Science.gov

Sample records for uropathogenic escherichia coli

  1. Draft Genome Sequence of Uropathogenic Escherichia coli Strain NB8

    PubMed Central

    Mi, Zu-huang; Wang, Chun-xin; Zhu, Jian-ming

    2016-01-01

    Escherichia coli NB8 is a clinical pyelonephritis isolate. Here, we report the draft genome sequence of uropathogenic E. coli NB8, which contains drug resistance genes encoding resistance to beta-lactams, aminoglycosides, quinolones, macrolides, colistin, sulfonamide-trimethoprim, and tetracycline. NB8 infects the kidney and bladder, making it an important tool for studying E. coli pathogenesis. PMID:27609920

  2. Uropathogenic Escherichia coli-Associated Exotoxins.

    PubMed

    Welch, Rodney A

    2016-06-01

    Escherichia coli are a common cause of infectious disease outside of the gastrointestinal tract. Several independently evolved E. coli clades are common causes of urinary tract and bloodstream infections. There is ample epidemiological and in vitro evidence that several different protein toxins common to many, but not all, of these strains are likely to aid the colonization and immune-evasion ability of these bacteria. This review discusses our current knowledge and areas of ignorance concerning the contribution of the hemolysin; cytotoxic-necrotizing factor-1; and the autotransporters, Sat, Pic, and Vat, to extraintestinal human disease.

  3. Morphological plasticity promotes resistance to phagocyte killing of uropathogenic Escherichia coli

    PubMed Central

    Horvath, Dennis J.; Li, Birong; Casper, Travis; Partida-Sanchez, Santiago; Hunstad, David A.; Hultgren, Scott J.; Justice, Sheryl S.

    2011-01-01

    Uropathogenic Escherichia coli proceed through a complex intracellular developmental pathway that includes multiple morphological changes. During intracellular growth within Toll-like receptor 4-activated superficial bladder epithelial cells, a subpopulation of uropathogenic E. coli initiates SulA-mediated filamentation. In this study, we directly investigated the role of bacterial morphology in the survival of uropathogenic E. coli from killing by phagocytes. We initially determined that both polymorphonuclear neutrophils and macrophages are recruited to murine bladder epithelium at times coincident with extracellular bacillary and filamentous uropathogenic E. coli. We further determined that bacillary uropathogenic E. coli were preferentially destroyed when mixed uropathogenic E. coli populations were challenged with cultured murine macrophages in vitro. Consistent with studies using elliptical-shaped polymers, the initial point of contact between the phagocyte and filamentous uropathogenic E. coli influenced the efficacy of internalization. These findings demonstrate that filamentous morphology provides a selective advantage for uropathogenic E. coli evasion of killing by phagocytes and defines a mechanism for the essential role for SulA during bacterial cystitis. Thus, morphological plasticity can be viewed as a distinct class of mechanism used by bacterial pathogens to subvert host immunity. PMID:21182979

  4. Identification of Uropathogenic Escherichia coli Surface Proteins by Shotgun Proteomics

    PubMed Central

    Walters, Matthew S.; Mobley, Harry L.T.

    2009-01-01

    Uropathogenic Escherichia coli (UPEC) cause the majority of uncomplicated urinary tract infections in humans. In the process of identifying candidate antigens for a vaccine, two methods for the identification of the UPEC surface proteome during growth in human urine were investigated. The first approach utilized a protease to ‘shave’ surface-exposed peptides from the bacterial cell surface and identify them by mass spectrometry. Although this approach has been successfully applied to a Gram-positive pathogen, the adaptation to Gram-negative UPEC resulted in cytoplasmic protein contamination. In a more direct approach, whole-cell bacteria were labeled with a biotin tag to indicate surface-exposed peptides and two-dimensional liquid chromatography-tandem mass spectrometry (2-DLC-MS/MS) was used to identify proteins isolated from the outer membrane. This method discovered 25 predicted outer membrane proteins expressed by UPEC while growing in human urine. Nine of the 25 predicted outer membrane proteins were part of iron transport systems or putative iron-regulated virulence proteins, indicating the importance of iron acquisition during growth in urine. One of the iron transport proteins identified, Hma, appears to be a promising vaccine candidate is being further investigated. The method described here presents a system to rapidly identify the outer membrane proteome of bacteria, which may prove valuable in vaccine development. PMID:19426766

  5. Uropathogenic Escherichia coli are less likely than paired fecal E. coli to have CRISPR loci.

    PubMed

    Dang, Trang Nguyen Doan; Zhang, Lixin; Zöllner, Sebastian; Srinivasan, Usha; Abbas, Khadija; Marrs, Carl F; Foxman, Betsy

    2013-10-01

    CRISPRs (Clustered Regularly Interspaced Short Palindromic Repeats) are short fragments of DNA that act as an adaptive immune system protecting bacteria against invasion by phages, plasmids or other forms of foreign DNA. Bacteria without a CRISPR locus may more readily adapt to environmental changes by acquiring foreign genetic material. Uropathogenic Escherichia coli (UPEC) live in a number of environments suggesting an ability to rapidly adapt to new environments. If UPEC are more adaptive than commensal E. coli we would expect that UPEC would have fewer CRISPR loci, and--if loci are present--that they would harbor fewer spacers than CRISPR loci in fecal E. coli. We tested this in vivo by comparing the number of CRISPR loci and spacers, and sensitivity to antibiotics (resistance is often obtained via plasmids) among 81 pairs of UPEC and fecal E. coli isolated from women with urinary tract infection. Each pair included one uropathogen and one commensal (fecal) sample from the same female patient. Fecal isolates had more repeats (p=0.009) and more unique spacers (p<0.0001) at four CRISPR loci than uropathogens. By contrast, uropathogens were more likely than fecal E. coli to be resistant to ampicillin, cefazolin and trimethoprim/sulfamethoxazole. However, no consistent association between CRISPRs and antibiotic resistance was identified. To our knowledge, this is the first study to compare fecal E. coli and pathogenic E. coli from the same individuals, and to test the association of CRISPR loci with antibiotic resistance. Our results suggest that the absence of CRISPR loci may make UPEC more susceptible to infection by phages or plasmids and allow them to adapt more quickly to various environments.

  6. Integrated Genomic Map from Uropathogenic Escherichia coli J96

    PubMed Central

    Melkerson-Watson, Lyla J.; Rode, Christopher K.; Zhang, Lixin; Foxman, Betsy; Bloch, Craig A.

    2000-01-01

    Escherichia coli J96 is a uropathogen having both broad similarities to and striking differences from nonpathogenic, laboratory E. coli K-12. Strain J96 contains three large (>100-kb) unique genomic segments integrated on the chromosome; two are recognized as pathogenicity islands containing urovirulence genes. Additionally, the strain possesses a fourth smaller accessory segment of 28 kb and two deletions relative to strain K-12. We report an integrated physical and genetic map of the 5,120-kb J96 genome. The chromosome contains 26 NotI, 13 BlnI, and 7 I-CeuI macrorestriction sites. Macrorestriction mapping was rapidly accomplished by a novel transposon-based procedure: analysis of modified minitransposon insertions served to align the overlapping macrorestriction fragments generated by three different enzymes (each sharing a common cleavage site within the insert), thus integrating the three different digestion patterns and ordering the fragments. The resulting map, generated from a total of 54 mini-Tn10 insertions, was supplemented with auxanography and Southern analysis to indicate the positions of insertionally disrupted aminosynthetic genes and cloned virulence genes, respectively. Thus, it contains not only physical, macrorestriction landmarks but also the loci for eight housekeeping genes shared with strain K-12 and eight acknowledged urovirulence genes; the latter confirmed clustering of virulence genes at the large unique accessory chromosomal segments. The 115-kb J96 plasmid was resolved by pulsed-field gel electrophoresis in NotI digests. However, because the plasmid lacks restriction sites for the enzymes BlnI and I-CeuI, it was visualized in BlnI and I-CeuI digests only of derivatives carrying plasmid inserts artificially introducing these sites. Owing to an I-SceI site on the transposon, the plasmid could also be visualized and sized from plasmid insertion mutants after digestion with this enzyme. The insertional strains generated in construction of

  7. Eravacycline (TP-434) Is Active In Vitro against Biofilms Formed by Uropathogenic Escherichia coli

    PubMed Central

    O'Brien, William; Kerstein, Kathryn O.; Sutcliffe, Joyce A.

    2015-01-01

    Eravacycline (formerly TP-434) was evaluated in vitro against pre-established biofilms formed by a uropathogenic Escherichia coli strain. Biofilms were eradicated by 0.5 μg/ml eravacycline, which was within 2-fold of the MIC for planktonic cells. In contrast, colistin and meropenem disrupted biofilms at 32 and 2 μg/ml, respectively, concentrations well above their respective MICs of 0.5 and 0.03 μg/ml. Gentamicin and levofloxacin eradicated biofilms at concentrations within 2-fold of their MICs. PMID:25624334

  8. Modeling the inactivation of Escherichia coli 0157:H7 and uropathogenic E.coli in ground chicken by high pressure processing and thymol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disease causing Escherichia coli commonly found in meat and poultry include intestinal pathogenic E. coli (iPEC) as well as extraintestinal types such as the Uropathogenic E. coli (UPEC). In this study we compare the resistance of iPEC (O157:H7) to UPEC in chicken meat using High Pressure Processing...

  9. Modeling the inactivatin of Escherichia coli 0157:H7 and uropathogenic E. coli in ground beef by high pressure processing and citral

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Disease causing Escherichia coli commonly found in meat and poultry include intestinal pathogenic E. coli (iPEC) as well as extraintestinal types such as the Uropathogenic E. coli (UPEC). In this study we compared the resistance of iPEC (O157:H7) to UPEC in ground beef using High Pressure Processing...

  10. Glycolipid receptors for uropathogenic Escherichia coli on human erythrocytes and uroepithelial cells.

    PubMed Central

    Leffler, H; Svanborg-Edén, C

    1981-01-01

    A specific family of glycolipids, the globoseries, was shown to act as receptors on human uroepithelial cells and erythrocytes for the majority of uropathogenic Escherichia coli strains attaching to or hemagglutinating those cells. This was demonstrated in three different ways: (i) correlation between the natural presence of glycolipid in the target cell (erythrocytes of different species) and binding of bacteria; (ii) inhibition of attachment to human uroepithelial cells by preincubation of bacteria and glycolipid; and (iii) induction of binding to unreactive cells by coating of these cells with glycolipid. Strains reacting with the receptor agglutinated guinea pig erythrocytes in a mannose-resistant way after, but not before, coating of the cells with globotetraosylceramide. Unrelated glycolipids were not recognized. The reaction was made independent of simultaneous occurrence of mannose-sensitive adhesions on the strains by addition of D-mannose. The receptor-coated cells were used as a tool to screen for prevalence of receptor recognition in a collection of 453 E. coli strains isolated from patients with urinary tract infection or from the stools of healthy children. Of 150 strains attaching to human uroepithelial cells and agglutinating human erythrocytes, 121 bound to globotetraosylceramide (81%). Globoside recognition was especially frequent among pyelonephritis strains (74/81). The glycolipid composition of the urogenital epithelium and kidney tissue and the ability of uropathogenic E. coli to bind to these glycolipids may be a determinant in host-parasite interaction leading to urinary tract infection. PMID:7037645

  11. Inhibition of adhesion of uropathogenic Escherichia coli bacteria to uroepithelial cells by extracts from cranberry.

    PubMed

    Ermel, Gwennola; Georgeault, Sylvie; Inisan, Claude; Besnard, Matthieu

    2012-02-01

    Cranberry extract has been reported as a therapeutic agent, mainly in urinary tract infections due to its anti-adhesive capacity. In order to compare the effects of proanthocyanidin (procyanidin) (PAC)-standardized cranberry extracts and commercial PAC A2, we first investigated the presence of genes encoding known adhesins on 13 strains of uropathogenic strains coming from patients with cystisis. After this characterization, the anti-adhesive effects of PAC A2 were assayed on selected uropathogenic Escherichia coli strains before testing cranberry extracts. Before checking inhibitory effect on bacterial adhesion to cells, we showed that neither PAC A2 or three cranberry extracts (A, B, and C) specifically inhibited the growth and did not supply any potential nutrient to E. coli strains, including the unrelated control strain. PAC A2 exhibited an inhibitory effect on the adhesion of two selected uropathogenic strains of E. coli. This work also showed that a preliminary exposure of bacteria to PAC A2 significantly reduced the adhesion. This phenomenon has been also observed with a lesser impact when uroepithelial cells were pretreated with PAC A2. Moreover, the assays were more robust when bacteria were in fast growing conditions (exponential phase): the adhesion to uroepithelial cells was greater. Significant reduction of adhesion to urepithelial cells was observed: around 80% of inhibition of adhesion with the cranberry extracts at equivalent PAC concentration of 50 μg/mL. The effects of the different assayed extracts were not obviously different except for extract B, which inhibited approximately 55% of adhesion at an equivalent PAC concentration of 5 μg/mL.

  12. Crystal structure analysis of c4763, a uropathogenic Escherichia coli-specific protein.

    PubMed

    Kim, Hun; Choi, Jongkeun; Kim, Doyoun; Kim, Kyeong Kyu

    2015-08-01

    Urinary-tract infections (UTIs), which are some of the most common infectious diseases in humans, can cause sepsis and death without proper treatment. Therefore, it is necessary to understand their pathogenicity for proper diagnosis and therapeutics. Uropathogenic Escherichia coli, the major causative agents of UTIs, contain several genes that are absent in nonpathogenic strains and are therefore considered to be relevant to UTI pathogenicity. c4763 is one of the uropathogenic E. coli-specific proteins, but its function is unknown. To investigate the function of c4763 and its possible role in UTI pathogenicity, its crystal structure was determined at a resolution of 1.45 Å by a multiple-wavelength anomalous diffraction method. c4763 is a homodimer with 129 residues in one subunit that contains a GGCT-like domain with five α-helices and seven β-strands. c4763 shows structural similarity to the C-terminal domain of allophanate hydrolase from Kluyveromyces lactis, which is involved in the degradation of urea. These results suggest that c4763 might be involved in the utilization of urea, which is necessary for bacterial survival in the urinary tract. Further biochemical and physiological investigation will elucidate its functional relevance in UTIs.

  13. Role of Uropathogenic Escherichia coli Virulence Factors in Development of Urinary Tract Infection and Kidney Damage

    PubMed Central

    Bien, Justyna; Sokolova, Olga; Bozko, Przemyslaw

    2012-01-01

    Uropathogenic Escherichia coli (UPEC) is a causative agent in the vast majority of urinary tract infections (UTIs), including cystitis and pyelonephritis, and infectious complications, which may result in acute renal failure in healthy individuals as well as in renal transplant patients. UPEC expresses a multitude of virulence factors to break the inertia of the mucosal barrier. In response to the breach by UPEC into the normally sterile urinary tract, host inflammatory responses are triggered leading to cytokine production, neutrophil influx, and the exfoliation of infected bladder epithelial cells. Several signaling pathways activated during UPEC infection, including the pathways known to activate the innate immune response, interact with calcium-dependent signaling pathways. Some UPEC isolates, however, might possess strategies to delay or suppress the activation of components of the innate host response in the urinary tract. Studies published in the recent past provide new information regarding how virulence factors of uropathogenic E. coli are involved in activation of the innate host response. Despite numerous host defense mechanisms, UPEC can persist within the urinary tract and may serve as a reservoir for recurrent infections and serious complications. Presentation of the molecular details of these events is essential for development of successful strategies for prevention of human UTIs and urological complications associated with UTIs. PMID:22506110

  14. Uropathogenic virulence factor FimH facilitates binding of uteropathogenic Escherichia coli to canine endometrium.

    PubMed

    Krekeler, N; Marenda, M S; Browning, G F; Holden, K M; Charles, J A; Wright, P J

    2012-09-01

    Pyometra is a potentially life-threatening condition in bitches and is often caused by Escherichia coli infection. Both pathogenic and non-pathogenic E. coli strains commonly carry the genes for type 1 fimbriae that mediate bacterial adhesion onto host epithelium. To investigate whether the type 1 fimbrial adhesin, FimH, facilitates the binding of uropathogenic E. coli to canine endometrium, the fimH gene was insertionally inactivated in a pathogenic E. coli strain. The ability of E. coli to bind to canine endometrial epithelial cells was determined in vitro using canine uterine biopsies. Binding of the fimH mutant was only 0.3% of that of the wild type. Complementation of the mutation restored the phenotype to that of the parent. This study has developed an in vitro model that allows quantitative and qualitative assessment of bacterial binding to canine endometrium and has demonstrated that the fimH gene plays a role in adherence of pathogenic E. coli to canine endometrium.

  15. The RTX pore-forming toxin α-hemolysin of uropathogenic Escherichia coli: progress and perspectives.

    PubMed

    Wiles, Travis J; Mulvey, Matthew A

    2013-01-01

    Members of the RTX family of protein toxins are functionally conserved among an assortment of bacterial pathogens. By disrupting host cell integrity through their pore-forming and cytolytic activities, this class of toxins allows pathogens to effectively tamper with normal host cell processes, promoting pathogenesis. Here, we focus on the biology of RTX toxins by describing salient properties of a prototype member, α-hemolysin, which is often encoded by strains of uropathogenic Escherichia coli. It has long been appreciated that RTX toxins can have distinct effects on host cells aside from outright lysis. Recently, advances in modeling and analysis of host-pathogen interactions have led to novel findings concerning the consequences of pore formation during host-pathogen interactions. We discuss current progress on longstanding questions concerning cell specificity and pore formation, new areas of investigation that involve toxin-mediated perturbations of host cell signaling cascades and perspectives on the future of RTX toxin investigation.

  16. Use of optical mapping to sort uropathogenic Escherichia coli strains into distinct subgroups

    PubMed Central

    Schwan, William R.; Briska, Adam; Stahl, Buffy; Wagner, Trevor K.; Zentz, Emily; Henkhaus, John; Lovrich, Steven D.; Agger, William A.; Callister, Steven M.; DuChateau, Brian; Dykes, Colin W.

    2010-01-01

    Optical maps were generated for 33 uropathogenic Escherichia coli (UPEC) isolates. For individual genomes, the NcoI restriction fragments aligned into a unique chromosome map for each individual isolate, which was then compared with the in silico restriction maps of all of the sequenced E. coli and Shigella strains. All of the UPEC isolates clustered separately from the Shigella strains as well as the laboratory and enterohaemorrhagic E. coli strains. Moreover, the individual strains appeared to cluster into distinct subgroups based on the dendrogram analyses. Phylogenetic grouping of these 33 strains showed that 32/33 were the B2 subgroup and 1/33 was subgroup A. To further characterize the similarities and differences among the 33 isolates, pathogenicity island (PAI), haemolysin and virulence gene comparisons were performed. A strong correlation was observed between individual subgroups and virulence factor genes as well as haemolysis activity. Furthermore, there was considerable conservation of sequenced-strain PAIs in the specific subgroups. Strains with different antibiotic-resistance patterns also appeared to sort into separate subgroups. Thus, the optical maps distinguished the UPEC strains from other E. coli strains and further subdivided the strains into distinct subgroups. This optical mapping procedure holds promise as an alternative way to subgroup all E. coli strains, including those involved in infections outside of the intestinal tract and epidemic strains with distinct patterns of antibiotic resistance. PMID:20378655

  17. Uropathogenic Escherichia coli as agents of diverse non-urinary tract extraintestinal infections.

    PubMed

    Johnson, James R; Russo, Thomas A

    2002-09-15

    Escherichia coli isolates from 3 consecutively encountered patients with serious, invasive, non-urinary tract extraintestinal infections (pneumonia, deep surgical wound infection, and vertebral osteomyelitis with associated epidural/psoas/iliacus abscesses) were characterized, using molecular methods, as to extended virulence genotype and phylogenetic background. All 3 isolates exhibited virulence genotypes and genomic profiles characteristic of specific familiar virulent clones of extraintestinal pathogenic E. coli (ExPEC), which traditionally have been regarded primarily as uropathogenic or as associated with meningitis. These included E. coli O1/O2:K1:H7, E. coli O18:K1:H7, and a recently described E. coli O11/O17/O77:K52:H18 clonal group (clonal group A). These findings demonstrate the extraintestinal pathogenic versatility of ExPEC clones, which supports the use of an inclusive designation for such strains and suggests the possibility of cross-syndrome protective interventions. They also provide novel evidence that multidrug-resistant epidemic clonal group A can cause extraintestinal infections other than uncomplicated urinary tract infections and can cause them in hosts other than young women.

  18. Analysis of uropathogenic Escherichia coli biofilm formation under different growth conditions.

    PubMed

    Adamus-Białek, Wioletta; Kubiak, Anna; Czerwonka, Grzegorz

    2015-01-01

    The ability to form different types of biofilm enables bacteria to survive in a harsh or toxic environment. Different structures of biofilms are related to different surfaces and environment of bacterial growth. The aim of this study was analysis of the biofilm formation of 115 clinical uropathogenic Escherichia coli strains under different growth conditions: surface for biofilm formation, medium composition and time of incubation. The biofilm formation after 24 h, 48 h, 72 h and 96 h was determined spectrophotometrically (A531) after crystal violet staining and it was correlated with bacterial growth (A600). The live and dead cells in biofilm structures was also observed on the glass surface by an epi-fluorescence microscope. Additionally, the presence of rpoS, sdiA and rscA genes was analyzed. The statistical significance was estimated by paired T-test. The observed biofilms were different for each particular strain. The biofilm formation was the highest in the rich medium (LB) after 24 h and its level hasn't changed in time. When biofilm level was compared to bacterial growth (relative biofilm) - it was higher in a minimal medium in comparison to enriched medium. These results suggest that most of the bacterial cells prefer to live in a biofilm community under the difficult environmental conditions. Moreover, biofilm formation on polyurethane surface did not correlate with biofilm formation on glass. It suggests that mechanisms of biofilm formation can be correlated with other bacterial properties. This phenomenon may explain different types of biofilm formation among one species and even one pathotype - uropathogenic Escherichia coli.

  19. Uropathogenic Escherichia coli strain CFT073 disrupts NLRP3 inflammasome activation

    PubMed Central

    Waldhuber, Anna; Puthia, Manoj; Wieser, Andreas; Cirl, Christine; Dürr, Susanne; Neumann-Pfeifer, Silke; Albrecht, Simone; Römmler, Franziska; Müller, Tina; Zheng, Yunji; Schubert, Sören; Groß, Olaf; Svanborg, Catharina

    2016-01-01

    Successful bacterial pathogens produce an array of virulence factors that allow subversion of the immune system and persistence within the host. For example, uropathogenic Escherichia coli strains, such as CFT073, express Toll/IL-1 receptor–containing (TIR-containing) protein C (TcpC), which impairs TLR signaling, thereby suppressing innate immunity in the urinary tract and enhancing persistence in the kidneys. Here, we have reported that TcpC also reduces secretion of IL-1β by directly interacting with the NACHT leucin-rich repeat PYD protein 3 (NLRP3) inflammasome, which is crucial for recognition of pathogens within the cytosol. At a low MOI, IL-1β secretion was minimal in CFT073-infected macrophages; however, IL-1β release was markedly increased in macrophages infected with CFT073 lacking tcpC. Induction of IL-1β secretion by CFT073 and tcpC–deficient CFT073 required the NLRP3 inflammasome. TcpC attenuated activation of the NLRP3 inflammasome by binding both NLRP3 and caspase-1 and thereby preventing processing and activation of caspase-1. Moreover, in a murine urinary tract infection model, CFT073 infection rapidly induced expression of the NLRP3 inflammasome in the bladder mucosa; however, the presence of TcpC in WT CFT073 reduced IL-1β levels in the urine of infected mice. Together, these findings illustrate how uropathogenic E. coli use the multifunctional virulence factor TcpC to attenuate innate immune responses in the urinary tract. PMID:27214553

  20. Tetracycline rapidly reaches all the constituent cells of uropathogenic Escherichia coli biofilms

    NASA Technical Reports Server (NTRS)

    Stone, G.; Wood, P.; Dixon, L.; Keyhan, M.; Matin, A.; Demain, A. L. (Principal Investigator)

    2002-01-01

    We have developed a method for visualizing Escherichia coli cells that are exposed to tetracycline in a biofilm, based on a previous report that liposomes containing the E. coli TetR(B) protein fluoresce when exposed to this antibiotic. By our method, cells devoid of TetR(B) also exhibited tetracycline-dependent fluorescence. At 50 microg of tetracycline ml(-1), planktonic cells of a uropathogenic E. coli (UPEC) strain developed maximal fluorescence after 7.5 to 10 min of exposure. A similar behavior was exhibited by cells in a 24- or 48-h UPEC biofilm, as examined by confocal laser microscopy, regardless of whether they lined empty spaces or occupied densely packed regions. Further, a comparison of phase-contrast and fluorescent images of corresponding biofilm zones showed that all the cells fluoresced. Thus, all the biofilm cells were exposed to tetracycline and there were no pockets within the biofilm where the antibiotic failed to reach. It also appeared unlikely that niches of reduced exposure to the antibiotic existed within the biofilms.

  1. Colicin E2 Expression in Lactobacillus brevis DT24, A Vaginal Probiotic Isolate, against Uropathogenic Escherichia coli.

    PubMed

    Trivedi, Disha; Jena, Prasant Kumar; Seshadri, Sriram

    2014-01-01

    Novel therapeutic approaches are needed to combat the urinary tract infection in women. During menstruation elevated protein concentration and increase in oxygen and carbon dioxide concentrations with decrease in vaginal Lactobacilli all together contribute to urinary tract infections. Lactobacillus species are a predominant member of the vaginal microflora and are critical in the prevention of a number of urogenital diseases. In order to increase antimicrobial potential of vaginal Lactobacilli, bacteriocin colicin E2 which has specific activity against uropathogenic Escherichia coli has been overexpressed in vaginal probiotic Lactobacillus brevis DT24. Recombinant Lactobacillus brevis DT24 expressing colicin E2 showed much higher inhibitory activity against uropathogenic Escherichia coli than wild type L. brevis DT24 in vitro. Efficacy of probiotic Lactobacillus brevis DT24 expressing colicin E2 protein is required for further in vivo evaluation.

  2. Colicin E2 Expression in Lactobacillus brevis DT24, A Vaginal Probiotic Isolate, against Uropathogenic Escherichia coli

    PubMed Central

    Trivedi, Disha

    2014-01-01

    Novel therapeutic approaches are needed to combat the urinary tract infection in women. During menstruation elevated protein concentration and increase in oxygen and carbon dioxide concentrations with decrease in vaginal Lactobacilli all together contribute to urinary tract infections. Lactobacillus species are a predominant member of the vaginal microflora and are critical in the prevention of a number of urogenital diseases. In order to increase antimicrobial potential of vaginal Lactobacilli, bacteriocin colicin E2 which has specific activity against uropathogenic Escherichia coli has been overexpressed in vaginal probiotic Lactobacillus brevis DT24. Recombinant Lactobacillus brevis DT24 expressing colicin E2 showed much higher inhibitory activity against uropathogenic Escherichia coli than wild type L. brevis DT24 in vitro. Efficacy of probiotic Lactobacillus brevis DT24 expressing colicin E2 protein is required for further in vivo evaluation. PMID:24649377

  3. Cranberry (Vaccinium macrocarpon) oligosaccharides decrease biofilm formation by uropathogenic Escherichia coli.

    PubMed

    Sun, Jiadong; Marais, Jannie P J; Khoo, Christina; LaPlante, Kerry; Vejborg, Rebecca M; Givskov, Michael; Tolker-Nielsen, Tim; Seeram, Navindra P; Rowley, David C

    2015-08-01

    The preventive effects of the American cranberry (Vaccinium macrocarpon) against urinary tract infections are supported by extensive studies which have primarily focused on its phenolic constituents. Herein, a phenolic-free carbohydrate fraction (designated cranf1b-F2) was purified from cranberry fruit using ion exchange and size exclusion chromatography. MALDI-TOF-MS analysis revealed that the cranf1b-F2 constituents are predominantly oligosaccharides possessing various degrees of polymerisation and further structural analysis (by GC-MS and NMR) revealed mainly xyloglucan and arabinan residues. In antimicrobial assays, cranf1b-F2 (at 1.25 mg/mL concentration) reduced biofilm production by the uropathogenic Escherichia coli CFT073 strain by over 50% but did not inhibit bacterial growth. Cranf1b-F2 (ranging from 0.625 - 10 mg/mL) also inhibited biofilm formation of the non-pathogenic E. coli MG1655 strain up to 60% in a concentration-dependent manner. These results suggest that cranberry oligosaccharides, in addition to its phenolic constituents, may play a role in its preventive effects against urinary tract infections.

  4. Environmental phosphate differentially affects virulence phenotypes of uropathogenic Escherichia coli isolates causative of prostatitis

    PubMed Central

    Grillo-Puertas, M; Martínez-Zamora, MG; Rintoul, MR; Soto, SM; Rapisarda, VA

    2015-01-01

    K-12 Escherichia coli cells grown in static media containing a critical phosphate (Pi) concentration ≥25 mM maintained a high polyphosphate (polyP) level in stationary phase, impairing biofilm formation, a phenomenon that is triggered by polyP degradation. Pi concentration in human urine fluctuates according to health state. Here, the influence of environmental Pi concentration on the occurrence of virulence traits in uropathogenic E. coli (UPEC) isolated from acute prostatitis patients was evaluated. After a first screening, 3 isolates were selected according to differential biofilm formation profiles depending on media Pi concentration. For each isolate, biofilm positive and negative conditions were established. Regardless of the isolate, biofilm formation capacity was accompanied with curli and cellulose production and expression of some key virulence factors associated with adhesion. When the selected isolates were grown in their non-biofilm-forming condition, low concentrations of nalidixic acid and ciprofloxacin induced biofilm formation. Interestingly, similar to laboratory strains, polyP degradation induced biofilm formation in the selected isolates. Data demonstrated the complexity of UPEC responses to environmental Pi and the importance of polyP metabolism in the virulence of clinical isolates. PMID:26083279

  5. Occurrence of class 1 integrons in uropathogenic fluoroquinolone-resistant clinical Escherichia coli isolates from Jamaica.

    PubMed

    Stephenson, Stacy A M; Brown, Paul D

    2013-03-01

    Quinolone resistance is generally caused by chromosomal mutations, but has been more recently found associated with the plasmid-mediated qnr genes. The objective of this study was to screen and analyse polymorphisms of integrons in clinical isolates of Escherichia coli in Jamaica. Previous studies in Jamaica identified fluoroquinolone resistance in predominantly uropathogenic E. coli clinical isolates: 45% harbouring qnrA, qnrB and/or qnrS, and 17% were (Extended-spectrum beta-lactamase) ESBL-producers. These isolates were analysed for the presence and variation of class 1 and 2 integrase genes, 5'- and 3'- conserved segments and the Orf513 recombinase gene by primer-specific polymerase chain reaction (PCR) and restriction fragment-length polymorphism (RFLP). Results indicated integron-encoded integrases in 93% of isolates primarily harbouring class 1 integrase genes; four of 58 isolates carried both classes. The Orf513 and 5'- and 3'-conserved segment (CS) regions were identified in 83% and 55% of the isolates respectively. RFLP evaluation of the 5'- and 3'-CS regions in int1-positive strains yielded two main types. The reduced diversity, but wide dispersion of class 1 integrons harbouring qnr genes may give rise to the conservation of the mobile genetic elements in which they are carried.

  6. Escherichia coli clonal group A among uropathogenic infections in Mexico City.

    PubMed

    Manjarrez-Hernandez, Angel; Molina-López, José; Gavilanes-Parra, Sandra; Hernandez-Castro, Rigoberto

    2016-12-01

    Escherichia coli clonal group A (CGA) causes urinary tract and other extra-intestinal infections in humans. CGA is an important cause of trimethoprim/sulfamethoxazole (SXT) resistance in extra-intestinal pathogens. We examined the extent to which resistance in this area is related to CGA dissemination of E. coli from urinary tract infections (UTIs) in Mexico City. The virulence backgrounds of the isolates were also characterized. In this study, the frequency of resistance to SXT used for UTI treatment was high (56-65 %), and CGA isolates accounted for 9 of the 78 SXT-resistant isolates (11.5 %). Although all CGA isolates were found to be multidrug resistant (MDR), none of them were extended-spectrum β-lactamase-producing organisms. The prevalence of CGA among the 45 MDR isolates that we identified was 20 %, indicating that this clonal group moderately contributes to the antibiotic resistance of uropathogenic E. coli isolates in this region. Most of the nine CGA isolates carried transferable, large-size plasmids of approximately 80 to 100 kb, which were able to transfer antimicrobial resistance to E. coli J53 in mating assays. CGA isolates mainly belonged to phylogenetic groups F and D. We found no association between antimicrobial resistance and virulence-associated genes: the median virulence scores of CGA isolates were slightly higher (4.6) than those of non-CGA isolates, whether they were susceptible (3.7) or resistant (3.5) to SXT. Our results indicate that CGA is not a major contributor to the high level of resistance to SXT in this region but, instead, seems to be an important constituent of MDR isolates from UTIs.

  7. Uropathogenic Escherichia coli modulates innate immunity to suppress Th1-mediated inflammatory responses during infectious epididymitis.

    PubMed

    Lang, Tali; Hudemann, Christoph; Tchatalbachev, Svetlin; Stammler, Angelika; Michel, Vera; Aslani, Ferial; Bhushan, Sudhanshu; Chakraborty, Trinad; Renz, Harald; Meinhardt, Andreas

    2014-03-01

    Infectious epididymitis in men, a frequent entity in urological outpatient settings, is commonly caused by bacteria originating from the anal region ascending the genitourinary tract. One of the most prevalent pathogens associated with epididymitis is Escherichia coli. In our previous study, we showed that semen quality is compromised in men following epididymitis associated with specific E. coli pathovars. Thus, our aim was to investigate possible differences in immune responses elicited during epididymitis following infection with the uropathogenic E. coli (UPEC) strain CFT073 and the nonpathogenic enteric E. coli (NPEC) strain 470. Employing an in vivo experimental epididymitis model, C57BL/6 mice were infected with UPEC CFT073, NPEC 470, or phosphate-buffered saline (PBS) as a sham control for up to 7 days. After infection with NPEC 470, the expression of proinflammatory cytokines interleukin-1 (IL-1), IL-6, and tumor necrosis factor alpha in the epididymis was significantly increased. Conversely, UPEC CFT073-challenged mice displayed inflammatory gene expression at levels comparable to sham PBS-treated animals. Moreover, by day 7 only NPEC-infected animals showed activation of adaptive immunity evident by a substantial influx of CD3+ and F4/80+ cells in the epididymal interstitium. This correlated with enhanced production of Th1-associated cytokines IL-2 and gamma interferon (IFN-γ). Furthermore, splenocytes isolated from UPEC-infected mice exhibited diminished T-cell responses with significantly reduced secretion of IL-2 and IFN-γ in contrast to NPEC-infected animals. Overall, these findings provide new insights into understanding pathogen-specific modulation of host immunity during acute phases of epididymitis, which may influence severity of disease and clinical outcomes.

  8. Medicinal plants extracts affect virulence factors expression and biofilm formation by the uropathogenic Escherichia coli.

    PubMed

    Wojnicz, Dorota; Kucharska, Alicja Z; Sokół-Łętowska, Anna; Kicia, Marta; Tichaczek-Goska, Dorota

    2012-12-01

    Medicinal plants are an important source for the therapeutic remedies of various diseases including urinary tract infections. This prompted us to perform research in this area. We decided to focus on medicinal plants species used in urinary tract infections prevention. The aim of our study was to determine the influence of Betula pendula, Equisetum arvense, Herniaria glabra, Galium odoratum, Urtica dioica, and Vaccinium vitis-idaea extracts on bacterial survival and virulence factors involved in tissue colonization and biofilm formation of the uropathogenic Escherichia coli rods. Qualitative and quantitative analysis of plant extracts were performed. Antimicrobial assay relied on the estimation of the colony forming unit number. Hydrophobicity of cells was established by salt aggregation test. Using motility agar, the ability of bacteria to move was examined. The erythrocyte hemagglutination test was used for fimbriae P screening. Curli expression was determined using YESCA agar supplemented with congo red. Quantification of biofilm formation was carried out using a microtiter plate assay and a spectrophotometric method. The results of the study indicate significant differences between investigated extracts in their antimicrobial activities. The extracts of H. glabra and V. vitis-idaea showed the highest growth-inhibitory effects (p < 0.05). Surface hydrophobicity of autoaggregating E. coli strain changed after exposure to all plant extracts, except V. vitis-idaea (p > 0.05). The B. pendula and U. dioica extracts significantly reduced the motility of the E. coli rods (p < 0.05). All the extracts exhibited the anti-biofilm activity.

  9. YbcL of uropathogenic Escherichia coli suppresses transepithelial neutrophil migration.

    PubMed

    Lau, Megan E; Loughman, Jennifer A; Hunstad, David A

    2012-12-01

    Uropathogenic Escherichia coli (UPEC) strains suppress the acute inflammatory response in the urinary tract to ensure access to the intracellular uroepithelial niche that supports the propagation of infection. Our understanding of this initial cross talk between host and pathogen is incomplete. Here we report the identification of a previously uncharacterized periplasmic protein, YbcL, encoded by UPEC that contributes to immune modulation in the urinary tract by suppressing acute neutrophil migration. In contrast to wild-type UPEC, an isogenic strain lacking ybcL expression (UTI89 ΔybcL) failed to suppress transepithelial polymorphonuclear leukocyte (PMN) migration in vitro, a defect complemented by expressing ybcL episomally. YbcL homologs are present in many E. coli genomes; expression of the YbcL variant encoded by nonpathogenic E. coli K-12 strain MG1655 (YbcL(MG)) failed to complement the UTI89 ΔybcL defect, whereas expression of the UPEC YbcL variant (YbcL(UTI)) in MG1655 conferred the capacity for suppressing PMN migration. This phenotypic difference was due to a single amino acid difference (V78T) between the two YbcL homologs, and a majority of clinical UPEC strains examined were found to encode the suppressive YbcL variant. Purified YbcL(UTI) protein suppressed PMN migration in response to live or killed MG1655, and YbcL(UTI) was detected in the supernatant during UPEC infection of bladder epithelial cells or PMNs. Lastly, early PMN influx to murine bladder tissue was augmented upon in vivo infection with UTI89 ΔybcL compared with wild-type UPEC. Our findings demonstrate a role for UPEC YbcL in suppression of the innate immune response during urinary tract infection.

  10. Hepcidin as a Major Component of Renal Antibacterial Defenses against Uropathogenic Escherichia coli.

    PubMed

    Houamel, Dounia; Ducrot, Nicolas; Lefebvre, Thibaud; Daher, Raed; Moulouel, Boualem; Sari, Marie-Agnes; Letteron, Philippe; Lyoumi, Said; Millot, Sarah; Tourret, Jerome; Bouvet, Odile; Vaulont, Sophie; Vandewalle, Alain; Denamur, Erick; Puy, Hervé; Beaumont, Carole; Gouya, Laurent; Karim, Zoubida

    2016-03-01

    The iron-regulatory peptide hepcidin exhibits antimicrobial activity. Having previously shown hepcidin expression in the kidney, we addressed its role in urinary tract infection (UTI), which remains largely unknown. Experimental UTI was induced in wild-type (WT) and hepcidin-knockout (Hepc-/-) mice using the uropathogenic Escherichia coli CFT073 strain. Compared with infected WT mice, infected Hepc-/- mice showed a dramatic increase in renal bacterial load. Moreover, bacterial invasion was significantly dampened by the pretreatment of WT mice with hepcidin. Infected Hepc-/- mice exhibited decreased iron accumulation in the renal medulla and significant attenuation of the renal inflammatory response. Notably, we demonstrated in vitro bacteriostatic activity of hepcidin against CFT073. Furthermore, CFT073 repressed renal hepcidin, both in vivo and in cultured renal cells, and reduced phosphorylation of SMAD kinase in vivo, suggesting a bacterial strategy to escape the antimicrobial activities of hepcidin. In conclusion, we provide new mechanisms by which hepcidin contributes to renal host defense and suggest that targeting hepcidin offers a strategy to prevent bacterial invasion.

  11. Waging War against Uropathogenic Escherichia coli: Winning Back the Urinary Tract▿

    PubMed Central

    Sivick, Kelsey E.; Mobley, Harry L. T.

    2010-01-01

    Urinary tract infection (UTI) caused by uropathogenic Escherichia coli (UPEC) is a substantial economic and societal burden—a formidable public health issue. Symptomatic UTI causes significant discomfort in infected patients, results in lost productivity, predisposes individuals to more serious infections, and usually necessitates antibiotic therapy. There is no licensed vaccine available for prevention of UTI in humans in the United States, likely due to the challenge of targeting a relatively heterogeneous group of pathogenic strains in a unique physiological niche. Despite significant advances in the understanding of UPEC biology, mechanistic details regarding the host response to UTI and full comprehension of genetic loci that influence susceptibility require additional work. Currently, there is an appreciation for the role of classic innate immune responses—from pattern receptor recognition to recruitment of phagocytic cells—that occur during UPEC-mediated UTI. There is, however, a clear disconnect regarding how factors involved in the innate immune response to UPEC stimulate acquired immunity that facilitates enhanced clearance upon reinfection. Unraveling the molecular details of this process is vital in the development of a successful vaccine for prevention of human UTI. Here, we survey the current understanding of host responses to UPEC-mediated UTI with an eye on molecular and cellular factors whose activity may be harnessed by a vaccine that stimulates lasting and sterilizing immunity. PMID:19917708

  12. DamX Controls Reversible Cell Morphology Switching in Uropathogenic Escherichia coli

    PubMed Central

    Khandige, Surabhi; Asferg, Cecilie Antoinette; Rasmussen, Karina Juhl; Larsen, Martin Jakob; Overgaard, Martin

    2016-01-01

    ABSTRACT The ability to change cell morphology is an advantageous characteristic adopted by multiple pathogenic bacteria in order to evade host immune detection and assault during infection. Uropathogenic Escherichia coli (UPEC) exhibits such cellular dynamics and has been shown to transition through a series of distinct morphological phenotypes during a urinary tract infection. Here, we report the first systematic spatio-temporal gene expression analysis of the UPEC transition through these phenotypes by using a flow chamber-based in vitro infection model that simulates conditions in the bladder. This analysis revealed a novel association between the cell division gene damX and reversible UPEC filamentation. We demonstrate a lack of reversible bacterial filamentation in a damX deletion mutant in vitro and absence of a filamentous response by this mutant in a murine model of cystitis. While deletion of damX abrogated UPEC filamentation and secondary surface colonization in tissue culture and in mouse infections, transient overexpression of damX resulted in reversible UPEC filamentation. In this study, we identify a hitherto-unknown damX-mediated mechanism underlying UPEC morphotypical switching. Murine infection studies showed that DamX is essential for establishment of a robust urinary tract infection, thus emphasizing its role as a mediator of virulence. Our study demonstrates the value of an in vitro methodology, in which uroepithelium infection is closely simulated, when undertaking targeted investigations that are challenging to perform in animal infection models. PMID:27486187

  13. Histone Deacetylase 6 Regulates Bladder Architecture and Host Susceptibility to Uropathogenic Escherichia coli

    PubMed Central

    Lewis, Adam J.; Dhakal, Bijaya K.; Liu, Ting; Mulvey, Matthew A.

    2016-01-01

    Histone deacetylase 6 (HDAC6) is a non-canonical, mostly cytosolic histone deacetylase that has a variety of interacting partners and substrates. Previous work using cell-culture based assays coupled with pharmacological inhibitors and gene-silencing approaches indicated that HDAC6 promotes the actin- and microtubule-dependent invasion of host cells by uropathogenic Escherichia coli (UPEC). These facultative intracellular pathogens are the major cause of urinary tract infections. Here, we examined the involvement of HDAC6 in bladder colonization by UPEC using HDAC6 knockout mice. Though UPEC was unable to invade HDAC6−/− cells in culture, the bacteria had an enhanced ability to colonize the bladders of mice that lacked HDAC6. This effect was transient, and by six hours post-inoculation bacterial titers in the HDAC6−/− mice were reduced to levels seen in wild type control animals. Subsequent analyses revealed that the mutant mice had greater bladder volume capacity and fluid retention, along with much higher levels of acetylated α-tubulin. In addition, infiltrating neutrophils recovered from the HDAC6−/− bladder harbored significantly more viable bacteria than their wild type counterparts. Cumulatively, these changes may negate any inhibitory effects that the lack of HDAC6 has on UPEC entry into individual host cells, and suggest roles for HDAC6 in other urological disorders such as urinary retention. PMID:26907353

  14. Hepcidin as a Major Component of Renal Antibacterial Defenses against Uropathogenic Escherichia coli

    PubMed Central

    Houamel, Dounia; Ducrot, Nicolas; Lefebvre, Thibaud; Daher, Raed; Moulouel, Boualem; Sari, Marie-Agnes; Letteron, Philippe; Lyoumi, Said; Millot, Sarah; Tourret, Jerome; Bouvet, Odile; Vaulont, Sophie; Vandewalle, Alain; Denamur, Erick; Puy, Hervé; Beaumont, Carole; Gouya, Laurent

    2016-01-01

    The iron-regulatory peptide hepcidin exhibits antimicrobial activity. Having previously shown hepcidin expression in the kidney, we addressed its role in urinary tract infection (UTI), which remains largely unknown. Experimental UTI was induced in wild-type (WT) and hepcidin-knockout (Hepc−/−) mice using the uropathogenic Escherichia coli CFT073 strain. Compared with infected WT mice, infected Hepc−/− mice showed a dramatic increase in renal bacterial load. Moreover, bacterial invasion was significantly dampened by the pretreatment of WT mice with hepcidin. Infected Hepc−/− mice exhibited decreased iron accumulation in the renal medulla and significant attenuation of the renal inflammatory response. Notably, we demonstrated in vitro bacteriostatic activity of hepcidin against CFT073. Furthermore, CFT073 repressed renal hepcidin, both in vivo and in cultured renal cells, and reduced phosphorylation of SMAD kinase in vivo, suggesting a bacterial strategy to escape the antimicrobial activities of hepcidin. In conclusion, we provide new mechanisms by which hepcidin contributes to renal host defense and suggest that targeting hepcidin offers a strategy to prevent bacterial invasion. PMID:26293821

  15. Subinhibitory Concentrations of Allicin Decrease Uropathogenic Escherichia coli (UPEC) Biofilm Formation, Adhesion Ability, and Swimming Motility.

    PubMed

    Yang, Xiaolong; Sha, Kaihui; Xu, Guangya; Tian, Hanwen; Wang, Xiaoying; Chen, Shanze; Wang, Yi; Li, Jingyu; Chen, Junli; Huang, Ning

    2016-06-29

    Uropathogenic Escherichia coli (UPEC) biofilm formation enables the organism to avoid the host immune system, resist antibiotics, and provide a reservoir for persistent infection. Once the biofilm is established, eradication of the infection becomes difficult. Therefore, strategies against UPEC biofilm are urgently required. In this study, we investigated the effect of allicin, isolated from garlic essential oil, on UPEC CFT073 and J96 biofilm formation and dispersal, along with its effect on UPEC adhesion ability and swimming motility. Sub-inhibitory concentrations (sub-MICs) of allicin decreased UPEC biofilm formation and affected its architecture. Allicin was also capable of dispersing biofilm. Furthermore, allicin decreased the bacterial adhesion ability and swimming motility, which are important for biofilm formation. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed that allicin decreased the expression of UPEC type 1 fimbriae adhesin gene fimH. Docking studies suggested that allicin was located within the binding pocket of heptyl α-d-mannopyrannoside in FimH and formed hydrogen bonds with Phe1 and Asn135. In addition, allicin decreased the expression of the two-component regulatory systems (TCSs) cognate response regulator gene uvrY and increased the expression of the RNA binding global regulatory protein gene csrA of UPEC CFT073, which is associated with UPEC biofilm. The findings suggest that sub-MICs of allicin are capable of affecting UPEC biofilm formation and dispersal, and decreasing UPEC adhesion ability and swimming motility.

  16. Uropathogenic Escherichia coli isolates with different virulence genes content exhibit similar pathologic influence on Vero cells.

    PubMed

    Obaid, Jamil M A S; Mansour, Samira R; Elshahedy, Mohammed S; Rabie, Tarik E; Azab, Adel M H

    2014-01-01

    Uropathogenic Escherichia coli are the major causative agent of urinary tract infection--they may simultaneously express a number of virulence factors to cause disease. The aim of this study was to investigate the relation between virulence factors content of fifteen UPEC isolates and their pathogenic potential. The isolates belonged to the five serotypes O78:K80, O114:K90, O142:K86, O164 and O157. Nine of the virulence factors have been explored, ibeA, pap, sfa/foc, cnfl, hly, fyuA, pil, ompT and traT. Virulence factors profiling of the isolates revealed a different content ranging from 22% to 100% of the virulence genes explored. The pathogenic capacity of all fifteen isolates when tested on Vero cells showed that the cytotoxicity for all tested strains on Vero cells was approximately equal and enhanced after growth in syncase broth, leading mainly to cell lysis. The toxic effects reduced slightly after heat treatment of the toxin, and greatly after formalin detoxification, but not all the deleterious effect was abolished. Endotoxin also has cytotoxic effects on Vero cells, but longer time is needed for cytolysis which is greatly diminished with formalin treatment. In conclusion, our study revealed that pathogenic strains of UPEC can exert their pathogenic effect on live cells or system with limited virulence factors gene content.

  17. Phenotypic Heterogeneity Enables Uropathogenic Escherichia coli To Evade Killing by Antibiotics and Serum Complement

    PubMed Central

    Putrinš, Marta; Kogermann, Karin; Lukk, Eliisa; Lippus, Markus; Varik, Vallo

    2015-01-01

    Uropathogenic strains of Escherichia coli (UPEC) are the major cause of bacteremic urinary tract infections. Survival in the bloodstream is associated with different mechanisms that help to resist serum complement-mediated killing. While the phenotypic heterogeneity of bacteria has been shown to influence antibiotic tolerance, the possibility that it makes cells refractory to killing by the immune system has not been experimentally tested. In the present study we sought to determine whether the heterogeneity of bacterial cultures is relevant to bacterial targeting by the serum complement system. We monitored cell divisions in the UPEC strain CFT073 with fluorescent reporter protein. Stationary-phase cells were incubated in active or heat-inactivated human serum in the presence or absence of different antibiotics (ampicillin, norfloxacin, and amikacin), and cell division and complement protein C3 binding were measured by flow cytometry and immunofluorescence microscopy. Heterogeneity in the doubling times of CFT073 cells in serum enabled three phenotypically different subpopulations to be distinguished, all of them being recognized by the C3 component of the complement system. The population of rapidly growing cells resists serum complement-mediated lysis. The dominant subpopulation of cells with intermediate growth rate is susceptible to serum. The third population, which does not resume growth upon dilution from stationary phase, is simultaneously protected from serum complement and antibiotics. PMID:25561706

  18. Subinhibitory Concentrations of Allicin Decrease Uropathogenic Escherichia coli (UPEC) Biofilm Formation, Adhesion Ability, and Swimming Motility

    PubMed Central

    Yang, Xiaolong; Sha, Kaihui; Xu, Guangya; Tian, Hanwen; Wang, Xiaoying; Chen, Shanze; Wang, Yi; Li, Jingyu; Chen, Junli; Huang, Ning

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) biofilm formation enables the organism to avoid the host immune system, resist antibiotics, and provide a reservoir for persistent infection. Once the biofilm is established, eradication of the infection becomes difficult. Therefore, strategies against UPEC biofilm are urgently required. In this study, we investigated the effect of allicin, isolated from garlic essential oil, on UPEC CFT073 and J96 biofilm formation and dispersal, along with its effect on UPEC adhesion ability and swimming motility. Sub-inhibitory concentrations (sub-MICs) of allicin decreased UPEC biofilm formation and affected its architecture. Allicin was also capable of dispersing biofilm. Furthermore, allicin decreased the bacterial adhesion ability and swimming motility, which are important for biofilm formation. Real-time quantitative polymerase chain reaction (RT-qPCR) revealed that allicin decreased the expression of UPEC type 1 fimbriae adhesin gene fimH. Docking studies suggested that allicin was located within the binding pocket of heptyl α-d-mannopyrannoside in FimH and formed hydrogen bonds with Phe1 and Asn135. In addition, allicin decreased the expression of the two-component regulatory systems (TCSs) cognate response regulator gene uvrY and increased the expression of the RNA binding global regulatory protein gene csrA of UPEC CFT073, which is associated with UPEC biofilm. The findings suggest that sub-MICs of allicin are capable of affecting UPEC biofilm formation and dispersal, and decreasing UPEC adhesion ability and swimming motility. PMID:27367677

  19. MOLECULAR CHARACTERIZATION OF VIRULENCE AND ANTIMICROBIAL SUSCEPTIBILITY PROFILES OF UROPATHOGENIC ESCHERICHIA COLI FROM PATIENTS IN A TERTIARY HOSPITAL, SOUTHERN THAILAND.

    PubMed

    Themphachanal, Monchanok; Kongpheng, Suttiporn; Rattanachuay, Pattamarat; Khianngam, Saowapar; Singkhamanan, Kamonnut; Sukhumungoon, Pharanai

    2015-11-01

    Among uropathogens, uropathogenic Escherichia coli (UPEC) is the most common cause of urinary tract infection (UTI) worldwide, but clinical aspects due to this bacterial species is not fully understood in southern Thailand. Two hundred fifty-four UPEC isolates from patients admitted to Maharaj Nakhon Si Thammarat Hospital, southern Thailand were examined for crucial virulence genes, showing that 33.5% contained at least one of the virulence, genes tested. Genes encoding P fimbria, cytotoxic necrotizing factor-1 and α-hemolysin constituted the majority (15.8%) carried by UPEC isolates. Phylogenetic group classification revealed that 57.5% of UPEC belonged to group D. Antimicrobial susceptibility tests showed that 70.5% and 65.1% of the isolates were resistant to ciprofloxacin and norfloxacin, respectively. Moreover, 50.0% of UPEC were capable of producing extended spectrum beta-lactamases. These findings should be of benefit for more appropriate treatment of UTI patients in this region of Thailand. Keywords: uropathogenic Escherichia coli, antibiotics resistance, cnfl, hlyA, pap, Thailand

  20. Loss of Regulatory Protein RfaH Attenuates Virulence of Uropathogenic Escherichia coli

    PubMed Central

    Nagy, Gábor; Dobrindt, Ulrich; Schneider, György; Khan, A. Salam; Hacker, Jörg; Emödy, Levente

    2002-01-01

    RfaH is a regulatory protein in Escherichia coli and Salmonella enterica serovar Typhimurium. Although it enhances expression of different factors that are proposed to play a role in bacterial virulence, a direct effect of RfaH on virulence has not been investigated so far. We report that inactivation of rfaH dramatically decreases the virulence of uropathogenic E. coli strain 536 in an ascending mouse model of urinary tract infection. The mortality rate caused by the wild-type strain in this assay is 100%, whereas that of its isogenic rfaH mutant does not exceed 18%. In the case of coinfection, the wild-type strain 536 shows higher potential to colonize the urinary tract even when it is outnumbered 100-fold by its rfaH mutant in the inoculum. In contrast to the wild-type strain, serum resistance of strain 536rfaH::cat is fully abolished. Furthermore, we give evidence that, besides a major decrease in the amount of hemin receptor ChuA (G. Nagy, U. Dobrindt, M. Kupfer, L. Emody, H. Karch, and J. Hacker, Infect. Immun. 69:1924-1928, 2001), loss of the RfaH protein results in an altered lipopolysaccharide phenotype as well as decreased expression of K15 capsule and alpha-hemolysin, whereas levels of other pathogenicity factors such as siderophores, flagella, Prf, and S fimbriae appear to be unaltered in strain 536rfaH::cat in comparison to the wild-type strain. trans complementation of the mutant strain with the rfaH gene restores wild-type levels of the affected virulence factors and consequently restitutes virulence in the mouse model of ascending urinary tract infection. PMID:12117951

  1. Interplay between pathogenicity island carriage, resistance profile and plasmid acquisition in uropathogenic Escherichia coli.

    PubMed

    Calhau, Vera; Domingues, Sara; Ribeiro, Graça; Mendonça, Nuno; Da Silva, Gabriela Jorge

    2015-08-01

    This study aimed to characterize the relationship between pathogenicity islands (PAIs), single virulence genes and resistance among uropathogenic Escherichia coli, evaluating the resistance plasmid carriage fitness cost related to PAIs. For 65 urinary E. coli, antimicrobial susceptibility and extended-spectrum β-lactamase production were determined with the Vitek 2 Advanced Expert system. Phylogroup determination, detection of PAIs and virulence genes papAH, papC, sfa/foc, afa/dra, iutA, kpsMII, cnf1, eaeA, hlyA, stx1 and stx2, plasmid replicon typing and screening for plasmidic resistance determinants qnr, aac(6')-Ib-cr, qepA and bla(CTX-M) were carried out by PCR. Conjugation was performed between a donor carrying IncF, IncK and bla(CTX-M-15), and receptors carrying one to six PAIs. The relative fitness of transconjugants was estimated by pairwise competition experiments. PAI IV(536) (68 %), gene iutA (57 %) and resistance to ampicillin were the most prevalent traits. PAI I(536), PAI II(536), PAI III(536) and PAI II(J96) were exclusively associated with susceptibility to amoxicillin/clavulanic acid, cefotaxime, ceftazidime, ciprofloxacin, gentamicin and trimethoprim/sulfamethoxazole, and were more prevalent in strains susceptible to ampicillin and cefalotin. PAI IV(536), PAI II(CFT073) and PAI I(CFT073) were more prevalent among isolates showing resistance to amoxicillin/clavulanic acid, cefalotin, cefotaxime, ceftazidime and gentamicin. An inverse relationship was observed between the number of plasmids and the number of PAIs carried. Transconjugants were obtained for receptors carrying three or fewer PAIs. The mean relative fitness rates of these transconjugants were 0.87 (two PAIs), 1.00 (one PAI) and 1.09 (three PAI). The interplay between resistance, PAI carriage and fitness cost of plasmid acquisition could be considered PAI specific, and not necessarily associated with the number of PAIs.

  2. Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they?

    PubMed

    Ewers, Christa; Li, Ganwu; Wilking, Hendrik; Kiessling, Sabine; Alt, Katja; Antáo, Esther-Maria; Laturnus, Claudia; Diehl, Ines; Glodde, Susanne; Homeier, Timo; Böhnke, Ute; Steinrück, Hartmut; Philipp, Hans-C; Wieler, Lothar H

    2007-06-01

    Avian pathogenic Escherichia coli (APEC), uropathogenic E. coli (UPEC), and newborn meningitis-causing E. coli (NMEC) establish infections in extraintestinal habitats (extraintestinal pathogenic E. coli; ExPEC) of different hosts. As diversity, epidemiological sources, and evolutionary origins of ExPEC are so far only partially defined, we screened a collection of 526 strains of medical and veterinary origin of various O-types for assignment to E. coli reference collection (ECOR) group and virulence gene patterns. Results of ECOR typing confirmed that human ExPEC strains mostly belong to groups B2, followed by group D. Although a considerable portion of APEC strains did also fell into ECOR group B2 (35.1%), a higher amount (46.1%) belonged to group A, which has previously been described to also harbour strains with a high pathogenic potential for humans. The number of virulence-associated genes of single strains ranged from 5 to 26 among 33 genes tested and high numbers were rather related to K1-positive and ECOR B2 strains than to a certain pathotype. With a few exceptions (iha, afa/draB, sfa/foc, and hlyA), which were rarely present in APEC strains, most chromosomally located genes were widely distributed among all ExPEC strains irrespective of host and pathotype. However, prevalence of invasion genes (ibeA and gimB) and K1 capsule-encoding gene neuC indicated a closer relationship between APEC and NMEC strains. Genes associated with ColV plasmids (tsh, iss, and the episomal sit locus) were in general more prevalent in APEC than in UPEC and NMEC strains, indicating that APEC could be a source of ColV-located genes or complete plasmids for other ExPEC strains. Our data support the hypothesis that (a) poultry may be a vehicle or even a reservoir for human ExPEC strains, (b) APEC potentially serve as a reservoir of virulence-associated genes for UPEC and NMEC, (c) some ExPEC strains, although of different pathotypes, may share common ancestors, and (d) as a

  3. Development of a multiplex real-time PCR assay for phylogenetic analysis of Uropathogenic Escherichia coli.

    PubMed

    Hasanpour, Mojtaba; Najafi, Akram

    2017-03-28

    Uropathogenic Escherichia coli (UPEC) is among major pathogens causing 80-90% of all episodes of urinary tract infections (UTIs). Recently, E. coli strains are divided into eight main phylogenetic groups including A, B1, B2, C, D, E, F, and clade I. This study was aimed to develop a rapid, sensitive, and specific multiplex real time PCR method capable of detecting phylogenetic groups of E. coli strains. This study was carried out on E. coli strains (isolated from the patient with UTI) in which the presence of all seven target genes had been confirmed in our previous phylogenetic study. An EvaGreen-based singleplex and multiplex real-time PCR with melting curve analysis was designed for simultaneous detection and differentiation of these genes. The primers were selected mainly based on the production of amplicons with melting temperatures (Tm) ranging from 82°C to 93°C and temperature difference of more than 1.5°C between each peak.The multiplex real-time PCR assays that have been developed in the present study were successful in detecting the eight main phylogenetic groups. Seven distinct melting peaks were discriminated, with Tm value of 93±0.8 for arpA, 89.2±0.1for chuA, 86.5±0.1 for yjaA, 82.3±0.2 for TspE4C2, 87.8±0.1for trpAgpC, 85.4±0.6 for arpAgpE genes, and 91±0.5 for the internal control. To our knowledge, this study is the first melting curve-based real-time PCR assay developed for simultaneous and discrete detection of these seven target genes. Our findings showed that this assay has the potential to be a rapid, reliable and cost-effective alternative for routine phylotyping of E. coli strains.

  4. Comprehensive expression analysis of pathogenicity genes in uropathogenic Escherichia coli strains.

    PubMed

    Paniagua-Contreras, Gloria Luz; Hernández-Jaimes, Tania; Monroy-Pérez, Eric; Vaca-Paniagua, Felipe; Díaz-Velásquez, Clara; Uribe-García, Alina; Vaca, Sergio

    2017-02-01

    In this study, we investigated distinct expression patterns of genes encoding iron-acquisition systems, adhesins, protectins, and toxins in human uroepithelial cells infected with 194 uropathogenic Escherichia coli (UPEC) strains in vitro. We assessed the association of these genes with antibiotic resistance genes in this group of UPEC strains, previously characterised by polymerase chain reaction (PCR). Strains were isolated from patients with urinary tract infections (UTIs) from Unidad Médica Familiar de Salud Pública, located in Estado de México, México. Antibiotic resistance genes were identified by PCR, and the expression of virulence genes was detected by reverse-transcriptase-PCR after in vitro infection of cultured A431 human keratinocytes derived from a vulvar epidermoid carcinoma. The most frequently expressed virulence genotypes among the investigated UPEC strains included usp (68%), iha (64.9%), kpsMT (61.3%), fim (58.2%), irp2 (48.4), papC (33.5%), set (31.4%) and astA (30.9%), whereas the most frequently detected antibiotic resistance genes were tet(A) (34%), sul1 (31.4%) and TEM (26.3%). Furthermore, the most abundant pattern of gene expression (irp2/fim/iha/kpsMT/usp), associated with 8 different combinations of antibiotic resistance genotypes, was exhibited by 28 strains (14.4%). Taken together, these results indicate collective participation of distinct virulence UPEC genotypes during in vitro infection of cultured human epithelial cells, suggesting their potential involvement in UTI pathogenesis.

  5. PafR, a Novel Transcription Regulator, Is Important for Pathogenesis in Uropathogenic Escherichia coli

    PubMed Central

    Baum, Mordechai; Watad, Mobarak; Smith, Sara N.; Alteri, Christopher J.; Gordon, Noa; Rosenshine, Ilan; Mobley, Harry L.

    2014-01-01

    The metV genomic island in the chromosome of uropathogenic Escherichia coli (UPEC) encodes a putative transcription factor and a sugar permease of the phosphotransferase system (PTS), which are predicted to compose a Bgl-like sensory system. The presence of these two genes, hereby termed pafR and pafP, respectively, has been previously shown to correlate with isolates causing clinical syndromes. We show here that deletion of both genes impairs the ability of the resulting mutant to infect the CBA/J mouse model of ascending urinary tract infection compared to that of the parent strain, CFT073. Expressing the two genes in trans in the two-gene knockout mutant complemented full virulence. Deletion of either gene individually generated the same phenotype as the double knockout, indicating that both pafR and pafP are important to pathogenesis. We screened numerous environmental conditions but failed to detect expression from the promoter that precedes the paf genes in vitro, suggesting that they are in vivo induced (ivi). Although PafR is shown here to be capable of functioning as a transcriptional antiterminator, its targets in the UPEC genome are not known. Using microarray analysis, we have shown that expression of PafR from a heterologous promoter in CFT073 affects expression of genes related to bacterial virulence, biofilm formation, and metabolism. Expression of PafR also inhibits biofilm formation and motility. Taken together, our results suggest that the paf genes are implicated in pathogenesis and that PafR controls virulence genes, in particular biofilm formation genes. PMID:25069986

  6. Uropathogenic Escherichia coli Releases Extracellular Vesicles That Are Associated with RNA

    PubMed Central

    Blenkiron, Cherie; Simonov, Denis; Muthukaruppan, Anita; Tsai, Peter; Dauros, Priscila; Green, Sasha; Hong, Jiwon; Print, Cristin G.

    2016-01-01

    Background Bacterium-to-host signalling during infection is a complex process involving proteins, lipids and other diffusible signals that manipulate host cell biology for pathogen survival. Bacteria also release membrane vesicles (MV) that can carry a cargo of effector molecules directly into host cells. Supported by recent publications, we hypothesised that these MVs also associate with RNA, which may be directly involved in the modulation of the host response to infection. Methods and Results Using the uropathogenic Escherichia coli (UPEC) strain 536, we have isolated MVs and found they carry a range of RNA species. Density gradient centrifugation further fractionated and characterised the MV preparation and confirmed that the isolated RNA was associated with the highest particle and protein containing fractions. Using a new approach, RNA-sequencing of libraries derived from three different ‘size’ RNA populations (<50nt, 50-200nt and 200nt+) isolated from MVs has enabled us to now report the first example of a complete bacterial MV-RNA profile. These data show that MVs carry rRNA, tRNAs, other small RNAs as well as full-length protein coding mRNAs. Confocal microscopy visualised the delivery of lipid labelled MVs into cultured bladder epithelial cells and showed their RNA cargo labelled with 5-EU (5-ethynyl uridine), was transported into the host cell cytoplasm and nucleus. MV RNA uptake by the cells was confirmed by droplet digital RT-PCR of csrC. It was estimated that 1% of MV RNA cargo is delivered into cultured cells. Conclusions These data add to the growing evidence of pathogenic bacterial MV being associated a wide range of RNAs. It further raises the plausibility for MV-RNA-mediated cross-kingdom communication whereby they influence host cell function during the infection process. PMID:27500956

  7. Functional Heterogeneity of the UpaH Autotransporter Protein from Uropathogenic Escherichia coli

    PubMed Central

    Allsopp, Luke P.; Beloin, Christophe; Moriel, Danilo Gomes; Totsika, Makrina; Ghigo, Jean-Marc

    2012-01-01

    Uropathogenic Escherichia coli (UPEC) is responsible for the majority of urinary tract infections (UTI). To cause a UTI, UPEC must adhere to the epithelial cells of the urinary tract and overcome the shear flow forces of urine. This function is mediated primarily by fimbrial adhesins, which mediate specific attachment to host cell receptors. Another group of adhesins that contributes to UPEC-mediated UTI is autotransporter (AT) proteins. AT proteins possess a range of virulence properties, such as adherence, aggregation, invasion, and biofilm formation. One recently characterized AT protein of UPEC is UpaH, a large adhesin-involved-in-diffuse-adherence (AIDA-I)-type AT protein that contributes to biofilm formation and bladder colonization. In this study we characterized a series of naturally occurring variants of UpaH. We demonstrate that extensive sequence variation exists within the passenger-encoding domain of UpaH variants from different UPEC strains. This sequence variation is associated with functional heterogeneity with respect to the ability of UpaH to mediate biofilm formation. In contrast, all of the UpaH variants examined retained a conserved ability to mediate binding to extracellular matrix (ECM) proteins. Bioinformatic analysis of the UpaH passenger domain identified a conserved region (UpaHCR) and a hydrophobic region (UpaHHR). Deletion of these domains reduced biofilm formation but not the binding to ECM proteins. Despite variation in the upaH sequence, the transcription of upaH was repressed by a conserved mechanism involving the global regulator H-NS, and mutation of the hns gene relieved this repression. Overall, our findings shed new light on the regulation and functions of the UpaH AT protein. PMID:22904291

  8. sRNA-Mediated Regulation of P-Fimbriae Phase Variation in Uropathogenic Escherichia coli

    PubMed Central

    Khandige, Surabhi; Kronborg, Tina; Uhlin, Bernt Eric; Møller-Jensen, Jakob

    2015-01-01

    Uropathogenic Escherichia coli (UPEC) are capable of occupying physiologically distinct intracellular and extracellular niches within the urinary tract. This feat requires the timely regulation of gene expression and small RNAs (sRNAs) are known to mediate such rapid adjustments in response to changing environmental cues. This study aimed to uncover sRNA-mediated gene regulation in the UPEC strain UTI89, during infection of bladder epithelial cells. Hfq is an RNA chaperone known to facilitate and stabilize sRNA and target mRNA interactions with bacterial cells. The co-immunoprecipitation and high throughput RNA sequencing of Hfq bound sRNAs performed in this study, revealed distinct sRNA profiles in UPEC in the extracellular and intracellular environments. Our findings emphasize the importance of studying regulatory sRNAs in a biologically relevant niche. This strategy also led to the discovery of a novel virulence-associated trans-acting sRNA—PapR. Deletion of papR was found to enhance adhesion of UTI89 to both bladder and kidney cell lines in a manner independent of type-1 fimbriae. We demonstrate PapR mediated posttranscriptional repression of the P-fimbriae phase regulator gene papI and postulate a role for such regulation in fimbrial cross-talk at the population level in UPEC. Our results further implicate the Leucine responsive protein (LRP) as a transcriptional activator regulating PapR expression. Our study reports, for the first time, a role for sRNAs in regulation of P-fimbriae phase variation and emphasizes the importance of studying pathogenesis-specific sRNAs within a relevant biological niche. PMID:26291711

  9. Suppression of type 1 pilus assembly in uropathogenic Escherichia coli by chemical inhibition of subunit polymerization

    PubMed Central

    Lo, Alvin W. H.; Van de Water, Karen; Gane, Paul J.; Chan, A.W. Edith; Steadman, David; Stevens, Kiri; Selwood, David L.; Waksman, Gabriel; Remaut, Han

    2014-01-01

    Objectives To identify and to characterize small-molecule inhibitors that target the subunit polymerization of the type 1 pilus assembly in uropathogenic Escherichia coli (UPEC). Methods Using an SDS–PAGE-based assay, in silico pre-filtered small-molecule compounds were screened for specific inhibitory activity against the critical subunit polymerization step of the chaperone–usher pathway during pilus biogenesis. The biological activity of one of the compounds was validated in assays monitoring UPEC type 1 pilus biogenesis, type 1 pilus-dependent biofilm formation and adherence to human bladder epithelial cells. The time dependence of the in vivo inhibitory activity and the overall effect of the compound on UPEC growth were determined. Results N-(4-chloro-phenyl)-2-{5-[4-(pyrrolidine-1-sulfonyl)-phenyl]-[1,3,4]oxadiazol-2-yl sulfanyl}-acetamide (AL1) inhibited in vitro pilus subunit polymerization. In bacterial cultures, AL1 disrupted UPEC type 1 pilus biogenesis and pilus-dependent biofilm formation, and resulted in the reduction of bacterial adherence to human bladder epithelial cells, without affecting bacterial cell growth. Bacterial exposure to the inhibitor led to an almost instantaneous loss of type 1 pili. Conclusions We have identified and characterized a small molecule that interferes with the assembly of type 1 pili. The molecule targets the polymerization step during the subunit incorporation cycle of the chaperone–usher pathway. Our discovery provides new insight into the design and development of novel anti-virulence therapies targeting key virulence factors of bacterial pathogens. PMID:24324225

  10. Characterization of a Dipartite Iron Uptake System from Uropathogenic Escherichia coli Strain F11*

    PubMed Central

    Koch, Doreen; Chan, Anson C. K.; Murphy, Michael E. P.; Lilie, Hauke; Grass, Gregor; Nies, Dietrich H.

    2011-01-01

    In the uropathogenic Escherichia coli strain F11, in silico genome analysis revealed the dicistronic iron uptake operon fetMP, which is under iron-regulated control mediated by the Fur regulator. The expression of fetMP in a mutant strain lacking known iron uptake systems improved growth under iron depletion and increased cellular iron accumulation. FetM is a member of the iron/lead transporter superfamily and is essential for iron uptake by the Fet system. FetP is a periplasmic protein that enhanced iron uptake by FetM. Recombinant FetP bound Cu(II) and the iron analog Mn(II) at distinct sites. The crystal structure of the FetP dimer reveals a copper site in each FetP subunit that adopts two conformations: CuA with a tetrahedral geometry composed of His44, Met90, His97, and His127, and CuB, a second degenerate octahedral geometry with the addition of Glu46. The copper ions of each site occupy distinct positions and are separated by ∼1.3 Å. Nearby, a putative additional Cu(I) binding site is proposed as an electron source that may function with CuA/CuB displacement to reduce Fe(III) for transport by FetM. Together, these data indicate that FetMP is an additional iron uptake system composed of a putative iron permease and an iron-scavenging and potentially iron-reducing periplasmic protein. PMID:21596746

  11. Detection of AmpC β-lactamase and adherence factors in uropathogenic Escherichia coli isolated from aged patients.

    PubMed

    Singh, Santosh Kumar; Seema, Kumari; Gupta, Minakshi

    2016-11-01

    Escherichia coli mediated urinary tract infection has been reported to be most prevalent among patients of different class, gender and ages. Currently, multidrug resistant E. coli harboring several virulence factors are most perilous threats for patients especially for elders. The aim of this study was to determine the antibiotic resistance pattern, co-resistance and phenotypic virulence factors present in uropathogenic E. coli isolated from aged patients. Thirty-nine E. coli isolates were collected during May-June 2014 from patients between 50 to 80 years of age. Experiments have been carried out to determine the antibiotic resistance, co-resistances and phenotypic adherent factors present in each isolate. Clonal relatedness was also determined in the AmpC positive uropathogenic E. coli (UPEC). 97.43% isolates were found to be multidrug resistant and 41.02% of them were AmpC producer. AmpC producer group showed higher multiple antibiotic resistance index than AmpC non-producer (p value < 0.01) group. Interestingly, adherence factor Type 1 fimbriae were found among 84.61% of total isolates which were more prevalent in elderly female patients than males. Biofilm production studies revealed that 84.61% of total isolates are more common in elderly males. This study adds value for the proper empiric selection of antibiotic therapy as well as calls for continuous monitoring of the incidence of drug resistance virulent uropathogenic E. coli mediated urinary tract infection in elderly patients.

  12. Epigenetic Influence of Dam Methylation on Gene Expression and Attachment in Uropathogenic Escherichia coli

    PubMed Central

    Stephenson, Stacy Ann-Marie; Brown, Paul D.

    2016-01-01

    Urinary tract infections (UTI) are among the most frequently encountered infections in clinical practice globally. Predominantly a burden among female adults and infants, UTIs primarily caused by uropathogenic Escherichia coli (UPEC) results in high morbidity and fiscal health strains. During pathogenesis, colonization of the urinary tract via fimbrial adhesion to mucosal cells is the most critical point in infection and has been linked to DNA methylation. Furthermore, with continuous exposure to antibiotics as the standard therapeutic strategy, UPEC has evolved to become highly adaptable in circumventing the effect of antimicrobial agents and host defenses. Hence, the need for alternative treatment strategies arises. Since differential DNA methylation is observed as a critical precursor to virulence in various pathogenic bacteria, this body of work sought to assess the influence of the DNA adenine methylase (dam) gene on gene expression and cellular adhesion in UPEC and its potential as a therapeutic target. To monitor the influence of dam on attachment and FQ resistance, selected UPEC dam mutants created via one-step allelic exchange were transformed with cloned qnrA and dam complement plasmid for comparative analysis of growth rate, antimicrobial susceptibility, biofilm formation, gene expression, and mammalian cell attachment. The absence of DNA methylation among dam mutants was apparent. Varying deficiencies in cell growth, antimicrobial resistance and biofilm formation, alongside low-level increases in gene expression (recA and papI), and adherence to HEK-293 and HTB-9 mammalian cells were also detected as a factor of SOS induction to result in increased mutability. Phenotypic characteristics of parental strains were restored in dam complement strains. Dam’s vital role in DNA methylation and gene expression in local UPEC isolates was confirmed. Similarly to dam-deficient Enterohemorrhagic E. coli (EHEC), these findings suggest unsuccessful therapeutic use

  13. [The comparison of antibiotic susceptibilities of uropathogenic Escherichia coli isolates in transition from CLSI to EUCAST].

    PubMed

    Süzük, Serap; Kaşkatepe, Banu; Avcıküçük, Havva; Aksaray, Sebahat; Başustaoğlu, Ahmet

    2015-10-01

    Determination of treatment protocols for infections according to antimicrobial susceptibility test (AST) results is are important for controlling the problem of antibiotic resistance. Two standards are widely used in the world. One of them is Clinical Laboratory Standards Institute (CLSI) standards used in Turkey for many years and the other is the European Committee on Antimicrobial Susceptibility Testing (EUCAST) standards which is used in European Union member countries and came into use in 2015 in Turkey. Since the EUCAST standards had higher clinical sensitivity limits particularly for gram-negative bacilli compared to CLSI (2009) standards, there will be some changes in antibiotic resistance profiles of Turkey with the use of EUCAST. CLSI has changed zone diameters after 2009 versions and the differences between the two standards were brought to a minimum level. Knowledge of local epidemiological data is important to determine empirical therapy which will be used in urinary tract infections (UTI). The aim of this study was to determine the differences of antibiotic susceptibility zone diameters based on our local epidemiological data among uropathogenic Escherichia coli isolates according to EUCAST 2014 and CLSI 2014 standards. A total of 298 E.coli strains isolated from urine samples as the cause of uncomplicated acute UTI agents, were included in the study. Isolates were identified by conventional methods and with BBL Crystal E/NF ID System (Becton Dickinson, USA). AST was performed with Kirby Bauer disk diffusion method and results were evaluated and interpreted according to the CLSI 2014 and EUCAST 2014 standards. According to the results, susceptibility rates of isolates against amikacin (100%) and trimethoprim-sulfamethoxazole (63.09%) were identical in both standards. However, statistically significant differences were observed between CLSI and EUCAST standards in terms of susceptibilities against gentamicin (91.95% and 84.56%, respectively; p= 0

  14. Epigenetic Influence of Dam Methylation on Gene Expression and Attachment in Uropathogenic Escherichia coli.

    PubMed

    Stephenson, Stacy Ann-Marie; Brown, Paul D

    2016-01-01

    Urinary tract infections (UTI) are among the most frequently encountered infections in clinical practice globally. Predominantly a burden among female adults and infants, UTIs primarily caused by uropathogenic Escherichia coli (UPEC) results in high morbidity and fiscal health strains. During pathogenesis, colonization of the urinary tract via fimbrial adhesion to mucosal cells is the most critical point in infection and has been linked to DNA methylation. Furthermore, with continuous exposure to antibiotics as the standard therapeutic strategy, UPEC has evolved to become highly adaptable in circumventing the effect of antimicrobial agents and host defenses. Hence, the need for alternative treatment strategies arises. Since differential DNA methylation is observed as a critical precursor to virulence in various pathogenic bacteria, this body of work sought to assess the influence of the DNA adenine methylase (dam) gene on gene expression and cellular adhesion in UPEC and its potential as a therapeutic target. To monitor the influence of dam on attachment and FQ resistance, selected UPEC dam mutants created via one-step allelic exchange were transformed with cloned qnrA and dam complement plasmid for comparative analysis of growth rate, antimicrobial susceptibility, biofilm formation, gene expression, and mammalian cell attachment. The absence of DNA methylation among dam mutants was apparent. Varying deficiencies in cell growth, antimicrobial resistance and biofilm formation, alongside low-level increases in gene expression (recA and papI), and adherence to HEK-293 and HTB-9 mammalian cells were also detected as a factor of SOS induction to result in increased mutability. Phenotypic characteristics of parental strains were restored in dam complement strains. Dam's vital role in DNA methylation and gene expression in local UPEC isolates was confirmed. Similarly to dam-deficient Enterohemorrhagic E. coli (EHEC), these findings suggest unsuccessful therapeutic use of

  15. Pathotypic and Phylogenetic Study of Diarrheagenic Escherichia coli and Uropathogenic E. coli Using Multiplex Polymerase Chain Reaction

    PubMed Central

    Salmani, Hamzeh; Azarnezhad, Asaad; Fayazi, Mohammad Reza; Hosseini, Arshad

    2016-01-01

    Background: Acute diarrheal disease and urinary tract infection are leading causes of childhood morbidity and mortality in the developing world. Diarrheagenic Escherichia coli (DEC) has been identified as a major etiologic agent of diarrhea worldwide, and urinary tract infection (UTI) caused by uropathogenic Escherichia coli (UPEC) is one of the most common bacterial infections among human beings. Quick and precise detection of these bacteria help provide more effective intervention and management of infection. Objectives: In this study we present a precise and sensitive typing and phylogenetic study of UPEC and DEC using multiplex PCR in order to simplify and improve the intervention and management of diarrheal and UT infections. Materials and Methods: In total, 100 urinary tract infection samples (UTI) and 200 specimens from children with diarrhea, which had been diagnosed with E. coli as the underlying agent by differential diagnosis using MacConkey’s agar and biochemical study, were submitted for molecular detection. Pathotyping of E. coli pathotypes causing urinary tract infection and diarrhea were examined using a two set multiplex PCR, targeting six specific genes. Phylogenetic typing was done by targeting three genes, including ChuA, YjaA and TspE4C2. Results: Overall, 88% of DEC and 54% of UTI isolates were positive for one or more of the six genes encoding virulence factors. Prevalence of the genes encoding virulence factors for DEC were 62%, 25%, 24%, 13%, 7% and 5% for ST (ETEC), LT (ETEC), aggR (EAggEC), daaD (DAEC), invE (EIEC) and eae (EPEC), respectively; whereas, the prevalence rates for the UTI samples were 23%, 14%, 6%, 6% and 4% for aggR (EAggEC), LT (ETEC), daaD (DAEC), invE (EIEC) and ST (ETEC), respectively. No coding virulence factors were detected for eae (EPEC). Group B2 was the most prevalent phylogroup and ST was the most frequently detected pathotype in all phylogroups. Conclusions: ETEC and EAggEC were the most detected E. coli among

  16. Antimicrobial susceptibilities of uropathogen Escherichia coli in renal transplant recipients: dramatic increase in ciprofloxacin resistance.

    PubMed

    Azap, Ö; Togan, T; Yesilkaya, A; Arslan, H; Haberal, M

    2013-04-01

    The urinary tract is the most common site of bacterial infections in renal transplant recipients. The management of urinary tract infections (UTI) in renal transplant recipients is becoming more difficult because of drug-resistant bacteria. The antimicrobial susceptibilities of uropathogen bacteria isolated from 398 patients who underwent renal transplantation between 2007 and 2011 were obtained from medical records. At least 1 UTI episode was diagnosed in 172 (43.2%) patients. Among the 703 bacteria isolated from these patients, Exherichia coli the most common pathogen, was isolated from 407/703 episodes (57.8%). Ciprofloxacin, co-trimoxazole, ceftriaxone, and gentamicin resistance rates were 59.4%, 85.7%, 40.7%, and 36.6%, respectively. Ninty six of 407 E. coli isolates (23.5%) were ESBL positive. Analysis of resistance rates in our center demonstrated ciprofloxacin resistance rate in uropathogenic E. coli to have increased gradually from 30.4% in 2003, 41.3% in 2007, and 59.4% in 2012. Instutional data regarding the etiologic agents and antimicrobial susceptibility results are important for proper management of patients with UTI.

  17. Mechanisms of antibiotic resistance to enrofloxacin in uropathogenic Escherichia coli in dog

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli (E. coli) urinary tract infections (UTIs) are becoming a serious problem both for pets and humans (zoonosis) due to the close contact and to the increasing resistance to antibiotics. Canine E. coli represents a good experimental model useful to study this pathology. Moreover, as des...

  18. Antibiotic Resistance, Virulence, and Genetic Background of Community-Acquired Uropathogenic Escherichia coli from Algeria.

    PubMed

    Yahiaoui, Merzouk; Robin, Frédéric; Bakour, Rabah; Hamidi, Moufida; Bonnet, Richard; Messai, Yamina

    2015-10-01

    The aim of the study was to investigate antibiotic resistance mechanisms, virulence traits, and genetic background of 150 nonrepetitive community-acquired uropathogenic Escherichia coli (CA-UPEC) from Algeria. A rate of 46.7% of isolates was multidrug resistant. bla genes detected were blaTEM (96.8% of amoxicillin-resistant isolates), blaCTX-M-15 (4%), overexpressed blaAmpC (4%), blaSHV-2a, blaTEM-4, blaTEM-31, and blaTEM-35 (0.7%). All tetracycline-resistant isolates (51.3%) had tetA and/or tetB genes. Sulfonamides and trimethoprim resistance genes were sul2 (60.8%), sul1 (45.9%), sul3 (6.7%), dfrA14 (25.4%), dfrA1 (18.2%), dfrA12 (16.3%), and dfrA25 (5.4%). High-level fluoroquinolone resistance (22.7%) was mediated by mutations in gyrA (S83L-D87N) and parC (S80I-E84G/V or S80I) genes. qnrB5, qnrS1, and aac(6')-Ib-cr were rare (5.3%). Class 1 and/or class 2 integrons were detected (40.7%). Isolates belonged to phylogroups B2+D (50%), A+B1 (36%), and F+C+Clade I (13%). Most of D (72.2%) and 38.6% of B2 isolates were multidrug resistant; they belong to 14 different sequence types, including international successful ST131, ST73, and ST69, reported for the first time in the community in Algeria and new ST4494 and ST4529 described in this study. Besides multidrug resistance, B2 and D isolates possessed virulence factors of colonization, invasion, and long-term persistence. The study highlighted multidrug-resistant CA-UPEC with high virulence traits and an epidemic genetic background.

  19. Inactivation of uropathogenic Escherichia coli in ground chicken meat using high pressure processing and gamma radiation, and in purge and chicken meat surfaces by ultraviolet light

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Uropathogenic Escherichia coli (UPEC) are common contaminants in meat and poultry. Nonthermal food safety intervention technologies used to improve safety and shelf-life of both human and pet foods can include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV...

  20. Dimeric and Trimeric Fusion Proteins Generated with Fimbrial Adhesins of Uropathogenic Escherichia coli.

    PubMed

    Luna-Pineda, Víctor M; Reyes-Grajeda, Juan Pablo; Cruz-Córdova, Ariadnna; Saldaña-Ahuactzi, Zeus; Ochoa, Sara A; Maldonado-Bernal, Carmen; Cázares-Domínguez, Vicenta; Moreno-Fierros, Leticia; Arellano-Galindo, José; Hernández-Castro, Rigoberto; Xicohtencatl-Cortes, Juan

    2016-01-01

    Urinary tract infections (UTIs) are associated with high rates of morbidity and mortality worldwide, and uropathogenic Escherichia coli (UPEC) is the main etiologic agent. Fimbriae assembled on the bacterial surface are essential for adhesion to the urinary tract epithelium. In this study, the FimH, CsgA, and PapG adhesins were fused to generate biomolecules for use as potential target vaccines against UTIs. The fusion protein design was generated using bioinformatics tools, and template fusion gene sequences were synthesized by GenScript in the following order fimH-csgA-papG-fimH-csgA (fcpfc) linked to the nucleotide sequence encoding the [EAAAK]5 peptide. Monomeric (fimH, csgA, and papG), dimeric (fimH-csgA), and trimeric (fimH-csgA-papG) genes were cloned into the pLATE31 expression vector and generated products of 1040, 539, 1139, 1442, and 2444 bp, respectively. Fusion protein expression in BL21 E. coli was induced with 1 mM IPTG, and His-tagged proteins were purified under denaturing conditions and refolded by dialysis using C-buffer. Coomassie blue-stained SDS-PAGE gels and Western blot analysis revealed bands of 29.5, 11.9, 33.9, 44.9, and 82.1 kDa, corresponding to FimH, CsgA, PapG, FC, and FCP proteins, respectively. Mass spectrometry analysis by MALDI-TOF/TOF revealed specific peptides that confirmed the fusion protein structures. Dynamic light scattering analysis revealed the polydispersed state of the fusion proteins. FimH, CsgA, and PapG stimulated the release of 372-398 pg/mL IL-6; interestingly, FC and FCP stimulated the release of 464.79 pg/mL (p ≤ 0.018) and 521.24 pg/mL (p ≤ 0.002) IL-6, respectively. In addition, FC and FCP stimulated the release of 398.52 pg/mL (p ≤ 0.001) and 450.40 pg/mL (p ≤ 0.002) IL-8, respectively. High levels of IgA and IgG antibodies in human sera reacted against the fusion proteins, and under identical conditions, low levels of IgA and IgG antibodies were detected in human urine. Rabbit polyclonal antibodies

  1. Dimeric and Trimeric Fusion Proteins Generated with Fimbrial Adhesins of Uropathogenic Escherichia coli

    PubMed Central

    Luna-Pineda, Víctor M.; Reyes-Grajeda, Juan Pablo; Cruz-Córdova, Ariadnna; Saldaña-Ahuactzi, Zeus; Ochoa, Sara A.; Maldonado-Bernal, Carmen; Cázares-Domínguez, Vicenta; Moreno-Fierros, Leticia; Arellano-Galindo, José; Hernández-Castro, Rigoberto; Xicohtencatl-Cortes, Juan

    2016-01-01

    Urinary tract infections (UTIs) are associated with high rates of morbidity and mortality worldwide, and uropathogenic Escherichia coli (UPEC) is the main etiologic agent. Fimbriae assembled on the bacterial surface are essential for adhesion to the urinary tract epithelium. In this study, the FimH, CsgA, and PapG adhesins were fused to generate biomolecules for use as potential target vaccines against UTIs. The fusion protein design was generated using bioinformatics tools, and template fusion gene sequences were synthesized by GenScript in the following order fimH-csgA-papG-fimH-csgA (fcpfc) linked to the nucleotide sequence encoding the [EAAAK]5 peptide. Monomeric (fimH, csgA, and papG), dimeric (fimH-csgA), and trimeric (fimH-csgA-papG) genes were cloned into the pLATE31 expression vector and generated products of 1040, 539, 1139, 1442, and 2444 bp, respectively. Fusion protein expression in BL21 E. coli was induced with 1 mM IPTG, and His-tagged proteins were purified under denaturing conditions and refolded by dialysis using C-buffer. Coomassie blue-stained SDS-PAGE gels and Western blot analysis revealed bands of 29.5, 11.9, 33.9, 44.9, and 82.1 kDa, corresponding to FimH, CsgA, PapG, FC, and FCP proteins, respectively. Mass spectrometry analysis by MALDI-TOF/TOF revealed specific peptides that confirmed the fusion protein structures. Dynamic light scattering analysis revealed the polydispersed state of the fusion proteins. FimH, CsgA, and PapG stimulated the release of 372–398 pg/mL IL-6; interestingly, FC and FCP stimulated the release of 464.79 pg/mL (p ≤ 0.018) and 521.24 pg/mL (p ≤ 0.002) IL-6, respectively. In addition, FC and FCP stimulated the release of 398.52 pg/mL (p ≤ 0.001) and 450.40 pg/mL (p ≤ 0.002) IL-8, respectively. High levels of IgA and IgG antibodies in human sera reacted against the fusion proteins, and under identical conditions, low levels of IgA and IgG antibodies were detected in human urine. Rabbit polyclonal antibodies

  2. Effects of a Mutation in the gyrA Gene on the Virulence of Uropathogenic Escherichia coli

    PubMed Central

    Sánchez-Céspedes, Javier; Sáez-López, Emma; Frimodt-Møller, N.; Vila, Jordi

    2015-01-01

    Fluoroquinolones are among the drugs most extensively used for the treatment of bacterial infections in human and veterinary medicine. Resistance to quinolones can be chromosome or plasmid mediated. The chromosomal mechanism of resistance is associated with mutations in the DNA gyrase- and topoisomerase IV-encoding genes and mutations in regulatory genes affecting different efflux systems, among others. We studied the role of the acquisition of a mutation in the gyrA gene in the virulence and protein expression of uropathogenic Escherichia coli (UPEC). The HC14366M strain carrying a mutation in the gyrA gene (S83L) was found to lose the capacity to cause cystitis and pyelonephritis mainly due to a decrease in the expression of the fimA, papA, papB, and ompA genes. The levels of expression of the fimA, papB, and ompA genes were recovered on complementing the strain with a plasmid containing the gyrA wild-type gene. However, only a slight recovery was observed in the colonization of the bladder in the GyrA complement strain compared to the mutant strain in a murine model of ascending urinary tract infection. In conclusion, a mutation in the gyrA gene of uropathogenic E. coli reduced the virulence of the bacteria, likely in association with the effect of DNA supercoiling on the expression of several virulence factors and proteins, thereby decreasing their capacity to cause cystitis and pyelonephritis. PMID:26014933

  3. The Catabolite Repressor Protein-Cyclic AMP Complex Regulates csgD and Biofilm Formation in Uropathogenic Escherichia coli.

    PubMed

    Hufnagel, David A; Evans, Margery L; Greene, Sarah E; Pinkner, Jerome S; Hultgren, Scott J; Chapman, Matthew R

    2016-12-15

    The extracellular matrix protects Escherichia coli from immune cells, oxidative stress, predation, and other environmental stresses. Production of the E. coli extracellular matrix is regulated by transcription factors that are tuned to environmental conditions. The biofilm master regulator protein CsgD upregulates curli and cellulose, the two major polymers in the extracellular matrix of uropathogenic E. coli (UPEC) biofilms. We found that cyclic AMP (cAMP) regulates curli, cellulose, and UPEC biofilms through csgD The alarmone cAMP is produced by adenylate cyclase (CyaA), and deletion of cyaA resulted in reduced extracellular matrix production and biofilm formation. The catabolite repressor protein (CRP) positively regulated csgD transcription, leading to curli and cellulose production in the UPEC isolate, UTI89. Glucose, a known inhibitor of CyaA activity, blocked extracellular matrix formation when added to the growth medium. The mutant strains ΔcyaA and Δcrp did not produce rugose biofilms, pellicles, curli, cellulose, or CsgD. Three putative CRP binding sites were identified within the csgD-csgB intergenic region, and purified CRP could gel shift the csgD-csgB intergenic region. Additionally, we found that CRP binded upstream of kpsMT, which encodes machinery for K1 capsule production. Together our work shows that cAMP and CRP influence E. coli biofilms through transcriptional regulation of csgD IMPORTANCE The catabolite repressor protein (CRP)-cyclic AMP (cAMP) complex influences the transcription of ∼7% of genes on the Escherichia coli chromosome (D. Zheng, C. Constantinidou, J. L. Hobman, and S. D. Minchin, Nucleic Acids Res 32:5874-5893, 2004, https://dx.doi.org/10.1093/nar/gkh908). Glucose inhibits E. coli biofilm formation, and ΔcyaA and Δcrp mutants show impaired biofilm formation (D. W. Jackson, J.W. Simecka, and T. Romeo, J Bacteriol 184:3406-3410, 2002, https://dx.doi.org/10.1128/JB.184.12.3406-3410.2002). We determined that the c

  4. Biofilm formation and virulence of uropathogenic Escherichia coli in urine after consumption of cranberry-lingonberry juice.

    PubMed

    Tapiainen, T; Jauhiainen, H; Jaakola, L; Salo, J; Sevander, J; Ikäheimo, I; Pirttilä, A M; Hohtola, A; Uhari, M

    2012-05-01

    Cranberry-lingonberry juice (CLJ) was effective in preventing urinary tract infections (UTIs) in our earlier randomized clinical trial. We aimed to test whether consumption of CLJ at a similar dose to earlier reduces the biofilm formation and virulence of uropathogenic Escherichia coli in urine. Twenty healthy women drank 100 ml of CLJ daily for two weeks. Urine samples were obtained 2-4 hours after the last dose. Control samples were taken after a one-week period without berry consumption. Biofilm formation of 20 E. coli strains was measured at 72 hours by the polystyrene microtitre plate method. Quantitative real-time PCR analyses were performed for selected genes. Four of the 20 clinical strains produced more biofilm in urine after CLJ consumption (P < 0.05) and one produced less. Expression levels of the pga, cpxA, fimA and papF genes did not differ between bacteria grown in control urine and urine obtained after CLJ consumption, except for pga gene expression, which was reduced in one strain after CLJ (P = 0.04). It appears that the effect of CLJ in preventing UTIs is not explained by mechanisms that reduce biofilm formation or the expression of selected virulence genes of Escherichia coli in urine.

  5. Genome-wide analysis of the response to nitric oxide in uropathogenic Escherichia coli CFT073

    PubMed Central

    Mehta, Heer H.; Liu, Yuxuan

    2015-01-01

    Uropathogenic Escherchia coli (UPEC) is the causative agent of urinary tract infections. Nitric oxide (NO) is a toxic water-soluble gas that is encountered by UPEC in the urinary tract. Therefore, UPEC probably requires mechanisms to detoxify NO in the host environment. Thus far, flavohaemoglobin (Hmp), an NO denitrosylase, is the only demonstrated NO detoxification system in UPEC. Here we show that, in E. coli strain CFT073, the NADH-dependent NO reductase flavorubredoxin (FlRd) also plays a major role in NO scavenging. We generated a mutant that lacks all known and candidate NO detoxification pathways (Hmp, FlRd and the respiratory nitrite reductase, NrfA). When grown and assayed anaerobically, this mutant expresses an NO-inducible NO scavenging activity, pointing to the existence of a novel detoxification mechanism. Expression of this activity is inducible by both NO and nitrate, and the enzyme is membrane-associated. Genome-wide transcriptional profiling of UPEC grown under anaerobic conditions in the presence of nitrate (as a source of NO) highlighted various aspects of the response of the pathogen to nitrate and NO. Several virulence-associated genes are upregulated, suggesting that host-derived NO is a potential regulator of UPEC virulence. Chromatin immunoprecipitation and sequencing was used to evaluate the NsrR regulon in CFT073. We identified 49 NsrR binding sites in promoter regions in the CFT073 genome, 29 of which were not previously identified in E. coli K-12. NsrR may regulate some CFT073 genes that do not have homologues in E. coli K-12. PMID:28348816

  6. OCCURRENCE OF ANTIBIOTIC-RESISTANT UROPATHOGENIC ESCHERICHIA COLI CLONAL GROUP A IN WASTEWATER EFFLUENTS

    EPA Science Inventory

    Isolates of Escherichia coli belonging to clonal group A (CGA), a recently described disseminated cause of drug-resistant urinary tract infections in humans, were present in four of seven sewage effluents collected from geographically dispersed areas of the United States. ...

  7. Uropathogenic Escherichia coli Metabolite-Dependent Quiescence and Persistence May Explain Antibiotic Tolerance during Urinary Tract Infection

    PubMed Central

    Leatham-Jensen, Mary P.; Mokszycki, Matthew E.; Rowley, David C.; Deering, Robert; Camberg, Jodi L.; Sokurenko, Evgeni V.; Tchesnokova, Veronika L.; Frimodt-Møller, Jakob; Leth Nielsen, Karen; Sun, Gongqin

    2016-01-01

    ABSTRACT In the present study, it is shown that although Escherichia coli CFT073, a human uropathogenic (UPEC) strain, grows in liquid glucose M9 minimal medium, it fails to grow on glucose M9 minimal medium agar plates seeded with ≤106 CFU. The cells on glucose plates appear to be in a “quiescent” state that can be prevented by various combinations of lysine, methionine, and tyrosine. Moreover, the quiescent state is characteristic of ~80% of E. coli phylogenetic group B2 multilocus sequence type 73 strains, as well as 22.5% of randomly selected UPEC strains isolated from community-acquired urinary tract infections in Denmark. In addition, E. coli CFT073 quiescence is not limited to glucose but occurs on agar plates containing a number of other sugars and acetate as sole carbon sources. It is also shown that a number of E. coli CFT073 mini-Tn5 metabolic mutants (gnd, gdhA, pykF, sdhA, and zwf) are nonquiescent on glucose M9 minimal agar plates and that quiescence requires a complete oxidative tricarboxylic acid (TCA) cycle. In addition, evidence is presented that, although E. coli CFT073 quiescence and persistence in the presence of ampicillin are alike in that both require a complete oxidative TCA cycle and each can be prevented by amino acids, E. coli CFT073 quiescence occurs in the presence or absence of a functional rpoS gene, whereas maximal persistence requires a nonfunctional rpoS. Our results suggest that interventions targeting specific central metabolic pathways may mitigate UPEC infections by interfering with quiescence and persistence. IMPORTANCE Recurrent urinary tract infections (UTIs) affect 10 to 40% of women. In up to 77% of those cases, the recurrent infections are caused by the same uropathogenic E. coli (UPEC) strain that caused the initial infection. Upon infection of urothelial transitional cells in the bladder, UPEC appear to enter a nongrowing quiescent intracellular state that is thought to serve as a reservoir responsible

  8. Temperature control of molecular circuit switch responsible for virulent phenotype expression in uropathogenic Escherichia coli

    NASA Astrophysics Data System (ADS)

    Samoilov, Michael

    2010-03-01

    The behavior and fate of biological organisms are to a large extent dictated by their environment, which can be often viewed as a collection of features and constraints governed by physics laws. Since biological systems comprise networks of molecular interactions, one such key physical property is temperature, whose variations directly affect the rates of biochemical reactions involved. For instance, temperature is known to control many gene regulatory circuits responsible for pathogenicity in bacteria. One such example is type 1 fimbriae (T1F) -- the foremost virulence factor in uropathogenic E. coli (UPEC), which accounts for 80-90% of all community-acquired urinary tract infections (UTIs). The expression of T1F is randomly `phase variable', i.e. individual cells switch between virulent/fimbriate and avirulent/afimbriate phenotypes, with rates regulated by temperature. Our computational investigation of this process, which is based on FimB/FimE recombinase-mediated inversion of fimS DNA element, offers new insights into its discrete-stochastic kinetics. In particular, it elucidates the logic of T1F control optimization to the host temperature and contributes further understanding toward the development of novel therapeutic approaches to UPEC-caused UTIs.

  9. In vitro adherence of type 1-fimbriated uropathogenic Escherichia coli to human ureteral mucosa.

    PubMed Central

    Fujita, K; Yamamoto, T; Yokota, T; Kitagawa, R

    1989-01-01

    Type 1-fimbriated Escherichia coli isolated from patients with urinary tract infections adhered in vitro to the epithelial cell surface of an excised human ureter. The bacteria also adhered to a mucous coating and to Formalin-fixed human ureteral mucosa. D-Mannose strongly inhibited such adherence. The bacteria in their nonfimbriated phase lacked the ability to adhere. We concluded that type 1 fimbriae play a role, at least in part, in upper urinary tract infections in humans. Images PMID:2568346

  10. The Modulation of Polymorphonuclear Neutrophil Function by Cytotoxic Necrotizing Factor Type 1 - Expressing Uropathogenic Escherichia coli

    DTIC Science & Technology

    2005-01-01

    urinary tract infection and a rat model of acute prostatitis and that a striking feature of the histopathology of the mouse bladders...Suppl 1A: 5S-13S. Foxman, B., L. Zhang, et al. (1995). "Bacterial virulence characteristics of Escherichia coli isolates from first-time urinary tract infection ." J... urinary tract infection ." Infect Immun 69(5): 2838-46. Haraoka, M., L. Hang, et al. (1999). "Neutrophil recruitment and resistance to urinary tract

  11. Population structure and uropathogenic virulence-associated genes of faecal Escherichia coli from healthy young and elderly adults.

    PubMed

    Vollmerhausen, Tara L; Ramos, Nubia L; Gündogdu, Aycan; Robinson, Wayne; Brauner, Annelie; Katouli, Mohammad

    2011-05-01

    We investigated the population structures of faecal Escherichia coli in 30 healthy young adults (13 males and 17 females) aged between 20 and 45 years and 29 elderly adults (14 females and 15 males) aged between 65 and 77 years. In all, 1566 strains were typed with the PhPlate system and grouped into biochemical phenotypes (BPTs). Strains with shared BPTs were further typed using randomly amplified polymorphic DNA analysis. Forty-four per cent of the strains were shared between two or more age and gender groups. Elders had a significantly higher (P<0.001) number of BPTs (mean±standard error 3.3±0.27) than younger groups (1.82±0.27). Phylogenetic affiliation and virulence-associated genes (VAGs) of the strains showed that more than 80 % of the strains belonging to dominant types belonged to phylogroups B2 and D. Amongst dominant BPTs, phylogenetic group A was significantly associated with females (P<0.0001), and elders were more likely to carry group D (P<0.0124). Elderly males had a higher prevalence of VAGs than young males (P<0.0001) and young females (P<0.0005). We conclude that there is a lower prevalence of E. coli with uropathogenic properties in healthy young adults than in elders.

  12. Persistence of uropathogenic Escherichia Coli in the bladders of female patients with sterile urine after antibiotic therapies.

    PubMed

    Liu, Shu-Cheng; Han, Xiao-Min; Shi, Ming; Pang, Zi-Li

    2016-10-01

    This study aimed to provide evidence of persistent uropathogenic Escherichia coli (UPEC) in female patients with recurrent urinary tract infection (UTI) after antibiotic therapy. We collected biopsies of the bladder, and clean-catch urine samples from 32 women who had episodes of recurrent UTI and were given antibiotic therapy. Urine samples and biopsies were analyzed by conventional bacteriological techniques. Phylogenetic group and 16 virulence factors (VFs) of UPEC were determined using polymerase chain reaction (PCR). The infection capability of UPEC was confirmed in a mouse model. Immunofluorescence and electron microscopy were used to detect intracellular bacterial communities (IBCs) in the mouse model. The results showed that all urine specimens were detected sterile. E. coli was found in 6 of 32 biopsies (18.75%), and was identified to be UPEC by PCR. Different VFs associated with the formation of IBCs were identified in all six UPEC isolates. Each UPEC isolate was capable of forming IBCs within the bladder epithelial cells of mice. In conclusion, UPEC with distinctive pathological traits and the capability of IBC formation was first found in the bladders of women after antibiotic therapy, suggesting that the IBC pathogenic pathway may occur in humans and it plays an important role in UTI recurrence.

  13. Siderophore Biosynthesis Governs the Virulence of Uropathogenic Escherichia coli by Coordinately Modulating the Differential Metabolism.

    PubMed

    Su, Qiao; Guan, Tianbing; He, Yan; Lv, Haitao

    2016-04-01

    Urinary tract infections impose substantial health burdens on women worldwide. Urinary tract infections often incur a high risk of recurrence and antibiotic resistance, and uropathogenic E. coli accounts for approximately 80% of clinically acquired cases. The diagnosis of, treatment of, and drug development for urinary tract infections remain substantial challenges due to the complex pathogenesis of this condition. The clinically isolated UPEC 83972 strain was found to produce four siderophores: yersiniabactin, aerobactin, salmochelin, and enterobactin. The biosyntheses of some of these siderophores implies that the virulence of UPEC is mediated via the targeting of primary metabolism. However, the differential modulatory roles of siderophore biosyntheses on the differential metabolomes of UPEC and non-UPEC strains remain incompletely understood. In the present study, we sought to investigate how the differential metabolomes can be used to distinguish UPEC from non-UPEC strains and to determine the associated regulatory roles of siderophore biosynthesis. Our results are the first to demonstrate that the identified differential metabolomes strongly differentiated UPEC from non-UPEC strains. Furthermore, we performed metabolome assays of mutants with different patterns of siderophore deletions; the data revealed that the mutations of all four siderophores exerted a stronger modulatory role on the differential metabolomes of the UPEC and non-UPEC strains relative to the mutation of any single siderophore and that this modulatory role primarily involved amino acid metabolism, oxidative phosphorylation in the carbon fixation pathway, and purine and pyrimidine metabolism. Surprisingly, the modulatory roles were strongly dependent on the type and number of mutated siderophores. Taken together, these results demonstrated that siderophore biosynthesis coordinately modulated the differential metabolomes and thus may indicate novel targets for virulence-based diagnosis

  14. Antibiotic resistance profile and virulence genes of uropathogenic Escherichia coli isolates in relation to phylogeny.

    PubMed

    Adib, N; Ghanbarpour, R; Solatzadeh, H; Alizade, H

    2014-03-01

    Escherichia coli (E. coli) strains are the major cause of urinary tract infections (UTI) and belong to the large group of extra-intestinal pathogenic E. coli. The purposes of this study were to determine the antibiotic resistance profile, virulence genes and phylogenetic background of E. coli isolates from UTI cases. A total of 137 E. coli isolates were obtained from UTI samples. The antimicrobial susceptibility of confirmed isolates was determined by disk diffusion method against eight antibiotics. The isolates were examined to determine the presence and prevalence of selected virulence genes including iucD, sfa/focDE, papEF and hly. ECOR phylo-groups of isolates were determined by detection of yjaA and chuA genes and fragment TspE4.C2. The antibiogram results showed that 71% of the isolates were resistant to cefazolin, 60.42% to co-trimoxazole, 54.16% to nalidixic acid, 36.45% to gentamicin, 29.18% to ciprofloxacin, 14.58% to cefepime, 6.25% to nitrofurantoin and 0.00% to imipenem. Twenty-two antibiotic resistance patterns were observed among the isolates. Virulence genotyping of isolates revealed that 58.39% isolates had at least one of the four virulence genes. The iucD gene was the most prevalent gene (43.06%). The other genes including sfa/focDE, papEF and hly genes were detected in 35.76%, 18.97% and 2.18% isolates, respectively. Nine combination patterns of the virulence genes were detected in isolates. Phylotyping of 137 isolates revealed that the isolates fell into A (45.99%), B1 (13.14%), B2 (19.71%) and D (21.16%) groups. Phylotyping of multidrug resistant isolates indicated that these isolates are mostly in A (60.34%) and D (20.38%) groups. In conclusion, the isolates that possessed the iucD, sfa/focDE, papEF and hly virulence genes mostly belonged to A and B2 groups, whereas antibiotic resistant isolates were in groups A and D. Escherichia coli strains carrying virulence factors and antibiotic resistance are distributed in specific phylogenetic

  15. The Repeat-In-Toxin Family Member TosA Mediates Adherence of Uropathogenic Escherichia coli and Survival during Bacteremia

    PubMed Central

    Vigil, Patrick D.; Wiles, Travis J.; Engstrom, Michael D.; Prasov, Lev; Mulvey, Matthew A.

    2012-01-01

    Uropathogenic Escherichia coli (UPEC) is responsible for the majority of uncomplicated urinary tract infections (UTI) and represents the most common bacterial infection in adults. UPEC utilizes a wide range of virulence factors to colonize the host, including the novel repeat-in-toxin (RTX) protein TosA, which is specifically expressed in the host urinary tract and contributes significantly to the virulence and survival of UPEC. tosA, found in strains within the B2 phylogenetic subgroup of E. coli, serves as a marker for strains that also contain a large number of well-characterized UPEC virulence factors. The presence of tosA in an E. coli isolate predicts successful colonization of the murine model of ascending UTI, regardless of the source of the isolate. Here, a detailed analysis of the function of tosA revealed that this gene is transcriptionally linked to genes encoding a conserved type 1 secretion system similar to other RTX family members. TosA localized to the cell surface and was found to mediate (i) adherence to host cells derived from the upper urinary tract and (ii) survival in disseminated infections and (iii) to enhance lethality during sepsis (as assessed in two different animal models of infection). An experimental vaccine, using purified TosA, protected vaccinated animals against urosepsis. From this work, it was concluded that TosA belongs to a novel group of RTX proteins that mediate adherence and host damage during UTI and urosepsis and could be a novel target for the development of therapeutics to treat ascending UTIs. PMID:22083710

  16. Siderophore biosynthesis coordinately modulated the virulence-associated interactive metabolome of uropathogenic Escherichia coli and human urine

    PubMed Central

    Su, Qiao; Guan, Tianbing; Lv, Haitao

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) growth in women’s bladders during urinary tract infection (UTI) incurs substantial chemical exchange, termed the “interactive metabolome”, which primarily accounts for the metabolic costs (utilized metabolome) and metabolic donations (excreted metabolome) between UPEC and human urine. Here, we attempted to identify the individualized interactive metabolome between UPEC and human urine. We were able to distinguish UPEC from non-UPEC by employing a combination of metabolomics and genetics. Our results revealed that the interactive metabolome between UPEC and human urine was markedly different from that between non-UPEC and human urine, and that UPEC triggered much stronger perturbations in the interactive metabolome in human urine. Furthermore, siderophore biosynthesis coordinately modulated the individualized interactive metabolome, which we found to be a critical component of UPEC virulence. The individualized virulence-associated interactive metabolome contained 31 different metabolites and 17 central metabolic pathways that were annotated to host these different metabolites, including energetic metabolism, amino acid metabolism, and gut microbe metabolism. Changes in the activities of these pathways mechanistically pinpointed the virulent capability of siderophore biosynthesis. Together, our findings provide novel insights into UPEC virulence, and we propose that siderophores are potential targets for further discovery of drugs to treat UPEC-induced UTI. PMID:27076285

  17. Virulence Characteristics and Genetic Affinities of Multiple Drug Resistant Uropathogenic Escherichia coli from a Semi Urban Locality in India

    PubMed Central

    Kumar, Ashutosh; Parveen, Sana; Gandham, Nageshwari; Wieler, Lothar H.; Ewers, Christa; Ahmed, Niyaz

    2011-01-01

    Extraintestinal pathogenic Escherichia coli (ExPEC) are of significant health concern. The emergence of drug resistant E. coli with high virulence potential is alarming. Lack of sufficient data on transmission dynamics, virulence spectrum and antimicrobial resistance of certain pathogens such as the uropathogenic E. coli (UPEC) from countries with high infection burden, such as India, hinders the infection control and management efforts. In this study, we extensively genotyped and phenotyped a collection of 150 UPEC obtained from patients belonging to a semi-urban, industrialized setting near Pune, India. The isolates representing different clinical categories were analyzed in comparison with 50 commensal E. coli isolates from India as well as 50 ExPEC strains from Germany. Virulent strains were identified based on hemolysis, haemagglutination, cell surface hydrophobicity, serum bactericidal activity as well as with the help of O serotyping. We generated antimicrobial resistance profiles for all the clinical isolates and carried out phylogenetic analysis based on repetitive extragenic palindromic (rep)-PCR. E. coli from urinary tract infection cases expressed higher percentages of type I (45%) and P fimbriae (40%) when compared to fecal isolates (25% and 8% respectively). Hemolytic group comprised of 60% of UPEC and only 2% of E. coli from feces. Additionally, we found that serum resistance and cell surface hydrophobicity were not significantly (p = 0.16/p = 0.51) associated with UPEC from clinical cases. Moreover, clinical isolates exhibited highest resistance against amoxicillin (67.3%) and least against nitrofurantoin (57.3%). We also observed that 31.3% of UPEC were extended-spectrum beta-lactamase (ESBL) producers belonging to serotype O25, of which four were also positive for O25b subgroup that is linked to B2-O25b-ST131-CTX-M-15 virulent/multiresistant type. Furthermore, isolates from India and Germany (as well as global sources) were found to be

  18. CdiA Effectors from Uropathogenic Escherichia coli Use Heterotrimeric Osmoporins as Receptors to Recognize Target Bacteria

    PubMed Central

    Beck, Christina M.; Willett, Julia L. E.; Kim, Jeff J.; Low, David A.; Hayes, Christopher S.

    2016-01-01

    Many Gram-negative bacterial pathogens express contact-dependent growth inhibition (CDI) systems that promote cell-cell interaction. CDI+ bacteria express surface CdiA effector proteins, which transfer their C-terminal toxin domains into susceptible target cells upon binding to specific receptors. CDI+ cells also produce immunity proteins that neutralize the toxin domains delivered from neighboring siblings. Here, we show that CdiAEC536 from uropathogenic Escherichia coli 536 (EC536) uses OmpC and OmpF as receptors to recognize target bacteria. E. coli mutants lacking either ompF or ompC are resistant to CDIEC536-mediated growth inhibition, and both porins are required for target-cell adhesion to inhibitors that express CdiAEC536. Experiments with single-chain OmpF fusions indicate that the CdiAEC536 receptor is heterotrimeric OmpC-OmpF. Because the OmpC and OmpF porins are under selective pressure from bacteriophages and host immune systems, their surface-exposed loops vary between E. coli isolates. OmpC polymorphism has a significant impact on CDIEC536 mediated competition, with many E. coli isolates expressing alleles that are not recognized by CdiAEC536. Analyses of recombinant OmpC chimeras suggest that extracellular loops L4 and L5 are important recognition epitopes for CdiAEC536. Loops L4 and L5 also account for much of the sequence variability between E. coli OmpC proteins, raising the possibility that CDI contributes to the selective pressure driving OmpC diversification. We find that the most efficient CdiAEC536 receptors are encoded by isolates that carry the same cdi gene cluster as E. coli 536. Thus, it appears that CdiA effectors often bind preferentially to "self" receptors, thereby promoting interactions between sibling cells. As a consequence, these effector proteins cannot recognize nor suppress the growth of many potential competitors. These findings suggest that self-recognition and kin selection are important functions of CDI. PMID:27723824

  19. The impact of vitamin D on the innate immune response to uropathogenic Escherichia coli during pregnancy.

    PubMed

    Ramos, N L; Sekikubo, M; Kironde, F; Mirembe, F; Sääf, M; Brauner, A

    2015-05-01

    Urinary tract infections are highly common during pregnancy, and can cause serious complications for the mother and baby. Vitamin D, predominantly obtained from the sunlight, is known to have an effect on the urothelium, with immunomodulatory capacity against Escherichia coli infection. However, its influence at this site remains to be further explored. This study therefore investigated its impact during pregnancy in a population of women who have the possibility of adequate year-round sun exposure. Serum from pregnant Ugandan women (n = 32) in each trimester of pregnancy, from women after delivery (n = 29) and from never-pregnant controls (n = 25) was collected. 25-Hydroxyvitamin D (25-OHD), cathelicidin LL-37, human β-defensin 2, interleukin (IL)-8 and soluble CD14 serum concentrations were measured by chemiluminescence immunoassay or ELISA. The ability of serum to inhibit E. coli growth was tested. The immunomodulatory capacities of these serum samples and 1,25-dihydroxyvitamin D3 were investigated in urothelial cells. Increases in 25-OHD and LL-37 levels were observed as pregnancy progressed, peaking in the third trimester. Serum 25-OHD levels were higher in multigravidae than in primigravidae, and correlated positively with maternal age. IL-8 levels were lower in the third trimester than in the first trimester, increased after delivery, but remained below those of never-pregnant women. Similarly, soluble CD14 concentrations increased after delivery. As gestation advanced, serum had an increased capacity to inhibit E. coli growth. In vitro, it modulated the IL-8 response to infection in a vitamin D concentration-dependent manner. Our findings demonstrate that increasing vitamin D levels as pregnancy advances modulate the innate immune system towards a protective response to infection.

  20. Characterization of Ciprofloxacin-Resistant and Ciprofloxacin-Susceptible Uropathogenic Escherichia coli Obtained from Patients with Gynecological Cancer.

    PubMed

    Capett, Muniqui S; Vollú-Silva, Patricia; Melchiades, Vanessa A; Bokehi, Luciana C; Araújo, Fernanda M; Martins, Ianick Souto; Neves, Felipe P G; Gonzalez, Alice G M; Oswald, Eric; de Paula, Geraldo R; Teixeira, Lenise A

    2016-11-01

    The objective of this work was to assess the genetic characteristics of uropathogenic Escherichia coli, ciprofloxacin resistance or susceptibility, obtained from patients with gynecological cancer and urinary tract infection (UTI). Seventy-seven E. coli ciprofloxacin-resistant isolates and 38 ciprofloxacin-susceptible were analyzed by polymerase chain reaction (PCR) to determine the phylogenetic groups, virulence factors as iucC, fyuA, hlyC, cnf1 genes, and pks pathogenicity island. The presence of genes related to ciprofloxacin resistance such as qnrA, qnrB, qnrS, aac(6')-Ib-cr, and qepA, and the sequencing of DNA gyrase genes and topoisomerase IV were determined. The genetic profile of the isolates was determined by pulsed-field gel electrophoresis (PFGE). Statistical analysis was performed using Fisher's exact test and Chi-square test. Phylogenetic group B2 was the most prevalent although a great genetic diversity was observed by PFGE. Only genes associated to siderophores were found in ciprofloxacin-resistant isolates; however, in ciprofloxacin-susceptible isolates, genes related to siderophores and toxin, were detected. Additionally qnrB was detected in both populations, ciprofloxacin resistant and susceptible. DNA mutations in gyrA were Ser-83-Leu and Asp-87-Asn and in parC were Ser-80-Ile and Glu-84-Val, Glu-84-Lys. In conclusion, it was observed a high prevalence of qnrB in the population studied; in addition, it was the first time the pks island was observed only in ciprofloxacin-susceptible isolates.

  1. S-Fimbria-Encoding Determinant sfaI Is Located on Pathogenicity Island III536 of Uropathogenic Escherichia coli Strain 536

    PubMed Central

    Dobrindt, Ulrich; Blum-Oehler, Gabriele; Hartsch, Thomas; Gottschalk, Gerhard; Ron, Eliora Z.; Fünfstück, Reinhard; Hacker, Jörg

    2001-01-01

    The sfaI determinant encoding the S-fimbrial adhesin of uropathogenic Escherichia coli strains was found to be located on a pathogenicity island of uropathogenic E. coli strain 536. This pathogenicity island, designated PAI III536, is located at 5.6 min of the E. coli chromosome and covers a region of at least 37 kb between the tRNA locus thrW and yagU. As far as it has been determined, PAI III536 also contains genes which code for components of a putative enterochelin siderophore system of E. coli and Salmonella spp. as well as for colicin V immunity. Several intact or nonfunctional mobility genes of bacteriophages and insertion sequence elements such as transposases and integrases are present on PAI III536. The presence of known PAI III536 sequences has been investigated in several wild-type E. coli isolates. The results demonstrate that the determinants of the members of the S-family of fimbrial adhesins may be located on a common pathogenicity island which, in E. coli strain 536, replaces a 40-kb DNA region which represents an E. coli K-12-specific genomic island. PMID:11401961

  2. Partial Purification and Characterization of a Bacteriocin DT24 Produced by Probiotic Vaginal Lactobacillus brevis DT24 and Determination of its Anti-Uropathogenic Escherichia coli Potential.

    PubMed

    Trivedi, Disha; Jena, Prasant Kumar; Patel, Jignesh Kumar; Seshadri, Sriram

    2013-06-01

    The emergence of antibiotic resistance has increased the interest for finding new antimicrobials in the past decade. Probiotic Lactic acid bacteria producing antimicrobial proteins like bacteriocin can be excellent agents for development as novel therapeutic agents and complement to conventional antibiotic therapy. Uropathogenic Escherichia coli, most causative agent of Urinary tract infection, has developed resistance to various antibiotics. In the present investigation, antibacterial substance like bacteriocin (Bacteriocin DT24) produced by probiotic Lactobacillus brevis DT24 from vaginal sample of healthy Indian woman was partially purified and characterized. It was efficiently working against various pathogens, that is, Uropathogenic E. coli, Enterococcus faecium, Enterococcus faecalis and Staphylococcus aureus. The antimicrobial peptide was relatively heat resistant and also active over a broad range of pH 2-10. It has been partially purified by ammonium sulfate precipitation and gel filtration chromatography and checked on reverse-phase high-performance liquid chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of bacteriocin DT24 was approximately 7-kDa protein. The peptide is inactivated by proteolytic enzymes, trypsin and lipase but not when treated with catalase, α-amylase and pepsin. It showed bacteriostatic mode of action against uropathogenic E. coli. Such characteristics indicate that this bacteriocin-producing probiotic may be a potential candidate for alternative agents to control urinary tract infections and other pathogens.

  3. In vitro selection of resistance to pradofloxacin and ciprofloxacin in canine uropathogenic Escherichia coli isolates.

    PubMed

    Liu, Xiaoqiang; Lazzaroni, Caterina; Aly, Sherine A; Thungrat, Kamoltip; Boothe, Dawn M

    2014-12-05

    This study explored and compared the mechanisms and selective concentration of resistance between a 3rd (pradofloxacin) and 2nd (ciprofloxacin) generation fluoroquinolone. Pradofloxacin- and ciprofloxacin-resistant mutants were selected by stepwise exposure of Escherichia coli (E. coli) to escalating concentrations of pradofloxacin and ciprofloxacin. The sequence of the quinolone resistance determining region (QRDR) and the transcriptional regulator soxS were analyzed, and efflux pump AcrAB-TolC activity was measured by quantitative real-time reverse transcription-PCR (qRT-PCR). First-step mutants reduced the fluoroquinolone sensitivity and one mutant bore a single substitution in gyrA. Four of six second-step mutants expressed ciprofloxacin resistance, and displayed additional mutations in gyrA and/or parC, while these mutants retained susceptibility to pradofloxacin. All the third-step mutants were fluoroquinolone resistant, and each expressed multidrug resistance (MDR) phenotypes. Further, they displayed resistance to all antibacterials tested except cefotaxime, ceftazidime and meropenem. The number of mutations in QRDR of gyrA and parC correlated with fluoroquinolone MICs. Mutations in parC were not common in pradofloxacin-associated mutants. Moreover, one second- and one third-step ciprofloxacin-associated mutants bore both mutations at position 12 (Ala12Ser) and 78 (Met78Leu) in the soxS gene, yet no mutations in the soxS gene were detected in the pradofloxacin-selected mutants. Altogether, these results demonstrated that resistance emerged relatively more rapidly in 2nd compared to 3rd generation fluoroquinolones. Point mutations in gyrA were a key mechanism of resistance to pradofloxacin, and overexpression of efflux pump gene acrB played a potential role in the emergence of MDR phenotypes identified in this study.

  4. Adhesive Fiber Stratification in Uropathogenic Escherichia coli Biofilms Unveils Oxygen-Mediated Control of Type 1 Pili

    PubMed Central

    Floyd, Kyle A.; Moore, Jessica L.; Eberly, Allison R.; Good, James A. D.; Shaffer, Carrie L.; Zaver, Himesh; Almqvist, Fredrik; Skaar, Eric P.; Caprioli, Richard M.; Hadjifrangiskou, Maria

    2015-01-01

    Bacterial biofilms account for a significant number of hospital-acquired infections and complicate treatment options, because bacteria within biofilms are generally more tolerant to antibiotic treatment. This resilience is attributed to transient bacterial subpopulations that arise in response to variations in the microenvironment surrounding the biofilm. Here, we probed the spatial proteome of surface-associated single-species biofilms formed by uropathogenic Escherichia coli (UPEC), the major causative agent of community-acquired and catheter-associated urinary tract infections. We used matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) to analyze the spatial proteome of intact biofilms in situ. MALDI-TOF IMS revealed protein species exhibiting distinct localizations within surface-associated UPEC biofilms, including two adhesive fibers critical for UPEC biofilm formation and virulence: type 1 pili (Fim) localized exclusively to the air-exposed region, while curli amyloid fibers localized to the air-liquid interface. Comparison of cells grown aerobically, fermentatively, or utilizing an alternative terminal electron acceptor showed that the phase-variable fim promoter switched to the “OFF” orientation under oxygen-deplete conditions, leading to marked reduction of type 1 pili on the bacterial cell surface. Conversely, S pili whose expression is inversely related to fim expression were up-regulated under anoxic conditions. Tethering the fim promoter in the “ON” orientation in anaerobically grown cells only restored type 1 pili production in the presence of an alternative terminal electron acceptor beyond oxygen. Together these data support the presence of at least two regulatory mechanisms controlling fim expression in response to oxygen availability and may contribute to the stratification of extracellular matrix components within the biofilm. MALDI IMS facilitated the discovery of these mechanisms

  5. Adenylate cyclase and the cyclic AMP receptor protein modulate stress resistance and virulence capacity of uropathogenic Escherichia coli.

    PubMed

    Donovan, Grant T; Norton, J Paul; Bower, Jean M; Mulvey, Matthew A

    2013-01-01

    In many bacteria, the second messenger cyclic AMP (cAMP) interacts with the transcription factor cAMP receptor protein (CRP), forming active cAMP-CRP complexes that can control a multitude of cellular activities, including expanded carbon source utilization, stress response pathways, and virulence. Here, we assessed the role of cAMP-CRP as a regulator of stress resistance and virulence in uropathogenic Escherichia coli (UPEC), the principal cause of urinary tract infections worldwide. Deletion of genes encoding either CRP or CyaA, the enzyme responsible for cAMP synthesis, attenuates the ability of UPEC to colonize the bladder in a mouse infection model, dependent on intact innate host defenses. UPEC mutants lacking cAMP-CRP grow normally in the presence of glucose but are unable to utilize alternate carbon sources like amino acids, the primary nutrients available to UPEC within the urinary tract. Relative to the wild-type UPEC isolate, the cyaA and crp deletion mutants are sensitive to nitrosative stress and the superoxide generator methyl viologen but remarkably resistant to hydrogen peroxide (H(2)O(2)) and acid stress. In the mutant strains, H(2)O(2) resistance correlates with elevated catalase activity attributable in part to enhanced translation of the alternate sigma factor RpoS. Acid resistance was promoted by both RpoS-independent and RpoS-dependent mechanisms, including expression of the RpoS-regulated DNA-binding ferritin-like protein Dps. We conclude that balanced input from many cAMP-CRP-responsive elements, including RpoS, is critical to the ability of UPEC to handle the nutrient limitations and severe environmental stresses present within the mammalian urinary tract.

  6. Application and Optimization of relE as a Negative Selection Marker for Making Definitive Genetic Constructs in Uropathogenic Escherichia coli

    PubMed Central

    Khetrapal, Varnica; Mehershahi, Kurosh S.; Chen, Siyi; Chen, Swaine L.

    2016-01-01

    Studies of Uropathogenic Escherichia coli (UPEC) pathogenesis have relied heavily on genetic manipulation to understand virulence factors. We applied a recently reported positive-negative selection system to create a series of unmarked, scarless FimH mutants that show identical phenotypes to previously reported marked FimH mutants; these are now improved versions useful for definitive assignment of phenotypes to FimH mutations. We also increased the efficiency of this system by designing new primer sites, which should further improve the efficiency and convenience of using negative selection in UTI89, other UPEC, and other Enterobacteriaceae. PMID:26797639

  7. A Comparative Analysis of the Mechanism of Toll-Like Receptor-Disruption by TIR-Containing Protein C from Uropathogenic Escherichia coli

    PubMed Central

    Waldhuber, Anna; Snyder, Greg A.; Römmler, Franziska; Cirl, Christine; Müller, Tina; Xiao, Tsan Sam; Svanborg, Catharina; Miethke, Thomas

    2016-01-01

    The TIR-containing protein C (TcpC) of uropathogenic Escherichia coli strains is a powerful virulence factor by impairing the signaling cascade of Toll-like receptors (TLRs). Several other bacterial pathogens like Salmonella, Yersinia, Staphylococcus aureus but also non-pathogens express similar proteins. We discuss here the pathogenic potential of TcpC and its interaction with TLRs and TLR-adapter proteins on the molecular level and compare its activity with the activity of other bacterial TIR-containing proteins. Finally, we analyze and compare the structure of bacterial TIR-domains with the TIR-domains of TLRs and TLR-adapters. PMID:26938564

  8. Transcriptional Control of Dual Transporters Involved in α-Ketoglutarate Utilization Reveals Their Distinct Roles in Uropathogenic Escherichia coli

    PubMed Central

    Cai, Wentong; Cai, Xuwang; Yang, Yongwu; Yan, Shigan; Zhang, Haibin

    2017-01-01

    Uropathogenic Escherichia coli (UPEC) are the primary causative agents of urinary tract infections. Some UPEC isolates are able to infect renal proximal tubule cells, and can potentially cause pyelonephritis. We have previously shown that to fulfill their physiological roles renal proximal tubule cells accumulate high concentrations of α-ketoglutarate (KG) and that gene cluster c5032–c5039 contribute to anaerobic utilization of KG by UPEC str. CFT073, thereby promoting its in vivo fitness. Given the importance of utilizing KG for UPEC, this study is designed to investigate the roles of two transporters KgtP and C5038 in KG utilization, their transcriptional regulation, and their contributions to UPEC fitness in vivo. Our phylogenetic analyses support that kgtP is a widely conserved locus in commensal and pathogenic E. coli, while UPEC-associated c5038 was acquired through horizontal gene transfer. Global anaerobic transcriptional regulators Fumarate and nitrate reduction (FNR) and ArcA induced c5038 expression in anaerobiosis, and C5038 played a major role in anaerobic growth on KG. KgtP was required for aerobic growth on KG, and its expression was repressed by FNR and ArcA under anaerobic conditions. Analyses of FNR and ArcA binding sites and results of EMS assays suggest that FNR and ArcA likely inhibit kgtP expression through binding to the –35 region of kgtP promoter and occluding the occupancy of RNA polymerases. Gene c5038 can be specifically induced by KG, whereas the expression of kgtP does not respond to KG, yet can be stimulated during growth on glycerol. In addition, c5038 and kgtP expression were further shown to be controlled by different alternative sigma factors RpoN and RpoS, respectively. Furthermore, dual-strain competition assays in a murine model showed that c5038 mutant but not kgtP mutant was outcompeted by the wild-type strain during the colonization of murine bladders and kidneys, highlighting the importance of C5038 under in vivo

  9. Modeling the Inactivation of Intestinal Pathogenic Escherichia coli O157:H7 and Uropathogenic E. coli in Ground Chicken by High Pressure Processing and Thymol

    PubMed Central

    Chien, Shih-Yung; Sheen, Shiowshuh; Sommers, Christopher H.; Sheen, Lee-Yan

    2016-01-01

    Disease causing Escherichia coli commonly found in meat and poultry include intestinal pathogenic E. coli (iPEC) as well as extraintestinal types such as the Uropathogenic E. coli (UPEC). In this study we compared the resistance of iPEC (O157:H7) to UPEC in chicken meat using High Pressure Processing (HPP) in with (the hurdle concept) and without thymol essential oil as a sensitizer. UPEC was found slightly more resistant than E. coli O157:H7 (iPEC O157:H7) at 450 and 500 MPa. A central composite experimental design was used to evaluate the effect of pressure (300–400 MPa), thymol concentration (100–200 ppm), and pressure-holding time (10–20 min) on the inactivation of iPEC O157:H7 and UPEC in ground chicken. The hurdle approach reduced the high pressure levels and thymol doses imposed on the food matrices and potentially decreased food quality damaged after treatment. The quadratic equations were developed to predict the impact (lethality) on iPEC O157:H7 (R2 = 0.94) and UPEC (R2 = 0.98), as well as dimensionless non-linear models [Pr > F (<0.0001)]. Both linear and non-linear models were validated with data obtained from separated experiment points. All models may predict the inactivation/lethality within the same order of accuracy. However, the dimensionless non-linear models showed potential applications with parameters outside the central composite design ranges. The results provide useful information of both iPEC O157:H7 and UPEC in regard to how they may survive HPP in the presence or absence of thymol. The models may further assist regulatory agencies and food industry to assess the potential risk of iPEC O157:H7 and UPEC in ground chicken. PMID:27379050

  10. Modeling the Inactivation of Intestinal Pathogenic Escherichia coli O157:H7 and Uropathogenic E. coli in Ground Chicken by High Pressure Processing and Thymol.

    PubMed

    Chien, Shih-Yung; Sheen, Shiowshuh; Sommers, Christopher H; Sheen, Lee-Yan

    2016-01-01

    Disease causing Escherichia coli commonly found in meat and poultry include intestinal pathogenic E. coli (iPEC) as well as extraintestinal types such as the Uropathogenic E. coli (UPEC). In this study we compared the resistance of iPEC (O157:H7) to UPEC in chicken meat using High Pressure Processing (HPP) in with (the hurdle concept) and without thymol essential oil as a sensitizer. UPEC was found slightly more resistant than E. coli O157:H7 (iPEC O157:H7) at 450 and 500 MPa. A central composite experimental design was used to evaluate the effect of pressure (300-400 MPa), thymol concentration (100-200 ppm), and pressure-holding time (10-20 min) on the inactivation of iPEC O157:H7 and UPEC in ground chicken. The hurdle approach reduced the high pressure levels and thymol doses imposed on the food matrices and potentially decreased food quality damaged after treatment. The quadratic equations were developed to predict the impact (lethality) on iPEC O157:H7 (R (2) = 0.94) and UPEC (R (2) = 0.98), as well as dimensionless non-linear models [Pr > F (<0.0001)]. Both linear and non-linear models were validated with data obtained from separated experiment points. All models may predict the inactivation/lethality within the same order of accuracy. However, the dimensionless non-linear models showed potential applications with parameters outside the central composite design ranges. The results provide useful information of both iPEC O157:H7 and UPEC in regard to how they may survive HPP in the presence or absence of thymol. The models may further assist regulatory agencies and food industry to assess the potential risk of iPEC O157:H7 and UPEC in ground chicken.

  11. Draft Genome Sequences of Semiconstitutive Red, Dry, and Rough Biofilm-Forming Commensal and Uropathogenic Escherichia coli Isolates

    PubMed Central

    Cimdins, Annika; Lüthje, Petra; Li, Fengyang; Ahmad, Irfan; Brauner, Annelie

    2017-01-01

    ABSTRACT Strains of Escherichia coli exhibit diverse biofilm formation capabilities. E. coli K-12 expresses the red, dry, and rough (rdar) morphotype below 30°C, whereas clinical isolates frequently display the rdar morphotype semiconstitutively. We sequenced the genomes of eight E. coli strains to subsequently investigate the molecular basis of semiconstitutive rdar morphotype expression. PMID:28126929

  12. Type 1 Fimbriae, a Colonization Factor of Uropathogenic Escherichia coli, Are Controlled by the Metabolic Sensor CRP-cAMP

    PubMed Central

    Müller, Claudia M.; Åberg, Anna; Straseviçiene, Jurate; Emődy, Levente; Uhlin, Bernt Eric; Balsalobre, Carlos

    2009-01-01

    Type 1 fimbriae are a crucial factor for the virulence of uropathogenic Escherichia coli during the first steps of infection by mediating adhesion to epithelial cells. They are also required for the consequent colonization of the tissues and for invasion of the uroepithelium. Here, we studied the role of the specialized signal transduction system CRP-cAMP in the regulation of type 1 fimbriation. Although initially discovered by regulating carbohydrate metabolism, the CRP-cAMP complex controls a major regulatory network in Gram-negative bacteria, including a broad subset of genes spread into different functional categories of the cell. Our results indicate that CRP-cAMP plays a dual role in type 1 fimbriation, affecting both the phase variation process and fimA promoter activity, with an overall repressive outcome on fimbriation. The dissection of the regulatory pathway let us conclude that CRP-cAMP negatively affects FimB-mediated recombination by an indirect mechanism that requires DNA gyrase activity. Moreover, the underlying studies revealed that CRP-cAMP controls the expression of another global regulator in Gram-negative bacteria, the leucine-responsive protein Lrp. CRP-cAMP-mediated repression is limiting the switch from the non-fimbriated to the fimbriated state. Consistently, a drop in the intracellular concentration of cAMP due to altered physiological conditions (e.g. growth in presence of glucose) increases the percentage of fimbriated cells in the bacterial population. We also provide evidence that the repression of type 1 fimbriae by CRP-cAMP occurs during fast growth conditions (logarithmic phase) and is alleviated during slow growth (stationary phase), which is consistent with an involvement of type 1 fimbriae in the adaptation to stress conditions by promoting biofilm growth or entry into host cells. Our work suggests that the metabolic sensor CRP-cAMP plays a role in coupling the expression of type 1 fimbriae to environmental conditions, thereby

  13. Prevalence and Antibiotic Susceptibility Patterns of Extended-Spectrum ß-Lactamase and Metallo-ß-Lactamase-Producing Uropathogenic Escherichia coli Isolates.

    PubMed

    Ghadiri, Hamed; Vaez, Hamid; Razavi-Azarkhiavi, Kamal; Rezaee, Ramin; Haji-Noormohammadi, Mehdi; Rahimi, Ali Asghar; Vaez, Vahid; Kalantar, Enayatollah

    2014-01-01

    Healthcare professionals worldwide have expressed concern over infections by extended-spectrum ß-lactamase (ESBL) and metallo-ß-lactamase (MBL)-producing bacteria. We evaluated the prevalence of ESBL- and MBL-producing Escherichia coli (E. coli) isolated from community-acquired urinary tract infections (UTIs) and their antibiotic-resistance profiles at 3 private laboratories in Tehran, Iran. E. coli isolates were mostly susceptible to meropenem (90.4%) and imipenem (90.0%), followed by amikacin (89.0%) and gentamicin (84.7%). Moreover, we detected that, of the E. coli isolates, 67 (22.3%) were ESBL producers and 21 (7.0%) of E. coli isolates were MBL positive via the imipenem-ethylenediaminetetraacetic acid (EDTA) combined disc test. This report is the first, to our knowledge, on the prevalence of MBL-producing uropathogenic E. coli (UPEC) strains in Iran. The antibiotic resistance of E. coli isolates revealed that 122 (40.7%) were multidrug resistant. The high number of antibiotic-resistant and ß-lactamase-producing UPEC strains necessitates further attention and consideration, particularly MBL-producing strains.

  14. Impact of UV and peracetic acid disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli in wastewater effluents.

    PubMed

    Biswal, Basanta Kumar; Khairallah, Ramzi; Bibi, Kareem; Mazza, Alberto; Gehr, Ronald; Masson, Luke; Frigon, Dominic

    2014-06-01

    Wastewater discharges may increase the populations of pathogens, including Escherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli (UPEC), the most abundant E. coli pathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766 E. coli isolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm(2) and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters.

  15. Association of some virulence genes with antibiotic resistance among uropathogenic Escherichia coli isolated from urinary tract infection patients in Alexandria, Egypt: A hospital-based study.

    PubMed

    Alabsi, Mogeeb S; Ghazal, Abeer; Sabry, Soraya A; Alasaly, Monasr M

    2014-06-01

    Uropathogenic Escherichia coli (UPEC) is the infecting agent most frequently involved in urinary tract infections (UTIs) worldwide. UPEC resistance to commonly used antibiotics represents a major health problem all over the world. Several factors have been associated with UPEC resistance to antibiotics. The present study deployed a molecular approach to explore the association between some UPEC virulence genes and antibiotic resistance among patients with UTI in Alexandria, Egypt. The study revealed a significant association between presence of the pap gene and resistance to gentamicin; however, it was not significantly associated with resistance to β-lactam antibiotics, quinolones, aminoglycosides, nitrofurantoin and trimethoprim/sulfamethoxazole. The genes sfa, aer and cnf1 were not significantly associated with UPEC resistance to any of the tested antibiotics. In conclusion, resistance of UPEC isolates in the present study could be attributed to other virulence factors.

  16. F9 fimbriae of uropathogenic Escherichia coli are expressed at low temperature and recognise Galβ1-3GlcNAc-containing glycans.

    PubMed

    Wurpel, Daniël J; Totsika, Makrina; Allsopp, Luke P; Hartley-Tassell, Lauren E; Day, Christopher J; Peters, Kate M; Sarkar, Sohinee; Ulett, Glen C; Yang, Ji; Tiralongo, Joe; Strugnell, Richard A; Jennings, Michael P; Schembri, Mark A

    2014-01-01

    Uropathogenic Escherichia coli (UPEC) is the leading causative agent of urinary tract infections (UTI) in the developed world. Among the major virulence factors of UPEC, surface expressed adhesins mediate attachment and tissue tropism. UPEC strains typically possess a range of adhesins, with type 1 fimbriae and P fimbriae of the chaperone-usher class the best characterised. We previously identified and characterised F9 as a new chaperone-usher fimbrial type that mediates biofilm formation. However, the regulation and specific role of F9 fimbriae remained to be determined in the context of wild-type clinical UPEC strains. In this study we have assessed the distribution and genetic context of the f9 operon among diverse E. coli lineages and pathotypes and demonstrated that f9 genes are significantly more conserved in a UPEC strain collection in comparison to the well-defined E. coli reference (ECOR) collection. In the prototypic UPEC strain CFT073, the global regulator protein H-NS was identified as a transcriptional repressor of f9 gene expression at 37°C through its ability to bind directly to the f9 promoter region. F9 fimbriae expression was demonstrated at 20°C, representing the first evidence of functional F9 fimbriae expression by wild-type E. coli. Finally, glycan array analysis demonstrated that F9 fimbriae recognise and bind to terminal Galβ1-3GlcNAc structures.

  17. In vivo mRNA profiling of uropathogenic Escherichia coli from diverse phylogroups reveals common and group-specific gene expression profiles.

    PubMed

    Bielecki, Piotr; Muthukumarasamy, Uthayakumar; Eckweiler, Denitsa; Bielecka, Agata; Pohl, Sarah; Schanz, Ansgar; Niemeyer, Ute; Oumeraci, Tonio; von Neuhoff, Nils; Ghigo, Jean-Marc; Häussler, Susanne

    2014-08-05

    mRNA profiling of pathogens during the course of human infections gives detailed information on the expression levels of relevant genes that drive pathogenicity and adaptation and at the same time allows for the delineation of phylogenetic relatedness of pathogens that cause specific diseases. In this study, we used mRNA sequencing to acquire information on the expression of Escherichia coli pathogenicity genes during urinary tract infections (UTI) in humans and to assign the UTI-associated E. coli isolates to different phylogenetic groups. Whereas the in vivo gene expression profiles of the majority of genes were conserved among 21 E. coli strains in the urine of elderly patients suffering from an acute UTI, the specific gene expression profiles of the flexible genomes was diverse and reflected phylogenetic relationships. Furthermore, genes transcribed in vivo relative to laboratory media included well-described virulence factors, small regulatory RNAs, as well as genes not previously linked to bacterial virulence. Knowledge on relevant transcriptional responses that drive pathogenicity and adaptation of isolates to the human host might lead to the introduction of a virulence typing strategy into clinical microbiology, potentially facilitating management and prevention of the disease. Importance: Urinary tract infections (UTI) are very common; at least half of all women experience UTI, most of which are caused by pathogenic Escherichia coli strains. In this study, we applied massive parallel cDNA sequencing (RNA-seq) to provide unbiased, deep, and accurate insight into the nature and the dimension of the uropathogenic E. coli gene expression profile during an acute UTI within the human host. This work was undertaken to identify key players in physiological adaptation processes and, hence, potential targets for new infection prevention and therapy interventions specifically aimed at sabotaging bacterial adaptation to the human host.

  18. In silico and in vivo studies of truncated forms of flagellin (FliC) of enteroaggregative Escherichia coli fused to FimH from uropathogenic Escherichia coli as a vaccine candidate against urinary tract infections.

    PubMed

    Savar, Nastaran Sadat; Jahanian-Najafabadi, Ali; Mahdavi, Mehdi; Shokrgozar, Mohammad Ali; Jafari, Anis; Bouzari, Saeid

    2014-04-10

    The new generation of vaccines against infectious diseases is based on recombinant fusion proteins. Flagellin (FliC) of enteroaggregative Escherichia coli (EAEC) could be considered as a potent adjuvant in designing new vaccines. However, because of its large size, incorporation of this protein with a vaccine antigen might negatively influence recognition of the vaccine epitopes by the immune system. Designing the truncated forms of FliC, capable of inducing innate immune response, enhances the immune responses to the target antigen. We have previously shown that two truncated forms of FliC are able to induce Interleukine-8 production in HT-29 epithelial cell line. In this study we designed recombinant vaccine against urinary tract infections (UTIs) using truncated forms of FliC and type 1 fimbrial FimH adhesin from uropathogenic Escherichia coli (UPEC) and studied their in silico interactions with Toll-like receptor 5 (TLR-5) via docking protocols. The best fusion protein was subjected to cloning and expression. The ability of the recombinant vaccine and the truncated forms in inducing immune responses was investigated. Our results showed that truncated forms are capable of inducing Th1 (forms A and B) and Th2 (form A) responses and fusion vaccine induced strong cellular and humoral immune responses.

  19. Role of Hypoxia Inducible Factor-1α (HIF-1α) in Innate Defense against Uropathogenic Escherichia coli Infection

    PubMed Central

    Lin, Ann E.; Beasley, Federico C.; Olson, Joshua; Keller, Nadia; Shalwitz, Robert A.; Hannan, Thomas J.; Hultgren, Scott J.; Nizet, Victor

    2015-01-01

    Uropathogenic E. coli (UPEC) is the primary cause of urinary tract infections (UTI) affecting approximately 150 million people worldwide. Here, we revealed the importance of transcriptional regulator hypoxia-inducible factor-1 α subunit (HIF-1α) in innate defense against UPEC-mediated UTI. The effects of AKB-4924, a HIF-1α stabilizing agent, were studied using human uroepithelial cells (5637) and a murine UTI model. UPEC adherence and invasion were significantly reduced in 5637 cells when HIF-1α protein was allowed to accumulate. Uroepithelial cells treated with AKB-4924 also experienced reduced cell death and exfoliation upon UPEC challenge. In vivo, fewer UPEC were recovered from the urine, bladders and kidneys of mice treated transurethrally with AKB-4924, whereas increased bacteria were recovered from bladders of mice with a HIF-1α deletion. Bladders and kidneys of AKB-4924 treated mice developed less inflammation as evidenced by decreased pro-inflammatory cytokine release and neutrophil activity. AKB-4924 impairs infection in uroepithelial cells and bladders, and could be correlated with enhanced production of nitric oxide and antimicrobial peptides cathelicidin and β-defensin-2. We conclude that HIF-1α transcriptional regulation plays a key role in defense of the urinary tract against UPEC infection, and that pharmacological HIF-1α boosting could be explored further as an adjunctive therapy strategy for serious or recurrent UTI. PMID:25927232

  20. Clinical isolates of uropathogenic Escherichia coli ST131 producing NDM-7 metallo-β-lactamase in China.

    PubMed

    Wang, Lian-Hui; Liu, Pan-Pan; Wei, Dan-Dan; Liu, Yang; Wan, La-Gen; Xiang, Tian-Xin; Zhang, Yu-Juan

    2016-07-01

    Here we report five cases of NDM-7-producing Escherichia coli from patients with bacteriuria in a teaching hospital in mainland China. Two isolates belonged to sequence type 131 (ST131), simultaneously carrying blaCTX-M-15, blaSHV-11, blaTEM-1 and qnrS1. The blaNDM-7 gene was located on a conjugative IncX3-type plasmid bearing blaTEM-1 and qnrS1. These findings indicate the spread of NDM-7 metallo-β-lactamase in a highly resistant and virulent E. coli sequence type in China.

  1. Extended-spectrum β-lactamase/AmpC-producing uropathogenic Escherichia coli from HIV patients: do they have a low virulence score?

    PubMed

    Padmavathy, Kesavaram; Padma, Krishnan; Rajasekaran, Sikhamani

    2013-03-01

    Extended-spectrum β-lactamase (ESBL) production and quinolone resistance are often associated in enterobacteria. Prior exposure to 3G cephalosporins/quinolones accelerates the risk of resistance to both these groups of antibiotics. Hence, information on the antimicrobial resistance pattern of uropathogenic Escherichia coli (UPEC) isolates is important to better formulate the guidelines for the empirical therapy of urinary tract infection in the context of HIV/AIDS. The aim of this study was to determine the incidence of ESBL/AmpC and fluoroquinolone (FQ) resistance among urinary E. coli isolates and to establish the association of extraintestinal virulence and phylogenetic distribution with antibiotic resistance and host immunocompromisation. Accordingly, 118 urinary Escherichia coli isolates from HIV (n = 76) and non-HIV antenatal patients (n = 42) from Chennai, South India, were analysed for the presence of five virulence-associated genes (VAGs): pap, sfa/foc, afa/dra, iutA and kpsMII. Compared with the susceptible HIV isolates, the majority of the ESBL(+)AmpC(+)FQ(R) isolates harboured iutA (66.7%) and pap (40%). The FQ-resistant HIV isolates were significantly enriched for iutA (67.8%) and kpsMII (47.5%) and qualified as UPEC (54.2%), while a majority of the FQ-susceptible isolates from the non-HIV patients were found to harbour pap (48.4%), sfa/foc (41.9%) and kpsMII (48.4%) and were classified as UPEC (40.5%). We conclude that antibiotic-resistant (ESBL(+)AmpC(+)and/or FQ(R)) phylogroup D isolates with limited virulence are competent enough to establish infections in HIV patients, while among non-HIV patients, an array of virulence factors is essential for E. coli to overcome host defences irrespective of antibiotic resistance.

  2. Dissemination of Extended-Spectrum β-Lactamases and Quinolone Resistance Genes Among Clinical Isolates of Uropathogenic Escherichia coli in Children

    PubMed Central

    Sedighi, Iraj; Arabestani, Mohammad Reza; Rahimbakhsh, Ali; Karimitabar, Zahra; Alikhani, Mohammad Yousef

    2015-01-01

    Background: Urinary tract infection (UTI) is one of the most common childhood bacterial infections and Escherichia coli is the major pathogen. Producing β-lactamase enzymes are the most common mechanism of bacterial resistance. Objectives: This study aimed to determine the prevalence of Extended-Spectrum β-Lactamases (ESBLs) and Quinolone Resistance (qnr) genes in E. coli strains isolated from UTIs. Materials and Methods: In this study, a total of 120 isolates of E. coli from urinary tract infections of the children were collected at Besat Hospital in Hamadan, Iran, from October 2010 to October 2011. The bacterial isolates were identified by standard biochemical methods. Antimicrobial susceptibilities were determined by disk diffusion method, and ESBLs-producing was confirmed phenotypically using the double-disk synergy (DDS) test. The presence and identification of ESBLs and qnr genes were determined by Polymerase Chain Reaction (PCR). Results: The highest sensitivity was seen to imipenem (96.7%), amikacin (92.5%), nitrofurantoin (93.3%), ofloxacin (81.7%), gentamicin norfloxacin (70.8%), and ciprofloxacin (79.2%). In contrast, the highest rate of resistance was seen to co-trimoxazole (77%) and nalidixic acid (40.9%). The results showed that 6 (2.18%) and 4 (1.12%) isolates of ESBL-producing E. coli were positive with respect to having qnrB and qnrS genes, respectively. No isolates was found to have qnrA. Conclusions: CTX-M was the most prevalent ESBL genotype in uropathogenic E. coli (UPEC) isolated from UTI. In addition, a high frequency of qnr genes among ESBL-producing E. coli was identified in this study. In order to avoid treatment failures, we recommend using phenotypic and molecular methods to diagnose these enzymes and qnr genes. PMID:26421128

  3. Detection of pap, sfa, afa, foc, and fim Adhesin-Encoding Operons in Uropathogenic Escherichia coli Isolates Collected From Patients With Urinary Tract Infection

    PubMed Central

    Rahdar, Masoud; Rashki, Ahmad; Miri, Hamid Reza; Rashki Ghalehnoo, Mehdi

    2015-01-01

    Background: Uropathogenic Escherichia coli (UPEC) with its virulence factors is the most prevalent cause of urinary tract infection (UTI). Objectives; This study aimed to determine the occurrence of fim, pap, sfa, and afa genes among 100 UPEC isolates collected from patients diagnosed with UTI. Materials and Methods A total of 100 UPEC isolates were obtained from urine samples of patients with UTI. The prevalence of 5 virulence genes encoding type 1 fimbriae (fimH), pili associated with pyelonephritis (pap), S and F1C fimbriae (sfa and foc) and afimbrial adhesins (afa) were determined through PCR method. We also investigated the phylogenetic background of all isolates. In addition, the distribution of adhesin-encoding operons between the phylogroups was assessed. Results: The prevalence of genes encoding for fimbrial adhesive systems was 95% for fim, 57% for pap, 16% for foc, and 81% for sfa. The operons encoding for afa afimbrial adhesins were identified in 12% of isolates. The various combinations of detected genes were designated as virulence patterns. The fim gene, which occurred in strains from all phylogenetic groups (A, B1, B2, and D) was evaluated and no significant differences were found among these groups. Conversely, significant differences were observed in relation to pap, afa, foc, and sfa operons. Conclusions: These results indicate that the PCR method is a powerful genotypic assay for the detection of adhesin-encoding operons. Thus, this assay can be recommended for clinical use to detect virulent urinary E. coli strains, as well as epidemiological studies. PMID:26464770

  4. A unique arabinose 5-phosphate isomerase found within a genomic island associated with the uropathogenicity of Escherichia coli CFT073.

    PubMed

    Mosberg, Joshua A; Yep, Alejandra; Meredith, Timothy C; Smith, Sara; Wang, Pan-Fen; Holler, Tod P; Mobley, Harry L T; Woodard, Ronald W

    2011-06-01

    Previous studies showed that deletion of genes c3405 to c3410 from PAI-metV, a genomic island from Escherichia coli CFT073, results in a strain that fails to compete with wild-type CFT073 after a transurethral cochallenge in mice and is deficient in the ability to independently colonize the mouse kidney. Our analysis of c3405 to c3410 suggests that these genes constitute an operon with a role in the internalization and utilization of an unknown carbohydrate. This operon is not found in E. coli K-12 but is present in a small number of pathogenic E. coli and Shigella boydii strains. One of the genes, c3406, encodes a protein with significant homology to the sugar isomerase domain of arabinose 5-phosphate isomerases but lacking the tandem cystathionine beta-synthase domains found in the other arabinose 5-phosphate isomerases of E. coli. We prepared recombinant c3406 protein, found it to possess arabinose 5-phosphate isomerase activity, and characterized this activity in detail. We also constructed a c3406 deletion mutant of E. coli CFT073 and demonstrated that this deletion mutant was still able to compete with wild-type CFT073 in a transurethral cochallenge in mice and could colonize the mouse kidney. These results demonstrate that the presence of c3406 is not essential for a pathogenic phenotype.

  5. The Pathogenicity Island-Associated K15 Capsule Determinant Exhibits a Novel Genetic Structure and Correlates with Virulence in Uropathogenic Escherichia coli Strain 536

    PubMed Central

    Schneider, György; Dobrindt, Ulrich; Brüggemann, Holger; Nagy, Gábor; Janke, Britta; Blum-Oehler, Gabriele; Buchrieser, Carmen; Gottschalk, Gerhard; Emödy, Levente; Hacker, Jörg

    2004-01-01

    The K15 capsule determinant of uropathogenic Escherichia coli strain 536 (O6:K15:H31) is part of a novel 79.6-kb pathogenicity island (PAI) designated PAI V536 that is absent from the genome of nonpathogenic E. coli K-12 strain MG1655. PAI V536 shows typical characteristics of a composite PAI that is associated with the pheV tRNA gene and contains the pix fimbriae determinant as well as genes coding for a putative phosphoglycerate transport system, an autotransporter protein, and hypothetical open reading frames. A gene cluster coding for a putative general secretion pathway system, together with a kpsK15 determinant, is localized downstream of a truncated pheV gene (′pheV) also present in this chromosomal region. The distribution of genes present on PAI V536 was studied by PCR in different pathogenic and nonpathogenic E. coli isolates of various sources. Analysis of the 20-kb kps locus revealed a so far unknown genetic organization. Generally, the kpsK15 gene cluster resembles that of group 2 and 3 capsules, where two conserved regions (regions 1 and 3) are located up- or downstream of a highly variable serotype-specific region (region 2). Interestingly, recombination of a group 2 and 3 determinant may have been involved in the evolution of the K15 capsule-encoding gene cluster. Expression of the K15 capsule is important for virulence in a murine model of ascending urinary tract infection but not for serum resistance of E. coli strain 536. PMID:15385503

  6. The UbiI (VisC) Aerobic Ubiquinone Synthase Is Required for Expression of Type 1 Pili, Biofilm Formation, and Pathogenesis in Uropathogenic Escherichia coli

    PubMed Central

    Floyd, Kyle A.; Mitchell, Courtney A.; Eberly, Allison R.; Colling, Spencer J.; Zhang, Ellisa W.; DePas, William; Chapman, Matthew R.; Conover, Matthew; Rogers, Bridget R.; Hultgren, Scott J.

    2016-01-01

    ABSTRACT Uropathogenic Escherichia coli (UPEC), which causes the majority of urinary tract infections (UTI), uses pilus-mediated adherence to initiate biofilm formation in the urinary tract. Oxygen gradients within E. coli biofilms regulate expression and localization of adhesive type 1 pili. A transposon mutant screen for strains defective in biofilm formation identified the ubiI (formerly visC) aerobic ubiquinone synthase gene as critical for UPEC biofilm formation. In this study, we characterized a nonpolar ubiI deletion mutant and compared its behavior to that of wild-type bacteria grown under aerobic and anoxic conditions. Consistent with its function as an aerobic ubiquinone-8 synthase, deletion of ubiI in UPEC resulted in reduced membrane potential, diminished motility, and reduced expression of chaperone-usher pathway pili. Loss of aerobic respiration was previously shown to negatively impact expression of type 1 pili. To determine whether this reduction in type 1 pili was due to an energy deficit, wild-type UPEC and the ubiI mutant were compared for energy-dependent phenotypes under anoxic conditions, in which quinone synthesis is undertaken by anaerobic quinone synthases. Under anoxic conditions, the two strains exhibited wild-type levels of motility but produced diminished numbers of type 1 pili, suggesting that the reduction of type 1 pilus expression in the absence of oxygen is not due to a cellular energy deficit. Acute- and chronic-infection studies in a mouse model of UTI revealed a significant virulence deficit in the ubiI mutant, indicating that UPEC encounters enough oxygen in the bladder to induce aerobic ubiquinone synthesis during infection. IMPORTANCE The majority of urinary tract infections are caused by uropathogenic E. coli, a bacterium that can respire in the presence and absence of oxygen. The bladder environment is hypoxic, with oxygen concentrations ranging from 4% to 7%, compared to 21% atmospheric oxygen. This work provides evidence

  7. [Topography and mechanisms of adhesion of uropathogenic Escherichia coli bacteria in the human kidney and renal pelvis].

    PubMed

    Vierbuchen, M; Peters, G; Ortmann, M; Pulverer, G; Fischer, R

    1989-01-01

    The occurrence and significance of bacterial carbohydrate recognition proteins (bacterial lectins) and endogenous carbohydrate binding proteins (endogenous lectins) of human urothelium as well as kidney tubulus epithelium was analyzed with respect to the adhesion of urotoxogenic Escherichia coli bacteria. Using biotinylated neoglycoproteins, we demonstrated a wide spectrum of endogenous lectins with Galactose-, Mannose-, Fucose-, N-Acetylgalactosamine-, and N-Acetylglucosamine binding activities in the urothelium. In the kidney the distal nephron and especially the medullar collecting ducts exhibited a similar spectrum of endogenous carbohydrate binding activities as detected for the urothelium. Adhesion- as well as inhibition-experiments with selective blocking of either bacterial lectins or endogenous lectins of the target cells by different carbohydrates both reduced the bacterial adhesion. However, maximal inhibition of bacterial adhesion was achieved by simultanous blocking of microbial and target cell lectins with mannose or mannan. From these results it is reasonable to conclude that specific adhesion which may result in an organotropism (urotropism) of E. coli infection is due to a dual recognition mechanism which is accomplished by the combined interaction of the bachterial and host cell lectins with the corresponding carbohydrates of E. coli and that of the target cells respectively. Further studies showed that normal human serum possesses natural antiadhesins which are represented by the glycan parts of the serum-glycoproteins.

  8. Phenotypic Heterogeneity in Expression of the K1 Polysaccharide Capsule of Uropathogenic Escherichia coli and Downregulation of the Capsule Genes during Growth in Urine

    PubMed Central

    King, Jane E.; Aal Owaif, Hasan A.; Jia, Jia

    2015-01-01

    Uropathogenic Escherichia coli (UPEC) is the major causative agent of uncomplicated urinary tract infections (UTI). The K1 capsule on the surface of UPEC strains is a key virulence factor, and its expression may be important in the onset and progression of UTI. In order to understand capsule expression in more detail, we analyzed its expression in the UPEC strain UTI89 during growth in rich medium (LB medium) and urine and during infection of a bladder epithelial cell line. Comparison of capsule gene transcription using a chromosomal gfp reporter fusion showed a significant reduction in transcription during growth in urine compared to that during growth in LB medium. When examined at the single-cell level, following growth in both media, capsule gene expression appears to be heterogeneous, with two distinct green fluorescent protein (GFP)-expressing populations. Using anti-K1 antibody, we showed that this heterogeneity in gene expression results in two populations of encapsulated and unencapsulated cells. We demonstrated that the capsule hinders attachment to and invasion of epithelial cells and that the unencapsulated cells within the population preferentially adhere to and invade bladder epithelial cells. We found that once internalized, UTI89 starts to produce capsule to aid in its intracellular survival and spread. We propose that this observed phenotypic diversity in capsule expression is a fitness strategy used by the bacterium to deal with the constantly changing environment of the urinary tract. PMID:25870229

  9. Use of flagellin and cholera toxin as adjuvants in intranasal vaccination of mice to enhance protective immune responses against uropathogenic Escherichia coli antigens.

    PubMed

    Asadi Karam, Mohammad Reza; Habibi, Mehri; Bouzari, Saeid

    2016-09-01

    Urinary tract infections (UTIs) caused by Uropathogenic Escherichia coli (UPEC) are among the most common infections in human. Antibiotics are common therapy for UTIs, but increase in antibiotic resistance will complicate future treatment of the infections, making the development of an efficacious UTI vaccine more urgent. In this study, we have evaluated intranasally the efficacy of FliC and FimH antigens of UPEC in different vaccine formulations with and without cholera toxin (CT) adjuvant. Immunization of mice with FliC in fusion form or admixed with FimH elicited higher levels of serum, mucosal and cell-mediated responses than FimH alone. Furthermore, the use of CT in synergism with FliC resulted in the stimulation of a mixed Th1 and Th2 responses against FimH and FliC as antigen and maintained the antibody responses for at least 24 weeks following the last vaccine dose. Of the vaccine preparations, Fusion, Fusion + CT, and FimH admixed with FliC and CT showed the best protection against UPEC. These data indicated that intranasal administration of a FliC and CT adjuvant-based vaccine has the potential to provide protective responses against UPEC strains.

  10. Mexican unpasteurised fresh cheeses are contaminated with Salmonella spp., non-O157 Shiga toxin producing Escherichia coli and potential uropathogenic E. coli strains: A public health risk.

    PubMed

    Guzman-Hernandez, Rosa; Contreras-Rodriguez, Araceli; Hernandez-Velez, Rosa; Perez-Martinez, Iza; Lopez-Merino, Ahide; Zaidi, Mussaret B; Estrada-Garcia, Teresa

    2016-11-21

    Fresh cheeses are a main garnish of Mexican food. Consumption of artisanal fresh cheeses is very common and most of them are made from unpasteurised cow milk. A total of 52 fresh unpasteurised cheeses of five different types were purchased from a variety of suppliers from Tabasco, Mexico. Using the most probable number method, 67% and 63% of samples were positive for faecal coliforms and E. coli, respectively; revealing their low microbiological quality. General hygienic conditions and practices of traditional cheese manufacturers were poor; most establishments had unclean cement floors, all lacked windows and doors screens, and none of the food-handlers wore aprons, surgical masks or bouffant caps. After analysing all E. coli isolates (121 strains) for the presence of 26 virulence genes, results showed that 9 (17%) samples were contaminated with diarrheagenic E. coli strains, 8 harboured non-O157 Shiga toxin producing E. coli (STEC), and one sample contained both STEC and diffusely adherent E. coli strains. All STEC strains carried the stx1 gene. Potential uropathogenic E. coli (UPEC) strains were isolated from 15 (29%) samples; the most frequent gene combination was fimA-agn43. Two samples were contaminated with Salmonella. The results demonstrated that unpasteurised fresh cheeses produced in Tabasco are of poor microbiological quality and may frequently harbour foodborne pathogens. Food safety authorities in Mexico need to conduct more rigorous surveillance of fresh cheeses. Furthermore, simple and inexpensive measures as establishing programs emphasizing good hand milking practices and hygienic manufacturing procedures may have a major effect on improving the microbiological quality of these food items.

  11. Antimicrobial resistance genes in marine bacteria and human uropathogenic Escherichia coli from a region of intensive aquaculture.

    PubMed

    Tomova, Alexandra; Ivanova, Larisa; Buschmann, Alejandro H; Rioseco, Maria Luisa; Kalsi, Rajinder K; Godfrey, Henry P; Cabello, Felipe C

    2015-10-01

    Antimicrobials are heavily used in Chilean salmon aquaculture. We previously found significant differences in antimicrobial-resistant bacteria between sediments from an aquaculture and a non-aquaculture site. We now show that levels of antimicrobial resistance genes (ARG) are significantly higher in antimicrobial-selected marine bacteria than in unselected bacteria from these sites. While ARG in tetracycline- and florfenicol-selected bacteria from aquaculture and non-aquaculture sites were equally frequent, there were significantly more plasmid-mediated quinolone resistance genes per bacterium and significantly higher numbers of qnrB genes in quinolone-selected bacteria from the aquaculture site. Quinolone-resistant urinary Escherichia coli from patients in the Chilean aquacultural region were significantly enriched for qnrB (including a novel qnrB gene), qnrS, qnrA and aac(6')-1b, compared with isolates from New York City. Sequences of qnrA1, qnrB1 and qnrS1 in quinolone-resistant Chilean E. coli and Chilean marine bacteria were identical, suggesting horizontal gene transfer between antimicrobial-resistant marine bacteria and human pathogens.

  12. Quantitative analysis of amyloid-integrated biofilms formed by uropathogenic Escherichia coli at the air-liquid interface.

    PubMed

    Wu, Cynthia; Lim, Ji Youn; Fuller, Gerald G; Cegelski, Lynette

    2012-08-08

    Bacterial biofilms are complex multicellular assemblies, characterized by a heterogeneous extracellular polymeric matrix, that have emerged as hallmarks of persistent infectious diseases. New approaches and quantitative data are needed to elucidate the composition and architecture of biofilms, and such data need to be correlated with mechanical and physicochemical properties that relate to function. We performed a panel of interfacial rheological measurements during biofilm formation at the air-liquid interface by the Escherichia coli strain UTI89, which is noted for its importance in studies of urinary tract infection and for its assembly of functional amyloid fibers termed curli. Brewster-angle microscopy and measurements of the surface elasticity (G(s)') and stress-strain response provided sensitive and quantitative parameters that revealed distinct stages during bacterial colonization, aggregation, and eventual formation of a pellicle at the air-liquid interface. Pellicles that formed under conditions that upregulate curli production exhibited an increase in strength and viscoelastic properties as well as a greater ability to recover from stress-strain perturbation. The results suggest that curli, as hydrophobic extracellular amyloid fibers, enhance the strength, viscoelasticity, and resistance to strain of E. coli biofilms formed at the air-liquid interface.

  13. Dra/AfaE adhesin of uropathogenic Dr/Afa+ Escherichia coli mediates mortality in pregnant rats.

    PubMed

    Wroblewska-Seniuk, K; Selvarangan, R; Hart, A; Pladzyk, R; Goluszko, P; Jafari, A; du Merle, L; Nowicki, S; Yallampalli, C; Le Bouguénec, C; Nowicki, B

    2005-11-01

    Escherichia coli bearing adhesins of the Dr/Afa family frequently causes urogenital infections during pregnancy in humans and has been associated with mortality in pregnant rats. Two components of the adhesin, Dra/AfaE and Dra/AfaD, considered virulence factors, are responsible for bacterial binding and internalization. We hypothesize that gestational mortality caused by Dr/Afa+ E. coli is mediated by one of these two proteins, Dra/AfaE or Dra/AfaD. In this study, using afaE and/or afaD mutants, we investigated the role of the afaE and afaD genes in the mortality of pregnant rats from intrauterine infection. Sprague-Dawley rats, on the 17th day of pregnancy, were infected with the E. coli afaE+ afaD and afaE afaD+ mutants. The clinical E. coli strain (afaE+ afaD+) and the afaE afaD double mutant were used as positive and negative controls, respectively. The mortality rate was evaluated 24 h after infection. The highest maternal mortality was observed in the group infected with the afaE+ afaD+ strain, followed by the group infected with the afaE+ afaD strain. The mortality was dose dependent. The afaE afaD double mutant did not cause maternal mortality, even with the highest infection dose. The in vivo studies corresponded with the invasion assay, where the afaE+ strains were the most invasive (afaE+ afaD strain > afaE+ afaD+ strain), while the afaE mutant strains (afaE afaD+ and afaE afaD strains) seemed to be noninvasive. This study shows for the first time that the afaE gene coding for the AfaE subunit of Dr/Afa adhesin is involved in the lethal outcome of gestational infection in rats. This lethal effect associated with AfaE correlates with the invasiveness of afaE+ E. coli strains in vitro.

  14. Dra/AfaE Adhesin of Uropathogenic Dr/Afa+ Escherichia coli Mediates Mortality in Pregnant Rats

    PubMed Central

    Wroblewska-Seniuk, K.; Selvarangan, R.; Hart, A.; Pladzyk, R.; Goluszko, P.; Jafari, A.; du Merle, L.; Nowicki, S.; Yallampalli, C.; Le Bouguénec, C.; Nowicki, B.

    2005-01-01

    Escherichia coli bearing adhesins of the Dr/Afa family frequently causes urogenital infections during pregnancy in humans and has been associated with mortality in pregnant rats. Two components of the adhesin, Dra/AfaE and Dra/AfaD, considered virulence factors, are responsible for bacterial binding and internalization. We hypothesize that gestational mortality caused by Dr/Afa+ E. coli is mediated by one of these two proteins, Dra/AfaE or Dra/AfaD. In this study, using afaE and/or afaD mutants, we investigated the role of the afaE and afaD genes in the mortality of pregnant rats from intrauterine infection. Sprague-Dawley rats, on the 17th day of pregnancy, were infected with the E. coli afaE+ afaD and afaE afaD+ mutants. The clinical E. coli strain (afaE+ afaD+) and the afaE afaD double mutant were used as positive and negative controls, respectively. The mortality rate was evaluated 24 h after infection. The highest maternal mortality was observed in the group infected with the afaE+ afaD+ strain, followed by the group infected with the afaE+ afaD strain. The mortality was dose dependent. The afaE afaD double mutant did not cause maternal mortality, even with the highest infection dose. The in vivo studies corresponded with the invasion assay, where the afaE+ strains were the most invasive (afaE+ afaD strain > afaE+ afaD+ strain), while the afaE mutant strains (afaE afaD+ and afaE afaD strains) seemed to be noninvasive. This study shows for the first time that the afaE gene coding for the AfaE subunit of Dr/Afa adhesin is involved in the lethal outcome of gestational infection in rats. This lethal effect associated with AfaE correlates with the invasiveness of afaE+ E. coli strains in vitro. PMID:16239563

  15. Inactivation of Uropathogenic Escherichia coli in Ground Chicken Meat Using High Pressure Processing and Gamma Radiation, and in Purge and Chicken Meat Surfaces by Ultraviolet Light

    PubMed Central

    Sommers, Christopher H.; Scullen, O. J.; Sheen, Shiowshuh

    2016-01-01

    Extraintestinal pathogenic Escherichia coli, including uropathogenic E. coli (UPEC), are common contaminants in poultry meat and may cause urinary tract infections after colonization of the gastrointestinal tract and transfer of contaminated feces to the urethra. Three non-thermal processing technologies used to improve the safety and shelf-life of both human and pet foods include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV-C). Multi-isolate cocktails of UPEC were inoculated into ground chicken which was then treated with HPP (4°C, 0–25 min) at 300, 400, or 500 MPa. HPP D10, the processing conditions needed to inactivate 1 log of UPEC, was 30.6, 8.37, and 4.43 min at 300, 400, and 500 MPa, respectively. When the UPEC was inoculated into ground chicken and gamma irradiated (4 and -20°C) the GR D10 were 0.28 and 0.36 kGy, respectively. The UV-C D10 of UPEC in chicken suspended in exudate and placed on stainless steel and plastic food contact surfaces ranged from 11.4 to 12.9 mJ/cm2. UV-C inactivated ca. 0.6 log of UPEC on chicken breast meat. These results indicate that existing non-thermal processing technologies such as HPP, GR, and UV-C can significantly reduce UPEC levels in poultry meat or exudate and provide safer poultry products for at-risk consumers. PMID:27148167

  16. Inactivation of Uropathogenic Escherichia coli in Ground Chicken Meat Using High Pressure Processing and Gamma Radiation, and in Purge and Chicken Meat Surfaces by Ultraviolet Light.

    PubMed

    Sommers, Christopher H; Scullen, O J; Sheen, Shiowshuh

    2016-01-01

    Extraintestinal pathogenic Escherichia coli, including uropathogenic E. coli (UPEC), are common contaminants in poultry meat and may cause urinary tract infections after colonization of the gastrointestinal tract and transfer of contaminated feces to the urethra. Three non-thermal processing technologies used to improve the safety and shelf-life of both human and pet foods include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV-C). Multi-isolate cocktails of UPEC were inoculated into ground chicken which was then treated with HPP (4°C, 0-25 min) at 300, 400, or 500 MPa. HPP D10, the processing conditions needed to inactivate 1 log of UPEC, was 30.6, 8.37, and 4.43 min at 300, 400, and 500 MPa, respectively. When the UPEC was inoculated into ground chicken and gamma irradiated (4 and -20°C) the GR D10 were 0.28 and 0.36 kGy, respectively. The UV-C D10 of UPEC in chicken suspended in exudate and placed on stainless steel and plastic food contact surfaces ranged from 11.4 to 12.9 mJ/cm(2). UV-C inactivated ca. 0.6 log of UPEC on chicken breast meat. These results indicate that existing non-thermal processing technologies such as HPP, GR, and UV-C can significantly reduce UPEC levels in poultry meat or exudate and provide safer poultry products for at-risk consumers.

  17. Fur Represses Adhesion to, Invasion of, and Intracellular Bacterial Community Formation within Bladder Epithelial Cells and Motility in Uropathogenic Escherichia coli.

    PubMed

    Kurabayashi, Kumiko; Agata, Tomohiro; Asano, Hirofumi; Tomita, Haruyoshi; Hirakawa, Hidetada

    2016-11-01

    Uropathogenic Escherichia coli (UPEC) is a major pathogen that causes urinary tract infections (UTIs). This bacterium adheres to and invades the host cells in the bladder, where it forms biofilm-like polymicrobial structures termed intracellular bacterial communities (IBCs) that protect UPEC from antimicrobial agents and the host immune systems. Using genetic screening, we found that deletion of the fur gene, which encodes an iron-binding transcriptional repressor for iron uptake systems, elevated the expression of type I fimbriae and motility when UPEC was grown under iron-rich conditions, and it led to an increased number of UPEC cells adhering to and internalized in bladder epithelial cells. Consequently, the IBC colonies that the fur mutant formed in host cells were denser and larger than those formed by the wild-type parent strain. Fur is inactivated under iron-restricted conditions. When iron was depleted from the bacterial cultures, wild-type UPEC adhesion, invasion, and motility increased, similar to the case with the fur mutant. The purified Fur protein bound to regions upstream of fimA and flhD, which encode type I fimbriae and an activator of flagellar expression that contributes to motility, respectively. These results suggest that Fur is a repressor of fimA and flhD and that its repression is abolished under iron-depleted conditions. Based on our in vitro experiments, we conclude that UPEC adhesion, invasion, IBC formation, and motility are suppressed by Fur under iron-rich conditions but derepressed under iron-restricted conditions, such as in patients with UTIs.

  18. Necrosis is the dominant cell death pathway in uropathogenic Escherichia coli elicited epididymo-orchitis and is responsible for damage of rat testis.

    PubMed

    Lu, Yongning; Bhushan, Sudhanshu; Tchatalbachev, Svetlin; Marconi, Marcelo; Bergmann, Martin; Weidner, Wolfgang; Chakraborty, Trinad; Meinhardt, Andreas

    2013-01-01

    Male infertility is a frequent medical condition, compromising approximately one in twenty men, with infections of the reproductive tract constituting a major etiological factor. Bacterial epididymo-orchitis results in acute inflammation most often caused by ascending canalicular infections from the urethra via the continuous male excurrent ductal system. Uropathogenic Escherichia coli (UPEC) represent a relevant pathogen in urogenital tract infections. To explore how bacteria can cause damage and cell loss and thus impair fertility, an in vivo epididymo-orchitis model was employed in rats by injecting UPEC strain CFT073 into the vas deference in close proximity to the epididymis. Seven days post infection bacteria were found predominantly in the testicular interstitial space. UPEC infection resulted in severe impairment of spermatogenesis by germ cell loss, damage of testicular somatic cells, a decrease in sperm numbers and a significant increase in TUNEL (+) cells. Activation of caspase-8 (extrinsic apoptotic pathway), caspase-3/-6 (intrinsic apoptotic pathway), caspase-1 (pyroptosis pathway) and the presence of 180 bp DNA fragments, all of which serve as indicators of the classical apoptotic pathway, were not observed in infected testis. Notably, electron microscopical examination revealed degenerative features of Sertoli cells (SC) in UPEC infected testis. Furthermore, the passive release of high mobility group protein B1 (HMGB1), as an indication of necrosis, was observed in vivo in infected testis. Thus, necrosis appears to be the dominant cell death pathway in UPEC infected testis. Substantial necrotic changes seen in Sertoli cells will contribute to impaired spermatogenesis by loss of function in supporting the dependent germ cells.

  19. Resistance and virulence potential of uropathogenic Escherichia coli strains isolated from patients hospitalized in urology departments: a French prospective multicentre study.

    PubMed

    Lavigne, Jean-Philippe; Bruyère, Franck; Bernard, Louis; Combescure, Christophe; Ronco, Esthel; Lanotte, Philippe; Coloby, Patrick; Thibault, Michel; Cariou, Gérard; Desplaces, Nicole; Costa, Pierre; Sotto, Albert

    2016-06-01

    We characterized antibiotic resistance and virulence of uropathogenic Escherichia coli (UPEC) strains isolated from urinary tract infections (UTIs) in patients hospitalized in urology departments. A prospective multicentre study was initiated from March 2009 and lasted until February 2010 in French urology units. All patients with asymptomatic bacteriuria (ABU), acute cystitis, acute pyelonephritis or acute prostatitis in whom UPEC was detected were included. Antimicrobial resistance and virulence factors were compared among the different groups. To identify independent associations between virulence markers and the risk of UTI, we used a multivariate logistic regression. We included 210 patients (mean age: 65.8 years; 106 female). Episode of UTI was community acquired in 72.4 %. ABU was diagnosed in 67 cases (31.9 %), cystitis in 52 cases (24.7 %), pyelonephritis in 35 cases (16.7 %) and prostatitis in 56 cases (26.7 %). ABU was more frequent in patients with a urinary catheter (76.1 vs 23.9 %, P<0.001). The resistance rate was 7.6 and 24.8 % for cefotaxime and ciprofloxacin, respectively. UPEC isolated from infections belonged more frequently to phylotypes B2 and D (P =0.07). The papG allele II and papA, papC, papE, kpsMTII and iutA genes were significantly more frequent in infecting strains (P<0.05). In multivariate analysis, strains susceptible to ciprofloxacin were significantly associated with papG allele II (P=0.007), kpsMTK1 (P<0.001) and hlyA (P<0.001) compared with the ciprofloxacin-resistant strains. To the best of our knowledge, this is the first study evaluating the antibiotic resistance and virulence features of UPEC isolated from patients hospitalized in urology departments. High resistance rates were observed, notably for ciprofloxacin, highlighting the importance of a reinforced surveillance in this setting.

  20. Micropatterned Surfaces for Reducing the Risk of Catheter-Associated Urinary Tract Infection: An In Vitro Study on the Effect of Sharklet Micropatterned Surfaces to Inhibit Bacterial Colonization and Migration of Uropathogenic Escherichia coli

    PubMed Central

    Chung, Kenneth K.; McDaniel, Clinton J.; Darouiche, Rabih O.; Landman, Jaime; Brennan, Anthony B.

    2011-01-01

    Abstract Background and Purpose Catheter-associated urinary tract infection (CAUTI) is the most common device-associated infection and can result in serious medical consequences. We studied the efficacy of a novel microscopic physical surface modification (Sharklet) for preventing bacterial colonization and migration of uropathogenic Escherichia coli on silicone elastomer. Materials and Methods In vitro growth assays evaluated E coli colonization using three variations of micropatterned silicone surfaces vs a smooth silicone control. Enumeration techniques included quantification of colonies on surfaces and analysis of bacterial area coverage and colony size. In vitro migration assays involved placement of micropatterned and smooth silicone rod segments between two agar islands to measure incidence of migration. Results All three variations of the Sharklet micropattern outperformed the control surfaces in inhibiting E coli colonization. On average, 47% reduction in colony-forming units (CFUs) and bacterial area coverage plus 77% reduction in colony size were achieved with the Sharklet surfaces in tryptic soy broth and artificial urine compared with the control nonpatterned surfaces. The incidence of E coli migration over the rod segments was reduced by more than 80% for the Sharklet transverse patterned rods compared with the unpatterned control rods. Conclusion The Sharklet micropattern is effective at inhibiting colonization and migration of a common uropathogen. This performance is achieved through a physical surface modification without the use of any antimicrobial agents. Because deterrence of bacterial colonization and migration is a critical step to prevent CAUTI, the Sharklet micropattern offers a novel concept in addressing this important problem. PMID:21819223

  1. Escherichia Coli

    ERIC Educational Resources Information Center

    Goodsell, David S.

    2009-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. I describe the scientific results that support a recent textbook illustration of an "Escherichia coli cell". The image magnifies a portion of the bacterium at one million times, showing the location and form of individual macromolecules. Results…

  2. Multidrug- and Extensively Drug-Resistant Uropathogenic Escherichia coli Clinical Strains: Phylogenetic Groups Widely Associated with Integrons Maintain High Genetic Diversity

    PubMed Central

    Ochoa, Sara A.; Cruz-Córdova, Ariadnna; Luna-Pineda, Victor M.; Reyes-Grajeda, Juan P.; Cázares-Domínguez, Vicenta; Escalona, Gerardo; Sepúlveda-González, Ma. Eugenia; López-Montiel, Fernanda; Arellano-Galindo, José; López-Martínez, Briceida; Parra-Ortega, Israel; Giono-Cerezo, Silvia; Hernández-Castro, Rigoberto; de la Rosa-Zamboni, Daniela; Xicohtencatl-Cortes, Juan

    2016-01-01

    In recent years, an increase of uropathogenic Escherichia coli (UPEC) strains with Multidrug-resistant (MDR) and Extensively Drug-resistant (XDR) profiles that complicate therapy for urinary tract infections (UTIs) has been observed and has directly impacted costs and extended hospital stays. The aim of this study was to determine MDR- and XDR-UPEC clinical strains, their virulence genes, their phylogenetic groups and to ascertain their relationship with integrons and genetic diversity. From a collection of 500 UPEC strains, 103 were selected with MDR and XDR characteristics. MDR-UPEC strains were mainly associated with phylogenetic groups D (54.87%) and B2 (39.02%) with a high percentage (≥70%) of several fimbrial genes (ecpA, fimH, csgA, and papGII), an iron uptake gene (chuA), and a toxin gene (hlyA). In addition, a moderate frequency (40–70%) of other genes (iutD, tosA, and bcsA) was observed. XDR-UPEC strains were predominantly associated with phylogenetic groups B2 (47.61%) and D (42.85%), which grouped with ≥80 virulence genes, including ecpA, fimH, csgA, papGII, iutD, and chuA. A moderate frequency (40–70%) of the tosA and hlyA genes was observed. The class 1 and 2 integrons that were identified in the MDR- and XDR-UPEC strains were associated with phylogenetic groups D, B2, and A, while the XDR-UPEC strains that were associated with phylogenetic groups B2, D, and A showed an extended-spectrum beta-lactamase (ESBL) phenotype. The modifying enzymes (aadA1, aadB, aacC, ant1, dfrA1, dfrA17, and aadA4) that were identified in the variable region of class 1 and 2 integrons from the MDR strains showed resistance to gentamycin (56.25 and 66.66%, respectively) and trimethoprim-sulfamethoxazole (84.61 and 66.66%, respectively). The MDR- and XDR-UPEC strains were distributed into seven clusters and were closely related to phylogenic groups B2 and D. The diversity analysis by PFGE showed 42.68% of clones of MDR-UPEC and no clonal association in the XDR

  3. Multidrug- and Extensively Drug-Resistant Uropathogenic Escherichia coli Clinical Strains: Phylogenetic Groups Widely Associated with Integrons Maintain High Genetic Diversity.

    PubMed

    Ochoa, Sara A; Cruz-Córdova, Ariadnna; Luna-Pineda, Victor M; Reyes-Grajeda, Juan P; Cázares-Domínguez, Vicenta; Escalona, Gerardo; Sepúlveda-González, Ma Eugenia; López-Montiel, Fernanda; Arellano-Galindo, José; López-Martínez, Briceida; Parra-Ortega, Israel; Giono-Cerezo, Silvia; Hernández-Castro, Rigoberto; de la Rosa-Zamboni, Daniela; Xicohtencatl-Cortes, Juan

    2016-01-01

    In recent years, an increase of uropathogenic Escherichia coli (UPEC) strains with Multidrug-resistant (MDR) and Extensively Drug-resistant (XDR) profiles that complicate therapy for urinary tract infections (UTIs) has been observed and has directly impacted costs and extended hospital stays. The aim of this study was to determine MDR- and XDR-UPEC clinical strains, their virulence genes, their phylogenetic groups and to ascertain their relationship with integrons and genetic diversity. From a collection of 500 UPEC strains, 103 were selected with MDR and XDR characteristics. MDR-UPEC strains were mainly associated with phylogenetic groups D (54.87%) and B2 (39.02%) with a high percentage (≥70%) of several fimbrial genes (ecpA, fimH, csgA, and papGII), an iron uptake gene (chuA), and a toxin gene (hlyA). In addition, a moderate frequency (40-70%) of other genes (iutD, tosA, and bcsA) was observed. XDR-UPEC strains were predominantly associated with phylogenetic groups B2 (47.61%) and D (42.85%), which grouped with ≥80 virulence genes, including ecpA, fimH, csgA, papGII, iutD, and chuA. A moderate frequency (40-70%) of the tosA and hlyA genes was observed. The class 1 and 2 integrons that were identified in the MDR- and XDR-UPEC strains were associated with phylogenetic groups D, B2, and A, while the XDR-UPEC strains that were associated with phylogenetic groups B2, D, and A showed an extended-spectrum beta-lactamase (ESBL) phenotype. The modifying enzymes (aadA1, aadB, aacC, ant1, dfrA1, dfrA17, and aadA4) that were identified in the variable region of class 1 and 2 integrons from the MDR strains showed resistance to gentamycin (56.25 and 66.66%, respectively) and trimethoprim-sulfamethoxazole (84.61 and 66.66%, respectively). The MDR- and XDR-UPEC strains were distributed into seven clusters and were closely related to phylogenic groups B2 and D. The diversity analysis by PFGE showed 42.68% of clones of MDR-UPEC and no clonal association in the XDR

  4. Ameliorating Effect of Ginseng on Epididymo-Orchitis Inducing Alterations in Sperm Quality and Spermatogenic Cells Apoptosis following Infection by Uropathogenic Escherichia coli in Rats

    PubMed Central

    Eskandari, Mehdi; Jani, Soghra; Kazemi, Mahsa; Zeighami, Habib; Yazdinezhad, Alireza; Mazloomi, Sahar; Shokri, Saeed

    2016-01-01

    Objective Epididymo-orchitis (EO) potentially results in reduced fertility in up to 60% of affected patients. The anti-inflammatory effects of Korean red ginseng (KRG) and its ability to act as an immunoenhancer in parallel with the beneficial effects of this ancient herbal medicine on the reproductive systems of animals and humans led us to evaluate its protective effects against acute EO. Materials and Methods This animal experimental study was conducted in the Department of Anatomical Sciences, Faculty of Medicine, Zanjan University of Medical Sciences (ZUMS), Zanjan, Iran during 2013-2015. We divided 50 Wistar rats into five following groups (n=10 per group): i. Control-intact animals, ii. Vehicle-phosphate buffered saline (PBS) injection into the vas deferens, iii. KRG-an intraperitoneal (IP) injection of KRG, iv. EO-an injection of uropathogenic Escherichia coli (UPEC) strain M39 into the vas defer- ens, and v. EO/ KRG-injections of both UPEC strain M39 and KRG. The treatment lasted seven days. We then evaluated sperm parameters, number of germ cell layers, Johnson’s criteria, germ cell apoptosis, body weight and relative sex organs weight. Results Acute EO increased the relative weight of prostate and seminal vesicles (P≤0.05). It also reduced sperm quality such as total motility, sperm concentration (P≤0.01), and the percentage of normal sperm (P≤0.001). Moreover, acute EO decreased Miller’s (P≤0.05) and Johnsen’s scores and increased apoptotic indexes of spermatogenic cells (P≤0.001). KRG treatment decreased prostate weight gain (P≤0.05) and improved the percentage of sperm with normal morphology, total motility (P≤0.01), and progressive motility (P≤0.05). The apoptotic indexes of spermatogenic cells reduced (P≤0.001), whereas both Johnsen’s (P≤0.01) and Miller’s criteria increased in the KRG-treated EO testis (P≤0.05). Conclusion Consequently, KRG ameliorated the devastating effects of EO on the sperm retrieved from either

  5. Production of the Escherichia coli common pilus by uropathogenic E. coli is associated with adherence to HeLa and HTB-4 cells and invasion of mouse bladder urothelium.

    PubMed

    Saldaña, Zeus; De la Cruz, Miguel A; Carrillo-Casas, Erika Margarita; Durán, Laura; Zhang, Yushan; Hernández-Castro, Rigoberto; Puente, José L; Daaka, Yehia; Girón, Jorge A

    2014-01-01

    Uropathogenic Escherichia coli (UPEC) strains cause urinary tract infections and employ type 1 and P pili in colonization of the bladder and kidney, respectively. Most intestinal and extra-intestinal E. coli strains produce a pilus called E. coli common pilus (ECP) involved in cell adherence and biofilm formation. However, the contribution of ECP to the interaction of UPEC with uroepithelial cells remains to be elucidated. Here, we report that prototypic UPEC strains CFT073 and F11 mutated in the major pilin structural gene ecpA are significantly deficient in adherence to cultured HeLa (cervix) and HTB-4 (bladder) epithelial cells in vitro as compared to their parental strains. Complementation of the ecpA mutant restored adherence to wild-type levels. UPEC strains produce ECP upon growth in Luria-Bertani broth or DMEM tissue culture medium preferentially at 26°C, during incubation with cultured epithelial cells in vitro at 37°C, and upon colonization of mouse bladder urothelium ex vivo. ECP was demonstrated on and inside exfoliated bladder epithelial cells present in the urine of urinary tract infection patients. The ability of the CFT073 ecpA mutant to invade the mouse tissue was significantly reduced. The presence of ECP correlated with the architecture of the biofilms produced by UPEC strains on inert surfaces. These data suggest that ECP can potentially be produced in the bladder environment and contribute to the adhesive and invasive capabilities of UPEC during its interaction with the host bladder. We propose that along with other known adhesins, ECP plays a synergistic role in the multi-step infection of the urinary tract.

  6. Production of the Escherichia coli Common Pilus by Uropathogenic E. coli Is Associated with Adherence to HeLa and HTB-4 Cells and Invasion of Mouse Bladder Urothelium

    PubMed Central

    Carrillo-Casas, Erika Margarita; Durán, Laura; Zhang, Yushan; Hernández-Castro, Rigoberto; Puente, José L.; Daaka, Yehia; Girón, Jorge A.

    2014-01-01

    Uropathogenic Escherichia coli (UPEC) strains cause urinary tract infections and employ type 1 and P pili in colonization of the bladder and kidney, respectively. Most intestinal and extra-intestinal E. coli strains produce a pilus called E. coli common pilus (ECP) involved in cell adherence and biofilm formation. However, the contribution of ECP to the interaction of UPEC with uroepithelial cells remains to be elucidated. Here, we report that prototypic UPEC strains CFT073 and F11 mutated in the major pilin structural gene ecpA are significantly deficient in adherence to cultured HeLa (cervix) and HTB-4 (bladder) epithelial cells in vitro as compared to their parental strains. Complementation of the ecpA mutant restored adherence to wild-type levels. UPEC strains produce ECP upon growth in Luria-Bertani broth or DMEM tissue culture medium preferentially at 26°C, during incubation with cultured epithelial cells in vitro at 37°C, and upon colonization of mouse bladder urothelium ex vivo. ECP was demonstrated on and inside exfoliated bladder epithelial cells present in the urine of urinary tract infection patients. The ability of the CFT073 ecpA mutant to invade the mouse tissue was significantly reduced. The presence of ECP correlated with the architecture of the biofilms produced by UPEC strains on inert surfaces. These data suggest that ECP can potentially be produced in the bladder environment and contribute to the adhesive and invasive capabilities of UPEC during its interaction with the host bladder. We propose that along with other known adhesins, ECP plays a synergistic role in the multi-step infection of the urinary tract. PMID:25036370

  7. Comparison of the Anti-Adhesion Activity of Three Different Cranberry Extracts on Uropathogenic P-fimbriated Escherichia coli: a Randomized, Double-blind, Placebo Controlled, Ex Vivo, Acute Study.

    PubMed

    Howell, Amy; Souza, Dan; Roller, Marc; Fromentin, Emilie

    2015-07-01

    Research suggests that cranberry (Vaccinium macrocarpon) helps maintain urinary tract health. Bacterial adhesion to the uroepithelium is the initial step in the progression to development of a urinary tract infection. The bacterial anti-adhesion activity of cranberry proanthocyanidins (PACs) has been demonstrated in vitro. Three different cranberry extracts were developed containing a standardized level of 36 mg of PACs. This randomized, double-blind, placebo controlled, ex vivo, acute study was designed to compare the anti-adhesion activity exhibited by human urine following consumption of three different cranberry extracts on uropathogenic P-fimbriated Escherichia coli in healthy men and women. All three cranberry extracts significantly increased anti-adhesion activity in urine. from 6 to 12 hours after intake of a single dose standardized to deliver 36 mg of PACs (as measured by the BL-DMAC method), versus placebo.

  8. Plasmid-related quinolone resistance determinants in epidemic Vibrio parahaemolyticus, uropathogenic Escherichia coli, and marine bacteria from an aquaculture area in Chile.

    PubMed

    Aedo, Sandra; Ivanova, Larisa; Tomova, Alexandra; Cabello, Felipe C

    2014-08-01

    Marine bacteria from aquaculture areas with industrial use of quinolones have the potential to pass quinolone resistance genes to animal and human pathogens. The VPA0095 gene, related to the quinolone resistance determinant qnrA, from clinical isolates of epidemic Vibrio parahaemolyticus conferred reduced susceptibility to quinolone after cloning into Escherichia coli K-12 either when acting alone or synergistically with DNA gyrase mutations. In addition, a plasmid-mediated quinolone resistance gene from marine bacteria, aac(6')-Ib-cr, was identical to aac(6')-Ib-cr from urinary tract isolates of E. coli, suggesting a recent flow of this gene between these bacteria isolated from different environments. aac(6')-Ib-cr from E. coli also conferred reduced susceptibility to quinolone and kanamycin when cloned into E. coli K-12.

  9. A new look at the drug-resistance investigation of uropathogenic E. coli strains.

    PubMed

    Adamus-Białek, Wioletta; Lechowicz, Łukasz; Kubiak-Szeligowska, Anna B; Wawszczak, Monika; Kamińska, Ewelina; Chrapek, Magdalena

    2017-02-01

    Bacterial drug resistance and uropathogenic tract infections are among the most important issues of current medicine. Uropathogenic Escherichia coli strains are the primary factor of this issue. This article is the continuation of the previous study, where we used Kohonen relations to predict the direction of drug resistance. The characterized collection of uropathogenic E. coli strains was used for microbiological (the disc diffusion method for antimicrobial susceptibility testing), chemical (ATR/FT-IR) and mathematical (artificial neural networks, Ward's hierarchical clustering method, the analysis of distributions of inhibition zone diameters for antibiotics, Cohen's kappa measure of agreement) analysis. This study presents other potential tools for the epidemiological differentiation of E. coli strains. It is noteworthy that ATR/FT-IR technique has turned out to be useful for the quick and simple identification of MDR strains. Also, diameter zones of resistance of this E. coli population were compared to the population of E. coli strains published by EUCAST. We observed the bacterial behaviors toward particular antibiotics in comparison to EUCAST bacterial collections. Additionally, we used Cohen's kappa to show which antibiotics from the same class are closely related to each other and which are not. The presented associations between antibiotics may be helpful in selecting the proper therapy directions. Here we present an adaptation of interdisciplinary studies of drug resistance of E. coli strains for epidemiological and clinical investigations. The obtained results may be some indication in deciding on antibiotic therapy.

  10. Characterization of Multidrug Resistant Extended-Spectrum Beta-Lactamase-Producing Escherichia coli among Uropathogens of Pediatrics in North of Iran

    PubMed Central

    Rezai, Mohammad Sadegh; Salehifar, Ebrahim; Rafiei, Alireza; Rafati, Mohammadreza; Shafahi, Kheironesa

    2015-01-01

    Escherichia coli remains as one of the most important bacteria causing infections in pediatrics and producing extended-spectrum beta-lactamases (ESBLs) making them resistant to beta-lactam antibiotics. In this study we aimed to genotype ESBL-producing E. coli isolates from pediatric patients for ESBL genes and determine their association with antimicrobial resistance. One hundred of the E. coli isolates were initially considered ESBL producing based on their MIC results. These isolates were then tested by polymerase chain reaction (PCR) for the presence or absence of CTX, TEM, SHV, GES, and VEB beta-lactamase genes. About 30.5% of isolated E. coli was ESBL-producing strain. The TEM gene was the most prevalent (49%) followed by SHV (44%), CTX (28%), VEB (8%), and GES (0%) genes. The ESBL-producing E. coli isolates were susceptible to carbapenems (66%) and amikacin (58%) and showed high resistance to cefixime (99%), colistin (82%), and ciprofloxacin (76%). In conclusion, carbapenems were the most effective antibiotics against ESBl-producing E. coli in urinary tract infection in North of Iran. The most prevalent gene is the TEM-type, but the other resistant genes and their antimicrobial resistance are on the rise. PMID:26064896

  11. Correlation between uropathogenic properties of Escherichia coli from urinary tract infections and the antibody-coated bacteria test and comparison with faecal strains.

    PubMed Central

    Brooks, H. J.; Benseman, B. A.; Peck, J.; Bettelheim, K. A.

    1981-01-01

    Strains of Escherichia coli isolated from adult females with symptomatic urinary tract infection were found to possess the following properties significantly more frequently than faecal strains: (i) high K-antigen titre: (ii) haemolysin; (iii) type 1 pili; (iv) mannose-resistant haemagglutination; (v) fermentation of dulcitol and salicin; (vi) O serotype 2, 6 and 75; (vii) H serotype 1. E. coli isolated form urine specimens containing significant numbers of antibody-coated bacteria were richer in these seven properties than strains from urines without detectable antibody coated bacteria. The O and H serotypes of E. coli obtained from patients with urinary tract infection in two New Zealand cities were compared with those reported in the world literature and found to be similar. PMID:6114119

  12. [Prevalence of beta-lactamase CTX-M-15 in phylogenetic groups of uropathogenic Escherichia coli isolated from patients in the community of Merida, Venezuela].

    PubMed

    Hernández, Erick; Araque, María; Millán, Ysheth; Millán, Beatriz; Vielma, Silvana

    2014-03-01

    In this study we determined the prevalence of extended-spectrum beta-lactamases (ESBLs) in phylogenetic groups of uropathogenic E. coli (UPEC) isolated from patients in the community. Twenty one UPEC strains with reduced susceptibility to broad-spectrum cephalosporins were collected between January 2009 and July 2010, from patients with urinary tract infection who attended the Public Health Laboratory in Mérida, Venezuela. Genotypic characterization determined that all UPEC strains harbored blaBLEEs genes: 76.2% of the strains showed the presence of a single ESBL-producer gene, represented by blaCTX-M-15, whereas 23.8% of UPEC showed various combinations of bla genes (blacCTX-M-15 + blaTEM-1, blaCTX-M-15 + blaSHV and blaSHV + blaTEM-1). In this study, 61.9% of the isolates were placed in phylogroup A and the remaining strains were assigned to group B2 (38.1%). There was no evidence of spread of a particular UPEC clone; only seven strains belonged to a clonal group with an index of similarity greater than 85%. To our knowledge, this is the first description of blxCTX-M-15 in UPEC from patients with community-acquired urinary tract infections, which shows that Venezuela is also part of the so-called CTX-M-15 pandemic. The findings in this study, as well as its clinical and epidemiological implications, lead to the need for monitoring and controlling the spread of CTX-M-15 producing UPECs, not only regionally, but also nationwide.

  13. In Vivo mRNA Profiling of Uropathogenic Escherichia coli from Diverse Phylogroups Reveals Common and Group-Specific Gene Expression Profiles

    PubMed Central

    Bielecki, Piotr; Muthukumarasamy, Uthayakumar; Eckweiler, Denitsa; Bielecka, Agata; Pohl, Sarah; Schanz, Ansgar; Niemeyer, Ute; Oumeraci, Tonio; von Neuhoff, Nils; Ghigo, Jean-Marc

    2014-01-01

    ABSTRACT mRNA profiling of pathogens during the course of human infections gives detailed information on the expression levels of relevant genes that drive pathogenicity and adaptation and at the same time allows for the delineation of phylogenetic relatedness of pathogens that cause specific diseases. In this study, we used mRNA sequencing to acquire information on the expression of Escherichia coli pathogenicity genes during urinary tract infections (UTI) in humans and to assign the UTI-associated E. coli isolates to different phylogenetic groups. Whereas the in vivo gene expression profiles of the majority of genes were conserved among 21 E. coli strains in the urine of elderly patients suffering from an acute UTI, the specific gene expression profiles of the flexible genomes was diverse and reflected phylogenetic relationships. Furthermore, genes transcribed in vivo relative to laboratory media included well-described virulence factors, small regulatory RNAs, as well as genes not previously linked to bacterial virulence. Knowledge on relevant transcriptional responses that drive pathogenicity and adaptation of isolates to the human host might lead to the introduction of a virulence typing strategy into clinical microbiology, potentially facilitating management and prevention of the disease. PMID:25096872

  14. Evaluation of the effect of MPL and delivery route on immunogenicity and protectivity of different formulations of FimH and MrpH from uropathogenic Escherichia coli and Proteus mirabilis in a UTI mouse model.

    PubMed

    Habibi, Mehri; Asadi Karam, Mohammad Reza; Bouzari, Saeid

    2015-09-01

    Urinary tract infections (UTIs) caused by Escherichia coli and Proteus mirabilis are an important cause of morbidity and with the high rate of relapse and spread of multi-drug resistant pathogens, pose a significant public health challenge worldwide. Lack of an efficacious commercial vaccine targeting both uropathogens makes development of a combined vaccine highly desirable. In this study the immunogenicity and protective efficacy of different formulations of FimH of UPEC, MrpH of P. mirabilis and their fusion protein (MrpH.FimH) subcutaneously administered with and without Monophosphoryl lipid A (MPL) adjuvant were evaluated. Our data showed that the subcutaneously administered proteins induced both serum and mucosal IgG, which MPL significantly improved developing a mixed Th1 and Th2 immune response. However, the preparations induced a higher systemic and mucosal IgG and IL-2 levels by this route compared to the intranasal. Immunization of mice with MrpH.FimH fusion with MPL or a mixture of FimH, MrpH and MPL conferred the highest protection of the bladder and kidneys when challenged with UPEC and P. mirabilis in a UTI mouse model. Therefore considering these results MrpH.FimH fusion with MPL administered subcutaneously or intranasally could be a promising vaccine candidate for elimination of UTIs caused by UPEC and P. mirabilis.

  15. [Distribution of phylogenetic groups and virulence factors in CTX-M-15 β-lactamase-producing uropathogenic Escherichia coli strains isolated from patients in the community of Mérida, Venezuela].

    PubMed

    Millán, Ysheth; Hernández, Erick; Millán, Beatriz; Araque, María

    2014-01-01

    In this study, the distribution of phylogenetic groups and the genetic detection of virulence factors in CTX-M-15 β-lactamase-producing uropathogenic Escherichia coli (UPEC) strains were analyzed. Twenty eight strains were isolated between January 2009 and July 2011 from patients with urinary tract infection (UTI) who attended the Public Health Laboratory at Mérida, Venezuela. Determination of phylogenetic groups and detection of six virulence genes, fimH, fyuA, kpsMTII, usp, PAI and papAH, were performed by PCR amplification. Fifteen of the 28 isolates were mainly located in the phylogenetic group A, followed by B2 (12/28) and D (1/28). No direct relationship between the severity or recurrence of UTI and the distribution of phylogroups was observed. All studied virulence factors were found in group B2 strains with the highest frequency. The prevalent virulence profile included the combination of three main genes: fimH, kpsMTII and fyuA and, to a lesser extent, the presence of other determinants such as usp, PAI and/or papAH. These results indicate that virulent UPEC incorporated three important properties: adhesion, iron uptake and evasion of phagocytosis, which favored the production of recurrent UTI. This is the first report describing the association of phylogenetic groups with the potential virulence of CTX-M-15 β-lactamase producing UPEC strains in Venezuela.

  16. Detection of pap, sfa and afa adhesin-encoding operons in uropathogenic Escherichia coli strains: relationship with expression of adhesins and production of toxins.

    PubMed

    Blanco, M; Blanco, J E; Alonso, M P; Mora, A; Balsalobre, C; Muñoa, F; Juárez, A; Blanco, J

    1997-12-01

    A total of 243 Escherichia coli strains isolated from patients with urinary tract infections (UTI) were investigated for the presence of pap, sfa and afa adhesin-encoding operons by using the polymerase chain reaction. It was found that 54%, 53% and 2% of the strains exhibited the pap, sfa and afa genotypes, respectively. Pap+ and/or sfa+ strains were more frequent in cases of acute pyelonephritis (94%) than in cases of cystitis (67%) (P < 0.001) and asymptomatic bacteriuria (57%) (P < 0.001). The pap and/or sfa operons were found in 90% of strains expressing mannose-resistant haemagglutination (MRHA) versus 37% of MRHA-negative strains (P < 0.001). The presence of pap and sfa operons was especially significant in strains belonging to MRHA types III (100%) (without P adhesins) and IVa (97%) (expressing the specific Gal-Gal binding typical of P adhesins). Both pap and sfa operons were closely associated with toxigenic E. coli producing alpha-haemolysin (Hly+) and/or the cytotoxic necrotizing factor type 1. There was an apparent correlation between the pap and sfa operons and the O serogroups of the strains. Thus, 93% of strains belonging to O1, O2, O4, O6, O7, O14, O15, O18, O22, O75 and O83 possessed pap and/or sfa operons, versus only 32% of strains belonging to other serogroups (P < 0.001). The results obtained in this study confirm the usefulness of our MRHA typing system for presumptive identification of pathogenic E. coli exhibiting different virulence factors. Thus, 85% of strains that possessed both pap and sfa adhesin-encoding operons showed MRHA types III or IVa previously associated with virulence of E. coli strains that cause UTI and bacteraemia.

  17. In-vitro and in-vivo evidence of dose-dependent decrease of uropathogenic Escherichia coli virulence after consumption of commercial Vaccinium macrocarpon (cranberry) capsules.

    PubMed

    Lavigne, J-P; Bourg, G; Combescure, C; Botto, H; Sotto, A

    2008-04-01

    This study evaluated the antibacterial efficacy of the consumption of cranberry capsules vs. placebo in the urine of healthy volunteers. A first double-blind, randomised, crossover trial involved eight volunteers who had followed three regimens, with or without cranberry, with a wash-out period of at least 6 days between each regimen. Twelve hours after consumption of cranberry or placebo hard capsules, the first urine of the morning was collected. Different Escherichia coli strains were cultured in the urine samples. Urinary antibacterial adhesion activity was measured in vitro using the human T24 epithelial cell-line, and in vivo using the Caenorhabditis elegans killing model. With the in-vitro model, 108 mg of cranberry induced a significant reduction in bacterial adherence to T24 cells as compared with placebo (p <0.001). A significant dose-dependent decrease in bacterial adherence in vitro was noted after the consumption of 108 and 36 mg of cranberry (p <0.001). The in-vivo model confirmed that E. coli strains had a reduced ability to kill C. elegans after growth in the urine of patients who consumed cranberry capsules. Overall, these in-vivo and in-vitro studies suggested that consumption of cranberry juice represents an interesting new strategy to prevent recurrent urinary tract infection.

  18. Antibiotic resistance is linked to carriage of papC and iutA virulence genes and phylogenetic group D background in commensal and uropathogenic Escherichia coli from infants and young children.

    PubMed

    Karami, N; Wold, A E; Adlerberth, I

    2017-04-01

    P fimbriae, enabling adherence to colonic and urinary epithelium, and aerobactin, an iron sequestering system, are both colonization factors in the human colon and virulence factors for urinary tract infection. The colonic microbiota is suggested to be a site suitable for the transfer of antibiotic resistance genes. We investigated whether phenotypic resistance to antibiotics in commensal and uropathogenic Escherichia coli from infants and young children is associated with carriage of virulence genes and to phylogenetic group origin and, in the case of fecal strains, to persistence in the gut and fecal population levels. The commensal strains (n = 272) were derived from a birth cohort study, while the urinary isolates (n = 205) were derived from outpatient clinics. Each strain was assessed for phenotypic antibiotic resistance and for carriage of virulence genes (fimA, papC, sfaD/E, hlyA, iutA, kfiC, and neuB), phylogenetic group (A, B1, B2, or D), and markers of particular virulent clones (CGA-D-ST69, O15:H1-D-ST393, and O25b:H4-B2-ST131). Resistance to ampicillin, tetracycline, and trimethoprim was most prevalent. Multivariate analysis showed that resistance to any antibiotic was significantly associated with carriage of genes encoding P fimbriae (papC) and aerobactin (iutA), and a phylogenetic group D origin. Neither fecal population numbers nor the capacity for long-term persistence in the gut were related to antibiotic resistance among fecal strains. Our study confirms the importance of phylogenetic group D origin for antibiotic resistance in E. coli and identifies the virulence genes papC and iutA as determinants of antibiotic resistance. The reason for the latter association is currently unclear.

  19. Multiresistant Uropathogenic Escherichia coli from a Region in India Where Urinary Tract Infections Are Endemic: Genotypic and Phenotypic Characteristics of Sequence Type 131 Isolates of the CTX-M-15 Extended-Spectrum-β-Lactamase-Producing Lineage

    PubMed Central

    Hussain, Arif; Ewers, Christa; Nandanwar, Nishant; Guenther, Sebastian; Jadhav, Savita; Wieler, Lothar H.

    2012-01-01

    Escherichia coli sequence type 131 (O25b:H4), associated with the CTX-M-15 extended-spectrum beta-lactamases (ESBLs) and linked predominantly to the community-onset antimicrobial-resistant infections, has globally emerged as a public health concern. However, scant attention is given to the understanding of the molecular epidemiology of these strains in high-burden countries such as India. Of the 100 clinical E. coli isolates obtained by us from a setting where urinary tract infections are endemic, 16 ST131 E. coli isolates were identified by multilocus sequence typing (MLST). Further, genotyping and phenotyping methods were employed to characterize their virulence and drug resistance patterns. All the 16 ST131 isolates harbored the CTX-M-15 gene, and half of them also carried TEM-1; 11 of these were positive for blaOXA groups 1 and 12 for aac(6′)-Ib-cr. At least 12 isolates were refractory to four non-beta-lactam antibiotics: ciprofloxacin, gentamicin, sulfamethoxazole-trimethoprim, and tetracycline. Nine isolates carried the class 1 integron. Plasmid analysis indicated a large pool of up to six plasmids per strain with a mean of approximately three plasmids. Conjugation and PCR-based replicon typing (PBRT) revealed that the spread of resistance was associated with the FIA incompatibility group of plasmids. Pulsed-field gel electrophoresis (PFGE) and genotyping of the virulence genes showed a low level of diversity among these strains. The association of ESBL-encoding plasmid with virulence was demonstrated in transconjugants by serum assay. None of the 16 ST131 ESBL-producing E. coli strains were known to synthesize carbapenemase enzymes. In conclusion, our study reports a snapshot of the highly virulent/multiresistant clone ST131 of uropathogenic E. coli from India. This study suggests that the ST131 genotypes from this region are clonally evolved and are strongly associated with the CTX-M-15 enzyme, carry a high antibiotic resistance background, and have

  20. Uropathogenic Escherichia coli CFT073 Is Adapted to Acetatogenic Growth but Does Not Require Acetate during Murine Urinary Tract Infection▿ §

    PubMed Central

    Anfora, Andrew T.; Halladin, David K.; Haugen, Brian J.; Welch, Rodney A.

    2008-01-01

    In vivo accumulation of d-serine by Escherichia coli CFT073 leads to elevated expression of PAP fimbriae and hemolysin by an unknown mechanism. Loss of d-serine catabolism by CFT073 leads to a competitive advantage during murine urinary tract infection (UTI), but loss of both d- and l-serine catabolism results in attenuation. Serine is the first amino acid to be consumed in closed tryptone broth cultures and precedes the production of acetyl phosphate, a high-energy molecule involved in intracellular signaling, and the eventual secretion of acetate. We propose that the colonization defect associated with the loss of serine catabolism is due to perturbations of acetate metabolism. CFT073 grows more rapidly on acetogenic substrates than does E. coli K-12 isolate MG1655. As shown by transcription microarray results, d-serine is catabolized into acetate via the phosphotransacetylase (pta) and acetate kinase (ackA) genes while downregulating expression of acetyl coenzyme A synthase (acs). CFT073 acs, which is unable to reclaim secreted acetate, colonized mouse bladders and kidneys in the murine model of UTI indistinguishably from the wild type. Both pta and ackA are involved in the maintenance of intracellular acetyl phosphate. CFT073 pta and ackA mutants were screened to investigate the role of acetyl phosphate in UTI pathogenesis. Both single mutants are at a competitive disadvantage relative to the wild type in the kidneys but normally colonize the bladder. CFT073 ackA pta was attenuated in both the bladder and the kidneys. Thus, we demonstrate that CFT073 is adapted to acetate metabolism as a result of requiring a proper cycling of the acetyl phosphate pathway for colonization of the upper urinary tract. PMID:18838520

  1. Salicylate increases the expression of marA and reduces in vitro biofilm formation in uropathogenic Escherichia coli by decreasing type 1 fimbriae expression.

    PubMed

    Vila, Jordi; Soto, Sara M

    2012-05-01

    Escherichia coli is one of the most frequent bacteria implicated in biofilm formation, which is a dynamic process whose first step consists in bacteria adhesion to surfaces through type 1 fimbriae. Salicylate induces a number of morphological and physiological alterations in bacteria including the activation of the transcriptional regulator MarA. In this report the effects of salicylate on biofilm formation and their relationship with MarA were studied. An inverse relationship was observed between in vitro biofilm formation and salicylate concentration added to the culture medium. Salicylate increases the expression of marA and decreases the expression of fimA and fimB genes in the wild-type strain. In addition, the fimA and fimB expression was decreased in a MarR mutant in which marA was also overexpressed. In conclusion, the expression of type 1 fimbriae in presence of salicylate may be regulated by the level of marA expression through fimB regulator, albeit through neither the ompX nor the tolC genes.

  2. Salicylate increases the expression of marA and reduces in vitro biofilm formation in uropathogenic Escherichia coli by decreasing type 1 fimbriae expression

    PubMed Central

    Vila, Jordi; Soto, Sara M.

    2012-01-01

    Escherichia coli is one of the most frequent bacteria implicated in biofilm formation, which is a dynamic process whose first step consists in bacteria adhesion to surfaces through type 1 fimbriae. Salicylate induces a number of morphological and physiological alterations in bacteria including the activation of the transcriptional regulator MarA. In this report the effects of salicylate on biofilm formation and their relationship with MarA were studied. An inverse relationship was observed between in vitro biofilm formation and salicylate concentration added to the culture medium. Salicylate increases the expression of marA and decreases the expression of fimA and fimB genes in the wild-type strain. In addition, the fimA and fimB expression was decreased in a MarR mutant in which marA was also overexpressed. In conclusion, the expression of type 1 fimbriae in presence of salicylate may be regulated by the level of marA expression through fimB regulator, albeit through neither the ompX nor the tolC genes. PMID:22546909

  3. In Vivo Consumption of Cranberry Exerts ex Vivo Antiadhesive Activity against FimH-Dominated Uropathogenic Escherichia coli: A Combined in Vivo, ex Vivo, and in Vitro Study of an Extract from Vaccinium macrocarpon.

    PubMed

    Rafsanjany, Nasli; Senker, Jandirk; Brandt, Simone; Dobrindt, Ulrich; Hensel, Andreas

    2015-10-14

    For investigation of the molecular interaction of cranberry extract with adhesins of uropathogenic Escherichia coli (UPEC), urine from four volunteers consuming standardized cranberry extract (proanthocyanidin content = 1.24%) was analyzed within ex vivo experiments, indicating time-dependent significant inhibition of 40-50% of bacterial adhesion of UPEC strain NU14 to human T24 bladder cells. Under in vitro conditions a dose-dependent increase in bacterial adhesion was observed with proanthocyanidin-enriched cranberry Vaccinium macrocarpon extract (proanthocyanidin content = 21%). Confocal laser scanning microscopy and scanning electron microscopy proved that V.m. extract led to the formation of bacterial clusters on the outer plasma membrane of the host cells without subsequent internalization. This agglomerating activity was not observed when a PAC-depleted extract (V.m. extract(≠PAC)) was used, which showed significant inhibition of bacterial adhesion in cases where type 1 fimbriae dominated and mannose-sensitive UPEC strain NU14 was used. V.m. extract(≠PAC) had no inhibitory activity against P- and F1C-fimbriae dominated strain 2980. Quantitative gene expression analysis indicated that PAC-containing as well as PAC-depleted cranberry extracts increased the fimH expression in NU14 as part of a feedback mechanism after blocking FimH. For strain 2980 the PAC-containing extract led to up-regulation of P- and F1C-fimbriae, whereas the PAC-depleted extract had no influence on gene expression. V.m. and V.m. extract(≠PAC) did not influence biofilm and curli formation in UPEC strains NU14 and 2980. These data lead to the conclusion that also proanthocyanidin-free cranberry extracts exert antiadhesive activity by interaction with mannose-sensitive type 1 fimbriae of UPEC.

  4. Diarrheagenic Escherichia coli

    PubMed Central

    Nataro, James P.; Kaper, James B.

    1998-01-01

    Escherichia coli is the predominant nonpathogenic facultative flora of the human intestine. Some E. coli strains, however, have developed the ability to cause disease of the gastrointestinal, urinary, or central nervous system in even the most robust human hosts. Diarrheagenic strains of E. coli can be divided into at least six different categories with corresponding distinct pathogenic schemes. Taken together, these organisms probably represent the most common cause of pediatric diarrhea worldwide. Several distinct clinical syndromes accompany infection with diarrheagenic E. coli categories, including traveler’s diarrhea (enterotoxigenic E. coli), hemorrhagic colitis and hemolytic-uremic syndrome (enterohemorrhagic E. coli), persistent diarrhea (enteroaggregative E. coli), and watery diarrhea of infants (enteropathogenic E. coli). This review discusses the current level of understanding of the pathogenesis of the diarrheagenic E. coli strains and describes how their pathogenic schemes underlie the clinical manifestations, diagnostic approach, and epidemiologic investigation of these important pathogens. PMID:9457432

  5. PATHOGENIC ESCHERICHIA COLI

    EPA Science Inventory

    Escherichia coli is a bacterial species which inhabits the gastrointestinal tract of man and warm-blooded animals. Because of the ubiquity of this bacterium in the intestinal flora, it serves as an important indicator organism of fecal contamination. E. coli, aside from serving a...

  6. Pathogenic Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Escherichia coli, a member of the Enterobacteriaceae family, is a part of the normal flora of the intestinal tract of humans and a variety of animals. E. coli strains are classified on the basis of antigenic differences in two surface components (serotyping), the somatic antigen (O) of the lipopoly...

  7. Escherichia coli biofilms

    PubMed Central

    Beloin, Christophe; Roux, Agnès; Ghigo, Jean-Marc

    2008-01-01

    Escherichia coli is a predominant species among facultative anaerobic bacteria of the gastrointestinal tract. Both its frequent community lifestyle and the availability of a wide array of genetic tools contributed to establish E. coli as a relevant model organism for the study of surface colonization. Several key factors, including different extracellular appendages, are implicated in E. coli surface colonization and their expression and activity are finely regulated, both in space and time, to ensure productive events leading to mature biofilm formation. This chapter will present known molecular mechanisms underlying biofilm development in both commensal and pathogenic E. coli. PMID:18453280

  8. Role of enteroaggregative Escherichia coli virulence factors in uropathogenesis.

    PubMed

    Boll, Erik J; Struve, Carsten; Boisen, Nadia; Olesen, Bente; Stahlhut, Steen G; Krogfelt, Karen A

    2013-04-01

    A multiresistant clonal Escherichia coli O78:H10 strain qualifying molecularly as enteroaggregative Escherichia coli (EAEC) was recently shown to be the cause of a community-acquired outbreak of urinary tract infection (UTI) in greater Copenhagen, Denmark, in 1991. This marks the first time EAEC has been associated with an extraintestinal disease outbreak. Importantly, the outbreak isolates were recovered from the urine of patients with symptomatic UTI, strongly implying urovirulence. Here, we sought to determine the uropathogenic properties of the Copenhagen outbreak strain and whether these properties are conferred by the EAEC-specific virulence factors. We demonstrated that through expression of aggregative adherence fimbriae, the principal adhesins of EAEC, the outbreak strain exhibited pronouncedly increased adherence to human bladder epithelial cells compared to prototype uropathogenic strains. Moreover, the strain was able to produce distinct biofilms on abiotic surfaces, including urethral catheters. These findings suggest that EAEC-specific virulence factors increase uropathogenicity and may have played a significant role in the ability of the strain to cause a community-acquired outbreak of UTI. Thus, inclusion of EAEC-specific virulence factors is warranted in future detection and characterization of uropathogenic E. coli.

  9. Diarrheagenic Escherichia coli.

    PubMed

    Gomes, Tânia A T; Elias, Waldir P; Scaletsky, Isabel C A; Guth, Beatriz E C; Rodrigues, Juliana F; Piazza, Roxane M F; Ferreira, Luís C S; Martinez, Marina B

    2016-12-01

    Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.

  10. Quinolone resistance and ornithine decarboxylation activity in lactose-negative Escherichia coli

    PubMed Central

    Gomig, Franciane; Galvão, Carolina Weigert; de Freitas, Denis Leandro; Labas, Larissa; Etto, Rafael Mazer; Esmerino, Luiz Antonio; de Lima, Marcelo Andrade; Appel, Marcia Helena; Zanata, Silvio Marques; Steffens, Maria Berenice Reynaud; Nader, Helena Bonciani; da Silveira, Rafael Bertoni

    2015-01-01

    Quinolones and fluoroquinolones are widely used to treat uropathogenic Escherichia coli infections. Bacterial resistance to these antimicrobials primarily involves mutations in gyrA and parC genes. To date, no studies have examined the potential relationship between biochemical characteristics and quinolone resistance in uropathogenic E. coli strains. The present work analyzed the quinolone sensitivity and biochemical activities of fifty-eight lactose-negative uropathogenic E. coli strains. A high percentage of the isolates (48.3%) was found to be resistant to at least one of the tested quinolones, and DNA sequencing revealed quinolone resistant determining region gyrA and parC mutations in the multi-resistant isolates. Statistical analyses suggested that the lack of ornithine decarboxylase (ODC) activity is correlated with quinolone resistance. Despite the low number of isolates examined, this is the first study correlating these characteristics in lactose-negative E. coli isolates. PMID:26413057

  11. [Comparison of routine use of two chromogenic media ChromID CPS (bioMérieux) and UriSelect4 (Bio-Rad) for the detection of Escherichia coli and major uropathogenics in urine].

    PubMed

    Meddeb, Mariam; Maurer, Maxime; Grillon, Antoine; Scheftel, Jean-Michel; Jaulhac, Benoît

    2014-01-01

    Escherichia coli is the most common bacterial cause of urinary tract infections. Its rapid and specific identification in urine samples represents a major challenge within the rendering results and optimizing the management of the patient. We aimed to compare the sensitivity and specificity of two commercially available chromogenic media for E. coli: ChromID CPS (Biomérieux) and UriSelect4 (Bio(-)Rad), without carrying out further tests. 99 consecutive and non-redundant urine samples considered to be infected were simultaneously plated onto blood agar and the two chromogenic media. Colony color and bacterial growth quantification were compared 18 and 48 hours after incubation. Bacteria were identified with mass spectrometry. A complementary analysis on 80 bacterial strains known to pose potential identification problems was performed. 43 urines samples grew E. coli, and 42 of them were pink-colored on the two chromogenic mediums, as expected (sensibility=97.7%). Growth quantification was significantly greater on blood agar than on chromogenic media (p<0.001).We noted specificity issues at the complementary analysis with the UriSelect4 medium: Citrobacter freundii and some strains of Citrobacter brakii, Enterobacter cloacae and Hafnia alvei were pink-colored, and could be misidentified as E. coli. ChromID CPS medium did not show such misidentification. In conclusion, the agar ChromID CPS proved to be greater than the UriSelect4 agar in our work in terms of specificity of direct identification of E. Coli, without the use of additional test.

  12. Measuring Escherichia coli Gene Expression during Human Urinary Tract Infections

    PubMed Central

    Mobley, Harry L. T.

    2016-01-01

    Extraintestinal Escherichia coli (E. coli) evolved by acquisition of pathogenicity islands, phage, plasmids, and DNA segments by horizontal gene transfer. Strains are heterogeneous but virulent uropathogenic isolates more often have specific fimbriae, toxins, and iron receptors than commensal strains. One may ask whether it is the virulence factors alone that are required to establish infection. While these virulence factors clearly contribute strongly to pathogenesis, bacteria must survive by metabolizing nutrients available to them. By constructing mutants in all major metabolic pathways and co-challenging mice transurethrally with each mutant and the wild type strain, we identified which major metabolic pathways are required to infect the urinary tract. We must also ask what else is E. coli doing in vivo? To answer this question, we examined the transcriptome of E. coli CFT073 in the murine model of urinary tract infection (UTI) as well as for E. coli strains collected and analyzed directly from the urine of patients attending either a urology clinic or a university health clinic for symptoms of UTI. Using microarrays and RNA-seq, we measured in vivo gene expression for these uropathogenic E. coli strains, identifying genes upregulated during murine and human UTI. Our findings allow us to propose a new definition of bacterial virulence. PMID:26784237

  13. ANIMAL ENTEROTOXIGENIC ESCHERICHIA COLI

    PubMed Central

    Dubreuil, J. Daniel; Isaacson, Richard E.; Schifferli, Dieter M.

    2016-01-01

    Enterotoxigenic Escherichia coli (ETEC) is the most common cause of E. coli diarrhea in farm animals. ETEC are characterized by the ability to produce two types of virulence factors; adhesins that promote binding to specific enterocyte receptors for intestinal colonization and enterotoxins responsible for fluid secretion. The best-characterized adhesins are expressed in the context of fimbriae, such as the F4 (also designated K88), F5 (K99), F6 (987P), F17 and F18 fimbriae. Once established in the animal small intestine, ETEC produces enterotoxin(s) that lead to diarrhea. The enterotoxins belong to two major classes; heat-labile toxin that consist of one active and five binding subunits (LT), and heat-stable toxins that are small polypeptides (STa, STb, and EAST1). This chapter describes the disease and pathogenesis of animal ETEC, the corresponding virulence genes and protein products of these bacteria, their regulation and targets in animal hosts, as well as mechanisms of action. Furthermore, vaccines, inhibitors, probiotics and the identification of potential new targets identified by genomics are presented in the context of animal ETEC. PMID:27735786

  14. A flow chamber assay for quantitative evaluation of bacterial surface colonization used to investigate the influence of temperature and surface hydrophilicity on the biofilm forming capacity of uropathogenic Escherichia coli.

    PubMed

    Andersen, Thomas Emil; Kingshott, Peter; Palarasah, Yaseelan; Benter, Maike; Alei, Mojagan; Kolmos, Hans Jørn

    2010-05-01

    We have established a simple flow chamber-based procedure which provides an accurate and reproducible way to measure the amount of biofilm formed on an implantable biomaterial surface. The method enables the side-by-side evaluation of different materials under hydrodynamic flow conditions similar to those found on an implanted device. We have used the method to evaluate the biofilm forming capacity of clinically isolated Escherichia coli on silicone rubber and on silicone rubber containing a hydrophilic coating. It was found that the surface chemistry influenced the colonization of the isolates very differently. In addition, the temperature was found to have a considerable influence upon the adhesion and biofilm forming capacity of some of the isolates, and that the influence of surface chemistry depended on temperature. Our results suggest that the step from using E. coli laboratory strains to clinical isolates entails a significant rise in complexity and yields results that cannot be generalized. The results should be valuable information for researchers working with pre-clinical evaluation of device-associated E. coli infections.

  15. UpaG, a New Member of the Trimeric Autotransporter Family of Adhesins in Uropathogenic Escherichia coli▿ †

    PubMed Central

    Valle, Jaione; Mabbett, Amanda N.; Ulett, Glen C.; Toledo-Arana, Alejandro; Wecker, Karine; Totsika, Makrina; Schembri, Mark A.; Ghigo, Jean-Marc; Beloin, Christophe

    2008-01-01

    The ability of Escherichia coli to colonize both intestinal and extraintestinal sites is driven by the presence of specific virulence factors, among which are the autotransporter (AT) proteins. Members of the trimeric AT adhesin family are important virulence factors for several gram-negative pathogens and mediate adherence to eukaryotic cells and extracellular matrix (ECM) proteins. In this study, we characterized a new trimeric AT adhesin (UpaG) from uropathogenic E. coli (UPEC). Molecular analysis of UpaG revealed that it is translocated to the cell surface and adopts a multimeric conformation. We demonstrated that UpaG is able to promote cell aggregation and biofilm formation on abiotic surfaces in CFT073 and various UPEC strains. In addition, UpaG expression resulted in the adhesion of CFT073 to human bladder epithelial cells, with specific affinity to fibronectin and laminin. Prevalence analysis revealed that upaG is strongly associated with E. coli strains from the B2 and D phylogenetic groups, while deletion of upaG had no significant effect on the ability of CFT073 to colonize the mouse urinary tract. Thus, UpaG is a novel trimeric AT adhesin from E. coli that mediates aggregation, biofilm formation, and adhesion to various ECM proteins. PMID:18424525

  16. Polarized entry of uropathogenic Afa/Dr diffusely adhering Escherichia coli strain IH11128 into human epithelial cells: evidence for alpha5beta1 integrin recognition and subsequent internalization through a pathway involving caveolae and dynamic unstable microtubules.

    PubMed

    Guignot, J; Bernet-Camard, M F; Poüs, C; Plançon, L; Le Bouguenec, C; Servin, A L

    2001-03-01

    Afa/Dr diffusely adhering Escherichia coli strain IH11128 bacteria basolaterally entered polarized epithelial cells by a CD55- and CD66e-independent mechanism through interaction with the alpha5beta1 integrin and a pathway involving caveolae and dynamic microtubules (MTs). IH11128 invasion within HeLa cells was dramatically decreased after the cells were treated with the cholesterol-extracting drug methyl-beta-cyclodextrin or the caveola-disrupting drug filipin. Disassembly of the dynamically unstable MT network by the compound 201-F resulted in a total abolition of IH11128 entry. In apically infected polarized fully differentiated Caco-2/TC7 cells, no IH11128 entry was observed. The entry of bacteria into apically IH11128-infected fully differentiated Caco-2/TC7 cells was greatly enhanced by treating cells with Ca2+-free medium supplemented with EGTA, a procedure that disrupts intercellular junctions and thus exposes the basolateral surface to bacteria. Basally infected fully differentiated polarized Caco-2/TC7 cells grown on inverted inserts mounted in chamber culture showed a highly significant level of intracellular IH11128 bacteria compared with cells subjected to the apical route of infection. No expression of CD55 and CD66e, the receptors for the Afa/Dr adhesins, was found at the basolateral domains of these cells. Consistent with the hypothesis that a cell-to-cell adhesion molecule acts as a receptor for polarized IH11128 entry, an antibody blockade using anti-alpha5beta1 integrin polyclonal antibody completely abolished bacterial entry. Experiments conducted with the laboratory strain E. coli K-12 EC901 carrying the recombinant plasmid pBJN406, which expresses Dr hemagglutinin, demonstrated that the dra operon is involved in polarized entry of IH11128 bacteria. Examined as a function of cell differentiation, the number of internalized bacteria decreased dramatically beyond cell confluency. Surviving intracellular IH11128 bacteria residing intracellularly

  17. Structural and functional integrity of spermatozoa is compromised as a consequence of acute uropathogenic E. coli-associated epididymitis.

    PubMed

    Lang, Tali; Dechant, Maria; Sanchez, Victoria; Wistuba, Joachim; Boiani, Michele; Pilatz, Adrian; Stammler, Angelika; Middendorff, Ralf; Schuler, Gerhard; Bhushan, Sudhanshu; Tchatalbachev, Svetlin; Wübbeling, Frank; Burger, Martin; Chakraborty, Trinad; Mallidis, Con; Meinhardt, Andreas

    2013-09-01

    Uropathogenic Escherichia coli (UPEC)-associated epididymitis is commonly diagnosed in outpatient settings. Although the infection can be successfully cleared using antimicrobial medications, 40% of patients unexplainably show persistent impaired semen parameters even after treatment. Our aim was to investigate whether pathogenic UPEC and its associated virulence factor hemolysin (hlyA) perturb the structural and functional integrity of both the epididymis and sperm, actions that may be responsible for the observed impairment and possibly a reduction of fertilization capabilities. Semen collected from patients diagnosed with E. coli-only related epididymitis showed that sperm counts were low 14 days postantimicrobial treatment regardless of hlyA status. At Day 84 following treatment, hlyA production correlated with approximately 4-fold lower sperm concentrations than in men with hlyA-negative strains. In vivo experiments with the hlyA-producing UPEC CFT073 strain in a murine epididymitis model showed that just 3 days postinfection, structural damage to the epididymis (epithelial damage, leukocyte infiltration, and edema formation) was present. This was more severe in UPEC CFT073 compared to nonpathogenic E. coli (NPEC 470) infection. Moreover, pathogenic UPEC strains prematurely activated the acrosome in vivo and in vitro. Raman microspectroscopy revealed that UPEC CFT073 undermined sperm integrity by inducing nuclear DNA damage. Consistent with these observations, the in vitro fertilization capability of hlyA-treated mouse sperm was completely abolished, although sperm were motile. These findings provide new insights into understanding the possible processes underlying clinical manifestations of acute epididymitis.

  18. Serogroups of Escherichia coli from drinking water.

    PubMed

    Ramteke, P W; Tewari, Suman

    2007-07-01

    Fifty seven isolates of thermotolerant E. coli were recovered from 188 drinking water sources, 45 (78.9%) were typable of which 15 (26.3%) were pathogenic serotypes. Pathogenic serogroup obtained were 04 (Uropathogenic E. coli, UPEC), 025 (Enterotoxigenic E. coli, ETEC), 086 (Enteropathogenic E. coli, EPEC), 0103 (Shiga-toxin producing E. coli, STEC), 0157 (Shiga-toxin producing E. coli, STEC), 08 (Enterotoxigenic E. coli, ETEC) and 0113 (Shiga-toxin producing E. coli, STEC). All the pathogenic serotypes showed resistance to bacitracin and multiple heavy metal ions. Resistance to streptomycin and cotrimazole was detected in two strains whereas resistance to cephaloridine, polymixin-B and ampicillin was detected in one strain each. Transfer of resistances to drugs and metallic ions was observed in 9 out of 12 strains studied. Resistances to bacitracin were transferred in all nine strains. Among heavy metals resistance to As(3+) followed by Cr(6+) were transferred more frequently.

  19. Characterization of Escherichia coli causing community acquired urinary tract infections in Mexico City.

    PubMed

    Belmont-Monroy, Laura; Ribas-Aparicio, Rosa María; Navarro-Ocaña, Armando; Manjarrez-Hernández, H Ángel; Gavilanes-Parra, Sandra; Aparicio-Ozores, Gerardo; Cauich-Sánchez, Patricia Isidra; Garza-Ramos, Ulises; Molina-López, José

    2017-02-01

    The O25-ST131 clone was identified within 169 uropathogenic Escherichia coli (UPEC) strains. The 44.8% of the 29 O25-ST131 clones detected were positive to least to one extended-spectrum β-lactamase gene. The phylogroup D was mainly found. The O25-ST131 clone appeared to be associated with community-acquired UTI in Mexico City.

  20. A Murine Model for Escherichia coli Urinary Tract Infection

    PubMed Central

    Hannan, Thomas J.; Hunstad, David A.

    2015-01-01

    Urinary tract infections (UTI) are among the most common bacterial infections of humans. The mouse provides an excellent and tractable model system for cystitis and pyelonephritis caused by Escherichia coli and other uropathogens. Using a well-established model of experimental cystitis in which the bladders of female mice are infected via transurethral catheterization, the molecular details of the pathogenesis of bacterial cystitis have been substantially illuminated in the last decade. Uropathogenic E. coli attach to bladder epithelium (both in human and mouse) via adhesive type 1 pili, establish a replicative niche within epithelial cell cytoplasm, and form intracellular bacterial communities that are protected from antibiotic effects and immune clearance. The use of different inbred and mutant mouse strains offers the opportunity to study outcomes of infection, including resolution, formation of quiescent intracellular bacterial reservoirs, chronic bacterial cystitis, and recurrent infections. Urine, bladder, and kidney tissues can be analyzed by bacterial culture, histology, immunohistochemistry, immunofluorescent and confocal microscopy, electron microscopy, and flow cytometry, while a broad array of soluble markers (e.g., cytokines) can also be profiled in serum, urine, and tissue homogenates by ELISA, Western blotting, multiplex bead array, and other approaches. This model promises to afford continued opportunity for discovery of pathogenic mechanisms and evaluation of therapeutic and preventive strategies for acute, chronic, and recurrent UTI. PMID:26468108

  1. Characterization of fimbriae produced by enteropathogenic Escherichia coli.

    PubMed Central

    Girón, J A; Ho, A S; Schoolnik, G K

    1993-01-01

    Enteropathogenic Escherichia coli (EPEC) express rope-like bundles of filaments, termed bundle-forming pili (BFP) (J. A. Girón, A. S. Y. Ho, and G. K. Schoolnik, Science 254:710-713, 1991). Expression of BFP is associated with localized adherence to HEp-2 cells and the presence of the EPEC adherence factor plasmid. In this study, we describe the identification of rod-like fimbriae and fibrillae expressed simultaneously on the bacterial surface of three prototype EPEC strains. Upon fimbrial extraction from EPEC B171 (O111:NM), three fimbrial subunits with masses of 16.5, 15.5, and 14.7 kDa were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Their N-terminal amino acid sequence showed homology with F9 and F7(2) fimbriae of uropathogenic E. coli and F1845 of diffuse-adhering E. coli, respectively. The mixture of fimbrial subunits (called FB171) exhibited mannose-resistant agglutination of human erythrocytes only, and this activity was not inhibited by alpha-D-Gal(1-4)-beta-Gal disaccharide or any other described receptor analogs for P, S, F, M, G, and Dr hemagglutinins of uropathogenic E. coli, which suggests a different receptor specificity. Hemagglutination was inhibited by extracellular matrix glycoproteins, i.e., collagen type IV, laminin, and fibronectin, and to a lesser extent by gangliosides, fetuin, and asialofetuin. Scanning electron microscopic studies performed on clusters of bacteria adhering to HEp-2 cells revealed the presence of structures resembling BFP and rod-like fimbriae linking bacteria to bacteria and bacteria to the eukaryotic cell membrane. We suggest a role of these surface appendages in the interaction of EPEC with eukaryotic cells as well as in the overall pathogenesis of intestinal disease caused by EPEC. Images PMID:7901197

  2. Characterization of urinary Escherichia coli O75 strains.

    PubMed Central

    Nimmich, W; Voigt, W; Seltmann, G

    1997-01-01

    Forty-four Escherichia coli O75 strains from patients with urinary tract infections were characterized by a variety of methods to obtain evidence of their clonal distribution and uropathogenic properties. By K and H antigen typing, the strains were divided into the following serotypes: O75:K5:H- (18 strains), O75:K95:H- (10 strains), O75:K95:H5 (7 strains), O75:K100:H5 (4 strains), and O75:K-:H55 (5 strains). Generally, biotyping proved to be of no discriminative value. With two exceptions the strains were found to be sensitive to the bactericidal effect of normal human serum. As shown by multilocus enzyme electrophoresis, the whole-cell protein profile (WCPP), and the patterns of the outer membrane proteins and lipopolysaccharides, all but the five O75:H55 strains were genetically closely related to each other and could be classified into one clonal group. The O75:K-:H55 strains proved to be quite different and lacked type 1 fimbriae. All 17 K95 (H-, H5) strains produced hemolysin and P fimbriae. Five of the O75:K5:H- strains were different from the other K5 strains by showing hemagglutinating properties, on the basis of the presence of the OX adhesin. The last two groups are suggested to be uropathogenic and are proposed to represent separate clonal groups or subgroups. PMID:9114391

  3. Host-Pathogen Checkpoints and Population Bottlenecks in Persistent and Intracellular Uropathogenic E. coli Bladder Infection

    PubMed Central

    Hannan, Thomas J.; Totsika, Makrina; Mansfield, Kylie J.; Moore, Kate H.; Schembri, Mark A.; Hultgren, Scott J.

    2013-01-01

    Bladder infections affect millions of people yearly, and recurrent symptomatic infections (cystitis) are very common. The rapid increase in infections caused by multi-drug resistant uropathogens threatens to make recurrent cystitis an increasingly troubling public health concern. Uropathogenic E. coli (UPEC) cause the vast majority of bladder infections. Upon entry into the lower urinary tract, UPEC face obstacles to colonization that constitute population bottlenecks, reducing diversity and selecting for fit clones. A critical mucosal barrier to bladder infection is the epithelium (urothelium). UPEC bypass this barrier when they invade urothelial cells and form intracellular bacterial communities (IBCs), a process which requires type 1 pili. IBCs are transient in nature, occurring primarily during acute infection. Chronic bladder infection is common and can be either latent, in the form of the Quiescent Intracellular Reservoir (QIR), or active, in the form of asymptomatic bacteriuria (ASB/ABU) or chronic cystitis. In mice, the fate of bladder infection: QIR, ASB, or chronic cystitis, is determined within the first 24 hours of infection and constitutes a putative host-pathogen mucosal checkpoint that contributes to susceptibility to recurrent cystitis. Knowledge of these checkpoints and bottlenecks is critical for our understanding of bladder infection and efforts to devise novel therapeutic strategies. PMID:22404313

  4. Exonuclease IX of Escherichia coli.

    PubMed Central

    Shafritz, K M; Sandigursky, M; Franklin, W A

    1998-01-01

    The bacteria Escherichia coli contains several exonucleases acting on both double- and single-stranded DNA and in both a 5'-->3' and 3'-->5' direction. These enzymes are involved in replicative, repair and recombination functions. We have identified a new exonuclease found in E.coli, termed exonuclease IX, that acts preferentially on single-stranded DNA as a 3'-->5' exonuclease and also functions as a 3'-phosphodiesterase on DNA containing 3'-incised apurinic/apyrimidinic (AP) sites to remove the product trans -4-hydroxy-2-pentenal 5-phosphate. The enzyme showed essentially no activity as a deoxyribophosphodiesterase acting on 5'-incised AP sites. The activity was isolated as a glutathione S-transferase fusion protein from a sequence of the E.coli genome that was 60% identical to a 260 bp region of the small fragment of the DNA polymerase I gene. The protein has a molecular weight of 28 kDa and is free of AP endonuclease and phosphatase activities. Exonuclease IX is expressed in E.coli , as demonstrated by reverse transcription-PCR, and it may function in the DNA base excision repair and other pathways. PMID:9592142

  5. Curli fimbria: an Escherichia coli adhesin associated with human cystitis.

    PubMed

    Cordeiro, Melina Aparecida; Werle, Catierine Hirsch; Milanez, Guilherme Paier; Yano, Tomomasa

    2016-01-01

    Escherichia coli is the major causative agent of human cystitis. In this study, a preliminary molecular analysis carried out by PCR (polymerase chain reaction) demonstrated that 100% of 31 E. coli strains isolated from patients with recurrent UTIs (urinary tract infections) showed the presence of the curli fimbria gene (csgA). Curli fimbria is known to be associated with bacterial biofilm formation but not with the adhesion of human cystitis-associated E. coli. Therefore, this work aimed to study how curli fimbria is associated with uropathogenic E. coli (UPEC) as an adhesion factor. For this purpose, the csgA gene was deleted from strain UPEC-4, which carries three adhesion factor genes (csgA, fimH and ompA). The wild-type UPEC-4 strain and its mutant (ΔcsgA) were analyzed for their adhesion ability over HTB-9 (human bladder carcinoma), Vero (kidney cells of African green monkey) and HUVEC (human umbilical vein) cells in the presence of α-d-mannose. All the wild-type UPEC strains tested (100%) were able to adhere to all three cell types, while the UPEC-4 ΔcsgA mutant lost its adherence to HTB-9 but continued to adhere to the HUVEC and Vero cells. The results suggest that curli fimbria has an important role in the adhesion processes associated with human UPEC-induced cystitis.

  6. Enterobactin-Mediated Delivery of β-Lactam Antibiotics Enhances Antibacterial Activity against Pathogenic Escherichia coli

    PubMed Central

    2015-01-01

    The design, synthesis, and characterization of enterobactin–antibiotic conjugates, hereafter Ent-Amp/Amx, where the β-lactam antibiotics ampicillin (Amp) and amoxicillin (Amx) are linked to a monofunctionalized enterobactin scaffold via a stable poly(ethylene glycol) linker are reported. Under conditions of iron limitation, these siderophore-modified antibiotics provide enhanced antibacterial activity against Escherichia coli strains, including uropathogenic E. coli CFT073 and UTI89, enterohemorrhagic E. coli O157:H7, and enterotoxigenic E. coli O78:H11, compared to the parent β-lactams. Studies with E. coli K-12 derivatives defective in ferric enterobactin transport reveal that the enhanced antibacterial activity observed for this strain requires the outer membrane ferric enterobactin transporter FepA. A remarkable 1000-fold decrease in minimum inhibitory concentration (MIC) value is observed for uropathogenic E. coli CFT073 relative to Amp/Amx, and time-kill kinetic studies demonstrate that Ent-Amp/Amx kill this strain more rapidly at 10-fold lower concentrations than the parent antibiotics. Moreover, Ent-Amp and Ent-Amx selectively kill E. coli CFT073 co-cultured with other bacterial species such as Staphylococcus aureus, and Ent-Amp exhibits low cytotoxicity against human T84 intestinal cells in both the apo and iron-bound forms. These studies demonstrate that the native enterobactin platform provides a means to effectively deliver antibacterial cargo across the outer membrane permeability barrier of Gram-negative pathogens utilizing enterobactin for iron acquisition. PMID:24927110

  7. EcoR phylogenetic analysis and virulence genotyping of avian pathogenic Escherichia coli strains and Escherichia coli isolates from commercial chicken carcasses in southern Brazil.

    PubMed

    Kobayashi, Renata K T; Aquino, Ivani; Ferreira, Ana Lívia da S; Vidotto, Marilda C

    2011-05-01

    Escherichia coli strains designated as avian pathogenic E. coli (APEC) are responsible for avian colibacillosis, an acute and largely systemic disease that promotes significant economic losses in poultry industry worldwide because of mortality increase, medication costs, and condemnation of carcasses. APEC is a subgroup of extraintestinal pathogenic E. coli pathotype, which includes uropathogenic E. coli, neonatal meningitis E. coli, and septicemic E. coli. We isolated E. coli from commercial chicken carcasses in a Brazilian community and compared by polymerase chain reaction-defined phylogenetic group (A, B1, B2, or D) with APEC strains isolated from sick chickens from different poultry farms. A substantial number of strains assigned to phylogenetic E. coli reference collection group B2, which is known to harbor potent extraintestinal human and animal E. coli pathogens, were identified as APEC (26.0%) in both commercial chicken carcasses and retail poultry meat (retail poultry E. coli [RPEC]) (21.25%). The majority of RPEC were classified as group A (35%), whereas the majority of APEC were groups B1 (30.8) and A (27.6%). APEC and RPEC presented the genes pentaplex, iutA, hly, iron, ompT, and iss, but with different virulence profiles. The similarity between APEC and RPEC indicates RPEC as potentially pathogenic strains and supports a possible zoonotic risk for humans.

  8. Structure of Escherichia Coli Tryptophanase

    SciTech Connect

    Ku,S.; Yip, P.; Howell, P.

    2006-01-01

    Pyridoxal 5'-phosphate (PLP) dependent tryptophanase has been isolated from Escherichia coli and its crystal structure has been determined. The structure shares the same fold with and has similar quaternary structure to Proteus vulgaris tryptophanase and tyrosine-phenol lyase, but is found in a closed conformation when compared with these two enzymes. The tryptophanase structure, solved in its apo form, does not have covalent PLP bound in the active site, but two sulfate ions. The sulfate ions occupy the phosphoryl-binding site of PLP and the binding site of the {alpha}-carboxyl of the natural substrate tryptophan. One of the sulfate ions makes extensive interactions with both the transferase and PLP-binding domains of the protein and appears to be responsible for holding the enzyme in its closed conformation. Based on the sulfate density and the structure of the P. vulgaris enzyme, PLP and the substrate tryptophan were modeled into the active site. The resulting model is consistent with the roles of Arg419 in orienting the substrate to PLP and acidifying the {alpha}-proton of the substrate for {beta}-elimination, Lys269 in the formation and decomposition of the PLP quinonoid intermediate, Arg230 in orienting the substrate-PLP intermediates in the optimal conformation for catalysis, and His463 and Tyr74 in determining substrate specificity and suggests that the closed conformation observed in the structure could be induced by substrate binding and that significant conformational changes occur during catalysis. A catalytic mechanism for tryptophanase is proposed. Since E. coli tryptophanase has resisted forming diffraction-quality crystals for many years, the molecular surface of tryptophanase has been analyzed in various crystal forms and it was rationalized that strong crystal contacts occur on the flat surface of the protein and that the size of crystal contact surface seems to correlate with the diffraction quality of the crystal.

  9. Structure of Escherichia coli tryptophanase.

    PubMed

    Ku, Shao Yang; Yip, Patrick; Howell, P Lynne

    2006-07-01

    Pyridoxal 5'-phosphate (PLP) dependent tryptophanase has been isolated from Escherichia coli and its crystal structure has been determined. The structure shares the same fold with and has similar quaternary structure to Proteus vulgaris tryptophanase and tyrosine-phenol lyase, but is found in a closed conformation when compared with these two enzymes. The tryptophanase structure, solved in its apo form, does not have covalent PLP bound in the active site, but two sulfate ions. The sulfate ions occupy the phosphoryl-binding site of PLP and the binding site of the alpha-carboxyl of the natural substrate tryptophan. One of the sulfate ions makes extensive interactions with both the transferase and PLP-binding domains of the protein and appears to be responsible for holding the enzyme in its closed conformation. Based on the sulfate density and the structure of the P. vulgaris enzyme, PLP and the substrate tryptophan were modeled into the active site. The resulting model is consistent with the roles of Arg419 in orienting the substrate to PLP and acidifying the alpha-proton of the substrate for beta-elimination, Lys269 in the formation and decomposition of the PLP quinonoid intermediate, Arg230 in orienting the substrate-PLP intermediates in the optimal conformation for catalysis, and His463 and Tyr74 in determining substrate specificity and suggests that the closed conformation observed in the structure could be induced by substrate binding and that significant conformational changes occur during catalysis. A catalytic mechanism for tryptophanase is proposed. Since E. coli tryptophanase has resisted forming diffraction-quality crystals for many years, the molecular surface of tryptophanase has been analyzed in various crystal forms and it was rationalized that strong crystal contacts occur on the flat surface of the protein and that the size of crystal contact surface seems to correlate with the diffraction quality of the crystal.

  10. Effect of 2,4-Dichlorophenoxyacetic acid herbicide Escherichia coli growth, chemical, composition, and cellular envelope

    USGS Publications Warehouse

    Carr, R.S.; Biedenbach, J.M.; Hooten, R.L.

    2001-01-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) is a herbicide widely used in the world and mainly excreted by the renal route in exposed humans and animals. Herbicides can affect other nontarget organisms, such as Escherichia coli. We observed that a single exposure to 1 mM 2,4-D diminished growth and total protein content in all E. coli strains tested in vitro. In addition, successive exposures to 0.01 mM 2,4-D had a toxic effect decreasing growth up to early stationary phase. Uropathogenic E. coli adhere to epithelial cells mediated by fimbriae, adhesins, and hydrophobic properties. 2,4-D exposure of uropathogenic E. coli demonstrated altered hydrophobicity and fimbriation. Hydrophobicity index values obtained by partition in p-xylene/water were 300-420% higher in exposed cells than in control ones. Furthermore, values of hemagglutination titer, protein contents in fimbrial crude extract, and electron microscopy demonstrated a significant diminution of fimbriation in treated cells. Other envelope alterations could be detected, such as lipoperoxidation, evidenced by decreased polyunsaturated fatty acids and increased lipid degradation products (malonaldehyde), and motility diminution. These alterations decreased cell adherence to erythrocytes, indicating a diminished pathogenic capacity of the 2,4-D-exposed E. coli. ?? 2001 by John Wiley & Sons, Inc.

  11. Succinate production in Escherichia coli

    PubMed Central

    Thakker, Chandresh; Martínez, Irene; San, Ka-Yiu; Bennett, George N.

    2012-01-01

    Succinate has been recognized as an important platform chemical that can be produced from biomass. While a number of organisms are capable of succinate production naturally, this review focuses on the engineering of Escherichia coli for production of the four-carbon dicarboxylic acid. Important features of a succinate production system are to achieve optimal balance of reducing equivalents generated by consumption of the feedstock, while maximizing the amount of carbon that is channeled to the product. Aerobic and anaerobic production strains have been developed and applied to production from glucose as well as other abundant carbon sources. Metabolic engineering methods and strain evolution have been used and supplemented by the recent application of systems biology and in silico modeling tools to construct optimal production strains. The metabolic capacity of the production strain, as well as the requirement for efficient recovery of succinate and the reliability of the performance under scale-up are important in the overall process. The costs of the overall biorefinery compatible process will determine the economical commercialization of succinate and its impact in larger chemical markets. PMID:21932253

  12. Uropathogenic E. coli Exploit CEA to Promote Colonization of the Urogenital Tract Mucosa

    PubMed Central

    Muenzner, Petra; Kengmo Tchoupa, Arnaud; Klauser, Benedikt; Brunner, Thomas; Putze, Johannes; Dobrindt, Ulrich; Hauck, Christof R.

    2016-01-01

    Attachment to the host mucosa is a key step in bacterial pathogenesis. On the apical surface of epithelial cells, members of the human carcinoembryonic antigen (CEA) family are abundant glycoproteins involved in cell-cell adhesion and modulation of cell signaling. Interestingly, several gram-negative bacterial pathogens target these receptors by specialized adhesins. The prototype of a CEACAM-binding pathogen, Neisseria gonorrhoeae, utilizes colony opacity associated (Opa) proteins to engage CEA, as well as the CEA-related cell adhesion molecules CEACAM1 and CEACAM6 on human epithelial cells. By heterologous expression of neisserial Opa proteins in non-pathogenic E. coli we find that the Opa protein-CEA interaction is sufficient to alter gene expression, to increase integrin activity and to promote matrix adhesion of infected cervical carcinoma cells and immortalized vaginal epithelial cells in vitro. These CEA-triggered events translate in suppression of exfoliation and improved colonization of the urogenital tract by Opa protein-expressing E. coli in CEA-transgenic compared to wildtype mice. Interestingly, uropathogenic E. coli expressing an unrelated CEACAM-binding protein of the Afa/Dr adhesin family recapitulate the in vitro and in vivo phenotype. In contrast, an isogenic strain lacking the CEACAM-binding adhesin shows reduced colonization and does not suppress epithelial exfoliation. These results demonstrate that engagement of human CEACAMs by distinct bacterial adhesins is sufficient to blunt exfoliation and to promote host infection. Our findings provide novel insight into mucosal colonization by a common UPEC pathotype and help to explain why human CEACAMs are a preferred epithelial target structure for diverse gram-negative bacteria to establish a foothold on the human mucosa. PMID:27171273

  13. Strategies for Protein Overproduction in Escherichia coli.

    ERIC Educational Resources Information Center

    Mott, John E.

    1984-01-01

    Examines heterologous expression in Escherichia coli and the role of regulatory sequences which control gene expression at transcription resulting in abundant production of messenger RNA and regulatory sequences in mRNA which promote efficient translation. Also examines the role of E. coli cells in stabilizing mRNA and protein that is…

  14. Escherichia coli survival in waters: Temperature dependence

    EPA Science Inventory

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q10 mo...

  15. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Escherichia coli serological reagents. 866.3255... coli serological reagents. (a) Identification. Escherichia coli serological reagents are devices that consist of antigens and antisera used in serological tests to identify Escherichia coli from...

  16. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Escherichia coli serological reagents. 866.3255... coli serological reagents. (a) Identification. Escherichia coli serological reagents are devices that consist of antigens and antisera used in serological tests to identify Escherichia coli from...

  17. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Escherichia coli serological reagents. 866.3255... coli serological reagents. (a) Identification. Escherichia coli serological reagents are devices that consist of antigens and antisera used in serological tests to identify Escherichia coli from...

  18. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Escherichia coli serological reagents. 866.3255... coli serological reagents. (a) Identification. Escherichia coli serological reagents are devices that consist of antigens and antisera used in serological tests to identify Escherichia coli from...

  19. 21 CFR 866.3255 - Escherichia coli serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Escherichia coli serological reagents. 866.3255... coli serological reagents. (a) Identification. Escherichia coli serological reagents are devices that consist of antigens and antisera used in serological tests to identify Escherichia coli from...

  20. Clinical Implications of Enteroadherent Escherichia coli

    PubMed Central

    Arenas-Hernández, Margarita M.P.; Martínez-Laguna, Ygnacio; Torres, Alfredo G.

    2012-01-01

    Pathogenic Escherichia coli that colonize the small intestine primarily cause gastrointestinal illness in infants and travelers. The main categories of pathogenic E. coli that colonize the epithelial lining of the small intestine are enterotoxigenic E. coli enteropathogenic E. coli and enteroaggregative E. coli. These organisms accomplish their pathogenic process by a complex, coordinated multistage strategy, including non-intimate adherence mediated by various adhesins. These so called “enteroadherent E. coli ” categories subsequently produced toxins or effector proteins that are either secreted to the milieu or injected to the host cell. Finally, destruction of the intestinal microvilli results from the intimate adherence or the toxic effect exerted over the epithelia, resulting in water secretion and diarrhea. In this review, we summarize the current state of knowledge regarding these enteroadherent E. coli strains and the present clinical understanding of how these organisms colonize the human intestine and cause disease. PMID:22798032

  1. Evaluation of a new agar in Uricult-Trio for rapid detection of Escherichia coli in urine.

    PubMed Central

    Dalet, F; Segovia, T

    1995-01-01

    A new commercial agar (Uricult-Trio) with 8-hydroxyquinoline-beta-glucuronide was used to assess 2,536 uropathogens for beta-glucuronidase activity typical of Escherichia coli. Included in the study were 1,807 strains of the family Enterobacteriaceae, 284 strains of nonfermentative bacilli, 345 strains of gram-positive cocci, and 100 yeast strains. In identifying E. coli, the test agar gave a sensitivity of 95.5% and a specificity of 97.2%. Fifty E. coli isolates gave negative reactions; 31 non-E. coli strains produced black colonies characteristic of E. coli. No growth of gram-positive cocci and no false-positive reactions from yeasts were observed. The recovery rate for E. coli on this agar was at least 10% higher than that on blood agar. PMID:7615766

  2. Adherence to Hospital Antibiotic Policy for Treatment of Escherichia coli ESBL in Urine

    PubMed Central

    Prakash, K. Gnana; Deshpande, Shreeram A.; Aravazhi, Anbu N.

    2016-01-01

    Introduction Escherichia coli are the most common uropathogen worldwide accounting for 80% of the Urinary Tract Infections (UTIs). Nosocomial infections caused by Multi-drug resistant Gram negative bacteria expressing Extended Spectrum β Lactamase enzyme, pose a serious therapeutic challenge to clinicians due to limited therapeutic options. Stringent adherence to Hospital Antibiotic Policy in treating Urinary Escherichia coli ESBLs is a borne necessity. Aim A clinical audit was undertaken in the form of a cross-sectional study to evaluate the compliance on appropriate antibiotic prescription and strict adherence to Hospital Antibiotic Policy for therapeutic management of the patients infected with urinary Escherichia coli ESBL producers. Materials and Methods A cross-sectional medical audit on adherence to treatment of Escherichia coli ESBL producers from in-patients diagnosed to have urinary tract infections for a duration of 7 months was conducted as a prospective study. Clinical data, culture and sensitivity reports of the patient diagnosed with urinary Escherichia coli ESBLs were compared with the treatment chart to ensure strict adherence to hospital antibiotic policy for appropriate therapy by physicians. Data were analysed using IBM SPSS version 20 software. Results The incidence of uncomplicated cystitis, pyelonephritis and complicated pyelonephritis cases were 65.24% (107 out of 164), 20.7% (34 out of 164) and 14.02% (23 out of 164) respectively. Resistance to individual fluoroquinolones like norfloxacin, ciprofloxacin and ofloxacin were found to be 60%, 59% and 47.5% respectively. As per hospital antibiotic policy, fluoroquinolones were prescribed in only 23% of the patients for the treatment of urinary Escherichia coli ESBLs. Conclusion Irrational utilization of antibiotics and non-adherence to antibiotic policy could have been the significant risk factors for drug resistance. Optimized antibiotic use, Microbiology laboratory support and periodic

  3. Virulence factors in Escherichia coli urinary tract infection.

    PubMed Central

    Johnson, J R

    1991-01-01

    Uropathogenic strains of Escherichia coli are characterized by the expression of distinctive bacterial properties, products, or structures referred to as virulence factors because they help the organism overcome host defenses and colonize or invade the urinary tract. Virulence factors of recognized importance in the pathogenesis of urinary tract infection (UTI) include adhesins (P fimbriae, certain other mannose-resistant adhesins, and type 1 fimbriae), the aerobactin system, hemolysin, K capsule, and resistance to serum killing. This review summarizes the virtual explosion of information regarding the epidemiology, biochemistry, mechanisms of action, and genetic basis of these urovirulence factors that has occurred in the past decade and identifies areas in need of further study. Virulence factor expression is more common among certain genetically related groups of E. coli which constitute virulent clones within the larger E. coli population. In general, the more virulence factors a strain expresses, the more severe an infection it is able to cause. Certain virulence factors specifically favor the development of pyelonephritis, others favor cystitis, and others favor asymptomatic bacteriuria. The currently defined virulence factors clearly contribute to the virulence of wild-type strains but are usually insufficient in themselves to transform an avirulent organism into a pathogen, demonstrating that other as-yet-undefined virulence properties await discovery. Virulence factor testing is a useful epidemiological and research tool but as yet has no defined clinical role. Immunological and biochemical anti-virulence factor interventions are effective in animal models of UTI and hold promise for the prevention of UTI in humans. Images PMID:1672263

  4. Iron induces bimodal population development by Escherichia coli.

    PubMed

    DePas, William H; Hufnagel, David A; Lee, John S; Blanco, Luz P; Bernstein, Hans C; Fisher, Steve T; James, Garth A; Stewart, Philip S; Chapman, Matthew R

    2013-02-12

    Bacterial biofilm formation is a complex developmental process involving cellular differentiation and the formation of intricate 3D structures. Here we demonstrate that exposure to ferric chloride triggers rugose biofilm formation by the uropathogenic Escherichia coli strain UTI89 and by enteric bacteria Citrobacter koseri and Salmonella enterica serovar typhimurium. Two unique and separable cellular populations emerge in iron-triggered, rugose biofilms. Bacteria at the air-biofilm interface express high levels of the biofilm regulator csgD, the cellulose activator adrA, and the curli subunit operon csgBAC. Bacteria in the interior of rugose biofilms express low levels of csgD and undetectable levels of matrix components curli and cellulose. Iron activation of rugose biofilms is linked to oxidative stress. Superoxide generation, either through addition of phenazine methosulfate or by deletion of sodA and sodB, stimulates rugose biofilm formation in the absence of high iron. Additionally, overexpression of Mn-superoxide dismutase, which can mitigate iron-derived reactive oxygen stress, decreases biofilm formation in a WT strain upon iron exposure. Not only does reactive oxygen stress promote rugose biofilm formation, but bacteria in the rugose biofilms display increased resistance to H(2)O(2) toxicity. Altogether, we demonstrate that iron and superoxide stress trigger rugose biofilm formation in UTI89. Rugose biofilm development involves the elaboration of two distinct bacterial populations and increased resistance to oxidative stress.

  5. In-stream Escherichia coli Modeling

    NASA Astrophysics Data System (ADS)

    Pandey, P.; Soupir, M.

    2013-12-01

    Elevated levels of pathogenic bacteria indicators such as Escherichia coli (E. coli) in streams are a serious concern. Controlling E. coli levels in streams requires improving our existing understanding of fate and transport of E. coli at watershed scale. In-stream E. coli concentrations are potentially linked to non-point pollution sources (i.e., agricultural land). Water of a natural stream can receive E. coli by either through overland flow (via runoff from cropland) or resuspension from the streambed to the water column. Calculating in-stream total E. coli loads requires estimation of particle attached bacteria as well free floating E. coli transport. Currently water quality models commonly used for predicting E. coli levels in stream water have limited capability for predicting E. coli levels in the water column as well as in the streambed sediment. The challenges in calculating in-stream E. coli levels include difficulties in modeling the complex interactions between sediment particles and E. coli. Here we have developed a watershed scale model (integrated with Soil and Water Assessment Tool (SWAT)), which involves calculation of particle attached E. coli, to predict in-stream E. coli concentrations. The proposed model predicts E. coli levels in streambed bed sediment as well as in the water column. An extensive in-stream E. coli monitoring was carried out to verify the model predictions, and results indicate that the model performed well. The study proposed here will improve understanding on in-stream bacterial contamination, and help improving existing water quality models for predicting pathogenic bacteria levels in ambient water bodies.

  6. Native valve Escherichia coli endocarditis following urosepsis.

    PubMed

    Rangarajan, D; Ramakrishnan, S; Patro, K C; Devaraj, S; Krishnamurthy, V; Kothari, Y; Satyaki, N

    2013-05-01

    Gram-negative organisms are a rare cause of infective endocarditis. Escherichia coli, the most common cause of urinary tract infection and gram-negative septicemia involves endocardium rarely. In this case report, we describe infection of native mitral valve by E. coli following septicemia of urinary tract origin in a diabetic male; subsequently, he required prosthetic tissue valve replacement indicated by persistent sepsis and congestive cardiac failure.

  7. 77 FR 9888 - Shiga Toxin-Producing Escherichia coli

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-21

    ... Food Safety and Inspection Service Shiga Toxin-Producing Escherichia coli in Certain Raw Beef Products... manufacturing trimmings for six non-O157 Shiga toxin-producing Escherichia coli (STEC) serogroups (O26, O45..., non-intact product, that are contaminated with Shiga toxin-producing Escherichia coli (STEC) O26,...

  8. Escherichia Coli--Key to Modern Genetics.

    ERIC Educational Resources Information Center

    Bregegere, Francois

    1982-01-01

    Mid-nineteenth century work by Mendel on plant hybrids and by Pasteur on fermentation gave birth by way of bacterial genetics to modern-day molecular biology. The bacterium Escherichia Coli has occupied a key position in genetic studies leading from early gene identification with DNA to current genetic engineering using recombinant DNA technology.…

  9. Escherichia coli and Sudden Infant Death Syndrome

    PubMed Central

    Bettelheim, Karl A.; Goldwater, Paul N.

    2015-01-01

    This review examines the association of strains of Escherichia coli with sudden infant death syndrome (SIDS) and the possible role these bacteria play in this enigmatic condition. The review addresses evidence for E. coli in SIDS infants, potential sources of E. coli in the environment, colonization by commensal and pathogenic strains, the variety of currently accepted pathotypes, and how these pathotypes could compromise intestinal integrity and induce inflammation. Both intestinal and extraintestinal pathotypes are compared in relation to the apparent liability in which virulence traits can be gained or lost by strains of E. coli. The way in which E. coli infections fit with current views on infant sleeping position and other SIDS risk factors is highlighted. PMID:26191064

  10. Afa, a diffuse adherence fibrillar adhesin associated with enteropathogenic Escherichia coli.

    PubMed

    Keller, Rogéria; Ordoñez, Juana G; de Oliveira, Rosana R; Trabulsi, Luiz R; Baldwin, Thomas J; Knutton, Stuart

    2002-05-01

    O55 is one of the most frequent enteropathogenic Escherichia coli (EPEC) O serogroups implicated in infantile diarrhea in developing countries. Multilocus enzyme electrophoresis analysis showed that this serogroup includes two major electrophoretic types (ET), designated ET1 and ET5. ET1 corresponds to typical EPEC, whilst ET5 comprises strains with different combinations of virulence genes, including those for localized adherence (LA) and diffuse adherence (DA). Here we report that ET5 DA strains possess a DA adhesin, designated EPEC Afa. An 11.6-kb chromosomal region including the DA adhesin operon from one O55:H(-) ET5 EPEC strain was sequenced and found to encode a protein with 98% identity to AfaE-1, an adhesin associated with uropathogenic E. coli. Although described as an afimbrial adhesin, we show that both AfaE-1 and EPEC Afa possess fine fibrillar structures. This is the first characterization and demonstration of an Afa adhesin associated with EPEC.

  11. Pathogenic Escherichia coli Found in Sewage Treatment Plants and Environmental Waters

    PubMed Central

    Anastasi, E. M.; Matthews, B.; Stratton, H. M.

    2012-01-01

    We previously demonstrated that some Escherichia coli strains with uropathogenic properties survived treatment stages of sewage treatment plants (STPs), suggesting that they may be released into the environment. We investigated the presence of such strains in the surrounding environmental waters of four STPs from which these persistent strains were isolated. In all, 264 E. coli isolates were collected from 129 receiving water sites in a 20-km radius surrounding STPs. We also included 93 E. coli strains collected from 18 animal species for comparison. Isolates were typed using a high-resolution biochemical fingerprinting method (the PhPlate system), and grouped into common (C) types. One hundred forty-seven (56%) environmental isolates were identical to strains found in STPs' final effluents. Of these, 140 (95%) carried virulence genes (VGs) associated with intestinal pathogenic E. coli (IPEC) or uropathogenic E. coli (UPEC) and were found in a variety of sites within areas sampled. Of the remaining 117 environmental strains not identical to STP strains, 105 belonged to 18 C types and 102 of them carried VGs found among IPEC or UPEC strains. These strains belonged mainly to phylogenetic groups A (A0 and A1) and B1 and to a lesser extent B22, B23, D1, and D2. Eight of 18 environmental C types, comprising 50 isolates, were also identical to bird strains. The presence of a high percentage of environmental E. coli in waters near STPs carrying VGs associated with IPEC and UPEC suggests that they may have derived from STP effluents and other nonpoint sources. PMID:22660714

  12. Invasion of Host Cells and Tissues by Uropathogenic Bacteria

    PubMed Central

    Lewis, Adam J.; Richards, Amanda C.; Mulvey, Matthew A.

    2016-01-01

    Within the mammalian urinary tract uropathogenic bacteria face many challenges, including the shearing flow of urine, numerous antibacterial molecules, the bactericidal effects of phagocytes, and a scarcity of nutrients. These problems may be circumvented in part by the ability of uropathogenic Escherichia coli (UPEC) and several other uropathogens to invade the epithelial cells that line the urinary tract. By entering host cells, uropathogens can gain access to additional nutrients and protection from both host defenses and antibiotic treatments. Translocation through host cells can facilitate bacterial dissemination within the urinary tract, while the establishment of stable intracellular bacterial populations may create reservoirs for relapsing and chronic urinary tract infections (UTIs). Here we review the mechanisms and consequences of host cell invasion by uropathogenic bacteria, with consideration of the defenses that are brought to bear against facultative intracellular pathogens within the urinary tract. The relevance of host cell invasion to the pathogenesis of UTIs in human patients is also assessed, along with some of the emerging treatment options that build upon our growing understanding of the infectious life cycle of UPEC and other uropathogenic bacteria. PMID:28087946

  13. Zoonotic Potential of Escherichia coli Isolates from Retail Chicken Meat Products and Eggs

    PubMed Central

    Mitchell, Natalie M.; Johnson, James R.; Johnston, Brian; Curtiss, Roy

    2014-01-01

    Chicken products are suspected as a source of extraintestinal pathogenic Escherichia coli (ExPEC), which causes diseases in humans. The zoonotic risk to humans from chicken-source E. coli is not fully elucidated. To clarify the zoonotic risk posed by ExPEC in chicken products and to fill existing knowledge gaps regarding ExPEC zoonosis, we evaluated the prevalence of ExPEC on shell eggs and compared virulence-associated phenotypes between ExPEC and non-ExPEC isolates from both chicken meat and eggs. The prevalence of ExPEC among egg-source isolates was low, i.e., 5/108 (4.7%). Based on combined genotypic and phenotypic screening results, multiple human and avian pathotypes were represented among the chicken-source ExPEC isolates, including avian-pathogenic E. coli (APEC), uropathogenic E. coli (UPEC), neonatal meningitis E. coli (NMEC), and sepsis-associated E. coli (SEPEC), as well as an undefined ExPEC group, which included isolates with fewer virulence factors than the APEC, UPEC, and NMEC isolates. These findings document a substantial prevalence of human-pathogenic ExPEC-associated genes and phenotypes among E. coli isolates from retail chicken products and identify key virulence traits that could be used for screening. PMID:25480753

  14. Electrophoretic Mobilities of Escherichia coli O157:H7 and Wild-Type Escherichia coli Strains

    PubMed Central

    Lytle, Darren A.; Rice, Eugene W.; Johnson, Clifford H.; Fox, Kim R.

    1999-01-01

    The electrophoretic mobilities (EPMs) of a number of Escherichia coli O157:H7 and wild-type E. coli strains were measured. The effects of pH and ionic strength on the EPMs were investigated. The EPMs of E. coli O157:H7 strains differed from those of wild-type strains. As the suspension pH decreased, the EPMs of both types of strains increased. PMID:10388724

  15. Molecular analysis of cytolysin A (ClyA) in pathogenic Escherichia coli strains.

    PubMed

    Ludwig, Albrecht; von Rhein, Christine; Bauer, Susanne; Hüttinger, Christian; Goebel, Werner

    2004-08-01

    Cytolysin A (ClyA) of Escherichia coli is a pore-forming hemolytic protein encoded by the clyA (hlyE, sheA) gene that was first identified in E. coli K-12. In this study we examined various clinical E. coli isolates with regard to the presence and integrity of clyA. PCR and DNA sequence analyses demonstrated that 19 of 23 tested Shiga toxin-producing E. coli (STEC) strains, all 7 tested enteroinvasive E. coli (EIEC) strains, 6 of 8 enteroaggregative E. coli (EAEC) strains, and 4 of 7 tested enterotoxigenic E. coli (ETEC) strains possess a complete clyA gene. The remaining STEC, EAEC, and ETEC strains and 9 of the 17 tested enteropathogenic E. coli (EPEC) strains were shown to harbor mutant clyA derivatives containing 1-bp frameshift mutations that cause premature termination of the coding sequence. The other eight EPEC strains and all tested uropathogenic and new-born meningitis-associated E. coli strains (n = 14 and 3, respectively) carried only nonfunctional clyA fragments due to the deletion of two sequences of 493 bp and 204 or 217 bp at the clyA locus. Expression of clyA from clinical E. coli isolates proved to be positively controlled by the transcriptional regulator SlyA. Several tested E. coli strains harboring a functional clyA gene produced basal amounts of ClyA when grown under standard laboratory conditions, but most of them showed a clyA-dependent hemolytic phenotype only when SlyA was overexpressed. The presented data indicate that cytolysin A can play a role only for some of the pathogenic E. coli strains.

  16. The Inhibitory Effects of Static Magnetic Field on Escherichia coli from two Different Sources at Short Exposure Time

    PubMed Central

    Mousavian-Roshanzamir, Sofieh; Makhdoumi-Kakhki, Ali

    2017-01-01

    This study was intended to investigate the effectiveness of static magnetic field on the growth of Escherichia coli (E. coli) provided from two sources, the urine samples of patients with urinary tract infections and the reference strain E. coli ATCC 25922. Bacterial samples in Nutrient Broth were subjected to a range of magnetic intensities (2, 4, 6, 9, 14, 16, 18, and 20 mT) at various exposure times (0, 15, 30, 45, 60, 75, and 90 min). The survival rate was measured in the presence and absence of the magnetic field over time. The cell counts of uropathogenic E. coli did not statistically differed from those of the standard strain if exposed to the magnetic field. The fluctuation was observed in cell viabilities at different magnetic intensities below 18 mT. Both groups presented a significant decline in survival rate as exposed to 18 and 20 mT. PMID:28367473

  17. Hydrogen production by recombinant Escherichia coli strains

    PubMed Central

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Wood, Thomas K.

    2012-01-01

    Summary The production of hydrogen via microbial biotechnology is an active field of research. Given its ease of manipulation, the best‐studied bacterium Escherichia coli has become a workhorse for enhanced hydrogen production through metabolic engineering, heterologous gene expression, adaptive evolution, and protein engineering. Herein, the utility of E. coli strains to produce hydrogen, via native hydrogenases or heterologous ones, is reviewed. In addition, potential strategies for increasing hydrogen production are outlined and whole‐cell systems and cell‐free systems are compared. PMID:21895995

  18. Escherichia coli and Enterococcus faecalis are able to incorporate and enhance a pre-formed Gardnerella vaginalis biofilm.

    PubMed

    Castro, Joana; Machado, Daniela; Cerca, Nuno

    2016-04-01

    Gardnerella vaginalis is the most frequent microorganism found in bacterial vaginosis (BV), while Escherichia coli and Enterococcus faecalis are amongst the most frequent pathogens found in urinary tract infections (UTIs). This study aimed to evaluate possible interactions between UTIs pathogens and G. vaginalis using an in vitro dual-species biofilm model. Our results showed that dual-species biofilms reached significantly higher bacterial concentration than monospecies biofilms. Moreover, visualization of dual-populations species in the biofilms, using the epifluorescence microscopy, revealed that all of the urogenital pathogens coexisted with G. vaginalis. In conclusion, our work demonstrates that uropathogens can incorporate into mature BV biofilms.

  19. Inhibition and Reversal of Microbial Attachment by an Antibody with Parasteric Activity against the FimH Adhesin of Uropathogenic E. coli

    PubMed Central

    Friend, Della; Jalan, Aachal; Gupta, Shivani; Interlandi, Gianluca; Liu, Yan; Tchesnokova, Veronika; Rodriguez, Victoria B.; Sumida, John P.; Strong, Roland K.; Wu, Xue-Ru; Thomas, Wendy E.; Sokurenko, Evgeni V.

    2015-01-01

    Attachment proteins from the surface of eukaryotic cells, bacteria and viruses are critical receptors in cell adhesion or signaling and are primary targets for the development of vaccines and therapeutic antibodies. It is proposed that the ligand-binding pocket in receptor proteins can shift between inactive and active conformations with weak and strong ligand-binding capability, respectively. Here, using monoclonal antibodies against a vaccine target protein - fimbrial adhesin FimH of uropathogenic Escherichia coli, we demonstrate that unusually strong receptor inhibition can be achieved by antibody that binds within the binding pocket and displaces the ligand in a non-competitive way. The non-competitive antibody binds to a loop that interacts with the ligand in the active conformation of the pocket but is shifted away from ligand in the inactive conformation. We refer to this as a parasteric inhibition, where the inhibitor binds adjacent to the ligand in the binding pocket. We showed that the receptor-blocking mechanism of parasteric antibody differs from that of orthosteric inhibition, where the inhibitor replaces the ligand or allosteric inhibition where the inhibitor binds at a site distant from the ligand, and is very potent in blocking bacterial adhesion, dissolving surface-adherent biofilms and protecting mice from urinary bladder infection. PMID:25974133

  20. Pathogenesis of Afa/Dr diffusely adhering Escherichia coli.

    PubMed

    Servin, Alain L

    2005-04-01

    Over the last few years, dramatic increases in our knowledge about diffusely adhering Escherichia coli (DAEC) pathogenesis have taken place. The typical class of DAEC includes E. coli strains harboring AfaE-I, AfaE-II, AfaE-III, AfaE-V, Dr, Dr-II, F1845, and NFA-I adhesins (Afa/Dr DAEC); these strains (i) have an identical genetic organization and (ii) allow binding to human decay-accelerating factor (DAF) (Afa/Dr(DAF) subclass) or carcinoembryonic antigen (CEA) (Afa/Dr(CEA) subclass). The atypical class of DAEC includes two subclasses of strains; the atypical subclass 1 includes E. coli strains that express AfaE-VII, AfaE-VIII, AAF-I, AAF-II, and AAF-III adhesins, which (i) have an identical genetic organization and (ii) do not bind to human DAF, and the atypical subclass 2 includes E. coli strains that harbor Afa/Dr adhesins or others adhesins promoting diffuse adhesion, together with pathogenicity islands such as the LEE pathogenicity island (DA-EPEC). In this review, the focus is on Afa/Dr DAEC strains that have been found to be associated with urinary tract infections and with enteric infection. The review aims to provide a broad overview and update of the virulence aspects of these intriguing pathogens. Epidemiological studies, diagnostic techniques, characteristic molecular features of Afa/Dr operons, and the respective role of Afa/Dr adhesins and invasins in pathogenesis are described. Following the recognition of membrane-bound receptors, including type IV collagen, DAF, CEACAM1, CEA, and CEACAM6, by Afa/Dr adhesins, activation of signal transduction pathways leads to structural and functional injuries at brush border and junctional domains and to proinflammatory responses in polarized intestinal cells. In addition, uropathogenic Afa/Dr DAEC strains, following recognition of beta(1) integrin as a receptor, enter epithelial cells by a zipper-like, raft- and microtubule-dependent mechanism. Finally, the presence of other, unknown virulence factors and the

  1. The evolution of the Escherichia coli phylogeny.

    PubMed

    Chaudhuri, Roy R; Henderson, Ian R

    2012-03-01

    Escherichia coli is familiar to biologists as a classical model system, ubiquitous in molecular biology laboratories around the world. Outside of the laboratory, E. coli strains exist as an almost universal component of the lower-gut flora of humans and animals. Although usually a commensal, E. coli has an alter ego as a pathogen, and is associated with diarrhoeal disease and extra-intestinal infections. The study of E. coli diversity predates the availability of molecular data, with strains initially distinguished by serotyping and metabolic profiling, and genomic diversity illustrated by DNA hybridisation. The quantitative study of E. coli diversity began with the application of multi-locus enzyme electrophoresis (MLEE), and has progressed with the accumulation of nucleotide sequence data, from single genes through multi-locus sequence typing (MLST) to whole genome sequencing. Phylogenetic methods have shed light on the processes of genomic evolution in this extraordinarily diverse species, and revealed the origins of pathogenic E. coli strains, including members of the phylogenetically indistinguishable "genus"Shigella. In May and June 2011, an outbreak of haemorrhagic uraemic syndrome in Germany was linked to a strain of enterohaemorrhagic E. coli (EHEC) O104:H4. Application of high-throughput sequencing technologies allowed the genome and origins of the outbreak strain to be characterised in real time as the outbreak was in progress.

  2. Automatic tracking of Escherichia coli bacteria.

    PubMed

    Xie, Jun; Khan, Shahid; Shah, Mubarak

    2008-01-01

    In this paper, we present an automatic method for estimating the trajectories of Escherichia coli bacteria from in vivo phase-contrast microscopy videos. To address the low-contrast boundaries in cellular images, an adaptive kernel-based technique is applied to detect cells in sequence of frames. Then a novel matching gain measure is introduced to cope with the challenges such as dramatic changes of cells' appearance and serious overlapping and occlusion. For multiple cell tracking, an optimal matching strategy is proposed to improve the handling of cell collision and broken trajectories. The results of successful tracking of Escherichia coli from various phase-contrast sequences are reported and compared with manually-determined trajectories, as well as those obtained from existing tracking methods. The stability of the algorithm with different parameter values is also analyzed and discussed.

  3. A Survey for Escherichia coli Virulence Factors in Asymptomatic Free-Ranging Parrots.

    PubMed

    Becker Saidenberg, André; Robaldo Guedes, Neiva Maria; Fernandes Seixas, Gláucia Helena; da Costa Allgayer, Mariangela; Pacífico de Assis, Erica; Fabio Silveira, Luis; Anne Melville, Priscilla; Benites, Nilson Roberti

    2012-01-01

    Parrots in captivity are frequently affected by Escherichia coli (E. coli) infections. The objective of this study was to collect information on the carrier state for E. coli pathotypes in asymptomatic free-ranging parrots. Cloacal swabs were collected from nestlings of Hyacinth, Lear's macaws and Blue-fronted Amazon parrots and tested by polymerase chain reaction (PCR) for virulence factors commonly found in enteropathogenic, avian pathogenic, and uropathogenic E. coli strains. In total, 44 samples were cultured and E. coli isolates were yielded, from which DNA was extracted and processed by PCR. Genes commonly found in APEC isolates from Blue-fronted Amazon parrots and Hyacinth macaws were expressed in 14 of these 44 samples. One atypical EPEC isolate was obtained from a sample from Lear's macaw. The most commonly found gene was the increased serum survival (iss) gene. This is the first report, that describes such pathotypes in asymptomatic free-living parrots. The findings of this study suggest the presence of a stable host/parasite relationship at the time of the sampling brings a new understanding to the role that E. coli plays in captive and wild parrots. Such information can be used to improve husbandry protocols as well as help conservation efforts of free-living populations.

  4. A Survey for Escherichia coli Virulence Factors in Asymptomatic Free-Ranging Parrots

    PubMed Central

    Becker Saidenberg, André; Robaldo Guedes, Neiva Maria; Fernandes Seixas, Gláucia Helena; da Costa Allgayer, Mariangela; Pacífico de Assis, Erica; Fabio Silveira, Luis; Anne Melville, Priscilla; Benites, Nilson Roberti

    2012-01-01

    Parrots in captivity are frequently affected by Escherichia coli (E. coli) infections. The objective of this study was to collect information on the carrier state for E. coli pathotypes in asymptomatic free-ranging parrots. Cloacal swabs were collected from nestlings of Hyacinth, Lear's macaws and Blue-fronted Amazon parrots and tested by polymerase chain reaction (PCR) for virulence factors commonly found in enteropathogenic, avian pathogenic, and uropathogenic E. coli strains. In total, 44 samples were cultured and E. coli isolates were yielded, from which DNA was extracted and processed by PCR. Genes commonly found in APEC isolates from Blue-fronted Amazon parrots and Hyacinth macaws were expressed in 14 of these 44 samples. One atypical EPEC isolate was obtained from a sample from Lear's macaw. The most commonly found gene was the increased serum survival (iss) gene. This is the first report, that describes such pathotypes in asymptomatic free-living parrots. The findings of this study suggest the presence of a stable host/parasite relationship at the time of the sampling brings a new understanding to the role that E. coli plays in captive and wild parrots. Such information can be used to improve husbandry protocols as well as help conservation efforts of free-living populations. PMID:23738135

  5. Antimicrobial Resistance Among Uropathogens That Cause Childhood Community-acquired Urinary Tract Infections in Central Israel.

    PubMed

    Yakubov, Renata; van den Akker, Machiel; Machamad, Kaba; Hochberg, Amit; Nadir, Erez; Klein, Adi

    2017-01-01

    In this retrospective study 829 positive urine cultures were analyzed. Escherichia coli bacterium was the leading uropathogen (86%). Almost 60% were resistant to ampicillin and first generation cephalosporins, and about 30% of them resistant to amoxicillin-clavulanic acid and trimethoprim-sulfamethoxazole. Almost none of them were resistant to second and third generation cephalosporins, aminoglycosides, ciprofloxacin or nitrofurantoin.

  6. Prevalence of avian-pathogenic Escherichia coli strain O1 genomic islands among extraintestinal and commensal E. coli isolates.

    PubMed

    Johnson, Timothy J; Wannemuehler, Yvonne; Kariyawasam, Subhashinie; Johnson, James R; Logue, Catherine M; Nolan, Lisa K

    2012-06-01

    Escherichia coli strains that cause disease outside the intestine are known as extraintestinal pathogenic E. coli (ExPEC) and include pathogens of humans and animals. Previously, the genome of avian-pathogenic E. coli (APEC) O1:K1:H7 strain O1, from ST95, was sequenced and compared to those of several other E. coli strains, identifying 43 genomic islands. Here, the genomic islands of APEC O1 were compared to those of other sequenced E. coli strains, and the distribution of 81 genes belonging to 12 APEC O1 genomic islands among 828 human and avian ExPEC and commensal E. coli isolates was determined. Multiple islands were highly prevalent among isolates belonging to the O1 and O18 serogroups within phylogenetic group B2, which are implicated in human neonatal meningitis. Because of the extensive genomic similarities between APEC O1 and other human ExPEC strains belonging to the ST95 phylogenetic lineage, its ability to cause disease in a rat model of sepsis and meningitis was assessed. Unlike other ST95 lineage strains, APEC O1 was unable to cause bacteremia or meningitis in the neonatal rat model and was significantly less virulent than uropathogenic E. coli (UPEC) CFT073 in a mouse sepsis model, despite carrying multiple neonatal meningitis E. coli (NMEC) virulence factors and belonging to the ST95 phylogenetic lineage. These results suggest that host adaptation or genome modifications have occurred either in APEC O1 or in highly virulent ExPEC isolates, resulting in differences in pathogenicity. Overall, the genomic islands examined provide targets for further discrimination of the different ExPEC subpathotypes, serogroups, phylogenetic types, and sequence types.

  7. Systems Metabolic Engineering of Escherichia coli.

    PubMed

    Choi, Kyeong Rok; Shin, Jae Ho; Cho, Jae Sung; Yang, Dongsoo; Lee, Sang Yup

    2017-03-01

    Systems metabolic engineering, which recently emerged as metabolic engineering integrated with systems biology, synthetic biology, and evolutionary engineering, allows engineering of microorganisms on a systemic level for the production of valuable chemicals far beyond its native capabilities. Here, we review the strategies for systems metabolic engineering and particularly its applications in Escherichia coli. First, we cover the various tools developed for genetic manipulation in E. coli to increase the production titers of desired chemicals. Next, we detail the strategies for systems metabolic engineering in E. coli, covering the engineering of the native metabolism, the expansion of metabolism with synthetic pathways, and the process engineering aspects undertaken to achieve higher production titers of desired chemicals. Finally, we examine a couple of notable products as case studies produced in E. coli strains developed by systems metabolic engineering. The large portfolio of chemical products successfully produced by engineered E. coli listed here demonstrates the sheer capacity of what can be envisioned and achieved with respect to microbial production of chemicals. Systems metabolic engineering is no longer in its infancy; it is now widely employed and is also positioned to further embrace next-generation interdisciplinary principles and innovation for its upgrade. Systems metabolic engineering will play increasingly important roles in developing industrial strains including E. coli that are capable of efficiently producing natural and nonnatural chemicals and materials from renewable nonfood biomass.

  8. Interaction between Escherichia coli and lunar fines

    NASA Technical Reports Server (NTRS)

    Johansson, K. R.

    1983-01-01

    A sample of mature lunar fines (10084.151) was solubilized to a high degree (about 17 percent) by the chelating agent salicylic acid (0.01. M). The neutralized (pH adjusted to 7.0) leachate was found to inhibit the growth of Escherichia coli (ATCC 259922) in a minimial mineral salts glucose medium; however, the inhibition was somewhat less than that caused by neutralized salicylic acid alone. The presence of lunar fines in the minimal medium was highly stimulatory to growth of E. coli following an early inhibitory response. The bacterium survived less well in the lunar leachate than in distilled water, no doubt because of the salicylate. It was concluded that the sample of lunar soil tested has nutritional value to E. coli and that certain products of fermentation helped to solubilize the lunar soil.

  9. Production of curcuminoids in engineered Escherichia coli.

    PubMed

    Kim, Eun Ji; Cha, Mi Na; Kim, Bog-Gyu; Ahn, Joong-Hoon

    2017-03-09

    Curcumin, a hydrophobic polyphenol derived from the rhizome of the herb Curcuma longa, possesses diverse pharmacological properties including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic activity. Two curcuminoids (dicinnamoylmethane and bisdemethoxycurcumin) were synthesized from glucose in Escherichia coli. PAL (phenylalanine ammonia lyase) or TAL (tyrosine ammonia lyase), along with Os4CL (p-coumaroyl-CoA ligase) and CUS (curcumin synthase), were introduced in to E. coli, and each strain produced dicinnamoylmethane or bisdemethoxycurcumin, respectively. In order to increase the production of curcuminoids in E. coli, the shikimic acid biosynthesis pathway which increases the substrates for curcuminoid biosynthesis, was engineered. Using engineered strains, the production of bisdemethoxycurcumin increased from 0.32 to 4.63 mg/L, and that of dicinnamoylmethane from 1.24 mg/L and 6.95 mg/L.

  10. Frequency-Dependent Escherichia coli Chemotaxis Behavior

    NASA Astrophysics Data System (ADS)

    Zhu, Xuejun; Si, Guangwei; Deng, Nianpei; Ouyang, Qi; Wu, Tailin; He, Zhuoran; Jiang, Lili; Luo, Chunxiong; Tu, Yuhai

    2012-03-01

    We study Escherichia coli chemotaxis behavior in environments with spatially and temporally varying attractant sources by developing a unique microfluidic system. Our measurements reveal a frequency-dependent chemotaxis behavior. At low frequency, the E. coli population oscillates in synchrony with the attractant. In contrast, in fast-changing environments, the population response becomes smaller and out of phase with the attractant waveform. These observations are inconsistent with the well-known Keller-Segel chemotaxis equation. A new continuum model is proposed to describe the population level behavior of E. coli chemotaxis based on the underlying pathway dynamics. With the inclusion of a finite adaptation time and an attractant consumption rate, our model successfully explains the microfluidic experiments at different stimulus frequencies.

  11. Thymineless death in Escherichia coli: strain specificity.

    PubMed

    Cummings, D J; Mondale, L

    1967-06-01

    Thymineless death of various ultraviolet (UV)-sensitive strains of Escherichia coli B and K-12 was investigated. It was found that E. coli B, B(s-12), K-12 rec-21, and possibly K-12 Lon(-), all sensitive to UV, were also sensitive to thymine starvation. However, other UV-sensitive strains of E. coli were found to display the typical resistant-type kinetics of thymineless death. The correlation of these results with various other cellular processes suggested that the filament-forming ability of the bacteria might be involved in the mechanism of thymineless death. It was apparent from the present results that capacity for host-cell reactivation, recombination ability, thymine dimer excision, and probably induction of a defective prophage had little to do with determining sensitivity to thymine deprivation.

  12. Thymineless Death in Escherichia coli: Strain Specificity

    PubMed Central

    Cummings, Donald J.; Mondale, Lee

    1967-01-01

    Thymineless death of various ultraviolet (UV)-sensitive strains of Escherichia coli B and K-12 was investigated. It was found that E. coli B, Bs−12, K-12 rec-21, and possibly K-12 Lon−, all sensitive to UV, were also sensitive to thymine starvation. However, other UV-sensitive strains of E. coli were found to display the typical resistant-type kinetics of thymineless death. The correlation of these results with various other cellular processes suggested that the filament-forming ability of the bacteria might be involved in the mechanism of thymineless death. It was apparent from the present results that capacity for host-cell reactivation, recombination ability, thymine dimer excision, and probably induction of a defective prophage had little to do with determining sensitivity to thymine deprivation. Images PMID:5337772

  13. Diversity of CRISPR loci in Escherichia coli.

    PubMed

    Díez-Villaseñor, C; Almendros, C; García-Martínez, J; Mojica, F J M

    2010-05-01

    CRISPR (clustered regularly interspaced short palindromic repeats) and CAS (CRISPR-associated sequence) proteins are constituents of a novel genetic barrier that limits horizontal gene transfer in prokaryotes by means of an uncharacterized mechanism. The fundamental discovery of small RNAs as the guides of the defence apparatus arose as a result of Escherichia coli studies. However, a survey of the system diversity in this species in order to further contribute to the understanding of the CRISPR mode of action has not yet been performed. Here we describe two CRISPR/CAS systems found in E. coli, following the analysis of 100 strains representative of the species' diversity. Our results substantiate different levels of activity between loci of both CRISPR types, as well as different target preferences and CRISPR relevances for particular groups of strains. Interestingly, the data suggest that the degeneration of one CRISPR/CAS system in E. coli ancestors could have been brought about by self-interference.

  14. Prodigiosin - A Multifaceted Escherichia coli Antimicrobial Agent

    PubMed Central

    Zorec, Maša; Stopar, David

    2016-01-01

    Despite a considerable interest in prodigiosin, the mechanism of its antibacterial activity is still poorly understood. In this work, Escherichia coli cells were treated with prodigiosin to determine its antimicrobial effect on bacterial physiology. The effect of prodigiosin was concentration dependent. In prodigiosin treated cells above MIC value no significant DNA damage or cytoplasmic membrane disintegration was observed. The outer membrane, however, becomes leaky. Cells had severely decreased respiration activity. In prodigiosin treated cells protein and RNA synthesis were inhibited, cells were elongated but could not divide. Pre-treatment with prodigiosin improved E. coli survival rate in media containing ampicillin, kanamycin and erythromycin but not phleomycin. The results suggest that prodigiosin acts as a bacteriostatic agent in E. coli cells. If prodigiosin was diluted, cells resumed growth. The results indicate that prodigiosin has distinct mode of antibacterial action in different bacteria. PMID:27612193

  15. Prevalence and antibiogram profiling of Escherichia coli pathotypes isolated from the Kat River and the Fort Beaufort abstraction water.

    PubMed

    Nontongana, Nolonwabo; Sibanda, Timothy; Ngwenya, Elvis; Okoh, Anthony I

    2014-08-12

    Escherichia coli is a widespread bacterium encompassing a variety of strains, ranging from highly pathogenic strains, causing worldwide outbreaks of severe diseases to avirulent, well characterized safe laboratory strains. This study evaluated the prevalence and antibiogram profiles of E. coli pathotypes isolated from the Kat River and Fort Beaufort abstraction water. A total of 171 out of 278 confirmed E. coli isolates were positive for at least one pathogenic determinant and these included enteropathogenic E. coli (6%), enterotoxigenic E. coli (47%), uropathogenic E. coli (2%), neonatal meningitis E. coli (5%), diffusely adherent E. coli (1%) and enterohaemorrhagic E. coli (1%). Interestingly, enteroinvasive and enteroaggregative E. coli were not detected. The phenotypic antibiogram profiles of the isolates revealed that all were resistant to penicillin G, while 98% and 38% of the pathotypes were resistant to ampicillin and trimethoprim-sulphamethoxazole, respectively. About 8% of the isolates were resistant to streptomycin. More than half of the isolates exhibited multiple antibiotic resistance with 44% being resistant to three antibiotics and 8% resistant to four antibiotics. We conclude that the Kat River is a reservoir of potentially virulent antibiotic resistant E. coli strains that can cause serious health risks to humans who drink raw water from this river, or in the case that consumption of treated drinking water coincides with failed drinking water processes.

  16. Prevalence and Antibiogram Profiling of Escherichia coli Pathotypes Isolated from the Kat River and the Fort Beaufort Abstraction Water

    PubMed Central

    Nontongana, Nolonwabo; Sibanda, Timothy; Ngwenya, Elvis; Okoh, Anthony I.

    2014-01-01

    Escherichia coli is a widespread bacterium encompassing a variety of strains, ranging from highly pathogenic strains, causing worldwide outbreaks of severe diseases to avirulent, well characterized safe laboratory strains. This study evaluated the prevalence and antibiogram profiles of E. coli pathotypes isolated from the Kat River and Fort Beaufort abstraction water. A total of 171 out of 278 confirmed E. coli isolates were positive for at least one pathogenic determinant and these included enteropathogenic E. coli (6%), enterotoxigenic E. coli (47%), uropathogenic E. coli (2%), neonatal meningitis E. coli (5%), diffusely adherent E. coli (1%) and enterohaemorrhagic E. coli (1%). Interestingly, enteroinvasive and enteroaggregative E. coli were not detected. The phenotypic antibiogram profiles of the isolates revealed that all were resistant to penicillin G, while 98% and 38% of the pathotypes were resistant to ampicillin and trimethoprim-sulphamethoxazole, respectively. About 8% of the isolates were resistant to streptomycin. More than half of the isolates exhibited multiple antibiotic resistance with 44% being resistant to three antibiotics and 8% resistant to four antibiotics. We conclude that the Kat River is a reservoir of potentially virulent antibiotic resistant E. coli strains that can cause serious health risks to humans who drink raw water from this river, or in the case that consumption of treated drinking water coincides with failed drinking water processes. PMID:25119699

  17. Biodegradation of Aromatic Compounds by Escherichia coli

    PubMed Central

    Díaz, Eduardo; Ferrández, Abel; Prieto, María A.; García, José L.

    2001-01-01

    Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications. PMID:11729263

  18. Biodegradation of aromatic compounds by Escherichia coli.

    PubMed

    Díaz, E; Ferrández, A; Prieto, M A; García, J L

    2001-12-01

    Although Escherichia coli has long been recognized as the best-understood living organism, little was known about its abilities to use aromatic compounds as sole carbon and energy sources. This review gives an extensive overview of the current knowledge of the catabolism of aromatic compounds by E. coli. After giving a general overview of the aromatic compounds that E. coli strains encounter and mineralize in the different habitats that they colonize, we provide an up-to-date status report on the genes and proteins involved in the catabolism of such compounds, namely, several aromatic acids (phenylacetic acid, 3- and 4-hydroxyphenylacetic acid, phenylpropionic acid, 3-hydroxyphenylpropionic acid, and 3-hydroxycinnamic acid) and amines (phenylethylamine, tyramine, and dopamine). Other enzymatic activities acting on aromatic compounds in E. coli are also reviewed and evaluated. The review also reflects the present impact of genomic research and how the analysis of the whole E. coli genome reveals novel aromatic catabolic functions. Moreover, evolutionary considerations derived from sequence comparisons between the aromatic catabolic clusters of E. coli and homologous clusters from an increasing number of bacteria are also discussed. The recent progress in the understanding of the fundamentals that govern the degradation of aromatic compounds in E. coli makes this bacterium a very useful model system to decipher biochemical, genetic, evolutionary, and ecological aspects of the catabolism of such compounds. In the last part of the review, we discuss strategies and concepts to metabolically engineer E. coli to suit specific needs for biodegradation and biotransformation of aromatics and we provide several examples based on selected studies. Finally, conclusions derived from this review may serve as a lead for future research and applications.

  19. Preventing urinary tract infection: progress toward an effective Escherichia coli vaccine

    PubMed Central

    Brumbaugh, Ariel R; Mobley, Harry LT

    2012-01-01

    Uncomplicated urinary tract infections (UTIs) are common, with nearly half of all women experiencing at least one UTI in their lifetime. This high frequency of infection results in huge annual economic costs, decreased workforce productivity and high patient morbidity. At least 80% of these infections are caused by uropathogenic Escherichia coli (UPEC). UPEC can reside side by side with commensal strains in the gastrointestinal tract and gain access to the bladder via colonization of the urethra. Antibiotics represent the current standard treatment for UTI; however, even after treatment, patients frequently suffer from recurrent infection with the same or different strains. In addition, successful long-term treatment has been complicated by a rise in both the number of antibiotic-resistant strains and the prevalence of antibiotic-resistance mechanisms. As a result, preventative approaches to UTI, such as vaccination, have been sought. This review summarizes recent advances in UPEC vaccine development and outlines future directions for the field. PMID:22873125

  20. The 503nm pigment of Escherichia coli

    PubMed Central

    Kamitakahara, Joyce R.; Polglase, W. J.

    1970-01-01

    The yield of cell protein was one-third less for streptomycin-dependent Escherichia coli B than for the wild-type parent strain when both were grown aerobically on a medium with limiting glucose, but anaerobically the yield of protein was similar for both strains. The transient pigment absorbing at 503nm that is known to be present in E. coli and other organisms was not detectable in streptomycin-dependent mutants nor in a non-dependent (energy-deficient) revertant. When wild-type E. coli B was grown on limiting glucose–salts medium containing 2,4 dinitrophenol, the yield of cell protein was decreased and formation of the 503nm pigment was inhibited. Fumarase, aconitase and glucose 6-phosphate dehydrogenase were de-repressed in E. coli B cells grown with excess of glucose in a medium containing 2,4-dinitrophenol. In air-oxidized, wild-type E. coli B cells, the 503nm pigment appeared before reduced cytochromes when gluconate was the substrate but failed to appear when succinate was the substrate. The results provide evidence for a role of the 503nm pigment in aerobic energy metabolism, possibly as an electron acceptor from NADPH. PMID:4395501

  1. ELECTROPHORETIC MOBILITIES OF ESCHERICHIA COLI 0157:H7 AND WILD-TYPE ESCHERICHIA COLI STRAINS

    EPA Science Inventory

    The electrophoretic mobility (EPM) of a number of human-virulent and "wild-type" Escherichia coli strains in phosphate buffered water was measured. The impact of pH, ionic strength, cation type (valence) and concentration, and bacterial strain on the EPM was investigated. Resul...

  2. Designed phosphoprotein recognition in Escherichia coli.

    PubMed

    Sawyer, Nicholas; Gassaway, Brandon M; Haimovich, Adrian D; Isaacs, Farren J; Rinehart, Jesse; Regan, Lynne

    2014-11-21

    Protein phosphorylation is a central biological mechanism for cellular adaptation to environmental changes. Dysregulation of phosphorylation signaling is implicated in a wide variety of diseases. Thus, the ability to detect and quantify protein phosphorylation is highly desirable for both diagnostic and research applications. Here we present a general strategy for detecting phosphopeptide-protein interactions in Escherichia coli. We first redesign a model tetratricopeptide repeat (TPR) protein to recognize phosphoserine in a sequence-specific fashion and characterize the interaction with its target phosphopeptide in vitro. We then combine in vivo site-specific incorporation of phosphoserine with split mCherry assembly to observe the designed phosphopeptide-protein interaction specificity in E. coli. This in vivo strategy for detecting and characterizing phosphopeptide-protein interactions has numerous potential applications for the study of natural interactions and the design of novel ones.

  3. Escherichia coli growth under modeled reduced gravity

    NASA Technical Reports Server (NTRS)

    Baker, Paul W.; Meyer, Michelle L.; Leff, Laura G.

    2004-01-01

    Bacteria exhibit varying responses to modeled reduced gravity that can be simulated by clino-rotation. When Escherichia coli was subjected to different rotation speeds during clino-rotation, significant differences between modeled reduced gravity and normal gravity controls were observed only at higher speeds (30-50 rpm). There was no apparent affect of removing samples on the results obtained. When E. coli was grown in minimal medium (at 40 rpm), cell size was not affected by modeled reduced gravity and there were few differences in cell numbers. However, in higher nutrient conditions (i.e., dilute nutrient broth), total cell numbers were higher and cells were smaller under reduced gravity compared to normal gravity controls. Overall, the responses to modeled reduced gravity varied with nutrient conditions; larger surface to volume ratios may help compensate for the zone of nutrient depletion around the cells under modeled reduced gravity.

  4. Detection of Escherichia coli enterotoxins in stools.

    PubMed Central

    Merson, M H; Yolken, R H; Sack, R B; Froehlich, J L; Greenberg, H B; Huq, I; Black, R W

    1980-01-01

    We determined whether enterotoxigenic Escherichia coli diarrhea could be diagnosed by direct examination of stools for heat-labile (LT) and heat-stable (ST) enterotoxins. The Y-1 adrenal cell and an enzyme-linked immunosorbent assay (ELISA) detected LT in 85 and 93%, respectively, of stool specimens obtained from adults with acute diarrhea from whom an LT- and ST-producing organism had been isolated. Furthermore, the ELISA assay detected LT in 8 of 35 stool specimens from which no LT-producing E. coli had been isolated. The infant mouse assay was utilized to detect ST in these stool specimens and was found to be an insensitive method, showing positive results in only 36% of the specimens from which an ST-producing organism was isolated. Further studies are warranted to determine the diagnostic value of direct detection of LT in stools, especially by the ELISA method. PMID:6995331

  5. High-throughput phenotyping of uropathogenic E. coli isolates with Fourier transform infrared spectroscopy.

    PubMed

    AlRabiah, Haitham; Correa, Elon; Upton, Mathew; Goodacre, Royston

    2013-03-07

    Fourier transform infrared (FT-IR) spectroscopy is an established rapid whole-organism fingerprinting method that generates metabolic fingerprints from bacteria that reflect the phenotype of the microorganism under investigation. However, whilst FT-IR spectroscopy is fast (typically 10 s to 1 min per sample), the approaches for microbial sample preparation can be time consuming as plate culture or shake flasks are used for growth of the organism. We report a new approach that allows micro-cultivation of bacteria from low volumes (typically 200 μL) to be coupled with FT-IR spectroscopy. This approach is fast and easy to perform and gives equivalent data to the lengthier and more expensive shake flask cultivations (sample volume = 20 mL). With this micro-culture approach we also demonstrate high reproducibility of the metabolic fingerprints. The approach allowed separation of different isolates of Escherichia coli involved in urinary tract infection, including members of the globally disseminated ST131 clone, with respect to both genotype and resistance or otherwise to the antibiotic Ciprofloxacin.

  6. Escherichia coli O157:H7.

    PubMed

    Mead, P S; Griffin, P M

    1998-10-10

    Escherichia coli O157 was first identified as a human pathogen in 1982. One of several Shiga toxin-producing serotypes known to cause human illness, the organism probably evolved through horizontal acquisition of genes for Shiga toxins and other virulence factors. E. coli O157 is found regularly in the faeces of healthy cattle, and is transmitted to humans through contaminated food, water, and direct contact with infected people or animals. Human infection is associated with a wide range of clinical illness, including asymptomatic shedding, non-bloody diarrhoea, haemorrhagic colitis, haemolytic uraemic syndrome, and death. Since laboratory practices vary, physicians need to know whether laboratories in their area routinely test for E. coli O157 in stool specimens. Treatment with antimicrobial agents remains controversial: some studies suggest that treatment may precipitate haemolytic uraemic syndrome, and other studies suggest no effect or even a protective effect. Physicians can help to prevent E. coli O157 infections by counselling patients about the hazards of consuming undercooked ground meat or unpasteurised milk products and juices, and about the importance of handwashing to prevent the spread of diarrhoeal illness, and by informing public-health authorities when they see unusual numbers of cases of bloody diarrhoea or haemolytic uraemic syndrome.

  7. Transport proteins promoting Escherichia coli pathogenesis.

    PubMed

    Tang, Fengyi; Saier, Milton H

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies.

  8. Transport proteins promoting Escherichia coli pathogenesis

    PubMed Central

    Tang, Fengyi; Saier, Milton H.

    2014-01-01

    Escherichia coli is a genetically diverse species infecting hundreds of millions of people worldwide annually. We examined seven well-characterized E. coli pathogens causing urinary tract infections, gastroenteritis, pyelonephritis and haemorrhagic colitis. Their transport proteins were identified and compared with each other and a non-pathogenic E. coli K12 strain to identify transport proteins related to pathogenesis. Each pathogen possesses a unique set of protein secretion systems for export to the cell surface or for injecting effector proteins into host cells. Pathogens have increased numbers of iron siderophore receptors and ABC iron uptake transporters, but the numbers and types of low-affinity secondary iron carriers were uniform in all strains. The presence of outer membrane iron complex receptors and high-affinity ABC iron uptake systems correlated, suggesting co-evolution. Each pathovar encodes a different set of pore-forming toxins and virulence-related outer membrane proteins lacking in K12. Intracellular pathogens proved to have a characteristically distinctive set of nutrient uptake porters, different from those of extracellular pathogens. The results presented in this report provide information about transport systems relevant to various types of E. coli pathogenesis that can be exploited in future basic and applied studies. PMID:24747185

  9. Extracellular recombinant protein production from Escherichia coli.

    PubMed

    Ni, Ye; Chen, Rachel

    2009-11-01

    Escherichia coli is the most commonly used host for recombinant protein production and metabolic engineering. Extracellular production of enzymes and proteins is advantageous as it could greatly reduce the complexity of a bioprocess and improve product quality. Extracellular production of proteins is necessary for metabolic engineering applications in which substrates are polymers such as lignocelluloses or xenobiotics since adequate uptake of these substrates is often an issue. The dogma that E. coli secretes no protein has been challenged by the recognition of both its natural ability to secrete protein in common laboratory strains and increased ability to secrete proteins in engineered cells. The very existence of this review dedicated to extracellular production is a testimony for outstanding achievements made collectively by the community in this regard. Four strategies have emerged to engineer E. coli cells to secrete recombinant proteins. In some cases, impressive secretion levels, several grams per liter, were reached. This secretion level is on par with other eukaryotic expression systems. Amid the optimism, it is important to recognize that significant challenges remain, especially when considering the success cannot be predicted a priori and involves much trials and errors. This review provides an overview of recent developments in engineering E. coli for extracellular production of recombinant proteins and an analysis of pros and cons of each strategy.

  10. Engineering Escherichia coli for methanol conversion.

    PubMed

    Müller, Jonas E N; Meyer, Fabian; Litsanov, Boris; Kiefer, Patrick; Potthoff, Eva; Heux, Stéphanie; Quax, Wim J; Wendisch, Volker F; Brautaset, Trygve; Portais, Jean-Charles; Vorholt, Julia A

    2015-03-01

    Methylotrophic bacteria utilize methanol and other reduced one-carbon compounds as their sole source of carbon and energy. For this purpose, these bacteria evolved a number of specialized enzymes and pathways. Here, we used a synthetic biology approach to select and introduce a set of "methylotrophy genes" into Escherichia coli based on in silico considerations and flux balance analysis to enable methanol dissimilation and assimilation. We determined that the most promising approach allowing the utilization of methanol was the implementation of NAD-dependent methanol dehydrogenase and the establishment of the ribulose monophosphate cycle by expressing the genes for hexulose-6-phosphate synthase (Hps) and 6-phospho-3-hexuloisomerase (Phi). To test for the best-performing enzymes in the heterologous host, a number of enzyme candidates from different donor organisms were selected and systematically analyzed for their in vitro and in vivo activities in E. coli. Among these, Mdh2, Hps and Phi originating from Bacillus methanolicus were found to be the most effective. Labeling experiments using (13)C methanol with E. coli producing these enzymes showed up to 40% incorporation of methanol into central metabolites. The presence of the endogenous glutathione-dependent formaldehyde oxidation pathway of E. coli did not adversely affect the methanol conversion rate. Taken together, the results of this study represent a major advancement towards establishing synthetic methylotrophs by gene transfer.

  11. Engineering Escherichia coli to bind to cyanobacteria.

    PubMed

    Zhang, Zijian; Meng, Liuyi; Ni, Congjian; Yao, Lanqiu; Zhang, Fengyu; Jin, Yuji; Mu, Xuelang; Zhu, Shiyu; Lu, Xiaoyu; Liu, Shiyu; Yu, Congyu; Wang, Chenggong; Zheng, Pu; Wu, Jie; Kang, Li; Zhang, Haoqian M; Ouyang, Qi

    2017-03-01

    We engineered Escherichia coli cells to bind to cyanobacteria by heterologously producing and displaying lectins of the target cyanobacteria on their surface. To prove the efficacy of our approach, we tested this design on Microcystis aeruginosa with microvirin (Mvn), the lectin endogenously produced by this cyanobacterium. The coding sequence of Mvn was C-terminally fused to the ice nucleation protein NC (INPNC) gene and expressed in E. coli. Results showed that E. coli cells expressing the INPNC::Mvn fusion protein were able to bind to M. aeruginosa and the average number of E. coli cells bound to each cyanobacterial cell was enhanced 8-fold. Finally, a computational model was developed to simulate the binding reaction and help reconstruct the binding parameters. To our best knowledge, this is the first report on the binding of two organisms in liquid culture mediated by the surface display of lectins and it may serve as a novel approach to mediate microbial adhesion.

  12. Bacterial virulence phenotypes of Escherichia coli and host susceptibility determine risk for urinary tract infections.

    PubMed

    Schreiber, Henry L; Conover, Matt S; Chou, Wen-Chi; Hibbing, Michael E; Manson, Abigail L; Dodson, Karen W; Hannan, Thomas J; Roberts, Pacita L; Stapleton, Ann E; Hooton, Thomas M; Livny, Jonathan; Earl, Ashlee M; Hultgren, Scott J

    2017-03-22

    Urinary tract infections (UTIs) are caused by uropathogenic Escherichia coli (UPEC) strains. In contrast to many enteric E. coli pathogroups, no genetic signature has been identified for UPEC strains. We conducted a high-resolution comparative genomic study using E. coli isolates collected from the urine of women suffering from frequent recurrent UTIs. These isolates were genetically diverse and varied in their urovirulence, that is, their ability to infect the bladder in a mouse model of cystitis. We found no set of genes, including previously defined putative urovirulence factors (PUFs), that were predictive of urovirulence. In addition, in some patients, the E. coli strain causing a recurrent UTI had fewer PUFs than the supplanted strain. In competitive experimental infections in mice, the supplanting strain was more efficient at colonizing the mouse bladder than the supplanted strain. Despite the lack of a clear genomic signature for urovirulence, comparative transcriptomic and phenotypic analyses revealed that the expression of key conserved functions during culture, such as motility and metabolism, could be used to predict subsequent colonization of the mouse bladder. Together, our findings suggest that UTI risk and outcome may be determined by complex interactions between host susceptibility and the urovirulence potential of diverse bacterial strains.

  13. Clonal and pathotypic analysis of archetypal Escherichia coli cystitis isolate NU14.

    PubMed

    Johnson, J R; Weissman, S J; Stell, A L; Trintchina, E; Dykhuizen, D E; Sokurenko, E V

    2001-12-15

    Escherichia coli NU14, a cystitis isolate used to study the pathogenesis of cystitis and to develop a FimH (type 1 fimbrial adhesin) vaccine, was assessed for extended virulence genotype, phylogenetic background, and FimH sequence and binding phenotype(s). NU14 exhibited the same virulence genotype and was derived from the same (meningitis- and cystitis-associated) subclone of E. coli O18:K1:H7 as the archetypal neonatal bacterial meningitis (NBM) isolate RS218. NU14 also displayed the same Ser62Ala FimH polymorphism as did NBM isolates RS218 and IHE3034-conferring both collagen binding and a distinct monomannose binding capability (which characterizes uropathogenic but not commensal E. coli and dramatically increases adherence to uroepithelial cells). These findings establish that strain NU14 exhibits numerous urovirulence-associated traits and derives from the single most prevalent clonal group in acute cystitis. They provide further evidence of clonal and pathotypic similarities between cystitis and NBM isolates of E. coli O18:K1:H7.

  14. Arabidopsis alternative oxidase sustains Escherichia coli respiration.

    PubMed Central

    Kumar, A M; Söll, D

    1992-01-01

    Glutamyl-tRNA reductase, encoded by the hemA gene, is the first enzyme in porphyrin biosynthesis in many organisms. Hemes, important porphyrin derivatives, are essential components of redox enzymes, such as cytochromes. Thus a hemA Escherichia coli strain (SASX41B) is deficient in cytochrome-mediated aerobic respiration. Upon complementation of this strain with an Arabidopsis thaliana cDNA library, we isolated a clone which permitted the SASX41B strain to grow aerobically. The clone encodes the gene for Arabidopsis alternative oxidase, whose deduced amino acid sequence was found to have 71% identity with that of the enzyme from the voodoo lily, Sauromatum guttatum. The Arabidopsis protein is expressed as a 31-kDa protein in E. coli and confers on this organism cyanide-resistant growth, which in turn is sensitive to salicylhydroxamate. This implies that a single polypeptide is sufficient for alternative oxidase activity. Based on these observations we propose that a cyanide-insensitive respiratory pathway operates in the transformed E. coli hemA strain. Introduction of this pathway now opens the way to genetic/molecular biological investigations of alternative oxidase and its cofactor. Images PMID:1438286

  15. Role of Escherichia coli in Biofuel Production

    PubMed Central

    Koppolu, Veerendra; Vasigala, Veneela KR

    2016-01-01

    Increased energy consumption coupled with depleting petroleum reserves and increased greenhouse gas emissions have renewed our interest in generating fuels from renewable energy sources via microbial fermentation. Central to this problem is the choice of microorganism that catalyzes the production of fuels at high volumetric productivity and yield from cheap and abundantly available renewable energy sources. Microorganisms that are metabolically engineered to redirect renewable carbon sources into desired fuel products are contemplated as best choices to obtain high volumetric productivity and yield. Considering the availability of vast knowledge in genomic and metabolic fronts, Escherichia coli is regarded as a primary choice for the production of biofuels. Here, we reviewed the microbial production of liquid biofuels that have the potential to be used either alone or in combination with the present-day fuels. We specifically highlighted the metabolic engineering and synthetic biology approaches used to improve the production of biofuels from E. coli over the past few years. We also discussed the challenges that still exist for the biofuel production from E. coli and their possible solutions. PMID:27441002

  16. Regulation of alcohol fermentation by Escherichia coli

    SciTech Connect

    Clark, D.P.

    1989-01-01

    The purpose of this project is to elucidate the way in which the fermentative synthesis of ethanol is regulated in the facultative anaerobe Escherichia coli. We are also investigating the control of other genes required for fermentation and anaerobic growth. We have isolated both structural and regulatory mutations affecting the expression of alcohol dehydrogenase, the enzyme responsible for the final step in alcohol synthesis. Some of these regulatory mutations also affect other anaerobically induced genes. The adh gene has been cloned and sequenced. The ADH protein is one of the largest highly expressed proteins in E. coli and requires approximately 2700bp of DNA for its cloning sequence. We have also isolated mutations affecting the fermentative lactate dehydrogenase. In consequence it is now possible to construct E. coli strains defective in the production of any one or more of their normal fermentation products (i.e. formate, acetate, lactate, ethanol and succinate). The factors affecting the ratio of fermentation products are being investigated by in vivo NMR spectroscopy.

  17. Regulation of alcohol fermentation by Escherichia coli

    SciTech Connect

    Clark, D.P.

    1990-01-01

    The purpose of this project is to elucidate the way in which the synthesis of ethanol and related fermentation products are regulated in the facultative anaerobe Escherichia coli. We are also investigating the control of other genes required for anaerobic growth. We have isolated both structural and regulatory mutations affecting the expression of alcohol dehydrogenase, the enzyme responsible for the final step in alcohol synthesis. Some of these regulatory mutations also affect other anaerobically induced genes. The adh gene has been cloned and sequenced. The ADH protein is one of the largest highly expressed proteins in E. coli and requires approximately 2700bp of DNA for its coding sequence. We have also isolated mutations affecting the fermentative lactate dehydrogenase and have recently cloned the ldh gene. In consequence it is now possible to construct E. coli strains defective in the production of any one or more of their normal fermentation products (i.e. formate, acetate, lactate, ethanol and succinate). The factors affecting ratio of fermentation products are being investigated by in vivo NMR spectroscopy.

  18. Long term effects of Escherichia coli mastitis.

    PubMed

    Blum, Shlomo E; Heller, Elimelech D; Leitner, Gabriel

    2014-07-01

    Escherichia coli is one of the most frequently diagnosed causes of bovine mastitis, and is typically associated with acute, clinical mastitis. The objective of the present study was to evaluate the long term effects of intramammary infections by E. coli on milk yield and quality, especially milk coagulation. Twenty-four Israeli Holstein cows diagnosed with clinical mastitis due to intramammary infection by E. coli were used in this study. Mean lactation number, days in milk (DIM) and daily milk yield (DMY) at the time of infection was 3.3 ± 1.3, 131.7 days ± 78.6 and 45.7 L ± 8.4, respectively. DMY, milk constituents, somatic cells count (SCC), differential leukocytes count and coagulation parameters were subsequently assessed. Two patterns of inflammation were identified: 'short inflammation', characterized by <15% decrease in DMY and <30 days until return to normal (n = 5), and 'long inflammation', characterized by >15% decrease in DMY and >30 days to reach a new maximum DMY (n = 19). The estimated mean loss of marketable milk during the study was 200 L/cow for 'short inflammation' cases, and 1,500 L/cow for 'long inflammation' ones. Significant differences between 'short' and 'long inflammation' effects were found in almost all parameters studied. Long-term detrimental effects on milk quality were found regardless of clinical or bacteriological cure of affected glands.

  19. Yersinia High Pathogenicity Island genes modify the Escherichia coli primary metabolome independently of siderophore production

    PubMed Central

    Lv, Haitao; Henderson, Jeffrey P

    2013-01-01

    Bacterial siderophores may enhance pathogenicity by scavenging iron but their expression has been proposed to exert a substantial metabolic cost. Here we describe a combined metabolomic-genetic approach to determine how mutations affecting the virulence-associated siderophore yersiniabactin affect the Escherichia coli primary metabolome. Contrary to expectations, we did not find yersiniabactin biosynthesis to correspond to consistent metabolomic shifts. Instead, we found that targeted deletion of ybtU or ybtA, dissimilar genes with similar roles in regulating yersiniabactin expression, were associated with a specific shift in arginine pathway metabolites during growth in minimal media. This interaction was associated with high arginine levels in the model uropathogen Escherichia coli UTI89 compared to its ybtU and ybtA mutants and the K12 strain MG1655, which lacks yersiniabactin-associated genes. Because arginine is not a direct yersiniabactin biosynthetic substrate, these findings show that virulence-associated secondary metabolite systems may shape bacterial primary metabolism independently of substrate consumption. PMID:22035238

  20. Yersinia high pathogenicity island genes modify the Escherichia coli primary metabolome independently of siderophore production.

    PubMed

    Lv, Haitao; Henderson, Jeffrey P

    2011-12-02

    Bacterial siderophores may enhance pathogenicity by scavenging iron, but their expression has been proposed to exert a substantial metabolic cost. Here we describe a combined metabolomic-genetic approach to determine how mutations affecting the virulence-associated siderophore yersiniabactin affect the Escherichia coli primary metabolome. Contrary to expectations, we did not find yersiniabactin biosynthesis to correspond to consistent metabolomic shifts. Instead, we found that targeted deletion of ybtU or ybtA, dissimilar genes with similar roles in regulating yersiniabactin expression, were associated with a specific shift in arginine pathway metabolites during growth in minimal media. This interaction was associated with high arginine levels in the model uropathogen Escherichia coli UTI89 compared to its ybtU and ybtA mutants and the K12 strain MG1655, which lacks yersiniabactin-associated genes. Because arginine is not a direct yersiniabactin biosynthetic substrate, these findings show that virulence-associated secondary metabolite systems may shape bacterial primary metabolism independently of substrate consumption.

  1. WGS accurately predicts antimicrobial resistance in Escherichia coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objectives: To determine the effectiveness of whole-genome sequencing (WGS) in identifying resistance genotypes of multidrug-resistant Escherichia coli (E. coli) and whether these correlate with observed phenotypes. Methods: Seventy-six E. coli strains were isolated from farm cattle and measured f...

  2. Development of a Vaccine against Escherichia coli Urinary Tract Infections

    PubMed Central

    Mobley, Harry L. T.; Alteri, Christopher J.

    2015-01-01

    Urinary tract infection (UTI) is the second most common infection in humans after those involving the respiratory tract. This results not only in huge annual economic costs, but in decreased workforce productivity and high patient morbidity. Most infections are caused by uropathogenic Escherichia coli (UPEC). Antibiotic treatment is generally effective for eradication of the infecting strain; however, documentation of increasing antibiotic resistance, allergic reaction to certain pharmaceuticals, alteration of normal gut flora, and failure to prevent recurrent infections represent significant barriers to treatment. As a result, approaches to prevent UTI such as vaccination represent a gap that must be addressed. Our laboratory has made progress toward development of a preventive vaccine against UPEC. The long-term research goal is to prevent UTIs in women with recurrent UTIs. Our objective has been to identify the optimal combination of protective antigens for inclusion in an effective UTI vaccine, optimal adjuvant, optimal dose, and optimal route of delivery. We hypothesized that a multi-subunit vaccine elicits antibody that protects against experimental challenge with UPEC strains. We have systematically identified four antigens that can individually protect experimentally infected mice from colonization of the bladder and/or kidneys by UPEC when administered intranasally with cholera toxin (CT) as an adjuvant. To advance the vaccine for utility in humans, we will group the individual antigens, all associated with iron acquisition (IreA, Hma, IutA, FyuA), into an effective combination to establish a multi-subunit vaccine. We demonstrated for all four vaccine antigens that antigen-specific serum IgG represents a strong correlate of protection in vaccinated mice. High antibody titers correlate with low colony forming units (CFUs) of UPEC following transurethral challenge of vaccinated mice. However, the contribution of cell-mediated immunity cannot be ruled out and

  3. Mechanism of Escherichia coli Resistance to Pyrrhocoricin

    PubMed Central

    Narayanan, Shalini; Modak, Joyanta K.; Ryan, Catherine S.; Garcia-Bustos, Jose; Davies, John K.

    2014-01-01

    Due to their lack of toxicity to mammalian cells and good serum stability, proline-rich antimicrobial peptides (PR-AMPs) have been proposed as promising candidates for the treatment of infections caused by antimicrobial-resistant bacterial pathogens. It has been hypothesized that these peptides act on multiple targets within bacterial cells, and therefore the likelihood of the emergence of resistance was considered to be low. Here, we show that spontaneous Escherichia coli mutants resistant to pyrrhocoricin arise at a frequency of approximately 6 × 10−7. Multiple independently derived mutants all contained a deletion in a nonessential gene that encodes the putative peptide uptake permease SbmA. Sensitivity could be restored to the mutants by complementation with an intact copy of the sbmA gene. These findings question the viability of the development of insect PR-AMPs as antimicrobials. PMID:24590485

  4. Animal models of enteroaggregative Escherichia coli infection

    PubMed Central

    Philipson, Casandra W.; Bassaganya-Riera, Josep; Hontecillas, Raquel

    2013-01-01

    Enteroaggregative Escherichia coli (EAEC) has been acknowledged as an emerging cause of gastroenteritis worldwide for over two decades. Epidemiologists are revealing the role of EAEC in diarrheal outbreaks as a more common occurrence than ever suggested before. EAEC induced diarrhea is most commonly associated with travelers, children and immunocompromised individuals however its afflictions are not limited to any particular demographic. Many attributes have been discovered and characterized surrounding the capability of EAEC to provoke a potent pro-inflammatory immune response, however cellular and molecular mechanisms underlying initiation, progression and outcomes are largely unknown. This limited understanding can be attributed to heterogeneity in strains and the lack of adequate animal models. This review aims to summarize current knowledge about EAEC etiology, pathogenesis and clinical manifestation. Additionally, current animal models and their limitations will be discussed along with the value of applying systems-wide approaches such as computational modeling to study host-EAEC interactions. PMID:23680797

  5. An overview of atypical enteropathogenic Escherichia coli.

    PubMed

    Hernandes, Rodrigo T; Elias, Waldir P; Vieira, Mônica A M; Gomes, Tânia A T

    2009-08-01

    The enteropathogenic Escherichia coli (EPEC) pathotype is currently divided into two groups, typical EPEC (tEPEC) and atypical EPEC (aEPEC). The property that distinguishes these two groups is the presence of the EPEC adherence factor plasmid, which is only found in tEPEC. aEPEC strains are emerging enteropathogens that have been detected worldwide. Herein, we review the serotypes, virulence properties, genetic relationships, epidemiology, reservoir and diagnosis of aEPEC, including those strains not belonging to the classical EPEC serogroups (nonclassical EPEC serogroups). The large variety of serotypes and genetic virulence properties of aEPEC strains from nonclassical EPEC serogroups makes it difficult to determine which strains are truly pathogenic.

  6. Escherichia coli fliAZY operon.

    PubMed Central

    Mytelka, D S; Chamberlin, M J

    1996-01-01

    We have cloned the Escherichia coli fliAZY operon, which contains the fliA gene (the alternative sigma factor sigma F) and two novel genes, fliZ and fliY. Transcriptional mapping of this operon shows two start sites, one of which is preceded by a canonical E sigma F-dependent consensus and is dependent on sigma F for expression in vivo and in vitro. We have overexpressed and purified sigma F and demonstrated that it can direct core polymerase to E sigma F-dependent promoters. FliZ and FliY are not required for motility but may regulate sigma F activity, perhaps in response to a putative cell density signal that may be detected by FliY, a member of the bacterial extracellular solute-binding protein family 3. PMID:8550423

  7. Antibacterial activity of isolated phenolic compounds from cranberry (Vaccinium macrocarpon) against Escherichia coli.

    PubMed

    Rodríguez-Pérez, Celia; Quirantes-Piné, Rosa; Uberos, José; Jiménez-Sánchez, Cecilia; Peña, Alejandro; Segura-Carretero, Antonio

    2016-03-01

    Phenolic compounds from a cranberry extract were isolated in order to assess their contribution to the antibacterial activity against uropathogenic strains of Escherichia coli (UPEC). With this purpose, a total of 25 fractions from a cranberry extract were isolated using semipreparative high performance liquid chromatography (HPLC) and characterized based on the results obtained by reversed-phase HPLC coupled to mass spectrometry detection. Then, the effects on UPEC surface hydrophobicity and biofilm formation of the cranberry extract as well as the purest fractions (a total of 13) were tested. As expected, the whole extract presented a powerful antibacterial activity against UPEC while the selected fractions presented a different behavior. Myricetin and quercitrin significantly decreased (p < 0.05) E. coli biofilm formation compared with the control, while dihydroferulic acid glucuronide, procyanidin A dimer, quercetin glucoside, myricetin and prodelphinidin B led to a significant decrease of the surface hydrophobicity compared with the control. The results suggest that apart from proanthocyanidins, other compounds, mainly flavonoids, can act against E. coli biofilm formation and also modify UPEC surface hydrophobicity in vitro, one of the first steps of adhesion.

  8. The serine protease Pic as a virulence factor of atypical enteropathogenic Escherichia coli.

    PubMed

    Abreu, Afonso G; Abe, Cecilia M; Nunes, Kamila O; Moraes, Claudia T P; Chavez-Dueñas, Lucia; Navarro-Garcia, Fernando; Barbosa, Angela S; Piazza, Roxane M F; Elias, Waldir P

    2016-01-01

    Autotransporter proteins (AT) are associated with bacterial virulence attributes. Originally identified in enteroaggregative Escherichia coli (EAEC), Shigella flexneri 2a and uropathogenic E. coli, the serine protease Pic is one of these AT. We have previously detected one atypical enteropathogenic E. coli strain (BA589) carrying the pic gene. In the present study, we characterized the biological activities of Pic produced by BA589 both in vitro and in vivo. Contrarily to other Pic-producers bacteria, pic in BA589 is located on a high molecular weight plasmid. PicBA589 was able to agglutinate rabbit erythrocytes, cleave mucin and degrade complement system molecules. BA589 was able to colonize mice intestines, and an intense mucus production was observed. The BA589Δpic mutant lost the capacity to colonize as well as the above-mentioned in vitro activities. Thus, Pic represents an additional virulence factor in aEPEC strain BA589, associated with adherence, colonization and evasion from the innate immune system.

  9. Expanding ester biosynthesis in Escherichia coli.

    PubMed

    Rodriguez, Gabriel M; Tashiro, Yohei; Atsumi, Shota

    2014-04-01

    To expand the capabilities of whole-cell biocatalysis, we have engineered Escherichia coli to produce various esters. The alcohol O-acyltransferase (ATF) class of enzyme uses acyl-CoA units for ester formation. The release of free CoA upon esterification with an alcohol provides the free energy to facilitate ester formation. The diversity of CoA molecules found in nature in combination with various alcohol biosynthetic pathways allows for the biosynthesis of a multitude of esters. Small to medium volatile esters have extensive applications in the flavor, fragrance, cosmetic, solvent, paint and coating industries. The present work enables the production of these compounds by designing several ester pathways in E. coli. The engineered pathways generated acetate esters of ethyl, propyl, isobutyl, 2-methyl-1-butyl, 3-methyl-1-butyl and 2-phenylethyl alcohols. In particular, we achieved high-level production of isobutyl acetate from glucose (17.2 g l(-1)). This strategy was expanded to realize pathways for tetradecyl acetate and several isobutyrate esters.

  10. [Enteroinvasive Escherichia coli. Pathogenesis and epidemiology].

    PubMed

    Prats, G; Llovet, T

    1995-03-01

    Enteroinvasive Escherichia coli (EIEC) is an intestinal pathogen causing enteritis, with a similar pathogenic mechanism to that of Shigella, which causes an epithelial invasion of the large bowel leading to inflammation and ulceration of the mucosa. The patients often develop the symptoms of bacillary dysentery. The EIEC strains are atypical in their biochemical reactions and may ferment lactose late or not at all, are lysine decarboxilase negative, and non motile. In addition, most EIEC strains express somatic antigens which are either strongly related or identical to Shigella antigens. EIEC invasion is mediated by a large plasmid (140 MDa) coding for the production of several outer membrane proteins involved in invasiveness. These strains have been isolated with some regularity in South America, the Extreme Orient, and Eastern Europe. In Spain the incidence of enteroinvasive E. coli is extraordinarily low (0.2%), the serogroup O124 being the most frequently isolated. EIEC enteritis has been associated to sporadic cases occurring in travellers. Occasional outbreaks related to ingestion of contaminated water or food and person to person have been reported.

  11. Independence of replisomes in Escherichia coli chromosomalreplication

    SciTech Connect

    Breier, Adam M.; Weier, Heinz-Ulrich G.; Cozzarelli, Nicholas R.

    2005-03-13

    In Escherichia coli DNA replication is carried out by the coordinated action of the proteins within a replisome. After replication initiation, the two bidirectionally oriented replisomes from a single origin are colocalized into higher-order structures termed replication factories. The factory model postulated that the two replisomes are also functionally coupled. We tested this hypothesis by using DNA combing and whole-genome microarrays. Nascent DNA surrounding oriC in single, combed chromosomes showed instead that one replisome, usually the leftward one, was significantly ahead of the other 70% of the time. We next used microarrays to follow replication throughout the genome by measuring DNA copy number. We found in multiple E. coli strains that the replisomes are independent, with the leftward replisome ahead of the rightward one. The size of the bias was strain-specific, varying from 50 to 130 kb in the array results. When we artificially blocked one replisome, the other continued unabated, again demonstrating independence. We suggest an improved version of the factory model that retains the advantages of threading DNA through colocalized replisomes at about equal rates, but allows the cell flexibility to overcome obstacles encountered during elongation.

  12. Nucleotide excision repair in Escherichia coli.

    PubMed Central

    Van Houten, B

    1990-01-01

    One of the best-studied DNA repair pathways is nucleotide excision repair, a process consisting of DNA damage recognition, incision, excision, repair resynthesis, and DNA ligation. Escherichia coli has served as a model organism for the study of this process. Recently, many of the proteins that mediate E. coli nucleotide excision have been purified to homogeneity; this had led to a molecular description of this repair pathway. One of the key repair enzymes of this pathway is the UvrABC nuclease complex. The individual subunits of this enzyme cooperate in a complex series of partial reactions to bind to and incise the DNA near a damaged nucleotide. The UvrABC complex displays a remarkable substrate diversity. Defining the structural features of DNA lesions that provide the specificity for damage recognition by the UvrABC complex is of great importance, since it represents a unique form of protein-DNA interaction. Using a number of in vitro assays, researchers have been able to elucidate the action mechanism of the UvrABC nuclease complex. Current research is devoted to understanding how these complex events are mediated within the living cell. PMID:2181258

  13. Chemotaxis Toward Sugars in Escherichia coli

    PubMed Central

    Adler, Julius; Hazelbauer, Gerald L.; Dahl, M. M.

    1973-01-01

    Using a quantitative assay for measuring chemotaxis, we tested a variety of sugars and sugar derivatives for their ability to attract Escherichia coli bacteria. The most effective attractants, i.e., those that have thresholds near 10−5 M or below, are N-acetyl-d-glucosamine, 6-deoxy-d-glucose, d-fructose, d-fucose, 1-d-glycerol-β-d-galactoside, galactitol, d-galactose, d-glucosamine, d-glucose, α-d-glucose-1-phosphate, lactose, maltose, d-mannitol, d-mannose, methyl-β-d-galactoside, methyl-β-d-glucoside, d-ribose, d-sorbitol, and trehalose. Lactose, and probably d-glucose-1-phosphate, are attractive only after conversion to the free monosaccharide, while the other attractants do not require breakdown for taxis. Nine different chemoreceptors are involved in detecting these various attractants. They are called the N-acetyl-glucosamine, fructose, galactose, glucose, maltose, mannitol, ribose, sorbitol, and trehalose chemoreceptors; the specificity of each was studied. The chemoreceptors, with the exception of the one for d-glucose, are inducible. The galactose-binding protein serves as the recognition component of the galactose chemoreceptor. E. coli also has osmotically shockable binding activities for maltose and d-ribose, and these appear to serve as the recognition components for the corresponding chemoreceptors. PMID:4580570

  14. Expanding ester biosynthesis in Escherichia coli

    PubMed Central

    Rodriguez, Gabriel M; Tashiro, Yohei; Atsumi, Shota

    2015-01-01

    To expand the capabilities of whole-cell biocatalysis, we have engineered Escherichia coli to produce various esters. The alcohol O-acyltransferase (ATF) class of enzyme uses acyl-CoA units for ester formation. The release of free CoA upon esterification with an alcohol provides the free energy to facilitate ester formation. The diversity of CoA molecules found in nature in combination with various alcohol biosynthetic pathways allows for the biosynthesis of a multitude of esters. Small to medium volatile esters have extensive applications in the flavor, fragrance, cosmetic, solvent, paint and coating industries. The present work enables the production of these compounds by designing several ester pathways in E. coli. The engineered pathways generated acetate esters of ethyl, propyl, isobutyl, 2-methyl-1-butyl, 3-methyl-1-butyl and 2-phenylethyl alcohols. In particular, we achieved high-level production of isobutyl acetate from glucose (17.2 g l−1). This strategy was expanded to realize pathways for tetradecyl acetate and several isobutyrate esters. PMID:24609358

  15. The thermal impulse response of Escherichia coli

    PubMed Central

    Paster, Eli; Ryu, William S.

    2008-01-01

    Swimming Escherichia coli responds to changes in temperature by modifying its motor behavior. Previous studies using populations of cells have shown that E. coli accumulate in spatial thermal gradients, but these experiments did not cleanly separate thermal responses from chemotactic responses. Here we have isolated the thermal response by studying the behavior of single, tethered cells. The motor output of cells grown at 33°C was measured at constant temperature, from 10° to 40°C, and in response to small, impulsive increases in temperature, from 23° to 43°C. The thermal impulse response at temperatures < 31°C is similar to the chemotactic impulse response: Both follow a similar time course, share the same directionality, and show biphasic characteristics. At temperatures > 31°C, some cells show an inverted response, switching from warm- to cold-seeking behavior. The fraction of inverted responses increases nonlinearly with temperature, switching steeply at the preferred temperature of 37°C. PMID:18385380

  16. Clonal spread in Eastern Asia of ciprofloxacin-resistant Escherichia coli serogroup O25 strains, and associated virulence factors.

    PubMed

    Uchida, Yujiro; Mochimaru, Tomomi; Morokuma, Yuiko; Kiyosuke, Makiko; Fujise, Masako; Eto, Fujiko; Eriguchi, Yoshihiro; Nagasaki, Yoji; Shimono, Nobuyuki; Kang, Dongchon

    2010-05-01

    A significant problem in the field of infectious diseases is the increase in fluoroquinolone (FQ)-resistant Escherichia coli. Although mutation of strains and clonal dissemination are supposed to be the cause of this increase, little is known about the prevalence of this organism. We investigated 219 FQ-resistant E. coli strains in Japan and nine Asian countries by serotyping and genotyping. Seventy-one strains (32.4%) were serogroup O25, which was prevalent in South Korea, China and Japan, especially in the southwest part of Japan. Aerobactin, a virulence factor in uropathogenic and avian pathogenic E. coli, was associated with the presence of FQ-resistant O25 strains of E. coli. Seven of the seventy-one FQ-resistant E. coli O25 had extended-spectrum beta-lactamase genes (six CTX-M-14 and one SHV-12), however, we were unable to find any E. coli O25-ST131 clone that produced CTX-M-15, which was previously reported to have emerged across continents. These data demonstrate that a clonal group of FQ-resistant and virulent E. coli recently became prevalent at least in East Asia and suggest that this might become a public health problem because the strains may acquire resistance to other antimicrobial agents.

  17. Molecular characterisation of Escherichia coli isolated from hospitalised children and adults with urinary tract infection.

    PubMed

    Vollmerhausen, T L; Katouli, M

    2014-06-01

    Urinary tract infection (UTI) is common amongst children and recurs in 10-30 % of cases. The differences between Escherichia coli strains causing UTI among hospitalised children and adults remains to be fully elucidated. Here, we examined the genetic relatedness and virulence gene (VG) profiles of a collection of E. coli causing UTI among hospitalised children and adults. Genetic relatedness among the strains was investigated using random amplified polymorphic DNA (RAPD) analysis and the strains were characterised using a combination of phylogenetic grouping, the ability to form biofilm and the presence of antigen 43 (Ag43) and its five known alleles, as well 20 VGs associated with uropathogenic E. coli (UPEC). RAPD analysis resolved six major clusters, with two clusters (A and B) consisting almost exclusively of E. coli isolated from children. Isolates from children had a higher prevalence of alpha-haemolysin (hlyA, p < 0.05) and group II capsular polysaccharide synthesis genes (kpsMT II, p < 0.01) than adults. In contrast, E. coli strains from adults had a higher prevalence of invasive ibeA (p < 0.05) and Ag43 (agn43) (p < 0.05) genes, and produced significantly (p < 0.001) more biofilm than E. coli from children. Adult isolates also carried significantly (p < 0.05) more agn43 allele RS218 compared to isolates from children, which carried significantly (p < 0.05) more of the agn43 allele bCFT073. Our results suggest that bacterial virulence factors play an important role in UTI among hospitalised children; however, further research will determine whether these findings apply to a larger cohort and other clinical settings for UTI in children and adults.

  18. Cyclomodulins in urosepsis strains of Escherichia coli.

    PubMed

    Dubois, Damien; Delmas, Julien; Cady, Anne; Robin, Frédéric; Sivignon, Adeline; Oswald, Eric; Bonnet, Richard

    2010-06-01

    Determinants of urosepsis in Escherichia coli remain incompletely defined. Cyclomodulins (CMs) are a growing functional family of toxins that hijack the eukaryotic cell cycle. Four cyclomodulin types are actually known in E. coli: cytotoxic necrotizing factors (CNFs), cycle-inhibiting factor (Cif), cytolethal distending toxins (CDTs), and the pks-encoded toxin. In the present study, the distribution of CM-encoding genes and the functionality of these toxins were investigated in 197 E. coli strains isolated from patients with community-acquired urosepsis (n = 146) and from uninfected subjects (n = 51). This distribution was analyzed in relation to the phylogenetic background, clinical origin, and antibiotic resistance of the strains. It emerged from this study that strains harboring the pks island and the cnf1 gene (i) were strongly associated with the B2 phylogroup (P, <0.001), (ii) frequently harbored both toxin-encoded genes in phylogroup B2 (33%), and (iii) were predictive of a urosepsis origin (P, <0.001 to 0.005). However, the prevalences of the pks island among phylogroup B2 strains, in contrast to those of the cnf1 gene, were not significantly different between fecal and urosepsis groups, suggesting that the pks island is more important for the colonization process and the cnf1 gene for virulence. pks- or cnf1-harboring strains were significantly associated with susceptibility to antibiotics (amoxicillin, cotrimoxazole, and quinolones [P, <0.001 to 0.043]). Otherwise, only 6% and 1% of all strains harbored the cdtB and cif genes, respectively, with no particular distribution by phylogenetic background, antimicrobial susceptibility, or clinical origin.

  19. The extracellular RNA complement of Escherichia coli

    PubMed Central

    Ghosal, Anubrata; Upadhyaya, Bimal Babu; Fritz, Joëlle V; Heintz-Buschart, Anna; Desai, Mahesh S; Yusuf, Dilmurat; Huang, David; Baumuratov, Aidos; Wang, Kai; Galas, David; Wilmes, Paul

    2015-01-01

    The secretion of biomolecules into the extracellular milieu is a common and well-conserved phenomenon in biology. In bacteria, secreted biomolecules are not only involved in intra-species communication but they also play roles in inter-kingdom exchanges and pathogenicity. To date, released products, such as small molecules, DNA, peptides, and proteins, have been well studied in bacteria. However, the bacterial extracellular RNA complement has so far not been comprehensively characterized. Here, we have analyzed, using a combination of physical characterization and high-throughput sequencing, the extracellular RNA complement of both outer membrane vesicle (OMV)-associated and OMV-free RNA of the enteric Gram-negative model bacterium Escherichia coli K-12 substrain MG1655 and have compared it to its intracellular RNA complement. Our results demonstrate that a large part of the extracellular RNA complement is in the size range between 15 and 40 nucleotides and is derived from specific intracellular RNAs. Furthermore, RNA is associated with OMVs and the relative abundances of RNA biotypes in the intracellular, OMV and OMV-free fractions are distinct. Apart from rRNA fragments, a significant portion of the extracellular RNA complement is composed of specific cleavage products of functionally important structural noncoding RNAs, including tRNAs, 4.5S RNA, 6S RNA, and tmRNA. In addition, the extracellular RNA pool includes RNA biotypes from cryptic prophages, intergenic, and coding regions, of which some are so far uncharacterised, for example, transcripts mapping to the fimA-fimL and ves-spy intergenic regions. Our study provides the first detailed characterization of the extracellular RNA complement of the enteric model bacterium E. coli. Analogous to findings in eukaryotes, our results suggest the selective export of specific RNA biotypes by E. coli, which in turn indicates a potential role for extracellular bacterial RNAs in intercellular communication. PMID:25611733

  20. Escherichia coli survival in waters: temperature dependence.

    PubMed

    Blaustein, R A; Pachepsky, Y; Hill, R L; Shelton, D R; Whelan, G

    2013-02-01

    Knowing the survival rates of water-borne Escherichia coli is important in evaluating microbial contamination and making appropriate management decisions. E. coli survival rates are dependent on temperature, a dependency that is routinely expressed using an analogue of the Q₁₀ model. This suggestion was made 34 years ago based on 20 survival curves taken from published literature, but has not been revisited since then. The objective of this study was to re-evaluate the accuracy of the Q₁₀ equation, utilizing data accumulated since 1978. We assembled a database of 450 E. coli survival datasets from 70 peer-reviewed papers. We then focused on the 170 curves taken from experiments that were performed in the laboratory under dark conditions to exclude the effects of sunlight and other field factors that could cause additional variability in results. All datasets were tabulated dependencies "log concentration vs. time." There were three major patterns of inactivation: about half of the datasets had a section of fast log-linear inactivation followed by a section of slow log-linear inactivation; about a quarter of the datasets had a lag period followed by log-linear inactivation; and the remaining quarter were approximately linear throughout. First-order inactivation rate constants were calculated from the linear sections of all survival curves and the data grouped by water sources, including waters of agricultural origin, pristine water sources, groundwater and wells, lakes and reservoirs, rivers and streams, estuaries and seawater, and wastewater. Dependency of E. coli inactivation rates on temperature varied among the water sources. There was a significant difference in inactivation rate values at the reference temperature between rivers and agricultural waters, wastewaters and agricultural waters, rivers and lakes, and wastewater and lakes. At specific sites, the Q₁₀ equation was more accurate in rivers and coastal waters than in lakes making the value of

  1. Polymorphisms in the umuDC region of Escherichia species. [Escherichia coli; Escherichia alkalescens; Escherichia dispar; Escherichia aurescens

    SciTech Connect

    Sedgwick, S.G.; Robson, M.; Malik, F.

    1988-04-01

    The umuDC operon of Escherichia coli encodes mutagenic DNA repair. The umuDC regions of multiple isolates of E. coli, E. alkalescens, and E. dispar and a single stock of E. aurescens were mapped by nucleotide hybridization. umuDC is located at one end of a conserved tract of restriction endonuclease sites either 12.5 or 14 kilobase pairs long. Rearrangements, including possible deletions, were seen in the polymorphic DNA flanking the conserved tract. Restriction site polymorphisms were not found around the DNA repair gene recA or polA. The junctions of the conserved region contain direct repeats of nucleotide sequences resembling the termini of the Tn3 group of transposons. Possible mechanisms for the generation of these variants are discussed.

  2. TRIMETHOPRIM-SULFAMETHOXAZOLE RESISTANCE IN SEWAGE ISOLATES OF ESCHERICHIA COLI

    EPA Science Inventory

    Sewage samples from seven locations in the United States were analyzed for Escherichia coli isolates which were resistant to trimethoprim-sulfamethoxazole (SXT). The prevalence rate of SXT resistant organisms varied between the different geographical locales. The majority of th...

  3. Genome Sequence of Escherichia coli Tailed Phage Utah

    PubMed Central

    Leavitt, Justin C.; Heitkamp, Alexandra J.; Bhattacharjee, Ananda S.; Gilcrease, Eddie B.

    2017-01-01

    ABSTRACT Escherichia coli bacteriophage Utah is a member of the chi-like tailed phage cluster in the Siphoviridae family. We report here the complete 59,024-bp sequence of the genome of phage Utah. PMID:28360173

  4. Shigella strains are not clones of Escherichia coli but sister species in the genus Escherichia.

    PubMed

    Zuo, Guanghong; Xu, Zhao; Hao, Bailin

    2013-02-01

    Shigella species and Escherichia coli are closely related organisms. Early phenotyping experiments and several recent molecular studies put Shigella within the species E. coli. However, the whole-genome-based, alignment-free and parameter-free CVTree approach shows convincingly that four established Shigella species, Shigella boydii, Shigella sonnei, Shigella felxneri and Shigella dysenteriae, are distinct from E. coli strains, and form sister species to E. coli within the genus Escherichia. In view of the overall success and high resolution power of the CVTree approach, this result should be taken seriously. We hope that the present report may promote further in-depth study of the Shigella-E. coli relationship.

  5. ENERGY REQUIREMENT FOR THYMINELESS DEATH IN CELLS OF ESCHERICHIA COLI.

    PubMed

    FREIFELDER, D; MAALOE, O

    1964-10-01

    Freifelder, David (University of California, Berkeley), and Ole Maaløe. Energy requirement for thymineless death in cells of Escherichia coli. J. Bacteriol. 88:987-990. 1964.-Thymineless death in thymine-requiring Escherichia coli is arrested immediately and reversibly by nitrogenation if the bacterial population is growing in a medium containing a carbon source that can only be metabolized aerobically. The mechanism of death, therefore, involves a metabolic process.

  6. ENERGY REQUIREMENT FOR THYMINELESS DEATH IN CELLS OF ESCHERICHIA COLI

    PubMed Central

    Freifelder, David; Maaløe, Ole

    1964-01-01

    Freifelder, David (University of California, Berkeley), and Ole Maaløe. Energy requirement for thymineless death in cells of Escherichia coli. J. Bacteriol. 88:987–990. 1964.—Thymineless death in thymine-requiring Escherichia coli is arrested immediately and reversibly by nitrogenation if the bacterial population is growing in a medium containing a carbon source that can only be metabolized aerobically. The mechanism of death, therefore, involves a metabolic process. PMID:14219063

  7. Differentiation of Crohn’s Disease-Associated Isolates from Other Pathogenic Escherichia coli by Fimbrial Adhesion under Shear Force

    PubMed Central

    Szunerits, Sabine; Zagorodko, Oleksandr; Cogez, Virginie; Dumych, Tetiana; Chalopin, Thibaut; Alvarez Dorta, Dimitri; Sivignon, Adeline; Barnich, Nicolas; Harduin-Lepers, Anne; Larroulet, Iban; Yanguas Serrano, Aritz; Siriwardena, Aloysius; Pesquera, Amaia; Zurutuza, Amaia; Gouin, Sébastien G.; Boukherroub, Rabah; Bouckaert, Julie

    2016-01-01

    Shear force exerted on uropathogenic Escherichia coli adhering to surfaces makes type-1 fimbriae stretch out like springs to catch on to mannosidic receptors. This mechanism is initiated by a disruption of the quaternary interactions between the lectin and the pilin of the two-domain FimH adhesin and transduces allosterically to the mannose-binding pocket of FimH to increase its affinity. Mannose-specific adhesion of 14 E. coli pathovars was measured under flow, using surface plasmon resonance detection on functionalized graphene-coated gold interfaces. Increasing the shear had important differential consequences on bacterial adhesion. Adherent-invasive E. coli, isolated from the feces and biopsies of Crohn’s disease patients, consistently changed their adhesion behavior less under shear and displayed lower SPR signals, compared to E. coli opportunistically infecting the urinary tract, intestines or loci of knee and hip prostheses. We exemplified this further with the extreme behaviors of the reference strains UTI89 and LF82. Whereas their FimA major pilins have identical sequences, FimH of LF82 E. coli is marked by the Thr158Pro mutation. Positioned in the inter-domain region known to carry hot spots of mutations in E. coli pathotypes, residue 158 is indicated to play a structural role in the allosteric regulation of type-1 fimbriae-mediated bacterial adhesion. PMID:27043645

  8. Survival of Escherichia coli in two sewage treatment plants using UV irradiation and chlorination for disinfection.

    PubMed

    Anastasi, E M; Wohlsen, T D; Stratton, H M; Katouli, M

    2013-11-01

    We investigated the survival of Escherichia coli in two STPs utilising UV irradiation (STP-A) or chlorination (STP-B) for disinfection. In all, 370 E. coli strains isolated from raw influent sewage (IS), secondary treated effluent (STE) and effluent after the disinfection processes of both STPs were typed using a high resolution biochemical fingerprinting method and were grouped into common (C-) and single (S-) biochemical phenotypes (BPTs). In STP-A, 83 BPTs comprising 123 isolates were found in IS and STE, of which 7 BPTs survived UV irradiation. Isolates tested from the same sites of STP-B (n = 220) comprised 122 BPTs, however, only two BPTs were found post-chlorination. A representative isolate from each BPT from both STPs was tested for the presence of 11 virulence genes (VGs) associated with uropathogenic (UPEC) or intestinal pathogenic (IPEC) E. coli strains. Strains surviving UV irradiation were distributed among seven phylogenetic groups with five BPTs carrying VGs associated with either UPEC (4 BPTs) or IPEC (1 BPT). In contrast, E. coli strains found in STP-B carried no VGs. Strains from both STPs were resistant to up to 12 out of the 21 antibiotics tested but there was no significant difference between the numbers of antibiotics to which surviving strains were resistant to in these STPs. Our data suggests that some E. coli strains have a better ability to survive STPs utilising chlorination and UV irradiation for disinfection. However, strains that survive UV irradiation are more diverse and may carry more VGs than those surviving SPTs using chlorination.

  9. Escherichia coli Unsaturated Fatty Acid Synthesis

    PubMed Central

    Feng, Youjun; Cronan, John E.

    2009-01-01

    Although the unsaturated fatty acid (UFA) synthetic pathway of Escherichia coli is the prototype of such pathways, several unresolved issues have accumulated over the years. The key players are the fabA and fabB genes. Earlier studies of fabA transcription showed that the gene was transcribed from two promoters, with one being positively regulated by the FadR protein. The other weaker promoter (which could not be mapped with the technology then available) was considered constitutive because its function was independent of FadR. However, the FabR negative regulator was recently shown to represses fabA transcription. We report that the weak promoter overlaps the FadR-dependent promoter and is regulated by FabR. This promoter is strictly conserved in all E. coli and Salmonella enterica genomes sequenced to date and is thought to provide insurance against inappropriate regulation of fabA transcription by exogenous saturated fatty acids. Also, the fabAup promoter, a mutant promoter previously isolated by selection for increased FabA activity, was shown to be a promoter created de novo by a four-base deletion within the gene located immediately upstream of fabA. Demonstration of the key UFA synthetic reaction catalyzed by FabB has been elusive, although it was known to catalyze an elongation reaction. Strains lacking FabB are UFA auxotrophs indicating that the enzyme catalyzes an essential step in UFA synthesis. Using thioesterases specific for hydrolysis of short chain acyl-ACPs, the intermediates of the UFA synthetic pathway have been followed in vivo for the first time. These experiments showed that a fabB mutant strain accumulated less cis-5-dodecenoic acid than the parental wild-type strain. These data indicate that the key reaction in UFA synthesis catalyzed by FabB is elongation of the cis-3-decenoyl-ACP produced by FabA. PMID:19679654

  10. Mono and diterpene production in Escherichia coli.

    PubMed

    Reiling, K Kinkead; Yoshikuni, Yasuo; Martin, Vincent J J; Newman, Jack; Bohlmann, Jörg; Keasling, Jay D

    2004-07-20

    Mono- and diterpenoids are of great industrial and medical value as specialty chemicals and pharmaceuticals. Production of these compounds in microbial hosts, such as Escherichia coli, can be limited by intracellular levels of the polyprenyl diphosphate precursors, geranyl diphosphate (GPP), and geranylgeranyl diphosphate (GGPP). To alleviate this limitation, we constructed synthetic operons that express three key enzymes for biosynthesis of these precursors: (1). DXS,1-deoxy-d-xylulose-5-phosphate synthase; (2). IPPHp, IPP isomerase from Haematococcus pluvialis; and (3). one of two variants of IspA, FPP synthase that produces either GPP or GGPP. The reporter plasmids pAC-LYC and pACYC-IB, which encode enzymes that convert either FPP or GGPP, respectively, to the pigment lycopene, were used to demonstrate that at full induction, the operon encoding the wild-type FPP synthase and mutant GGPP synthase produced similar levels of lycopene. To synthesize di- or monoterpenes in E. coli using the GGPP and GPP encoding operons either a diterpene cyclase [casbene cyclase (Ricinus communis L) and ent-kaurene cyclase (Phaeosphaeria sp. L487)] or a monoterpene cyclase [3-carene cyclase (Picea abies)] was coexpressed with their respective precursor production operon. Analysis of culture extracts or headspace by gas chromatography-mass spectrometry confirmed the in vivo production of the diterpenes casbene, kaur-15-ene, and kaur-16-ene and the monoterpenes alpha-pinene, myrcene, sabinene, 3-carene, alpha-terpinene, limonene, beta-phellandrene, alpha-terpinene, and terpinolene. Construction and functional expression of GGPP and GPP operons provides an in vivo precursor platform host for the future engineering of di- and monoterpene cyclases and the overproduction of terpenes in bacteria.

  11. Microdiesel: Escherichia coli engineered for fuel production.

    PubMed

    Kalscheuer, Rainer; Stölting, Torsten; Steinbüchel, Alexander

    2006-09-01

    Biodiesel is an alternative energy source and a substitute for petroleum-based diesel fuel. It is produced from renewable biomass by transesterification of triacylglycerols from plant oils, yielding monoalkyl esters of long-chain fatty acids with short-chain alcohols such as fatty acid methyl esters and fatty acid ethyl esters (FAEEs). Despite numerous environmental benefits, a broader use of biodiesel is hampered by the extensive acreage required for sufficient production of oilseed crops. Therefore, processes are urgently needed to enable biodiesel production from more readily available bulk plant materials like sugars or cellulose. Toward this goal, the authors established biosynthesis of biodiesel-adequate FAEEs, referred to as Microdiesel, in metabolically engineered Escherichia coli. This was achieved by heterologous expression in E. coli of the Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase and the unspecific acyltransferase from Acinetobacter baylyi strain ADP1. By this approach, ethanol formation was combined with subsequent esterification of the ethanol with the acyl moieties of coenzyme A thioesters of fatty acids if the cells were cultivated under aerobic conditions in the presence of glucose and oleic acid. Ethyl oleate was the major constituent of these FAEEs, with minor amounts of ethyl palmitate and ethyl palmitoleate. FAEE concentrations of 1.28 g l(-1) and a FAEE content of the cells of 26 % of the cellular dry mass were achieved by fed-batch fermentation using renewable carbon sources. This novel approach might pave the way for industrial production of biodiesel equivalents from renewable resources by employing engineered micro-organisms, enabling a broader use of biodiesel-like fuels in the future.

  12. The Escherichia coli Peripheral Inner Membrane Proteome*

    PubMed Central

    Papanastasiou, Malvina; Orfanoudaki, Georgia; Koukaki, Marina; Kountourakis, Nikos; Sardis, Marios Frantzeskos; Aivaliotis, Michalis; Karamanou, Spyridoula; Economou, Anastassios

    2013-01-01

    Biological membranes are essential for cell viability. Their functional characteristics strongly depend on their protein content, which consists of transmembrane (integral) and peripherally associated membrane proteins. Both integral and peripheral inner membrane proteins mediate a plethora of biological processes. Whereas transmembrane proteins have characteristic hydrophobic stretches and can be predicted using bioinformatics approaches, peripheral inner membrane proteins are hydrophilic, exist in equilibria with soluble pools, and carry no discernible membrane targeting signals. We experimentally determined the cytoplasmic peripheral inner membrane proteome of the model organism Escherichia coli using a multidisciplinary approach. Initially, we extensively re-annotated the theoretical proteome regarding subcellular localization using literature searches, manual curation, and multi-combinatorial bioinformatics searches of the available databases. Next we used sequential biochemical fractionations coupled to direct identification of individual proteins and protein complexes using high resolution mass spectrometry. We determined that the proposed cytoplasmic peripheral inner membrane proteome occupies a previously unsuspected ∼19% of the basic E. coli BL21(DE3) proteome, and the detected peripheral inner membrane proteome occupies ∼25% of the estimated expressed proteome of this cell grown in LB medium to mid-log phase. This value might increase when fleeting interactions, not studied here, are taken into account. Several proteins previously regarded as exclusively cytoplasmic bind membranes avidly. Many of these proteins are organized in functional or/and structural oligomeric complexes that bind to the membrane with multiple interactions. Identified proteins cover the full spectrum of biological activities, and more than half of them are essential. Our data suggest that the cytoplasmic proteome displays remarkably dynamic and extensive communication with

  13. Regulation of Glutamine Transport in Escherichia coli.

    PubMed Central

    Willis, R C; Iwata, K K; Furlong, C E

    1975-01-01

    The formation of the high-affinity (Km equal to 0.2 muM) L-glutamine transport system of Escherichia coli strain 7 (Lin) appears to be subject to the same major control as the glutamine synthetase (EC 6.3.1.2) of this gram-negative organism. Culture of cells under nitrogen-limited conditions provides maximum derepression of both the glutamine synthetase and the glutamine transport system. Nutritional conditions providing a rich supply of ammonium salts or available sources of nitrogen, i.e., conditions which repress the formation of glutamine synthetase, provide three- and 20-fold repression, respectively, of the glutamine transport system. Culture of cells with glutamine supplements of 2 mM does not increase the repression of high-affinity glutamine transport system beyond the level observed in the absence of glutamine. A second kinetically distinct low-affinity component of glutamine. A second kinetically distinct low-affinity component of glutamine uptake is observed in cells cultured with a glutamine-depleted nutrient broth. This second component is associated with the appearance of glutaminase A (EC 3.5.1.2) and asparaginase I (EC 3.5.1.1), a periplasmic enzyme. Parallel changes were observed in the levels of the high-affinity glutamine transport system and the glutamine synthetase when cells were cultured with the carbon sources: glucose, glycerol, or succinate. PMID:238938

  14. ESCHERICHIA COLI Gene Induction by Alkylation Treatment

    PubMed Central

    Volkert, Michael R.; Nguyen, Dinh C.; Beard, K. Christopher

    1986-01-01

    Searches for alkylation-inducible (aid) genes of Escherichia coli have been conducted by screening random fusions of the Mu-dl(ApR lac) phage for fusions showing increased β-galactosidase activity after treatment with methylating agents, but not after treatments with UV-irradiation. In this report we describe gene fusions that are specifically induced by alkylation treatments. Nine new mutants are described, and their properties are compared with the five mutants described previously. The total of 14 fusion mutants map at five distinct genetic loci. They can be further subdivided on the basis of their induction by methyl methanesulfonate (MMS) and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). alkA, aidB and aidD are induced by both agents and appear to be regulated by ada. Neither aidC nor aidI is regulated by ada. Moreover, since aidC is induced only by MNNG and aidI is induced only by MMS, these two genes are likely to be individually regulated. Thus, there appear to be at least three different regulatory mechanisms controlling aid genes. PMID:3080354

  15. Escherichia coli gene induction by alkylation treatment.

    PubMed

    Volkert, M R; Nguyen, D C; Beard, K C

    1986-01-01

    Searches for alkylation-inducible (aid) genes of Escherichia coli have been conducted by screening random fusions of the Mu-dl(ApR lac) phage for fusions showing increased beta-galactosidase activity after treatment with methylating agents, but not after treatments with UV-irradiation. In this report we describe gene fusions that are specifically induced by alkylation treatments. Nine new mutants are described, and their properties are compared with the five mutants described previously. The total of 14 fusion mutants map at five distinct genetic loci. They can be further subdivided on the basis of their induction by methyl methanesulfonate (MMS) and N-methyl-N' -nitro-N-nitrosoguanidine (MNNG). alkA, aidB and aidD are induced by both agents and appear to be regulated by ada. Neither aidC nor aidI is regulated by ada. Moreover, since aidC is induced only by MNNG and aidI is induced only by MMS, these two genes are likely to be individually regulated. Thus, there appear to be at least three different regulatory mechanisms controlling aid genes.

  16. Regulation of alcohol fermentation by Escherichia coli

    SciTech Connect

    Clark, D.P.

    1986-03-01

    The purpose of this project is to elucidate the way in which the fermentative synthesis of ethanol is regulated in the facultative anaerobe Escherichia coli. Focus is on the two final steps in alcohol synthesis, which are catalyzed by alcohol dehydrogenase and acetaldehyde CoA dehydrogenase. We have isolated a series of mutations affecting the expression of these enzymes. Some of these mutations are in the structural genes for these enzymes; others affect the regulation of the adh operon. We have recently cloned the genes coding for these enzymes and are now studying the effect of multiple copies of the adh gene on fermentative growth and its regulation. A recently invented technique, proton suicide has allowed the selection of a variety of novel mutants affecting fermentation which are presently being characterized. We have isolated a comprehensive collection of operon fusions in which the lacZ structural gene is fused to promoters that are inactive aerobically but active anaerobically. Although these genes (like adh) are only expressed under anaerobic conditions, the level of induction varies from two-fold to nearly 100-fold. The nitrogen source, medium pH, nature of the buffer, presence of alternative electron acceptors (e.g., nitrate), and other factors exert a great effect on the expression of many of these genes. In the near future we will investigate control mechanisms common to the adh operon and other anaerobically regulated genes.

  17. Antimicrobial-resistant Invasive Escherichia coli, Spain

    PubMed Central

    Oteo, Jesús; Lázaro, Edurne; de Abajo, Francisco J.; Baquero, Fernando; Campos, José

    2005-01-01

    To address the public health problem of antimicrobial resistance, the European Union founded the European Antimicrobial Resistance Surveillance System. A network of 32 Spanish hospitals, serving ≈9.6 million persons, submitted antimicrobial-susceptibility data on 7,098 invasive Escherichia coli species (2001–2003). Resistance to ampicillin, cotrimoxazole, ciprofloxacin, gentamicin, and tobramycin was found at rates of 59.9%, 32.6%, 19.3%, 6.8%, and 5.3%, respectively. Resistance to multiple drugs increased from 13.8% in 2001 to 20.6% in 2003 (p <0.0001). Antimicrobial consumption data were obtained from the Spanish National Health System. In spite of decreased cephalosporin and β-lactam use, overall extended-spectrum β-lactamase production increased from 1.6% (2001) to 4.1% (2003) (p <0.0001), mainly due to the rising prevalence of cefotaximases. Resistance to ciprofloxacin significantly increased, mostly in community-onset infections, which coincided with a rise in community quinolone use. Cotrimoxazole resistance remained stable at ≈30%, even though its use was dramatically reduced. PMID:15829192

  18. Genotoxicity of Graphene in Escherichia coli

    NASA Astrophysics Data System (ADS)

    Sharma, Ananya

    Rapid advances in nanotechnology necessitate assessment of the safety of nanomaterials in the resulting products and applications. One key nanomaterial attracting much interest in many areas of science and technology is graphene. Graphene is a one atom thick carbon allotrope arranged in a two-dimensional honeycomb lattice. In addition to being extremely thin, graphene has several extraordinary physical properties such as its exceptional mechanical strength, thermal stability, and high electrical conductivity. Graphene itself is relatively chemically inert and therefore pristine graphene must undergo a process called functionalization, which is combination of chemical and physical treatments that change the properties of graphene, to make it chemically active. Functionalization of graphene is of crucial importance as the end application of graphene depends on proper functionalization. In the field of medicine, graphene is currently a nanomaterial of high interest for building biosensors, DNA transistors, and probes for cancer detection. Despite the promising applications of graphene in several areas of biomedicine, there have been only few studies in recent years that focus on evaluating cytotoxicity of graphene on cells, and almost no studies that investigate how graphene exposure affects cellular genetic material. Therefore, in this study we used a novel approach to evaluate the genotoxicity, i.e., the effects of graphene on DNA, using Escherichia coli as a prokaryotic model organism.

  19. Oligosaccharide Binding in Escherichia coli Glycogen Synthase

    SciTech Connect

    Sheng, Fang; Yep, Alejandra; Feng, Lei; Preiss, Jack; Geiger, James H.

    2010-11-17

    Glycogen/starch synthase elongates glucan chains and is the key enzyme in the synthesis of glycogen in bacteria and starch in plants. Cocrystallization of Escherichia coli wild-type glycogen synthase (GS) with substrate ADPGlc and the glucan acceptor mimic HEPPSO produced a closed form of GS and suggests that domain-domain closure accompanies glycogen synthesis. Cocrystallization of the inactive GS mutant E377A with substrate ADPGlc and oligosaccharide results in the first oligosaccharide-bound glycogen synthase structure. Four bound oligosaccharides are observed, one in the interdomain cleft (G6a) and three on the N-terminal domain surface (G6b, G6c, and G6d). Extending from the center of the enzyme to the interdomain cleft opening, G6a mostly interacts with the highly conserved N-terminal domain residues lining the cleft of GS. The surface-bound oligosaccharides G6c and G6d have less interaction with enzyme and exhibit a more curled, helixlike structural arrangement. The observation that oligosaccharides bind only to the N-terminal domain of GS suggests that glycogen in vivo probably binds to only one side of the enzyme to ensure unencumbered interdomain movement, which is required for efficient, continuous glucan-chain synthesis.

  20. Biochemistry of homologous recombination in Escherichia coli.

    PubMed Central

    Kowalczykowski, S C; Dixon, D A; Eggleston, A K; Lauder, S D; Rehrauer, W M

    1994-01-01

    Homologous recombination is a fundamental biological process. Biochemical understanding of this process is most advanced for Escherichia coli. At least 25 gene products are involved in promoting genetic exchange. At present, this includes the RecA, RecBCD (exonuclease V), RecE (exonuclease VIII), RecF, RecG, RecJ, RecN, RecOR, RecQ, RecT, RuvAB, RuvC, SbcCD, and SSB proteins, as well as DNA polymerase I, DNA gyrase, DNA topoisomerase I, DNA ligase, and DNA helicases. The activities displayed by these enzymes include homologous DNA pairing and strand exchange, helicase, branch migration, Holliday junction binding and cleavage, nuclease, ATPase, topoisomerase, DNA binding, ATP binding, polymerase, and ligase, and, collectively, they define biochemical events that are essential for efficient recombination. In addition to these needed proteins, a cis-acting recombination hot spot known as Chi (chi: 5'-GCTGGTGG-3') plays a crucial regulatory function. The biochemical steps that comprise homologous recombination can be formally divided into four parts: (i) processing of DNA molecules into suitable recombination substrates, (ii) homologous pairing of the DNA partners and the exchange of DNA strands, (iii) extension of the nascent DNA heteroduplex; and (iv) resolution of the resulting crossover structure. This review focuses on the biochemical mechanisms underlying these steps, with particular emphases on the activities of the proteins involved and on the integration of these activities into likely biochemical pathways for recombination. Images PMID:7968921

  1. Endonuclease IV (nfo) mutant of Escherichia coli.

    PubMed Central

    Cunningham, R P; Saporito, S M; Spitzer, S G; Weiss, B

    1986-01-01

    A cloned gene, designated nfo, caused overproduction of an EDTA-resistant endonuclease specific for apurinic-apyrimidinic sites in DNA. The sedimentation coefficient of the enzyme was similar to that of endonuclease IV. An insertion mutation was constructed in vitro and transferred from a plasmid to the Escherichia coli chromosome. nfo mutants had an increased sensitivity to the alkylating agents methyl methanesulfonate and mitomycin C and to the oxidants tert-butyl hydroperoxide and bleomycin. The nfo mutation enhanced the killing of xth (exonuclease III) mutants by methyl methanesulfonate, H2O2, tert-butyl hydroperoxide, and gamma rays, and it enhanced their mutability by methyl methanesulfonate. It also increased the temperature sensitivity of an xth dut (dUTPase) mutant that is defective in the repair of uracil-containing DNA. These results are consistent with earlier findings that endonuclease IV and exonuclease III both cleave DNA 5' to an apurinic-apyrimidinic site and that exonuclease III is more active. However, nfo mutants were more sensitive to tert-butyl hydroperoxide and to bleomycin than were xth mutants, suggesting that endonuclease IV might recognize some lesions that exonuclease III does not. The mutants displayed no marked increase in sensitivity to 254-nm UV radiation, and the addition of an nth (endonuclease III) mutation to nfo or nfo xth mutants did not significantly increase their sensitivity to any of the agents tested. Images PMID:2430946

  2. Ribonuclease Sensitivity of Escherichia coli Ribosomes

    PubMed Central

    Santer, Melvin; Smith, Josephine R.

    1966-01-01

    Santer, Melvin (Haverford College, Haverford, Pa.), and Josephine R. Smith. Ribonuclease sensitivity of Escherichia coli ribosomes. J. Bacteriol. 92:1099–1110. 1966.—The ribonucleic acid (RNA) contained in 70S ribosomes and in 50S and 30S subunits was hydrolyzed by pancreatic ribonuclease. A 7% amount of the RNA was removed from the 70S particle; at 10−4m magnesium concentration, a maximum of 24 and 30% of the RNA in the 50S and the 30S fractions, respectively, was removed by ribonuclease. At the two lower magnesium ion concentrations, 50S ribosomes did not lose any protein, whereas 30S ribosomes lost protein as a result of ribonuclease treatment. A number of proteins were removed from the 30S particles by ribonuclease, and these proteins were antigenically related to proteins present in 50S ribosomes. The differential effect of ribonuclease on 50S and 30S ribosomes suggested that they have structural dissimilarities. Images PMID:5332866

  3. Enterotoxigenic Escherichia coli Multilocus Sequence Types in Guatemala and Mexico

    PubMed Central

    Klena, John; Rodas, Claudia; Bourgeois, August Louis; Torres, Olga; Svennerholm, Ann-Mari; Sjöling, Åsa

    2010-01-01

    The genetic backgrounds of 24 enterotoxigenic Escherichia coli (ETEC) strains from Mexico and Guatemala expressing heat-stable toxin (ST) and coli surface antigen 6 (CS6) were analyzed. US travelers to these countries and resident children in Guatemala were infected by ETEC strains of sequence type 398, expressing STp and carrying genetically identical CS6 sequences. PMID:20031063

  4. Characterization of enterohemorrhagic Escherichia coli on veal hides and carcasses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enterohemorrhagic E. coli (EHEC) are Shiga toxin–producing Escherichia coli (STEC) associated with the most severe forms of foodborne illnesses. The United States Department of Agriculture (USDA) Food Safety Inspection Service (FSIS) has identified a higher percentage of non-O157 EHEC compared to E....

  5. Prevalence of Class D Carbapenemases among Extended-Spectrum β-Lactamases Producing Escherichia coli Isolates from Educational Hospitals in Shahrekord

    PubMed Central

    Damavandi, Mohammad-Sadegh; Latif Pour, Mohammad

    2016-01-01

    Introduction Extended-spectrum β-lactamases (ESBLs) are a set of plasmid-borne, various and quickly evolving enzymes that are a main therapeutic issue now-a-days for inpatient and outpatient treatment. Aim The aim of this study was to determine multi-drug resistance (MDR) and ESBLs producing E. coli strains, prevalence of class D Carbapenemases among ESBLs producing Escherichia coli isolates from educational hospitals in Shahrekord, Iran. Materials and Methods Uropathogenic Escherichia coli strains were isolated from patients with Urinary Tract Infections (UTIs). The agar disc diffusion test was used to characterize the antimicrobial sensitivity of the E. coli isolates. The ESBL positive strains were identified by phenotypic double-disk synergy test, by third-generation cephalosporin in combination with or without clavulanic acid. Multiplex PCR was carried out for detection of the three families of OXA-type carbapenamases including OXA-23, OXA-24, and OXA-48 in E. coli strains. Results All bacterial isolates were susceptible to meropenem. Ninety isolates produced ESBL, 55 E. coli isolates from inpatients, and 35 isolates from outpatients, with a significant association (p< 0.05). The prevalence of OXA-23, OXA-24, and OXA-48 in the ESBLs producing isolates was respectively 21%, 18%, and 11% for inpatients, and 10%, 8%, and 6% for outpatients. Conclusion ESBL-producing E. coli isolates are also a major threat in the clinical setting. The findings of this study indicated the high occurrence of ESBLs and multiple antibiotic resistance in E. coli isolates. PMID:27462579

  6. Soil solarization reduces Escherichia coli O157:H7 and total Escherichia coli on cattle feedlot pen surfaces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Feedlot pen soils are a source for transmission of Escherichia coli O157:H7, and therefore a target for preharvest strategies to reduce this pathogen in cattle. The objective of this study was to determine the ability of soil solarization to reduce E. coli O157:H7 in feedlot surface material (FSM)....

  7. Escherichia coli antibiotic resistance in emergency departments. Do local resistance rates matter?

    PubMed

    Grignon, O; Montassier, E; Corvec, S; Lepelletier, D; Hardouin, J-B; Caillon, J; Batard, E

    2015-03-01

    Ciprofloxacin and cotrimoxazole are recommended to treat uncomplicated pyelonephritis and uncomplicated cystitis, respectively, provided that local resistance rates of uropathogens do not exceed specified thresholds (10 and 20 %, respectively). However, Escherichia coli resistance rates in Emergency Departments (ED) remain poorly described. Our objectives were to assess E. coli ciprofloxacin and cotrimoxazole resistance rates in EDs of a French administrative region, and to determine if resistance rates differ between EDs. This was a retrospective study of E. coli urine isolates sampled in ten EDs between 2007 and 2012. The following risk factors for resistance were tested using logistic regression: ED, sex, age, sampling year, sampling month. A total of 17,527 isolates were included. Ciprofloxacin local resistance rates (range, 5.3 % [95 % CI, 4.0-7.1 %] to 11.7 % [95 % CI, 5.2-23.2 %]) were ≤10 % in nine EDs in 2012. Five EDs were risk factors for ciprofloxacin resistance, as were male sex, age and sampling in April or October. Cotrimoxazole local resistance rates (range, 13.3 % [95 % CI, 6.3-25.1 %] to 20.4 % [95 % CI, 18.9-22.0 %]) were ≤20 % in seven EDs in 2012. Five EDs were risk factors for cotrimoxazole resistance, as were age, sampling between October and December, and sampling in 2011 and 2012. We found a significant variability of E. coli ciprofloxacin and cotrimoxazole resistance rates among EDs of a small region. These differences impact on the feasibility of empirical treatment of urinary tract infections with ciprofloxacin or cotrimoxazole in a given ED. Continuous local survey of antibacterial resistance in ED urinary isolates is warranted to guide antibacterial therapy of urinary tract infections.

  8. Whole-genome phylogeny of Escherichia coli/Shigella group by feature frequency profiles (FFPs)

    PubMed Central

    Sims, Gregory E.; Kim, Sung-Hou

    2011-01-01

    A whole-genome phylogeny of the Escherichia coli/Shigella group was constructed by using the feature frequency profile (FFP) method. This alignment-free approach uses the frequencies of l-mer features of whole genomes to infer phylogenic distances. We present two phylogenies that accentuate different aspects of E. coli/Shigella genomic evolution: (i) one based on the compositions of all possible features of length l = 24 (∼8.4 million features), which are likely to reveal the phenetic grouping and relationship among the organisms and (ii) the other based on the compositions of core features with low frequency and low variability (∼0.56 million features), which account for ∼69% of all commonly shared features among 38 taxa examined and are likely to have genome-wide lineal evolutionary signal. Shigella appears as a single clade when all possible features are used without filtering of noncore features. However, results using core features show that Shigella consists of at least two distantly related subclades, implying that the subclades evolved into a single clade because of a high degree of convergence influenced by mobile genetic elements and niche adaptation. In both FFP trees, the basal group of the E. coli/Shigella phylogeny is the B2 phylogroup, which contains primarily uropathogenic strains, suggesting that the E. coli/Shigella ancestor was likely a facultative or opportunistic pathogen. The extant commensal strains diverged relatively late and appear to be the result of reductive evolution of genomes. We also identify clade distinguishing features and their associated genomic regions within each phylogroup. Such features may provide useful information for understanding evolution of the groups and for quick diagnostic identification of each phylogroup. PMID:21536867

  9. Free RNA polymerase in Escherichia coli.

    PubMed

    Patrick, Michael; Dennis, Patrick P; Ehrenberg, Mans; Bremer, Hans

    2015-12-01

    The frequencies of transcription initiation of regulated and constitutive genes depend on the concentration of free RNA polymerase holoenzyme [Rf] near their promoters. Although RNA polymerase is largely confined to the nucleoid, it is difficult to determine absolute concentrations of [Rf] at particular locations within the nucleoid structure. However, relative concentrations of free RNA polymerase at different growth rates, [Rf]rel, can be estimated from the activities of constitutive promoters. Previous studies indicated that the rrnB P2 promoter is constitutive and that [Rf]rel in the vicinity of rrnB P2 increases with increasing growth rate. Recently it has become possible to directly visualize Rf in growing Escherichia coli cells. Here we examine some of the important issues relating to gene expression based on these new observations. We conclude that: (i) At a growth rate of 2 doublings/h, there are about 1000 free and 2350 non-specifically DNA-bound RNA polymerase molecules per average cell (12 and 28%, respectively, of 8400 total) which are in rapid equilibrium. (ii) The reversibility of the non-specific binding generates more than 1000 free RNA polymerase molecules every second in the immediate vicinity of the DNA. Of these, most rebind non-specifically to the DNA within a few ms; the frequency of non-specific binding is at least two orders of magnitude greater than specific binding and transcript initiation. (iii) At a given amount of RNA polymerase per cell, [Rf] and the density of non-specifically DNA-bound RNA polymerase molecules along the DNA both vary reciprocally with the amount of DNA in the cell. (iv) At 2 doublings/h an E. coli cell contains, on the average, about 1 non-specifically bound RNA polymerase per 9 kbp of DNA and 1 free RNA polymerase per 20 kbp of DNA. However some DNA regions (i.e. near active rRNA operons) may have significantly higher than average [Rf].

  10. The Melibiose Transporter of Escherichia coli

    PubMed Central

    Fuerst, Oliver; Lin, Yibin; Granell, Meritxell; Leblanc, Gérard; Padrós, Esteve; Lórenz-Fonfría, Víctor A.; Cladera, Josep

    2015-01-01

    We examine the role of Lys-377, the only charged residue in helix XI, on the functional mechanism of the Na+-sugar melibiose symporter from Escherichia coli. Intrinsic fluorescence, FRET, and Fourier transform infrared difference spectroscopy reveal that replacement of Lys-377 with either Cys, Val, Arg, or Asp disables both Na+ and melibiose binding. On the other hand, molecular dynamics simulations extending up to 200–330 ns reveal that Lys-377 (helix XI) interacts with the anionic side chains of two of the three putative ligands for cation binding (Asp-55 and Asp-59 in helix II). When Asp-59 is protonated during the simulations, Lys-377 preferentially interacts with Asp-55. Interestingly, when a Na+ ion is positioned in the Asp-55-Asp-59 environment, Asp-124 in helix IV (a residue essential for melibiose binding) reorients and approximates the Asp-55-Asp-59 pair, and all three acidic side chains act as Na+ ligands. Under these conditions, the side chain of Lys-377 interacts with the carboxylic moiety of these three Asp residues. These data highlight the crucial role of the Lys-377 residue in the spatial organization of the Na+ binding site. Finally, the analysis of the second-site revertants of K377C reveals that mutation of Ile-22 (in helix I) preserves Na+ binding, whereas that of melibiose is largely abolished according to spectroscopic measurements. This amino acid is located in the border of the sugar-binding site and might participate in sugar binding through apolar interactions. PMID:25971963

  11. Novel Mechanism of Escherichia coli Porin Regulation

    PubMed Central

    Castillo-Keller, Maria; Vuong, Phu; Misra, Rajeev

    2006-01-01

    A novel mechanism of Escherichia coli porin regulation was discovered from multicopy suppressors that permitted growth of cells expressing a mutant OmpC protein in the absence of DegP. Analyses of two suppressors showed that both substantially lowered OmpC expression. Suppression activities were confined to a short DNA sequence, which we designated ipeX for inhibition of porin expression, and to DNA containing a 3′-truncated ompR gene. The major effect of ipeX on ompC expression was exerted posttranscriptionally, whereas the truncated OmpR protein reduced ompC transcription. ipeX was localized within an untranslated region of 247 base pairs between the stop codon of nmpC—a remnant porin gene from the cryptic phage qsr′ (DLP12) genome—and its predicted Rho-independent transcriptional terminator. Interestingly, another prophage, PA-2, which encodes a porin similar to NmpC, known as Lc, has sequences downstream from lc identical to that of ipeX. PA-2 lysogenization leads to Lc expression and OmpC inhibition. Our data show that the synthesis of the lc transcript, whose 3′ end contains the corresponding ipeX sequence, inhibits OmpC expression. Overexpression of ipeX RNA inhibited both OmpC and OmpF expression but not that of OmpA. ompC-phoA chimeric gene constructs revealed a 248-bp untranslated region of ompC required for ipeX-mediated inhibition. However, no sequence complementarity was found between ipeX and this region of ompC, indicating that inhibition may not involve simple base pairing between the two RNA molecules. The effect of ipeX on ompC, but not on ompF, was independent of the RNA chaperone Hfq. PMID:16385048

  12. Environmental Escherichia coli: Ecology and public health implications - A review

    USGS Publications Warehouse

    Jang, Jeonghwan; Hur, Hor-Gil; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Yan, Tao; Ishii, Satoshi

    2017-01-01

    Escherichia coli is classified as a rod-shaped, Gram-negative bacterium in the family Enterobacteriaceae. The bacterium mainly inhabits the lower intestinal tract of warm-blooded animals, including humans, and is often discharged into the environment through feces or wastewater effluent. The presence of E. coli in environmental waters has long been considered as an indicator of recent fecal pollution. However, numerous recent studies have reported that some specific strains of E. coli can survive for long periods of time, and potentially reproduce, in extra-intestinal environments. This indicates that E. coli can be integrated into indigenous microbial communities in the environment. This naturalization phenomenon calls into question the reliability of E. coli as a fecal indicator bacterium (FIB). Recently, many studies reported that E. coli populations in the environment are affected by ambient environmental conditions affecting their long-term survival. Large-scale studies of population genetics provide the diversity and complexity of E. coli strains in various environments, affected by multiple environmental factors. This review examines the current knowledge on the ecology of E. coli strains in various environments in regards to its role as a FIB and as a naturalized member of indigenous microbial communities. Special emphasis is given on the growth of pathogenic E. coli in the environment, and the population genetics of environmental members of the genus Escherichia. The impact of environmental E. coli on water quality and public health is also discussed.

  13. Investigation of ’Escherichia coli’ Enterotoxins

    DTIC Science & Technology

    1978-05-01

    E . coli diarrheal disease in man and domestic animals. Fundamentally, the design of the vaccine is based on the well- documented ability of cholera antitoxin to neutralize both cholera and heat- labile E . coli enterotoxins and on the ability of certain E . coli antigens to enhance the immune response to cholera toxoid and possibly whole-cell Cholera Vaccine, as

  14. Rapid Sterilization of Escherichia coli by Solution Plasma Process

    NASA Astrophysics Data System (ADS)

    Andreeva, Nina; Ishizaki, Takahiro; Baroch, Pavel; Saito, Nagahiro

    2012-12-01

    Solution plasma (SP), which is a discharge in the liquid phase, has the potential for rapid sterilization of water without chemical agents. The discharge showed a strong sterilization performance against Escherichia coli bacteria. The decimal value (D value) of the reduction time for E. coli by this system with an electrode distance of 1.0 mm was estimated to be approximately 1.0 min. Our discharge system in the liquid phase caused no physical damage to the E. coli and only a small increase in the temperature of the aqueous solution. The UV light generated by the discharge was an important factor in the sterilization of E. coli.

  15. Urethral obstruction of 6 hours or less causes bacteriuria, bacteremia, and pyelonephritis in mice challenged with "nonuropathogenic" Escherichia coli.

    PubMed Central

    Johnson, D E; Russell, R G; Lockatell, C V; Zulty, J C; Warren, J W

    1993-01-01

    Urethral obstruction may be caused by prostatic hypertrophy, urethral stricture, or encrustation of a urethral-catheter lumen. Bacteriuria often complicates these obstructions. The sequelae include fever, acute pyelonephritis, chronic renal inflammation, and death. We hypothesized that even brief obstruction of the urinary tract containing a nonvirulent bacterium would result in these complications. Mice challenged transurethrally with Escherichia coli FN414, which is rapidly eliminated from normal mice without causing bacteriuria, bacteremia, or renal pathology, were subjected to reversible urethral obstruction by coating the urethral meatus with collodion for 1, 3, or 6 h. The majority of mice obstructed for 1 h demonstrated parenchymal renal inflammation 48 h later. At the end of 3 h of obstruction, 9 of 10 mice were bacteremic; some bacteremias were present at 48 h after removal of the obstruction. At that time, more severe renal inflammation was seen in these mice. As little as 6 h of obstruction resulted not only in the acute changes described above but also in chronic renal inflammation and fibrosis in the majority of animals sacrificed 3 and 6 weeks later. Additional studies demonstrated that urethral obstruction enhanced the uropathogenicity of another nonpathogenic E. coli strain (K-12 strain HB101) and caused more severe renal lesions in mice challenged with E. coli CFT073, isolated from a patient with symptoms of pyelonephritis. These findings demonstrate that brief urethral obstruction may (i) induce organisms which are cleared rapidly from the normal urinary tract to cause bacteriuria, bacteremia, and pyelonephritis and (ii) intensify the renal lesions caused by a uropathogen. Images PMID:8335372

  16. Microarray-based detection of extended virulence and antimicrobial resistance gene profiles in phylogroup B2 Escherichia coli of human, meat and animal origin.

    PubMed

    Jakobsen, Lotte; Garneau, Philippe; Kurbasic, Azra; Bruant, Guillaume; Stegger, Marc; Harel, Josée; Jensen, Klaus S; Brousseau, Roland; Hammerum, Anette M; Frimodt-Møller, Niels

    2011-10-01

    Extra-intestinal pathogenic Escherichia coli (ExPEC) causing urinary tract infections (UTIs) most often belong to phylogenetic group B2 and stem from the patient's own faecal flora. It has been hypothesized that the external reservoir for these uropathogenic E. coli in the human intestine may be meat and food-production animals. To investigate such a connection, this study analysed an E. coli phylogroup B2 strain collection (n = 161) of geographical and temporally matched isolates, published previously, from UTI patients (n = 52), community-dwelling humans (n = 36), imported (n = 5) and Danish (n = 13) broiler chicken meat, Danish broiler chickens (n = 17), imported (n = 3) and Danish (n = 27) pork, and healthy Danish pigs (n = 8). The isolates were subjected to microarray analysis for 315 virulence genes and variants and 82 antimicrobial resistance genes and variants. In total, 133 different virulence and antimicrobial resistance genes were detected in at least one UTI isolate. Between 66 and 87 of these genes were also detected in meat and animal isolates. Cluster analyses of virulence and resistance gene profiles, respectively, showed that UTI and community-dwelling human isolates most often grouped with meat and animal isolates, indicating genotypic similarity among such isolates. Furthermore, B2 isolates were detected from UTI patients and meat, with indistinguishable gene profiles. A considerable proportion of the animal and meat isolates belonged to the ExPEC pathotype. In conclusion, these findings suggest that B2 E. coli from meat and animal origin can be the source of most of the virulence and antimicrobial resistance genes detected in uropathogenic E. coli isolates and that there is a general resemblance of animal, meat and UTI E. coli based on extended gene profiling. These findings support the hypothesis of a zoonotic link between E. coli causing UTIs and E. coli from meat and animals.

  17. Infection by verocytotoxin-producing Escherichia coli.

    PubMed Central

    Karmali, M A

    1989-01-01

    Verocytotoxin (VT)-producing Escherichia coli (VTEC) are a newly recognized group of enteric pathogens which are increasingly being recognized as common causes of diarrhea in some geographic settings. Outbreak studies indicate that most patients with VTEC infection develop mild uncomplicated diarrhea. However, a significant risk of two serious and potentially life-threatening complications, hemorrhagic colitis and the hemolytic uremic syndrome, makes VTEC infection a public health problem of serious concern. The main reservoirs of VTEC appear to be the intestinal tracts of animals, and foods of animal (especially bovine) origin are probably the principal sources for human infection. The term VT refers to a family of subunit exotoxins with high biological activity. Individual VTEC strains elaborate one or both of at least two serologically distinct, bacteriophage-mediated VTs (VT1 and VT2) which are closely related to Shiga toxin and are thus also referred to as Shiga-like toxins. The holotoxins bind to cells, via their B subunits, to a specific receptor which is probably the glycolipid, globotriosyl ceramide (Gb3). Binding is followed by internalization of the A subunit, which, after it is proteolytically nicked and reduced to the A1 fragment, inhibits protein synthesis in mammalian cells by inactivating 60S ribosomal subunits through selective structural modification of 28S ribosomal ribonucleic acid. The mechanism of VTEC diarrhea is still controversial, and the relative roles of locally acting VT and "attaching and effacing adherence" of VTEC to the mucosa have yet to be resolved. There is increasing evidence that hemolytic uremic syndrome and possibly hemorrhagic colitis result from the systemic action of VT on vascular endothelial cells. The role of antitoxic immunity in preventing the systemic complications of VTEC infection is being explored. Antibiotics appear to be contraindicated in the treatment of VTEC infection. The most common VTEC serotype associated

  18. Role of homologous recombination in adaptive diversification of extraintestinal Escherichia coli.

    PubMed

    Paul, Sandip; Linardopoulou, Elena V; Billig, Mariya; Tchesnokova, Veronika; Price, Lance B; Johnson, James R; Chattopadhyay, Sujay; Sokurenko, Evgeni V

    2013-01-01

    The contribution of homologous exchange (recombination) of core genes in the adaptive evolution of bacterial pathogens is not well understood. To investigate this, we analyzed fully assembled genomes of two Escherichia coli strains from sequence type 131 (ST131), a clonal group that is both the leading cause of extraintestinal E. coli infections and the main source of fluoroquinolone-resistant E. coli. Although the sequences of each of the seven multilocus sequence typing genes were identical in the two ST131 isolates, the strains diverged from one another by homologous recombination that affected at least 9% of core genes. This was on a par with the contribution to genomic diversity of horizontal gene transfer and point gene mutation. The genomic positions of recombinant and mobile genetic regions were partially linked, suggesting their concurrent occurrence. One of the genes affected by homologous recombination was fimH, which encodes mannose-specific type 1 fimbrial adhesin, resulting in functionally distinct copies of the gene in ST131 strains. One strain, a uropathogenic isolate, had a pathoadaptive variant of fimH that was acquired by homologous replacement into the commensal strain background. Close examination of FimH structure and function in additional ST131 isolates revealed that recombination led to acquisition of several functionally distinct variants that, upon homologous exchange, were targeted by a variety of pathoadaptive mutations under strong positive selection. Different recombinant fimH strains also showed a strong clonal association with ST131 isolates that had distinct fluoroquinolone resistance profiles. Thus, homologous recombination of core genes plays a significant role in adaptive diversification of bacterial pathogens, especially at the level of clonally related groups of isolates.

  19. A Multiepitope Subunit Vaccine Conveys Protection against Extraintestinal Pathogenic Escherichia coli in Mice▿ †

    PubMed Central

    Wieser, Andreas; Romann, Eva; Magistro, Giuseppe; Hoffmann, Christiane; Nörenberg, Dominik; Weinert, Kirsten; Schubert, Sören

    2010-01-01

    Infections due to extraintestinal pathogenic Escherichia coli (ExPEC) are common in humans and animals and include urinary tract infections (from uropathogenic E. coli [UPEC]), septicemia, and wound infections. These infections result in significant morbidity and mortality and in high health care costs. In view of the increasing number of ExPEC infections and the ever-growing antibiotic resistance capability of ExPEC isolates, preventive measures such as an effective vaccine against ExPEC are desirable. An ExPEC vaccine may be cost-effective for select patient groups. Previous vaccine candidates consisted of single target proteins or whole ExPEC cells. Here we describe a subunit vaccine against ExPEC which is based on immunodominant epitopes of the virulence-associated ExPEC proteins FyuA, IroN, ChuA, IreA, Iha, and Usp. Using a novel approach of computer-aided design, two completely artificial genes were created, both encoding eight peptide domains derived from these ExPEC proteins. The recombinant expression of these two genes resulted in a protein vaccine directed against ExPEC but not against commensal E. coli of the gut flora. In mice, the vaccine was highly immunogenic, eliciting both strong humoral and cellular immune responses. Nasal application resulted in high secretory immunoglobulin A (sIgA) production, which was detectable on the mucosal surface of the urogenital tract. Finally, it conveyed protection, as shown by a significant reduction of bacterial load in a mouse model of ExPEC peritonitis. This study provides evidence that a novel vaccine design encompassing distinct epitopes of virulence-associated ExPEC proteins may represent a means for providing a protective and pathogen-specific vaccine. PMID:20498257

  20. Role of the Vpe Carbohydrate Permease in Escherichia coli Urovirulence and Fitness In Vivo

    PubMed Central

    Martinez-Jéhanne, Vanessa; Pichon, Christophe; du Merle, Laurence; Poupel, Olivier; Cayet, Nadège; Bouchier, Christiane

    2012-01-01

    Uropathogenic Escherichia coli (UPEC) strains are a leading cause of infections in humans, but the mechanisms governing host colonization by this bacterium remain poorly understood. Previous studies have identified numerous gene clusters encoding proteins involved in sugar transport, in pathogen-specific islands. We investigated the role in fitness and virulence of the vpe operon encoding an EII complex of the phosphotransferase (PTS) system, which is found more frequently in human strains from infected urine and blood (45%) than in E. coli isolated from healthy humans (15%). We studied the role of this locus in vivo, using the UPEC E. coli strain AL511, mutants, and complemented derivatives in two experimental mouse models of infection. Mutant strains displayed attenuated virulence in a mouse model of sepsis. A role in kidney colonization was also demonstrated by coinfection experiments in a mouse model of pyelonephritis. Electron microscopy examinations showed that the vpeBC mutant produced much smaller amounts of a capsule-like surface material than the wild type, particularly when growing in human urine. Complementation of the vpeBC mutation led to an increase in the amount of exopolysaccharide, resistance to serum killing, and virulence. It was therefore clear that the loss of vpe genes was responsible for all the observed phenotypes. We also demonstrated the involvement of the vpe locus in gut colonization in the streptomycin-treated mouse model of intestinal colonization. These findings confirm that carbohydrate transport and metabolism underlie the ability of UPEC strains to colonize the host intestine and to infect various host sites. PMID:22615242

  1. Intracellular Bacteria in the Pathogenesis of Escherichia coli Urinary Tract Infection in Children

    PubMed Central

    Robino, Luciana; Scavone, Paola; Araujo, Lucia; Algorta, Gabriela; Zunino, Pablo; Pírez, María Catalina; Vignoli, Rafael

    2014-01-01

    Background. Uropathogenic Escherichia coli (UPEC) is the most common agent of urinary tract infection (UTI). The classic model of pathogenesis proposes the ascent of UPEC by the urethra and external adherence to the urothelium. Recently, the ability of UPEC to invade urothelial cells and to form intracellular bacterial communities (IBCs) has been described. Methods. The objective of the present study was to determine the presence of intracellular bacteria (IB) in children with UTI caused by E. coli and to characterize its virulence attributes and its relation with clinical outcomes. One hundred thirty-three children with E. coli UTI who attended a reference children's hospital between June and November 2012 were included. Urine samples were analyzed by optical and confocal microscopy looking for exfoliated urothelial cells with IB. Phylogenetic group and 24 virulence factors of UPEC were determined using multiplex polymerase chain reaction. Medical records were analyzed. Results. The presence of IB was detected in 49 of 133 (36.8%) samples by confocal microscopy, in 30 cases as IBC, and in 19 as isolated intracellular bacteria (IIB). Only 50% of these cases could be detected by light microscopy. Seventy-four medical records were analyzed, 34 with IBC/IIB, 40 without IB. Any virulence gene was associated with IBC/IIB. The presence of IBC/IIB was associated with recurrent UTI (odds ratio [OR], 3.3; 95% confidence interval [CI], 1.3–9; P = .017), especially in children without urinary tract functional or morphological abnormalities (OR, 8.0; 95% CI, 2.3–27.4; P = .000). IBCs were associated with lower urinary tract syndrome (OR, 3.6; 95% CI, 1.1–11.8; P = .05) and absence of fever (P = .009). Conclusions. IBCs/IIB could explain a high proportion of children with recurrent UTI. PMID:25091303

  2. Rates of mutation and host transmission for an Escherichia coli clone over 3 years.

    PubMed

    Reeves, Peter R; Liu, Bin; Zhou, Zhemin; Li, Dan; Guo, Dan; Ren, Yan; Clabots, Connie; Lan, Ruiting; Johnson, James R; Wang, Lei

    2011-01-01

    Although over 50 complete Escherichia coli/Shigella genome sequences are available, it is only for closely related strains, for example the O55:H7 and O157:H7 clones of E. coli, that we can assign differences to individual evolutionary events along specific lineages. Here we sequence the genomes of 14 isolates of a uropathogenic E. coli clone that persisted for 3 years within a household, including a dog, causing a urinary tract infection (UTI) in the dog after 2 years. The 20 mutations observed fit a single tree that allows us to estimate the mutation rate to be about 1.1 per genome per year, with minimal evidence for adaptive change, including in relation to the UTI episode. The host data also imply at least 6 host transfer events over the 3 years, with 2 lineages present over much of that period. To our knowledge, these are the first direct measurements for a clone in a well-defined host community that includes rates of mutation and host transmission. There is a concentration of non-synonymous mutations associated with 2 transfers to the dog, suggesting some selection pressure from the change of host. However, there are no changes to which we can attribute the UTI event in the dog, which suggests that this occurrence after 2 years of the clone being in the household may have been due to chance, or some unknown change in the host or environment. The ability of a UTI strain to persist for 2 years and also to transfer readily within a household has implications for epidemiology, diagnosis, and clinical intervention.

  3. Virulence and plasmidic resistance determinants of Escherichia coli isolated from municipal and hospital wastewater treatment plants.

    PubMed

    Calhau, Vera; Mendes, Catarina; Pena, Angelina; Mendonça, Nuno; Da Silva, Gabriela Jorge

    2015-06-01

    Escherichia coli is simultaneously an indicator of water contamination and a human pathogen. This study aimed to characterize the virulence and resistance of E. coli from municipal and hospital wastewater treatment plants (WWTPs) in central Portugal. From a total of 193 isolates showing reduced susceptibility to cefotaxime and/or nalidixic acid, 20 E. coli with genetically distinct fingerprint profiles were selected and characterized. Resistance to antimicrobials was determined using the disc diffusion method. Extended spectrum β-lactamase and plasmid-mediated quinolone resistance genes, phylogroups, pathogenicity islands (PAIs) and virulence genes were screened by polymerase chain reaction (PCR). CTX-M producers were typed by multilocus sequence typing. Resistance to beta-lactams was associated with the presence of bla(TEM), bla(SHV), bla(CTX-M-15) and bla(CTX-M-32). Plasmid-mediated quinolone resistance was associated with qnrA, qnrS and aac(6')-Ib-cr. Aminoglycoside resistance and multidrug-resistant phenotypes were also detected. PAI IV(536), PAI II(CFT073), PAI II(536) and PAI I(CFT073), and uropathogenic genes iutA, papAH and sfa/foc were detected. With regard to the clinical ST131 clone, it carried bla(CTX-M-15), blaTEM-type, qnrS and aac(6')-lb-cr; IncF and IncP plasmids, and virulence factors PAI IV(536), PAI I(CFT073), PAI II(CFT073), iutA, sfa/foc and papAH were identified in the effluent of a hospital plant. WWTPs contribute to the dissemination of virulent and resistant bacteria in water ecosystems, constituting an environmental and public health risk.

  4. The Serine Protease Pic From Enteroaggregative Escherichia coli Mediates Immune Evasion by the Direct Cleavage of Complement Proteins.

    PubMed

    Abreu, Afonso G; Fraga, Tatiana R; Granados Martínez, Adriana P; Kondo, Marcia Y; Juliano, Maria A; Juliano, Luiz; Navarro-Garcia, Fernando; Isaac, Lourdes; Barbosa, Angela S; Elias, Waldir P

    2015-07-01

    Enteroaggregative and uropathogenic Escherichia coli, Shigella flexneri 2a, and the hybrid enteroaggregative/Shiga toxin-producing E. coli strain (O104:H4) are important pathogens responsible for intestinal and urinary tract infections, as well as sepsis and hemolytic uremic syndrome. They have in common the production of a serine protease called Pic. Several biological roles for Pic have been described, including protection of E. coli DH5α from complement-mediated killing. Hereby we showed that Pic significantly reduces complement activation by all 3 pathways. Pic cleaves purified C3/C3b and other proteins from the classic and lectin pathways, such as C4 and C2. Cleavage fragments of C3, C4, and C2 were also observed with HB101(pPic1) culture supernatants, and C3 cleavage sites were mapped by fluorescence resonance energy transfer peptides. Experiments using human serum as a source of complement proteins confirmed Pic proteolytic activity on these proteins. Furthermore, Pic works synergistically with the human complement regulators factor I and factor H, promoting inactivation of C3b. In the presence of both regulators, further degradation of C3 α' chain was observed. Therefore, Pic may contribute to immune evasion of E. coli and S. flexneri, favoring invasiveness and increasing the severity of the disorders caused by these pathogens.

  5. Intestinal Colonization by Enterotoxigenic Escherichia coli.

    DTIC Science & Technology

    1980-09-01

    E . coli is mediated by specific types of pili. These pili are antigenic and can be used in diagnosing enterotoxigenic E . coli infections. They are also good protective antigens. When pregnant dams are vaccinated parenterally or orally with pili on live piliated bacteria, they secrete antibodies against the pili in their milk. Neonates suckling dams so vaccinated are passively protected against fatal challenge by enterotoxigenic E . coli . Pili are also good candidate protective antigens for the development of vaccines to protect by

  6. Transcription of foreign DNA in Escherichia coli.

    PubMed

    Warren, René L; Freeman, John D; Levesque, Roger C; Smailus, Duane E; Flibotte, Stephane; Holt, Robert A

    2008-11-01

    Propagation of heterologous DNA in E. coli host cells is central to molecular biology. DNA constructs are often engineered for expression of recombinant protein in E. coli, but the extent of incidental transcription arising from natural regulatory sequences in cloned DNA remains underexplored. Here, we have used programmable microarrays and RT-PCR to measure, comprehensively, the transcription of H. influenzae, P. aeruginosa, and human DNA propagating in E. coli as bacterial artificial chromosomes. We find evidence that at least half of all H. influenzae genes are transcribed in E. coli. Highly transcribed genes are principally involved in energy metabolism, and their proximal promoter regions are significantly enriched with E. coli sigma(70) (also known as RpoD) binding sites. H. influenzae genes acquired from an ancient bacteriophage Mu insertion are also highly transcribed. Compared with H. influenzae, a smaller proportion of P. aeruginosa genes are transcribed in E. coli, and in E. coli there is punctuated transcription of human DNA. The presence of foreign DNA in E. coli disturbs the host transcriptional profile, with expression of the E. coli phage shock protein operon and the flagellar gene cluster being particularly strongly up-regulated. While cross-species transcriptional activation is expected to be enabling for horizontal gene transfer in bacteria, incidental expression of toxic genes can be problematic for DNA cloning. Ongoing characterization of cross-expression will help inform the design of biosynthetic gene clusters and synthetic microbial genomes.

  7. Recurrent Hemolytic and Uremic Syndrome Induced by Escherichia Coli

    PubMed Central

    Commereuc, Morgane; Weill, Francois-Xavier; Loukiadis, Estelle; Gouali, Malika; Gleizal, Audrey; Kormann, Raphaël; Ridel, Christophe; Frémeaux-Bacchi, Véronique; Rondeau, Eric; Hertig, Alexandre

    2016-01-01

    Abstract A widespread belief is that typical hemolytic and uremic syndrome (HUS) does not recur. We report the case of a patient infected twice with raw milk taken from his own cow and containing a Shiga toxin–producing Escherichia coli O174:H21 that induced recurrent HUS causing severe renal and cerebral disorders. A genomic comparison of the human and bovine Shiga toxin–producing Escherichia coli O174:H21 isolates revealed that they were identical. Typical HUS may recur. Since milk from this animal was occasionally distributed locally, thereby posing a serious threat for the whole village, this particular cow was destroyed. PMID:26735524

  8. [Expression of Photobacterium leiognathi bioluminescence system genes in Escherichia coli].

    PubMed

    Ptitsyn, L R; Fatova, M A; Stepanov, A I

    1990-02-01

    Expression of Photobacterium leiognathi bioluminescence genes under the control of lac, tac, tet promoters in Escherichia coli cells has been studied. The position of the genes for aliphatic aldehyde biosynthesis and for the synthesis of luciferase subunits was identified. The plasmid pBRPL1 has been constructed containing the system of bioluminescence genes devoid of promoter following the polylinker DNA fragment. The plasmid can be used for selection of promoter containing DNA sequences as well as for studying the promoters regulation in process of Escherichia coli cells growth.

  9. Diarrheagenic Escherichia coli in Children from Costa Rica

    PubMed Central

    Pérez, Cristian; Gómez-Duarte, Oscar G.; Arias, María L.

    2010-01-01

    More than 5,000 diarrheal cases per year receive medical care at the National Children's Hospital of Costa Rica, and nearly 5% of them require hospitalization. A total of 173 Escherichia coli strains isolated from children with diarrhea were characterized at the molecular, serologic, and phenotypic level. Multiplex and duplex polymerase chain reactions were used to detect the six categories of diarrheagenic E. coli. Thirty percent (n = 52) of the strains were positive, indicating a high prevalence among the pediatric population. Enteropathogenic E. coli and enteroinvasive E. coli pathotypes were the most prevalent (21% and 19%, respectively). Pathogenic strains were distributed among the four E. coli phylogenetic groups A, B1, B2, and D, with groups A and B1 the most commonly found. This study used molecular typing to evaluate the prevalence of diarrheagenic E. coli reported in Costa Rica and demonstrated the importance of these pathotypes in the pediatric population. PMID:20682870

  10. Large Surface Blebs on Escherichia coli Heated to Inactivating Temperatures

    PubMed Central

    Scheie, Paul; Ehrenspeck, Susan

    1973-01-01

    Large surface blebs were observed with phase-contrast optics on Escherichia coli B/r and Bs-1 heated to temperatures at which colony-forming ability was lost. Characterization of such blebs was consistent with the view that they were formed by a physical process and were bounded by the outer membrane of the cell. A hypothesis for thermal inactivation of E. coli is presented that places membrane damage near the primary lethal event. Images PMID:4196258

  11. Expression of staphylococcal enterotoxin C1 in Escherichia coli.

    PubMed Central

    Bohach, G A; Schlievert, P M

    1987-01-01

    The structural gene encoding staphylococcal enterotoxin C1 was cloned into Escherichia coli and localized on a 1.5-kilobase HindIII-ClaI DNA fragment by subcloning. The toxin was partially purified from E. coli clones and shown to be immunologically identical to enterotoxin C1 from Staphylococcus aureus. The cloned toxin also had the same molecular weight (26,000) and charge heterogeneity as staphylococcus-derived enterotoxin. Toxins from both sources were equally biologically active. Images PMID:3542834

  12. Comparative Analysis of Phylogenetic Assignment of Human and Avian ExPEC and Fecal Commensal Escherichia coli Using the (Previous and Revised) Clermont Phylogenetic Typing Methods and its Impact on Avian Pathogenic Escherichia coli (APEC) Classification.

    PubMed

    Logue, Catherine M; Wannemuehler, Yvonne; Nicholson, Bryon A; Doetkott, Curt; Barbieri, Nicolle L; Nolan, Lisa K

    2017-01-01

    The Clermont scheme has been used for subtyping of Escherichia coli since it was initially described in early 2000. Since then, researchers have used the scheme to type and sub-type commensal E. coli and pathogenic E. coli, such as extraintestinal pathogenic E. coli (ExPEC), and compare their phylogenetic assignment by pathogenicity, serogroup, distribution among ExPEC of different host species and complement of virulence and resistance traits. Here, we compare assignments of human and avian ExPEC and commensal E. coli using the old and revised Clermont schemes to determine if the new scheme provides a refined snapshot of isolate classification. 1,996 E. coli from human hosts and poultry, including 84 human neonatal meningitis E. coli isolates, 88 human vaginal E. coli, 696 human uropathogenic E. coli, 197 healthy human fecal E. coli, 452 avian pathogenic E. coli (APEC), 200 retail poultry E. coli, 80 crop and gizzard E. coli from healthy poultry at slaughter and 199 fecal E. coli from healthy birds at slaughter. All isolates were subject to phylogenetic analysis using the Clermont et al. (2000, 2013) schemes and compared to determine the effect of the new classification on strain designation. Most of the isolates' strain designation remained where they were originally assigned. Greatest designation change occurred in APEC where 53.8% of isolates were reclassified; while classification rates among human strains ranged from 8 to 14%. However, some significant changes were observed for UPEC associated strains with significant (P < 0.05) designation changes observed from A to C and D to E or F phylogenetic types; a similar designation change was noted among NMEC for D to F designation change. Among the APEC significant designation changes were observed from A to C and D to E and F. These studies suggest that the new scheme provides a tighter and more meaningful definition of some ExPEC; while the new typing scheme has a significant impact on APEC classification. A

  13. Comparative Analysis of Phylogenetic Assignment of Human and Avian ExPEC and Fecal Commensal Escherichia coli Using the (Previous and Revised) Clermont Phylogenetic Typing Methods and its Impact on Avian Pathogenic Escherichia coli (APEC) Classification

    PubMed Central

    Logue, Catherine M.; Wannemuehler, Yvonne; Nicholson, Bryon A.; Doetkott, Curt; Barbieri, Nicolle L.; Nolan, Lisa K.

    2017-01-01

    The Clermont scheme has been used for subtyping of Escherichia coli since it was initially described in early 2000. Since then, researchers have used the scheme to type and sub-type commensal E. coli and pathogenic E. coli, such as extraintestinal pathogenic E. coli (ExPEC), and compare their phylogenetic assignment by pathogenicity, serogroup, distribution among ExPEC of different host species and complement of virulence and resistance traits. Here, we compare assignments of human and avian ExPEC and commensal E. coli using the old and revised Clermont schemes to determine if the new scheme provides a refined snapshot of isolate classification. 1,996 E. coli from human hosts and poultry, including 84 human neonatal meningitis E. coli isolates, 88 human vaginal E. coli, 696 human uropathogenic E. coli, 197 healthy human fecal E. coli, 452 avian pathogenic E. coli (APEC), 200 retail poultry E. coli, 80 crop and gizzard E. coli from healthy poultry at slaughter and 199 fecal E. coli from healthy birds at slaughter. All isolates were subject to phylogenetic analysis using the Clermont et al. (2000, 2013) schemes and compared to determine the effect of the new classification on strain designation. Most of the isolates’ strain designation remained where they were originally assigned. Greatest designation change occurred in APEC where 53.8% of isolates were reclassified; while classification rates among human strains ranged from 8 to 14%. However, some significant changes were observed for UPEC associated strains with significant (P < 0.05) designation changes observed from A to C and D to E or F phylogenetic types; a similar designation change was noted among NMEC for D to F designation change. Among the APEC significant designation changes were observed from A to C and D to E and F. These studies suggest that the new scheme provides a tighter and more meaningful definition of some ExPEC; while the new typing scheme has a significant impact on APEC classification. A

  14. 76 FR 72331 - Shiga Toxin-Producing Escherichia coli in Certain Raw Beef Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... Toxin-Producing Escherichia coli in Certain Raw Beef Products AGENCY: Food Safety and Inspection Service... methods for controlling non-O157 Shiga toxin-producing Escherichia coli in raw, intact and non-intact beef... Escherichia coli in raw, intact and non-intact beef products and product components on or before December...

  15. Multidrug-resistant Escherichia coli in Asia: epidemiology and management.

    PubMed

    Sidjabat, Hanna E; Paterson, David L

    2015-05-01

    Escherichia coli has become multiresistant by way of production of a variety of β-lactamases. The prevalence of CTX-M-producing E. coli has reached 60-79% in certain parts of Asia. The acquisition of CTX-M plasmids by E. coli sequence type 131, a successful clone of E. coli, has caused further dissemination of CTX-M-producing E. coli. The prevalence of carbapenemase-producing E. coli, especially Klebsiella pneumoniae carbapenemase, and New Delhi metallo-β-lactamase (NDM)-producing E. coli has been increasing in Asia. K. pneumoniae carbapenemase and NDM have now been found in E. coli sequence type 131. The occurrence of NDM-producing E. coli is a major concern particularly in the Indian subcontinent, but now elsewhere in Asia as well. There are multiple reasons why antibiotic resistance in E. coli in Asia has reached such extreme levels. Approaches beyond antibiotic therapy, such as prevention of antibiotic resistance by antibiotic stewardship and protecting natural microbiome, are strategies to avoid further spread of antibiotic resistance.

  16. The quantitative and condition-dependent Escherichia coli proteome

    PubMed Central

    Schmidt, Alexander; Kochanowski, Karl; Vedelaar, Silke; Ahrné, Erik; Volkmer, Benjamin; Callipo, Luciano; Knoops, Kèvin; Bauer, Manuel; Aebersold, Ruedi; Heinemann, Matthias

    2016-01-01

    Measuring precise concentrations of proteins can provide insights into biological processes. Here, we use efficient protein extraction and sample fractionation and state-of-the-art quantitative mass spectrometry techniques to generate a comprehensive, condition-dependent protein abundance map of Escherichia coli. We measure cellular protein concentrations for 55% of predicted E. coli genes (>2300 proteins) under 22 different experimental conditions and identify methylation and N-terminal protein acetylations previously not known to be prevalent in bacteria. We uncover system-wide proteome allocation, expression regulation, and post-translational adaptations. These data provide a valuable resource for the systems biology and broader E. coli research communities. PMID:26641532

  17. An integrated database to support research on Escherichia coli

    SciTech Connect

    Baehr, A.; Dunham, G.; Matsuda, Hideo; Michaels, G.; Taylor, R.; Overbeek, R.; Rudd, K.E.; Ginsburg, A.; Joerg, D.; Kazic, T.; Hagstrom, R.; Zawada, D.; Smith, C.; Yoshida, Kaoru

    1992-01-01

    We have used logic programming to design and implement a prototype database of genomic information for the model bacterial organism Escherichia coli. This report presents the fundamental database primitives that can be used to access and manipulate data relating to the E. coli genome. The present system, combined with a tutorial manual, provides immediate access to the integrated knowledge base for E. coli chromosome data. It also serves as the foundation for development of more user-friendly interfaces that have the same retrieval power and high-level tools to analyze complex chromosome organization.

  18. YeeO from Escherichia coli exports flavins.

    PubMed

    McAnulty, Michael J; Wood, Thomas K

    2014-01-01

    Multidrug and toxic compound extrusion (MATE) proteins help maintain cellular homeostasis by secreting metabolic wastes. Flavins may occur as cellular waste products, with their production and secretion providing potential benefit for industrial applications related to biofuel cells. Here we find that MATE protein YeeO from Escherichia coli exports both flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Significant amounts of flavins were trapped intracellularly when YeeO was produced indicating transport limits secretion of flavins. Wild-type E. coli secreted 3 flavins (riboflavin, FMN, and FAD), so E. coli likely produces additional flavin transporters.

  19. Heat-stable Escherichia coli enterotoxin production in vivo.

    PubMed Central

    Whipp, S C; Moon, H W; Lyon, N C

    1975-01-01

    Hysterectomy-derived, colostrum-deprived piglets were infected with enterotoxigenic Escherichia coli on day 4 of life. Samples of feces and intestinal contents were collected and tested in infant mice for enterotoxic activity. Positive enterotoxic responses were observed in mice given filtrates of feces and intestinal contents from piglets infected withe enterotoxigenic E. coli known to produce heat-stable enterotoxin but not heat-liabile enterotoxin in vitro. It is concluded that heat-stable enterotoxigenic E. coli induce diarrhea by production of heat-stable enterotoxin in vivo. PMID:1097335

  20. Reassessing Escherichia coli as a cell factory for biofuel production.

    PubMed

    Wang, Chonglong; Pfleger, Brian F; Kim, Seon-Won

    2017-03-11

    Via metabolic engineering, industrial microorganisms have the potential to convert renewable substrates into a wide range of biofuels that can address energy security and environmental challenges associated with current fossil fuels. The user-friendly bacterium, Escherichia coli, remains one of the most frequently used hosts for demonstrating production of biofuel candidates including alcohol-, fatty acid- and terpenoid-based biofuels. In this review, we summarize the metabolic pathways for synthesis of these biofuels and assess enabling technologies that assist in regulating biofuel synthesis pathways and rapidly assembling novel E. coli strains. These advances maintain E. coli's position as a prominent host for developing cell factories for biofuel production.

  1. Enteropathogenic Escherichia coli Serotypes and Endemic Diarrhea in Infants

    PubMed Central

    Toledo, M. Regina F.; Alvariza, M. do Carmo B.; Murahovschi, Jayme; Ramos, Sonia R. T. S.; Trabulsi, Luiz R.

    1983-01-01

    Enteropathogenic Escherichia coli serotypes were searched for in feces of 550 children with endemic diarrhea and in 129 controls, in São Paulo, in 1978 and 1979; serotypes O111ab:H−, O111ab:H2, and O119:H6 were significantly associated with diarrhea in children 0 to 5 months old and were the most frequent agents of diarrhea in this age group as compared with enterotoxigenic and enteroinvasive E. coli, Salmonella sp., Shigella sp., and Yersinia enterocolitica. It is concluded that various enteropathogenic E. coli serotypes may be agents of endemic infantile diarrhea. PMID:6339384

  2. Sources of Escherichia coli in a Coastal Subtropical Environment

    PubMed Central

    Solo-Gabriele, Helena M.; Wolfert, Melinda A.; Desmarais, Timothy R.; Palmer, Carol J.

    2000-01-01

    Sources of Escherichia coli in a coastal waterway located in Ft. Lauderdale, Fla., were evaluated. The study consisted of an extensive program of field measurements designed to capture spatial and temporal variations in E. coli concentrations as well as experiments conducted under laboratory-controlled conditions. E. coli from environmental samples was enumerated by using a defined substrate technology (Colilert-18). Field sampling tasks included sampling the length of the North Fork to identify the river reach contributing high E. coli levels, autosampler experiments at two locations, and spatially intense sampling efforts at hot spots. Laboratory experiments were designed to simulate tidal conditions within the riverbank soils. The results showed that E. coli entered the river in a large pulse during storm conditions. After the storm, E. coli levels returned to baseline levels and varied in a cyclical pattern which correlated with tidal cycles. The highest concentrations were observed during high tide, whereas the lowest were observed at low tide. This peculiar pattern of E. coli concentrations between storm events was caused by the growth of E. coli within riverbank soils which were subsequently washed in during high tide. Laboratory analysis of soil collected from the riverbanks showed increases of several orders of magnitude in soil E. coli concentrations. The ability of E. coli to multiply in the soil was found to be a function of soil moisture content, presumably due to the ability of E. coli to outcompete predators in relatively dry soil. The importance of soil moisture in regulating the multiplication of E. coli was found to be critical in tidally influenced areas due to periodic wetting and drying of soils in contact with water bodies. Given the potential for growth in such systems, E. coli concentrations can be artificially elevated above that expected from fecal impacts alone. Such results challenge the use of E. coli as a suitable indicator of water

  3. Structure of Water in Escherichia Coli B

    DTIC Science & Technology

    structure broadening of the NMR water spectrum. Using bacteria grown in the special chemically defined medium, we showed that the water in E. coli B was highly ordered and was very different from ’free’ water and from polywater .

  4. Slugs: Potential Novel Vectors of Escherichia coli O157

    PubMed Central

    Sproston, Emma L.; Macrae, M.; Ogden, Iain D.; Wilson, Michael J.; Strachan, Norval J. C.

    2006-01-01

    Field and laboratory studies were performed to determine whether slugs could act as novel vectors for pathogen (e.g., Escherichia coli O157) transfer from animal feces to salad vegetables. Escherichia coli O157 was isolated from 0.21% of field slugs from an Aberdeenshire sheep farm. These isolates carried the verocytotoxin genes (vt1 and vt2) and the attaching and effacing gene (eae), suggesting that they are potentially pathogenic to humans. Strain typing using multilocus variable number tandem repeats analysis showed that slug and sheep isolates were indistinguishable. Laboratory experiments using an E. coli mutant resistant to nalidixic acid showed that the ubiquitous slug species Deroceras reticulatum could carry viable E. coli on its external surface for up to 14 days. Slugs that had been fed E. coli shed viable bacteria in their feces with numbers showing a short but statistically significant linear log decline. Further, it was found that E. coli persisted for up to 3 weeks in excreted slug feces, and hence, we conclude that slugs have the potential to act as novel vectors of E. coli O157. PMID:16391036

  5. Enterotoxigenic Escherichia coli and Vibrio cholerae diarrhea, Bangladesh, 2004.

    PubMed

    Qadri, Firdausi; Khan, Ashraful I; Faruque, Abu Syed G; Begum, Yasmin Ara; Chowdhury, Fahima; Nair, Gopinath B; Salam, Mohammed A; Sack, David A; Svennerholm, Ann-Mari

    2005-07-01

    Flooding in Dhaka in July 2004 caused epidemics of diarrhea. Enterotoxigenic Escherichia coli (ETEC) was almost as prevalent as Vibrio cholerae O1 in diarrheal stools. ETEC that produced heat-stable enterotoxin alone was most prevalent, and 78% of strains had colonization factors. Like V. cholerae O1, ETEC can cause epidemic diarrhea.

  6. armA and aminoglycoside resistance in Escherichia coli.

    PubMed

    González-Zorn, Bruno; Teshager, Tirushet; Casas, María; Porrero, María C; Moreno, Miguel A; Courvalin, Patrice; Domínguez, Lucas

    2005-06-01

    We report armA in an Escherichia coli pig isolate from Spain. The resistance gene was borne by self-transferable IncN plasmid pMUR050. Molecular analysis of the plasmid and of the armA locus confirmed the spread of this resistance determinant.

  7. armA and Aminoglycoside Resistance in Escherichia coli

    PubMed Central

    González-Zorn, Bruno; Teshager, Tirushet; Casas, María; Porrero, María C.; Courvalin, Patrice; Domínguez, Lucas

    2005-01-01

    We report armA in an Escherichia coli pig isolate from Spain. The resistance gene was borne by self-transferable IncN plasmid pMUR050. Molecular analysis of the plasmid and of the armA locus confirmed the spread of this resistance determinant. PMID:15963296

  8. Escherichia coli as other Enterobacteriaceae: food poisoning and health effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many Escherichia coli strains are harmless, and they are an important commensal in the intestinal microflora; however, pathogenic strains also exist. The pathogenic strains can be divided into diarrhea-inducing strains and strains that reside in the intestines but only cause disease in bodily sites...

  9. Escherichia coli growth studied by dual-parameter flow cytophotometry.

    PubMed Central

    Steen, H B; Boye, E

    1981-01-01

    The growth of Escherichia coli cells has been analyzed for the first time by dual-parameter flow cytophotometry, in which the deoxyribonucleic acid and protein contents of single bacteria have been measured simultaneously with an accuracy of a few percent and at a rate of 3,000 cells/s. PMID:7007339

  10. More than a locomotive organelle: flagella in Escherichia coli.

    PubMed

    Zhou, Mingxu; Yang, Yang; Chen, Panlin; Hu, Huijie; Hardwidge, Philip R; Zhu, Guoqiang

    2015-11-01

    The flagellum is a locomotive organelle that allows bacteria to respond to chemical gradients. This review summarizes the current knowledge regarding Escherichia coli flagellin variants and the role of flagella in bacterial functions other than motility, including the relationship between flagella and bacterial virulence.

  11. Genome Sequence of Enterotoxigenic Escherichia coli Strain FMU073332.

    PubMed

    Saldaña-Ahuactzi, Zeus; Cruz-Córdova, Ariadnna; Rodea, Gerardo E; Porta, Helena; Navarro-Ocaña, Armando; Eslava-Campos, Carlos; Cevallos, Miguel A; Xicohtencatl-Cortes, Juan

    2017-02-23

    Enterotoxigenic Escherichia coli (ETEC) is an important cause of bacterial diarrheal illness, affecting practically every population worldwide, and was estimated to cause 120,800 deaths in 2010. Here, we report the genome sequence of ETEC strain FMU073332, isolated from a 25-month-old girl from Tlaltizapán, Morelos, México.

  12. Stringent control of FLP recombinase in Escherichia coli.

    PubMed

    Bowden, Steven D; Palani, Nagendra P; Libourel, Igor G L

    2017-02-01

    Site specific recombinases are invaluable tools in molecular biology, and are emerging as powerful recorders of cellular events in synthetic biology. We have developed a stringently controlled FLP recombinase system in Escherichia coli using an arabinose inducible promoter combined with a weak ribosome binding site.

  13. Enteroinvasive Escherichia coli severe dysentery complicated by rotavirus gastroenteritis.

    PubMed

    Pacheco-Gil, Leova; Ochoa, Theresa J; Flores-Romo, Leopoldo; DuPont, Herbert L; Estrada-Garcia, Teresa

    2006-11-01

    Enteroinvasive Escherichia coli (EIEC) is an important agent of pediatric diarrhea and dysentery in developing countries. We report a life-threatening severe dysentery case due to EIEC in a malnourished 4-month-old male, native Indian infant co-infected with rotavirus. The severe gastrointestinal bleeding anemia and hypovolemic shock was successfully treated with IV blood transfusions, rehydration and antibiotic therapy.

  14. TRIMETHOPRIM-SULFAMETHOXAZOLE RESISTANCE IN SEWAGE ISOLATES OF ESCHERICHIA COLI

    EPA Science Inventory

    The increase in resistance rates to trimehtoprim-sulfamethoxazole (TMP/SMX) in isolates of Escherichia coli has become a matter of increasing concern. This has been particularly true in reference to community acquired urinary tract infections (UTI). This study utilized sewage i...

  15. Escherichia coli and other Enterobacteriaceae: Food poisoning and health effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The family Enterobactericeae consists of rod-shaped, Gram-negative, facultatively anaerobic, non-spore forming bacteria and also includes the food-borne pathogens, Cronobacter spp., Escherichia coli, Salmonella enterica, Shigella spp., and Yersinia spp. Illness caused by these pathogens is acquired...

  16. Genome Sequence of Enterotoxigenic Escherichia coli Strain FMU073332

    PubMed Central

    Saldaña-Ahuactzi, Zeus; Cruz-Córdova, Ariadnna; Rodea, Gerardo E.; Porta, Helena; Navarro-Ocaña, Armando; Eslava-Campos, Carlos

    2017-01-01

    ABSTRACT   Enterotoxigenic Escherichia coli (ETEC) is an important cause of bacterial diarrheal illness, affecting practically every population worldwide, and was estimated to cause 120,800 deaths in 2010. Here, we report the genome sequence of ETEC strain FMU073332, isolated from a 25-month-old girl from Tlaltizapán, Morelos, México. PMID:28232434

  17. New types of Escherichia coli recombination-deficient mutants.

    PubMed

    Freifelder, D

    1976-11-01

    A set of Escherichia coli mutants deficient in intramolecular recombination and different from those previously found is described. All have temperature-sensitive lethal mutations. The mutants have been characterized with respect to the following properties: the Pap phenotype, deoxyribonucleic acid synthesis, sensitivity to ultraviolet light, ability to support the growth of phage lambda, filament formation, and mutation frequency.

  18. New types of Escherichia coli recombination-deficient mutants.

    PubMed Central

    Freifelder, D

    1976-01-01

    A set of Escherichia coli mutants deficient in intramolecular recombination and different from those previously found is described. All have temperature-sensitive lethal mutations. The mutants have been characterized with respect to the following properties: the Pap phenotype, deoxyribonucleic acid synthesis, sensitivity to ultraviolet light, ability to support the growth of phage lambda, filament formation, and mutation frequency. PMID:789362

  19. Inactivation of Escherichia coli by titanium dioxide photocatalytic oxidation.

    EPA Science Inventory

    Titanium dioxide in the anatase crystalline form was used as a photocatalyst to generate hydroxyl radicals in a flowthrough water reactor. Experiments were performed on pure cultures of Escherichia coli in dechlorinated tap water and a surface water sample to evaluate the disinfe...

  20. rRNA transcription rate in Escherichia coli.

    PubMed Central

    Gotta, S L; Miller, O L; French, S L

    1991-01-01

    The rate of in vivo transcription elongation for Escherichia coli rRNA operons was determined by electron microscopy following addition of rifampin to log-phase cultures. Direct observation of RNA polymerase positions along rRNA operons 30, 40, and 70 s after inhibition of transcription initiation yielded a transcription elongation rate of 42 nucleotides per s. Images FIG. 1 PMID:1717439

  1. Multidrug-Resistant Escherichia coli in Bovine Animals, Europe

    PubMed Central

    Brennan, Evan; Martins, Marta; McCusker, Matthew P.; Wang, Juan; Alves, Bruno Martins; Hurley, Daniel; El Garch, Farid; Woehrlé, Frédérique; Miossec, Christine; McGrath, Leisha; Srikumar, Shabarinath; Wall, Patrick

    2016-01-01

    Of 150 Escherichia coli strains we cultured from specimens taken from cattle in Europe, 3 had elevated MICs against colistin. We assessed all 3 strains for the presence of the plasmid-mediated mcr-1 gene and identified 1 isolate as mcr-1–positive and co-resistant to β-lactam, florfenicol, and fluoroquinolone antimicrobial compounds. PMID:27533105

  2. EcoCyc: Encyclopedia of Escherichia coli genes and metabolism.

    PubMed

    Karp, P D; Riley, M; Paley, S M; Pellegrini-Toole, A; Krummenacker, M

    1998-01-01

    The encyclopedia of Escherichia coli genes and metabolism (EcoCyc) is a database that combines information about the genome and the intermediary metabolism of E.coli. The database describes 3030 genes of E.coli , 695 enzymes encoded by a subset of these genes, 595 metabolic reactions that occur in E.coli, and the organization of these reactions into 123 metabolic pathways. The EcoCyc graphical user interface allows scientists to query and explore the EcoCyc database using visualization tools such as genomic-map browsers and automatic layouts of metabolic pathways. EcoCyc can be thought of as an electronic review article because of its copious references to the primary literature, and as a (qualitative) computational model of E.coli metabolism. EcoCyc is available at URL http://ecocyc.PangeaSystems.com/ecocyc/

  3. Phylogenetic Group Determination of Escherichia coli Isolated from Animals Samples

    PubMed Central

    Morcatti Coura, Fernanda; Diniz, Soraia de Araújo; Silva, Marcos Xavier; Mussi, Jamili Maria Suhet; Barbosa, Silvia Minharro; Lage, Andrey Pereira; Heinemann, Marcos Bryan

    2015-01-01

    This study analyzes the occurrence and distribution of phylogenetic groups of 391 strains of Escherichia coli isolated from poultry, cattle, and water buffalo. The frequency of the phylogroups was A = 19%, B1 = 57%, B2 = 2.3%, C = 4.6%, D = 2.8%, E = 11%, and F = 3.3%. Phylogroups A (P < 0.001) and F (P = 0.018) were associated with E. coli strains isolated from poultry, phylogroups B1 (P < 0.001) and E (P = 0.002) were associated with E. coli isolated from cattle, and phylogroups B2 (P = 0.003) and D (P = 0.017) were associated with E. coli isolated from water buffalo. This report demonstrated that some phylogroups are associated with the host analyzed and the results provide knowledge of the phylogenetic composition of E. coli from domestic animals. PMID:26421310

  4. Glycerol elicits energy taxis of Escherichia coli and Salmonella typhimurium.

    PubMed

    Zhulin, I B; Rowsell, E H; Johnson, M S; Taylor, B L

    1997-05-01

    Escherichia coli and Salmonella typhimurium show positive chemotaxis to glycerol, a chemical previously reported to be a repellent for E. coli. The threshold of the attractant response in both species was 10(-6) M glycerol. Glycerol chemotaxis was energy dependent and coincident with an increase in membrane potential. Metabolism of glycerol was required for chemotaxis, and when lactate was present to maintain energy production in the absence of glycerol, the increases in membrane potential and chemotactic response upon addition of glycerol were abolished. Methylation of a chemotaxis receptor was not required for positive glycerol chemotaxis in E. coli or S. typhimurium but is involved in the negative chemotaxis of E. coli to high concentrations of glycerol. We propose that positive chemotaxis to glycerol in E. coli and S. typhimurium is an example of energy taxis mediated via a signal transduction pathway that responds to changes in the cellular energy level.

  5. ATG16L1 deficiency in macrophages drives clearance of uropathogenic E. coli in an IL-1β-dependent manner.

    PubMed

    Symington, J W; Wang, C; Twentyman, J; Owusu-Boaitey, N; Schwendener, R; Núñez, G; Schilling, J D; Mysorekar, I U

    2015-11-01

    Urinary tract infections (UTIs) are frequent, commonly recurrent, and costly. Deficiency in a key autophagy protein, ATG16L1, protects mice from infection with the predominant bacterial cause of UTIs, Uropathogenic E. coli (UPEC). Here, we report that loss of ATG16L1 in macrophages accounts for this protective phenotype. Compared with wild-type macrophages, macrophages deficient in ATG16L1 exhibit increased uptake of UPEC and enhanced secretion of interleukin-1β (IL-1β). The increased IL-1β production is dependent upon activation of the NLRP3 inflammasome and caspase-1. IL-1β secretion was also enhanced during UPEC infection of ATG16L1-deficient mice in vivo, and inhibition of IL-1β signaling abrogates the ATG16L1-dependent protection from UTIs. Our results argue that ATG16L1 normally suppresses a host-protective IL-1β response to UPEC by macrophages.

  6. Polyerositis and Arthritis Due to Escherichia coli in Gnotobiotic Pigs

    PubMed Central

    Waxler, G. L.; Britt, A. L.

    1972-01-01

    Forty gnotobiotic pigs from six litters were exposed orally to Escherichia coli 083:K·:NM at 69 to 148 hours of age, while 17 pigs from the same litters served as unexposed controls. Clinical signs of infection included fever, anorexia, diarrhea, lameness, and reluctance to move. Eighty-four percent of the exposed pigs in four litters died, while only 13% in two litters died. Gross and microscopic lesions included serofibrinous to fibrinopurulent polyserositis in 96% of the exposed pigs in four litters and 33% of the exposed pigs in two litters. A few pigs had gross and/or microscopic lesions of arthritis. Escherichia coli was routinely isolated from the serous and synovial cavities of infected pigs. Anti-hog cholera serum administered orally as a colostrum substitute gave partial protection against E. coli infection. ImagesFig. 1.Fig. 2.Fig. 3.Fig. 4.Fig. 5.Fig. 6.Fig. 7.Fig. 8. PMID:4261837

  7. Cytotoxic Escherichia coli strains encoding colibactin colonize laboratory mice.

    PubMed

    García, Alexis; Mannion, Anthony; Feng, Yan; Madden, Carolyn M; Bakthavatchalu, Vasudevan; Shen, Zeli; Ge, Zhongming; Fox, James G

    2016-12-01

    Escherichia coli strains have not been fully characterized in laboratory mice and are not currently excluded from mouse colonies. Colibactin (Clb), a cytotoxin, has been associated with inflammation and cancer in humans and animals. We performed bacterial cultures utilizing rectal swab, fecal, and extra intestinal samples from clinically unaffected or affected laboratory mice. Fifty-one E. coli were isolated from 45 laboratory mice, identified biochemically, and selected isolates were serotyped. The 16S rRNA gene was amplified and sequenced for specific isolates, PCR used for clbA and clbQ gene amplification, and phylogenetic group identification was performed on all 51 E. coli strains. Clb genes were sequenced and selected E. coli isolates were characterized using a HeLa cell cytotoxicity assay. Forty-five of the 51 E. coli isolates (88%) encoded clbA and clbQ and belonged to phylogenetic group B2. Mouse E. coli serotypes included: O2:H6, O-:H-, OM:H+, and O22:H-. Clb-encoding O2: H6 mouse E. coli isolates were cytotoxic in vitro. A Clb-encoding E. coli was isolated from a clinically affected genetically modified mouse with cystic endometrial hyperplasia. Our findings suggest that Clb-encoding E. coli colonize laboratory mice and may induce clinical and subclinical diseases that may impact experimental mouse models.

  8. Using zebra mussels to monitor Escherichia coli in environmental waters.

    PubMed

    Selegean, J P; Kusserow, R; Patel, R; Heidtke, T M; Ram, J L

    2001-01-01

    Use of the zebra mussel (Dreissena polymorpha) as an indicator of previously elevated bacteria concentrations in a watershed was examined. The ability of the zebra mussel to accumulate and purge Escherichia coli over several days was investigated in both laboratory and field experiments. In laboratory experiments, periodic enumeration of E. coli in mussels that had been exposed to a dilute solution of raw sewage demonstrated that (i) maximum concentrations of E. coli are reached within a few hours of exposure to sewage, (ii) the tissue concentration attained is higher than the concentration in the ambient water, and (iii) the E. coli concentrations take several days to return to preexposure concentrations when mussels are subsequently placed in sterile water. In field experiments conducted in southeast Michigan in the Clinton River watershed, brief increases in E. coli concentrations in the water were accompanied by increases in mussel concentrations of E. coli that lasted 2 or 3 d. The ability of mussels to retain and to concentrate E. coli made it possible to detect E. coli in the environment under conditions that conventional monitoring may often miss. Sampling caged mussels in a river and its tributaries may enable watershed managers to reduce the sampling frequency normally required to identify critical E. coli sources, thereby providing a more cost-effective river monitoring strategy for bacterial contamination.

  9. Characterization of Inhibitor-Resistant TEM β-Lactamases and Mechanisms of Fluoroquinolone Resistance in Escherichia coli Isolates.

    PubMed

    Ríos, Esther; López, Maria Carmen; Rodríguez-Avial, Iciar; Pena, Irene; Picazo, Juan Jose

    2015-10-01

    The aim of present work was to characterize the inhibitor-resistant TEM (IRT) β-lactamases produced by Escherichia coli in Hospital Clínico San Carlos (Madrid, Spain). Mechanisms of fluoroquinolone resistance among IRT-producing strains were also studied. Isolates with susceptibility to cephalosporins and amoxicillin-clavulanate (AMC) resistance were collected in our hospital (November 2011-July 2012) from both outpatients and hospitalized patients. Among 70 AMC-resistant E. coli strains, 28 (40%) produced IRT enzymes. Most of them were uropathogens (82.1%) and recovered from outpatients (75%). Seven different IRT enzymes were identified with TEM-30 (IRT-2) being the most prevalent, followed by TEM-40 (IRT-11). A high rate of ciprofloxacin resistance was found among IRT-producing strains (50%). Most of the ciprofloxacin-resistant isolates showed ciprofloxacin minimum inhibitory concentration >32 mg/L and contained two mutations in both gyrA and parC genes. Four IRT enzyme producers harbored the qnr gene. ST131 clone was mainly responsible for both IRT enzyme production and ciprofloxacin resistance. In conclusion, data from this study show that the frequency of IRT producers was 40% and a high rate of ciprofloxacin resistance was found among IRT-producing isolates. Current and future actions should be taken into account to avoid or reduce the development of AMC and fluoroquinolone resistance in E. coli.

  10. Interleukin-8 secretion by epithelial cells infected with diffusely adherent Escherichia coli possessing Afa adhesin-coding genes.

    PubMed

    Arikawa, Kentaro; Meraz, Ismail Mustafa; Nishikawa, Yoshikazu; Ogasawara, Jun; Hase, Atsushi

    2005-01-01

    Escherichia coli that adhere sparsely to human epithelial (HEp-2) cells are known as diffusely adherent E. coli(DAEC) and considered potentially diarrheagenic. The role of the afimbrial adhesive sheath (Afa)-identified originally as a uropathogenic factor-in diffuse adhesion is now understood. However, the role of DAEC in diarrheal disease remains controversial. Recently, ability to induce interleukin-8 (IL-8) secretion from intestinal epithelial cells has been suggested as one of the properties of enterovirulent bacteria. In this study, we examined whether DAEC strains possessing Afa genes induced IL-8 in cultures of human carcinoma epithelial cells (e.g., HEp-2, Caco-2, and T84). Nineteen afa-positive DAEC strains were examined for their ability to induce IL-8 secretion, and only 7 strains (37%; 7/19) induced IL-8 as much as enteroaggregative E. coli did. No marked differences in adhesion were observed between high and low inducers. Diffusive adhesiveness itself is unlikely to be sufficient to induce IL-8. All high inducers were motile and others were nonmotile. Additional stimulation by flagella may be required to cause high levels of chemokine induction. Motility or presence of flagella can be an important criterion to predict DAEC diarrheagenicity at clinical laboratories.

  11. Cell-Based High-Throughput Screening Identifies Rifapentine as an Inhibitor of Amyloid and Biofilm Formation in Escherichia coli.

    PubMed

    Maher, Marie C; Lim, Ji Youn; Gunawan, Cheston; Cegelski, Lynette

    2015-10-09

    Escherichia coli assemble functional amyloid fibers termed curli that contribute to bacterial adhesion, biofilm formation, and host pathogenesis. We developed a cell-based high-throughput screen to identify inhibitors of curli-mediated adhesion in the laboratory strain MC4100 and curli-associated biofilm formation in the uropathogenic E. coli clinical isolate UTI89. Inhibitors of biofilm formation can operate through many mechanisms, and such inhibitors could hold therapeutic value in preventing and treating urinary tract infections. The curli-specific screen allows the identification of compounds that inhibit either curli expression, curli biogenesis, or adhesion by normally produced curli. In screening the NIH Clinical Collection of 446 compounds, we identified rifapentine as a potent inhibitor in both of these screens. Rifapentine is an antibiotic used to treat tuberculosis that targets RNA polymerase, but prevents curli-dependent adhesion and biofilm formation in E. coli at concentrations below those that affect viability. Rifapentine inhibits curli production and prevents biofilm formation on plastic, on agar, and at the air-liquid interface by inhibiting curli gene transcription. Comparisons with a cephalosporin antibiotic further revealed that curli production is not affected by standard antibiotic treatment and cell killing pressure. Thus, we reveal a new role independent of killing activity for rifapentine as an inhibitor of curli and curli-mediated biofilm formation.

  12. Lytic bacteriophages reduce Escherichia coli O157

    PubMed Central

    Ferguson, Sean; Roberts, Cheryl; Handy, Eric; Sharma, Manan

    2013-01-01

    The role of lytic bacteriophages in preventing cross contamination of produce has not been evaluated. A cocktail of three lytic phages specific for E. coli O157:H7 (EcoShield™) or a control (phosphate buffered saline, PBS) was applied to lettuce by either; (1) immersion of lettuce in 500 ml of EcoShield™ 8.3 log PFU/ml or 9.8 log PFU/ml for up to 2 min before inoculation with E. coli O157:H7; (2) spray-application of EcoShield™ (9.3 log PFU/ml) to lettuce after inoculation with E. coli O157:H7 (4.10 CFU/cm2) following exposure to 50 μg/ml chlorine for 30 sec. After immersion studies, lettuce was spot-inoculated with E. coli O157:H7 (2.38 CFU/cm2). Phage-treated, inoculated lettuce pieces were stored at 4°C for and analyzed for E. coli O157:H7 populations for up to 7 d. Immersion of lettuce in 9.8 log PFU/ml EcoShield™ for 2 min significantly (p < 0.05) reduced E. coli O157:H7 populations after 24 h when stored at 4°C compared with controls. Immersion of lettuce in suspensions containing high concentrations of EcoShield™ (9.8 log PFU/ml) resulted in the deposition of high concentrations (7.8 log log PFU/cm2) of bacteriophages on the surface of fresh cut lettuce, potentially contributing to the efficacy of the lytic phages on lettuce. Spraying phages on to inoculated fresh cut lettuce after being washed in hypochlorite solution was significantly more effective in reducing E. coli O157:H7 populations (2.22 log CFU/cm2) on day 0 compared with control treatments (4.10 log CFU/cm2). Both immersion and spray treatments provided protection from E. coli O157:H7 contamination on lettuce, but spray application of lytic bacteriophages to lettuce was more effective in immediately reducing E. coli O157:H7 populations fresh cut lettuce. PMID:23819106

  13. Pharmacodynamic profiling of commonly prescribed antimicrobial drugs against Escherichia coli isolates from urinary tract.

    PubMed

    Cuba, Gabriel Trova; Pignatari, Antonio Carlos Campos; Patekoski, Katya Silva; Luchesi, Lucimila Jorge; Kiffer, Carlos Roberto Veiga

    2014-01-01

    Since antimicrobial resistance among uropathogens against current first line agents has affected the management of severe urinary tract infection, we determined the likelihood that antibiotic regimens achieve bactericidal pharmacodynamic exposures using Monte Carlo simulation for five antimicrobials (ciprofloxacin, ceftriaxone, piperacillin/tazobactam, ertapenem, and meropenem) commonly prescribed as initial empirical treatment of inpatients with severe community acquired urinary tract infections. Minimum inhibitory concentration determination by Etest was performed for 205 Brazilian community urinary tract infection Escherichia coli strains from 2008 to 2012 and 74 E. coli bloodstream strains recovered from a surveillance study. Pharmacodynamic exposure was modeled via a 5000 subject Monte Carlo simulation. All isolates were susceptible to ertapenem and meropenem. Piperacillin/tazobactam, ceftriaxone and ciprofloxacin showed 100%, 97.5% and 83.3% susceptibility among outpatient isolates and 98.6%, 75.7% and 64.3% among inpatient isolates, respectively. Against outpatient isolates, all drugs except ciprofloxacin (82.7% in aggressive and 77.6% in conservative scenarios) achieved high cumulative fraction of response: carbapenems and piperacillin/tazobactam cumulative fraction of responses were close to 100%, and ceftriaxone cumulative fraction of response was 97.5%. Similar results were observed against inpatients isolates for carbapenems (100%) and piperacillin/tazobactam (98.4%), whereas ceftriaxone achieved only 76.9% bactericidal cumulative fraction of response and ciprofloxacin 61.9% (aggressive scenario) and 56.7% (conservative scenario) respectively. Based on this model, standard doses of beta-lactams were predicted to deliver sufficient pharmacodynamic exposure for outpatients. However, ceftriaxone should be avoided for inpatients and ciprofloxacin empirical prescription should be avoided in both inpatients and outpatients with complicated urinary tract

  14. Pentacyclic triterpenes combined with ciprofloxacin help to eradicate the biofilm formed in vitro by Escherichia coli

    PubMed Central

    Wojnicz, Dorota; Tichaczek-Goska, Dorota; Kicia, Marta

    2015-01-01

    Background & objectives: Ciprofloxacin is commonly used in clinical practice for the treatment of recurrent urinary tract infections caused by Escherichia coli. However, very often these recurrent infections are due to a failure in a complete eradication of the microorganisms colonizing the urinary tract, especially in catheterized patients. To enhance the bactericidal activity of ciprofloxacin against biofilm-forming uropathogenic E. coli (UPECs), we examined its effect in combination with two pentacyclic triterpenes – asiatic and ursolic acids. Methods: The anti-biofilm activity of ciprofloxacin and pentacyclic triterpenes - asiatic acid (AA) and ursolic acid (UA), as well as their synergistic effect were tested on two types of surfaces - polystyrene microtiter plates and silicone catheters. It was investigated using the time-killing and biofilm assays. Results: Anti-biofilm activity of ciprofloxacin was not observed on microtiter plates or on the catheters. Ciprofloxacin combined with ursolic acid inhibited the biofilm formation on microtitre plates. This mixture, however, did not express such a strong activity against the synthesis of biofilm on the surface of catheters. Ciprofloxacin combined with asiatic acid had very weak inhibiting effect on the synthesis of biofilm mass on microtitre plates as well as on the catheters. Despite this, both mixtures – ciprofloxacin and asiatic acid, as well as ciprofloxacin and ursolic acid, exhibited strong and significant impact on the eradication of mature biofilm (P < 0.05). Interpretation & conclusions: Although ciprofloxacin is recommended in the treatment of urinary tract infections caused by UPECs, but its efficacy is arguable. Subinhibitory concentrations of ciprofloxacin did not inhibit the formation of biofilm. Pentacyclic triterpenes used in combination with ciprofloxacin enhanced its anti-biofilm effectiveness. However, this anti-biofilm activity was found to depend on the type of surface on which biofilm was

  15. Experimental Escherichia coli O157:H7 carriage in calves.

    PubMed Central

    Brown, C A; Harmon, B G; Zhao, T; Doyle, M P

    1997-01-01

    Nine weaned calves (6 to 8 weeks of age) were given 10(10) CFU of a five-strain mixture of enterohemorrhagic Escherichia coli O157:H7 by oral-gastric intubation. After an initial brief period of pyrexia in three calves and transient mild diarrhea in five calves, calves were clinically normal throughout the 13- to 27-day study. The population of E. coli O157:H7 in the faces decreased dramatically in all calves during the first 2 weeks after inoculation. Thereafter, small populations of E. coli O157:H7 persisted in all calves, where they were detected intermittently in the feces and rumen contents. While withholding food increased fecal shedding of E. coli O157:H7 by 1 to 2 log10/g in three of four calves previously shedding small populations of E. coli O157:H7, the effect of fasting on fecal shedding of E. coli O157:H7 was variable in calves shedding larger populations. At necropsy, E. coli O157:H7 was not isolated from sites outside the alimentary tract. E. coli O157:H7 was isolated from the forestomach or colon of all calves at necropsy. Greater numbers of E. coli O157:H7 were present in the gastrointestinal contents than in the corresponding mucosal sections, and there was no histologic or immunohistochemical evidence of E. coli O157:H7 adhering to the mucosa. In conclusion, under these experimental conditions, E. coli O157:H7 is not pathogenic in weaned calves, and while it does not appear to colonize mucosal surfaces for extended periods, E. coli O157:H7 persists in the contents of the rumen and colon as a source for fecal shedding. PMID:8979335

  16. Travelers' diarrhea and toxigenic Escherichia coli.

    PubMed

    Gorbach, S L; Kean, B H; Evans, D G; Evans, D J; Bessudo, D

    1975-05-01

    In a group of 133 United States students studied for 18 days after arriving in Mexico, diarrhea developed in 38 (29 per cent). Diarrhea rarely began before the fourth day, and the mean onset was 13 days after arrival. Symptoms lasted an average of 3.4 days but persisted in 21 per cent of sick students. Heat-labile enterotoxin-producing Escheria coli was found in the stools of 72 per cent of sick and 15 per cent of healthy students. None had heat-labile Esch. coli when they entered Mexico. The incubation period was short, generally 24 to 48 hours, and the carrier state was five days or less in 82 per cent of students surveyed. Entamoeba histolytica was found in 6 per cent of cases of diarrhea, but not salmonella, shigella or penetrating Esch. coli. These studies suggest that approximately 70 per cent of travelers' diarrhea in Mexico is associated with heat-labile toxigenic strains of Esch. coli.

  17. Genomic Comparative Study of Bovine Mastitis Escherichia coli

    PubMed Central

    Kempf, Florent; Slugocki, Cindy; Blum, Shlomo E.; Leitner, Gabriel; Germon, Pierre

    2016-01-01

    Escherichia coli, one of the main causative agents of bovine mastitis, is responsible for significant losses on dairy farms. In order to better understand the pathogenicity of E. coli mastitis, an accurate characterization of E. coli strains isolated from mastitis cases is required. By using phylogenetic analyses and whole genome comparison of 5 currently available mastitis E. coli genome sequences, we searched for genotypic traits specific for mastitis isolates. Our data confirm that there is a bias in the distribution of mastitis isolates in the different phylogenetic groups of the E. coli species, with the majority of strains belonging to phylogenetic groups A and B1. An interesting feature is that clustering of strains based on their accessory genome is very similar to that obtained using the core genome. This finding illustrates the fact that phenotypic properties of strains from different phylogroups are likely to be different. As a consequence, it is possible that different strategies could be used by mastitis isolates of different phylogroups to trigger mastitis. Our results indicate that mastitis E. coli isolates analyzed in this study carry very few of the virulence genes described in other pathogenic E. coli strains. A more detailed analysis of the presence/absence of genes involved in LPS synthesis, iron acquisition and type 6 secretion systems did not uncover specific properties of mastitis isolates. Altogether, these results indicate that mastitis E. coli isolates are rather characterized by a lack of bona fide currently described virulence genes. PMID:26809117

  18. [Acute diarrheal disease caused by enteropathogenic Escherichia coli in Colombia].

    PubMed

    Gómez-Duarte, Oscar G

    2014-10-01

    Intestinal Escherichia coli pathogens are leading causes of acute diarrheal disease in children less than 5 years in Latin America, Africa and Asia and a leading cause of death in children living in poorest communities in Africa and South East Asia. Studies on the role of E. coli pathogens in childhood diarrhea in Colombia and other countries in Latin America are limited due to the lack of detection assays in clinical laboratories at the main urban medical centers. Recent studies report that enterotoxigenic E. coli is the most common E. coli pathogens associated with diarrhea in children less than 5 years of age. Other E. coli pathotypes have been detected in children with diarrhea including enteropathogenic, enteroaggregative, shiga-toxin producing and diffusely adherent E. coli. It was also found that meat and vegetables at retail stores are contaminated with Shiga-toxin producing E. coli and enteroaggregative E. coli, suggesting that food products are involved in transmission and infection of the susceptible host. More studies are necessary to evaluate the mechanisms of transmission, the impact on the epidemiology of diarrheal disease, and management strategies and prevention of these pathogens affecting the pediatric population in Colombia.

  19. Proton-linked D-xylose transport in Escherichia coli.

    PubMed Central

    Lam, V M; Daruwalla, K R; Henderson, P J; Jones-Mortimer, M C

    1980-01-01

    The addition of xylose to energy-depleted cells of Escherichia coli elicited an alkaline pH change which failed to appear in the presence of uncoupling agents. Accumulation of [14C]xylose by energy-replete cells was also inhibited by uncoupling agents, but not by fluoride or arsenate. Subcellular vesicles of E. coli accumulated [14C]xylose provided that ascorbate plus phenazine methosulfate were present for respiration, and this accumulation was inhibited by uncoupling agents or valinomycin. Therefore, the transport of xylose into E. coli appears to be energized by a proton-motive force, rather than by a phosphotransferase or directly energized mechanism. Its specificity for xylose as inducer and substrate and the genetic location of a xylose-H+ transport-negative mutation near mtl showed that the xylose-H+ system is distinct from other proton-linked sugar transport systems of E. coli. PMID:6995439

  20. Biosynthesis of Two Flavones, Apigenin and Genkwanin, in Escherichia coli.

    PubMed

    Lee, Hyejin; Kim, Bong Gyu; Kim, Mihyang; Ahn, Joong-Hoon

    2015-09-01

    The flavonoid apigenin and its O-methyl derivative, genkwanin, have various biological activities and can be sourced from some vegetables and fruits. Microorganisms are an alternative for the synthesis of flavonoids. Here, to synthesize genkwanin from tyrosine, we first synthesized apigenin from p-coumaric acid using four genes (4CL, CHS, CHI, and FNS) in Escherichia coli. After optimization of different combinations of constructs, the yield of apigenin was increased from 13 mg/l to 30 mg/l. By introducing two additional genes (TAL and POMT7) into an apigenin-producing E. coli strain, we were able to synthesize 7-O-methyl apigenin (genkwanin) from tyrosine. In addition, the tyrosine content in E. coli was modulated by overexpressing aroG and tyrA. The engineered E. coli strain synthesized approximately 41 mg/l genkwanin.

  1. [Escherichia coli R live vaccine Suicolplex "Dessau"].

    PubMed

    Michael-Meese, M; Klie, H; Schöll, W

    1980-01-01

    Immunisation of pregnant sows prior to parturition has long proved to be a good method to forestall coli dysentery in piglets before weaning. Inactivated vaccines of the pathogenetically important E. coli serogroups with and without adjuvant so far were primarily used at international level. A vaccine of that kind has become available in the GDR more than eight years ago. Its name is Coliporc "Dessau". A live vaccine has been developed from two R-mutants at the authors' institute. The effectiveness of that live vaccine on laboratory animals and in field experiments is reported in this paper together with possibilities of differential diagnosis to distinguish wild strains from the mutants. The live vaccine was commercially registered under the name of Suicolpex "Dessau", in spring 1976.

  2. Compilation of DNA sequences of Escherichia coli

    PubMed Central

    Kröger, Manfred

    1989-01-01

    We have compiled the DNA sequence data for E.coli K12 available from the GENBANK and EMBO databases and over a period of several years independently from the literature. We have introduced all available genetic map data and have arranged the sequences accordingly. As far as possible the overlaps are deleted and a total of 940,449 individual bp is found to be determined till the beginning of 1989. This corresponds to a total of 19.92% of the entire E.coli chromosome consisting of about 4,720 kbp. This number may actually be higher by some extra 2% derived from the sequence of lysogenic bacteriophage lambda and the various insertion sequences. This compilation may be available in machine readable form from one of the international databanks in some future. PMID:2654890

  3. The Modulation of Polymorphonuclear Neutrophil Function by Cytotoxic Necrotizing Factor Type-1 Uropathogenic Escherichia coli

    DTIC Science & Technology

    2005-09-19

    specific residue deamidated in Cdc42 and Rac1 were found to be Gln61, an amino acid that is functionally equivalent to Gln63 in RhoA. 21...fatty acid tail, an event that allows the GTPase to insert into cell membranes. The conformational changes induced in the GTPase through the binding...nucleotide disassociation inhibitors (GDI) that block the fatty acid tail on the Rho protein. Cell stimulation releases the Rho GTPase from the GDI and

  4. Genotyping of ESBL Producing Uropathogenic Escherichia coli in West of Iran

    PubMed Central

    Darfarin, Gita

    2014-01-01

    Background and Objective. Urinary tract infection (UTI) is one of the most common bacterial infections in the world. Molecular fingerprinting of UTI isolates such as pulsed-Field Gel Electrophoresis using for Clonal distribution and determine of predominant type. The aim of the study was to determine genotyping of ESBL producing UPECs. Material and Methods. 200 UPEC isolates from outpatients with UTI were obtained. Antimicrobial susceptibility and interpretation were performed by disk diffusion. Virulence factors for UPECs were screened by using PCR. UPECs were analyzed by Pulsed-Field Gel Electrophoresis and images analyzed by Phoretix1DPro software. Results. A total of 200 isolates of UPECs, 24.5% (n = 49) of isolates, were positive for ESBL production. Resistance ranged from 0% for amikacin and imipenem to over 93.9% for carbenicillin and ampicillin. Frequencies of haemagglutination, haemolysin, and hydrophobicity were 51%, 18.3%, and 14.28%, respectively. A total of 10 different genotypes were obtained, which include nine common clones and one single clone. Conclusion. We confirmed the prevalence of virulence phenotyping especially Haemagglutination among UPEC strains and that it can also contribute to virulence in these strains. Large diversity in genotypes was observed in the isolates that could be indicative of different sources of infection in community acquired. PMID:24839441

  5. Genotypic Characterization of Egypt Enterotoxigenic Escherichia coli Isolates Expressing Coli Surface Antigen 6

    DTIC Science & Technology

    2013-02-01

    USA Abstract Introduction: One approach to control enterotoxigenic Escherichia coli (ETEC) infections has been to develop vaccines focused on...results show a lack of clonality among Egypt CS6 E. coli isolates and supports the use and the further research on vaccines targeting this cell surface...has received considerable attention as a target for vaccine development [11-14]. CS6 is immunogenic in humans both after natural infection and

  6. Metabolic engineering of Escherichia coli for 1-butanol production.

    PubMed

    Atsumi, Shota; Cann, Anthony F; Connor, Michael R; Shen, Claire R; Smith, Kevin M; Brynildsen, Mark P; Chou, Katherine J Y; Hanai, Taizo; Liao, James C

    2008-11-01

    Compared to ethanol, butanol offers many advantages as a substitute for gasoline because of higher energy content and higher hydrophobicity. Typically, 1-butanol is produced by Clostridium in a mixed-product fermentation. To facilitate strain improvement for specificity and productivity, we engineered a synthetic pathway in Escherichia coli and demonstrated the production of 1-butanol from this non-native user-friendly host. Alternative genes and competing pathway deletions were evaluated for 1-butanol production. Results show promise for using E. coli for 1-butanol production.

  7. Functional role of bdm during flagella biogenesis in Escherichia coli.

    PubMed

    Kim, Ji-Sun; Kim, Yu Jin; Seo, Sojin; Seong, Maeng-Je; Lee, Kangseok

    2015-03-01

    The biofilm-dependent modulation gene (bdm) has recently been shown to play a role in osmotic-induced formation of biofilm in Escherichia coli. In this study, we demonstrated that deletion of bdm results in down-regulation of flagella biosynthesis genes and, consequently, a defect in E. coli motility. In addition, we employed atomic force microscopy to confirm the absence of flagella-like structures on the surface of bdm-null cells. These findings indicate that bdm plays a key role in regulatory pathway for the formation of flagella.

  8. PROPERTIES OF A BACTERIOPHAGE DERIVED FROM ESCHERICHIA COLI K235

    PubMed Central

    Jesaitis, Margeris A.; Hutton, John J.

    1963-01-01

    A temperate bacteriophage was isolated from the colicinogenic strain of Escherichia coli K235 and characterized. This phage, termed PK, is related to P2 virus morphologically, serologically, and, possibly, genetically and it bears no relationship to the T-even phages. It was also demonstrated that PK virus and colicine K differ both in their host range and in their immunological specificity, and that PK prophage does not induce the colicinogenesis in its host bacterium. It was concluded that the formation of colicine K. and PK phage in E. coli K235 are controlled by different genetic determinants. PMID:14029160

  9. Nitric oxide donor-mediated killing of bioluminescent Escherichia coli.

    PubMed Central

    Virta, M; Karp, M; Vuorinen, P

    1994-01-01

    The antimicrobial activities of two nitric oxide-releasing compounds against Escherichia coli were investigated by using recombinant E. coli cloned with a luciferase gene from Pyrophorus plagiophthalamus. Since luciferase uses intracellular ATP to generate visible light which can be measured from living cells in real time, we wanted to compare the extent to which cell viability parallels light emission. Results from luminescence measurements and CFU counts were in good agreement, and the decrease in light emission was shown to provide a rapid and more sensitive indication of cytotoxicity. PMID:7695261

  10. Accelerated glycerol fermentation in Escherichia coli using methanogenic formate consumption.

    PubMed

    Richter, Katrin; Gescher, Johannes

    2014-06-01

    Escherichia coli can ferment glycerol anaerobically only under very defined restrictive conditions. Hence, it was the aim of this study to overcome this limitation via a co-cultivation approach. Anaerobic glycerol fermentation by a pure E. coli culture was compared to a co-culture that also contained the formate-oxidizing methanogen Methanobacterium formicicum. Co-cultivation of the two strains led to a more than 11-fold increased glycerol consumption. Furthermore, it supported a constantly neutral pH and a shift from ethanol to succinate production. Moreover, M. formicicum was analyzed for its ability to grow on different standard media and a surprising versatility could be demonstrated.

  11. Bacterial self-defence: how Escherichia coli evades serum killing.

    PubMed

    Miajlovic, Helen; Smith, Stephen G

    2014-05-01

    The ability to survive the bactericidal action of serum is advantageous to extraintestinal pathogenic Escherichia coli that gain access to the bloodstream. Evasion of the innate defences present in serum, including complement and antimicrobial peptides, involves multiple factors. Serum resistance mechanisms utilized by E. coli include the production of protective extracellular polysaccharide capsules and expression of factors that inhibit or interfere with the complement cascade. Recent studies have also highlighted the importance of structural integrity of the cell envelope in serum survival. These survival strategies are outlined in this review with particular attention to novel findings and recent insights into well-established resistance mechanisms.

  12. Escherichia coli as a model active colloid: A practical introduction.

    PubMed

    Schwarz-Linek, Jana; Arlt, Jochen; Jepson, Alys; Dawson, Angela; Vissers, Teun; Miroli, Dario; Pilizota, Teuta; Martinez, Vincent A; Poon, Wilson C K

    2016-01-01

    The flagellated bacterium Escherichia coli is increasingly used experimentally as a self-propelled swimmer. To obtain meaningful, quantitative results that are comparable between different laboratories, reproducible protocols are needed to control, 'tune' and monitor the swimming behaviour of these motile cells. We critically review the knowledge needed to do so, explain methods for characterising the colloidal and motile properties of E. coli cells, and propose a protocol for keeping them swimming at constant speed at finite bulk concentrations. In the process of establishing this protocol, we use motility as a high-throughput probe of aspects of cellular physiology via the coupling between swimming speed and the proton motive force.

  13. Inducible repair of oxidative DNA damage in Escherichia coli.

    PubMed

    Demple, B; Halbrook, J

    Hydrogen peroxide is lethal to many cell types, including the bacterium Escherichia coli. Peroxides yield transient radical species that can damage DNA and cause mutations. Such partially reduced oxygen species are occasionally released during cellular respiration and are generated by lethal and mutagenic ionizing radiation. Because cells live in an environment where the threat of oxidative DNA damage is continual, cellular mechanisms may have evolved to avoid and repair this damage. Enzymes are known which evidently perform these functions. We report here that resistance to hydrogen peroxide toxicity can be induced in E. coli, that this novel induction is specific and occurs, in part, at the level of DNA repair.

  14. Sedimentation and gravitational instability of Escherichia coli Suspension

    NASA Astrophysics Data System (ADS)

    Douarche, Carine; Salin, Dominique; Collaboration between Laboratory FAST; LPS Collaboration

    2016-11-01

    The successive run and tumble of Escherichia coli bacteria provides an active matter suspension of rod-like particles with a large swimming diffusion. As opposed to inactive elongated particles, this diffusion prevents clustering and instability in the gravity field. We measure the time dependent E . coli concentration profile during their sedimentation. After some hours, due to the dioxygen consumption, a motile / non-motile front forms leading to a Rayleigh-Taylor type gravitational instability. Analyzing both sedimentation and instability in the framework of active particle suspensions, we can measure the relevant bacteria hydrodynamic characteristics such as its single particle sedimentation velocity and its hindrance volume.

  15. Advances in molecular serotyping and subtyping of Escherichia coli

    DOE PAGES

    Fratamico, Pina M.; DebRoy, Chitrita; Liu, Yanhong; ...

    2016-05-03

    Escherichia coli plays an important role as a member of the gut microbiota; however, pathogenic strains also exist, including various diarrheagenic E. coli pathotypes and extraintestinal pathogenic E. coli that cause illness outside of the GI-tract. E. coli have traditionally been serotyped using antisera against the ca. 186 O-antigens and 53 H-flagellar antigens. Phenotypic methods, including bacteriophage typing and O- and H- serotyping for differentiating and characterizing E. coli have been used for many years; however, these methods are generally time consuming and not always accurate. Advances in next generation sequencing technologies have made it possible to develop genetic-based subtypingmore » and molecular serotyping methods for E. coli, which are more discriminatory compared to phenotypic typing methods. Furthermore, whole genome sequencing (WGS) of E. coli is replacing established subtyping methods such as pulsedfield gel electrophoresis, providing a major advancement in the ability to investigate food-borne disease outbreaks and for trace-back to sources. Furthermore, a variety of sequence analysis tools and bioinformatic pipelines are being developed to analyze the vast amount of data generated by WGS and to obtain specific information such as O- and H-group determination and the presence of virulence genes and other genetic markers.« less

  16. Gentamicin resistance among Escherichia coli strains isolated in neonatal sepsis.

    PubMed

    Hasvold, J; Bradford, L; Nelson, C; Harrison, C; Attar, M; Stillwell, T

    2013-01-01

    Neonatal sepsis is a significant cause of morbidity and mortality among term and preterm infants. Ampicillin and gentamicin are standard empiric therapy for early onset sepsis. Four cases of neonatal sepsis secondary to Escherichia coli (E. coli) found to be gentamicin resistant occurred within a five week period in one neonatal intensive care unit (NICU). To determine whether these cases could be tied to a single vector of transmission, and to more broadly evaluate the incidence of gentamicin resistant strains of E. coli in the neonatal population at our institution compared to other centers, we reviewed the charts of the four neonates (Infants A through D) and their mothers. The E. coli isolates were sent for Pulse Field Gel Electrophoresis (PFGE) to evaluate for genetic similarity between strains. We also reviewed all positive E. coli cultures from one NICU over a two year period. Infants A and B had genetically indistinguishable strains which matched that of urine and placental cultures of Infant B's mother. Infant C had a genetically distinct organism. Infant D, the identical twin of Infant C, did not have typing performed. Review of all cultures positive for E. coli at our institution showed a 12.9 percent incidence of gentamicin-resistance. A review of other studies showed that rates of resistance vary considerably by institution. We conclude that gentamicin-resistant E. coli is a relatively uncommon cause of neonatal sepsis, but should remain a consideration in patients who deteriorate despite initiation of empiric antibiotics.

  17. Inactivation of Escherichia coli using atmospheric-pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Kuwahata, Hiroshi; Yamaguchi, Takeshi; Ohyama, Ryu-ichiro; Ito, Atsushi

    2015-01-01

    An atmospheric-pressure argon (Ar) plasma jet was applied to the inactivation of Escherichia coli. The Ar plasma jet was generated at a frequency of 10 kHz, an applied voltage of 10 kV, and an Ar gas flow rate of 10 L/min at atmospheric pressure. E. coli cells seeded on an agar medium in a Petri dish were inactivated by Ar plasma jet irradiation for 1 s. Scanning electron microscopy (SEM) revealed that E. coli cells were killed because their cell wall and membrane were disrupted. To determine the causes of the disruption of the cell wall and membrane of E. coli, we performed the following experiments: the measurement of the surface temperature of an agar medium using a thermograph, the analysis of an emission spectrum of a plasma jet obtained using a multichannel spectrometer, and the determination of the distribution of the concentration of hydrogen peroxide (H2O2) generated on an agar medium by plasma jet irradiation using semiquantitative test strips. Moreover, H2O2 solutions of different concentrations were dropped onto an agar medium seeded with E. coli cells to examine the contribution of H2O2 to the death of E. coli. The results of these experiments showed that the cell wall and membrane of E. coli were disrupted by electrons in the plasma jet, as well as by electroneutral excited nitrogen molecules (N2) and hydroxyl (OH) radicals in the periphery of the plasma jet.

  18. Biosynthesis of phosphatidyl glycerophosphate in Escherichia coli.

    PubMed

    Chang, Y Y; Kennedy, E P

    1967-09-01

    An enzyme (L-glycerol 3-phosphate: CMP phosphatidyltransferase) catalyzing the synthesis of phosphatidyl glycerophosphate from CDP-diglyceride and L-glycerol 3-phosphate has been rendered soluble by treatment of the particulate, membrane-containing fraction of E. coli with Triton X-100 and has been partially purified. The enzyme, devoid of phosphatidyl glycerophosphatase activity, is specific for L-glycerol 3-phosphate and is completely dependent upon added Mg(++) or Mn(++) for activity. It has high affinity for CDP-diglyceride and can be used for the assay of this nucleotide. Other properties of the enzyme are also described.

  19. Growth and Division of Filamentous Forms of Escherichia coli.

    PubMed

    Adler, H I; Hardigree, A A

    1965-07-01

    Adler, Howard I. (Oak Ridge National Laboratory, Oak Ridge, Tenn.), and Alice A. Hardigree. Growth and division of filamentous forms of Escherichia coli. J. Bacteriol. 90:223-226. 1965.-Cells of certain mutant strains of Escherichia coli grow into long multinucleate filaments after exposure to radiation. Deoxyribonucleic acid, ribonucleic acid, and protein synthesis proceed, but cytokinesis does not occur. Cytokinesis (cross-septation) can be initiated by exposure of the filaments to pantoyl lactone or a temperature of 42 C. If growing filaments are treated with mitomycin C, nuclear division does not occur, and nuclear material is confined to the central region of the filament. Cytokinesis cannot be induced in mitomycin C-treated filaments by pantoyl lactone or treatment at 42 C.

  20. Mechanobiology of Antimicrobial Resistant Escherichia coli and Listeria innocua.

    PubMed

    Tajkarimi, Mehrdad; Harrison, Scott H; Hung, Albert M; Graves, Joseph L

    2016-01-01

    A majority of antibiotic-resistant bacterial infections in the United States are associated with biofilms. Nanoscale biophysical measures are increasingly revealing that adhesive and viscoelastic properties of bacteria play essential roles across multiple stages of biofilm development. Atomic Force Microscopy (AFM) applied to strains with variation in antimicrobial resistance enables new opportunities for investigating the function of adhesive forces (stickiness) in biofilm formation. AFM force spectroscopy analysis of a field strain of Listeria innocua and the strain Escherichia coli K-12 MG1655 revealed differing adhesive forces between antimicrobial resistant and nonresistant strains. Significant increases in stickiness were found at the nanonewton level for strains of Listeria innocua and Escherichia coli in association with benzalkonium chloride and silver nanoparticle resistance respectively. This advancement in the usage of AFM provides for a fast and reliable avenue for analyzing antimicrobial resistant cells and the molecular dynamics of biofilm formation as a protective mechanism.

  1. Enterotoxigenic Escherichia coli infection in captive black-footed ferrets.

    PubMed

    Bradley, G A; Orr, K; Reggiardo, C; Glock, R D

    2001-07-01

    Enterotoxigenic Escherichia coli with genes for heat stabile toxins Sta and STb was isolated from the gastrointestinal tract and multiple visceral organs of three adult and three juvenile black-footed ferrets (Mustela nigripes) that died in a captive breeding colony between 24 May 1998 and 2 July 1998. Similar isolates were obtained from rectal swabs of one adult and one juvenile that were clinically ill. All were fed a diet composed of mink chow, raw rabbit meat, beef liver powder, blood meal and lard. Escherichia coli of the same toxin genotype was isolated from the mixed ration. Clinical signs included sudden death, dehydration, anorexia and diarrhea. Necropsy lesions included acute enteritis with large numbers of rod shaped bacteria microscopically visible on intestinal villi.

  2. Mechanobiology of Antimicrobial Resistant Escherichia coli and Listeria innocua

    PubMed Central

    Tajkarimi, Mehrdad; Harrison, Scott H.; Hung, Albert M.; Graves, Joseph L.

    2016-01-01

    A majority of antibiotic-resistant bacterial infections in the United States are associated with biofilms. Nanoscale biophysical measures are increasingly revealing that adhesive and viscoelastic properties of bacteria play essential roles across multiple stages of biofilm development. Atomic Force Microscopy (AFM) applied to strains with variation in antimicrobial resistance enables new opportunities for investigating the function of adhesive forces (stickiness) in biofilm formation. AFM force spectroscopy analysis of a field strain of Listeria innocua and the strain Escherichia coli K-12 MG1655 revealed differing adhesive forces between antimicrobial resistant and nonresistant strains. Significant increases in stickiness were found at the nanonewton level for strains of Listeria innocua and Escherichia coli in association with benzalkonium chloride and silver nanoparticle resistance respectively. This advancement in the usage of AFM provides for a fast and reliable avenue for analyzing antimicrobial resistant cells and the molecular dynamics of biofilm formation as a protective mechanism. PMID:26914334

  3. Thiolases of Escherichia coli: purification and chain length specificities.

    PubMed Central

    Feigenbaum, J; Schulz, H

    1975-01-01

    The presence of only one thiolase (EC 2.3.1.9) in wild-type Escherichia coli induced for enzymes of beta oxidation was demonstrated. A different thiolase was shown to be present in a mutant constitutive for the enzymes of butyrate degradation. The two thiolases were purified to near homogeneity by a simple two-step procedure and were found to be associated with different proteins as shown by gel electrophoresis. The thiolase isolated from induced wild-type Escherichia coli cell was active on beta-ketoacyl-coenzyme A derivatives containing 4 to 16 carbons, but exhibited optimal activity with medium-chain substrates. In contrast, the thiolase isolated from the constitutive mutant was shown to be specific for acetoacetyl-coenzyme A. PMID:236278

  4. TRYPTOPHANASE-TRYPTOPHAN SYNTHETASE SYSTEMS IN ESCHERICHIA COLI III.

    PubMed Central

    Freundlich, Martin; Lichstein, Herman C.

    1962-01-01

    Freundlich, Martin (University of Minnesota, Minneapolis) and Herman C. Lichstein. Tryptophanase-tryptophan synthetase systems in Escherichia coli. III. Requirements for enzyme synthesis. J. Bacteriol. 84:996–1006. 1962.—The requirements for the formation of tryptophanase and tryptophan synthetase in Escherichia coli during repression release were studied. The kinetics of the formation of tryptophan synthetase differed in the two strains examined; this was attributed to differences in the endogenous level of tryptophan in the bacterial cells. The formation of both enzymes was inhibited by chloramphenicol, and by the absence of arginine in an arginine-requiring mutant. These results are indicative of a requirement for protein synthesis for enzyme formation. Requirements for nucleic acid synthesis were examined by use of a uracil- and thymine-requiring mutant, and with purine and pyrimidine analogues. The results obtained suggest that some type of ribonucleic acid synthesis was necessary for the formation of tryptophanase and tryptophan synthetase. PMID:13959620

  5. Shear alters motility of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Molaei, Mehdi; Jalali, Maryam; Sheng, Jian

    2013-11-01

    Understanding of locomotion of microorganisms in shear flows drew a wide range of interests in microbial related topics such as biological process including pathogenic infection and biophysical interactions like biofilm formation on engineering surfaces. We employed microfluidics and digital holography microscopy to study motility of E. coli in shear flows. We controlled the shear flow in three different shear rates: 0.28 s-1, 2.8 s-1, and 28 s-1 in a straight channel with the depth of 200 μm. Magnified holograms, recorded at 15 fps with a CCD camera over more than 20 minutes, are analyzed to obtain 3D swimming trajectories and subsequently used to extract shear responses of E.coli. Thousands of 3-D bacterial trajectories are tracked. The change of bacteria swimming characteristics including swimming velocity, reorientation, and dispersion coefficient are computed directly for individual trajectory and ensemble averaged over thousands of realizations. The results show that shear suppresses the bacterial dispersions in bulk but promote dispersions near the surface contrary to those in quiescent flow condition. Ongoing analyses are focusing to quantify effect of shear rates on tumbling frequency and reorientation of cell body, and its implication in locating the hydrodynamic mechanisms for shear enhanced angular scattering. NIH, NSF, GoMRI.

  6. Some factors affecting cyclopropane acid formation in Escherichia coli

    PubMed Central

    Knivett, V. A.; Cullen, Julia

    1965-01-01

    1. The fatty acid composition of the extractable lipids of Escherichia coli varied with growth conditions. 2. The principal fatty acids were palmitic acid, hexadecenoic acid, octadecenoic acid and the cyclopropane acids, methylenehexadecanoic acid and methyleneoctadecanoic acid. 3. Cyclopropane acid formation from monoenoic acids was increased by acid media, poor oxygen supply, or high growth temperature. 4. Cyclopropane acid formation was decreased by alkaline media, well oxygenated conditions, the presence of citrate, or lack of Mg2+. PMID:5324304

  7. Characterization of Aspergillus oryzae aspartyl aminopeptidase expressed in Escherichia coli.

    PubMed

    Watanabe, Jun; Tanaka, Hisaki; Akagawa, Takumi; Mogi, Yoshinobu; Yamazaki, Tatsuo

    2007-10-01

    To characterize aspartyl aminopeptidase from Aspergillus oryzae, the recombinant enzyme was expressed in Escherichia coli. The enzyme cleaves N-terminal acidic amino acids. About 30% activity was retained in 20% NaCl. Digestion of defatted soybean by the enzyme resulted in an increase in the glutamic acid content, suggesting that the enzyme is potentially responsible for the release of glutamic acid in soy sauce mash.

  8. Polymorphous crystallization and diffraction of threonine deaminase from Escherichia coli.

    PubMed

    Gallagher, D T; Eisenstein, E; Fisher, K E; Zondlo, J; Chinchilla, D; Yu, H D; Dill, J; Winborne, E; Ducote, K; Xiao, G; Gilliland, G L

    1998-05-01

    The biosynthetic threonine deaminase from Escherichia coli, an allosteric tetramer with key regulatory functions, has been crystallized in several crystal forms. Two distinct forms, both belonging to either space group P3121 or P3221, with different sized asymmetric units that both contain a tetramer, grow under identical conditions. Diffraction data sets to 2.8 A resolution (native) and 2. 9 A resolution (isomorphous uranyl derivative) have been collected from a third crystal form in space group I222.

  9. Positive regulation of the Escherichia coli glycine cleavage enzyme system.

    PubMed Central

    Wilson, R L; Steiert, P S; Stauffer, G V

    1993-01-01

    A new mutation in Escherichia coli, designated gcvA1, that results in noninducible expression of both gcv and a gcvT-lacZ gene fusion was isolated. A plasmid carrying the wild-type gcvA gene complemented the mutation and restored glycine-inducible gcv and gcvT-lacZ gene expression. These results suggest that gcvA encodes a positive-acting regulatory protein that acts in trans to increase expression of gcv. PMID:8423160

  10. Division pattern of a round mutant of Escherichia coli.

    PubMed Central

    Cooper, S

    1997-01-01

    A round mutant of Escherichia coli, when grown in Methocel medium, forms chains of cells and does not form tetrads. This implies that successive division planes of the round mutant are parallel rather than perpendicular. These results differ from a previous proposal that division planes in this round mutant are perpendicular to the prior division plane (W. D. Donachie, S. Addinall, and K. Begg, Bioessays 17:569-576, 1995). PMID:9287016

  11. Antibacterial efficacy of silver nanoparticles against Escherichia coli

    NASA Astrophysics Data System (ADS)

    Pattabi, Rani M.; Thilipan, G. Arun Kumar; Bhat, Vinayachandra; Sridhar, K. R.; Pattabi, Manjunatha

    2013-02-01

    Silver nanoparticles (AgNPs) synthesized by subjecting an aqueous solution of AgNO3 and polyvinyl alcohol to irradiation from an UV lamp has been studied for its antibacterial potential against Gram-negative bacteria (Escherichia coli). The diameter of the zone of inhibition is found to depend on both the irradiation time and the nanoparticle concentration. As the synthesis method adopted uses no toxic reagents, these particles may serve as promising candidates in the search for better antibacterial agents.

  12. Electric field induced bacterial flocculation of Enteroaggregative Escherichia coli 042

    SciTech Connect

    Kumar, Aloke; Mortensen, Ninell P; Mukherjee, Partha P; Retterer, Scott T; Doktycz, Mitchel John

    2011-01-01

    A response of the aggregation dynamics of enteroaggregative Escherichia coli under low magnitude steady and oscillating electric fields is presented. The presence of uniform electric fields hampered microbial adhesion and biofilm formation on a transverse glass surface, but instead promoted the formation of flocs. Extremely heterogeneous distribution of live and dead cells was observed among the flocs. Moreover, floc formation was largely observed to be independent of the frequency of alternating electric fields.

  13. Role for the female in bacterial conjugation in Escherichia coli.

    PubMed

    Freifelder, D

    1967-08-01

    Hfr and F' Lac male strains of Escherichia coli were mated with purine-requiring females which had been starved for purine. These females formed mating pairs with the males. However, a mating in the absence of purine markedly reduced the yield of recombinants. Transfer of F' Lac or of lambda prophage also occurred infrequently. It was concluded that deoxyribonucleic acid transfer from male to female requires some, as yet unknown, function of the female.

  14. Role for the Female in Bacterial Conjugation in Escherichia coli

    PubMed Central

    Freifelder, David

    1967-01-01

    Hfr and F′ Lac male strains of Escherichia coli were mated with purine-requiring females which had been starved for purine. These females formed mating pairs with the males. However, a mating in the absence of purine markedly reduced the yield of recombinants. Transfer of F′ Lac or of λ prophage also occurred infrequently. It was concluded that deoxyribonucleic acid transfer from male to female requires some, as yet unknown, function of the female. PMID:5341864

  15. Current perspectivesin pathogenesis and antimicrobial resistance of enteroaggregative Escherichia coli.

    PubMed

    Kong, Haishen; Hong, Xiaoping; Li, Xuefen

    2015-08-01

    Enteroaggregative Escherichia coli (EAEC) is an emerging pathogen that causes acute and persistent diarrhea in children and adults. While the pathogenic mechanisms of EAEC intestinal colonization have been uncovered (including bacterial adhesion, enterotoxin and cytotoxin secretion, and stimulation of mucosal inflammation), those of severe extraintestinal infections remain largely unknown. The recent emergence of multidrug resistant EAEC represents an alarming public health threat and clinical challenge, and research on the molecular mechanisms of resistance is urgently needed.

  16. Lipophilic chelator inhibition of electron transport in Escherichia coli.

    PubMed Central

    Crane, R T; Sun, I L; Crane, F L

    1975-01-01

    The lipophilic chelator bathophenanthroline inhibits electron transport in membranes from Escherichia coli. The less lipophilic 1,10-phenanthroline, bathophenanthroline sulfonate, and alpha,alpha-dipyridyl have little effect. Reduced nicotinamide adenine dinucleotide oxidase is more sensitive to bathophenanthroline inhibition than lactate oxidase activity. Evidence for two sites of inhibition comes from the fact that both reduced nicotinamide adenine dinucleotide menadione reductase and duroquinol oxidase activities are inhibited. Addition of uncouplers of phosphorylation before bathophenanthroline protects against inhibition. PMID:1092663

  17. Effects of Acridine Orange on the Growth of Escherichia coli

    PubMed Central

    Southwick, Frederick S.; Carr, Howard S.; Carden, George A.; D'Alisa, Rose M.; Rosenkranz, Herbert S.

    1972-01-01

    Exposure of Escherichia coli to critical acridine orange (AO) concentrations did not result in loss of viability. However, the deoxyribonucleic acid (DNA) of cells exposed to such agents was rapidly degraded and repolymerized. On the other hand, a bacterium deficient in DNA repair (pol A1−, lacking DNA polymerase) was sensitive to the action of AO. The DNA of such cells was also degraded but it was not repaired. PMID:4553001

  18. Two Forms of d-Glycerate Kinase in Escherichia coli

    PubMed Central

    Ornston, M. K.; Ornston, L. N.

    1969-01-01

    Escherichia coli K-12 synthesizes two chromatographically distinct forms of glycerate kinase which differ both in their thermolability and in the dependence of their activity upon pH. One enzymatic form, GK I, is found in cells grown with glycerate, glucarate, or glycolate. Of these compounds, glycolate is the only carbon source that elicits the synthesis of the second enzymatic form, GK II. PMID:4887503

  19. Flow cytometry analysis using sysmex UF-1000i classifies uropathogens based on bacterial, leukocyte, and erythrocyte counts in urine specimens among patients with urinary tract infections.

    PubMed

    Monsen, Tor; Rydén, Patrik

    2015-02-01

    Urinary tract infections (UTIs) are the second most common bacterial infection. Urine culture is the gold standard for diagnosis, but new techniques, such as flow cytometry analysis (FCA), have been introduced. The aim of the present study was to evaluate FCA characteristics regarding bacteriuria, leukocyturia, and erythrocyturia in relation to cultured uropathogens in specimens from patients with a suspected UTI. We also wanted to evaluate whether the FCA characteristics can identify uropathogens prior to culture. From a prospective study, 1,587 consecutive urine specimens underwent FCA prior to culture during January and February 2012. Outpatients and inpatients (79.6% and 19.4%, respectively) were included, of whom women represented 67.5%. In total, 620 specimens yielded growth, of which Escherichia coli represented 65%, Enterococcus spp. 8%, Klebsiella spp. 7%, and Staphylococcus spp. 5%. For the uropathogens, the outcome of FCA was compared against the results for specimens with E. coli and those with a negative culture. E. coli had high bacterial (median, 17,914/μl), leukocyte (median, 348/μl), and erythrocyte (median, 23/μl) counts. With the exception of Klebsiella spp., the majority of the uropathogens had considerable or significantly lower bacterial counts than that of E. coli. High leukocyte counts were found in specimens with Staphylococcus aureus, Proteus mirabilis, Pseudomonas aeruginosa, and group C streptococci. Elevated erythrocyte counts were found for P. vulgaris, P. aeruginosa, and group C streptococci, as well as for Staphylococcus saprophyticus. In essence, FCA adds new information about the bacterial, leukocyte, and erythrocyte counts in urine specimens for different uropathogens. Based on FCA characteristics, uropathogens can be classified and identified prior to culture. E. coli and Klebsiella spp. have similar FCA characteristics.

  20. Flow Cytometry Analysis Using Sysmex UF-1000i Classifies Uropathogens Based on Bacterial, Leukocyte, and Erythrocyte Counts in Urine Specimens among Patients with Urinary Tract Infections

    PubMed Central

    Rydén, Patrik

    2014-01-01

    Urinary tract infections (UTIs) are the second most common bacterial infection. Urine culture is the gold standard for diagnosis, but new techniques, such as flow cytometry analysis (FCA), have been introduced. The aim of the present study was to evaluate FCA characteristics regarding bacteriuria, leukocyturia, and erythrocyturia in relation to cultured uropathogens in specimens from patients with a suspected UTI. We also wanted to evaluate whether the FCA characteristics can identify uropathogens prior to culture. From a prospective study, 1,587 consecutive urine specimens underwent FCA prior to culture during January and February 2012. Outpatients and inpatients (79.6% and 19.4%, respectively) were included, of whom women represented 67.5%. In total, 620 specimens yielded growth, of which Escherichia coli represented 65%, Enterococcus spp. 8%, Klebsiella spp. 7%, and Staphylococcus spp. 5%. For the uropathogens, the outcome of FCA was compared against the results for specimens with E. coli and those with a negative culture. E. coli had high bacterial (median, 17,914/μl), leukocyte (median, 348/μl), and erythrocyte (median, 23/μl) counts. With the exception of Klebsiella spp., the majority of the uropathogens had considerable or significantly lower bacterial counts than that of E. coli. High leukocyte counts were found in specimens with Staphylococcus aureus, Proteus mirabilis, Pseudomonas aeruginosa, and group C streptococci. Elevated erythrocyte counts were found for P. vulgaris, P. aeruginosa, and group C streptococci, as well as for Staphylococcus saprophyticus. In essence, FCA adds new information about the bacterial, leukocyte, and erythrocyte counts in urine specimens for different uropathogens. Based on FCA characteristics, uropathogens can be classified and identified prior to culture. E. coli and Klebsiella spp. have similar FCA characteristics. PMID:25472486

  1. Enhancing the Antibiotic Antibacterial Effect by Sub Lethal Tellurite Concentrations: Tellurite and Cefotaxime Act Synergistically in Escherichia coli

    PubMed Central

    Molina-Quiroz, Roberto C.; Muñoz-Villagrán, Claudia M.; de la Torre, Erick; Tantaleán, Juan C.; Vásquez, Claudio C.; Pérez-Donoso, José M.

    2012-01-01

    The emergence of antibiotic-resistant pathogenic bacteria during the last decades has become a public health concern worldwide. Aiming to explore new alternatives to treat antibiotic-resistant bacteria and given that the tellurium oxyanion tellurite is highly toxic for most microorganisms, we evaluated the ability of sub lethal tellurite concentrations to strengthen the effect of several antibiotics. Tellurite, at nM or µM concentrations, increased importantly the toxicity of defined antibacterials. This was observed with both Gram negative and Gram positive bacteria, irrespective of the antibiotic or tellurite tolerance of the particular microorganism. The tellurite-mediated antibiotic-potentiating effect occurs in laboratory and clinical, uropathogenic Escherichia coli, especially with antibiotics disturbing the cell wall (ampicillin, cefotaxime) or protein synthesis (tetracycline, chloramphenicol, gentamicin). In particular, the effect of tellurite on the activity of the clinically-relevant, third-generation cephalosporin (cefotaxime), was evaluated. Cell viability assays showed that tellurite and cefotaxime act synergistically against E. coli. In conclusion, using tellurite like an adjuvant could be of great help to cope with several multi-resistant pathogens. PMID:22536386

  2. Preparation of Soluble Proteins from Escherichia coli

    PubMed Central

    Wingfield, Paul T.

    2014-01-01

    Purification of human IL-1β is used in this unit as an example of the preparation of soluble proteins from E. coli. Bacteria containing IL-1β are lysed, and IL-1 β in the resulting supernatant is purified by anion-exchange chromatography, salt precipitation and cation-exchange chromatography, and then concentrated. Finally, the IL-1 β protein is applied to a gel-filtration column to separate it from remaining higher- and lower-molecular-weight contaminants, the purified protein is stored frozen or is lyophilized. The purification protocol described is typical for a protein that is expressed in fairly high abundance (i.e., >5% total protein) and accumulates in a soluble state. Also, the purification procedure serves as an example of how use classical protein purifications methods which may also be used in conjunction with the affinity-based methods now more commonly used. PMID:25367009

  3. Fluorogenic assays for immediate confirmation of Escherichia coli.

    PubMed Central

    Feng, P C; Hartman, P A

    1982-01-01

    Rapid assays for Escherichia coli were developed by using the compound 4-methylumbelliferone glucuronide (MUG), which is hydrolyzed by glucuronidase to yield a fluorogenic product. The production of glucuronidase was limited to strains of E. coli and some Salmonella and Shigella strains in the family Enterobacteriaceae. For immediate confirmation of the presence of E. coli in most-probable-number tubes, MUG was incorporated into lauryl tryptose broth at a final concentration of 100 micrograms/ml. Results of both the presumptive test (gas production) and the confirmed test (fluorescence) for E. coli were obtained from a variety of food, water, and milk samples after incubation for only 24 h at 35 degrees C. Approximately 90% of the tubes showing both gas production and fluorescence contained fecal coliforms (they were positive in EC broth incubated at 45 degrees C). Few false-positive reactions were observed. The lauryl tryptose broth-MUG-most-probable-number assay was superior to violet red bile agar for the detection of heat- and chlorine-injured E. coli cells. Anaerogenic strains produced positive reactions, and small numbers of E. coli could be detected in the presence of large numbers of competing bacteria. The fluorogenic assay was sensitive and rapid; the presence of one viable cell was detected within 20 h. E. coli colonies could be distinguished from other coliforms on membrane filters and plates of violet red bile agar if MUG was incorporated into the culture media. A rapid confirmatory test for E. coli that is amenable to automation was developed by using microtitration plates filled with a nonselective medium containing MUG. Pure or mixed cultures containing E. coli produced fluorescence within 4 h (most strains) to 24 h (a few weakly positive strains). Images PMID:7049088

  4. Prevalence of Escherichia coli in apple cider manufactured in Connecticut.

    PubMed

    Dingman, D W

    1999-06-01

    Cider samples obtained from 11 cider mills operating in Connecticut during the 1997 to 1998 production season were tested for the presence of Escherichia coli. Cider production began in mid August and continued through March, with peak production in September and October. Of 314 cider samples tested, 11 (4%) were found to contain E. coli. Of the 11 mills, 6 (55%) tested positive for E. coli in the cider at least once during the production year. E. coli was first observed in cider samples produced in mid to late October and was not detected in samples made after January. A trend was observed for cider to decrease in acidity and increase in Brix (soluble sugars) throughout the production season. No correlation between pH and soluble sugars of cider and the presence of E. coli was detected. Eight mills used both dropped apples and tree-picked apples, whereas three mills used tree-picked apples only. The use of dropped apples in cider production began 5 weeks before the first detection of E. coli in cider. E. coli was isolated from cider samples produced using dropped apples and from samples produced using only tree-picked apples. No direct correlation between the use of dropped apples or tree-picked apples and the presence of E. coli in the cider was observed. An association between the time of apple harvest and the appearance of E. coli in cider was noted. For mills providing adequate records, all contaminated cider was produced from apples harvested between mid October and mid November.

  5. Thymineless Death in Escherichia coli: Inactivation and Recovery

    PubMed Central

    Cummings, Donald J.; Kusy, Alvin R.

    1969-01-01

    The effects of chloramphenicol (CAP) on the progress of thymineless death (TLD), nalidixic acid (NA) inactivation, ultraviolet (UV) irradiation, and mitomycin C (MC) inactivation were studied in Escherichia coli B, Bs−1, Bs−3, Bs−12, and B/r. This was done before, during, and after inactivation. During the progress of inactivation, it was found that at 10 to 20 μg of CAP per ml, up to 50% of the UV-sensitive bacteria survived TLD and about 10% survived NA. In E. coli B/r, at these concentrations of CAP, about 10 to 15% of the cells survived TLD and about 20 to 25% survived NA. Concentrations of CAP greater than 25 μg/ml actually increased the sensitivity of E. coli B, Bs−1, Bs−3, and Bs−12 to inactivation by either TLD or NA; at 150 μg of CAP per ml, the sensitivity of E. coli B/r to inactivation also increased. When E. coli B cells were incubated in CAP prior to inactivation, the longer the preincubation the longer onset of TLD was delayed; NA inactivation was also affected in that the rate of inactivation after CAP incubation was greatly decreased. Preincubation of E. coli B/r with CAP had much less effect on the progress of inactivation. After thymineless death, incubation in CAP plus thymine led to a rapid and almost complete recovery of E. coli B and Bs−12. Lesser recoveries were observed after inactivation due to UV, NA, or MC inactivation. E. coli Bs−1 and B/r did not recover viability after any mode of inactivation, and E. coli Bs−3 and Bs−12 recovered from UV to about 20% of the initial titer. It was suggested that protein synthesis, in particular proteins involved in deoxyribonucleic synthesis, was a determining factor in these inactivating and recovery events. PMID:4897115

  6. First report on class 1 integrons and Trimethoprim-resistance genes from dfrA group in uropathogenic E. coli (UPEC) from the Aleppo area in Syria.

    PubMed

    Al-Assil, Bodour; Mahfoud, Maysa; Hamzeh, Abdul Rezzak

    2013-05-01

    Horizontal gene transfer (HGT) introduces advantageous genetic elements into pathogenic bacteria using tools such as class1 integrons. This study aimed at investigating the distribution of these integrons among uropathogenic E. coli (UPEC) isolated from patients in Aleppo, Syria. It also set to uncover the frequencies of the clinically relevant DfrA1 and DfrA17,7, as well as various associations leading to reduced susceptibility. This study involved 75 Trimethoprim-resistant E. coli isolates from in- and outpatients with urinary tract infections (UTIs) from 3 major hospitals in Aleppo. Bacterial identification, resistance and extended-spectrum-β-lactamase (ESBL) production testing were performed according to Clinical Laboratory Standards Institute guidelines. Detection of integrons and DfrA genes was done using PCR and statistical significance was inferred through χ2 (Fisher's) test. Class1 integrons were detected in 54.6% of isolates while DfrA1 and DfrA17,7 were found in 16% and 70.6% of tested samples respectively. Furthermore, only DfrA17,7 were strongly associated with class1 integrons, as were reduced susceptibility to the majority of individual antibiotics, multidrug resistance and ESBL production. This study demonstrated the high prevalence of class1 integrons among UPEC strains in Aleppo, Syria, as well as their significant associations with MDR. This data give information for local healthcare provision using antibiotic chemotherapy.

  7. Molecular and Structural Characterization of a Novel Escherichia coli Interleukin Receptor Mimic Protein

    PubMed Central

    Moriel, Danilo G.; Paxman, Jason J.; Lo, Alvin W.; Tan, Lendl; Sullivan, Matthew J.; Dando, Samantha J.; Beatson, Scott A.

    2016-01-01

    ABSTRACT Urinary tract infection (UTI) is a disease of extremely high incidence in both community and nosocomial settings. UTIs cause significant morbidity and mortality, with approximately 150 million cases globally per year. Uropathogenic Escherichia coli (UPEC) is the primary cause of UTI and is generally treated empirically. However, the rapidly increasing incidence of UTIs caused by multidrug-resistant UPEC strains has led to limited available treatment options and highlights the urgent need to develop alternative treatment and prevention strategies. In this study, we performed a comprehensive analysis to define the regulation, structure, function, and immunogenicity of recently identified UPEC vaccine candidate C1275 (here referred to as IrmA). We showed that the irmA gene is highly prevalent in UPEC, is cotranscribed with the biofilm-associated antigen 43 gene, and is regulated by the global oxidative stress response OxyR protein. Localization studies identified IrmA in the UPEC culture supernatant. We determined the structure of IrmA and showed that it adopts a unique domain-swapped dimer architecture. The dimeric structure of IrmA displays similarity to those of human cytokine receptors, including the interleukin-2 receptor (IL-2R), interleukin-4 receptor (IL-4R), and interleukin-10 receptor (IL-10R) binding domains, and we showed that purified IrmA can bind to their cognate cytokines. Finally, we showed that plasma from convalescent urosepsis patients contains high IrmA antibody titers, demonstrating the strong immunogenicity of IrmA. Taken together, our results indicate that IrmA may play an important role during UPEC infection. PMID:26980835

  8. Metabolic Requirements of Escherichia coli in Intracellular Bacterial Communities during Urinary Tract Infection Pathogenesis

    PubMed Central

    Conover, Matt S.; Hadjifrangiskou, Maria; Palermo, Joseph J.; Hibbing, Michael E.; Dodson, Karen W.

    2016-01-01

    ABSTRACT Uropathogenic Escherichia coli (UPEC) is the primary etiological agent of over 85% of community-acquired urinary tract infections (UTIs). Mouse models of infection have shown that UPEC can invade bladder epithelial cells in a type 1 pilus-dependent mechanism, avoid a TLR4-mediated exocytic process, and escape into the host cell cytoplasm. The internalized UPEC can clonally replicate into biofilm-like intracellular bacterial communities (IBCs) of thousands of bacteria while avoiding many host clearance mechanisms. Importantly, IBCs have been documented in urine from women and children suffering acute UTI. To understand this protected bacterial niche, we elucidated the transcriptional profile of bacteria within IBCs using microarrays. We delineated the upregulation within the IBC of genes involved in iron acquisition, metabolism, and transport. Interestingly, lacZ was highly upregulated, suggesting that bacteria were sensing and/or utilizing a galactoside for metabolism in the IBC. A ΔlacZ strain displayed significantly smaller IBCs than the wild-type strain and was attenuated during competitive infection with a wild-type strain. Similarly, a galK mutant resulted in smaller IBCs and attenuated infection. Further, analysis of the highly upregulated gene yeaR revealed that this gene contributes to oxidative stress resistance and type 1 pilus production. These results suggest that bacteria within the IBC are under oxidative stress and, consistent with previous reports, utilize nonglucose carbon metabolites. Better understanding of the bacterial mechanisms used for IBC development and establishment of infection may give insights into development of novel anti-virulence strategies. PMID:27073089

  9. Interaction of Escherichia coli and Soil Particles in Runoff

    PubMed Central

    Muirhead, Richard William; Collins, Robert Peter; Bremer, Philip James

    2006-01-01

    A laboratory-scale model system was developed to investigate the transport mechanisms involved in the horizontal movement of bacteria in overland flow across saturated soils. A suspension of Escherichia coli and bromide tracer was added to the model system, and the bromide concentration and number of attached and unattached E. coli cells in the overland flow were measured over time. Analysis of the breakthrough curves indicated that the E. coli and bromide were transported together, presumably by the same mechanism. This implied that the E. coli was transported by advection with the flowing water. Overland-flow transport of E. coli could be significantly reduced if the cells were preattached to large soil particles (>45 μm). However, when unattached cells were inoculated into the system, the E. coli appeared to attach predominantly to small particles (<2 μm) and hence remained unattenuated during transport. These results imply that in runoff generated by saturation-excess conditions, bacteria are rapidly transported across the surface and have little opportunity to interact with the soil matrix. PMID:16672484

  10. Regulation of arabinose and xylose metabolism in Escherichia coli.

    PubMed

    Desai, Tasha A; Rao, Christopher V

    2010-03-01

    Bacteria such as Escherichia coli will often consume one sugar at a time when fed multiple sugars, in a process known as carbon catabolite repression. The classic example involves glucose and lactose, where E. coli will first consume glucose, and only when it has consumed all of the glucose will it begin to consume lactose. In addition to that of lactose, glucose also represses the consumption of many other sugars, including arabinose and xylose. In this work, we characterized a second hierarchy in E. coli, that between arabinose and xylose. We show that, when grown in a mixture of the two pentoses, E. coli will consume arabinose before it consumes xylose. Consistent with a mechanism involving catabolite repression, the expression of the xylose metabolic genes is repressed in the presence of arabinose. We found that this repression is AraC dependent and involves a mechanism where arabinose-bound AraC binds to the xylose promoters and represses gene expression. Collectively, these results demonstrate that sugar utilization in E. coli involves multiple layers of regulation, where cells will consume first glucose, then arabinose, and finally xylose. These results may be pertinent in the metabolic engineering of E. coli strains capable of producing chemical and biofuels from mixtures of hexose and pentose sugars derived from plant biomass.

  11. Escherichia coli sequence type 131: epidemiology and challenges in treatment.

    PubMed

    Qureshi, Zubair A; Doi, Yohei

    2014-05-01

    Escherichia coli ST131 has emerged as a global epidemic, multidrug-resistant clone of E. coli causing extra-intestinal infections. It is now highly prevalent among fluoroquinolone-resistant and CTX-M ESBL-producing E. coli isolates worldwide. Humans are likely the primary reservoir of ST131. Factors associated with its acquisition include residence in long-term care facilities and recent receipt of antimicrobial agents. E. coli ST131 causes a wide array of infections ranging from cystitis to life-threatening sepsis. Fluoroquinolones and trimethoprim-sulfamethoxazole are no longer adequate options for empiric therapy when E. coli ST131 is suspected from risk factors and local epidemiology. Expanded-spectrum cephalosporins, piperacillin-tazobactam and carbapenems are options to treat serious non-ESBL-producing E. coli ST131 infections, while carbapenems are indicated for ESBL-producing infections. There is a growing interest in reevaluating oral agents including fosfomycin and pivmecillinam for less serious infections such as uncomplicated cystitis.

  12. Characterization of Shiga toxigenic Escherichia coli isolated from foods.

    PubMed

    Martínez, Aida Juliana; Bossio, Carolina Paba; Durango, Adriana Coral; Vanegas, Maria Consuelo

    2007-12-01

    The aim of this study was to characterize Shiga toxigenic Escherichia coli (STEC) by PCR using strains isolated from ham, beef, and cattle in Colombia. A total of 189 E. coli strains were tested for the presence of the uidA, stx1, and stx2 genes, and identification was confirmed by the automated PCR BAX system for E. coli O157:H7. Genes encoding Shiga-like toxins (stx) were found in eight (6.06%) of 132 strains previously isolated from minced beef; four (50%) of these strains yielded amplification products for both toxin genes (stx1 and stx2), and four (50%) yielded products only for the stx2 toxin. None of the strains analyzed were positive by PCR for the presence of the single base-pair mutation in the uidA gene from E. coli O157:H7; these results were confirmed by the BAX system analysis. A multiplex PCR assay was standardized for the three genes. Results from this study confirmed previous data about the low prevalence of E. coli O157:H7 and Shiga-like toxins in Colombia and is the first known report of the prevalence of non-O157 enterohemorrhagic E. coli in this country.

  13. [Escherichia coli, a pathogen under fire from the news].

    PubMed

    Cohen, R; Raymond, J; Gendrel, D; Bingen, E

    2012-11-01

    Escherichia coli is both a gastrointestinal tract commensal and a major pathogen. In recent years, E. coli is under fire from the news due to a better understanding of pathogenic factors, outbreaks of infections caused by enterohaemorrhagic strains, and last but not least, the worrying development of antibiotic resistance. Due to the absence of new compounds active against these strains, producing extended-spectrum ß-lactamases (ESBL) and frequently multiresistant to other antibiotics, their emergence will pose therapeutic problems for practitioners of all pediatric specialties. The gold standard treatment for severe infections due to ESBL-E. coli family is the penem class. The frequent use of penems promotes the emergence of strains resistant to carbapenems. Sparing carbapenems should be a clear objective for non life-threatening infections.

  14. Functions of the gene products of Escherichia coli.

    PubMed Central

    Riley, M

    1993-01-01

    A list of currently identified gene products of Escherichia coli is given, together with a bibliography that provides pointers to the literature on each gene product. A scheme to categorize cellular functions is used to classify the gene products of E. coli so far identified. A count shows that the numbers of genes concerned with small-molecule metabolism are on the same order as the numbers concerned with macromolecule biosynthesis and degradation. One large category is the category of tRNAs and their synthetases. Another is the category of transport elements. The categories of cell structure and cellular processes other than metabolism are smaller. Other subjects discussed are the occurrence in the E. coli genome of redundant pairs and groups of genes of identical or closely similar function, as well as variation in the degree of density of genetic information in different parts of the genome. PMID:7508076

  15. Incidence of Escherichia coli in Black Walnut Meats

    PubMed Central

    Meyer, Melvin T.; Vaughn, Reese H.

    1969-01-01

    Examination of commercially shelled black walnut meats showed inconsistent numbers of total aerobic bacteria, coliforms, and Escherichia coli; variation occurred among different meat sizes and within each meat size. The incidence of E. coli on meats of commercially hulled black walnuts depended on the physical condition of the nuts. Apparently tightly sealed ones contained only a few or none, whereas those with visibly separated sutures and spoiled meats yielded the most. This contamination was in part correlated to a hulling operation. Large numbers of E. coli on the husk of the walnuts contaminated the hulling water, subsequently also contaminating the meats by way of separated sutures. Chlorination of the hulling wash water was ineffective. Attempts were made to decontaminate the walnut meats without subsequent deleterious changes in flavor or texture. A treatment in coconut oil at 100 C followed by removal of excess surface oil by centrifugation was best. PMID:4905608

  16. Quantitative method for enumeration of enterotoxigenic Escherichia coli.

    PubMed Central

    Calderon, R L; Levin, M A

    1981-01-01

    A rapid method was developed to quantify toxigenic Escherichia coli, using a membrane filter procedure. After filtration of samples, the membrane filter was first incubated on a medium selective for E. coli (24 h, 44 degrees C) and then transferred to tryptic soy agar (3%; 6 h, 37 degrees C). To assay for labile toxin-producing colonies, the filter was then transferred to a monolayer of Y-1 cells, the E. coli colonies were marked on the bottom of the petri dish, and the filter was removed after 15 min. The monolayer was observed for a positive rounding effect after a 15- to 24-h incubation. The method has an upper limit of detecting 30 toxigenic colonies per plate and can detect as few as one toxigenic colony per plate. A preliminary screening for these enterotoxigenic strains in polluted waters and known positive fecal samples was performed, and positive results were obtained with fecal samples only. PMID:7007415

  17. Mechanisms of the radioprotective effect of cysteamine in Escherichia coli

    SciTech Connect

    Korystov, Yu.N.; Vexler, F.B.

    1988-06-01

    The values of the oxygen effect (m) and the maximal protective effect of cysteamine (DMF*) were estimated for four Escherichia coli strains: AB1157 (wild type), AB1886 (uvrA), AB2463 (recA), and p3478 (polA). A correlation made between DMF* and m as well as the kinetics of the increase of DMF with oxygen depletion showed that the protective effect of cysteamine is realized by three mechanisms: (i) anoxia achieved by oxygen reduction, with the DMF varying from 2.2 to 4.2 for different E. coli strains (this protection is the major contribution to the entire mechanism); (ii) lowering of the indirect radiation effect; i.e., for 50 mM cysteamine DMF does not exceed 1.1; and (iii) increase of the efficiency of enzymatic repair. The latter effect of cysteamine is registered only with the wild-type E. coli, the DMF being not less than 1.4.

  18. Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli

    PubMed Central

    Laganenka, Leanid; Colin, Remy; Sourjik, Victor

    2016-01-01

    Bacteria communicate by producing and sensing extracellular signal molecules called autoinducers. Such intercellular signalling, known as quorum sensing, allows bacteria to coordinate and synchronize behavioural responses at high cell densities. Autoinducer 2 (AI-2) is the only known quorum-sensing molecule produced by Escherichia coli but its physiological role remains elusive, although it is known to regulate biofilm formation and virulence in other bacterial species. Here we show that chemotaxis towards self-produced AI-2 can mediate collective behaviour—autoaggregation—of E. coli. Autoaggregation requires motility and is strongly enhanced by chemotaxis to AI-2 at physiological cell densities. These effects are observed regardless whether cell–cell interactions under particular growth conditions are mediated by the major E. coli adhesin (antigen 43) or by curli fibres. Furthermore, AI-2-dependent autoaggregation enhances bacterial stress resistance and promotes biofilm formation. PMID:27687245

  19. Engineering Escherichia coli K12 MG1655 to use starch

    PubMed Central

    2014-01-01

    Background To attain a sustainable bioeconomy, fuel, or valuable product, production must use biomass as substrate. Starch is one of the most abundant biomass resources and is present as waste or as a food and agroindustry by-product. Unfortunately, Escherichia coli, one of the most widely used microorganisms in biotechnological processes, cannot use starch as a carbon source. Results We engineered an E. coli strain capable of using starch as a substrate. The genetic design employed the native capability of the bacterium to use maltodextrins as a carbon source plus expression and secretion of its endogenous α-amylase, AmyA, in an adapted background. Biomass production improved using 35% dissolved oxygen and pH 7.2 in a controlled bioreactor. Conclusion The engineered E. coli strain can use starch from the milieu and open the possibility of optimize the process to use agroindustrial wastes to produce biofuels and other valuable chemicals. PMID:24886307

  20. Effect of tannins on the in viro growth of Escherichia coli O157:H7 and in vivo growth of generic Escherichia coli excreted from steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of commercially available chestnut and mimosa tannins in vitro (experiment 1) or in vivo (experiment 2) on the growth or recovery of Escherichia coli O157:H7 or generic fecal E. coli was evaluated. In experiment 1, the mean growth rate of E. coli O157:H7, determined via the measurement o...

  1. DNA Sequence and Comparative Genomics of pAPEC-O2-R, an Avian Pathogenic Escherichia coli Transmissible R Plasmid

    PubMed Central

    Johnson, Timothy J.; Siek, Kylie E.; Johnson, Sara J.; Nolan, Lisa K.

    2005-01-01

    In this study, a 101-kb IncF plasmid from an avian pathogenic Escherichia coli (APEC) strain (APEC O2) was sequenced and analyzed, providing the first completed APEC plasmid sequence. This plasmid, pAPEC-O2-R, has functional transfer and antimicrobial resistance-encoding regions. The resistance-encoding region encodes resistance to eight groups of antimicrobial agents, including silver and other heavy metals, quaternary ammonium compounds, tetracycline, sulfonamides, aminoglycosides, trimethoprim, and beta-lactam antimicrobial agents. This region of the plasmid is unique among previously described IncF plasmids in that it possesses a class 1 integron that harbors three gene cassettes and a heavy metal resistance operon. This region spans 33 kb and is flanked by the RepFII plasmid replicon and an assortment of plasmid maintenance genes. pAPEC-O2-R also contains a 32-kb transfer region that is nearly identical to that found in the E. coli F plasmid, rendering it transferable by conjugation to plasmid-less strains of bacteria, including an APEC strain, a fecal E. coli strain from an apparently healthy bird, a Salmonella enterica serovar Typhimurium strain, and a uropathogenic E. coli strain from humans. Differences in the G+C contents of individual open reading frames suggest that various regions of pAPEC-O2-R had dissimilar origins. The presence of pAPEC-O2-R-like plasmids that encode resistance to multiple antimicrobial agents and that are readily transmissible from APEC to other bacteria suggests the possibility that such plasmids may serve as a reservoir of resistance genes for other bacteria of animal and human health significance. PMID:16251312

  2. Effective medicinal plants against enterohaemorrhagic Escherichia coli O157:H7.

    PubMed

    Voravuthikunchai, Supayang; Lortheeranuwat, Amornrat; Jeeju, Wanpen; Sririrak, Trechada; Phongpaichit, Souwalak; Supawita, Thanomjit

    2004-09-01

    The stimulating effect of subinhibitory concentrations of antibiotics on the production of verocytotoxin (VT) by enterohaemorrhagic Escherichia coli (EHEC) O157:H7 has been claimed. The purpose of this study was to find an alternative, but bioactive medicine for the treatment of this organism. Fifty-eight preparations of aqueous and ethanolic extracts of 38 medicinal plant species commonly used in Thailand to cure gastrointestinal infections were tested for their antibacterial activity against different strains of Escherichia coli, including 6 strains of Escherichia coli O157:H7, Escherichia coli O26:H11, Escherichia coli O111:NM, Escherichia coli O22; 5 strains of Escherichia coli isolated from bovine; and Escherichia coli ATCC 25922. Inhibition of growth was primarily tested by the paper disc agar diffusion method. Among the medicinal plants tested, only 8 species (21.05%) exhibited antimicrobial activity against Escherichia coli O157:H7. Acacia catechu, Holarrhena antidysenterica, Peltophorum pterocarpum, Psidium guajava, Punica granatum, Quercus infectoria, Uncaria gambir, and Walsura robusta demonstrated antibacterial activity with inhibition zones ranging from 7 to 17 mm. The greatest inhibition zone against Escherichia coli O157:H7 (RIMD 05091083) was produced from the ethanolic extract of Quercus infectoria. Minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined by the agar microdilution method and agar dilution method in petri dishes with millipore filter. Both aqueous and ethanolic extracts of Quercus infectoria and aqueous extract of Punica granatum were highly effective against Escherichia coli O157:H7 with the best MIC and MBC values of 0.09, 0.78, and 0.19, 0.39 mg/ml, respectively. These plant species may provide alternative but bioactive medicines for the treatment of Escherichia coli O157:H7 infection.

  3. Soil solarization reduces Escherichia coli O157:H7 and total Escherichia coli on cattle feedlot pen surfaces.

    PubMed

    Berry, Elaine D; Wells, James E

    2012-01-01

    Feedlot pen soil is a source for transmission of Escherichia coli O157:H7, and therefore a target for preharvest strategies to reduce this pathogen in cattle. The objective of this study was to determine the ability of soil solarization to reduce E. coli O157:H7 in feedlot surface material (FSM). A feedlot pen was identified in which naturally occurring E. coli O157:H7 was prevalent and evenly distributed in the FSM. Forty plots 3 by 3 m were randomly assigned such that five plots of each of the solarization times of 0, 1, 2, 3, 4, 6, 8, and 10 weeks were examined. Temperature loggers were placed 7.5 cm below the surface of each plot, and plots to be solarized were covered with clear 6-mil polyethylene. At each sampling time, five FSM samples were collected from each of five solarized and five unsolarized plots. E. coli concentrations and E. coli O157:H7 presence by immunomagnetic separation and plating were determined for each FSM sample. Initial percentages of E. coli O157:H7-positive samples in control and solarized FSM were 84 and 80%, respectively, and did not differ (P > 0.05). E. coli O157:H7 was no longer detectable by 8 weeks of solarization, but was still detected in unsolarized FSM at 10 weeks. The average initial concentration of E. coli in FSM was 5.56 log CFU/g and did not differ between treatments (P > 0.05). There was a 2.0-log decrease of E. coli after 1 week of solarization, and a >3.0-log reduction of E. coli by week 6 of solarization (P, 0.05). E. coli levels remained unchanged in unsolarized FSM (P > 0.05). Daily peak FSM temperatures were on average 8.7°C higher for solarized FSM compared with unsolarized FSM, and reached temperatures as high as 57°C. Because soil solarization reduces E. coli O157:H7, this technique may be useful for reduction of persistence and transmission of this pathogen in cattle production, in addition to remediation of E. coli O157:H7-contaminated soil used to grow food crops.

  4. 77 FR 26725 - Changes to FSIS Traceback, Recall Procedures for Escherichia coli O157:H7 Positive Raw Beef...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... Food Safety and Inspection Service Changes to FSIS Traceback, Recall Procedures for Escherichia coli... find raw ground beef presumptive positive for Escherichia coli (E. coli) O157:H7. This methodology will... Escherichia coli O157:H7'' and requested comments on these documents. FSIS also held a public meeting...

  5. Antibiotic Resistance in Urinary Isolates of Escherichia coli

    PubMed Central

    Abduzaimovic, Amila; Aljicevic, Mufida; Rebic, Velma; Vranic, Sabina Mahmutovic; Abduzaimovic, Kadrija; Sestic, Sabina

    2016-01-01

    Objectives: The aim of this study was to examine the presence of antimicrobial resistance / susceptibility strains of Escherichia coli in inpatients and outpatients. Materials and methods: It is a retrospective study carried out at the Department of Microbiology, Parasitology and Virology Faculty of Medicine, University of Sarajevo. In cooperation with the Microbiological laboratory of the Cantonal Hospital Zenica and the Microbiological laboratory of the General Hospital Tesanj, 3863 urine samples were processed in the period from March 1st to March 31st 2016. Results: Our study showed that E. coli had the highest antimicrobial resistance to trimethoprim / sulfamethoxazole (38.61%), followed by amoxicillin / clavulanic acid (19.62%), ciprofloxacin (9.49%), gentamicin (8.86%), cephalexin (8.23%), nitrofurantoin (8.23%), cefuroxime (7.52%), ceftazidime (6.33%), cefuroxime (89.87%), amikacin (4.43%). Conclusions: The isolated strains of E. coli showed the highest resistance to trimethoprim / sulfamethoxazole and amoxicillin / clavulanic acid. The isolated strains of E. coli showed the greatest susceptibility to amikacin and ceftazidime. Gender distribution of positive E. coli isolates showed statistically significant differences in favor of females. PMID:28144190

  6. Antibiotic Resistance of Escherichia coli Serotypes from Cochin Estuary

    PubMed Central

    Sukumaran, Divya P.; Durairaj, Srinivasan; Abdulla, Mohamed Hatha

    2012-01-01

    This study aimed at detecting the prevalence of antibiotic-resistant serotypes of Escherichia coli in Cochin estuary, India. E. coli strains were isolated during the period January 2010–December 2011 from five different stations set at Cochin estuary. Water samples from five different stations in Cochin estuary were collected on a monthly basis for a period of two years. Isolates were serotyped, antibiogram-phenotyped for twelve antimicrobial agents, and genotyped by polymerase chain reaction for uid gene that codes for β-D-glucuronidase. These E. coli strains from Cochin estuary were tested against twelve antibiotics to determine the prevalence of multiple antibiotic resistance among them. The results revealed that more than 53.33% of the isolates were multiple antibiotic resistant. Thirteen isolates showed resistance to sulphonamides and two of them contained the sul 1 gene. Class 1 integrons were detected in two E. coli strains which were resistant to more than seven antibiotics. In the present study, O serotyping, antibiotic sensitivity, and polymerase chain reaction were employed with the purpose of establishing the present distribution of multiple antibiotic-resistant serotypes, associated with E. coli isolated from different parts of Cochin estuary. PMID:23008708

  7. Escherichia coli ST131, an Intriguing Clonal Group

    PubMed Central

    Bertrand, Xavier; Madec, Jean-Yves

    2014-01-01

    SUMMARY In 2008, a previously unknown Escherichia coli clonal group, sequence type 131 (ST131), was identified on three continents. Today, ST131 is the predominant E. coli lineage among extraintestinal pathogenic E. coli (ExPEC) isolates worldwide. Retrospective studies have suggested that it may originally have risen to prominence as early as 2003. Unlike other classical group B2 ExPEC isolates, ST131 isolates are commonly reported to produce extended-spectrum β-lactamases, such as CTX-M-15, and almost all are resistant to fluoroquinolones. Moreover, ST131 E. coli isolates are considered to be truly pathogenic, due to the spectrum of infections they cause in both community and hospital settings and the large number of virulence-associated genes they contain. ST131 isolates therefore seem to contradict the widely held view that high levels of antimicrobial resistance are necessarily associated with a fitness cost leading to a decrease in pathogenesis. Six years after the first description of E. coli ST131, this review outlines the principal traits of ST131 clonal group isolates, based on the growing body of published data, and highlights what is currently known and what we need to find out to provide public health authorities with better information to help combat ST131. PMID:24982321

  8. Recent Advances in Understanding Enteric Pathogenic Escherichia coli

    PubMed Central

    Croxen, Matthew A.; Law, Robyn J.; Scholz, Roland; Keeney, Kristie M.; Wlodarska, Marta

    2013-01-01

    SUMMARY Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli. PMID:24092857

  9. The Escherichia coli Proteome: Past, Present, and Future Prospects†

    PubMed Central

    Han, Mee-Jung; Lee, Sang Yup

    2006-01-01

    Proteomics has emerged as an indispensable methodology for large-scale protein analysis in functional genomics. The Escherichia coli proteome has been extensively studied and is well defined in terms of biochemical, biological, and biotechnological data. Even before the entire E. coli proteome was fully elucidated, the largest available data set had been integrated to decipher regulatory circuits and metabolic pathways, providing valuable insights into global cellular physiology and the development of metabolic and cellular engineering strategies. With the recent advent of advanced proteomic technologies, the E. coli proteome has been used for the validation of new technologies and methodologies such as sample prefractionation, protein enrichment, two-dimensional gel electrophoresis, protein detection, mass spectrometry (MS), combinatorial assays with n-dimensional chromatographies and MS, and image analysis software. These important technologies will not only provide a great amount of additional information on the E. coli proteome but also synergistically contribute to other proteomic studies. Here, we review the past development and current status of E. coli proteome research in terms of its biological, biotechnological, and methodological significance and suggest future prospects. PMID:16760308

  10. Fumarate-Mediated Persistence of Escherichia coli against Antibiotics

    PubMed Central

    Kim, Jun-Seob; Cho, Da-Hyeong; Heo, Paul; Jung, Suk-Chae; Park, Myungseo; Oh, Eun-Joong; Sung, Jaeyun; Kim, Pan-Jun; Lee, Suk-Chan; Lee, Dae-Hee; Lee, Sarah; Lee, Choong Hwan; Shin, Dongwoo

    2016-01-01

    Bacterial persisters are a small fraction of quiescent cells that survive in the presence of lethal concentrations of antibiotics. They can regrow to give rise to a new population that has the same vulnerability to the antibiotics as did the parental population. Although formation of bacterial persisters in the presence of various antibiotics has been documented, the molecular mechanisms by which these persisters tolerate the antibiotics are still controversial. We found that amplification of the fumarate reductase operon (FRD) in Escherichia coli led to a higher frequency of persister formation. The persister frequency of E. coli was increased when the cells contained elevated levels of intracellular fumarate. Genetic perturbations of the electron transport chain (ETC), a metabolite supplementation assay, and even the toxin-antitoxin-related hipA7 mutation indicated that surplus fumarate markedly elevated the E. coli persister frequency. An E. coli strain lacking succinate dehydrogenase (SDH), thereby showing a lower intracellular fumarate concentration, was killed ∼1,000-fold more effectively than the wild-type strain in the stationary phase. It appears that SDH and FRD represent a paired system that gives rise to and maintains E. coli persisters by producing and utilizing fumarate, respectively. PMID:26810657

  11. Escherichia coli β-Lactamases: What Really Matters

    PubMed Central

    Bajaj, Priyanka; Singh, Nambram S.; Virdi, Jugsharan S.

    2016-01-01

    Escherichia coli strains belonging to diverse pathotypes have increasingly been recognized as a major public health concern. The β-lactam antibiotics have been used successfully to treat infections caused by pathogenic E. coli. However, currently, the utility of β-lactams is being challenged severely by a large number of hydrolytic enzymes – the β-lactamases expressed by bacteria. The menace is further compounded by the highly flexible genome of E. coli, and propensity of resistance dissemination through horizontal gene transfer and clonal spread. Successful management of infections caused by such resistant strains requires an understanding of the diversity of β-lactamases, their unambiguous detection, and molecular mechanisms underlying their expression and spread with regard to the most relevant information about individual bacterial species. Thus, this review comprises first such effort in this direction for E. coli, a bacterial species known to be associated with production of diverse classes of β-lactamases. The review also highlights the role of commensal E. coli as a potential but under-estimated reservoir of β-lactamases-encoding genes. PMID:27065978

  12. Effects of Escherichia coli hemolysin on endothelial cell function.

    PubMed Central

    Suttorp, N; Flöer, B; Schnittler, H; Seeger, W; Bhakdi, S

    1990-01-01

    Escherichia coli hemolysin is considered an important virulence factor in extraintestinal E. coli infections. The present study demonstrates that cultured pulmonary artery endothelial cells are susceptible to attack by low concentrations of E. coli hemolysin (greater than or equal to 0.05 hemolytic units/ml; greater than or equal to 5 ng/ml). Sublytic amounts of hemolysin increased the permeability of endothelial cell monolayers in a time- and dose-dependent manner. The hydraulic conductivity increased approximately 30-fold and the reflection coefficient for large molecules dropped from 0.71 to less than 0.05, indicating a toxin-induced loss of endothelial barrier function. The alterations of endothelial monolayer permeability were accompanied by cell retraction and interendothelial gap formation. In addition, E. coli hemolysin stimulated prostacyclin synthesis in endothelial cells. This effect was strictly dependent on the presence of extracellular Ca2+ but not of Mg2+. An enhanced passive influx of 45Ca2+ and 3H-sucrose but not of tritiated inulin and dextran was noted in toxin-treated cells, indicating that small transmembrane pores comparable to those detected in rabbit erythrocytes had been generated in endothelial cell membranes. These pores may act as nonphysiologic Ca2+ gates, thereby initiating different Ca2+-dependent cellular processes. We conclude that endothelial cells are highly susceptible to E. coli hemolysin and that two major endothelial cell functions are altered by very low concentrations of hemolysin. Images PMID:2121650

  13. The Genetic Basis of Escherichia coli Pathoadaptation to Macrophages

    PubMed Central

    Miskinyte, Migla; Sousa, Ana; Ramiro, Ricardo S.; de Sousa, Jorge A. Moura; Kotlinowski, Jerzy; Caramalho, Iris; Magalhães, Sara; Soares, Miguel P.; Gordo, Isabel

    2013-01-01

    Antagonistic interactions are likely important driving forces of the evolutionary process underlying bacterial genome complexity and diversity. We hypothesized that the ability of evolved bacteria to escape specific components of host innate immunity, such as phagocytosis and killing by macrophages (MΦ), is a critical trait relevant in the acquisition of bacterial virulence. Here, we used a combination of experimental evolution, phenotypic characterization, genome sequencing and mathematical modeling to address how fast, and through how many adaptive steps, a commensal Escherichia coli (E. coli) acquire this virulence trait. We show that when maintained in vitro under the selective pressure of host MΦ commensal E. coli can evolve, in less than 500 generations, virulent clones that escape phagocytosis and MΦ killing in vitro, while increasing their pathogenicity in vivo, as assessed in mice. This pathoadaptive process is driven by a mechanism involving the insertion of a single transposable element into the promoter region of the E. coli yrfF gene. Moreover, transposition of the IS186 element into the promoter of Lon gene, encoding an ATP-dependent serine protease, is likely to accelerate this pathoadaptive process. Competition between clones carrying distinct beneficial mutations dominates the dynamics of the pathoadaptive process, as suggested from a mathematical model, which reproduces the observed experimental dynamics of E. coli evolution towards virulence. In conclusion, we reveal a molecular mechanism explaining how a specific component of host innate immunity can modulate microbial evolution towards pathogenicity. PMID:24348252

  14. Unusual "flesh-eating" strains of Escherichia coli.

    PubMed

    Shaked, Hila; Samra, Zmira; Paul, Michal; Madar-Shapiro, Liora; Cohen, Jonathan; Pitlik, Silvio; Bishara, Jihad

    2012-12-01

    Monomicrobial necrotizing fasciitis (type II) is typically caused by group A streptococcus alone or in combination with Staphylococcus aureus. Escherichia coli has been isolated from polymicrobial or Fournier's gangrene but has rarely been reported in monomicrobial necrotizing fasciitis. We describe the clinical characteristics and outcomes of seven cases of monomicrobial E. coli necrotizing fasciitis and/or severe soft tissue infection diagnosed at a single institution during an 18-month period. Four isolates from three patients and two isolates from two patients with type I polymicrobial severe soft tissue infection (controls) were assayed by the randomly amplified polymorphic DNA (RAPD) analysis for fingerprinting and PCR amplification of primers in order to detect cytotoxic necrotizing factor 1 and 2 (cnf1 and cnf2) genes. All patients had some type of immune suppression. The limb was the most commonly involved organ. In all cases, E. coli was isolated as a monomicrobial pathogen from blood, fascia, or both. All patients died during hospitalization, three within the first 48 h. The RAPD amplification assay showed a high degree of genetic diversity among the "flesh-eating" strains and controls. The cnf1 toxin gene was identified in two out of three cases, but not in the controls. cnf2 was not detected in any of the patients. E. coli may be responsible for life-threatening necrotizing fasciitis. Further research is needed to reveal relevant risk factors, reservoirs, and modes of transmission of cnf1 E. coli.

  15. Escherichia coli exports cyclic AMP via TolC.

    PubMed

    Hantke, Klaus; Winkler, Karin; Schultz, Joachim E

    2011-03-01

    In Escherichia coli more than 180 genes are regulated by the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex. However, more than 90% of cAMP that is made by intracellular adenylyl cyclases is found in the culture medium. How is cAMP exported from E. coli? In a tolC mutant, 0.03 mM IPTG (isopropyl-β-d-thiogalactopyranoside) was sufficient to induce β-galactosidase compared to 0.1 mM IPTG in the parent strain. In a cya mutant unable to produce cAMP about 1 mM extracellular cAMP was required to induce β-galactosidase, whereas in a cya tolC mutant 0.1 mM cAMP was sufficient. When cAMP in E. coli cya was generated intracellularly by a recombinant, weakly active adenylyl cyclase from Corynebacterium glutamicum, the critical level of cAMP necessary for induction of maltose degradation was only achieved in a tolC mutant and not in the parent strain. Deletion of a putative cAMP phosphodiesterase of E. coli, CpdA, resulted in a slightly similar, yet more diffuse phenotype. The data demonstrate that export of cAMP via TolC is a most efficient way of E. coli to lower high concentrations of cAMP in the cell and maintain its sensitivity in changing metabolic environments.

  16. Selective detection of Escherichia coli DNA using fluorescent carbon spindles.

    PubMed

    Roy, Anurag; Chatterjee, Sabyasachi; Pramanik, Srikrishna; Devi, Parukuttyamma Sujatha; Suresh Kumar, Gopinatha

    2016-04-28

    We investigate the interaction of hydrophilic blue emitting carbon spindles with various deoxyribonucleic acids (DNA) having different base pair compositions, such as Herring testes (HT), calf thymus (CT), Escherichia coli (EC) and Micrococcus lysodeikticus (ML) DNA, to understand the mode of interaction. Interestingly, the fluorescent carbon spindles selectively interacted with E. coli DNA resulting in enhanced fluorescence of the former. Interaction of the same carbon with other DNAs exhibited insignificant changes in fluorescence. In addition, in the presence of EC DNA, the D band in the Raman spectrum attributed to the defect state completely disappeared, resulting in enhanced crystallinity. Microscopy images confirmed the wrapping of DNA on the carbon spindles leading to the assembly of spindles in the form of flowers. Dissociation of double-stranded DNA occurred upon interaction with carbon spindles, resulting in selective E. coli DNA interaction. The carbon spindles also exhibited a similar fluorescence enhancement upon treating with E. coli bacteria. These results confirm the possibility of E. coli detection in water and other liquid foods using such fluorescent carbon.

  17. Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance

    PubMed Central

    Vega, Nicole M.; Allison, Kyle R.; Samuels, Amanda N.; Klempner, Mark S.; Collins, James J.

    2013-01-01

    Bacterial communication plays an important role in many population-based phenotypes and interspecies interactions, including those in host environments. These interspecies interactions may prove critical to some infectious diseases, and it follows that communication between pathogenic bacteria and commensal bacteria is a subject of growing interest. Recent studies have shown that Escherichia coli uses the signaling molecule indole to increase antibiotic tolerance throughout its population. Here, we show that the intestinal pathogen Salmonella typhimurium increases its antibiotic tolerance in response to indole, even though S. typhimurium does not natively produce indole. Increased antibiotic tolerance can be induced in S. typhimurium by both exogenous indole added to clonal S. typhimurium populations and indole produced by E. coli in mixed-microbial communities. Our data show that indole-induced tolerance in S. typhimurium is mediated primarily by the oxidative stress response and, to a lesser extent, by the phage shock response, which were previously shown to mediate indole-induced tolerance in E. coli. Further, we find that indole signaling by E. coli induces S. typhimurium antibiotic tolerance in a Caenorhabditis elegans model for gastrointestinal infection. These results suggest that the intestinal pathogen S. typhimurium can intercept indole signaling from the commensal bacterium E. coli to enhance its antibiotic tolerance in the host intestine. PMID:23946425

  18. Nonthermal atmospheric argon plasma jet effects on Escherichia coli biomacromolecules.

    PubMed

    Hosseinzadeh Colagar, Abasalt; Memariani, Hamed; Sohbatzadeh, Farshad; Valinataj Omran, Azadeh

    2013-12-01

    Nonthermal atmospheric plasma jet, a promising technology based on ionized gas at low temperatures, can be applied for disinfection of contaminated surfaces. In this study, Escherichia coli cells and their macromolecules were exposed to the nonthermal atmospheric argon plasma jet for different time durations. Total protein, genomic DNA, and malondialdehyde (MDA) levels of E. coli were assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining; agarose gel electrophoresis; and measurement of absorbance at 534 nm, respectively. After exposure, the spectroscopic results of liquid samples indicated that the survival reduction of E. coli can reach to 100 % in an exposure time of 600 s. Moreover, inactivation zones of E. coli, DNA degradation, and MDA levels were significantly increased. Additionally, banding patterns of total protein were changed and amino acid concentrations increased following ninhydrin test. The experimental results suggest that the nonthermal plasma could serve as an effective instrument for both sterilizing E. coli and degrading macromolecules from the surface of the objects being sterilized.

  19. Paper-based ELISA to rapidly detect Escherichia coli.

    PubMed

    Shih, Cheng-Min; Chang, Chia-Ling; Hsu, Min-Yen; Lin, Jyun-Yu; Kuan, Chen-Meng; Wang, Hsi-Kai; Huang, Chun-Te; Chung, Mu-Chi; Huang, Kui-Chou; Hsu, Cheng-En; Wang, Chun-Yuan; Shen, Ying-Cheng; Cheng, Chao-Min

    2015-12-01

    Escherichia coli is a generic indicator of fecal contamination, and certain serotypes cause food- and water-borne illness such as O157:H7. In the clinic, detection of bacteriuria, which is often due to E. coli, is critical before certain surgical procedures or in cases of nosocomial infection to prevent further adverse events such as postoperative infection or sepsis. In low- and middle-income countries, where insufficient equipment and facilities preclude modern methods of detection, a simple, low-cost diagnostic device to detect E. coli in water and in the clinic will have significant impact. We have developed a simple paper-based colorimetric platform to detect E. coli contamination in 5h. On this platform, the mean color intensity for samples with 10(5)cells/mL is 0.118±0.002 (n=4), and 0.0145±0.003 (P<0.01⁎⁎) for uncontaminated samples. This technique is less time-consuming, easier to perform, and less expensive than conventional methods. Thus, paper-based ELISA is an innovative point-of-care diagnostic tool to rapidly detect E. coli, and possibly other pathogens when customized as appropriate, especially in areas that lack advanced clinical equipment.

  20. Pulsed-Plasma Disinfection of Water Containing Escherichia coli

    NASA Astrophysics Data System (ADS)

    Satoh, Kohki; MacGregor, Scott J.; Anderson, John G.; Woolsey, Gerry A.; Fouracre, R. Anthony

    2007-03-01

    The disinfection of water containing the microorganism, Escherichia coli (E. coli) by exposure to a pulsed-discharge plasma generated above the water using a multineedle electrode (plasma-exposure treatment), and by sparging the off-gas of the pulsed plasma into the water (off-gas-sparging treatment), is performed in the ambient gases of air, oxygen, and nitrogen. For the off-gas-sparging treatment, bactericidal action is observed only when oxygen is used as the ambient gas, and ozone is found to generate the bactericidal action. For the plasma-exposure treatment, the density of E. coli bacteria decreases exponentially with plasma-exposure time for all the ambient gases. It may be concluded that the main contributors to E. coli inactivation are particle species produced by the pulsed plasma. For the ambient gases of air and nitrogen, the influence of acidification of the water in the system, as a result of pulsed-plasma exposure, may also contribute to the decay of E. coli density.

  1. Susceptibility of Gnotobiotic Swine to Escherichia coli Isolated from Nonenteric Human Infections

    PubMed Central

    Meyer, R. C.; Rhoades, H. E.; Simon, J.

    1972-01-01

    Newborn, germfree piglets were susceptible to Escherichia coli associated with human, nonenteric infections and should provide a useful model in the study of generalized E. coli infections. PMID:4557565

  2. Diarrhea, bacteremia and multiorgan dysfunction due to an extraintestinal pathogenic Escherichia coli strain with enteropathogenic E. coli genes.

    PubMed

    Kessler, Robert; Nisa, Shahista; Hazen, Tracy H; Horneman, Amy; Amoroso, Anthony; Rasko, David A; Donnenberg, Michael S

    2015-11-01

    A 55-year-old man with well-controlled HIV had severe diarrhea for 3 weeks and developed multiorgan dysfunction and bacteremia due to Escherichia coli. The genome of the patient's isolate had features characteristic of extraintestinal pathogenic E. coli and genes distantly related to those defining enteropathogenic E. coli.

  3. Genotyping and virulence factors assessment of bovine mastitis Escherichia coli.

    PubMed

    Blum, Shlomo E; Leitner, Gabriel

    2013-05-03

    Escherichia coli is a major agent of bovine mastitis worldwide. However, specific E. coli virulence factors associated to pathogenicity during intra-mammary infections are yet unknown and this pathotype remains uncharacterized. The objectives of the present work were to assess the presence of a wide range of known virulence factors in a large set of E. coli strains isolated from bovine mastitis (mastitis set) and to study the genotypic distribution of strains in the mastitis set in comparison to a set of strains isolated from cows' environment in dairy farms (environmental set). Virulence factors were assessed by DNA hybridization microarray. The three most prevalent virulence factors found in the mastitis set were lpfA (long polar fimbriae), iss (increased serum resistance) and astA (enteroaggregative E. coli heat-stable enterotoxin 1). None, however, characterized the majority of these strains. Genotyping was assessed by ECOR phylogenetic grouping, multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Strains in the mastitis and environmental sets were differentially distributed into ECOR phylogenetic groups; groups A and B1 being the most prevalent ones. Multiple MLST strain types were found in the two sets of strains, but only a few were common to both, and diversity was higher in the environmental set. A variety of PFGE patterns were found in the mastitis and environmental sets. Two clusters comprising mostly highly similar mastitis strains were identified. The results confirm that mastitis E. coli strains mostly lack known E. coli virulence factors. In addition, it is shown that the genotypic diversity of mastitis strains does not reflect the diversity found in the environmental E. coli population.

  4. Distribution of core oligosaccharide types in lipopolysaccharides from Escherichia coli.

    PubMed

    Amor, K; Heinrichs, D E; Frirdich, E; Ziebell, K; Johnson, R P; Whitfield, C

    2000-03-01

    In the lipopolysaccharides of Escherichia coli there are five distinct core oligosaccharide (core OS) structures, designated K-12 and R1 to R4. The objective of this work was to determine the prevalences of these core OS types within the species. Unique sequences in the waa (core OS biosynthesis) gene operon were used to develop a PCR-based system that facilitated unequivocal determination of the core OS types in isolates of E. coli. This system was applied to the 72 isolates in the E. coli ECOR collection, a compilation of isolates that is considered to be broadly representative of the genetic diversity of the species. Fifty (69. 4%) of the ECOR isolates contained the R1 core OS, 8 (11.1%) were representatives of R2, 8 (11.1%) were R3, 2 (2.8%) were R4, and only 4 (5.6%) were K-12. R1 is the only core OS type found in all four major phylogenetic groups (A, B1, B2, and D) in the ECOR collection. Virulent extraintestinal pathogenic E. coli isolates tend to be closely related to group B2 and, to a lesser extent, group D isolates. All of the ECOR representatives from the B2 and D groups had the R1 core OS. In contrast, commensal E. coli isolates are more closely related to group A, which contains isolates representing each of the five core OS structures. R3 was the only core OS type found in 38 verotoxigenic E. coli (VTEC) isolates from humans and cattle belonging to the common enterohemorrhagic E. coli serogroups O157, O111, and O26. Although isolates from other VTEC serogroups showed more core OS diversity, the R3 type (83.1% of all VTEC isolates) was still predominant. When non-VTEC commensal isolates from cattle were analyzed, it was found that most possessed the R1 core OS type.

  5. Reduction of verotoxigenic Escherichia coli in production of fermented sausages.

    PubMed

    Holck, Askild L; Axelsson, Lars; Rode, Tone Mari; Høy, Martin; Måge, Ingrid; Alvseike, Ole; L'abée-Lund, Trine M; Omer, Mohamed K; Granum, Per Einar; Heir, Even

    2011-11-01

    After a number of foodborne outbreaks of verotoxigenic Escherichia coli involving fermented sausages, some countries have imposed regulations on sausage production. For example, the US Food Safety and Inspection Service requires a 5 log(10) reduction of E. coli in fermented products. Such regulations have led to a number of studies on the inactivation of E. coli in fermented sausages by changing processing and post-processing conditions. Several factors influence the survival of E. coli such as pre-treatment of the meat, amount of NaCl, nitrite and lactic acid, water activity, pH, choice of starter cultures and addition of antimicrobial compounds. Also process variables like fermentation temperature and storage time play important roles. Though a large variety of different production processes of sausages exist, generally the reduction of E. coli caused by production is in the range 1-2 log(10). In many cases this may not be enough to ensure microbial food safety. By optimising ingredients and process parameters it is possible to increase E. coli reduction to some extent, but in some cases still other post process treatments may be required. Such treatments may be storage at ambient temperatures, specific heat treatments, high pressure processing or irradiation. HACCP analyses have identified the quality of the raw materials, low temperature in the batter when preparing the sausages and a rapid pH drop during fermentation as critical control points in sausage production. This review summarises the literature on the reduction verotoxigenic E. coli in production of fermented sausages.

  6. Persistence of Escherichia coli in batch and continuous vermicomposting systems.

    PubMed

    Hénault-Ethier, Louise; Martin, Vincent J J; Gélinas, Yves

    2016-10-01

    Vermicomposting is a biooxidation process in which epigeicearthworms act in synergy with microbial populations to degrade organic matter. Vermicomposting does not go through a thermophilic stage as required by North American legislations for pathogen eradication. We examined the survival of a Green Fluorescent Protein (GFP) labeled Escherichia coli MG1655 as a model for the survival of pathogenic bacteria in both small-scale batch and medium-scale continuously-operated systems to discern the influence of the earthworm Eisenia fetida, nutrient content and the indigenous vermicompost microbial community on pathogen abundance. In batch systems, the microbial community had the greatest influence on the rapid decline of E. coli populations, and the effect of earthworms was only visible in microbially-impoverishedvermicomposts. No significant earthworm density-dependent relationship was observed on E. coli survival under continuous operation. E. coli numbers decreased below the US EPA compost sanitation guidelines of 10(3)Colony Forming Units (CFU)/g (dry weight) within 18-21days for both the small-scale batch and medium-scale continuous systems, but it took up to 51days without earthworms and with an impoverished microbial community to reach the legal limit. Nutrient replenishment (i.e. organic carbon) provided by continuous feed input did not appear to extend E. coli survival. In fact, longer survival of E. coli was noticed in treatments where less total and labile sugars were available, suggesting that sugars may support potentially antagonist bacteria in the vermicompost. Total N, pH and humidity did not appear to affect E. coli survival. Several opportunistic human pathogens may be found in vermicompost, and their populations are likely kept in check by antagonists.

  7. Diarrhea, Urosepsis and Hemolytic Uremic Syndrome Caused by the Same Heteropathogenic Escherichia coli Strain.

    PubMed

    Ang, C Wim; Bouts, Antonia H M; Rossen, John W A; Van der Kuip, Martijn; Van Heerde, Marc; Bökenkamp, Arend

    2016-09-01

    We describe an 8-month-old girl with diarrhea, urosepsis and hemolytic uremic syndrome caused by Escherichia coli. Typing of cultured E. coli strains from urine and blood revealed the presence of virulence factors from multiple pathotypes of E. coli. This case exemplifies the genome plasticity of E. coli and the resulting heteropathogenic strains.

  8. Genome Sequence of the Enterohemorrhagic Escherichia coli Bacteriophage UFV-AREG1.

    PubMed

    Lopez, Maryoris E Soto; Batalha, Laís Silva; Vidigal, Pedro Marcus Pereira; Albino, Luiz Augusto A; Boggione, Delaine Meireles Gouveia; Gontijo, Marco Tulio Pardini; Bazzolli, Denise M Soares; Mendonca, Regina C Santos

    2016-10-13

    Here, we present the genome sequence of the Escherichia coli bacteriophage UFV-AREG1. This phage was isolated from cowshed wastewater and showed specificity for enterohemorrhagic E. coli O157:H7 (ATCC 43895), E. coli 0111 (CDC O11ab) and E. coli (ATCC 23229).

  9. Genome Sequence of the Enterohemorrhagic Escherichia coli Bacteriophage UFV-AREG1

    PubMed Central

    Batalha, Laís Silva; Albino, Luiz Augusto A.; Boggione, Delaine Meireles Gouveia; Gontijo, Marco Tulio Pardini; Bazzolli, Denise M. Soares; Mendonca, Regina C. Santos

    2016-01-01

    Here, we present the genome sequence of the Escherichia coli bacteriophage UFV-AREG1. This phage was isolated from cowshed wastewater and showed specificity for enterohemorrhagic E. coli O157:H7 (ATCC 43895), E. coli 0111 (CDC O11ab) and E. coli (ATCC 23229). PMID:27738021

  10. Multiplex PCR for Diagnosis of Enteric Infections Associated with Diarrheagenic Escherichia coli

    PubMed Central

    Vidal, Roberto; Vidal, Maricel; Lagos, Rossana; Levine, Myron; Prado, Valeria

    2004-01-01

    A multiplex PCR for detection of three categories of diarrheagenic Escherichia coli was developed. With this method, enterohemorrhagic E. coli, enteropathogenic E. coli, and enterotoxigenic E. coli were identified in fecal samples from patients with hemorrhagic colitis, watery diarrhea, or hemolytic-uremic syndrome and from food-borne outbreaks. PMID:15071051

  11. Antimicrobial resistance and prevalence of canine uropathogens at the Western College of Veterinary Medicine Veterinary Teaching Hospital, 2002-2007.

    PubMed

    Ball, Katherine R; Rubin, Joseph E; Chirino-Trejo, M; Dowling, Patricia M

    2008-10-01

    Between January 2002 and June 2007, uropathogens were isolated from 473 of 1557 canine urine samples submitted to Prairie Diagnostic Services from the Western College of Veterinary Medicine Veterinary Teaching Hospital. Culture and susceptibility results were analyzed, retrospectively, to estimate the prevalence of common bacterial uropathogens in dogs with urinary tract infections and to identify changes in antimicrobial resistance. The most common pathogens identified were Escherichia coli, Staphylococcus intermedius, Enterococcus spp., and Proteus spp. Antimicrobial resistance increased during the study period, particularly among recurrent E. coli isolates. Using the formula to help select rational antimicrobial therapy (FRAT), bacterial isolates were most likely to be susceptible to gentamicin, fluoroquinolones, amoxicillin-clavulanic acid, and groups 4 and 5 (third generation) cephalosporins.

  12. Persistent colonization of sheep by Escherichia coli O157:H7 and other E. coli pathotypes.

    PubMed

    Cornick, N A; Booher, S L; Casey, T A; Moon, H W

    2000-11-01

    Shiga toxin-producing Escherichia coli (STEC) is an important cause of food-borne illness in humans. Ruminants appear to be more frequently colonized by STEC than are other animals, but the reason(s) for this is unknown. We compared the frequency, magnitude, duration, and transmissibility of colonization of sheep by E. coli O157:H7 to that by other pathotypes of E. coli. Young adult sheep were simultaneously inoculated with a cocktail consisting of two strains of E. coli O157:H7, two strains of enterotoxigenic E. coli (ETEC), and one strain of enteropathogenic E. coli. Both STEC strains and ETEC 2041 were given at either 10(7) or 10(10) CFU/strain/animal. The other strains were given only at 10(10) CFU/strain. We found no consistent differences among pathotypes in the frequency, magnitude, and transmissibility of colonization. However, the STEC strains tended to persist to 2 weeks and 2 months postinoculation more frequently than did the other pathotypes. The tendency for persistence of the STEC strains was apparent following an inoculation dose of either 10(7) or 10(10) CFU. One of the ETEC strains also persisted when inoculated at 10(10) CFU. However, in contrast to the STEC strains, it did not persist when inoculated at 10(7) CFU. These results support the hypothesis that STEC is better adapted to persist in the alimentary tracts of sheep than are other pathotypes of E. coli.

  13. Effect of bile on growth, peritoneal absorption, and blood clearance of Escherichia coli in E coli peritonitis

    SciTech Connect

    Andersson, R.; Schalen, C.; Tranberg, K.G. )

    1991-06-01

    The effect of intraperitoneal bile on growth, peritoneal absorption, and clearance of Escherichia coli was determined in E coli peritonitis in the rat. In E coli peritonitis, intraperitoneal bacterial counts gradually decreased, whereas they increased (after 2 hours) with subsequent development of bacteremia in E coli plus bile peritonitis. After an intraperitoneal injection of labeled bacteria, blood radioactivity was only initially lower in E coli plus bile peritonitis compared with E coli peritonitis. Clearance from blood was lower in E coli plus bile peritonitis than in E coli peritonitis. Organ localization was similar in E coli peritonitis and E coli plus bile peritonitis with decreased splenic, increased pulmonary, and unchanged hepatic uptakes compared with controls. Impaired peritoneal absorption of bacteria, together with impaired local host defense, is likely to enhance the noxious effect of bile in E coli peritonitis.

  14. Structure of the Escherichia coli S10 ribosomal protein operon.

    PubMed Central

    Zurawski, G; Zurawski, S M

    1985-01-01

    The complete structure of the Escherichia coli S10 ribosomal protein operon is presented. Based on the DNA sequence, the deduced order of the 11 genes in the operon is rpsJ, rplC, rplD, rplW, rplB, rpsS, rplV, rpsC, rplP, rpmC, rpsQ. The estimated transcribed length of the operon is 5181 base pairs. Putative sequences involved in ribosome binding are discussed. The DNA sequence data corrects several errors in previously determined protein sequence data. PMID:3892488

  15. Genome-scale genetic engineering in Escherichia coli.

    PubMed

    Jeong, Jaehwan; Cho, Namjin; Jung, Daehee; Bang, Duhee

    2013-11-01

    Genome engineering has been developed to create useful strains for biological studies and industrial uses. However, a continuous challenge remained in the field: technical limitations in high-throughput screening and precise manipulation of strains. Today, technical improvements have made genome engineering more rapid and efficient. This review introduces recent advances in genome engineering technologies applied to Escherichia coli as well as multiplex automated genome engineering (MAGE), a recent technique proposed as a powerful toolkit due to its straightforward process, rapid experimental procedures, and highly efficient properties.

  16. Antitermination of transcription from an Escherichia coli ribosomal RNA promoter.

    PubMed

    Holben, W E; Morgan, E A

    1984-11-01

    The Escherichia coli lac and ara promoters and rrnC ribosomal RNA promoter-leader region were fused to lacZYA. Transcription termination signals were introduced into the lac genes of these fusions by Tn9 and IS1 insertions. Measurement of lac enzymes from upstream and downstream of the insertions showed that termination signals resulting from these insertions are very efficient when transcription begins at lac or ara promoters but are very inefficient when transcription begins at the rrnC promoter-leader region. The rrnC promoter-leader region must, therefore, modify RNA polymerase to enable it to read through transcription termination signals.

  17. Regulation of the L-arabinose operon of Escherichia coli.

    PubMed

    Schleif, R

    2000-12-01

    Over forty years of research on the L-arabinose operon of Escherichia coli have provided insights into the mechanism of positive regulation of gene activity. This research also discovered DNA looping and the mechanism by which the regulatory protein changes its DNA-binding properties in response to the presence of arabinose. As is frequently seen in focused research on biological subjects, the initial studies were primarily genetic. Subsequently, the genetic approaches were augmented by physiological and then biochemical studies. Now biophysical studies are being conducted at the atomic level, but genetics still has a crucial role in the study of this system.

  18. Studies on the Chick-lethal Toxin of Escherichia coli

    PubMed Central

    Truscott, R. B.

    1973-01-01

    A toxin which is lethal for two week old chicks has been recovered from strains of Escherichia coli O78:K80 of bovine and avian origin and from avian isolates of serogroups O2, O45 and O109. The toxin is heat-labile, antigenic, high in protein, inactivated by pronase, trypsin, amylase, and pancreatic lipase. The toxin may be precipitated by ammonium sulfate or TCA treatment from the supernatant obtained by repeated centrifugation of sonicated cells. Considerable purification has been obtained by column chromatography using Sepharose 6B. PMID:4270809

  19. Compilation and analysis of Escherichia coli promoter DNA sequences.

    PubMed Central

    Hawley, D K; McClure, W R

    1983-01-01

    The DNA sequence of 168 promoter regions (-50 to +10) for Escherichia coli RNA polymerase were compiled. The complete listing was divided into two groups depending upon whether or not the promoter had been defined by genetic (promoter mutations) or biochemical (5' end determination) criteria. A consensus promoter sequence based on homologies among 112 well-defined promoters was determined that was in substantial agreement with previous compilations. In addition, we have tabulated 98 promoter mutations. Nearly all of the altered base pairs in the mutants conform to the following general rule: down-mutations decrease homology and up-mutations increase homology to the consensus sequence. PMID:6344016

  20. [Hemolytic uremic syndrome caused by enterohaemorrhagic Escherichia coli].

    PubMed

    Ibarra, Cristina; Goldstein, Jorge; Silberstein, Claudia; Zotta, Elsa; Belardo, Marcela; Repetto, Horacio A

    2008-10-01

    Hemolytic uremic syndrome (HUS) is characterized by microangiopathic hemolytic anemia, plaquetopenia and kidney damage. It is the leading cause of acute renal failure in pediatric age and the second for chronic renal failure. Shiga toxin-producing Escherichia coli (STEC) is the first etiologic agent of HUS being its main reservoir cattle and transmitted via contaminated food. At present, there is no specific treatment to reduce the progression of HUS. The study of the mechanisms by which STEC infects and Shiga toxin induces HUS can help to find new strategies to prevent this disease.

  1. Microcin 25, a novel antimicrobial peptide produced by Escherichia coli.

    PubMed Central

    Salomón, R A; Farías, R N

    1992-01-01

    Microcin 25, a peptide antibiotic excreted by an Escherichia coli strain isolated from human feces, was purified to homogeneity and characterized. Composition analysis and data from gel filtration indicated that microcin 25 may contain 20 amino acid residues. It has a blocked amino-terminal end. Microcin synthesis and immunity are plasmid determined, and the antibiotic was produced in minimal medium when the cultures entered the stationary phase of growth. The peptide appears to interfere with cell division, since susceptible cells filamented when exposed to it. This response does not seem to be mediated by the SOS system. Images PMID:1429464

  2. Interaction of the exr and lon Genes in Escherichia coli

    PubMed Central

    Donch, John; Green, Michael H. L.; Greenberg, Joseph

    1968-01-01

    Strains of Escherichia coli carrying the gene lon typically produced excess capsular polysaccharide, and were sensitive to ultraviolet light (UV) irradiation, thymine starvation, and nalidixic acid, forming long filaments after these treatments. Sensitivity was reduced by a number of posttreatments. In the presence of a second UV sensitivity gene, exr, some of these properties were suppressed: long filaments were not formed, the effect of lon on UV and nalidixic acid sensitivity was greatly reduced, and irradiation posttreatments gave an enhancement of survival characteristic of exr rather than lon strains. Production of capsular polysaccharide was not affected by the exr gene. PMID:4882020

  3. CRISPR adaptation in Escherichia coli subtypeI-E system.

    PubMed

    Kiro, Ruth; Goren, Moran G; Yosef, Ido; Qimron, Udi

    2013-12-01

    The CRISPRs (clustered regularly interspaced short palindromic repeats) and their associated Cas (CRISPR-associated) proteins are a prokaryotic adaptive defence system against foreign nucleic acids. The CRISPR array comprises short repeats flanking short segments, called 'spacers', which are derived from foreign nucleic acids. The process of spacer insertion into the CRISPR array is termed 'adaptation'. Adaptation allows the system to rapidly evolve against emerging threats. In the present article, we review the most recent studies on the adaptation process, and focus primarily on the subtype I-E CRISPR-Cas system of Escherichia coli.

  4. Synthesis of calf prochymosin (prorennin) in Escherichia coli.

    PubMed Central

    Emtage, J S; Angal, S; Doel, M T; Harris, T J; Jenkins, B; Lilley, G; Lowe, P A

    1983-01-01

    A gene for calf prochymosin (prorennin) has been reconstructed from chemically synthesized oligodeoxyribonucleotides and cloned DNA copies of preprochymosin mRNA. This gene has been inserted into a bacterial expression plasmid containing the Escherichia coli tryptophan promoter and a bacterial ribosome binding site. Induction of transcription from the tryptophan promoter results in prochymosin synthesis at a level of up to 5% of total protein. The enzyme has been purified from bacteria by extraction with urea and chromatography on DEAE-cellulose and converted to enzymatically active chymosin by acidification and neutralization. Bacterially produced chymosin is as effective in clotting milk as the natural enzyme isolated from calf stomach. Images PMID:6304731

  5. DNA probes for identification of enteroinvasive Escherichia coli.

    PubMed Central

    Gomes, T A; Toledo, M R; Trabulsi, L R; Wood, P K; Morris, J G

    1987-01-01

    Eighty-one Escherichia coli strains belonging to all known invasive O serogroups were tested with two distinct invasiveness probes (pMR17 and pSF55). All 54 Sereny test-positive strains and 5 strains that lost Sereny positivity during storage hybridized with both probes. Probe-positive strains carried a 120- to 140-megadalton plasmid, did not produce lysine decarboxylase, and, with the exception of certain serotypes, were nonmotile. Motile strains of serotype O144:H25 were for the first time characterized as invasive by hybridization with the probes. PMID:3312292

  6. Electric dipole moments of Escherichia coli HB 101.

    PubMed

    Stoylov, Stoyl P; Gyurova, Anna Y; Bunin, Viktor; Angersbach, Alexander; Georgieva, Ralitsa N; Danova, Svetla T

    2009-04-01

    The theoretical and experimental studies of the particles' electric dipole moments in the microscopic and submicroscopic size range show that in the case of polar and conductive media the interfacial components of the dipole moments are of greatest importance. While in the range of manometer's sizes there seems to be no important problems in the identification and in the estimation of the values of the dipole moments at present, in the micrometer range there are serious problems. In this communication these problems are considered and illustrated by electro-optic investigations of Escherichia coli HB 101.

  7. Infected abdominal aortic aneurysm due to Escherichia coli.

    PubMed

    Bouzas, Miguel; Tchana-Sato, Vincent; Lavigne, Jean Paul

    2016-10-19

    Early diagnosis of infected abdominal aortic aneurysm (IAAA) is still a medical challenge due to its diverse and non-specific symptoms and signs. The most common responsible pathogens are Salmonella, Staphylococcus, Campylobacter and Streptococcus species. The authors report the case of a 67-year-old man, admitted for high fever and finally diagnosed with Escherichia coli (E.coli)-related IAAA. The IAAA ruptured during the general anaesthesia induction, leading to an emergency surgery. The authors successfully proceeded to an open aneurysmectomy with extensive debridement and in situ graft replacement. This case emphasizes the potential for rapid IAAA expansion, its high-rupture risk and the importance of computed tomography as a diagnostic tool.

  8. Impact of cranberry on Escherichia coli cellular surface characteristics

    SciTech Connect

    Johnson, Brandy J.; Malanoski, Anthony P.; Ligler, Frances S.

    2008-12-19

    The anti-adhesive effects of cranberry have been attributed to both interactions of its components with the surface of bacterial cells and to inhibition of p-fimbriae expression. Previous reports also suggested that the presence of cranberry juice changed the Gram stain characteristics of Escherichia coli. Here, we show that the morphology of E. coli is changed when grown in the presence of juice or extract from Vaccinium macrocarpon (cranberry). Gene expression analysis indicates the down regulation of flagellar basal body rod and motor proteins. Consistent with this finding and previous reports, the SEM images indicate a decrease in the visible p-fimbriae. The iodine used in Gram-staining protocols was found to interact differently with the bacterial membrane when cells were cultured in spiked media. Slight alterations in the Gram stain protocol demonstrated that culturing in the presence of cranberry juice does not change the Gram stain characteristics contradicting other reports.

  9. Avian pathogenic Escherichia coli bind fibronectin and laminin.

    PubMed

    Ramírez, Rosa María; Almanza, Yolanda; González, Rafael; García, Santos; Heredia, Norma

    2009-04-01

    Avian colisepticemia frequently occurs after respiratory tract damage, the primary site for infection allows bacteria to encounter an exposed basement membrane, where laminin and fibronectin are important components. We investigated the ability of an isolate of avian pathogenic Escherichia coli to bind fibronectin and laminin. Using Far-western dot blot analysis, we demonstrated the ability of this microorganism to bind basement membrane proteins fibronectin and laminin. Results from an ELISA-based approach indicate that the binding to these membrane proteins was bacterial-dose dependent. Furthermore, two specific E. coli polypeptides, of 32 kDa and 130 kDa, reacted with laminin and fibronectin, respectively. Further evaluation of these potential bacterial adhesins may provide insights into the pathogenesis of colibacillosis.

  10. Allostery and cooperativity in Escherichia coli aspartate transcarbamoylase.

    PubMed

    Kantrowitz, Evan R

    2012-03-15

    The allosteric enzyme aspartate transcarbamoylase (ATCase) from Escherichia coli has been the subject of investigations for approximately 50 years. This enzyme controls the rate of pyrimidine nucleotide biosynthesis by feedback inhibition, and helps to balance the pyrimidine and purine pools by competitive allosteric activation by ATP. The catalytic and regulatory components of the dodecameric enzyme can be separated and studied independently. Many of the properties of the enzyme follow the Monod, Wyman Changeux model of allosteric control thus E. coli ATCase has become the textbook example. This review will highlight kinetic, biophysical, and structural studies which have provided a molecular level understanding of how the allosteric nature of this enzyme regulates pyrimidine nucleotide biosynthesis.

  11. Purification of recombinant ovalbumin from inclusion bodies of Escherichia coli.

    PubMed

    Upadhyay, Vaibhav; Singh, Anupam; Panda, Amulya K

    2016-01-01

    Recombinant ovalbumin expressed in bacterial host is essentially free from post-translational modifications and can be useful in understanding the structure-function relationship of the protein. In this study, ovalbumin was expressed in Escherichia coli in the form of inclusion bodies. Ovalbumin inclusion bodies were solubilized using urea and refolded by decreasing the urea concentration by dilution. Refolded protein was purified by anion exchange chromatography. Overall recovery of purified recombinant ovalbumin from inclusion bodies was about 30% with 98% purity. Purified recombinant ovalbumin was characterized by mass spectrometry, circular dichroism and fluorescence spectroscopy. Recombinant ovalbumin was shown to be resistant to trypsin using protease resistance assay. This indicated proper refolding of ovalbumin from inclusion bodies of E. coli. This method provides a simple way of producing ovalbumin free of post-translational modifications.

  12. Inversions between ribosomal RNA genes of Escherichia coli.

    PubMed Central

    Hill, C W; Harnish, B W

    1981-01-01

    It might be anticipated that the presence of redundant but oppositely oriented sequences in a chromosome could allow inversion of the intervening material through homologous recombination. For example, the ribosomal RNA gene rrnD of Escherichia coli has the opposite orientation fro rrnB and rrnE and is separated from these genes by roughly 20% of the chromosome. Starting with a derivative of Cavalli Hfr, we have constructed mutants that have an inversion of the segment between rrnD and either rrnB or rrnE. These mutants are generally quite viable but do exhibit a slight reduction in growth rate relative to the parental strain. A major line of laboratory E. coli, W3110 and its derivatives, also has an inversion between rrnD and rrnE, probably created directly by a recombinational event between these highly homologous genes. Images PMID:6273909

  13. SILVER NANOPARTICLES-DISK DIFFUSION TEST AGAINST Escherichia coli ISOLATES.

    PubMed

    Cunha, Francisco Afrânio; Maia, Kamila Rocha; Mallman, Eduardo José Jucá; Cunha, Maria da Conceição Dos Santos Oliveira; Maciel, Antonio Auberson Martins; Souza, Ieda Pereira de; Menezes, Everardo Albuquerque; Fechine, Pierre Basílio Almeida

    2016-09-22

    Nanotechnology can be a valuable ally in the treatment of infections. Silver nanoparticles (AgNPs) are structures that have antimicrobial activity. The aim of this study was to produce AgNPs by green methods, characterize these structures, and assess their antimicrobial activity against Escherichia coli associated with the antibiotic ciprofloxacin. AgNPs were characterized by spectroscopic and microscopic techniques. Antimicrobial activity was evaluated by the disk diffusion method against 10 strains of E. coli. The synthesized AgNPs showed a spherical shape and a size of 85.07 ± 12.86 nm (mean ± SD). AgNPs increased the activity of ciprofloxacin by 40% and may represent a new therapeutic option for the treatment of bacterial infections.

  14. Continuous-sterilization system that uses photosemiconductor powders. [Escherichia coli

    SciTech Connect

    Matsunaga, T.; Tomoda, R.; Nakajima, T.; Nakamura, N.; Komine, T.

    1988-06-01

    We report a novel photochemical sterilization system in which Escherichia coli cells were sterilized with photosemiconductor powders (titanium oxide). For sterilization that could be used in practice, it was necessary to separate the TiO/sub 2/ powders from the cell suspension. Therefore, semiconductor powders were immobilized on acetylcellulose membranes. We constructed a continuous-sterilization system consisting of TiO/sub 2/-immobilized acetylcellulose membrane reactor, a mercury lamp, and a masterflex pump. As a result, under the various sterilization conditions examined, E.coli (10/sup 2/ cells per ml) was sterilized to < 1% survival when the cell suspension flowed in this system at a mean residence time of 16.0 min under irradiation (1800 microeinsteins/m/sup 2/ per s). We found that this system was reusable.

  15. Detecting the Significant Flux Backbone of Escherichia coli metabolism.

    PubMed

    Güell, Oriol; Sagués, Francesc; Serrano, M Ángeles

    2017-04-09

    The heterogeneity of computationally predicted reaction fluxes in metabolic networks within a single flux state can be exploited to detect their significant flux backbone. Here, we disclose the backbone of Escherichia coli, and compare it with the backbones of other bacteria. We find that, in general, the core of the backbones is mainly composed of reactions in energy metabolism corresponding to ancient pathways. In E. coli, the synthesis of nucleotides and the metabolism of lipids form smaller cores which rely critically on energy metabolism. Moreover, the consideration of different media leads to the identification of pathways sensitive to environmental changes. The metabolic backbone of an organism is thus useful for tracing, simultaneously, both its evolution and adaptation fingerprints. This article is protected by copyright. All rights reserved.

  16. The SIGNAL experiment in BIORACK: Escherichia coli in microgravity.

    PubMed

    Thévenet, D; D'Ari, R; Bouloc, P

    1996-06-27

    Microgravity affects certain physical properties of fluids, such as convection movement and surface tension. As a consequence, cells and living organisms may exhibit different behaviour in space, which may result from differences in the immediate environment of the cell or changes in the structure of the membrane in microgravity. Two experiments to examine the effects of microgravity on cell microenvironment and signal transduction through membranes were performed using a well-characterized system with different strains of the non-pathogenic Gram-negative bacterium Escherichia coli. Our results indicate that (i) microgravity appears to reduce the lag period of a non-motile culture of E. coli, and (ii) the ompC gene, regulated by the two-component system EnvZ-OmpR, is induced as well or better in microgravity than in ground controls.

  17. Mounting of Escherichia coli spheroplasts for AFM imaging.

    SciTech Connect

    Sullivan, Claretta J; Morrell-Falvey, Jennifer L; Allison, David P; Doktycz, Mitchel John

    2005-11-01

    The cytoplasmic membrane of Escherichia coli (E. coli) is the location of numerous, chemically specific transporters and recognition elements. Investigation of this membrane in vivo by atomic force microscopy (AFM) requires removal of the cell wall and stable immobilization of the spheroplast. AFM images demonstrate that spheroplasts can be secured with warm gelatin applied to the mica substrate just before the addition of a spheroplast suspension. The resulting preparation can be repeatedly imaged by AFM over the course of several hours. Confocal fluorescence imaging confirms the association of the spheroplasts with the gelatin layer. Gelatin molecules are known to reorder into a network after heating. Entrapment within this gelatin network is believed to be responsible for the immobilization of spheroplasts on mica.

  18. The action of beta-galactosidase (Escherichia coli) on allolactose.

    PubMed

    Huber, R E; Wallenfels, K; Kurz, G

    1975-09-01

    The parameters involved in the action of beta-galactosidase (EC 3.2.1.23) (Escherichia coli) on allolactose, the natural inducer of lac operon in E. coli, were studied. At low allolactose concentrations only galactose and glucose were formed, while at high allolactose concentrations transgalactolytic oligosaccharides were also produced. Detectable amounts of lactose were not formed. The V and Km values (49.6 U/mg and 0.00120 M, respectively) indicated that allolactose is as good if not a better substrate of beta-galactosidase as lactose. The pH optimum with allolactose (7.8-7.9) as well as its activation by K+ (as compared to activation by Na+) were similar to the case with lactose as substrate. The alpha-anomer of allolactose was hydrolyzed about two times as rapidly as was the beta-anomer.

  19. In Vivo study of naturally deformed Escherichia coli bacteria.

    PubMed

    Tavaddod, Sharareh; Naderi-Manesh, Hossein

    2016-06-01

    A combination of light-microscopy and image processing has been applied to study naturally deformed Escherichia coli under in vivo condition and at the order of sub-pixel high-resolution accuracy. To classify deflagellated non-dividing E. coli cells to the rod-shape and bent-shape, a geometrical approach has been applied. From the analysis of the geometrical data which were obtained of image processing, we estimated the required effective energy for shaping a rod-shape to a bent-shape with the same size. We evaluated the energy of deformation in the naturally deformed bacteria with minimum cell manipulation, under in vivo condition, and with minimum influence of any external force, torque and pressure. Finally, we have also elaborated on the possible scenario to explain how naturally deformed bacteria are formed from initial to final-stage.

  20. SILVER NANOPARTICLES-DISK DIFFUSION TEST AGAINST Escherichia coli ISOLATES

    PubMed Central

    CUNHA, Francisco Afrânio; MAIA, Kamila Rocha; MALLMAN, Eduardo José Jucá; CUNHA, Maria da Conceição dos Santos Oliveira; MACIEL, Antonio Auberson Martins; de SOUZA, Ieda Pereira; MENEZES, Everardo Albuquerque; FECHINE, Pierre Basílio Almeida

    2016-01-01

    SUMMARY Nanotechnology can be a valuable ally in the treatment of infections. Silver nanoparticles (AgNPs) are structures that have antimicrobial activity. The aim of this study was to produce AgNPs by green methods, characterize these structures, and assess their antimicrobial activity against Escherichia coli associated with the antibiotic ciprofloxacin. AgNPs were characterized by spectroscopic and microscopic techniques. Antimicrobial activity was evaluated by the disk diffusion method against 10 strains of E. coli. The synthesized AgNPs showed a spherical shape and a size of 85.07 ± 12.86 nm (mean ± SD). AgNPs increased the activity of ciprofloxacin by 40% and may represent a new therapeutic option for the treatment of bacterial infections. PMID:27680178

  1. Mutational analysis of UMP kinase from Escherichia coli.

    PubMed

    Bucurenci, N; Serina, L; Zaharia, C; Landais, S; Danchin, A; Bârzu, O

    1998-02-01

    UMP kinase from Escherichia coli is one of the four regulatory enzymes involved in the de novo biosynthetic pathway of pyrimidine nucleotides. This homohexamer, with no counterpart in eukarya, might serve as a target for new antibacterial drugs. Although the bacterial enzyme does not show sequence similarity with any other known nucleoside monophosphate kinase, two segments between amino acids 35 to 78 and 145 to 194 exhibit 28% identity with phosphoglycerate kinase and 30% identity with aspartokinase, respectively. Based on these similarities, a number of residues of E. coli UMP kinase were selected for site-directed mutagenesis experiments. Biochemical, kinetic, and spectroscopic analysis of the modified proteins identified residues essential for catalysis (Asp146), binding of UMP (Asp174), and interaction with the allosteric effectors, GTP and UTP (Arg62 and Asp77).

  2. Identification, expression, and characterization of Escherichia coli guanine deaminase.

    PubMed

    Maynes, J T; Yuan, R G; Snyder, F F

    2000-08-01

    Using the human cDNA sequence corresponding to guanine deaminase, the Escherichia coli genome was scanned using the Basic Local Alignment Search Tool (BLAST), and a corresponding 439-residue open reading frame of unknown function was identified as having 36% identity to the human protein. The putative gene was amplified, subcloned into the pMAL-c2 vector, expressed, purified, and characterized enzymatically. The 50.2-kDa protein catalyzed the conversion of guanine to xanthine, having a K(m) of 15 microM with guanine and a k(cat) of 3.2 s(-1). The bacterial enzyme shares a nine-residue heavy metal binding site with human guanine deaminase, PG[FL]VDTHIH, and was found to contain approximately 1 mol of zinc per mol of subunit of protein. The E. coli guanine deaminase locus is 3' from an open reading frame which shows homology to a bacterial purine base permease.

  3. Identification, Expression, and Characterization of Escherichia coli Guanine Deaminase

    PubMed Central

    Maynes, Jason T.; Yuan, Richard G.; Snyder, Floyd F.

    2000-01-01

    Using the human cDNA sequence corresponding to guanine deaminase, the Escherichia coli genome was scanned using the Basic Local Alignment Search Tool (BLAST), and a corresponding 439-residue open reading frame of unknown function was identified as having 36% identity to the human protein. The putative gene was amplified, subcloned into the pMAL-c2 vector, expressed, purified, and characterized enzymatically. The 50.2-kDa protein catalyzed the conversion of guanine to xanthine, having a Km of 15 μM with guanine and a kcat of 3.2 s−1. The bacterial enzyme shares a nine-residue heavy metal binding site with human guanine deaminase, PG[FL]VDTHIH, and was found to contain approximately 1 mol of zinc per mol of subunit of protein. The E. coli guanine deaminase locus is 3′ from an open reading frame which shows homology to a bacterial purine base permease. PMID:10913105

  4. Characterization of plasmid-borne afa-3 gene clusters encoding afimbrial adhesins expressed by Escherichia coli strains associated with intestinal or urinary tract infections.

    PubMed

    Le Bouguenec, C; Garcia, M I; Ouin, V; Desperrier, J M; Gounon, P; Labigne, A

    1993-12-01

    The afa gene clusters encode afimbrial adhesins (AFA) that are expressed by uropathogenic and diarrhea-associated Escherichia coli strains and belong to a family of hemagglutinins recognizing the Dr blood group antigen as a receptor. This family so far includes AFA-I and AFA-III as well as the Dr and F1845 adhesins (B. Nowicki, A. Labigne, S. Moseley, R. Hull, S. Hull, and J. Moulds, Infect. Immun. 58:279-281, 1990). Reported in this work is the genetic organization of the afa-3 gene cluster cloned from a uropathogenic E. coli strain (A30) which expressed a subtype of AFA designated AFA-III. The amino acid sequence of AFA-III was deduced from the nucleotide sequence of the afaE3 gene and was found to be highly homologous to that of the Dr adhesin (98.1% identity). A polymerase chain reaction assay was developed to detect the presence of afa-3 gene clusters in E. coli strains. Study of the genetic support of the afa-3 gene clusters in the strains which showed positive amplification revealed that they were always located on large, 100-kb plasmids whether the strains originated from patients with cystitis or with diarrhea. Moreover, the cloned afa-3 gene clusters from A30 and from the diarrhea-associated strain AL845 appeared to be carried by 9-kb plasmid regions which displayed a similar genetic organization. Chloramphenicol was reported to be a potent inhibitor of receptor binding by the Dr adhesin (Nowicki et al., Infect. Immun. 58:279-281, 1990). AFA-III expressed by strains AL845 and AL847 appeared to mediate, like the Dr adhesin, chloramphenicol-sensitive hemagglutination, whereas AFA-III produced by A30 conferred chloramphenicol-resistant adherence. A comparison of the sequences of these four proteins indicated that the amino acid at position 52 of the processed AFA could be part of the receptor-binding domain.

  5. Culture of Urine Specimens by Use of chromID CPS Elite Medium Can Expedite Escherichia coli Identification and Reduce Hands-On Time in the Clinical Laboratory.

    PubMed

    Yarbrough, Melanie L; Wallace, Meghan A; Marshall, Cynthia; Mathias, Erin; Burnham, C A

    2016-11-01

    Urine is one of the most common specimen types submitted to the clinical microbiology laboratory; the use of chromogenic agar is one method by which the laboratory might expedite culture results and reduce hands-on time and materials required for urine culture analysis. The objective of our study was to compare chromID CPS Elite (bioMérieux), a chromogenic medium, to conventional primary culture medium for evaluation of urine specimens. Remnant urine specimens (n = 200) were inoculated into conventional media and into chromID CPS Elite agar (chromID). The time to identification and consumables used were documented for both methods. Clinically significant pathogen(s) were recovered from 51 cultures using conventional media, with Escherichia coli being the most frequently recovered organism (n = 22). The rate of exact uropathogen agreement between conventional and chromogenic media was 82%, while overall categorical agreement was 83.5% The time interval between plating and final organism identification was decreased with chromID agar versus conventional media for E. coli (mean of 24.4 h versus 27.1 h, P < 0.001). Using chromID, clinically significant cultures required less hands-on time per culture (mean of 1 min and 2 s [1:02 min]) compared to conventional media (mean of 1:31 min). In addition, fewer consumables (2.4 versus 3.3 sticks and swabs) and rapid biochemical tests (1.0 versus 1.9) were necessary using chromID versus conventional media. Notably, antimicrobial susceptibility testing demonstrated good overall agreement (97.4%) between the chromID and conventional media for all antibiotics tested. chromID CPS Elite is accurate for uropathogen identification, reduces consumable usage, and may expedite the identification of E. coli in clinical specimens.

  6. Effect of various nonionic surfactants on growth of Escherichia coli.

    PubMed

    Rose, M J; Aron, S A; Janicki, B W

    1966-05-01

    Rose, Michael J., Jr. (Veterans Administration Hospital, Washington, D.C.), Stephen A. Aron, and Bernard W. Janicki. Effect of various nonionic surfactants on growth of Escherichia coli. J. Bacteriol. 91:1863-1868. 1966.-Escherichia coli cultivated in media containing 0.5, 1.0, 2.0, or 4.0% concentrations of surface-active polyoxyethylene derivatives of formaldehyde polymers of octyl phenol (Triton WR-1339; Macrocyclon) or of sorbitan mono-fatty acid esters (Tween 20, 40, 60, and 80) exhibited significantly retarded growth only at the highest concentration. To determine the mechanism of bacteriostasis, certain derivatives and compounds related to the surfactants were investigated. Experiments with compounds related to the Triton-type agents demonstrated that incorporation of monomeric substances (Triton X-205, X-305, Igepal CA-730, or Dowfax 9N20) into the medium at a concentration of 4.0% did not inhibit the growth of E. coli. It was concluded that the formaldehyde polymer was essential for growth inhibition by the polyoxyethylene derivatives of octyl phenol. The inhibitory activity of the Tween compounds, in contrast, appeared to result from the unesterified fatty acids which contaminate the commercial preparations. Polyol (60), the sorbitan polyoxyethylene derivative of Tween 60 and the basic structural unit of all the Tween-type compounds, and a Tween 80 preparation which was purified by extraction of the unesterified oleic acid, were not inhibitory. Moreover, the amount of free oleic acid present as a contaminant of Tween 80 was found to be sufficient to cause significant growth inhibition. These results and the observation that E. coli does not appear to hydrolyze the esterified fatty acid of Tween 80 led to the conclusion that growth inhibition obtained with various Tween compounds probaby is a function of their respective fatty acid contaminants.

  7. Adhesive Escherichia coli in inflammatory bowel disease and infective diarrhoea.

    PubMed Central

    Burke, D. A.; Axon, A. T.

    1988-01-01

    The clinical features of ulcerative colitis and Crohn's disease are similar to those of infections of the bowel, although their cause is uncertain. Many bacteria that cause intestinal diseases adhere to the gut mucosa, and adhesion of pathogenic Escherichia coli is resistant to D-mannose. The adhesive properties of isolates of E coli were assessed by assay of adhesion to buccal epithelial cells with mannose added. The isolates were obtained from patients with inflammatory bowel diseases (50 with a relapse of ulcerative colitis, nine with ulcerative colitis in remission, 13 with Crohn's disease, and 11 with infectious diarrhoea not due to E coli) and 22 controls. The median index of adhesion to buccal epithelial cells (the proporti