Horowitz, A.J.; Smith, J.J.; Elrick, K.A.
2001-01-01
A prototype 14-L Teflon? churn splitter was evaluated for whole-water sample-splitting capabilities over a range of sediment concentratons and grain sizes as well as for potential chemical contamination from both organic and inorganic constituents. These evaluations represent a 'best-case' scenario because they were performed in the controlled environment of a laboratory, and used monomineralic silica sand slurries of known concentration made up in deionized water. Further, all splitting was performed by a single operator, and all the requisite concentration analyses were performed by a single laboratory. The prototype Teflon? churn splitter did not appear to supply significant concentrations of either organic or inorganic contaminants at current U.S. Geological Survey (USGS) National Water Quality Laboratory detection and reporting limits when test samples were prepared using current USGS protocols. As with the polyethylene equivalent of the prototype Teflon? churn, the maximum usable whole-water suspended sediment concentration for the prototype churn appears to lie between 1,000 and 10,000 milligrams per liter (mg/L). Further, the maximum grain-size limit appears to lie between 125- and 250-microns (m). Tests to determine the efficacy of the valve baffle indicate that it must be retained to facilitate representative whole-water subsampling.
NASA Technical Reports Server (NTRS)
Ding, Jeff
2015-01-01
The completed Center Innovation Fund (CIF) project used the upgraded Ultrasonic Stir Weld (USW) Prototype System (built in 2013/2014) to begin characterizing the weld process using 2219 aluminum (fig. 1). This work is being done in Bldg. 4755 at NASA Marshall Space Flight Center (MSFC). The capabilities of the USW system provides the means to precisely control and document individual welding parameters. The current upgraded system has the following capabilities: (1) Ability to 'pulse' ultrasonic (US) energy on and off and adjust parameters real-time (travel speed, spindle rpm, US amplitude, X and Z axis positions, and plunge and pin axis force; (2) Means to measure draw force; (3) Ability to record US power versus time; (4) Increasing stiffness of Z axis drive and reduce head deflection using laser technology; (5) Adding linear encoder to better control tool penetration setting; (6) Ultrasonic energy integrated into stir rod and containment plate; (7) Maximum 600 rpm; (8) Maximum Z force 15,000 lb; (9) Real-time data acquisition and logging capabilities at a minimum frequency of 10 Hz; and (10) Two separate transducer power supplies operating at 4.5 kW power.
The NASA Carbon Monitoring System
NASA Astrophysics Data System (ADS)
Hurtt, G. C.
2015-12-01
Greenhouse gas emission inventories, forest carbon sequestration programs (e.g., Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+), cap-and-trade systems, self-reporting programs, and their associated monitoring, reporting and verification (MRV) frameworks depend upon data that are accurate, systematic, practical, and transparent. A sustained, observationally-driven carbon monitoring system using remote sensing data has the potential to significantly improve the relevant carbon cycle information base for the U.S. and world. Initiated in 2010, NASA's Carbon Monitoring System (CMS) project is prototyping and conducting pilot studies to evaluate technological approaches and methodologies to meet carbon monitoring and reporting requirements for multiple users and over multiple scales of interest. NASA's approach emphasizes exploitation of the satellite remote sensing resources, computational capabilities, scientific knowledge, airborne science capabilities, and end-to-end system expertise that are major strengths of the NASA Earth Science program. Through user engagement activities, the NASA CMS project is taking specific actions to be responsive to the needs of stakeholders working to improve carbon MRV frameworks. The first phase of NASA CMS projects focused on developing products for U.S. biomass/carbon stocks and global carbon fluxes, and on scoping studies to identify stakeholders and explore other potential carbon products. The second phase built upon these initial efforts, with a large expansion in prototyping activities across a diversity of systems, scales, and regions, including research focused on prototype MRV systems and utilization of COTS technologies. Priorities for the future include: 1) utilizing future satellite sensors, 2) prototyping with commercial off-the-shelf technology, 3) expanding the range of prototyping activities, 4) rigorous evaluation, uncertainty quantification, and error characterization, 5) stakeholder engagement, 6) partnerships with other U.S. agencies and international partners, and 7) modeling and data assimilation.
Increasing Mission Impact Through Exploratory Target Shots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathisen, D.
Through the prototype’s use, the concept’s potential was proven. Use of the prototype also provided insight to the prototypical shortcomings. This document describes the efforts related to addressing the needs of all stakeholders and developing the “Gatling 1.0” prototype capability into a mature product referred to as “Gatling 2.0.”
NASA'S SERVIR Gulf of Mexico Project: The Gulf of Mexico Regional Collaborative (GoMRC)
NASA Technical Reports Server (NTRS)
Quattrochi, Dale A.; Irwin, Daniel; Presson, Joan; Estes, Maury; Estes, Sue; Judd, Kathleen
2006-01-01
The Gulf of Mexico Regional Collaborative (GoMRC) is a NASA-funded project that has as its goal to develop an integrated, working, prototype IT infrastructure for Earth science data, knowledge and models for the five Gulf U.S. states and Mexico, and to demonstrate its ability to help decision-makers better understand critical Gulf-scale issues. Within this preview, the mission of this project is to provide cross cutting solution network and rapid prototyping capability for the Gulf of Mexico region, in order to demonstrate substantial, collaborative, multi-agency research and transitional capabilities using unique NASA data sets and models to address regional problems. SERVIR Mesoamerica is seen as an excellent existing framework that can be used to integrate observational and GIs data bases, provide a sensor web interface, visualization and interactive analysis tools, archival functions, data dissemination and product generation within a Rapid Prototyping concept to assist decision-makers in better understanding Gulf-scale environmental issues.
Automated Test Case Generation for an Autopilot Requirement Prototype
NASA Technical Reports Server (NTRS)
Giannakopoulou, Dimitra; Rungta, Neha; Feary, Michael
2011-01-01
Designing safety-critical automation with robust human interaction is a difficult task that is susceptible to a number of known Human-Automation Interaction (HAI) vulnerabilities. It is therefore essential to develop automated tools that provide support both in the design and rapid evaluation of such automation. The Automation Design and Evaluation Prototyping Toolset (ADEPT) enables the rapid development of an executable specification for automation behavior and user interaction. ADEPT supports a number of analysis capabilities, thus enabling the detection of HAI vulnerabilities early in the design process, when modifications are less costly. In this paper, we advocate the introduction of a new capability to model-based prototyping tools such as ADEPT. The new capability is based on symbolic execution that allows us to automatically generate quality test suites based on the system design. Symbolic execution is used to generate both user input and test oracles user input drives the testing of the system implementation, and test oracles ensure that the system behaves as designed. We present early results in the context of a component in the Autopilot system modeled in ADEPT, and discuss the challenges of test case generation in the HAI domain.
A Clinical Information Display System
Blum, Bruce J.; Lenhard, Raymond E.; Braine, Hayden; Kammer, Anne
1977-01-01
A clinical information display system has been implemented as part of a prototype Oncology Clinical Information System for the Johns Hopkins Oncology Center. The information system has been developed to support the management of patient therapy. Capabilities in the prototype include a patient data system, a patient abstract, a tumor registry, an appointment system, a census system, and a clinical information display system. This paper describes the clinical information display component of the prototype. It has the capability of supporting up to 10,000 patient records with online data entry and editing. At the present time, the system is being used only in the Oncology Center. There are plans, however, for trial use by other departments, and the system represents a tool with a potential for more general application.
NASA Astrophysics Data System (ADS)
Hardy, Luke A.; Hutchens, Thomas C.; Larson, Eric R.; Gonzalez, David A.; Chang, Chun-Hung; Nau, William H.; Fried, Nathaniel M.
2017-05-01
Energy-based, radiofrequency (RF) and ultrasonic (US) devices currently provide rapid sealing of blood vessels during laparoscopic procedures. We are exploring infrared lasers as an alternate energy modality for vessel sealing, capable of generating less collateral thermal damage. Previous studies demonstrated feasibility of sealing vessels in an in vivo porcine model using a 1470-nm laser. However, the initial prototype was designed for testing in open surgery and featured tissue clasping and light delivery mechanisms incompatible with laparoscopic surgery. In this study, a laparoscopic prototype similar to devices currently in surgical use was developed, and performance tests were conducted on porcine renal blood vessels, ex vivo. The 5-mm outer-diameter laparoscopic prototype featured a traditional Maryland jaw configuration that enables tissue manipulation and blunt dissection. Laser energy was delivered through a 550-μm-core-diameter optical fiber with side-delivery from the lower jaw and beam dimensions of 18-mm length×1.2-mm width. The 1470-nm diode laser delivered 68 W with 3-s activation time, consistent with vessel seal times associated with RF and US-based devices. A total of 69 fresh porcine renal vessels with mean diameter of 3.3±1.7 mm were tested, ex vivo. Vessels smaller than 5-mm diameter were consistently sealed (48/51) with burst pressures greater than malignant hypertension blood pressure (180 mmHg), averaging 1038±474 mmHg. Vessels larger than 5 mm were not consistently sealed (6/18), yielding burst pressures of only 174±221 mmHg. Seal width, thermal damage zone, and thermal spread averaged 1.7±0.8, 3.4±0.7, and 1.0±0.4 mm, respectively. Results demonstrated that the 5-mm optical laparoscopic prototype consistently sealed vessels less than 5-mm diameter with low thermal spread. Further in vivo studies are planned to test the performance across a variety of vessels and tissues.
Crump, Jacob K.; Del Fiol, Guilherme; Williams, Marc S.; Freimuth, Robert R.
2018-01-01
Integration of genetic information is becoming increasingly important in clinical practice. However, genetic information is often ambiguous and difficult to understand, and clinicians have reported low-self-efficacy in integrating genetics into their care routine. The Health Level Seven (HL7) Infobutton standard helps to integrate online knowledge resources within Electronic Health Records (EHRs) and is required for EHR certification in the US. We implemented a prototype of a standards-based genetic reporting application coupled with infobuttons leveraging the Infobutton and Fast Healthcare Interoperability Resources (FHIR) Standards. Infobutton capabilities were provided by Open Infobutton, an open source package compliant with the HL7 Infobutton Standard. The resulting prototype demonstrates how standards-based reporting of genetic results, coupled with curated knowledge resources, can provide dynamic access to clinical knowledge on demand at the point of care. The proposed functionality can be enabled within any EHR system that has been certified through the US Meaningful Use program.
Chen, Qi; Gauger, Phillip C; Stafne, Molly R; Thomas, Joseph T; Madson, Darin M; Huang, Haiyan; Zheng, Ying; Li, Ganwu; Zhang, Jianqiang
2016-05-01
At least two genetically different porcine epidemic diarrhoea virus (PEDV) strains have been identified in the USA: US PEDV prototype and S-INDEL-variant strains. The objective of this study was to compare the pathogenicity differences of the US PEDV prototype and S-INDEL-variant strains in conventional neonatal piglets under experimental infections. Fifty PEDV-negative 5-day-old pigs were divided into five groups of ten pigs each and were inoculated orogastrically with three US PEDV prototype isolates (IN19338/2013, NC35140/2013 and NC49469/2013), an S-INDEL-variant isolate (IL20697/2014), and virus-negative culture medium, respectively, with virus titres of 104 TCID50 ml- 1, 10 ml per pig. All three PEDV prototype isolates tested in this study, regardless of their phylogenetic clades, had similar pathogenicity and caused severe enteric disease in 5-day-old pigs as evidenced by clinical signs, faecal virus shedding, and gross and histopathological lesions. Compared with pigs inoculated with the three US PEDV prototype isolates, pigs inoculated with the S-INDEL-variant isolate had significantly diminished clinical signs, virus shedding in faeces, gross lesions in small intestines, caeca and colons, histopathological lesions in small intestines, and immunohistochemistry staining in ileum. However, the US PEDV prototype and the S-INDEL-variant strains induced similar viraemia levels in inoculated pigs. Whole genome sequences of the PEDV prototype and S-INDEL-variant strains were determined, but the molecular basis of virulence differences between these PEDV strains remains to be elucidated using a reverse genetics approach.
Affordable Hybrid Heat Pump Clothes Dryer
DOE Office of Scientific and Technical Information (OSTI.GOV)
TeGrotenhuis, Ward E.; Butterfield, Andrew; Caldwell, Dustin D.
This project was successful in demonstrating the feasibility of a step change in residential clothes dryer energy efficiency by demonstrating heat pump technology capable of 50% energy savings over conventional standard-size electric dryers with comparable drying times. A prototype system was designed from off-the-shelf components that can meet the project’s efficiency goals and are affordable. An experimental prototype system was built based on the design that reached 50% energy savings. Improvements have been identified that will reduce drying times of over 60 minutes to reach the goal of 40 minutes. Nevertheless, the prototype represents a step change in efficiency overmore » heat pump dryers recently introduced to the U.S. market, with 30% improvement in energy efficiency at comparable drying times.« less
Acceptance testing of the prototype electrometer for the SAMPIE flight experiment
NASA Technical Reports Server (NTRS)
Hillard, G. Barry
1992-01-01
The Solar Array Module Plasma Interaction Experiment (SAMPIE) has two key instruments at the heart of its data acquisition capability. One of these, the electrometer, is designed to measure both ion and electron current from most of the samples included in the experiment. The accuracy requirement, specified by the project's Principal Investigator, is for agreement within 10 percent with a calibrated laboratory instrument. Plasma chamber testing was performed to assess the capabilities of the prototype design. Agreement was determined to be within 2 percent for electron collection and within 3 percent for ion collection.
Joint Planning and Development Office Work Plan FY10
2010-01-01
IPSA ) Division will make refinements to the NextGen Portfolio Analysis. In addition, IPSA will work with the Department of Defense (DoD) to define and...Submitted Interagency Portfolio and Systems Analysis ( IPSA ) DRAFT DoD Portfolio Analysis Criteria BASELINE DoD Portfolio Analysis Criteria DRAFT...WG Work Plan Review Prototype Capability Selected and Defined CHAs Complete Safety Metrics for IPSA Complete FINAL Prototype Report FINAL
NASA Technical Reports Server (NTRS)
Zagrodnik, Jeffrey P.; Jones, Kenneth R.
1991-01-01
Over 7000 low-earth-orbit (LEO) cycles were demonstrated on a full-size aerospace common pressure vessel (CPV) prototype. The battery demonstrated the capability of the basic CPV design to meet the life and reliability requirements of aerospace missions. Subsequent design modifications have been employed to address the shortcomings of the original design and several new prototypes have been fabricated. These include a 12-cell 125 amp-hour geosynchronous earth-orbit (GEO) battery and a 22-cell 10.5 amp-hour LEO battery. Cells for an 80-cell battery intended to demonstrate the high voltage capability of the CPV design have also been fabricated. In addition, assembly of a 20-cell aircraft starting battery prototype is in progress, and testing of a group of 12-volt, 160 amp-hour terrestrial batteries is continuing.
NASA Astrophysics Data System (ADS)
McGuire, N. D.; Ewen, R. J.; de Lacy Costello, B.; Garner, C. E.; Probert, C. S. J.; Vaughan, K.; Ratcliffe, N. M.
2014-06-01
Rapid volatile profiling of stool sample headspace was achieved using a combination of short multi-capillary chromatography column (SMCC), highly sensitive heated metal oxide semiconductor sensor and artificial neural network software. For direct analysis of biological samples this prototype offers alternatives to conventional gas chromatography (GC) detectors and electronic nose technology. The performance was compared to an identical instrument incorporating a long single capillary column (LSCC). The ability of the prototypes to separate complex mixtures was assessed using gas standards and homogenized in house ‘standard’ stool samples, with both capable of detecting more than 24 peaks per sample. The elution time was considerably faster with the SMCC resulting in a run time of 10 min compared to 30 min for the LSCC. The diagnostic potential of the prototypes was assessed using 50 C. difficile positive and 50 negative samples. The prototypes demonstrated similar capability of discriminating between positive and negative samples with sensitivity and specificity of 85% and 80% respectively. C. difficile is an important cause of hospital acquired diarrhoea, with significant morbidity and mortality around the world. A device capable of rapidly diagnosing the disease at the point of care would reduce cases, deaths and financial burden.
McGuire, N D; Ewen, R J; de Lacy Costello, B; Garner, C E; Probert, C S J; Vaughan, K.; Ratcliffe, N M
2016-01-01
Rapid volatile profiling of stool sample headspace was achieved using a combination of short multi-capillary chromatography column (SMCC), highly sensitive heated metal oxide semiconductor (MOS) sensor and artificial neural network (ANN) software. For direct analysis of biological samples this prototype offers alternatives to conventional GC detectors and electronic nose technology. The performance was compared to an identical instrument incorporating a long single capillary column (LSCC). The ability of the prototypes to separate complex mixtures was assessed using gas standards and homogenised in house ‘standard’ stool samples, with both capable of detecting more than 24 peaks per sample. The elution time was considerably faster with the SMCC resulting in a run time of 10 minutes compared to 30 minutes for the LSCC. The diagnostic potential of the prototypes was assessed using 50 C. difficile positive and 50 negative samples. The prototypes demonstrated similar capability of discriminating between positive and negative samples with sensitivity and specificity of 85% and 80% respectively. C. difficile is an important cause of hospital acquired diarrhoea, with significant morbidity and mortality around the world. A device capable of rapidly diagnosing the disease at the point of care would reduce cases, deaths and financial burden. PMID:27212803
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunett, A. J.; Fanning, T. H.
The United States has extensive experience with the design, construction, and operation of sodium cooled fast reactors (SFRs) over the last six decades. Despite the closure of various facilities, the U.S. continues to dedicate research and development (R&D) efforts to the design of innovative experimental, prototype, and commercial facilities. Accordingly, in support of the rich operating history and ongoing design efforts, the U.S. has been developing and maintaining a series of tools with capabilities that envelope all facets of SFR design and safety analyses. This paper provides an overview of the current U.S. SFR analysis toolset, including codes such asmore » SAS4A/SASSYS-1, MC2-3, SE2-ANL, PERSENT, NUBOW-3D, and LIFE-METAL, as well as the higher-fidelity tools (e.g. PROTEUS) being integrated into the toolset. Current capabilities of the codes are described and key ongoing development efforts are highlighted for some codes.« less
Smart Wire Grid: Resisting Expectations
Ramsay, Stewart; Lowe, DeJim
2018-05-30
Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.
19 CFR 10.92-10.97 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-04-01
... 19 Customs Duties 1 2010-04-01 2010-04-01 false [Reserved] 10.92-10.97 Section 10.92-10.97 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY ARTICLES CONDITIONALLY FREE, SUBJECT TO A REDUCED RATE, ETC. General Provisions Prototypes §§ 10.92-10.97...
Securing Sensitive Flight and Engine Simulation Data Using Smart Card Technology
NASA Technical Reports Server (NTRS)
Blaser, Tammy M.
2003-01-01
NASA Glenn Research Center has developed a smart card prototype capable of encrypting and decrypting disk files required to run a distributed aerospace propulsion simulation. Triple Data Encryption Standard (3DES) encryption is used to secure the sensitive intellectual property on disk pre, during, and post simulation execution. The prototype operates as a secure system and maintains its authorized state by safely storing and permanently retaining the encryption keys only on the smart card. The prototype is capable of authenticating a single smart card user and includes pre simulation and post simulation tools for analysis and training purposes. The prototype's design is highly generic and can be used to protect any sensitive disk files with growth capability to urn multiple simulations. The NASA computer engineer developed the prototype on an interoperable programming environment to enable porting to other Numerical Propulsion System Simulation (NPSS) capable operating system environments.
HelioTrope: An innovative and efficient prototype for solar power production
NASA Astrophysics Data System (ADS)
Papageorgiou, George; Maimaris, Athanasios; Hadjixenophontos, Savvas; Ioannou, Petros
2014-12-01
The solar energy alternative could provide us with all the energy we need as it exist in vast quantities all around us. We only should be innovative enough in order to improve the efficiency of our systems in capturing and converting solar energy in usable forms of power. By making a case for the solar energy alternative, we identify areas where efficiency can be improved and thereby Solar Energy can become a competitive energy source. This paper suggests an innovative approach to solar energy power production, which is manifested in a prototype given the name HelioTrope. The Heliotrope Solar Energy Production prototype is tested on its' capabilities to efficiently covert solar energy to generation of electricity and other forms of energy for storage or direct use. HelioTrope involves an innovative Stirling engine design and a parabolic concentrating dish with a sun tracking system implementing a control algorithm to maximize the capturing of solar energy. Further, it utilizes a patent developed by the authors where a mechanism is designed for the transmission of reciprocating motion of variable amplitude into unidirectional circular motion. This is employed in our prototype for converting linear reciprocating motion into circular for electricity production, which gives a significant increase in efficiency and reduces maintenance costs. Preliminary calculations indicate that the Heliotrope approach constitutes a competitive solution to solar power production.
Prototyping Control and Data Acquisition for the ITER Neutral Beam Test Facility
NASA Astrophysics Data System (ADS)
Luchetta, Adriano; Manduchi, Gabriele; Taliercio, Cesare; Soppelsa, Anton; Paolucci, Francesco; Sartori, Filippo; Barbato, Paolo; Breda, Mauro; Capobianco, Roberto; Molon, Federico; Moressa, Modesto; Polato, Sandro; Simionato, Paola; Zampiva, Enrico
2013-10-01
The ITER Neutral Beam Test Facility will be the project's R&D facility for heating neutral beam injectors (HNB) for fusion research operating with H/D negative ions. Its mission is to develop technology to build the HNB prototype injector meeting the stringent HNB requirements (16.5 MW injection power, -1 MeV acceleration energy, 40 A ion current and one hour continuous operation). Two test-beds will be built in sequence in the facility: first SPIDER, the ion source test-bed, to optimize the negative ion source performance, second MITICA, the actual prototype injector, to optimize ion beam acceleration and neutralization. The SPIDER control and data acquisition system is under design. To validate the main architectural choices, a system prototype has been assembled and performance tests have been executed to assess the prototype's capability to meet the control and data acquisition system requirements. The prototype is based on open-source software frameworks running under Linux. EPICS is the slow control engine, MDSplus is the data handler and MARTe is the fast control manager. The prototype addresses low and high-frequency data acquisition, 10 kS/s and 10 MS/s respectively, camera image acquisition, data archiving, data streaming, data retrieval and visualization, real time fast control with 100 μs control cycle and supervisory control.
A New Application to Facilitate Post-Fire Recovery and Rehabilitation in Savanna Ecosystems
NASA Technical Reports Server (NTRS)
Carroll, Mark L.; Schnase, John L.; Weber, Keith T.; Brown, Molly E.; Gill, Roger L.; Haskett, George W.; Gardner, Tess A.
2013-01-01
The U.S. government spends an estimated $3billion per year to fight forest fires in the United States. Post-fire rehabilitation activities represent a small but essential portion of that total. The Rehabilitation Capability Convergence for Ecosystem Recovery (RECOVER) system is currently under development for Savanna ecosystems in the western U.S. The prototype of this system has been built and will have realworld testing during the summer 2013 fire season. When fully deployed, the RECOVER system will provide the emergency rehabilitation teams with critical and timely information for management decisions regarding stabilization and rehabilitation strategies.
Naval Science & Technology: Enabling the Future Force
2013-04-01
corn for disruptive technologies Laser Cooling Spintronics Bz 1st U.S. Intel satellite GRAB Semiconductors GaAs, GaN, SiC GPS...Payoff • Innovative and game-changing • Approved by Corporate Board • Delivers prototype Innovative Naval Prototypes (5-10 Year) Disruptive ... Technologies Free Electron Laser Integrated Topside EM Railgun Sea Base Enablers Tactical Satellite Large Displacement UUV AACUS Directed
Synergic effects of ultrasound and laser on the pain relief in women with hand osteoarthritis.
Paolillo, Alessandra Rossi; Paolillo, Fernanda Rossi; João, Jessica Patrícia; João, Herbert Alexandre; Bagnato, Vanderlei Salvador
2015-01-01
Patients with pain avoid movements, leading to a gradual impairment of their physical condition and functionality. In this context, the use of ultrasound (US) and low-level laser therapy (LLLT) show promising results for nonpharmacological and noninvasive treatment. The aim of this study was evaluated the synergistic effects of the US and the LLLT (new prototype) with or without therapeutic exercises (TE) on pain and grip strength in women with hand osteoarthritis. Forty-five women with hand osteoarthritis, aged 60 to 80 years, were randomly assigned to one of three groups, but 43 women successfully completed the full study. The three groups were as follows: (i) the placebo group which did not perform TE, but the prototype without emitting electromagnetic or mechanical waves was applied (n = 11); (ii) the US + LLLT group which carried out only the prototype (n = 13); and (iii) the TE + US + LLLT group which performed TE before the prototype is applied (n = 13). The parameters of US were frequency 1 MHz; 1.0 W/cm(2) intensity, pulsed mode 1:1 (duty cycle 50%). Regarding laser, the output power of the each laser was fixed at 100 mW leading to an energy value of 18 J per laser. Five points were irradiated per hand, during 3 min per point and 15 min per session. The prototype was applied after therapeutic exercises. The treatments are done once a week for 3 months. Grip strength and pressure pain thresholds (PPT) were measured. Grip strength did not differ significantly for any of the groups (p ≥ 0.05). The average PPT between baseline and 3 months shows significant decrease of the pain sensitivity for both the US + LLLT group (∆ = 30 ± 19 N, p˂0.001) and the TE + US + LLLT group (∆ = 32 ± 13 N, p < 0.001). However, there were no significant differences in average PPT for placebo group (∆ = -0.3 ± 9 N). There was no placebo effect. The new prototype that combines US and LLLT reduced pain in women with hand osteoarthritis.
Optimal design and critical analysis of a high resolution video plenoptic demonstrator
NASA Astrophysics Data System (ADS)
Drazic, Valter; Sacré, Jean-Jacques; Bertrand, Jérôme; Schubert, Arno; Blondé, Etienne
2011-03-01
A plenoptic camera is a natural multi-view acquisition device also capable of measuring distances by correlating a set of images acquired under different parallaxes. Its single lens and single sensor architecture have two downsides: limited resolution and depth sensitivity. In a very first step and in order to circumvent those shortcomings, we have investigated how the basic design parameters of a plenoptic camera optimize both the resolution of each view and also its depth measuring capability. In a second step, we built a prototype based on a very high resolution Red One® movie camera with an external plenoptic adapter and a relay lens. The prototype delivered 5 video views of 820x410. The main limitation in our prototype is view cross talk due to optical aberrations which reduce the depth accuracy performance. We have simulated some limiting optical aberrations and predicted its impact on the performances of the camera. In addition, we developed adjustment protocols based on a simple pattern and analyzing programs which investigate the view mapping and amount of parallax crosstalk on the sensor on a pixel basis. The results of these developments enabled us to adjust the lenslet array with a sub micrometer precision and to mark the pixels of the sensor where the views do not register properly.
Optimal design and critical analysis of a high-resolution video plenoptic demonstrator
NASA Astrophysics Data System (ADS)
Drazic, Valter; Sacré, Jean-Jacques; Schubert, Arno; Bertrand, Jérôme; Blondé, Etienne
2012-01-01
A plenoptic camera is a natural multiview acquisition device also capable of measuring distances by correlating a set of images acquired under different parallaxes. Its single lens and single sensor architecture have two downsides: limited resolution and limited depth sensitivity. As a first step and in order to circumvent those shortcomings, we investigated how the basic design parameters of a plenoptic camera optimize both the resolution of each view and its depth-measuring capability. In a second step, we built a prototype based on a very high resolution Red One® movie camera with an external plenoptic adapter and a relay lens. The prototype delivered five video views of 820 × 410. The main limitation in our prototype is view crosstalk due to optical aberrations that reduce the depth accuracy performance. We simulated some limiting optical aberrations and predicted their impact on the performance of the camera. In addition, we developed adjustment protocols based on a simple pattern and analysis of programs that investigated the view mapping and amount of parallax crosstalk on the sensor on a pixel basis. The results of these developments enabled us to adjust the lenslet array with a submicrometer precision and to mark the pixels of the sensor where the views do not register properly.
Benthic Flux Sampling Device, Prototype Design, Development, and Evaluation
1993-08-01
collaboration with Clare Reimers and Matt Christianson at Scripps Institution of Oceanography. Trace metal chemistry was performed by John Andrews and...realistic levels for coastal and inshore sediments using a sample period of 2-4 days. The resulting flux rates will be useful in evaluating the risks...suffi= for detecting release rates at significant levels . Operation Depth. A depth capability of 50 m is sufficient to perform studies in most U.S. bays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espy, Michelle A.
This project proposes to: (1) provide the power of MRI to situations where it presently isn't available; (2) perform the engineering required to move from lab to a functional prototype; and (3) leverage significant existing infrastructure and capability in ultra-low field MRI. The reasons for doing this: (1) MRI is the most powerful tool for imaging soft-tissue (e.g. brain); (2) Billions don't have access due to cost or safety issues; (3) metal will heat/move in high magnetic fields; (4) Millions of cases of traumatic brain injury in US alone; (5) even more of non-traumatic brain injury; (6) (e.g. stroke, infection,more » chemical exposure); (7) Need for early diagnostic; (8) 'Signature' wound of recent conflicts; (9) 22% of injuries; (10) Implications for post-traumatic stress disorder; and (11) chronic traumatic encephalopathy.« less
Enabling the First Interstellar Missions
NASA Astrophysics Data System (ADS)
Lubin, P.
2017-12-01
All propulsion systems that leave the Earth are based on chemical reactions. Chemical reactions, at best, have an efficiency compared to rest mass of 10-10 (or about 1eV per bond). All the mass in the universe converted to chemical reactions would not propel even a single proton to relativistic speeds. While chemistry will get us to Mars it will not allow interstellar capability in any reasonable mission time. Barring new physics we are left with few realistic solutions. None of our current propulsion systems, including nuclear, are capable of the relativistic speeds needed for exploring the many nearby stellar systems and exo-planets. However recent advances in photonics and directed energy systems now allow us to realize what was only a decade ago, simply science fiction, namely the ability to seriously conceive of and plan for relativistic flight. From fully-functional gram-level wafer-scale spacecraft capable of speeds greater than c/4 that could reach the nearest star in 20 years to spacecraft for large missions capable of supporting human life with masses more than 105 kg (100 tons) for rapid interplanetary transit that could reach speeds of greater than 1000 km/s can be realized. With this technology spacecraft can be propelled to speeds currently unimaginable. Photonics, like electronics, and unlike chemical propulsion is an exponential technology with a current double time of about 20 months. This is the key. The cost of such a system is amortized over the essentially unlimited number of launches. In addition, the same photon driver can be used for many other purposes including beamed energy to power high Isp ion engines, remote asteroid composition analysis and planetary defense. This would be a profound change in human capability with enormous implications. Known as Starlight we are now in a NASA Phase II study. The FY 2017 congressional appropriations request directs NASA to study the feasibility of an interstellar mission to coincide with the 100th anniversary of the moon landing quoting our NASA program as one option. We will discuss the many technical challenges ahead, our current laboratory prototypes and recent data as well as the transformative implications of this program.
1979-12-01
capabilities that are not essential to routine support of the majority of Air Force training. TABLE OF CONTENTS PAGE 1.0 INTRODUCTION ...66 APPEINDIX A Listing of All Survey Items ---------------------- 67 APPENDIX B Introduction to Survey Form and...5 6 1.0 INTRODUCTION Prototype computer-based individualized training systems have been developed and implemented at a number of
Chen, Qi; Thomas, Joseph T; Giménez-Lirola, Luis G; Hardham, John M; Gao, Qinshan; Gerber, Priscilla F; Opriessnig, Tanja; Zheng, Ying; Li, Ganwu; Gauger, Phillip C; Madson, Darin M; Magstadt, Drew R; Zhang, Jianqiang
2016-04-05
At least two genetically different porcine epidemic diarrhea virus (PEDV) strains have been identified in the United States (U.S. PEDV prototype and S-INDEL-variant strains). The current serological assays offered at veterinary diagnostic laboratories for detection of PEDV-specific antibody are based on the U.S. PEDV prototype strain. The objectives of this study were: 1) isolate the U.S. PEDV S-INDEL-variant strain in cell culture; 2) generate antisera against the U.S. PEDV prototype and S-INDEL-variant strains by experimentally infecting weaned pigs; 3) determine if the various PEDV serological assays could detect antibodies against the U.S. PEDV S-INDEL-variant strain and vice versa. A U.S. PEDV S-INDEL-variant strain was isolated in cell culture in this study. Three groups of PEDV-negative, 3-week-old pigs (five pigs per group) were inoculated orally with a U.S. PEDV prototype isolate (previously isolated in our lab), an S-INDEL-variant isolate or virus-negative culture medium. Serum samples collected at 0, 7, 14, 21 and 28 days post inoculation were evaluated by the following PEDV serological assays: 1) indirect fluorescent antibody (IFA) assays using the prototype and S-INDEL-variant strains as indicator viruses; 2) virus neutralization (VN) tests against the prototype and S-INDEL-variant viruses; 3) PEDV prototype strain whole virus based ELISA; 4) PEDV prototype strain S1-based ELISA; and 5) PEDV S-INDEL-variant strain S1-based ELISA. The positive antisera against the prototype strain reacted to and neutralized both prototype and S-INDEL-variant viruses, and the positive antisera against the S-INDEL-variant strain also reacted to and neutralized both prototype and S-INDEL-variant viruses, as examined by IFA antibody assays and VN tests. Antibodies against the two PEDV strains could be detected by all three ELISAs although detection rates varied to some degree. These data indicate that the antibodies against U.S. PEDV prototype and S-INDEL-variant strains cross-reacted and cross-neutralized both strains in vitro. The current serological assays based on U.S. PEDV prototype strain can detect antibodies against both U.S. PEDV strains.
Assessment of an approach to printed polymer lenses
NASA Astrophysics Data System (ADS)
Marasco, Peter L.; Foote, Bob
2017-05-01
Additive manufacturing is proving its relevancy across a wide spectrum of development, prototyping and manufacturing in the US. However, there is a desire to move the capability beyond modeling and structural components. The use of additive manufacturing techniques to fabricate low-cost optics and optical systems is highly desirable in a number of markets. But processes and techniques for successfully printing an optic are currently very new. This paper discusses early advances in printing optics suitable for commercial and military applications. Data from and analysis of early prototype lenses fabricated using one possible technique will be included and discussed. The potential for additive manufacturing of optics to open the design space for complex optics and reduce development time, lowering cost and speeding up time to market, will also be discussed.
JEFX 10 demonstration of Cooperative Hunter Killer UAS and upstream data fusion
NASA Astrophysics Data System (ADS)
Funk, Brian K.; Castelli, Jonathan C.; Watkins, Adam S.; McCubbin, Christopher B.; Marshall, Steven J.; Barton, Jeffrey D.; Newman, Andrew J.; Peterson, Cammy K.; DeSena, Jonathan T.; Dutrow, Daniel A.; Rodriguez, Pedro A.
2011-05-01
The Johns Hopkins University Applied Physics Laboratory deployed and demonstrated a prototype Cooperative Hunter Killer (CHK) Unmanned Aerial System (UAS) capability and a prototype Upstream Data Fusion (UDF) capability as participants in the Joint Expeditionary Force Experiment 2010 in April 2010. The CHK capability was deployed at the Nevada Test and Training Range to prosecute a convoy protection operational thread. It used mission-level autonomy (MLA) software applied to a networked swarm of three Raven hunter UAS and a Procerus Miracle surrogate killer UAS, all equipped with full motion video (FMV). The MLA software provides the capability for the hunter-killer swarm to autonomously search an area or road network, divide the search area, deconflict flight paths, and maintain line of sight communications with mobile ground stations. It also provides an interface for an operator to designate a threat and initiate automatic engagement of the target by the killer UAS. The UDF prototype was deployed at the Maritime Operations Center at Commander Second Fleet, Naval Station Norfolk to provide intelligence analysts and the ISR commander with a common fused track picture from the available FMV sources. It consisted of a video exploitation component that automatically detected moving objects, a multiple hypothesis tracker that fused all of the detection data to produce a common track picture, and a display and user interface component that visualized the common track picture along with appropriate geospatial information such as maps and terrain as well as target coordinates and the source video.
Assessment of a human computer interface prototyping environment
NASA Technical Reports Server (NTRS)
Moore, Loretta A.
1993-01-01
A Human Computer Interface (HCI) prototyping environment with embedded evaluation capability has been successfully assessed which will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. The HCI prototyping environment is designed to include four components: (1) a HCI format development tool, (2) a test and evaluation simulator development tool, (3) a dynamic, interactive interface between the HCI prototype and simulator, and (4) an embedded evaluation capability to evaluate the adequacy of an HCI based on a user's performance.
U.S. Army’s Ground Vehicle Energy Storage R&D Programs & Goals
2011-09-13
Results Li-ion Pack Testing ( NCA ) 13 CO CO2 Analyte Peak Concentration (ppm) 15 min Average Concentration (ppm) Carbon Monoxide (CO) 108939 81588...Carbonate (DMC) 21734 14307 Methyl Butyrate (MB) 47198 33368 • NCA Cell Chemistry • 173V, 6.4kWhr Pack • Prototype pack design (to determine worst case...including advanced prognostic and diagnostic capability) • O092-EP7 – Enhancing the Utilization Efficiency of Cathode Materials in the Li ion
Military and Security Developments Involving the People’s Republic of China 2015
2015-01-01
submarine weapons and sensors . Whereas “near seas” defense remains the PLA Navy’s primary focus, China’s gradual shift to the “far seas” has...deafen the enemy.” PLA analysis of U.S. and coalition military operations also states that “destroying or capturing satellites and other sensors … will...prototypes, will bolster China’s air-to-air capability. Other key features of these aircraft are modern avionics and sensors that offer more timely
Labor market analysis and development of a prototype program for minority entrepreneurs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-10-01
The US Congress established the office of Minority Economic Impact (MI), in the Department of Energy, to recommend ways to insure that minorities are afforded an opportunity to participate fully in the energy programs of the Department. One undertaking was the development of a prototype technical assistance program plan tailored to encourage, promote, and assist minority business enterprises in establishing and expanding energy related business opportunities among a specific segment of the population with limited education but with a good business sense and potential for success. The concept of the prototype plan was generated by an unsolicited proposal submitted tomore » the Department of Energy by the Business and Professional Development Institute of the Bronx Community College (City University of New York) to MI, entitled Labor Market Analysis and Development of A Prototype Program for Entrepreneurs.'' Since Bronx Community College is one of the many educational institutions around the country with special programs and resources capable of generating such a plan, the Business and Professional Development seemed to possess the desired qualifications, experience, location and public and private associations necessary to effectively accomplish the study.« less
Cubesat Application for Planetary Entry (CAPE) Missions: Micro-Return Capsule (MIRCA)
NASA Technical Reports Server (NTRS)
Esper, Jaime
2016-01-01
The Cubesat Application for Planetary Entry Missions (CAPE) concept describes a high-performing Cubesat system which includes a propulsion module and miniaturized technologies capable of surviving atmospheric entry heating, while reliably transmitting scientific and engineering data. The Micro Return Capsule (MIRCA) is CAPE's first planetary entry probe flight prototype. Within this context, this paper briefly describes CAPE's configuration and typical operational scenario, and summarizes ongoing work on the design and basic aerodynamic characteristics of the prototype MIRCA vehicle. CAPE not only opens the door to new planetary mission capabilities, it also offers relatively low-cost opportunities especially suitable to university participation. In broad terms, CAPE consists of two main functional components: the "service module" (SM), and "CAPE's entry probe" (CEP). The SM contains the subsystems necessary to support vehicle targeting (propulsion, ACS, computer, power) and the communications capability to relay data from the CEP probe to an orbiting "mother-ship". The CEP itself carries the scientific instrumentation capable of measuring atmospheric properties (such as density, temperature, composition), and embedded engineering sensors for Entry, Descent, and Landing (EDL). The first flight of MIRCA was successfully completed on 10 October 2015 as a "piggy-back" payload onboard a NASA stratospheric balloon launched from Ft. Sumner, NM.
Preliminary testing of a prototype portable X-ray fluorescence spectrometer
NASA Technical Reports Server (NTRS)
Patten, L. L.; Anderson, N. B.; Stevenson, J. J.
1982-01-01
A portable X-ray fluorescence spectrometer for use as an analyzer in mineral resource investigative work was built and tested. The prototype battery powered spectrometer, measuring 11 by 12 by 5 inches and weighing only about 15 pounds, was designed specifically for field use. The spectrometer has two gas proportional counters and two radioactive sources, Cd (10a) and Fe (55). Preliminary field and laboratory tests on rock specimens and rock pulps have demonstrated the capability of the spectrometer to detect 33 elements to date. Characteristics of the system present some limitations, however, and further improvements are recommended.
NASA Astrophysics Data System (ADS)
Carniti, P.; Cassina, L.; Gotti, C.; Maino, M.; Pessina, G.
2016-07-01
In this work we present ALDO, an adjustable low drop-out linear regulator designed in AMS 0.35 μm CMOS technology. It is specifically tailored for use in the upgraded LHCb RICH detector in order to improve the power supply noise for the front end readout chip (CLARO). ALDO is designed with radiation-tolerant solutions such as an all-MOS band-gap voltage reference and layout techniques aiming to make it able to operate in harsh environments like High Energy Physics accelerators. It is capable of driving up to 200 mA while keeping an adequate power supply filtering capability in a very wide frequency range from 10 Hz up to 100 MHz. This property allows us to suppress the noise and high frequency spikes that could be generated by a DC/DC regulator, for example. ALDO also shows a very low noise of 11.6 μV RMS in the same frequency range. Its output is protected with over-current and short detection circuits for a safe integration in tightly packed environments. Design solutions and measurements of the first prototype are presented.
NASA Technical Reports Server (NTRS)
Aprile, Elena
1992-01-01
In the third year of the research project, we have (1) tested a 3.5 liter prototype of the Liquid Xenon Time Projection Chamber, (2) used a prototype having a 4.4 cm drift gap to study the charge and energy resolution response of the 3.5 liter chamber, (3) obtained an energy resolution as good as that previously measured by us using chambers with drift gaps of the order of millimeters, (4) observed the induction signals produced by MeV gamma rays, (4) used the 20 hybrid charge sensitive preamplifiers for a nondestructive readout of the electron image on the induction wires, (5) performed extensive Monte Carlo simulations to obtain results on efficiency, background rejection capability, and source flux sensitivity, and (6) developed a reconstruction algorithm for events with multiple interaction points.
Precision Mass Property Measurements Using a Five-Wire Torsion Pendulum
NASA Technical Reports Server (NTRS)
Swank, Aaron J.
2012-01-01
A method for measuring the moment of inertia of an object using a five-wire torsion pendulum design is described here. Typical moment of inertia measurement devices are capable of 1 part in 10(exp 3) accuracy and current state of the art techniques have capabilities of about one part in 10(exp 4). The five-wire apparatus design shows the prospect of improving on current state of the art. Current measurements using a laboratory prototype indicate a moment of inertia measurement precision better than a part in 10(exp 4). In addition, the apparatus is shown to be capable of measuring the mass center offset from the geometric center. Typical mass center measurement devices exhibit a measurement precision up to approximately 1 micrometer. Although the five-wire pendulum was not originally designed for mass center measurements, preliminary results indicate an apparatus with a similar design may have the potential of achieving state of the art precision.
NASA Astrophysics Data System (ADS)
Ryan, Neil; Todd, Michael; Farrell, Tom; Lavin, Adrian; Rigole, Pierre-Jean; Corbett, Brian; Roycroft, Brendan; Engelstaedter, Jan-Peter
2017-11-01
This paper outlines the development of a prototype optical burst mode switching network based upon a star topology, the ultimate application of which could be as a transparent payload processor onboard satellite repeaters. The network architecture incorporates multiple tunable laser sources, burst mode receivers and a passive optical router (Arrayed Waveguide Grating). Each tunable optical signal should carry >=10Gbps and be capable of wavelength switching in c. 5ns timescales. Two monolithic tunable laser types, based upon different technologies, will be utilised: a Slotted Fabry Perot laser (a Fabry Perot laser with slots added in order to introduce controlled cavity perturbations); and a Modulated Grating Y-Branch Laser (MGY: a widely tunable, multi-section device similar to the DBR laser). While the Slotted Fabry Perot laser is expected to achieve the required switching times, it is an immature technology not yet capable of achieving tunability over 80 ITU channels from a single chip. The MGY device is a more mature technology and has full C-band ITU channel coverage, but is not capable of the required short switching times. Hence, in order to facilitate the integration of this more mature technology into the prototype breadboard with the requisite switching time capabilities, a system of `dual laser' transmitters is being developed to enable data transmission from one MGY laser while the other switches and vice-versa. This work is being performed under ESA contract AO 1-5025/06/NL/PM, Optical Technologies for Ultra - fast Processing.
Patel, Priya; Wada, Hironobu; Hu, Hsin-Pei; Hirohashi, Kentaro; Kato, Tatsuya; Ujiie, Hideki; Ahn, Jin Young; Lee, Daiyoon; Geddie, William; Yasufuku, Kazuhiro
2017-04-01
Endobronchial ultrasonography (EBUS)-guided transbronchial needle aspiration allows for sampling of mediastinal lymph nodes. The external diameter, rigidity, and angulation of the convex probe EBUS renders limited accessibility. This study compares the accessibility and transbronchial needle aspiration capability of the prototype thin convex probe EBUS against the convex probe EBUS in human ex vivo lungs rejected for transplant. The prototype thin convex probe EBUS (BF-Y0055; Olympus, Tokyo, Japan) with a thinner tip (5.9 mm), greater upward angle (170 degrees), and decreased forward oblique direction of view (20 degrees) was compared with the current convex probe EBUS (6.9-mm tip, 120 degrees, and 35 degrees, respectively). Accessibility and transbronchial needle aspiration capability was assessed in ex vivo human lungs declined for lung transplant. The distance of maximum reach and sustainable endoscopic limit were measured. Transbronchial needle aspiration capability was assessed using the prototype 25G aspiration needle in segmental lymph nodes. In all evaluated lungs (n = 5), the thin convex probe EBUS demonstrated greater reach and a higher success rate, averaging 22.1 mm greater maximum reach and 10.3 mm further endoscopic visibility range than convex probe EBUS, and could assess selectively almost all segmental bronchi (98% right, 91% left), demonstrating nearly twice the accessibility as the convex probe EBUS (48% right, 47% left). The prototype successfully enabled cytologic assessment of subsegmental lymph nodes with adequate quality using the dedicated 25G aspiration needle. Thin convex probe EBUS has greater accessibility to peripheral airways in human lungs and is capable of sampling segmental lymph nodes using the aspiration needle. That will allow for more precise assessment of N1 nodes and, possibly, intrapulmonary lesions normally inaccessible to the conventional convex probe EBUS. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Human Factors and Technical Considerations for a Computerized Operator Support System Prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulrich, Thomas Anthony; Lew, Roger Thomas; Medema, Heather Dawne
2015-09-01
A prototype computerized operator support system (COSS) has been developed in order to demonstrate the concept and provide a test bed for further research. The prototype is based on four underlying elements consisting of a digital alarm system, computer-based procedures, PI&D system representations, and a recommender module for mitigation actions. At this point, the prototype simulates an interface to a sensor validation module and a fault diagnosis module. These two modules will be fully integrated in the next version of the prototype. The initial version of the prototype is now operational at the Idaho National Laboratory using the U.S. Departmentmore » of Energy’s Light Water Reactor Sustainability (LWRS) Human Systems Simulation Laboratory (HSSL). The HSSL is a full-scope, full-scale glass top simulator capable of simulating existing and future nuclear power plant main control rooms. The COSS is interfaced to the Generic Pressurized Water Reactor (gPWR) simulator with industry-typical control board layouts. The glass top panels display realistic images of the control boards that can be operated by touch gestures. A section of the simulated control board was dedicated to the COSS human-system interface (HSI), which resulted in a seamless integration of the COSS into the normal control room environment. A COSS demonstration scenario has been developed for the prototype involving the Chemical & Volume Control System (CVCS) of the PWR simulator. It involves a primary coolant leak outside of containment that would require tripping the reactor if not mitigated in a very short timeframe. The COSS prototype presents a series of operator screens that provide the needed information and soft controls to successfully mitigate the event.« less
New generation of space capabilities resulting from US/RF cooperative efforts
NASA Astrophysics Data System (ADS)
Humpherys, Thomas; Misnik, Victor; Sinelshchikov, Valery; Stair, A. T., Jr.; Khatulev, Valery; Carpenter, Jack; Watson, John; Chvanov, Dmitry; Privalsky, Victor
2006-09-01
Previous successful international cooperative efforts offer a wealth of experience in dealing with highly sensitive issues, but cooperative remote sensing for monitoring and understanding the global environmental is in the national interest of all countries. Cooperation between international partners is paramount, particularly with the Russian Federation, due to its technological maturity and strategic political and geographical position in the world. Based on experience gained over a decade of collaborative space research efforts, continued cooperation provides an achievable goal as well as understanding the fabric of our coexistence. Past cooperative space research efforts demonstrate the ability of the US and Russian Federation to develop a framework for cooperation, working together on a complex, state-of-the-art joint satellite program. These efforts consisted of teams of scientists and engineers who overcame numerous cultural, linguistic, engineering approaches and different political environments. Among these major achievements are: (1) field measurement activities with US satellites MSTI and MSX and the Russian RESURS-1 satellite, as well as the joint experimental use of the US FISTA aircraft; (2) successful joint Science, Conceptual and Preliminary Design Reviews; (3) joint publications of scientific research technical papers, (4) Russian investment in development, demonstration and operation of the Monitor-E spacecraft (Yacht satellite bus), (5) successful demonstration of the conversion of the SS-19 into a satellite launch system, and (6) negotiation of contractual and technical assistant agreements. This paper discusses a new generation of science and space capabilities available to the Remote Sensing community. Specific topics include: joint requirements definition process and work allocation for hardware and responsibility for software development; the function, description and status of Russian contributions in providing space component prototypes and test articles; summary of planned experimental measurements and simulations; results of the ROKOT launch system; performance of the Monitor-E spacecraft; prototype joint mission operations control center; and a Handbook for Success in satellite collaborative efforts based upon a decade of lessons learned.
Advanced E-O test capability for Army Next-Generation Automated Test System (NGATS)
NASA Astrophysics Data System (ADS)
Errea, S.; Grigor, J.; King, D. F.; Matis, G.; McHugh, S.; McKechnie, J.; Nehring, B.
2015-05-01
The Future E-O (FEO) program was established to develop a flexible, modular, automated test capability as part of the Next Generation Automatic Test System (NGATS) program to support the test and diagnostic needs of currently fielded U.S. Army electro-optical (E-O) devices, as well as being expandable to address the requirements of future Navy, Marine Corps and Air Force E-O systems. Santa Barbara infrared (SBIR) has designed, fabricated, and delivered three (3) prototype FEO for engineering and logistics evaluation prior to anticipated full-scale production beginning in 2016. In addition to presenting a detailed overview of the FEO system hardware design, features and testing capabilities, the integration of SBIR's EO-IR sensor and laser test software package, IRWindows 4™, into FEO to automate the test execution, data collection and analysis, archiving and reporting of results is also described.
Accelerator Tests of the Prototype Energetic Heavy Ion Sensor (EHIS) for GOES-R
NASA Astrophysics Data System (ADS)
Connell, J. J.; Lopate, C.; McKibben, R. B.
2010-12-01
The Energetic Heavy Ion Sensor (EHIS) is part of the Space Environmental In-Situ Suite (SEISS) for the Geostationary Operational Environment Satellite series R (GOES-R) program. It will measure energetic protons from 10-200 MeV and ions through nickel (Z=28) with similar penetrating power. By use of an Angle Detecting Inclined Sensor (ADIS) system, EHIS achieves single element resolution with extensive on-board event processing. A prototype or "brass-board" instrument, fully functional but not intended for environmental testing, has been completed. In November of 2009, we exposed the prototype to protons at Massachusetts General Hospital (MGH) and in March of 2010, we exposed it to Ni primary and fragment beams at the National Superconducting Cyclotron Laboratory's (NSCL) Coupled Cyclotron Facility (CCF). In both cases, the instrument was rotated over a range of angles and a moving degrader spread the energy from full beam energy to zero energy. We will present results of these tests. These show an angular resolution for the prototype which results in a one sigma charge resolution of ~0.25 e at Ni. The prototype also demonstrated the capability for calculating the charge of 2500 events per second with its internal processor, accumulating those events in on-board charge histograms, and thus providing unprecedented statistics in high flux conditions. The EHIS represents a major advance in capabilities for operational space weather instruments while also providing data quality suitable for scientific research. The EHIS instrument development project was funded by NASA under contract NNG06HX01C.
Applied Operations Research: Operator's Assistant
NASA Technical Reports Server (NTRS)
Cole, Stuart K.
2015-01-01
NASA operates high value critical equipment (HVCE) that requires trouble shooting, periodic maintenance and continued monitoring by Operations staff. The complexity HVCE and information required to maintain and trouble shoot HVCE to assure continued mission success as paper is voluminous. Training on new HVCE is commensurate with the need for equipment maintenance. LaRC Research Directorate has undertaken a proactive research to support Operations staff by initiation of the development and prototyping an electronic computer based portable maintenance aid (Operator's Assistant). This research established a goal with multiple objectives and a working prototype was developed. The research identified affordable solutions; constraints; demonstrated use of commercial off the shelf software; use of the US Coast Guard maintenance solution; NASA Procedure Representation Language; and the identification of computer system strategies; where these demonstrations and capabilities support the Operator, and maintenance. The results revealed validation against measures of effectiveness and overall proved a substantial training and capability sustainment tool. The research indicated that the OA could be deployed operationally at the LaRC Compressor Station with an expectation of satisfactorily results and to obtain additional lessons learned prior to deployment at other LaRC Research Directorate Facilities. The research revealed projected cost and time savings.
Prototyping an institutional IAIMS/UMLS information environment for an academic medical center.
Miller, P L; Paton, J A; Clyman, J I; Powsner, S M
1992-07-01
The paper describes a prototype information environment designed to link network-based information resources in an integrated fashion and thus enhance the information capabilities of an academic medical center. The prototype was implemented on a single Macintosh computer to permit exploration of the overall "information architecture" and to demonstrate the various desired capabilities prior to full-scale network-based implementation. At the heart of the prototype are two components: a diverse set of information resources available over an institutional computer network and an information sources map designed to assist users in finding and accessing information resources relevant to their needs. The paper describes these and other components of the prototype and presents a scenario illustrating its use. The prototype illustrates the link between the goals of two National Library of Medicine initiatives, the Integrated Academic Information Management System (IAIMS) and the Unified Medical Language System (UMLS).
US NDC Modernization Iteration E2 Prototyping Report: User Interface Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Jennifer E.; Palmer, Melanie A.; Vickers, James Wallace
2014-12-01
During the second iteration of the US NDC Modernization Elaboration phase (E2), the SNL US NDC Modernization project team completed follow-on Rich Client Platform (RCP) exploratory prototyping related to the User Interface Framework (UIF). The team also developed a survey of browser-based User Interface solutions and completed exploratory prototyping for selected solutions. This report presents the results of the browser-based UI survey, summarizes the E2 browser-based UI and RCP prototyping work, and outlines a path forward for the third iteration of the Elaboration phase (E3).
Composites Manufacturing Education and Technology Facility Expedites Manufacturing Innovation
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Composites Manufacturing Education and Technology facility (CoMET) at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) paves the way for innovative wind turbine components and accelerated manufacturing. Available for use by industry partners and university researchers, the 10,000-square-foot facility expands NREL's composite manufacturing research capabilities by enabling researchers to design, prototype, and test composite wind turbine blades and other components -- and then manufacture them onsite. Designed to work in conjunction with NREL's design, analysis, and structural testing capabilities, the CoMET facility expedites manufacturing innovation.
Silva Filho, Telmo M; Souza, Renata M C R; Prudêncio, Ricardo B C
2016-08-01
Some complex data types are capable of modeling data variability and imprecision. These data types are studied in the symbolic data analysis field. One such data type is interval data, which represents ranges of values and is more versatile than classic point data for many domains. This paper proposes a new prototype-based classifier for interval data, trained by a swarm optimization method. Our work has two main contributions: a swarm method which is capable of performing both automatic selection of features and pruning of unused prototypes and a generalized weighted squared Euclidean distance for interval data. By discarding unnecessary features and prototypes, the proposed algorithm deals with typical limitations of prototype-based methods, such as the problem of prototype initialization. The proposed distance is useful for learning classes in interval datasets with different shapes, sizes and structures. When compared to other prototype-based methods, the proposed method achieves lower error rates in both synthetic and real interval datasets. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Junqi; Byrum, Karen; Demarteau, Marcel
Planar microchannel plate-based photodetector with bialkali photocathode is capable of fast and accurate time and position resolutions. A new 6 cm x 6 cm photodetector production facility was designed and built at Argonne National Laboratory. Small form-factor MCP-based photodetectors completely constructed of glass were designed and prototypes were successfully fabricated. Knudsen effusion cells were incorporated in the photocathode growth chamber to achieve uniform and high quantum efficiency hotocathodes. The thin film uniformity distribution was simulated and measured for an antimony film deposition, showing uniformity of better than 10%. Several prototype devices with bialkali photocathodes have been fabricated with the describedmore » system and their characteristics were evaluated in the large signal (multi-PE) limit. A typical prototype device exhibits time-of-flight resolution of ~ 27 psec and differential time resolution of ~ 9 psec, corresponding to spatial resolution of ~ 0.65 mm.« less
Computer aided systems human engineering: A hypermedia tool
NASA Technical Reports Server (NTRS)
Boff, Kenneth R.; Monk, Donald L.; Cody, William J.
1992-01-01
The Computer Aided Systems Human Engineering (CASHE) system, Version 1.0, is a multimedia ergonomics database on CD-ROM for the Apple Macintosh II computer, being developed for use by human system designers, educators, and researchers. It will initially be available on CD-ROM and will allow users to access ergonomics data and models stored electronically as text, graphics, and audio. The CASHE CD-ROM, Version 1.0 will contain the Boff and Lincoln (1988) Engineering Data Compendium, MIL-STD-1472D and a unique, interactive simulation capability, the Perception and Performance Prototyper. Its features also include a specialized data retrieval, scaling, and analysis capability and the state of the art in information retrieval, browsing, and navigation.
DARPA counter-sniper program: Phase 1 Acoustic Systems Demonstration results
NASA Astrophysics Data System (ADS)
Carapezza, Edward M.; Law, David B.; Csanadi, Christina J.
1997-02-01
During October 1995 through May 1996, the Defense Advanced Research Projects Agency sponsored the development of prototype systems that exploit acoustic muzzle blast and ballistic shock wave signatures to accurately predict the location of gunfire events and associated shooter locations using either single or multiple volumetric arrays. The output of these acoustic systems is an estimate of the shooter location and a classification estimate of the caliber of the shooter's weapon. A portable display and control unit provides both graphical and alphanumeric shooter location related information integrated on a two- dimensional digital map of the defended area. The final Phase I Acoustic Systems Demonstration field tests were completed in May. These these tests were held at USMC Base Camp Pendleton Military Operations Urban Training (MOUT) facility. These tests were structured to provide challenging gunfire related scenarios with significant reverberation and multi-path conditions. Special shot geometries and false alarms were included in these tests to probe potential system vulnerabilities and to determine the performance and robustness of the systems. Five prototypes developed by U.S. companies and one Israeli developed prototype were tested. This analysis quantifies the spatial resolution estimation capability (azimuth, elevation and range) of these prototypes and describes their ability to accurately classify the type of bullet fired in a challenging urban- like setting.
NASA Technical Reports Server (NTRS)
1990-01-01
The YF-22, prototype aircraft for the Air Force's F-22 fighter, cruises over the desert on a flight for the Air Force. It was never involved in any programs with Dryden. The United States Air Force announced the demonstration/validation phase contractors selection for the Advanced Tactical Fighter (ATF) program October 31, 1986. These contractor programs were the Lockheed YF-22 and the Northrop YF-23; each produced two prototypes and ground-based avionics testbeds. First flights of all four prototypes occured in 1990. The YF-22 was first flown on Sept. 29, 1990. The YF-22 was powered by two General Electric YF120-GE-100 engines. The final design, the F-22, was flown sometime in May 1997. The F-22 is capable of efficient supersonic operation without afterburner use (supercruise). Lockheed teamed with General Dynamics (Fort Worth) and Boeing Military Airplanes to produce two YF-22 prototypes, civil registrations N22YF (with GE YF120) and N22YX (P&W YF119). N22YF rolled out at Palmdale August 29, 1990; first flight/ferry to Edwards AFB September 29, 1990; first air refuelling (11th sortie) October 26, 1990; thrust vectoring in flight November 15, 1990; achieved Mach 1.8 December 26, 1990. Flight test demonstrations included `supercruise' flight in excess of Mach 1.58 without afterburner.
Matthew G. Rollins; Christine K. Frame
2006-01-01
The Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, began in April of 2002 and ended in April of 2005. The project was funded by the U.S. Department of Agriculture Forest Service and U.S. Department of the Interior. The objectives of the LANDFIRE Prototype Project were to develop the methods, tools, and protocols...
Jadhav, Pravin R; Neal, Lauren; Florian, Jeff; Chen, Ying; Naeger, Lisa; Robertson, Sarah; Soon, Guoxing; Birnkrant, Debra
2010-09-01
This article presents a prototype for an operational innovation in knowledge management (KM). These operational innovations are geared toward managing knowledge efficiently and accessing all available information by embracing advances in bioinformatics and allied fields. The specific components of the proposed KM system are (1) a database to archive hepatitis C virus (HCV) treatment data in a structured format and retrieve information in a query-capable manner and (2) an automated analysis tool to inform trial design elements for HCV drug development. The proposed framework is intended to benefit drug development by increasing efficiency of dose selection and improving the consistency of advice from US Food and Drug Administration (FDA). It is also hoped that the framework will encourage collaboration among FDA, industry, and academic scientists to guide the HCV drug development process using model-based quantitative analysis techniques.
A knowledge-based system for monitoring the electrical power system of the Hubble Space Telescope
NASA Technical Reports Server (NTRS)
Eddy, Pat
1987-01-01
The design and the prototype for the expert system for the Hubble Space Telescope's electrical power system are discussed. This prototype demonstrated the capability to use real time data from a 32k telemetry stream and to perform operational health and safety status monitoring, detect trends such as battery degradation, and detect anomalies such as solar array failures. This prototype, along with the pointing control system and data management system expert systems, forms the initial Telemetry Analysis for Lockheed Operated Spacecraft (TALOS) capability.
A full Monte Carlo simulation of the YAP-PEM prototype for breast tumor detection
NASA Astrophysics Data System (ADS)
Motta, A.; Righi, S.; Del Guerra, A.; Belcari, N.; Vaiano, A.; De Domenico, G.; Zavattini, G.; Campanini, R.; Lanconelli, N.; Riccardi, A.
2004-07-01
A prototype for Positron Emission Mammography, the YAP-PEM, is under development within a collaboration of the Italian Universities of Pisa, Ferrara, and Bologna. The aim is to detect breast lesions, with dimensions of 5 mm in diameter, and with a specific activity ratio of 10:1 between the cancer and breast tissue. The YAP-PEM is composed of two stationary detection heads of 6×6 cm 2, composed of a matrix of 30×30 YAP:Ce finger crystals of 2×2×30 mm 3 each. The EGSnrc Monte Carlo code has been used to simulate several characteristics of the prototype. A fast EM algorithm has been adapted to reconstruct all of the collected lines of flight, also at large incidence angles, by achieving 3D positioning capability of the lesion in the FOV. The role of the breast compression has been studied. The performed study shows that a 5 mm diameter tumor of 37 kBq/cm 3 (1 μCi/cm 3), embedded in active breast tissue with 10:1 tumor/background specific activity ratio, is detected in 10 min with a Signal-to-Noise Ratio of 8.7±1.0. Two hot lesions in the active breast phantom are clearly visible in the reconstructed image.
Endoscopic hyperspectral imaging: light guide optimization for spectral light source
NASA Astrophysics Data System (ADS)
Browning, Craig M.; Mayes, Samuel; Rich, Thomas C.; Leavesley, Silas J.
2018-02-01
Hyperspectral imaging (HSI) is a technology used in remote sensing, food processing and documentation recovery. Recently, this approach has been applied in the medical field to spectrally interrogate regions of interest within respective substrates. In spectral imaging, a two (spatial) dimensional image is collected, at many different (spectral) wavelengths, to sample spectral signatures from different regions and/or components within a sample. Here, we report on the use of hyperspectral imaging for endoscopic applications. Colorectal cancer is the 3rd leading cancer for incidences and deaths in the US. One factor of severity is the miss rate of precancerous/flat lesions ( 65% accuracy). Integrating HSI into colonoscopy procedures could minimize misdiagnosis and unnecessary resections. We have previously reported a working prototype light source with 16 high-powered light emitting diodes (LEDs) capable of high speed cycling and imaging. In recent testing, we have found our current prototype is limited by transmission loss ( 99%) through the multi-furcated solid light guide (lightpipe) and the desired framerate (20-30 fps) could not be achieved. Here, we report on a series of experimental and modeling studies to better optimize the lightpipe and the spectral endoscopy system as a whole. The lightpipe was experimentally evaluated using an integrating sphere and spectrometer (Ocean Optics). Modeling the lightpipe was performed using Monte Carlo optical ray tracing in TracePro (Lambda Research Corp.). Results of these optimization studies will aid in manufacturing a revised prototype with the newly designed light guide and increased sensitivity. Once the desired optical output (5-10 mW) is achieved then the HIS endoscope system will be able to be implemented without adding onto the procedure time.
NASA Astrophysics Data System (ADS)
Mohtashami, Yahya; Luyen, Hung; Hagness, Susan C.; Behdad, Nader
2018-06-01
We present an investigation of a new class of microwave ablation (MWA) antennas capable of producing axially symmetric or asymmetric heating patterns. The antenna design is based on a dipole fed by a balanced parallel-wire transmission line. The angle and direction of the deployed dipole arms are used to control the heating pattern. We analyzed the specific absorption rate and temperature profiles using electromagnetic and thermal simulations. Two prototypes were fabricated and tested in ex vivo ablation experiments: one was designed to produce symmetric heating patterns and the other was designed to generate asymmetric heating patterns. Both fabricated prototypes exhibited good impedance matching and produced localized coagulation zones as predicted by the simulations. The prototype operating in porcine muscle created an ˜10 cm3 symmetric ablation zone after 10 min of ablation with a power level of 18 W. The prototype operating in egg white created an ˜4 cm3 asymmetric ablation zone with a directionality ratio of 40% after 5 min of ablation with a power level of 25 W. The proposed MWA antenna design shows promise for minimally invasive treatment of tumors in various clinical scenarios where, depending on the situation, a symmetric or an asymmetric heating pattern may be needed.
Miniaturized Air-to-Refrigerant Heat Exchangers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radermacher, Reinhard; Bacellar, Daniel; Aute, Vikrant
Air-to-refrigerant Heat eXchangers (HX) are an essential component of Heating, Ventilation, Air-Conditioning, and Refrigeration (HVAC&R) systems, serving as the main heat transfer component. The major limiting factor to HX performance is the large airside thermal resistance. Recent literature aims at improving heat transfer performance by utilizing enhancement methods such as fins and small tube diameters; this has lead to almost exhaustive research on the microchannel HX (MCHX). The objective of this project is to develop a miniaturized air-to-refrigerant HX with at least 20% reduction in volume, material volume, and approach temperature compared to current state-of-the-art multiport flat tube designs andmore » also be capable of production within five years. Moreover, the proposed HX’s are expected to have good water drainage and should succeed in both evaporator and condenser applications. The project leveraged Parallel-Parametrized Computational Fluid Dynamics (PPCFD) and Approximation-Assisted Optimization (AAO) techniques to perform multi-scale analysis and shape optimization with the intent of developing novel HX designs whose thermal-hydraulic performance exceeds that of state-of-the-art MCHX. Nine heat exchanger geometries were initially chosen for detailed analysis, selected from 35+ geometries which were identified in previous work at the University of Maryland, College Park. The newly developed optimization framework was exercised for three design optimization problems: (DP I) 1.0kW radiator, (DP II) 10kW radiator and (DP III) 10kW two-phase HX. DP I consisted of the design and optimization of 1.0kW air-to-water HX’s which exceeded the project requirements of 20% volume/material reduction and 20% better performance. Two prototypes for the 1.0kW HX were prototyped, tested and validated using newly-designed airside and refrigerant side test facilities. DP II, a scaled version DP I for 10kW air-to-water HX applications, also yielded optimized HX designs which met project requirements. Attempts to prototype a 10kW have presented unique manufacturing challenges, especially regarding tube blockages and structural stability. DP III comprised optimizing two-phase HX’s for a 3.0Ton capacity in a heat pump / air-conditioning unit for cooling mode application using R410A as the working fluid. The HX’s theoretically address the project requirements. System-level analysis showed the HX’s achieved up to 15% improvement in COP while also reducing overall unit charge by 30-40%. The project methodology was capable of developing HX’s which can outperform current state-of-the-art MCHX by at least 20% reduction in volume, material volume, and approach temperature. Additionally, the capability for optimization using refrigerant charge as an objective function was developed. The five-year manufacturing feasibility of the proposed HX’s was shown to have a good outlook. Successful prototyping through both conventional manufacturing methods and next generation methods such as additive manufacturing was achieved.« less
Fake News: A Technological Approach to Proving the Origins of Content, Using Blockchains.
Huckle, Steve; White, Martin
2017-12-01
In this article, we introduce a prototype of an innovative technology for proving the origins of captured digital media. In an era of fake news, when someone shows us a video or picture of some event, how can we trust its authenticity? It seems that the public no longer believe that traditional media is a reliable reference of fact, perhaps due, in part, to the onset of many diverse sources of conflicting information, via social media. Indeed, the issue of "fake" reached a crescendo during the 2016 U.S. Presidential Election, when the winner, Donald Trump, claimed that The New York Times was trying to discredit him by pushing disinformation. Current research into overcoming the problem of fake news does not focus on establishing the ownership of media resources used in such stories-the blockchain-based application introduced in this article is technology that is capable of indicating the authenticity of digital media. Put simply, using the trust mechanisms of blockchain technology, the tool can show, beyond doubt, the provenance of any source of digital media, including images used out of context in attempts to mislead. Although the application is an early prototype and its capability to find fake resources is somewhat limited, we outline future improvements that would overcome such limitations. Furthermore, we believe that our application (and its use of blockchain technology and standardized metadata) introduces a novel approach to overcoming falsities in news reporting and the provenance of media resources used therein. However, while our application has the potential to be able to verify the originality of media resources, we believe that technology is only capable of providing a partial solution to fake news. That is because it is incapable of proving the authenticity of a news story as a whole. We believe that takes human skills.
Auditory Localization Performance with Asymmetric Integrated Eye and Ear Protection
2018-03-01
prototypes. The AIEEP is a tactical communications and protection system (TCAPS) that also provides eye protection. Participants used a laser pointer...difference cues ......... 3 Fig. 3 Loudspeaker configuration in the dome room: Method 2 testing incorporates 36 loudspeakers spaced at even intervals of 10...attenuation capabilities and electronic limiters that suppress transmission of impulsive and high -level steady-state noise. In addition, the manufacturer
Development of an air flow thermal balance calorimeter
NASA Technical Reports Server (NTRS)
Sherfey, J. M.
1972-01-01
An air flow calorimeter, based on the idea of balancing an unknown rate of heat evolution with a known rate of heat evolution, was developed. Under restricted conditions, the prototype system is capable of measuring thermal wattages from 10 milliwatts to 1 watt, with an error no greater than 1 percent. Data were obtained which reveal system weaknesses and point to modifications which would effect significant improvements.
NASA Technical Reports Server (NTRS)
1971-01-01
The prototype slide staining system capable of performing both one-component Wright's staining of blood smears and eight-step Gram staining of heat fixed slides of microorganisms is described. Attention was given to liquid containment, waste handling, absence of contamination from previous staining, and stability of the staining reagents. The unit is self-contained, capable of independent operation under one- or zero-g conditions, and compatible with Skylab A.
KAPAO: a MEMS-based natural guide star adaptive optics system
NASA Astrophysics Data System (ADS)
Severson, Scott A.; Choi, Philip I.; Contreras, Daniel S.; Gilbreth, Blaine N.; Littleton, Erik; McGonigle, Lorcan P.; Morrison, William A.; Rudy, Alex R.; Wong, Jonathan R.; Xue, Andrew; Spjut, Erik; Baranec, Christoph; Riddle, Reed
2013-03-01
We describe KAPAO, our project to develop and deploy a low-cost, remote-access, natural guide star adaptive optics (AO) system for the Pomona College Table Mountain Observatory (TMO) 1-meter telescope. We use a commercially available 140-actuator BMC MEMS deformable mirror and a version of the Robo-AO control software developed by Caltech and IUCAA. We have structured our development around the rapid building and testing of a prototype system, KAPAO-Alpha, while simultaneously designing our more capable final system, KAPAO-Prime. The main differences between these systems are the prototype's reliance on off-the-shelf optics and a single visible-light science camera versus the final design's improved throughput and capabilities due to the use of custom optics and dual-band, visible and near-infrared imaging. In this paper, we present the instrument design and on-sky closed-loop testing of KAPAO-Alpha as well as our plans for KAPAO-Prime. The primarily undergraduate-education nature of our partner institutions, both public (Sonoma State University) and private (Pomona and Harvey Mudd Colleges), has enabled us to engage physics, astronomy, and engineering undergraduates in all phases of this project. This material is based upon work supported by the National Science Foundation under Grant No. 0960343.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendon, Vrushali V.; Taylor, Zachary T.
ABSTRACT: Recent advances in residential building energy efficiency and codes have resulted in increased interest in detailed residential building energy models using the latest energy simulation software. One of the challenges of developing residential building models to characterize new residential building stock is to allow for flexibility to address variability in house features like geometry, configuration, HVAC systems etc. Researchers solved this problem in a novel way by creating a simulation structure capable of creating fully-functional EnergyPlus batch runs using a completely scalable residential EnergyPlus template system. This system was used to create a set of thirty-two residential prototype buildingmore » models covering single- and multifamily buildings, four common foundation types and four common heating system types found in the United States (US). A weighting scheme with detailed state-wise and national weighting factors was designed to supplement the residential prototype models. The complete set is designed to represent a majority of new residential construction stock. The entire structure consists of a system of utility programs developed around the core EnergyPlus simulation engine to automate the creation and management of large-scale simulation studies with minimal human effort. The simulation structure and the residential prototype building models have been used for numerous large-scale studies, one of which is briefly discussed in this paper.« less
Maintaining Situation Awareness with Autonomous Airborne Observation Platforms
NASA Technical Reports Server (NTRS)
Freed, Michael; Fitzgerald, Will
2005-01-01
Unmanned Aerial Vehicles (UAVs) offer tremendous potential as intelligence, surveillance and reconnaissance (ISR) platforms for early detection of security threats and for acquisition and maintenance of situation awareness in crisis conditions. However, using their capabilities effectively requires addressing a range of practical and theoretical problems. The paper will describe progress by the "Autonomous Rotorcraft Project," a collaborative effort between NASA and the U.S. Army to develop a practical, flexible capability for UAV-based ISR. Important facets of the project include optimization methods for allocating scarce aircraft resources to observe numerous, distinct sites of interest; intelligent flight automation software than integrates high-level plan generation capabilities with executive control, failure response and flight control functions; a system architecture supporting reconfiguration of onboard sensors to address different kinds of threats; and an advanced prototype vehicle designed to allow large-scale production at low cost. The paper will also address human interaction issues including an empirical method for determining how to allocate roles and responsibilities between flight automation and human operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humble, Travis S; Sadlier, Ronald J
Quantum communication systems harness modern physics through state-of-the-art optical engineering to provide revolutionary capabilities. An important concern for quantum communication engineering is designing and prototyping these systems to prototype proposed capabilities. We apply the paradigm of software-defined communica- tion for engineering quantum communication systems to facilitate rapid prototyping and prototype comparisons. We detail how to decompose quantum communication terminals into functional layers defining hardware, software, and middleware concerns, and we describe how each layer behaves. Using the super-dense coding protocol as a test case, we describe implementations of both the transmitter and receiver, and we present results from numerical simulationsmore » of the behavior. We find that while the theoretical benefits of super dense coding are maintained, there is a classical overhead associated with the full implementation.« less
Recognition of 3-D Scene with Partially Occluded Objects
NASA Astrophysics Data System (ADS)
Lu, Siwei; Wong, Andrew K. C...
1987-03-01
This paper presents a robot vision system which is capable of recognizing objects in a 3-D scene and interpreting their spatial relation even though some objects in the scene may be partially occluded by other objects. An algorithm is developed to transform the geometric information from the range data into an attributed hypergraph representation (AHR). A hypergraph monomorphism algorithm is then used to compare the AHR of objects in the scene with a set of complete AHR's of prototypes. The capability of identifying connected components and interpreting various types of edges in the 3-D scene enables us to distinguish objects which are partially blocking each other in the scene. Using structural information stored in the primitive area graph, a heuristic hypergraph monomorphism algorithm provides an effective way for recognizing, locating, and interpreting partially occluded objects in the range image.
CONSTRUCTION, MONITORING, AND PERFORMANCE OF TWO SOIL LINERS
A prototype soil liner and a field-scale soil liner were constructed to test whether compacted soil barrier systems could be built to meet the standard set by the U.S. Environmental Protection Agency (EPA) for saturated hydraulic conductivity (< 1 x 10'7 cm/s). In situ ponded inf...
Visible camera imaging of plasmas in Proto-MPEX
NASA Astrophysics Data System (ADS)
Mosby, R.; Skeen, C.; Biewer, T. M.; Renfro, R.; Ray, H.; Shaw, G. C.
2015-11-01
The prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a linear plasma device being developed at Oak Ridge National Laboratory (ORNL). This machine plans to study plasma-material interaction (PMI) physics relevant to future fusion reactors. Measurements of plasma light emission will be made on Proto-MPEX using fast, visible framing cameras. The cameras utilize a global shutter, which allows a full frame image of the plasma to be captured and compared at multiple times during the plasma discharge. Typical exposure times are ~10-100 microseconds. The cameras are capable of capturing images at up to 18,000 frames per second (fps). However, the frame rate is strongly dependent on the size of the ``region of interest'' that is sampled. The maximum ROI corresponds to the full detector area, of ~1000x1000 pixels. The cameras have an internal gain, which controls the sensitivity of the 10-bit detector. The detector includes a Bayer filter, for ``true-color'' imaging of the plasma emission. This presentation will exmine the optimized camera settings for use on Proto-MPEX. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.
Schaefgen, Benedikt; Heil, Joerg; Barr, Richard G; Radicke, Marcus; Harcos, Aba; Gomez, Christina; Stieber, Anne; Hennigs, André; von Au, Alexandra; Spratte, Julia; Rauch, Geraldine; Rom, Joachim; Schütz, Florian; Sohn, Christof; Golatta, Michael
2018-06-01
To determine the feasibility of a prototype device combining 3D-automated breast ultrasound (ABVS) and digital breast tomosynthesis in a single device to detect and characterize breast lesions. In this prospective feasibility study, the FUSION-X-US prototype was used to perform digital breast tomosynthesis and ABVS in 23 patients with an indication for tomosynthesis based on current guidelines after clinical examination and standard imaging. The ABVS and tomosynthesis images of the prototype were interpreted separately by two blinded experts. The study compares the detection and BI-RADS® scores of breast lesions using only the tomosynthesis and ABVS data from the FUSION-X-US prototype to the results of the complete diagnostic workup. Image acquisition and processing by the prototype was fast and accurate, with some limitations in ultrasound coverage and image quality. In the diagnostic workup, 29 solid lesions (23 benign, including three cases with microcalcifications, and six malignant lesions) were identified. Using the prototype, all malignant lesions were detected and classified as malignant or suspicious by both investigators. Solid breast lesions can be localized accurately and fast by the Fusion-X-US system. Technical improvements of the ultrasound image quality and ultrasound coverage are needed to further study this new device. The prototype combines tomosynthesis and automated 3D-ultrasound (ABVS) in one device. It allows accurate detection of malignant lesions, directly correlating tomosynthesis and ABVS data. The diagnostic evaluation of the prototype-acquired data was interpreter-independent. The prototype provides a time-efficient and technically reliable diagnostic procedure. The combination of tomosynthesis and ABVS is a promising diagnostic approach.
A 10-Fr ultrasound catheter with integrated micromotor for 4-D intracardiac echocardiography.
Lee, Warren; Griffin, Weston; Wildes, Douglas; Buckley, Donald; Topka, Terry; Chodakauskas, Thaddeus; Langer, Mark; Calisti, Serge; Bergstøl, Svein; Malacrida, Jean-Pierre; Lanteri, Frédéric; Maffre, Jennifer; McDaniel, Ben; Shivkumar, Kalyanam; Cummings, Jennifer; Callans, David; Silvestry, Frank; Packer, Douglas
2011-07-01
We developed prototype real-time 3-D intracardiac echocardiography catheters with integrated micromotors, allowing internal oscillation of a low-profile 64-element, 6.2-MHz phased-array transducer in the elevation direction. Components were designed to facilitate rotation of the array, including a low-torque flexible transducer interconnect and miniature fixtures for the transducer and micromotor. The catheter tip prototypes were integrated with two-way deflectable 10-Fr catheters and used in in vivo animal testing at multiple facilities. The 4-D ICE catheters were capable of imaging a 90° azimuth by up to 180° elevation field of view. Volume rates ranged from 1 vol/sec (180° elevation) to approximately 10 vol/sec (60° elevation). We successfully imaged electrophysiology catheters, atrial septal puncture procedures, and detailed cardiac anatomy. The elevation oscillation enabled 3-D visualization of devices and anatomy, providing new clinical information and perspective not possible with current 2-D imaging catheters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
St James, S; Argento, D; DeWitt, D
Purpose: Fast neutron therapy is offered at the University of Washington Medical Center for treatment of selected cancers. The hardware and control systems of the UW Clinical Neutron Therapy System are undergoing upgrades to enable delivery of IMNT. To clinically implement IMNT, dose verification tools need to be developed. We propose a portal imaging system that relies on the creation of positron emitting isotopes ({sup 11}C and {sup 15}O) through (n, 2n) reactions with a PMMA plate placed below the patient. After field delivery, the plate is retrieved from the vault and imaged using a reader that detects the annihilationmore » photons. The pattern of activity produced in the plate provides information to reconstruct the neutron fluence map that can be compared to fluence maps from Monte Carlo (MCNP) simulations to verify treatment delivery. We have previously performed Monte Carlo simulations of the portal imaging system (GATE simulations) and the beam line (MCNP simulations). In this work, initial measurements using a prototype system are presented. Methods: Custom electronics were developed for BGO detectors read out with photomultiplier tubes (previous generation PET detectors from a CTI ECAT 953 scanner). Two detectors were placed in coincidence, with a detector separation of 2 cm. Custom software was developed to create the crystal look up tables and perform a limited angle planar reconstruction with a stochastic normalization. To test the initial capabilities of the system, PMMA squares were irradiated with neutrons at a depth of 1.5 cm and read out using the prototype system. Doses ranging from 10–200 cGy were delivered. Results: Using the prototype system, dose differences in the therapeutic range could be determined. Conclusion: The prototype portal imaging system is capable of detecting neutron doses as low as 10–50 cGy and shows great promise as a patient QA tool for IMNT.« less
The Buffer Diagnostic Prototype: A fault isolation application using CLIPS
NASA Technical Reports Server (NTRS)
Porter, Ken
1994-01-01
This paper describes problem domain characteristics and development experiences from using CLIPS 6.0 in a proof-of-concept troubleshooting application called the Buffer Diagnostic Prototype. The problem domain is a large digital communications subsystems called the real-time network (RTN), which was designed to upgrade the launch processing system used for shuttle support at KSC. The RTN enables up to 255 computers to share 50,000 data points with millisecond response times. The RTN's extensive built-in test capability but lack of any automatic fault isolation capability presents a unique opportunity for a diagnostic expert system application. The Buffer Diagnostic Prototype addresses RTN diagnosis with a multiple strategy approach. A novel technique called 'faulty causality' employs inexact qualitative models to process test results. Experimental knowledge provides a capability to recognize symptom-fault associations. The implementation utilizes rule-based and procedural programming techniques, including a goal-directed control structure and simple text-based generic user interface that may be reusable for other rapid prototyping applications. Although limited in scope, this project demonstrates a diagnostic approach that may be adapted to troubleshoot a broad range of equipment.
A Prototype HTML Training System for Graphic Communication Majors
ERIC Educational Resources Information Center
Runquist, Roger L.
2010-01-01
This design research demonstrates a prototype content management system capable of training graphic communication students in the creation of basic HTML web pages. The prototype serve as a method of helping students learn basic HTML structure and commands earlier in their academic careers. Exposure to the concepts of web page creation early in…
Tactile-Foot Stimulation Can Assist the Navigation of People with Visual Impairment
Velázquez, Ramiro; Pissaloux, Edwige; Lay-Ekuakille, Aimé
2015-01-01
Background. Tactile interfaces that stimulate the plantar surface with vibrations could represent a step forward toward the development of wearable, inconspicuous, unobtrusive, and inexpensive assistive devices for people with visual impairments. Objective. To study how people understand information through their feet and to maximize the capabilities of tactile-foot perception for assisting human navigation. Methods. Based on the physiology of the plantar surface, three prototypes of electronic tactile interfaces for the foot have been developed. With important technological improvements between them, all three prototypes essentially consist of a set of vibrating actuators embedded in a foam shoe-insole. Perceptual experiments involving direction recognition and real-time navigation in space were conducted with a total of 60 voluntary subjects. Results. The developed prototypes demonstrated that they are capable of transmitting tactile information that is easy and fast to understand. Average direction recognition rates were 76%, 88.3%, and 94.2% for subjects wearing the first, second, and third prototype, respectively. Exhibiting significant advances in tactile-foot stimulation, the third prototype was evaluated in navigation tasks. Results show that subjects were capable of following directional instructions useful for navigating spaces. Conclusion. Footwear providing tactile stimulation can be considered for assisting the navigation of people with visual impairments. PMID:27019593
Tactile-Foot Stimulation Can Assist the Navigation of People with Visual Impairment.
Velázquez, Ramiro; Pissaloux, Edwige; Lay-Ekuakille, Aimé
2015-01-01
Background. Tactile interfaces that stimulate the plantar surface with vibrations could represent a step forward toward the development of wearable, inconspicuous, unobtrusive, and inexpensive assistive devices for people with visual impairments. Objective. To study how people understand information through their feet and to maximize the capabilities of tactile-foot perception for assisting human navigation. Methods. Based on the physiology of the plantar surface, three prototypes of electronic tactile interfaces for the foot have been developed. With important technological improvements between them, all three prototypes essentially consist of a set of vibrating actuators embedded in a foam shoe-insole. Perceptual experiments involving direction recognition and real-time navigation in space were conducted with a total of 60 voluntary subjects. Results. The developed prototypes demonstrated that they are capable of transmitting tactile information that is easy and fast to understand. Average direction recognition rates were 76%, 88.3%, and 94.2% for subjects wearing the first, second, and third prototype, respectively. Exhibiting significant advances in tactile-foot stimulation, the third prototype was evaluated in navigation tasks. Results show that subjects were capable of following directional instructions useful for navigating spaces. Conclusion. Footwear providing tactile stimulation can be considered for assisting the navigation of people with visual impairments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, T J; Belles, R D; Ellis, J S
2001-05-01
In June of 1997, under an umbrella Memorandum of Understanding between the Japan Atomic Energy Research Institute (JAERI) and the U.S. Department of Energy (US/DOE) concerning matters of nuclear research and development, a Specific Memorandum of Agreement (SMA) entitled ''A Collaborative Programme of Development of a Prototype Communication Link to Share Atmospheric Dispersion and Dose Assessment Modelling Products'' was signed. This SMA formalized an informal collaborative exchange between the DOE's Lawrence Livermore National Laboratory (LLNL) Atmospheric Release Advisory Capability (ARAC) center and the Japan Atomic Energy Research Institute (JAERI) Worldwide System for Prediction of Environmental Emergency Dose Information (WSPEEDI). Themore » intended objective of this agreement was to explore various modes of information exchange, beyond facsimile transmission, which could provide for the quick exchange of information between two major nuclear emergency dose assessment and prediction national centers to provide consistency checks and data exchange before public release of their calculations. The extreme sensitivity of the general public to any nuclear accident information has been a strong motivation to seek peer preview prior to public release. Other intended objectives of this work are the development of an affordable/accessible system for distribution of prediction results to other countries having no prediction capabilities and utilization of the link for collaboration studies. To fulfill the objectives of this project JAERI and LLNL scientists determined to assess the evolving Internet and rapidly emerging communications application software. Our timing was a little early in 1997-1998 but nonetheless a few candidate software packages were found, evaluated and a selection was made for initial test and evaluation. Subsequently several new candidate software packages have arrived, albeit with limitations. This report outlines the ARAC and JAERI emergency response assessment systems, describes the prototype communications protocol system established and the tools evaluated in that process. Three real-time applications of the information exchange protocol and lessons learned are discussed and then some conclusions and future plans are presented.« less
2016-06-01
therefore did not implement or test actual sensors or electronic components (analog-to-digital conversion, power , and the wireless transmission ...ARL-TR-7703 ● JUNE 2016 US Army Research Laboratory Evaluation of a Prototype Low-Cost, Modular, Wireless Electroencephalography...originator. ARL-TR-7703 ● JUNE 2016 US Army Research Laboratory Evaluation of a Prototype Low-Cost, Modular, Wireless
Prototype high resolution multienergy soft x-ray array for NSTX.
Tritz, K; Stutman, D; Delgado-Aparicio, L; Finkenthal, M; Kaita, R; Roquemore, L
2010-10-01
A novel diagnostic design seeks to enhance the capability of multienergy soft x-ray (SXR) detection by using an image intensifier to amplify the signals from a larger set of filtered x-ray profiles. The increased number of profiles and simplified detection system provides a compact diagnostic device for measuring T(e) in addition to contributions from density and impurities. A single-energy prototype system has been implemented on NSTX, comprised of a filtered x-ray pinhole camera, which converts the x-rays to visible light using a CsI:Tl phosphor. SXR profiles have been measured in high performance plasmas at frame rates of up to 10 kHz, and comparisons to the toroidally displaced tangential multi-energy SXR have been made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen
The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-basedmore » drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.« less
A conceptual prototype for the next-generation national elevation dataset
Stoker, Jason M.; Heidemann, Hans Karl; Evans, Gayla A.; Greenlee, Susan K.
2013-01-01
In 2012 the U.S. Geological Survey's (USGS) National Geospatial Program (NGP) funded a study to develop a conceptual prototype for a new National Elevation Dataset (NED) design with expanded capabilities to generate and deliver a suite of bare earth and above ground feature information over the United States. This report details the research on identifying operational requirements based on prior research, evaluation of what is needed for the USGS to meet these requirements, and development of a possible conceptual framework that could potentially deliver the kinds of information that are needed to support NGP's partners and constituents. This report provides an initial proof-of-concept demonstration using an existing dataset, and recommendations for the future, to inform NGP's ongoing and future elevation program planning and management decisions. The demonstration shows that this type of functional process can robustly create derivatives from lidar point cloud data; however, more research needs to be done to see how well it extends to multiple datasets.
The ARAC-RODOS-WSPEEDI Information Exchange Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, T J
1999-09-01
Under the auspices of a US DOE-JAPAN Memorandum of Understanding JAERI and LLNL agreed to develop and evaluate a prototype information exchange protocol for nuclear accident emergency situations. This project received some interest from the US DOS and FEMA as it fits nicely under the umbrella of the G-7's GEMINI (Global Emergency Management Information Network Initiative) project. Because of LLNL/ARAC and JAERV WSPEEDI interest in nuclear accident consequence assessment and hazard prediction on all scales, to include global, we were happy to participate. Subsequent to the Spring 1997 RODOS-ARAC Workshop a Memorandum of Agreement was developed to enhance mutual collaborationmore » on matters of emergency systems development. In the summer of 1998 the project leaders of RODOS, WSPEEDI and ARAC met at FZK and agreed to join in a triangular collaboration on the development and demonstration of an emergency information exchange protocol. JAERI and FZK are engaged in developing a formal cooperation agreement. The purpose of this project is to evaluate the prototype information protocol application for technical feasibility and mutual benefit through simulated (real) event; quick exchange of atmospheric modeling products and environmental data during emergencies, distribution of predicted results to other countries having no prediction capabilities, and utilization of the link for collaborative studies.« less
Prototype active scanner for nighttime oil spill mapping and classification
NASA Technical Reports Server (NTRS)
Sandness, G. A.; Ailes, S. B.
1977-01-01
A prototype, active, aerial scanner system was constructed for nighttime water pollution detection and nighttime multispectral imaging of the ground. An arc lamp was used to produce the transmitted light and four detector channels provided a multispectral measurement capability. The feasibility of the design concept was demonstrated by laboratory and flight tests of the prototype system.
Brown, Marissa D; Chambers, Delores H
2015-12-01
This research determined the sensory characteristics of currently available plain yogurts available in U.S. supermarkets and examined how 3 "more sustainable" prototypes compared. The prototypes, nonfat set-style yogurts pre-acidified after pasteurization with lemon juice or citric acid at 80 ppm to pH 6.2, had shorter fermentation times than the lab-made control. These reduced fermentation times could result in energy reductions and potentially substantiate a "sustainable" marketing claim, a concept gaining traction with consumers. Twenty-six commercial yogurts, varying in percent milk fat, milk source (organic or conventional), and processing (set-style, stirred, or strained/Greek-style), were also included. Using descriptive sensory analysis, a 6-person highly trained panel scored the intensity of 25 flavor and 10 texture attributes on a 15-point scale. Three replications were carried out, and all samples were tested at least 10 d prior to the end of their shelf-lives. The samples differed for 19 flavor and all 10 texture attributes. Cluster analysis indicated approximately 7 flavor and 5 texture clusters. The prototype pre-acidified with lemon juice was similar to category leaders nonfat yogurt varieties. The prototype pre-acidified with citric acid was similar in texture but was less sour. Although no legal definitions exist for "sustainable," the prototypes' sensory characteristics are comparable to those of popular yogurts indicating potential market viability. This research also demonstrates potential for making yogurt that is in line with growing consumer expectations for sustainability. Despite the current diversity, several combinations of flavor and texture were not represented. © 2015 Institute of Food Technologists®
US NDC Modernization Iteration E1 Prototyping Report: User Interface Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lober, Randall R.
2014-12-01
During the first iteration of the US NDC Modernization Elaboration phase (E1), the SNL US NDC modernization project team completed an initial survey of applicable COTS solutions, and established exploratory prototyping related to the User Interface Framework (UIF) in support of system architecture definition. This report summarizes these activities and discusses planned follow-on work.
US NDC Modernization Iteration E1 Prototyping Report: Common Object Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Jennifer E.; Hess, Michael M.
2014-12-01
During the first iteration of the US NDC Modernization Elaboration phase (E1), the SNL US NDC modernization project team completed an initial survey of applicable COTS solutions, and established exploratory prototyping related to the Common Object Interface (COI) in support of system architecture definition. This report summarizes these activities and discusses planned follow-on work.
US NDC Modernization Iteration E1 Prototyping Report: Processing Control Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prescott, Ryan; Hamlet, Benjamin R.
2014-12-01
During the first iteration of the US NDC Modernization Elaboration phase (E1), the SNL US NDC modernization project team developed an initial survey of applicable COTS solutions, and established exploratory prototyping related to the processing control framework in support of system architecture definition. This report summarizes these activities and discusses planned follow-on work.
NASA Technical Reports Server (NTRS)
Williams, K. G.
1974-01-01
The results of a program to develop a prototype gas filter correlation NDIR analyzer capable of providing the required HCl measurement capability, while maintaining an adequate rejection of any other gases anticipated in the atmosphere are presented. Examples of the performance of the prototype analyzer are presented which show an rms noise equivalent concentration of 0.06 ppm of HCl was achieved while maintaining an electronically determined 10% to 90% time response to gas samples of about 2 seconds. No measureable response was observed to CO2, CO, and H2O while maintaining an adequate rejection of the hydrocarbons, for example CH4 and n-hexane. The experiments were performed which demonstrate that the span stability of the HCl gas filter correlation analyzer is unaffected by the presence of water vapor and which support the belief that the incorporation of a relatively open-volume, multiple path sample cell into the instrument would enable ground station as well as airborne measurements of trace quantities of HCl in the ambient atmosphere to be performed.
A prototype home robot with an ambient facial interface to improve drug compliance.
Takacs, Barnabas; Hanak, David
2008-01-01
We have developed a prototype home robot to improve drug compliance. The robot is a small mobile device, capable of autonomous behaviour, as well as remotely controlled operation via a wireless datalink. The robot is capable of face detection and also has a display screen to provide facial feedback to help motivate patients and thus increase their level of compliance. An RFID reader can identify tags attached to different objects, such as bottles, for fluid intake monitoring. A tablet dispenser allows drug compliance monitoring. Despite some limitations, experience with the prototype suggests that simple and low-cost robots may soon become feasible for care of people living alone or in isolation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prescott, Ryan; Marger, Bernard L.; Chiu, Ailsa
During the second iteration of the US NDC Modernization Elaboration phase (E2), the SNL US NDC Modernization project team completed follow-on COTS surveys & exploratory prototyping related to the Object Storage & Distribution (OSD) mechanism, and the processing control software infrastructure. This report summarizes the E2 prototyping work.
Gehring, Walter J
2014-01-01
In this review, the evolution of vision is retraced from its putative origins in cyanobacteria to humans. Circadian oscillatory clocks, phototropism, and phototaxis require the capability to detect light. Photosensory proteins allow us to reconstruct molecular phylogenetic trees. The evolution of animal eyes leading from an ancestral prototype to highly complex image forming eyes can be deciphered on the basis of evolutionary developmental genetic experiments and comparative genomics. As all bilaterian animals share the same master control gene, Pax6, and the same retinal and pigment cell determination genes, we conclude that the different eye-types originated monophyletically and subsequently diversified by divergent, parallel, or convergent evolution. © 2012 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abrams, Robert J.
Microtron-based Compact, Portable Gamma-Ray Source. The objective of Phase I of this project was to produce a conceptual design of a prototype compact microtron electron accelerator, which could be designed, built, and demonstrated in Phase II of the project. The conceptual design study included an analysis of the parameters of the microtron and its components, and the expected performance of the prototype microtron as a source of x-rays and/or RF neutrons in the MeV energy range. The major components of the microtron are the magnet, the accelerating system, the power system, the vacuum system, the control system, the beam extractionmore » system and the targets to produce x-rays (and/or neutrons). Our objectives for the design of the prototype were for it to be compact, cost-effective, capable of producing high intensity x-ray (an/or neutron) fluxes. In addition, the prototype was to be easily assembled and disassembled so that components could be easily replaced. The main parameters for the prototype are the following: the range of electron kinetic energies, the output power, the RF frequency band (X-band, C-band, or S-Band), the type of injection (Type I or Type II), the magnet type, i.e. permanent magnet, electromagnet, or a hybrid combination of permanent and electromagnet. The results of the Phase I study and analysis for a prototype microtron are the following: The electron energy range can be varied from below 6 MeV to 9 MeV, the optimal frequency range is S-Band (2-4 GHz) RF frequency, Type II injection (described below), and the magnet type is the hybrid version. The prototype version will be capable of producing gamma ray doses of ~1800 R/min-m and neutron fluxes of up to ~6 x 10 10 n/s with appropriate targets. The results of the Phase I study and analysis are provided below. The proposed Phase II plan was to demonstrate the prototype at low beam power. In the subsequent Phase III, high power tests would be performed, and the design of commercial versions of microtrons with various energies, sizes and types would be produced and marketed, including a more compact and more portable 6 MeV battery-powered model that more closely meets the requirements in the original FOA topic description. In the course of the Phase I study, we also identified another microtron version, one that was larger (not compact) and more powerful than that of the Phase II prototype, which could serve as an intense source of photo- neutrons, up to 4 x 10 12 n/s for use in nuclear medicine, short-lived isotope production, or other applications. In addition, it could produce gamma dose rates up to 130 kR/min-m with a heavy metal bremsstrahlung target. The results and specifications of this were submitted to IPAC16 (Reference [12]) the paper is included in Addendum B. Because this version was beyond the scope of the Phase I project, there is no additional description in the Final Report.« less
Fabrication of the Appalachian Thinner
Cleveland J. Biller
1982-01-01
The Appalachian Thinner, a prototype cable yarder, has proven capable of harvesting timber on steep slopes. Details of the fabrication of the prototype yarder are presented. An Appalachian Thinner can be built economically in a typical logger's repair shop.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ocampo Giraldo, L. A.; Bolotnikov, A. E.; Camarda, G. S.
Position-sensitive virtual Frisch-grid (VFG) CdZnTe (CZT) detectors offer a unique capability for correcting the response nonuniformities caused by crystal defects. This allowed us to achieve high energy resolution, while using typical-grade commercial CZT crystals with relaxed requirements to their quality, thus reducing the overall cost of detectors. Another advantage of the VFG detectors is that they can be integrated into arrays and used in small compact hand-held instruments or large-area gamma cameras that will enhance detection capability for many practical applications, including nonproliferation, medical imaging, and gamma-ray astronomy. Here in this paper, we present the results from testing small arraymore » prototypes coupled with front-end application-specified integrated circuit. Each detector in the array is furnished with 5-mm-wide charge-sensing pads placed near the anode. The pads signals are converted into XY coordinates, which combined with the cathode signals (for Z coordinates) provide 3-D position information of all interaction points. The basic array consists of a number of detectors grouped into 2×2 subarrays, each having a common cathode made by connecting together the cathodes of the individual detectors. Lastly, these features can significantly improve the performance of detectors while using typical-grade low-cost CZT crystals to reduce the overall cost of the proposed instrument.« less
Ocampo Giraldo, L. A.; Bolotnikov, A. E.; Camarda, G. S.; ...
2017-08-22
Position-sensitive virtual Frisch-grid (VFG) CdZnTe (CZT) detectors offer a unique capability for correcting the response nonuniformities caused by crystal defects. This allowed us to achieve high energy resolution, while using typical-grade commercial CZT crystals with relaxed requirements to their quality, thus reducing the overall cost of detectors. Another advantage of the VFG detectors is that they can be integrated into arrays and used in small compact hand-held instruments or large-area gamma cameras that will enhance detection capability for many practical applications, including nonproliferation, medical imaging, and gamma-ray astronomy. Here in this paper, we present the results from testing small arraymore » prototypes coupled with front-end application-specified integrated circuit. Each detector in the array is furnished with 5-mm-wide charge-sensing pads placed near the anode. The pads signals are converted into XY coordinates, which combined with the cathode signals (for Z coordinates) provide 3-D position information of all interaction points. The basic array consists of a number of detectors grouped into 2×2 subarrays, each having a common cathode made by connecting together the cathodes of the individual detectors. Lastly, these features can significantly improve the performance of detectors while using typical-grade low-cost CZT crystals to reduce the overall cost of the proposed instrument.« less
Public webinar: Wildland Fire Sensors Challenge
This multi-agency challenge seeks a field-ready prototype system capable of measuring constituents of smoke, including particulates, carbon monoxide, ozone, and carbon dioxide, over the wide range of levels expected during wildland fires. The prototype system should be accurate, ...
The Prototype of the Virtual Classroom.
ERIC Educational Resources Information Center
Wilson, Jack M.; Mosher, David N.
1994-01-01
Introduces an interactive distance learning environment prototype developed jointly by Rensselaer Polytechnic Institute (RPI) and AT&T which allows students to participate in virtual classroom environments by using computer teleconferencing. Student collaboration, note taking, question answering capabilities, project background, learning…
Battlefield innovation: a case-study of remote sensor development
NASA Astrophysics Data System (ADS)
Orson, Jay A.; Hague, Tyler N.
2007-10-01
Evolving threats encountered by coalition forces in Operation Iraqi Freedom drive the need for innovations in airborne intelligence, surveillance, and reconnaissance capabilities. In many cases, disruptive capabilities are created by linking existing technologies and new radical technologies in a novel way. Some of the radical technologies used in achieving these disruptive capabilities are existing prototypes or one-of-a-kind systems that are thrust into the field to quickly react to emerging threats. Horned Owl is one such rapidly developed innovative technical solution designed to meet immediate battlefield needs. This paper focuses on two key areas of this initiative. The first is the innovation champion establishing a collaborative environment which fosters creativity and allows the project to mature the disruptive capability. The second is the practical implication, or challenges of deploying experimental systems in a battlefield environment. Discussions of these two areas provide valuable lessons to guide future innovation champions when presented with the dual task of balancing system maturation with meeting operational demand. Contents of this paper are not necessarily the official views of, or endorsed by the U.S. Government, the Department of Defense, or the Department of the Air Force.
Hazardous and Medical Waste Destruction Using the AC Plasmatron Final Report CRADA No. TC-1560-98
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caplan, M.; Bucher, K.; Tulupov, A.
The goal of this project was to develop a prototype medical waste destruction facility based on the AC plasma torch capable of processing 150 kg of waste per hour while satisfying US EPA emission standards. The project was to provide the first opportunity for a joint U.S.-Russian project using an AC Plasma Torch in a hazardous waste destruction system to be assembled and operated in the U.S. thus promoting the commercialization in the U.S. of this joint U.S.-Russian developed technology. This project was a collaboration between the Russian Institute Soliton- NTT, the U.S industrial partner Scientific Utilization Inc. (SUI) andmore » Lawrence Livermore National Laboratory ( LLNL). The project was funded by DOE for a total of $1.2 million with $600K for allocated for Phase I and $600K for Phase II. The Russian team received about $800K over the two (2) year period while LLNL received $400K. SUI was to provide in kind matching funds totaling $1.2 million.« less
2013-05-01
release level prototyping as: The R&D prototype is typically funded by the organization, rather than the client . The work is done in an R&D...performance) with hopes that this capability could be offered to multiple clients . The clustering prototype is developed in the organization’s R&D...ICSE Conference 2013) [5] A. Martini, L. Pareto , and J. Bosch, “Enablers and inhibitors for speed with reuse,” Proceedings of the 16th Software
NASA Technical Reports Server (NTRS)
Bogdanoff, David W.; Berschauer, Andrew; Parker, Timothy W.; Vickers, Jesse E.
1989-01-01
A vortex gas lens concept is presented. Such a lens has a potential power density capability of 10 to the 9th - 10 to the 10th w/sq cm. An experimental prototype was constructed, and the divergence half angle of the exiting beam was measured as a function of the lens operating parameters. Reasonably good agreement is found between the experimental results and theoretical calculations. The expanded beam was observed to be steady, and no strong, potentially beam-degrading jets were found to issue from the ends of the lens. Estimates of random beam deflection angles to be expected due to boundary layer noise are presented; these angles are very small.
Business Case Analysis of Prototype Fabrication Division Recapitalization Plan. Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booth, Steven Richard; Benson, Faith Ann; Dinehart, Timothy Grant
Business case studies were completed to support procurement of new machines and capital equipment in the Prototype Fabrication (PF) Division SM-39 and TA-03-0102 machine shops. Economic analysis was conducted for replacing the Mazak 30Y Mill-Turn Machine in SM-39, the Haas Vertical CNC Mill in Building 102, and the Hardinge Q10/65-SP Lathe in SM-39. Analysis was also conducted for adding a NanoTech Lathe in Building 102 and a new electrical discharge machine (EDM) in SM-39 to augment current capabilities. To determine the value of switching machinery, a baseline scenario was compared with a future scenario where new machinery was purchased andmore » installed. Costs and benefits were defined via interviews with subject matter experts.« less
NASA Astrophysics Data System (ADS)
Hofer, L.; Lasi, D.; Tulej, M.; Wurz, P.; Cabane, M.; Cosica, D.; Gerasimov, M.; Rodinov, D.
2013-09-01
In preparation for the Russian Luna-Glob and Luna-Resurs missions we combined our compact time-offlight mass spectrometer (TOF-MS) with a chemical pre-separation of the species by gas chromatography (GC). Combined measurements with both instruments were successfully performed with the laboratory prototype of the mass spectrometer and a flight-like gas chromatograph. Due to its capability to record mass spectra over the full mass range at once with high sensitivity and a dynamic range of up to 106 within 1s, the TOF-MS system is a valuable extension of the GC analysis. The combined GC-MS complex is able to detect concentrations of volatile species in the sample of about 2·10^-9 by mass.
NASA's Next Generation Space Geodesy Network
NASA Technical Reports Server (NTRS)
Desai, S. D.; Gross, R. S.; Hilliard, L.; Lemoine, F. G.; Long, J. L.; Ma, C.; McGarry, J. F.; Merkowitz, S. M.; Murphy, D.; Noll, C. E.;
2012-01-01
NASA's Space Geodesy Project (SGP) is developing a prototype core site for a next generation Space Geodetic Network (SGN). Each of the sites in this planned network co-locate current state-of-the-art stations from all four space geodetic observing systems, GNSS, SLR, VLBI, and DORIS, with the goal of achieving modern requirements for the International Terrestrial Reference Frame (ITRF). In particular, the driving ITRF requirements for this network are 1.0 mm in accuracy and 0.1 mm/yr in stability, a factor of 10-20 beyond current capabilities. Development of the prototype core site, located at NASA's Geophysical and Astronomical Observatory at the Goddard Space Flight Center, started in 2011 and will be completed by the end of 2013. In January 2012, two operational GNSS stations, GODS and GOON, were established at the prototype site within 100 m of each other. Both stations are being proposed for inclusion into the IGS network. In addition, work is underway for the inclusion of next generation SLR and VLBI stations along with a modern DORIS station. An automated survey system is being developed to measure inter-technique vectorties, and network design studies are being performed to define the appropriate number and distribution of these next generation space geodetic core sites that are required to achieve the driving ITRF requirements. We present the status of this prototype next generation space geodetic core site, results from the analysis of data from the established geodetic stations, and results from the ongoing network design studies.
Microgravity Manufacturing: Extending Rapid Prototyping Past the Horizon
NASA Technical Reports Server (NTRS)
Cooper, Ken
2003-01-01
Over the last decade, rapid prototyping (RP) technologies have continued to advance in all aspects of operation and application. From continuously advanced materials and processes development to more hard-core manufacturing uses, the RP realm has stretched considerably past its original expectations as a prototyping capability. This paper discusses the unique applications for which NASA has chosen these manufacturing techniques to be utilized in outer space.
US Colored Troops: A Model for US Army Foreign Army Development and Organization
These black troops accounted for 10 percent of US forces. This was a unique experience in US military history, as the United States through unprecedented...and military leaders questioned whether the black soldiers possessed the mental capacity, physical capability, and emotional determination to fight
Medical System Concept of Operations for Mars Exploration Missions
NASA Technical Reports Server (NTRS)
Urbina, Michelle; Rubin, D.; Hailey, M.; Reyes, D.; Antonsen, Eric
2017-01-01
Future exploration missions will be the first time humanity travels beyond Low Earth Orbit (LEO) since the Apollo program, taking us to cis-lunar space, interplanetary space, and Mars. These long-duration missions will cover vast distances, severely constraining opportunities for emergency evacuation to Earth and cargo resupply opportunities. Communication delays and blackouts between the crew and Mission Control will eliminate reliable, real-time telemedicine consultations. As a result, compared to current LEO operations onboard the International Space Station, exploration mission medical care requires an integrated medical system that provides additional in-situ capabilities and a significant increase in crew autonomy. The Medical System Concept of Operations for Mars Exploration Missions illustrates how a future NASA Mars program could ensure appropriate medical care for the crew of this highly autonomous mission. This Concept of Operations document, when complete, will document all mission phases through a series of mission use case scenarios that illustrate required medical capabilities, enabling the NASA Human Research Program (HRP) Exploration Medical Capability (ExMC) Element to plan, design, and prototype an integrated medical system to support human exploration to Mars.
Advanced Magnetic Head Development Revision 1 Final Report CRADA No. TC-0840-94
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerjan, C.; Shi, S.
The specific go,il of this research was the development of a prototype read magnetic sensor head using the Current:Perpendicular-to-Plane (CPP) geometry with known GMR (Giant Magneto-Resistive) multilayered structures to achieve read densities greater than 10 Gbit/in2, field sensitivities greater than 1%/Oe, switching fields less than 20 Oe, and total MR response greater than 10%. The specific materials needed for this idcnl behavior had to be determined, as did the eventual design of the sensor (placement of contact leads, shields, and biasing magnets). Thus the thrust of the rescnrch required a search for the proper multilayer material combination und the developmentmore » of a simulation capability to guide sensor design. Issues i:elated to device integration, such as media noise and lead contact resistance, were also recognized as important technological hurdles but these items were deferred until the operating conditions of the-prototype GMR sensor were more precisely determined.« less
A TTC upgrade proposal using bidirectional 10G-PON FTTH technology
NASA Astrophysics Data System (ADS)
Kolotouros, D. M.; Baron, S.; Soos, C.; Vasey, F.
2015-04-01
A new generation FPGA-based Timing-Trigger and Control (TTC) system based on emerging Passive Optical Network (PON) technology is being proposed to replace the existing off-detector TTC system used by the LHC experiments. High split ratio, dynamic software partitioning, low and deterministic latency, as well as low jitter are required. Exploiting the latest available technologies allows delivering higher capacity together with bidirectionality, a feature absent from the legacy TTC system. This article focuses on the features and capabilities of the latest TTC-PON prototype based on 10G-PON FTTH components along with some metrics characterizing its performance.
Technology demonstration for reducing mercury emissions from small-scale gold refining facilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habegger, L. J.; Fernandez, L. E.; Engle, M.
2008-06-30
Gold that is brought from artisanal and small-scale gold mining areas to gold shops for processing and sale typically contains 5-40% mercury. The uncontrolled removal of the residual mercury in gold shops by using high-temperature evaporation can be a significant source of mercury emissions in urban areas where the shops are located. Emissions from gold shop hoods during a burn can exceed 1,000 mg/m{sup 3}. Because the saturation concentration of mercury vapor at operating temperatures at the hood exhaust is less than 100 mg/m{sup 3}, the dominant component of the exhaust is in the form of aerosol or liquid particles.more » The U.S. Environmental Protection Agency (EPA), with technical support from Argonne National Laboratory (Argonne), has completed a project to design and test a technology to remove the dominant aerosol component in the emissions from gold shops. The objective was to demonstrate a technology that could be manufactured at low cost and by using locally available materials and manufacturing capabilities. Six prototypes designed by Argonne were locally manufactured, installed, and tested in gold shops in Itaituba and Creporizao, Brazil. The initial prototype design incorporated a pebble bed as the media for collecting the mercury aerosols, and a mercury collection efficiency of over 90% was demonstrated. Though achieving high efficiencies, the initial prototype was determined to have practical disadvantages such as excessive weight, a somewhat complex construction, and high costs (>US$1,000). To further simplify the construction, operation, and associated costs, a second prototype design was developed in which the pebble bed was replaced with slotted steel baffle plates. The system was designed to have flexibility for installation in various hood configurations. The second prototype with the baffle plate design was installed and tested in several different hood/exhaust systems to determine the optimal installation configuration. The significance of coagulation and collection of the mercury aerosols in exhaust ducts, which is dependent on the hood and collector configuration, was also evaluated. Prototype demonstration tests verified the theoretical basis for mercury aerosol capture that can be used to optimize the baffle plate design, flow rates, and hood exhaust ducts and plenum to achieve 80% or higher removal efficiencies. Results indicated that installation configuration significantly influences a system's capture efficiency. Configurations that retained existing inlet ducts resulted in system efficiencies of more than 80%, whereas installation configurations without inlet ducts significantly reduced capture efficiency. As an alternative to increasing the volume of inlet ducts, the number of baffle plates in the system baffle assembly could be doubled to increase efficiency. Recommended installation and operation procedures were developed on the basis of these results. A water-based mercury capture system developed in Indonesia for installation in smaller shops was also tested and shown to be effective for certain applications. The cost of construction and installation of the baffle plate prototype was approximately US$400. These costs were reported as acceptable by local gold shop owners and government regulators, and were significantly lower than the cost of an alternate charcoal/copper mesh mercury filter available in the region, which costs about US$10,000. A sampling procedure that consists of a particle filter combined with a vapor analyzer was demonstrated as an effective procedure for analyzing both the aerosol and vapor components of the mercury concentrations. Two key findings for enhancing higher mercury collection were identified. First, the aerosol/vapor mercury emissions must be given sufficient time for the mercury particles to coagulate to a size that can be readily captured by the baffle plates. An interval of at least 6 seconds of transit time between the point of evaporation and contact with the slotted baffle plates is recommended. Some particles will also deposit in the exhaust ducts between the point of evaporation and the baffle plates. Second, the slots in the baffle plates create jets that force the mercury particles to impinge and adhere on downstream surfaces. The baffle plates should closely follow the designs developed for this system to be most effective.« less
Adaptation of Control Center Software to Commerical Real-Time Display Applications
NASA Technical Reports Server (NTRS)
Collier, Mark D.
1994-01-01
NASA-Marshall Space Flight Center (MSFC) is currently developing an enhanced Huntsville Operation Support Center (HOSC) system designed to support multiple spacecraft missions. The Enhanced HOSC is based upon a distributed computing architecture using graphic workstation hardware and industry standard software including POSIX, X Windows, Motif, TCP/IP, and ANSI C. Southwest Research Institute (SwRI) is currently developing a prototype of the Display Services application for this system. Display Services provides the capability to generate and operate real-time data-driven graphic displays. This prototype is a highly functional application designed to allow system end users to easily generate complex data-driven displays. The prototype is easy to use, flexible, highly functional, and portable. Although this prototype is being developed for NASA-MSFC, the general-purpose real-time display capability can be reused in similar mission and process control environments. This includes any environment depending heavily upon real-time data acquisition and display. Reuse of the prototype will be a straight-forward transition because the prototype is portable, is designed to add new display types easily, has a user interface which is separated from the application code, and is very independent of the specifics of NASA-MSFC's system. Reuse of this prototype in other environments is a excellent alternative to creation of a new custom application, or for environments with a large number of users, to purchasing a COTS package.
Novo, P; Chu, V; Conde, J P
2014-07-15
The miniaturization of biosensors using microfluidics has potential in enabling the development of point-of-care devices, with the added advantages of reduced time and cost of analysis with limits-of-detection comparable to those obtained through traditional laboratory techniques. Interfacing microfluidic devices with the external world can be difficult especially in aspects involving fluid handling and the need for simple sample insertion that avoids special equipment or trained personnel. In this work we present a point-of-care prototype system by integrating capillary microfluidics with a microfabricated photodiode array and electronic instrumentation into a hand-held unit. The capillary microfluidic device is capable of autonomous and sequential fluid flow, including control of the average fluid velocity at any given point of the analysis. To demonstrate the functionality of the prototype, a model chemiluminescence ELISA was performed. The performance of the integrated optical detection in the point-of-care prototype is equal to that obtained with traditional bench-top instrumentation. The photodiode signals were acquired, displayed and processed by a simple graphical user interface using a computer connected to the microcontroller through USB. The prototype performed integrated chemiluminescence ELISA detection in about 15 min with a limit-of-detection of ≈2 nM with an antibody-antigen affinity constant of ≈2×10(7) M(-1). Copyright © 2014 Elsevier B.V. All rights reserved.
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander has been lifted by a tether and hovers above a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The lander’s engine begins firing for a tethered test that includes lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander’s engine begins to fire during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander is lifted 20 feet by crane, and will ascend another 10 feet, maneuver backwards 10 feet, and then fly forward and descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander’s engine has completed its firing during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet, maneuvered backwards 10 feet, and then flew forward. It will descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, smoke fills the air as the Project Morpheus prototype lander’s engine fires during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet, maneuvered backwards 10 feet, and then flew forward. It will descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander has been attached to a tether and is being raised from a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The tethered test includes lifting the lander 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander has been attached to a tether and is being prepared for a tether test on a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The tether test includes lifting the lander 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, smoke fills the air as the Project Morpheus prototype lander’s engine fires during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet, maneuvered backwards 10 feet, and then flew forward. It will descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander is being prepared for placement on a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The lander will be prepared for a tethered test that includes lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, smoke fills the air as the Project Morpheus prototype lander’s engine fires during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet, maneuvered backwards 10 feet, and then flew forward. It will descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, smoke fills the air as the Project Morpheus prototype lander’s engine fires during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet, maneuvered backwards 10 feet, and then flew forward. It will descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper
NASA Technical Reports Server (NTRS)
Munoz, Cesar A.; Butler, Ricky (Technical Monitor)
2003-01-01
PVSio is a conservative extension to the PVS prelude library that provides basic input/output capabilities to the PVS ground evaluator. It supports rapid prototyping in PVS by enhancing the specification language with built-in constructs for string manipulation, floating point arithmetic, and input/output operations.
Data mining of text as a tool in authorship attribution
NASA Astrophysics Data System (ADS)
Visa, Ari J. E.; Toivonen, Jarmo; Autio, Sami; Maekinen, Jarno; Back, Barbro; Vanharanta, Hannu
2001-03-01
It is common that text documents are characterized and classified by keywords that the authors use to give them. Visa et al. have developed a new methodology based on prototype matching. The prototype is an interesting document or a part of an extracted, interesting text. This prototype is matched with the document database of the monitored document flow. The new methodology is capable of extracting the meaning of the document in a certain degree. Our claim is that the new methodology is also capable of authenticating the authorship. To verify this claim two tests were designed. The test hypothesis was that the words and the word order in the sentences could authenticate the author. In the first test three authors were selected. The selected authors were William Shakespeare, Edgar Allan Poe, and George Bernard Shaw. Three texts from each author were examined. Every text was one by one used as a prototype. The two nearest matches with the prototype were noted. The second test uses the Reuters-21578 financial news database. A group of 25 short financial news reports from five different authors are examined. Our new methodology and the interesting results from the two tests are reported in this paper. In the first test, for Shakespeare and for Poe all cases were successful. For Shaw one text was confused with Poe. In the second test the Reuters-21578 financial news were identified by the author relatively well. The resolution is that our text mining methodology seems to be capable of authorship attribution.
Prototype Flight Management Capabilities to Explore Temporal RNP Concepts
NASA Technical Reports Server (NTRS)
Ballin, Mark G.; Williams, David H.; Allen, Bonnie Danette; Palmer, Michael T.
2008-01-01
Next Generation Air Transportation System (NextGen) concepts of operation may require aircraft to fly planned trajectories in four dimensions three spatial dimensions and time. A prototype 4D flight management capability is being developed by NASA to facilitate the development of these concepts. New trajectory generation functions extend today's flight management system (FMS) capabilities that meet a single Required Time of Arrival (RTA) to trajectory solutions that comply with multiple RTA constraints. When a solution is not possible, a constraint management capability relaxes constraints to achieve a trajectory solution that meets the most important constraints as specified by candidate NextGen concepts. New flight guidance functions provide continuous guidance to the aircraft s flight control system to enable it to fly specified 4D trajectories. Guidance options developed for research investigations include a moving time window with varying tolerances that are a function of proximity to imposed constraints, and guidance that recalculates the aircraft s planned trajectory as a function of the estimation of current compliance. Compliance tolerances are related to required navigation performance (RNP) through the extension of existing RNP concepts for lateral containment. A conceptual temporal RNP implementation and prototype display symbology are proposed.
Construction of Prototype Lightweight Mirrors
NASA Technical Reports Server (NTRS)
Robinson, William G.
1997-01-01
This contract and the work described was in support of a Seven Segment Demonstrator (SSD) and demonstration of a different technology for construction of lightweight mirrors. The objectives of the SSD were to demonstrate functionality and performance of a seven segment prototype array of hexagonal mirrors and supporting electromechanical components which address design issues critical to space optics deployed in large space based telescopes for astronomy and for optics used in spaced based optical communications systems. The SSD was intended to demonstrate technologies which can support the following capabilities; Transportation in dense packaging to existing launcher payload envelopes, then deployable on orbit to form space telescope with large aperture. Provide very large (less than 10 meters) primary reflectors of low mass and cost. Demonstrate the capability to form a segmented primary or quaternary mirror into a quasi-continuous surface with individual subapertures phased so that near diffraction limited imaging in the visible wavelength region is achieved. Continuous compensation of optical wavefront due to perturbations caused by imperfections, natural disturbances, and equipment induced vibrations/deflections to provide near diffraction limited imaging performance in the visible wavelength region. Demonstrate the feasibility of fabricating such systems with reduced mass and cost compared to past approaches. While the SSD could not be expected to satisfy all of the above capabilities, the intent was to start identifying and understanding new technologies that might be applicable to these goals.
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Porter, F. Scott; Sibeck, David G.; Carter, Jenny A.; Chiao, Meng P.; Chornay, Dennis J.; Cravens, Thomas; Galeazzi, Massimiliano; Keller, John W.; Koutroumpa, Dimitra;
2012-01-01
We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobster-eye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the FSA AXIOM mission
NASA Technical Reports Server (NTRS)
Collier, M. R.; Porter, F. S.; Sibeck, D. G.; Carter, J. A.; Chiao, M. P.; Chornay, D. J.; Cravens, T.; Galeazzi, M.; Keller, J. W.; Koutroumpa, D.;
2012-01-01
We describe current progress in the development of a prototype wide field-of-view soft X-ray imager that employs Lobstereye optics and targets heliophysics, planetary, and astrophysics science. The prototype will provide proof-of-concept for a future flight instrument capable of imaging the entire dayside magnetosheath from outside the magnetosphere. Such an instrument was proposed for the ESA AXIOM mission.
Productivity and quality improvements in health care through airboss mobile messaging services.
Shah, P J; Martinez, R; Cooney, E
1997-01-01
The US health care industry is in the midst of revolutionary changes. Under tremendous pressures from third-party payers and managed care programs to control costs while providing high quality medical services, health care entities are now looking at information technologies to help them achieve their goals. These goals typically include improved productivity, efficiency and decision-making capabilities among staff members. Moreover, hospitals and other health care facilities that provide a broad and integrated range of inpatient and outpatient care, wellness and home care services are in the best position to offer comprehensive packages to managed care and private insurers. Many health care providers and administrators are considered mobile employees. This mobility can range from intra-building and intra-campus to multi-site and metropolitan areas. This group often relies on a variety of information technologies such as personal computers, communicating laptops, pagers, cellular phones, wireline phones, cordless phones and fax machines to stay in touch and handle information needs. These health care professionals require mobile information access and messaging tools to improve communications, control accessibility and enhance decision-making capabilities. AirBoss mobile messaging services could address the health care industry's need for improved messaging capabilities for its mobile employees. The AirBoss family of services supports integrated voice services, data messaging, mobile facsimile and customized information delivery. This paper describes overview of the current mobile data networking capability, the AirBoss architecture, the health care-related applications it addresses and long-term benefits. In addition, a prototype application for mobile home health care workers is illustrated. This prototype application provides integrated e-mail, information services, web access, real-time access and update of patient records from wireline or wireless networks, and cross media delivery and notification. It provides seamless wide area access to patient data in a secure environment, thus providing a continuity of care from the hospital to home.
A portable infrasound generator.
Park, Joseph; Robertson, James
2009-04-01
The rotary subwoofer is a novel low frequency transducer capable of efficiently generating infrasound from a compact source. A field-deployable version of this device may find application as a calibration source for infrasound arrays of the International Monitoring System (IMS) [(2001). The Global Verification Regime and the International Monitoring System (CTBTO Preparatory Commission Vienna International Centre, Vienna, Austria)]. A prototype tested at the IMS infrasound array I59US demonstrated the ability to insonify all elements of the array from a standoff distance of 3.8 km. Signal-to-noise ratios of continuous wave signals ranged from 5 to 15 dB, indicating the utility of this source to transmit controllable infrasound signals over distances of 5 km.
A Topographic Field Trip of Washington, D.C. - A Cartographic Multimedia Application
,
1999-01-01
The U.S. Geological Survey (USGS) has produced ?A Topographic Field Trip of Washington, D.C.,' a multimedia CD-ROM that uses topographic maps to tour Washington, D.C. Although designed for the middle school grade level, it can also be used to teach introductory topographic map reading skills to any level. Two versions of ?A Topographic Field Trip of Washington, D.C.,? are available. The first version, for Macintosh? systems only, was developed and produced as a prototype with educational resources funds and is available free of charge. The second version, for dual platforms, Macintosh?, and Windows? systems, is a sales item. The dual platform version contains improvements in content and navigational capabilities.
The Minimally Invasive Manipulator: an ergonomic and economic non-robotic alternative for endoscopy?
Bosma, Jesse; Aarts, Sanne; Jaspers, Joris
2015-02-01
Since the da Vinci robotic system was introduced, it has been reported to have ergonomic advantages over conventional laparoscopy (COV). High investments associated with this system challenged us to design a more economical, mechanical alternative for improvement of laparoscopic ergonomics: the Minimally Invasive Manipulator (MIM). An earlier reported MIM prototype was investigated. Its shortcomings were input for the establishment of design criteria for a new prototype. A new prototype was developed, aiming at improved intuitiveness and ergonomics. The handle and instrument tip were redesigned and the parallelogram mechanism was converted from linear moving parts to mainly rotating parts. The new prototype was tested by a panel of experts and novices during an indicative ergonomic experiment. A major advantage of the MIM seems to be the possibility to perform laparoscopic surgery in a sitting position, in line with the working axis, instead of standing at the side of the patient. At an estimated cost level of 10% of the da Vinci system, the MIM can be an economical alternative for the enhancement of laparoscopy ergonomics. However, further development for clinical feasibility is necessary.
Design and Testing of a Fast, 50 kV Solid-State Kicker Pulser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, E G; Hickman, B C; Lee, B S
2002-06-24
The ability to extract particle beam bunches from a ring accelerator in arbitrary order can greatly extend an accelerator's capabilities and applications. A prototype solid-state kicker pulser capable of generating asynchronous bursts of 50 kV pulses has been designed and tested into a 50{Omega} load. The pulser features fast rise and fall times and is capable of generating an arbitrary pattern of pulses with a maximum burst frequency exceeding 5 MHz If required, the pulse-width of each pulse in the burst is independently adjustable. This kicker modulator uses multiple solid-state modules stacked in an inductive-adder configuration where the energy ismore » switched into each section of the adder by a parallel array of MOSFETs. Test data, capabilities, and limitations of the prototype pulser are described.« less
BMDS/SSA Integrated Sensing Demonstration (BISD)
NASA Astrophysics Data System (ADS)
Turner, T.; Springford, K.; Grimaldi, L.
2011-09-01
This demonstration is intended to provide a near-term prototype, leave-behind capability for integrating Ballistic Missile Defense System (BMDS) ground sensors for use in the Space Situational Awareness (SSA) mission. Closed-loop tasking and cueing capability will be implemented, and a demonstration of net-centric space data dissemination using the BMDS sensors will be undertaken using various SSA mission threads. The demonstration is designed to highlight the implications of modifying software and/or hardware at the BMDS command and control node so that cost, risk, and schedule for an operational implementation can be fully understood. Additionally, this demonstration is intended to assess the impacts to both mission areas as a multi-mission, non-traditional sensor capability is integrated into the SSA mission. A successful demonstration will have many leave-behind capabilities and first-of-its-kind achievements to include: a) an extensible SSA operational prototype configuration for BMDS X-Band radars such as AN/TPY-2 and Sea-Based X-Band (SBX) b) a prototype SSA tasking and cueing capability between the Joint Functional Component Command for Space (JFCC Space) Joint Space Operations Center (JSpOC) and the Command, Control, Battle Management, and Communications (C2BMC) Experimental Laboratory (X-Lab), extensible to the Combatant Commands (COCOMS), and out to BMDS sensors c) a capability for a twoway, net-centric, interface for JSpOC space operations, to include translation from net-centric communications to legacy systems and d) processing of BMDS X-Band Radar tracks in the Space Defense Operations Center (SPADOC).
Compact silicon diffractive sensor: design, fabrication, and prototype.
Maikisch, Jonathan S; Gaylord, Thomas K
2012-07-01
An in-plane constant-efficiency variable-diffraction-angle grating and an in-plane high-angular-selectivity grating are combined to enable a new compact silicon diffractive sensor. This sensor is fabricated in silicon-on-insulator and uses telecommunications wavelengths. A single sensor element has a micron-scale device size and uses intensity-based (as opposed to spectral-based) detection for increased integrability. In-plane diffraction gratings provide an intrinsic splitting mechanism to enable a two-dimensional sensor array. Detection of the relative values of diffracted and transmitted intensities is independent of attenuation and is thus robust. The sensor prototype measures refractive index changes of 10(-4). Simulations indicate that this sensor configuration may be capable of measuring refractive index changes three or four orders of magnitude smaller. The characteristics of this sensor type make it promising for lab-on-a-chip applications.
SAMPA Chip: the New 32 Channels ASIC for the ALICE TPC and MCH Upgrades
NASA Astrophysics Data System (ADS)
Adolfsson, J.; Ayala Pabon, A.; Bregant, M.; Britton, C.; Brulin, G.; Carvalho, D.; Chambert, V.; Chinellato, D.; Espagnon, B.; Hernandez Herrera, H. D.; Ljubicic, T.; Mahmood, S. M.; Mjörnmark, U.; Moraes, D.; Munhoz, M. G.; Noël, G.; Oskarsson, A.; Osterman, L.; Pilyar, A.; Read, K.; Ruette, A.; Russo, P.; Sanches, B. C. S.; Severo, L.; Silvermyr, D.; Suire, C.; Tambave, G. J.; Tun-Lanoë, K. M. M.; van Noije, W.; Velure, A.; Vereschagin, S.; Wanlin, E.; Weber, T. O.; Zaporozhets, S.
2017-04-01
This paper presents the test results of the second prototype of SAMPA, the ASIC designed for the upgrade of read-out front end electronics of the ALICE Time Projection Chamber (TPC) and Muon Chamber (MCH). SAMPA is made in a 130 nm CMOS technology with 1.25 V nominal voltage supply and provides 32 channels, with selectable input polarity, and three possible combinations of shaping time and sensitivity. Each channel consists of a Charge Sensitive Amplifier, a semi-Gaussian shaper and a 10-bit ADC; a Digital Signal Processor provides digital filtering and compression capability. In the second prototype run both full chip and single test blocks were fabricated, allowing block characterization and full system behaviour studies. Experimental results are here presented showing agreement with requirements for both the blocks and the full chip.
Room Temperature Operable Autonomously Moving Bio-Microrobot Powered by Insect Dorsal Vessel Tissue
Akiyama, Yoshitake; Hoshino, Takayuki; Iwabuchi, Kikuo; Morishima, Keisuke
2012-01-01
Living muscle tissues and cells have been attracting attention as potential actuator candidates. In particular, insect dorsal vessel tissue (DVT) seems to be well suited for a bio-actuator since it is capable of contracting autonomously and the tissue itself and its cells are more environmentally robust under culturing conditions compared with mammalian tissues and cells. Here we demonstrate an autonomously moving polypod microrobot (PMR) powered by DVT excised from an inchworm. We fabricated a prototype of the PMR by assembling a whole DVT onto an inverted two-row micropillar array. The prototype moved autonomously at a velocity of 3.5×10−2 µm/s, and the contracting force of the whole DVT was calculated as 20 µN. Based on the results obtained by the prototype, we then designed and fabricated an actual PMR. We were able to increase the velocity significantly for the actual PMR which could move autonomously at a velocity of 3.5 µm/s. These results indicate that insect DVT has sufficient potential as the driving force for a bio-microrobot that can be utilized in microspaces. PMID:22808004
NASA Technical Reports Server (NTRS)
Khan, P.; Epp, L.
2006-01-01
Results of prototype hardware activities related to a 120-W, 32-GHz (Ka-band) solid-state power amplifier (SSPA) architecture study are presented. Spurious mode suppression and the power-handling capability of a prototype 24-way radial combiner and a prototype 2-way septum binary combiner were investigated. Experimental data indicate that a commercial absorptive filter, designed to pass the circular TE01 mode, effectively suppressed the higher-order modes generated by a narrowband, flower-petal-type mode transducer. However, the same filter was not effective in suppressing higher-order modes generated by the broadband Marie mode transducer that is used in the prototype waveguide radial combiner. Should greater filtering be required by a particular SSPA application, a broadband mode filter that can suppress specifically those higher-order modes that are generated by the Marie transducer will need to be developed. A back-to-back configuration of the prototype radial combiner was tested with drive power up to approximately 50 W. No anomalous behavior was observed. Power measurements of the septum combiner indicate that up to 10-W radio frequency (RF) can be dissipated in the integrated resistive element before a permanent performance shift is observed. Thus, a given adder (a single-stage, 2-way combiner) can safely combine two 20-W sources, and the adder will not be damaged in the event of a source failure. This result is used to calculate the maximum source power that can be safely combined as a function of the number of sources combined and the number of source failures allowed in a multi-stage combiner. The analysis shows that SSPA power >140 W can be generated by power combining 16 sources producing 10 W each. In this configuration, up to three sources could fail with the guarantee that the combiner would not be damaged. Finally, a modified prototype septum combiner design was verified. The improved design reduced the assembly time from over 2 hours to about 15 minutes per adder.
Initial results from a prototype whole-body photon-counting computed tomography system.
Yu, Z; Leng, S; Jorgensen, S M; Li, Z; Gutjahr, R; Chen, B; Duan, X; Halaweish, A F; Yu, L; Ritman, E L; McCollough, C H
X-ray computed tomography (CT) with energy-discriminating capabilities presents exciting opportunities for increased dose efficiency and improved material decomposition analyses. However, due to constraints imposed by the inability of photon-counting detectors (PCD) to respond accurately at high photon flux, to date there has been no clinical application of PCD-CT. Recently, our lab installed a research prototype system consisting of two x-ray sources and two corresponding detectors, one using an energy-integrating detector (EID) and the other using a PCD. In this work, we report the first third-party evaluation of this prototype CT system using both phantoms and a cadaver head. The phantom studies demonstrated several promising characteristics of the PCD sub-system, including improved longitudinal spatial resolution and reduced beam hardening artifacts, relative to the EID sub-system. More importantly, we found that the PCD sub-system offers excellent pulse pileup control in cases of x-ray flux up to 550 mA at 140 kV, which corresponds to approximately 2.5×10 11 photons per cm 2 per second. In an anthropomorphic phantom and a cadaver head, the PCD sub-system provided image quality comparable to the EID sub-system for the same dose level. Our results demonstrate the potential of the prototype system to produce clinically-acceptable images in vivo .
A prototype for the PASS Permanent All Sky Survey
NASA Astrophysics Data System (ADS)
Deeg, H. J.; Alonso, R.; Belmonte, J. A.; Horne, K.; Alsubai, K.; Collier Cameron, A.; Doyle, L. R.
2004-10-01
A prototype system for the Permanent All Sky Survey (PASS) project is presented. PASS is a continuous photometric survey of the entire celestial sphere with a high temporal resolution. Its major objectives are the detection of all giant-planet transits (with periods up to some weeks) across stars up to mag 10.5, and to deliver continuously photometry that is useful for the study of any variable stars. The prototype is based on CCD cameras with short focal length optics on a fixed mount. A small dome to house it at Teide Observatory, Tenerife, is currently being constructed. A placement at the antarctic Dome C is also being considered. The prototype will be used for a feasibility study of PASS, to define the best observing strategies, and to perform a detailed characterization of the capabilities and scope of the survey. Afterwards, a first partial sky surveying will be started with it. That first survey may be able to detect transiting planets during its first few hundred hours of operation. It will also deliver a data set around which software modules dealing with the various scientific objectives of PASS will be developed. The PASS project is still in its early phase and teams interested in specific scientific objectives, in providing technical expertise, or in participating with own observations are invited to collaborate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Combs, S.K.; Foust, C.R.; Qualls, A.L.
Pellet injection systems for the next-generation fusion devices, such as the proposed International Thermonuclear Experimental Reactor (ITER), will require feed systems capable of providing a continuous supply of hydrogen ice at high throughputs. A straightforward concept in which multiple extruder units operate in tandem has been under development at the Oak Ridge National Laboratory. A prototype with three large-volume extruder units has been fabricated and tested in the laboratory. In experiments, it was found that each extruder could provide volumetric ice flow rates of up to {approximately}1.3 cm{sup 3}/s (for {approximately}10 s), which is sufficient for fueling fusion reactors atmore » the gigawatt power level. With the three extruders of the prototype operating in sequence, a steady rate of {approximately}0.33 cm{sup 3}/s was maintained for a duration of 1 h. Even steady-state rates approaching the full ITER design value ({approximately}1 cm{sup 3}/s) may be feasible with the prototype. However, additional extruder units (1{endash}3) would facilitate operations at the higher throughputs and reduce the duty cycle of each unit. The prototype can easily accommodate steady-state pellet fueling of present large tokamaks or other near-term plasma experiments.« less
International Space Station USOS Potable Water Dispenser Development
NASA Technical Reports Server (NTRS)
Shaw, Laura A.; Barreda, Jose L.
2008-01-01
The International Space Station (ISS) Russian Segment currently provides potable water dispensing capability for crewmember food and beverage rehydration. All ISS crewmembers rehydrate Russian and U.S. style food packages from this location. A new United States On-orbit Segment (USOS) Potable Water Dispenser (PWD) is under development. This unit will provide additional potable water dispensing capability to support an onorbit crew of six. The PWD is designed to provide incremental quantities of hot and ambient temperature potable water to U.S. style food packages. It will receive iodinated water from the Fuel Cell Water Bus in the U.S. Laboratory element. The unit will provide potable-quality water, including active removal of biocidal iodine prior to dispensing. A heater assembly contained within the unit will be able to supply up to 2.0 liters of hot water (65 to 93oC) every thirty minutes. This quantity will allow three to four crewmembers to rehydrate their food and beverages from this location during a single meal. The unit is designed to remain functional for up to ten years with replacement of limited life items such as filters. It will be the size of two stacked Shuttle Middeck lockers (approximately the size of two small suitcases) and integrated into a science payload rack in the U.S. Laboratory element. Providing potable-quality water at the proper temperature for food and beverage reconstitution is critical to maintaining crew health and well-being. The numerous engineering challenges as well as human factors and safety considerations during the concept, design, and prototyping are outlined in this paper.
Toward a Federal Land Information System: Experiences and issues
Sturdevant, James A.
1988-01-01
From 1983 to 1987, the U.S. Geological Survey conducted research to develop a national resource data base of Federal lands under the auspices of the Federal Land Information System (FLIS) program. The program's goal was to develop the capability to provide information to national mineral-use policymakers. Prototype spatial data bases containing mineral, land status, and base cartographic data were developed for the Medford, Oreg., area, the State of Alaska, and the Silver City, N. Mex., area. Other accomplishments included (1) the preparation of a digital format for U.S. Geological Survey mineral assessment data and (2) the development of a procedure for integrating parcel-level tabular Alaska land status data into a section-level geographic information system. Overall findings indicated that both vector and raster capabilities are required for a FLIS and that nationwide data availability is a limiting factor in FLIS development. As a result of a 1986 interbureau (U.S. Geological Survey, Bureau of Land Management, and Bureau of Mines) review of the FLIS program, activities were redirected to undertake research on large-area geographic information system techniques. Land use and land cover data generalization strategies were tested, and areafiltering software was found to be the optimum type. In addition, a procedure was developed for transferring tabular land status data of surveyed areas in the contiguous 48 States to spatial data for use in geographic information systems. The U.S. Geological Survey FLIS program, as an administrative unit, ended in 1987, but FLIS-related research on large-area geographic information systems continues.
Integration of Pneumatic Technology in Powered Mobility Devices
Daveler, Brandon; Wang, Hongwu; Gebrosky, Benjamin; Grindle, Garrett G.; Schneider, Urs
2017-01-01
Advances in electric motors, electronics, and control systems have enhanced the capability and drivability of electric power mobility devices over the last 60 years. Yet, battery technologies used in powered mobility devices (PMDs) have not kept pace. Recent advances in pneumatic technology, primarily the high torque, low speed design of rotary piston air motors, directly align with the needs of PMD. Pneumatic technology has advantages over battery-powered technology, including lighter weight, lower operating costs, decreased environmental impact, better reliability, and increased safety. Two prototypes were created that incorporated rotary piston air motors, high-pressure air tanks, and air-pressure regulators. Prototype 1 was created by modifying an existing electric PMD. Range tests were performed to determine the feasibility of pneumatic technology and the optimal combination of components to allow the longest range possible at acceptable speeds over ideal conditions. Using a 1.44 L air tank for feasibility testing, prototype 1 was capable of traveling 800 m, which confirmed the feasibility of pneumatic technology usage in PMDs. Prototype 2 was designed based on the testing results from prototype 1. After further optimization of prototype 2, the average maximum range was 3,150 m. Prototype 2 is up to 28.3% lighter than an equivalent size electric PMD and can be fully recharged in approximately 2 minutes. It decreases the cost of PMDs by approximately $1,500, because batteries do not need to be replaced over the lifetime of the device. The results provide justification for the use of pneumatic technology in PMDs. PMID:29339888
Integration of Pneumatic Technology in Powered Mobility Devices.
Daveler, Brandon; Wang, Hongwu; Gebrosky, Benjamin; Grindle, Garrett G; Schneider, Urs; Cooper, Rory A
2017-01-01
Advances in electric motors, electronics, and control systems have enhanced the capability and drivability of electric power mobility devices over the last 60 years. Yet, battery technologies used in powered mobility devices (PMDs) have not kept pace. Recent advances in pneumatic technology, primarily the high torque, low speed design of rotary piston air motors, directly align with the needs of PMD. Pneumatic technology has advantages over battery-powered technology, including lighter weight, lower operating costs, decreased environmental impact, better reliability, and increased safety. Two prototypes were created that incorporated rotary piston air motors, high-pressure air tanks, and air-pressure regulators. Prototype 1 was created by modifying an existing electric PMD. Range tests were performed to determine the feasibility of pneumatic technology and the optimal combination of components to allow the longest range possible at acceptable speeds over ideal conditions. Using a 1.44 L air tank for feasibility testing, prototype 1 was capable of traveling 800 m, which confirmed the feasibility of pneumatic technology usage in PMDs. Prototype 2 was designed based on the testing results from prototype 1. After further optimization of prototype 2, the average maximum range was 3,150 m. Prototype 2 is up to 28.3% lighter than an equivalent size electric PMD and can be fully recharged in approximately 2 minutes. It decreases the cost of PMDs by approximately $1,500, because batteries do not need to be replaced over the lifetime of the device. The results provide justification for the use of pneumatic technology in PMDs.
NASA Technical Reports Server (NTRS)
Beaton, Kara H.; Chappell, Steven P.; Bekdash, Omar S.; Gernhardt, Michael L.
2018-01-01
The NASA Next Space Technologies for Exploration Partnerships (NextSTEP) program is a public-private partnership model that seeks commercial development of deep space exploration capabilities to support extensive human spaceflight missions around and beyond cislunar space. NASA first issued the Phase 1 NextSTEP Broad Agency Announcement to U.S. industries in 2014, which called for innovative cislunar habitation concepts that leveraged commercialization plans for low Earth orbit. These habitats will be part of the Deep Space Gateway (DSG), the cislunar space station planned by NASA for construction in the 2020s. In 2016, Phase 2 of the NextSTEP program selected five commercial partners to develop ground prototypes. A team of NASA research engineers and subject matter experts have been tasked with developing the ground test protocol that will serve as the primary means by which these Phase 2 prototype habitats will be evaluated. Since 2008, this core test team has successfully conducted multiple spaceflight analog mission evaluations utilizing a consistent set of operational products, tools, methods, and metrics to enable the iterative development, testing, analysis, and validation of evolving exploration architectures, operations concepts, and vehicle designs. The purpose of implementing a similar evaluation process for the NextSTEP Phase 2 Habitation Concepts is to consistently evaluate the different commercial partner ground prototypes to provide data-driven, actionable recommendations for Phase 3.
Lightweight autonomous chemical identification system (LACIS)
NASA Astrophysics Data System (ADS)
Lozos, George; Lin, Hai; Burch, Timothy
2012-06-01
Smiths Detection and Intelligent Optical Systems have developed prototypes for the Lightweight Autonomous Chemical Identification System (LACIS) for the US Department of Homeland Security. LACIS is to be a handheld detection system for Chemical Warfare Agents (CWAs) and Toxic Industrial Chemicals (TICs). LACIS is designed to have a low limit of detection and rapid response time for use by emergency responders and could allow determination of areas having dangerous concentration levels and if protective garments will be required. Procedures for protection of responders from hazardous materials incidents require the use of protective equipment until such time as the hazard can be assessed. Such accurate analysis can accelerate operations and increase effectiveness. LACIS is to be an improved point detector employing novel CBRNE detection modalities that includes a militaryproven ruggedized ion mobility spectrometer (IMS) with an array of electro-resistive sensors to extend the range of chemical threats detected in a single device. It uses a novel sensor data fusion and threat classification architecture to interpret the independent sensor responses and provide robust detection at low levels in complex backgrounds with minimal false alarms. The performance of LACIS prototypes have been characterized in independent third party laboratory tests at the Battelle Memorial Institute (BMI, Columbus, OH) and indoor and outdoor field tests at the Nevada National Security Site (NNSS). LACIS prototypes will be entering operational assessment by key government emergency response groups to determine its capabilities versus requirements.
ERIC Educational Resources Information Center
Economic Research Service (USDA), Washington, DC.
These proceedings contain presentations and summaries of papers presented at a Wheat Competitiveness Conference. They begin with two presentations--"The Wheat Prototype Study within an Overall Conceptual Framework of Competitiveness" (James Langley) and "U.S. Competitiveness in the World Wheat Market: A Prototype Study" (Jerry…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Durfee, Justin David; Frazier, Christopher Rawls; Bandlow, Alisa
Sandia National Laboratories (Sandia) is in Phase 3 Sustainment of development of a prototype tool, currently referred to as the Contingency Contractor Optimization Tool - Prototype (CCOTP), under the direction of OSD Program Support. CCOT-P is intended to help provide senior Department of Defense (DoD) leaders with comprehensive insight into the global availability, readiness and capabilities of the Total Force Mix. The CCOT-P will allow senior decision makers to quickly and accurately assess the impacts, risks and mitigating strategies for proposed changes to force/capabilities assignments, apportionments and allocations options, focusing specifically on contingency contractor planning. During Phase 2 of themore » program, conducted during fiscal year 2012, Sandia developed an electronic storyboard prototype of the Contingency Contractor Optimization Tool that can be used for communication with senior decision makers and other Operational Contract Support (OCS) stakeholders. Phase 3 used feedback from demonstrations of the electronic storyboard prototype to develop an engineering prototype for planners to evaluate. Sandia worked with the DoD and Joint Chiefs of Staff strategic planning community to get feedback and input to ensure that the engineering prototype was developed to closely align with future planning needs. The intended deployment environment was also a key consideration as this prototype was developed. Initial release of the engineering prototype was done on servers at Sandia in the middle of Phase 3. In 2013, the tool was installed on a production pilot server managed by the OUSD(AT&L) eBusiness Center. The purpose of this document is to specify the CCOT-P engineering prototype platform requirements as of May 2016. Sandia developed the CCOT-P engineering prototype using common technologies to minimize the likelihood of deployment issues. CCOT-P engineering prototype was architected and designed to be as independent as possible of the major deployment components such as the server hardware, the server operating system, the database, and the web server. This document describes the platform requirements, the architecture, and the implementation details of the CCOT-P engineering prototype.« less
NASA Astrophysics Data System (ADS)
Teng, W.; Kempler, S.; Chiu, L.; Doraiswamy, P.; Liu, Z.; Milich, L.; Tetrault, R.
2003-12-01
Monitoring global agricultural crop conditions during the growing season and estimating potential seasonal production are critically important for market development of U.S. agricultural products and for global food security. Two major operational users of satellite remote sensing for global crop monitoring are the USDA Foreign Agricultural Service (FAS) and the U.N. World Food Programme (WFP). The primary goal of FAS is to improve foreign market access for U.S. agricultural products. The WFP uses food to meet emergency needs and to support economic and social development. Both use global agricultural decision support systems that can integrate and synthesize a variety of data sources to provide accurate and timely information on global crop conditions. The Goddard Space Flight Center Earth Sciences Distributed Active Archive Center (GES DAAC) has begun a project to provide operational solutions to FAS and WFP, by fully leveraging results from previous work, as well as from existing capabilities of the users. The GES DAAC has effectively used its recently developed prototype TRMM Online Visualization and Analysis System (TOVAS) to provide ESE data and information to the WFP for its agricultural drought monitoring efforts. This prototype system will be evolved into an Agricultural Information System (AIS), which will operationally provide ESE and other data products (e.g., rainfall, land productivity) and services, to be integrated into and thus enhance the existing GIS-based, decision support systems of FAS and WFP. Agriculture-oriented, ESE data products (e.g., MODIS-based, crop condition assessment product; TRMM derived, drought index product) will be input to a crop growth model in collaboration with the USDA Agricultural Research Service, to generate crop condition and yield prediction maps. The AIS will have the capability for remotely accessing distributed data, by being compliant with community-based interoperability standards, enabling easy access to agriculture-related products from other data producers. The AIS? system approach will provide a generic mechanism for easily incorporating new products and making them accessible to users.
Particle protection capability of SEMI-compliant EUV-pod carriers
NASA Astrophysics Data System (ADS)
Huang, George; He, Long; Lystad, John; Kielbaso, Tom; Montgomery, Cecilia; Goodwin, Frank
2010-04-01
With the projected rollout of pre-production extreme ultraviolet lithography (EUVL) scanners in 2010, EUVL pilot line production will become a reality in wafer fabrication companies. Among EUVL infrastructure items that must be ready, EUV mask carriers remain critical. To keep non-pellicle EUV masks free from particle contamination, an EUV pod concept has been extensively studied. Early prototypes demonstrated nearly particle-free results at a 53 nm PSL equivalent inspection sensitivity during EUVL mask robotic handling, shipment, vacuum pump-purge, and storage. After the passage of SEMI E152, which specifies the EUV pod mechanical interfaces, standards-compliant EUV pod prototypes, including a production version inner pod and prototype outer pod, were built and tested. Their particle protection capability results are reported in this paper. A state-of-the-art blank defect inspection tool was used to quantify their defect protection capability during mask robotic handling, shipment, and storage tests. To ensure the availability of an EUV pod for 2010 pilot production, the progress and preliminary test results of pre-production EUV outer pods are reported as well.
At-sea demonstration of RF sensor tasking using XML over a worldwide network
NASA Astrophysics Data System (ADS)
Kellogg, Robert L.; Lee, Tom; Dumas, Diane; Raggo, Barbara
2003-07-01
As part of an At-Sea Demonstration for Space and Naval Warfare Command (SPAWAR, PMW-189), a prototype RF sensor for signal acquisition and direction finding queried and received tasking via a secure worldwide Automated Data Network System (ADNS). Using extended mark-up language (XML) constructs, both mission and signal tasking were available for push and pull Battlespace management. XML tasking was received by the USS Cape St George (CG-71) during an exercise along the Gulf Coast of the US from a test facility at SPAWAR, San Diego, CA. Although only one ship was used in the demonstration, the intent of the software initiative was to show that a network of different RF sensors on different platforms with different capabilitis could be tasked by a common web agent. A sensor software agent interpreted the XML task to match the sensor's capability. Future improvements will focus on enlarging the domain of mission tasking and incorporate report management.
Ground Systems Development Environment (GSDE) interface requirements and prototyping plan
NASA Technical Reports Server (NTRS)
Church, Victor E.; Philips, John; Bassman, Mitchell; Williams, C.
1990-01-01
This report describes the data collection and requirements analysis effort of the Ground System Development Environment (GSDE) Interface Requirements study. It identifies potential problems in the interfaces among applications and processors in the heterogeneous systems that comprises the GSDE. It describes possible strategies for addressing those problems. It also identifies areas for further research and prototyping to demonstrate the capabilities and feasibility of those strategies and defines a plan for building the necessary software prototypes.
NASA Astrophysics Data System (ADS)
Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.
2006-05-01
Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, handheld, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennig, Yasmin
Sandia National Laboratories has a long history of significant contributions to the high performance community and industry. Our innovative computer architectures allowed the United States to become the first to break the teraFLOP barrier—propelling us to the international spotlight. Our advanced simulation and modeling capabilities have been integral in high consequence US operations such as Operation Burnt Frost. Strong partnerships with industry leaders, such as Cray, Inc. and Goodyear, have enabled them to leverage our high performance computing (HPC) capabilities to gain a tremendous competitive edge in the marketplace. As part of our continuing commitment to providing modern computing infrastructuremore » and systems in support of Sandia missions, we made a major investment in expanding Building 725 to serve as the new home of HPC systems at Sandia. Work is expected to be completed in 2018 and will result in a modern facility of approximately 15,000 square feet of computer center space. The facility will be ready to house the newest National Nuclear Security Administration/Advanced Simulation and Computing (NNSA/ASC) Prototype platform being acquired by Sandia, with delivery in late 2019 or early 2020. This new system will enable continuing advances by Sandia science and engineering staff in the areas of operating system R&D, operation cost effectiveness (power and innovative cooling technologies), user environment and application code performance.« less
NASA Stennis Space Center Integrated System Health Management Test Bed and Development Capabilities
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Holland, Randy; Coote, David
2006-01-01
Integrated System Health Management (ISHM) is a capability that focuses on determining the condition (health) of every element in a complex System (detect anomalies, diagnose causes, prognosis of future anomalies), and provide data, information, and knowledge (DIaK)-not just data-to control systems for safe and effective operation. This capability is currently done by large teams of people, primarily from ground, but needs to be embedded on-board systems to a higher degree to enable NASA's new Exploration Mission (long term travel and stay in space), while increasing safety and decreasing life cycle costs of spacecraft (vehicles; platforms; bases or outposts; and ground test, launch, and processing operations). The topics related to this capability include: 1) ISHM Related News Articles; 2) ISHM Vision For Exploration; 3) Layers Representing How ISHM is Currently Performed; 4) ISHM Testbeds & Prototypes at NASA SSC; 5) ISHM Functional Capability Level (FCL); 6) ISHM Functional Capability Level (FCL) and Technology Readiness Level (TRL); 7) Core Elements: Capabilities Needed; 8) Core Elements; 9) Open Systems Architecture for Condition-Based Maintenance (OSA-CBM); 10) Core Elements: Architecture, taxonomy, and ontology (ATO) for DIaK management; 11) Core Elements: ATO for DIaK Management; 12) ISHM Architecture Physical Implementation; 13) Core Elements: Standards; 14) Systematic Implementation; 15) Sketch of Work Phasing; 16) Interrelationship Between Traditional Avionics Systems, Time Critical ISHM and Advanced ISHM; 17) Testbeds and On-Board ISHM; 18) Testbed Requirements: RETS AND ISS; 19) Sustainable Development and Validation Process; 20) Development of on-board ISHM; 21) Taxonomy/Ontology of Object Oriented Implementation; 22) ISHM Capability on the E1 Test Stand Hydraulic System; 23) Define Relationships to Embed Intelligence; 24) Intelligent Elements Physical and Virtual; 25) ISHM Testbeds and Prototypes at SSC Current Implementations; 26) Trailer-Mounted RETS; 27) Modeling and Simulation; 28) Summary ISHM Testbed Environments; 29) Data Mining - ARC; 30) Transitioning ISHM to Support NASA Missions; 31) Feature Detection Routines; 32) Sample Features Detected in SSC Test Stand Data; and 33) Health Assessment Database (DIaK Repository).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, L; Sarkar, V; Spiessens, S
2014-06-01
Purpose: The latest clinical implementation of the Siemens Artiste linac allows for delivery of modulated arcs (mARC) using full-field flattening filter free (FFF) photon beams. The maximum doserate of 2000 MU/min is well suited for high dose treatments such as SBRT. We tested and report on the performance of a prototype Eclipse TPS module supporting mARC capability on the Artiste platform. Method: our spine SBRT patients originally treated with 12/13 field static-gantry IMRT (SGIMRT) were chosen for this study. These plans were designed to satisfy RTOG0631 guidelines with a prescription of 16Gy in a single fraction. The cases were re-plannedmore » as mARC plans in the prototype Eclipse module using the 7MV FFF beam and required to satisfy RTOG0631 requirements. All plans were transferred from Eclipse, delivered on a Siemens Artiste linac and dose-validated using the Delta4 system. Results: All treatment plans were straightforwardly developed, in timely fashion, without challenge or inefficiency using the prototype module. Due to the limited number of segments in a single arc, mARC plans required 2-3 full arcs to yield plan quality comparable to SGIMRT plans containing over 250 total segments. The average (3%/3mm) gamma pass-rate for all arcs was 98.5±1.1%, thus demonstrating both excellent dose prediction by the AAA dose algorithm and excellent delivery fidelity. Mean delivery times for the mARC plans(10.5±1.7min) were 50-70% lower than the SGIMRT plans(26±2min), with both delivered at 2000 MU/min. Conclusion: A prototype Eclipse module capable of planning for Burst Mode modulated arc delivery on the Artiste platform has been tested and found to perform efficiently and accurately for treatment plan development and delivered-dose prediction. Further investigation of more treatment sites is being carried out and data will be presented.« less
NASA Astrophysics Data System (ADS)
Harris, L.; Lin, S. J.; Zhou, L.; Chen, J. H.; Benson, R.; Rees, S.
2016-12-01
Limited-area convection-permitting models have proven useful for short-range NWP, but are unable to interact with the larger scales needed for longer lead-time skill. A new global forecast model, fvGFS, has been designed combining a modern nonhydrostatic dynamical core, the GFDL Finite-Volume Cubed-Sphere dynamical core (FV3) with operational GFS physics and initial conditions, and has been shown to provide excellent global skill while improving representation of small-scale phenomena. The nested-grid capability of FV3 allows us to build a regional-to-global variable-resolution model to efficiently refine to 3-km grid spacing over the Continental US. The use of two-way grid nesting allows us to reach these resolutions very efficiently, with the operational requirement easily attainable on current supercomputing systems.Even without a boundary-layer or advanced microphysical scheme appropriate for convection-perrmitting resolutions, the effectiveness of fvGFS can be demonstrated for a variety of weather events. We demonstrate successful proof-of-concept simulations of a variety of phenomena. We show the capability to develop intense hurricanes with realistic fine-scale eyewalls and rainbands. The new model also produces skillful predictions of severe weather outbreaks and of organized mesoscale convective systems. Fine-scale orographic and boundary-layer phenomena are also simulated with excellent fidelity by fvGFS. Further expected improvements are discussed, including the introduction of more sophisticated microphysics and of scale-aware convection schemes.
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander has been attached to a tether and is being prepared for placement on a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The lander will be prepared for a tethered test that includes lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, technicians and engineers assist as the Project Morpheus prototype lander is attached to a tether and lowered onto a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The lander will be prepared for a tethered test that includes lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, smoke fills the air as the Project Morpheus prototype lander’s engine fires during a tether test at the north end of the Shuttle Landing Facility. During the test, the lander was lifted 20 feet by crane, and then ascended another 10 feet. The lander will maneuver backwards 10 feet, and then fly forward and descend to its original position, landing at the end of the tether onto a transportable launch platform. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper
2013-12-06
CAPE CANAVERAL, Fla. – Inside a control room at NASA’s Kennedy Space Center in Florida, engineers monitor the progress as the Project Morpheus prototype lander is being prepared for a tether test on a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The tethered test will include lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Daniel Casper
2013-12-06
CAPE CANAVERAL, Fla. – At NASA’s Kennedy Space Center in Florida, the Project Morpheus prototype lander has been attached to a tether and is being lowered onto a transportable launch platform positioned at the north end of the Shuttle Landing Facility. The lander will be prepared for a tethered test that includes lifting it 20 feet by crane, ascending another 10 feet, maneuvering backwards 10 feet, and then flying forward and descending to its original position, landing at the end of the tether. Testing of the prototype lander was performed at NASA’s Johnson Space Center in Houston in preparation for tethered and free flight testing at Kennedy. The landing facility will provide the lander with the kind of field necessary for realistic testing, complete with rocks, craters and hazards to avoid. Morpheus utilizes an autonomous landing and hazard avoidance technology, or ALHAT, payload that will allow it to navigate to clear landing sites amidst rocks, craters and other hazards during its descent. Project Morpheus is being managed under the Advanced Exploration Systems, or AES, Division in NASA’s Human Exploration and Operations Mission Directorate. The efforts in AES pioneer new approaches for rapidly developing prototype systems, demonstrating key capabilities and validating operational concepts for future human missions beyond Earth orbit. For more information on Project Morpheus, visit http://morpheuslander.jsc.nasa.gov. Photo credit: NASA/Kim Shiflett
Mechanical Design and Optimization of Swarm-Capable UAV Launch Systems
2015-06-01
stakeholders. The end result was the successful development and demonstration of a launching system prototype specifically developed to rapidly launch a...requirements for the stakeholders. The end result was the successful development and demonstration of a launching system prototype specifically developed to... Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7 Conclusion 125 7.1 Summary of Findings
The Personal Satellite Assistant: An Internal Spacecraft Autonomous Mobile Monitor
NASA Technical Reports Server (NTRS)
Dorais, Gregory A.; Gawdiak, Yuri; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper presents an overview of the research and development effort at the NASA Ames Research Center to create an internal spacecraft autonomous mobile monitor capable of performing intra-vehicular sensing activities by autonomously navigating onboard the International Space Station. We describe the capabilities, mission roles, rationale, high-level functional requirements, and design challenges for an autonomous mobile monitor. The rapid prototyping design methodology used, in which five prototypes of increasing fidelity are designed, is described as well as the status of these prototypes, of which two are operational and being tested, and one is actively being designed. The physical test facilities used to perform ground testing are briefly described, including a micro-gravity test facility that permits a prototype to propel itself in 3 dimensions with 6 degrees-of-freedom as if it were in an micro-gravity environment. We also describe an overview of the autonomy framework and its components including the software simulators used in the development process. Sample mission test scenarios are also described. The paper concludes with a discussion of future and related work followed by the summary.
DOE`s annealing prototype demonstration projects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, J.; Nakos, J.; Rochau, G.
1997-02-01
One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable throughmore » a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy`s Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana`s Marble Hill nuclear power plant. The MPR team`s annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company`s nuclear power plant at Midland, Michigan. This paper describes the Department`s annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges.« less
VISSR Atmospheric Sounder (VAS) Research Review
NASA Technical Reports Server (NTRS)
Greaves, J. R. (Editor)
1983-01-01
The VAS, an experimental instrument flown onboard Geostationary Operational Environmental Satellite (GOES), is capable of achieving mutlispectral imagery of atmospheric temperature, water vapor, and cloudiness patterns over short time intervals. In addition, this instrument provides an atmospheric sounding capability from geosynchronous orbit. The VAS demonstration is an effort for evaluating the VAS instrument's performance, and for demonstrating the capabilities of a VAS prototype system to provide useful geosynchronous satellite data for supporting weather forecasts and atmospheric research. The demonstration evaluates the performance of the VAS Instruments on GOES-4-5, and -6, develops research oriented and prototype/operational VAS data processing systems, determines the accuracy of certain basic and derived meteorological parameters that can be obtained from the VAS instrument, and assesses the utility of VAS derived information in analyzing severe weather situations.
MWPC prototyping and testing for STAR inner TPC upgrade
NASA Astrophysics Data System (ADS)
Shen, F.; Wang, S.; Yang, C.; Xu, Q.
2017-06-01
STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is upgrading the inner sectors of the Time Projection Chamber (iTPC). The iTPC upgrade project will increase the segmentation on the inner pad plane from 13 to 40 pad rows and renew the inner sector wire chambers. The upgrade will expand the TPC's acceptance from |η|<=1.0 to |η|<=1.5. Furthermore, the detector will have better acceptance for tracks with low momentum, as well as better resolution in both momentum and dE/dx for tracks of all momenta. The enhanced measurement capabilities of STAR-iTPC upgrade are crucial to the physics program of the Phase II of Beam Energy Scan (BES-II) at RHIC during 2019-2020, in particular the QCD phase transition study. In this proceedings, I will discuss the iTPC MWPC module fabrication and testing results from the first full size iTPC MWPC pre-prototype made at Shandong University.
Just-in-Time Technology to Encourage Incremental, Dietary Behavior Change
Intille, Stephen S.; Kukla, Charles; Farzanfar, Ramesh; Bakr, Waseem
2003-01-01
Our multi-disciplinary team is developing mobile computing software that uses “just-in-time” presentation of information to motivate behavior change. Using a participatory design process, preliminary interviews have helped us to establish 10 design goals. We have employed some to create a prototype of a tool that encourages better dietary decision making through incremental, just-in-time motivation at the point of purchase. PMID:14728379
Progress in the Development of a Prototype Reuse Enablement System
NASA Astrophysics Data System (ADS)
Marshall, J. J.; Downs, R. R.; Gilliam, L. J.; Wolfe, R. E.
2008-12-01
An important part of promoting software reuse is to ensure that reusable software assets are readily available to the software developers who want to use them. Through dialogs with the community, the NASA Earth Science Data Systems Software Reuse Working Group has learned that the lack of a centralized, domain- specific software repository or catalog system addressing the needs of the Earth science community is a major barrier to software reuse within the community. The Working Group has proposed the creation of such a reuse enablement system, which would provide capabilities for contributing and obtaining reusable software, to remove this barrier. The Working Group has recommended the development of a Reuse Enablement System to NASA and has performed a trade study to review systems with similar capabilities and to identify potential platforms for the proposed system. This was followed by an architecture study to determine an expeditious and cost-effective solution for this system. A number of software packages and systems were examined through both creating prototypes and examining existing systems that use the same software packages and systems. Based on the results of the architecture study, the Working Group developed a prototype of the proposed system using the recommended software package, through an iterative process of identifying needed capabilities and improving the system to provide those capabilities. Policies for the operation and maintenance of the system are being established for the system, and the identification of system policies also has contributed to the development process. Additionally, a test plan is being developed for formal testing of the prototype, to ensure that it meets all of the requirements previously developed by the Working Group. This poster summarizes the results of our work to date, focusing on the most recent activities.
Zhang, Mingyuan; Velasco, Ferdinand T.; Musser, R. Clayton; Kawamoto, Kensaku
2013-01-01
Enabling clinical decision support (CDS) across multiple electronic health record (EHR) systems has been a desired but largely unattained aim of clinical informatics, especially in commercial EHR systems. A potential opportunity for enabling such scalable CDS is to leverage vendor-supported, Web-based CDS development platforms along with vendor-supported application programming interfaces (APIs). Here, we propose a potential staged approach for enabling such scalable CDS, starting with the use of custom EHR APIs and moving towards standardized EHR APIs to facilitate interoperability. We analyzed three commercial EHR systems for their capabilities to support the proposed approach, and we implemented prototypes in all three systems. Based on these analyses and prototype implementations, we conclude that the approach proposed is feasible, already supported by several major commercial EHR vendors, and potentially capable of enabling cross-platform CDS at scale. PMID:24551426
Welch, Brandon M; Rodriguez-Loya, Salvador; Eilbeck, Karen; Kawamoto, Kensaku
2014-01-01
Whole genome sequence (WGS) information could soon be routinely available to clinicians to support the personalized care of their patients. At such time, clinical decision support (CDS) integrated into the clinical workflow will likely be necessary to support genome-guided clinical care. Nevertheless, developing CDS capabilities for WGS information presents many unique challenges that need to be overcome for such approaches to be effective. In this manuscript, we describe the development of a prototype CDS system that is capable of providing genome-guided CDS at the point of care and within the clinical workflow. To demonstrate the functionality of this prototype, we implemented a clinical scenario of a hypothetical patient at high risk for Lynch Syndrome based on his genomic information. We demonstrate that this system can effectively use service-oriented architecture principles and standards-based components to deliver point of care CDS for WGS information in real-time.
Second Generation Prototype Design and Testing for a High Altitude Venus Balloon
NASA Technical Reports Server (NTRS)
Hall, J. L.; Kerzhanovich, V. V.; Yavrouian, A. H.; Plett, G. A.; Said, M.; Fairbrother, D.; Sandy, C.; Frederickson, T.; Sharpe, G.; Day, S.
2008-01-01
This paper describes the development of a second generation prototype balloon intended for flight in the upper atmosphere of Venus. The design of this new prototype incorporates lessons learned from the construction and testing of the first generation prototype, including finite element analyses of the balloon stresses and deformations, measured leak performance after handling and packaging, permeability and optical property measurements on material samples, and sulfuric acid testing. An improved design for the second generation prototype was formulated based on these results, although the spherical shape and 5.5 m diameter size were retained. The resulting balloon has a volume of 87 cubic meters and is capable of carrying a 45 kg payload at a 55 km altitude at Venus. The design and fabrication of the new prototype is described, along with test data for inflation and leakage performance.
Supersonic Wind Tunnel Capabilities Expanded Into Subsonic Region
NASA Technical Reports Server (NTRS)
Roeder, James W., Jr.
1997-01-01
The operating envelope of the Abe Silverstein 10- by 10-Foot Supersonic Wind Tunnel (10x10 SWT) at the NASA Lewis Research Center was recently expanded to include operation at subsonic test section speeds. This new capability generates test section air speeds ranging from Mach 0.05 to 0.35 (32 to 240 kn). Most of the expansion in air speed range was obtained by running the tunnel's main compressor at much lower speeds than ever before. The compressor drive system, consisting of four large electric motors, was run with only one or two motors energized to obtain the lower compressor speed range. This new capability makes the 10x10 SWT more versatile and gives U.S. researchers an enhanced ability to perform subsonic propulsion and aerodynamic testing.
Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.
2015-01-01
Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice-accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional (3-D) features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-in. chord, two-dimensional (2-D) straight wing with NACA 23012 airfoil section. For six ice-accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 × 10(exp 6) and a Mach number of 0.18 with an 18-in. chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For five of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3 percent with corresponding differences in stall angle of approximately 1 deg or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several of the ice-accretion cases tested, the aerodynamics is known to depend upon the small, three-dimensional features of the ice. These data show that the laser-scan and rapid-prototype manufacturing approach is capable of replicating these ice features within the reported accuracies of the laser-scan measurement and rapid-prototyping method; thus providing a new capability for high-fidelity ice-accretion documentation and artificial ice-shape fabrication for icing research.
Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation
NASA Technical Reports Server (NTRS)
Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.
2014-01-01
Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-inch chord, 2-D straight wing with NACA 23012 airfoil section. For six ice accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 x 10(exp 6) and a Mach number of 0.18 with an 18-inch chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For four of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3% with corresponding differences in stall angle of approximately one degree or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several of the ice-accretion cases tested, the aerodynamics is known to depend upon the small, three dimensional features of the ice. These data show that the laser-scan and rapid-prototype manufacturing approach is capable of replicating these ice features within the reported accuracies of the laser-scan measurement and rapid-prototyping method; thus providing a new capability for high-fidelity ice-accretion documentation and artificial ice-shape fabrication for icing research.
46 CFR 8.570 - Interim approval of prototype SIP company or vessel plans.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Interim approval of prototype SIP company or vessel... of prototype SIP company or vessel plans. (a) A company operating under an approved prototype SIP... continue operating under the plans while revisions are developed to bring the prototype SIP company or...
Rapid Prototyping of Computer-Based Presentations Using NEAT, Version 1.1.
ERIC Educational Resources Information Center
Muldner, Tomasz
NEAT (iNtegrated Environment for Authoring in ToolBook) provides templates and various facilities for the rapid prototyping of computer-based presentations, a capability that is lacking in current authoring systems. NEAT is a specialized authoring system that can be used by authors who have a limited knowledge of computer systems and no…
Chapter 14 - Dissemination of LANDFIRE Prototype Project data
Jeff Eidenshink
2006-01-01
The transfer of LANDFIRE data to users is the most important aspect of the Landscape Fire and Resource Management Planning Tools Project (LANDFIRE Prototype Project). The creation of an accurate, consistent, nationwide data set provides the foundation for a successful project. The final step is to make the data readily available to the user community. User capabilities...
Development of a Prototype System for Accessing Linked NCES Data. Working Paper Series.
ERIC Educational Resources Information Center
Salvucci, Sameena; Wenck, Stephen; Tyson, James
A project has been developed to advance the capabilities of the National Center for Education Statistics (NCES) to support the dissemination of linked data from multiple surveys, multiple components within a survey, and multiple time points. An essential element of this study is the development of a software prototype system to facilitate NCES…
Photovoltaic Manufacturing Consortium (PVMC) – Enabling America’s Solar Revolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metacarpa, David
The U.S. Photovoltaic Manufacturing Consortium (US-PVMC) is an industry-led consortium which was created with the mission to accelerate the research, development, manufacturing, field testing, commercialization, and deployment of next-generation solar photovoltaic technologies. Formed as part of the U.S. Department of Energy's (DOE) SunShot initiative, and headquartered in New York State, PVMC is managed by the State University of New York Polytechnic Institute (SUNY Poly) at the Colleges of Nanoscale Science and Engineering. PVMC is a hybrid of industry-led consortium and manufacturing development facility, with capabilities for collaborative and proprietary industry engagement. Through its technology development programs, advanced manufacturing development facilities,more » system demonstrations, and reliability and testing capabilities, PVMC has demonstrated itself to be a recognized proving ground for innovative solar technologies and system designs. PVMC comprises multiple locations, with the core manufacturing and deployment support activities conducted at the Solar Energy Development Center (SEDC), and the core Si wafering and metrology technologies being headed out of the University of Central Florida. The SEDC provides a pilot line for proof-of-concept prototyping, offering critical opportunities to demonstrate emerging concepts in PV manufacturing, such as evaluations of innovative materials, system components, and PV system designs. The facility, located in Halfmoon NY, encompasses 40,000 square feet of dedicated PV development space. The infrastructure and capabilities housed at PVMC includes PV system level testing at the Prototype Demonstration Facility (PDF), manufacturing scale cell & module fabrication at the Manufacturing Development Facility (MDF), cell and module testing, reliability equipment on its PV pilot line, all integrated with a PV performance database and analytical characterizations for PVMC and its partners test and commercial arrays. Additional development and deployment support are also housed at the SEDC, such as cost modeling and cost model based development activities for PV and thin film modules, components, and system level designs for reduced LCOE through lower installation hardware costs, labor reductions, soft costs and reduced operations and maintenance costs. The progression of the consortium activities started with infrastructure and capabilities build out focused on CIGS thin film photovoltaics, with a particular focus on flexible cell and module production. As marketplace changes and partners objectives shifted, the consortium shifted heavily towards deployment and market pull activities including Balance of System, cost modeling, and installation cost reduction efforts along with impacts to performance and DER operational costs. The consortium consisted of a wide array of PV supply chain companies from equipment and component suppliers through national developers and installers with a particular focus on commercial scale deployments (typically 25 to 2MW installations). With DOE funding ending after the fifth budget period, the advantages and disadvantages of such a consortium is detailed along with potential avenues for self-sustainability is reviewed.« less
Multidisciplinary analysis and design of printed wiring boards
NASA Astrophysics Data System (ADS)
Fulton, Robert E.; Hughes, Joseph L.; Scott, Waymond R., Jr.; Umeagukwu, Charles; Yeh, Chao-Pin
1991-04-01
Modern printed wiring board design depends on electronic prototyping using computer-based simulation and design tools. Existing electrical computer-aided design (ECAD) tools emphasize circuit connectivity with only rudimentary analysis capabilities. This paper describes a prototype integrated PWB design environment denoted Thermal Structural Electromagnetic Testability (TSET) being developed at Georgia Tech in collaboration with companies in the electronics industry. TSET provides design guidance based on enhanced electrical and mechanical CAD capabilities including electromagnetic modeling testability analysis thermal management and solid mechanics analysis. TSET development is based on a strong analytical and theoretical science base and incorporates an integrated information framework and a common database design based on a systematic structured methodology.
Cubesat Application for Planetary Entry (CAPE) Missions: Micro-Reentry Capsule (MIRCA)
NASA Technical Reports Server (NTRS)
Esper, Jaime
2014-01-01
The Cubesat Application for Planetary Entry Missions (CAPE) concept describes a high-performing Cubesat system which includes a propulsion module and miniaturized technologies capable of surviving atmospheric entry heating, while reliably transmitting scientific and engineering data. The Micro Return Capsule (MIRCA) is CAPEs first planetary entry probe flight prototype. Within this context, this paper briefly describes CAPEs configuration and typical operational scenario, and summarizes ongoing work on the design and basic aerodynamic characteristics of the prototype MIRCA vehicle. CAPE not only opens the door to new planetary mission capabilities, it also offers relatively low-cost opportunities especially suitable to university participation.
Asymmetric Data Acquisition System for an Endoscopic PET-US Detector
NASA Astrophysics Data System (ADS)
Zorraquino, Carlos; Bugalho, Ricardo; Rolo, Manuel; Silva, Jose C.; Vecklans, Viesturs; Silva, Rui; Ortigão, Catarina; Neves, Jorge A.; Tavernier, Stefaan; Guerra, Pedro; Santos, Andres; Varela, João
2016-02-01
According to current prognosis studies of pancreatic cancer, survival rate nowadays is still as low as 6% mainly due to late detections. Taking into account the location of the disease within the body and making use of the level of miniaturization in radiation detectors that can be achieved at the present time, EndoTOFPET-US collaboration aims at the development of a multimodal imaging technique for endoscopic pancreas exams that combines the benefits of high resolution metabolic information from time-of- flight (TOF) positron emission tomography (PET) with anatomical information from ultrasound (US). A system with such capabilities calls for an application-specific high-performance data acquisition system (DAQ) able to control and readout data from different detectors. The system is composed of two novel detectors: a PET head extension for a commercial US endoscope placed internally close to the region-of-interest (ROI) and a PET plate placed over the patient's abdomen in coincidence with the PET head. These two detectors will send asymmetric data streams that need to be handled by the DAQ system. The approach chosen to cope with these needs goes through the implementation of a DAQ capable of performing multi-level triggering and which is distributed across two different on-detector electronics and the off-detector electronics placed inside the reconstruction workstation. This manuscript provides an overview on the design of this innovative DAQ system and, based on results obtained by means of final prototypes of the two detectors and DAQ, we conclude that a distributed multi-level triggering DAQ system is suitable for endoscopic PET detectors and it shows potential for its application in different scenarios with asymmetric sources of data.
Flood Management Enhancement Using Remotely Sensed Data
NASA Technical Reports Server (NTRS)
Romanowski, Gregory J.
1997-01-01
SENTAR, Inc., entered into a cooperative agreement with NASA Goddard Space Flight Center (GSFC) in December 1994. The intent of the NASA Cooperative Agreement was to stimulate broad public use, via the Internet, of the very large remote sensing databases maintained by NASA and other agencies, thus stimulating U.S. economic growth, improving the quality of life, and contributing to the implementation of a National Information Infrastructure. SENTAR headed a team of collaborating organizations in meeting the goals of this project. SENTAR's teammates were the NASA Marshall Space Flight Center (MSFC) Global Hydrology and Climate Center (GHCC), the U.S. Army Space and Strategic Defense Command (USASSDC), and the Alabama Emergency Management Agency (EMA). For this cooperative agreement, SENTAR and its teammates accessed remotely sensed data in the Distributed Active Archive Centers, and other available sources, for use in enhancing the present capabilities for flood disaster management by the Alabama EMA. The project developed a prototype software system for addressing prediction, warning, and damage assessment for floods, though it currently focuses on assessment. The objectives of the prototype system were to demonstrate the added value of remote sensing data for emergency management operations during floods and the ability of the Internet to provide the primary communications medium for the system. To help achieve these objectives, SENTAR developed an integrated interface for the emergency operations staff to simplify acquiring and manipulating source data and data products for use in generating new data products. The prototype system establishes a systems infrastructure designed to expand to include future flood-related data and models or to include other disasters with their associated remote sensing data requirements and distributed data sources. This report covers the specific work performed during the seventh, and final, milestone period of the project, which began on 1 October 1996 and ended on 31 January 1997. In addition, it provides a summary of the entire project.
NASA Astrophysics Data System (ADS)
Du, Hui-Lin; Zhou, Zhao-Zhong; Sun, Ze-Qing; Ju, Bing-Feng; Xu, Shaoning; Sun, Anyu
2017-06-01
A new prototype non-contact profiler based on surface tracking has been specially developed. Surface tracking is carried out by a specially designed dual stage probe system with the aid of a four-Degree Of Freedom high-precision motion platform. The dual stage probe system keeps a short-range optical probe constantly tracking the surface by a self-developed voice coil motor servo, by which a wide measuring range of up to 10 mm is realized. The system performance evaluation including resolution, repeatability, and scanning speed proved the good capability of the new prototype non-contact profiler. To realize a full area covered 3D profile measurement of special-shaped optics within one scanning procedure, a signal intensity monitor integrated in the surface tracking controller is specially developed. In the experiment, a snip-single-corner-rectangular-shaped freeform surface was successfully measured over full area by the new non-contact profiler. This work provides an effective solution for 3D profile measurement of special-shaped optical surfaces over full reflecting area. Experimental results demonstrate that the proposed measuring system is of great significance in quality evaluation of optical surfaces.
Du, Hui-Lin; Zhou, Zhao-Zhong; Sun, Ze-Qing; Ju, Bing-Feng; Xu, Shaoning; Sun, Anyu
2017-06-01
A new prototype non-contact profiler based on surface tracking has been specially developed. Surface tracking is carried out by a specially designed dual stage probe system with the aid of a four-Degree Of Freedom high-precision motion platform. The dual stage probe system keeps a short-range optical probe constantly tracking the surface by a self-developed voice coil motor servo, by which a wide measuring range of up to 10 mm is realized. The system performance evaluation including resolution, repeatability, and scanning speed proved the good capability of the new prototype non-contact profiler. To realize a full area covered 3D profile measurement of special-shaped optics within one scanning procedure, a signal intensity monitor integrated in the surface tracking controller is specially developed. In the experiment, a snip-single-corner-rectangular-shaped freeform surface was successfully measured over full area by the new non-contact profiler. This work provides an effective solution for 3D profile measurement of special-shaped optical surfaces over full reflecting area. Experimental results demonstrate that the proposed measuring system is of great significance in quality evaluation of optical surfaces.
NASA Astrophysics Data System (ADS)
Koltunov, A.; Quayle, B.; Prins, E. M.; Ambrosia, V. G.; Ustin, S.
2014-12-01
Fire managers at various levels require near-real-time, low-cost, systematic, and reliable early detection capabilities with minimal latency to effectively respond to wildfire ignitions and minimize the risk of catastrophic development. The GOES satellite images collected for vast territories at high temporal frequencies provide a consistent and reliable source for operational active fire mapping realized by the WF-ABBA algorithm. However, their potential to provide early warning or rapid confirmation of initial fire ignition reports from conventional sources remains underutilized, partly because the operational wildfire detection has been successfully optimized for users and applications for which timeliness of initial detection is a low priority, contrasting to the needs of first responders. We present our progress in developing the GOES Early Fire Detection (GOES-EFD) system, a collaborative effort led by University of California-Davis and USDA Forest Service. The GOES-EFD specifically focuses on first detection timeliness for wildfire incidents. It is automatically trained for a monitored scene and capitalizes on multiyear cross-disciplinary algorithm research. Initial retrospective tests in Western US demonstrate significantly earlier identification detection of new ignitions than existing operational capabilities and a further improvement prospect. The GOES-EFD-β prototype will be initially deployed for the Western US region to process imagery from GOES-NOP and the rapid and 4 times higher spatial resolution imagery from GOES-R — the upcoming next generation of GOES satellites. These and other enhanced capabilities of GOES-R are expected to significantly improve the timeliness of fire ignition information from GOES-EFD.
LLIMAS: Revolutionizing integrating modeling and analysis at MIT Lincoln Laboratory
NASA Astrophysics Data System (ADS)
Doyle, Keith B.; Stoeckel, Gerhard P.; Rey, Justin J.; Bury, Mark E.
2017-08-01
MIT Lincoln Laboratory's Integrated Modeling and Analysis Software (LLIMAS) enables the development of novel engineering solutions for advanced prototype systems through unique insights into engineering performance and interdisciplinary behavior to meet challenging size, weight, power, environmental, and performance requirements. LLIMAS is a multidisciplinary design optimization tool that wraps numerical optimization algorithms around an integrated framework of structural, thermal, optical, stray light, and computational fluid dynamics analysis capabilities. LLIMAS software is highly extensible and has developed organically across a variety of technologies including laser communications, directed energy, photometric detectors, chemical sensing, laser radar, and imaging systems. The custom software architecture leverages the capabilities of existing industry standard commercial software and supports the incorporation of internally developed tools. Recent advances in LLIMAS's Structural-Thermal-Optical Performance (STOP), aeromechanical, and aero-optical capabilities as applied to Lincoln prototypes are presented.
GPS application to mapping, charting and geodesy
NASA Technical Reports Server (NTRS)
Senus, W. J.; Hill, R. W.
1981-01-01
GPSPAC, a receiver being developed for space applications by the Defense Mapping Agency and NASA, will use signals from GPS constellations to generate real-time values of host vehicle position and velocity. The GPSPAC has an L-band antenna and preamp capable of receiving the 1575 MHz and 1227 MHz spread spectrum signals; its stable oscillator at 5.115 MHz provides the basic frequency reference, resulting in a long term drift of less than one part in 10 to the -10th day. The GPSPAC performs many functions on board the spacecraft which were previously relegated to large-scale ground-based computer/receiver systems. A positional accuracy of better than 8 can be achieved for those periods when four or more NAVSTAR satellites are visible to the host satellite. The GPS geodetic receiver development, which will provide prototype receivers for utilization in terrestrial surveying operations, has the potential to significantly enhance the accuracy of point geodetic surveys over the current user hardware capability.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Schedule C-prototype tests for calibration or reference... Licensed Items § 32.102 Schedule C—prototype tests for calibration or reference sources containing..., conduct prototype tests, in the order listed, on each of five prototypes of the source, which contains...
Advanced subsystems development
NASA Technical Reports Server (NTRS)
Livingston, F. R.
1978-01-01
The concept design for a small (less than 10 MWe) solar thermal electric generating plant was completed using projected 1985 technology. The systems requirements were defined and specified. The components, including an engineering prototype for one 15 kWe module of the generating plant, were conceptually designed. Significant features of the small solar thermal power plant were identified as the following: (1) 15 kWe Stirling-cycle engine/alternator with constant power output; (2) 10 meter point-focusing paraboloidal concentrator with cantilevered cellular glass reflecting panels; (3) primary heat pipe with 800 C output solar cavity receiver; (4) secondary heat pipe with molten salt thermal energy storage unit; (5) electric energy transport system; and (6) advanced battery energy storage capability.
NASA Astrophysics Data System (ADS)
Levit, Creon; Gazis, P.
2006-06-01
The graphics processing units (GPUs) built in to all professional desktop and laptop computers currently on the market are capable of transforming, filtering, and rendering hundreds of millions of points per second. We present a prototype open-source cross-platform (windows, linux, Apple OSX) application which leverages some of the power latent in the GPU to enable smooth interactive exploration and analysis of large high-dimensional data using a variety of classical and recent techniques. The targeted application area is the interactive analysis of complex, multivariate space science and astrophysics data sets, with dimensionalities that may surpass 100 and sample sizes that may exceed 10^6-10^8.
NASA Astrophysics Data System (ADS)
Urbahs, A.; Urbaha, M.; Carjova, K.
2017-10-01
The theoretical calculation for development of planetary gear unit of wind turbine (WT) and its experimental tests are presented in the paper. Development of experimental prototypes from composite materials is essential to determine capability of element and its impact on feature. Two experimental scale prototypes of planetary gear unit for WT were developed for such purposes. Hall transducer, servomechanisms and optical tachometers were used to obtain results, comparison analysis of theoretical and actual data was performed as well as quality assessment of experimental prototypes of planetary gear unit. After kinematic and load analysis as well as control of rotation frequency, it is possible to declare that the unit is able to operate at designated quality. Theoretical calculations and test results obtained are used for industrial WT prototype development.
Mitigation of Oil in Water Column: Mitigation Prototype Tests
2017-06-01
distribution is unlimited. The study was funded in part by the U.S. Department of the Interior, Bureau of Safety and Environmental Enforcement (BSEE) through...James E. Fletcher Environment &Waterways Branch Chief United States Coast Guard Research & Development Center 1 Chelsea Street New London, CT...Research and Development Center 1 Chelsea Street New London, CT 06320 10. Work Unit No. (TRAIS) 11. Contract or Grant No. Task Order #HSCG32-17-J
A Compact Prototype of an Optical Pattern Recognition System
NASA Technical Reports Server (NTRS)
Jin, Y.; Liu, H. K.; Marzwell, N. I.
1996-01-01
In the Technology 2006 Case Studies/Success Stories presentation, we will describe and demonstrate a prototype of a compact optical pattern recognition system as an example of a successful technology transfer and continuuing development of state-of-the-art know-how by the close collaboration among government, academia, and small business via the NASA SBIR program. The prototype consists of a complete set of optical pattern recognition hardware with multi-channel storage and retrieval capability that is compactly configured inside a portable 1'X 2'X 3' aluminum case.
Update of GRASP/Ada reverse engineering tools for Ada
NASA Technical Reports Server (NTRS)
Cross, James H., II
1992-01-01
The GRASP/Ada project (Graphical Representations of Algorithms, Structures, and Processes for Ada) has successfully created and prototyped a new algorithmic level graphical representation of Ada software, the Control Structure Diagram (CSD). The primary impetus for creation of the CSD was to improve the comprehension efficiency of Ada software and, as a result, improve reliability and reduce costs. The emphasis was on the automatic generation of the CSD from Ada PDL or source code to support reverse engineering and maintenance. The CSD has the potential to replace traditional prettyprinted Ada source code. In Phase 1 of the GRASP/Ada project, the CSD graphical constructs were created and applied manually to several small Ada programs. A prototype (Version 1) was designed and implemented using FLEX and BISON running under VMS on a VAS 11-780. In Phase 2, the prototype was improved and ported to the Sun 4 platform under UNIX. A user interface was designed and partially implemented using the HP widget toolkit and the X Windows System. In Phase 3, the user interface was extensively reworked using the Athena widget toolkit and X Windows. The prototype was applied successfully to numerous Ada programs ranging in size from several hundred to several thousand lines of source code. Following Phase 3, the prototype was evaluated by software engineering students at Auburn University and then updated with significant enhancements to the user interface including editing capabilities. Version 3.2 of the prototype was prepared for limited distribution to facilitate further evaluation. The current prototype provides the capability for the user to generate CSD's from Ada PDL or source code in a reverse engineering as well as forward engineering mode with a level of flexibility suitable for practical application.
Into the Deep Black Sea: The Icefin Modular AUV for Ice-Covered Ocean Exploration
NASA Astrophysics Data System (ADS)
Meister, M. R.; Schmidt, B. E.; West, M. E.; Walker, C. C.; Buffo, J.; Spears, A.
2015-12-01
The Icefin autonomous underwater vehicle (AUV) was designed to enable long-range oceanographic exploration of physical and biological ocean environments in ice-covered regions. The vehicle is capable of surveying under-ice geometry, ice and ice-ocean interface properties, as well as water column conditions beneath the ice interface. It was developed with both cryospheric and planetary-analog exploration in mind. The first Icefin prototype was successfully operated in Antarctica in Austral summer 2014. The vehicle was deployed through a borehole in the McMurdo Ice Shelf near Black Island and successfully collected sonar, imaging, video and water column data down to 450 m depth. Icefin was developed using a modular design. Each module is designed to perform specific tasks, dependent on the mission objective. Vehicle control and data systems can be stably developed, and power modules added or subtracted for mission flexibility. Multiple sensor bays can be developed in parallel to serve multiple science objectives. This design enables the vehicle to have greater depth capability as well as improved operational simplicity compared to larger vehicles with equivalent capabilities. As opposed to those vehicles that require greater logistics and associated costs, Icefin can be deployed through boreholes drilled in the ice. Thus, Icefin satisfies the demands of achieving sub-ice missions while maintaining a small form factor and easy deployment necessary for repeated, low-logistical impact field programs. The current Icefin prototype is 10.5 inches in diameter by 10 feet long and weighs 240 pounds. It is comprised of two thruster modules with hovering capabilities, an oceanographic sensing module, main control module and a forward-sensing module for obstacle avoidance. The oceanographic sensing module is fitted with a side scan sonar (SSS), CT sensor, altimetry profiler and Doplar Velocity Log (DVL) with current profiling. Icefin is depth-rated to 1500 m and is equipped with 3.5 km of fiber optic, Kevlar reinforced cable, which provides point-to-point communications as well as a stable recovery platform between missions. SUPPORT: Icefin was designed and built at Georgia Tech, under Dr. Britney Schmidt's startup funds with effort contributed from Georgia Tech Research Institute (GTRI).
2015-05-21
Defense.Gov News, accessed November 10, 2014, http://www.defense.gov /news/newsarticle.aspx?id=121042. 91 Nicholas Seeley , “US, 18 other nations, wrap up...us-seeks-contractors-for-iraq-1.301798. Seeley , Nicholas. “US, 18 other nations, wrap up Eager Lion military exercise in Jordan.” 29 May 2012
10 CFR 32.103 - Schedule D-prototype tests for ice detection devices containing strontium-90.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Schedule D-prototype tests for ice detection devices... § 32.103 Schedule D—prototype tests for ice detection devices containing strontium-90. An applicant for a license pursuant to § 32.61 shall conduct prototype tests on each of five prototype ice detection...
10 CFR 32.103 - Schedule D-prototype tests for ice detection devices containing strontium-90.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Schedule D-prototype tests for ice detection devices... § 32.103 Schedule D—prototype tests for ice detection devices containing strontium-90. An applicant for a license pursuant to § 32.61 shall conduct prototype tests on each of five prototype ice detection...
10 CFR 32.103 - Schedule D-prototype tests for ice detection devices containing strontium-90.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Schedule D-prototype tests for ice detection devices... § 32.103 Schedule D—prototype tests for ice detection devices containing strontium-90. An applicant for a license pursuant to § 32.61 shall conduct prototype tests on each of five prototype ice detection...
NASA Astrophysics Data System (ADS)
Tucker, Brian J.; Diaz, Aaron A.; Eckenrode, Brian A.
2006-03-01
Government agencies and homeland security related organizations have identified the need to develop and establish a wide range of unprecedented capabilities for providing scientific and technical forensic services to investigations involving hazardous chemical, biological, and radiological materials, including extremely dangerous chemical and biological warfare agents. Pacific Northwest National Laboratory (PNNL) has developed a prototype portable, hand-held, hazardous materials acoustic inspection prototype that provides noninvasive container interrogation and material identification capabilities using nondestructive ultrasonic velocity and attenuation measurements. Due to the wide variety of fluids as well as container sizes and materials encountered in various law enforcement inspection activities, the need for high measurement sensitivity and advanced ultrasonic measurement techniques were identified. The prototype was developed using a versatile electronics platform, advanced ultrasonic wave propagation methods, and advanced signal processing techniques. This paper primarily focuses on the ultrasonic measurement methods and signal processing techniques incorporated into the prototype. High bandwidth ultrasonic transducers combined with an advanced pulse compression technique allowed researchers to 1) obtain high signal-to-noise ratios and 2) obtain accurate and consistent time-of-flight (TOF) measurements through a variety of highly attenuative containers and fluid media. Results of work conducted in the laboratory have demonstrated that the prototype experimental measurement technique also provided information regarding container properties, which will be utilized in future container-independent measurements of hidden liquids.
Telerobotics control of ExoGeoLab lander instruments
NASA Astrophysics Data System (ADS)
Lillo, A.; Foing, B. H.
2017-09-01
This document is about the improvement of the autonomy and capabilities of the prototype lander ExoGeoLab, designed to host remote controlled instruments for analogue Moon/Mars manned missions. Accent is put on new exploration capabilities for the lander to reduce the need for EVA.
2010-11-09
Report No. 10-13M, supported by the U.S. Air Force Medical Logistics Agency, under Work Unit No. 60334. The views expressed in this article are those...recommended 917Q line list. The Unit Type Code (UTC) capabilities, operational requirements, and materiel solutions were identified, and issues of...by 22%, and cost by 4%, or $9,500. Modeling and simulating a medical system like the FFDOT, with a range of capabilities and functional areas
Review on CNC-Rapid Prototyping
NASA Astrophysics Data System (ADS)
Z, M. Nafis O.; Y, Nafrizuan M.; A, Munira M.; J, Kartina
2012-09-01
This article reviewed developments of Computerized Numerical Control (CNC) technology in rapid prototyping process. Rapid prototyping (RP) can be classified into three major groups; subtractive, additive and virtual. CNC rapid prototyping is grouped under the subtractive category which involves material removal from the workpiece that is larger than the final part. Richard Wysk established the use of CNC machines for rapid prototyping using sets of 2½-D tool paths from various orientations about a rotary axis to machine parts without refixturing. Since then, there are few developments on this process mainly aimed to optimized the operation and increase the process capabilities to stand equal with common additive type of RP. These developments include the integration between machining and deposition process (hybrid RP), adoption of RP to the conventional machine and optimization of the CNC rapid prototyping process based on controlled parameters. The article ended by concluding that the CNC rapid prototyping research area has a vast space for improvement as in the conventional machining processes. Further developments and findings will enhance the usage of this method and minimize the limitation of current approach in building a prototype.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The ATLAS collaboration at LHC has chosen the Micromegas (Micro Mesh Gaseous Structure) technology along with the small-strip Thin Gap Chambers (sTGC) for the high luminosity upgrade of the inner muon station in the high-rapidity region, the so called New Small Wheel (NSW). It employs eight layers of Micromegas detectors and eight layers of sTGC. The NSW project requires fully efficient Micromegas chambers with spatial resolution down to 100 μm in the precision coordinate for momentum reconstruction, and at mm level in the azimuthal (second) coordinate, over a total active area of 1200 m{sup 2}, with a rate capability upmore » to about 15 kHz/cm{sup 2} and operation in a moderate magnetic field up to B = 0.4 T. The required tracking capability is provided by the intrinsic space resolution combined with a mechanical precision at the level of 30 μm along the precision coordinate. Together with the precise tracking capability the Micromegas chambers should provide a trigger signal. Several tests have been performed on small (10x10 cm{sup 2}) and large (1 x 1 m{sup 2}) size single gap chambers prototypes using high energy hadron beams at CERN, low and intermediate energy (0.5-5 GeV) electron beams at Frascati and DESY, neutron beams at Demokritos (Athens) and Garching (Munich) and cosmic rays. More recently two quadruplets with dimensions 1.2 x 0.5 m{sup 2} and the same configuration and structure foreseen for the NSW upgrade have been built at CERN and tested with high energy pions/muons beam. Results obtained in the most recent tests, in different configurations and operating conditions, in dependence with the magnetic field, will be presented, along with a comparison between different read-out electronics, either based on the APV25 chips, or based on a new digital front-end ASIC developed in its second version (VMM2) as a new prototype of the final chip that will be employed in the NSW upgrade. (authors)« less
NASA Astrophysics Data System (ADS)
Hárs, György; Dobos, Gábor
2010-03-01
The present article describes the results and findings explored in the course of the development of the analytically capable prototype of continuous time-of-flight (CTOF) mass spectrometer. Currently marketed pulsed TOF (PTOF) instruments use ion introduction with a 10 ns or so pulse width, followed by a waiting period roughly 100 μs. Accordingly, the sample is under excitation in 10-4 part of the total measuring time. This very low duty cycle severely limits the sensitivity of the PTOF method. A possible approach to deal with this problem is to use linear sinusoidal dual modulation technique (CTOF) as described in this article. This way the sensitivity of the method is increased, due to the 50% duty cycle of the excitation. All other types of TOF spectrometer use secondary electron multiplier (SEM) for detection, which unfortunately discriminates in amplification in favor of the lighter ions. This discrimination effect is especially undesirable in a mass spectrometric method, which targets high mass range. In CTOF method, SEM is replaced with Faraday cup detector, thus eliminating the mass discrimination effect. Omitting SEM is made possible by the high ion intensity and the very slow ion detection with some hundred hertz detection bandwidth. The electrometer electronics of the Faraday cup detector operates with amplification 1010 V/A. The primary ion beam is highly monoenergetic due to the construction of the ion gun, which made possible to omit any electrostatic mirror configuration for bunching the ions. The measurement is controlled by a personal computer and the intelligent signal generator Type Tabor WW 2571, which uses the direct digital synthesis technique for making arbitrary wave forms. The data are collected by a Labjack interface board, and the fast Fourier transformation is performed by the software. Noble gas mixture has been used to test the analytical capabilities of the prototype setup. Measurement presented proves the results of the mathematical calculations as well as the future potentiality for use in chemical analysis of gaseous mixtures.
SU-F-T-256: 4D IMRT Planning Using An Early Prototype GPU-Enabled Eclipse Workstation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagan, A; Modiri, A; Sawant, A
Purpose: True 4D IMRT planning, based on simultaneous spatiotemporal optimization has been shown to significantly improve plan quality in lung radiotherapy. However, the high computational complexity associated with such planning represents a significant barrier to widespread clinical deployment. We introduce an early prototype GPU-enabled Eclipse workstation for inverse planning. To our knowledge, this is the first GPUintegrated Eclipse system demonstrating the potential for clinical translation of GPU computing on a major commercially-available TPS. Methods: The prototype system comprised of four NVIDIA Tesla K80 GPUs, with a maximum processing capability of 8.5 Tflops per K80 card. The system architecture consisted ofmore » three key modules: (i) a GPU-based inverse planning module using a highly-parallelizable, swarm intelligence-based global optimization algorithm, (ii) a GPU-based open-source b-spline deformable image registration module, Elastix, and (iii) a CUDA-based data management module. For evaluation, aperture fluence weights in an IMRT plan were optimized over 9 beams,166 apertures and 10 respiratory phases (14940 variables) for a lung cancer case (GTV = 95 cc, right lower lobe, 15 mm cranio-caudal motion). Sensitivity of the planning time and memory expense to parameter variations was quantified. Results: GPU-based inverse planning was significantly accelerated compared to its CPU counterpart (36 vs 488 min, for 10 phases, 10 search agents and 10 iterations). The optimized IMRT plan significantly improved OAR sparing compared to the original internal target volume (ITV)-based clinical plan, while maintaining prescribed tumor coverage. The dose-sparing improvements were: Esophagus Dmax 50%, Heart Dmax 42% and Spinal cord Dmax 25%. Conclusion: Our early prototype system demonstrates that through massive parallelization, computationally intense tasks such as 4D treatment planning can be accomplished in clinically feasible timeframes. With further optimization, such systems are expected to enable the eventual clinical translation of higher-dimensional and complex treatment planning strategies to significantly improve plan quality. This work was partially supported through research funding from National Institutes of Health (R01CA169102) and Varian Medical Systems, Palo Alto, CA, USA.« less
NASA Astrophysics Data System (ADS)
Almaviva, S.; Angelini, F.; Chirico, R.; Palucci, A.; Nuvoli, M.; Schnuerer, F.; Schweikert, W.; Romolo, F. S.
2014-10-01
We report the results of Raman investigation performed at stand-off distance between 6-10 m with a new apparatus, capable to detect traces of explosives with surface concentrations similar to those of a single fingerprint. The device was developed as part of the RADEX prototype (RAman Detection of EXplosives) and is capable of detecting the Raman signal with a single laser shot of few ns (10-9 s) in the UV range (wavelength 266 nm), in conditions of safety for the human eye. This is because the maximum permissible exposure (MPE) for the human eye is established to be 3 mJ/cm2 in this wavelength region and pulse duration. Samples of explosives (PETN, TNT, Urea Nitrate, Ammonium Nitrate) were prepared starting from solutions deposited on samples of common fabrics or clothing materials such as blue jeans, leather, polyester or polyamide. The deposition process takes place via a piezoelectric-controlled plotter device, capable of producing drops of welldefined volume, down to nanoliters, on a surface of several cm2, in order to carefully control the amount of explosive released to the tissue and thus simulate a slight stain on a garment of a potential terrorist. Depending on the type of explosive sampled, the detected density ranges from 0.1 to 1 mg/cm2 and is comparable to the density measured in a spot on a dress or a bag due to the contact with hands contaminated with explosives, as it could happen in the preparation of an improvised explosive device (IED) by a terrorist. To our knowledge the developed device is at the highest detection limits nowadays achievable in the field of eyesafe, stand-off Raman instruments. The signals obtained show some vibrational bands of the Raman spectra of our samples with high signal-to-noise ratio (SNR), allowing us to identify with high sensitivity (high number of True Positives) and selectivity (low number of False Positives) the explosives, so that the instrument could represent the basis for an automated and remote monitoring device.
PROBABILITIES OF TEMPERATURE EXTREMES IN THE U.S.
The model Temperature Extremes Version 1.0 provides the capability to estimate the probability, for 332 locations in the 50 U.S. states, that an extreme temperature will occur for one or more consecutive days and/or for any number of days in a given month or season, based on stat...
Sapphire Whispering Gallery Thermometer
NASA Astrophysics Data System (ADS)
Strouse, G. F.
2007-12-01
An innovative sapphire whispering gallery thermometer (SWGT) is being explored at the National Institute of Standards and Technology (NIST) as a potential replacement for a standard platinum resistance thermometer (SPRT) for industrial applications that require measurement uncertainties of ≤ 10 mK. The NIST SWGT uses a synthetic sapphire monocrystalline disk configured as a uniaxial, dielectric resonator with whispering gallery modes between 14 GHz and 20 GHz and with Q-factors as large as 90,000. The prototype SWGT stability at the ice melting point (0°C) is ≤ 1 mK with a frequency resolution equivalent to 0.05 mK. The prototype SWGT measurement uncertainty ( k= 1) is 10 mK from 0°C to 100°C for all five resonance modes studied. These results for the SWGT approach the capabilities of industrial resistance thermometers. The SWGT promises greatly increased resistance to mechanical shock relative to SPRTs, over the range from -196°C to 500°C while retaining the low uncertainties needed by secondary calibration laboratories. The temperature sensitivity of the SWGT depends upon a well-defined property (the refractive index at microwave frequencies) and the thermal expansion of a pure material. Therefore, it is expected that SWGTs can be calibrated over a wide temperature range using a reference function, along with deviations measured at a few fixed points. This article reports the prototype SWGT stability, resolution, repeatability, and the temperature dependence of five whispering gallery resonance frequencies in the range from 0°C to 100°C.
NASA Astrophysics Data System (ADS)
Fang, X. C.; Hu-Guo, Ch.; Ollivier-Henry, N.; Brasse, D.; Hu, Y.
2010-06-01
This paper represents the design of a low-noise, wide band multi-channel readout integrated circuit (IC) used as front end readout electronics of avalanche photo diodes (APD) dedicated to a small animal positron emission tomography (PET) system. The first ten-channel prototype chip (APD-Chip) of the analog parts has been designed and fabricated in a 0.35 μm CMOS process. Every channel of the APD_Chip includes a charge-sensitive preamplifier (CSA), a CR-(RC)2 shaper, and an analog buffer. In a channel, the CSA reads charge signals (10 bits dynamic range) from an APD array having 10 pF of capacitance per pixel. A linearized degenerated differential pair which ensures high linearity in all dynamical range is used as the high feedback resistor for preventing pile up of signals. The designed CSA has the capability of compensating automatically up to 200 nA leakage current from the detector. The CR-(RC)2 shaper filters and shapes the output signal of the CSA. An equivalent input noise charge obtained from test is 275 e -+ 10 e-/pF. In this paper the prototype is presented for both its theoretical analysis and its test results.
NASA Astrophysics Data System (ADS)
1988-12-01
The US Department of Energy (DOE) proposes to modify an existing reactor containment building (decommissioned Plutonium Recycle Test Reactor (PRTR) 309 Building) to provide ground test capability for the prototype SP-100 reactor. The 309 Building (Figure 1.1) is located in the 300 Area on the Hanford Site in Washington State. The National Environmental Policy Act (NEPA) requires that Federal agencies assess the potential impacts that their actions may have on the environment. This Environmental Assessment describes the consideration given to environmental impacts during reactor concept and test site selection, examines the environmental effects of the DOE proposal to ground test the nuclear subsystem, describes alternatives to the proposed action, and examines radiological risks of potential SP-100 use in space.
The hurricane-flood-landslide continuum
Negri, A.J.; Burkardt, N.; Golden, J.H.; Halverson, J.B.; Huffman, G.J.; Larsen, M.C.; McGinley, J.A.; Updike, R.G.; Verdin, J.P.; Wieczorek, G.F.
2005-01-01
In August 2004, representatives from NOAA, NASA, the US Geological Survey (USGS), as well as other government agencies and academic institutions convened in San Juan, Puerto Rico, at a workshop to discuss a proposed research project called the Hurricane-Flood-Landslide Continuum (HFLC). The purpose of the HFLC is to develop and integrate the multidisciplinary tools needed to issue regional guidance products for floods and landslide associated with major tropical rain systems with sufficient lead time that local emergency managers can notify vulnerable populations and protect infrastructure. The workshop sought to initiate discussion among these agencies about their highly complementary capabilities, and to establish a framework to leverage the strengths of each agency. Once a prototype system is developed, it could be adapted for use in regions that have a high frequency of tropical disturbances.
Historical trend in the research and development of aircraft
NASA Technical Reports Server (NTRS)
Spearman, M. L.
1981-01-01
Results are presented from a study of aircraft design trends undertaken to determine the relationship between research, development, test and evaluation and aircraft mission capability, requirements and objectives. It is shown that while in some cases a performance objective was the primary research driver, research was the driver in the formulation of objectives in others. Among the topics discussed are: (1) speed considerations such as compressibility, propulsion and test techniques; (2) airframe considerations such as swept, delta, trapezoidal and variable-sweep planforms and mission commonality; (3) research aircraft; (4) the recent impact of computer-aided design; (5) Soviet aircraft development approaches and (6) a comparison of Soviet and U.S. military aircraft design trends. Attention is given to experimental and prototype aircraft programs which, although cancelled, anticipated significant subsequent developments.
46 CFR 160.151-13 - Fabrication of prototype inflatable liferafts for approval.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Fabrication of prototype inflatable liferafts for... Liferafts (SOLAS) § 160.151-13 Fabrication of prototype inflatable liferafts for approval. If the... Commandant, fabrication of a prototype inflatable liferaft must proceed in the following sequence: (a) The...
Multi-Objective Design Of Optimal Greenhouse Gas Observation Networks
NASA Astrophysics Data System (ADS)
Lucas, D. D.; Bergmann, D. J.; Cameron-Smith, P. J.; Gard, E.; Guilderson, T. P.; Rotman, D.; Stolaroff, J. K.
2010-12-01
One of the primary scientific functions of a Greenhouse Gas Information System (GHGIS) is to infer GHG source emission rates and their uncertainties by combining measurements from an observational network with atmospheric transport modeling. Certain features of the observational networks that serve as inputs to a GHGIS --for example, sampling location and frequency-- can greatly impact the accuracy of the retrieved GHG emissions. Observation System Simulation Experiments (OSSEs) provide a framework to characterize emission uncertainties associated with a given network configuration. By minimizing these uncertainties, OSSEs can be used to determine optimal sampling strategies. Designing a real-world GHGIS observing network, however, will involve multiple, conflicting objectives; there will be trade-offs between sampling density, coverage and measurement costs. To address these issues, we have added multi-objective optimization capabilities to OSSEs. We demonstrate these capabilities by quantifying the trade-offs between retrieval error and measurement costs for a prototype GHGIS, and deriving GHG observing networks that are Pareto optimal. [LLNL-ABS-452333: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Impacts Assessment of Integrated Dynamic Transit Operations : Final Report
DOT National Transportation Integrated Search
2016-03-02
This document details the impact assessment conducted by the Volpe Center for the Integrated Dynamic Transit Operations (IDTO) prototype demonstrations in Columbus, Ohio and Central Florida. The prototype is one result of the U.S. Department of Trans...
A prototype fully polarimetric 160-GHz bistatic ISAR compact radar range
NASA Astrophysics Data System (ADS)
Beaudoin, C. J.; Horgan, T.; DeMartinis, G.; Coulombe, M. J.; Goyette, T.; Gatesman, A. J.; Nixon, William E.
2017-05-01
We present a prototype bistatic compact radar range operating at 160 GHz and capable of collecting fullypolarimetric radar cross-section and electromagnetic scattering measurements in a true far-field facility. The bistatic ISAR system incorporates two 90-inch focal length, 27-inch-diameter diamond-turned mirrors fed by 160 GHz transmit and receive horns to establish the compact range. The prototype radar range with its modest sized quiet zone serves as a precursor to a fully developed compact radar range incorporating a larger quiet zone capable of collecting X-band bistatic RCS data and 3D imagery using 1/16th scale objects. The millimeter-wave transmitter provides 20 GHz of swept bandwidth in the single linear (Horizontal/Vertical) polarization while the millimeter-wave receiver, that is sensitive to linear Horizontal and Vertical polarization, possesses a 7 dB noise figure. We present the design of the compact radar range and report on test results collected to validate the system's performance.
Peña Arellano, Fabián Erasmo; Sekiguchi, Takanori; Fujii, Yoshinori; Takahashi, Ryutaro; Barton, Mark; Hirata, Naoatsu; Shoda, Ayaka; van Heijningen, Joris; Flaminio, Raffaele; DeSalvo, Riccardo; Okutumi, Koki; Akutsu, Tomotada; Aso, Yoichi; Ishizaki, Hideharu; Ohishi, Naoko; Yamamoto, Kazuhiro; Uchiyama, Takashi; Miyakawa, Osamu; Kamiizumi, Masahiro; Takamori, Akiteru; Majorana, Ettore; Agatsuma, Kazuhiro; Hennes, Eric; van den Brand, Jo; Bertolini, Alessandro
2016-03-01
KAGRA is a cryogenic interferometric gravitational wave detector currently under construction in the Kamioka mine in Japan. Besides the cryogenic test masses, KAGRA will also rely on room temperature optics which will hang at the bottom of vibration isolation chains. The payload of each chain comprises an optic, a system to align it, and an active feedback system to damp the resonant motion of the suspension itself. This article describes the performance of a payload prototype that was assembled and tested in vacuum at the TAMA300 site at the NAOJ in Mitaka, Tokyo. We describe the mechanical components of the payload prototype and their functionality. A description of the active components of the feedback system and their capabilities is also given. The performance of the active system is illustrated by measuring the quality factors of some of the resonances of the suspension. Finally, the alignment capabilities offered by the payload are reported.
ALLTEM Multi-Axis Electromagnetic Induction System Demonstration and Validation
2012-08-01
threshold T-high higher threshold TMGS Tensor Magnetic Gradiometer System TOI target of interest Tx ALLTEM transmitter USGS U.S. Geological...the Tensor Magnetic Gradiometer System ( TMGS ) and two prototype EMI instruments, the Very Early Time-domain ElectroMagnetic (VETEM) system and the...project one prototype magnetic system, the TMGS , and two prototype EMI instruments, VETEM and the High Frequency Sounder, were evaluated. Subsequent
Prototype Development and Evaluation of Self-Cleaning Concentrated Solar Power Collectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazumder, Malay K.; Horenstein, Mark N.; Joglekar, Nitin R.
The feasibility of integrating and retrofitting transparent electrodynamic screens (EDS) on the front surfaces of solar collectors was established as a means to provide active self-cleaning properties for parabolic trough and heliostat reflectors, solar panels, and Fresnel lenses. Prototype EDS-integrated solar collectors, including second-surface glass mirrors, metallized Acrylic-film mirrors, and dielectric mirrors, were produced and tested in environmental test chambers for removing the dust layer deposited on the front surface of the mirrors. The evaluation of the prototype EDS-integrated mirrors was conducted using dust and environmental conditions that simulate the field conditions of the Mojave Desert. Test results showed thatmore » the specular reflectivity of the mirrors could be maintained at over 90% over a wide range of dust loadings ranging from 0 to 10 g/m 2, with particle diameter varying from 1 to 50 μm. The measurement of specular reflectivity (SR) was performed using a D&S Reflectometer at wavelength 660 nm. A non-contact reflectometer was designed and constructed for rapid measurement of specular reflectivity at the same wavelength. The use of this new noncontact instrument allowed us to measure SR before and after EDS activation. Several EDS prototypes were constructed and evaluated with different electrode configurations, electrode materials, and encapsulating dielectric materials.« less
Life Experiences and the Acquired Capability for Suicide in Incarcerated Men
Smith, Phillip N.; Selwyn, Candice; D’Amato, Darcey; Granato, Stephani; Kuhlman, Shane; Mandracchia, Jon T.
2016-01-01
Suicide is a leading cause of death in US prisons. Prisoners may be at risk for suicide due to their greater likelihood of experiencing events that promote the acquired capability for suicide. The current study examined the associations of 10 domains of life experiences with the acquired capability for suicide in 399 male prisoners. All life experience domains were associated with acquired capability with certain domains evidencing relatively stronger relations. Results support that aggression, thrill seeking, suicidal thoughts and behaviors, and accidental injury may be particularly important to the development of the acquired capability for suicide in prisoners. PMID:27050295
46 CFR 161.013-11 - Prototype test.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 6 2014-10-01 2014-10-01 false Prototype test. 161.013-11 Section 161.013-11 Shipping...: SPECIFICATIONS AND APPROVAL ELECTRICAL EQUIPMENT Electric Distress Light for Boats § 161.013-11 Prototype test. (a) Each manufacturer must test a prototype light identical to the lights to be certified prior to...
46 CFR 161.013-11 - Prototype test.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Prototype test. 161.013-11 Section 161.013-11 Shipping...: SPECIFICATIONS AND APPROVAL ELECTRICAL EQUIPMENT Electric Distress Light for Boats § 161.013-11 Prototype test. (a) Each manufacturer must test a prototype light identical to the lights to be certified prior to...
The pathway to earthquake early warning in the US
NASA Astrophysics Data System (ADS)
Allen, R. M.; Given, D. D.; Heaton, T. H.; Vidale, J. E.; West Coast Earthquake Early Warning Development Team
2013-05-01
The development of earthquake early warning capabilities in the United States is now accelerating and expanding as the technical capability to provide warning is demonstrated and additional funding resources are making it possible to expand the current testing region to the entire west coast (California, Oregon and Washington). Over the course of the next two years we plan to build a prototype system that will provide a blueprint for a full public system in the US. California currently has a demonstrations warning system, ShakeAlert, that provides alerts to a group of test users from the public and private sector. These include biotech companies, technology companies, the entertainment industry, the transportation sector, and the emergency planning and response community. Most groups are currently in an evaluation mode, receiving the alerts and developing protocols for future response. The Bay Area Rapid Transit (BART) system is the one group who has now implemented an automated response to the warning system. BART now stops trains when an earthquake of sufficient size is detected. Research and development also continues to develop improved early warning algorithms to better predict the distribution of shaking in large earthquakes when the finiteness of the source becomes important. The algorithms under development include the use of both seismic and GPS instrumentation and integration with existing point source algorithms. At the same time, initial testing and development of algorithms in and for the Pacific Northwest is underway. In this presentation we will review the current status of the systems, highlight the new research developments, and lay out a pathway to a full public system for the US west coast. The research and development described is ongoing at Caltech, UC Berkeley, University of Washington, ETH Zurich, Southern California Earthquake Center, and the US Geological Survey, and is funded by the Gordon and Betty Moore Foundation and the US Geological Survey.
NASA Technical Reports Server (NTRS)
Carnahan, Richard S., Jr.; Corey, Stephen M.; Snow, John B.
1989-01-01
Applications of rapid prototyping and Artificial Intelligence techniques to problems associated with Space Station-era information management systems are described. In particular, the work is centered on issues related to: (1) intelligent man-machine interfaces applied to scientific data user support, and (2) the requirement that intelligent information management systems (IIMS) be able to efficiently process metadata updates concerning types of data handled. The advanced IIMS represents functional capabilities driven almost entirely by the needs of potential users. Space Station-era scientific data projected to be generated is likely to be significantly greater than data currently processed and analyzed. Information about scientific data must be presented clearly, concisely, and with support features to allow users at all levels of expertise efficient and cost-effective data access. Additionally, mechanisms for allowing more efficient IIMS metadata update processes must be addressed. The work reported covers the following IIMS design aspects: IIMS data and metadata modeling, including the automatic updating of IIMS-contained metadata, IIMS user-system interface considerations, including significant problems associated with remote access, user profiles, and on-line tutorial capabilities, and development of an IIMS query and browse facility, including the capability to deal with spatial information. A working prototype has been developed and is being enhanced.
RIM as the data base management system for a material properties data base
NASA Technical Reports Server (NTRS)
Karr, P. H.; Wilson, D. J.
1984-01-01
Relational Information Management (RIM) was selected as the data base management system for a prototype engineering materials data base. The data base provides a central repository for engineering material properties data, which facilitates their control. Numerous RIM capabilities are exploited to satisfy prototype data base requirements. Numerical, text, tabular, and graphical data and references are being stored for five material types. Data retrieval will be accomplished both interactively and through a FORTRAN interface. The experience gained in creating and exercising the prototype will be used in specifying requirements for a production system.
IDC Reengineering Iteration I2 Architectural Prototype Reports
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamlet, Benjamin R.
To fulfill the inception phase deliverable “Demonstration of architectural prototype“ the SNL IDC Reengineering project team is providing seven reports describing system prototyping work completed between October 2012 and October 2014as part of the SNL US NDC Modernization project.
2015-10-01
it will demonstrate amphibious capability that matches the AAV, including the ability to self-deploy and swim to shore. According to DOD officials...level prototypes demonstrating the swim capability, personnel carry capability, and survivability of each company’s vehicle. The Under Secretary of...with the contractor using a 50/50 split and provide a cost ceiling of 120 percent of the target cost. FAR § 16.403. 18A firm-fixed price delivery
Caliste 64: detection unit of a spectro imager array for a hard x-ray space telescope
NASA Astrophysics Data System (ADS)
Limousin, O.; Meuris, A.; Lugiez, F.; Gevin, Olivier; Pinsard, F.; Blondel, C.; Le Mer, I.; Delagnes, E.; Vassal, M. C.; Soufflet, F.; Bocage, R.; Penquer, A.; Billot, M.
2017-11-01
In the frame of the hard X-ray Simbol-X observatory, a joint CNES-ASI space mission to be flown in 2014, a prototype of miniature Cd(Zn)Te camera equipped with 64 pixels has been designed. The device, called Caliste 64, is a spectro-imager with high resolution event timetagging capability. Caliste 64 integrates a Cd(Zn)Te semiconductor detector with segmented electrode and its front-end electronics made of 64 independent analog readout channels. This 1 × 1 × 2 cm3 camera, able to detect photons in the range from 2 keV up to 250 keV, is an elementary detection unit juxtaposable on its four sides. Consequently, large detector array can be made assembling a mosaic of Caliste 64 units. Electronics readout module is achieved by stacking four IDeF-X V1.1 ASICs, perpendicular to the detection plane. We achieved good noise performances, with a mean Equivalent Noise Charge of 65 electrons rms over the 64 channels. For the first prototypes, we chose Pt//CdTe//Al/Ti/Au Schottky detectors because of their very low dark current and excellent spectroscopic performances. Recently a Caliste 64 prototype has been also equipped with a 2 mm thick Au//CdZnTe//Au detector. This paper presents the performances of these four prototypes and demonstrates spectral performances better than 1 keV fwhm at 59.54 keV when the samples are moderately cooled down to -10°C.
AAH Cage Out-Link and In-Link Antenna Characterization
NASA Technical Reports Server (NTRS)
Jeutter, Dean C.
1998-01-01
This final report encapsulates the accomplishments of the third year of work on an Advanced Biotelemetry System (ABTS). Overall MU/ABTS project objectives are to provide a biotelemetry system that can collect data from and send commands to an implanted biotransceiver. This system will provide for studies of rodent development in space. The system must be capable of operating in a metal animal cage environment. An important goal is the development of a small, "smart", micropower, implantable biotransceiver with eight-channel data output and single channel command input capabilities with the flexibility for easy customization for a variety of physiologic investigations. The NASA Ames/Marquette University Joint Research work has been devoted to the system design of such a new state of the art biotelemetry system, having multiple physiologic inputs, and bi-directional data transfer capabilities. This work has provided a successful prototype system that connects, by two-way radio links, an addressable biotelemetry system that provides communication between an animal biotelemeter prototype and a personal computer. The operational features of the prototype system are: (1) two-way PCM communication with implanted biotelemeter; (2) microcontroller based biotelemeter; (3) out-link: wideband FSK (60 kBaud); (4) in-link: OOK (2.4 kbaud); (5) septum antenna arrays (In/Out-Links); and (6) personal computer data interface. The important requirement of this third year's work, to demonstrate two-way communication with transmit and receive antennas inside the metal animal cage, has been successfully accomplished. The advances discussed in this report demonstrate that the AAH cage antenna system can provide Out-link and In-link capability for the ABTS bi-directional telemetry system, and can serve as a benchmark for project status. Additions and enhancements to the most recent (April 1997) prototype cage and antenna have been implemented. The implementation, testing, and documentation was accomplished at the Biotelemetry Laboratory at Marquette University with Out-Link (slot) antenna design assistance was provided.
Multi-anode microchannel arrays. [for use in ground-based and spaceborne telescopes
NASA Technical Reports Server (NTRS)
Timothy, J. G.; Mount, G. H.; Bybee, R. L.
1979-01-01
The Multi-Anode Microchannel Arrays (MAMA's) are a family of photoelectric, photon-counting array detectors being developed for use in instruments on both ground-based and space-borne telescopes. These detectors combine high sensitivity and photometric stability with a high-resolution imaging capability. MAMA detectors can be operated in a windowless configuration at extreme-ultraviolet and soft X-ray wavelengths or in a sealed configuration at ultraviolet and visible wavelengths. Prototype MAMA detectors with up to 512 x 512 pixels are now being tested in the laboratory and telescope operation of a simple (10 x 10)-pixel visible-light detector has been initiated. The construction and modes-of-operation of the MAMA detectors are briefly described and performance data are presented.
Nanoporous Silica Thermal Insulation for Space Shuttle Cryogenic Tanks: A Case Study
NASA Technical Reports Server (NTRS)
Noever, David A.
1999-01-01
Nanoporous silica (with typical 10-50 nm porous radii) has been benchmarked for thermal insulators capable of maintaining a 150 K/cm temperature gradient. For cryogenic use in aerospace applications, the combined features for low-density, high thermal insulation factors, and low temperature compatibility are demonstrated in a prototype sandwich structure between two propulsion tanks. Theoretical modelling based on a nanoscale fractal structure suggest that the thermal conductivity scales proportionally (exponent, 1.7) with the material density-lower density increases the thermal insulation rating. Computer simulations, however, support the optimization tradeoff between material strength (Young moduli, proportional to density with exponent, 3.7), the characteristic (colloidal silica, less than 5 nm) particle size, and the thermal rating. The results of these simulations indicate that as nanosized particles are incorporated into the silica backbone, the resulting physical properties will be tailored by the smallest characteristic length and their fractal interconnections (dimension and fractal size). The application specifies a prototype panel which takes advantage of the processing flexibility inherent in sol-gel chemistry.
In Situ Measurement of Aerosol Extinction
NASA Technical Reports Server (NTRS)
Strawa, Anthony W.; Castaneda, R.; Owano, T. G.; Bear, D.; Gore, Warren J. (Technical Monitor)
2001-01-01
Aerosols are important contributors to the radiative forcing in the atmosphere. Much of the uncertainty in our knowledge of climate forcing is due to uncertainties in the radiative forcing due to aerosols as illustrated in the IPCC reports of the last ten years. Improved measurement of aerosol optical properties, therefore, is critical to an improved understanding of atmospheric radiative forcing. Additionally, attempts to reconcile in situ and remote measurements of aerosol radiative properties have generally not been successful. This is due in part to the fact that it has been impossible to measure aerosol extinction in situ in the past. In this presentation we introduce a new instrument that employs the techniques used in cavity ringdown spectroscopy to measure the aerosol extinction and scattering coefficients in situ. A prototype instrument has been designed and tested in the lab and the field. It is capable of measuring aerosol extinction coefficient to 2x10(exp -6) per meter. This prototype instrument is described and results are presented.
NASA Astrophysics Data System (ADS)
Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Cacciani, Marco; Scoccione, Andrea; Behrendt, Andreas; Wulfmeyer, Volker
2017-02-01
Measurements carried out by the Raman lidar system BASIL are reported to demonstrate the capability of this instrument to characterize turbulent processes within the Convective Boundary Layer (CBL). In order to resolve the vertical profiles of turbulent variables, high resolution water vapour and temperature measurements, with a temporal resolution of 10 sec and a vertical resolution of 90 and 30 m, respectively, are considered. Measurements of higher-order moments of the turbulent fluctuations of water vapour mixing ratio and temperature are obtained based on the application of spectral and auto-covariance analyses to the water vapour mixing ratio and temperature time series. The algorithms are applied to a case study (IOP 5, 20 April 2013) from the HD(CP)2 Observational Prototype Experiment (HOPE), held in Central Germany in the spring 2013. The noise errors are demonstrated to be small enough to allow the derivation of up to fourth-order moments for both water vapour mixing ratio and temperature fluctuations with sufficient accuracy.
Rapid prototyping for biomedical engineering: current capabilities and challenges.
Lantada, Andrés Díaz; Morgado, Pilar Lafont
2012-01-01
A new set of manufacturing technologies has emerged in the past decades to address market requirements in a customized way and to provide support for research tasks that require prototypes. These new techniques and technologies are usually referred to as rapid prototyping and manufacturing technologies, and they allow prototypes to be produced in a wide range of materials with remarkable precision in a couple of hours. Although they have been rapidly incorporated into product development methodologies, they are still under development, and their applications in bioengineering are continuously evolving. Rapid prototyping and manufacturing technologies can be of assistance in every stage of the development process of novel biodevices, to address various problems that can arise in the devices' interactions with biological systems and the fact that the design decisions must be tested carefully. This review focuses on the main fields of application for rapid prototyping in biomedical engineering and health sciences, as well as on the most remarkable challenges and research trends.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2014-12-04
The software serves two purposes. The first purpose of the software is to prototype the Sandia High Performance Computing Power Application Programming Interface Specification effort. The specification can be found at http://powerapi.sandia.gov . Prototypes of the specification were developed in parallel with the development of the specification. Release of the prototype will be instructive to anyone who intends to implement the specification. More specifically, our vendor collaborators will benefit from the availability of the prototype. The second is in direct support of the PowerInsight power measurement device, which was co-developed with Penguin Computing. The software provides a cluster wide measurementmore » capability enabled by the PowerInsight device. The software can be used by anyone who purchases a PowerInsight device. The software will allow the user to easily collect power and energy information of a node that is instrumented with PowerInsight. The software can also be used as an example prototype implementation of the High Performance Computing Power Application Programming Interface Specification.« less
46 CFR 154.560 - Cargo hose: Prototype test.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo hose: Prototype test. 154.560 Section 154.560... Hose § 154.560 Cargo hose: Prototype test. (a) Each cargo hose must be of a type that passes a prototype test at a pressure of at least five times its maximum working pressure at or below the minimum...
Neutron multiplicity ,easurements With 3He alternative: Straw neutron detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.
Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. In this study, a prototype neutron detector was built using 10B as the converter in a special form factor called “straws” that would address the above problems by looking into the details of multiplicity distributions ofmore » neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylene moderator. In the following year, we developed the field-programmable gate array and associated DAQ software. Finally, this SDRD effort successfully produced a prototype NMC with ~33% detection efficiency compared to a commercial fission meter.« less
Neutron multiplicity measurements with 3He alternative: Straw neutron detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukhopadhyay, Sanjoy; Wolff, Ronald; Detwiler, Ryan
Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as ‘‘ship effect ’’) and to the complicated nature of the neutron scattering in that environment. A prototype neutron detector was built using 10B as the converter in a special form factor called ‘‘straws’’ that would address the above problems by looking into the details of multiplicity distributions of neutrons originatingmore » from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylenemoderator. In the following year, we developed the field-programmable gate array and associated DAQ software. This SDRD effort successfully produced a prototype NMC with*33% detection efficiency compared to a commercial fission meter.« less
Neutron multiplicity ,easurements With 3He alternative: Straw neutron detectors
Mukhopadhyay, Sanjoy; Wolff, Ronald S.; Meade, John A.; ...
2015-01-27
Counting neutrons emitted by special nuclear material (SNM) and differentiating them from the background neutrons of various origins is the most effective passive means of detecting SNM. Unfortunately, neutron detection, counting, and partitioning in a maritime environment are complex due to the presence of high-multiplicity spallation neutrons (commonly known as “ship effect”) and to the complicated nature of the neutron scattering in that environment. In this study, a prototype neutron detector was built using 10B as the converter in a special form factor called “straws” that would address the above problems by looking into the details of multiplicity distributions ofmore » neutrons originating from a fissioning source. This paper describes the straw neutron multiplicity counter (NMC) and assesses the performance with those of a commercially available fission meter. The prototype straw neutron detector provides a large-area, efficient, lightweight, more granular (than fission meter) neutron-responsive detection surface (to facilitate imaging) to enhance the ease of application of fission meters. Presented here are the results of preliminary investigations, modeling, and engineering considerations leading to the construction of this prototype. This design is capable of multiplicity and Feynman variance measurements. This prototype may lead to a near-term solution to the crisis that has arisen from the global scarcity of 3He by offering a viable alternative to fission meters. This paper describes the work performed during a 2-year site-directed research and development (SDRD) project that incorporated straw detectors for neutron multiplicity counting. The NMC is a two-panel detector system. We used 10B (in the form of enriched boron carbide: 10B 4C) for neutron detection instead of 3He. In the first year, the project worked with a panel of straw neutron detectors, investigated its characteristics, and developed a data acquisition (DAQ) system to collect neutron multiplicity information from spontaneous fission sources using a single panel consisting of 60 straws equally distributed over three rows in high-density polyethylene moderator. In the following year, we developed the field-programmable gate array and associated DAQ software. Finally, this SDRD effort successfully produced a prototype NMC with ~33% detection efficiency compared to a commercial fission meter.« less
From an automated flight-test management system to a flight-test engineer's workstation
NASA Technical Reports Server (NTRS)
Duke, E. L.; Brumbaugh, R. W.; Hewett, M. D.; Tartt, D. M.
1992-01-01
Described here are the capabilities and evolution of a flight-test engineer's workstation (called TEST PLAN) from an automated flight-test management system. The concept and capabilities of the automated flight-test management system are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.
Optical-to-optical interface device
NASA Technical Reports Server (NTRS)
Jacobson, A. D.; Bleha, W. P.; Miller, L.; Grinberg, J.; Fraas, L.; Margerum, D.
1975-01-01
An investigation was conducted to develop an optical-to-optical interface device capable of performing real-time incoherent-to-incoherent optical image conversion. The photoactivated liquid crystal light valve developed earlier represented a prototype liquid crystal light valve device capable of performing these functions. A device was developed which had high performance and extended lifetime.
From an automated flight-test management system to a flight-test engineer's workstation
NASA Technical Reports Server (NTRS)
Duke, E. L.; Brumbaugh, Randal W.; Hewett, M. D.; Tartt, D. M.
1991-01-01
The capabilities and evolution is described of a flight engineer's workstation (called TEST-PLAN) from an automated flight test management system. The concept and capabilities of the automated flight test management systems are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.
Herickhoff, Carl D; Light, Edward D; Bing, Kristin F; Mukundan, Srinivasan; Grant, Gerald A; Wolf, Patrick D; Smith, Stephen W
2009-04-01
In this study, we investigated the feasibility of an intracranial catheter transducer with dual-mode capability of real-time 3D (RT3D) imaging and ultrasound hyperthermia, for application in the visualization and treatment of tumors in the brain. Feasibility is demonstrated in two ways: first by using a 50-element linear array transducer (17 mm x 3.1 mm aperture) operating at 4.4 MHz with our Volumetrics diagnostic scanner and custom, electrical impedance-matching circuits to achieve a temperature rise over 4 degrees C in excised pork muscle, and second, by designing and constructing a 12 Fr, integrated matrix and linear-array catheter transducer prototype for combined RT3D imaging and heating capability. This dual-mode catheter incorporated 153 matrix array elements and 11 linear array elements diced on a 0.2 mm pitch, with a total aperture size of 8.4 mm x 2.3 mm. This 3.64 MHz array achieved a 3.5 degrees C in vitro temperature rise at a 2 cm focal distance in tissue-mimicking material. The dual-mode catheter prototype was compared with a Siemens 10 Fr AcuNav catheter as a gold standard in experiments assessing image quality and therapeutic potential and both probes were used in an in vivo canine brain model to image anatomical structures and color Doppler blood flow and to attempt in vivo heating.
Herickhoff, Carl D.; Light, Edward D.; Bing, Kristin F.; Mukundan, Srinivasan; Grant, Gerald A.; Wolf, Patrick D.; Smith, Stephen W.
2010-01-01
In this study, we investigated the feasibility of an intracranial catheter transducer with dual-mode capability of real-time 3D (RT3D) imaging and ultrasound hyperthermia, for application in the visualization and treatment of tumors in the brain. Feasibility is demonstrated in two ways: first by using a 50-element linear array transducer (17 mm × 3.1 mm aperture) operating at 4.4 MHz with our Volumetrics diagnostic scanner and custom electrical impedance matching circuits to achieve a temperature rise over 4°C in excised pork muscle, and second by designing and constructing a 12 Fr, integrated matrix and linear array catheter transducer prototype for combined RT3D imaging and heating capability. This dual-mode catheter incorporated 153 matrix array elements and 11 linear array elements diced on a 0.2 mm pitch, with a total aperture size of 8.4 mm × 2.3 mm. This array achieved a 3.5°C in vitro temperature rise at a 2 cm focal distance in tissue-mimicking material. The dual-mode catheter prototype was compared with a Siemens 10 Fr AcuNav™ catheter as a gold standard in experiments assessing image quality and therapeutic potential, and both probes were used in a canine brain model to image anatomical structures and color Doppler blood flow and to attempt in vivo heating. PMID:19630251
Verification of a research prototype for hemodynamic analysis of cerebral aneurysms.
Suzuki, Takashi; Ioan Nita, Cosmin; Rapaka, Saikiran; Takao, Hiroyuki; Mihalef, Viorel; Fujimura, Soichiro; Dahmani, Chihebeddine; Sharma, Puneet; Mamori, Hiroya; Ishibashi, Toshihiro; Redel, Thomas; Yamamoto, Makoto; Murayama, Yuichi
2016-08-01
Owing to its clinical importance, there has been a growing body of research on understanding the hemodynamics of cerebral aneurysms. Traditionally, this work has been performed using general-purpose, state-of-the-art commercial solvers. This has meant requiring engineering expertise for making appropriate choices on the geometric discretization, time-step selection, choice of boundary conditions etc. Recently, a CFD research prototype has been developed (Siemens Healthcare GmbH, Prototype - not for diagnostic use) for end-to-end analysis of aneurysm hemodynamics. This prototype enables anatomical model preparation, hemodynamic computations, advanced visualizations and quantitative analysis capabilities. In this study, we investigate the accuracy of the hemodynamic solver in the prototype against a commercially available CFD solver ANSYS CFX 16.0 (ANSYS Inc., Canonsburg, PA, www.ansys.com) retrospectively on a sample of twenty patient-derived aneurysm models, and show good agreement of hemodynamic parameters of interest.
Breast ultrasound tomography: bridging the gap to clinical practice
NASA Astrophysics Data System (ADS)
Duric, Neb; Littrup, Peter; Li, Cuiping; Roy, Olivier; Schmidt, Steven; Janer, Roman; Cheng, Xiaoyang; Goll, Jeffrey; Rama, Olsi; Bey-Knight, Lisa; Greenway, William
2012-03-01
Conventional sonography, which performs well in dense breast tissue and is comfortable and radiation-free, is not practical for screening because of its operator dependence and the time needed to scan the whole breast. While magnetic resonance imaging (MRI) can significantly improve on these limitations, it is also not practical because it has long been prohibitively expensive for routine use. There is therefore a need for an alternative breast imaging method that obviates the constraints of these standard imaging modalities. The lack of such an alternative is a barrier to dramatically impacting mortality (about 45,000 women in the US per year) and morbidity from breast cancer because, currently, there is a trade-off between the cost effectiveness of mammography and sonography on the one hand and the imaging accuracy of MRI on the other. This paper presents a progress report on our long term goal to eliminate this trade-off and thereby improve breast cancer survival rates and decrease unnecessary biopsies through the introduction of safe, cost-effective, operatorindependent sonography that can rival MRI in accuracy. The objective of the study described in this paper was to design and build an improved ultrasound tomography (UST) scanner in support of our goals. To that end, we report on a design that builds on our current research prototype. The design of the new scanner is based on a comparison of the capabilities of our existing prototype and the performance needed for clinical efficacy. The performance gap was quantified by using clinical studies to establish the baseline performance of the research prototype, and using known MRI capabilities to establish the required performance. Simulation software was used to determine the basic operating characteristics of an improved scanner that would provide the necessary performance. Design elements focused on transducer geometry, which in turn drove the data acquisition system and the image reconstruction engine specifications. The feasibility of UST established by our earlier work and that of other groups, forms the rationale for developing a UST system that has the potential to become a practical, low-cost device for breast cancer screening and diagnosis.
Automating testbed documentation and database access using World Wide Web (WWW) tools
NASA Technical Reports Server (NTRS)
Ames, Charles; Auernheimer, Brent; Lee, Young H.
1994-01-01
A method for providing uniform transparent access to disparate distributed information systems was demonstrated. A prototype testing interface was developed to access documentation and information using publicly available hypermedia tools. The prototype gives testers a uniform, platform-independent user interface to on-line documentation, user manuals, and mission-specific test and operations data. Mosaic was the common user interface, and HTML (Hypertext Markup Language) provided hypertext capability.
Laser Direct Routing for High Density Interconnects
NASA Astrophysics Data System (ADS)
Moreno, Wilfrido Alejandro
The laser restructuring of electronic circuits fabricated using standard Very Large Scale Integration (VLSI) process techniques, is an excellent alternative that allows low-cost quick turnaround production with full circuit similarity between the Laser Restructured prototype and the customized product for mass production. Laser Restructurable VLSI (LRVLSI) would allow design engineers the capability to interconnect cells that implement generic logic functions and signal processing schemes to achieve a higher level of design complexity. LRVLSI of a particular circuit at the wafer or packaged chip level is accomplished using an integrated computer controlled laser system to create low electrical resistance links between conductors and to cut conductor lines. An infrastructure for rapid prototyping and quick turnaround using Laser Restructuring of VLSI circuits was developed to meet three main parallel objectives: to pursue research on novel interconnect technologies using LRVLSI, to develop the capability of operating in a quick turnaround mode, and to maintain standardization and compatibility with commercially available equipment for feasible technology transfer. The system is to possess a high degree of flexibility, high data quality, total controllability, full documentation, short downtime, a user-friendly operator interface, automation, historical record keeping, and error indication and logging. A specially designed chip "SLINKY" was used as the test vehicle for the complete characterization of the Laser Restructuring system. With the use of Design of Experiment techniques the Lateral Diffused Link (LDL), developed originally at MIT Lincoln Laboratories, was completely characterized and for the first time a set of optimum process parameters was obtained. With the designed infrastructure fully operational, the priority objective was the search for a substitute for the high resistance, high current leakage to substrate, and relatively low density Lateral Diffused Link. A high density Laser Vertical Link with resistance values below 10 ohms was developed, studied and tested using design of experiment methodologies. The vertical link offers excellent advantages in the area of quick prototyping of electronic circuits, but even more important, due to having similar characteristics to a foundry produced via, it gives quick transfer from the prototype system verification stage to the mass production stage.
Chesapeake Inundation Prediction System (CIPS): A regional prototype for a national problem
Stamey, B.; Smith, W.; Carey, K.; Garbin, D.; Klein, F.; Wang, Hongfang; Shen, J.; Gong, W.; Cho, J.; Forrest, D.; Friedrichs, C.; Boicourt, W.; Li, M.; Koterba, M.; King, D.; Titlow, J.; Smith, E.; Siebers, A.; Billet, J.; Lee, J.; Manning, Douglas R.; Szatkowski, G.; Wilson, D.; Ahnert, P.; Ostrowski, J.
2007-01-01
Recent Hurricanes Katrina and Isabel, among others, not only demonstrated their immense destructive power, but also revealed the obvious, crucial need for improved storm surge forecasting and information delivery to save lives and property in future storms. Current operational methods and the storm surge and inundation products do not adequately meet requirements needed by Emergency Managers (EMs) at local, state, and federal levels to protect and inform our citizens. The Chesapeake Bay Inundation Prediction System (CIPS) is being developed to improve the accuracy, reliability, and capability of flooding forecasts for tropical cyclones and non-tropical wind systems such as nor'easters by modeling and visualizing expected on-land storm-surge inundation along the Chesapeake Bay and its tributaries. An initial prototype has been developed by a team of government, academic and industry partners through the Chesapeake Bay Observing System (CBOS) of the Mid-Atlantic Coastal Ocean Observing Regional Association (MACOORA) within the Integrated Ocean Observing System (IOOS). For demonstration purposes, this initial prototype was developed for the tidal Potomac River in the Washington, DC metropolitan area. The preliminary information from this prototype shows great potential as a mechanism by which NOAA National Weather Service (NWS) Forecast Offices (WFOs) can provide more specific and timely forecasts of likely inundation in individual localities from significant storm surge events. This prototype system has shown the potential to indicate flooding at the street level, at time intervals of an hour or less, and with vertical resolution of one foot or less. This information will significantly improve the ability of EMs and first responders to mitigate life and property loss and improve evacuation capabilities in individual communities. This paper provides an update and expansion of the initial prototype that was presented at the Oceans 2006 MTS/IEEE Conference in Boston, MA. ??2007 MTS.
Houng, Huo-Shu H; Clavio, Sarah; Graham, Katherine; Kuschner, Robert; Sun, Wellington; Russell, Kevin L; Binn, Leonard N
2006-04-01
Ad4 is the principal etiological agent of acute respiratory disease (ARD) in the US military. Discovery of the novel 208bp inverted terminal repeated (ITR) sequence from a recent Ad4 Jax78 field isolate was totally distinct from the analogous 116bp ITR of Ad4 prototype. To investigate the origin and distribution of the novel Ad4 ITR sequence from ARD infections. Direct sequencing of ligated Ad ITR termini. The new Ad4 ITR was highly homologous with the ITRs of human Ad subgroup B. The left post-ITR region of Ad4 Jax78 was found to be highly homologous to the corresponding region of subgroup B Ads: 81% for Ad11 and 98% for Ad3 and Ad7. The right post-ITR region of Ad4 Jax78 contained a truncated classic ITR of the Ad4 prototype. The Ad4 Jax78 ITR most likely evolved from Ad4 prototype by substituting the Ad4 prototype ITR with the subgroup B Ads ITR. The ITR-based PCR assays developed from this study can be used to distinguish the new Ad4 genotype from the classical Ad4 prototype. The new Ad4 genotype was first detected in 1976 from Georgia, USA, and is the main causative agent of ARD infections in US military population.
NASA Technical Reports Server (NTRS)
Mandl, Daniel; Unger, Stephen; Ames, Troy; Frye, Stuart; Chien, Steve; Cappelaere, Pat; Tran, Danny; Derezinski, Linda; Paules, Granville
2007-01-01
This paper will describe the progress of a 3 year research award from the NASA Earth Science Technology Office (ESTO) that began October 1, 2006, in response to a NASA Announcement of Research Opportunity on the topic of sensor webs. The key goal of this research is to prototype an interoperable sensor architecture that will enable interoperability between a heterogeneous set of space-based, Unmanned Aerial System (UAS)-based and ground based sensors. Among the key capabilities being pursued is the ability to automatically discover and task the sensors via the Internet and to automatically discover and assemble the necessary science processing algorithms into workflows in order to transform the sensor data into valuable science products. Our first set of sensor web demonstrations will prototype science products useful in managing wildfires and will use such assets as the Earth Observing 1 spacecraft, managed out of NASA/GSFC, a UASbased instrument, managed out of Ames and some automated ground weather stations, managed by the Forest Service. Also, we are collaborating with some of the other ESTO awardees to expand this demonstration and create synergy between our research efforts. Finally, we are making use of Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) suite of standards and some Web 2.0 capabilities to Beverage emerging technologies and standards. This research will demonstrate and validate a path for rapid, low cost sensor integration, which is not tied to a particular system, and thus be able to absorb new assets in an easily evolvable, coordinated manner. This in turn will help to facilitate the United States contribution to the Global Earth Observation System of Systems (GEOSS), as agreed by the U.S. and 60 other countries at the third Earth Observation Summit held in February of 2005.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-28
...) Over the horizon high frequency sky-wave (ionosphere) radar; (xvi) Radar that detects a moving object... any dimension equal to or less than one quarter (\\1/4\\) wavelength of the highest operating frequency... capability; (B) Operating frequency less than 20 kHz; (C) Bandwidth greater than 10 kHz; or (D) Capable of...
Optical Breath Gas Extravehicular Activity Sensor for the Advanced Portable Life Support System
NASA Technical Reports Server (NTRS)
Wood, William R.; Casias, Miguel E.; Pilgrim, Jeffrey S.; Chullen, Cinda; Campbell, Colin
2016-01-01
The function of the infrared gas transducer used during extravehicular activity (EVA) in the current space suit is to measure and report the concentration of carbon dioxide (CO2) in the ventilation loop. The next generation portable life support system (PLSS) requires highly accurate CO2 sensing technology with performance beyond that presently in use on the International Space Station extravehicular mobility unit (EMU). Further, that accuracy needs to be provided over the full operating pressure range of the suit (3 to 25 psia). Accommodation within space suits demands that optical sensors meet stringent size, weight, and power requirements. A laser diode (LD) sensor based on infrared absorption spectroscopy is being developed for this purpose by Vista Photonics, Inc. Version 1.0 prototype devices were delivered to NASA Johnson Space Center (JSC) in September 2011. The prototypes were upgraded with more sophisticated communications and faster response times to version 2.0 and delivered to JSC in July 2012. The sensors incorporate a laser diode based CO2 channel that also includes an incidental water vapor (humidity) measurement. The prototypes are controlled digitally with an field-programmable gate array microcontroller architecture. Based on the results of the iterative instrument development, further prototype development and testing of instruments were performed leveraging the lessons learned where feasible. The present development extends and upgrades the earlier hardware for the advanced PLSS 2.5 prototypes for testing at JSC. The prototypes provide significantly enhanced accuracy for water vapor measurement and eliminate wavelength drift affecting the earlier versions. Various improvements to the electronics and gas sampling are currently being advanced including the companion development of engineering development units that will ultimately be capable of radiation tolerance. The combination of low power electronics with the performance of a long wavelength laser spectrometer enables multi-gas sensors with significantly increased performance over that presently offered in the EMU.
A Quantitative Analysis of the Benefits of Prototyping Fixed-Wing Aircraft
2012-06-14
in then-year dollars. The RDT&E costs through FSD were provided in then-year dollars as a lump sum. Additionally, the cost of full capability ...development was available in then-year dollars as a lump sum. Full capability development was the RDT&E that continued after the completion of the FSD...contract, which ended in July 1984. In [31] [31], the authors stated that full capability development occurred through approximately 1990
DOT National Transportation Integrated Search
2014-11-01
The Federal Railroad Administration (FRA), U.S. Department of Transportation (U.S. DOT), is sponsoring a research program, which includes investigation of the applicability of time-based egress performance requirements to U.S. passenger rail cars. Th...
Lessons Learned about Liquid Metal Reactors from FFTF Experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wootan, David W.; Casella, Andrew M.; Omberg, Ronald P.
2016-09-20
The Fast Flux Test Facility (FFTF) is the most recent liquid-metal reactor (LMR) to operate in the United States, from 1982 to 1992. FFTF is located on the DOE Hanford Site near Richland, Washington. The 400-MWt sodium-cooled, low-pressure, high-temperature, fast-neutron flux, nuclear fission test reactor was designed specifically to irradiate Liquid Metal Fast Breeder Reactor (LMFBR) fuel and components in prototypical temperature and flux conditions. FFTF played a key role in LMFBR development and testing activities. The reactor provided extensive capability for in-core irradiation testing, including eight core positions that could be used with independent instrumentation for the test specimens.more » In addition to irradiation testing capabilities, FFTF provided long-term testing and evaluation of plant components and systems for LMFBRs. The FFTF was highly successful and demonstrated outstanding performance during its nearly 10 years of operation. The technology employed in designing and constructing this reactor, as well as information obtained from tests conducted during its operation, can significantly influence the development of new advanced reactor designs in the areas of plant system and component design, component fabrication, fuel design and performance, prototype testing, site construction, and reactor operations. The FFTF complex included the reactor, as well as equipment and structures for heat removal, containment, core component handling and examination, instrumentation and control, and for supplying utilities and other essential services. The FFTF Plant was designed using a “system” concept. All drawings, specifications and other engineering documentation were organized by these systems. Efforts have been made to preserve important lessons learned during the nearly 10 years of reactor operation. A brief summary of Lessons Learned in the following areas will be discussed: Acceptance and Startup Testing of FFTF FFTF Cycle Reports« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, D.; Ulsh, M.
In 2008, the National Renewable Energy Laboratory (NREL), under contract to the US Department of Energy (DOE), conducted a manufacturing readiness assessment (MRA) of fuel cell systems and fuel cell stacks for back-up power and material handling applications (MHE). To facilitate the MRA, manufacturing readiness levels (MRL) were defined that were based on the Technology Readiness Levels previously established by the US Department of Energy (DOE). NREL assessed the extensive existing hierarchy of MRLs developed by Department of Defense (DoD) and other Federal entities, and developed a MRL scale adapted to the needs of the Fuel Cell Technologies Program (FCTP)more » and to the status of the fuel cell industry. The MRL ranking of a fuel cell manufacturing facility increases as the manufacturing capability transitions from laboratory prototype development through Low Rate Initial Production to Full Rate Production. DOE can use MRLs to address the economic and institutional risks associated with a ramp-up in polymer electrolyte membrane (PEM) fuel cell production. In 2010, NREL updated this assessment, including additional manufacturers, an assessment of market developments since the original report, and a comparison of MRLs between 2008 and 2010.« less
Industrial Internet of Things: (IIoT) applications in underground coal mines.
Zhou, C; Damiano, N; Whisner, B; Reyes, M
2017-12-01
The Industrial Internet of Things (IIoT), a concept that combines sensor networks and control systems, has been employed in several industries to improve productivity and safety. U.S. National Institute for Occupational Safety and Health (NIOSH) researchers are investigating IIoT applications to identify the challenges of and potential solutions for transferring IIoT from other industries to the mining industry. Specifically, NIOSH has reviewed existing sensors and communications network systems used in U.S. underground coal mines to determine whether they are capable of supporting IIoT systems. The results show that about 40 percent of the installed post-accident communication systems as of 2014 require minimal or no modification to support IIoT applications. NIOSH researchers also developed an IIoT monitoring and control prototype system using low-cost microcontroller Wi-Fi boards to detect a door opening on a refuge alternative, activate fans located inside the Pittsburgh Experimental Mine and actuate an alarm beacon on the surface. The results of this feasibility study can be used to explore IIoT applications in underground coal mines based on existing communication and tracking infrastructure.
Zhou, C.; Damiano, N.; Whisner, B.; Reyes, M.
2017-01-01
The Industrial Internet of Things (IIoT), a concept that combines sensor networks and control systems, has been employed in several industries to improve productivity and safety. U.S. National Institute for Occupational Safety and Health (NIOSH) researchers are investigating IIoT applications to identify the challenges of and potential solutions for transferring IIoT from other industries to the mining industry. Specifically, NIOSH has reviewed existing sensors and communications network systems used in U.S. underground coal mines to determine whether they are capable of supporting IIoT systems. The results show that about 40 percent of the installed post-accident communication systems as of 2014 require minimal or no modification to support IIoT applications. NIOSH researchers also developed an IIoT monitoring and control prototype system using low-cost microcontroller Wi-Fi boards to detect a door opening on a refuge alternative, activate fans located inside the Pittsburgh Experimental Mine and actuate an alarm beacon on the surface. The results of this feasibility study can be used to explore IIoT applications in underground coal mines based on existing communication and tracking infrastructure. PMID:29348699
NASA Astrophysics Data System (ADS)
Gasda, P. J.; Acosta-Maeda, T.; Lucey, P. G.; Misra, A. K.; Sharma, S. K.; Taylor, J.
2014-12-01
The NASA Mars2020 rover will be searching for signs of past habitability and past life on Mars. Additionally, the rover mission will prepare a cache of highly significant samples for a future sample return mission. NASA requires these samples to be well characterized; the instruments on the rover must be capable of fine-scale in situ mineralogical or elemental analysis with emphasis on biosignature detection or characterization. We have been developing multiple standoff laser-based instruments at the University of Hawaii, Manoa that are capable of fine-scale in situ chemical analysis and biosignatures detection. By employing a time-resolved spectroscopy, we can perform elemental analysis with Laser-Induced Breakdown Spectroscopy (LIBS), mineral and organic analysis with Raman spectroscopy, and biosignature detection with Laser-Induced Fluorescence (LIF). Each of these techniques share the same optics and detection equipment, allowing us to integrate them into a single, compact instrument. High time-resolution (~100 ns/pulse) is the key to this instrument; with it, the detector only records data when the signal is the brightest. Spectra can be taken during the day, LIBS can be measured without a plasma light background, and the Raman signal can be separated from the mineral fluorescence signal. Since bio-organics have very short fluorescence lifetimes, the new instrument can be used to unambiguously detect bio-organics. The prototype uses a low power (0.5 mJ/pulse) 532 nm laser with a detection limit of < 30 ppm of organics in a sample of Antarctica Dry Valley soil measured from 8 m. Another LIF instrument under development in our lab, called the Biofinder, takes advantage of the extremely intense fluorescence signal produced by organics by using a wide laser spot and a camera to produce LIF images of wide area (25 cm area from 2 m distance with 2 mm/pixel resolution). The Biofinder can quickly assess the area around the rover (at 10 frames/s) by imaging sample cores, drill holes, or outcrops, and then allow the slower but more precise instruments on the rover to characterize the regions of interest. Either of these prototypes would be ideally suited for future NASA missions, including human exploration missions. The next iterations of the instruments will be designed specifically for future astronaut explorers.
Advance prototype silver ion water bactericide system
NASA Technical Reports Server (NTRS)
Jasionowski, W. J.; Allen, E. T.
1974-01-01
An advance prototype unit was designed and fabricated to treat anticipated fuel cell water. The unit is a single canister that contains a membrane-type prefilter and a silver bromide contacting bed. A seven day baseline simulated mission test was performed; the performance was satisfactory and the effluent water was within all specifications for potability. After random vibrations another seven day simulated mission test was performed, and results indicate that simulated launch vibrations have no effects on the design and performance of the advanced prototype. Bench tests and accelerated breadboard tests were conducted to define the characteristics of an upgraded model of the advance prototype unit which would have 30 days of operating capability. A preliminary design of a silver ion generator for the shuttle orbiter was also prepared.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashdan, Ahmad Al; Oxstrand, Johanna; Agarwal, Vivek
As part of the ongoing efforts at the U.S. Department of Energy’s Light Water Reactor Sustainability Program, Idaho National Laboratory is conducting several pilot projects in collaboration with the nuclear industry to improve the reliability, safety, and economics of the nuclear power industry, especially as the nuclear power plants extend their operating licenses to 80 years. One of these pilot projects is the automated work package (AWP) pilot project. An AWP is an electronic intelligent and interactive work package. It uses plant condition, resources status, and user progress to adaptively drive the work process in a manner that increases efficiencymore » while reducing human error. To achieve this mission, the AWP acquires information from various systems of a nuclear power plant’s and incorporates several advanced instrumentation and control technologies along with modern human factors techniques. With the current rapid technological advancement, it is possible to envision several available or soon-to-be-available capabilities that can play a significant role in improving the work package process. As a pilot project, the AWP project develops a prototype of an expanding set of capabilities and evaluates them in an industrial environment. While some of the proposed capabilities are based on using technological advances in other applications, others are conceptual; thus, require significant research and development to be applicable in an AWP. The scope of this paper is to introduce a set of envisioned capabilities, their need for the industry, and the industry difficulties they resolve.« less
Maximizing MST's inductive capability with a Bp programmable power supply
NASA Astrophysics Data System (ADS)
Chapman, B. E.; Holly, D. J.; Jacobson, C. M.; McCollam, K. J.; Morin, J. C.; Sarff, J. S.; Squitieri, A.
2016-10-01
A major goal of the MST program is the advancement of inductive control for the development of both the RFP's fusion potential and, synergistically, the predictive capability of fusion science. This entails programmable power supplies (PPS's) for the Bt and Bp circuits. A Bt PPS is already in place, allowing advanced RFP operation and the production of tokamak plasmas, and a Bp PPS prototype is under construction. To explore some of the new capabilities to be provided by the Bp PPS, the existing Bt PPS has been temporarily connected to the Bp circuit. One key result is new-found access to very low Ip (20 kA) and very low Lundquist number, S (104). At this low S, simulation of RFP plasmas with the MHD code NIMROD is readily achievable, and work toward validation of extended MHD models using NIMROD is underway with direct comparisons to these MST plasmas. The full Bp PPS will also provide higher Ip and S than presently possible, allowing MST to produce plasmas with S spanning as much as five orders of magnitude, a dramatic extension of MST's capability. In these initial tests, the PPS has also increased five-fold MST's Ip flattop duration, to about 100 ms. This, coupled with the recently demonstrated PPS ability to drive large-amplitude sinusoidal oscillations in Ip, will allow tests of extended-duration oscillating field current drive, the goal of which is ac sustainment of a quasi-dc plasma current. Work supported by US DOE.
Polar-Direct-Drive Defect Implosions at OMEGA inPreparation for Experiments at NIF
NASA Astrophysics Data System (ADS)
Cobble, J. A.; Schmitt, M. J.; Murphy, T. J.; Tregillis, I. L.; Wysocki, F. J.; Obrey, K. D.; Magelssen, G. R.; Glebov, V.; Bradley, P. A.; Hsu, S. C.; Krasheninnikova, N. V.; Batha, S. H.
2011-10-01
The Defect-Implosion (DIME) campaign involves compressing perturbed spherical capsules with polar direct drive (PDD). For direct-drive implosions at NIF, PDD will be used. We have done simulations and experiments at OMEGA to test our modeling capability for equatorial-plane defects in fusion capsules and for PDD at NIF. Since PDD is anisotropic, we show the results of 0th hydrodynamics of implosions and perturbation-driven features near stagnation. Later presentations discuss defect-induced mix and neutronics, and laser pointing for NIF experiments. Prototype OMEGA shots used 865- μm diameter CH shells filled with 5 atm of D2. Machined channels 30- μm wide and up to 9- μm deep formed the defects. This work has been performed under the auspices of the US DOE, contract number DE-AC52-06NA25396.
Assessing Potential of VIIRS Data for Contribution to a Forest Threat Early Warning System
NASA Technical Reports Server (NTRS)
Spruce, Joseph P.
2007-01-01
This viewgraph presentation reviews the contributions by the Rapid Prototyping Capability (RPC) towards using Visible Infrared Imager / Radiometer Suite (VIIRS) data in assessing the damage to forests. The Healthy Forest Restoration Act of 2003 mandates development of national Early Warning System (EWS) for forest threat monitoring and mitigation. NASA Stennis is working with the US Forest Service to develop needed components of this EWS. The use of MODIS data for monitoring forest disturbance at broad regional scales is a componet of this program. This RPC experiment was initiated to assess potential of the MODIS follow-on, VIIRS, for monitoring forest disturbance at broad scales and thereby contributing to the EWS. This presentation reviews the potential use of the VIIRS to examine the damage to forests caused by gyspy moths in the West Virginia and Virginia area.
National Wind Technology Center Dynamic 5-Megawatt Dynamometer
Felker, Fort
2018-06-06
The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spearing, Dane Robert
These are slides from a facility overview presentation for visiting agencies to Los Alamos National Laboratory (LANL). The TA-55 Plutonium Facility (PF-4) is discussed in detail. PF-4 is a unique resource for US plutonium programs. The basic design is flexible and has adapted to changing national needs. It is a robust facility with strong safety and security implementation. It supports a variety of national programs. It will continue for many years into the future. Sigma is then discussed in detail, which handles everything from hydrogen to uranium. It has been in long term service to the Nation (nearly 60 years).more » It has a flexible authorization basis to handle almost the entire periodic table. It has a wide breadth of prototyping and characterization capabilities. It has integrated program and line management.« less
Additive Manufacturing and High-Performance Computing: a Disruptive Latent Technology
NASA Astrophysics Data System (ADS)
Goodwin, Bruce
2015-03-01
This presentation will discuss the relationship between recent advances in Additive Manufacturing (AM) technology, High-Performance Computing (HPC) simulation and design capabilities, and related advances in Uncertainty Quantification (UQ), and then examines their impacts upon national and international security. The presentation surveys how AM accelerates the fabrication process, while HPC combined with UQ provides a fast track for the engineering design cycle. The combination of AM and HPC/UQ almost eliminates the engineering design and prototype iterative cycle, thereby dramatically reducing cost of production and time-to-market. These methods thereby present significant benefits for US national interests, both civilian and military, in an age of austerity. Finally, considering cyber security issues and the advent of the ``cloud,'' these disruptive, currently latent technologies may well enable proliferation and so challenge both nuclear and non-nuclear aspects of international security.
NASA Astrophysics Data System (ADS)
Ingram, Russ; Sikes, John
2010-04-01
This paper shall demonstrate the results of a prototype system to detect explosive objects and obscured contaminated targets. By combining a high volume sampling nozzle with an inline 2-stage preconcentrator and a Fido, greater standoff is achieved than with the Fido alone. The direct application of this system is on the Autonomous Mine Detection System (AMDS) but could be deployed on a large variety of robotic platforms. It is being developed under the auspices of the U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate, Countermine Division. This device is one of several detection tools and technologies to be used on the AMDS. These systems will have multiple, and at times, overlapping objectives. One objective is trace detection on the surface of an unknown potential target. By increasing the standoff capabilities of the detector, the fine manipulation of the robot deploying the detector is less critical. Current detectors used on robotic systems must either be directly in the vapor plume or make direct contact with the target. By increasing the standoff, detection is more easily and quickly achieved. The end result detector must overcome cross-contamination, sample throughput, and environmental issues. The paper will provide preliminary results of the prototype system to include data, and where feasible, video of testing results.
Post-Cold War Science and Technology at Los Alamos
NASA Astrophysics Data System (ADS)
Browne, John C.
2002-04-01
Los Alamos National Laboratory serves the nation through the development and application of leading-edge science and technology in support of national security. Our mission supports national security by: ensuring the safety, security, and reliability of the U.S. nuclear stockpile; reducing the threat of weapons of mass destruction in support of counter terrorism and homeland defense; and solving national energy, environment, infrastructure, and health security problems. We require crosscutting fundamental and advanced science and technology research to accomplish our mission. The Stockpile Stewardship Program develops and applies, advanced experimental science, computational simulation, and technology to ensure the safety and reliability of U.S. nuclear weapons in the absence of nuclear testing. This effort in itself is a grand challenge. However, the terrorist attack of September 11, 2001, reminded us of the importance of robust and vibrant research and development capabilities to meet new and evolving threats to our national security. Today through rapid prototyping we are applying new, innovative, science and technology for homeland defense, to address the threats of nuclear, chemical, and biological weapons globally. Synergistically, with the capabilities that we require for our core mission, we contribute in many other areas of scientific endeavor. For example, our Laboratory has been part of the NASA effort on mapping water on the moon and NSF/DOE projects studying high-energy astrophysical phenomena, understanding fundamental scaling phenomena of life, exploring high-temperature superconductors, investigating quantum information systems, applying neutrons to condensed-matter and nuclear physics research, developing large-scale modeling and simulations to understand complex phenomena, and exploring nanoscience that bridges the atomic to macroscopic scales. In this presentation, I will highlight some of these post-cold war science and technology advances including our national security contributions, and discuss some of challenges for Los Alamos in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dagher, Habib; Viselli, Anthony; Goupee, Andrew
Volume II of the Final Report for the DeepCwind Consortium National Research Program funded by US Department of Energy Award Number: DE-EE0003278.001 summarizes the design, construction, deployment, testing, numerical model validation, retrieval, and post-deployment inspection of the VolturnUS 1:8-scale floating wind turbine prototype deployed off Castine, Maine on June 2nd, 2013. The 1:8 scale VolturnUS design served as a de-risking exercise for a commercial multi-MW VolturnUS design. The American Bureau of Shipping Guide for Building and Classing Floating Offshore Wind Turbine Installations was used to design the prototype. The same analysis methods, design methods, construction techniques, deployment methods, mooring, andmore » anchoring planned for full-scale were used. A commercial 20kW grid-connected turbine was used and was the first offshore wind turbine in the US.« less
Improving The Prototyping Process In Department Of Defense Acquisition
2014-06-01
System Flow Chart ................................................. 39 Figure 13. TRL Definitions (from ASD [R&E] 2011... ASD (R&E) Assistant Secretary of Defense for Research and Engineering BCL Business Capability Life cycle CDD Capability Development Document CDR...TRL 6 cannot be attained until the technology has been demonstrated in a relevant operational environment ( ASD [R&E] 2011). A technology that has
Applying Early Systems Engineering: Injecting Knowledge into the Capability Development Process
2012-10-01
involves early use of systems engi- neering and technical analyses to supplement the existing operational analysis techniques currently used in...complexity, and costs of systems now being developed require tight coupling between operational requirements stated in the CDD, system requirements...Fleischer » Keywords: Capability Development, Competitive Prototyping, Knowledge Points, Early Systems Engineering Applying Early Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malhotra, Mini; New, Joshua Ryan; Im, Piljae
As part of DOE's support of ANSI/ASHRAE/IES Standard 90.1 and IECC, researchers at Pacific Northwest National Laboratory (PNNL) apply a suite of prototype buildings covering 80% of the commercial building floor area in the U.S. for new construction. Efforts have started on expanding the prototype building suite to cover 90% of the commercial building floor area in the U.S., by developing prototype models for additional building types including place of worship, public order and safety, public assembly. Courthouse is courthouse is a sub-category under the “Public Order and Safety" building type category; other sub-categories include police station, fire station, andmore » jail, reformatory or penitentiary.ORNL used building design guides, databases, and documented courthouse projects, supplemented by personal communication with courthouse facility planning and design experts, to systematically conduct research on the courthouse building and system characteristics. This report documents the research conducted for the courthouse building type and proposes building and system characteristics for developing a prototype building energy model to be included in the Commercial Building Prototype Model suite. According to the 2012 CBECS, courthouses occupy a total of 436 million sqft of floor space or 0.5% of the total floor space in all commercial buildings in the US, next to fast food (0.35%), grocery store or food market (0.88%), and restaurant or cafeteria (1.2%) building types currently included in the Commercial Prototype Building Model suite. Considering aggregated average, courthouse falls among the larger with a mean floor area of 69,400 sqft smaller fuel consumption intensity building types and an average of 94.7 kBtu/sqft compared to 77.8 kBtu/sqft for office and 80 kBtu/sqft for all commercial buildings.Courthouses range in size from 1000 sqft to over a million square foot building gross square feet and 1 courtroom to over 100 courtrooms. Small courthouses represent a majority of courthouse buildings. However, collectively they comprise a small fraction of total courthouse floor area in the US. Spaces and operation of courthouse also varies depending on the court type (federal court vs state court; district, appellate, versus Supreme Court) and jurisdiction (general jurisdiction, general jurisdiction trial, or special courts). Based on the statistics on courthouses, general jurisdiction trial court is considered for the prototype model. The model is assumed to be a 4-courtroom, small, 72,000 sqft three-story building including a ground level/ basement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baxter, Van D.; Rice, C. Keith; Munk, Jeffrey D.
Between October 2007 and September 2017, Oak Ridge National Laboratory (ORNL) and Lennox Industries, Inc. (Lennox) engaged in a Cooperative Research and Development Agreement (CRADA) to develop an air-source integrated heat pump (AS-IHP) system for the US residential market. The Lennox AS-IHP concept consisted of a high-efficiency air-source heat pump (ASHP) for space heating and cooling services and a separate heat pump water heater/dehumidifier (WH/DH) module for domestic water heating and dehumidification (DH) services. A key feature of this system approach with the separate WH/DH is capability to pretreat (i.e., dehumidify) ventilation air and dedicated whole-house DH independent of themore » ASHP. Two generations of laboratory prototype WH/DH units were designed, fabricated, and lab tested. Performance maps for the system were developed using the latest research version of the US Department of Energy/ORNL heat pump design model (Rice 1992; Rice and Jackson 2005; Shen et al. 2012) as calibrated against the lab test data. These maps served as the input to TRNSYS (Solar Energy Laboratory et al. 2010) to predict annual performance relative to a baseline suite of equipment meeting minimum efficiency standards in effect in 2006 (i.e., a combination of an ASHP with a seasonal energy efficiency ratio (SEER) of 13 and resistance water heater with an energy factor (EF) of 0.9). Predicted total annual energy savings (based on use of a two-speed ASHP and the second-generation WH/DH prototype for the AS-IHP), while providing space conditioning, water heating, and dehumidification for a tight, well-insulated 2600 ft2 (242 m2) house at three US locations, ranged from 33 to 36%, averaging 35%, relative to the baseline system. The lowest savings were seen at the cold-climate Chicago location. Predicted energy use for water heating was reduced by about 50 to 60% relative to a resistance WH.« less
Analysis And Design Of A Water Purification System For The West African Area Of Operation
2016-12-01
harmful metals and in disinfecting the water prior to human consumption . Research conducted proved that the BWS is more cost effective , efficient...and test a feasible and cost- effective prototype of a purification system to the BWS for improved capability. This study uses a design-based and...design. The prototype test results showed that the water purification system performed effectively and efficiently in accordance with the
2018-03-13
Kennedy Space Center scientists worked with OSRAM to insert a smart horticulture lighting system prototype into a food production system. The Phytofy RL prototype LED provides similar wavelength capability to a plant growth system currently on orbit. Photofy RL provides another avenue for future investigators conducting flight experiments to perform ground tests prior to flight under similar lighting conditions. The Phytofy RLs have been used to successfully grow microgreens of Wasabi, Tokyo Bekana, Mizuna, Broccoli, Garnet Giant, and Cauliflower.
Development status of the heatpipe power and bimodal systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poston, David I.; Houts, Michael G.
1999-01-01
Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too muchmore » at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power ({gt}1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999. {copyright} {ital 1999 American Institute of Physics.}« less
Development status of the heatpipe power and bimodal systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poston, David I.; Houts, Michael G.; Emrich, William J. Jr.
1999-01-22
Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too muchmore » at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power (>1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999.« less
Development status of the heatpipe power and bimodal systems
NASA Astrophysics Data System (ADS)
Poston, David I.; Houts, Michael G.; Emrich, William J.
1999-01-01
Space fission power systems can potentially enhance or enable ambitious lunar and Martian surface missions. Research into space fission power systems has been ongoing (at various levels) since the 1950s, but to date the United States (US) has flown only one space fission system, SNAP-10A, in 1965. Cost and development time have been significant reasons why space fission systems have not been used by the US. High cost and long development time are not inherent to the use of space fission power. However, high cost and long development time are inherent to any program that tries to do too much at once. Nearly all US space fission power programs have attempted to field systems capable of high power, even though more modest systems had not yet been flown. All of these programs have failed to fly a space fission system. Relatively low power (10 to 100 kWe) fission systems may be useful for near-term lunar and Martian surface missions, including missions in which in situ resource utilization is a priority. Such systems may also be useful for deep-space science missions and other missions. These systems can be significantly less expensive to develop than high power systems. Experience gained in the development of low-power space fission systems can then be used to enable cost-effective development of high-power (>1000 kWe) fission systems. The Heatpipe Power System (HPS) is a potential, near-term, low-cost space fission power system. The Heatpipe Bimodal System (HBS) is a potential, near-term, low-cost space fission power and/or propulsion system. Both systems will be composed of independent modules, and all components use existing technology and operate within the existing database. The HPS and HBS have relatively few system integration issues; thus, the successful development of a module is a significant step toward verifying system feasibility and performance estimates. A prototypic HPS module was fabricated, and initial testing was completed in April 1997. All test objectives were accomplished, demonstrating the basic feasibility of the HPS. Fabrication of an HBS module is under way, and testing should begin in 1999.
DUCKS: Low cost thermal monitoring units for near-vent deployment
Harris, A.; Pirie, D.; Horton, K.; Garbeil, H.; Pilger, E.; Ramm, H.; Hoblitt, R.; Thornber, C.; Ripepe, M.; Marchetti, E.; Poggi, P.
2005-01-01
During 1999 we designed and tested a thermal monitoring system to provide a cheap, robust, modular, real-time system capable of surviving the hostile conditions encountered proximal to active volcanic vents. In November 2000 the first system was deployed at Pu'u 'O'o (Kilauea, Hawai'i) to target persistently active vents. Aside from some minor problems, such as sensor damage due to tampering, this system remained operational until January 2004. The success of the prototype system led us to use the blueprint for a second installation at Stromboli (Aeolian Islands, Italy). This was deployed, dug into a bomb-proof bunker, during May 2002 and survived the April 2003 paroxysmal eruption despite being located just 250 m from the vent. In both cases, careful waterproofing of connectors and selection of suitable protection has prevented water damage and corrosion in the harsh atmosphere encountered at the crater rim. The Pu'u 'O'o system cost ???US$10,000 and comprises four modules: sensors, transmission and power hub, repeater station and reception site. The sensor component consists of three thermal infrared thermometers housed in Pelican??? cases fitted with Germanium-Arsenide-Selenium windows. Two 1?? field of view (FOV) sensors allow specific vents to be targeted and a 60?? FOV sensor provides a crater floor overview. A hard wire connection links to a Pelican???-case-housed microprocessor, modem and power module. From here data are transmitted, via a repeater site, to a dedicated PC at the Hawaiian Volcano Observatory. Here data are displayed with a delay of ???3 s between acquisition and display. The modular design allows for great flexibility. At Stromboli, 1?? and 15?? FOV sensor modules can be switched depending changes in activity style and crater geometry. In addition a direct line of site to the Stromboli reception center negates the repeater site requirement, reducing the cost to US$5500 for a single sensor system. We have also constructed self-contained units w ith internal data loggers for US$1500/unit. These have been tested at Kilauea, Stromboli, Etna, Masaya, Santiaguito, Fuego, Pacaya, Poas, Soufriere Hills, Villarrica and Erta Ale. These instruments have proved capable of detecting thermal signals associated with: (1) gas emission; (2) gas jetting events; (3) crater floor collapse; (4) lava effusion; (5) lava flow in tubes; (6) lava lake activity; (7) lava dome activity; and (8) crater lake skin temperature. ?? 2005 Elsevier B.V. All rights reserved.
DUCKS: Low cost thermal monitoring units for near-vent deployment
NASA Astrophysics Data System (ADS)
Harris, Andrew; Pirie, Dawn; Horton, Keith; Garbeil, Harold; Pilger, Eric; Ramm, Hans; Hoblitt, Rick; Thornber, Carl; Ripepe, Maurizio; Marchetti, Emanuele; Poggi, Pasquale
2005-05-01
During 1999 we designed and tested a thermal monitoring system to provide a cheap, robust, modular, real-time system capable of surviving the hostile conditions encountered proximal to active volcanic vents. In November 2000 the first system was deployed at Pu'u 'O'o (Kilauea, Hawai'i) to target persistently active vents. Aside from some minor problems, such as sensor damage due to tampering, this system remained operational until January 2004. The success of the prototype system led us to use the blueprint for a second installation at Stromboli (Aeolian Islands, Italy). This was deployed, dug into a bomb-proof bunker, during May 2002 and survived the April 2003 paroxysmal eruption despite being located just 250 m from the vent. In both cases, careful waterproofing of connectors and selection of suitable protection has prevented water damage and corrosion in the harsh atmosphere encountered at the crater rim. The Pu'u 'O'o system cost ˜US10,000 and comprises four modules: sensors, transmission and power hub, repeater station and reception site. The sensor component consists of three thermal infrared thermometers housed in Pelican™ cases fitted with Germanium-Arsenide-Selenium windows. Two 1° field of view (FOV) sensors allow specific vents to be targeted and a 60° FOV sensor provides a crater floor overview. A hard wire connection links to a Pelican™-case-housed microprocessor, modem and power module. From here data are transmitted, via a repeater site, to a dedicated PC at the Hawaiian Volcano Observatory. Here data are displayed with a delay of ˜3 s between acquisition and display. The modular design allows for great flexibility. At Stromboli, 1° and 15° FOV sensor modules can be switched depending changes in activity style and crater geometry. In addition a direct line of site to the Stromboli reception center negates the repeater site requirement, reducing the cost to US5500 for a single sensor system. We have also constructed self-contained units with internal data loggers for US$1500/unit. These have been tested at Kilauea, Stromboli, Etna, Masaya, Santiaguito, Fuego, Pacaya, Poas, Soufriere Hills, Villarrica and Erta Ale. These instruments have proved capable of detecting thermal signals associated with: (1) gas emission; (2) gas jetting events; (3) crater floor collapse; (4) lava effusion; (5) lava flow in tubes; (6) lava lake activity; (7) lava dome activity; and (8) crater lake skin temperature.
A Distributed Control System Prototyping Environment to Support Control Room Modernization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lew, Roger Thomas; Boring, Ronald Laurids; Ulrich, Thomas Anthony
Operators of critical processes, such as nuclear power production, must contend with highly complex systems, procedures, and regulations. Developing human-machine interfaces (HMIs) that better support operators is a high priority for ensuring the safe and reliable operation of critical processes. Human factors engineering (HFE) provides a rich and mature set of tools for evaluating the performance of HMIs, however the set of tools for developing and designing HMIs is still in its infancy. Here we propose a rapid prototyping approach for integrating proposed HMIs into their native environments before a design is finalized. This approach allows researchers and developers tomore » test design ideas and eliminate design flaws prior to fully developing the new system. We illustrate this approach with four prototype designs developed using Microsoft’s Windows Presentation Foundation (WPF). One example is integrated into a microworld environment to test the functionality of the design and identify the optimal level of automation for a new system in a nuclear power plant. The other three examples are integrated into a full-scale, glasstop digital simulator of a nuclear power plant. One example demonstrates the capabilities of next generation control concepts; another aims to expand the current state of the art; lastly, an HMI prototype was developed as a test platform for a new control system currently in development at U.S. nuclear power plants. WPF possesses several characteristics that make it well suited to HMI design. It provides a tremendous amount of flexibility, agility, robustness, and extensibility. Distributed control system (DCS) specific environments tend to focus on the safety and reliability requirements for real-world interfaces and consequently have less emphasis on providing functionality to support novel interaction paradigms. Because of WPF’s large user-base, Microsoft can provide an extremely mature tool. Within process control applications,WPF is platform independent and can communicate with popular full-scope process control simulator vendor plant models and DCS platforms.« less
The Si/CdTe semiconductor Compton camera of the ASTRO-H Soft Gamma-ray Detector (SGD)
NASA Astrophysics Data System (ADS)
Watanabe, Shin; Tajima, Hiroyasu; Fukazawa, Yasushi; Ichinohe, Yuto; Takeda, Shin`ichiro; Enoto, Teruaki; Fukuyama, Taro; Furui, Shunya; Genba, Kei; Hagino, Kouichi; Harayama, Atsushi; Kuroda, Yoshikatsu; Matsuura, Daisuke; Nakamura, Ryo; Nakazawa, Kazuhiro; Noda, Hirofumi; Odaka, Hirokazu; Ohta, Masayuki; Onishi, Mitsunobu; Saito, Shinya; Sato, Goro; Sato, Tamotsu; Takahashi, Tadayuki; Tanaka, Takaaki; Togo, Atsushi; Tomizuka, Shinji
2014-11-01
The Soft Gamma-ray Detector (SGD) is one of the instrument payloads onboard ASTRO-H, and will cover a wide energy band (60-600 keV) at a background level 10 times better than instruments currently in orbit. The SGD achieves low background by combining a Compton camera scheme with a narrow field-of-view active shield. The Compton camera in the SGD is realized as a hybrid semiconductor detector system which consists of silicon and cadmium telluride (CdTe) sensors. The design of the SGD Compton camera has been finalized and the final prototype, which has the same configuration as the flight model, has been fabricated for performance evaluation. The Compton camera has overall dimensions of 12 cm×12 cm×12 cm, consisting of 32 layers of Si pixel sensors and 8 layers of CdTe pixel sensors surrounded by 2 layers of CdTe pixel sensors. The detection efficiency of the Compton camera reaches about 15% and 3% for 100 keV and 511 keV gamma rays, respectively. The pixel pitch of the Si and CdTe sensors is 3.2 mm, and the signals from all 13,312 pixels are processed by 208 ASICs developed for the SGD. Good energy resolution is afforded by semiconductor sensors and low noise ASICs, and the obtained energy resolutions with the prototype Si and CdTe pixel sensors are 1.0-2.0 keV (FWHM) at 60 keV and 1.6-2.5 keV (FWHM) at 122 keV, respectively. This results in good background rejection capability due to better constraints on Compton kinematics. Compton camera energy resolutions achieved with the final prototype are 6.3 keV (FWHM) at 356 keV and 10.5 keV (FWHM) at 662 keV, which satisfy the instrument requirements for the SGD Compton camera (better than 2%). Moreover, a low intrinsic background has been confirmed by the background measurement with the final prototype.
Model Scaling of Hydrokinetic Ocean Renewable Energy Systems
NASA Astrophysics Data System (ADS)
von Ellenrieder, Karl; Valentine, William
2013-11-01
Numerical simulations are performed to validate a non-dimensional dynamic scaling procedure that can be applied to subsurface and deeply moored systems, such as hydrokinetic ocean renewable energy devices. The prototype systems are moored in water 400 m deep and include: subsurface spherical buoys moored in a shear current and excited by waves; an ocean current turbine excited by waves; and a deeply submerged spherical buoy in a shear current excited by strong current fluctuations. The corresponding model systems, which are scaled based on relative water depths of 10 m and 40 m, are also studied. For each case examined, the response of the model system closely matches the scaled response of the corresponding full-sized prototype system. The results suggest that laboratory-scale testing of complete ocean current renewable energy systems moored in a current is possible. This work was supported by the U.S. Southeast National Marine Renewable Energy Center (SNMREC).
10 CFR 434.503 - Prototype building procedure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 3 2011-01-01 2011-01-01 false Prototype building procedure. 434.503 Section 434.503 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.503 Prototype...
10 CFR 434.503 - Prototype building procedure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 3 2014-01-01 2014-01-01 false Prototype building procedure. 434.503 Section 434.503 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.503 Prototype...
10 CFR 434.503 - Prototype building procedure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 3 2012-01-01 2012-01-01 false Prototype building procedure. 434.503 Section 434.503 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.503 Prototype...
10 CFR 434.503 - Prototype building procedure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 3 2013-01-01 2013-01-01 false Prototype building procedure. 434.503 Section 434.503 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.503 Prototype...
10 CFR 434.503 - Prototype building procedure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 3 2010-01-01 2010-01-01 false Prototype building procedure. 434.503 Section 434.503 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW FEDERAL COMMERCIAL AND MULTI-FAMILY HIGH RISE RESIDENTIAL BUILDINGS Building Energy Cost Compliance Alternative § 434.503 Prototype...
Large UAS Operations in the NAS - The NASA 2007 Western States Fire Missions (WSFM)
NASA Technical Reports Server (NTRS)
Buoni, Gregory P.; Howell, Kathleen M.
2008-01-01
Objectives: Demonstrate capabilities of UAS to overfly and collect sensor data on wildfires throughout Western US. Demonstrate long-endurance mission capabilities (20+ hours). Image multiple fires (greater than 4 fires per mission), to showcase extendable mission configuration and ability to either linger over key fires or station over disparate regional fires. Deliver real-time imagery to (within 10-minutes of acquisition).
Coast Guard Polar Icebreaker Modernization: Background and Issues for Congress
2014-02-11
Efforts to Identify Arctic Requirements Are Ongoing, but More Communication about Agency Planning Efforts Would Be Beneficial, GAO-10- 870, September...icebreakers also have substantial command, control, and communications capabilities. The flexibility and mobility of polar icebreakers would assist...Fisheries enforcement in Bering Sea to prevent foreign fishing in U.S. waters and overfishing —Capability to conduct search and rescue in Beaufort Sea
Coast Guard Polar Icebreaker Modernization: Background and Issues for Congress
2013-07-24
but More Communication about Agency Planning Efforts Would Be Beneficial, GAO-10- 870, September 2010, p. 53. Coast Guard Polar Icebreaker...and helicopters. Polar icebreakers also have substantial command, control, and communications capabilities. The flexibility and mobility of polar...Coast Guard —Fisheries enforcement in Bering Sea to prevent foreign fishing in U.S. waters and overfishing —Capability to conduct search and rescue in
Burleson, Winslow; Lozano, Cecil; Ravishankar, Vijay; Lee, Jisoo; Mahoney, Diane
2018-05-01
Individuals living with advancing stages of dementia (persons with dementia, PWDs) or other cognitive disorders do not have the luxury of remembering how to perform basic day-to-day activities, which in turn makes them increasingly dependent on the assistance of caregivers. Dressing is one of the most common and stressful activities provided by caregivers because of its complexity and privacy challenges posed during the process. In preparation for in-home trials with PWDs, the aim of this study was to develop and evaluate a prototype intelligent system, the DRESS prototype, to assess its ability to provide automated assistance with dressing that can afford independence and privacy to individual PWDs and potentially provide additional freedom to their caregivers (family members and professionals). This laboratory study evaluated the DRESS prototype's capacity to detect dressing events. These events were engaged in by 11 healthy participants simulating common correct and incorrect dressing scenarios. The events ranged from donning a shirt and pants inside out or backwards to partial dressing-typical issues that challenge a PWD and their caregivers. A set of expected detections for correct dressing was prepared via video analysis of all participants' dressing behaviors. In the initial phases of donning either shirts or pants, the DRESS prototype missed only 4 out of 388 expected detections. The prototype's ability to recognize other missing detections varied across conditions. There were also some unexpected detections such as detection of the inside of a shirt as it was being put on. Throughout the study, detection of dressing events was adversely affected by the relatively smaller effective size of the markers at greater distances. Although the DRESS prototype incorrectly identified 10 of 22 cases for shirts, the prototype preformed significantly better for pants, incorrectly identifying only 5 of 22 cases. Further analyses identified opportunities to improve the DRESS prototype's reliability, including increasing the size of markers, minimizing garment folding or occlusions, and optimal positioning of participants with respect to the DRESS prototype. This study demonstrates the ability to detect clothing orientation and position and infer current state of dressing using a combination of sensors, intelligent software, and barcode tracking. With improvements identified by this study, the DRESS prototype has the potential to provide a viable option to provide automated dressing support to assist PWDs in maintaining their independence and privacy, while potentially providing their caregivers with the much-needed respite. ©Winslow Burleson, Cecil Lozano, Vijay Ravishankar, Jisoo Lee, Diane Mahoney. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 01.05.2018.
Dhir, Vinay; Itoi, Takao; Fockens, Paul; Perez-Miranda, Manuel; Khashab, Mouen A; Seo, Dong Wan; Yang, Ai Ming; Lawrence, Khek Yu; Maydeo, Amit
2015-02-01
EUS-guided biliary drainage (EUS-BD) has emerged as an alternative rescue method in patients with failed ERCP. Opportunities for teaching and training are limited because of a low case volume at most centers. To evaluate a stereolithography/3-dimensional (3D) printing bile duct prototype for teaching and training in EUS-BD. Prospective observational feasibility study. Tertiary referral center. Twenty endosonographers attending an interventional EUS workshop. A prototype of a dilated biliary system was prepared by computer-aided design and 3D printing. The study participants performed guidewire manipulation and EUS-BD procedures (antegrade procedure and/or choledochoduodenostomy) on the prototype. Participants were scored with the device on a scale of 1 to 5 via a questionnaire. Participants' success rate for various steps of the EUS-BD procedure was noted. Subjective and objective evaluation of the prototype regarding its overall applicability, quality of radiographic and EUS images, and 4 steps of EUS-BD procedure (needle puncture, guidewire manipulation, tract dilation, stent placement). Fifteen participants returned the questionnaire, and 10 completed all 4 steps of EUS-BD. The median score for overall utility was 4, whereas that for EUS and US views was 5. Participants with experience in performing more than 20 EUS-BD procedures scored the prototype significantly lower for stent placement (P = .013) and equivalent for needle puncture, tract dilation, and wire manipulation. The success rate of various steps was 100% for needle puncture and tract dilation, 82.35% for wire manipulation, and 80% for stent placement. The mean overall procedure time was 18 minutes. Small number of participants. The 3D printing bile duct prototype appears suitable for teaching of and training in the various steps of EUS-BD. Further studies are required to elucidate its role. Copyright © 2015 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Platonov, A.; Zaitsev, Ie.; Opalski, L. J.
2017-08-01
The paper presents an overview of design methodology and results of experiments with a Prototype of highly efficient optimal adaptive feedback communication systems (AFCS), transmitting low frequency analog signals without coding. The paper emphasizes the role of the forward transmitter saturation as the factor that blocked implementation of theoretical results of pioneer (1960-1970s) and later research on FCS. Deepened analysis of the role of statistical fitting condition in adequate formulation and solution of AFCS optimization task is given. Solution of the task - optimal transmission/reception algorithms is presented in the form useful for elaboration of the hardware/software Prototype. A notable particularity of the Prototype is absence of the encoding/decoding units, whose functions are realized by the adaptive pulse amplitude modulator (PAM) of the forward transmitter (FT) and estimating/controlling algorithm in the receiver of base station (BS). Experiments confirm that the Prototype transmits signals from FT to BS "perfectly": with the bit rate equal to the capacity of the system, and with limit energy [J/bit] and spectral [bps/Hz] efficiency. Another, not less important and confirmed experimentally, particularity of AFCS is its capability to adjust parameters of FT and BS to the characteristics of scenario of application and maintain the ideal regime of transmission including spectralenergy efficiency. AFCS adjustment can be made using BS estimates of mean square error (MSE). The concluding part of the paper contains discussion of the presented results, stressing capability of AFCS to solve problems appearing in development of dense wireless networks.
Posttest analysis of international standard problem 10 using RELAP4/MOD7. [PWR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, M.; Davis, C.B.; Peterson, A.C. Jr.
RELAP4/MOD7, a best estimate computer code for the calculation of thermal and hydraulic phenomena in a nuclear reactor or related system, is the latest version in the RELAP4 code development series. This paper evaluates the capability of RELAP4/MOD7 to calculate refill/reflood phenomena. This evaluation uses the data of International Standard Problem 10, which is based on West Germany's KWU PKL refill/reflood experiment K9A. The PKL test facility represents a typical West German four-loop, 1300 MW pressurized water reactor (PWR) in reduced scale while maintaining prototypical volume-to-power ratio. The PKL facility was designed to specifically simulate the refill/reflood phase of amore » hypothetical loss-of-coolant accident (LOCA).« less
The US Arctic Observing Network - Mobilizing Interagency Observing Actions in an Era of Rapid Change
NASA Astrophysics Data System (ADS)
Starkweather, S.
2017-12-01
US agencies have long relied upon sustained Arctic observing to achieve their missions, be they in support of long-term monitoring, operationalized forecasts, or long-term process studies. One inventory of Arctic observing activities (arcticobservingviewer.org) suggests that there are more than 10,000 sustained data collection sites that have been supported by US agencies. Yet despite calls from academia (e.g. National Research Council, 2006) and agency leadership (e.g. IARPC, 2007) for more integrated approaches, such coherence - in the form of a US Arctic Observing Network (US AON) - has been slow and ad hoc in emerging. Two approaches have been invoked in systematically creating networks of greater coherence. One involves solving the "backward problem" or drawing existing observations into interoperable, multi-sensor, value-added data products. These approaches have the benefit that they build from existing assets and extend observations over greater time and space scales than individual efforts can approach. They suffer from being high-energy undertakings, often proceeding through voluntary efforts, and are limited by the observational assets already in place. Solving the "forward problem", or designing the network that is "needed" entails its own challenges of aligning multiple agency needs and capabilities into coordinated frameworks, often tied into a societal benefit structure. The solutions to the forward problem are greatly constrained by financial and technical feasibility. The benefit of such approaches is that interoperability and user-needs are baked into the network design, and some critical prioritization has been invoked. In September 2016, NOAA and other US agencies advanced plans to formally establish and fund the coordination of a US AON initiative. This US AON initiative brings new coordination capabilities on-line to support and strengthen US engagement in sustained and coordinated pan-Arctic observing and data sharing systems that serve societal needs. This work describes the capabilities of the new US AON initiative and how those capabilities are being mobilized towards both the "backward" and "forward" problems of Arctic observing.
Development of an Atmospheric Pressure Ionization Mass Spectrometer
NASA Technical Reports Server (NTRS)
1998-01-01
A commercial atmospheric pressure ionization mass spectrometer (APIMS) was purchased from EXTREL Mass Spectrometry, Inc. (Pittsburgh, PA). Our research objectives were to adapt this instrument and develop techniques for real-time determinations of the concentrations of trace species in the atmosphere. The prototype instrument is capable of making high frequency measurements with no sample preconcentrations. Isotopically labeled standards are used as an internal standard to obtain high precision and to compensate for changes in instrument sensitivity and analyte losses in the sampling manifold as described by Bandy and coworkers. The prototype instrument is capable of being deployed on NASA C130, Electra, P3, and DC8 aircraft. After purchasing and taking delivery by June 1994, we assembled the mass spectrometer, data acquisition, and manifold flow control instrumentation in electronic racks and performed tests.
A Mars Airplane . . . Oh really. [aerospaceplane design for Mars exploration
NASA Technical Reports Server (NTRS)
Clarke, V. C., Jr.; Kerem, A.; Lewis, R.
1979-01-01
This paper describes the mission design, scientific utilization, and prototypical design of a Mars Airplane. As a scientific platform, the airplane provides an excellent means of obtaining data in a resolution range intermediate to surface vehicles and orbiters. It has great versatility to perform a variety of missions: conduct aerial surveys, land instrument packages, collect samples, and perform atmospheric sounding. The Mars Airplane has many characteristics of a competition glider on earth. Two versions of the plane, a cruiser, and one with soft landing and takeoff capability, have been designed. Maximum range and endurance are 10,000 km and 31.1 hours with a 40-kg payload.
NASA Astrophysics Data System (ADS)
Janesick, James; Elliott, Tom; Andrews, James; Tower, John; Bell, Perry; Teruya, Alan; Kimbrough, Joe; Bishop, Jeanne
2014-09-01
Our paper will describe a recently designed Mk x Nk x 10 um pixel CMOS gated imager intended to be first employed at the LLNL National Ignition Facility (NIF). Fabrication involves stitching MxN 1024x1024x10 um pixel blocks together into a monolithic imager (where M = 1, 2, . .10 and N = 1, 2, . . 10). The imager has been designed for either NMOS or PMOS pixel fabrication using a base 0.18 um/3.3V CMOS process. Details behind the design are discussed with emphasis on a custom global reset feature which erases the imager of unwanted charge in ~1 us during the fusion ignition process followed by an exposure to obtain useful data. Performance data generated by prototype imagers designed similar to the Mk x Nk sensor is presented.
Online Impact Prioritization of Essential Climate Variables on Climate Change
NASA Astrophysics Data System (ADS)
Forsythe-Newell, S. P.; Barkstrom, B. B.; Roberts, K. P.
2007-12-01
The National Oceanic & Atmospheric Administration (NOAA)'s NCDC Scientific Data Stewardship (SDS) Team has developed an online prototype that is capable of displaying the "big picture" perspective of all Essential Climate Variable (ECV) impacts on society and value to the IPCC. This prototype ECV-Model provides the ability to visualize global ECV information with options to drill down in great detail. It offers a quantifiable prioritization of ECV impacts that potentially may significantly enhance collaboration with respect to dealing effectively with climate change. The ECV-Model prototype assures anonymity and provides an online input mechanism for subject matter experts and decision makers to access, review and submit: (1) ranking of ECV"s, (2) new ECV's and associated impact categories and (3) feedback about ECV"s, satellites, etc. Input and feedback are vetted by experts before changes or additions are implemented online. The SDS prototype also provides an intuitive one-stop web site that displays past, current and planned launches of satellites; and general as well as detailed information in conjunction with imagery. NCDC's version 1.0 release will be available to the public and provide an easy "at-a-glance" interface to rapidly identify gaps and overlaps of satellites and associated instruments monitoring climate change ECV's. The SDS version 1.1 will enhance depiction of gaps and overlaps with instruments associated with In-Situ and Satellites related to ECVs. NOAA's SDS model empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in monitoring climate change ECV's and potentially significantly enhance collaboration.
Miniaturized inertial impactor for personal airborne particulate monitoring: Prototyping
NASA Astrophysics Data System (ADS)
Pasini, Silvia; Bianchi, Elena; Dubini, Gabriele; Cortelezzi, Luca
2017-11-01
Computational fluid dynamic (CFD) simulations allowed us to conceive and design a miniaturized inertial impactor able to collect fine airborne particulate matter (PM10, PM2.5 and PM1). We created, by 3D printing, a prototype of the impactor. We first performed a set of experiments by applying a suction pump to the outlets and sampling the airborne particulate of our laboratory. The analysis of the slide showed a collection of a large number of particles, spanning a wide range of sizes, organized in a narrow band located below the exit of the nozzle. In order to show that our miniaturized inertial impactor can be truly used as a personal air-quality monitor, we performed a second set of experiments where the suction needed to produce the airflow through the impactor is generated by a human being inhaling through the outlets of the prototype. To guarantee a number of particles sufficient to perform a quantitative characterization, we collected particles performing ten consecutive deep inhalations. Finally, the potentiality for realistic applications of our miniaturized inertial impactor used in combination with a miniaturized single-particle detector will be discussed. CARIPLO Fundation - project MINUTE (Grant No. 2011-2118).
The Astrobiology Field Guide in World Wind
NASA Astrophysics Data System (ADS)
Scalice, D. M.
2004-12-01
In collaboration with the Australian Centre for Astrobiology (ACA), and NASA Learning Technologies (NLT), and utilizing the powerful visualization capabilities of their "World Wind" software, the NASA Astrobiology Institute (NAI) is crafting a prototype "Astrobiology Field Guide" to bring the field experiences and stories of astrobiology science to the public and classrooms around the world. The prototype focuses on one region in particular - The Pilbara in Western Australia. This first Field Guide "hotspot" is an internationally recognized area hosting the best known example of the earliest evidence of life on Earth - a stromatolitic chert precipitation in the 3.45 Ga Warrawoona Group. The goal of the Astrobiology Field Guide is to engage students of all ages with the ongoing field expeditions of today's astrobiologists as they explore the ends of the Earth searching for clues to life's origin, evolution, and distribution in the Universe. The NAI hopes to expand this Field Guide to include many more astrobiologically relevant areas across the globe such as Cuatro Cienegas in Mexico, the Rio Tinto in Spain, Yellowstone National Park in the US, and the Lost City hydrothermal vent field on the mid-Atlantic ridge - and possibly sites on Mars. To that end, we will be conducting feasibility studies and evaluations with informal and formal education contacts. The Astrobiology Field Guide is also serving as a cornerstone to educational materials being developed focused on the Pilbara region for use in classrooms in Australia, the UK, and potentially the US. These materials are being developed by the Australian Centre for Astrobiology, and the ICT Innovations Centre at Macquarie University in Sydney, in collaboration with the NAI and the Centre for Astronomy and Science Education at the University of Glamorgan in the UK.
MOORE: A prototype expert system for diagnosing spacecraft problems
NASA Technical Reports Server (NTRS)
Howlin, Katherine; Weissert, Jerry; Krantz, Kerry
1988-01-01
MOORE is a rule-based, prototype expert system that assists in diagnosing operational Tracking and Data Relay Satellite (TDRS) problems. It is intended to assist spacecraft engineers at the TDRS ground terminal in trouble shooting problems that are not readily solved with routine procedures, and without expert counsel. An additional goal of the prototype system is to develop in-house expert system and knowledge engineering skills. The prototype system diagnoses antenna pointing and earth pointing problems that may occur within the TDRS Attitude Control System (ACS). Plans include expansion to fault isolation of problems in the most critical subsystems of the TDRS spacecraft. Long term benefits are anticipated with use of an expert system during future TDRS programs with increased mission support time, reduced problem solving time, and retained expert knowledge and experience. Phase 2 of the project is intended to provide NASA the necessary expertise and capability to define requirements, evaluate proposals, and monitor the development progress of a highly competent expert system for NASA's Tracking Data Relay Satellite. Phase 2 also envisions addressing two unexplored applications for expert systems, spacecraft integration and tests (I and T) and support to launch activities. The concept, goals, domain, tools, knowledge acquisition, developmental approach, and design of the expert system. It will explain how NASA obtained the knowledge and capability to develop the system in-house without assistance from outside consultants. Future plans will also be presented.
Enhanced Software for Scheduling Space-Shuttle Processing
NASA Technical Reports Server (NTRS)
Barretta, Joseph A.; Johnson, Earl P.; Bierman, Rocky R.; Blanco, Juan; Boaz, Kathleen; Stotz, Lisa A.; Clark, Michael; Lebovitz, George; Lotti, Kenneth J.; Moody, James M.;
2004-01-01
The Ground Processing Scheduling System (GPSS) computer program is used to develop streamlined schedules for the inspection, repair, and refurbishment of space shuttles at Kennedy Space Center. A scheduling computer program is needed because space-shuttle processing is complex and it is frequently necessary to modify schedules to accommodate unanticipated events, unavailability of specialized personnel, unexpected delays, and the need to repair newly discovered defects. GPSS implements constraint-based scheduling algorithms and provides an interactive scheduling software environment. In response to inputs, GPSS can respond with schedules that are optimized in the sense that they contain minimal violations of constraints while supporting the most effective and efficient utilization of space-shuttle ground processing resources. The present version of GPSS is a product of re-engineering of a prototype version. While the prototype version proved to be valuable and versatile as a scheduling software tool during the first five years, it was characterized by design and algorithmic deficiencies that affected schedule revisions, query capability, task movement, report capability, and overall interface complexity. In addition, the lack of documentation gave rise to difficulties in maintenance and limited both enhanceability and portability. The goal of the GPSS re-engineering project was to upgrade the prototype into a flexible system that supports multiple- flow, multiple-site scheduling and that retains the strengths of the prototype while incorporating improvements in maintainability, enhanceability, and portability.
Propeller Design Optimization for Tunnel Bow Thrusters in the Bollard Pull Condition
2012-06-01
capability to develop a propeller’s geometry sufficient for output to a 3D printer for rapid prototyping [5]. In 2008, the capability for ducted propeller...1t does not display a currently valid OMB control number PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION. 1. REPORT DATE (DD-MM-YYYY) 12...21 Motor and Motor Controller
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundstrom, Blake R.; Palmintier, Bryan S.; Rowe, Daniel
Electric system operators are increasingly concerned with the potential system-wide impacts of the large-scale integration of distributed energy resources (DERs) including voltage control, protection coordination, and equipment wear. This prompts a need for new simulation techniques that can simultaneously capture all the components of these large integrated smart grid systems. This paper describes a novel platform that combines three emerging research areas: power systems co-simulation, power hardware in the loop (PHIL) simulation, and lab-lab links. The platform is distributed, real-time capable, allows for easy internet-based connection from geographically-dispersed participants, and is software platform agnostic. We demonstrate its utility by studyingmore » real-time PHIL co-simulation of coordinated solar PV firming control of two inverters connected in multiple electric distribution network models, prototypical of U.S. and Australian systems. Here, the novel trans-pacific closed-loop system simulation was conducted in real-time using a power network simulator and physical PV/battery inverter at power at the National Renewable Energy Laboratory in Golden, CO, USA and a physical PV inverter at power at the Commonwealth Scientific and Industrial Research Organisation's Energy Centre in Newcastle, NSW, Australia. This capability enables smart grid researchers throughout the world to leverage their unique simulation capabilities for multi-site collaborations that can effectively simulate and validate emerging smart grid technology solutions.« less
Lundstrom, Blake R.; Palmintier, Bryan S.; Rowe, Daniel; ...
2017-07-24
Electric system operators are increasingly concerned with the potential system-wide impacts of the large-scale integration of distributed energy resources (DERs) including voltage control, protection coordination, and equipment wear. This prompts a need for new simulation techniques that can simultaneously capture all the components of these large integrated smart grid systems. This paper describes a novel platform that combines three emerging research areas: power systems co-simulation, power hardware in the loop (PHIL) simulation, and lab-lab links. The platform is distributed, real-time capable, allows for easy internet-based connection from geographically-dispersed participants, and is software platform agnostic. We demonstrate its utility by studyingmore » real-time PHIL co-simulation of coordinated solar PV firming control of two inverters connected in multiple electric distribution network models, prototypical of U.S. and Australian systems. Here, the novel trans-pacific closed-loop system simulation was conducted in real-time using a power network simulator and physical PV/battery inverter at power at the National Renewable Energy Laboratory in Golden, CO, USA and a physical PV inverter at power at the Commonwealth Scientific and Industrial Research Organisation's Energy Centre in Newcastle, NSW, Australia. This capability enables smart grid researchers throughout the world to leverage their unique simulation capabilities for multi-site collaborations that can effectively simulate and validate emerging smart grid technology solutions.« less
Development and Testing of Space Fission Technology at NASA-MSFC
NASA Technical Reports Server (NTRS)
Polzin, Kurt; Pearson, J. Boise; Houts, Michael
2008-01-01
The Early Flight Fission Test Facility (EFF-TF) at NASA-Marshall Space Flight Center (MSFC) provides a capability to perform hardware-directed activities to support multiple inspace nuclear reactor concepts by using a non-nuclear test methodology. This includes fabrication and testing at both the module/component level and near prototypic reactor configurations allowing for realistic thermal-hydraulic evaluations of systems. The EFF-TF is currently performing non-nuclear testing of hardware to support a technology development effort related to an affordable fission surface power (AFSP) system that could be deployed on the Lunar surface. The AFSP system is presently based on a pumped liquid metal-cooled reactor design, which builds on US and Russian space reactor technology as well as extensive US and international terrestrial liquid metal reactor experience. An important aspect of the current hardware development effort is the information and insight that can be gained from experiments performed in a relevant environment using realistic materials. This testing can often deliver valuable data and insights with a confidence that is not otherwise available or attainable. While the project is currently focused on potential fission surface power for the lunar surface, many of the present advances, testing capabilities, and lessons learned can be applied to the future development of a low-cost in-space fission power system. The potential development of such systems would be useful in fulfilling the power requirements for certain electric propulsion systems (magnetoplasmadynamic thruster, high-power Hall and ion thrusters). In addition, inspace fission power could be applied towards meeting spacecraft and propulsion needs on missions further from the Sun, where the usefulness of solar power is diminished. The affordable nature of the fission surface power system that NASA may decide to develop in the future might make derived systems generally attractive for powering spacecraft and propulsion systems in space. This presentation will discuss work on space nuclear systems that has been performed at MSFC's EFF-TF over the past 10 years. Emphasis will be place on both ongoing work related to FSP and historical work related to in-space systems potentially useful for powering electric propulsion systems.
The US ICF Ignition Program and the Inertial Fusion Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindl, J D; Hammel, B A; Logan, B G
2003-07-02
There has been rapid progress in inertial fusion in the past few years. This progress spans the construction of ignition facilities, a wide range of target concepts, and the pursuit of integrated programs to develop fusion energy using lasers, ion beams and z-pinches. Two ignition facilities are under construction (NIF in the U.S. and LMJ in France) and both projects are progressing toward an initial experimental capability. The LIL prototype beamline for LMJ and the first 4 beams of NIF will be available for experiments in 2003. The full 192 beam capability of NIF will be available in 2009 andmore » ignition experiments are expected to begin shortly after that time. There is steady progress in the target science and target fabrication in preparation for indirect drive ignition experiments on NIF. Advanced target designs may lead to 5-10 times more yield than initial target designs. There has also been excellent progress on the science of ion beam and z-pinch driven indirect drive targets. Excellent progress on direct-drive targets has been obtained on the Omega laser at the University of Rochester. This includes improved performance of targets with a pulse shape predicted to result in reduced hydrodynamic instability. Rochester has also obtained encouraging results from initial cryogenic implosions. There is widespread interest in the science of fast ignition because of its potential for achieving higher target gain with lower driver energy and relaxed target fabrication requirements. Researchers from Osaka have achieved outstanding implosion and heating results from the Gekko XII Petawatt facility and implosions suitable for fast ignition have been tested on the Omega laser. A broad based program to develop lasers and ions beams for IFE is under way with excellent progress in drivers, chambers, target fabrication and target injection. KrF and Diode Pumped Solid-State lasers (DPSSL) are being developed in conjunction with drywall chambers and direct drive targets. Induction accelerators for heavy ions are being developed in conjunction with thick-liquid protected wall chambers and indirect-drive targets.« less
Spacesuit Portable Life Support System Breadboard (PLSS 1.0) Development and Test Results
NASA Technical Reports Server (NTRS)
Watts, Carly A.; Vogel, Matt
2012-01-01
A multi-year effort has been carried out at the Johnson Space Center to develop an advanced EVA PLSS design intended to further the current state of the art by increasing operational flexibility, reducing consumables, and increasing robustness. This multi-year effort has culminated in the construction and operation of PLSS 1.0, a test rig that simulates full functionality of the advanced PLSS design. PLSS 1.0 integrates commercial off-the-shelf hardware with prototype technology development components, including the primary and secondary oxygen regulators, ventilation loop fan, Rapid Cycle Amine (RCA) swingbed, and Spacesuit Water Membrane Evaporator (SWME). PLSS 1.0 was tested from June 17th through September 30th, 2011. Testing accumulated 233 hours over 45 days, while executing 119 test points. An additional 164 hours of operational time were accrued during the test series, bringing the total operational time for PLSS 1.0 testing to 397 hours. Specific PLSS 1.0 test objectives assessed during this testing include: (1) Confirming prototype components perform in a system level test as they have performed during component level testing, (2) Identifying unexpected system-level interactions (3) Operating PLSS 1.0 in nominal steady-state EVA modes to baseline subsystem performance with respect to metabolic rate, ventilation loop pressure and flow rate, and environmental conditions (4) Simulating nominal transient EVA operational scenarios (5) Simulating contingency EVA operational scenarios (6) Further evaluating prototype technology development components Successful testing of the PLSS 1.0 provided a large database of test results that characterize system level and component performance. With the exception of several minor anomalies, the PLSS 1.0 test rig performed as expected. Documented anomalies and observations include: (1) Ventilation loop fan controller issues at high fan speeds (near 70,000 rpm, whereas the fan speed during nominal operations would be closer to 35,000 rpm) (2) RCA performance at boundary conditions, including carbon dioxide and water vapor saturation events, as well as reduced vacuum quality (3) SWME valve anomalies (4 documented cases where the SWME failed to respond to a control signal or physically jammed, preventing SWME control) (4) Reduction of SWME hollow fiber hydrophobicity and significant reduction of the SWME degassing capability after significant accumulated test time.
NASA Technical Reports Server (NTRS)
Prevot, Thomas; Smith, Nancy M.; Palmer, Everett; Callantine, Todd; Lee, Paul; Mercer, Joey; Homola, Jeff; Martin, Lynne; Brasil, Connie; Cabrall, Christopher
2014-01-01
The Airspace Operations Laboratory at NASA Ames conducts research to provide a better understanding of roles, responsibilities, and requirements for human operators and automation in future air traffic management (ATM) systems. The research encompasses developing, evaluating, and integrating operational concepts and technologies for near-, mid-, and far-term air traffic operations. Current research threads include efficient arrival operations, function allocation in separation assurance and efficient airspace and trajectory management. The AOL has developed powerful air traffic simulation capabilities, most notably the Multi Aircraft Control System (MACS) that is used for many air traffic control simulations at NASA and its partners in government, academia and industry. Several additional NASA technologies have been integrated with the AOL's primary simulation capabilities where appropriate. Using this environment, large and small-scale system-level evaluations can be conducted to help make near-term improvements and transition NASA technologies to the FAA, such as the technologies developed under NASA's Air Traffic Management Demonstration-1 (ATD-1). The AOL's rapid prototyping and flexible simulation capabilities have proven a highly effective environment to progress the initiation of trajectory-based operations and support the mid-term implementation of NextGen. Fundamental questions about accuracy requirements have been investigated as well as realworld problems on how to improve operations in some of the most complex airspaces in the US. This includes using advanced trajectory-based operations and prototype tools for coordinating arrivals to converging runways at Newark airport and coordinating departures and arrivals in the San Francisco and the New York metro areas. Looking beyond NextGen, the AOL has started exploring hybrid human/automation control strategies as well as highly autonomous operations in the air traffic control domain. Initial results indicate improved capacity, low operator workload, good situation awareness and acceptability for controllers teaming with autonomous air traffic systems. While much research and development needs to be conducted to make such concepts a reality, these approaches have the potential to truly transform the airspace system towards increased mobility, safe and efficient growth in global operations and enabling many of the new vehicles and operations that are expected over the next decades. This paper describes how the AOL currently contributes to the ongoing air transportation transformation.
Prototype of NASA's Global Precipitation Measurement Mission Ground Validation System
NASA Technical Reports Server (NTRS)
Schwaller, M. R.; Morris, K. R.; Petersen, W. A.
2007-01-01
NASA is developing a Ground Validation System (GVS) as one of its contributions to the Global Precipitation Mission (GPM). The GPM GVS provides an independent means for evaluation, diagnosis, and ultimately improvement of GPM spaceborne measurements and precipitation products. NASA's GPM GVS consists of three elements: field campaigns/physical validation, direct network validation, and modeling and simulation. The GVS prototype of direct network validation compares Tropical Rainfall Measuring Mission (TRMM) satellite-borne radar data to similar measurements from the U.S. national network of operational weather radars. A prototype field campaign has also been conducted; modeling and simulation prototypes are under consideration.
Trends in Microfabrication Capabilities & Device Architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Todd; Jones, Adam; Lentine, Anthony L.
The last two decades have seen an explosion in worldwide R&D, enabling fundamentally new capabilities while at the same time changing the international technology landscape. The advent of technologies for continued miniaturization and electronics feature size reduction, and for architectural innovations, will have many technical, economic, and national security implications. It is important to anticipate possible microelectronics development directions and their implications on US national interests. This report forecasts and assesses trends and directions for several potentially disruptive microfabrication capabilities and device architectures that may emerge in the next 5-10 years.
Smart roadside initiative : system requirements specifications.
DOT National Transportation Integrated Search
2015-09-01
This document describes the system requirements specifications (SyRS) for the Smart Roadside Initiative (SRI) Prototype for the delivery of capabilities related to wireless roadside inspections, electronic screening/virtual weigh stations, universal ...
Description of the prototype diagnostic residual gas analyzer for ITER.
Younkin, T R; Biewer, T M; Klepper, C C; Marcus, C
2014-11-01
The diagnostic residual gas analyzer (DRGA) system to be used during ITER tokamak operation is being designed at Oak Ridge National Laboratory to measure fuel ratios (deuterium and tritium), fusion ash (helium), and impurities in the plasma. The eventual purpose of this instrument is for machine protection, basic control, and physics on ITER. Prototyping is ongoing to optimize the hardware setup and measurement capabilities. The DRGA prototype is comprised of a vacuum system and measurement technologies that will overlap to meet ITER measurement requirements. Three technologies included in this diagnostic are a quadrupole mass spectrometer, an ion trap mass spectrometer, and an optical penning gauge that are designed to document relative and absolute gas concentrations.
The Concept and Control Capabilities of Universal Electric Vehicle Prototype using LabView Software
NASA Astrophysics Data System (ADS)
Skowronek, Hubert; Waszczuk, Kamil; Kowalski, Maciej; Karolczak, Paweł; Baral, Bivek
2016-10-01
The concept of drive control prototype electric car designed in assumptions for sales in the markets of developing countries, mainly in South Asia has been presented in the article. The basic requirements for this type of vehicles and the possibility of rapid prototyping onboard equipment for the purpose of preliminary tests have been presented. The control system was composed of a PC and measurement card myRIO and has two operating modes. In the first of them can simulate changes of each components parameters and checking of program proper functioning. In the second mode, instead of the simulation it is possible to control the real object.
First Results of an “Artificial Retina” Processor Prototype
Cenci, Riccardo; Bedeschi, Franco; Marino, Pietro; ...
2016-11-15
We report on the performance of a specialized processor capable of reconstructing charged particle tracks in a realistic LHC silicon tracker detector, at the same speed of the readout and with sub-microsecond latency. The processor is based on an innovative pattern-recognition algorithm, called “artificial retina algorithm”, inspired from the vision system of mammals. A prototype of the processor has been designed, simulated, and implemented on Tel62 boards equipped with high-bandwidth Altera Stratix III FPGA devices. Also, the prototype is the first step towards a real-time track reconstruction device aimed at processing complex events of high-luminosity LHC experiments at 40 MHzmore » crossing rate.« less
First Results of an “Artificial Retina” Processor Prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cenci, Riccardo; Bedeschi, Franco; Marino, Pietro
We report on the performance of a specialized processor capable of reconstructing charged particle tracks in a realistic LHC silicon tracker detector, at the same speed of the readout and with sub-microsecond latency. The processor is based on an innovative pattern-recognition algorithm, called “artificial retina algorithm”, inspired from the vision system of mammals. A prototype of the processor has been designed, simulated, and implemented on Tel62 boards equipped with high-bandwidth Altera Stratix III FPGA devices. Also, the prototype is the first step towards a real-time track reconstruction device aimed at processing complex events of high-luminosity LHC experiments at 40 MHzmore » crossing rate.« less
AAH Cage Out-Link and In-Link Antenna Characterization
NASA Technical Reports Server (NTRS)
Jeutter, Dean C.
1998-01-01
This final report encapsulates the accomplishments of the third year of work on an Advanced Biotelemetry System (ABTS). Overall MU/ABTS project objectives are to provide a biotelemetry system that can collect data from and send commands to an implanted biotransceiver. This system will provide for studies of rodent development in space. The system must be capable of operating in a metal animal cage environment. An important goal is the development of a small, "smart", micropower, -channel data output and single channel command implantable biotransceiver with eight input capabilities with the flexibility for easy customization for a variety of physiologic investigations. The NASA Ames/Marquette University Joint Research work has been devoted to the system design of such a new state of the art biotelemetry system, having multiple physiologic inputs, and bi-directional data transfer capabilities. This work has provided a successful prototype system that connects, by two-way radio links, an addressable biotelemetry system that provides communication between an animal biotelemeter prototype and a personal computer. The operational features of the prototype system are listed below: Two-Way PCM Communication with Implanted Biotelemeter Microcontroller Based Biotelemeter Out-Link: Wideband FSK (60 kbaud) In-Link: OOK (2.4 kbaud) Septum Antenna Arrays (In/Out-Links) Personal Computer Data Interface The important requirement of this third year's work, to demonstrate two-way communication with transmit and receive antennas inside the metal animal cage, has been successfully accomplished. The advances discussed in this report demonstrate that the AAH cage antenna system can provide Out-link and In-link capability for the ABTS bi-directional telemetry system, and can serve as a benchmark for project status.
OpenStreetMap Collaborative Prototype, Phase 1
Wolf, Eric B.; Matthews, Greg D.; McNinch, Kevin; Poore, Barbara S.
2011-01-01
Phase One of the OpenStreetMap Collaborative Prototype (OSMCP) attempts to determine if the open source software developed for the OpenStreetMap (OSM, http://www.openstreetmap.org) can be used for data contributions and improvements that meet or exceed the requirements for integration into The National Map (http://www.nationalmap.gov). OpenStreetMap Collaborative Prototype Phase One focused on road data aggregated at the state level by the Kansas Data Access and Support Center (DASC). Road data from the DASC were loaded into a system hosted by the U.S. Geological Survey (USGS) National Geospatial Technical Operations Center (NGTOC) in Rolla, Missouri. U.S. Geological Survey editing specifications were developed by NGTOC personnel (J. Walters and G. Matthews, USGS, unpub. report, 2010). Interstate and U.S. Highways in the dataset were edited to the specifications by NGTOC personnel while State roads were edited by DASC personnel. Resulting data were successfully improved to meet standards for The National Map once the system and specifications were in place. The OSM software proved effective in providing a usable platform for collaborative data editing
46 CFR 160.056-4 - Approval tests of prototype rescue boat.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 6 2011-10-01 2011-10-01 false Approval tests of prototype rescue boat. 160.056-4..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Rescue Boat § 160.056-4 Approval tests of prototype rescue boat. (a) Drop test. The rescue boat, fully equipped, shall be dropped, in a...
46 CFR 160.056-4 - Approval tests of prototype rescue boat.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 6 2012-10-01 2012-10-01 false Approval tests of prototype rescue boat. 160.056-4..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Rescue Boat § 160.056-4 Approval tests of prototype rescue boat. (a) Drop test. The rescue boat, fully equipped, shall be dropped, in a...
46 CFR 160.056-4 - Approval tests of prototype rescue boat.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 6 2014-10-01 2014-10-01 false Approval tests of prototype rescue boat. 160.056-4..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Rescue Boat § 160.056-4 Approval tests of prototype rescue boat. (a) Drop test. The rescue boat, fully equipped, shall be dropped, in a...
46 CFR 160.056-4 - Approval tests of prototype rescue boat.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 6 2013-10-01 2013-10-01 false Approval tests of prototype rescue boat. 160.056-4..., CONSTRUCTION, AND MATERIALS: SPECIFICATIONS AND APPROVAL LIFESAVING EQUIPMENT Rescue Boat § 160.056-4 Approval tests of prototype rescue boat. (a) Drop test. The rescue boat, fully equipped, shall be dropped, in a...
46 CFR 160.056-4 - Approval tests of prototype rescue boat.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 6 2010-10-01 2010-10-01 false Approval tests of prototype rescue boat. 160.056-4 Section 160.056-4 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) EQUIPMENT... tests of prototype rescue boat. (a) Drop test. The rescue boat, fully equipped, shall be dropped, in a...
Samant, Sanjiv S; Gopal, Arun
2006-08-01
Image quality in portal imaging suffers significantly from the loss in contrast and spatial resolution that results from the excessive Compton scatter associated with megavoltage x rays. In addition, portal image quality is further reduced due to the poor quantum efficiency (QE) of current electronic portal imaging devices (EPIDs). Commercial video-camera-based EPIDs or VEPIDs that utilize a thin phosphor screen in conjunction with a metal buildup plate to convert the incident x rays to light suffer from reduced light production due to low QE (<2% for Eastman Kodak Lanex Fast-B). Flat-panel EPIDs that utilize the same luminescent screen along with an a-Si:H photodiode array provide improved image quality compared to VEPIDs, but they are expensive and can be susceptible to radiation damage to the peripheral electronics. In this article, we present a prototype VEPID system for high quality portal imaging at sub-monitor-unit (subMU) exposures based on a thick scintillation crystal (TSC) that acts as a high QE luminescent screen. The prototype TSC system utilizes a 12 mm thick transparent CsI(Tl) (thallium-activated cesium iodide) scintillator for QE=0.24, resulting in significantly higher light production compared to commercial phosphor screens. The 25 X 25 cm2 CsI(Tl) screen is coupled to a high spatial and contrast resolution Video-Optics plumbicon-tube camera system (1240 X 1024 pixels, 250 microm pixel width at isocenter, 12-bit ADC). As a proof-of-principle prototype, the TSC system with user-controlled camera target integration was adapted for use in an existing clinical gantry (Siemens BEAMVIEW(PLUS)) with the capability for online intratreatment fluoroscopy. Measurements of modulation transfer function (MTF) were conducted to characterize the TSC spatial resolution. The measured MTF along with measurements of the TSC noise power spectrum (NPS) were used to determine the system detective quantum efficiency (DQE). A theoretical expression of DQE(0) was developed to be used as a predictive model to propose improvements in the optics associated with the light detection. The prototype TSC provides DQE(0)=0.02 with its current imaging geometry, which is an order of magnitude greater than that for commercial VEPID systems and comparable to flat-panel imaging systems. Following optimization in the imaging geometry and the use of a high-end, cooled charge-coupled-device (CCD) camera system, the performance of the TSC is expected to improve even further. Based on our theoretical model, the expected DQE(0)=0.12 for the TSC system with the proposed improvements, which exceeds the performance of current flat-panel EPIDs. The prototype TSC provides high quality imaging even at subMU exposures (typical imaging dose is 0.2 MU per image), which offers the potential for daily patient localization imaging without increasing the weekly dose to the patient. Currently, the TSC is capable of limited frame-rate fluoroscopy for intratreatment visualization of patient motion at approximately 3 frames/second, since the achievable frame rate is significantly reduced by the limitations of the camera-control processor. With optimized processor control, the TSC is expected to be capable of intratreatment imaging exceeding 10 frames/second to monitor patient motion.
Rover imaging system for the Mars rover/sample return mission
NASA Technical Reports Server (NTRS)
1993-01-01
In the past year, the conceptual design of a panoramic imager for the Mars Environmental Survey (MESUR) Pathfinder was finished. A prototype camera was built and its performace in the laboratory was tested. The performance of this camera was excellent. Based on this work, we have recently proposed a small, lightweight, rugged, and highly capable Mars Surface Imager (MSI) instrument for the MESUR Pathfinder mission. A key aspect of our approach to optimization of the MSI design is that we treat image gathering, coding, and restoration as a whole, rather than as separate and independent tasks. Our approach leads to higher image quality, especially in the representation of fine detail with good contrast and clarity, without increasing either the complexity of the camera or the amount of data transmission. We have made significant progress over the past year in both the overall MSI system design and in the detailed design of the MSI optics. We have taken a simple panoramic camera and have upgraded it substantially to become a prototype of the MSI flight instrument. The most recent version of the camera utilizes miniature wide-angle optics that image directly onto a 3-color, 2096-element CCD line array. There are several data-taking modes, providing resolution as high as 0.3 mrad/pixel. Analysis tasks that were performed or that are underway with the test data from the prototype camera include the following: construction of 3-D models of imaged scenes from stereo data, first for controlled scenes and later for field scenes; and checks on geometric fidelity, including alignment errors, mast vibration, and oscillation in the drive system. We have outlined a number of tasks planned for Fiscal Year '93 in order to prepare us for submission of a flight instrument proposal for MESUR Pathfinder.
Infrared Imaging Camera Final Report CRADA No. TC02061.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roos, E. V.; Nebeker, S.
This was a collaborative effort between the University of California, Lawrence Livermore National Laboratory (LLNL) and Cordin Company (Cordin) to enhance the U.S. ability to develop a commercial infrared camera capable of capturing high-resolution images in a l 00 nanoseconds (ns) time frame. The Department of Energy (DOE), under an Initiative for Proliferation Prevention (IPP) project, funded the Russian Federation Nuclear Center All-Russian Scientific Institute of Experimental Physics (RFNC-VNIIEF) in Sarov. VNIIEF was funded to develop a prototype commercial infrared (IR) framing camera and to deliver a prototype IR camera to LLNL. LLNL and Cordin were partners with VNIIEF onmore » this project. A prototype IR camera was delivered by VNIIEF to LLNL in December 2006. In June of 2007, LLNL and Cordin evaluated the camera and the test results revealed that the camera exceeded presently available commercial IR cameras. Cordin believes that the camera can be sold on the international market. The camera is currently being used as a scientific tool within Russian nuclear centers. This project was originally designated as a two year project. The project was not started on time due to changes in the IPP project funding conditions; the project funding was re-directed through the International Science and Technology Center (ISTC), which delayed the project start by over one year. The project was not completed on schedule due to changes within the Russian government export regulations. These changes were directed by Export Control regulations on the export of high technology items that can be used to develop military weapons. The IR camera was on the list that export controls required. The ISTC and Russian government, after negotiations, allowed the delivery of the camera to LLNL. There were no significant technical or business changes to the original project.« less
Development of a bio-inspired UAV perching system
NASA Astrophysics Data System (ADS)
Xie, Pu
Although technologies of unmanned aerial vehicles (UAVs) including micro air vehicles (MAVs) have been greatly advanced in the recent years, it is still very difficult for a UAV to perform some very challenging tasks such as perching to any desired spot reliably and agilely like a bird. Unlike the UAVs, the biological control mechanism of birds has been optimized through millions of year evolution and hence, they can perform many extremely maneuverability tasks, such as perching or grasping accurately and robustly. Therefore, we have good reason to learn from the nature in order to significantly improve the capabilities of UAVs. The development of a UAV perching system is becoming feasible, especially after a lot of research contributions in ornithology which involve the analysis of the bird's functionalities. Meanwhile, as technology advances in many engineering fields, such as airframes, propulsion, sensors, batteries, micro-electromechanical-system (MEMS), and UAV technology is also advancing rapidly. All of these research efforts in ornithology and the fast growing development technologies in UAV applications are motivating further interests and development in the area of UAV perching and grasping research. During the last decade, the research contributions about UAV perching and grasping were mainly based on fixed-wing, flapping-wing, and rotorcraft UAVs. However, most of the current researches in UAV systems with perching and grasping capability are focusing on either active (powered) grasping and perching or passive (unpowered) perching. Although birds do have both active and passive perching capabilities depending on their needs, there is no UAV perching system with both capabilities. In this project, we focused on filling this gap. Inspired by the anatomy analysis of bird legs and feet, a novel perching system has been developed to implement the bionics action for both active grasping and passive perching. In addition, for developing a robust and autonomous perching system, the following objectives were included for this project. The statics model was derived through both quasi-static and analytical method. The grasping stable condition and grasping target of the mechanical gripper were studied through the static analysis. Furthermore, the contact behavior between each foot and the perched object was modeled and evaluated on SimMechanics based on the contact force model derived through virtual principle. The kinematics modeling of UAV perching system was governed with Euler angles and quaternions. Also the propulsion model of the brushless motors was introduced and calibrated. In addition, the flight dynamics model of the UAV system was developed for simulation-based analysis prior to developing a hardware prototype and flight experiment. A special inertial measurement unit (IMU) was designed which has the capability of indirectly calculating the angular acceleration from the angular velocity and the linear acceleration readings. Moreover, a commercial-of-the-shelf (COTS) autopilot-APM 2.6 was selected for the autonomous flight control of the quadrotor. The APM 2.6 is a complete open source autopilot system, which allows the user to turn any fixed, rotary wing or multi-rotor vehicle into a fully autonomous vehicle and capable of performing programmed GPS missions with pre-programed waypoints. In addition, algorithms for inverted pendulum control and autonomous perching control was introduced. The proportion-integrate-differential (PID) controller was used for the simplified UAV perching with inverted pendulum model for horizontal balance. The performance of the controller was verified through both simulation and experiment. In addition, for the purpose of achieving the autonomous perching, guidance and control algorithms were developed the UAV perching system. For guidance, the desired flight trajectory was developed based on a bio-behavioral tau theory which was established from studying the natural motion patterns of animals and human arms approaching to a fixed or moving target for grasping or capturing. The autonomous flight control was also implemented through a PID controller. Autonomous flight performance was proved through simulation in SimMechanics. Finally, the prototyping of our designs were conducted in different generations of our bio-inspired UAV perching system, which include the leg prototype, gripper prototype, and system prototype. Both the machined prototype and 3D printed prototype were tried. The performance of these prototypes was tested through experiments.
Final design of a free-piston hydraulic advanced Stirling conversion system
NASA Technical Reports Server (NTRS)
Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.
1991-01-01
Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.
Knowledge-based geographic information systems (KBGIS): New analytic and data management tools
Albert, T.M.
1988-01-01
In its simplest form, a geographic information system (GIS) may be viewed as a data base management system in which most of the data are spatially indexed, and upon which sets of procedures operate to answer queries about spatial entities represented in the data base. Utilization of artificial intelligence (AI) techniques can enhance greatly the capabilities of a GIS, particularly in handling very large, diverse data bases involved in the earth sciences. A KBGIS has been developed by the U.S. Geological Survey which incorporates AI techniques such as learning, expert systems, new data representation, and more. The system, which will be developed further and applied, is a prototype of the next generation of GIS's, an intelligent GIS, as well as an example of a general-purpose intelligent data handling system. The paper provides a description of KBGIS and its application, as well as the AI techniques involved. ?? 1988 International Association for Mathematical Geology.
The Goals and Status of SoLid Experiment
NASA Astrophysics Data System (ADS)
Park, Jaewon
2016-09-01
SoLid is a short baseline sterile neutrino oscillation search experiment using the BR2 compact core reactor in Belgium. Ruling out or confirming sterile neutrino is one of main interests in the neutrino physics field. Highly segmented scintillator cube detector with 6LiF:ZnS(Ag) neutron screen provides high purity neutron tagging by pulse shape discrimination (PSD), and capture position identification. These capabilities from this novel detector are critical to isolate neutrino interactions in a high background environment. The prototype detector (SM1) provides important feedback for validating the performance of the detector design. Recent results from SM1 will be presented. Construction of the SoLid Phase-1 detector is underway. The three-ton detector with three years running will allow us to reach the sterile neutrino exclusion limit of sin2 2 θ < 0 . 03 at Δm2 2eV2 at the 99% confidence level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathieu, Johanna L.; Gadgil, Ashok J.; Kowolik, Kristin
2009-09-14
Researchers have invented a material called ARUBA -- Arsenic Removal Using Bottom Ash -- that effectively and affordably removes arsenic from Bangladesh groundwater. Through analysis of studies across a range of disciplines, observations, and informal interviews conducted over three trips to Bangladesh, we have applied mechanical engineering design methodology to develop eight key design strategies, which were used in the development of a low-cost, community-scale water treatment system that uses ARUBA to removearsenic from drinking water. We have constructed, tested, and analysed a scale version of the system. Experiments have shown that the system is capable of reducing high levelsmore » of arsenic (nearly 600 ppb) to below the Bangladesh standard of 50 ppb, while remaining affordable to people living on less than US$2/day. The system could be sustainably implemented as a public-private partnership in rural Bangladesh.« less
Low Voltage Electron Beam Processing Final Report CRADA No. TC-645-93-A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H.; Wakalopulos, G.
This CRADA project was established to develop a small, inexpensive sealed-tube electron beam processing system having immediate applications in industrial, high speed manufacturing processes, and in the Department of Energy (DOE) waste treatment/cleanup operations. The technical work involved the development and demonstration of a compact, sealed, 50-75 kilovolt (kV) EB generator prototype, including controls and power supply. The specific goals of this project were to develop a low cost vacuum tube capable of shooting an electron beam several inches into the air, and to demonstrate that wide area materials processing is feasible by stacking the tubes to produce continuous beams.more » During the project, we successfully demonstrated the producibility of a low cost electron beam system and several material processing operations of interest to US industry, DOE and, since September 11, 2001, the Homeland Security.« less
3D printed disposable optics and lab-on-a-chip devices for chemical sensing with cell phones
NASA Astrophysics Data System (ADS)
Comina, G.; Suska, A.; Filippini, D.
2017-02-01
Digital manufacturing (DM) offers fast prototyping capabilities and great versatility to configure countless architectures at affordable development costs. Autonomous lab-on-a-chip (LOC) devices, conceived as only disposable accessory to interface chemical sensing to cell phones, require specific features that can be achieved using DM techniques. Here we describe stereo-lithography 3D printing (SLA) of optical components and unibody-LOC (ULOC) devices using consumer grade printers. ULOC devices integrate actuation in the form of check-valves and finger pumps, as well as the calibration range required for quantitative detection. Coupling to phone camera readout depends on the detection approach, and includes different types of optical components. Optical surfaces can be locally configured with a simple polishing-free post-processing step, and the representative costs are 0.5 US$/device, same as ULOC devices, both involving fabrication times of about 20 min.
Final design of a free-piston hydraulic advanced Stirling conversion system
NASA Astrophysics Data System (ADS)
Wallace, D. A.; Noble, J. E.; Emigh, S. G.; Ross, B. A.; Lehmann, G. A.
Under the US Department of Energy's (DOEs) Solar Thermal Technology Program, Sandia National Laboratories is evaluating heat engines for solar distributed receiver systems. The final design is described of an engineering prototype advanced Stirling conversion system (ASCS) with a free-piston hydraulic engine output capable of delivering about 25 kW of electric power to a utility grid. The free-piston Stirling engine has the potential for a highly reliable engine with long life because it has only a few moving parts, has noncontacting bearings, and can be hermetically sealed. The ASCS is designed to deliver maximum power per year over a range of solar input with a design life of 30 years (60,000 h). The system includes a liquid Nak pool boiler heat transport system and a free-piston Stirling engine with high-pressure hydraulic output, coupled with a bent axis variable displacement hydraulic motor and a rotary induction generator.
Enabling unassisted solar water splitting by iron oxide and silicon
Jang, Ji-Wook; Du, Chun; Ye, Yifan; ...
2015-06-16
A solution for large-scale solar energy storage is photoelectrochemical (PEC) water splitting. However, its development has been impeded by the poor performance of photoanodes, particularly in their capability for photovoltage generation. Many examples employing photovoltaic modules to correct the deficiency for unassisted solar water splitting have been reported to-date. We show that, by using the prototypical photoanode material of haematite as a study tool, structural disorders on or near the surfaces are important causes of the low photovoltages. We develop a facile re-growth strategy to reduce surface disorders and as a consequence, a turn-on voltage of 0.45 V (versus reversiblemore » hydrogen electrode) is achieved. In conclusion, this result permits us to construct a photoelectrochemical device with a haematite photoanode and Si photocathode to split water at an overall efficiency of 0.91%, with NiFeOx and TiO2/Pt overlayers, respectively.« less
Al-Ashmouny, Khaled M; Chang, Sun-Il; Yoon, Euisik
2012-10-01
We report an analog front-end prototype designed in 0.25 μm CMOS process for hybrid integration into 3-D neural recording microsystems. For scaling towards massive parallel neural recording, the prototype has investigated some critical circuit challenges in power, area, interface, and modularity. We achieved extremely low power consumption of 4 μW/channel, optimized energy efficiency using moderate inversion in low-noise amplifiers (K of 5.98 × 10⁸ or NEF of 2.9), and minimized asynchronous interface (only 2 per 16 channels) for command and data capturing. We also implemented adaptable operations including programmable-gain amplification, power-scalable sampling (up to 50 kS/s/channel), wide configuration range (9-bit) for programmable gain and bandwidth, and 5-bit site selection capability (selecting 16 out of 128 sites). The implemented front-end module has achieved a reduction in noise-energy-area product by a factor of 5-25 times as compared to the state-of-the-art analog front-end approaches reported to date.
Advanced radiator concepts utilizing honeycomb panel heat pipes
NASA Technical Reports Server (NTRS)
Fleischman, G. L.; Peck, S. J.; Tanzer, H. J.
1987-01-01
The feasibility of fabricating and processing moderate temperature range vapor chamber type heat pipes in a low mass honeycomb panel configuration for highly efficient radiator fins for potential use on the space station was investigated. A variety of honeycomb panel facesheet and core-ribbon wick concepts were evaluated within constraints dictated by existing manufacturing technology and equipment. Concepts evaluated include type of material, material and panel thickness, wick type and manufacturability, liquid and vapor communication among honeycomb cells, and liquid flow return from condenser to evaporator facesheet areas. A thin-wall all-welded stainless steel design with methanol as the working fluid was the initial prototype unit. It was found that an aluminum panel could not be fabricated in the same manner as a stainless steel panel due to diffusion bonding and resistance welding considerations. Therefore, a formed and welded design was developed. The prototype consists of ten panels welded together into a large panel 122 by 24 by 0.15 in., with a heat rejection capability of 1000 watts and a fin efficiency of essentially 1.0.
NASA Astrophysics Data System (ADS)
Di Girolamo, Paolo; Summa, Donato; Stelitano, Dario; Cacciani, Marco; Scoccione, Andrea; Behrendt, Andreas; Wulfmeyer, Volker
2016-06-01
Measurements carried out by the Raman lidar system BASIL are reported to demonstrate the capability of this instrument to characterize turbulent processes within the Convective Boundary Layer (CBL). In order to resolve the vertical profiles of turbulent variables, high resolution water vapour and temperature measurements, with a temporal resolution of 10 sec and a vertical resolution of 90 and 210 m, respectively, are considered. Measurements of higher-order moments of the turbulent fluctuations of water vapour mixing ratio and temperature are obtained based on the application of spectral and auto-covariance analyses to the water vapour mixing ratio and temperature time series. The algorithms are applied to a case study (IOP 5, 20 April 2013) from the HD(CP)2 Observational Prototype Experiment (HOPE), held in Central Germany in the spring 2013. The noise errors are demonstrated to be small enough to allow the derivation of up to fourth-order moments for both water vapour mixing ratio and temperature fluctuations with sufficient accuracy.
2016-06-01
and material developers use an online game to crowdsource ideas from online players in order to increase viable synthetic prototypes. In entertainment... games , players often create videos of their game play to share with other players to demonstrate how to complete a segment of a game . This thesis...explores similar self-recorded videos of ESP game play and determines if they provide useful data to capability and material developers that can
Implementation of a microcontroller-based semi-automatic coagulator.
Chan, K; Kirumira, A; Elkateeb, A
2001-01-01
The coagulator is an instrument used in hospitals to detect clot formation as a function of time. Generally, these coagulators are very expensive and therefore not affordable by a doctors' office and small clinics. The objective of this project is to design and implement a low cost semi-automatic coagulator (SAC) prototype. The SAC is capable of assaying up to 12 samples and can perform the following tests: prothrombin time (PT), activated partial thromboplastin time (APTT), and PT/APTT combination. The prototype has been tested successfully.
Lyceum: A Multi-Protocol Digital Library Gateway
NASA Technical Reports Server (NTRS)
Maa, Ming-Hokng; Nelson, Michael L.; Esler, Sandra L.
1997-01-01
Lyceum is a prototype scalable query gateway that provides a logically central interface to multi-protocol and physically distributed, digital libraries of scientific and technical information. Lyceum processes queries to multiple syntactically distinct search engines used by various distributed information servers from a single logically central interface without modification of the remote search engines. A working prototype (http://www.larc.nasa.gov/lyceum/) demonstrates the capabilities, potentials, and advantages of this type of meta-search engine by providing access to over 50 servers covering over 20 disciplines.
Heat storage capability of a rolling cylinder using Glauber's salt
NASA Technical Reports Server (NTRS)
Herrick, C. S.; Zarnoch, K. P.
1980-01-01
The rolling cylinder phase change heat storage concept was developed to the point where a prototype design is completed and a cost analysis is prepared. A series of experimental and analytical tasks are defined to establish the thermal, mechanical, and materials behavior of rolling cylinder devices. These tasks include: analyses of internal and external heat transfer; performance and lifetime testing of the phase change materials; corrosion evaluation; development of a mathematical model; and design of a prototype and associated test equipment.
Modern perspectives on measuring and interpreting seafloor heat flux
Harris, Reid N.; Fisher, A.; Ruppel, C.; Martinez, F.
2008-01-01
There has been a resurgence of interest in marine heat flow in the past 10–15 years, coinciding with fundamental achievements in understanding the Earth's thermal state and quantifying the dynamics and impacts of material and energy fluxes within and between the lithosphere and hydrosphere. At the same time, technical capabilities have dwindled to the point that no U.S. academic institution currently operates a seagoing heat flow capacity.In September 2007, a workshop was convened in Salt Lake City with sponsorship from the U.S. National Science Foundation (NSF) and participation by scientists and engineers from North America, Europe, and Asia. The primary goals of the workshop were to (1) assess high-priority scientific and technical needs and (2) to evaluate options for developing and maintaining essential capabilities in marine heat flow for the U.S. scientific community.
Test of 1D carbon-carbon composite prototype tiles for the SPIDER diagnostic calorimeter
NASA Astrophysics Data System (ADS)
Serianni, G.; Pimazzoni, A.; Canton, A.; Palma, M. Dalla; Delogu, R.; Fasolo, D.; Franchin, L.; Pasqualotto, R.; Tollin, M.
2017-08-01
Additional heating will be provided to the thermonuclear fusion experiment ITER by injection of neutral beams from accelerated negative ions. In the SPIDER test facility, under construction at Consorzio RFX in Padova (Italy), the production of negative ions will be studied and optimised. To this purpose the STRIKE (Short-Time Retractable Instrumented Kalorimeter Experiment) diagnostic will be used to characterise the SPIDER beam during short operation (several seconds) and to verify if the beam meets the ITER requirement regarding the maximum allowed beam non-uniformity (below ±10%). The most important measurements performed by STRIKE are beam uniformity, beamlet divergence and stripping losses. The major components of STRIKE are 16 1D-CFC (Carbon matrix-Carbon Fibre reinforced Composite) tiles, observed at the rear side by a thermal camera. The requirements of the 1D CFC material include a large thermal conductivity along the tile thickness (at least 10 times larger than in the other directions); low specific heat and density; uniform parameters over the tile surface; capability to withstand localised heat loads resulting in steep temperature gradients. So 1D CFC is a very anisotropic and delicate material, not commercially available, and prototypes are being specifically realised. This contribution gives an overview of the tests performed on the CFC prototype tiles, aimed at verifying their thermal behaviour. The spatial uniformity of the parameters and the ratio between the thermal conductivities are assessed by means of a power laser at Consorzio RFX. Dedicated linear and non-linear simulations are carried out to interpret the experiments and to estimate the thermal conductivities; these simulations are described and a comparison of the experimental data with the simulation results is presented.
CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)
NASA Astrophysics Data System (ADS)
Wood, Bradford J.; Yanof, J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kruecker, J.; Bauer, C.; Seip, R.; Kam, A.; Li, K. C. P.
2006-05-01
To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large animals and humans for HIFU-induced ablation and drug delivery. Integrated CT-guided focused ultrasound holds promise for tissue ablation, enhancing local drug delivery, and CT thermometry for monitoring ablation in near real-time.
A portable life support system for use in mines
NASA Technical Reports Server (NTRS)
Zeller, S. S.
1972-01-01
The portable life support system described in this paper represents a potential increase in the probability of survival for miners who are trapped underground by a fire or explosion. The habitability and life support capability of the prototype shelter have proved excellent. Development of survival chamber life support systems for wide use in coal mines is definitely within the capabilities of current technology.
ERIC Educational Resources Information Center
Steinberg, Linda S.; Mislevy, Robert J.; Almond, Russell G.; Baird, Andrew B.; Cahallan, Cara; Dibello, Louis V.; Senturk, Deniz; Yan, Duanli; Chernick, Howard; Kindfield, Ann C. H.
This paper describes the design rationale for a prototype of an innovative assessment product, and the process that led to the design. The goals of the Biomass project were to demonstrate: (1) an assessment product designed to serve two new purposes in the transition from high school to college; and (2) the capability needed to produce this kind…
NASA Technical Reports Server (NTRS)
Cath, Tzahi Y.; Adams, Dean V.; Childress, Amy; Gormly, Sherwin; Flynn, Michael
2005-01-01
Direct osmotic concentration (DOC) has been identified as a high potential technology for recycling of wastewater to drinking water in advanced life support (ALS) systems. As a result the DOC process has been selected for a NASA Rapid Technology Development Team (RTDT) effort. The existing prototype system has been developed to a Technology Readiness Level (TRL) 3. The current project focuses on advancing the development of this technology from TRL 3 to TRL 6 (appropriate for human rated testing). A new prototype of a DOC system is been designed and fabricated that addresses the deficiencies encountered during the testing of the original system and allowing the new prototype to achieve TRL 6. Background information is provided about the technologies investigated and their capabilities, results from preliminary tests, and the milestones plan and activities for the RTDT program intended to develop a second generation prototype of the DOC system.
Prototype development of a Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR)
NASA Technical Reports Server (NTRS)
Kangaslahti, Pekka; Tanner, Alan; Wilson, William; Dinardo, Steve; Lambrigsten, Bjorn
2005-01-01
Weather prediction and hurricane tracking would greatly benefit of a continuous imaging capability of a hemisphere at millimeter wave frequencies. We are developing a synthetic thinned aperture radiometer (STAR) prototype operating from 50 to 56 GHz as a ground-based testbed to demonstrate the technologies needed to do full earth disk atmospheric temperature soundings from Geostationary orbit with very high spatial resolution. The prototype consists of a Y-array of 24 MMIC receivers that are compact units implemented with low noise InP MMIC LNAs, second harmonic I-Q mixers, low power IF amplifiers and include internal digital bias control with serial line communication to enable low cost testing and system integration. Furthermore, this prototype STAR includes independent LO and noise calibration signal phase switching circuitry for each arm of the Y-array to verify the operation and calibration of the system.
A second generation 50 Mbps VLSI level zero processing system prototype
NASA Technical Reports Server (NTRS)
Harris, Jonathan C.; Shi, Jeff; Speciale, Nick; Bennett, Toby
1994-01-01
Level Zero Processing (LZP) generally refers to telemetry data processing functions performed at ground facilities to remove all communication artifacts from instrument data. These functions typically include frame synchronization, error detection and correction, packet reassembly and sorting, playback reversal, merging, time-ordering, overlap deletion, and production of annotated data sets. The Data Systems Technologies Division (DSTD) at Goddard Space Flight Center (GSFC) has been developing high-performance Very Large Scale Integration Level Zero Processing Systems (VLSI LZPS) since 1989. The first VLSI LZPS prototype demonstrated 20 Megabits per second (Mbp's) capability in 1992. With a new generation of high-density Application-specific Integrated Circuits (ASIC) and a Mass Storage System (MSS) based on the High-performance Parallel Peripheral Interface (HiPPI), a second prototype has been built that achieves full 50 Mbp's performance. This paper describes the second generation LZPS prototype based upon VLSI technologies.
Challenges to Military Operations in Support of U.S. Interests. Volume 2: Main Report
2008-12-01
Challenges to Military Operations in Support of U.S. Interests U.S. conventional military capability remains unmatched by any state. As a result, nations...greater importance. PR EF AC E I xiii Preface U.S. conventional military capability remains unmatched by any state. U.S...scope of the study remained robust, presenting the challenge of how to approach the investigation into U.S. capabilities, capability gaps, and
Development of an unmanned maritime system reference architecture
NASA Astrophysics Data System (ADS)
Duarte, Christiane N.; Cramer, Megan A.; Stack, Jason R.
2014-06-01
The concept of operations (CONOPS) for unmanned maritime systems (UMS) continues to envision systems that are multi-mission, re-configurable and capable of acceptable performance over a wide range of environmental and contextual variability. Key enablers for these concepts of operation are an autonomy module which can execute different mission directives and a mission payload consisting of re-configurable sensor or effector suites. This level of modularity in mission payloads enables affordability, flexibility (i.e., more capability with future platforms) and scalability (i.e., force multiplication). The modularity in autonomy facilitates rapid technology integration, prototyping, testing and leveraging of state-of-the-art advances in autonomy research. Capability drivers imply a requirement to maintain an open architecture design for both research and acquisition programs. As the maritime platforms become more stable in their design (e.g. unmanned surface vehicles, unmanned underwater vehicles) future developments are able to focus on more capable sensors and more robust autonomy algorithms. To respond to Fleet needs, given an evolving threat, programs will want to interchange the latest sensor or a new and improved algorithm in a cost effective and efficient manner. In order to make this possible, the programs need a reference architecture that will define for technology providers where their piece fits and how to successfully integrate. With these concerns in mind, the US Navy established the Unmanned Maritime Systems Reference Architecture (UMS-RA) Working Group in August 2011. This group consists of Department of Defense and industry participants working the problem of defining reference architecture for autonomous operations of maritime systems. This paper summarizes its efforts to date.
Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.
2001-03-01
Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for usemore » in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.« less
Prototype operational earthquake prediction system
Spall, Henry
1986-01-01
An objective if the U.S. Earthquake Hazards Reduction Act of 1977 is to introduce into all regions of the country that are subject to large and moderate earthquakes, systems for predicting earthquakes and assessing earthquake risk. In 1985, the USGS developed for the Secretary of the Interior a program for implementation of a prototype operational earthquake prediction system in southern California.
Suited Contingency Ops Food - 2
NASA Technical Reports Server (NTRS)
Glass, J. W.; Leong, M. L.; Douglas, G. L.
2014-01-01
The contingency scenario for an emergency cabin depressurization event may require crewmembers to subsist in a pressurized suit for up to 144 hours. This scenario requires the capability for safe nutrition delivery through a helmet feed port against a 4 psi pressure differential to enable crewmembers to maintain strength and cognition to perform critical tasks. Two nutritional delivery prototypes were developed and analyzed for compatibility with the helmet feed port interface and for operational effectiveness against the pressure differential. The bag-in-bag (BiB) prototype, designed to equalize the suit pressure with the beverage pouch and enable a crewmember to drink normally, delivered water successfully to three different subjects in suits pressurized to 4 psi. The Boa restrainer pouch, designed to provide mechanical leverage to overcome the pressure differential, did not operate sufficiently. Guidelines were developed and compiled for contingency beverages that provide macro-nutritional requirements, a minimum one-year shelf life, and compatibility with the delivery hardware. Evaluation results and food product parameters have the potential to be used to improve future prototype designs and develop complete nutritional beverages for contingency events. These feeding capabilities would have additional use on extended surface mission EVAs, where the current in-suit drinking device may be insufficient.
Li, Zedong; Li, Fei; Xing, Yue; Liu, Zhi; You, Minli; Li, Yingchun; Wen, Ting; Qu, Zhiguo; Ling Li, Xiao; Xu, Feng
2017-12-15
Paper-based microfluidic biosensors have recently attracted increasing attentions in point-of-care testing (POCT) territories benefiting from their affordable, accessible and eco-friendly features, where technologies for fabricating such biosensors are preferred to be equipment free, easy-to-operate and capable of rapid prototyping. In this work, we developed a pen-on-paper (PoP) strategy based on two custom-made pens, i.e., a wax pen and a conductive-ink pen, to fully write paper-based microfluidic biosensors through directly writing both microfluidic channels and electrodes. Particularly, the proposed wax pen is competent to realize one-step fabrication of wax channels on paper, as the melted wax penetrates into paper during writing process without any post-treatments. The practical applications of the fabricated paper-based microfluidic biosensors are demonstrated by both colorimetric detection of Salmonella typhimurium DNA with detection limit of 1nM and electrochemical measurement of glucose with detection limit of 1mM. The developed PoP strategy for making microfluidic biosensors on paper characterized by true simplicity, prominent portability and excellent capability for rapid prototyping shows promising prospect in POCT applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Environmental qualification testing of the prototype pool boiling experiment
NASA Technical Reports Server (NTRS)
Sexton, J. Andrew
1992-01-01
The prototype Pool Boiling Experiment (PBE) flew on the STS-47 mission in September 1992. This report describes the purpose of the experiment and the environmental qualification testing program that was used to prove the integrity of the prototype hardware. Component and box level vibration and thermal cycling tests were performed to give an early level of confidence in the hardware designs. At the system level, vibration, thermal extreme soaks, and thermal vacuum cycling tests were performed to qualify the complete design for the expected shuttle environment. The system level vibration testing included three axis sine sweeps and random inputs. The system level hot and cold soak tests demonstrated the hardware's capability to operate over a wide range of temperatures and gave the project team a wider latitude in determining which shuttle thermal altitudes were compatible with the experiment. The system level thermal vacuum cycling tests demonstrated the hardware's capability to operate in a convection free environment. A unique environmental chamber was designed and fabricated by the PBE team and allowed most of the environmental testing to be performed within the project's laboratory. The completion of the test program gave the project team high confidence in the hardware's ability to function as designed during flight.
A prototype stationary Fourier transform spectrometer for near-infrared absorption spectroscopy.
Li, Jinyang; Lu, Dan-feng; Qi, Zhi-mei
2015-09-01
A prototype stationary Fourier transform spectrometer (FTS) was constructed with a fiber-coupled lithium niobate (LiNbO3) waveguide Mach-Zehnder interferometer (MZI) for the purpose of rapid on-site spectroscopy of biological and chemical measurands. The MZI contains push-pull electrodes for electro-optic modulation, and its interferogram as a plot of intensity against voltage was obtained by scanning the modulating voltage from -60 to +60 V in 50 ms. The power spectrum of input signal was retrieved by Fourier transform processing of the interferogram combined with the wavelength dispersion of half-wave voltage determined for the MZI used. The prototype FTS operates in the single-mode wavelength range from 1200 to 1700 nm and allows for reproducible spectroscopy. A linear concentration dependence of the absorbance at λmax = 1451 nm for water in ethanolic solution was obtained using the prototype FTS. The near-infrared spectroscopy of solid samples was also implemented, and the different spectra obtained with different materials evidenced the chemical recognition capability of the prototype FTS. To make this prototype FTS practically applicable, work on improving its spectral resolution by increasing the maximum optical path length difference is in progress.
Integrated modeling of advanced optical systems
NASA Astrophysics Data System (ADS)
Briggs, Hugh C.; Needels, Laura; Levine, B. Martin
1993-02-01
This poster session paper describes an integrated modeling and analysis capability being developed at JPL under funding provided by the JPL Director's Discretionary Fund and the JPL Control/Structure Interaction Program (CSI). The posters briefly summarize the program capabilities and illustrate them with an example problem. The computer programs developed under this effort will provide an unprecedented capability for integrated modeling and design of high performance optical spacecraft. The engineering disciplines supported include structural dynamics, controls, optics and thermodynamics. Such tools are needed in order to evaluate the end-to-end system performance of spacecraft such as OSI, POINTS, and SMMM. This paper illustrates the proof-of-concept tools that have been developed to establish the technology requirements and demonstrate the new features of integrated modeling and design. The current program also includes implementation of a prototype tool based upon the CAESY environment being developed under the NASA Guidance and Control Research and Technology Computational Controls Program. This prototype will be available late in FY-92. The development plan proposes a major software production effort to fabricate, deliver, support and maintain a national-class tool from FY-93 through FY-95.
Steinmeyer, J; Torzilli, P A; Burton-Wurster, N; Lust, G
1993-01-01
A prototype chamber was used to apply a precise cyclic or static load on articular cartilage explants under sterile conditions. A variable pressure, pneumatic controller was constructed to power the chamber's air cylinder, capable of applying, with a porous load platen, loads of up to 10 MPa at cycles ranging from 0 to 10 Hz. Pig articular cartilage explants were maintained successfully in this chamber for 2 days under cyclic mechanical loading of 0.5 Hz, 0.5 MPa. Explants remained sterile, viable and metabolically active. Cartilage responded to this load with a decreased synthesis of fibronectin and a small but statistically significant elevation in proteoglycan content. Similar but less extensive effects on fibronectin synthesis were observed with the small static load (0.016 MPa) inherent in the design of the chamber.
Integrated System Health Management (ISHM): Systematic Capability Implementation
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Holland, Randy; Schmalzwel, John; Duncavage, Dan
2006-01-01
This paper provides a credible approach for implementation of ISHM capability in any system. The requirements and processes to implement ISHM capability are unique in that a credible capability is initially implemented at a low level, and it evolves to achieve higher levels by incremental augmentation. In contrast, typical capabilities, such as thrust of an engine, are implemented once at full Functional Capability Level (FCL), which is not designed to change during the life of the product. The approach will describe core ingredients (e.g. technologies, architectures, etc.) and when and how ISHM capabilities may be implemented. A specific architecture/taxonomy/ontology will be described, as well as a prototype software environment that supports development of ISHM capability. This paper will address implementation of system-wide ISHM as a core capability, and ISHM for specific subsystems as expansions and evolution, but always focusing on achieving an integrated capability.
Barone, Umberto; Merletti, Roberto
2013-08-01
A compact and portable system for real-time, multichannel, HD-sEMG acquisition is presented. The device is based on a modular, multiboard approach for scalability and to optimize power consumption for battery operating mode. The proposed modular approach allows us to configure the number of sEMG channels from 64 to 424. A plastic-optical-fiber-based 10/100 Ethernet link is implemented on a field-programmable gate array (FPGA)-based board for real-time, safety data transmission toward a personal computer or laptop for data storage and offline analysis. The high-performance A/D conversion stage, based on 24-bit ADC, allows us to automatically serialize the samples and transmits them on a single SPI bus connecting a sequence of up to 14 ADC chips in chain mode. The prototype is configured to work with 64 channels and a sample frequency of 2.441 ksps (derived from 25-MHz clock source), corresponding to a real data throughput of 3 Mbps. The prototype was assembled to demonstrate the available features (e.g., scalability) and evaluate the expected performances. The analog front end board could be dynamically configured to acquire sEMG signals in monopolar or single differential mode by means of FPGA I/O interface. The system can acquire continuously 64 channels for up to 5 h with a lightweight battery pack of 7.5 Vdc/2200 mAh. A PC-based application was also developed, by means of the open source Qt Development Kit from Nokia, for prototype characterization, sEMG measurements, and real-time visualization of 2-D maps.
Holographic techniques for cellular fluorescence microscopy
NASA Astrophysics Data System (ADS)
Kim, Myung K.
2017-04-01
We have constructed a prototype instrument for holographic fluorescence microscopy (HFM) based on self-interference incoherent digital holography (SIDH) and demonstrate novel imaging capabilities such as differential 3D fluorescence microscopy and optical sectioning by compressive sensing.
Multicolor pyrometer for materials processing in space, phase 2
NASA Technical Reports Server (NTRS)
Frish, Michael; Frank, Jonathan; Beerman, Henry
1988-01-01
The program goals were to design, construct, and program a prototype passive imaging pyrometer capable of measuring, as accurately as possible, the temperature distribution across the surface of a moving object suspended in space.
Characteristics and Disparities among Primary Care Practices in the United States.
Levine, David Michael; Linder, Jeffrey A; Landon, Bruce E
2018-04-01
Despite new incentives for US primary care, concerns abound that patient-centered practice capabilities are lagging. Describe the practice structure, patient-centered capabilities, and payment relationships of US primary care practices; identify disparities in practice capabilities. Analysis of the 2015 Medical Organizations Survey (MOS), part of the nationally representative Medical Expenditure Panel Survey (MEPS). Practice-reported information from primary care practices of MEPS respondents who reported receiving primary care and made at least one visit in 2015 to that practice. Surveyed primary care practices (n = 4318; 77% response rate) providing primary care to 7161 individuals, representing 101,159,263 Americans. Practice structure (ownership and personnel); practice capabilities (certification as a patient-centered medical home [PCMH], electronic health record [EHR] use, and x-ray capability); and payment orientation (accountable care organization [ACO] and capitation). Independently owned practices served 55% of patients, hospital-owned practices served 19%, and nonprofit/government/academic-owned served 20%. Solo practices served 25% of patients and practices with 2-10 physicians served 53% of patients. Forty-one percent of patients were served by practices certified as PCMHs. Practices with EHRs cared for 90% of patients and could exchange secure messages with 78% of patients. Practices with in-office x-ray capability cared for 34% of patients. Practices participating in ACOs and capitation served 44% and 46% of patients, respectively. Primary care patients in the South, compared to the rest of the country, had less access to nearly all practice capabilities, including patient care coordination (adjusted difference, 13% [95% CI, 8-18]) and secure EHR messaging (adjusted difference, 6% [95% CI, 1-10]). Uninsured patients were less likely to be served at a practice that used an EHR (adjusted difference, 9% [95% CI, 2-16]). Participants' primary care practices were mostly independently owned, nearly always used EHRs (albeit of varying capability), and frequently participated in innovative payment arrangements for a portion of their patients. Patient practices in the South had fewer capabilities than the rest of the country.
10 CFR 434.504 - Use of the prototype building to determine the energy cost budget.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Alternative § 434.504 Use of the prototype building to determine the energy cost budget. 504.1Determine the... 10 Energy 3 2012-01-01 2012-01-01 false Use of the prototype building to determine the energy cost budget. 434.504 Section 434.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW...
10 CFR 434.504 - Use of the prototype building to determine the energy cost budget.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Alternative § 434.504 Use of the prototype building to determine the energy cost budget. 504.1Determine the... 10 Energy 3 2011-01-01 2011-01-01 false Use of the prototype building to determine the energy cost budget. 434.504 Section 434.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW...
10 CFR 434.504 - Use of the prototype building to determine the energy cost budget.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Alternative § 434.504 Use of the prototype building to determine the energy cost budget. 504.1 Determine the... 10 Energy 3 2014-01-01 2014-01-01 false Use of the prototype building to determine the energy cost budget. 434.504 Section 434.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW...
10 CFR 434.504 - Use of the prototype building to determine the energy cost budget.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Alternative § 434.504 Use of the prototype building to determine the energy cost budget. 504.1Determine the... 10 Energy 3 2013-01-01 2013-01-01 false Use of the prototype building to determine the energy cost budget. 434.504 Section 434.504 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION ENERGY CODE FOR NEW...
46 CFR 160.156-11 - Fabrication of prototype rescue boats and fast rescue boats for approval.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 6 2012-10-01 2012-10-01 false Fabrication of prototype rescue boats and fast rescue boats for approval. 160.156-11 Section 160.156-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Boats and Fast Rescue Boats (SOLAS) § 160.156-11 Fabrication of prototype rescue boats and fast rescue...
46 CFR 160.156-11 - Fabrication of prototype rescue boats and fast rescue boats for approval.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 6 2014-10-01 2014-10-01 false Fabrication of prototype rescue boats and fast rescue boats for approval. 160.156-11 Section 160.156-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Boats and Fast Rescue Boats (SOLAS) § 160.156-11 Fabrication of prototype rescue boats and fast rescue...
46 CFR 160.156-11 - Fabrication of prototype rescue boats and fast rescue boats for approval.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 6 2013-10-01 2013-10-01 false Fabrication of prototype rescue boats and fast rescue boats for approval. 160.156-11 Section 160.156-11 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Boats and Fast Rescue Boats (SOLAS) § 160.156-11 Fabrication of prototype rescue boats and fast rescue...
Prototype Solid State Induction Modulator for SLAC NLC
NASA Astrophysics Data System (ADS)
Cassel, R. L.; DeLamare, J. E.; Nguyen, M. N.; Pappas, G. C.; Cook, E.
2002-08-01
The Next Linear Collider accelerator proposal at SLAC requires a high efficiency, highly reliable, and low cost pulsed power modulator to drive the X band klystrons. The present NLC envisions a solid-state induction modulator design to drive up to 8 klystrons to 500kV for 3muS at 120 PPS with one modulator (>1,000 megawatt pulse, 500kW average). A prototype modulator is presently under construction, which well power 4 each 5045 SLAC klystron to greater than 380 kV for 3muS (>600 megawatt pulse, >300 kW Ave.). The modulator will be capable of driving the 8 each X band klystrons when they become available. The paper covers the design, construction, fabrication and preliminary testing of the prototype modulator.
Study of the dE/dx resolution of a GEM Readout Chamber prototype for the upgrade of the ALICE TPC
NASA Astrophysics Data System (ADS)
Mathis, Andreas
2018-02-01
The ALICE Collaboration is planning a major upgrade of its central barrel detectors to be able to cope with the increased LHC luminosity beyond 2020. For the TPC, this implies a replacement of the currently used gated MWPCs (Multi-Wire Proportional Chamber) by GEM (Gas Electron Multiplier) based readout chambers. In order to prove, that the present particle identification capabilities via measurement of the specific energy loss are retained after the upgrade, a prototype of the ALICE IROC (Inner Readout Chamber) has been evaluated in a test beam campaign at the CERN PS. The dE/dx resolution of the prototype has been proven to be fully compatible with the current MWPCs.
Status of the prototype Pulsed Photonuclear Assessment (PPA) inspection system
NASA Astrophysics Data System (ADS)
Jones, James L.; Blackburn, Brandon W.; Norman, Daren R.; Watson, Scott M.; Haskell, Kevin J.; Johnson, James T.; Hunt, Alan W.; Harmon, Frank; Moss, Calvin
2007-08-01
The Idaho National Laboratory, in collaboration with Idaho State University's Idaho Accelerator Center and the Los Alamos National Laboratory, continues to develop the Pulsed Photonuclear Assessment (PPA) technique for shielded nuclear material detection in large volume configurations, such as cargo containers. In recent years, the Department of Homeland Security has supported the development of a prototype PPA cargo inspection system. This PPA system integrates novel neutron and gamma-ray detectors for nuclear material detection along with a complementary and unique gray scale, density mapping component for significant shield material detection. This paper will present the developmental status of the prototype system, its detection performance using several INL Calibration Pallets, and planned enhancements to further increase its nuclear material detection capability.
NASA Astrophysics Data System (ADS)
Seljak, A.; Cumming, H. S.; Varner, G.; Vallerga, J.; Raffanti, R.; Virta, V.
2018-02-01
Our collaboration works on the development of a large aperture, high resolution, UV single-photon imaging detector, funded through NASA's Strategic Astrophysics Technology (SAT) program. The detector uses a microchannel plate for charge multiplication, and orthogonal cross strip (XS) anodes for charge readout. Our target is to make an advancement in the technology readiness level (TRL), which enables real scale prototypes to be tested for future NASA missions. The baseline detector has an aperture of 50×50 mm and requires 160 low-noise charge-sensitive channels, in order to extrapolate the incoming photon position with a spatial resolution of about 20 μm FWHM. Technologies involving space flight require highly integrated electronic systems operating at very low power. We have designed two ASICs which enable the construction of such readout system. First, a charge sensitive amplifier (CSAv3) ASIC provides an equivalent noise charge (ENC) of around 600 e-, and a baseline gain of 10 mV/fC. The second, a Giga Sample per Second (GSPS) ASIC, called HalfGRAPH, is a 12-bit analog to digital converter. Its architecture is based on waveform sampling capacitor arrays and has about 8 μs of analog storage memory per channel. Both chips encapsulate 16 measurement channels. Using these chips, a small scale prototype readout system has been constructed on a FPGA Mezzanine Board (FMC), equipped with 32 measurement channels for system evaluation. We describe the construction of HalfGRAPH ASIC, detector's readout system concept and obtained results from the prototype system. As part of the space flight qualification, these chips were irradiated with a Cobalt gamma-ray source, to verify functional operation under ionizing radiation exposure.
Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.
Arafat, M Tarik; Lam, Christopher X F; Ekaputra, Andrew K; Wong, Siew Yee; Li, Xu; Gibson, Ian
2011-02-01
The objective of this present study was to improve the functional performance of rapid prototyped scaffolds for bone tissue engineering through biomimetic composite coating. Rapid prototyped poly(ε-caprolactone)/tri-calcium phosphate (PCL/TCP) scaffolds were fabricated using the screw extrusion system (SES). The fabricated PCL/TCP scaffolds were coated with a carbonated hydroxyapatite (CHA)-gelatin composite via biomimetic co-precipitation. The structure of the prepared CHA-gelatin composite coating was studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Compressive mechanical testing revealed that the coating process did not have any detrimental effect on the mechanical properties of the scaffolds. The cell-scaffold interaction was studied by culturing porcine bone marrow stromal cells (BMSCs) on the scaffolds and assessing the proliferation and bone-related gene and protein expression capabilities of the cells. Confocal laser microscopy and SEM images of the cell-scaffold constructs showed a uniformly distributed cell sheet and accumulation of extracellular matrix in the interior of CHA-gelatin composite-coated PCL/TCP scaffolds. The proliferation rate of BMSCs on CHA-gelatin composite-coated PCL/TCP scaffolds was about 2.3 and 1.7 times higher than that on PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds, respectively, by day 10. Furthermore, reverse transcription polymerase chain reaction and Western blot analysis revealed that CHA-gelatin composite-coated PCL/TCP scaffolds stimulate osteogenic differentiation of BMSCs the most, compared with PCL/TCP scaffolds and CHA-coated PCL/TCP scaffolds. These results demonstrate that CHA-gelatin composite-coated rapid prototyped PCL/TCP scaffolds are promising for bone tissue engineering. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Briois, Christelle; Thissen, Roland; Thirkell, Laurent; Aradj, Kenzi; Bouabdellah, Abdel; Boukrara, Amirouche; Carrasco, Nathalie; Chalumeau, Gilles; Chapelon, Olivier; Colin, Fabrice; Coll, Patrice; Cottin, Hervé; Engrand, Cécile; Grand, Noel; Lebreton, Jean-Pierre; Orthous-Daunay, François-Régis; Pennanech, Cyril; Szopa, Cyril; Vuitton, Véronique; Zapf, Pascal; Makarov, Alexander
2016-10-01
For decades of space exploration, mass spectrometry has proven to be a reliable instrumentation for the characterisation of the nature and energy of ionic and neutral, atomic and molecular species in the interplanetary medium and upper planetary atmospheres. It has been used as well to analyse the chemical composition of planetary and small bodies environments. The chemical complexity of these environments calls for the need to develop a new generation of mass spectrometers with significantly increased mass resolving power. The recently developed OrbitrapTM mass analyser at ultra-high resolution shows promising adaptability to space instrumentation, offering improved performances for in situ measurements. In this article, we report on our project named ;Cosmorbitrap; aiming at demonstrating the adaptability of the Orbitrap technology for in situ space exploration. We present the prototype that was developed in the laboratory for demonstration of both technical feasibility and analytical capabilities. A set of samples containing elements with masses ranging from 9 to 208 u has been used to evaluate the performance of the analyser, in terms of mass resolving power (reaching 474,000 at m/z 9) and ability to discriminate between isobaric interferences, accuracy of mass measurement (below 15 ppm) and determination of relative isotopic abundances (below 5%) of various samples. We observe a good agreement between the results obtained with the prototype and those of a commercial instrument. As the background pressure is a key parameter for in situ exploration of atmosphere planetary bodies, we study the effect of background gas on the performance of the Cosmorbitrap prototype, showing an upper limit for N2 in our set-up at 10-8 mbar. The results demonstrate the strong potential to adapt this technology to space exploration.
Consolidating AMC’s Contingency Response Capabilities: A Delphi Study
2015-06-19
Africa in support of Operation UNITED ASSISTANCE, the international response to contain the Ebola epidemic (US Transportation Command, 2014). Though JTF...DO, 2015). The deployment of the 817 CRG to Liberia also underutilized its full capacity as only 79 Airmen and 10 Soldiers of the 140-member JTF-PO...pdf 89 Gonzalez, G. S. (2014, November 13). JTF-PO Leaves Liberia . Retrieved from US Air Force Expeditionary Center: http
Radio Frequency Performance Prediction in the North Sea: Analysis of the U.S.-NL Phase 1 Campaign
2016-09-01
vary much more drastically spatially and temporally. Interoperability in electronic warfare (EW) is a key enabling capability for the U.S. military ...16 18 2 4 6 8 10 12 14 16 18 Without gaseous attenuation W ith g as eo us a tte nu at io n RMS Error (dB) COAMPS HARMONIE 66 6.1 NWP-BASED
SP-100 ground engineering system test site description and progress update
NASA Astrophysics Data System (ADS)
Baxter, William F.; Burchell, Gail P.; Fitzgibbon, Davis G.; Swita, Walter R.
1991-01-01
The SP-100 Ground Engineering System Test Site will provide the facilities for the testing of an SP-100 reactor, which is technically prototypic of the generic design for producing 100 kilowatts of electricity. This effort is part of the program to develop a compact, space-based power system capable of producing several hundred kilowatts of electrical power. The test site is located on the U.S. Department of Energy's Hanford Site near Richland, Washington. The site is minimizing capital equipment costs by utilizing existing facilities and equipment to the maximum extent possible. The test cell is located in a decommissioned reactor containment building, and the secondary sodium cooling loop will use equipment from the Fast Flux Test Facility plant which has never been put into service. Modifications to the facility and special equipment are needed to accommodate the testing of the SP-100 reactor. Definitive design of the Ground Engineering System Test Site facility modifications and systems is in progress. The design of the test facility and the testing equipment will comply with the regulations and specifications of the U.S. Department of Energy and the State of Washington.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellissima, Stefano; González, Miguel A.; Bafile, Ubaldo
Hydrogen bonding plays an essential role on intermolecular forces, and consequently on the thermodynamics of materials defined by this elusive bonding character. It determines the property of a vital liquid as water as well as many processes crucial for life. The longstanding controversy on the nature of the hydrogen bond (HB) can be settled by looking at the effect of a vanishing HB interaction on the microscopic properties of a given hydrogen-bonded fluid. This task suits the capabilities of computer simulations techniques, which allow to easily switch off HB interactions. We then use molecular dynamics to study the microscopic propertiesmore » of methanol, a prototypical HB liquid. Fundamental aspects of the dynamics of methanol at room temperature were contextualised only very recently and its rich dynamics was found to have striking analogies with that of water. The lower temperature (200 K) considered in the present study led us to observe that the molecular centre-of-mass dynamics is dominated by four modes. Most importantly, the computational ability to switch on and off hydrogen bonds permitted us to identify which, among these modes, have a pure HB-origin. This clarifies the role of hydrogen bonds in liquid dynamics, disclosing new research opportunities and unexplored interpretation schemes.« less
Development of a prototype sensor to detect plastic contamination in seed cotton at the gin
USDA-ARS?s Scientific Manuscript database
US cotton is considered to have some of the lowest levels of contamination in the world. That reputation is expected by foreign and domestic mills. Despite this reputation, U.S. spinners have recently experienced some serious contamination issues with US cotton. Of particular concern are plastic con...
Developing the Systems Engineering Experience Accelerator (SEEA) Prototype and Roadmap
2013-12-31
information to be automatically presented without comment. 2.2.2 NEW FEATURES AND CAPABILITIES A number of new multiplayer capabilities were...2.4.1 OVERVIEW The EA game engine has two components: the runtime engine and the tools suite. The tools suite includes the Experience Development...the Learner. Figure 6: Experience Accelerator Logical Block Diagram The EARTE is a multiuser architecture for internet gaming . It has light
Developing Systems Engineering Experience Accelerator (SEEA) Prototype and Roadmap -- Increment 4
2017-08-08
of an acquisition program, two categories of new capabilities were added to the UAV experience. Based on a student project at Stevens Institute of...program for a new unmanned aerial vehicle (UAV) system. It was based on the concept of the learners assuming this role shortly after preliminary...University curriculum for systems engineers. First, several new capabilities have been added. These include a trade study for additional technical
High brightness electrodeless Z-Pinch EUV source for mask inspection tools
NASA Astrophysics Data System (ADS)
Horne, Stephen F.; Partlow, Matthew J.; Gustafson, Deborah S.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.
2012-03-01
Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinchTM light source since 1995. The source is currently being used for metrology, mask inspection, and resist development. Energetiq's higher brightness source has been selected as the source for pre-production actinic mask inspection tools. This improved source enables the mask inspection tool suppliers to build prototype tools with capabilities of defect detection and review down to 16nm design rules. In this presentation we will present new source technology being developed at Energetiq to address the critical source brightness issue. The new technology will be shown to be capable of delivering brightness levels sufficient to meet the HVM requirements of AIMS and ABI and potentially API tools. The basis of the source technology is to use the stable pinch of the electrodeless light source and have a brightness of up to 100W/mm(carat)2-sr. We will explain the source design concepts, discuss the expected performance and present the modeling results for the new design.
High-efficiency piezoelectric micro harvester for collecting low-frequency mechanical energy.
Li, Xin; Song, Jinhui; Feng, Shuanglong; Xie, Xiong; Li, Zhenhu; Wang, Liang; Pu, Yayun; Soh, Ai Kah; Shen, Jun; Lu, Wenqiang; Liu, Shuangyi
2016-12-02
A single-layer zinc oxide (ZnO) nanorod array-based micro energy harvester was designed and integrated with a piezoelectric metacapacitor. The device presents outstanding low-frequency (1-10 Hz) mechanical energy harvesting capabilities. When compared with conventional pristine ZnO nanostructured piezoelectric harvesters or generators, both open-circuit potential and short-circuit current are significantly enhanced (up to 3.1 V and 124 nA cm -2 ) for a single mechanical knock (∼34 kPa). Higher electromechanical conversion efficiency (1.3 pC/Pa) is also observed. The results indicate that the integration of the piezoelectric metacapacitor is a crucial factor for improving the low-frequency energy harvesting performance. A double piezoelectric-driven mechanism is proposed to explain current higher output power, in which the metacapacitor plays the multiple roles of charge pumping, storing and transferring. An as-fabricated prototype device for lighting an LED demonstrates high power transference capability, with over 95% transference efficiency to the external load.
EVA Suit R and D for Performance Optimization
NASA Technical Reports Server (NTRS)
Cowley, Matthew S.; Harvill, Lauren; Benson, Elizabeth; Rajulu, Sudhakar
2014-01-01
Designing a planetary suit is very complex and often requires difficult trade-offs between performance, cost, mass, and system complexity. To verify that new suit designs meet requirements, full prototypes must be built and tested with human subjects. However, numerous design iterations will occur before the hardware meets those requirements. Traditional draw-prototype-test paradigms for R&D are prohibitively expensive with today's shrinking Government budgets. Personnel at NASA are developing modern simulation techniques which focus on human-centric designs by creating virtual prototype simulations and fully adjustable physical prototypes of suit hardware. During the R&D design phase, these easily modifiable representations of an EVA suit's hard components will allow designers to think creatively and exhaust design possibilities before they build and test working prototypes with human subjects. It allows scientists to comprehensively benchmark current suit capabilities and limitations for existing suit sizes and sizes that do not exist. This is extremely advantageous and enables comprehensive design down-selections to be made early in the design process, enables the use of human performance as design criteria, and enables designs to target specific populations
NASA Technical Reports Server (NTRS)
Lucord, Steve A.; Gully, Sylvain
2009-01-01
The purpose of the PROTOTYPE INTEROPERABILITY DOCUMENT is to document the design and interfaces for the service providers and consumers of a Mission Operations prototype between JSC-OTF and DLR-GSOC. The primary goal is to test the interoperability sections of the CCSDS Spacecraft Monitor & Control (SM&C) Mission Operations (MO) specifications between both control centers. An additional goal is to provide feedback to the Spacecraft Monitor and Control (SM&C) working group through the Review Item Disposition (RID) process. This Prototype is considered a proof of concept and should increase the knowledge base of the CCSDS SM&C Mission Operations standards. No operational capabilities will be provided. The CCSDS Mission Operations (MO) initiative was previously called Spacecraft Monitor and Control (SM&C). The specifications have been renamed to better reflect the scope and overall objectives. The working group retains the name Spacecraft Monitor and Control working group and is under the Mission Operations and Information Services Area (MOIMS) of CCSDS. This document will refer to the specifications as SM&C Mission Operations, Mission Operations or just MO.
Simulator for concurrent processing data flow architectures
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.; Stoughton, John W.; Mielke, Roland R.
1992-01-01
A software simulator capability of simulating execution of an algorithm graph on a given system under the Algorithm to Architecture Mapping Model (ATAMM) rules is presented. ATAMM is capable of modeling the execution of large-grained algorithms on distributed data flow architectures. Investigating the behavior and determining the performance of an ATAMM based system requires the aid of software tools. The ATAMM Simulator presented is capable of determining the performance of a system without having to build a hardware prototype. Case studies are performed on four algorithms to demonstrate the capabilities of the ATAMM Simulator. Simulated results are shown to be comparable to the experimental results of the Advanced Development Model System.
Low cost lab-on-a-chip prototyping with a consumer grade 3D printer.
Comina, Germán; Suska, Anke; Filippini, Daniel
2014-08-21
Versatile prototyping of 3D printed lab-on-a-chip devices, supporting different forms of sample delivery, transport, functionalization and readout, is demonstrated with a consumer grade printer, which centralizes all critical fabrication tasks. Devices cost 0.57US$ and are demonstrated in chemical sensing and micromixing examples, which exploit established principles from reference technologies.
Ghana watershed prototype products
,
2007-01-01
A number of satellite data sets are available through the U.S. Geological Survey (USGS) for monitoring land surface features. Representative data sets include Landsat, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and Shuttle Radar Topography Mission (SRTM). The Ghana Watershed Prototype Products cover an area within southern Ghana, Africa, and include examples of the aforementioned data sets along with sample SRTM derivative data sets.
A novel 4-DOF surgical instrument with modular joints and 6-Axis Force sensing capability.
Li, Kun; Pan, Bo; Zhang, Fuhai; Gao, Wenpeng; Fu, Yili; Wang, Shuguo
2017-03-01
It is difficult for surgeons to exert appropriate forces during delicate operations due to lack of force feedback in robot-assisted minimally invasive surgery (RMIS). A 4-DOF surgical grasper with a modular wrist and 6-axis force sensing capability is developed. A grasper integrated with a miniature force and torque sensor based on the Stewart platform is designed, and a cable tension decomposition mechanism is designed to alleviate influence of the cable tension to the sensor. A modularized wrist consisting of four joint units is designed to facilitate integration of the sensor and eliminate coupled motion of the wrist. Sensing ranges of this instrument are ±10 N and ±160 N mm, and resolutions are 1.2% in radial directions, 5% in axial direction, and 4.2% in rotational directions. An ex vivo experiment shows that this instrument prototype successfully measures the interaction forces. A 4-DOF surgical instrument with modular joints and 6-axis force sensing capability is developed. This instrument can be used for force feedback in RMIS. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Climate Change and International Competition: the US Army in the Arctic Environment
2015-05-21
capabilities are evaluated within the domains of the current US doctrinal definition of Doctrine , Organization, Training, Materiel, Leadership and Education...environment. 15. SUBJECT TERMS US Army Cold Weather Doctrine ; US Army Arctic Operational Capability; ULO; Mission Command; Arctic Council; UNCLOS...capabilities are evaluated within the domains of the current US doctrinal definition of Doctrine , Organization, Training, Materiel, Leadership and
Desktop Nanofabrication with Massively Multiplexed Beam Pen Lithography
Liao, Xing; Brown, Keith A.; Schmucker, Abrin L.; Liu, Guoliang; He, Shu; Shim, Wooyoung; Mirkin, Chad A.
2013-01-01
The development of a lithographic method that can rapidly define nanoscale features across centimeter-scale surfaces has been a long standing goal of the nanotechnology community. If such a ‘desktop nanofab’ could be implemented in a low-cost format, it would bring the possibility of point-of-use nanofabrication for rapidly prototyping diverse functional structures. Here we report the development of a new tool that is capable of writing arbitrary patterns composed of diffraction-unlimited features over square centimeter areas that are in registry with existing patterns and nanostructures. Importantly, this instrument is based on components that are inexpensive compared to the combination of state-of-the-art nanofabrication tools that approach its capabilities. This tool can be used to prototype functional electronic devices in a mask-free fashion in addition to providing a unique platform for performing high throughput nano- to macroscale photochemistry with relevance to biology and medicine. PMID:23868336
A knowledge-based system for prototypical reasoning
NASA Astrophysics Data System (ADS)
Lieto, Antonio; Minieri, Andrea; Piana, Alberto; Radicioni, Daniele P.
2015-04-01
In this work we present a knowledge-based system equipped with a hybrid, cognitively inspired architecture for the representation of conceptual information. The proposed system aims at extending the classical representational and reasoning capabilities of the ontology-based frameworks towards the realm of the prototype theory. It is based on a hybrid knowledge base, composed of a classical symbolic component (grounded on a formal ontology) with a typicality based one (grounded on the conceptual spaces framework). The resulting system attempts to reconcile the heterogeneous approach to the concepts in Cognitive Science with the dual process theories of reasoning and rationality. The system has been experimentally assessed in a conceptual categorisation task where common sense linguistic descriptions were given in input, and the corresponding target concepts had to be identified. The results show that the proposed solution substantially extends the representational and reasoning 'conceptual' capabilities of standard ontology-based systems.
A high performance scientific cloud computing environment for materials simulations
NASA Astrophysics Data System (ADS)
Jorissen, K.; Vila, F. D.; Rehr, J. J.
2012-09-01
We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditional HPC resources for materials science or quantum chemistry applications.
Flow measurements in a water tunnel using a holocinematographic velocimeter
NASA Technical Reports Server (NTRS)
Weinstein, Leonard M.; Beeler, George B.
1987-01-01
Dual-view holographic movies were used to examine complex flows with full three-space and time resolution. This approach, which tracks the movement of small tracer particles in water, is termed holocinematographic velocimetry (HCV). A small prototype of a new water tunnel was used to demonstrate proof-of-concept for the HCV. After utilizing a conventional flow visualization apparatus with a laser light sheet to illuminate tracer particles to evaluate flow quality of the prototype tunnel, a simplified version of the HCV was employed to demonstrate the capabilities of the approach. Results indicate that a full-scale version of the water tunnel and a high performance version of the HCV should be able to check theoretical and numerical modeling of complex flows and examine the mechanisms operative in turbulent and vortex flow control concepts, providing an entirely unique instrument capable, for the first time, of simultaneous three-space and time measurements in turbulent flow.
Desktop nanofabrication with massively multiplexed beam pen lithography.
Liao, Xing; Brown, Keith A; Schmucker, Abrin L; Liu, Guoliang; He, Shu; Shim, Wooyoung; Mirkin, Chad A
2013-01-01
The development of a lithographic method that can rapidly define nanoscale features across centimetre-scale surfaces has been a long-standing goal for the nanotechnology community. If such a 'desktop nanofab' could be implemented in a low-cost format, it would bring the possibility of point-of-use nanofabrication for rapidly prototyping diverse functional structures. Here we report the development of a new tool that is capable of writing arbitrary patterns composed of diffraction-unlimited features over square centimetre areas that are in registry with existing patterns and nanostructures. Importantly, this instrument is based on components that are inexpensive compared with the combination of state-of-the-art nanofabrication tools that approach its capabilities. This tool can be used to prototype functional electronic devices in a mask-free fashion in addition to providing a unique platform for performing high-throughput nano- to macroscale photochemistry with relevance to biology and medicine.
Measurements of the Optical Performance of Prototype TES Bolometers for SAFARI
NASA Astrophysics Data System (ADS)
Audley, M. D.; de Lange, G.; Ranjan, M.; Gao, J.-R.; Khosropanah, P.; Ridder, M. L.; Mauskopf, P. D.; Morozov, D.; Doherty, S.; Trappe, N.; Withington, S.
2014-09-01
We have measured the optical response of prototype detectors for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI's three bolometer arrays, coupled with a Fourier transform spectrometer, will provide images of a 2'×2' field of view with spectral information over the wavelength range 34-210 μm. Each horn-coupled bolometer consists of a transition edge sensor (TES), with a transition temperature close to 100 mK, and a thin-film Ta absorber on a thermally-isolated silicon nitride membrane. SAFARI requires extremely sensitive detectors ( NEP˜2×10-19 W/), with correspondingly low saturation powers (˜5 fW), to take advantage of SPICA's cooled optics. To meet the challenge of testing such sensitive detectors we have constructed an ultra-low background test facility based on a cryogen-free high-capacity dilution refrigerator, paying careful attention to stray-light exclusion, shielding, and vibration isolation. For optical measurements the system contains internal cold (3-30 K) and hot (˜300 K) black-body calibration sources, as well as a light pipe for external illumination. We discuss our measurements of high optical efficiency in prototype SAFARI detectors and describe recent improvements to the test facility that will enable us to test the full SAFARI focal-plane arrays.
Earthquake early Warning ShakeAlert system: West coast wide production prototype
Kohler, Monica D.; Cochran, Elizabeth S.; Given, Douglas; Guiwits, Stephen; Neuhauser, Doug; Hensen, Ivan; Hartog, Renate; Bodin, Paul; Kress, Victor; Thompson, Stephen; Felizardo, Claude; Brody, Jeff; Bhadha, Rayo; Schwarz, Stan
2017-01-01
Earthquake early warning (EEW) is an application of seismological science that can give people, as well as mechanical and electrical systems, up to tens of seconds to take protective actions before peak earthquake shaking arrives at a location. Since 2006, the U.S. Geological Survey has been working in collaboration with several partners to develop EEW for the United States. The goal is to create and operate an EEW system, called ShakeAlert, for the highest risk areas of the United States, starting with the West Coast states of California, Oregon, and Washington. In early 2016, the Production Prototype v.1.0 was established for California; then, in early 2017, v.1.2 was established for the West Coast, with earthquake notifications being distributed to a group of beta users in California, Oregon, and Washington. The new ShakeAlert Production Prototype was an outgrowth from an earlier demonstration EEW system that began sending test notifications to selected users in California in January 2012. ShakeAlert leverages the considerable physical, technical, and organizational earthquake monitoring infrastructure of the Advanced National Seismic System, a nationwide federation of cooperating seismic networks. When fully implemented, the ShakeAlert system may reduce damage and injury caused by large earthquakes, improve the nation’s resilience, and speed recovery.
Planning for Action: Campaign Concepts and Tools
2012-08-01
142 10-15. Stability Mechanisms – Army .................................... 143 10-16. Stability Mechanisms – Joint...defeat mechanisms, which focus 143 the destructive and coercive capabilities of the force to provide security and public order and safety for...Matthew B. Ridgway. GEN Ridgway successfully led the 82d Airborne Division and XVIII Airborne Corps in the ETO during World War II and Eighth (US
SiPM application for a detector for UHE neutrinos tested at Sphinx station
NASA Astrophysics Data System (ADS)
Iori, M.; Atakisi, I. O.; Chiodi, G.; Denizli, H.; Ferrarotto, F.; Kaya, M.; Yilmaz, A.; Recchia, L.; Russ, J.
2014-04-01
We present the preliminary test results of the prototype detector, working at Sphinx Observatory Center, Jungfraujoch (~3800 m a.s.l.) HFSJG - Switzerland. This prototype detector is designed to measure large zenith angle showers produced by high energy neutrino interactions in the Earth crust. This station provides us an opportunity to understand if the prototype detector works safely (or not) under hard environmental conditions (the air temperature changes between -25 °C and -5 °C). The detector prototype is using silicon photomultiplier (SiPM) produced by SensL and DRS4 chip as read-out part. Measurements at different temperature at fixed bias voltage (~29.5 V) were performed to reconstruct tracks by Time Of Flight.
F-8 oblique wing structural feasibility study
NASA Technical Reports Server (NTRS)
Koltko, E.; Katz, A.; Bell, M. A.; Smith, W. D.; Lauridia, R.; Overstreet, C. T.; Klapprott, C.; Orr, T. F.; Jobe, C. L.; Wyatt, F. G.
1975-01-01
The feasibility of fitting a rotating oblique wing on an F-8 aircraft to produce a full scale manned prototype capable of operating in the transonic and supersonic speed range was investigated. The strength, aeroelasticity, and fatigue life of such a prototype are analyzed. Concepts are developed for a new wing, a pivot, a skewing mechanism, control systems that operate through the pivot, and a wing support assembly that attaches in the F-8 wing cavity. The modification of the two-place NTF-8A aircraft to the oblique wing configuration is discussed.
NASA Technical Reports Server (NTRS)
Hreha, M. A.; Baprawski, J. G.; Chamaneria, C. N.; Ferry, S. J.; Keithly, G.; Kuklin, H. S.; Lockyear, W. H.; Schifter, L. H.; Swanberg, N. E.; Swift, G. W.
1978-01-01
A 12-channel synchronous phase lock video receiver consisting of an outdoor downconverter unit and an indoor demodulator unit was developed to provide both low noise performance and low cost in production quantities of 1000 units. The prototype receiver can be mass produced at a cost under $1540 without sacrificing system performance. The receiver also has the capability of selecting any of the twelve assigned satellite broadcast channels in the frequency range 11.7 to 12.2 GHz.
Performance of the PHENIX NCC Prototype
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, E.; Kistenev, E.; Li, Z.
2006-10-27
The first prototype of NCC Si-W electromagnetic calorimeter have been built and tested at U-70 accelerator (IHEP, Protvino). Tests have been performed for 10 GeV electrons and 70 GeV protons.This paper describes design and construction of the prototype and tests results. Final prototype energy resolution is about 11% at 90% CL.
Microhole Drilling Tractor Technology Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Western Well Tool
2007-07-09
In an effort to increase the U.S. energy reserves and lower costs for finding and retrieving oil, the USDOE created a solicitation to encourage industry to focus on means to operate in small diameter well-Microhole. Partially in response to this solicitation and because Western Well Tool's (WWT) corporate objective to develop small diameter coiled tubing drilling tractor, WWT responded to and was awarded a contract to design, prototype, shop test, and field demonstrate a Microhole Drilling Tractor (MDT). The benefit to the oil industry and the US consumer from the project is that with the MDT's ability to facilitate Coiledmore » Tubing drilled wells to be 1000-3000 feet longer horizontally, US brown fields can be more efficiently exploited resulting in fewer wells, less environmental impact, greater and faster oil recovery, and lower drilling costs. Shortly after award of the contract, WWT was approached by a major oil company that strongly indicated that the specified size of a tractor of 3.0 inches diameter was inappropriate and that immediate applications for a 3.38-inch diameter tractor would substantially increase the usefulness of the tool to the oil industry. Based on this along with an understanding with the oil company to use the tractor in multiple field applications, WWT applied for and was granted a no-cost change-of-scope contract amendment to design, manufacture, assemble, shop test and field demonstrate a prototype a 3.38 inch diameter MDT. Utilizing existing WWT tractor technology and conforming to an industry developed specification for the tool, the Microhole Drilling Tractor was designed. Specific features of the MDT that increase it usefulness are: (1) Operation on differential pressure of the drilling fluid, (2) On-Off Capability, (3) Patented unique gripping elements (4) High strength and flexibility, (5) Compatibility to existing Coiled Tubing drilling equipment and operations. The ability to power the MDT with drilling fluid results in a highly efficient tool that both delivers high level of force for the pressure available and inherently increases downhole reliability because parts are less subject to contamination. The On-Off feature is essential to drilling to allow the Driller to turn off the tractor and pull back while circulating in cleanout runs that keep the hole clean of drilling debris. The gripping elements have wide contact surfaces to the formation to allow high loads without damage to the formation. As part of the development materials evaluations were conducted to verify compatibility with anticipated drilling and well bore fluids. Experiments demonstrated that the materials of the tractor are essentially undamaged by exposure to typical drilling fluids used for horizontal coiled tubing drilling. The design for the MDT was completed, qualified vendors identified, parts procured, received, inspected, and a prototype was assembled. As part of the assembly process, WWT prepared Manufacturing instructions (MI) that detail the assembly process and identify quality assurance inspection points. Subsequent to assembly, functional tests were performed. Functional tests consisted of placing the MDT on jack stands, connecting a high pressure source to the tractor, and verifying On-Off functions, walking motion, and operation over a range of pressures. Next, the Shop Demonstration Test was performed. An existing WWT test fixture was modified to accommodate operation of the 3.38 inch diameter MDT. The fixture simulated the tension applied to a tractor while walking (pulling) inside 4.0 inch diameter pipe. The MDT demonstrated: (1) On-off function, (2) Pulling forces proportional to available differential pressure up to 4000 lbs, (3) Walking speeds to 1100 ft/hour. A field Demonstration of the MDT was arranged with a major oil company operating in Alaska. A demonstration well with a Measured Depth of approximately 15,000 ft was selected; however because of problems with the well drilling was stopped before the planned MDT usage. Alternatively, functional and operational tests were run with the MDT inside 4.5 inch tubing at depths of 800-950 ft. The MDT successfully demonstrated On-Off capability, pulled with up to 1465 lbs force, and verified its capability to transmit torque though it from the Orienter. Forces generated by the tractor were limited due to insufficient differential pressure because of the unloaded downhole motor, which is not typical during drilling conditions. Additionally, the Coefficient of Friction between the MDT grippers and the tubing was much less than the anticipated COF of the sandstone formation. Despite these minor limitations, to summarize the MDT operated as expected. Minor modifications to the MDT are being incorporated to improve gripping capability of the tractor. Additional demonstration wells are being arranged to expand on the project's goals of delivering a fully operational utilitarian tool for use throughout the US to improve reserves.« less
An AI approach for scheduling space-station payloads at Kennedy Space Center
NASA Technical Reports Server (NTRS)
Castillo, D.; Ihrie, D.; Mcdaniel, M.; Tilley, R.
1987-01-01
The Payload Processing for Space-Station Operations (PHITS) is a prototype modeling tool capable of addressing many Space Station related concerns. The system's object oriented design approach coupled with a powerful user interface provide the user with capabilities to easily define and model many applications. PHITS differs from many artificial intelligence based systems in that it couples scheduling and goal-directed simulation to ensure that on-orbit requirement dates are satisfied.
An NLRA Transducer for Dual Use Bone Conduction Audio and Haptic Communication. Summary Report
2016-12-30
VIBRANT COMPOSITES INC. 1 A16-019 Phase 1 Summary Report Vibrant Composites Inc. December 30, 2016 I. ABSTRACT A combined transducer capable of bone ...transducer core capable of both precise haptic communication and high fidelity bone conduction audio. The transducer design leverages Micro-Multilayer...head-mounted system. In this Phase I SBIR, Vibrant Composites has delivered functional dual-mode bone conduction and vibrotactile transducer prototypes
Rapid Prototyping: State of the Art Review
2003-10-23
Steel H13 Tool Steel CP Ti, Ti-6Al-4V Titanium Tungsten Copper Aluminum Nickel...The company’s LENS 750 and LENS 850 machines (both $440,000 to $640,000) are capable of producing parts in 16 stainless steel , H13 tool steel ...machining. 20 The Arcam EBM S12 model sells for $500,000 and is capable of processing two materials. One is H13 tool steel , while the other
DOT National Transportation Integrated Search
1976-08-01
A prototype driver performance measurement and analysis system (DPMAS) has been developed for the National Highway Traffic Safety Administration (NHTSA). This system includes a completely instrumented 1974 Chevrolet Impala capable of digitally record...
Evaluation of a New Remote Handling Design for High Throughput Annular Centrifugal Contactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
David H. Meikrantz; Troy G. Garn; Jack D. Law
2009-09-01
Advanced designs of nuclear fuel recycling plants are expected to include more ambitious goals for aqueous based separations including; higher separations efficiency, high-level waste minimization, and a greater focus on continuous processes to minimize cost and footprint. Therefore, Annular Centrifugal Contactors (ACCs) are destined to play a more important role for such future processing schemes. Previous efforts defined and characterized the performance of commercial 5 cm and 12.5 cm single-stage ACCs in a “cold” environment. The next logical step, the design and evaluation of remote capable pilot scale ACCs in a “hot” or radioactive environment was reported earlier. This reportmore » includes the development of remote designs for ACCs that can process the large throughput rates needed in future nuclear fuel recycling plants. Novel designs were developed for the remote interconnection of contactor units, clean-in-place and drain connections, and a new solids removal collection chamber. A three stage, 12.5 cm diameter rotor module has been constructed and evaluated for operational function and remote handling in highly radioactive environments. This design is scalable to commercial CINC ACC models from V-05 to V-20 with total throughput rates ranging from 20 to 650 liters per minute. The V-05R three stage prototype was manufactured by the commercial vendor for ACCs in the U.S., CINC mfg. It employs three standard V-05 clean-in-place (CIP) units modified for remote service and replacement via new methods of connection for solution inlets, outlets, drain and CIP. Hydraulic testing and functional checks were successfully conducted and then the prototype was evaluated for remote handling and maintenance suitability. Removal and replacement of the center position V-05R ACC unit in the three stage prototype was demonstrated using an overhead rail mounted PaR manipulator. This evaluation confirmed the efficacy of this innovative design for interconnecting and cleaning individual stages while retaining the benefits of commercially reliable ACC equipment for remote applications in the nuclear industry. Minor modifications and suggestions for improved manual remote servicing by the remote handling specialists were provided but successful removal and replacement was demonstrated in the first prototype.« less
The Development of the Spanish Fireball Network Using a New All-Sky CCD System
NASA Astrophysics Data System (ADS)
Trigo-Rodríguez, J. M.; Castro-Tirado, A. J.; Llorca, J.; Fabregat, J.; Martínez, V. J.; Reglero, V.; Jelínek, M.; Kubánek, P.; Mateo, T.; Postigo, A. De Ugarte
2004-12-01
We have developed an all-sky charge coupled devices (CCD) automatic system for detecting meteors and fireballs that will be operative in four stations in Spain during 2005. The cameras were developed following the BOOTES-1 prototype installed at the El Arenosillo Observatory in 2002, which is based on a CCD detector of 4096 × 4096 pixels with a fish-eye lens that provides an all-sky image with enough resolution to make accurate astrometric measurements. Since late 2004, a couple of cameras at two of the four stations operate for 30 s in alternate exposures, allowing 100% time coverage. The stellar limiting magnitude of the images is +10 in the zenith, and +8 below ~ 65° of zenithal angle. As a result, the images provide enough comparison stars to make astrometric measurements of faint meteors and fireballs with an accuracy of ~ 2°arcminutes. Using this prototype, four automatic all-sky CCD stations have been developed, two in Andalusia and two in the Valencian Community, to start full operation of the Spanish Fireball Network. In addition to all-sky coverage, we are developing a fireball spectroscopy program using medium field lenses with additional CCD cameras. Here we present the first images obtained from the El Arenosillo and La Mayora stations in Andalusia during their first months of activity. The detection of the Jan 27, 2003 superbolide of ± 17 ± 1 absolute magnitude that overflew Algeria and Morocco is an example of the detection capability of our prototype.
Microtube strip heat exchanger
NASA Astrophysics Data System (ADS)
Doty, F. D.
1990-12-01
Doty Scientific (DSI) believes their microtube-strip heat exchanger will contribute significantly to the following: (1) the closed Brayton cycles being pursued at MIT, NASA, and elsewhere; (2) reverse Brayton cycle cryocoolers, currently being investigated by NASA for space missions, being applied to MRI superconducting magnets; and (3) high-efficiency cryogenic gas separation schemes for CO2 removal from exhaust stacks. The goal of this current study is to show the potential for substantial progress in high-effectiveness, low-cost, gas-to-gas heat exchangers for diverse applications at temperatures from below 100 K to above 1000 K. To date, the highest effectiveness measured is about 98 percent and relative pressure drops below 0.1 percent with a specific conductance of about 45 W/kgK are reported. During the pre-award period DSI built and tested a 3-module heat exchanger bank using 103-tube microtube strip (MTS) modules. To add to their analytical capabilities, DSI has acquired computational fluid dynamics (CFD) software. This report describes the pre-award work and the status of the ten tasks of the current project, which are: analyze flow distribution and thermal stresses within individual modules; design a heat exchanger bank of ten modules with 400 microtube per module; obtain production quality tubestrip die and AISI 304 tubestrips; obtain production quality microtubing; construct revised MTS heat exchanger; construct dies and fixtures for prototype heat exchanger; construct 100 MTS modules; assemble 8 to 10 prototype MTS heat exchangers; test prototype MTS heat exchanger; and verify test through independent means.
Development of a vibration isolation prototype system for microgravity space experiments
NASA Technical Reports Server (NTRS)
Logsdon, Kirk A.; Grodsinsky, Carlos M.; Brown, Gerald V.
1990-01-01
The presence of small levels of low-frequency accelerations on the space shuttle orbiters has degraded the microgravity environment for the science community. Growing concern about this microgravity environment has generated interest in systems that can isolate microgravity science experiments from vibrations. This interest has resulted primarily in studies of isolation systems with active methods of compensation. The development of a magnetically suspended, six-degree-of-freedom active vibration isolation prototype system capable of providing the needed compensation to the orbital environment is presented. A design for the magnetic actuators is described, and the control law for the prototype system that gives a nonintrusive inertial isolation response to the system is also described. Relative and inertial sensors are used to provide an inertial reference for isolating the payload.
Design and first plasma measurements of the ITER-ECE prototype radiometer.
Austin, M E; Brookman, M W; Rowan, W L; Danani, S; Bryerton, E W; Dougherty, P
2016-11-01
On ITER, second harmonic optically thick electron cyclotron emission (ECE) in the range of 220-340 GHz will supply the electron temperature (T e ). To investigate the requirements and capabilities prescribed for the ITER system, a prototype radiometer covering this frequency range has been developed by Virginia Diodes, Inc. The first plasma measurements with this instrument have been carried out on the DIII-D tokamak, with lab bench tests and measurements of third through fifth harmonic ECE from high T e plasmas. At DIII-D the instrument shares the transmission line of the Michelson interferometer and can simultaneously acquire data. Comparison of the ECE radiation temperature from the absolutely calibrated Michelson and the prototype receiver shows that the ITER radiometer provides accurate measurements of the millimeter radiation across the instrument band.
Use of a prototype pulse oximeter for time series analysis of heart rate variability
NASA Astrophysics Data System (ADS)
González, Erika; López, Jehú; Hautefeuille, Mathieu; Velázquez, Víctor; Del Moral, Jésica
2015-05-01
This work presents the development of a low cost pulse oximeter prototype consisting of pulsed red and infrared commercial LEDs and a broad spectral photodetector used to register time series of heart rate and oxygen saturation of blood. This platform, besides providing these values, like any other pulse oximeter, processes the signals to compute a power spectrum analysis of the patient heart rate variability in real time and, additionally, the device allows access to all raw and analyzed data if databases construction is required or another kind of further analysis is desired. Since the prototype is capable of acquiring data for long periods of time, it is suitable for collecting data in real life activities, enabling the development of future wearable applications.
SIMS prototype system 4: Design data brochure
NASA Technical Reports Server (NTRS)
1978-01-01
A pre-package prototype unit having domestic hot water and room solar heating capability that uses air as the collector fluid is described. This system is designed to be used with a small single-family dwelling where a roof mounted collector array is not feasible. The prototype unit is an assemble containing 203 square feet of effective collector surface with 113 cubic feet of rock storage. The design of structure and storage is modular, which permits expansion and reduction of the collector array and storage bed in 68 square feet and 37 cubic feet increments respectively. The system is designed to be transportable. This permitted assemble and certification testing in one area and installation in another area without tear down and reassemble. Design, installation, operation, performance and maintenance of this system are described.
Practical Techniques for Language Design and Prototyping
2005-01-01
Practical Techniques for Language Design and Prototyping Mark-Oliver Stehr1 and Carolyn L. Talcott2 1 University of Illinois at Urbana-Champaign...cs.stanford.edu Abstract. Global computing involves the interplay of a vast variety of languages , but practially useful foundations for language ...framework, namely rewriting logic, that allows us to express (1) and (2) and, in addition, language aspects such as concurrency and non-determinism. We
Fusion of real-time simulation, sensing, and geo-informatics in assessing tsunami impact
NASA Astrophysics Data System (ADS)
Koshimura, S.; Inoue, T.; Hino, R.; Ohta, Y.; Kobayashi, H.; Musa, A.; Murashima, Y.; Gokon, H.
2015-12-01
Bringing together state-of-the-art high-performance computing, remote sensing and spatial information sciences, we establish a method of real-time tsunami inundation forecasting, damage estimation and mapping to enhance disaster response. Right after a major (near field) earthquake is triggered, we perform a real-time tsunami inundation forecasting with use of high-performance computing platform (Koshimura et al., 2014). Using Tohoku University's vector supercomputer, we accomplished "10-10-10 challenge", to complete tsunami source determination in 10 minutes, tsunami inundation modeling in 10 minutes with 10 m grid resolution. Given the maximum flow depth distribution, we perform quantitative estimation of exposed population using census data and mobile phone data, and the numbers of potential death and damaged structures by applying tsunami fragility curve. After the potential tsunami-affected areas are estimated, the analysis gets focused and moves on to the "detection" phase using remote sensing. Recent advances of remote sensing technologies expand capabilities of detecting spatial extent of tsunami affected area and structural damage. Especially, a semi-automated method to estimate building damage in tsunami affected areas is developed using pre- and post-event high-resolution SAR (Synthetic Aperture Radar) data. The method is verified through the case studies in the 2011 Tohoku and other potential tsunami scenarios, and the prototype system development is now underway in Kochi prefecture, one of at-risk coastal city against Nankai trough earthquake. In the trial operation, we verify the capability of the method as a new tsunami early warning and response system for stakeholders and responders.
All-sky brightness monitoring of light pollution with astronomical methods.
Rabaza, O; Galadí-Enríquez, D; Estrella, A Espín; Dols, F Aznar
2010-06-01
This paper describes a mobile prototype and a protocol to measure light pollution based on astronomical methods. The prototype takes three all-sky images using BVR filters of the Johnson-Cousins astronomical photometric system. The stars are then identified in the images of the Hipparcos and General Catalogue of Photometric Data II astronomical catalogues, and are used as calibration sources. This method permits the measurement of night-sky brightness and facilitates an estimate of which fraction is due to the light up-scattered in the atmosphere by a wide variety of man-made sources. This is achieved by our software, which compares the sky background flux to that of many stars of known brightness. The reduced weight and dimensions of the prototype allow the user to make measurements from virtually any location. This prototype is capable of measuring the sky distribution of light pollution, and also provides an accurate estimate of the background flux at each photometric band. (c) 2010 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Paulien, Daniel K.; Thibodeau, Yvonne
This document is a description of a prototype Library/Student Center designed to serve approximately 10,000 students at a comprehensive campus. Prepared by the firm Paulien & Associates, Inc., of Denver, Colorado, this prototype will serve a design basis for facilities at all Pima Community College (PCC) campuses. The prototype will not be…
19 CFR 10.91 - Prototypes used exclusively for product development and testing.
Code of Federal Regulations, 2014 CFR
2014-04-01
... prototypes or any part(s) of the prototypes may be sold as scrap, waste, or for recycling, as prescribed in..., or for recycling. This includes a prototype or any part thereof that is incorporated into another product, as scrap, waste, or recycled material. If sold as scrap, waste, or for recycling, applicable duty...
19 CFR 10.91 - Prototypes used exclusively for product development and testing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... prototypes or any part(s) of the prototypes may be sold as scrap, waste, or for recycling, as prescribed in..., or for recycling. This includes a prototype or any part thereof that is incorporated into another product, as scrap, waste, or recycled material. If sold as scrap, waste, or for recycling, applicable duty...
19 CFR 10.91 - Prototypes used exclusively for product development and testing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... prototypes or any part(s) of the prototypes may be sold as scrap, waste, or for recycling, as prescribed in..., or for recycling. This includes a prototype or any part thereof that is incorporated into another product, as scrap, waste, or recycled material. If sold as scrap, waste, or for recycling, applicable duty...
19 CFR 10.91 - Prototypes used exclusively for product development and testing.
Code of Federal Regulations, 2012 CFR
2012-04-01
... prototypes or any part(s) of the prototypes may be sold as scrap, waste, or for recycling, as prescribed in..., or for recycling. This includes a prototype or any part thereof that is incorporated into another product, as scrap, waste, or recycled material. If sold as scrap, waste, or for recycling, applicable duty...
19 CFR 10.91 - Prototypes used exclusively for product development and testing.
Code of Federal Regulations, 2013 CFR
2013-04-01
... prototypes or any part(s) of the prototypes may be sold as scrap, waste, or for recycling, as prescribed in..., or for recycling. This includes a prototype or any part thereof that is incorporated into another product, as scrap, waste, or recycled material. If sold as scrap, waste, or for recycling, applicable duty...
A planar nano-positioner driven by shear piezoelectric actuators
NASA Astrophysics Data System (ADS)
Dong, W.; Li, H.; Du, Z.
2016-08-01
A planar nano-positioner driven by the shear piezoelectric actuators is proposed in this paper based on inertial sliding theory. The performance of the nano-positioner actuated by different driving signals is analyzed and discussed, e.g. the resolution and the average velocity which depend on the frequency, the amplitude and the wave form of the driving curves. Based on the proposed design, a prototype system of the nano-positioner is developed by using a capacitive sensor as the measurement device. The experiment results show that the proposed nano-positioner is capable of outputting two-dimensional motions within an area of 10 mm × 10 mm at a maximum speed of 0.25 mm/s. The corresponding resolution can be as small as 21 nm. The methodology outlined in this paper can be employed and extended to shear piezoelectric actuators involved in high precision positioning systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, Mitchell T.
Although the accident signatures from each unit at the Fukushima Daiichi Nuclear Power Station (NPS) [Daiichi] differ, much is not known about the end-state of core materials within these units. Some of this uncertainty can be attributed to a lack of information related to cooling system operation and cooling water injection. There is also uncertainty in our understanding of phenomena affecting: a) in-vessel core damage progression during severe accidents in boiling water reactors (BWRs), and b) accident progression after vessel failure (ex-vessel progression) for BWRs and Pressurized Water Reactors (PWRs). These uncertainties arise due to limited full scale prototypic data.more » Similar to what occurred after the accident at Three Mile Island Unit 2, these Daiichi units offer the international community a means to reduce such uncertainties by obtaining prototypic data from multiple full-scale BWR severe accidents. Information obtained from Daiichi is required to inform Decontamination and Decommissioning activities, improving the ability of the Tokyo Electric Power Company Holdings, Incorporated (TEPCO Holdings) to characterize potential hazards and to ensure the safety of workers involved with cleanup activities. This document, which has been updated to include FY2017 information, summarizes results from U.S. efforts to use information obtained by TEPCO Holdings to enhance the safety of existing and future nuclear power plant designs. This effort, which was initiated in 2014 by the Reactor Safety Technologies Pathway of the Department of Energy Office of Nuclear Energy Light Water Reactor (LWR) Sustainability Program, consists of a group of U.S. experts in LWR safety and plant operations that have identified examination needs and are evaluating TEPCO Holdings information from Daiichi that address these needs. Each year, annual reports include examples demonstrating that significant safety insights are being obtained in the areas of component performance, fission product release and transport, debris end-state location, and combustible gas generation and transport. In addition to reducing uncertainties related to severe accident modeling progression, these insights are being used to update guidance for severe accident prevention, mitigation, and emergency planning. Furthermore, reduced uncertainties in modeling the events at Daiichi will improve the realism of reactor safety evaluations and inform future D&D activities by improving the capability for characterizing potential hazards to workers involved with cleanup activities. Highlights in this FY2017 report include new insights with respect to the forces required to produce the observed Daiichi Unit 1 (1F1) shield plug endstate, the observed leakage from 1F1 components, and the amount of combustible gas generation required to produce the observed explosions in Daiichi Units 3 and 4 (1F3 and 1F4). This report contains an appendix with a list of examination needs that was updated after U.S. experts reviewed recently obtained information from examinations at Daiichi. Additional details for higher priority, near-term, examination activities are also provided. This report also includes an appendix with a description of an updated website that has been reformatted to better assist U.S. experts by providing information in an archived retrievable location, as well as an appendix summarizing U.S. Forensics activities to host the TMI-2 Knowledge Transfer and Relevance to Fukushima Meeting that was held in Idaho Falls, ID, on October 10-14, 2016.« less
A U.S. Biodefense Strategy Primer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poulin, D
2009-05-11
The anthrax mailings that followed the attacks of September 11, 2001 highlighted the need for a comprehensive national strategy to prevent, prepare for, respond to, and mitigate the effects of biological attacks. The goal of U.S. biodefense strategy is to reduce the likelihood of a future biological event, improve overall U.S. public health security, and minimize the economic and social disruption of a biological incident. Presidential communications, federal legislation, and executive agency planning documents provide the foundation for this strategy. Central to current U.S. biodefense strategy is the 2004 Homeland Security Presidential Directive (HSPD) 10, Biodefense for the 21st Century,more » which states that ''the United States will use all means necessary to prevent, protect against, and mitigate biological weapons attacks perpetrated against our homeland and our global interests.'' HSPD-10 also sets forth four pillars of U.S. biodefense: {sm_bullet} Threat awareness includes timely, accurate, and relevant intelligence, threat assessment, and the anticipation of future threats. {sm_bullet} Prevention and protection involve continuing and expanding efforts to limit access to agents, technologies, and knowledge to certain groups and countries as well as protecting critical infrastructure from the effects of biological attacks. {sm_bullet} Surveillance and detection provide early warning or recognition of biological attacks to permit a timely response and mitigation of consequences as well as attribution. {sm_bullet} Response and recovery include pre-attack planning and preparedness, capabilities to treat casualties, risk communications, physical control measures, medical countermeasures, and decontamination capabilities.« less
Development of a Nutritional Delivery System to Feed Crew in a Pressurized Suit
NASA Technical Reports Server (NTRS)
Glass, J. W.; Leonig, M. L.; Douglas, G. L.
2014-01-01
The contingency scenario for an emergency cabin depressurization event may require crewmembers to subsist in a pressurized suit for up to 144 hours. This scenario requires the capability for safe nutrition delivery through a helmet feed port against a 4 psi pressure differential to enable crewmembers to maintain strength and cognition to perform critical tasks. Two nutritional delivery prototypes were developed and analyzed for compatibility with the helmet feed port interface and for operational effectiveness against the pressure differential. The bag-in-bag (BiB) prototype, designed to equalize the suit pressure with the beverage pouch and enable a crewmember to drink normally, delivered water successfully to three different subjects in suits pressurized to 4 psi. The Boa restrainer pouch, designed to provide mechanical leverage to overcome the pressure differential, did not operate sufficiently. Guidelines were developed and compiled for contingency beverages that provide macro-nutritional requirements, a minimum one-year shelf life, and compatibility with the delivery hardware. Evaluation results and food product parameters have the potential to be used to improve future prototype designs and develop complete nutritional beverages for contingency events. These feeding capabilities would have additional use on extended surface mission EVAs, where the current in-suit drinking device may be insufficient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elder, J.C.; Littlefield, L.G.; Tillery, M.I.
1978-06-01
A preliminary design of a prototype particulate stack sampler (PPSS) has been prepared, and development of several components is under way. The objective of this Environmental Protection Agency (EPA)-sponsored program is to develop and demonstrate a prototype sampler with capabilities similar to EPA Method 5 apparatus but without some of the more troublesome aspects. Features of the new design include higher sampling flow; display (on demand) of all variables and periodic calculation of percent isokinetic, sample volume, and stack velocity; automatic control of probe and filter heaters; stainless steel surfaces in contact with the sample stream; single-point particle size separationmore » in the probe nozzle; null-probe capability in the nozzle; and lower weight in the components of the sampling train. Design considerations will limit use of the PPSS to stack gas temperatures under approximately 300/sup 0/C, which will exclude sampling some high-temperature stacks such as incinerators. Although need for filter weighing has not been eliminated in the new design, introduction of a variable-slit virtual impactor nozzle may eliminate the need for mass analysis of particles washed from the probe. Component development has shown some promise for continuous humidity measurement by an in-line wet-bulb, dry-bulb psychrometer.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Erik
In this successful SBIR Phase II effort, HJ Science & Technology, Inc. has designed and built a novel portable instrument capable of performing automated aqueous organochloride (chlorinated solvent) speciation analysis for environmental monitoring at DoE sites. Our technique employs performing organochloride conjugation, labeling the conjugate with an efficient fluorophore, and performing on-chip capillary electrophoresis separation with laser induced fluorescence detection. The key component of the portable instrument is a novel microfluidic chip capable of complete “end-to-end” automation of sample preparation, conjugation, labeling, and μCE separation and detection. In addition, the Phase II prototype includes key supporting instrumentation such as themore » optical module, pneumatic manifold, electronics, software, etc. As such, we have achieved all of the following 4 Phase II technical objectives: 1) Further refine and optimize the “on-chip” automation of the organochloride conjugation and labeling protocol, 2) Further improve the microfluidic chip fabrication process and the pneumatic manifold design in order to address issues related to performance consistency, product yield, performance reliability, and user friendliness, 3) Design and build the supporting components of the Phase II prototype including optical module, electronics, and software, and 4) Assemble the Phase II prototype hardware.« less
NASA Astrophysics Data System (ADS)
Edwin, L.; Mazzoleni, A.; Gemmer, T.; Ferguson, S.
2017-03-01
Planetary surface exploration technology over the past few years has seen significant advancements on multiple fronts. Robotic exploration platforms are becoming more sophisticated and capable of embarking on more challenging missions. More unconventional designs, particularly transforming architectures that have multiple modes of locomotion, are being studied. This work explores the capabilities of one such novel transforming rover called the Transforming Roving-Rolling Explorer (TRREx). Biologically inspired by the armadillo and the golden-wheel spider, the TRREx has two modes of locomotion: it can traverse on six wheels like a conventional rover on benign terrain, but can transform into a sphere when necessary to negotiate steep rugged slopes. The ability to self-propel in the spherical configuration, even in the absence of a negative gradient, increases the TRREx's versatility and its concept value. This paper describes construction and testing of a prototype cylindrical TRREx that demonstrates that "actuated rolling" can be achieved, and also presents a dynamic model of this prototype version of the TRREx that can be used to investigate the feasibility and value of such self-propelled locomotion. Finally, we present results that validate our dynamic model by comparing results from computer simulations made using the dynamic model to experimental results acquired from test runs using the prototype.
Liu, X; Gorsevski, P V; Yacobucci, M M; Onasch, C M
2016-06-01
Planning of shale gas infrastructure and drilling sites for hydraulic fracturing has important spatial implications. The evaluation of conflicting and competing objectives requires an explicit consideration of multiple criteria as they have important environmental and economic implications. This study presents a web-based multicriteria spatial decision support system (SDSS) prototype with a flexible and user-friendly interface that could provide educational or decision-making capabilities with respect to hydraulic fracturing site selection in eastern Ohio. One of the main features of this SDSS is to emphasize potential trade-offs between important factors of environmental and economic ramifications from hydraulic fracturing activities using a weighted linear combination (WLC) method. In the prototype, the GIS-enabled analytical components allow spontaneous visualization of available alternatives on maps which provide value-added features for decision support processes and derivation of final decision maps. The SDSS prototype also facilitates nonexpert participation capabilities using a mapping module, decision-making tool, group decision module, and social media sharing tools. The logical flow of successively presented forms and standardized criteria maps is used to generate visualization of trade-off scenarios and alternative solutions tailored to individual user's preferences that are graphed for subsequent decision-making.
A prototype Crew Medical Restraint System (CMRS) for Space Station Freedom
NASA Technical Reports Server (NTRS)
Johnston, S. L.; Eichstadt, F. T.; Billica, R. D.
1992-01-01
The Crew Medical Restrain System (CMRS) is a prototype system designed and developed for use as a universally deployable medical restraint/workstation on Space Station Freedom (SSF), the Shuttle Transportation System (STS), and the Assured Crew Rescue Vehicle (ACRV) for support of an ill or injured crewmember requiring stabilization and transportation to Earth. The CMRS will support all medical capabilities of the Health Maintenance Facility (HMF) by providing a restraint/interface system for all equipment (advance life support packs, defibrillator, ventilator, portable oxygen supply, IV pump, transport monitor, transport aspirator, and intervenous fluids delivery system) and personnel (patient and crew medical officers). It must be functional within the STS, ACRV, and all SSF habitable volumes. The CMRS will allow for medical capabilities within CPR, ACLS and ATLS standards of care. This must all be accomplished for a worst case transport time scenario of 24 hours from SSF to a definitive medical care facility on Earth. A presentation of the above design prototype with its subsequent one year SSF/HMF and STS/ACRV high fidelity mock-up ground based simulation testing will be given. Also, parabolic flight and underwater Weightless Test Facility evaluations will be demonstrated for various medical contingencies. The final design configuration to date will be discussed with future space program impact considerations.
Experience with the President's Science Advisory Committee, Its Panels, and Other Modes of Advice
NASA Astrophysics Data System (ADS)
Garwin, Richard
2012-03-01
When Dwight Eisenhower became President in January 1953, the United States had just tested November 1, 1952 its 11 megaton prototype of a hydrogen bomb, and Eisenhower sought enduring peace and economy by basing the U.S. military strategy on nuclear weaponry and a downsizing of the military forces. The detonation by the Soviet Union of a 400-kt fusion-containing device in August 1953 enhanced concern about U.S. vulnerability, and in early 1954 the unexpectedly large yield of the BRAVO test elevated fears for the actual survival of societies against the nuclear threat. Eisenhower initially sought a world moratorium on nuclear tests, but was unable to win over his Administration and met with an obscure Scientific Advisory Committee of the Office of Defense Mobilization (SAC-ODM) on March 27, 1954 for a mutual exploration of what science and technology might bring to national security. The resulting 42-man (!) Technological Capabilities Panel (TCP) had a remarkable impact on the President himself and the direction of the country's strategic missile and intelligence activities and structure, as well as a new emphasis on federal support of university research. Rooted in MIT Summer Studies, the TCP reported on March 17, 1955 on the problems of surprise attack, the overall U.S. offensive capability, and, especially, on its Part V, ``Intelligence: Our First Defense Against Surprise.'' That panel, chaired by Edwin Land, inventor of polarizing sheet and instant photography, originated the U-2 and OXCART (SR-71) strategic reconnaissance aircraft and the CORONA film-return imaging satellites. The President's Science Advisory Committee (PSAC) was created in the White House in 1957 from the SAC-ODM and had major impact throughout the 1960s until its termination by President Richard Nixon in 1973. The presentation traces its story and that of some of its panels from personal experience of the author and his colleagues.
Rapid prototyping of soil moisture estimates using the NASA Land Information System
NASA Astrophysics Data System (ADS)
Anantharaj, V.; Mostovoy, G.; Li, B.; Peters-Lidard, C.; Houser, P.; Moorhead, R.; Kumar, S.
2007-12-01
The Land Information System (LIS), developed at the NASA Goddard Space Flight Center, is a functional Land Data Assimilation System (LDAS) that incorporates a suite of land models in an interoperable computational framework. LIS has been integrated into a computational Rapid Prototyping Capabilities (RPC) infrastructure. LIS consists of a core, a number of community land models, data servers, and visualization systems - integrated in a high-performance computing environment. The land surface models (LSM) in LIS incorporate surface and atmospheric parameters of temperature, snow/water, vegetation, albedo, soil conditions, topography, and radiation. Many of these parameters are available from in-situ observations, numerical model analysis, and from NASA, NOAA, and other remote sensing satellite platforms at various spatial and temporal resolutions. The computational resources, available to LIS via the RPC infrastructure, support e- Science experiments involving the global modeling of land-atmosphere studies at 1km spatial resolutions as well as regional studies at finer resolutions. The Noah Land Surface Model, available with-in the LIS is being used to rapidly prototype soil moisture estimates in order to evaluate the viability of other science applications for decision making purposes. For example, LIS has been used to further extend the utility of the USDA Soil Climate Analysis Network of in-situ soil moisture observations. In addition, LIS also supports data assimilation capabilities that are used to assimilate remotely sensed soil moisture retrievals from the AMSR-E instrument onboard the Aqua satellite. The rapid prototyping of soil moisture estimates using LIS and their applications will be illustrated during the presentation.
The Measurement of Aerosol Optical Properties using Continuous Wave Cavity Ring-Down Techniques
NASA Technical Reports Server (NTRS)
Strawa, Anthony W.; Castaneda, Rene; Owano, Thomas; Baer, Douglas S.; Paldus, Barbara A.; Gore, Warren J. (Technical Monitor)
2002-01-01
Large uncertainties in the effects that aerosols have on climate require improved in situ measurements of extinction coefficient and single-scattering albedo. This paper describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5 M/m). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.
The Measurement of Aerosol Optical Properties Using Continuous Wave Cavity Ring-Down Techniques
NASA Technical Reports Server (NTRS)
Strawa, A. W.; Owano, T.; Castaneda, R.; Baer, D. S.; Paldus, B. A.; Gore, Warren J. (Technical Monitor)
2002-01-01
Large uncertainties in the effects that aerosols have on climate require improved in-situ measurements of extinction coefficient and single-scattering albedo. This abstract describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two parameters, one can obtain the single-scattering albedo and absorption coefficient, both important aerosol properties. The use of two wavelengths also allows us to obtain a quantitative idea of the size of the aerosol through the Angstrom exponent. Minimum sensitivity of the prototype instrument is 1.5 x 10(exp -6)/m (1.5/Mm). Validation of the measurement of extinction coefficient has been accomplished by comparing the measurement of calibration spheres with Mie calculations. This instrument and its successors have potential to help reduce uncertainty currently associated with aerosol optical properties and their spatial and temporal variation. Possible applications include studies of visibility, climate forcing by aerosol, and the validation of aerosol retrieval schemes from satellite data.
Branavan, Manoharanehru; Mackay, Ruth E; Craw, Pascal; Naveenathayalan, Angel; Ahern, Jeremy C; Sivanesan, Tulasi; Hudson, Chris; Stead, Thomas; Kremer, Jessica; Garg, Neha; Baker, Mark; Sadiq, Syed T; Balachandran, Wamadeva
2016-08-01
This paper presents the design of a modular point of care test platform that integrates a proprietary sample collection device directly with a microfluidic cartridge. Cell lysis, within the cartridge, is conducted using a chemical method and nucleic acid purification is done on an activated cellulose membrane. The microfluidic device incorporates passive mixing of the lysis-binding buffers and sample using a serpentine channel. Results have shown extraction efficiencies for this new membrane of 69% and 57% compared to the commercial Qiagen extraction method of 85% and 59.4% for 0.1ng/µL and 100ng/µL salmon sperm DNA respectively spiked in phosphate buffered solution. Extraction experiments using the serpentine passive mixer cartridges incorporating lysis and nucleic acid purification showed extraction efficiency around 80% of the commercial Qiagen kit. Isothermal amplification was conducted using thermophillic helicase dependant amplification and recombinase polymerase amplification. A low cost benchtop real-time isothermal amplification platform has been developed capable of running six amplifications simultaneously. Results show that the platform is capable of detecting 1.32×10(6) of sample DNA through thermophillic helicase dependant amplification and 1×10(5) copy numbers Chlamydia trachomatis genomic DNA within 10min through recombinase polymerase nucleic acid amplification tests. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Spatially referenced crash data system for application to commercial motor vehicle crashes.
DOT National Transportation Integrated Search
2003-05-01
The Maryland Spatial Analysis of Crashes (MSAC) project involves the design of a : prototype of a geographic information system (GIS) for the State of Maryland that has : the capability of providing online crash information and statistical informatio...
Coral Reef Early Warning System (CREWS) RPC Experiment
NASA Technical Reports Server (NTRS)
Estep, Leland; Spruce, Joseph P.; Hall, Callie
2007-01-01
This viewgraph document reviews the background, objectives, methodology, validation, and present status of the Coral Reef Early Warning System (CREWS) Rapid Prototyping Capability (RPC) experiment. The potential NASA contribution to CREWS Decision Support Tool (DST) centers on remotely sensed imagery products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Twogood, R.E.; Brase, J.M.; Chambers, D.H.
1996-01-19
The RAR/SAR is a high-priority radar system for the joint US/UK Program. Based on previous experiment results and coordination with the UK, specifications needed for future radar experiments were identified as follows: dual polarimetric (HH and VV) with medium to high resolution in SAR mode. Secondary airborne installation requirements included; high power (circa 10kw) and SLIER capability to emulate Tupelev-134 type system; initially x-band but easily extendible to other frequencies. In FY96 we intended to enhance the radar system`s capabilities by providing a second polarization (VV), spotlight imaging mode, extended frequency of operation to include S- band, increase power, andmore » interface to an existing infrared sensor. Short term objectives are: continue to evaluate and characterize the radar system; upgrade navigation and real-time processing capability to refine motion compensation; upgrade to dual polarimetry (add VV); and develop a ``spotlight`` mode capability. Accomplishments this reporting period: design specifications for the SAR system polarimetric upgrade are complete. The upgrade is ready to begin the procurement cycle when funds become available. System characterization is one of the highest priority tasks for the SAR. Although the radar is dedicated for our use, Hughes is waiting for contract funding before allowing us access to the hardware« less
Hennessy, Michael; Bleakley, Amy; Ellithorpe, Morgan
2018-03-01
The reasoned action approach is one of the most successful behavioral theories in the history of social psychology. This study outlines the theoretical principles of reasoned action and considers when it is appropriate to augment it with a new variable. To demonstrate, we use survey data collected from a 4 to 17 year old U.S. adolescents to test how the 'prototype' variables fit into reasoned action approach. Through confirmatory factor analysis, we find that the prototype measures are normative pressure measures and when treated as a separate theoretical construct, prototype identity is not completely mediated by the proximal predictors of behavioral intention. We discuss the assumptions of the two theories and finally consider the distinction between augmenting a specific theory versus combining measures derived from different theoretical perspectives.
NASA Astrophysics Data System (ADS)
Toll, D.; Friedl, L.; Entin, J.; Engman, E.
2006-12-01
The NASA Water Management Program addresses concerns and decision making related to water availability, water forecast and water quality. The goal of the Water Management Program Element is to encourage water management organizations to use NASA Earth science data, models products, technology and other capabilities in their decision support tools (DSTs) for problem solving. The goal of the NASA Rapid Prototyping Capability (RPC) is to speed the evaluation of these NASA products and technologies to improve current and future DSTs by reducing the time to access, configure, and assess the effectiveness of NASA products and technologies. The NASA Water Management Program Element partners with Federal agencies, academia, private firms, and may include international organizations. Currently, the NASA Water Management Program oversees eight application projects. However, water management is a very broad descriptor of a much larger number of activities that are carried out to insure safe and plentiful water supply for humans, industry and agriculture, promote environmental stewardship, and mitigate disaster such as floods and droughts. The goal of this presentation is to summarize how the RPC may further enhance the effectiveness of using NASA products for water management applications.
NASA Astrophysics Data System (ADS)
Crutcher, Richard I.; Jones, R. W.; Moore, Michael R.; Smith, S. F.; Tolley, Alan L.; Rochelle, Robert W.
1997-02-01
A prototype 'smart' repeater that provides interoperability capabilities for radio communication systems in multi-agency and multi-user scenarios is being developed by the Oak Ridge National Laboratory. The smart repeater functions as a deployable communications platform that can be dynamically reconfigured to cross-link the radios of participating federal, state, and local government agencies. This interconnection capability improves the coordination and execution of multi-agency operations, including coordinated law enforcement activities and general emergency or disaster response scenarios. The repeater provides multiple channels of operation in the 30-50, 118-136, 138-174, and 403-512 MHz land mobile communications and aircraft bands while providing the ability to cross-connect among multiple frequencies, bands, modulation types, and encryption formats. Additionally, two telephone interconnects provide links to the fixed and cellular telephone networks. The 800- and 900-MHz bands are not supported by the prototype, but the modular design of the system accommodates future retrofits to extend frequency capabilities with minimal impact to the system. Configuration of the repeater is through a portable personal computer with a Windows-based graphical interface control screen that provides dynamic reconfiguration of network interconnections and formats.
Testing of the Geoscience Laser Altimeter System (GLAS) Prototype Loop Heat Pipe
NASA Technical Reports Server (NTRS)
Douglas, Donya; Ku, Jentung; Kaya, Tarik
1998-01-01
This paper describes the testing of the prototype loop heat pipe (LHP) for the Geoscience Laser Altimeter System (GLAS). The primary objective of the test program was to verify the loop's heat transport and temperature control capabilities under conditions pertinent to GLAS applications. Specifically, the LHP had to demonstrate a heat transport capability of 100 W, with the operating temperature maintained within +/-2K while the condenser sink was subjected to a temperature change between 273K and 283K. Test results showed that this loop heat pipe was more than capable of transporting the required heat load and that the operating temperature could be maintained within +/-2K. However, this particular integrated evaporator-compensation chamber design resulted in an exchange of energy between the two that affected the overall operation of the system. One effect was the high temperature the LHP was required to reach before nucleation would begin due to inability to control liquid distribution during ground testing. Another effect was that the loop had a low power start-up limitation of approximately 25 W. These Issues may be a concern for other applications, although it is not expected that they will cause problems for GLAS under micro-gravity conditions.
Development of Torsional and Linear Piezoelectrically Driven Motors
NASA Technical Reports Server (NTRS)
Duong, Khanh; Newton, David; Garcia, Ephrahim
1996-01-01
The development of rotary and linear inchworm-motors using piezoelectric actuators is presented. The motors' design has the advantage of a macro and micro stepper motor with high load and speed. The torsional design is capable of fast angular positioning with micro level accuracy. Additionally, the rotary motor, as designed, can be used as a clutch/brake mechanism. Constructed prototype motors of both types along with their characteristics are presented. The torsional motor consists of a torsional section that provides angular displacement and torque, and two alternating clamping sections which provide the holding force. The motor relies on the principal piezoelectric coupling coefficient (d33) with no torsional elements, increasing its torque capability. The linear motor consists of a longitudinal vibrator that provides displacement and load, and two alternating clamping sections which provide the holding force. This design eliminates bending moment, tension and shear applied to the actuator elements, increase its load capability and life. Innovative flexure designs have been introduced for both motor types. Critical issues that affect the design and performance of the motors are explored and discussed. Experiments are performed demonstrating the motor prototypes based on the aforementioned design considerations.
NASA Astrophysics Data System (ADS)
Udell, C.; Selker, J. S.
2017-12-01
The increasing availability and functionality of Open-Source software and hardware along with 3D printing, low-cost electronics, and proliferation of open-access resources for learning rapid prototyping are contributing to fundamental transformations and new technologies in environmental sensing. These tools invite reevaluation of time-tested methodologies and devices toward more efficient, reusable, and inexpensive alternatives. Building upon Open-Source design facilitates community engagement and invites a Do-It-Together (DIT) collaborative framework for research where solutions to complex problems may be crowd-sourced. However, barriers persist that prevent researchers from taking advantage of the capabilities afforded by open-source software, hardware, and rapid prototyping. Some of these include: requisite technical skillsets, knowledge of equipment capabilities, identifying inexpensive sources for materials, money, space, and time. A university MAKER space staffed by engineering students to assist researchers is one proposed solution to overcome many of these obstacles. This presentation investigates the unique capabilities the USDA-funded Openly Published Environmental Sensing (OPEnS) Lab affords researchers, within Oregon State and internationally, and the unique functions these types of initiatives support at the intersection of MAKER spaces, Open-Source academic research, and open-access dissemination.
Development of a liquid xenon time projection chamber for the XENON dark matter search
NASA Astrophysics Data System (ADS)
Ni, Kaixuan
This thesis describes the research conducted for the XENON dark matter direct detection experiment. The tiny energy and small cross-section, from the interaction of dark matter particle on the target, requires a low threshold and sufficient background rejection capability of the detector. The XENON experiment uses dual phase technology to detect scintillation and ionization simultaneously from an event in liquid xenon (LXe). The distinct ratio, between scintillation and ionization, for nuclear recoil and electron recoil events provides excellent background rejection potential. The XENON detector is designed to have 3D position sensitivity down to mm scale, which provides additional event information for background rejection. Started in 2002, the XENON project made steady progress in the R&D phase during the past few years. Those include developing sensitive photon detectors in LXe, improving the energy resolution and LXe purity for detecting very low energy events. Two major quantities related to the dark matter detection, the scintillation efficiency and ionization yield of nuclear recoils in LXe, have been established. A prototype dual phase detector (XENON3) has been built and tested extensively in above ground laboratory. The 3D position sensitivity, as well as the background discrimination potential demonstrated from the XENON3 prototype, allows the construction of a 10 kg scale detector (XENON10), to be deployed underground in early 2006. With 99.5% electron recoil rejection efficiency and 16 keVr nuclear recoil energy threshold, XENON10 will be able to probe the WIMP-nucleon cross-section down to 2 x 10-44 cm2 in the supersymmetry parameter space, after one month operation in the Gran Sasso underground laboratory.
Nanosatellite optical downlink experiment: design, simulation, and prototyping
NASA Astrophysics Data System (ADS)
Clements, Emily; Aniceto, Raichelle; Barnes, Derek; Caplan, David; Clark, James; Portillo, Iñigo del; Haughwout, Christian; Khatsenko, Maxim; Kingsbury, Ryan; Lee, Myron; Morgan, Rachel; Twichell, Jonathan; Riesing, Kathleen; Yoon, Hyosang; Ziegler, Caleb; Cahoy, Kerri
2016-11-01
The nanosatellite optical downlink experiment (NODE) implements a free-space optical communications (lasercom) capability on a CubeSat platform that can support low earth orbit (LEO) to ground downlink rates>10 Mbps. A primary goal of NODE is to leverage commercially available technologies to provide a scalable and cost-effective alternative to radio-frequency-based communications. The NODE transmitter uses a 200-mW 1550-nm master-oscillator power-amplifier design using power-efficient M-ary pulse position modulation. To facilitate pointing the 0.12-deg downlink beam, NODE augments spacecraft body pointing with a microelectromechanical fast steering mirror (FSM) and uses an 850-nm uplink beacon to an onboard CCD camera. The 30-cm aperture ground telescope uses an infrared camera and FSM for tracking to an avalanche photodiode detector-based receiver. Here, we describe our approach to transition prototype transmitter and receiver designs to a full end-to-end CubeSat-scale system. This includes link budget refinement, drive electronics miniaturization, packaging reduction, improvements to pointing and attitude estimation, implementation of modulation, coding, and interleaving, and ground station receiver design. We capture trades and technology development needs and outline plans for integrated system ground testing.
Miniature Robotic Spacecraft for Inspecting Other Spacecraft
NASA Technical Reports Server (NTRS)
Fredrickson, Steven; Abbott, Larry; Duran, Steve; Goode, Robert; Howard, Nathan; Jochim, David; Rickman, Steve; Straube, Tim; Studak, Bill; Wagenknecht, Jennifer;
2004-01-01
A report discusses the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam)-- a compact robotic spacecraft intended to be released from a larger spacecraft for exterior visual inspection of the larger spacecraft. The Mini AERCam is a successor to the AERCam Sprint -- a prior miniature robotic inspection spacecraft that was demonstrated in a space-shuttle flight experiment in 1997. The prototype of the Mini AERCam is a demonstration unit having approximately the form and function of a flight system. The Mini AERCam is approximately spherical with a diameter of about 7.5 in. (.19 cm) and a weight of about 10 lb (.4.5 kg), yet it has significant additional capabilities, relative to the 14-in. (36-cm), 35-lb (16-kg) AERCam Sprint. The Mini AERCam includes miniaturized avionics, instrumentation, communications, navigation, imaging, power, and propulsion subsystems, including two digital video cameras and a high-resolution still camera. The Mini AERCam is designed for either remote piloting or supervised autonomous operations, including station keeping and point-to-point maneuvering. The prototype has been tested on an air-bearing table and in a hardware-in-the-loop orbital simulation of the dynamics of maneuvering in proximity to the International Space Station.
Global Web-Enabled Landsat Data (Invited)
NASA Astrophysics Data System (ADS)
Roy, D. P.; Kovalskyy, V.; Kommareddy, I.; Votava, P.; Nemani, R. R.; Egorov, A.; Hansen, M.; Yan, L.
2013-12-01
The 40+ year series of Landsat satellites provides the longest temporal record of space-based observations acquired with spatial resolutions appropriate for monitoring anthropogenic change. The need for 'higher-level' Landsat products, i.e., beyond currently available radiometrically and geometrically corrected Landsat scenes, has been advocated by the user community and by the Landsat science team. The NASA funded Web-enabled Landsat Data (WELD) project has demonstrated this capability by systematically generating 30m weekly, seasonal, monthly and annual composited Landsat mosaics of the conterminous United States (CONUS) and Alaska for 10+ years (http://weld.cr.usgs.gov/). Recently, the WELD code has been ported to the NASA Earth Exchange (NEX) high performance super computing and data platform to generate global 30m WELD products from contemporaneous Landsat 5 and 7 data. The WELD products and select applications that take advantage of the consistently processed WELD time series are showcased. Prototype global monthly 30m products and plans to expand the production to provide Landsat 30m higher level products for any terrestrial non-Antarctic location for six 3-year epochs from 1985 to 2010 are presented. Prototype monthly global NEX 30m WELD product
Resource Allocation Planning Helper (RALPH): Lessons learned
NASA Technical Reports Server (NTRS)
Durham, Ralph; Reilly, Norman B.; Springer, Joe B.
1990-01-01
The current task of Resource Allocation Process includes the planning and apportionment of JPL's Ground Data System composed of the Deep Space Network and Mission Control and Computing Center facilities. The addition of the data driven, rule based planning system, RALPH, has expanded the planning horizon from 8 weeks to 10 years and has resulted in large labor savings. Use of the system has also resulted in important improvements in science return through enhanced resource utilization. In addition, RALPH has been instrumental in supporting rapid turn around for an increased volume of special what if studies. The status of RALPH is briefly reviewed and important lessons learned from the creation of an highly functional design team are focused on through an evolutionary design and implementation period in which an AI shell was selected, prototyped, and ultimately abandoned, and through the fundamental changes to the very process that spawned the tool kit. Principal topics include proper integration of software tools within the planning environment, transition from prototype to delivered to delivered software, changes in the planning methodology as a result of evolving software capabilities and creation of the ability to develop and process generic requirements to allow planning flexibility.
Positioning accuracy in a registration-free CT-based navigation system
NASA Astrophysics Data System (ADS)
Brandenberger, D.; Birkfellner, W.; Baumann, B.; Messmer, P.; Huegli, R. W.; Regazzoni, P.; Jacob, A. L.
2007-12-01
In order to maintain overall navigation accuracy established by a calibration procedure in our CT-based registration-free navigation system, the CT scanner has to repeatedly generate identical volume images of a target at the same coordinates. We tested the positioning accuracy of the prototype of an advanced workplace for image-guided surgery (AWIGS) which features an operating table capable of direct patient transfer into a CT scanner. Volume images (N = 154) of a specialized phantom were analysed for translational shifting after various table translations. Variables included added weight and phantom position on the table. The navigation system's calibration accuracy was determined (bias 2.1 mm, precision ± 0.7 mm, N = 12). In repeated use, a bias of 3.0 mm and a precision of ± 0.9 mm (N = 10) were maintainable. Instances of translational image shifting were related to the table-to-CT scanner docking mechanism. A distance scaling error when altering the table's height was detected. Initial prototype problems visible in our study causing systematic errors were resolved by repeated system calibrations between interventions. We conclude that the accuracy achieved is sufficient for a wide range of clinical applications in surgery and interventional radiology.
Quantumness-generating capability of quantum dynamics
NASA Astrophysics Data System (ADS)
Li, Nan; Luo, Shunlong; Mao, Yuanyuan
2018-04-01
We study quantumness-generating capability of quantum dynamics, where quantumness refers to the noncommutativity between the initial state and the evolving state. In terms of the commutator of the square roots of the initial state and the evolving state, we define a measure to quantify the quantumness-generating capability of quantum dynamics with respect to initial states. Quantumness-generating capability is absent in classical dynamics and hence is a fundamental characteristic of quantum dynamics. For qubit systems, we present an analytical form for this measure, by virtue of which we analyze several prototypical dynamics such as unitary dynamics, phase damping dynamics, amplitude damping dynamics, and random unitary dynamics (Pauli channels). Necessary and sufficient conditions for the monotonicity of quantumness-generating capability are also identified. Finally, we compare these conditions for the monotonicity of quantumness-generating capability with those for various Markovianities and illustrate that quantumness-generating capability and quantum Markovianity are closely related, although they capture different aspects of quantum dynamics.
Laser Transmitter Aims At Laser Beacon
NASA Technical Reports Server (NTRS)
Hemmati, Hamid; Lesh, James R.
1993-01-01
Transmitter part of developmental optical communication system. Compact, lightweight, partially-self-aiming laser transmitter built to verify some capabilities of developmental free-space optical communication system. Design capable of providing 0.5 Mbps data return over range equal to Moon-Earth distance. Breadboard of transmitting terminal constructed and tested in laboratory. Prototype transmitter includes receiving circuitry that keeps it aimed at beacon, once brought into initial alignment within about 1.7 degrees of line of sight to beacon.
Leys, Frederik; Reynaerts, Dominiek; Vandepitte, Dirk
2016-08-15
The stroke-cam flapping mechanism presented in this paper closely mimics the wing motion of a hovering Rufous hummingbird. It is the only lightweight hummingbird-sized flapping mechanism which generates a harmonic wing stroke with both a high flapping frequency and a large stroke amplitude. Experiments on a lightweight prototype of this stroke-cam mechanism on a 50 mm-long wing demonstrate that a harmonic stroke motion is generated with a peak-to-peak stroke amplitude of 175° at a flapping frequency of 40 Hz. It generated a mass lifting capability of 5.1 g, which is largely sufficient to lift the prototype's mass of 3.39 g and larger than the mass-lifting capability of a Rufous hummingbird. The motor mass of a hummingbird-like robot which drives the stroke-cam mechanism is considerably larger (about five times) than the muscle mass of a hummingbird with comparable load-lifting capability. This paper presents a flapping wing nano aerial vehicle which is designed to possess the same lift- and thrust-generating principles of the Rufous hummingbird. The application is indoor flight. We give an overview of the wing kinematics and some specifications which should be met to develop an artificial wing, and also describe the applications of these in the mechanism which has been developed in this work. © 2016. Published by The Company of Biologists Ltd.
Reynaerts, Dominiek; Vandepitte, Dirk
2016-01-01
ABSTRACT The stroke-cam flapping mechanism presented in this paper closely mimics the wing motion of a hovering Rufous hummingbird. It is the only lightweight hummingbird-sized flapping mechanism which generates a harmonic wing stroke with both a high flapping frequency and a large stroke amplitude. Experiments on a lightweight prototype of this stroke-cam mechanism on a 50 mm-long wing demonstrate that a harmonic stroke motion is generated with a peak-to-peak stroke amplitude of 175° at a flapping frequency of 40 Hz. It generated a mass lifting capability of 5.1 g, which is largely sufficient to lift the prototype's mass of 3.39 g and larger than the mass-lifting capability of a Rufous hummingbird. The motor mass of a hummingbird-like robot which drives the stroke-cam mechanism is considerably larger (about five times) than the muscle mass of a hummingbird with comparable load-lifting capability. This paper presents a flapping wing nano aerial vehicle which is designed to possess the same lift- and thrust-generating principles of the Rufous hummingbird. The application is indoor flight. We give an overview of the wing kinematics and some specifications which should be met to develop an artificial wing, and also describe the applications of these in the mechanism which has been developed in this work. PMID:27444790
NASA Technical Reports Server (NTRS)
Davis, George; Cary, Everett; Higinbotham, John; Burns, Richard; Hogie, Keith; Hallahan, Francis
2003-01-01
The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.
A Distributed Simulation Software System for Multi-Spacecraft Missions
NASA Technical Reports Server (NTRS)
Burns, Richard; Davis, George; Cary, Everett
2003-01-01
The paper will provide an overview of the web-based distributed simulation software system developed for end-to-end, multi-spacecraft mission design, analysis, and test at the NASA Goddard Space Flight Center (GSFC). This software system was developed for an internal research and development (IR&D) activity at GSFC called the Distributed Space Systems (DSS) Distributed Synthesis Environment (DSE). The long-term goal of the DSS-DSE is to integrate existing GSFC stand-alone test beds, models, and simulation systems to create a "hands on", end-to-end simulation environment for mission design, trade studies and simulations. The short-term goal of the DSE was therefore to develop the system architecture, and then to prototype the core software simulation capability based on a distributed computing approach, with demonstrations of some key capabilities by the end of Fiscal Year 2002 (FY02). To achieve the DSS-DSE IR&D objective, the team adopted a reference model and mission upon which FY02 capabilities were developed. The software was prototyped according to the reference model, and demonstrations were conducted for the reference mission to validate interfaces, concepts, etc. The reference model, illustrated in Fig. 1, included both space and ground elements, with functional capabilities such as spacecraft dynamics and control, science data collection, space-to-space and space-to-ground communications, mission operations, science operations, and data processing, archival and distribution addressed.
Meso-scale controlled motion for a microfluidic drop ejector.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galambos, Paul C.; Givler, Richard C.; Pohl, Kenneth Roy
2004-12-01
The objective of this LDRD was to develop a uniquely capable, novel droplet solution based manufacturing system built around a new MEMS drop ejector. The development all the working subsystems required was completed, leaving the integration of these subsystems into a working prototype still left to accomplish. This LDRD report will focus on the three main subsystems: (1) MEMS drop ejector--the MEMS ''sideshooter'' effectively ejected 0.25 pl drops at 10 m/s, (2) packaging--a compact ejector package based on a modified EMDIP (Electro-Microfluidic Dual In-line Package--SAND2002-1941) was fabricated, and (3) a vision/stage system allowing precise ejector package positioning in 3 dimensionsmore » above a target was developed.« less
Large-area copper indium diselenide (CIS) process, control and manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillespie, T.J.; Lanning, B.R.; Marshall, C.H.
1997-12-31
Lockheed Martin Astronautics (LMA) has developed a large-area (30x30cm) sequential CIS manufacturing approach amenable to low-cost photovoltaics (PV) production. A prototype CIS manufacturing system has been designed and built with compositional uniformity (Cu/In ratio) verified within {+-}4 atomic percent over the 30x30cm area. CIS device efficiencies have been measured by the National Renewable Energy Laboratory (NREL) at 7% on a flexible non-sodium-containing substrate and 10% on a soda-lime-silica (SLS) glass substrate. Critical elements of the manufacturing capability include the CIS sequential process selection, uniform large-area material deposition, and in-situ process control. Details of the process and large-area manufacturing approach aremore » discussed and results presented.« less
Implementation and validation of a CubeSat laser transmitter
NASA Astrophysics Data System (ADS)
Kingsbury, R. W.; Caplan, D. O.; Cahoy, K. L.
2016-03-01
The paper presents implementation and validation results for a CubeSat-scale laser transmitter. The master oscillator power amplifier (MOPA) design produces a 1550 nm, 200mW average power optical signal through the use of a directly modulated laser diode and a commercial fiber amplifier. The prototype design produces high-fidelity M-ary pulse position modulated (PPM) waveforms (M=8 to 128), targeting data rates > 10 Mbit/s while meeting a constraining 8W power allocation. We also present the implementation of an avalanche photodiode (APD) receiver with measured transmitter-to-receiver performance within 3 dB of theory. Via loopback, the compact receiver design can provide built-in self-test and calibration capabilities, and supports incremental on-orbit testing of the design.
NASA Technical Reports Server (NTRS)
Singh, J. J.; Davis, W. T.; Puster, R. L.
1983-01-01
A fast-response oxygen monitoring and control system, based on a Y2O3-stabilized ZrO2 sensor, was developed and tested in the laboratory. The system is capable of maintaining oxygen concentration in the CH4-O2-air combustion product gases at 20.9 + or - 1.0 percent. If the oxygen concentration in the exhaust stream differs from that in normal air by 25 percent or more, an alarm signal is provided for automatic tunnel shutdown. The overall prototype system response time was reduced from about 1 sec in the original configuration to about 0.2 sec. The basis of operation and the results of laboratory tests of the system are described.
NASA Technical Reports Server (NTRS)
Ewell, Robert N.
1994-01-01
The U.S. Space Foundation displayed its prototype Space Technology Hall of Fame exhibit design at the Technology 2003 conference in Anaheim, CA, December 7-9, 1993. In order to sample public opinion on space technology in general and the exhibit in particular, a computer-based survey was set up as a part of the display. The data collected was analyzed.
Factors Influencing Rapid Prototyping Innovation Implementation: A Descriptive Model
1990-03-01
strategy. NDI can be considered as a balance of risk and technological advancement allowing the services to have a system in the field into the...The U.S. military no longer must go through the long, tedious series of events required by the peacetime research and development and service approval...developed, fielded, and evaluated by the fleet in conjunction with fleet introduction (Interim Service Approval). Rapid prototyping conceptually represents
Faber, D.M; Weiland, M.A.; Moursund, R.A.; Carlson, T.J.; Adams, N.; Rondorf, D.
2001-01-01
This report describes tests conducted at Bonneville Dam on the Columbia River in the spring of 2000. The studies used three-dimensional (3D) acoustic telemetry and computational fluid dynamics (CFD) hydraulic modeling techniques to evaluate the response of outmigrating juvenile steelhead (Oncorhynchus mykiss) and yearling chinook (O. tshawytscha) to the Prototype Surface Collector (PSC) installed at Powerhouse I of Bonneville Dam in 1998 to test the concept of using a deep-slot surface bypass collector to divert downstream migrating salmon from turbines. The study was conducted by Pacific Northwest National Laboratory (PNNL), the Waterways Experiment Station of the U.S. Army Corp of Engineers (COE), Asci Corporation, and the U.S. Geological Survey (USGS), and was sponsored by COE’s Portland District. The goal of the study was to observe the three-dimensional behavior of tagged fish (fish bearing ultrasonic micro-transmitters) within 100 meters (m) of the surface flow bypass structure to test hypotheses about the response of migrants to flow stimuli generated by the presence of the surface flow bypass prototype and its operation. Research was done in parallel with radio telemetry studies conducted by USGS and hydroacoustic studies conducted by WES & Asci to evaluate the prototype surface collector.
Real-time application of knowledge-based systems
NASA Technical Reports Server (NTRS)
Brumbaugh, Randal W.; Duke, Eugene L.
1989-01-01
The Rapid Prototyping Facility (RPF) was developed to meet a need for a facility which allows flight systems concepts to be prototyped in a manner which allows for real-time flight test experience with a prototype system. This need was focused during the development and demonstration of the expert system flight status monitor (ESFSM). The ESFSM was a prototype system developed on a LISP machine, but lack of a method for progressive testing and problem identification led to an impractical system. The RPF concept was developed, and the ATMS designed to exercise its capabilities. The ATMS Phase 1 demonstration provided a practical vehicle for testing the RPF, as well as a useful tool. ATMS Phase 2 development continues. A dedicated F-18 is expected to be assigned for facility use in late 1988, with RAV modifications. A knowledge-based autopilot is being developed using the RPF. This is a system which provides elementary autopilot functions and is intended as a vehicle for testing expert system verification and validation methods. An expert system propulsion monitor is being prototyped. This system provides real-time assistance to an engineer monitoring a propulsion system during a flight.
Prototype electronic stethoscope vs. conventional stethoscope for auscultation of heart sounds.
Kelmenson, Daniel A; Heath, Janae K; Ball, Stephanie A; Kaafarani, Haytham M A; Baker, Elisabeth M; Yeh, Daniel D; Bittner, Edward A; Eikermann, Matthias; Lee, Jarone
2014-08-01
In an effort to decrease the spread of hospital-acquired infections, many hospitals currently use disposable plastic stethoscopes in patient rooms. As an alternative, this study examines a prototype electronic stethoscope that does not break the isolation barrier between clinician and patient and may also improve the diagnostic accuracy of the stethoscope exam. This study aimed to investigate whether the new prototype electronic stethoscope improved auscultation of heart sounds compared to the standard conventional isolation stethoscope. In a controlled, non-blinded, cross-over study, clinicians were randomized to identify heart sounds with both the prototype electronic stethoscope and a conventional stethoscope. The primary outcome was the score on a 10-question heart sound identification test. In total, 41 clinicians completed the study. Subjects performed significantly better in the identification of heart sounds when using the prototype electronic stethoscope (median = 9 [7-10] vs. 8 [6-9] points, p value <0.0001). Subjects also significantly preferred the prototype electronic stethoscope. Clinicians using a new prototype electronic stethoscope achieved greater accuracy in identification of heart sounds and also universally favoured the new device, compared to the conventional stethoscope.
NASA Technical Reports Server (NTRS)
Gilkey, Kelly M.; Olson, Sandra L.
2015-01-01
An oxygen concentrator is needed to provide enriched oxygen in support of medical contingency operations for future exploration human spaceflight programs. It would provide continuous oxygen to an ill or injured crew member in a closed cabin environment. Oxygen concentration technology is being pursued to concentrate oxygen from the ambient environment so oxygen as a consumable resource can be reduced. Because oxygen is a critical resource in manned spaceflight, using an oxygen concentrator to pull oxygen out of the ambient environment instead of using compressed oxygen can provide better optimization of resources. The overall goal of this project is to develop an oxygen concentrator module that minimizes the hardware mass, volume, and power footprint while still performing at the required clinical capabilities. Should a medical event occur that requires patient oxygenation, the release of 100 percent oxygen into a small closed cabin environment can rapidly raise oxygen levels to the vehicles fire limit. The use of an oxygen concentrator to enrich oxygen from the ambient air and concentrate it to the point where it can be used for medical purposes means no oxygen is needed from the ultra-high purity (99.5+% O2) oxygen reserve tanks. By not adding oxygen from compressed tanks to the cabin environment, oxygen levels can be kept below the vehicle fire limit thereby extending the duration of care provided to an oxygenated patient without environmental control system intervention to keep the cabin oxygen levels below the fire limits. The oxygen concentrator will be a Food and Drug Administration (FDA) clearable device. A demonstration unit for the International Space Station (ISS) is planned to verify the technology and provide oxygen capability. For the ISS, the demonstration unit should not exceed 10 kg (approximately 22 lb), which is the soft stowage mass limit for launch on resupply vehicles for the ISS. The unit's size should allow for transport within the spacecraft to an ill crewmember. The user interface needs to be designed for ease of use by the local care provider and with consideration to the limited amount of training available to the astronaut corps for medical equipment and procedures.
NASA Astrophysics Data System (ADS)
Irastorza, I. G.; Aznar, F.; Castel, J.; Cebrián, S.; Dafni, T.; Galán, J.; Garcia, J. A.; Garza, J. G.; Gómez, H.; Herrera, D. C.; Iguaz, F. J.; Luzon, G.; Mirallas, H.; Ruiz, E.; Seguí, L.; Tomás, A.
2016-01-01
As part of the T-REX project, a number of R&D and prototyping activities have been carried out during the last years to explore the applicability of gaseous Time Projection Chambers (TPCs) with Micromesh Gas Structures (Micromegas) in rare event searches like double beta decay, axion research and low-mass WIMP searches. In both this and its companion paper, we compile the main results of the project and give an outlook of application prospects for this detection technique. While in the companion paper we focus on axions and WIMPs, in this paper we focus on the results regarding the measurement of the double beta decay (DBD) of 136Xe in a high pressure Xe (HPXe) TPC. Micromegas of the microbulk type have been extensively studied in high pressure Xe and Xe mixtures. Particularly relevant are the results obtained in Xe + trimethylamine (TMA) mixtures, showing very promising results in terms of gain, stability of operation, and energy resolution at high pressures up to 10 bar. The addition of TMA at levels of ~ 1% reduces electron diffusion by up to a factor of 10 with respect to pure Xe, improving the quality of the topological pattern, with a positive impact on the discrimination capability. Operation with a medium size prototype of 30 cm diameter and 38 cm of drift (holding about 1 kg of Xe at 10 bar in the fiducial volume, enough to contain high energy electron tracks in the detector volume) has allowed to test the detection concept in realistic experimental conditions. Microbulk Micromegas are able to image the DBD ionization signature with high quality while, at the same time, measuring its energy deposition with a resolution of at least a ~ 3% FWHM @ Qββ. This value was experimentally demonstrated for high-energy extended tracks at 10 bar, and is probably improvable down to the ~ 1% FWHM levels as extrapolated from low energy events. In addition, first results on the topological signature information (one straggling track ending in two blobs) show promising background discrimination capabilities out of reach of other experimental implementations. Moreover, microbulk Micromegas have very low levels of intrinsic radioactivity, and offer cost-effective scaling-up options. All these results demonstrate that Micromegas-read HPXe TPC remains a very competitive technique for the next generation DBD experiments.
Robot-assisted laparoscopic ultrasonography for hepatic surgery.
Schneider, Caitlin M; Peng, Peter D; Taylor, Russell H; Dachs, Gregory W; Hasser, Christopher J; DiMaio, Simon P; Choti, Michael A
2012-05-01
This study describes and evaluates a novel, robot-assisted laparoscopic ultrasonographic device for hepatic surgery. Laparoscopic liver surgery is being performed with increasing frequency. One major drawback of this approach is the limited capability of intraoperative ultrasonography (IOUS) using standard laparoscopic devices. Robotic surgery systems offer the opportunity to develop new tools to improve techniques in minimally invasive surgery. This study evaluates a new integrated ultrasonography (US) device with the da Vinci Surgical System for laparoscopic visualization, comparing it with conventional handheld laparoscopic IOUS for performing key tasks in hepatic surgery. A prototype laparoscopic IOUS instrument was developed for the da Vinci Surgical System and compared with a conventional laparoscopic US device in simulation tasks: (1) In vivo porcine hepatic visualization and probe manipulation, (2) lesion detection accuracy, and (3) biopsy precision. Usability was queried by poststudy questionnaire. The robotic US proved better than conventional laparoscopic US in liver surface exploration (85% success vs 73%; P = .030) and tool manipulation (79% vs 57%; P = .028), whereas no difference was detected in lesion identification (63 vs 58; P = .41) and needle biopsy tasks (57 vs 48; P = .11). Subjects found the robotic US to facilitate better probe positioning (80%), decrease fatigue (90%), and be more useful overall (90%) on the post-task questionnaire. We found this robot-assisted IOUS system to be practical and useful in the performance of important tasks required for hepatic surgery, outperforming free-hand laparoscopic IOUS for certain tasks, and was more subjectively usable to the surgeon. Systems such as this may expand the use of robotic surgery for complex operative procedures requiring IOUS. Copyright © 2012 Mosby, Inc. All rights reserved.
User Interface Design for Dynamic Geometry Software
ERIC Educational Resources Information Center
Kortenkamp, Ulrich; Dohrmann, Christian
2010-01-01
In this article we describe long-standing user interface issues with Dynamic Geometry Software and common approaches to address them. We describe first prototypes of multi-touch-capable DGS. We also give some hints on the educational benefits of proper user interface design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Copps, Kevin D.
The Sandia Analysis Workbench (SAW) project has developed and deployed a production capability for SIERRA computational mechanics analysis workflows. However, the electrical analysis workflow capability requirements have only been demonstrated in early prototype states, with no real capability deployed for analysts’ use. This milestone aims to improve the electrical analysis workflow capability (via SAW and related tools) and deploy it for ongoing use. We propose to focus on a QASPR electrical analysis calibration workflow use case. We will include a number of new capabilities (versus today’s SAW), such as: 1) support for the XYCE code workflow component, 2) data managementmore » coupled to electrical workflow, 3) human-in-theloop workflow capability, and 4) electrical analysis workflow capability deployed on the restricted (and possibly classified) network at Sandia. While far from the complete set of capabilities required for electrical analysis workflow over the long term, this is a substantial first step toward full production support for the electrical analysts.« less
Prototype wash water renovation system integration with government-furnished wash fixture
NASA Technical Reports Server (NTRS)
1984-01-01
The requirements of a significant quantity of proposed life sciences experiments in Shuttle payloads for available wash water to support cleansing operations has provided the incentive to develop a technique for wash water renovation. A prototype wash water waste renovation system which has the capability to process the waste water and return it to a state adequate for reuse in a typical cleansing fixture designed to support life science experiments was investigated. The resulting technology is to support other developments efforts pertaining to water reclamation by serving as a pretreatment step for subsequent reclamation procedures.
Hyper-spectral imager of the visible band for lunar observations
NASA Astrophysics Data System (ADS)
Lim, Y.-M.; Choi, Y.-J.; Jo, Y.-S.; Lim, T.-H.; Ham, J.; Min, K. W.; Choi, Y.-W.
2013-06-01
A prototype hyper-spectral imager in the visible spectral band was developed for the planned Korean lunar missions in the 2020s. The instrument is based on simple refractive optics that adopted a linear variable filter and an interline charge-coupled device. This prototype imager is capable of mapping the lunar surface at wavelengths ranging from 450 to 900 nm with a spectral resolution of ˜8 nm and selectable channels ranging from 5 to 252. The anticipated spatial resolution is 17.2 m from an altitude of 100 km with a swath width of 21 km
Evaluation of 3D printed optofluidic smart glass prototypes.
Wolfe, Daniel; Goossen, K W
2018-01-22
Smart glass or smart windows are an innovative technology used for thermal management, energy efficiency, and privacy applications. Notable commercially available smart glass relies on an electric stimuli to modulate the glass from a transparent to a translucent mode of operation. However, the current market technologies, such as electrochromic, polymer dispersed liquid crystal, and suspended particle devices are expensive and suffer from solar absorption, poor transmittance modulation, and in some cases, continuous power consumption. The authors of this paper present a novel optofluidic smart glass prototype capable of modulating visible light transmittance from 8% to 85%.
NASA Technical Reports Server (NTRS)
Atkinson, David J.; Doyle, Richard J.; James, Mark L.; Kaufman, Tim; Martin, R. Gaius
1990-01-01
A Spacecraft Health Automated Reasoning Prototype (SHARP) portability study is presented. Some specific progress is described on the portability studies, plans for technology transfer, and potential applications of SHARP and related artificial intelligence technology to telescience operations. The application of SHARP to Voyager telecommunications was a proof-of-capability demonstration of artificial intelligence as applied to the problem of real time monitoring functions in planetary mission operations. An overview of the design and functional description of the SHARP system is also presented as it was applied to Voyager.
Prototyping Faithful Execution in a Java virtual machine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarman, Thomas David; Campbell, Philip LaRoche; Pierson, Lyndon George
2003-09-01
This report presents the implementation of a stateless scheme for Faithful Execution, the design for which is presented in a companion report, ''Principles of Faithful Execution in the Implementation of Trusted Objects'' (SAND 2003-2328). We added a simple cryptographic capability to an already simplified class loader and its associated Java Virtual Machine (JVM) to provide a byte-level implementation of Faithful Execution. The extended class loader and JVM we refer to collectively as the Sandia Faithfully Executing Java architecture (or JavaFE for short). This prototype is intended to enable exploration of more sophisticated techniques which we intend to implement in hardware.
NASA Technical Reports Server (NTRS)
Cooper, K. G.
2000-01-01
Rapid prototyping (RP) is a layer-by-layer-based additive manufacturing process for constructing three-dimensional representations of a computer design from a wax, plastic, or similar material. Wire arc spray (WAS) is a metal spray forming technique, which deposits thin layers of metal onto a substrate or pattern. Marshall Space Flight Center currently has both capabilities in-house, and this project proposed merging the two processes into an innovative manufacturing technique, in which intermediate injection molding tool halves were to be fabricated with RP and WAS metal forming.
3D printed microfluidic mixer for point-of-care diagnosis of anemia.
Plevniak, Kimberly; Campbell, Matthew; Mei He
2016-08-01
3D printing has been an emerging fabrication tool in prototyping and manufacturing. We demonstrated a 3D microfluidic simulation guided computer design and 3D printer prototyping for quick turnaround development of microfluidic 3D mixers, which allows fast self-mixing of reagents with blood through capillary force. Combined with smartphone, the point-of-care diagnosis of anemia from finger-prick blood has been successfully implemented and showed consistent results with clinical measurements. Capable of 3D fabrication flexibility and smartphone compatibility, this work presents a novel diagnostic strategy for advancing personalized medicine and mobile healthcare.
NASA Technical Reports Server (NTRS)
Izygon, Michel E.
1992-01-01
The development process of the knowledge base for the generation of Test Libraries for Mission Operations Computer (MOC) Command Support focused on a series of information gathering interviews. These knowledge capture sessions are supporting the development of a prototype for evaluating the capabilities of INTUIT on such an application. the prototype includes functions related to POCC (Payload Operation Control Center) processing. It prompts the end-users for input through a series of panels and then generates the Meds associated with the initialization and the update of hazardous command tables for a POCC Processing TLIB.
Automated flight test management system
NASA Technical Reports Server (NTRS)
Hewett, M. D.; Tartt, D. M.; Agarwal, A.
1991-01-01
The Phase 1 development of an automated flight test management system (ATMS) as a component of a rapid prototyping flight research facility for artificial intelligence (AI) based flight concepts is discussed. The ATMS provides a flight engineer with a set of tools that assist in flight test planning, monitoring, and simulation. The system is also capable of controlling an aircraft during flight test by performing closed loop guidance functions, range management, and maneuver-quality monitoring. The ATMS is being used as a prototypical system to develop a flight research facility for AI based flight systems concepts at NASA Ames Dryden.