooling systems this is followed by calculating the cooling system effects on an area unit selected to be 1 sq. km, combined with the level of greenery area, and open space, as represented by parks polygons, trees polygons, empty areas, pedestrian polygons and road surface area polygons. (initial measures showed that cooling system consumption can be reduced by around 15-20% with a well-planned building distributions, proper spaces and with using environmental friendly products and building material, temperature levels were also combined in the scenario extracted from satellite images as interpreted from thermal bands 3 times during the period of assessment. Other examples of the assessment of GIS analysis to urban sustainability took place included Waste Productivity, some effects of greenhouse gases measured by the intensity of road polygons and closeness to dwelling areas, industry areas as defined from land use land cover thematic maps produced from classified satellite images then vectors were created to take part in defining their role within the scenarios. City Noise and light intensity assessment was also investigated, as the region experiences rapid development and noise is magnified due to construction activities, closeness of the airports, and highways. The assessment investigated the measures taken by urban planners to reduce degradation or properly manage it. Finally as a conclusion tables were presented to reflect the scenario results in combination with GIS data types, analysis types, and the level of GIS data reliability to measure the sustainability level of a city related to cultural and regional demands.
Remote sensing of exposure to NO2: Satellite versus ground-based measurement in a large urban area
NASA Astrophysics Data System (ADS)
Bechle, Matthew J.; Millet, Dylan B.; Marshall, Julian D.
2013-04-01
Remote sensing may be a useful tool for exploring spatial variability of air pollution exposure within an urban area. To evaluate the extent to which satellite data from the Ozone Monitoring Instrument (OMI) can resolve urban-scale gradients in ground-level nitrogen dioxide (NO2) within a large urban area, we compared estimates of surface NO2 concentrations derived from OMI measurements and US EPA ambient monitoring stations. OMI, aboard NASA's Aura satellite, provides daily afternoon (˜13:30 local time) measurements of NO2 tropospheric column abundance. We used scaling factors (surface-to-column ratios) to relate satellite column measurements to ground-level concentrations. We compared 4138 sets of paired data for 25 monitoring stations in the South Coast Air Basin of California for all of 2005. OMI measurements include more data gaps than the ground monitors (60% versus 5% of available data, respectively), owing to cloud contamination and imposed limits on pixel size. The spatial correlation between OMI columns and corrected in situ measurements is strong (r = 0.93 for annual average data), indicating that the within-urban spatial signature of surface NO2 is well resolved by the satellite sensor. Satellite-based surface estimates employing scaling factors from an urban model provide a reliable measure (annual mean bias: -13%; seasonal mean bias: <1% [spring] to -22% [fall]) of fine-scale surface NO2. We also find that OMI provides good spatial density in the study region (average area [km2] per measurement: 730 for the satellite sensor vs. 1100 for the monitors). Our findings indicate that satellite observations of NO2 from the OMI sensor provide a reliable measure of spatial variability in ground-level NO2 exposure for a large urban area.
NASA Astrophysics Data System (ADS)
Ferreira, Carla S. S.; Walsh, Rory P. D.; Ferreira, António J. D.; Steenhuis, Tammo S.; Coelho, Celeste A. O.
2015-04-01
The demand for better life quality and lower living costs created a great pressure on peri-urban areas, leading to significant land-use changes. The complexity of mixed land-use patterns, however, presents a challenge to understand the hydrological pathways and streamflow response involved in such changes. This study assesses the impact of a actively changing Portuguese peri-urban area on catchment hydrology. It focuses on quantifying streamflow delivery from contributing areas, of different land-use arrangement and the seasonal influence of the Mediterranean climate on stream discharge. The study focuses on Ribeira dos Covões a small (6 km2) peri-urban catchment on the outskirts of Coimbra, one of the main cities in central Portugal. Between 1958 and 2012 the urban area of the catchment expanded from 8% to 40%, mostly at the expense of agriculture (down from 48% to 4%), with woodland now accounting for the remaining 56% of the catchment area. The urban area comprises contrasting urban settings, associated with older discontinuous arrangement of buildings and urban structures and low population density (<25 inhabitants/km), and recent well-defined urban cores dominated by apartment blocks and high population density (9900 inhabitants/km). The hydrological response of the catchment has been monitored since 2007 by a flume installed at the outlet. In 2009, five rainfall gauges and eight additional water level recorders were installed upstream, to assess the hydrological response of different sub-catchments, characterized by distinct urban patterns and either limestone or sandstone lithologies. Annual runoff coefficients range between 14% and 22%. Changes in annual baseflow index (36-39% of annual rainfall) have been small with urbanization (from 34% to 40%) during the monitoring period itself. Annual runoff coefficients were lowest (14-7%) on catchments >80% woodland and highest (29% on sandstone; 18% on limestone) in the most urbanized (49-53% urban) sub-catchments. Percentage impermeable surface seems to control streamflow particularly during dry periods. Winter runoff was 2-4 times higher than total river flow in the summer dry season in highly urbanized areas, but was 21-fold higher in winter in the least urbanized sub-catchment, denoting greater flow connectivity enhanced by increased soil moisture. Although impermeable surfaces are prone to generate overland flow, the proximity to the stream network is an important parameter determining their hydrological impacts. During the monitoring period, the enlargement of 2% of the urban area at downslope locations in the Covões sub-catchment, led to a 6% increase in the runoff coefficient. In contrast, the urban area increase from 9 to 25% mainly in upslope parts of the Quinta sub-catchment did not increase the peak streamflow due to downslope infiltration and surface retention opportunities. Despite impermeable surfaces enhance overland flow, some urban features (e.g. walls and road embankments) promote surface water retention. The presence of artificial drainage systems, on the other hand, enhances flow connectivity, leading to increasing peak flow and quicker response times (~10 minutes versus 40-50 minutes) as in the Covões sub-catchment. Urbanization impact on streamflow responses may be minimized through planning the land-use mosaic so as to maximize infiltration opportunities. Knowledge of the influence of distinct urban mosaics on flow connectivity and stream discharge is therefore important to landscape managers and should guide urban planning in order to minimize flood hazards.
Analysis of The Surface Radiative Budget Using ATLAS Data for San Juan, Puerto Rico
NASA Technical Reports Server (NTRS)
Luvall, Jeffrey C.; Rickman, D. L.; Gonzalez, J.; Comarazamy, Daniel; Picon, Ana
2007-01-01
The additional beating of the air over the city is the result of the replacement of naturally vegetated surfaces with those composed of asphalt, concrete, rooftops and other man-made materials. The temperatures of these artificial surfaces can be 20 to 40 C higher than vegetated surfaces. This produces a dome of elevated air temperatures 5 to 8 C greater over the city, compared to the air temperatures over adjacent rural areas. Urban landscapes are a complex mixture of vegetated and nonvegetated surfaces. It is difficult to take enough temperature measurements over a large city area to characterize the complexity of urban radiant surface temperature variability. The NASA Airborne Thermal and Land Applications Sensor (ATLAS) operates in the visual and IR bands was used in February 2004 to collect data from San Juan, Puerto Rico with the main objective of investigating the Urban Heat Island (UHI) in tropical cities.
Urban infrastructure and water management—Science capabilities of the U.S. Geological Survey
Fisher, Shawn C.; Fanelli, Rosemary M.; Selbig, William R.
2016-04-29
Managing the urban-water cycle has increasingly become a challenge for water-resources planners and regulators faced with the problem of providing clean drinking water to urban residents. Sanitary and combined sanitary and storm sewer networks convey wastewater to centralized treatment plants. Impervious surfaces, which include roads, parking lots, and buildings, increase stormwater runoff and the efficiency by which runoff is conveyed to nearby stream channels; therefore, impervious surfaces increase the risk of urban flooding and alteration of natural ecosystems. These challenges will increase with the expansion of urban centers and the probable effects of climate change on precipitation patterns. Understanding the urban-water cycle is critical to effectively manage water resources and to protect people, infrastructure, and urban-stream ecosystems. As a leader in water-supply, wastewater, and stormwater assessments, the U.S. Geological Survey has the expertise and resources needed to monitor, model, and interpret data related to the urban-water cycle and thereby enable water-resources managers to make informed decisions.
Urban Stormwater Runoff: A New Class of Environmental Flow Problem
Walsh, Christopher J.; Fletcher, Tim D.; Burns, Matthew J.
2012-01-01
Environmental flow assessment frameworks have begun to consider changes to flow regimes resulting from land-use change. Urban stormwater runoff, which degrades streams through altered volume, pattern and quality of flow, presents a problem that challenges dominant approaches to stormwater and water resource management, and to environmental flow assessment. We used evidence of ecological response to different stormwater drainage systems to develop methods for input to environmental flow assessment. We identified the nature of hydrologic change resulting from conventional urban stormwater runoff, and the mechanisms by which such hydrologic change is prevented in streams where ecological condition has been protected. We also quantified the increase in total volume resulting from urban stormwater runoff, by comparing annual streamflow volumes from undeveloped catchments with the volumes that would run off impervious surfaces under the same rainfall regimes. In catchments with as little as 5–10% total imperviousness, conventional stormwater drainage, associated with poor in-stream ecological condition, reduces contributions to baseflows and increases the frequency and magnitude of storm flows, but in similarly impervious catchments in which streams retain good ecological condition, informal drainage to forested hillslopes, without a direct piped discharge to the stream, results in little such hydrologic change. In urbanized catchments, dispersed urban stormwater retention measures can potentially protect urban stream ecosystems by mimicking the hydrologic effects of informal drainage, if sufficient water is harvested and kept out of the stream, and if discharged water is treated to a suitable quality. Urban stormwater is a new class of environmental flow problem: one that requires reduction of a large excess volume of water to maintain riverine ecological integrity. It is the best type of problem, because solving it provides an opportunity to solve other problems such as the provision of water for human use. PMID:23029257
NASA Astrophysics Data System (ADS)
Hao, L.; Sun, G.; Liu, Y.; Qin, M.; Huang, X.; Fang, D.
2017-12-01
Paddy rice wetlands are the main land use type across southern China, which impact the regional environments by affecting evapotranspiration (ET) and other water and energy related processes. Our study focuses on the effects of land-cover change on water and energy processes in the Qinhuai River Basin, a typical subtropical humid region that is under rapid ecological and economical transformations. This study integrates multiple methods and techniques including remote sensing, water and energy balance model (i.e., Surface Energy Balance Algorithm for Land, SEBAL), ecohydrological model (i.e., Soil and Water Assessment Tool, SWAT), and ground observation (Eddy Covariance measurement, etc.). We found that conversion of paddy rice field to urban use led to rise in vapor pressure deficit (VPD) and reduction in ET, and thus resulted in changes in local and regional water and heat balance. The effects of the land-use change on ET and VPD overwhelmed the effects of regional climate warming and climate variability. We conclude that the ongoing large-scale urbanization of the rice paddy-dominated regions in humid southern China and East Asia will likely exacerbate environmental consequences (e.g., elevated storm-flow volume, aggravated flood risks, and intensified urban heat island and urban dry island effects). The potential role of vegetated land cover in moderating water and energy balances and maintaining a stable climate should be considered in massive urban planning and global change impact assessment in southern China.
Occurrence, distribution and risks of antibiotics in urban surface water in Beijing, China.
Li, Wenhui; Gao, Lihong; Shi, Yali; Liu, Jiemin; Cai, Yaqi
2015-09-01
The occurrence and distribution of 22 antibiotics, including eight fluoroquinolones, nine sulfonamides and five macrolides, were investigated in the urban surface waters in Beijing, China. A total of 360 surface water samples were collected from the main rivers and lakes in the urban area of Beijing monthly from July 2013 to June 2014 (except the frozen period). Laboratory analyses revealed that antibiotics were widely used and extensively distributed in the surface water of Beijing, and sulfonamides and fluoroquinolones were the predominant antibiotics with the average concentrations of 136 and 132 ng L(-1), respectively. A significant difference of antibiotic concentrations from different sampling sites was observed, and the southern and eastern regions of Beijing showed higher concentrations of antibiotics. Seasonal variation of the antibiotics in the urban surface water was also studied, and the highest level of antibiotics was found in November, which may be due to the low temperature and flow of the rivers during the period of cold weather. Risk assessment showed that several antibiotics might pose high ecological risks to aquatic organisms (algae and plants) in surface water, and more attention should be paid to the risk of antibiotics to the aquatic environment in Beijing.
NASA Technical Reports Server (NTRS)
Choi, Yonghoon; Yang, Melissa; Kooi, Susan; Browell, Edward
2015-01-01
High resolution in-situ CO2 measurements were recorded onboard the NASA P-3B during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) Field Campaign, to investigate the ability of space-based observations to accurately assess near surface conditions related to air quality. This campaign includes, Washington DC/Baltimore, MD (July 2011), San Joaquin Valley, CA (January - February 2013), Houston, TX (September 2013), and Denver, CO (July-August 2014). Each of these campaigns consisted of missed approaches and approximately two hundred vertical soundings of CO2 within the lower troposphere (surface to about 5 km). In this study, surface (0 - 1 km) and column-averaged (0 - 3.5 km) CO2 mixing ratio values from the vertical soundings in the four geographically different urban areas are used to investigate the temporal and spatial variability of CO2 within the different urban atmospheric emission environments. Tracers such as CO, CH2O, NOx, and NMHCs are used to identify the source of CO2 variations in the urban sites. Additionally, we apply nominal CO2 column weighting functions for potential future active remote CO2 sensors operating in the 1.57-microns and 2.05-microns measurement regions to convert the in situ CO2 vertical mixing ratio profiles to variations in CO2 column optical depths, which is what the active remote sensors actually measure. Using statistics calculated from the optical depths at each urban site measured during the DISCOVER-AQ field campaign and for each nominal weighting function, we investigate the natural variability of CO2 columns in the lower troposphere; relate the CO2 column variability to the urban surface emissions; and show the measurement requirements for the future ASCENDS (Active Sensing of CO2 Emissions over Nights, Days, and Seasons) in the continental U.S. urban areas.
The Urban Food-Water Nexus: Modeling Water Footprints of Urban Agriculture using CityCrop
NASA Astrophysics Data System (ADS)
Tooke, T. R.; Lathuilliere, M. J.; Coops, N. C.; Johnson, M. S.
2014-12-01
Urban agriculture provides a potential contribution towards more sustainable food production and mitigating some of the human impacts that accompany volatility in regional and global food supply. When considering the capacity of urban landscapes to produce food products, the impact of urban water demand required for food production in cities is often neglected. Urban agricultural studies also tend to be undertaken at broad spatial scales, overlooking the heterogeneity of urban form that exerts an extreme influence on the urban energy balance. As a result, urban planning and management practitioners require, but often do not have, spatially explicit and detailed information to support informed urban agricultural policy, especially as it relates to potential conflicts with sustainability goals targeting water-use. In this research we introduce a new model, CityCrop, a hybrid evapotranspiration-plant growth model that incorporates detailed digital representations of the urban surface and biophysical impacts of the built environment and urban trees to account for the daily variations in net surface radiation. The model enables very fine-scale (sub-meter) estimates of water footprints of potential urban agricultural production. Results of the model are demonstrated for an area in the City of Vancouver, Canada and compared to aspatial model estimates, demonstrating the unique considerations and sensitivities for current and future water footprints of urban agriculture and the implications for urban water planning and policy.
NASA Astrophysics Data System (ADS)
Zhao, Q.; Zhan, S.; Kuai, X.; Zhan, Q.
2015-12-01
The goal of this research is to combine DMSP-OLS nighttime light data with Landsat imagery and use spatio-temporal analysis methods to evaluate the relationships between urbanization processes and temperature variation in Phoenix metropolitan area. The urbanization process is a combination of both land use change within the existing urban environment as well as urban sprawl that enlarges the urban area through the transformation of rural areas to urban structures. These transformations modify the overall urban climate environment, resulting in higher nighttime temperatures in urban areas compared to the surrounding rural environment. This is a well-known and well-studied phenomenon referred to as the urban heat island effect (UHI). What is unknown is the direct relationship between the urbanization process and the mechanisms of the UHI. To better understand this interaction, this research focuses on using nighttime light satellite imagery to delineate and detect urban extent changes and utilizing existing land use/land cover map or newly classified imagery from Landsat to analyze the internal urban land use variations. These data are combined with summer and winter land surface temperature data extracted from Landsat. We developed a time series of these combined data for Phoenix, AZ from 1992 to 2013 to analyze the relationships among land use change, land surface temperature and urban growth.
NASA Astrophysics Data System (ADS)
Chupakhina, Nataliia; Skrypnik, Lubov; Maslennikov, Pavel; Belov, Nicolai; Feduraev, Pavel; Chupakhina, Galina
2017-04-01
Urbanization can be described as a global socio-economic process, accompanied by a profound change of the anthropogenic environment and as a replacement of the natural ecosystems by the urban ones. Heavy metals occupy an important place among the different types of urban environmental pollutants. Since they do not undergo physico-chemical and biological degradation, they can accumulate in the surface soil layer for a long time, being available for the roots of plants and actively involved in the migration processes via trophic pathways. Study of accumulation of heavy metals in the most important component of urban ecosystems, which is soils, allows us to get a reliable estimate of the intensity of technogenic processes and to trace the major migration flows of these toxicants in the urbanized area. The geographic information systems (GIS) are a useful tool for collection, analysis, processing, synthesis and management of the spatially-distributed and other types of data. They provide the two-way communication between cartographic objects and databases. The aim of this study was to investigate the possibility of using of GIS technologies for estimating of distribution of heavy metals in the soil of the city of Kaliningrad. A Kaliningrad land region of 18.4 sq.km was investigated. Locations for the collection of samples were determined based on the analysis of anthropogenic loading of the streets of Kaliningrad. The total number of the locations was 57. The selected locations were marked with squares of 1.5 km per 1.5 km. Within each square 7-9 soil samples were collected using the "envelope" method, each sample was collected three times. The abundances of heavy metals (strontium, lead, zinc, copper, nickel, chromium, arsenic) in the soil was determined using the X-ray fluorescence method (Spectroscan Max, NPO Spektron, Saint-Petersburg, Russia). Each sample was purified, in order to remove roots, large rocks, glass, etc., before placing to the cell of the spectrometer. Purified samples of 10-50 g were dried to constant mass at a specified temperature (105 ± 2) ° C and then were grounded using an agate mortar to reduce the particle size to ≤71 microns. The analysis was simultaneously performed for two parts of each sample. For calculation of the surface distribution of the heavy metals we used the geographic GIS package QuantumGIS 2.8. The coordinates of the sampling points were first marked at the raster substrate and then were exported to a vector layer in the Shapefile format. To calculate the surface distribution in the raster format we used the topotorastr module, which includes different interpolation methods. For the visualization of this study we used two methods: inverse-weighted state (IDW) and natural neighborhood methods). The results obtained with the IDW method appeared to be not representative and we further used only the method of natural neighborhood. Using the built-in tools of the QuantumGIS the heavy metal abundances were divided into 9 classes and the raster surfaces were obtained. We then built contour plots of the distribution of the studied heavy metals. The described approach revealed two areas in which the lead abundance 4,5-5,4 times exceeded the maximum permitted norms, arsenic 9.5 - 11 times, zinc 7.2 - 9.6 times and nickel 5.2 - 6.75 times.
NASA Astrophysics Data System (ADS)
Epps, T.
2015-12-01
Impervious surfaces and stormwater drainage networks transmit rainfall quickly to urban stream systems with greater frequency, volume, energy, and pollutant loadings than in predevelopment conditions. This has a well-established negative impact on stream ecology, channel morphology, and water quality. Green infrastructure retrofits for urban drainage systems promote more natural hydrologic pathways by disconnecting concentrated flows. However, they are expensive due to high land costs and physical constraints. If a systematic strategy for siting green infrastructure is sought to restore natural flows throughout an urban catchment, greater knowledge of the drainage patterns and areas contributing frequent surface runoff is necessary. Five diverse urban watersheds in Knoxville, TN, were assessed using high-resolution topography, land cover, and artificial drainage network data to identify how surface connectivity differs among watersheds and contributes to altered flow regimes. Rainfall-runoff patterns were determined from continuous rainfall and streamflow monitoring over the previous ten years. Fine-scale flowpath connectivity of impervious surfaces was measured by both a binary approach and by a method incorporating runoff potential by saturation excess. The effect of the spatial distribution of connected surfaces was investigated by incorporating several distance-weighting schema along established urban drainage flowpaths. Statistical relationships between runoff generation and connectivity were measured to determine the ability of these different measures of connectivity to predict runoff thresholds, frequency, volumes, and peak flows. Initial results suggest that rapid assessment of connected surficial flowpaths can be used to identify known green infrastructure assets and highly connected impervious areas and that the differences in connectivity measured between watersheds reflects differing runoff patterns observed in monitored data.
Observation and modelling of urban dew
NASA Astrophysics Data System (ADS)
Richards, Katrina
Despite its relevance to many aspects of urban climate and to several practical questions, urban dew has largely been ignored. Here, simple observations an out-of-doors scale model, and numerical simulation are used to investigate patterns of dewfall and surface moisture (dew + guttation) in urban environments. Observations and modelling were undertaken in Vancouver, B.C., primarily during the summers of 1993 and 1996. Surveys at several scales (0.02-25 km) show that the main controls on dew are weather, location and site configuration (geometry and surface materials). Weather effects are discussed using an empirical factor, FW . Maximum dew accumulation (up to ~ 0.2 mm per night) is seen on nights with moist air and high FW , i.e., cloudless conditions with light winds. Favoured sites are those with high Ysky and surfaces which cool rapidly after sunset, e.g., grass and well insulated roofs. A 1/8-scale model is designed, constructed, and run at an out-of-doors site to study dew patterns in an urban residential landscape which consists of house lots, a street and an open grassed park. The Internal Thermal Mass (ITM) approach is used to scale the thermal inertia of buildings. The model is validated using data from full-scale sites in Vancouver. Patterns in the model agree with those seen at the full-scale, i.e., dew distribution is governed by weather, site geometry and substrate conditions. Correlation is shown between Ysky and surface moisture accumulation. The feasibility of using a numerical model to simulate urban dew is investigated using a modified version of a rural dew model. Results for simple isolated surfaces-a deciduous tree leaf and an asphalt shingle roof-show promise, especially for built surfaces.
NASA Astrophysics Data System (ADS)
De Ridder, K.; Bertrand, C.; Casanova, G.; Lefebvre, W.
2012-09-01
Increasingly, mesoscale meteorological and climate models are used to predict urban weather and climate. Yet, large uncertainties remain regarding values of some urban surface properties. In particular, information concerning urban values for thermal roughness length and thermal admittance is scarce. In this paper, we present a method to estimate values for thermal admittance in combination with an optimal scheme for thermal roughness length, based on METEOSAT-8/SEVIRI thermal infrared imagery in conjunction with a deterministic atmospheric model containing a simple urbanized land surface scheme. Given the spatial resolution of the SEVIRI sensor, the resulting parameter values are applicable at scales of the order of 5 km. As a study case we focused on the city of Paris, for the day of 29 June 2006. Land surface temperature was calculated from SEVIRI thermal radiances using a new split-window algorithm specifically designed to handle urban conditions, as described inAppendix A, including a correction for anisotropy effects. Land surface temperature was also calculated in an ensemble of simulations carried out with the ARPS mesoscale atmospheric model, combining different thermal roughness length parameterizations with a range of thermal admittance values. Particular care was taken to spatially match the simulated land surface temperature with the SEVIRI field of view, using the so-called point spread function of the latter. Using Bayesian inference, the best agreement between simulated and observed land surface temperature was obtained for the Zilitinkevich (1970) and Brutsaert (1975) thermal roughness length parameterizations, the latter with the coefficients obtained by Kanda et al. (2007). The retrieved thermal admittance values associated with either thermal roughness parameterization were, respectively, 1843 ± 108 J m-2 s-1/2 K-1 and 1926 ± 115 J m-2 s-1/2 K-1.
NASA Astrophysics Data System (ADS)
Kotthaus, S.; Grimmond, S.
2013-12-01
Global urbanisation brings increasingly dense and complex urban structures. To manage cities sustainably and smartly, currently and into the future under changing climates, urban climate research needs to advance in areas such as Central Business Districts (CBD) where human interactions with the environment are particularly concentrated. Measurement and modelling approaches may be pushed to their limits in dense urban settings, but if urban climate research is to contribute to the challenges of real cities those limits have to be addressed. The climate of cities is strongly governed by surface-atmosphere exchanges of energy, moisture and momentum. Observations of the relevant fluxes provide important information for improvement and evaluation of modelling approaches. Due to the CBD's heterogeneity, a very careful analysis of observations is required to understand the relevant processes. Current approaches used to interpret observations and set them in a wider context may need to be adapted for use in these more complex areas. Here, we present long-term observations of the radiation balance components and turbulent fluxes of latent heat, sensible heat and momentum in the city centre of London. This is one of the first measurement studies in a CBD covering multiple years with analysis at temporal scales from days to seasons. Data gathered at two sites in close vicinity, but with different measurement heights, are analysed to investigate the influence of source area characteristics on long-term radiation and turbulent fluxes. Challenges of source area modelling and the critical aspect of siting in such a complex environment are considered. Outgoing long- and short-wave radiation are impacted by the anisotropic nature of the urban surface and the high reflectance materials increasingly being used as building materials. Results highlight the need to consider the source area of radiometers in terms of diffuse and direct irradiance. Sensible heat fluxes (QH) are positive all year round, even at night. QH systematically exceeds input from net all-wave radiation (Q*), probably sustained by a both storage and anthropogenic heat fluxes (QF). Model estimates suggest QF can exceed the Q* nearly all year round. The positive QH inhibits stable conditions, but the stability classification is determined predominantly by the pattern of friction velocity over the rough urban surface. Turbulent latent heat flux variations are controlled (beyond the available energy) by rainfall due to the small vegetation cover. The Bowen ratio is mostly larger than one. Analysis of the eddy covariance footprint surface controls for the different land cover types by flow patterns for measurements at the two heights suggests the spatial variations of the sensible heat flux observed are partly related to changes in surface roughness, even at the local scale. Where the source areas are most homogeneous, flow conditions are vertically consistent - even if initial morphometric parameters suggested the measurements may be below the blending height. Turbulence statistics and momentum flux patterns prove useful for the interpretation of turbulent heat exchanges observed.
Hydrological Modeling of Rainfall-Watershed-Bioretention System with EPA SWMM
NASA Astrophysics Data System (ADS)
gülbaz, sezar; melek kazezyılmaz-alhan, cevza
2016-04-01
Water resources should be protected for the sustainability of water supply and water quality. Human activities such as high urbanization with lack of infrastructure system and uncontrolled agricultural facilities adversely affect the water resources. Therefore, recent techniques should be investigated in detail to avoid present and future problems like flood, drought and water pollution. Low Impact Development-Best Management Practice (LID-BMP) is such a technique to manage storm water runoff and quality. There are several LID storm water BMPs such as bioretention facilities, rain gardens, storm water wetlands, vegetated rooftops, rain barrels, vegetative swales and permeable pavements. Bioretention is a type of Low Impact Developments (LIDs) implemented to diminish adverse effects of urbanization by reducing peak flows over the surface and improving surface water quality simultaneously. Different soil types in different ratios are considered in bioretention design which affects the performance of bioretention systems. Therefore, in this study, a hydrologic model for bioretention is developed by using Environmental Protection Agency Storm Water Management Model (EPA SWMM). Part of the input data is supplied to the hydrologic model by experimental setup called Rainfall-Watershed-Bioretention (RWB). RWB System is developed to investigate the relation among rainfall, watershed and bioretention. This setup consists of three main parts which are artificial rainfall system, drainage area and four bioretention columns with different soil mixture. EPA SWMM is a dynamic simulation model for the surface runoff which develops on a watershed during a rainfall event. The model is commonly used to plan, analyze, and control storm water runoff, to design drainage system components and to evaluate watershed management of both urban and rural areas. Furthermore, EPA SWMM is a well-known program to model LID-Bioretention in the literature. Therefore, EPA SWMM is employed in drainage and bioretention modeling. Calibration of hydrologic model is made using part of the measured data in RWB System for drainage area and for each bioretention column separately. Finally, performance of the model is evaluated by comparing the model results with the experimental data collected in RWB system.
Xian, George; Homer, Collin G.
2010-01-01
A prototype method was developed to update the U.S. Geological Survey (USGS) National Land Cover Database (NLCD) 2001 to a nominal date of 2006. NLCD 2001 is widely used as a baseline for national land cover and impervious cover conditions. To enable the updating of this database in an optimal manner, methods are designed to be accomplished by individual Landsat scene. Using conservative change thresholds based on land cover classes, areas of change and no-change were segregated from change vectors calculated from normalized Landsat scenes from 2001 and 2006. By sampling from NLCD 2001 impervious surface in unchanged areas, impervious surface predictions were estimated for changed areas within an urban extent defined by a companion land cover classification. Methods were developed and tested for national application across six study sites containing a variety of urban impervious surface. Results show the vast majority of impervious surface change associated with urban development was captured, with overall RMSE from 6.86 to 13.12% for these areas. Changes of urban development density were also evaluated by characterizing the categories of change by percentile for impervious surface. This prototype method provides a relatively low cost, flexible approach to generate updated impervious surface using NLCD 2001 as the baseline.
Effect of inlet modelling on surface drainage in coupled urban flood simulation
NASA Astrophysics Data System (ADS)
Jang, Jiun-Huei; Chang, Tien-Hao; Chen, Wei-Bo
2018-07-01
For a highly developed urban area with complete drainage systems, flood simulation is necessary for describing the flow dynamics from rainfall, to surface runoff, and to sewer flow. In this study, a coupled flood model based on diffusion wave equations was proposed to simulate one-dimensional sewer flow and two-dimensional overland flow simultaneously. The overland flow model provides details on the rainfall-runoff process to estimate the excess runoff that enters the sewer system through street inlets for sewer flow routing. Three types of inlet modelling are considered in this study, including the manhole-based approach that ignores the street inlets by draining surface water directly into manholes, the inlet-manhole approach that drains surface water into manholes that are each connected to multiple inlets, and the inlet-node approach that drains surface water into sewer nodes that are connected to individual inlets. The simulation results were compared with a high-intensity rainstorm event that occurred in 2015 in Taipei City. In the verification of the maximum flood extent, the two approaches that considered street inlets performed considerably better than that without street inlets. When considering the aforementioned models in terms of temporal flood variation, using manholes as receivers leads to an overall inefficient draining of the surface water either by the manhole-based approach or by the inlet-manhole approach. Using the inlet-node approach is more reasonable than using the inlet-manhole approach because the inlet-node approach greatly reduces the fluctuation of the sewer water level. The inlet-node approach is more efficient in draining surface water by reducing flood volume by 13% compared with the inlet-manhole approach and by 41% compared with the manhole-based approach. The results show that inlet modeling has a strong influence on drainage efficiency in coupled flood simulation.
NASA Astrophysics Data System (ADS)
Fan, Fenglei; Fan, Wei
2014-01-01
A new viewpoint for understanding the urban expansion using impervious surface information, which is obtained using remote sensing imagery is presented. The purpose of this study is to understand and describe the urban expansion pattern with the view of impervious surfaces instead of the conventional view of land use/land cover. Six years' worth of impervious surface data (1990-2009) of Guangzhou are extracted via linear spectral unmixing analysis methods and spatial and temporal characteristics are discussed in detail. The area, density, and gravity centers changes of the impervious surfaces are analyzed to explain internal/external urban expansion. Meanwhile, five landscape indexes, such as patch density, edge density, mean patch size, area-weighted, and fragmentation index, are utilized to describe landscape changes of Guangzhou in past 20 years, which are influenced deeply by the impervious surface expansion. In order to detail landscape changes, two transects corresponding to the two urban expansion directions are designed and five landscape metrics in these two transects are reported. Conclusions can be drawn and shown as following: (1) temporally, the area of impervious surfaces increases from 12,998 to 59,911 ha from 1990 to 2009. The amount of impervious surface varies in different periods. The annual growth rates of impervious surface area during 1990-1995, 1995-1998, and 1998-2000 are 10.16%, 11.61%, and 10.78%, respectively; (2) annual growth rates decrease from 10.78% (1998-2000) to 5.67% (2000-2003). Nevertheless, from 2003-2009, the annual growth rate has a slight increase compared to a former period. The rate is 5.91% (3) spatially, gravity centers of medium and high percentage impervious surfaces migrate slightly; and (4) according to the gradient analysis in the two transects, it can be observed that the high percentage of impervious surface increases gradually in new city districts (from west to east and from south to north).
Microbial Community Patterns Associated with Automated Teller Machine Keypads in New York City
Maritz, Julia M.; Luong, Albert
2016-01-01
ABSTRACT In densely populated urban environments, the distribution of microbes and the drivers of microbial community assemblages are not well understood. In sprawling metropolitan habitats, the “urban microbiome” may represent a mix of human-associated and environmental taxa. Here we carried out a baseline study of automated teller machine (ATM) keypads in New York City (NYC). Our goal was to describe the biodiversity and biogeography of both prokaryotic and eukaryotic microbes in an urban setting while assessing the potential source of microbial assemblages on ATM keypads. Microbial swab samples were collected from three boroughs (Manhattan, Queens, and Brooklyn) during June and July 2014, followed by generation of Illumina MiSeq datasets for bacterial (16S rRNA) and eukaryotic (18S rRNA) marker genes. Downstream analysis was carried out in the QIIME pipeline, in conjunction with neighborhood metadata (ethnicity, population, age groups) from the NYC Open Data portal. Neither the 16S nor 18S rRNA datasets showed any clustering patterns related to geography or neighborhood demographics. Bacterial assemblages on ATM keypads were dominated by taxonomic groups known to be associated with human skin communities (Actinobacteria, Bacteroides, Firmicutes, and Proteobacteria), although SourceTracker analysis was unable to identify the source habitat for the majority of taxa. Eukaryotic assemblages were dominated by fungal taxa as well as by a low-diversity protist community containing both free-living and potentially pathogenic taxa (Toxoplasma, Trichomonas). Our results suggest that ATM keypads amalgamate microbial assemblages from different sources, including the human microbiome, eukaryotic food species, and potentially novel extremophilic taxa adapted to air or surfaces in the built environment. DNA obtained from ATM keypads may thus provide a record of both human behavior and environmental sources of microbes. IMPORTANCE Automated teller machine (ATM) keypads represent a specific and unexplored microhabitat for microbial communities. Although the number of built environment and urban microbial ecology studies has expanded greatly in recent years, the majority of research to date has focused on mass transit systems, city soils, and plumbing and ventilation systems in buildings. ATM surfaces, potentially retaining microbial signatures of human inhabitants, including both commensal taxa and pathogens, are interesting from both a biodiversity perspective and a public health perspective. By focusing on ATM keypads in different geographic areas of New York City with distinct population demographics, we aimed to characterize the diversity and distribution of both prokaryotic and eukaryotic microbes, thus making a unique contribution to the growing body of work focused on the “urban microbiome.” In New York City, the surface area of urban surfaces in Manhattan far exceeds the geographic area of the island itself. We have only just begun to describe the vast array of microbial taxa that are likely to be present across diverse types of urban habitats. PMID:27904880
Modeling Surface Climate in US Cities Using Simple Biosphere Model Sib2
NASA Technical Reports Server (NTRS)
Zhang, Ping; Bounoua, Lahouari; Thome, Kurtis; Wolfe, Robert; Imhoff, Marc
2015-01-01
We combine Landsat- and the Moderate Resolution Imaging Spectroradiometer (MODIS)-based products in the Simple Biosphere model (SiB2) to assess the effects of urbanized land on the continental US (CONUS) surface climate. Using National Land Cover Database (NLCD) Impervious Surface Area (ISA), we define more than 300 urban settlements and their surrounding suburban and rural areas over the CONUS. The SiB2 modeled Gross Primary Production (GPP) over the CONUS of 7.10 PgC (1 PgC= 10(exp 15) grams of Carbon) is comparable to the MODIS improved GPP of 6.29 PgC. At state level, SiB2 GPP is highly correlated with MODIS GPP with a correlation coefficient of 0.94. An increasing horizontal GPP gradient is shown from the urban out to the rural area, with, on average, rural areas fixing 30% more GPP than urbans. Cities built in forested biomes have stronger UHI magnitude than those built in short vegetation with low biomass. Mediterranean climate cities have a stronger UHI in wet season than dry season. Our results also show that for urban areas built within forests, 39% of the precipitation is discharged as surface runoff during summer versus 23% in rural areas.
Spatiotemporal analysis of urban environment based on the vegetation-impervious surface-soil model
NASA Astrophysics Data System (ADS)
Guo, Huadong; Huang, Qingni; Li, Xinwu; Sun, Zhongchang; Zhang, Ying
2014-01-01
This study explores a spatiotemporal comparative analysis of urban agglomeration, comparing the Greater Toronto and Hamilton Area (GTHA) of Canada and the city of Tianjin in China. The vegetation-impervious surface-soil (V-I-S) model is used to quantify the ecological composition of urban/peri-urban environments with multitemporal Landsat images (3 stages, 18 scenes) and LULC data from 1985 to 2005. The support vector machine algorithm and several knowledge-based methods are applied to get the V-I-S component fractions at high accuracies. The statistical results show that the urban expansion in the GTHA occurred mainly between 1985 and 1999, and only two districts revealed increasing trends for impervious surfaces for the period from 1999 to 2005. In contrast, Tianjin has been experiencing rapid urban sprawl at all stages and this has been accelerating since 1999. The urban growth patterns in the GTHA evolved from a monocentric and dispersed pattern to a polycentric and aggregated pattern, while in Tianjin it changed from monocentric to polycentric. Central Tianjin has become more centralized, while most other municipal areas have developed dispersed patterns. The GTHA also has a higher level of greenery and a more balanced ecological environment than Tianjin. These differences in the two areas may play an important role in urban planning and decision-making in developing countries.
Effects of City Expansion on Heat Stress under Climate Change Conditions
Argüeso, Daniel; Evans, Jason P.; Pitman, Andrew J.; Di Luca, Alejandro
2015-01-01
We examine the joint contribution of urban expansion and climate change on heat stress over the Sydney region. A Regional Climate Model was used to downscale present (1990–2009) and future (2040–2059) simulations from a Global Climate Model. The effects of urban surfaces on local temperature and vapor pressure were included. The role of urban expansion in modulating the climate change signal at local scales was investigated using a human heat-stress index combining temperature and vapor pressure. Urban expansion and climate change leads to increased risk of heat-stress conditions in the Sydney region, with substantially more frequent adverse conditions in urban areas. Impacts are particularly obvious in extreme values; daytime heat-stress impacts are more noticeable in the higher percentiles than in the mean values and the impact at night is more obvious in the lower percentiles than in the mean. Urban expansion enhances heat-stress increases due to climate change at night, but partly compensates its effects during the day. These differences are due to a stronger contribution from vapor pressure deficit during the day and from temperature increases during the night induced by urban surfaces. Our results highlight the inappropriateness of assessing human comfort determined using temperature changes alone and point to the likelihood that impacts of climate change assessed using models that lack urban surfaces probably underestimate future changes in terms of human comfort. PMID:25668390
NASA Technical Reports Server (NTRS)
Imhoff, M. L.; Tucker, C. J.; Lawrence, W. T.; Stutzer, D.; Rusin, Robert
2000-01-01
Data from two different satellites, a digital land cover map, and digital census data were analyzed and combined in a geographic information system to study the effect of urbanization on photosynthetic vegetation productivity in the United States. Results show that urbanization can have a measurable but variable impact on the primary productivity of the land surface. Annual productivity can be reduced by as much as 20 days in some areas, but in resource limited regions, photosynthetic production can be enhanced by human activity. Overall, urban development reduces the productivity of the land surface and those areas with the highest productivity are directly in the path of urban sprawl.
Charters, Frances J; Cochrane, Thomas A; O'Sullivan, Aisling D
2015-11-15
Understanding the particle size distribution (PSD) of sediment in urban runoff assists in the selection of appropriate treatment systems for sediment removal as systems vary in their ability to remove sediment across different particle size fractions. Variation in PSD in runoff from individual urban surfaces both during and across multiple rain events is not well understood and it may lead to performance uncertainty in treatment systems. Runoff PSDs in international literature were compiled to provide a comparative summary of PSDs from different urban surfaces. To further assess both intra-event and inter-event PSD variation, untreated runoff was collected from road, concrete roof, copper roof, and galvanized roof surfaces within an urban catchment exposed to the same rainfall conditions and analysed for PSD and total suspended solids (TSS). Road runoff had the highest TSS concentrations, while copper roofs had high initial TSS that reduced to very low levels under steady state conditions. Despite variation in TSS concentrations, the median particle diameter of the TSS was comparable across the surfaces. Intra-event variation was generally not significant, but substantial inter-event variation was observed, particularly for coarser road and concrete roof surfaces. PSD variation for each surface contributed to a wide range in predicted treatment performance and suggests that short-retention treatment devices carry a high performance risk of not being able to achieve adequate TSS removal across all rain events. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mitigating the surface urban heat island: Mechanism study and sensitivity analysis
NASA Astrophysics Data System (ADS)
Meng, Chunlei
2017-08-01
In a surface urban heat island (SUHI), the urban land surface temperature (LST) is usually higher than the temperature of the surrounding rural areas due to human activities and surface characteristics. Because a SUHI has many adverse impacts on urban environment and human health, SUHI mitigation strategies are very important. This paper investigates the mechanism of a SUHI based on the basic physical laws that control the formation of a SUHI; five mitigation strategies are proposed, namely: sprinkling and watering; paving a pervious surface; reducing the anthropogenic heat (AH) release; using a "white roof"; increasing the fractional vegetation cover or leaf area index (LAI). To quantify the effect of these mitigation strategies, 26 sets of experiments are designed and implemented by running the integrated urban land model (IUM). The results of the sensitivity analysis indicate that sprinkling and watering is an effective measure for mitigating a SUHI for an entire day. Decreasing the AH release is also useful for both night- and daytime SUHI mitigation; however, the cooling extent is proportional to the diurnal cycle of AH. Increasing the albedo can reduce the LST in the daytime, especially when the solar radiation is significant; the cooling extent is approximately proportional to the diurnal cycle of the net radiation. Increasing the pervious surface percentage can mitigate the SUHI especially in the daytime. Increasing the fractional vegetation cover can mitigate the SUHI in the daytime but may aggravate the SUHI at night.
NASA Astrophysics Data System (ADS)
Satcher, P. S.; Brunsell, N. A.
2017-12-01
Alterations to land cover resulting from urbanization interact with the atmospheric boundary layer inducing elevated surface and air temperatures, changes to the surface energy balance (SEB), and modifications to regional circulations and climates. These changes pose risks to public health, ecological systems, and have the potential to affect economic interests. We used Google Earth Engine's Landsat archive to classify local climate zones (LCZ) that consist of ten urban and seven non-urban classes to examine the influence of urban morphology on the urban heat island (UHI) effect. We used geostatistical methods to determine the significance of the spatial distributions of LCZs to land surface temperatures (LST) and normalized difference vegetation index (NDVI) Moderate Resolution Imaging Spectroradiometer (MODIS) products. We used the triangle method to assess the variability of SEB partitioning in relation to high, medium, and low density LCZ classes. Fractional vegetation cover (Fr) was calculated using NDVI data. Linear regressions of observations in Fr-LST space for select LCZ classes were compared for selected eight-day periods to determine changes in energy partitioning and relative soil moisture availability. The magnitude of each flux is not needed to determine changes to the SEB. The regressions will examine near surface soil moisture, which is indicative of how much radiation is partitioned into evaporation. To compare changes occurring over one decade, we used MODIS NDVI and LST data from 2005 and 2015. Results indicated that variations in the SEB can be detected using the LCZ classification method. The results from analysis in Fr-LST space of the annual cycles over several years can be used to detect changes in the SEB as urbanization increases.
Changes in urban-related precipitation in the summer over three city clusters in China
NASA Astrophysics Data System (ADS)
Zhao, Deming; Wu, Jian
2017-09-01
The impacts of urban surface expansion on the summer precipitations over three city clusters [Beijing-Tianjin-Hebei (BTH), the Yangtze River Delta (YRD), and the Pearl River Delta (PRD)] in eastern China under different monsoonal circulation backgrounds were explored using the nested fifth-generation Penn State/NCAR Mesoscale Model version 3.7 (MM5 V3.7), including the urban-related thermal and dynamical parameters. Ten-year integrations were performed using satellite image data from 2000 and 2010 to represent the urban surface distributions and expansions in China. Changes in the precipitation revealed obvious subregional characteristics, which could be explained by the influences of the vertical wind velocity and moisture flux. With urban-related warming, vertical wind motion generally intensified over urban surface-expanded areas. Meanwhile, the increase in impervious surface areas induced rapid rainwater runoff into drains, and the Bowen ratio increased over urban areas, which further contributed to changes in the local moisture fluxes in these regions. The intensities of the changes in precipitation were inconsistent over the three city clusters, although the changes in vertical motion and local evaporation were similar, which indicates that the changes in precipitation cannot be solely explained by the changes in the local evaporation-related moisture flux. The changes in precipitation were also influenced by the changes in the East Asian summer monsoon (EASM) circulation and the corresponding moisture flux, which are expressed in marked subregional characteristics. Therefore, the influence of urban-related precipitation over the three city clusters in China, for which changes in moisture flux from both the impacted local evaporation and EASM circulation should be considered, varied based on the precipitation changes of only a single city.
Impacts of future urban expansion on summer climate and heat-related human health in eastern China.
Cao, Qian; Yu, Deyong; Georgescu, Matei; Wu, Jianguo; Wang, Wei
2018-03-01
China is the largest and most rapidly urbanizing nation in the world, and is projected to add an additional 200 million city dwellers by the end of 2030. While this rapid urbanization will lead to vast expansion of built-up areas, the possible climate effect and associated human health impact remain poorly understood. Using a coupled urban-atmospheric model, we first examine potential effects of three urban expansion scenarios to 2030 on summer climate in eastern China. Our simulations indicate extensive warming up to 5°C, 3°C, and 2°C in regard to low- (>0%), high- (>75%), and 100% probability urban growth scenarios, respectively. The partitioning of available energy largely explains the changes in 2-m air temperatures, and increased sensible heat flux with higher roughness length of the underlying urban surface is responsible for the increase of nighttime planetary boundary layer height. In the extreme case (the low-probability expansion pathway), the agglomeration of impervious surfaces substantially reduces low-level atmospheric moisture, consequently resulting in large-scale precipitation reduction. However, the effect of near-surface warming far exceeds that of moisture reduction and imposes non-negligible thermal loads on urban residents. Our study, using a scenario-based approach that accounts for the full range of urban growth uncertainty by 2030, helps better evaluate possible regional climate effects and associated human health outcomes in the most rapidly urbanizing areas of China, and has practical implications for the development of sustainable urban regions that are resilient to changes in both mean and extreme conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Multi-temporal analysis of land surface temperature in highly urbanized districts
NASA Astrophysics Data System (ADS)
Kaya, S.; Celik, B.; Sertel, E.; Bayram, B.; Seker, D. Z.
2017-12-01
Istanbul is one of the largest cities around the world with population over 15 million and it has 39 districts. Due to high immigration rate after the 1980s, parallel to the urbanization rapid population increase has occurred in some of these districts. Thus, a significant increase in land surface temperature were monitored and this subject became one of the most popular subject of different researches. Natural landscapes transformed into residential areas with impervious surfaces that causes rise in land surface temperatures which is one of the component of urban heat islands. This study focuses on determining the land use/land cover changes and land surface temperature in highly urbanized districts for last 32 years and examining the relationship between these two parameters using multi-temporal optical and thermal remotely sensed data. In this study, Landsat5 Thematic Mapper and Landsat8 OLI/TIR imagery with acquisition dates June 1984 and June 2016 were used. In order to assess the land use/cover change between 1984 and 2016, Vegetation Impervious Surface-soil (V-I-S) model is used. Each end-member spectra are extracted from ASTER spectral library. Additionally, V-I-S model, NDVI, NDBI and NDBaI indices have been derived for further investigation of land cover changes. The results of the study, presented that in the last 32 years, the amount of impervious surfaces substantially increased along with land surface temperatures.
Geometric Modelling of Tree Roots with Different Levels of Detail
NASA Astrophysics Data System (ADS)
Guerrero Iñiguez, J. I.
2017-09-01
This paper presents a geometric approach for modelling tree roots with different Levels of Detail, suitable for analysis of the tree anchoring, potentially occupied underground space, interaction with urban elements and damage produced and taken in the built-in environment. Three types of tree roots are considered to cover several species: tap root, heart shaped root and lateral roots. Shrubs and smaller plants are not considered, however, a similar approach can be considered if the information is available for individual species. The geometrical approach considers the difficulties of modelling the actual roots, which are dynamic and almost opaque to direct observation, proposing generalized versions. For each type of root, different geometric models are considered to capture the overall shape of the root, a simplified block model, and a planar or surface projected version. Lower detail versions are considered as compatibility version for 2D systems while higher detail models are suitable for 3D analysis and visualization. The proposed levels of detail are matched with CityGML Levels of Detail, enabling both analysis and aesthetic views for urban modelling.
Prior-knowledge-based spectral mixture analysis for impervious surface mapping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinshui; He, Chunyang; Zhou, Yuyu
2014-01-03
In this study, we developed a prior-knowledge-based spectral mixture analysis (PKSMA) to map impervious surfaces by using endmembers derived separately for high- and low-density urban regions. First, an urban area was categorized into high- and low-density urban areas, using a multi-step classification method. Next, in high-density urban areas that were assumed to have only vegetation and impervious surfaces (ISs), the Vegetation-Impervious model (V-I) was used in a spectral mixture analysis (SMA) with three endmembers: vegetation, high albedo, and low albedo. In low-density urban areas, the Vegetation-Impervious-Soil model (V-I-S) was used in an SMA analysis with four endmembers: high albedo, lowmore » albedo, soil, and vegetation. The fraction of IS with high and low albedo in each pixel was combined to produce the final IS map. The root mean-square error (RMSE) of the IS map produced using PKSMA was about 11.0%, compared to 14.52% using four-endmember SMA. Particularly in high-density urban areas, PKSMA (RMSE = 6.47%) showed better performance than four-endmember (15.91%). The results indicate that PKSMA can improve IS mapping compared to traditional SMA by using appropriately selected endmembers and is particularly strong in high-density urban areas.« less
Estimating the Limits of Infiltration in the Urban Appalachian Plateau
NASA Astrophysics Data System (ADS)
Lavin, S. M.; Bain, D.; Hopkins, K. G.; Pfeil-McCullough, E. K.; Copeland, E.
2014-12-01
Green infrastructure in urbanized areas commonly uses infiltration systems, such as rain gardens, swales and trenches, to convey surface runoff from impervious surfaces into surrounding soils. However, precipitation inputs can exceed soil infiltration rates, creating a limit to infiltration-based storm water management, particularly in urban areas covered by impervious surfaces. Given the limited availability and varied quality of soil infiltration rate data, we synthesized information from national databases, available field test data, and applicable literature to characterize soil infiltration rate distributions, focusing on Allegheny County, Pennsylvania as a case study. A range of impervious cover conditions was defined by sampling available GIS data (e.g., LiDAR and street edge lines) with analysis windows placed randomly across urbanization gradients. Changes in effective precipitation caused by impervious cover were calculated across these gradients and compared to infiltration rate distributions to identify thresholds in impervious coverage where these limits are exceeded. Many studies have demonstrated the effects of urbanization on infiltration, but the identification of these thresholds will clarify interactions between impervious cover and soil infiltration. These methods can help identify sections of urban areas that require augmentation of infiltration-based systems with additional infrastructural strategies, especially as green infrastructure moves beyond low impact development towards more frequent application during infilling of existing urban systems.
Tatem, Andrew J; Guerra, Carlos A; Kabaria, Caroline W; Noor, Abdisalan M; Hay, Simon I
2008-10-27
The efficient allocation of financial resources for malaria control and the optimal distribution of appropriate interventions require accurate information on the geographic distribution of malaria risk and of the human populations it affects. Low population densities in rural areas and high population densities in urban areas can influence malaria transmission substantially. Here, the Malaria Atlas Project (MAP) global database of Plasmodium falciparum parasite rate (PfPR) surveys, medical intelligence and contemporary population surfaces are utilized to explore these relationships and other issues involved in combining malaria risk maps with those of human population distribution in order to define populations at risk more accurately. First, an existing population surface was examined to determine if it was sufficiently detailed to be used reliably as a mask to identify areas of very low and very high population density as malaria free regions. Second, the potential of international travel and health guidelines (ITHGs) for identifying malaria free cities was examined. Third, the differences in PfPR values between surveys conducted in author-defined rural and urban areas were examined. Fourth, the ability of various global urban extent maps to reliably discriminate these author-based classifications of urban and rural in the PfPR database was investigated. Finally, the urban map that most accurately replicated the author-based classifications was analysed to examine the effects of urban classifications on PfPR values across the entire MAP database. Masks of zero population density excluded many non-zero PfPR surveys, indicating that the population surface was not detailed enough to define areas of zero transmission resulting from low population densities. In contrast, the ITHGs enabled the identification and mapping of 53 malaria free urban areas within endemic countries. Comparison of PfPR survey results showed significant differences between author-defined 'urban' and 'rural' designations in Africa, but not for the remainder of the malaria endemic world. The Global Rural Urban Mapping Project (GRUMP) urban extent mask proved most accurate for mapping these author-defined rural and urban locations, and further sub-divisions of urban extents into urban and peri-urban classes enabled the effects of high population densities on malaria transmission to be mapped and quantified. The availability of detailed, contemporary census and urban extent data for the construction of coherent and accurate global spatial population databases is often poor. These known sources of uncertainty in population surfaces and urban maps have the potential to be incorporated into future malaria burden estimates. Currently, insufficient spatial information exists globally to identify areas accurately where population density is low enough to impact upon transmission. Medical intelligence does however exist to reliably identify malaria free cities. Moreover, in Africa, urban areas that have a significant effect on malaria transmission can be mapped.
Subpixel urban impervious surface mapping: the impact of input Landsat images
NASA Astrophysics Data System (ADS)
Deng, Chengbin; Li, Chaojun; Zhu, Zhe; Lin, Weiying; Xi, Li
2017-11-01
Due to the heterogeneity of urban environments, subpixel urban impervious surface mapping is a challenging task in urban environmental studies. Factors, such as atmospheric correction, climate conditions, seasonal effect, urban settings, substantially affect fractional impervious surface estimation. Their impacts, however, have not been well studied and documented. In this research, we performed direct and comprehensive examinations to explore the impacts of these factors on subpixel estimation when using an effective machine learning technique (Random Forest) and provided solutions to alleviate these influences. Four conclusions can be drawn based on the repeatable experiments in three study areas under different climate conditions (humid continental, tropical monsoon, and Mediterranean climates). First, the performance of subpixel urban impervious surface mapping using top-of-atmosphere (TOA) reflectance imagery is comparable to, and even slightly better than, the surface reflectance imagery provided by U.S. Geological Services in all seasons and in all testing regions. Second, the effect of images with leaf-on/off season varies, and is contingent upon different climate regions. Specifically, humid continental areas may prefer the leaf-on imagery (e.g., summer), while the tropical monsoon and Mediterranean regions seem to favor the fall and winter imagery. Third, the overall estimation performance in the humid continental area is somewhat better than the other regions. Finally, improvements can be achieved by using multi-season imagery, but the increments become less obvious when including more than two seasons. The strategy and results of this research could improve and accommodate regional/national subpixel land cover mapping using Landsat images for large-scale environmental studies.
NASA Astrophysics Data System (ADS)
Ribeiro, F. N. D.; Soares, J.; Oliveira, A. P.; Miranda, R. M.; Chen, F.
2015-12-01
The gradual replacement of natural by built surfaces and the ongoing emission of particulate matter and other pollutants that happens in urban environments, besides degrading the environment, influence the local weather and climate patterns. Urban areas have different albedo, heat and hydraulic capacity and conductivity, roughness, emissivity, and transmissivity, when compared to naturally vegetated areas. This set of characteristics may change the surface energy budget, air temperature, humidity, atmospheric chemical composition, wind direction and velocity, and therefore the planetary boundary layer (PBL) development. The effects of urbanization on the PBL have been studied in many mid-latitude areas, however in the tropical or subtropical areas they are scarce. The MCITY Brazil project developed in 2 cities of Brazil, Sao Paulo (23°32' S) and Rio de Janeiro (latitude 22° 55' S), has provided the necessary data to properly investigate the effects of urbanization in these two cities. The project included a campaign of soundings launched every 3 hours for 10 consecutive days in August (Austral winter) from an airport at the north part of the city of Sao Paulo, that allowed the study of the PBL development, and also the measurements of the components of the energy budget equation by micrometeorological towers. Therefore, the goal of this work is to simulate the development of the PBL in the metropolitan area of Sao Paulo during winter, comparing its characteristics in urbanized and non urbanized sites, in order to assess the impact of urbanization on the development of the PBL in this area. The model used is the Weather Research and Forecast (WRF) with a single layer urban canopy parameterization (SLUCM) and realistic anthropogenic heat diurnal evolution. Preliminary results showed that the model is able to reproduce the PBL development during the campaign, including the passage of a cold-frontal system. The urban PBL reaches greater heights during the day than the PBL in non urban sites, suggesting that the urban sites generate more turbulence. Daytime urban PBL height reaches up to 2000 m and nighttime is usually less than 200 m. The surface turbulent fluxes and the energy budget near the surface will also be compared to observations and discussed.
[A landscape ecological approach for urban non-point source pollution control].
Guo, Qinghai; Ma, Keming; Zhao, Jingzhu; Yang, Liu; Yin, Chengqing
2005-05-01
Urban non-point source pollution is a new problem appeared with the speeding development of urbanization. The particularity of urban land use and the increase of impervious surface area make urban non-point source pollution differ from agricultural non-point source pollution, and more difficult to control. Best Management Practices (BMPs) are the effective practices commonly applied in controlling urban non-point source pollution, mainly adopting local repairing practices to control the pollutants in surface runoff. Because of the close relationship between urban land use patterns and non-point source pollution, it would be rational to combine the landscape ecological planning with local BMPs to control the urban non-point source pollution, which needs, firstly, analyzing and evaluating the influence of landscape structure on water-bodies, pollution sources and pollutant removal processes to define the relationships between landscape spatial pattern and non-point source pollution and to decide the key polluted fields, and secondly, adjusting inherent landscape structures or/and joining new landscape factors to form new landscape pattern, and combining landscape planning and management through applying BMPs into planning to improve urban landscape heterogeneity and to control urban non-point source pollution.
DOT National Transportation Integrated Search
1995-01-01
Prepared ca. 1995. This paper illustrates the use of the simulation-optimization technique of response surface methodology (RSM) in traffic signal optimization of urban networks. It also quantifies the gains of using the common random number (CRN) va...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Department of Housing and Urban Development. Inspection means: (1) A surface-by-surface investigation to.... Secretary means the Secretary of Housing and Urban Development. Seller means any entity that transfers legal... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Definitions. 745.103 Section 745.103...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Department of Housing and Urban Development. Inspection means: (1) A surface-by-surface investigation to.... Secretary means the Secretary of Housing and Urban Development. Seller means any entity that transfers legal... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Definitions. 745.103 Section 745.103...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Department of Housing and Urban Development. Inspection means: (1) A surface-by-surface investigation to.... Secretary means the Secretary of Housing and Urban Development. Seller means any entity that transfers legal... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Definitions. 745.103 Section 745.103...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Department of Housing and Urban Development. Inspection means: (1) A surface-by-surface investigation to.... Secretary means the Secretary of Housing and Urban Development. Seller means any entity that transfers legal... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Definitions. 745.103 Section 745.103...
Mapping impervious surfaces using object-oriented classification in a semiarid urban region
USDA-ARS?s Scientific Manuscript database
Mapping the expansion of impervious surfaces in urbanizing areas is important for monitoring and understanding the hydrologic impacts of land development. The most common approach using spectral vegetation indices, however, is difficult in arid and semiarid environments where vegetation is sparse an...
Tryjanowski, Piotr; Skórka, Piotr; Sparks, Tim H; Biaduń, Waldemar; Brauze, Tomasz; Hetmański, Tomasz; Martyka, Rafał; Indykiewicz, Piotr; Myczko, Łukasz; Kunysz, Przemysław; Kawa, Piotr; Czyż, Stanisław; Czechowski, Paweł; Polakowski, Michał; Zduniak, Piotr; Jerzak, Leszek; Janiszewski, Tomasz; Goławski, Artur; Duduś, Leszek; Nowakowski, Jacek J; Wuczyński, Andrzej; Wysocki, Dariusz
2015-10-01
Bird feeding is one of the most widespread direct interactions between man and nature, and this has important social and environmental consequences. However, this activity can differ between rural and urban habitats, due to inter alia habitat structure, human behaviour and the composition of wintering bird communities. We counted birds in 156 squares (0.25 km(2) each) in December 2012 and again in January 2013 in locations in and around 26 towns and cities across Poland (in each urban area, we surveyed 3 squares and also 3 squares in nearby rural areas). At each count, we noted the number of bird feeders, the number of bird feeders with food, the type of feeders, additional food supplies potentially available for birds (bread offered by people, bins) and finally the birds themselves. In winter, urban and rural areas differ in the availability of food offered intentionally and unintentionally to birds by humans. Both types of food availability are higher in urban areas. Our findings suggest that different types of bird feeder support only those species specialized for that particular food type and this relationship is similar in urban and rural areas.
Ganoza, Christian A; Matthias, Michael A; Collins-Richards, Devon; Brouwer, Kimberly C; Cunningham, Calaveras B; Segura, Eddy R; Gilman, Robert H; Gotuzzo, Eduardo; Vinetz, Joseph M
2006-08-01
Although previous data indicate that the overall incidence of human leptospirosis in the Peruvian Amazon is similar in urban and rural sites, severe leptospirosis has been observed only in the urban context. As a potential explanation for this epidemiological observation, we tested the hypothesis that concentrations of more virulent Leptospira would be higher in urban than in rural environmental surface waters. A quantitative real-time PCR assay was used to compare levels of Leptospira in urban and rural environmental surface waters in sites in the Peruvian Amazon region of Iquitos. Molecular taxonomic analysis of a 1,200-bp segment of the leptospiral 16S ribosomal RNA gene was used to identify Leptospira to the species level. Pathogenic Leptospira species were found only in urban slum water sources (Fisher's exact test; p = 0.013). The concentration of pathogen-related Leptospira was higher in urban than rural water sources (approximately 10(3) leptospires/ml versus 0.5 x 10(2) leptospires/ml; F = 8.406, p < 0.05). Identical 16S rRNA gene sequences from Leptospira interrogans serovar Icterohaemorrhagiae were found in urban slum market area gutter water and in human isolates, suggesting a specific mode of transmission from rats to humans. In a prospective, population-based study of patients presenting with acute febrile illness, isolation of L. interrogans-related leptospires from humans was significantly associated with urban acquisition (75% of urban isolates); human isolates of other leptospiral species were associated with rural acquisition (78% of rural isolates) (chi-square analysis; p < 0.01). This distribution of human leptospiral isolates mirrored the distribution of leptospiral 16S ribosomal gene sequences in urban and rural water sources. Our findings data support the hypothesis that urban severe leptospirosis in the Peruvian Amazon is associated with higher concentrations of more pathogenic leptospires at sites of exposure and transmission. This combined quantitative and molecular taxonomical risk assessment of environmental surface waters is globally applicable for assessing risk for leptospiral infection and severe disease in leptospirosis-endemic regions.
Collins-Richards, Devon; Brouwer, Kimberly C; Cunningham, Calaveras B; Segura, Eddy R; Gilman, Robert H; Gotuzzo, Eduardo; Vinetz, Joseph M
2006-01-01
Background Although previous data indicate that the overall incidence of human leptospirosis in the Peruvian Amazon is similar in urban and rural sites, severe leptospirosis has been observed only in the urban context. As a potential explanation for this epidemiological observation, we tested the hypothesis that concentrations of more virulent Leptospira would be higher in urban than in rural environmental surface waters. Methods and Findings A quantitative real-time PCR assay was used to compare levels of Leptospira in urban and rural environmental surface waters in sites in the Peruvian Amazon region of Iquitos. Molecular taxonomic analysis of a 1,200-bp segment of the leptospiral 16S ribosomal RNA gene was used to identify Leptospira to the species level. Pathogenic Leptospira species were found only in urban slum water sources (Fisher's exact test; p = 0.013). The concentration of pathogen-related Leptospira was higher in urban than rural water sources (~103 leptospires/ml versus 0.5 × 102 leptospires/ml; F = 8.406, p < 0.05). Identical 16S rRNA gene sequences from Leptospira interrogans serovar Icterohaemorrhagiae were found in urban slum market area gutter water and in human isolates, suggesting a specific mode of transmission from rats to humans. In a prospective, population-based study of patients presenting with acute febrile illness, isolation of L. interrogans-related leptospires from humans was significantly associated with urban acquisition (75% of urban isolates); human isolates of other leptospiral species were associated with rural acquisition (78% of rural isolates) (chi-square analysis; p < 0.01). This distribution of human leptospiral isolates mirrored the distribution of leptospiral 16S ribosomal gene sequences in urban and rural water sources. Conclusions Our findings data support the hypothesis that urban severe leptospirosis in the Peruvian Amazon is associated with higher concentrations of more pathogenic leptospires at sites of exposure and transmission. This combined quantitative and molecular taxonomical risk assessment of environmental surface waters is globally applicable for assessing risk for leptospiral infection and severe disease in leptospirosis-endemic regions. PMID:16933963
Evaluation of MEGAN predicted biogenic isoprene emissions at urban locations in Southeast Texas
NASA Astrophysics Data System (ADS)
Kota, Sri Harsha; Schade, Gunnar; Estes, Mark; Boyer, Doug; Ying, Qi
2015-06-01
Summertime isoprene emissions in the Houston area predicted by the Model of Emissions of Gases and Aerosol from Nature (MEGAN) version 2.1 during the 2006 TexAQS study were evaluated using a source-oriented Community Multiscale Air Quality (CMAQ) Model. Predicted daytime isoprene concentrations at nine surface sites operated by the Texas Commission of Environmental Quality (TCEQ) were significantly higher than local observations when biogenic emissions dominate the total isoprene concentrations, with mean normalized bias (MNB) ranges from 2.0 to 7.7 and mean normalized error (MNE) ranges from 2.2 to 7.7. Predicted upper air isoprene and its first generation oxidation products of methacrolein (MACR) and methyl vinyl ketone (MVK) were also significantly higher (MNB = 8.6, MNE = 9.1) than observations made onboard of NOAA's WP-3 airplane, which flew over the urban area. Over-prediction of isoprene and its oxidation products both at the surface and the upper air strongly suggests that biogenic isoprene emissions in the Houston area are significantly overestimated. Reducing the emission rates by approximately 3/4 was necessary to reduce the error between predictions and observations. Comparison of gridded leaf area index (LAI), plant functional type (PFT) and gridded isoprene emission factor (EF) used in MEGAN modeling with estimates of the same factors from a field survey north of downtown Houston showed that the isoprene over-prediction is likely caused by the combined effects of a large overestimation of the gridded EF in urban Houston and an underestimation of urban LAI. Nevertheless, predicted ozone concentrations in this region were not significantly affected by the isoprene over-predictions, while predicted isoprene SOA and total SOA concentrations can be higher by as much as 50% and 13% using the higher isoprene emission rates, respectively.
Melliger, Ramona Laila; Rusterholz, Hans-Peter; Baur, Bruno
2018-01-01
Urbanisation is increasing worldwide and is regarded a major driver of environmental change altering local species assemblages in urban green areas. Forests are one of the most frequent habitat types in urban landscapes harbouring many native species and providing important ecosystem services. By using a multi-taxa approach covering a range of trophic ranks, we examined the influence of degree of urbanisation and forest size on the species richness and functional diversity of plants, and ground surface-active ants and spiders. We conducted field surveys in twenty-six forests in the urban region of Basel, Switzerland. We found that a species’ response to urbanisation varied depending on trophic rank, habitat specificity and the diversity indices used. In plants, species richness decreased with degree of urbanisation, whereas that of both arthropod groups was not affected. However, ants and spiders at higher trophic rank showed greater shifts in species composition with increasing degree of urbanisation, and the percentage of forest specialists in both arthropod groups increased with forest size. Local abiotic site characteristics were also crucial for plant species diversity and species composition, while the structural diversity of both leaf litter and vegetation was important for the diversity of ants and spiders. Our results highlight that even small urban forests can harbour a considerable biodiversity including habitat specialists. Nonetheless, urbanisation directly and indirectly caused major shifts in species composition. Therefore, special consideration needs to be given to vulnerable species, including those with special habitat requirements. Locally adapted management practices could be a step forward to enhance habitat quality in a way to maximize diversity of forest species and thus ensure forest ecosystem functioning; albeit large-scale factors also remain important. PMID:29920553
Melliger, Ramona Laila; Braschler, Brigitte; Rusterholz, Hans-Peter; Baur, Bruno
2018-01-01
Urbanisation is increasing worldwide and is regarded a major driver of environmental change altering local species assemblages in urban green areas. Forests are one of the most frequent habitat types in urban landscapes harbouring many native species and providing important ecosystem services. By using a multi-taxa approach covering a range of trophic ranks, we examined the influence of degree of urbanisation and forest size on the species richness and functional diversity of plants, and ground surface-active ants and spiders. We conducted field surveys in twenty-six forests in the urban region of Basel, Switzerland. We found that a species' response to urbanisation varied depending on trophic rank, habitat specificity and the diversity indices used. In plants, species richness decreased with degree of urbanisation, whereas that of both arthropod groups was not affected. However, ants and spiders at higher trophic rank showed greater shifts in species composition with increasing degree of urbanisation, and the percentage of forest specialists in both arthropod groups increased with forest size. Local abiotic site characteristics were also crucial for plant species diversity and species composition, while the structural diversity of both leaf litter and vegetation was important for the diversity of ants and spiders. Our results highlight that even small urban forests can harbour a considerable biodiversity including habitat specialists. Nonetheless, urbanisation directly and indirectly caused major shifts in species composition. Therefore, special consideration needs to be given to vulnerable species, including those with special habitat requirements. Locally adapted management practices could be a step forward to enhance habitat quality in a way to maximize diversity of forest species and thus ensure forest ecosystem functioning; albeit large-scale factors also remain important.
Best management practices for nutrient and sediment retention in urban stormwater runoff.
Hogan, Dianna M; Walbridge, Mark R
2007-01-01
Stormwater management infrastructure is utilized in urban areas to alleviate flooding caused by decreased landscape permeability from increased impervious surface cover (ISC) construction. In this study, we examined two types of stormwater detention basins, SDB-BMPs (stormwater detention basin-best management practice), and SDB-FCs (stormwater detention basin-flood control). Both are constructed to retain peak stormwater flows for flood mitigation. However, the SDB-BMPs are also designed using basin topography and wetland vegetation to provide water quality improvement (nutrient and sediment removal and retention). The objective of this study was to compare SDB (both SDB-BMP and SDB-FC) surface soil P concentrations, P saturation, and Fe chemistry with natural riparian wetlands (RWs), using sites in Fairfax County, Virginia as a model system. The SDB-BMPs had significantly greater surface soil total P (P(t)) concentrations than the RWs and SDB-FCs (831.9 +/- 32.5 kg ha(-1), 643.3 +/- 19.1 kg ha(-1), and 652.1 +/- 18.8 kg ha(-1), respectively). The soil P sorption capacities of SDB-BMPs were similar to the RWs, and were greater than those of SDB-FCs, appearing to result in greater soil P removal and retention in SDB-BMPs compared with SDB-FCs. Increased Fe concentrations and relatively greater amounts of more crystalline forms of Fe in SDB-BMP soils suggested increased sediment deposition compared with RW and SDB-FC soils. Data suggest that SDB nutrient and sediment retention is facilitated in SDB-BMPs. When stormwater management is necessary, use of SDB-BMPs instead of SDB-FCs could foster more responsible urban development and be an appropriate mitigation action for receiving aquatic ecosystems.
Best management practices for nutrient and sediment retention in urban stormwater runoff
Hogan, D.M.; Walbridge, M.R.
2007-01-01
Stormwater management infrastructure is utilized in urban areas to alleviate flooding caused by decreased landscape permeability from increased impervious surface cover (ISC) construction. In this study, we examined two types of stormwater detention basins, SDB-BMPs (stormwater detention basin-best management practice), and SDB-FCs (stormwater detention basin-flood control). Both are constructed to retain peak stormwater flows for flood mitigation. However, the SDB-BMPs are also designed using basin topography and wetland vegetation to provide water quality improvement (nutrient and sediment removal and retention). The objective of this study was to compare SDB (both SDB-BMP and SDB-FC) surface soil P concentrations, P saturation, and Fe chemistry with natural riparian wetlands (RWs), using sites in Fairfax County, Virginia as a model system. The SDB-BMPs had significantly greater surface soil total P (Pt) concentrations than the RWs and SDB-FCs (831.9 ?? 32.5 kg ha-1, 643.3 ?? 19.1 kg ha-1, and 652.1 ?? 18.8 kg ha-1, respectively). The soil P sorption capacities of SDB-BMPs were similar to the RWs, and were greater than those of SDB-FCs, appearing to result in greater soil P removal and retention in SDB-BMPs compared with SDB-FCs. Increased Fe concentrations and relatively greater amounts of more crystalline forms of Fe in SDB-BMP soils suggested increased sediment deposition compared with RW and SDB-FC soils. Data suggest that SDB nutrient and sediment retention is facilitated in SDB-BMPs. When stormwater management is necessary, use of SDB-BMPs instead of SDB-FCs could foster more responsible urban development and be an appropriate mitigation action for receiving aquatic ecosystems. ?? ASA, CSSA, SSSA.
Liao, Chunyang; Richards, Jaben; Taylor, Allison R; Gan, Jay
2017-12-01
Widespread use of insecticides for the control of urban pests such as ants, termites, and spiders has resulted in contamination and toxicity in urban aquatic ecosystems in different regions of the world. Passive samplers are a convenient and integrative tool for in situ monitoring of trace contaminants in surface water. However, the performance of a passive sampler depends closely on its affinity for the target analytes, making passive samplers highly specific to the types of contaminants being monitored. The goal of this study was to develop a passive sampler compatible with a wide range of insecticides, including the strongly hydrophobic pyrethroids and the weakly hydrophobic fipronil and organophosphates. Of six candidate polymeric thin films, polyurethane film (PU) was identified to be the best at enriching the test compounds. The inclusion of stable isotope labeled analogs as performance reference compounds (PRCs) further allowed the use of PU film for pyrethroids under non-equilibrium conditions. The PU sampler was tested in a large aquarium with circulatory water flow, and also deployed at multiple sites in surface streams in southern California. The concentrations of pesticides derived from the PU sampler ranged from 0.5 to 18.5 ng/L, which were generally lower than the total chemical concentration measured by grab samples, suggesting that suspended particles and dissolved organic matter in water rendered them less available. The influence of suspended particles and dissolved organic matter on bioavailability was more pronounced for pyrethroids than for fipronils. The results show that the developed PU film sampler, when coupled with PRCs, may be used for rapid and sensitive in-situ monitoring of a wide range of insecticides in surface water. Copyright © 2017 Elsevier Ltd. All rights reserved.
A wind tunnel study of flows over idealised urban surfaces with roughness sublayer corrections
NASA Astrophysics Data System (ADS)
Ho, Yat-Kiu; Liu, Chun-Ho
2017-10-01
Dynamics in the roughness (RSLs) and inertial (ISLs) sublayers in the turbulent boundary layers (TBLs) over idealised urban surfaces are investigated analytically and experimentally. In this paper, we derive an analytical solution to the mean velocity profile, which is a continuous function applicable to both RSL and ISL, over rough surfaces in isothermal conditions. Afterwards, a modified mixing-length model for RSL/ISL transport is developed that elucidates how surface roughness affects the turbulence motions. A series of wind tunnel experiments are conducted to measure the vertical profiles of mean and fluctuating velocities, together with momentum flux over various configurations of surface-mounted ribs in cross flows using hot-wire anemometry (HWA). The analytical solution agrees well with the wind tunnel result that improves the estimate to mean velocity profile over urban surfaces and TBL dynamics as well. The thicknesses of RSL and ISL are calculated by monitoring the convergence/divergence between the temporally averaged and spatio-temporally averaged profiles of momentum flux. It is found that the height of RSL/ISL interface is a function of surface roughness. Examining the direct, physical influence of roughness elements on near-surface RSL flows reveals that the TBL flows over rough surfaces exhibit turbulence motions of two different length scales which are functions of the RSL and ISL structure. Conclusively, given a TBL, the rougher the surface, the higher is the RSL intruding upward that would thinner the ISL up to 50 %. Therefore, the conventional ISL log-law approximation to TBL flows over urban surfaces should be applied with caution.
Transfer of glyphosate and its degradate AMPA to surface waters through urban sewerage systems.
Botta, Fabrizio; Lavison, Gwenaëlle; Couturier, Guillaume; Alliot, Fabrice; Moreau-Guigon, Elodie; Fauchon, Nils; Guery, Bénédicte; Chevreuil, Marc; Blanchoud, Hélène
2009-09-01
A study of glyphosate and aminomethyl phosphonic acid (AMPA) transfer in the Orge watershed (France) was carried out during 2007 and 2008. Water samples were collected in surface water, wastewater sewer, storm sewer and wastewater treatment plant (WWTP). These two molecules appeared to be the most frequently detected ones in the rivers and usually exceeded the European quality standard concentrations of 0.1microg L(-1) for drinking water. The annual glyphosate estimated load was 1.9 kg year(-1) upstream (agricultural zone) and 179.5 kg year(-1) at the catchment outlet (urban zone). This result suggests that the contamination of this basin by glyphosate is essentially from urban origin (road and railway applications). Glyphosate reached surface water prevalently through storm sewer during rainfall event. Maximum concentrations were detected in storm sewer just after a rainfall event (75-90 microg L(-1)). High concentrations of glyphosate in surface water during rainfall events reflected urban runoff impact. AMPA was always detected in the sewerage system. This molecule reached surface water mainly via WWTP effluent and also through storm sewer. Variations in concentrations of AMPA during hydrological episodes were minor compared to glyphosate variations. Our study highlights that AMPA and glyphosate origins in urban area are different. During dry period, detergent degradation seemed to be the major AMPA source in wastewater.
Ouyang, Wei; Guo, Bobo; Hao, Fanghua; Huang, Haobo; Li, Junqi; Gong, Yongwei
2012-12-30
Managing storm rainfall runoff is paramount in semi-arid regions with urban development. In Beijing, pollution prevention in urban storm runoff and storm water utilization has been identified as the primary strategy for urban water management. In this paper, we sampled runoff during storm rainfall events and analyzed the concentration of chemical oxygen demand (COD), total suspended solids (TSS) and total phosphorus (TP) in the runoff. Furthermore, the first flush effect of storm rainfall from diverse underlying surfaces was also analyzed. With the Storm Water Management Model (SWMM), the different impervious rates of underlying surfaces during the storm runoff process were expressed. The removal rates of three typical pollutants and their interactions with precipitation and underlying surfaces were identified. From these rates, the scenarios regarding the urban storm runoff pollution loading from different designs of underlying previous rates were assessed with the SWMM. First flush effect analysis showed that the first 20% of the storm runoff should be discarded, which can help in utilizing the storm water resource. The results of this study suggest that the SWMM can express in detail the storm water pollution patterns from diverse underlying surfaces in Beijing, which significantly affected water quality. The scenario analysis demonstrated that impervious rate adjustment has the potential to reduce runoff peak and decrease pollution loading. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bonn, Boris; von Schneidemesser, Erika; Andrich, Dorota; Quedenau, Jörn; Gerwig, Holger; Lüdecke, Anja; Kura, Jürgen; Pietsch, Axel; Ehlers, Christian; Klemp, Dieter; Kofahl, Claudia; Nothard, Rainer; Kerschbaumer, Andreas; Junkermann, Wolfgang; Grote, Rüdiger; Pohl, Tobias; Weber, Konradin; Lode, Birgit; Schönberger, Philipp; Churkina, Galina; Butler, Tim M.; Lawrence, Mark G.
2016-06-01
Urban air quality and human health are among the key aspects of future urban planning. In order to address pollutants such as ozone and particulate matter, efforts need to be made to quantify and reduce their concentrations. One important aspect in understanding urban air quality is the influence of urban vegetation which may act as both emitter and sink for trace gases and aerosol particles. In this context, the "Berlin Air quality and Ecosystem Research: Local and long-range Impact of anthropogenic and Natural hydrocarbons 2014" (BAERLIN2014) campaign was conducted between 2 June and 29 August in the metropolitan area of Berlin and Brandenburg, Germany. The predominant goals of the campaign were (1) the characterization of urban gaseous and particulate pollution and its attribution to anthropogenic and natural sources in the region of interest, especially considering the connection between biogenic volatile organic compounds and particulates and ozone; (2) the quantification of the impact of urban vegetation on organic trace gas levels and the presence of oxidants such as ozone; and (3) to explain the local heterogeneity of pollutants by defining the distribution of sources and sinks relevant for the interpretation of model simulations. In order to do so, the campaign included stationary measurements at urban background station and mobile observations carried out from bicycle, van and airborne platforms. This paper provides an overview of the mobile measurements (Mobile BAERLIN2014) and general conclusions drawn from the analysis. Bicycle measurements showed micro-scale variations of temperature and particulate matter, displaying a substantial reduction of mean temperatures and particulate levels in the proximity of vegetated areas compared to typical urban residential area (background) measurements. Van measurements extended the area covered by bicycle observations and included continuous measurements of O3, NOx, CO, CO2 and point-wise measurement of volatile organic compounds (VOCs) at representative sites for traffic- and vegetation-affected sites. The quantification displayed notable horizontal heterogeneity of the short-lived gases and particle number concentrations. For example, baseline concentrations of the traffic-related chemical species CO and NO varied on average by up to ±22.2 and ±63.5 %, respectively, on the scale of 100 m around any measurement location. Airborne observations revealed the dominant source of elevated urban particulate number and mass concentrations being local, i.e., not being caused by long-range transport. Surface-based observations related these two parameters predominantly to traffic sources. Vegetated areas lowered the pollutant concentrations substantially with ozone being reduced most by coniferous forests, which is most likely caused by their reactive biogenic VOC emissions. With respect to the overall potential to reduce air pollutant levels, forests were found to result in the largest decrease, followed by parks and facilities for sports and leisure. Surface temperature was generally 0.6-2.1 °C lower in vegetated regions, which in turn will have an impact on tropospheric chemical processes. Based on our findings, effective future mitigation activities to provide a more sustainable and healthier urban environment should focus predominantly on reducing fossil-fuel emissions from traffic as well as on increasing vegetated areas.
NASA Astrophysics Data System (ADS)
Huang, Xin; Chen, Huijun; Gong, Jianya
2018-01-01
Spaceborne multi-angle images with a high-resolution are capable of simultaneously providing spatial details and three-dimensional (3D) information to support detailed and accurate classification of complex urban scenes. In recent years, satellite-derived digital surface models (DSMs) have been increasingly utilized to provide height information to complement spectral properties for urban classification. However, in such a way, the multi-angle information is not effectively exploited, which is mainly due to the errors and difficulties of the multi-view image matching and the inaccuracy of the generated DSM over complex and dense urban scenes. Therefore, it is still a challenging task to effectively exploit the available angular information from high-resolution multi-angle images. In this paper, we investigate the potential for classifying urban scenes based on local angular properties characterized from high-resolution ZY-3 multi-view images. Specifically, three categories of angular difference features (ADFs) are proposed to describe the angular information at three levels (i.e., pixel, feature, and label levels): (1) ADF-pixel: the angular information is directly extrapolated by pixel comparison between the multi-angle images; (2) ADF-feature: the angular differences are described in the feature domains by comparing the differences between the multi-angle spatial features (e.g., morphological attribute profiles (APs)). (3) ADF-label: label-level angular features are proposed based on a group of urban primitives (e.g., buildings and shadows), in order to describe the specific angular information related to the types of primitive classes. In addition, we utilize spatial-contextual information to refine the multi-level ADF features using superpixel segmentation, for the purpose of alleviating the effects of salt-and-pepper noise and representing the main angular characteristics within a local area. The experiments on ZY-3 multi-angle images confirm that the proposed ADF features can effectively improve the accuracy of urban scene classification, with a significant increase in overall accuracy (3.8-11.7%) compared to using the spectral bands alone. Furthermore, the results indicated the superiority of the proposed ADFs in distinguishing between the spectrally similar and complex man-made classes, including roads and various types of buildings (e.g., high buildings, urban villages, and residential apartments).
NASA Astrophysics Data System (ADS)
Adachi, S. A.; Hara, M.; Takahashi, H. G.; Ma, X.; Yoshikane, T.; Kimura, F.
2013-12-01
Severe hot weather in summer season becomes a big social problem in metropolitan areas, including the Nagoya region in Japan. Surface air temperature warming is projected in the future. Therefore, the reduction of surface air temperature is an urgent issue in the urban area. Although there are several studies dealing with the effects of global climate change and urbanization to the local climate in the future, these studies tend to ignore the future population changes. This study estimates future land-use scenarios associated with the multi-projections of future population and investigates the impacts of these scenarios on the surface temperature change. The Weather Research and Forecast model ver. 3.3.1 (hereafter, WRF) was used in this study. The horizontal resolutions were 20km, 4km, and 2km, for outer, middle, and inner domains, respectively. The results from the inner domain, covering the Nagoya region, were used for the analysis. The Noah land surface model and the single-layer urban canopy model were applied to calculate the land surface processes and urban surface processes, respectively. The initial and boundary conditions were given from the NCEP/NCAR reanalysis data in August 2010. The urban area ratio used in the WRF model was calculated from the future land-use data provided by the S8 project. The land-use data was created as follows. (1) Three scenarios of population, namely, with high-fertility assumption and low-mortality assumption (POP-high), with medium-fertility assumption and medium-mortality assumption (POP-med), and with low-fertility assumption and high-mortality assumption (POP-low), are estimated using the method proposed by Ariga and Matsuhashi (2012). These scenarios are based on the future projections provided by the National Institute of Population and Social Security Research. (2) The future changes in urban area ratio were assumed to be proportional to the population change (Hanasaki et al., 2012). The averaged urban area ratio in the Nagoya region was 0.37 in 2010. The area ratios were projected to reach a peak in 2010 to 2020, and then to decrease in the future in all of scenarios. The urban heat island intensity in the Nagoya region is about 1.5°C in 2010. In contrast, the differences of surface temperature is -0.17°C, -0.21°C, and -0.30°C in POP-high, POP-med, and POP-low, from the current situation in 2010. These impacts correspond to the 10% to 20% of current urban heat island intensity. However, the changes in the efficiency of energy consumption were not considered. Considering that the future surface temperature change is projected to be about 1.2°C to 4°C in 2070, it is required to quantitatively evaluate future urban scenarios including the mitigation strategies for urban heat island such as the improvement of energy consumption, greening, and so on. Acknowledgments. This study was supported by the Research Program on Climate Change Adaptation (RECCA) Fund by Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan and the Global Environment Research Fund (S-8) of the Ministry of the Environment of Japan.
City ventilation of Hong Kong at no-wind conditions
NASA Astrophysics Data System (ADS)
Yang, Lina; Li, Yuguo
We hypothesize that city ventilation due to both thermally-driven mountain slope flows and building surface flows is important in removing ambient airborne pollutants in the high-rise dense city Hong Kong at no-wind conditions. Both spatial and temporal urban surface temperature profiles are an important boundary condition for studying city ventilation by thermal buoyancy. Field measurements were carried out to investigate the diurnal thermal behavior of urban surfaces (mountain slopes, and building exterior walls and roofs) in Hong Kong by using the infrared thermography. The maximum urban surface temperature was measured in the early noon hours (14:00-15:00 h) and the minimum temperature was observed just before sunrise (5:00 h). The vertical surface temperature of the building exterior wall was found to increase with height at daytime and the opposite occurred at nighttime. The solar radiation and the physical properties of the various urban surfaces were found to be important factors affecting the surface thermal behaviors. The temperature difference between the measured maximum and minimum surface temperatures of the four selected exterior walls can be at the highest of 16.7 °C in the early afternoon hours (15:00 h). Based on the measured surface temperatures, the ventilation rate due to thermal buoyancy-induced wall surface flows of buildings and mountain slope winds were estimated through an integral analysis of the natural convection flow over a flat surface. At no-wind conditions, the total air change rate by the building wall flows (2-4 ACH) was found to be 2-4 times greater than that by the slope flows due to mountain surface (1 ACH) due to larger building exterior surface areas and temperature differences with surrounding air. The results provide useful insights into the ventilation of a high-rise dense city at no-wind conditions.
Detecting Unknown Artificial Urban Surface Materials Based on Spectral Dissimilarity Analysis.
Jilge, Marianne; Heiden, Uta; Habermeyer, Martin; Mende, André; Juergens, Carsten
2017-08-08
High resolution imaging spectroscopy data have been recognised as a valuable data resource for augmenting detailed material inventories that serve as input for various urban applications. Image-specific urban spectral libraries are successfully used in urban imaging spectroscopy studies. However, the regional- and sensor-specific transferability of such libraries is limited due to the wide range of different surface materials. With the developed methodology, incomplete urban spectral libraries can be utilised by assuming that unknown surface material spectra are dissimilar to the known spectra in a basic spectral library (BSL). The similarity measure SID-SCA (Spectral Information Divergence-Spectral Correlation Angle) is applied to detect image-specific unknown urban surfaces while avoiding spectral mixtures. These detected unknown materials are categorised into distinct and identifiable material classes based on their spectral and spatial metrics. Experimental results demonstrate a successful redetection of material classes that had been previously erased in order to simulate an incomplete BSL. Additionally, completely new materials e.g., solar panels were identified in the data. It is further shown that the level of incompleteness of the BSL and the defined dissimilarity threshold are decisive for the detection of unknown material classes and the degree of spectral intra-class variability. A detailed accuracy assessment of the pre-classification results, aiming to separate natural and artificial materials, demonstrates spectral confusions between spectrally similar materials utilizing SID-SCA. However, most spectral confusions occur between natural or artificial materials which are not affecting the overall aim. The dissimilarity analysis overcomes the limitations of working with incomplete urban spectral libraries and enables the generation of image-specific training databases.
Detecting Unknown Artificial Urban Surface Materials Based on Spectral Dissimilarity Analysis
Jilge, Marianne; Heiden, Uta; Habermeyer, Martin; Mende, André; Juergens, Carsten
2017-01-01
High resolution imaging spectroscopy data have been recognised as a valuable data resource for augmenting detailed material inventories that serve as input for various urban applications. Image-specific urban spectral libraries are successfully used in urban imaging spectroscopy studies. However, the regional- and sensor-specific transferability of such libraries is limited due to the wide range of different surface materials. With the developed methodology, incomplete urban spectral libraries can be utilised by assuming that unknown surface material spectra are dissimilar to the known spectra in a basic spectral library (BSL). The similarity measure SID-SCA (Spectral Information Divergence-Spectral Correlation Angle) is applied to detect image-specific unknown urban surfaces while avoiding spectral mixtures. These detected unknown materials are categorised into distinct and identifiable material classes based on their spectral and spatial metrics. Experimental results demonstrate a successful redetection of material classes that had been previously erased in order to simulate an incomplete BSL. Additionally, completely new materials e.g., solar panels were identified in the data. It is further shown that the level of incompleteness of the BSL and the defined dissimilarity threshold are decisive for the detection of unknown material classes and the degree of spectral intra-class variability. A detailed accuracy assessment of the pre-classification results, aiming to separate natural and artificial materials, demonstrates spectral confusions between spectrally similar materials utilizing SID-SCA. However, most spectral confusions occur between natural or artificial materials which are not affecting the overall aim. The dissimilarity analysis overcomes the limitations of working with incomplete urban spectral libraries and enables the generation of image-specific training databases. PMID:28786947
NASA Astrophysics Data System (ADS)
Lehtihet, M. C.; Bouchair, A.
2018-05-01
Buildings with dark surfaces, concrete and pavement, needed for the expansion of cities, absorb huge amounts of heat, increasing the mean radiant temperatures of urban areas and offer significant potential for urban heat island (UHI) effect. The purpose of this work is to investigate the impact of green roofs on the improvement of urban heat performance in Mediterranean climate. A field investigation is carried out using two large-scale modules built in the city of Jijel in the north of Algeria. The first is a bare reinforced concrete slab whereas the second is covered with ivy plants. The experimental site, the air and surface temperature parameters and the various measurement points at the level of the modules are chosen. Measurements are performed using thermo-hygrometer, surface sensors and data acquisition apparatus. The results show that green roofs can be a potential mean of improving the thermal performance of the surrounding microclimate and energy performance of buildings in an urban area. The green roof could be an encouraging strategy against urban heat island effect not only for Mediterranean cities but also for other areas.
Li, Kun; Yu, Zhuang
2008-01-01
Urban heat islands are one of the most critical urban environment heat problems. Landsat ETM+ satellite data were used to investigate the land surface temperature and underlying surface indices such as NDVI and NDBI. A comparative study of the urban heat environment at different scales, times and locations was done to verify the heat island characteristics. Since remote sensing technology has limitations for dynamic flow analysis in the study of urban spaces, a CFD simulation was used to validate the improvement of the heat environment in a city by means of wind. CFD technology has its own shortcomings in parameter setting and verification, while RS technology is helpful to remedy this. The city of Wuhan and its climatological condition of being hot in summer and cold in winter were chosen to verify the comparative and combinative application of RS with CFD in studying the urban heat island. PMID:27873893
Harclerode, C L; Gentry, T J; Aitkenhead-Peterson, J A
2013-06-01
Diffuse sources of surface water pathogens and nutrients can be difficult to isolate in larger river basins. This study used a geographical or nested approach to isolate diffuse sources of Escherichia coli and other water quality constituents in a 145.7-km(2) river basin in south central Texas, USA. Average numbers of E. coli ranged from 49 to 64,000 colony forming units (CFU) per 100 mL depending upon season and stream flow over the 1-year sampling period. Nitrate-N concentrations ranged from 48 to 14,041 μg L(-1) and orthophosphate-P from 27 to 2,721 μg L(-1). High concentrations of nitrate-N, dissolved organic nitrogen, and orthophosphate-P were observed downstream of waste water treatment plants but E. coli values were higher in a watershed draining an older part of the city. Total urban land use explained between 56 and 72 % of the variance in mean annual E. coli values (p < 0.05) in nine hydrologically disconnected creeks. Of the types of urban land use, commercial land use explained most of the variance in E. coli values in the fall and winter. Surface water sodium, alkalinity, and potassium concentrations in surface water were best described by the proportion of commercial land use in the watershed. Based on our nested approach in examining surface water, city officials are able to direct funding to specific areas of the basin in order to mitigate high surface water E. coli numbers and nutrient concentrations.
NASA Astrophysics Data System (ADS)
Shields, C. A.; Tague, C.
2010-12-01
With a majority of the world's population now living in urban areas, the role of vegetation in urban ecosystems warrants increased attention. We address the question of how the fine scale (<5m) spatial arrangement of impervious surfaces affects water available to vegetation, which in turn can significantly impact the productivity of vegetation and uptake of C and N. To gain insight into how landscape features influence vegetation productivity, we use a coupled ecohydrogic model to estimate impacts of the amount and arrangement of impervious surfaces on vegetation water use. We use the model to explore how concepts from research in natural semi-arid ecosystems can be applied in the urban context. Ecological research in semi-arid ecosystems has shown that the arrangement of vegetated and bare surfaces plays a key role in regulating both runoff and ecosystem water use and productivity. Systems that include a mixture of bare and vegetated surfaces, for example, tend to show less runoff and more productivity than those with more homogeneous cover. In some instances, patchiness of bare and vegetated surfaces is more important than total vegetated area in determining rates of runoff and vegetation use of rainfall. In an urban context, impervious surfaces can be viewed as analogous to the bare surfaces present in undeveloped ecosystems. We consider not only the total impervious area (TIA), but also the effect of impervious area with a direct hydrologic connection to the stream network, effective impervious area (EIA). While increases in total impervious area (TIA) have been widely shown to impact catchment hydrology, the role of effective impervious area (EIA) has been less extensively studied. A consensus is emerging from the literature that EIA is as important or even more important than TIA as an indicator of catchment response to urbanization. Ecohydrologic models offer a tool to quantify the role of EIA on water availability and plant productivity and demonstrate the potential of urban areas to act as C or N sinks (and minimize the impacts such as increased storm runoff and degraded downstream water quality). We explore the relative roles of TIA and EIA on water availability and plant productivity in a semi-arid urban environment through a series of modeling exercises. The Regional HydroEcological Simulation System (RHESSys) is used to model a range of impervious surface and vegetation scenarios on a test hillslope in the Mission Creek catchment in Santa Barbara CA. Results indicate that reduced EIA can indeed act to mitigate the impact of TIA on water available to plants. We then implement a modification to the RHESSys model that incorporates patch scale estimates of EIA into simulations of the entire Mission Creek catchment, allowing us to quantify likely catchment-scale impacts of altering EIA.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-22
... many cases staffed by volunteers, offering outreach and referral-type services, and maintaining..., for a pilot urban clinic in Rapid City. In 1973, Congress appropriated funds to study the unmet urban Indian health needs in Minneapolis. The findings of this study documented cultural, economic, and access...
Green Infrastructure and Watershed-Scale Hydrology in a Mixed Land Cover System
NASA Astrophysics Data System (ADS)
Hoghooghi, N.; Golden, H. E.; Bledsoe, B. P.
2017-12-01
Urbanization results in replacement of pervious areas (e.g., vegetation, topsoil) with impervious surfaces such as roads, roofs, and parking lots, which cause reductions in interception, evapotranspiration, and infiltration, and increases in surface runoff (overland flow) and pollutant loads and concentrations. Research on the effectiveness of different Green Infrastructure (GI), or Low Impact Development (LID), practices to reduce these negative impacts on stream flow and water quality has been mostly focused at the local scale (e.g., plots, small catchments). However, limited research has considered the broader-scale effects of LID, such as how LID practices influence water quantity, nutrient removal, and aquatic ecosystems at watershed scales, particularly in mixed land cover and land use systems. We use the Visualizing Ecosystem Land Management Assessments (VELMA) model to evaluate the effects of different LID practices on daily and long-term watershed-scale hydrology, including infiltration surface runoff. We focus on Shayler Crossing (SHC) watershed, a mixed land cover (61% urban, 24% agriculture, 15% forest) subwatershed of the East Fork Little Miami River watershed, Ohio, United States, with a drainage area of 0.94 km2. The model was calibrated to daily stream flow at the outlet of SHC watershed from 2009 to 2010 and was applied to evaluate diverse distributions (at 25% to 100% implementation levels) and types (e.g., pervious pavement and rain gardens) of LID across the watershed. Results show reduced surface water runoff and higher rates of infiltration concomitant with increasing LID implementation levels; however, this response varies between different LID practices. The highest magnitude response in streamflow at the watershed outlet is evident when a combination of LID practices is applied. The combined scenarios elucidate that the diverse watershed-scale hydrological responses of LID practices depend primarily on the type and extent of the implemented practices. Our work provides a key advancement toward improving current understanding of the effectiveness and efficiencies of LID approaches in mixed land cover watersheds.
Mahler, Barbara J.; Van Metre, Peter C.; Wilson, Jennifer T.
2004-01-01
Samples of creek bed sediment collected near seal-coated parking lots in Austin, Texas, by the City of Austin during 2001–02 had unusually elevated concentrations of polycyclic aromatic hydrocarbons (PAHs). To investigate the possibility that PAHs from seal-coated parking lots might be transported to urban creeks, the U.S. Geological Survey, in cooperation with the City of Austin, sampled runoff and scrapings from four test plots and 13 urban parking lots. The surfaces sampled comprise coal-tar-emulsion-sealed, asphalt-emulsion-sealed, unsealed asphalt, and unsealed concrete. Particulates and filtered water in runoff and surface scrapings were analyzed for PAHs. In addition, particulates in runoff were analyzed for major and trace elements. Samples of all three media from coal-tar-sealed parking lots had concentrations of PAHs higher than those from any other types of surface. The mean total PAH concentration in particulates in runoff from parking lots in use were 3,500,000, 620,000, and 54,000 micrograms per kilogram from coal-tar-sealed, asphalt-sealed, and unsealed (asphalt and concrete combined) lots, respectively. The probable effect concentration sediment quality guideline is 22,800 micrograms per kilogram. The mean total PAH (sum of detected PAHs) concentration in filtered water from parking lots in use was 8.6 micrograms per liter for coal-tar-sealed lots; the one sample analyzed from an asphalt-sealed lot had a concentration of 5.1 micrograms per liter and the one sample analyzed from an unsealed asphalt lot was 0.24 microgram per liter. The mean total PAH concentration in scrapings was 23,000,000, 820,000, and 14,000 micrograms per kilogram from coal-tar-sealed, asphalt-sealed, and unsealed asphalt lots, respectively. Concentrations of lead and zinc in particulates in runoff frequently exceeded the probable effect concentrations, but trace element concentrations showed no consistent variation with parking lot surface type.
Douglas L. Sisterson
1977-01-01
Data collected on 26 July 1974 as a part of project METROMEX in St. Louis show the three-dimensional structure of the urban moisture field. Mesoscale dry regions at the urban surface, corresponding to large residential and light industrial land-use characterization, were responsible for a reduction in specific humidity in the urban mixing layer. Anthropogenic sources...
NASA Astrophysics Data System (ADS)
Dong, L.
2017-12-01
Abstract: The original urban surface structure changed a lot because of the rapid development of urbanization. Impermeable area has increased a lot. It causes great pressure for city flood control and drainage. Songmushan reservoir basin with high degree of urbanization is taken for an example. Pixel from Landsat is decomposed by Linear spectral mixture model and the proportion of urban area in it is considered as impervious rate. Based on impervious rate data before and after urbanization, an physically based distributed hydrological model, Liuxihe Model, is used to simulate the process of hydrology. The research shows that the performance of the flood forecasting of high urbanization area carried out with Liuxihe Model is perfect and can meet the requirement of the accuracy of city flood control and drainage. The increase of impervious area causes conflux speed more quickly and peak flow to be increased. It also makes the time of peak flow advance and the runoff coefficient increase. Key words: Liuxihe Model; Impervious rate; City flood control and drainage; Urbanization; Songmushan reservoir basin
Classification of simple vegetation types using POLSAR image data
NASA Technical Reports Server (NTRS)
Freeman, A.
1993-01-01
Mapping basic vegetation or land cover types is a fairly common problem in remote sensing. Knowledge of the land cover type is a key input to algorithms which estimate geophysical parameters, such as soil moisture, surface roughness, leaf area index or biomass from remotely sensed data. In an earlier paper, an algorithm for fitting a simple three-component scattering model to POLSAR data was presented. The algorithm yielded estimates for surface scatter, double-bounce scatter and volume scatter for each pixel in a POLSAR image data set. In this paper, we show how the relative levels of each of the three components can be used as inputs to simple classifier for vegetation type. Vegetation classes include no vegetation cover (e.g. bare soil or desert), low vegetation cover (e.g. grassland), moderate vegetation cover (e.g. fully developed crops), forest and urban areas. Implementation of the approach requires estimates for the three components from all three frequencies available using the NASA/JPL AIRSAR, i.e. C-, L- and P-bands. The research described in this paper was carried out by the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration.
Formation of reactive nitrogen oxides from urban grime photochemistry
NASA Astrophysics Data System (ADS)
Baergen, Alyson M.; Donaldson, D. James
2016-05-01
Impervious surfaces are ubiquitous in urban environments and constitute a substrate onto which atmospheric constituents can deposit and undergo photochemical and oxidative processing, giving rise to "urban grime" films. HNO3 and N2O5 are important sinks for NOx in the lower atmosphere and may be deposited onto these films, forming nitrate through surface hydrolysis. Although such deposition has been considered as a net loss of NOx from the atmosphere, there is increasing evidence that surface-associated nitrate undergoes further reaction. Here, we examine the gas phase products of the photochemistry of real, field-collected urban grime using incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS). Gas phase nitrogen oxides are emitted upon illumination of grime samples and their production increases with ambient relative humidity (RH) up to 35 % after which the production becomes independent of RH. These results are discussed in the context of water uptake onto and evaporation from grime films.
Characterizing dry deposition of mercury in urban runoff
Fulkerson, M.; Nnadi, F.N.; Chasar, L.S.
2007-01-01
Stormwater runoff from urban surfaces often contains elevated levels of toxic metals. When discharged directly into water bodies, these pollutants degrade water quality and impact aquatic life and human health. In this study, the composition of impervious surface runoff and associated rainfall was investigated for several storm events at an urban site in Orlando, Florida. Total mercury in runoff consisted of 58% particulate and 42% filtered forms. Concentration comparisons at the start and end of runoff events indicate that about 85% of particulate total mercury and 93% of particulate methylmercury were removed from the surface before runoff ended. Filtered mercury concentrations showed less than 50% reduction of both total and methylmercury from first flush to final flush. Direct comparison between rainfall and runoff at this urban site indicates dry deposition accounted for 22% of total inorganic mercury in runoff. ?? 2007 Springer Science+Business Media B.V.
NASA Astrophysics Data System (ADS)
Zhong, Shi; Qian, Yun; Zhao, Chun; Leung, Ruby; Wang, Hailong; Yang, Ben; Fan, Jiwen; Yan, Huiping; Yang, Xiu-Qun; Liu, Dongqing
2017-04-01
The WRF-Chem model coupled with a single-layer urban canopy model (UCM) is integrated for 5 years at convection-permitting scale to investigate the individual and combined impacts of urbanization-induced changes in land cover and pollutant emissions on regional climate in the Yangtze River Delta (YRD) region in eastern China. Simulations with the urbanization effects reasonably reproduced the observed features of temperature and precipitation in the YRD region. Urbanization over the YRD induces an urban heat island (UHI) effect, which increases the surface temperature by 0.53 °C in summer and increases the annual heat wave days at a rate of 3.7 d yr-1 in the major megacities in the YRD, accompanied by intensified heat stress. In winter, the near-surface air temperature increases by approximately 0.7 °C over commercial areas in the cities but decreases in the surrounding areas. Radiative effects of aerosols tend to cool the surface air by reducing net shortwave radiation at the surface. Compared to the more localized UHI effect, aerosol effects on solar radiation and temperature influence a much larger area, especially downwind of the city cluster in the YRD. Results also show that the UHI increases the frequency of extreme summer precipitation by strengthening the convergence and updrafts over urbanized areas in the afternoon, which favor the development of deep convection. In contrast, the radiative forcing of aerosols results in a surface cooling and upper-atmospheric heating, which enhances atmospheric stability and suppresses convection. The combined effects of the UHI and aerosols on precipitation depend on synoptic conditions. Two rainfall events under two typical but different synoptic weather patterns are further analyzed. It is shown that the impact of urban land cover and aerosols on precipitation is not only determined by their influence on local convergence but also modulated by large-scale weather systems. For the case with a strong synoptic forcing associated with stronger winds and larger spatial convergence, the UHI and aerosol effects are relatively weak. When the synoptic forcing is weak, however, the UHI and aerosol effects on local convergence dominate. This suggests that synoptic forcing plays a significant role in modulating the urbanization-induced land-cover and aerosol effects on individual rainfall event. Hence precipitation changes due to urbanization effects may offset each other under different synoptic conditions, resulting in little changes in mean precipitation at longer timescales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Shi; Qian, Yun; Zhao, Chun
The WRF-Chem model coupled with a single-layer urban canopy model (UCM) is integrated for 5 years at convection-permitting scale to investigate the individual and combined impacts of urbanization-induced changes in land cover and pollutant emissions on regional climate in the Yangtze River Delta (YRD) region in eastern China. Simulations with the urbanization effects reasonably reproduced the observed features of temperature and precipitation in the YRD region. Urbanization over the YRD induces an urban heat island (UHI) effect, which increases the surface temperature by 0.53 °C in summer and increases the annual heat wave days at a rate of 3.7 d yr −1 in themore » major megacities in the YRD, accompanied by intensified heat stress. In winter, the near-surface air temperature increases by approximately 0.7 °C over commercial areas in the cities but decreases in the surrounding areas. Radiative effects of aerosols tend to cool the surface air by reducing net shortwave radiation at the surface. Compared to the more localized UHI effect, aerosol effects on solar radiation and temperature influence a much larger area, especially downwind of the city cluster in the YRD. Results also show that the UHI increases the frequency of extreme summer precipitation by strengthening the convergence and updrafts over urbanized areas in the afternoon, which favor the development of deep convection. In contrast, the radiative forcing of aerosols results in a surface cooling and upper-atmospheric heating, which enhances atmospheric stability and suppresses convection. The combined effects of the UHI and aerosols on precipitation depend on synoptic conditions. Two rainfall events under two typical but different synoptic weather patterns are further analyzed. It is shown that the impact of urban land cover and aerosols on precipitation is not only determined by their influence on local convergence but also modulated by large-scale weather systems. For the case with a strong synoptic forcing associated with stronger winds and larger spatial convergence, the UHI and aerosol effects are relatively weak. When the synoptic forcing is weak, however, the UHI and aerosol effects on local convergence dominate. This suggests that synoptic forcing plays a significant role in modulating the urbanization-induced land-cover and aerosol effects on individual rainfall event. Hence precipitation changes due to urbanization effects may offset each other under different synoptic conditions, resulting in little changes in mean precipitation at longer timescales.« less
Zhong, Shi; Qian, Yun; Zhao, Chun; ...
2017-04-27
The WRF-Chem model coupled with a single-layer urban canopy model (UCM) is integrated for 5 years at convection-permitting scale to investigate the individual and combined impacts of urbanization-induced changes in land cover and pollutant emissions on regional climate in the Yangtze River Delta (YRD) region in eastern China. Simulations with the urbanization effects reasonably reproduced the observed features of temperature and precipitation in the YRD region. Urbanization over the YRD induces an urban heat island (UHI) effect, which increases the surface temperature by 0.53 °C in summer and increases the annual heat wave days at a rate of 3.7 d yr −1 in themore » major megacities in the YRD, accompanied by intensified heat stress. In winter, the near-surface air temperature increases by approximately 0.7 °C over commercial areas in the cities but decreases in the surrounding areas. Radiative effects of aerosols tend to cool the surface air by reducing net shortwave radiation at the surface. Compared to the more localized UHI effect, aerosol effects on solar radiation and temperature influence a much larger area, especially downwind of the city cluster in the YRD. Results also show that the UHI increases the frequency of extreme summer precipitation by strengthening the convergence and updrafts over urbanized areas in the afternoon, which favor the development of deep convection. In contrast, the radiative forcing of aerosols results in a surface cooling and upper-atmospheric heating, which enhances atmospheric stability and suppresses convection. The combined effects of the UHI and aerosols on precipitation depend on synoptic conditions. Two rainfall events under two typical but different synoptic weather patterns are further analyzed. It is shown that the impact of urban land cover and aerosols on precipitation is not only determined by their influence on local convergence but also modulated by large-scale weather systems. For the case with a strong synoptic forcing associated with stronger winds and larger spatial convergence, the UHI and aerosol effects are relatively weak. When the synoptic forcing is weak, however, the UHI and aerosol effects on local convergence dominate. This suggests that synoptic forcing plays a significant role in modulating the urbanization-induced land-cover and aerosol effects on individual rainfall event. Hence precipitation changes due to urbanization effects may offset each other under different synoptic conditions, resulting in little changes in mean precipitation at longer timescales.« less
Assessment of asphalt concrete acoustic performance in urban streets.
Paje, S E; Bueno, M; Terán, F; Viñuela, U; Luong, J
2008-03-01
Geo-referenced close proximity rolling noise and sound absorption measurements are used for acoustical characterization of asphalt concrete surfaces in an urban environment. A close proximity noise map of streets with low speed limits is presented for a reference speed of 50 km/h. Different pavements and pavement conditions, common in urban streets, are analyzed: dense and semidense asphalt concrete, with Spanish denomination D-8 and S-12, respectively, and on the other hand, dense pavement at the end of its service life (D-8(*)). From the acoustics point of view, the most favorable surface, by more than 4 dB(A) compared with the S-12 mix, is the smoothest surface, i.e., the D-8 mix, even though it presents a minor absorption coefficient in normal incidence. Noise levels from dense surfaces (D-8) increase significantly over time, principally due to the appearance of surface defects such as cracks and ruts. Longitudinal variability of the close proximity tire/pavement noise emission and surface homogeneity are also analyzed.
Grid vs Mesh: The case of Hyper-resolution Modeling in Urban Landscapes
NASA Astrophysics Data System (ADS)
Grimley, L. E.; Tijerina, D.; Khanam, M.; Tiernan, E. D.; Frazier, N.; Ogden, F. L.; Steinke, R. C.; Maxwell, R. M.; Cohen, S.
2017-12-01
In this study, the relative performance of ADHydro and GSSHA was analyzed for a small and large rainfall event in an urban watershed called Dead Run near Baltimore, Maryland. ADHydro is a physics-based, distributed, hydrologic model that uses an unstructured mesh and operates in a high performance computing environment. The Gridded Surface/Subsurface Hydrological Analysis (GSSHA) model, which is maintained by the US Army Corps of Engineers, is a physics-based, distributed, hydrologic model that incorporates subsurface utilities and uses a structured mesh. A large portion of the work served as alpha-testing of ADHydro, which is under development by the CI-WATER modeling team at the University of Wyoming. Triangular meshes at variable resolutions were created to assess the sensitivity of ADHydro to changes in resolution and test the model's ability to handle a complicated urban routing network with structures present. ADHydro was compared with GSSHA which does not have the flexibility of an unstructured grid but does incorporate the storm drainage network. The modelled runoff hydrographs were compared to observed United States Geological Survey (USGS) stream gage data. The objective of this study was to analyze the effects of mesh type and resolution using ADHydro and GSSHA in simulations of an urban watershed.
Baek, Sang-Soo; Choi, Dong-Ho; Jung, Jae-Woon; Lee, Hyung-Jin; Lee, Hyuk; Yoon, Kwang-Sik; Cho, Kyung Hwa
2015-12-01
Currently, continued urbanization and development result in an increase of impervious areas and surface runoff including pollutants. Also one of the greatest issues in pollutant emissions is the first flush effect (FFE), which implies a greater discharge rate of pollutant mass in the early part in the storm. Low impact development (LID) practices have been mentioned as a promising strategy to control urban stormwater runoff and pollution in the urban ecosystem. However, this requires many experimental and modeling efforts to test LID characteristics and propose an adequate guideline for optimizing LID management. In this study, we propose a novel methodology to optimize the sizes of different types of LID by conducting intensive stormwater monitoring and numerical modeling in a commercial site in Korea. The methodology proposed optimizes LID size in an attempt to moderate FFE on a receiving waterbody. Thereby, the main objective of the optimization is to minimize mass first flush (MFF), which is an indicator for quantifying FFE. The optimal sizes of 6 different LIDs ranged from 1.2 mm to 3.0 mm in terms of runoff depths, which significantly moderate the FFE. We hope that the new proposed methodology can be instructive for establishing LID strategies to mitigate FFE. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ren, Yin; Yan, Jing; Wei, Xiaohua; Wang, Yajun; Yang, Yusheng; Hua, Lizhong; Xiong, Yongzhu; Niu, Xiang; Song, Xiaodong
2012-12-30
Research on the effects of urban sprawl on carbon stocks within urban forests can help support policy for sustainable urban design. This is particularly important given climate change and environmental deterioration as a result of rapid urbanization. The purpose of this study was to quantify the effects of urban sprawl on dynamics of forest carbon stock and density in Xiamen, a typical city experiencing rapid urbanization in China. Forest resource inventory data collected from 32,898 patches in 4 years (1972, 1988, 1996 and 2006), together with remotely sensed data (from 1988, 1996 and 2006), were used to investigate vegetation carbon densities and stocks in Xiamen, China. We classified the forests into four groups: (1) forest patches connected to construction land; (2) forest patches connected to farmland; (3) forest patches connected to both construction land and farmland and (4) close forest patches. Carbon stocks and densities of four different types of forest patches during different urbanization periods in three zones (urban core, suburb and exurb) were compared to assess the impact of human disturbance on forest carbon. In the urban core, the carbon stock and carbon density in all four forest patch types declined over the study period. In the suburbs, different urbanization processes influenced forest carbon density and carbon stock in all four forest patch types. Urban sprawl negatively affected the surrounding forests. In the exurbs, the carbon stock and carbon density in all four forest patch types tended to increase over the study period. The results revealed that human disturbance played the dominant role in influencing the carbon stock and density of forest patches close to the locations of human activities. In forest patches far away from the locations of human activities, natural forest regrowth was the dominant factor affecting carbon stock and density. Copyright © 2012 Elsevier Ltd. All rights reserved.
Heat waves and urban heat islands in Europe: A review of relevant drivers.
Ward, Kathrin; Lauf, Steffen; Kleinschmit, Birgit; Endlicher, Wilfried
2016-11-01
The climate change and the proceeding urbanization create future health challenges. Consequently, more people around the globe will be impaired by extreme weather events, such as heat waves. This study investigates the causes for the emergence of surface urban heat islands and its change during heat waves in 70 European cities. A newly created climate class indicator, a set of meaningful landscape metrics, and two population-related parameters were applied to describe the Surface Urban Heat Island Magnitude (SUHIM) - the mean temperature increase within the urban heat island compared to its surrounding, as well as the Heat Magnitude (HM) - the extra heat load added to the average summer SUHIM during heat waves. We evaluated the relevance of varying urban parameters within linear models. The exemplary European-wide heat wave in July 2006 was chosen and compared to the average summer conditions using MODIS land surface temperature with an improved spatial resolution of 250m. The results revealed that the initial size of the urban heat island had significant influence on SUHIM. For the explanation of HM the size of the heat island, the regional climate and the share of central urban green spaces showed to be critical. Interestingly, cities of cooler climates and cities with higher shares of urban green spaces were more affected by additional heat during heat waves. Accordingly, cooler northern European cities seem to be more vulnerable to heat waves, whereas southern European cities appear to be better adapted. Within the ascertained population and climate clusters more detailed explanations were found. Our findings improve the understanding of the urban heat island effect across European cities and its behavior under heat waves. Also, they provide some indications for urban planners on case-specific adaptation strategies to adverse urban heat caused by heat waves. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Järvi, L.; Grimmond, S. B.; Christen, A.; McFadden, J. P.; Strachan, I. B.
2016-12-01
Urban effects on climate are often pronounced in winter due to large anthropogenic heat releases and differences in snow cover between urban and surrounding rural areas. In this study, we simulate energy and water balances in cities characterized by cold winter climates with snow. Eleven urban sites from Helsinki (Finland), Basel (Switzerland), Montreal (Canada) and Minneapolis (USA) are analysed. The sites were selected based on the availability of either measured turbulent fluxes (from eddy covariance) or surface runoff to be used for model evaluation. The sites vary with respect to land cover fractions, irrigation habits and population densities. For example, the plan area fraction of impervious surface varies from 5% in Minneapolis to 84% in Basel. To simulate urban energy and water balances, we use the Surface Urban Energy and Water balance Scheme (SUEWS) model, which has been designed to minimize the number of required input variables and model parameters. For each site, the model is run in an offline mode using measured hourly meteorological data with a time step of 5-min. As the modelled time periods range from one (Basel) to 7.5 years (Helsinki), a wide range of meteorological conditions occur. Our results show how both evaporation and surface runoff are highly dependent on the fraction of impervious surface cover (r > |0.8|) during snow-free periods. However, high year-to-year variability in simulated evaporation and runoff indicates that climatological factors are also important. In winter, the amount and duration of snow cover become import controlling factor in determining the two components of water balance. The shorter the snow cover period is, the larger the cumulative runoff tends to be. Thus, our results suggest that warmer winters with less snow will increase the stress on drainage systems and modify the urban ecosystem via changes in evaporation and Bowen ratio. Also, our results indicate that simply using the fraction of impervious or pervious surfaces when estimating the surface runoff at different sites is not sufficient, but rather inter-annual variability in climatology also needs to be considered.
Impact of buildings on surface solar radiation over urban Beijing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Bin; Liou, Kuo-Nan; Gu, Yu
The rugged surface of an urban area due to varying buildings can interact with solar beams and affect both the magnitude and spatiotemporal distribution of surface solar fluxes. Here we systematically examine the impact of buildings on downward surface solar fluxes over urban Beijing by using a 3-D radiation parameterization that accounts for 3-D building structures vs. the conventional plane-parallel scheme. We find that the resulting downward surface solar flux deviations between the 3-D and the plane-parallel schemes are generally ±1–10 W m -2 at 800 m grid resolution and within ±1 W m -2 at 4 km resolution. Pairsmore » of positive–negative flux deviations on different sides of buildings are resolved at 800 m resolution, while they offset each other at 4 km resolution. Flux deviations from the unobstructed horizontal surface at 4 km resolution are positive around noon but negative in the early morning and late afternoon. The corresponding deviations at 800 m resolution, in contrast, show diurnal variations that are strongly dependent on the location of the grids relative to the buildings. Both the magnitude and spatiotemporal variations of flux deviations are largely dominated by the direct flux. Furthermore, we find that flux deviations can potentially be an order of magnitude larger by using a finer grid resolution. Atmospheric aerosols can reduce the magnitude of downward surface solar flux deviations by 10–65 %, while the surface albedo generally has a rather moderate impact on flux deviations. The results imply that the effect of buildings on downward surface solar fluxes may not be critically significant in mesoscale atmospheric models with a grid resolution of 4 km or coarser. However, the effect can play a crucial role in meso-urban atmospheric models as well as microscale urban dispersion models with resolutions of 1 m to 1 km.« less
Untangling the effects of urban development on subsurface storage in Baltimore
NASA Astrophysics Data System (ADS)
Bhaskar, Aditi S.; Welty, Claire; Maxwell, Reed M.; Miller, Andrew J.
2015-02-01
The impact of urban development on surface flow has been studied extensively over the last half century, but effects on groundwater systems are still poorly understood. Previous studies of the influence of urban development on subsurface storage have not revealed any consistent pattern, with results showing increases, decreases, and negligible change in groundwater levels. In this paper, we investigated the effects of four key features that impact subsurface storage in urban landscapes. These include reduced vegetative cover, impervious surface cover, infiltration and inflow (I&I) of groundwater and storm water into wastewater pipes, and other anthropogenic recharge and discharge fluxes including water supply pipe leakage and well and reservoir withdrawals. We applied the integrated groundwater-surface water-land surface model ParFlow.CLM to the Baltimore metropolitan area. We compared the base case (all four features) to simulations in which an individual urban feature was removed. For the Baltimore region, the effect of infiltration of groundwater into wastewater pipes had the greatest effect on subsurface storage (I&I decreased subsurface storage 11.1% relative to precipitation minus evapotranspiration after 1 year), followed by the impact of water supply pipe leakage and lawn irrigation (combined anthropogenic discharges and recharges led to a 7.4% decrease) and reduced vegetation (1.9% increase). Impervious surface cover led to a small increase in subsurface storage (0.56% increase) associated with decreased groundwater discharge as base flow. The change in subsurface storage due to infiltration of groundwater into wastewater pipes was largest despite the smaller spatial extent of surface flux modifications, compared to other features.
NASA Astrophysics Data System (ADS)
Marpu, P. R.; Lazzarini, M.; Molini, A.; Ghedira, H.
2013-12-01
Urban areas represent a unique micro-climatic system, mainly characterized by scarcity of vegetation and ground moisture, an albedo strictly dependent on building materials and urban forms, high heat capacity, elevated pollutants emissions, anthropogenic heat production, and a characteristic boundary layer dynamics. For obvious historical reasons, the first to be addressed in the literature were the effects of urbanization on the local microclimate of temperate regions, where most of the urban development took place in the last centuries. Here micro-climatic characteristics all contribute to the warming of urban areas, also known as 'urban heat island' effect, and are expected to crucially impact future energy and water consumption, air quality, and human health. However, rapidly increasing urbanization rates in arid and hyper-arid developing countries could soon require more attention towards studying the effects of urban development on arid climates, which remained mainly unexplored till now. In this talk we investigate the climatology of urban heat islands in seven highly urbanized desert cities based on day and night temporal trends of land surface temperature (LST) and normalized difference vegetation index (NDVI) acquired using MODIS satellite during 2000-2012. Urban and rural areas are distinguished by analyzing the high-resolution temporal variability and averaged monthly values of LST, NDVI and Surface Urban Heat Island (SUHI) for all the seven cities and adjacent sub-urban areas. Different thermal behaviors were observed at the selected sites, also including temperature mitigation and inverse urban heat island, and are here discussed together with detailed analysis of the corresponding trends.
Decker, Jeremy D.; Hughes, J.D.
2013-01-01
Climate change and sea-level rise could cause substantial changes in urban runoff and flooding in low-lying coast landscapes. A major challenge for local government officials and decision makers is to translate the potential global effects of climate change into actionable and cost-effective adaptation and mitigation strategies at county and municipal scales. A MODFLOW process is used to represent sub-grid scale hydrology in urban settings to help address these issues. Coupled interception, surface water, depression, and unsaturated zone storage are represented. A two-dimensional diffusive wave approximation is used to represent overland flow. Three different options for representing infiltration and recharge are presented. Additional features include structure, barrier, and culvert flow between adjacent cells, specified stage boundaries, critical flow boundaries, source/sink surface-water terms, and the bi-directional runoff to MODFLOW Surface-Water Routing process. Some abilities of the Urban RunOff (URO) process are demonstrated with a synthetic problem using four land uses and varying cell coverages. Precipitation from a hypothetical storm was applied and cell by cell surface-water depth, groundwater level, infiltration rate, and groundwater recharge rate are shown. Results indicate the URO process has the ability to produce time-varying, water-content dependent infiltration and leakage, and successfully interacts with MODFLOW.
Modelling of surface fluxes and Urban Boundary Layer over an old mediterannean city core
NASA Astrophysics Data System (ADS)
Lemonsu, A.; Masson, V.; Grimmond, Cs. B.
2003-04-01
In the frameworks of the UBL(Urban Boundary Layer)-ESCOMPTE campaign, the Town Energy Balance (TEB) model was run in off-line mode for Marseille. TEB's performance is evaluated with observations of surface temperatures and surface energy balance fluxes collected during the campaign. Parameterization improvements allow to better represent the energy exchanges between the air inside the canyon and the atmosphere above the roof level. Then, high resolution Méso-NH simulations are done to study the 3-D structure and the evolution of the Urban Boundary Layer (UBL) over Marseille. Will will give a special attention to the impact of the seabord effects (sea-breeze circulation) on the UBL.
Li, Yuan; Ren, Duofu; Ding, Pingfei; Zhang, Qin; Zhang, Juan; Shi, Wenhui; Wu, Jing; Shi, Xiaoming; Liang, Xiaofeng
2014-01-01
To understand the situation and efficacy of community-based management programs on hypertension and type 2 diabetes mellitus patients in primary health service centers. In eight provinces being selected, a stratified multistage random sampling method was used to survey 5 116 cases of hypertension patients and 3 586 cases of type 2 diabetes mellitus patients aged over 35 years who had been under the management program for over 1 year. Face-to-face questionnaire interview and physical and biochemical examination were applied to collect related information, blood pressure and situation of glucose control. The rates of management on hypertension patients and type 2 diabetes mellitus patients were 23.6% (urban:17.1%, rural:28.1%, χ² = 27 195.33, P < 0.001)and 19.1% (urban:14.1%, rural:23.8%, χ² = 7 423.67, P < 0.001)while the standardized management rates were 61.1% (urban:63.3%, rural:58.6%, χ² = 11.82, P < 0.001)and 59.0% (urban:61.5%, rural:55.6%, χ² = 12.66, P < 0.001), respectively. Rate on blood pressure control among hypertension patients and the rate on fasting glucose control on type 2 diabetes mellitus patients were 50.3% (urban:62.0%, rural:36.6%, χ² = 329.31, P < 0.001)and 53.9% (urban:60.8%, rural:44.7%, χ² = 90.53, P < 0.001), respectively. Satisfaction rates for the management service of the hypertension patients and type 2 diabetes mellitus patients were 83.0% (urban:84.7% , rural: 80.7% , χ² = 13.42, P < 0.001) and 84.5% (urban:88.0% , rural:79.5% , χ² = 43.90, P < 0.001), respectively. Efficiency was achieved to some extent in managing hypertension and type 2 diabetes mellitus patients in primary health service centers. Further improvement was expected on rates regarding management, standardized management and control on both blood pressure and glucose.
Urban landscapes and the western drought
NASA Astrophysics Data System (ADS)
Pataki, D. E.
2015-12-01
Cities in the western U.S. are heavily irrigated and have increasingly been the focus of water conservation measures. Even cities that previously relied only on voluntary reductions in outdoor water use have been employing stricter mandates to limit irrigation. These cities are in a period of transition and the outcomes are far from certain. There are many tradeoffs in the environmental and social consequences of different urban water management strategies. Here we review recent work studying these tradeoffs in cities of southern California and Utah. We have measured the water use of different types of landscapes ranging from turfgrass to urban trees to xeriscapes. Unshaded turfgrass shows evapotranspiration (ET) rates close to potential ET; however, shaded turfgrass uses substantially less water. On the other hand, plants used in xeriscapes may have surprisingly high transpiration rates if they are heavily watered. In addition, unshaded xeriscapes may substantially alter surface energy balance and have unintended consequences for urban climate. Through whole tree sap flux measurements and scaling of ET estimates, we have found that urban trees generally use less water than turfgrass, and provide additional cooling benefits through interception of radiation. Current measures to reduce outdoor water use through irrigation restrictions and turfgrass removal programs do not include safeguards to ensure that urban trees receive adequate irrigation, and the future of urban tree canopies in western cities is highly uncertain. Although trees and other deep-rooted vegetation may require less irrigation than turfgrass and better withstand periods of drought, this vegetation must still be appropriate managed with water inputs informed by an understanding of plant water relations and urban subsurface hydrology. On the current trajectory, cities may see a substantial loss of vegetative cover and leaf area unless an understanding of ecohydrology is better integrated into strategies for long-term stewardship of urban landscapes in a changing climate.
Urban Land Cover Type Influences CO2 Fluxes within Phoenix, Arizona
NASA Astrophysics Data System (ADS)
Perez-Ruiz, E. R.; Vivoni, E. R.; Templeton, N. P.
2017-12-01
Urbanization is accompanied by the modification of land surface characteristics that should have an impact on local energy, water and carbon cycles. For instance, despite their relative small land area, cities are responsible for more than 70% of the global anthropogenic CO2 emissions. Nevertheless, relatively little is known on the dynamics of urban carbon fluxes or net ecosystem exchange (NEE), in particular over the multitude of land cover patches present within cities. In this study, we present a comparison of NEE measurements in four urban patches in the Phoenix metropolitan area. A mobile eddy covariance (EC) tower was deployed at a xeric landscaping, a parking lot and a mesic landscaping during consecutive, short-term ( 40 days) sampling periods and compared to a reference site (REF) in a suburban neighborhood over a longer deployment ( 9 months). Based on the datasets, we analyze the diurnal cycle and the daily and seasonal variations of NEE in the context of the measured meteorological conditions, including the surface energy budget. EC observations were then related to vegetation conditions through a satellite-based Normalized Difference Vegetation Index (NDVI) and to anthropogenic activities through local traffic counts. All deployment sites showed important differences in NEE with respect to the REF location due to the influence of the urban patch area sampled within the EC footprint. Daily NEE values at all sites exhibited differences among days of the week that were linked to traffic conditions, with higher values during weekdays and lower values during weekends. The diurnal behavior of NEE showed different trends depending on the amount of vegetation and the proximity to nearby roads. Minimum midday (around noon) values of NEE were noted where urban plants absorbed CO2, while maximum peaks of NEE occurred during rush hours (around 8 am and 6 pm) where the traffic influence was high. Overall, three of the four sites with low to moderate vegetation acted as a net source of CO2 during the respective deployments, while one site with a well-irrigated mesic landscaping acted as a net sink of CO2 during the summer. Thus, the characteristics and function of urban patches should have a strong control on the CO2 fluxes within cities, which can be reliably measured using the EC method.
NASA Astrophysics Data System (ADS)
Cak, A. D.
2017-12-01
The Amazon Basin has faced innumerable pressures in recent years, including logging, mining and resource extraction, agricultural expansion, road building, and urbanization. These changes have drastically altered the landscape, transforming a predominantly forested environment into a mosaic of different types of land cover. The resulting fragmentation has caused dramatic and negative impacts on its structure and function, including on biodiversity and the transfer of water and energy to and from soil, vegetation, and the atmosphere (e.g., evapotranspiration). Because evapotranspiration from forested areas, which is affected by factors including temperature and water availability, plays a significant role in water dynamics in the Amazon Basin, measuring land surface temperature (LST) across the region can provide a dynamic assessment of hydrological, vegetation, and land use and land cover changes. It can also help to identify widespread urban development, which often has a higher LST signal relative to surrounding vegetation. Here, we discuss results from work to measure and identify drivers of change in LST across the entire Amazon Basin through analysis of past and current thermal and infrared satellite imagery. We leverage cloud computing resources in new ways to allow for more efficient analysis of imagery over the Amazon Basin across multiple years and multiple sensors. We also assess potential drivers of change in LST using spatial and multivariate statistical analyses with additional data sources of land cover, urban development, and demographics.
NASA Astrophysics Data System (ADS)
Wang, J.; Feng, B.
2016-12-01
Impervious surface area (ISA) has long been studied as an important input into moisture flux models. In general, ISA impedes groundwater recharge, increases stormflow/flood frequency, and alters in-stream and riparian habitats. Urban area is recognized as one of the richest ISA environment. Urban ISA mapping assists flood prevention and urban planning. Hyperspectral imagery (HI), for its ability to detect subtle spectral signature, becomes an ideal candidate in urban ISA mapping. To map ISA from HI involves endmember (EM) selection. The high degree of spatial and spectral heterogeneity of urban environment puts great difficulty in this task: a compromise point is needed between the automatic degree and the good representativeness of the method. The study tested one manual and two semi-automatic EM selection strategies. The manual and the first semi-automatic methods have been widely used in EM selection. The second semi-automatic EM selection method is rather new and has been only proposed for moderate spatial resolution satellite. The manual method visually selected the EM candidates from eight landcover types in the original image. The first semi-automatic method chose the EM candidates using a threshold over the pixel purity index (PPI) map. The second semi-automatic method used the triangle shape of the HI scatter plot in the n-Dimension visualizer to identify the V-I-S (vegetation-impervious surface-soil) EM candidates: the pixels locate at the triangle points. The initial EM candidates from the three methods were further refined by three indexes (EM average RMSE, minimum average spectral angle, and count based EM selection) and generated three spectral libraries, which were used to classify the test image. Spectral angle mapper was applied. The accuracy reports for the classification results were generated. The overall accuracy are 85% for the manual method, 81% for the PPI method, and 87% for the V-I-S method. The V-I-S EM selection method performs best in this study. This fact proves the value of V-I-S EM selection method in not only moderate spatial resolution satellite image but also the more and more accessible high spatial resolution airborne image. This semi-automatic EM selection method can be adopted into a wide range of remote sensing images and provide ISA map for hydrology analysis.
Identifying urban infrastructure multi-hazard risk in developing country contexts
NASA Astrophysics Data System (ADS)
Taylor, Faith; Malamud, Bruce; Millington, James
2017-04-01
This work presents a method to coarsely zone urban areas into different infrastructure typologies, from which physical vulnerability to a range of natural hazards and multi-hazard interactions can be estimated, particularly for developing country contexts where access to data can be a challenge. This work builds upon techniques developed for urban micrometeorology for classifying 12 urban typologies (Stewart and Oke, 2011) using Landsat 8 30 m × 30 m remote sensing imagery (Betchel et al., 2015). For each of these 12 urban typologies, we develop general rules about the presence, type and level of service of 10 broad categories of infrastructure (including buildings, roads, electricity and water), which we refer to as 'urban textures'. We have developed and applied this technique to five urban areas varying in size and structure across Africa: Nairobi (Kenya); Karonga (Malawi); Mzuzu (Malawi); Ibadan (Nigeria) and Cape Town (South Africa). For each urban area, a training dataset of 10 samples of each of the 12 urban texture classes is digitised using Google Earth imagery. A random forest classification is performed using SAGA GIS, resulting in a map of different urban typologies for each city. Based on >1200 georeferenced field photographs and expert interviews for Karonga (Malawi) and Nairobi (Kenya), generally applicable rules about the presence, type and level of service of 12 infrastructure types (the 'urban texture') are developed for each urban typology. For each urban texture, we are broadly reviewing how each infrastructure might be physically impacted by 21 different natural hazards and hazard interactions. This can aid local stakeholders such as emergency responders and urban planners to systematically identify how the infrastructure in different parts of an urban area might be affected differently during a natural disaster event.
Daily Cycle of Air Temperature and Surface Temperature in Stone Forest
NASA Astrophysics Data System (ADS)
Wang, K.; Li, Y.; Wang, X.; Yuan, M.
2013-12-01
Urbanization is one of the most profound human activities that impact on climate change. In cities, where are highly artificial areas, the conflict between human activity and natural climate is particularly prominent. Urban areas always have the larger area of impervious land, the higher consumption of greenhouse gases, more emissions of anthropogenic heat and air pollution, all contribute to the urban warming phenomena. Understanding the mechanisms causing a variety of phenomena involved in the urban warming is critical to distinguish the anthropogenic effect and natural variation in the climate change. However, the exact dynamics of urban warming were poorly understood, and effective control strategies are not available. Here we present a study of the daily cycle of air temperature and surface temperature in Stone Forest. The specific heat of the stones in the Stone Forest and concrete of the man-made structures within the cities are approximate. Besides, the height of the Stone Forest and the height of buildings within the city are also similar. As a scenic area, the Stone Forest is being preserved and only opened for sightseeing. There is no anthropogenic heat, as well air pollution within the Stone Forest. The thermal environment in Stone Forest can be considered to be a simulation of thermal environment in the city, which can reveal the effect of man-made structures on urban thermal environment. We conducted the field studies and numerical analysis in the Stone Forest for 4 typical urban morphology and environment scenarios, including high-rise compact cities, low-rise sparse cities, garden cities and isolated single stone. Air temperature and relative humidity were measured every half an hour in 15 different locations, which within different spatial distribution of stones and can represent the four urban scenarios respectively. At the same time, an infrared camera was used to take thermal images and get the hourly surface temperatures of stones and vegetation in the measurement area. The differences of the daily cycle of air temperature and surface temperature in these four scenarios show a significant impact of urban man-made structures on the dynamics of urban thermal environment.
Indicating anthropogenic effectson urban water system - indicators and extension
NASA Astrophysics Data System (ADS)
Strauch, G.; Ufz-Team
2003-04-01
Urban water systems are polluted by diffusive and direct contribution of anthropogenic activities. Besides industrial contaminants like aromatic and chlorinated HC and other persistent organic compounds, the urban aquatic environment is increasingly polluted by low concentrated but high eco-toxic compounds as pharmaceuticals, fragrances, plasticizers which most have disrupt endocrine functions, and trace elements carried in by surface and sub-surface waste water and seeping processes. This contamination could have a longtime impact on the urban ecosystem and on the human health. The interdisciplinary project on risk assessment of water pollution was initiated to explore new methodologies for assessing human activities on the urban water system and processes among urban watersheds. In a first assumption we used a flow model concept with in- and output and surface water transport represented by the city of Halle, Germany, and the river Saale. The river Saale acts as surface water system collecting waste water inputs along the city traverse. We investigated the anthropogenic effect on the urban water system using the indicators hydrological parameters, compound specific pattern of complex organic substances and trace elements, isotopic signatures of water (H, O) and dissolved substances (sulfate, DIC, nitrate), pathogens, and microbiota. A first balance modeling showed that main ions are not very sensitive concerning the direct urban input into the river. Depending on the discharge of the river in high and low flood stages the load of dissolved matter has no specific urban effect. However, the concentration pattern of fragrances (tonalid, galaxolid) and endocrine disrupters (t-nonylphenol) point to a different pollution along the city traverse: downstream of the sewage plant a higher load was observed in comparison to the upstream passage. Furthermore, a degradation ability of fungi and bacteria occurred in the bank sediments could be detected in lab experiments concerning the fragrances, and endocrine disrupters (t-nonylphenol, phthalate). The Saale water samples contain components able to eco-toxic and immunomodulated effects as measured on the vitality and cytokine-secretion profile of human peripheral blood mononuclear cells (PBMC). Even fragrances caused such effects which are unknown so far. The study of assessing urban effects onto the water system is still under investigation.
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.; Arnold, James E. (Technical Monitor)
2000-01-01
We have used airborne multispectral thermal infrared (TIR) remote sensing data collected at a high spatial resolution (i.e., 10m) over several cities in the United States to study thermal energy characteristics of the urban landscape. These TIR data provide a unique opportunity to quantify thermal responses from discrete surfaces typical of the urban landscape and to identify both the spatial arrangement and patterns of thermal processes across the city. The information obtained from these data is critical to understanding how urban surfaces drive or force development of the Urban Heat Island (UHI) effect, which exists as a dome of elevated air temperatures that presides over cities in contrast to surrounding non-urbanized areas. The UHI is most pronounced in the summertime where urban surfaces, such as rooftops and pavement, store solar radiation throughout the day, and release this stored energy slowly after sunset creating air temperatures over the city that are in excess of 2-4'C warmer in contrast with non-urban or rural air temperatures. The UHI can also exist as a daytime phenomenon with surface temperatures in downtown areas of cities exceeding 38'C. The implications of the UHI are significant, particularly as an additive source of thermal energy input that exacerbates the overall production of ground level ozone over cities. We have used the Airborne Thermal and Land Applications Sensor (ATLAS), flown onboard a Lear 23 jet aircraft from the NASA Stennis Space Center, to acquire high spatial resolution multispectral TIR data (i.e., 6 bandwidths between 8.2-12.2 (um) over Huntsville, Alabama, Atlanta, Georgia, Baton Rouge, Louisiana, Salt Lake City, Utah, and Sacramento, California. These TIR data have been used to produce maps and other products, showing the spatial distribution of heating and cooling patterns over these cities to better understand how the morphology of the urban landscape affects development of the UHI. In turn, these data have been used by government officials, urban planners, and other decision-makers, to make more informed decisions on how to mitigate the UHI and its subsequent impacts.
LIOY, PAUL J; VALLERO, DANIEL; FOLEY, GARY; GEORGOPOULOS, PANOS; HEISER, JOHN; WATSON, TOM; REYNOLDS, MICHAEL; DALOIA, JAMES; TONG, SAI; ISUKAPALLI, SASTRY
2014-01-01
A personal exposure study was conducted in New York City as part of the Urban Dispersion Program (UDP). It examined the contact of individuals with four harmless perflourocarbon tracers (PFT) released in Midtown Manhattan with approval by city agencies at separate locations, during two types of experiments, completed during each release period. Two continuous 1 h release periods separated by a 1.5 h ventilation time were completed on 3 October 2005. Stationary site and personal exposure measurements were taken during each period, and the first half hour after the release ended. Two types of scripted exposure activities are reported: Outdoor Source Scale, and Outdoor Neighborhood Scale; requiring 1- and 10-min duration samples, respectively. The results showed that exposures were influenced by the surface winds, the urban terrain, and the movements of people and vehicles typical in urban centers. The source scale exposure data indicated that local conditions significantly affected the distribution of each tracer, and consequently the exposures. The highest PFT exposures resulted from interaction of the scripted activities with local surface conditions. The range measured for 1- min exposures were large with measured values exceeding 5000 ppqv (parts per quadrillion by volume). The neighborhood scale measurements quantified exposures at distances up to seven blocks away from the release points. Generally, but not always, the PFT levels returned quickly to zero indicating that after cessation of the emissions the concentrations decrease rapidly, and reduce the intensity of local exposures. The near source and neighborhood personal exposure route results provided information to establish a baseline for determining how a release could affect both the general public and emergency responders, and evaluate the adequacy of re-entry or exit strategies from a local area. Finally, the data also show that local characteristics can produce “hot spots”. PMID:17505505
Effect of Landscape Pattern on Insect Species Density within Urban Green Spaces in Beijing, China
Su, Zhimin; Li, Xiaoma; Zhou, Weiqi; Ouyang, Zhiyun
2015-01-01
Urban green space is an important refuge of biodiversity in urban areas. Therefore, it is crucial to understand the relationship between the landscape pattern of green spaces and biodiversity to mitigate the negative effects of urbanization. In this study, we collected insects from 45 green patches in Beijing during July 2012 using suction sampling. The green patches were dominated by managed lawns, mixed with scattered trees and shrubs. We examined the effects of landscape pattern on insect species density using hierarchical partitioning analysis and partial least squares regression. The results of the hierarchical partitioning analysis indicated that five explanatory variables, i.e., patch area (with 19.9% independent effects), connectivity (13.9%), distance to nearest patch (13.8%), diversity for patch types (11.0%), and patch shape (8.3%), significantly contributed to insect species density. With the partial least squares regression model, we found species density was negatively related to patch area, shape, connectivity, diversity for patch types and proportion of impervious surface at the significance level of p < 0.05 and positively related to proportion of vegetated land. Regression tree analysis further showed that the highest species density was found in green patches with an area <500 m2. Our results indicated that improvement in habitat quality, such as patch area and connectivity that are typically thought to be important for conservation, did not actually increase species density. However, increasing compactness (low-edge) of patch shape and landscape composition did have the expected effect. Therefore, it is recommended that the composition of the surrounding landscape should be considered simultaneously with planned improvements in local habitat quality. PMID:25793897
Effect of landscape pattern on insect species density within urban green spaces in Beijing, China.
Su, Zhimin; Li, Xiaoma; Zhou, Weiqi; Ouyang, Zhiyun
2015-01-01
Urban green space is an important refuge of biodiversity in urban areas. Therefore, it is crucial to understand the relationship between the landscape pattern of green spaces and biodiversity to mitigate the negative effects of urbanization. In this study, we collected insects from 45 green patches in Beijing during July 2012 using suction sampling. The green patches were dominated by managed lawns, mixed with scattered trees and shrubs. We examined the effects of landscape pattern on insect species density using hierarchical partitioning analysis and partial least squares regression. The results of the hierarchical partitioning analysis indicated that five explanatory variables, i.e., patch area (with 19.9% independent effects), connectivity (13.9%), distance to nearest patch (13.8%), diversity for patch types (11.0%), and patch shape (8.3%), significantly contributed to insect species density. With the partial least squares regression model, we found species density was negatively related to patch area, shape, connectivity, diversity for patch types and proportion of impervious surface at the significance level of p < 0.05 and positively related to proportion of vegetated land. Regression tree analysis further showed that the highest species density was found in green patches with an area <500 m2. Our results indicated that improvement in habitat quality, such as patch area and connectivity that are typically thought to be important for conservation, did not actually increase species density. However, increasing compactness (low-edge) of patch shape and landscape composition did have the expected effect. Therefore, it is recommended that the composition of the surrounding landscape should be considered simultaneously with planned improvements in local habitat quality.
Atmospheric mercury accumulation and washoff processes on impervious urban surfaces
Eckley, C.S.; Branfireun, B.; Diamond, M.; Van Metre, P.C.; Heitmuller, F.
2008-01-01
The deposition and transport of mercury (Hg) has been studied extensively in rural environments but is less understood in urbanized catchments, where elevated atmospheric Hg concentrations and impervious surfaces may efficiently deliver Hg to waterways in stormwater runoff. We determined the rate at which atmospheric Hg accumulates on windows, identified the importance of washoff in removing accumulated Hg, and measured atmospheric Hg concentrations to help understand the relationship between deposition and surface accumulation. The main study location was Toronto, Ontario. Similar samples were also collected from Austin, Texas for comparison of Hg accumulation between cities. Windows provided a good sampling surface because they are ubiquitous in urban environments and are easy to clean/blank allowing the assessment of contemporary Hg accumulation. Hg Accumulation rates were spatially variable ranging from 0.82 to 2.7 ng m-2 d-1 in Toronto and showed similar variability in Austin. The highest accumulation rate in Toronto was at the city center and was 5?? higher than the rural comparison site (0.58 ng m-2 d-1). The atmospheric total gaseous mercury (TGM) concentrations were less than 2?? higher between the rural and urban locations (1.7 ?? 0.3 and 2.7 ?? 1.1 ng m-3, respectively). The atmospheric particulate bound fraction (HgP), however, was more than 3?? higher between the rural and urban sites, which may have contributed to the higher urban Hg accumulation rates. Windows exposed to precipitation had 73 ?? 9% lower accumulation rates than windows sheltered from precipitation. Runoff collected from simulated rain events confirmed that most Hg accumulated on windows was easily removed and that most of the Hg in washoff was HgP. Our results indicate that the Hg flux from urban catchments will respond rapidly to changes in atmospheric concentrations due to the mobilization of the majority of the surface accumulated Hg during precipitation events. ?? 2008 Elsevier Ltd.
Yang, Yuyi; Xu, Chen; Cao, Xinhua; Lin, Hui; Wang, Jun
2017-08-01
Urban lakes are impacted by heavy human activities and represent potential reservoirs for antibiotic resistance genes. In this study, six urban lakes in Wuhan, central China were selected to analyze the distribution of sulfonamide resistance (sul) genes, tetracycline resistance (tet) genes and quinolone resistance (qnr) genes and their relationship with heavy metals, antibiotics, lake morphology and anthropic impact. sul1 and sul2 were detected in all six lakes and dominated the types of antibiotic resistance genes, which accounted for 86.28-97.79% of the total antibiotic resistance gene abundance. For eight tested tet genes, antibiotic efflux pumps (tetA, tetB, tetC, and tetG) genes were all observed in six lakes and had higher relative abundance than ribosomal protection protein genes (tetM and tetQ). For 4 plasmid mediated quinolone resistance genes, only qnrD is found in all six lakes. The class I integron (intI1) is also found to be a very important media for antibiotic resistance gene propagation in urban lakes. The results of redundancy analysis and variation partitioning analysis showed that antibiotic and co-selection with heavy metals were the major factors driving the propagation of antibiotic resistance genes in six urban lakes. The heavily eutrophic Nanhu Lake and Shahu Lake which located in a high density building area with heavy human activities had the higher relative abundance of total antibiotic resistance genes. Our study could provide a useful reference for antibiotic resistance gene abundance in urban lakes with high anthropic impact.
NASA Astrophysics Data System (ADS)
Chen, Y.
2017-12-01
Urbanization is the world development trend for the past century, and the developing countries have been experiencing much rapider urbanization in the past decades. Urbanization brings many benefits to human beings, but also causes negative impacts, such as increasing flood risk. Impact of urbanization on flood response has long been observed, but quantitatively studying this effect still faces great challenges. For example, setting up an appropriate hydrological model representing the changed flood responses and determining accurate model parameters are very difficult in the urbanized or urbanizing watershed. In the Pearl River Delta area, rapidest urbanization has been observed in China for the past decades, and dozens of highly urbanized watersheds have been appeared. In this study, a physically based distributed watershed hydrological model, the Liuxihe model is employed and revised to simulate the hydrological processes of the highly urbanized watershed flood in the Pearl River Delta area. A virtual soil type is then defined in the terrain properties dataset, and its runoff production and routing algorithms are added to the Liuxihe model. Based on a parameter sensitive analysis, the key hydrological processes of a highly urbanized watershed is proposed, that provides insight into the hydrological processes and for parameter optimization. Based on the above analysis, the model is set up in the Songmushan watershed where there is hydrological data observation. A model parameter optimization and updating strategy is proposed based on the remotely sensed LUC types, which optimizes model parameters with PSO algorithm and updates them based on the changed LUC types. The model parameters in Songmushan watershed are regionalized at the Pearl River Delta area watersheds based on the LUC types of the other watersheds. A dozen watersheds in the highly urbanized area of Dongguan City in the Pearl River Delta area were studied for the flood response changes due to urbanization, and the results show urbanization has big impact on the watershed flood responses. The peak flow increased a few times after urbanization which is much higher than previous reports.
Terrain Measurement with SAR/InSAR
NASA Astrophysics Data System (ADS)
Li, Deren; Liao, Mingsheng; Balz, Timo; Zhang, Lu; Yang, Tianliang
2016-08-01
Terrain measurement and surface motion estimation are the most important applications for commercial and scientific SAR missions. In Dragon-3, we worked on these applications, especially regarding DEM generation, surface motion estimation with SAR time- series for urban subsidence monitoring and landslide motion estimation, as well as developing tomographic SAR processing methods in urban areas.
Urbanization exacerbates flooding by increasing surface runoff and decreasing surface roughness. Restoring wetlands can enhance flood protection while providing a suite of co-benefits such as temperature regulation and access to open space. Spatial modeling of the delivery of flo...
Qinqin, Li; Qiao, Chen; Jiancai, Deng; Weiping, Hu
2015-01-01
An understanding of the characteristics of pollutants on impervious surfaces is essential to estimate pollution loads and to design methods to minimize the impacts of pollutants on the environment. In this study, simulated rainfall equipment was constructed to investigate the pollutant discharge process and the influence factors of urban surface runoff (USR). The results indicated that concentrations of total suspended solids (TSS), total nitrogen (TN), total phosphorus (TP) and chemical oxygen demand (COD) appeared to be higher in the early period and then decreased gradually with rainfall duration until finally stabilized. The capacity and particle size of surface dust, rainfall intensity and urban surface slopes affected runoff pollution loads to a variable extent. The loads of TP, TN and COD showed a positive relationship with the surface dust capacity, whereas the maximum TSS load appeared when the surface dust was 0.0317 g·cm⁻². Smaller particle sizes (<0.125 mm) of surface dust generated high TN, TP and COD loads. Increases in rainfall intensity and surface slope enhanced the pollution carrying capacity of runoff, leading to higher pollution loads. Knowledge of the influence factors could assist in the management of USR pollution loads.
Assessment of CHSST maglev for U.S. urban transportation
DOT National Transportation Integrated Search
2002-07-01
This report provides an assessment of the Urban Maglev system proposed by the Maglev Urban Systems Associates MUSA team for application in the United States. The proposed system is the Japanese Chubu high speed surface transportation (HSST) Maglev wh...
Applications of HCMM satellite data to the study of urban heating patterns
NASA Technical Reports Server (NTRS)
Carlson, T. N. (Principal Investigator)
1980-01-01
A research summary is presented and is divided into two major areas, one developmental and the other basic science. In the first three sub-categories are discussed: image processing techniques, especially the method whereby surface temperature image are converted to images of surface energy budget, moisture availability and thermal inertia; model development; and model verification. Basic science includes the use of a method to further the understanding of the urban heat island and anthropogenic modification of the surface heating, evaporation over vegetated surfaces, and the effect of surface heat flux on plume spread.
NASA Astrophysics Data System (ADS)
Sikora, M. T.; Elliott, E. M.
2009-12-01
Excess nitrate (NO3-) contributes to the overall degraded quality of streams in many urban areas. These systems are often dominated by impervious surfaces and storm sewers that can route atmospherically deposited nitrogen, from both wet and dry deposition, to waterways. Moreover, in densely populated watersheds there is the potential for interaction between urban waterways and sewer systems. The affects of accumulated nitrate in riverine and estuary systems include low dissolved oxygen, loss of species diversity, increased mortality of aquatic species, and general eutrophication of the waterbody. However, the dynamics of nitrate pollution from each source and it’s affect on urban waterways is poorly constrained. The isotopes of nitrogen and oxygen in nitrate have been proven effective in helping to distinguish contamination sources to ground and surface waters. In order to improve our understanding of urban nitrate pollution sources and dynamics, we examined nitrate isotopes (δ15N and δ18O) in base- and stormflow samples collected over a two-year period from a restored urban stream in Pittsburgh, Pennsylvania (USA). Nine Mile Run drains a 1,600 hectare urban watershed characterized by 38% impervious surface cover. Prior work has documented high nitrate export from the watershed (~19 kg NO3- ha-1 yr-1). Potential nitrate sources to the watershed include observed sewer overflows draining directly to the stream, as well as atmospheric deposition (~23 kg NO3- ha-1 yr-1). In this and other urban systems with high percentages of impervious surfaces, there is likely minimal input from nitrate derived from soil or fertilizer. In this presentation, we examine spatial and temporal patterns in nitrate isotopic composition collected at five locations along Nine Mile Run characterized by both sanitary and combined-sewer cross-connections. Preliminary isotopic analysis of low-flow winter streamwater samples suggest nitrate export from Nine Mile Run is primarily influenced by inputs of human waste despite high rates of atmospheric nitrate deposition. Further isotopic analysis of nitrate will examine seasonal variations in nitrate sources; compare nitrate dynamics and sources during low- versus high-flows, and the influence of interannual climatic variability on nitrate export.
Riva-Murray, K.; Riemann, R.; Murdoch, P.; Fischer, J.M.; Brightbill, R.
2010-01-01
Widespread and increasing urbanization has resulted in the need to assess, monitor, and understand its effects on stream water quality. Identifying relations between stream ecological condition and urban intensity indicators such as impervious surface provides important, but insufficient information to effectively address planning and management needs in such areas. In this study we investigate those specific landscape metrics which are functionally linked to indicators of stream ecological condition, and in particular, identify those characteristics that exacerbate or mitigate changes in ecological condition over and above impervious surface. The approach used addresses challenges associated with redundancy of landscape metrics, and links landscape pattern and composition to an indicator of stream ecological condition across a broad area of the eastern United States. Macroinvertebrate samples were collected during 2000-2001 from forty-two sites in the Delaware River Basin, and landscape data of high spatial and thematic resolution were obtained from photointerpretation of 1999 imagery. An ordination-derived 'biotic score' was positively correlated with assemblage tolerance, and with urban-related chemical characteristics such as chloride concentration and an index of potential pesticide toxicity. Impervious surface explained 56% of the variation in biotic score, but the variation explained increased to as high as 83% with the incorporation of a second land use, cover, or configuration metric at catchment or riparian scales. These include land use class-specific cover metrics such as percent of urban land with tree cover, forest fragmentation metrics such as aggregation index, riparian metrics such as percent tree cover, and metrics related to urban aggregation. Study results indicate that these metrics will be important to monitor in urbanizing areas in addition to impervious surface. ?? 2010 US Government.
Quality and sensitivity of high-resolution numerical simulation of urban heat islands
NASA Astrophysics Data System (ADS)
Li, Dan; Bou-Zeid, Elie
2014-05-01
High-resolution numerical simulations of the urban heat island (UHI) effect with the widely-used Weather Research and Forecasting (WRF) model are assessed. Both the sensitivity of the results to the simulation setup, and the quality of the simulated fields as representations of the real world, are investigated. Results indicate that the WRF-simulated surface temperatures are more sensitive to the planetary boundary layer (PBL) scheme choice during nighttime, and more sensitive to the surface thermal roughness length parameterization during daytime. The urban surface temperatures simulated by WRF are also highly sensitive to the urban canopy model (UCM) used. The implementation in this study of an improved UCM (the Princeton UCM or PUCM) that allows the simulation of heterogeneous urban facets and of key hydrological processes, together with the so-called CZ09 parameterization for the thermal roughness length, significantly reduce the bias (<1.5 °C) in the surface temperature fields as compared to satellite observations during daytime. The boundary layer potential temperature profiles are captured by WRF reasonable well at both urban and rural sites; the biases in these profiles relative to aircraft-mounted senor measurements are on the order of 1.5 °C. Changing UCMs and PBL schemes does not alter the performance of WRF in reproducing bulk boundary layer temperature profiles significantly. The results illustrate the wide range of urban environmental conditions that various configurations of WRF can produce, and the significant biases that should be assessed before inferences are made based on WRF outputs. The optimal set-up of WRF-PUCM developed in this paper also paves the way for a confident exploration of the city-scale impacts of UHI mitigation strategies in the companion paper (Li et al 2014).
NASA Astrophysics Data System (ADS)
Chen, Lei; Zhang, Meigen; Wang, Yongwei
2016-08-01
The Weather Research and Forecasting (WRF) model, configured with a single-layer urban canopy model, was employed to investigate the influence of urbanization on boundary layer meteorological parameters during a long-lasting heat wave. This study was conducted over Nanjing city, East China, from 26 July to 4 August 2010. The impacts of urban expansion and anthropogenic heat (AH) release were simulated to quantify their effects on 2-m temperature, 2-m water vapor mixing ratio, and 10-m wind speed and heat stress index. Urban sprawl increased the daily 2-m temperature in urbanized areas by around 1.6 °C and decreased the urban diurnal temperature range (DTR) by 1.24 °C. The contribution of AH release to the atmospheric warming was nearly 22 %, but AH had little influence on the DTR. The urban regional mean surface wind speed decreased by about 0.4 m s-1, and this decrease was successfully simulated from the surface to 300 m. The influence of urbanization on 2-m water vapor mixing ratio was significant over highly urbanized areas with a decrease of 1.1-1.8 g kg-1. With increased urbanization ratio, the duration of the inversion layer was about 4 h shorter, and the lower atmospheric layer was less stable. Urban heat island (UHI) intensity was significantly enhanced when synthesizing both urban sprawl and AH release and the daily mean UHI intensity increased by 0.74 °C. Urbanization increased the time under extreme heat stress (about 40 %) and worsened the living environment in urban areas.
Meteorological and urban landscape factors on severe air pollution in Beijing.
Han, Lijian; Zhou, Weiqi; Li, Weifeng; Meshesha, Derege T; Li, Li; Zheng, Mingqing
2015-07-01
Air pollution gained special attention with the rapid development in Beijing. In January 2013, Beijing experienced extreme air pollution, which was not well examined. We thus examine the magnitude of air quality in the particular month by applying the air quality index (AQI), which is based on the newly upgraded Chinese environmental standard. Our finding revealed that (1) air quality has distinct spatial heterogeneity and relatively better air quality was observed in the northwest while worse quality happened in the southeast part of the city; (2) the wind speed is the main determinant of air quality in the city-when wind speed is greater than 4 m/sec, air quality can be significantly improved; and (3) urban impervious surface makes a contribution to the severity of air pollution-that is, with an increase in the fraction of impervious surface in a given area, air pollution is more severe. The results from our study demonstrated the severe pollution in Beijing and its meteorological and landscape factors. Also, the results of this work suggest that very strict air quality management should be conducted when wind speed less than 4 m/sec, especially at places with a large fraction of urban impervious surface. Prevention of air pollution is rare among methods with controls on meteorological and urban landscape conditions. We present research that utilizes the latest air quality index (AQI) to compare air pollution with meteorological and landscape conditions. We found that wind is the major meteorological factor that determines the air quality. For a given wind speed greater than 4 m/sec, the air quality improved significantly. Urban impervious surface also contributes to the severe air pollution: that is, when the fraction of impervious surface increases, there is more severe air pollution. These results suggest that air quality management should be conducted when wind speed is less than 4 m/sec, especially at places with a larger fraction of urban impervious surface.
NASA Astrophysics Data System (ADS)
Norouzi, H.; Bah, A.; Prakash, S.; Nouri, N.; Blake, R.
2017-12-01
A great percentage of the world's population reside in urban areas that are exposed to the threats of global and regional climate changes and associated extreme weather events. Among them, urban heat islands have significant health and economic impacts due to higher thermal gradients of impermeable surfaces in urban regions compared to their surrounding rural areas. Therefore, accurate characterization of the surface energy balance in urban regions are required to predict these extreme events. High spatial resolution Land surface temperature (LST) in the scale of street level in the cities can provide wealth of information to study surface energy balance and eventually providing a reliable heat index. In this study, we estimate high-resolution LST maps using combination of LandSat 8 and infrared based satellite products such as Moderate Resolution Imaging Spectroradiometer (MODIS) and newly launched Geostationary Operational Environmental Satellite-R Series (GOES-R). Landsat 8 provides higher spatial resolution (30 m) estimates of skin temperature every 16 days. However, MODIS and GOES-R have lower spatial resolution (1km and 4km respectively) with much higher temporal resolution. Several statistical downscaling methods were investigated to provide high spatiotemporal LST maps in urban regions. The results reveal that statistical methods such as Principal Component Analysis (PCA) can provide reliable estimations of LST downscaling with 2K accuracy. Other methods also were tried including aggregating (up-scaling) the high-resolution data to a coarse one to examine the limitations and to build the model. Additionally, we deployed flux towers over distinct materials such as concrete, asphalt, and rooftops in New York City to monitor the sensible and latent heat fluxes through eddy covariance method. To account for the incoming and outgoing radiation, a 4-component radiometer is used that can observe both incoming and outgoing longwave and shortwave radiation. This enables us to accurately build the relationship between LST, air temperature, and the heat index in the future.
Moreira, Nuno F F; Sousa, José M; Macedo, Gonçalo; Ribeiro, Ana R; Barreiros, Luisa; Pedrosa, Marta; Faria, Joaquim L; Pereira, M Fernando R; Castro-Silva, Sérgio; Segundo, Marcela A; Manaia, Célia M; Nunes, Olga C; Silva, Adrián M T
2016-05-01
Photocatalytic ozonation was employed for the first time in continuous mode with TiO2-coated glass Raschig rings and light emitting diodes (LEDs) to treat urban wastewater as well as surface water collected from the supply area of a drinking water treatment plant (DWTP). Different levels of contamination and types of contaminants were considered in this work, including chemical priority substances (PSs) and contaminants of emerging concern (CECs), as well as potential human opportunistic antibiotic resistant bacteria and their genes (ARB&ARG). Photocatalytic ozonation was more effective than single ozonation (or even than TiO2 catalytic ozonation) in the degradation of typical reaction by-products (such as oxalic acid), and more effective than photocatalysis to remove the parent micropollutants determined in urban wastewater. In fact, only fluoxetine, clarithromycin, erythromycin and 17-alpha-ethinylestradiol (EE2) were detected after photocatalytic ozonation, by using solid-phase extraction (SPE) pre-concentration and LC-MS/MS analysis. In surface water, this treatment allowed the removal of all determined micropollutants to levels below the limit of detection (0.01-0.20 ng L(-1)). The efficiency of this process was then assessed based on the capacity to remove different groups of cultivable microorganisms and housekeeping (16S rRNA) and antibiotic resistance or related genes (intI1, blaTEM, qnrS, sul1). Photocatalytic ozonation was observed to efficiently remove microorganisms and ARGs. Although after storage total heterotrophic and ARB (to ciprofloxacin, gentamicin, meropenem), fungi, and the genes 16S rRNA and intI1, increased to values close to the pre-treatment levels, the ARGs (blaTEM, qnrS and sul1) were reduced to levels below/close to the quantification limit even after 3-days storage of treated surface water or wastewater. Yeast estrogen screen (YES), thiazolyl blue tetrazolium reduction (MTT) and lactate dehydrogenase (LDH) assays were also performed before and after photocatalytic ozonation to evaluate the potential estrogenic activity, the cellular metabolic activity and the cell viability. Compounds with estrogenic effects and significant differences concerning cell viability were not observed in any case. A slight cytotoxicity was only detected for Caco-2 and hCMEC/D3 cell lines after treatment of the urban wastewater, but not for L929 fibroblasts. Copyright © 2016 Elsevier Ltd. All rights reserved.
Stormwater dissolved organic matter: influence of land cover and environmental factors.
McElmurry, Shawn P; Long, David T; Voice, Thomas C
2014-01-01
Dissolved organic matter (DOM) plays a major role in defining biological systems and it influences the fate and transport of many pollutants. Despite the importance of DOM, understanding of how environmental and anthropogenic factors influence its composition and characteristics is limited. This study focuses on DOM exported as stormwater from suburban and urban sources. Runoff was collected before entering surface waters and DOM was characterized using specific ultraviolet absorbance at 280 nm (a proxy for aromaticity), molecular weight, polydispersity and the fraction of DOM removed from solution via hydrophobic and H-bonding mechanisms. General linear models (GLMs) incorporating land cover, precipitation, solar radiation and selected aqueous chemical measurements explained variations in DOM properties. Results show (1) molecular characteristics of DOM differ as a function of land cover, (2) DOM produced by forested land is significantly different from other landscapes, particularly urban and suburban areas, and (3) DOM from land cover that contains paved surfaces and sewers is more hydrophobic than from other types of land cover. GLMs incorporating environmental factors and land cover accounted for up to 86% of the variability observed in DOM characteristics. Significant variables (p < 0.05) included solar radiation, water temperature and water conductivity.
Residential Exposure to Nighttime Retained Heat in the El Paso, Texas, USA Desert Metroplex
NASA Astrophysics Data System (ADS)
Amaya, M. A.; Mohammed, M.; Pingitore, N. E.; Aldouri, R. K.; Benedict, B. A.
2013-12-01
The urban heat island is a well recognized and extensively studied phenomenon that has accelerating importance resulting from two trends associated with world-wide population growth: increasing urbanization and global warming. Urbanization, particularly when unplanned and haphazard, changes such thermal parameters as albedo, surface roughness, and heat capacities of surface materials. Rapid urbanization in the contiguous El Paso, Texas, USA - Ciudad Juarez, Chihuahua, Mexico bi-national metroplex has produced an urban heat island that is warmer than the surrounding Chihuahuan desert (temperature: 35-40 C summer; high elevation: 600-1675 m; rainfall: less than 250 mm annual). Despite the extensive literature on the urban heat island, little is known about urban nighttime land surface temperatures. We employed infrared satellite imaging to establish the variation of nighttime neighborhood surface temperatures across the city of El Paso, as well as all of El Paso County. The underlying purpose of our continuing investigation is to evaluate the geography of morbidity risk: are different neighborhoods at different risk of high nighttime temperatures. Those risks can include heat stress, and irritability and sleep deprivation, with possible resultant violence. Heat exposure at night is significant because residents are at home and 90% of El Pasoans do not have 'refrigerated' air conditioning, but instead have evaporative coolers, which are less expensive to own and operate, but are less effective since they raise the humidity of the partially cooled air. Our geographically weighted regression model showed that both day and nighttime land surface temperatures correlated with the normalized difference vegetation index, population density, and albedo. The association with the index and albedo was stronger during the daytime and with population density during the nighttime. Vegetation (negative) and population density (positive) were the dominant temperature drivers, with albedo and elevation as secondary drivers. Using archived satellite imagery we determined that over the last two decades there has been an increase in both day and nighttime temperatures. With no expected change in urban growth and global warming, local residents will be at increasing risk in the future, as will residents in other urban centers in the desert southwest of the US. We currently are evaluating exposure risk in different population sectors. Do the aged or the poor reside in higher risk neighborhoods? Are there simple measures that can be taken to ameliorate nighttime temperatures?
Measurement of Urban fluxes of CO2 and water
NASA Astrophysics Data System (ADS)
Grimmond, S.; Crawford, B.; Offerle, B.; Hom, J.
2006-05-01
Measurements of surface-atmosphere fluxes of carbon dioxide (FCO2) and latent heat in urban environments are rare even though cities are a major source of atmospheric CO2 and users of water. In this paper, an overview of urban FCO2 measurements will be presented to illustrate how and where such measurements are being conducted and emerging results to date. Most of these studies have been conducted over short periods of time; few studies have considered annual sources/sinks. More investigations have been conducted, and are planned, in European cities than elsewhere, most commonly in areas of medium density urban development. The most dense urban sites are significant net sources of carbon. However, in areas where there is large amounts of vegetation present, there is a net sink of carbon during the summertime. In the second part of the presentation, more detailed attention will be directed to an ongoing measurement program in Baltimore, MD (part of the Baltimore Ecosystem Study). Eddy covariance instrumentation mounted on a tall-tower at 41.2 m has continuously measured local-scale fluxes of carbon dioxide from a suburban environment since 2001. Several features make this particular study unique: 1) for an urban area, the study site is extensively vegetated, 2) the period of record (2001-2005) is among the longest available for urban FCO2 measurements, 3) both closed-path and open-path infrared gas analyzers are used for observations, and 4) several unique data quality control and gap-filling methods have been developed for use in an urban environment. Additionally, detailed surface datasets and GIS software are used to perform flux source area analysis. Results from Baltimore indicate that FCO2 is very dependent on source area land-cover characteristics, particularly the proportion of vegetated and built surfaces. Over the course of a year, the urban surface is a strong net source of CO2, though there is considerable inter-annual variability depending on environmental conditions (e.g. average temperature, total precipitation, cicada infestation). During the growing season, there is net uptake of CO2 by the surface, but this uptake is less than in forested areas and is not enough to offset CO2 emissions for the entire year