Comparing Text-based and Graphic User Interfaces for Novice and Expert Users
Chen, Jung-Wei; Zhang, Jiajie
2007-01-01
Graphic User Interface (GUI) is commonly considered to be superior to Text-based User Interface (TUI). This study compares GUI and TUI in an electronic dental record system. Several usability analysis techniques compared the relative effectiveness of a GUI and a TUI. Expert users and novice users were evaluated in time required and steps needed to complete the task. A within-subject design was used to evaluate if the experience with either interface will affect task performance. The results show that the GUI interface was not better than the TUI for expert users. GUI interface was better for novice users. For novice users there was a learning transfer effect from TUI to GUI. This means a user interface is user-friendly or not depending on the mapping between the user interface and tasks. GUI by itself may or may not be better than TUI. PMID:18693811
Comparing Text-based and Graphic User Interfaces for novice and expert users.
Chen, Jung-Wei; Zhang, Jiajie
2007-10-11
Graphic User Interface (GUI) is commonly considered to be superior to Text-based User Interface (TUI). This study compares GUI and TUI in an electronic dental record system. Several usability analysis techniques compared the relative effectiveness of a GUI and a TUI. Expert users and novice users were evaluated in time required and steps needed to complete the task. A within-subject design was used to evaluate if the experience with either interface will affect task performance. The results show that the GUI interface was not better than the TUI for expert users. GUI interface was better for novice users. For novice users there was a learning transfer effect from TUI to GUI. This means a user interface is user-friendly or not depending on the mapping between the user interface and tasks. GUI by itself may or may not be better than TUI.
A Question of Interface Design: How Do Online Service GUIs Measure Up?
ERIC Educational Resources Information Center
Head, Alison J.
1997-01-01
Describes recent improvements in graphical user interfaces (GUIs) offered by online services. Highlights include design considerations, including computer engineering capabilities and users' abilities; fundamental GUI design principles; user empowerment; visual communication and interaction; and an evaluation of online search interfaces. (LRW)
The GUI OPAC: Approach with Caution.
ERIC Educational Resources Information Center
Hildreth, Charles R.
1995-01-01
Discusses the graphical user interface (GUI) online public access catalog (OPAC), a user interface that uses images to represent options. Topics include user interface design for information retrieval; designing effective bibliographic displays, including subject headings; two design principles; and what GUIs can bring to OPACs. (LRW)
Graphical user interfaces for symbol-oriented database visualization and interaction
NASA Astrophysics Data System (ADS)
Brinkschulte, Uwe; Siormanolakis, Marios; Vogelsang, Holger
1997-04-01
In this approach, two basic services designed for the engineering of computer based systems are combined: a symbol-oriented man-machine-service and a high speed database-service. The man-machine service is used to build graphical user interfaces (GUIs) for the database service; these interfaces are stored using the database service. The idea is to create a GUI-builder and a GUI-manager for the database service based upon the man-machine service using the concept of symbols. With user-definable and predefined symbols, database contents can be visualized and manipulated in a very flexible and intuitive way. Using the GUI-builder and GUI-manager, a user can build and operate its own graphical user interface for a given database according to its needs without writing a single line of code.
Representing Graphical User Interfaces with Sound: A Review of Approaches
ERIC Educational Resources Information Center
Ratanasit, Dan; Moore, Melody M.
2005-01-01
The inability of computer users who are visually impaired to access graphical user interfaces (GUIs) has led researchers to propose approaches for adapting GUIs to auditory interfaces, with the goal of providing access for visually impaired people. This article outlines the issues involved in nonvisual access to graphical user interfaces, reviews…
Towards a Taxonomy of Metaphorical Graphical User Interfaces: Demands and Implementations.
ERIC Educational Resources Information Center
Cates, Ward Mitchell
The graphical user interface (GUI) has become something of a standard for instructional programs in recent years. One type of GUI is the metaphorical type. For example, the Macintosh GUI is based on the "desktop" metaphor where objects one manipulates within the GUI are implied to be objects one might find in a real office's desktop.…
Circumventing Graphical User Interfaces in Chemical Engineering Plant Design
ERIC Educational Resources Information Center
Romey, Noel; Schwartz, Rachel M.; Behrend, Douglas; Miao, Peter; Cheung, H. Michael; Beitle, Robert
2007-01-01
Graphical User Interfaces (GUIs) are pervasive elements of most modern technical software and represent a convenient tool for student instruction. For example, GUIs are used for [chemical] process design software (e.g., CHEMCAD, PRO/II and ASPEN) typically encountered in the senior capstone course. Drag and drop aspects of GUIs are challenging for…
ERIC Educational Resources Information Center
National Council on Disability, Washington, DC.
This report investigates the use of the graphical user interface (GUI) in computer programs, the problems it creates for individuals with visual impairments or blindness, and advocacy efforts concerning this issue, which have been targeted primarily at Microsoft, producer of Windows. The report highlights the concerns of individuals with visual…
The use of Graphic User Interface for development of a user-friendly CRS-Stack software
NASA Astrophysics Data System (ADS)
Sule, Rachmat; Prayudhatama, Dythia; Perkasa, Muhammad D.; Hendriyana, Andri; Fatkhan; Sardjito; Adriansyah
2017-04-01
The development of a user-friendly Common Reflection Surface (CRS) Stack software that has been built by implementing Graphical User Interface (GUI) is described in this paper. The original CRS-Stack software developed by WIT Consortium is compiled in the unix/linux environment, which is not a user-friendly software, so that a user must write the commands and parameters manually in a script file. Due to this limitation, the CRS-Stack become a non popular method, although applying this method is actually a promising way in order to obtain better seismic sections, which have better reflector continuity and S/N ratio. After obtaining successful results that have been tested by using several seismic data belong to oil companies in Indonesia, it comes to an idea to develop a user-friendly software in our own laboratory. Graphical User Interface (GUI) is a type of user interface that allows people to interact with computer programs in a better way. Rather than typing commands and module parameters, GUI allows the users to use computer programs in much simple and easy. Thus, GUI can transform the text-based interface into graphical icons and visual indicators. The use of complicated seismic unix shell script can be avoided. The Java Swing GUI library is used to develop this CRS-Stack GUI. Every shell script that represents each seismic process is invoked from Java environment. Besides developing interactive GUI to perform CRS-Stack processing, this CRS-Stack GUI is design to help geophysicists to manage a project with complex seismic processing procedures. The CRS-Stack GUI software is composed by input directory, operators, and output directory, which are defined as a seismic data processing workflow. The CRS-Stack processing workflow involves four steps; i.e. automatic CMP stack, initial CRS-Stack, optimized CRS-Stack, and CRS-Stack Supergather. Those operations are visualized in an informative flowchart with self explanatory system to guide the user inputting the parameter values for each operation. The knowledge of CRS-Stack processing procedure is still preserved in the software, which is easy and efficient to be learned. The software will still be developed in the future. Any new innovative seismic processing workflow will also be added into this GUI software.
CDROM User Interface Evaluation: The Appropriateness of GUIs.
ERIC Educational Resources Information Center
Bosch, Victoria Manglano; Hancock-Beaulieu, Micheline
1995-01-01
Assesses the appropriateness of GUIs (graphical user interfaces), more specifically Windows-based interfaces for CD-ROM. An evaluation model is described that was developed to carry out an expert evaluation of the interfaces of seven CD-ROM products. Results are discussed in light of HCI (human-computer interaction) usability criteria and design…
Graphical User Interfaces and Library Systems: End-User Reactions.
ERIC Educational Resources Information Center
Zorn, Margaret; Marshall, Lucy
1995-01-01
Describes a study by Parke-Davis Pharmaceutical Research Library to determine user satisfaction with the graphical user interface-based (GUI) Dynix Marquis compared with the text-based Dynix Classic Online Public Access Catalog (OPAC). Results show that the GUI-based OPAC was preferred by endusers over the text-based OPAC. (eight references) (DGM)
Emotion scents: a method of representing user emotions on GUI widgets
NASA Astrophysics Data System (ADS)
Cernea, Daniel; Weber, Christopher; Ebert, Achim; Kerren, Andreas
2013-01-01
The world of desktop interfaces has been dominated for years by the concept of windows and standardized user interface (UI) components. Still, while supporting the interaction and information exchange between the users and the computer system, graphical user interface (GUI) widgets are rather one-sided, neglecting to capture the subjective facets of the user experience. In this paper, we propose a set of design guidelines for visualizing user emotions on standard GUI widgets (e.g., buttons, check boxes, etc.) in order to enrich the interface with a new dimension of subjective information by adding support for emotion awareness as well as post-task analysis and decision making. We highlight the use of an EEG headset for recording the various emotional states of the user while he/she is interacting with the widgets of the interface. We propose a visualization approach, called emotion scents, that allows users to view emotional reactions corresponding to di erent GUI widgets without in uencing the layout or changing the positioning of these widgets. Our approach does not focus on highlighting the emotional experience during the interaction with an entire system, but on representing the emotional perceptions and reactions generated by the interaction with a particular UI component. Our research is motivated by enabling emotional self-awareness and subjectivity analysis through the proposed emotionenhanced UI components for desktop interfaces. These assumptions are further supported by an evaluation of emotion scents.
mcaGUI: microbial community analysis R-Graphical User Interface (GUI).
Copeland, Wade K; Krishnan, Vandhana; Beck, Daniel; Settles, Matt; Foster, James A; Cho, Kyu-Chul; Day, Mitch; Hickey, Roxana; Schütte, Ursel M E; Zhou, Xia; Williams, Christopher J; Forney, Larry J; Abdo, Zaid
2012-08-15
Microbial communities have an important role in natural ecosystems and have an impact on animal and human health. Intuitive graphic and analytical tools that can facilitate the study of these communities are in short supply. This article introduces Microbial Community Analysis GUI, a graphical user interface (GUI) for the R-programming language (R Development Core Team, 2010). With this application, researchers can input aligned and clustered sequence data to create custom abundance tables and perform analyses specific to their needs. This GUI provides a flexible modular platform, expandable to include other statistical tools for microbial community analysis in the future. The mcaGUI package and source are freely available as part of Bionconductor at http://www.bioconductor.org/packages/release/bioc/html/mcaGUI.html
NASA Technical Reports Server (NTRS)
Szczur, Martha R.
1993-01-01
The Transportable Applications Environment (TAE) Plus, developed at NASA's Goddard Space Flight Center, is an advanced portable user interface development which simplifies the process of creating and managing complex application graphical user interfaces (GUI's). TAE Plus supports the rapid prototyping of GUI's and allows applications to be ported easily between different platforms. This paper will discuss the capabilities of the TAE Plus tool, and how it makes the job of designing and developing GUI's easier for application developers. TAE Plus is being applied to many types of applications, and this paper discusses how it has been used both within and outside NASA.
A general graphical user interface for automatic reliability modeling
NASA Technical Reports Server (NTRS)
Liceaga, Carlos A.; Siewiorek, Daniel P.
1991-01-01
Reported here is a general Graphical User Interface (GUI) for automatic reliability modeling of Processor Memory Switch (PMS) structures using a Markov model. This GUI is based on a hierarchy of windows. One window has graphical editing capabilities for specifying the system's communication structure, hierarchy, reconfiguration capabilities, and requirements. Other windows have field texts, popup menus, and buttons for specifying parameters and selecting actions. An example application of the GUI is given.
User’s guide for MapMark4GUI—A graphical user interface for the MapMark4 R package
Shapiro, Jason
2018-05-29
MapMark4GUI is an R graphical user interface (GUI) developed by the U.S. Geological Survey to support user implementation of the MapMark4 R statistical software package. MapMark4 was developed by the U.S. Geological Survey to implement probability calculations for simulating undiscovered mineral resources in quantitative mineral resource assessments. The GUI provides an easy-to-use tool to input data, run simulations, and format output results for the MapMark4 package. The GUI is written and accessed in the R statistical programming language. This user’s guide includes instructions on installing and running MapMark4GUI and descriptions of the statistical output processes, output files, and test data files.
Advanced display object selection methods for enhancing user-computer productivity
NASA Technical Reports Server (NTRS)
Osga, Glenn A.
1993-01-01
The User-Interface Technology Branch at NCCOSC RDT&E Division has been conducting a series of studies to address the suitability of commercial off-the-shelf (COTS) graphic user-interface (GUI) methods for efficiency and performance in critical naval combat systems. This paper presents an advanced selection algorithm and method developed to increase user performance when making selections on tactical displays. The method has also been applied with considerable success to a variety of cursor and pointing tasks. Typical GUI's allow user selection by: (1) moving a cursor with a pointing device such as a mouse, trackball, joystick, touchscreen; and (2) placing the cursor on the object. Examples of GUI objects are the buttons, icons, folders, scroll bars, etc. used in many personal computer and workstation applications. This paper presents an improved method of selection and the theoretical basis for the significant performance gains achieved with various input devices tested. The method is applicable to all GUI styles and display sizes, and is particularly useful for selections on small screens such as notebook computers. Considering the amount of work-hours spent pointing and clicking across all styles of available graphic user-interfaces, the cost/benefit in applying this method to graphic user-interfaces is substantial, with the potential for increasing productivity across thousands of users and applications.
Infrastructure for Rapid Development of Java GUI Programs
NASA Technical Reports Server (NTRS)
Jones, Jeremy; Hostetter, Carl F.; Wheeler, Philip
2006-01-01
The Java Application Shell (JAS) is a software framework that accelerates the development of Java graphical-user-interface (GUI) application programs by enabling the reuse of common, proven GUI elements, as distinguished from writing custom code for GUI elements. JAS is a software infrastructure upon which Java interactive application programs and graphical user interfaces (GUIs) for those programs can be built as sets of plug-ins. JAS provides an application- programming interface that is extensible by application-specific plugins that describe and encapsulate both specifications of a GUI and application-specific functionality tied to the specified GUI elements. The desired GUI elements are specified in Extensible Markup Language (XML) descriptions instead of in compiled code. JAS reads and interprets these descriptions, then creates and configures a corresponding GUI from a standard set of generic, reusable GUI elements. These elements are then attached (again, according to the XML descriptions) to application-specific compiled code and scripts. An application program constructed by use of JAS as its core can be extended by writing new plug-ins and replacing existing plug-ins. Thus, JAS solves many problems that Java programmers generally solve anew for each project, thereby reducing development and testing time.
SimHap GUI: an intuitive graphical user interface for genetic association analysis.
Carter, Kim W; McCaskie, Pamela A; Palmer, Lyle J
2008-12-25
Researchers wishing to conduct genetic association analysis involving single nucleotide polymorphisms (SNPs) or haplotypes are often confronted with the lack of user-friendly graphical analysis tools, requiring sophisticated statistical and informatics expertise to perform relatively straightforward tasks. Tools, such as the SimHap package for the R statistics language, provide the necessary statistical operations to conduct sophisticated genetic analysis, but lacks a graphical user interface that allows anyone but a professional statistician to effectively utilise the tool. We have developed SimHap GUI, a cross-platform integrated graphical analysis tool for conducting epidemiological, single SNP and haplotype-based association analysis. SimHap GUI features a novel workflow interface that guides the user through each logical step of the analysis process, making it accessible to both novice and advanced users. This tool provides a seamless interface to the SimHap R package, while providing enhanced functionality such as sophisticated data checking, automated data conversion, and real-time estimations of haplotype simulation progress. SimHap GUI provides a novel, easy-to-use, cross-platform solution for conducting a range of genetic and non-genetic association analyses. This provides a free alternative to commercial statistics packages that is specifically designed for genetic association analysis.
SearchGUI: An open-source graphical user interface for simultaneous OMSSA and X!Tandem searches.
Vaudel, Marc; Barsnes, Harald; Berven, Frode S; Sickmann, Albert; Martens, Lennart
2011-03-01
The identification of proteins by mass spectrometry is a standard technique in the field of proteomics, relying on search engines to perform the identifications of the acquired spectra. Here, we present a user-friendly, lightweight and open-source graphical user interface called SearchGUI (http://searchgui.googlecode.com), for configuring and running the freely available OMSSA (open mass spectrometry search algorithm) and X!Tandem search engines simultaneously. Freely available under the permissible Apache2 license, SearchGUI is supported on Windows, Linux and OSX. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Maneri, E.; Gawronski, W.
1999-10-01
The linear quadratic Gaussian (LQG) design algorithms described in [2] and [5] have been used in the controller design of JPL's beam-waveguide [5] and 70-m [6] antennas. This algorithm significantly improves tracking precision in a windy environment. This article describes the graphical user interface (GUI) software for the design LQG controllers. It consists of two parts: the basic LQG design and the fine-tuning of the basic design using a constrained optimization algorithm. The presented GUI was developed to simplify the design process, to make the design process user-friendly, and to enable design of an LQG controller for one with a limited control engineering background. The user is asked to manipulate the GUI sliders and radio buttons to watch the antenna performance. Simple rules are given at the GUI display.
Knowledge-based critiquing of graphical user interfaces with CHIMES
NASA Technical Reports Server (NTRS)
Jiang, Jianping; Murphy, Elizabeth D.; Carter, Leslie E.; Truszkowski, Walter F.
1994-01-01
CHIMES is a critiquing tool that automates the process of checking graphical user interface (GUI) designs for compliance with human factors design guidelines and toolkit style guides. The current prototype identifies instances of non-compliance and presents problem statements, advice, and tips to the GUI designer. Changes requested by the designer are made automatically, and the revised GUI is re-evaluated. A case study conducted at NASA-Goddard showed that CHIMES has the potential for dramatically reducing the time formerly spent in hands-on consistency checking. Capabilities recently added to CHIMES include exception handling and rule building. CHIMES is intended for use prior to usability testing as a means, for example, of catching and correcting syntactic inconsistencies in a larger user interface.
Rule-based interface generation on mobile devices for structured documentation.
Kock, Ann-Kristin; Andersen, Björn; Handels, Heinz; Ingenerf, Josef
2014-01-01
In many software systems to date, interactive graphical user interfaces (GUIs) are represented implicitly in the source code, together with the application logic. Hence, the re-use, development, and modification of these interfaces is often very laborious. Flexible adjustments of GUIs for various platforms and devices as well as individual user preferences are furthermore difficult to realize. These problems motivate a software-based separation of content and GUI models on the one hand, and application logic on the other. In this project, a software solution for structured reporting on mobile devices is developed. Clinical content archetypes developed in a previous project serve as the content model while the Android SDK provides the GUI model. The necessary bindings between the models are specified using the Jess Rule Language.
SimHap GUI: An intuitive graphical user interface for genetic association analysis
Carter, Kim W; McCaskie, Pamela A; Palmer, Lyle J
2008-01-01
Background Researchers wishing to conduct genetic association analysis involving single nucleotide polymorphisms (SNPs) or haplotypes are often confronted with the lack of user-friendly graphical analysis tools, requiring sophisticated statistical and informatics expertise to perform relatively straightforward tasks. Tools, such as the SimHap package for the R statistics language, provide the necessary statistical operations to conduct sophisticated genetic analysis, but lacks a graphical user interface that allows anyone but a professional statistician to effectively utilise the tool. Results We have developed SimHap GUI, a cross-platform integrated graphical analysis tool for conducting epidemiological, single SNP and haplotype-based association analysis. SimHap GUI features a novel workflow interface that guides the user through each logical step of the analysis process, making it accessible to both novice and advanced users. This tool provides a seamless interface to the SimHap R package, while providing enhanced functionality such as sophisticated data checking, automated data conversion, and real-time estimations of haplotype simulation progress. Conclusion SimHap GUI provides a novel, easy-to-use, cross-platform solution for conducting a range of genetic and non-genetic association analyses. This provides a free alternative to commercial statistics packages that is specifically designed for genetic association analysis. PMID:19109877
Kim, Hwa Sun; Cho, Hune
2011-01-01
Objectives The Health Level Seven Interface Engine (HL7 IE), developed by Kyungpook National University, has been employed in health information systems, however users without a background in programming have reported difficulties in using it. Therefore, we developed a graphical user interface (GUI) engine to make the use of the HL7 IE more convenient. Methods The GUI engine was directly connected with the HL7 IE to handle the HL7 version 2.x messages. Furthermore, the information exchange rules (called the mapping data), represented by a conceptual graph in the GUI engine, were transformed into program objects that were made available to the HL7 IE; the mapping data were stored as binary files for reuse. The usefulness of the GUI engine was examined through information exchange tests between an HL7 version 2.x message and a health information database system. Results Users could easily create HL7 version 2.x messages by creating a conceptual graph through the GUI engine without requiring assistance from programmers. In addition, time could be saved when creating new information exchange rules by reusing the stored mapping data. Conclusions The GUI engine was not able to incorporate information types (e.g., extensible markup language, XML) other than the HL7 version 2.x messages and the database, because it was designed exclusively for the HL7 IE protocol. However, in future work, by including additional parsers to manage XML-based information such as Continuity of Care Documents (CCD) and Continuity of Care Records (CCR), we plan to ensure that the GUI engine will be more widely accessible for the health field. PMID:22259723
Kim, Hwa Sun; Cho, Hune; Lee, In Keun
2011-12-01
The Health Level Seven Interface Engine (HL7 IE), developed by Kyungpook National University, has been employed in health information systems, however users without a background in programming have reported difficulties in using it. Therefore, we developed a graphical user interface (GUI) engine to make the use of the HL7 IE more convenient. The GUI engine was directly connected with the HL7 IE to handle the HL7 version 2.x messages. Furthermore, the information exchange rules (called the mapping data), represented by a conceptual graph in the GUI engine, were transformed into program objects that were made available to the HL7 IE; the mapping data were stored as binary files for reuse. The usefulness of the GUI engine was examined through information exchange tests between an HL7 version 2.x message and a health information database system. Users could easily create HL7 version 2.x messages by creating a conceptual graph through the GUI engine without requiring assistance from programmers. In addition, time could be saved when creating new information exchange rules by reusing the stored mapping data. The GUI engine was not able to incorporate information types (e.g., extensible markup language, XML) other than the HL7 version 2.x messages and the database, because it was designed exclusively for the HL7 IE protocol. However, in future work, by including additional parsers to manage XML-based information such as Continuity of Care Documents (CCD) and Continuity of Care Records (CCR), we plan to ensure that the GUI engine will be more widely accessible for the health field.
Gromita: a fully integrated graphical user interface to gromacs 4.
Sellis, Diamantis; Vlachakis, Dimitrios; Vlassi, Metaxia
2009-09-07
Gromita is a fully integrated and efficient graphical user interface (GUI) to the recently updated molecular dynamics suite Gromacs, version 4. Gromita is a cross-platform, perl/tcl-tk based, interactive front end designed to break the command line barrier and introduce a new user-friendly environment to run molecular dynamics simulations through Gromacs. Our GUI features a novel workflow interface that guides the user through each logical step of the molecular dynamics setup process, making it accessible to both advanced and novice users. This tool provides a seamless interface to the Gromacs package, while providing enhanced functionality by speeding up and simplifying the task of setting up molecular dynamics simulations of biological systems. Gromita can be freely downloaded from http://bio.demokritos.gr/gromita/.
Graphical User Interface Programming in Introductory Computer Science.
ERIC Educational Resources Information Center
Skolnick, Michael M.; Spooner, David L.
Modern computing systems exploit graphical user interfaces for interaction with users; as a result, introductory computer science courses must begin to teach the principles underlying such interfaces. This paper presents an approach to graphical user interface (GUI) implementation that is simple enough for beginning students to understand, yet…
Pirooznia, Mehdi; Deng, Youping
2006-12-12
Graphical user interface (GUI) software promotes novelty by allowing users to extend the functionality. SVM Classifier is a cross-platform graphical application that handles very large datasets well. The purpose of this study is to create a GUI application that allows SVM users to perform SVM training, classification and prediction. The GUI provides user-friendly access to state-of-the-art SVM methods embodied in the LIBSVM implementation of Support Vector Machine. We implemented the java interface using standard swing libraries. We used a sample data from a breast cancer study for testing classification accuracy. We achieved 100% accuracy in classification among the BRCA1-BRCA2 samples with RBF kernel of SVM. We have developed a java GUI application that allows SVM users to perform SVM training, classification and prediction. We have demonstrated that support vector machines can accurately classify genes into functional categories based upon expression data from DNA microarray hybridization experiments. Among the different kernel functions that we examined, the SVM that uses a radial basis kernel function provides the best performance. The SVM Classifier is available at http://mfgn.usm.edu/ebl/svm/.
Graphical User Interface in Art
NASA Astrophysics Data System (ADS)
Gwilt, Ian
This essay discusses the use of the Graphical User Interface (GUI) as a site of creative practice. By creatively repositioning the GUI as a work of art it is possible to challenge our understanding and expectations of the conventional computer interface wherein the icons and navigational architecture of the GUI no longer function as a technological tool. These artistic recontextualizations are often used to question our engagement with technology and to highlight the pivotal place that the domestic computer has taken in our everyday social, cultural and (increasingly), creative domains. Through these works the media specificity of the screen-based GUI can broken by dramatic changes in scale, form and configuration. This can be seen through the work of new media artists who have re-imagined the GUI in a number of creative forms both, within the digital, as image, animation, net and interactive art, and in the analogue, as print, painting, sculpture, installation and performative event. Furthermore as a creative work, the GUI can also be utilized as a visual way-finder to explore the relationship between the dynamic potentials of the digital and the concretized qualities of the material artifact.
Starting Over: Current Issues in Online Catalog User Interface Design.
ERIC Educational Resources Information Center
Crawford, Walt
1992-01-01
Discussion of online catalogs focuses on issues in interface design. Issues addressed include understanding the user base; common user access (CUA) with personal computers; common command language (CCL); hyperlinks; screen design issues; differences from card catalogs; indexes; graphic user interfaces (GUIs); color; online help; and remote users.…
FLASH Interface; a GUI for managing runtime parameters in FLASH simulations
NASA Astrophysics Data System (ADS)
Walker, Christopher; Tzeferacos, Petros; Weide, Klaus; Lamb, Donald; Flocke, Norbert; Feister, Scott
2017-10-01
We present FLASH Interface, a novel graphical user interface (GUI) for managing runtime parameters in simulations performed with the FLASH code. FLASH Interface supports full text search of available parameters; provides descriptions of each parameter's role and function; allows for the filtering of parameters based on categories; performs input validation; and maintains all comments and non-parameter information already present in existing parameter files. The GUI can be used to edit existing parameter files or generate new ones. FLASH Interface is open source and was implemented with the Electron framework, making it available on Mac OSX, Windows, and Linux operating systems. The new interface lowers the entry barrier for new FLASH users and provides an easy-to-use tool for experienced FLASH simulators. U.S. Department of Energy (DOE), NNSA ASC/Alliances Center for Astrophysical Thermonuclear Flashes, U.S. DOE NNSA ASC through the Argonne Institute for Computing in Science, U.S. National Science Foundation.
VIEW-Station software and its graphical user interface
NASA Astrophysics Data System (ADS)
Kawai, Tomoaki; Okazaki, Hiroshi; Tanaka, Koichiro; Tamura, Hideyuki
1992-04-01
VIEW-Station is a workstation-based image processing system which merges the state-of-the- art software environment of Unix with the computing power of a fast image processor. VIEW- Station has a hierarchical software architecture, which facilitates device independence when porting across various hardware configurations, and provides extensibility in the development of application systems. The core image computing language is V-Sugar. V-Sugar provides a set of image-processing datatypes and allows image processing algorithms to be simply expressed, using a functional notation. VIEW-Station provides a hardware independent window system extension called VIEW-Windows. In terms of GUI (Graphical User Interface) VIEW-Station has two notable aspects. One is to provide various types of GUI as visual environments for image processing execution. Three types of interpreters called (mu) V- Sugar, VS-Shell and VPL are provided. Users may choose whichever they prefer based on their experience and tasks. The other notable aspect is to provide facilities to create GUI for new applications on the VIEW-Station system. A set of widgets are available for construction of task-oriented GUI. A GUI builder called VIEW-Kid is developed for WYSIWYG interactive interface design.
NASA Technical Reports Server (NTRS)
Szczur, Martha R.
1991-01-01
The Transportable Applications Environment (TAE) Plus, developed at NASA's Goddard Space Flight Center, is an advanced portable user interface development environment which simplifies the process of creating and managing complex application graphical user interfaces (GUIs), supports prototyping, allows applications to be oported easily between different platforms, and encourages appropriate levels of user interface consistency between applications. This paper discusses the capabilities of the TAE Plus tool, and how it makes the job of designing and developing GUIs easier for the application developers. The paper also explains how tools like TAE Plus provide for reusability and ensure reliability of UI software components, as well as how they aid in the reduction of development and maintenance costs.
DAKOTA JAGUAR 3.0 user's manual.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, Brian M.; Bauman, Lara E; Chan, Ethan
2013-05-01
JAGUAR (JAva GUi for Applied Research) is a Java software tool providing an advanced text editor and graphical user interface (GUI) to manipulate DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) input specifications. This document focuses on the features necessary to use JAGUAR.
XAL Application Framework and Bricks GUI Builder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pelaia II, Tom
2007-01-01
The XAL [1] Application Framework is a framework for rapidly developing document based Java applications with a common look and feel along with many built-in user interface behaviors. The Bricks GUI builder consists of a modern application and framework for rapidly building user interfaces in support of true Model-View-Controller (MVC) compliant Java applications. Bricks and the XAL Application Framework allow developers to rapidly create quality applications.
Microcomputer spacecraft thermal analysis routines (MSTAR) Phase I: The user interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teti, N.M.
1993-12-31
The Microcomputer Spacecraft Thermal Analysis Routines (MSTAR) software package is being developed for NASA/Goddard Space Flight Center by Swales and Associates, Inc. (S&AI). In December 1992, S&AI was awarded a phase I Small Business Inovative Research contract fronm NASA to develop a microcomputer based thermal analysis program to replace the current SSPTA and TRASYS programs. Phase I consists of a six month effort which will focus on developing geometric model generation and visualization capabilities using a graphical user interface (GUI). The information contained in this paper encompasses the work performed during the Phase I development cycle; with emphasis on themore » development of the graphical user interface (GUI). This includes both the theory behind and specific examples of how the MSTAR GUI was implemented. Furthermore, this report discusses new applications and enhancements which will improve the capabilities and commercialization of the MSTAR program.« less
NASA Technical Reports Server (NTRS)
Jiang, Jian-Ping; Murphy, Elizabeth D.; Bailin, Sidney C.; Truszkowski, Walter F.
1993-01-01
Capturing human factors knowledge about the design of graphical user interfaces (GUI's) and applying this knowledge on-line are the primary objectives of the Computer-Human Interaction Models (CHIMES) project. The current CHIMES prototype is designed to check a GUI's compliance with industry-standard guidelines, general human factors guidelines, and human factors recommendations on color usage. Following the evaluation, CHIMES presents human factors feedback and advice to the GUI designer. The paper describes the approach to modeling human factors guidelines, the system architecture, a new method developed to convert quantitative RGB primaries into qualitative color representations, and the potential for integrating CHIMES with user interface management systems (UIMS). Both the conceptual approach and its implementation are discussed. This paper updates the presentation on CHIMES at the first International Symposium on Ground Data Systems for Spacecraft Control.
Microcomputer spacecraft thermal analysis routines (MSTAR) Phase I: The user interface
NASA Technical Reports Server (NTRS)
Teti, Nicholas M.
1993-01-01
The Microcomputer Spacecraft Thermal Analysis Routines (MSTAR) software package is being developed for NASA/Goddard Space Flight Center by Swales and Associates, Inc. (S&AI). In December 1992, S&AI was awarded a phase I Small Business Inovative Research contract fronm NASA to develop a microcomputer based thermal analysis program to replace the current SSPTA and TRASYS programs. Phase I consists of a six month effort which will focus on developing geometric model generation and visualization capabilities using a graphical user interface (GUI). The information contained in this paper encompasses the work performed during the Phase I development cycle; with emphasis on the development of the graphical user interface (GUI). This includes both the theory behind and specific examples of how the MSTAR GUI was implemented. Furthermore, this report discusses new applications and enhancements which will improve the capabilities and commercialization of the MSTAR program.
LTCP 2D Graphical User Interface. Application Description and User's Guide
NASA Technical Reports Server (NTRS)
Ball, Robert; Navaz, Homayun K.
1996-01-01
A graphical user interface (GUI) written for NASA's LTCP (Liquid Thrust Chamber Performance) 2 dimensional computational fluid dynamic code is described. The GUI is written in C++ for a desktop personal computer running under a Microsoft Windows operating environment. Through the use of common and familiar dialog boxes, features, and tools, the user can easily and quickly create and modify input files for the LTCP code. In addition, old input files used with the LTCP code can be opened and modified using the GUI. The application is written in C++ for a desktop personal computer running under a Microsoft Windows operating environment. The program and its capabilities are presented, followed by a detailed description of each menu selection and the method of creating an input file for LTCP. A cross reference is included to help experienced users quickly find the variables which commonly need changes. Finally, the system requirements and installation instructions are provided.
Hollunder, Jens; Friedel, Maik; Kuiper, Martin; Wilhelm, Thomas
2010-04-01
Many large 'omics' datasets have been published and many more are expected in the near future. New analysis methods are needed for best exploitation. We have developed a graphical user interface (GUI) for easy data analysis. Our discovery of all significant substructures (DASS) approach elucidates the underlying modularity, a typical feature of complex biological data. It is related to biclustering and other data mining approaches. Importantly, DASS-GUI also allows handling of multi-sets and calculation of statistical significances. DASS-GUI contains tools for further analysis of the identified patterns: analysis of the pattern hierarchy, enrichment analysis, module validation, analysis of additional numerical data, easy handling of synonymous names, clustering, filtering and merging. Different export options allow easy usage of additional tools such as Cytoscape. Source code, pre-compiled binaries for different systems, a comprehensive tutorial, case studies and many additional datasets are freely available at http://www.ifr.ac.uk/dass/gui/. DASS-GUI is implemented in Qt.
Emerging Trends in Technology Education Computer Applications.
ERIC Educational Resources Information Center
Hazari, Sunil I.
1993-01-01
Graphical User Interface (GUI)--and its variant, pen computing--is rapidly replacing older types of operating environments. Despite its heavier demand for processing power, GUI has many advantages. (SK)
Advancements in RNASeqGUI towards a Reproducible Analysis of RNA-Seq Experiments
Russo, Francesco; Righelli, Dario
2016-01-01
We present the advancements and novelties recently introduced in RNASeqGUI, a graphical user interface that helps biologists to handle and analyse large data collected in RNA-Seq experiments. This work focuses on the concept of reproducible research and shows how it has been incorporated in RNASeqGUI to provide reproducible (computational) results. The novel version of RNASeqGUI combines graphical interfaces with tools for reproducible research, such as literate statistical programming, human readable report, parallel executions, caching, and interactive and web-explorable tables of results. These features allow the user to analyse big datasets in a fast, efficient, and reproducible way. Moreover, this paper represents a proof of concept, showing a simple way to develop computational tools for Life Science in the spirit of reproducible research. PMID:26977414
Design Document for the Moods Data Management System (MDMS) Version 1.0
1994-08-01
1 1.3 Document Overview ... . . . . . . . . . . . . . . . . . . . . 1 2 RERENCED DOCUMENTS .................... 2 3 PRELIM[INARY DESIGN... 3 3.1.1.1 CSC-: Grpical User Interfce(GUI).......... 3 3.1.112 CSC-2: Data Management Module (DMM) .................. 4 3.1.1.3 CSC- 3 : Data...5 3.1.1.6 GUI-DMM (CSC-1ICSC-2) internal interface................5 3.1.1.7 GUI-DAM (CSC-1/CSC- 3 ) Internal Interface................5
ERIC Educational Resources Information Center
Melrose, S.; And Others
1995-01-01
In this point/counterpoint feature, S. Melrose contends that complex graphical user interfaces (GUIs) threaten the independence and equal employment of individuals with blindness. D. Wakefield then points out that access to the Windows software program for blind computer users is extremely unpredictable, and J. Gill describes a major European…
WIFIP: a web-based user interface for automated synchrotron beamlines.
Sallaz-Damaz, Yoann; Ferrer, Jean Luc
2017-09-01
The beamline control software, through the associated graphical user interface (GUI), is the user access point to the experiment, interacting with synchrotron beamline components and providing automated routines. FIP, the French beamline for the Investigation of Proteins, is a highly automatized macromolecular crystallography (MX) beamline at the European Synchrotron Radiation Facility. On such a beamline, a significant number of users choose to control their experiment remotely. This is often performed with a limited bandwidth and from a large choice of computers and operating systems. Furthermore, this has to be possible in a rapidly evolving experimental environment, where new developments have to be easily integrated. To face these challenges, a light, platform-independent, control software and associated GUI are required. Here, WIFIP, a web-based user interface developed at FIP, is described. Further than being the present FIP control interface, WIFIP is also a proof of concept for future MX control software.
Winston, R.B.
1999-01-01
This report describes enhancements to a Graphical-User Interface (GUI) for MODFLOW-96, the U.S. Geological Survey (USGS) modular, three-dimensional, finitedifference ground-water flow model, and MOC3D, the USGS three-dimensional, method-ofcharacteristics solute-transport model. The GUI is a plug-in extension (PIE) for the commercial program Argus ONEe. The GUI has been modified to support MODPATH (a particle tracking post-processing package for MODFLOW), ZONEBDGT (a computer program for calculating subregional water budgets), and the Stream, Horizontal-Flow Barrier, and Flow and Head Boundary packages in MODFLOW. Context-sensitive help has been added to make the GUI easier to use and to understand. In large part, the help consists of quotations from the relevant sections of this report and its predecessors. The revised interface includes automatic creation of geospatial information layers required for the added programs and packages, and menus and dialog boxes for input of parameters for simulation control. The GUI creates formatted ASCII files that can be read by MODFLOW-96, MOC3D, MODPATH, and ZONEBDGT. All four programs can be executed within the Argus ONEe application (Argus Interware, Inc., 1997). Spatial results of MODFLOW-96, MOC3D, and MODPATH can be visualized within Argus ONEe. Results from ZONEBDGT can be visualized in an independent program that can also be used to view budget data from MODFLOW, MOC3D, and SUTRA. Another independent program extracts hydrographs of head or drawdown at individual cells from formatted MODFLOW head and drawdown files. A web-based tutorial on the use of MODFLOW with Argus ONE has also been updated. The internal structure of the GUI has been modified to make it possible for advanced users to easily customize the GUI. Two additional, independent PIE?s were developed to allow users to edit the positions of nodes and to facilitate exporting the grid geometry to external programs.
NASA Astrophysics Data System (ADS)
Morandell, Martin M.; Hochgatterer, Andreas; Wöckl, Bernhard; Dittenberger, Sandra; Fagel, Sascha
Avatars are a common field of research for interfacing smart homes, especially for elderly people. The present study focuses on the usage of photo-realistic faces with different levels of movements (video, avatar and photo) as components of the graphical user interface (GUI) for Ambient Assisted Living (AAL) environments. Within a usability test, using the "Wizard of Oz" technique, these presentation modes were compared with a text and a voice only interface with users of the target groups: elderly people with (nMCI=12) and without (nMCI=12) Mild Cognitive Impairment (MCI). Results show that faces on the GUI were liked by both, elderly with and without cognitive restrictions. However, users' performance on executing tasks did not differ much between the different presentation modes.
A GUI visualization system for airborne lidar image data to reconstruct 3D city model
NASA Astrophysics Data System (ADS)
Kawata, Yoshiyuki; Koizumi, Kohei
2015-10-01
A visualization toolbox system with graphical user interfaces (GUIs) was developed for the analysis of LiDAR point cloud data, as a compound object oriented widget application in IDL (Interractive Data Language). The main features in our system include file input and output abilities, data conversion capability from ascii formatted LiDAR point cloud data to LiDAR image data whose pixel value corresponds the altitude measured by LiDAR, visualization of 2D/3D images in various processing steps and automatic reconstruction ability of 3D city model. The performance and advantages of our graphical user interface (GUI) visualization system for LiDAR data are demonstrated.
APM_GUI: analyzing particle movement on the cell membrane and determining confinement.
Menchón, Silvia A; Martín, Mauricio G; Dotti, Carlos G
2012-02-20
Single-particle tracking is a powerful tool for tracking individual particles with high precision. It provides useful information that allows the study of diffusion properties as well as the dynamics of movement. Changes in particle movement behavior, such as transitions between Brownian motion and temporary confinement, can reveal interesting biophysical interactions. Although useful applications exist to determine the paths of individual particles, only a few software implementations are available to analyze these data, and these implementations are generally not user-friendly and do not have a graphical interface,. Here, we present APM_GUI (Analyzing Particle Movement), which is a MatLab-implemented application with a Graphical User Interface. This user-friendly application detects confined movement considering non-random confinement when a particle remains in a region longer than a Brownian diffusant would remain. In addition, APM_GUI exports the results, which allows users to analyze this information using software that they are familiar with. APM_GUI provides an open-source tool that quantifies diffusion coefficients and determines whether trajectories have non-random confinements. It also offers a simple and user-friendly tool that can be used by individuals without programming skills.
NASA Technical Reports Server (NTRS)
Bedrossian, Nazareth; Jang, Jiann-Woei; McCants, Edward; Omohundro, Zachary; Ring, Tom; Templeton, Jeremy; Zoss, Jeremy; Wallace, Jonathan; Ziegler, Philip
2011-01-01
Draper Station Analysis Tool (DSAT) is a computer program, built on commercially available software, for simulating and analyzing complex dynamic systems. Heretofore used in designing and verifying guidance, navigation, and control systems of the International Space Station, DSAT has a modular architecture that lends itself to modification for application to spacecraft or terrestrial systems. DSAT consists of user-interface, data-structures, simulation-generation, analysis, plotting, documentation, and help components. DSAT automates the construction of simulations and the process of analysis. DSAT provides a graphical user interface (GUI), plus a Web-enabled interface, similar to the GUI, that enables a remotely located user to gain access to the full capabilities of DSAT via the Internet and Webbrowser software. Data structures are used to define the GUI, the Web-enabled interface, simulations, and analyses. Three data structures define the type of analysis to be performed: closed-loop simulation, frequency response, and/or stability margins. DSAT can be executed on almost any workstation, desktop, or laptop computer. DSAT provides better than an order of magnitude improvement in cost, schedule, and risk assessment for simulation based design and verification of complex dynamic systems.
EnergyPlus Graphical User Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
2011-01-04
LBNL, Infosys Technologies and Digital Alchemy are developing a free, comprehensive graphical user interface (GUI) that will enable EnergyPlus to be used more easily and effectively by building designers and other professionals, facilitating its widespread adoption. User requirements have been defined through a series of practitioner workshops. A new schematic editor for HVAC systems will be combined with different building envelope geometry generation tools and IFC-based BIM import and export. LBNL and Digital Alchemy have generated a detailed function requirements specification, which is being implemented in software by Infosys, LBNL and and Digital Alchemy. LBNL and practitioner subcontractors will developmore » a comprehensive set of templates and libraries and will perform extensive testing of the GUI before it is released in Q3 2011. It is planned to use an Open Platfom approach, in which a comprehensive set of well documented Application Programming Interfaces (API's) would be provided to facilitate both the development of third party contributions to the official, standard GUI and the development of derivative works.« less
RGG: A general GUI Framework for R scripts
Visne, Ilhami; Dilaveroglu, Erkan; Vierlinger, Klemens; Lauss, Martin; Yildiz, Ahmet; Weinhaeusel, Andreas; Noehammer, Christa; Leisch, Friedrich; Kriegner, Albert
2009-01-01
Background R is the leading open source statistics software with a vast number of biostatistical and bioinformatical analysis packages. To exploit the advantages of R, extensive scripting/programming skills are required. Results We have developed a software tool called R GUI Generator (RGG) which enables the easy generation of Graphical User Interfaces (GUIs) for the programming language R by adding a few Extensible Markup Language (XML) – tags. RGG consists of an XML-based GUI definition language and a Java-based GUI engine. GUIs are generated in runtime from defined GUI tags that are embedded into the R script. User-GUI input is returned to the R code and replaces the XML-tags. RGG files can be developed using any text editor. The current version of RGG is available as a stand-alone software (RGGRunner) and as a plug-in for JGR. Conclusion RGG is a general GUI framework for R that has the potential to introduce R statistics (R packages, built-in functions and scripts) to users with limited programming skills and helps to bridge the gap between R developers and GUI-dependent users. RGG aims to abstract the GUI development from individual GUI toolkits by using an XML-based GUI definition language. Thus RGG can be easily integrated in any software. The RGG project further includes the development of a web-based repository for RGG-GUIs. RGG is an open source project licensed under the Lesser General Public License (LGPL) and can be downloaded freely at PMID:19254356
JAva GUi for Applied Research (JAGUAR) v 3.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
JAGUAR is a Java software tool for automatically rendering a graphical user interface (GUI) from a structured input specification. It is designed as a plug-in to the Eclipse workbench to enable users to create, edit, and externally execute analysis application input decks and then view the results. JAGUAR serves as a GUI for Sandia's DAKOTA software toolkit for optimization and uncertainty quantification. It will include problem (input deck)set-up, option specification, analysis execution, and results visualization. Through the use of wizards, templates, and views, JAGUAR helps uses navigate the complexity of DAKOTA's complete input specification. JAGUAR is implemented in Java, leveragingmore » Eclipse extension points and Eclipse user interface. JAGUAR parses a DAKOTA NIDR input specification and presents the user with linked graphical and plain text representations of problem set-up and option specification for DAKOTA studies. After the data has been input by the user, JAGUAR generates one or more input files for DAKOTA, executes DAKOTA, and captures and interprets the results« less
User interface prototype for geospatial early warning systems - a tsunami showcase
NASA Astrophysics Data System (ADS)
Hammitzsch, M.; Lendholt, M.; Esbrí, M. Á.
2012-03-01
The command and control unit's graphical user interface (GUI) is a central part of early warning systems (EWS) for man-made and natural hazards. The GUI combines and concentrates the relevant information of the system and offers it to human operators. It has to support operators successfully performing their tasks in complex workflows. Most notably in critical situations when operators make important decisions in a limited amount of time, the command and control unit's GUI has to work reliably and stably, providing the relevant information and functionality with the required quality and in time. The design of the GUI application is essential in the development of any EWS to manage hazards effectively. The design and development of such GUI is performed repeatedly for each EWS by various software architects and developers. Implementations differ based on their application in different domains. But similarities designing and equal approaches implementing GUIs of EWS are not quite harmonized enough with related activities and do not exploit possible synergy effects. Thus, the GUI's implementation of an EWS for tsunamis is successively introduced, providing a generic approach to be applied in each EWS for man-made and natural hazards.
GeoWorks Considered. Part I: A GUI for the Rest of Us. Part II: Doing Windows Right.
ERIC Educational Resources Information Center
Flanders, Bruce; Lewis, Paul
1991-01-01
Describes GeoWorks, a new graphical user interface (GUI) that works on older, less powerful IBM PCs and compatibles. The PC/GEOS (PC/Graphical Environment Operating System) is explained, user friendliness is emphasized, comparisons are made to Microsoft Windows, and GeoWorks applications software is described. (LRW)
Support for User Interfaces for Distributed Systems
NASA Technical Reports Server (NTRS)
Eychaner, Glenn; Niessner, Albert
2005-01-01
An extensible Java(TradeMark) software framework supports the construction and operation of graphical user interfaces (GUIs) for distributed computing systems typified by ground control systems that send commands to, and receive telemetric data from, spacecraft. Heretofore, such GUIs have been custom built for each new system at considerable expense. In contrast, the present framework affords generic capabilities that can be shared by different distributed systems. Dynamic class loading, reflection, and other run-time capabilities of the Java language and JavaBeans component architecture enable the creation of a GUI for each new distributed computing system with a minimum of custom effort. By use of this framework, GUI components in control panels and menus can send commands to a particular distributed system with a minimum of system-specific code. The framework receives, decodes, processes, and displays telemetry data; custom telemetry data handling can be added for a particular system. The framework supports saving and later restoration of users configurations of control panels and telemetry displays with a minimum of effort in writing system-specific code. GUIs constructed within this framework can be deployed in any operating system with a Java run-time environment, without recompilation or code changes.
Matlab-Excel Interface for OpenDSS
DOE Office of Scientific and Technical Information (OSTI.GOV)
The software allows users of the OpenDSS grid modeling software to access their load flow models using a GUI interface developed in MATLAB. The circuit definitions are entered into a Microsoft Excel spreadsheet which makes circuit creation and editing a much simpler process than the basic text-based editors used in the native OpenDSS interface. Plot tools have been developed which can be accessed through a MATLAB GUI once the desired parameters have been simulated.
The Rise of the Graphical User Interface.
ERIC Educational Resources Information Center
Edwards, Alastair D. N.
1996-01-01
Discusses the history of the graphical user interface (GUI) and the growing realization that adaptations must be made to it lest its visual nature discriminate against nonsighted or sight-impaired users. One of the most popular commercially developed adaptations is to develop sounds that signal the location of icons or menus to mouse users.…
Medical workstation design: enhancing graphical interface with 3D anatomical atlas
NASA Astrophysics Data System (ADS)
Hoo, Kent S., Jr.; Wong, Stephen T. C.; Grant, Ellen
1997-05-01
The huge data archive of the UCSF Hospital Integrated Picture Archiving and Communication System gives healthcare providers access to diverse kinds of images and text for diagnosis and patient management. Given the mass of information accessible, however, conventional graphical user interface (GUI) approach overwhelms the user with forms, menus, fields, lists, and other widgets and causes 'information overloading.' This article describes a new approach that complements the conventional GUI with 3D anatomical atlases and presents the usefulness of this approach with a clinical neuroimaging application.
Evaluation of cardiac signals using discrete wavelet transform with MATLAB graphical user interface.
John, Agnes Aruna; Subramanian, Aruna Priyadharshni; Jaganathan, Saravana Kumar; Sethuraman, Balasubramanian
2015-01-01
To process the electrocardiogram (ECG) signals using MATLAB-based graphical user interface (GUI) and to classify the signals based on heart rate. The subject condition was identified using R-peak detection based on discrete wavelet transform followed by a Bayes classifier that classifies the ECG signals. The GUI was designed to display the ECG signal plot. Obtained from MIT database 18 patients had normal heart rate and 9 patients had abnormal heart rate; 14.81% of the patients suffered from tachycardia and 18.52% of the patients have bradycardia. The proposed GUI display was found useful to analyze the digitized ECG signal by a non-technical user and may help in diagnostics. Further improvement can be done by employing field programmable gate array for the real time processing of cardiac signals. Copyright © 2015 Cardiological Society of India. Published by Elsevier B.V. All rights reserved.
Joyce, Brendan; Lee, Danny; Rubio, Alex; Ogurtsov, Aleksey; Alves, Gelio; Yu, Yi-Kuo
2018-03-15
RAId is a software package that has been actively developed for the past 10 years for computationally and visually analyzing MS/MS data. Founded on rigorous statistical methods, RAId's core program computes accurate E-values for peptides and proteins identified during database searches. Making this robust tool readily accessible for the proteomics community by developing a graphical user interface (GUI) is our main goal here. We have constructed a graphical user interface to facilitate the use of RAId on users' local machines. Written in Java, RAId_GUI not only makes easy executions of RAId but also provides tools for data/spectra visualization, MS-product analysis, molecular isotopic distribution analysis, and graphing the retrieval versus the proportion of false discoveries. The results viewer displays and allows the users to download the analyses results. Both the knowledge-integrated organismal databases and the code package (containing source code, the graphical user interface, and a user manual) are available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads/raid.html .
Automated Tracking of Cell Migration with Rapid Data Analysis.
DuChez, Brian J
2017-09-01
Cell migration is essential for many biological processes including development, wound healing, and metastasis. However, studying cell migration often requires the time-consuming and labor-intensive task of manually tracking cells. To accelerate the task of obtaining coordinate positions of migrating cells, we have developed a graphical user interface (GUI) capable of automating the tracking of fluorescently labeled nuclei. This GUI provides an intuitive user interface that makes automated tracking accessible to researchers with no image-processing experience or familiarity with particle-tracking approaches. Using this GUI, users can interactively determine a minimum of four parameters to identify fluorescently labeled cells and automate acquisition of cell trajectories. Additional features allow for batch processing of numerous time-lapse images, curation of unwanted tracks, and subsequent statistical analysis of tracked cells. Statistical outputs allow users to evaluate migratory phenotypes, including cell speed, distance, displacement, and persistence, as well as measures of directional movement, such as forward migration index (FMI) and angular displacement. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
StarTrax --- The Next Generation User Interface
NASA Astrophysics Data System (ADS)
Richmond, Alan; White, Nick
StarTrax is a software package to be distributed to end users for installation on their local computing infrastructure. It will provide access to many services of the HEASARC, i.e. bulletins, catalogs, proposal and analysis tools, initially for the ROSAT MIPS (Mission Information and Planning System), later for the Next Generation Browse. A user activating the GUI will reach all HEASARC capabilities through a uniform view of the system, independent of the local computing environment and of the networking method of accessing StarTrax. Use it if you prefer the point-and-click metaphor of modern GUI technology, to the classical command-line interfaces (CLI). Notable strengths include: easy to use; excellent portability; very robust server support; feedback button on every dialog; painstakingly crafted User Guide. It is designed to support a large number of input devices including terminals, workstations and personal computers. XVT's Portability Toolkit is used to build the GUI in C/C++ to run on: OSF/Motif (UNIX or VMS), OPEN LOOK (UNIX), or Macintosh, or MS-Windows (DOS), or character systems.
NASA Astrophysics Data System (ADS)
Made Tirta, I.; Anggraeni, Dian
2018-04-01
Statistical models have been developed rapidly into various directions to accommodate various types of data. Data collected from longitudinal, repeated measured, clustered data (either continuous, binary, count, or ordinal), are more likely to be correlated. Therefore statistical model for independent responses, such as Generalized Linear Model (GLM), Generalized Additive Model (GAM) are not appropriate. There are several models available to apply for correlated responses including GEEs (Generalized Estimating Equations), for marginal model and various mixed effect model such as GLMM (Generalized Linear Mixed Models) and HGLM (Hierarchical Generalized Linear Models) for subject spesific models. These models are available on free open source software R, but they can only be accessed through command line interface (using scrit). On the othe hand, most practical researchers very much rely on menu based or Graphical User Interface (GUI). We develop, using Shiny framework, standard pull down menu Web-GUI that unifies most models for correlated responses. The Web-GUI has accomodated almost all needed features. It enables users to do and compare various modeling for repeated measure data (GEE, GLMM, HGLM, GEE for nominal responses) much more easily trough online menus. This paper discusses the features of the Web-GUI and illustrates the use of them. In General we find that GEE, GLMM, HGLM gave very closed results.
Towards a holistic assessment of the user experience with hybrid BCIs.
Lorenz, Romy; Pascual, Javier; Blankertz, Benjamin; Vidaurre, Carmen
2014-06-01
In recent years, brain-computer interfaces (BCIs) have become mature enough to immensely benefit from the expertise and tools established in the field of human-computer interaction (HCI). One of the core objectives in HCI research is the design of systems that provide a pleasurable user experience (UX). While the majority of BCI studies exclusively evaluate common efficiency measures such as classification accuracy and speed, single research groups have begun to look at further usability aspects such as ease of use, workload and learnability. However, these evaluation metrics only cover pragmatic aspects of UX while still not considering the hedonic quality of UX. In order to gain a holistic perspective on UX, hedonic quality aspects such as motivation and frustration were also taken into account for our evaluation of three BCI-driven interfaces, which were proposed to be used as a two-stage neuroprosthetic control within the EU project MUNDUS. At the first stage, one of six possible actions was selected and either confirmed or cancelled at the second stage. For the experiment, a solely event-related-potential-based interface (ERP-ERP) and two hybrid solutions were tested that were controlled by ERP and motor imagery (MI)--resulting in the two possible combinations: ERP selection/MI confirmation (ERP-MI) or MI selection/ERP confirmation (MI-ERP). Behavioural, subjective and encephalographic (EEG) data of 12 healthy subjects were collected during an online experiment with the three graphical user interfaces (GUIs). Results showed a significantly greater pragmatic quality (in terms of accuracy, efficiency, workload, use quality and learnability) for the ERP-ERP and ERP-MI GUIs in contrast to the MI-ERP GUI. Consequently, the MI-ERP GUI is least suited for use as a neuroprosthetic control. With respect to the comparison of the ERP-ERP and ERP-MI GUIs, no significant differences in pragmatic and hedonic quality of UX were found. Since throughout better results were obtained for the conventional approach and it was most preferred by the subjects, the ERP-ERP GUI seems more suitable for its deployment in actual end-users. Nevertheless, for individuals with stable MI patterns, the hybrid interface can be provided as an additional option of choice within the MUNDUS framework. Although the paramount goal in BCI research still remains the improvement of classification accuracy and communication speed, it is of significance to note that it is equally important for end-users to keep up their motivation and prevent frustration. By including pragmatic as well as hedonic quality aspects, this study is the first effort to gain a holistic perspective of the UX while interacting with BCI-driven assistive technology aimed at actual end-users. The broad-scale methodology provided valuable insights into the underlying dynamics causing the users' experience to differ across the GUIs. The results will be used to refine a BCI-driven neuroprosthesis and test it with end-users.
Graphical user interface for yield and dose estimations for cyclotron-produced technetium
NASA Astrophysics Data System (ADS)
Hou, X.; Vuckovic, M.; Buckley, K.; Bénard, F.; Schaffer, P.; Ruth, T.; Celler, A.
2014-07-01
The cyclotron-based 100Mo(p,2n)99mTc reaction has been proposed as an alternative method for solving the shortage of 99mTc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with 99mTc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced 99mTc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.
Graphical user interface for yield and dose estimations for cyclotron-produced technetium.
Hou, X; Vuckovic, M; Buckley, K; Bénard, F; Schaffer, P; Ruth, T; Celler, A
2014-07-07
The cyclotron-based (100)Mo(p,2n)(99m)Tc reaction has been proposed as an alternative method for solving the shortage of (99m)Tc. With this production method, however, even if highly enriched molybdenum is used, various radioactive and stable isotopes will be produced simultaneously with (99m)Tc. In order to optimize reaction parameters and estimate potential patient doses from radiotracers labeled with cyclotron produced (99m)Tc, the yields for all reaction products must be estimated. Such calculations, however, are extremely complex and time consuming. Therefore, the objective of this study was to design a graphical user interface (GUI) that would automate these calculations, facilitate analysis of the experimental data, and predict dosimetry. The resulting GUI, named Cyclotron production Yields and Dosimetry (CYD), is based on Matlab®. It has three parts providing (a) reaction yield calculations, (b) predictions of gamma emissions and (c) dosimetry estimations. The paper presents the outline of the GUI, lists the parameters that must be provided by the user, discusses the details of calculations and provides examples of the results. Our initial experience shows that the proposed GUI allows the user to very efficiently calculate the yields of reaction products and analyze gamma spectroscopy data. However, it is expected that the main advantage of this GUI will be at the later clinical stage when entering reaction parameters will allow the user to predict production yields and estimate radiation doses to patients for each particular cyclotron run.
Dakota Graphical User Interface v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman-Hill, Ernest; Glickman, Matthew; Gibson, Marcus
Graphical analysis environment for Sandia’s Dakota software for optimization and uncertainty quantification. The Dakota GUI is an interactive graphical analysis environment for creating, running, and interpreting Dakota optimization and uncertainty quantification studies. It includes problem (Dakota study) set-up, option specification, simulation interfacing, analysis execution, and results visualization. Through the use of wizards, templates, and views, Dakota GUI helps uses navigate Dakota’s complex capability landscape.
ERIC Educational Resources Information Center
Metros, Susan E.; Hedberg, John G.
2002-01-01
Examines the relationship between the graphical user interface (GUI) and the cognitive demands placed on the learner in eLearning (electronic learning) environments. Describes ways educators can design appropriate interfaces to facilitate meaningful interactions with educational content; and examines learner engagement and engagement theory using…
Designing a Humane Multimedia Interface for the Visually Impaired.
ERIC Educational Resources Information Center
Ghaoui, Claude; Mann, M.; Ng, Eng Huat
2001-01-01
Promotes the provision of interfaces that allow users to access most of the functionality of existing graphical user interfaces (GUI) using speech. Uses the design of a speech control tool that incorporates speech recognition and synthesis into existing packaged software such as Teletext, the Internet, or a word processor. (Contains 22…
NASA Astrophysics Data System (ADS)
Roy, S. G.; Koons, P. O.; Gerbi, C. C.; Capps, D. K.; Tucker, G. E.; Rogers, Z. A.
2014-12-01
Sophisticated numerical tools exist for modeling geomorphic processes and linking them to tectonic and climatic systems, but they are often seen as inaccessible for users with an exploratory level of interest. We have improved the accessibility of landscape evolution models by producing a simple graphics user interface (GUI) that takes advantage of the Channel-Hillslope Integrated Landscape Development (CHILD) model. Model access is flexible: the user can edit values for basic geomorphic, tectonic, and climate parameters, or obtain greater control by defining the spatiotemporal distributions of those parameters. Users can make educated predictions by choosing their own parametric values for the governing equations and interpreting the results immediately through model graphics. This method of modeling allows users to iteratively build their understanding through experimentation. Use of this GUI is intended for inquiry and discovery-based learning activities. We discuss a number of examples of how the GUI can be used at the upper high school, introductory university, and advanced university level. Effective teaching modules initially focus on an inquiry-based example guided by the instructor. As students become familiar with the GUI and the CHILD model, the class can shift to more student-centered exploration and experimentation. To make model interpretations more robust, digital elevation models can be imported and direct comparisons can be made between CHILD model results and natural topography. The GUI is available online through the University of Maine's Earth and Climate Sciences website, through the Community Surface Dynamics Modeling System (CSDMS) model repository, or by contacting the corresponding author.
Mengarelli, Alessandro; Cardarelli, Stefano; Verdini, Federica; Burattini, Laura; Fioretti, Sandro; Di Nardo, Francesco
2016-08-01
In this paper a graphical user interface (GUI) built in MATLAB® environment is presented. This interactive tool has been developed for the analysis of superficial electromyography (sEMG) signals and in particular for the assessment of the muscle activation time intervals. After the signal import, the tool performs a first analysis in a totally user independent way, providing a reliable computation of the muscular activation sequences. Furthermore, the user has the opportunity to modify each parameter of the on/off identification algorithm implemented in the presented tool. The presence of an user-friendly GUI allows the immediate evaluation of the effects that the modification of every single parameter has on the activation intervals recognition, through the real-time updating and visualization of the muscular activation/deactivation sequences. The possibility to accept the initial signal analysis or to modify the on/off identification with respect to each considered signal, with a real-time visual feedback, makes this GUI-based tool a valuable instrument in clinical, research applications and also in an educational perspective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Ethan
2011-06-01
JAGUAR (JAva GUi for Applied Research) is a Java software tool providing an advanced text editor and graphical user interface (GUI) to manipulate DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) input specifications. This document focuses on the technical background necessary for a developer to understand JAGUAR.
Voss, Clifford I.; Boldt, David; Shapiro, Allen M.
1997-01-01
This report describes a Graphical-User Interface (GUI) for SUTRA, the U.S. Geological Survey (USGS) model for saturated-unsaturated variable-fluid-density ground-water flow with solute or energy transport,which combines a USGS-developed code that interfaces SUTRA with Argus ONE, a commercial software product developed by Argus Interware. This product, known as Argus Open Numerical Environments (Argus ONETM), is a programmable system with geographic-information-system-like (GIS-like) functionality that includes automated gridding and meshing capabilities for linking geospatial information with finite-difference and finite-element numerical model discretizations. The GUI for SUTRA is based on a public-domain Plug-In Extension (PIE) to Argus ONE that automates the use of ArgusONE to: automatically create the appropriate geospatial information coverages (information layers) for SUTRA, provide menus and dialogs for inputting geospatial information and simulation control parameters for SUTRA, and allow visualization of SUTRA simulation results. Following simulation control data and geospatial data input bythe user through the GUI, ArgusONE creates text files in a format required for normal input to SUTRA,and SUTRA can be executed within the Argus ONE environment. Then, hydraulic head, pressure, solute concentration, temperature, saturation and velocity results from the SUTRA simulation may be visualized. Although the GUI for SUTRA discussed in this report provides all of the graphical pre- and post-processor functions required for running SUTRA, it is also possible for advanced users to apply programmable features within Argus ONE to modify the GUI to meet the unique demands of particular ground-water modeling projects.
DeNovoGUI: An Open Source Graphical User Interface for de Novo Sequencing of Tandem Mass Spectra
2013-01-01
De novo sequencing is a popular technique in proteomics for identifying peptides from tandem mass spectra without having to rely on a protein sequence database. Despite the strong potential of de novo sequencing algorithms, their adoption threshold remains quite high. We here present a user-friendly and lightweight graphical user interface called DeNovoGUI for running parallelized versions of the freely available de novo sequencing software PepNovo+, greatly simplifying the use of de novo sequencing in proteomics. Our platform-independent software is freely available under the permissible Apache2 open source license. Source code, binaries, and additional documentation are available at http://denovogui.googlecode.com. PMID:24295440
DeNovoGUI: an open source graphical user interface for de novo sequencing of tandem mass spectra.
Muth, Thilo; Weilnböck, Lisa; Rapp, Erdmann; Huber, Christian G; Martens, Lennart; Vaudel, Marc; Barsnes, Harald
2014-02-07
De novo sequencing is a popular technique in proteomics for identifying peptides from tandem mass spectra without having to rely on a protein sequence database. Despite the strong potential of de novo sequencing algorithms, their adoption threshold remains quite high. We here present a user-friendly and lightweight graphical user interface called DeNovoGUI for running parallelized versions of the freely available de novo sequencing software PepNovo+, greatly simplifying the use of de novo sequencing in proteomics. Our platform-independent software is freely available under the permissible Apache2 open source license. Source code, binaries, and additional documentation are available at http://denovogui.googlecode.com .
Towards a holistic assessment of the user experience with hybrid BCIs
NASA Astrophysics Data System (ADS)
Lorenz, Romy; Pascual, Javier; Blankertz, Benjamin; Vidaurre, Carmen
2014-06-01
Objective. In recent years, brain-computer interfaces (BCIs) have become mature enough to immensely benefit from the expertise and tools established in the field of human-computer interaction (HCI). One of the core objectives in HCI research is the design of systems that provide a pleasurable user experience (UX). While the majority of BCI studies exclusively evaluate common efficiency measures such as classification accuracy and speed, single research groups have begun to look at further usability aspects such as ease of use, workload and learnability. However, these evaluation metrics only cover pragmatic aspects of UX while still not considering the hedonic quality of UX. In order to gain a holistic perspective on UX, hedonic quality aspects such as motivation and frustration were also taken into account for our evaluation of three BCI-driven interfaces, which were proposed to be used as a two-stage neuroprosthetic control within the EU project MUNDUS. Approach. At the first stage, one of six possible actions was selected and either confirmed or cancelled at the second stage. For the experiment, a solely event-related-potential-based interface (ERP-ERP) and two hybrid solutions were tested that were controlled by ERP and motor imagery (MI)—resulting in the two possible combinations: ERP selection/MI confirmation (ERP-MI) or MI selection/ERP confirmation (MI-ERP). Behavioural, subjective and encephalographic (EEG) data of 12 healthy subjects were collected during an online experiment with the three graphical user interfaces (GUIs). Main results. Results showed a significantly greater pragmatic quality (in terms of accuracy, efficiency, workload, use quality and learnability) for the ERP-ERP and ERP-MI GUIs in contrast to the MI-ERP GUI. Consequently, the MI-ERP GUI is least suited for use as a neuroprosthetic control. With respect to the comparison of the ERP-ERP and ERP-MI GUIs, no significant differences in pragmatic and hedonic quality of UX were found. Since throughout better results were obtained for the conventional approach and it was most preferred by the subjects, the ERP-ERP GUI seems more suitable for its deployment in actual end-users. Nevertheless, for individuals with stable MI patterns, the hybrid interface can be provided as an additional option of choice within the MUNDUS framework. Significance. Although the paramount goal in BCI research still remains the improvement of classification accuracy and communication speed, it is of significance to note that it is equally important for end-users to keep up their motivation and prevent frustration. By including pragmatic as well as hedonic quality aspects, this study is the first effort to gain a holistic perspective of the UX while interacting with BCI-driven assistive technology aimed at actual end-users. The broad-scale methodology provided valuable insights into the underlying dynamics causing the users’ experience to differ across the GUIs. The results will be used to refine a BCI-driven neuroprosthesis and test it with end-users.
Schuurman, Nadine; Leight, Margo; Berube, Myriam
2008-01-01
Background The creation of successful health policy and location of resources increasingly relies on evidence-based decision-making. The development of intuitive, accessible tools to analyse, display and disseminate spatial data potentially provides the basis for sound policy and resource allocation decisions. As health services are rationalized, the development of tools such graphical user interfaces (GUIs) is especially valuable at they assist decision makers in allocating resources such that the maximum number of people are served. GIS can used to develop GUIs that enable spatial decision making. Results We have created a Web-based GUI (wGUI) to assist health policy makers and administrators in the Canadian province of British Columbia make well-informed decisions about the location and allocation of time-sensitive service capacities in rural regions of the province. This tool integrates datasets for existing hospitals and services, regional populations and road networks to allow users to ascertain the percentage of population in any given service catchment who are served by a specific health service, or baskets of linked services. The wGUI allows policy makers to map trauma and obstetric services against rural populations within pre-specified travel distances, illustrating service capacity by region. Conclusion The wGUI can be used by health policy makers and administrators with little or no formal GIS training to visualize multiple health resource allocation scenarios. The GUI is poised to become a critical decision-making tool especially as evidence is increasingly required for distribution of health services. PMID:18793428
DockoMatic 2.0: high throughput inverse virtual screening and homology modeling.
Bullock, Casey; Cornia, Nic; Jacob, Reed; Remm, Andrew; Peavey, Thomas; Weekes, Ken; Mallory, Chris; Oxford, Julia T; McDougal, Owen M; Andersen, Timothy L
2013-08-26
DockoMatic is a free and open source application that unifies a suite of software programs within a user-friendly graphical user interface (GUI) to facilitate molecular docking experiments. Here we describe the release of DockoMatic 2.0; significant software advances include the ability to (1) conduct high throughput inverse virtual screening (IVS); (2) construct 3D homology models; and (3) customize the user interface. Users can now efficiently setup, start, and manage IVS experiments through the DockoMatic GUI by specifying receptor(s), ligand(s), grid parameter file(s), and docking engine (either AutoDock or AutoDock Vina). DockoMatic automatically generates the needed experiment input files and output directories and allows the user to manage and monitor job progress. Upon job completion, a summary of results is generated by Dockomatic to facilitate interpretation by the user. DockoMatic functionality has also been expanded to facilitate the construction of 3D protein homology models using the Timely Integrated Modeler (TIM) wizard. The wizard TIM provides an interface that accesses the basic local alignment search tool (BLAST) and MODELER programs and guides the user through the necessary steps to easily and efficiently create 3D homology models for biomacromolecular structures. The DockoMatic GUI can be customized by the user, and the software design makes it relatively easy to integrate additional docking engines, scoring functions, or third party programs. DockoMatic is a free comprehensive molecular docking software program for all levels of scientists in both research and education.
Real-Time Distributed Algorithms for Visual and Battlefield Reasoning
2006-08-01
High-Level Task Definition Language, Graphical User Interface (GUI), Story Analysis, Story Interpretation, SensIT Nodes 16. SECURITY...or more actions to be taken in the event the conditions are satisfied. We developed graphical user interfaces that may be used to express such...actions to be taken in the event the conditions are satisfied. We developed graphical user interfaces that may be used to express such task
GUI and Object Oriented Programming in COBOL.
ERIC Educational Resources Information Center
Lorents, Alden C.
Various schools are struggling with the introduction of Object Oriented (OO) programming concepts and GUI (graphical user interfaces) within the traditional COBOL sequence. OO programming has been introduced in some of the curricula with languages such as C++, Smalltalk, and Java. Introducing OO programming into a typical COBOL sequence presents…
NASA Astrophysics Data System (ADS)
Syafiqah Syahirah Mohamed, Nor; Amalina Banu Mohamat Adek, Noor; Hamid, Nurul Farhana Abd
2018-03-01
This paper presents the development of Graphical User Interface (GUI) software for sizing main component in AC coupled photovoltaic (PV) hybrid power system based on Malaysia climate. This software provides guideline for PV system integrator to design effectively the size of components and system configuration to match the system and load requirement with geographical condition. The concept of the proposed software is balancing the annual average renewable energy generation and load demand. In this study, the PV to diesel generator (DG) ratio is introduced by considering the hybrid system energy contribution. The GUI software is able to size the main components in the PV hybrid system to meet with the set target of energy contribution ratio. The rated powers of the components to be defined are PV array, grid-tie inverter, bi-directional inverter, battery storage and DG. GUI is used to perform all the system sizing procedures to make it user friendly interface as a sizing tool for AC coupled PV hybrid system. The GUI will be done by using Visual Studio 2015 based on the real data under Malaysia Climate.
GPS system simulation methodology
NASA Technical Reports Server (NTRS)
Ewing, Thomas F.
1993-01-01
The following topics are presented: background; Global Positioning System (GPS) methodology overview; the graphical user interface (GUI); current models; application to space nuclear power/propulsion; and interfacing requirements. The discussion is presented in vugraph form.
Prototyping the graphical user interface for the operator of the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Sadeh, I.; Oya, I.; Schwarz, J.; Pietriga, E.
2016-07-01
The Cherenkov Telescope Array (CTA) is a planned gamma-ray observatory. CTA will incorporate about 100 imaging atmospheric Cherenkov telescopes (IACTs) at a Southern site, and about 20 in the North. Previous IACT experiments have used up to five telescopes. Subsequently, the design of a graphical user interface (GUI) for the operator of CTA involves new challenges. We present a GUI prototype, the concept for which is being developed in collaboration with experts from the field of Human-Computer Interaction (HCI). The prototype is based on Web technology; it incorporates a Python web server, Web Sockets and graphics generated with the d3.js Javascript library.
The PyRosetta Toolkit: a graphical user interface for the Rosetta software suite.
Adolf-Bryfogle, Jared; Dunbrack, Roland L
2013-01-01
The Rosetta Molecular Modeling suite is a command-line-only collection of applications that enable high-resolution modeling and design of proteins and other molecules. Although extremely useful, Rosetta can be difficult to learn for scientists with little computational or programming experience. To that end, we have created a Graphical User Interface (GUI) for Rosetta, called the PyRosetta Toolkit, for creating and running protocols in Rosetta for common molecular modeling and protein design tasks and for analyzing the results of Rosetta calculations. The program is highly extensible so that developers can add new protocols and analysis tools to the PyRosetta Toolkit GUI.
NASA Astrophysics Data System (ADS)
Burow, Christoph; Kreutzer, Sebastian; Dietze, Michael; Fuchs, Margret C.; Schmidt, Christoph; Fischer, Manfred; Brückner, Helmut
2017-04-01
Since the release of the R package 'Luminescence' (Kreutzer et al., 2012) the functionality of the package has been greatly enhanced by implementing further functions for measurement data processing, statistical analysis and graphical output. Despite its capabilities for complex and non-standard analysis of luminescence data, working with the command-line interface (CLI) of R can be tedious at best and overwhelming at worst, especially for users without experience in programming languages. Even though much work is put into simplifying the usage of the package to continuously lower the entry threshold, at least basic knowledge of R will always be required. Thus, the potential user base of the package cannot be exhausted, at least as long as the CLI is the only means of utilising the 'Luminescence' package. But even experienced users may find it tedious to iteratively run a function until a satisfying results is produced. For example, plotting data is also at least partly subject to personal aesthetic tastes in accordance with the information it is supposed to convey and iterating through all the possible options in the R CLI can be a time-consuming task. An alternative approach to the CLI is the graphical user interface (GUI), which allows direct, interactive manipulation and interaction with the underlying software. For users with little or no experience with command-lines a GUI offers intuitive access that counteracts the perceived steep learning curve of a CLI. Even though R lacks native support for GUI functions, its capabilities of linking it to other programming languages allows to utilise external frameworks to build graphical user interfaces. A recent attempt to provide a GUI toolkit for R was the introduction of the 'shiny' package (Chang et al., 2016), which allows automatic construction of HTML, CSS and JavaScript based user interfaces straight from R. Here, we give (1) a brief introduction to the 'shiny' framework for R, before we (2) present a GUI for the R package 'Luminescence' in the form of interactive web applications. These applications can be accessed online so that a user is not even required to have a local installation of R and which provide access to most of the plotting functions of the R package 'Luminescence'. These functionalities will be demonstrated live during the PICO session. References Chang, W., Cheng, J., Allaire, JJ., Xie, Y., McPherson, J., 2016. shiny: Web Application Framework for R. R package version 0.13.2. https://CRAN.R-project.org/package=shiny Kreutzer, S., Schmidt, C., Fuchs, M.C., Dietze, M., Fischer, M., Fuchs, M., 2012. Introducing an R package for luminescence dating analysis. Ancient TL, 30: 1-8, 2012.
Traffic Generator (TrafficGen) Version 1.4.2: Users Guide
2016-06-01
events, the user has to enter them manually . We will research and implement a way to better define and organize the multicast addresses so they can be...the network with Transmission Control Protocol and User Datagram Protocol Internet Protocol traffic. Each node generating network traffic in an...TrafficGen Graphical User Interface (GUI) 3 3.1 Anatomy of the User Interface 3 3.2 Scenario Configuration and MGEN Files 4 4. Working with
Graphic Interfaces and Online Information.
ERIC Educational Resources Information Center
Percival, J. Mark
1990-01-01
Discusses the growing importance of the use of Graphic User Interfaces (GUIs) with microcomputers and online services. Highlights include the development of graphics interfacing with microcomputers; CD-ROM databases; an evaluation of HyperCard as a potential interface to electronic mail and online commercial databases; and future possibilities.…
DockoMatic 2.0: High Throughput Inverse Virtual Screening and Homology Modeling
Bullock, Casey; Cornia, Nic; Jacob, Reed; Remm, Andrew; Peavey, Thomas; Weekes, Ken; Mallory, Chris; Oxford, Julia T.; McDougal, Owen M.; Andersen, Timothy L.
2013-01-01
DockoMatic is a free and open source application that unifies a suite of software programs within a user-friendly Graphical User Interface (GUI) to facilitate molecular docking experiments. Here we describe the release of DockoMatic 2.0; significant software advances include the ability to: (1) conduct high throughput Inverse Virtual Screening (IVS); (2) construct 3D homology models; and (3) customize the user interface. Users can now efficiently setup, start, and manage IVS experiments through the DockoMatic GUI by specifying a receptor(s), ligand(s), grid parameter file(s), and docking engine (either AutoDock or AutoDock Vina). DockoMatic automatically generates the needed experiment input files and output directories, and allows the user to manage and monitor job progress. Upon job completion, a summary of results is generated by Dockomatic to facilitate interpretation by the user. DockoMatic functionality has also been expanded to facilitate the construction of 3D protein homology models using the Timely Integrated Modeler (TIM) wizard. The wizard TIM provides an interface that accesses the basic local alignment search tool (BLAST) and MODELLER programs, and guides the user through the necessary steps to easily and efficiently create 3D homology models for biomacromolecular structures. The DockoMatic GUI can be customized by the user, and the software design makes it relatively easy to integrate additional docking engines, scoring functions, or third party programs. DockoMatic is a free comprehensive molecular docking software program for all levels of scientists in both research and education. PMID:23808933
Using R in Introductory Statistics Courses with the pmg Graphical User Interface
ERIC Educational Resources Information Center
Verzani, John
2008-01-01
The pmg add-on package for the open source statistics software R is described. This package provides a simple to use graphical user interface (GUI) that allows introductory statistics students, without advanced computing skills, to quickly create the graphical and numeric summaries expected of them. (Contains 9 figures.)
Graphical user interface for a dual-module EMCCD x-ray detector array
NASA Astrophysics Data System (ADS)
Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K.; Bednarek, Daniel R.; Rudin, Stephen
2011-03-01
A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000x to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2kx1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.
Trans-Interface Optical Communication (TIOC)
2008-01-01
communication interface 4. Bitmap stream creation 5. Display thread 6. DMD activeX control 7. DMD communication 8. System timing/control 9...o DMD activeX control o DMD communication o System timing/control o Graphical user interface (GUI) • All components are available for
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Hu, Shaowen; Nounu, Hatem N.; Cucinotta, Francis A.
2010-01-01
Solar particle events (SPEs) pose the risk of acute radiation sickness (ARS) to astronauts, because organ doses from large SPEs may reach critical levels during extra vehicular activities (EVAs) or lightly shielded spacecraft. NASA has developed an organ dose projection model of Baryon transport code (BRYNTRN) with an output data processing module of SUMDOSE, and a probabilistic model of acute radiation risk (ARR). BRYNTRN code operation requires extensive input preparation, and the risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. With a graphical user interface (GUI) to handle input and output for BRYNTRN, these response models can be connected easily and correctly to BRYNTRN in a user friendly way. The GUI for the Acute Radiation Risk and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations required for operations of the ARRBOD modules: BRYNTRN, SUMDOSE, and the ARR probabilistic response model. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations directorate (MOD), and space biophysics researchers. Assessment of astronauts organ doses and ARS from the exposure to historically large SPEs is in support of mission design and operation planning to avoid ARS and stay within the current NASA short-term dose limits. The ARRBOD GUI will serve as a proof-of-concept for future integration of other risk projection models for human space applications. We present an overview of the ARRBOD GUI product, which is a new self-contained product, for the major components of the overall system, subsystem interconnections, and external interfaces.
2014-01-01
Background RNA sequencing (RNA-seq) is emerging as a critical approach in biological research. However, its high-throughput advantage is significantly limited by the capacity of bioinformatics tools. The research community urgently needs user-friendly tools to efficiently analyze the complicated data generated by high throughput sequencers. Results We developed a standalone tool with graphic user interface (GUI)-based analytic modules, known as eRNA. The capacity of performing parallel processing and sample management facilitates large data analyses by maximizing hardware usage and freeing users from tediously handling sequencing data. The module miRNA identification” includes GUIs for raw data reading, adapter removal, sequence alignment, and read counting. The module “mRNA identification” includes GUIs for reference sequences, genome mapping, transcript assembling, and differential expression. The module “Target screening” provides expression profiling analyses and graphic visualization. The module “Self-testing” offers the directory setups, sample management, and a check for third-party package dependency. Integration of other GUIs including Bowtie, miRDeep2, and miRspring extend the program’s functionality. Conclusions eRNA focuses on the common tools required for the mapping and quantification analysis of miRNA-seq and mRNA-seq data. The software package provides an additional choice for scientists who require a user-friendly computing environment and high-throughput capacity for large data analysis. eRNA is available for free download at https://sourceforge.net/projects/erna/?source=directory. PMID:24593312
Yuan, Tiezheng; Huang, Xiaoyi; Dittmar, Rachel L; Du, Meijun; Kohli, Manish; Boardman, Lisa; Thibodeau, Stephen N; Wang, Liang
2014-03-05
RNA sequencing (RNA-seq) is emerging as a critical approach in biological research. However, its high-throughput advantage is significantly limited by the capacity of bioinformatics tools. The research community urgently needs user-friendly tools to efficiently analyze the complicated data generated by high throughput sequencers. We developed a standalone tool with graphic user interface (GUI)-based analytic modules, known as eRNA. The capacity of performing parallel processing and sample management facilitates large data analyses by maximizing hardware usage and freeing users from tediously handling sequencing data. The module miRNA identification" includes GUIs for raw data reading, adapter removal, sequence alignment, and read counting. The module "mRNA identification" includes GUIs for reference sequences, genome mapping, transcript assembling, and differential expression. The module "Target screening" provides expression profiling analyses and graphic visualization. The module "Self-testing" offers the directory setups, sample management, and a check for third-party package dependency. Integration of other GUIs including Bowtie, miRDeep2, and miRspring extend the program's functionality. eRNA focuses on the common tools required for the mapping and quantification analysis of miRNA-seq and mRNA-seq data. The software package provides an additional choice for scientists who require a user-friendly computing environment and high-throughput capacity for large data analysis. eRNA is available for free download at https://sourceforge.net/projects/erna/?source=directory.
2011-06-01
file – Open source at http://c4i.gmu.edu/BML 10 BMLC2GUI ICCRTS’11-175 BML C2 GUI Scripted BML Web Service v2 09F- SIW -015 11 ! BML C2...BMLC2GUI ICCRTS’11-175 17 Publish/Subscribe Architecture BMLC2GUI ICCRTS’11-175 SBML in NATO MSG-048 • Paper 10S- SIW -049 describes a significant...from C2LG GUI: – Open resource – Quick response to changes – Ease of use – Low development cost Scripted BML Web Service v2 09F- SIW -015
Spatial Modeling Tools for Cell Biology
2006-10-01
multiphysics modeling expertise. A graphical user interface (GUI) for CoBi, JCoBi, was written in Java and interactive 3D graphics. CoBi has been...tools (C++ and Java ) to simulate complex cell and organ biology problems. CoBi has been designed to interact with the other Bio-SPICE software...fall of 2002. VisIt supports C++, Python and Java interfaces. The C++ and Java interfaces make it possible to provide alternate user interfaces for
NASA Technical Reports Server (NTRS)
Szczur, Martha R.
1991-01-01
The Transportable Applications Environment (TAE) Plus, developed at GSFC, is an advanced portable user interface development environment which simplifies the process of creating and managing complex application graphical user interfaces (GUI's), supports prototyping, allows applications to be ported easily between different platforms and encourages appropriate levels of user interface consistency between applications. The following topics are discussed: the capabilities of the TAE Plus tool; how the implementation has utilized state-of-the-art technologies within graphic workstations; and how it has been used both within and outside of NASA.
Network and user interface for PAT DOME virtual motion environment system
NASA Technical Reports Server (NTRS)
Worthington, J. W.; Duncan, K. M.; Crosier, W. G.
1993-01-01
The Device for Orientation and Motion Environments Preflight Adaptation Trainer (DOME PAT) provides astronauts a virtual microgravity sensory environment designed to help alleviate tye symptoms of space motion sickness (SMS). The system consists of four microcomputers networked to provide real time control, and an image generator (IG) driving a wide angle video display inside a dome structure. The spherical display demands distortion correction. The system is currently being modified with a new graphical user interface (GUI) and a new Silicon Graphics IG. This paper will concentrate on the new GUI and the networking scheme. The new GUI eliminates proprietary graphics hardware and software, and instead makes use of standard and low cost PC video (CGA) and off the shelf software (Microsoft's Quick C). Mouse selection for user input is supported. The new Silicon Graphics IG requires an Ethernet interface. The microcomputer known as the Real Time Controller (RTC), which has overall control of the system and is written in Ada, was modified to use the free public domain NCSA Telnet software for Ethernet communications with the Silicon Graphics IG. The RTC also maintains the original ARCNET communications through Novell Netware IPX with the rest of the system. The Telnet TCP/IP protocol was first used for real-time communication, but because of buffering problems the Telnet datagram (UDP) protocol needed to be implemented. Since the Telnet modules are written in C, the Adap pragma 'Interface' was used to interface with the network calls.
Multiple-Objective Stepwise Calibration Using Luca
Hay, Lauren E.; Umemoto, Makiko
2007-01-01
This report documents Luca (Let us calibrate), a multiple-objective, stepwise, automated procedure for hydrologic model calibration and the associated graphical user interface (GUI). Luca is a wizard-style user-friendly GUI that provides an easy systematic way of building and executing a calibration procedure. The calibration procedure uses the Shuffled Complex Evolution global search algorithm to calibrate any model compiled with the U.S. Geological Survey's Modular Modeling System. This process assures that intermediate and final states of the model are simulated consistently with measured values.
Geospatial application of the Water Erosion Prediction Project (WEPP) model
D. C. Flanagan; J. R. Frankenberger; T. A. Cochrane; C. S. Renschler; W. J. Elliot
2013-01-01
At the hillslope profile and/or field scale, a simple Windows graphical user interface (GUI) is available to easily specify the slope, soil, and management inputs for application of the USDA Water Erosion Prediction Project (WEPP) model. Likewise, basic small watershed configurations of a few hillslopes and channels can be created and simulated with this GUI. However,...
General Mission Analysis Tool (GMAT) Architectural Specification. Draft
NASA Technical Reports Server (NTRS)
Hughes, Steven P.; Conway, Darrel, J.
2007-01-01
Early in 2002, Goddard Space Flight Center (GSFC) began to identify requirements for the flight dynamics software needed to fly upcoming missions that use formations of spacecraft to collect data. These requirements ranged from low level modeling features to large scale interoperability requirements. In 2003 we began work on a system designed to meet these requirement; this system is GMAT. The General Mission Analysis Tool (GMAT) is a general purpose flight dynamics modeling tool built on open source principles. The GMAT code is written in C++, and uses modern C++ constructs extensively. GMAT can be run through either a fully functional Graphical User Interface (GUI) or as a command line program with minimal user feedback. The system is built and runs on Microsoft Windows, Linux, and Macintosh OS X platforms. The GMAT GUI is written using wxWidgets, a cross platform library of components that streamlines the development and extension of the user interface Flight dynamics modeling is performed in GMAT by building components that represent the players in the analysis problem that is being modeled. These components interact through the sequential execution of instructions, embodied in the GMAT Mission Sequence. A typical Mission Sequence will model the trajectories of a set of spacecraft evolving over time, calculating relevant parameters during this propagation, and maneuvering individual spacecraft to maintain a set of mission constraints as established by the mission analyst. All of the elements used in GMAT for mission analysis can be viewed in the GMAT GUI or through a custom scripting language. Analysis problems modeled in GMAT are saved as script files, and these files can be read into GMAT. When a script is read into the GMAT GUI, the corresponding user interface elements are constructed in the GMAT GUI. The GMAT system was developed from the ground up to run in a platform agnostic environment. The source code compiles on numerous different platforms, and is regularly exercised running on Windows, Linux and Macintosh computers by the development and analysis teams working on the project. The system can be run using either a graphical user interface, written using the open source wxWidgets framework, or from a text console. The GMAT source code was written using open source tools. GSFC has released the code using the NASA open source license.
MYRaf: An Easy Aperture Photometry GUI for IRAF
NASA Astrophysics Data System (ADS)
Niaei, M. S.; KiliÇ, Y.; Özeren, F. F.
2015-07-01
We describe the design and development of MYRaf, a GUI (Graphical User Interface) that aims to be completely open-source under General Public License (GPL). MYRaf is an easy to use, reliable, and a fast IRAF aperture photometry GUI tool for those who are conversant with text-based software and command-line procedures in GNU/Linux OSs. MYRaf uses IRAF, PyRAF, matplotlib, ginga, alipy, and SExtractor with the general-purpose and high-level programming language Python, and uses the Qt framework.
An interactive HTML ocean nowcast GUI based on Perl and JavaScript
NASA Astrophysics Data System (ADS)
Sakalaukus, Peter J.; Fox, Daniel N.; Louise Perkins, A.; Smedstad, Lucy F.
1999-02-01
We describe the use of Hyper Text Markup Language (HTML), JavaScript code, and Perl I/O to create and validate forms in an Internet-based graphical user interface (GUI) for the Naval Research Laboratory (NRL) Ocean models and Assimilation Demonstration System (NOMADS). The resulting nowcast system can be operated from any compatible browser across the Internet, for although the GUI was prepared in a Netscape browser, it used no Netscape extensions. Code available at: http://www.iamg.org/CGEditor/index.htm
TADS: A CFD-based turbomachinery and analysis design system with GUI. Volume 2: User's manual
NASA Technical Reports Server (NTRS)
Myers, R. A.; Topp, D. A.; Delaney, R. A.
1995-01-01
The primary objective of this study was the development of a computational fluid dynamics (CFD) based turbomachinery airfoil analysis and design system, controlled by a graphical user interface (GUI). The computer codes resulting from this effort are referred to as the Turbomachinery Analysis and Design System (TADS). This document is intended to serve as a user's manual for the computer programs which comprise the TADS system. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of various programs was done in a way that alternative solvers or grid generators could be easily incorporated into the TADS framework.
Winston, Richard B.; Voss, Clifford I.
2004-01-01
This report describes SutraGUI, a flexible graphical user-interface (GUI) that supports two-dimensional (2D) and three-dimensional (3D) simulation with the U.S. Geological Survey (USGS) SUTRA ground-water-flow and transport model (Voss and Provost, 2002). SutraGUI allows the user to create SUTRA ground-water models graphically. SutraGUI provides all of the graphical functionality required for setting up and running SUTRA simulations that range from basic to sophisticated, but it is also possible for advanced users to apply programmable features within Argus ONE to meet the unique demands of particular ground-water modeling projects. SutraGUI is a public-domain computer program designed to run with the proprietary Argus ONE? package, which provides 2D Geographic Information System (GIS) and meshing support. For 3D simulation, GIS and meshing support is provided by programming contained within SutraGUI. When preparing a 3D SUTRA model, the model and all of its features are viewed within Argus 1 in 2D projection. For 2D models, SutraGUI is only slightly changed in functionality from the previous 2D-only version (Voss and others, 1997) and it provides visualization of simulation results. In 3D, only model preparation is supported by SutraGUI, and 3D simulation results may be viewed in SutraPlot (Souza, 1999) or Model Viewer (Hsieh and Winston, 2002). A comprehensive online Help system is included in SutraGUI. For 3D SUTRA models, the 3D model domain is conceptualized as bounded on the top and bottom by 2D surfaces. The 3D domain may also contain internal surfaces extending across the model that divide the domain into tabular units, which can represent hydrogeologic strata or other features intended by the user. These surfaces can be non-planar and non-horizontal. The 3D mesh is defined by one or more 2D meshes at different elevations that coincide with these surfaces. If the nodes in the 3D mesh are vertically aligned, only a single 2D mesh is needed. For nonaligned meshes, two or more 2D meshes of similar connectivity are used. Between each set of 2D meshes (and model surfaces), the vertical space in the 3D mesh is evenly divided into a user-specified number of layers of finite elements. Boundary conditions may be specified for 3D models in SutraGUI using a variety of geometric shapes that may be located freely within the 3D model domain. These shapes include points, lines, sheets, and solids. These are represented by 2D contours (within the vertically-projected Argus ONE view) with user-defined elevations. In addition, boundary conditions may be specified for 3D models as points, lines, and areas that are located exactly within the surfaces that define the model top and the bottoms of the tabular units. Aquifer properties may be specified separately for each tabular unit. If the aquifer properties vary vertically within a unit, SutraGUI provides the Sutra_Z function that can be used to specify such variation.
Method and apparatus for automatic control of a humanoid robot
NASA Technical Reports Server (NTRS)
Abdallah, Muhammad E (Inventor); Platt, Robert (Inventor); Wampler, II, Charles W. (Inventor); Sanders, Adam M (Inventor); Reiland, Matthew J (Inventor)
2013-01-01
A robotic system includes a humanoid robot having a plurality of joints adapted for force control with respect to an object acted upon by the robot, a graphical user interface (GUI) for receiving an input signal from a user, and a controller. The GUI provides the user with intuitive programming access to the controller. The controller controls the joints using an impedance-based control framework, which provides object level, end-effector level, and/or joint space-level control of the robot in response to the input signal. A method for controlling the robotic system includes receiving the input signal via the GUI, e.g., a desired force, and then processing the input signal using a host machine to control the joints via an impedance-based control framework. The framework provides object level, end-effector level, and/or joint space-level control of the robot, and allows for functional-based GUI to simplify implementation of a myriad of operating modes.
Graphical User Interface for a Dual-Module EMCCD X-ray Detector Array.
Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K; Bednarek, Daniel R; Rudin, Stephen
2011-03-16
A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000× to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2k×1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.
Pasternack, Jordan B.; Howell, Roger W.
2012-01-01
The temporal variations in absorbed dose rates to organs and tissues in the body are very large in diagnostic and therapeutic nuclear medicine. The response of biological endpoints of relevance to radiation safety and therapeutic efficacy are generally modulated by dose rate. Therefore, it is important to understand how the complex dose rate patterns encountered in nuclear medicine impact relevant biological responses. Accordingly, a graphical user interface (GUI) was created to control a cesium-137 irradiator to deliver such dose rate patterns. Methods Visual Basic 6.0 was used to create a user-friendly GUI to control the dose rate by varying the thickness of a mercury attenuator. The GUI facilitates the delivery of a number of dose rate patterns including constant, exponential increase or decrease, and multi-component exponential. Extensive visual feedback is provided by the GUI during both the planning and delivery stages. Results The GUI controlled irradiator can achieve a maximum dose rate of 40 cGy/hr and a minimum dose rate of 0.01 cGy/hr. Addition of machined lead blocks can be used to further reduce the minimum dose rate to 0.0001 cGy/hr. Measured dose rate patterns differed from programmed dose rate patterns in total dose by 3.2% to 8.4%. Conclusion The GUI controlled irradiator is able to accurately create dose rate patterns encountered in nuclear medicine and other related fields. This makes it an invaluable tool for studying the effects of chronic constant and variable low dose rates on biological tissues in the contexts of both radiation protection and clinical administration of internal radionuclides. PMID:23265668
Pasternack, Jordan B; Howell, Roger W
2013-02-01
The temporal variations in absorbed dose rates to organs and tissues in the body are very large in diagnostic and therapeutic nuclear medicine. The response of biological endpoints of relevance to radiation safety and therapeutic efficacy is generally modulated by dose rate. Therefore, it is important to understand how the complex dose rate patterns encountered in nuclear medicine impact relevant biological responses. Accordingly, a graphical user interface (GUI) was created to control a cesium-137 irradiator to deliver such dose rate patterns. Visual Basic 6.0 was used to create a user-friendly GUI to control the dose rate by varying the thickness of a mercury attenuator. The GUI facilitates the delivery of a number of dose rate patterns including constant, exponential increase or decrease, and multi-component exponential. Extensive visual feedback is provided by the GUI during both the planning and delivery stages. The GUI controlled irradiator can achieve a maximum dose rate of 40 cGy/h and a minimum dose rate of 0.01 cGy/h. Addition of machined lead blocks can be used to further reduce the minimum dose rate to 0.0001 cGy/h. Measured dose rate patterns differed from programmed dose rate patterns in total dose by 3.2% to 8.4%. The GUI controlled irradiator is able to accurately create dose rate patterns encountered in nuclear medicine and other related fields. This makes it an invaluable tool for studying the effects of chronic constant and variable low dose rates on biological tissues in the contexts of both radiation protection and clinical administration of internal radionuclides. Copyright © 2013 Elsevier Inc. All rights reserved.
BioPCD - A Language for GUI Development Requiring a Minimal Skill Set.
Alvare, Graham Gm; Roche-Lima, Abiel; Fristensky, Brian
2012-11-01
BioPCD is a new language whose purpose is to simplify the creation of Graphical User Interfaces (GUIs) by biologists with minimal programming skills. The first step in developing BioPCD was to create a minimal superset of the language referred to as PCD (Pythonesque Command Description). PCD defines the core of terminals and high-level nonterminals required to describe data of almost any type. BioPCD adds to PCD the constructs necessary to describe GUI components and the syntax for executing system commands. BioPCD is implemented using JavaCC to convert the grammar into code. BioPCD is designed to be terse and readable and simple enough to be learned by copying and modifying existing BioPCD files. We demonstrate that BioPCD can easily be used to generate GUIs for existing command line programs. Although BioPCD was designed to make it easier to run bioinformatics programs, it could be used in any domain in which many useful command line programs exist that do not have GUI interfaces.
Ward, Logan; Steel, James; Le Compte, Aaron; Evans, Alicia; Tan, Chia-Siong; Penning, Sophie; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey
2012-01-01
Tight glycemic control (TGC) has shown benefits but has been difficult to implement. Model-based methods and computerized protocols offer the opportunity to improve TGC quality and compliance. This research presents an interface design to maximize compliance, minimize real and perceived clinical effort, and minimize error based on simple human factors and end user input. The graphical user interface (GUI) design is presented by construction based on a series of simple, short design criteria based on fundamental human factors engineering and includes the use of user feedback and focus groups comprising nursing staff at Christchurch Hospital. The overall design maximizes ease of use and minimizes (unnecessary) interaction and use. It is coupled to a protocol that allows nurse staff to select measurement intervals and thus self-manage workload. The overall GUI design is presented and requires only one data entry point per intervention cycle. The design and main interface are heavily focused on the nurse end users who are the predominant users, while additional detailed and longitudinal data, which are of interest to doctors guiding overall patient care, are available via tabs. This dichotomy of needs and interests based on the end user's immediate focus and goals shows how interfaces must adapt to offer different information to multiple types of users. The interface is designed to minimize real and perceived clinical effort, and ongoing pilot trials have reported high levels of acceptance. The overall design principles, approach, and testing methods are based on fundamental human factors principles designed to reduce user effort and error and are readily generalizable. © 2012 Diabetes Technology Society.
Ward, Logan; Steel, James; Le Compte, Aaron; Evans, Alicia; Tan, Chia-Siong; Penning, Sophie; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey
2012-01-01
Introduction Tight glycemic control (TGC) has shown benefits but has been difficult to implement. Model-based methods and computerized protocols offer the opportunity to improve TGC quality and compliance. This research presents an interface design to maximize compliance, minimize real and perceived clinical effort, and minimize error based on simple human factors and end user input. Method The graphical user interface (GUI) design is presented by construction based on a series of simple, short design criteria based on fundamental human factors engineering and includes the use of user feedback and focus groups comprising nursing staff at Christchurch Hospital. The overall design maximizes ease of use and minimizes (unnecessary) interaction and use. It is coupled to a protocol that allows nurse staff to select measurement intervals and thus self-manage workload. Results The overall GUI design is presented and requires only one data entry point per intervention cycle. The design and main interface are heavily focused on the nurse end users who are the predominant users, while additional detailed and longitudinal data, which are of interest to doctors guiding overall patient care, are available via tabs. This dichotomy of needs and interests based on the end user's immediate focus and goals shows how interfaces must adapt to offer different information to multiple types of users. Conclusions The interface is designed to minimize real and perceived clinical effort, and ongoing pilot trials have reported high levels of acceptance. The overall design principles, approach, and testing methods are based on fundamental human factors principles designed to reduce user effort and error and are readily generalizable. PMID:22401330
Truong, Dennis Q; Hüber, Mathias; Xie, Xihe; Datta, Abhishek; Rahman, Asif; Parra, Lucas C; Dmochowski, Jacek P; Bikson, Marom
2014-01-01
Computational models of brain current flow during transcranial electrical stimulation (tES), including transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS), are increasingly used to understand and optimize clinical trials. We propose that broad dissemination requires a simple graphical user interface (GUI) software that allows users to explore and design montages in real-time, based on their own clinical/experimental experience and objectives. We introduce two complimentary open-source platforms for this purpose: BONSAI and SPHERES. BONSAI is a web (cloud) based application (available at neuralengr.com/bonsai) that can be accessed through any flash-supported browser interface. SPHERES (available at neuralengr.com/spheres) is a stand-alone GUI application that allow consideration of arbitrary montages on a concentric sphere model by leveraging an analytical solution. These open-source tES modeling platforms are designed go be upgraded and enhanced. Trade-offs between open-access approaches that balance ease of access, speed, and flexibility are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.
Web Program for Development of GUIs for Cluster Computers
NASA Technical Reports Server (NTRS)
Czikmantory, Akos; Cwik, Thomas; Klimeck, Gerhard; Hua, Hook; Oyafuso, Fabiano; Vinyard, Edward
2003-01-01
WIGLAF (a Web Interface Generator and Legacy Application Facade) is a computer program that provides a Web-based, distributed, graphical-user-interface (GUI) framework that can be adapted to any of a broad range of application programs, written in any programming language, that are executed remotely on any cluster computer system. WIGLAF enables the rapid development of a GUI for controlling and monitoring a specific application program running on the cluster and for transferring data to and from the application program. The only prerequisite for the execution of WIGLAF is a Web-browser program on a user's personal computer connected with the cluster via the Internet. WIGLAF has a client/server architecture: The server component is executed on the cluster system, where it controls the application program and serves data to the client component. The client component is an applet that runs in the Web browser. WIGLAF utilizes the Extensible Markup Language to hold all data associated with the application software, Java to enable platform-independent execution on the cluster system and the display of a GUI generator through the browser, and the Java Remote Method Invocation software package to provide simple, effective client/server networking.
A NEW GUI FOR GLOBAL ORBIT CORRECTION AT THE ALS USING MATLAB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pachikara, J.; Portmann, G.
2007-01-01
Orbit correction is a vital procedure at particle accelerators around the world. The orbit correction routine currently used at the Advanced Light Source (ALS) is a bit cumbersome and a new Graphical User Interface (GUI) has been developed using MATLAB. The correction algorithm uses a singular value decomposition method for calculating the required corrector magnet changes for correcting the orbit. The application has been successfully tested at the ALS. The GUI display provided important information regarding the orbit including the orbit errors before and after correction, the amount of corrector magnet strength change, and the standard deviation of the orbitmore » error with respect to the number of singular values used. The use of more singular values resulted in better correction of the orbit error but at the expense of enormous corrector magnet strength changes. The results showed an inverse relationship between the peak-to-peak values of the orbit error and the number of singular values used. The GUI interface helps the ALS physicists and operators understand the specifi c behavior of the orbit. The application is convenient to use and is a substantial improvement over the previous orbit correction routine in terms of user friendliness and compactness.« less
NASA Astrophysics Data System (ADS)
Liu, Margaret; Loo, Jerry; Ma, Kevin; Liu, Brent
2011-03-01
Multiple sclerosis (MS) is a debilitating autoimmune disease of the central nervous system that damages axonal pathways through inflammation and demyelination. In order to address the need for a centralized application to manage and study MS patients, the MS e-Folder - a web-based, disease-specific electronic medical record system - was developed. The e-Folder has a PHP and MySQL based graphical user interface (GUI) that can serve as both a tool for clinician decision support and a data mining tool for researchers. This web-based GUI gives the e-Folder a user friendly interface that can be securely accessed through the internet and requires minimal software installation on the client side. The e-Folder GUI displays and queries patient medical records--including demographic data, social history, past medical history, and past MS history. In addition, DICOM format imaging data, and computer aided detection (CAD) results from a lesion load algorithm are also displayed. The GUI interface is dynamic and allows manipulation of the DICOM images, such as zoom, pan, and scrolling, and the ability to rotate 3D images. Given the complexity of clinical management and the need to bolster research in MS, the MS e-Folder system will improve patient care and provide MS researchers with a function-rich patient data hub.
NASA Technical Reports Server (NTRS)
Barry, Matthew R.
2006-01-01
The X-Windows Socket Widget Class ("Class" is used here in the object-oriented-programming sense of the word) was devised to simplify the task of implementing network connections for graphical-user-interface (GUI) computer programs. UNIX Transmission Control Protocol/Internet Protocol (TCP/IP) socket programming libraries require many method calls to configure, operate, and destroy sockets. Most X Windows GUI programs use widget sets or toolkits to facilitate management of complex objects. The widget standards facilitate construction of toolkits and application programs. The X-Windows Socket Widget Class encapsulates UNIX TCP/IP socket-management tasks within the framework of an X Windows widget. Using the widget framework, X Windows GUI programs can treat one or more network socket instances in the same manner as that of other graphical widgets, making it easier to program sockets. Wrapping ISP socket programming libraries inside a widget framework enables a programmer to treat a network interface as though it were a GUI.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wooten, Hasani Omar; Aslam, Tariq Dennis; Whitley, Von Howard
A graphical user interface (GUI) tool has been developed that facilitates the visualization and analysis of the Chapman-Jouguet state for high explosives gaseous products using the Jones- Wilkins-Lee equation of state.
GUI for Computational Simulation of a Propellant Mixer
NASA Technical Reports Server (NTRS)
Figueroa, Fernando; Richter, Hanz; Barbieri, Enrique; Granger, Jamie
2005-01-01
Control Panel is a computer program that generates a graphical user interface (GUI) for computational simulation of a rocket-test-stand propellant mixer in which gaseous hydrogen (GH2) is injected into flowing liquid hydrogen (LH2) to obtain a combined flow having desired thermodynamic properties. The GUI is used in conjunction with software that models the mixer as a system having three inputs (the positions of the GH2 and LH2 inlet valves and an outlet valve) and three outputs (the pressure inside the mixer and the outlet flow temperature and flow rate). The user can specify valve characteristics and thermodynamic properties of the input fluids via userfriendly dialog boxes. The user can enter temporally varying input values or temporally varying desired output values. The GUI provides (1) a set-point calculator function for determining fixed valve positions that yield desired output values and (2) simulation functions that predict the response of the mixer to variations in the properties of the LH2 and GH2 and manual- or feedback-control variations in valve positions. The GUI enables scheduling of a sequence of operations that includes switching from manual to feedback control when a certain event occurs.
Next Gen One Portal Usability Evaluation
NASA Technical Reports Server (NTRS)
Cross, E. V., III; Perera, J. S.; Hanson, A. M.; English, K.; Vu, L.; Amonette, W.
2018-01-01
Each exercise device on the International Space Station (ISS) has a unique, customized software system interface with unique layouts / hierarchy, and operational principles that require significant crew training. Furthermore, the software programs are not adaptable and provide no real-time feedback or motivation to enhance the exercise experience and/or prevent injuries. Additionally, the graphical user interfaces (GUI) of these systems present information through multiple layers resulting in difficulty navigating to the desired screens and functions. These limitations of current exercise device GUI's lead to increased crew time spent on initiating, loading, performing exercises, logging data and exiting the system. To address these limitations a Next Generation One Portal (NextGen One Portal) Crew Countermeasure System (CMS) was developed, which utilizes the latest industry guidelines in GUI designs to provide an intuitive ease of use approach (i.e., 80% of the functionality gained within 5-10 minutes of initial use without/limited formal training required). This is accomplished by providing a consistent interface using common software to reduce crew training, increase efficiency & user satisfaction while also reducing development & maintenance costs. Results from the usability evaluations showed the NextGen One Portal UI having greater efficiency, learnability, memorability, usability and overall user experience than the current Advanced Resistive Exercise Device (ARED) UI used by astronauts on ISS. Specifically, the design of the One-Portal UI as an app interface similar to those found on the Apple and Google's App Store, assisted many of the participants in grasping the concepts of the interface with minimum training. Although the NextGen One-Portal UI was shown to be an overall better interface, observations by the test facilitators noted specific exercise tasks appeared to have a significant impact on the NextGen One-Portal UI efficiency. Future updates to the NextGen One Portal UI will address these inefficiencies.
SUGAR: graphical user interface-based data refiner for high-throughput DNA sequencing.
Sato, Yukuto; Kojima, Kaname; Nariai, Naoki; Yamaguchi-Kabata, Yumi; Kawai, Yosuke; Takahashi, Mamoru; Mimori, Takahiro; Nagasaki, Masao
2014-08-08
Next-generation sequencers (NGSs) have become one of the main tools for current biology. To obtain useful insights from the NGS data, it is essential to control low-quality portions of the data affected by technical errors such as air bubbles in sequencing fluidics. We develop a software SUGAR (subtile-based GUI-assisted refiner) which can handle ultra-high-throughput data with user-friendly graphical user interface (GUI) and interactive analysis capability. The SUGAR generates high-resolution quality heatmaps of the flowcell, enabling users to find possible signals of technical errors during the sequencing. The sequencing data generated from the error-affected regions of a flowcell can be selectively removed by automated analysis or GUI-assisted operations implemented in the SUGAR. The automated data-cleaning function based on sequence read quality (Phred) scores was applied to a public whole human genome sequencing data and we proved the overall mapping quality was improved. The detailed data evaluation and cleaning enabled by SUGAR would reduce technical problems in sequence read mapping, improving subsequent variant analysis that require high-quality sequence data and mapping results. Therefore, the software will be especially useful to control the quality of variant calls to the low population cells, e.g., cancers, in a sample with technical errors of sequencing procedures.
Graphical User Interface Development and Design to Support Airport Runway Configuration Management
NASA Technical Reports Server (NTRS)
Jones, Debra G.; Lenox, Michelle; Onal, Emrah; Latorella, Kara A.; Lohr, Gary W.; Le Vie, Lisa
2015-01-01
The objective of this effort was to develop a graphical user interface (GUI) for the National Aeronautics and Space Administration's (NASA) System Oriented Runway Management (SORM) decision support tool to support runway management. This tool is expected to be used by traffic flow managers and supervisors in the Airport Traffic Control Tower (ATCT) and Terminal Radar Approach Control (TRACON) facilities.
PDM and the Internet: A Look at Product Management and Its Internet Opportunities.
ERIC Educational Resources Information Center
Mendel, Alan
1997-01-01
Discusses the impact of internet technology on product data management (PDM) vendor's and the users' purchasing decisions. Internet users anticipate graphical user interface (GUI) and two-way communication which allow users to enter and modify data as well as access it. Examines PDM and the Internet: price and performance, the World Wide Web,…
TOOKUIL: A case study in user interface development for safety code application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, D.L.; Harkins, C.K.; Hoole, J.G.
1997-07-01
Traditionally, there has been a very high learning curve associated with using nuclear power plant (NPP) analysis codes. Even for seasoned plant analysts and engineers, the process of building or modifying an input model for present day NPP analysis codes is tedious, error prone, and time consuming. Current cost constraints and performance demands place an additional burden on today`s safety analysis community. Advances in graphical user interface (GUI) technology have been applied to obtain significant productivity and quality assurance improvements for the Transient Reactor Analysis Code (TRAC) input model development. KAPL Inc. has developed an X Windows-based graphical user interfacemore » named TOOKUIL which supports the design and analysis process, acting as a preprocessor, runtime editor, help system, and post processor for TRAC. This paper summarizes the objectives of the project, the GUI development process and experiences, and the resulting end product, TOOKUIL.« less
ERIC Educational Resources Information Center
Oulanov, Alexei; Pajarillo, Edmund J. Y.
2002-01-01
Describes the usability evaluation of the CUNY (City University of New York) information system in Web and Graphical User Interface (GUI) versions. Compares results to an earlier usability study of the basic information database available on CUNY's wide-area network and describes the applicability of the previous usability instrument to this…
Enhanced networks operations using the X Window System
NASA Technical Reports Server (NTRS)
Linares, Irving
1993-01-01
We propose an X Window Graphical User Interface (GUI) which is tailored to the operations of NASA GSFC's Network Control Center (NCC), the NASA Ground Terminal (NGT), the White Sands Ground Terminal (WSGT), and the Second Tracking and Data Relay Satellite System (TDRSS) Ground Terminal (STGT). The proposed GUI can also be easily extended to other Ground Network (GN) Tracking Stations due to its standardized nature.
NASA Astrophysics Data System (ADS)
Brauer, U.
2007-08-01
The Open Navigator Framework (ONF) was developed to provide a unified and scalable platform for user interface integration. The main objective for the framework was to raise usability of monitoring and control consoles and to provide a reuse of software components in different application areas. ONF is currently applied for the Columbus onboard crew interface, the commanding application for the Columbus Control Centre, the Columbus user facilities specialized user interfaces, the Mission Execution Crew Assistant (MECA) study and EADS Astrium internal R&D projects. ONF provides a well documented and proven middleware for GUI components (Java plugin interface, simplified concept similar to Eclipse). The overall application configuration is performed within a graphical user interface for layout and component selection. The end-user does not have to work in the underlying XML configuration files. ONF was optimized to provide harmonized user interfaces for monitoring and command consoles. It provides many convenience functions designed together with flight controllers and onboard crew: user defined workspaces, incl. support for multi screens efficient communication mechanism between the components integrated web browsing and documentation search &viewing consistent and integrated menus and shortcuts common logging and application configuration (properties) supervision interface for remote plugin GUI access (web based) A large number of operationally proven ONF components have been developed: Command Stack & History: Release of commands and follow up the command acknowledges System Message Panel: Browse, filter and search system messages/events Unified Synoptic System: Generic synoptic display system Situational Awareness : Show overall subsystem status based on monitoring of key parameters System Model Browser: Browse mission database defintions (measurements, commands, events) Flight Procedure Executor: Execute checklist and logical flow interactive procedures Web Browser : Integrated browser reference documentation and operations data Timeline Viewer: View master timeline as Gantt chart Search: Local search of operations products (e.g. documentation, procedures, displays) All GUI components access the underlying spacecraft data (commanding, reporting data, events, command history) via a common library providing adaptors for the current deployments (Columbus MCS, Columbus onboard Data Management System, Columbus Trainer raw packet protocol). New Adaptors are easy to develop. Currently an adaptor to SCOS 2000 is developed as part of a study for the ESTEC standardization section ("USS for ESTEC Reference Facility").
AXAF user interfaces for heterogeneous analysis environments
NASA Technical Reports Server (NTRS)
Mandel, Eric; Roll, John; Ackerman, Mark S.
1992-01-01
The AXAF Science Center (ASC) will develop software to support all facets of data center activities and user research for the AXAF X-ray Observatory, scheduled for launch in 1999. The goal is to provide astronomers with the ability to utilize heterogeneous data analysis packages, that is, to allow astronomers to pick the best packages for doing their scientific analysis. For example, ASC software will be based on IRAF, but non-IRAF programs will be incorporated into the data system where appropriate. Additionally, it is desired to allow AXAF users to mix ASC software with their own local software. The need to support heterogeneous analysis environments is not special to the AXAF project, and therefore finding mechanisms for coordinating heterogeneous programs is an important problem for astronomical software today. The approach to solving this problem has been to develop two interfaces that allow the scientific user to run heterogeneous programs together. The first is an IRAF-compatible parameter interface that provides non-IRAF programs with IRAF's parameter handling capabilities. Included in the interface is an application programming interface to manipulate parameters from within programs, and also a set of host programs to manipulate parameters at the command line or from within scripts. The parameter interface has been implemented to support parameter storage formats other than IRAF parameter files, allowing one, for example, to access parameters that are stored in data bases. An X Windows graphical user interface called 'agcl' has been developed, layered on top of the IRAF-compatible parameter interface, that provides a standard graphical mechanism for interacting with IRAF and non-IRAF programs. Users can edit parameters and run programs for both non-IRAF programs and IRAF tasks. The agcl interface allows one to communicate with any command line environment in a transparent manner and without any changes to the original environment. For example, the authors routinely layer the GUI on top of IRAF, ksh, SMongo, and IDL. The agcl, based on the facilities of a system called Answer Garden, also has sophisticated support for examining documentation and help files, asking questions of experts, and developing a knowledge base of frequently required information. Thus, the GUI becomes a total environment for running programs, accessing information, examining documents, and finding human assistance. Because the agcl can communicate with any command-line environment, most projects can make use of it easily. New applications are continually being found for these interfaces. It is the authors' intention to evolve the GUI and its underlying parameter interface in response to these needs - from users as well as developers - throughout the astronomy community. This presentation describes the capabilities and technology of the above user interface mechanisms and tools. It also discusses the design philosophies guiding the work, as well as hopes for the future.
Distributed visualization framework architecture
NASA Astrophysics Data System (ADS)
Mishchenko, Oleg; Raman, Sundaresan; Crawfis, Roger
2010-01-01
An architecture for distributed and collaborative visualization is presented. The design goals of the system are to create a lightweight, easy to use and extensible framework for reasearch in scientific visualization. The system provides both single user and collaborative distributed environment. System architecture employs a client-server model. Visualization projects can be synchronously accessed and modified from different client machines. We present a set of visualization use cases that illustrate the flexibility of our system. The framework provides a rich set of reusable components for creating new applications. These components make heavy use of leading design patterns. All components are based on the functionality of a small set of interfaces. This allows new components to be integrated seamlessly with little to no effort. All user input and higher-level control functionality interface with proxy objects supporting a concrete implementation of these interfaces. These light-weight objects can be easily streamed across the web and even integrated with smart clients running on a user's cell phone. The back-end is supported by concrete implementations wherever needed (for instance for rendering). A middle-tier manages any communication and synchronization with the proxy objects. In addition to the data components, we have developed several first-class GUI components for visualization. These include a layer compositor editor, a programmable shader editor, a material editor and various drawable editors. These GUI components interact strictly with the interfaces. Access to the various entities in the system is provided by an AssetManager. The asset manager keeps track of all of the registered proxies and responds to queries on the overall system. This allows all user components to be populated automatically. Hence if a new component is added that supports the IMaterial interface, any instances of this can be used in the various GUI components that work with this interface. One of the main features is an interactive shader designer. This allows rapid prototyping of new visualization renderings that are shader-based and greatly accelerates the development and debug cycle.
Tsukamoto, Takafumi; Yasunaga, Takuo
2014-11-01
Eos (Extensible object-oriented system) is one of the powerful applications for image processing of electron micrographs. In usual cases, Eos works with only character user interfaces (CUI) under the operating systems (OS) such as OS-X or Linux, not user-friendly. Thus, users of Eos need to be expert at image processing of electron micrographs, and have a little knowledge of computer science, as well. However, all the persons who require Eos does not an expert for CUI. Thus we extended Eos to a web system independent of OS with graphical user interfaces (GUI) by integrating web browser.Advantage to use web browser is not only to extend Eos with GUI, but also extend Eos to work under distributed computational environment. Using Ajax (Asynchronous JavaScript and XML) technology, we implemented more comfortable user-interface on web browser. Eos has more than 400 commands related to image processing for electron microscopy, and the usage of each command is different from each other. Since the beginning of development, Eos has managed their user-interface by using the interface definition file of "OptionControlFile" written in CSV (Comma-Separated Value) format, i.e., Each command has "OptionControlFile", which notes information for interface and its usage generation. Developed GUI system called "Zephyr" (Zone for Easy Processing of HYpermedia Resources) also accessed "OptionControlFIle" and produced a web user-interface automatically, because its mechanism is mature and convenient,The basic actions of client side system was implemented properly and can supply auto-generation of web-form, which has functions of execution, image preview, file-uploading to a web server. Thus the system can execute Eos commands with unique options for each commands, and process image analysis. There remain problems of image file format for visualization and workspace for analysis: The image file format information is useful to check whether the input/output file is correct and we also need to provide common workspace for analysis because the client is physically separated from a server. We solved the file format problem by extension of rules of OptionControlFile of Eos. Furthermore, to solve workspace problems, we have developed two type of system. The first system is to use only local environments. The user runs a web server provided by Eos, access to a web client through a web browser, and manipulate the local files with GUI on the web browser. The second system is employing PIONE (Process-rule for Input/Output Negotiation Environment), which is our developing platform that works under heterogenic distributed environment. The users can put their resources, such as microscopic images, text files and so on, into the server-side environment supported by PIONE, and so experts can write PIONE rule definition, which defines a workflow of image processing. PIONE run each image processing on suitable computers, following the defined rule. PIONE has the ability of interactive manipulation, and user is able to try a command with various setting values. In this situation, we contribute to auto-generation of GUI for a PIONE workflow.As advanced functions, we have developed a module to log user actions. The logs include information such as setting values in image processing, procedure of commands and so on. If we use the logs effectively, we can get a lot of advantages. For example, when an expert may discover some know-how of image processing, other users can also share logs including his know-hows and so we may obtain recommendation workflow of image analysis, if we analyze logs. To implement social platform of image processing for electron microscopists, we have developed system infrastructure, as well. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Ballester, P.
1992-01-01
MIDAS (Munich Image Data Analysis System) is the image processing system developed at ESO for astronomical data reduction. MIDAS is used for off-line data reduction at ESO and many astronomical institutes all over Europe. In addition to a set of general commands, enabling to process and analyze images, catalogs, graphics and tables, MIDAS includes specialized packages dedicated to astronomical applications or to specific ESO instruments. Several graphical interfaces are available in the MIDAS environment: XHelp provides an interactive help facility, and XLong and XEchelle enable data reduction of long-slip and echelle spectra. GUI builders facilitate the development of interfaces. All ESO interfaces comply to the ESO User Interfaces Common Conventions which secures an identical look and feel for telescope operations, data analysis, and archives.
Acute Radiation Risk and BRYNTRN Organ Dose Projection Graphical User Interface
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Hu, Shaowen; Nounu, Hateni N.; Kim, Myung-Hee
2011-01-01
The integration of human space applications risk projection models of organ dose and acute radiation risk has been a key problem. NASA has developed an organ dose projection model using the BRYNTRN with SUM DOSE computer codes, and a probabilistic model of Acute Radiation Risk (ARR). The codes BRYNTRN and SUM DOSE are a Baryon transport code and an output data processing code, respectively. The risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. With a graphical user interface (GUI) to handle input and output for BRYNTRN, the response models can be connected easily and correctly to BRYNTRN. A GUI for the ARR and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations, which are required for operations of the ARRBOD modules. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations directorate (MOD), and space biophysics researchers. BRYNTRN code operation requires extensive input preparation. Only a graphical user interface (GUI) can handle input and output for BRYNTRN to the response models easily and correctly. The purpose of the GUI development for ARRBOD is to provide seamless integration of input and output manipulations for the operations of projection modules (BRYNTRN, SLMDOSE, and the ARR probabilistic response model) in assessing the acute risk and the organ doses of significant Solar Particle Events (SPEs). The assessment of astronauts radiation risk from SPE is in support of mission design and operational planning to manage radiation risks in future space missions. The ARRBOD GUI can identify the proper shielding solutions using the gender-specific organ dose assessments in order to avoid ARR symptoms, and to stay within the current NASA short-term dose limits. The quantified evaluation of ARR severities based on any given shielding configuration and a specified EVA or other mission scenario can be made to guide alternative solutions for attaining determined objectives set by mission planners. The ARRBOD GUI estimates the whole-body effective dose, organ doses, and acute radiation sickness symptoms for astronauts, by which operational strategies and capabilities can be made for the protection of astronauts from SPEs in the planning of future lunar surface scenarios, exploration of near-Earth objects, and missions to Mars.
A cross-platform GUI to control instruments compliant with SCPI through VISA
NASA Astrophysics Data System (ADS)
Roach, Eric; Liu, Jing
2015-10-01
In nuclear physics experiments, it is necessary and important to control instruments from a PC, which automates many tasks that require human operations otherwise. Not only does this make long term measurements possible, but it also makes repetitive operations less error-prone. We created a graphical user interface (GUI) to control instruments connected to a PC through RS232, USB, LAN, etc. The GUI is developed using Qt Creator, a cross-platform integrated development environment, which makes it portable to various operating systems, including those commonly used in mobile devices. NI-VISA library is used in the back end so that the GUI can be used to control instruments connected through various I/O interfaces without any modification. Commonly used SCPI commands can be sent to different instruments using buttons, sliders, knobs, and other various widgets provided by Qt Creator. As an example, we demonstrate how we set and fetch parameters and how to retrieve and display data from an Agilent Digital Storage Oscilloscope X3034A with the GUI. Our GUI can be easily used for other instruments compliant with SCPI and VISA with little or no modification.
X-Windows Information Sharing Protocol Widget Class
NASA Technical Reports Server (NTRS)
Barry, Matthew R.
2006-01-01
The X-Windows Information Sharing Protocol (ISP) Widget Class ("Class") is used here in the object-oriented-programming sense of the word) was devised to simplify the task of implementing ISP graphical-user-interface (GUI) computer programs. ISP programming tasks require many method calls to identify, query, and interpret the connections and messages exchanged between a client and an ISP server. Most X-Windows GUI programs use widget sets or toolkits to facilitate management of complex objects. The widget standards facilitate construction of toolkits and application programs. The X-Windows Information Sharing Protocol (ISP) Widget Class encapsulates the client side of the ISP programming libraries within the framework of an X-Windows widget. Using the widget framework, X-Windows GUI programs can interact with ISP services in an abstract way and in the same manner as that of other graphical widgets, making it easier to write ISP GUI client programs. Wrapping ISP client services inside a widget framework enables a programmer to treat an ISP server interface as though it were a GUI. Moreover, an alternate subclass could implement another communication protocol in the same sort of widget.
BioPCD - A Language for GUI Development Requiring a Minimal Skill Set
Alvare, Graham GM; Roche-Lima, Abiel; Fristensky, Brian
2016-01-01
BioPCD is a new language whose purpose is to simplify the creation of Graphical User Interfaces (GUIs) by biologists with minimal programming skills. The first step in developing BioPCD was to create a minimal superset of the language referred to as PCD (Pythonesque Command Description). PCD defines the core of terminals and high-level nonterminals required to describe data of almost any type. BioPCD adds to PCD the constructs necessary to describe GUI components and the syntax for executing system commands. BioPCD is implemented using JavaCC to convert the grammar into code. BioPCD is designed to be terse and readable and simple enough to be learned by copying and modifying existing BioPCD files. We demonstrate that BioPCD can easily be used to generate GUIs for existing command line programs. Although BioPCD was designed to make it easier to run bioinformatics programs, it could be used in any domain in which many useful command line programs exist that do not have GUI interfaces. PMID:27818582
Sequence Segmentation with changeptGUI.
Tasker, Edward; Keith, Jonathan M
2017-01-01
Many biological sequences have a segmental structure that can provide valuable clues to their content, structure, and function. The program changept is a tool for investigating the segmental structure of a sequence, and can also be applied to multiple sequences in parallel to identify a common segmental structure, thus providing a method for integrating multiple data types to identify functional elements in genomes. In the previous edition of this book, a command line interface for changept is described. Here we present a graphical user interface for this package, called changeptGUI. This interface also includes tools for pre- and post-processing of data and results to facilitate investigation of the number and characteristics of segment classes.
Autonomous Robot Control via Autonomy Levels (ARCAL)
2015-08-21
same simulated objects. VRF includes a detailed graphical user interface (GUI) front end that subscribes to objects over HLA and renders them, along...forces.html 8. Gao, H., LI, Z., and Zhao, X., "The User -defined and Func- tion-strengthened for CGF of VR -Forces [J]." Computer Simulation, vol. 6...info Scout vehicle commands Scout vehicle Sensor measurements Mission vehicle Mission goals Operator interface Scout belief update Logistics
Autonomous Robot Control via Autonomy Levels (ARCAL)
2015-06-25
simulated objects. VRF includes a detailed graphical user interface (GUI) front end that subscribes to objects over HLA and renders them, along...forces.html 8. Gao, H., LI, Z., and Zhao, X., "The User -defined and Func- tion-strengthened for CGF of VR -Forces [J]." Computer Simulation, vol. 6, 2007...info Scout vehicle commands Scout vehicle Sensor measurements Mission vehicle Mission goals Operator interface Scout belief update Logistics executive
Interface design of VSOP'94 computer code for safety analysis
NASA Astrophysics Data System (ADS)
Natsir, Khairina; Yazid, Putranto Ilham; Andiwijayakusuma, D.; Wahanani, Nursinta Adi
2014-09-01
Today, most software applications, also in the nuclear field, come with a graphical user interface. VSOP'94 (Very Superior Old Program), was designed to simplify the process of performing reactor simulation. VSOP is a integrated code system to simulate the life history of a nuclear reactor that is devoted in education and research. One advantage of VSOP program is its ability to calculate the neutron spectrum estimation, fuel cycle, 2-D diffusion, resonance integral, estimation of reactors fuel costs, and integrated thermal hydraulics. VSOP also can be used to comparative studies and simulation of reactor safety. However, existing VSOP is a conventional program, which was developed using Fortran 65 and have several problems in using it, for example, it is only operated on Dec Alpha mainframe platforms and provide text-based output, difficult to use, especially in data preparation and interpretation of results. We develop a GUI-VSOP, which is an interface program to facilitate the preparation of data, run the VSOP code and read the results in a more user friendly way and useable on the Personal 'Computer (PC). Modifications include the development of interfaces on preprocessing, processing and postprocessing. GUI-based interface for preprocessing aims to provide a convenience way in preparing data. Processing interface is intended to provide convenience in configuring input files and libraries and do compiling VSOP code. Postprocessing interface designed to visualized the VSOP output in table and graphic forms. GUI-VSOP expected to be useful to simplify and speed up the process and analysis of safety aspects.
Some computer graphical user interfaces in radiation therapy.
Chow, James C L
2016-03-28
In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls the multileaf collimator to deliver intensity modulated beams for a specific fluence map used in quality assurance or research. DOSCTP is a treatment planning system using the computed tomography images. Radiation beams (photon or electron) with different energies and field sizes produced by a linear accelerator can be placed in different positions to irradiate the tumour in the patient. DOSCTP is linked to a Monte Carlo simulation engine using the EGSnrc-based code, so that 3D dose distribution can be determined accurately for radiation therapy. Moreover, DOSCTP can be used for treatment planning of patient or small animal. PMUC is a GUI for calculation of the monitor unit based on the prescription dose of patient in photon beam radiation therapy. The calculation is based on dose corrections in changes of photon beam energy, treatment depth, field size, jaw position, beam axis, treatment distance and beam modifiers. All GUIs mentioned in this review were written either by the Microsoft Visual Basic.net or a MATLAB GUI development tool called GUIDE. In addition, all GUIs were verified and tested using measurements to ensure their accuracies were up to clinical acceptable levels for implementations.
TADS--A CFD-Based Turbomachinery Analysis and Design System with GUI: User's Manual. 2.0
NASA Technical Reports Server (NTRS)
Koiro, M. J.; Myers, R. A.; Delaney, R. A.
1999-01-01
The primary objective of this study was the development of a Computational Fluid Dynamics (CFD) based turbomachinery airfoil analysis and design system, controlled by a Graphical User Interface (GUI). The computer codes resulting from this effort are referred to as TADS (Turbomachinery Analysis and Design System). This document is intended to serve as a User's Manual for the computer programs which comprise the TADS system, developed under Task 18 of NASA Contract NAS3-27350, ADPAC System Coupling to Blade Analysis & Design System GUI and Task 10 of NASA Contract NAS3-27394, ADPAC System Coupling to Blade Analysis & Design System GUI, Phase II-Loss, Design and, Multi-stage Analysis. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis and design capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of the various programs was done in such a way that alternative solvers or grid generators could be easily incorporated into the TADS framework. Results of aerodynamic calculations using the TADS system are presented for a highly loaded fan, a compressor stator, a low speed turbine blade and a transonic turbine vane.
BnmrOffice: A Free Software for β-nmr Data Analysis
NASA Astrophysics Data System (ADS)
Saadaoui, Hassan
A data-analysis framework with a graphical user interface (GUI) is developed to analyze β-nmr spectra in an automated and intuitive way. This program, named BnmrOffice is written in C++ and employs the QT libraries and tools for designing the GUI, and the CERN's Minuit optimization routines for minimization. The program runs under multiple platforms, and is available for free under the terms of the GNU GPL standards. The GUI is structured in tabs to search, plot and analyze data, along other functionalities. The user can tweak the minimization options; and fit multiple data files (or runs) using single or global fitting routines with pre-defined or new models. Currently, BnmrOffice reads TRIUMF's MUD data and ASCII files, and can be extended to other formats.
2011-06-13
important links. Dave likes milk and cookies but John likes cauliflower 107 The example sentence above contains nine concepts. Manually reviewing this...sentence reveals that milk and cookies are associated with Dave and cauliflower is associated with John. But using a direction of unidirectional and...a window size of 9 results in cauliflower also being associated with Dave. 18 JAN 10 GUI Section The AutoMap GUI is a graphic interface for
Information Sharing for Medical Triage Tasking During Mass Casualty/Humanitarian Operations
2009-12-01
military patrol units or surreptitious " cloak and dagger " fact gathering missions to gain photographic/video graphic data for dissemination to the...fractured command and control organization and retarded deployment of resources. Tragedies such as Hurricane Katrina in 2005, the September 11 attacks of...with PKI certificates and HMAC protection from replay attacks and UDP flooding [17]. 3. Triage Graphical User Interface (GUI) Currently the GUI for
NASA Astrophysics Data System (ADS)
Saini, Surender Singh; Sardana, Harish Kumar; Pattnaik, Shyam Sundar
2017-06-01
Conventional image editing software in combination with other techniques are not only difficult to apply to an image but also permits a user to perform some basic functions one at a time. However, image processing algorithms and photogrammetric systems are developed in the recent past for real-time pattern recognition applications. A graphical user interface (GUI) is developed which can perform multiple functions simultaneously for the analysis and estimation of geometric distortion in an image with reference to the corresponding distorted image. The GUI measure, record, and visualize the performance metric of X/Y coordinates of one image over the other. The various keys and icons provided in the utility extracts the coordinates of distortion free reference image and the image with geometric distortion. The error between these two corresponding points gives the measure of distortion and also used to evaluate the correction parameters for image distortion. As the GUI interface minimizes human interference in the process of geometric correction, its execution just requires use of icons and keys provided in the utility; this technique gives swift and accurate results as compared to other conventional methods for the measurement of the X/Y coordinates of an image.
DOE Office of Scientific and Technical Information (OSTI.GOV)
EMAM, M; Eldib, A; Lin, M
2014-06-01
Purpose: An in-house Monte Carlo based treatment planning system (MC TPS) has been developed for modulated electron radiation therapy (MERT). Our preliminary MERT planning experience called for a more user friendly graphical user interface. The current work aimed to design graphical windows and tools to facilitate the contouring and planning process. Methods: Our In-house GUI MC TPS is built on a set of EGS4 user codes namely MCPLAN and MCBEAM in addition to an in-house optimization code, which was named as MCOPTIM. Patient virtual phantom is constructed using the tomographic images in DICOM format exported from clinical treatment planning systemsmore » (TPS). Treatment target volumes and critical structures were usually contoured on clinical TPS and then sent as a structure set file. In our GUI program we developed a visualization tool to allow the planner to visualize the DICOM images and delineate the various structures. We implemented an option in our code for automatic contouring of the patient body and lungs. We also created an interface window displaying a three dimensional representation of the target and also showing a graphical representation of the treatment beams. Results: The new GUI features helped streamline the planning process. The implemented contouring option eliminated the need for performing this step on clinical TPS. The auto detection option for contouring the outer patient body and lungs was tested on patient CTs and it was shown to be accurate as compared to that of clinical TPS. The three dimensional representation of the target and the beams allows better selection of the gantry, collimator and couch angles. Conclusion: An in-house GUI program has been developed for more efficient MERT planning. The application of aiding tools implemented in the program is time saving and gives better control of the planning process.« less
NASA Astrophysics Data System (ADS)
Sanchez del Rio, Manuel; Dejus, Roger J.
1997-11-01
XOP (X-ray OPtics utilities) is a graphical user interface (GUI) created to execute several computer programs that calculate the basic information needed by a synchrotron beamline scientist (designer or experimentalist). Typical examples of such calculations are: insertion device (undulator or wiggler) spectral and angular distributions, mirror and multilayer reflectivities, and crystal diffraction profiles. All programs are provided to the user under a unified GUI, which greatly simplifies their execution. The XOP optics applications (especially mirror calculations) take their basic input (optical constants, compound and mixture tables) from a flexible file-oriented database, which allows the user to select data from a large number of choices and also to customize their own data sets. XOP includes many mathematical and visualization capabilities. It also permits the combination of reflectivities from several mirrors and filters, and their effect, onto a source spectrum. This feature is very useful when calculating thermal load on a series of optical elements. The XOP interface is written in the IDL (Interactive Data Language). An embedded version of XOP, which freely runs under most Unix platforms (HP, Sun, Dec, Linux, etc) and under Windows95 and NT, is available upon request.
Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task
NASA Astrophysics Data System (ADS)
Revechkis, Boris; Aflalo, Tyson NS; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A.
2014-12-01
Objective. To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. Approach. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like ‘Face in a Crowd’ task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the ‘Crowd’) using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a ‘Crowd Off’ condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Main results. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Significance. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet computers.
Parietal neural prosthetic control of a computer cursor in a graphical-user-interface task.
Revechkis, Boris; Aflalo, Tyson N S; Kellis, Spencer; Pouratian, Nader; Andersen, Richard A
2014-12-01
To date, the majority of Brain-Machine Interfaces have been used to perform simple tasks with sequences of individual targets in otherwise blank environments. In this study we developed a more practical and clinically relevant task that approximated modern computers and graphical user interfaces (GUIs). This task could be problematic given the known sensitivity of areas typically used for BMIs to visual stimuli, eye movements, decision-making, and attentional control. Consequently, we sought to assess the effect of a complex, GUI-like task on the quality of neural decoding. A male rhesus macaque monkey was implanted with two 96-channel electrode arrays in area 5d of the superior parietal lobule. The animal was trained to perform a GUI-like 'Face in a Crowd' task on a computer screen that required selecting one cued, icon-like, face image from a group of alternatives (the 'Crowd') using a neurally controlled cursor. We assessed whether the crowd affected decodes of intended cursor movements by comparing it to a 'Crowd Off' condition in which only the matching target appeared without alternatives. We also examined if training a neural decoder with the Crowd On rather than Off had any effect on subsequent decode quality. Despite the additional demands of working with the Crowd On, the animal was able to robustly perform the task under Brain Control. The presence of the crowd did not itself affect decode quality. Training the decoder with the Crowd On relative to Off had no negative influence on subsequent decoding performance. Additionally, the subject was able to gaze around freely without influencing cursor position. Our results demonstrate that area 5d recordings can be used for decoding in a complex, GUI-like task with free gaze. Thus, this area is a promising source of signals for neural prosthetics that utilize computing devices with GUI interfaces, e.g. personal computers, mobile devices, and tablet computers.
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Hu, Shaowen; Nounu, Hatem N.; Cucinotta, Francis A.
2010-01-01
The space radiation environment, particularly solar particle events (SPEs), poses the risk of acute radiation sickness (ARS) to humans; and organ doses from SPE exposure may reach critical levels during extra vehicular activities (EVAs) or within lightly shielded spacecraft. NASA has developed an organ dose projection model using the BRYNTRN with SUMDOSE computer codes, and a probabilistic model of Acute Radiation Risk (ARR). The codes BRYNTRN and SUMDOSE, written in FORTRAN, are a Baryon transport code and an output data processing code, respectively. The ARR code is written in C. The risk projection models of organ doses and ARR take the output from BRYNTRN as an input to their calculations. BRYNTRN code operation requires extensive input preparation. With a graphical user interface (GUI) to handle input and output for BRYNTRN, the response models can be connected easily and correctly to BRYNTRN in friendly way. A GUI for the Acute Radiation Risk and BRYNTRN Organ Dose (ARRBOD) projection code provides seamless integration of input and output manipulations, which are required for operations of the ARRBOD modules: BRYNTRN, SUMDOSE, and the ARR probabilistic response model. The ARRBOD GUI is intended for mission planners, radiation shield designers, space operations in the mission operations directorate (MOD), and space biophysics researchers. The ARRBOD GUI will serve as a proof-of-concept example for future integration of other human space applications risk projection models. The current version of the ARRBOD GUI is a new self-contained product and will have follow-on versions, as options are added: 1) human geometries of MAX/FAX in addition to CAM/CAF; 2) shielding distributions for spacecraft, Mars surface and atmosphere; 3) various space environmental and biophysical models; and 4) other response models to be connected to the BRYNTRN. The major components of the overall system, the subsystem interconnections, and external interfaces are described in this report; and the ARRBOD GUI product is explained step by step in order to serve as a tutorial.
Parallel tools GUI framework-DOE SBIR phase I final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galarowicz, James
2013-12-05
Many parallel performance, profiling, and debugging tools require a graphical way of displaying the very large datasets typically gathered from high performance computing (HPC) applications. Most tool projects create their graphical user interfaces (GUI) from scratch, many times spending their project resources on simply redeveloping commonly used infrastructure. Our goal was to create a multiplatform GUI framework, based on Nokia/Digia’s popular Qt libraries, which will specifically address the needs of these parallel tools. The Parallel Tools GUI Framework (PTGF) uses a plugin architecture facilitating rapid GUI development and reduced development costs for new and existing tool projects by allowing themore » reuse of many common GUI elements, called “widgets.” Widgets created include, 2D data visualizations, a source code viewer with syntax highlighting, and integrated help and welcome screens. Application programming interface (API) design was focused on minimizing the time to getting a functional tool working. Having a standard, unified, and userfriendly interface which operates on multiple platforms will benefit HPC application developers by reducing training time and allowing users to move between tools rapidly during a single session. However, Argo Navis Technologies LLC will not be submitting a DOE SBIR Phase II proposal and commercialization plan for the PTGF project. Our preliminary estimates for gross income over the next several years was based upon initial customer interest and income generated by similar projects. Unfortunately, as we further assessed the market during Phase I, we grew to realize that there was not enough demand to warrant such a large investment. While we do find that the project is worth our continued investment of time and money, we do not think it worthy of the DOE's investment at this time. We are grateful that the DOE has afforded us the opportunity to make this assessment, and come to this conclusion.« less
Transplant Image Processing Technology under Windows into the Platform Based on MiniGUI
NASA Astrophysics Data System (ADS)
Gan, Lan; Zhang, Xu; Lv, Wenya; Yu, Jia
MFC has a large number of digital image processing-related API functions, object-oriented and class mechanisms which provides image processing technology strong support in Windows. But in embedded systems, image processing technology dues to the restrictions of hardware and software do not have the environment of MFC in Windows. Therefore, this paper draws on the experience of image processing technology of Windows and transplants it into MiniGUI embedded systems. The results show that MiniGUI/Embedded graphical user interface applications about image processing which used in embedded image processing system can be good results.
Virtual reality simulation of fuzzy-logic control during underwater dynamic positioning
NASA Astrophysics Data System (ADS)
Thekkedan, Midhin Das; Chin, Cheng Siong; Woo, Wai Lok
2015-03-01
In this paper, graphical-user-interface (GUI) software for simulation and fuzzy-logic control of a remotely operated vehicle (ROV) using MATLAB™ GUI Designing Environment is proposed. The proposed ROV's GUI platform allows the controller such as fuzzy-logic control systems design to be compared with other controllers such as proportional-integral-derivative (PID) and sliding-mode controller (SMC) systematically and interactively. External disturbance such as sea current can be added to improve the modelling in actual underwater environment. The simulated results showed the position responses of the fuzzy-logic control exhibit reasonable performance under the sea current disturbance.
Making Information Available to Partially Sighted and Blind Clients.
ERIC Educational Resources Information Center
Long, C. A.
1993-01-01
Provides an empirical review of problems facing library users with visual impairments using computers, and reviews some of the technology that can help alleviate these problems. Highlights include software; GUI (Graphical User Interfaces); advising and training; library automation; and appendices that list further sources of relevant information.…
Interactive multi-objective path planning through a palette-based user interface
NASA Astrophysics Data System (ADS)
Shaikh, Meher T.; Goodrich, Michael A.; Yi, Daqing; Hoehne, Joseph
2016-05-01
n a problem where a human uses supervisory control to manage robot path-planning, there are times when human does the path planning, and if satisfied commits those paths to be executed by the robot, and the robot executes that plan. In planning a path, the robot often uses an optimization algorithm that maximizes or minimizes an objective. When a human is assigned the task of path planning for robot, the human may care about multiple objectives. This work proposes a graphical user interface (GUI) designed for interactive robot path-planning when an operator may prefer one objective over others or care about how multiple objectives are traded off. The GUI represents multiple objectives using the metaphor of an artist's palette. A distinct color is used to represent each objective, and tradeoffs among objectives are balanced in a manner that an artist mixes colors to get the desired shade of color. Thus, human intent is analogous to the artist's shade of color. We call the GUI an "Adverb Palette" where the word "Adverb" represents a specific type of objective for the path, such as the adverbs "quickly" and "safely" in the commands: "travel the path quickly", "make the journey safely". The novel interactive interface provides the user an opportunity to evaluate various alternatives (that tradeoff between different objectives) by allowing her to visualize the instantaneous outcomes that result from her actions on the interface. In addition to assisting analysis of various solutions given by an optimization algorithm, the palette has additional feature of allowing the user to define and visualize her own paths, by means of waypoints (guiding locations) thereby spanning variety for planning. The goal of the Adverb Palette is thus to provide a way for the user and robot to find an acceptable solution even though they use very different representations of the problem. Subjective evaluations suggest that even non-experts in robotics can carry out the planning tasks with a great deal of flexibility using the adverb palette.
Development of the geometry database for the CBM experiment
NASA Astrophysics Data System (ADS)
Akishina, E. P.; Alexandrov, E. I.; Alexandrov, I. N.; Filozova, I. A.; Friese, V.; Ivanov, V. V.
2018-01-01
The paper describes the current state of the Geometry Database (Geometry DB) for the CBM experiment. The main purpose of this database is to provide convenient tools for: (1) managing the geometry modules; (2) assembling various versions of the CBM setup as a combination of geometry modules and additional files. The CBM users of the Geometry DB may use both GUI (Graphical User Interface) and API (Application Programming Interface) tools for working with it.
ERIC Educational Resources Information Center
Berkley, Jeannette; Cates, Ward Mitchell
This paper examines the benefits of a metaphorical graphical user interface (GUI) and discusses how metaphorical interfaces can be used to deliver instruction on stress management. A computer-based instructional (CBI) program for college students was developed on the fundamentals of stress and the role of time management as a coping strategy. The…
JADA: a graphical user interface for comprehensive internal dose assessment in nuclear medicine.
Grimes, Joshua; Uribe, Carlos; Celler, Anna
2013-07-01
The main objective of this work was to design a comprehensive dosimetry package that would keep all aspects of internal dose calculation within the framework of a single software environment and that would be applicable for a variety of dose calculation approaches. Our MATLAB-based graphical user interface (GUI) can be used for processing data obtained using pure planar, pure SPECT, or hybrid planar/SPECT imaging. Time-activity data for source regions are obtained using a set of tools that allow the user to reconstruct SPECT images, load images, coregister a series of planar images, and to perform two-dimensional and three-dimensional image segmentation. Curve fits are applied to the acquired time-activity data to construct time-activity curves, which are then integrated to obtain time-integrated activity coefficients. Subsequently, dose estimates are made using one of three methods. The organ level dose calculation subGUI calculates mean organ doses that are equivalent to dose assessment performed by OLINDA/EXM. Voxelized dose calculation options, which include the voxel S value approach and Monte Carlo simulation using the EGSnrc user code DOSXYZnrc, are available within the process 3D image data subGUI. The developed internal dosimetry software package provides an assortment of tools for every step in the dose calculation process, eliminating the need for manual data transfer between programs. This saves times and minimizes user errors, while offering a versatility that can be used to efficiently perform patient-specific internal dose calculations in a variety of clinical situations.
2014-01-01
Background This paper describes the “EMG Driven Force Estimator (EMGD-FE)”, a Matlab® graphical user interface (GUI) application that estimates skeletal muscle forces from electromyography (EMG) signals. Muscle forces are obtained by numerically integrating a system of ordinary differential equations (ODEs) that simulates Hill-type muscle dynamics and that utilises EMG signals as input. In the current version, the GUI can estimate the forces of lower limb muscles executing isometric contractions. Muscles from other parts of the body can be tested as well, although no default values for model parameters are provided. To achieve accurate evaluations, EMG collection is performed simultaneously with torque measurement from a dynamometer. The computer application guides the user, step-by-step, to pre-process the raw EMG signals, create inputs for the muscle model, numerically integrate the ODEs and analyse the results. Results An example of the application’s functions is presented using the quadriceps femoris muscle. Individual muscle force estimations for the four components as well the knee isometric torque are shown. Conclusions The proposed GUI can estimate individual muscle forces from EMG signals of skeletal muscles. The estimation accuracy depends on several factors, including signal collection and modelling hypothesis issues. PMID:24708668
Menegaldo, Luciano Luporini; de Oliveira, Liliam Fernandes; Minato, Kin K
2014-04-04
This paper describes the "EMG Driven Force Estimator (EMGD-FE)", a Matlab® graphical user interface (GUI) application that estimates skeletal muscle forces from electromyography (EMG) signals. Muscle forces are obtained by numerically integrating a system of ordinary differential equations (ODEs) that simulates Hill-type muscle dynamics and that utilises EMG signals as input. In the current version, the GUI can estimate the forces of lower limb muscles executing isometric contractions. Muscles from other parts of the body can be tested as well, although no default values for model parameters are provided. To achieve accurate evaluations, EMG collection is performed simultaneously with torque measurement from a dynamometer. The computer application guides the user, step-by-step, to pre-process the raw EMG signals, create inputs for the muscle model, numerically integrate the ODEs and analyse the results. An example of the application's functions is presented using the quadriceps femoris muscle. Individual muscle force estimations for the four components as well the knee isometric torque are shown. The proposed GUI can estimate individual muscle forces from EMG signals of skeletal muscles. The estimation accuracy depends on several factors, including signal collection and modelling hypothesis issues.
Lidierth, Malcolm
2005-02-15
This paper describes software that runs in the Spike2 for Windows environment and provides a versatile tool for generating stimuli during data acquisition from the 1401 family of interfaces (CED, UK). A graphical user interface (GUI) is used to provide dynamic control of stimulus timing. Both single stimuli and trains of stimuli can be generated. The pulse generation routines make use of programmable variables within the interface and allow these to be rapidly changed during an experiment. The routines therefore provide the ease-of-use associated with external, stand-alone pulse generators. Complex stimulus protocols can be loaded from an external text file and facilities are included to create these files through the GUI. The software consists of a Spike2 script that runs in the host PC, and accompanying routines written in the 1401 sequencer control code, that run in the 1401 interface. Handshaking between the PC and the interface card are built into the routines and provides for full integration of sampling, analysis and stimulus generation during an experiment. Control of the 1401 digital-to-analogue converters is also provided; this allows control of stimulus amplitude as well as timing and also provides a sample-hold feature that may be used to remove DC offsets and drift from recorded data.
Jo, Sunhwan; Cheng, Xi; Islam, Shahidul M; Huang, Lei; Rui, Huan; Zhu, Allen; Lee, Hui Sun; Qi, Yifei; Han, Wei; Vanommeslaeghe, Kenno; MacKerell, Alexander D; Roux, Benoît; Im, Wonpil
2014-01-01
CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface to prepare molecular simulation systems and input files to facilitate the usage of common and advanced simulation techniques. Since it is originally developed in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to setup a broad range of simulations including free energy calculation and large-scale coarse-grained representation. Here, we describe functionalities that have recently been integrated into CHARMM-GUI PDB Manipulator, such as ligand force field generation, incorporation of methanethiosulfonate spin labels and chemical modifiers, and substitution of amino acids with unnatural amino acids. These new features are expected to be useful in advanced biomolecular modeling and simulation of proteins. © 2014 Elsevier Inc. All rights reserved.
Sridhar, Vishnu B; Tian, Peifang; Dale, Anders M; Devor, Anna; Saisan, Payam A
2014-01-01
We present a database client software-Neurovascular Network Explorer 1.0 (NNE 1.0)-that uses MATLAB(®) based Graphical User Interface (GUI) for interaction with a database of 2-photon single-vessel diameter measurements from our previous publication (Tian et al., 2010). These data are of particular interest for modeling the hemodynamic response. NNE 1.0 is downloaded by the user and then runs either as a MATLAB script or as a standalone program on a Windows platform. The GUI allows browsing the database according to parameters specified by the user, simple manipulation and visualization of the retrieved records (such as averaging and peak-normalization), and export of the results. Further, we provide NNE 1.0 source code. With this source code, the user can database their own experimental results, given the appropriate data structure and naming conventions, and thus share their data in a user-friendly format with other investigators. NNE 1.0 provides an example of seamless and low-cost solution for sharing of experimental data by a regular size neuroscience laboratory and may serve as a general template, facilitating dissemination of biological results and accelerating data-driven modeling approaches.
gPKPDSim: a SimBiology®-based GUI application for PKPD modeling in drug development.
Hosseini, Iraj; Gajjala, Anita; Bumbaca Yadav, Daniela; Sukumaran, Siddharth; Ramanujan, Saroja; Paxson, Ricardo; Gadkar, Kapil
2018-04-01
Modeling and simulation (M&S) is increasingly used in drug development to characterize pharmacokinetic-pharmacodynamic (PKPD) relationships and support various efforts such as target feasibility assessment, molecule selection, human PK projection, and preclinical and clinical dose and schedule determination. While model development typically require mathematical modeling expertise, model exploration and simulations could in many cases be performed by scientists in various disciplines to support the design, analysis and interpretation of experimental studies. To this end, we have developed a versatile graphical user interface (GUI) application to enable easy use of any model constructed in SimBiology ® to execute various common PKPD analyses. The MATLAB ® -based GUI application, called gPKPDSim, has a single screen interface and provides functionalities including simulation, data fitting (parameter estimation), population simulation (exploring the impact of parameter variability on the outputs of interest), and non-compartmental PK analysis. Further, gPKPDSim is a user-friendly tool with capabilities including interactive visualization, exporting of results and generation of presentation-ready figures. gPKPDSim was designed primarily for use in preclinical and translational drug development, although broader applications exist. gPKPDSim is a MATLAB ® -based open-source application and is publicly available to download from MATLAB ® Central™. We illustrate the use and features of gPKPDSim using multiple PKPD models to demonstrate the wide applications of this tool in pharmaceutical sciences. Overall, gPKPDSim provides an integrated, multi-purpose user-friendly GUI application to enable efficient use of PKPD models by scientists from various disciplines, regardless of their modeling expertise.
Cowley, Benjamin R.; Kaufman, Matthew T.; Churchland, Mark M.; Ryu, Stephen I.; Shenoy, Krishna V.; Yu, Byron M.
2013-01-01
The activity of tens to hundreds of neurons can be succinctly summarized by a smaller number of latent variables extracted using dimensionality reduction methods. These latent variables define a reduced-dimensional space in which we can study how population activity varies over time, across trials, and across experimental conditions. Ideally, we would like to visualize the population activity directly in the reduced-dimensional space, whose optimal dimensionality (as determined from the data) is typically greater than 3. However, direct plotting can only provide a 2D or 3D view. To address this limitation, we developed a Matlab graphical user interface (GUI) that allows the user to quickly navigate through a continuum of different 2D projections of the reduced-dimensional space. To demonstrate the utility and versatility of this GUI, we applied it to visualize population activity recorded in premotor and motor cortices during reaching tasks. Examples include single-trial population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded sequentially using single electrodes. Because any single 2D projection may provide a misleading impression of the data, being able to see a large number of 2D projections is critical for intuition- and hypothesis-building during exploratory data analysis. The GUI includes a suite of additional interactive tools, including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses. The use of visualization tools like the GUI developed here, in tandem with dimensionality reduction methods, has the potential to further our understanding of neural population activity. PMID:23366954
Cowley, Benjamin R; Kaufman, Matthew T; Churchland, Mark M; Ryu, Stephen I; Shenoy, Krishna V; Yu, Byron M
2012-01-01
The activity of tens to hundreds of neurons can be succinctly summarized by a smaller number of latent variables extracted using dimensionality reduction methods. These latent variables define a reduced-dimensional space in which we can study how population activity varies over time, across trials, and across experimental conditions. Ideally, we would like to visualize the population activity directly in the reduced-dimensional space, whose optimal dimensionality (as determined from the data) is typically greater than 3. However, direct plotting can only provide a 2D or 3D view. To address this limitation, we developed a Matlab graphical user interface (GUI) that allows the user to quickly navigate through a continuum of different 2D projections of the reduced-dimensional space. To demonstrate the utility and versatility of this GUI, we applied it to visualize population activity recorded in premotor and motor cortices during reaching tasks. Examples include single-trial population activity recorded using a multi-electrode array, as well as trial-averaged population activity recorded sequentially using single electrodes. Because any single 2D projection may provide a misleading impression of the data, being able to see a large number of 2D projections is critical for intuition-and hypothesis-building during exploratory data analysis. The GUI includes a suite of additional interactive tools, including playing out population activity timecourses as a movie and displaying summary statistics, such as covariance ellipses and average timecourses. The use of visualization tools like the GUI developed here, in tandem with dimensionality reduction methods, has the potential to further our understanding of neural population activity.
Some computer graphical user interfaces in radiation therapy
Chow, James C L
2016-01-01
In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls the multileaf collimator to deliver intensity modulated beams for a specific fluence map used in quality assurance or research. DOSCTP is a treatment planning system using the computed tomography images. Radiation beams (photon or electron) with different energies and field sizes produced by a linear accelerator can be placed in different positions to irradiate the tumour in the patient. DOSCTP is linked to a Monte Carlo simulation engine using the EGSnrc-based code, so that 3D dose distribution can be determined accurately for radiation therapy. Moreover, DOSCTP can be used for treatment planning of patient or small animal. PMUC is a GUI for calculation of the monitor unit based on the prescription dose of patient in photon beam radiation therapy. The calculation is based on dose corrections in changes of photon beam energy, treatment depth, field size, jaw position, beam axis, treatment distance and beam modifiers. All GUIs mentioned in this review were written either by the Microsoft Visual Basic.net or a MATLAB GUI development tool called GUIDE. In addition, all GUIs were verified and tested using measurements to ensure their accuracies were up to clinical acceptable levels for implementations. PMID:27027225
Intranet and Internet metrological workstation with photonic sensors and transmission
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.; Pozniak, Krzysztof T.; Dybko, Artur
1999-05-01
We describe in this paper a part of a telemetric network which consists of a workstation with photonic measurement and communication interfaces, structural fiber optic cabling (10/100BaseFX and CAN-FL), and photonic sensors with fiber optic interfaces. The station is equipped with direct photonic measurement interface and most common measuring standards converter (RS, GPIB) with fiber optic I/O CAN bus, O/E converters, LAN and modem ports. The station was connected to the Intranet (ipx/spx) and Internet (tcp/ip) with separate IP number and DNS, WINS names. Virtual measuring environment system program was written specially for such an Intranet and Internet station. The measurement system program communicated with the user via a Graphical User's Interface (GUI). The user has direct access to all functions of the measuring station system through appropriate layers of GUI: telemetric, transmission, visualization, processing, information, help and steering of the measuring system. We have carried out series of thorough simulation investigations and tests of the station using WWW subsystem of the Internet. We logged into the system through the LAN and via modem. The Internet metrological station works continuously under the address http://nms.ipe.pw.edu.pl/nms. The station and the system hear the short name NMS (from Network Measuring System).
NASA Technical Reports Server (NTRS)
Nguyen, Lac; Kenney, Patrick J.
1993-01-01
Development of interactive virtual environments (VE) has typically consisted of three primary activities: model (object) development, model relationship tree development, and environment behavior definition and coding. The model and relationship tree development activities are accomplished with a variety of well-established graphic library (GL) based programs - most utilizing graphical user interfaces (GUI) with point-and-click interactions. Because of this GUI format, little programming expertise on the part of the developer is necessary to create the 3D graphical models or to establish interrelationships between the models. However, the third VE development activity, environment behavior definition and coding, has generally required the greatest amount of time and programmer expertise. Behaviors, characteristics, and interactions between objects and the user within a VE must be defined via command line C coding prior to rendering the environment scenes. In an effort to simplify this environment behavior definition phase for non-programmers, and to provide easy access to model and tree tools, a graphical interface and development tool has been created. The principal thrust of this research is to effect rapid development and prototyping of virtual environments. This presentation will discuss the 'Visual Interface for Virtual Interaction Development' (VIVID) tool; an X-Windows based system employing drop-down menus for user selection of program access, models, and trees, behavior editing, and code generation. Examples of these selection will be highlighted in this presentation, as will the currently available program interfaces. The functionality of this tool allows non-programming users access to all facets of VE development while providing experienced programmers with a collection of pre-coded behaviors. In conjunction with its existing, interfaces and predefined suite of behaviors, future development plans for VIVID will be described. These include incorporation of dual user virtual environment enhancements, tool expansion, and additional behaviors.
NASA Astrophysics Data System (ADS)
Chęciński, Jakub; Frankowski, Marek
2016-10-01
We present a tool for fully-automated generation of both simulations configuration files (Mif) and Matlab scripts for automated data analysis, dedicated for Object Oriented Micromagnetic Framework (OOMMF). We introduce extended graphical user interface (GUI) that allows for fast, error-proof and easy creation of Mifs, without any programming skills usually required for manual Mif writing necessary. With MAGE we provide OOMMF extensions for complementing it by mangetoresistance and spin-transfer-torque calculations, as well as local magnetization data selection for output. Our software allows for creation of advanced simulations conditions like simultaneous parameters sweeps and synchronic excitation application. Furthermore, since output of such simulation could be long and complicated we provide another GUI allowing for automated creation of Matlab scripts suitable for analysis of such data with Fourier and wavelet transforms as well as user-defined operations.
NASA Astrophysics Data System (ADS)
Giorgino, Toni; Laio, Alessandro; Rodriguez, Alex
2017-08-01
Molecular dynamics (MD) simulations allow the exploration of the phase space of biopolymers through the integration of equations of motion of their constituent atoms. The analysis of MD trajectories often relies on the choice of collective variables (CVs) along which the dynamics of the system is projected. We developed a graphical user interface (GUI) for facilitating the interactive choice of the appropriate CVs. The GUI allows: defining interactively new CVs; partitioning the configurations into microstates characterized by similar values of the CVs; calculating the free energies of the microstates for both unbiased and biased (metadynamics) simulations; clustering the microstates in kinetic basins; visualizing the free energy landscape as a function of a subset of the CVs used for the analysis. A simple mouse click allows one to quickly inspect structures corresponding to specific points in the landscape.
Acquisition of ICU data: concepts and demands.
Imhoff, M
1992-12-01
As the issue of data overload is a problem in critical care today, it is of utmost importance to improve acquisition, storage, integration, and presentation of medical data, which appears only feasible with the help of bedside computers. The data originates from four major sources: (1) the bedside medical devices, (2) the local area network (LAN) of the ICU, (3) the hospital information system (HIS) and (4) manual input. All sources differ markedly in quality and quantity of data and in the demands of the interfaces between source of data and patient database. The demands for data acquisition from bedside medical devices, ICU-LAN and HIS concentrate on technical problems, such as computational power, storage capacity, real-time processing, interfacing with different devices and networks and the unmistakable assignment of data to the individual patient. The main problem of manual data acquisition is the definition and configuration of the user interface that must allow the inexperienced user to interact with the computer intuitively. Emphasis must be put on the construction of a pleasant, logical and easy-to-handle graphical user interface (GUI). Short response times will require high graphical processing capacity. Moreover, high computational resources are necessary in the future for additional interfacing devices such as speech recognition and 3D-GUI. Therefore, in an ICU environment the demands for computational power are enormous. These problems are complicated by the urgent need for friendly and easy-to-handle user interfaces. Both facts place ICU bedside computing at the vanguard of present and future workstation development leaving no room for solutions based on traditional concepts of personal computers.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Burhan, I.; Azman, A. A.; Othman, R.
2016-10-01
An electro pneumatic trainer embedded with programmable integrated circuit (PIC) microcontroller and Visual Basic (VB) platform is fabricated as a supporting tool to existing teaching and learning process, and to achieve the objectives and learning outcomes towards enhancing the student's knowledge and hands-on skill, especially in electro pneumatic devices. The existing learning process for electro pneumatic courses conducted in the classroom does not emphasize on simulation and complex practical aspects. VB is used as the platform for graphical user interface (GUI) while PIC as the interface circuit between the GUI and hardware of electro pneumatic apparatus. Fabrication of electro pneumatic trainer interfacing between PIC and VB has been designed and improved by involving multiple types of electro pneumatic apparatus such as linear drive, air motor, semi rotary motor, double acting cylinder and single acting cylinder. Newly fabricated electro pneumatic trainer microcontroller interface can be programmed and re-programmed for numerous combination of tasks. Based on the survey to 175 student participants, 97% of the respondents agreed that the newly fabricated trainer is user friendly, safe and attractive, and 96.8% of the respondents strongly agreed that there is improvement in knowledge development and also hands-on skill in their learning process. Furthermore, the Lab Practical Evaluation record has indicated that the respondents have improved their academic performance (hands-on skills) by an average of 23.5%.
NASA Technical Reports Server (NTRS)
Metscher, Jonathan F.; Lewandowski, Edward J.
2013-01-01
A simple model of the Advanced Stirling Convertors (ASC) linear alternator and an AC bus controller has been developed and combined with a previously developed thermodynamic model of the convertor for a more complete simulation and analysis of the system performance. The model was developed using Sage, a 1-D thermodynamic modeling program that now includes electro-magnetic components. The convertor, consisting of a free-piston Stirling engine combined with a linear alternator, has sufficiently sinusoidal steady-state behavior to allow for phasor analysis of the forces and voltages acting in the system. A MATLAB graphical user interface (GUI) has been developed to interface with the Sage software for simplified use of the ASC model, calculation of forces, and automated creation of phasor diagrams. The GUI allows the user to vary convertor parameters while fixing different input or output parameters and observe the effect on the phasor diagrams or system performance. The new ASC model and GUI help create a better understanding of the relationship between the electrical component voltages and mechanical forces. This allows better insight into the overall convertor dynamics and performance.
Operator Interface for the ALMA Observing System
NASA Astrophysics Data System (ADS)
Grosbøl, P.; Schilling, M.
2009-09-01
The Atacama Large Millimeter/submillimeter Array (ALMA) is a major new ground-based radio-astronomical facility being constructed in Chile in an international collaboration between Europe, Japan and North America in cooperation with the Republic of Chile. The facility will include 54 12m and 12 7m antennas at the Altiplano de Chajnantor and be operated from the Operations Support Facilities (OSF) near San Pedro. This paper describes design and baseline implementation of the Graphical User Interface (GUI) used by operators to monitor and control the observing facility. It is written in Java and provides a simple plug-in interface which allows different subsystems to add their own panels to the GUI. The design is based on a client/server concept and supports multiple operators to share or monitor operations.
2011-06-01
effective way- point navigation algorithm that interfaced with a Java based graphical user interface (GUI), written by Uzun, for a robot named Bender [2...the angular acceleration, θ̈, or angular rate, θ̇. When considering a joint driven by an electric motor, the inertia and friction can be divided into...interactive simulations that can receive input from user controls, scripts , and other applications, such as Excel and MATLAB. One drawback is that the
Common command-and-control user interface for current force UGS
NASA Astrophysics Data System (ADS)
Stolovy, Gary H.
2009-05-01
The Current Force Unattended Ground Sensors (UGS) comprise the OmniSense, Scorpion, and Silent Watch systems. As deployed by U.S. Army Central Command in 2006, sensor reports from the three systems were integrated into a common Graphical User Interface (GUI), with three separate vendor-specific applications for Command-and-Control (C2) functions. This paper describes the requirements, system architecture, implementation, and testing of an upgrade to the Processing, Exploitation, and Dissemination back-end server to incorporate common remote Command-and-Control capabilities.
Tactical 3D Model Generation using Structure-From-Motion on Video from Unmanned Systems
2015-04-01
available SfM application known as VisualSFM .6,7 VisualSFM is an end-user, “off-the-shelf” implementation of SfM that is easy to configure and used for...most 3D model generation applications from imagery. While the usual interface with VisualSFM is through their graphical user interface (GUI), we will be...of our system.5 There are two types of 3D model generation available within VisualSFM ; sparse and dense reconstruction. Sparse reconstruction begins
Control of a nursing bed based on a hybrid brain-computer interface.
Nengneng Peng; Rui Zhang; Haihua Zeng; Fei Wang; Kai Li; Yuanqing Li; Xiaobin Zhuang
2016-08-01
In this paper, we propose an intelligent nursing bed system which is controlled by a hybrid brain-computer interface (BCI) involving steady-state visual evoked potential (SSVEP) and P300. Specifically, the hybrid BCI includes an asynchronous brain switch based on SSVEP and P300, and a P300-based BCI. The brain switch is used to turn on/off the control system of the electric nursing bed through idle/control state detection, whereas the P300-based BCI is for operating the nursing bed. At the beginning, the user may focus on one group of flashing buttons in the graphic user interface (GUI) of the brain switch, which can simultaneously evoke SSVEP and P300, to switch on the control system. Here, the combination of SSVEP and P300 is used for improving the performance of the brain switch. Next, the user can control the nursing bed using the P300-based BCI. The GUI of the P300-based BCI includes 10 flashing buttons, which correspond to 10 functional operations, namely, left-side up, left-side down, back up, back down, bedpan open, bedpan close, legs up, legs down, right-side up, and right-side down. For instance, he/she can focus on the flashing button "back up" in the GUI of the P300-based BCI to activate the corresponding control such that the nursing bed is adjusted up. Eight healthy subjects participated in our experiment, and obtained an average accuracy of 93.75% and an average false positive rate (FPR) of 0.15 event/min. The effectiveness of our system was thus demonstrated.
Integrated Computer Controlled Glow Discharge Tube
NASA Astrophysics Data System (ADS)
Kaiser, Erik; Post-Zwicker, Andrew
2002-11-01
An "Interactive Plasma Display" was created for the Princeton Plasma Physics Laboratory to demonstrate the characteristics of plasma to various science education outreach programs. From high school students and teachers, to undergraduate students and visitors to the lab, the plasma device will be a key component in advancing the public's basic knowledge of plasma physics. The device is fully computer controlled using LabVIEW, a touchscreen Graphical User Interface [GUI], and a GPIB interface. Utilizing a feedback loop, the display is fully autonomous in controlling pressure, as well as in monitoring the safety aspects of the apparatus. With a digital convectron gauge continuously monitoring pressure, the computer interface analyzes the input signals, while making changes to a digital flow controller. This function works independently of the GUI, allowing the user to simply input and receive a desired pressure; quickly, easily, and intuitively. The discharge tube is a 36" x 4"id glass cylinder with 3" side port. A 3000 volt, 10mA power supply, is used to breakdown the plasma. A 300 turn solenoid was created to demonstrate the magnetic pinching of a plasma. All primary functions of the device are controlled through the GUI digital controllers. This configuration allows for operators to safely control the pressure (100mTorr-1Torr), magnetic field (0-90Gauss, 7amps, 10volts), and finally, the voltage applied across the electrodes (0-3000v, 10mA).
2014-09-01
The free, open-source Integrated Development Environment (IDE) NetBeans [11] was used in the creation of the Graphical User Interface (GUI) for the tool...Oracle Corporation (2013) NetBeans IDE 7.4, http://www.netbeans.org. 12. O’Shea, K., Pong, P. & Bulluss, G. (2012) Fit-for-Purpose Visualisation of
Computational Design Tool for the Synthesis and Optimization of Gel Formulations (SOGeF)
2009-01-01
ACCOMPLISHMENTS 2.1 Phase I Technical Objectives TIle primary technical objective of the Phase I program was the development of a model(s) to describe the...Figure 37: Storage Modulus G’, Loss Modulus G", and Stress vs. Strain. Yield Stress ~460Pa. (Tri-ethylamine 11% Cabosil) The primary detenninant of...GUI The primary objective of this task was to design and implement a graphical user interface (GUI) for the NN algorithms and gel database files. The
UI Review Results and NARAC Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, J.; Eme, B.; Kim, S.
2017-03-08
This report describes the results of an inter-program design review completed February 16th, 2017, during the second year of a FY16-FY18 NA-84 Technology Integration (TI) project to modernize the core software system used in DOE/NNSA's National Atmospheric Release Advisory Center (NARAC, narac.llnl.gov). This review focused on the graphical user interfaces (GUI) frameworks. Reviewers (described in Appendix 2) were selected from multiple areas of the LLNL Computation directorate, based on their expertise in GUI and Web technologies.
NONROAD2008a Installation and Updates
NONROAD2008 is the overall set of modeling files including the core model, default data files, graphical user interface (GUI), and reporting utility. NONROAD2008a is essentially the same, but with one correction to the NOx emission factor data file.
Price, Charles A.; Symonova, Olga; Mileyko, Yuriy; Hilley, Troy; Weitz, Joshua S.
2011-01-01
Interest in the structure and function of physical biological networks has spurred the development of a number of theoretical models that predict optimal network structures across a broad array of taxonomic groups, from mammals to plants. In many cases, direct tests of predicted network structure are impossible given the lack of suitable empirical methods to quantify physical network geometry with sufficient scope and resolution. There is a long history of empirical methods to quantify the network structure of plants, from roots, to xylem networks in shoots and within leaves. However, with few exceptions, current methods emphasize the analysis of portions of, rather than entire networks. Here, we introduce the Leaf Extraction and Analysis Framework Graphical User Interface (LEAF GUI), a user-assisted software tool that facilitates improved empirical understanding of leaf network structure. LEAF GUI takes images of leaves where veins have been enhanced relative to the background, and following a series of interactive thresholding and cleaning steps, returns a suite of statistics and information on the structure of leaf venation networks and areoles. Metrics include the dimensions, position, and connectivity of all network veins, and the dimensions, shape, and position of the areoles they surround. Available for free download, the LEAF GUI software promises to facilitate improved understanding of the adaptive and ecological significance of leaf vein network structure. PMID:21057114
Price, Charles A; Symonova, Olga; Mileyko, Yuriy; Hilley, Troy; Weitz, Joshua S
2011-01-01
Interest in the structure and function of physical biological networks has spurred the development of a number of theoretical models that predict optimal network structures across a broad array of taxonomic groups, from mammals to plants. In many cases, direct tests of predicted network structure are impossible given the lack of suitable empirical methods to quantify physical network geometry with sufficient scope and resolution. There is a long history of empirical methods to quantify the network structure of plants, from roots, to xylem networks in shoots and within leaves. However, with few exceptions, current methods emphasize the analysis of portions of, rather than entire networks. Here, we introduce the Leaf Extraction and Analysis Framework Graphical User Interface (LEAF GUI), a user-assisted software tool that facilitates improved empirical understanding of leaf network structure. LEAF GUI takes images of leaves where veins have been enhanced relative to the background, and following a series of interactive thresholding and cleaning steps, returns a suite of statistics and information on the structure of leaf venation networks and areoles. Metrics include the dimensions, position, and connectivity of all network veins, and the dimensions, shape, and position of the areoles they surround. Available for free download, the LEAF GUI software promises to facilitate improved understanding of the adaptive and ecological significance of leaf vein network structure.
Remote Data Exploration with the Interactive Data Language (IDL)
NASA Technical Reports Server (NTRS)
Galloy, Michael
2013-01-01
A difficulty for many NASA researchers is that often the data to analyze is located remotely from the scientist and the data is too large to transfer for local analysis. Researchers have developed the Data Access Protocol (DAP) for accessing remote data. Presently one can use DAP from within IDL, but the IDL-DAP interface is both limited and cumbersome. A more powerful and user-friendly interface to DAP for IDL has been developed. Users are able to browse remote data sets graphically, select partial data to retrieve, import that data and make customized plots, and have an interactive IDL command line session simultaneous with the remote visualization. All of these IDL-DAP tools are usable easily and seamlessly for any IDL user. IDL and DAP are both widely used in science, but were not easily used together. The IDL DAP bindings were incomplete and had numerous bugs that prevented their serious use. For example, the existing bindings did not read DAP Grid data, which is the organization of nearly all NASA datasets currently served via DAP. This project uniquely provides a fully featured, user-friendly interface to DAP from IDL, both from the command line and a GUI application. The DAP Explorer GUI application makes browsing a dataset more user-friendly, while also providing the capability to run user-defined functions on specified data. Methods for running remote functions on the DAP server were investigated, and a technique for accomplishing this task was decided upon.
Demiris, A M; Meinzer, H P
1997-01-01
Whether or not a computerized system enhances the conditions of work in the application domain, very much demands on the user interface. Graphical user interfaces seem to attract the interest of the users but mostly ignore some basic rules of visual information processing thus leading to systems which are difficult to use, lowering productivity and increasing working stress (cognitive and work load). In this work we present some fundamental ergonomic considerations and their application to the medical image processing and archiving domain. We introduce the extensions to an existing concept needed to control and guide the development of GUIs with respect to domain specific ergonomics. The suggested concept, called Model-View-Controller Constraints (MVCC), can be used to programmatically implement ergonomic constraints, and thus has some advantages over written style guides. We conclude with the presentation of existing norms and methods to evaluate user interfaces.
Architecture, Design, and Development of an HTML/JavaScript Web-Based Group Support System.
ERIC Educational Resources Information Center
Romano, Nicholas C., Jr.; Nunamaker, Jay F., Jr.; Briggs, Robert O.; Vogel, Douglas R.
1998-01-01
Examines the need for virtual workspaces and describes the architecture, design, and development of GroupSystems for the World Wide Web (GSWeb), an HTML/JavaScript Web-based Group Support System (GSS). GSWeb, an application interface similar to a Graphical User Interface (GUI), is currently used by teams around the world and relies on user…
Distributed Energy Resources Customer Adoption Model - Graphical User Interface, Version 2.1.8
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewald, Friedrich; Stadler, Michael; Cardoso, Goncalo F
The DER-CAM Graphical User Interface has been redesigned to consist of a dynamic tree structure on the left side of the application window to allow users to quickly navigate between different data categories and views. Views can either be tables with model parameters and input data, the optimization results, or a graphical interface to draw circuit topology and visualize investment results. The model parameters and input data consist of tables where values are assigned to specific keys. The aggregation of all model parameters and input data amounts to the data required to build a DER-CAM model, and is passed tomore » the GAMS solver when users initiate the DER-CAM optimization process. Passing data to the GAMS solver relies on the use of a Java server that handles DER-CAM requests, queuing, and results delivery. This component of the DER-CAM GUI can be deployed either locally or remotely, and constitutes an intermediate step between the user data input and manipulation, and the execution of a DER-CAM optimization in the GAMS engine. The results view shows the results of the DER-CAM optimization and distinguishes between a single and a multi-objective process. The single optimization runs the DER-CAM optimization once and presents the results as a combination of summary charts and hourly dispatch profiles. The multi-objective optimization process consists of a sequence of runs initiated by the GUI, including: 1) CO2 minimization, 2) cost minimization, 3) a user defined number of points in-between objectives 1) and 2). The multi-objective results view includes both access to the detailed results of each point generated by the process as well as the generation of a Pareto Frontier graph to illustrate the trade-off between objectives. DER-CAM GUI 2.1.8 also introduces the ability to graphically generate circuit topologies, enabling support to DER-CAM 5.0.0. This feature consists of: 1) The drawing area, where users can manually create nodes and define their properties (e.g. point of common coupling, slack bus, load) and connect them through edges representing either power lines, transformers, or heat pipes, all with user defined characteristics (e.g., length, ampacity, inductance, or heat loss); 2) The tables, which display the user-defined topology in the final numerical form that will be passed to the DER-CAM optimization. Finally, the DER-CAM GUI is also deployed with a database schema that allows users to provide different energy load profiles, solar irradiance profiles, and tariff data, that can be stored locally and later used in any DER-CAM model. However, no real data will be delivered with this version.« less
A labview-based GUI for the measurement of otoacoustic emissions.
Wu, Ye; McNamara, D M; Ziarani, A K
2006-01-01
This paper presents the outcome of a software development project aimed at creating a stand-alone user-friendly signal processing algorithm for the estimation of distortion product otoacoustic emission (OAE) signals. OAE testing is one of the most commonly used methods of first screening of newborns' hearing. Most of the currently available commercial devices rely upon averaging long strings of data and subsequent discrete Fourier analysis to estimate low level OAE signals from within the background noise in the presence of the strong stimuli. The main shortcoming of the presently employed technology is the need for long measurement time and its low noise immunity. The result of the software development project presented here is a graphical user interface (GUI) module that implements a recently introduced adaptive technique of OAE signal estimation. This software module is easy to use and is freely disseminated on the Internet for the use of the hearing research community. This GUI module allows loading of the a priori recorded OAE signals into the workspace, and provides the user with interactive instructions for the OAE signal estimation. Moreover, the user can generate simulated OAE signals to objectively evaluate the performance capability of the implemented signal processing technique.
GESearch: An Interactive GUI Tool for Identifying Gene Expression Signature.
Ye, Ning; Yin, Hengfu; Liu, Jingjing; Dai, Xiaogang; Yin, Tongming
2015-01-01
The huge amount of gene expression data generated by microarray and next-generation sequencing technologies present challenges to exploit their biological meanings. When searching for the coexpression genes, the data mining process is largely affected by selection of algorithms. Thus, it is highly desirable to provide multiple options of algorithms in the user-friendly analytical toolkit to explore the gene expression signatures. For this purpose, we developed GESearch, an interactive graphical user interface (GUI) toolkit, which is written in MATLAB and supports a variety of gene expression data files. This analytical toolkit provides four models, including the mean, the regression, the delegate, and the ensemble models, to identify the coexpression genes, and enables the users to filter data and to select gene expression patterns by browsing the display window or by importing knowledge-based genes. Subsequently, the utility of this analytical toolkit is demonstrated by analyzing two sets of real-life microarray datasets from cell-cycle experiments. Overall, we have developed an interactive GUI toolkit that allows for choosing multiple algorithms for analyzing the gene expression signatures.
Communications Effects Server (CES) Model for Systems Engineering Research
2012-01-31
Visualization Tool Interface «logical» HLA Tool Interface «logical» DIS Tool Interface «logical» STK Tool Interface «module» Execution Kernels «logical...interoperate with STK when running simulations. GUI Components Architect – The Architect represents the main network design and visualization ...interest» CES «block» Third Party Visualization Tool «block» Third Party Analysis Tool «block» Third Party Text Editor «block» HLA Tools Analyst User Army
How to Create, Modify, and Interface Aspen In-House and User Databanks for System Configuration 1:
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camp, D W
2000-10-27
The goal of this document is to provide detailed instructions to create, modify, interface, and test Aspen User and In-House databanks with minimal frustration. The level of instructions are aimed at a novice Aspen Plus simulation user who is neither a programming nor computer-system expert. The instructions are tailored to Version 10.1 of Aspen Plus and the specific computing configuration summarized in the Title of this document and detailed in Section 2. Many details of setting up databanks depend on the computing environment specifics, such as the machines, operating systems, command languages, directory structures, inter-computer communications software, the version ofmore » the Aspen Engine and Graphical User Interface (GUI), and the directory structure of how these were installed.« less
NASA Technical Reports Server (NTRS)
Szczur, Martha R.
1992-01-01
The Transportable Applications Environment (TAE) Plus was built to support the construction of graphical user interfaces (GUI's) for highly interactive applications, such as real-time processing systems and scientific analysis systems. It is a general purpose portable tool that includes a 'What You See Is What You Get' WorkBench that allows user interface designers to layout and manipulate windows and interaction objects. The WorkBench includes both user entry objects (e.g., radio buttons, menus) and data-driven objects (e.g., dials, gages, stripcharts), which dynamically change based on values of realtime data. Discussed here is what TAE Plus provides, how the implementation has utilized state-of-the-art technologies within graphic workstations, and how it has been used both within and without NASA.
Automation of P-3 Simulations to Improve Operator Workload
2012-09-01
Training GBE Group Behavior Engine GCC Geocentric Coordinates GCS Global Coordinate System GUI Graphical User Interface xiv HLA High...sonobuoys are in a different cell. Therefore, the sonobuoy positions in JSAF must be converted to geocentric coordinates (GCC) before applying the
EXPOSURE RELATED DOSE ESTIMATING MODEL (ERDEM)
ERDEM is a physiologically-based pharmacokinetic (PBPK) model with a graphical user interface (GUI) front end. Such a mathematical model was needed to make reliable estimates of the chemical dose to organs of animals or humans because of uncertainties of making route-to route, lo...
Integrating macromolecular X-ray diffraction data with the graphical user interface iMosflm.
Powell, Harold R; Battye, T Geoff G; Kontogiannis, Luke; Johnson, Owen; Leslie, Andrew G W
2017-07-01
X-ray crystallography is the predominant source of structural information for biological macromolecules, providing fundamental insights into biological function. The availability of robust and user-friendly software to process the collected X-ray diffraction images makes the technique accessible to a wider range of scientists. iMosflm/MOSFLM (http://www.mrc-lmb.cam.ac.uk/harry/imosflm) is a software package designed to achieve this goal. The graphical user interface (GUI) version of MOSFLM (called iMosflm) is designed to guide inexperienced users through the steps of data integration, while retaining powerful features for more experienced users. Images from almost all commercially available X-ray detectors can be handled using this software. Although the program uses only 2D profile fitting, it can readily integrate data collected in the 'fine phi-slicing' mode (in which the rotation angle per image is less than the crystal mosaic spread by a factor of at least 2), which is commonly used with modern very fast readout detectors. The GUI provides real-time feedback on the success of the indexing step and the progress of data processing. This feedback includes the ability to monitor detector and crystal parameter refinement and to display the average spot shape in different regions of the detector. Data scaling and merging tasks can be initiated directly from the interface. Using this protocol, a data set of 360 images with ∼2,000 reflections per image can be processed in ∼4 min.
Advanced graphical user interface for multi-physics simulations using AMST
NASA Astrophysics Data System (ADS)
Hoffmann, Florian; Vogel, Frank
2017-07-01
Numerical modelling of particulate matter has gained much popularity in recent decades. Advanced Multi-physics Simulation Technology (AMST) is a state-of-the-art three dimensional numerical modelling technique combining the eX-tended Discrete Element Method (XDEM) with Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) [1]. One major limitation of this code is the lack of a graphical user interface (GUI) meaning that all pre-processing has to be made directly in a HDF5-file. This contribution presents the first graphical pre-processor developed for AMST.
NASA Astrophysics Data System (ADS)
Or, D.; von Ruette, J.; Lehmann, P.
2017-12-01
Landslides and subsequent debris-flows initiated by rainfall represent a common natural hazard in mountainous regions. We integrated a landslide hydro-mechanical triggering model with a simple model for debris flow runout pathways and developed a graphical user interface (GUI) to represent these natural hazards at catchment scale at any location. The STEP-TRAMM GUI provides process-based estimates of the initiation locations and sizes of landslides patterns based on digital elevation models (SRTM) linked with high resolution global soil maps (SoilGrids 250 m resolution) and satellite based information on rainfall statistics for the selected region. In the preprocessing phase the STEP-TRAMM model estimates soil depth distribution to supplement other soil information for delineating key hydrological and mechanical properties relevant to representing local soil failure. We will illustrate this publicly available GUI and modeling platform to simulate effects of deforestation on landslide hazards in several regions and compare model outcome with satellite based information.
UAV Swarm Operational Risk Assessment System
2015-09-01
a SIPRNET connection. For practicality in development of this prototype, the interface was created using the MATLAB GUI language . By design, the use ...and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE September 2015 3...discrete-event simulation of UAV swarm attacks using ExtendSim, statistical analysis of the simulation data using Minitab, and a graphical user interface
Automation Framework for Flight Dynamics Products Generation
NASA Technical Reports Server (NTRS)
Wiegand, Robert E.; Esposito, Timothy C.; Watson, John S.; Jun, Linda; Shoan, Wendy; Matusow, Carla
2010-01-01
XFDS provides an easily adaptable automation platform. To date it has been used to support flight dynamics operations. It coordinates the execution of other applications such as Satellite TookKit, FreeFlyer, MATLAB, and Perl code. It provides a mechanism for passing messages among a collection of XFDS processes, and allows sending and receiving of GMSEC messages. A unified and consistent graphical user interface (GUI) is used for the various tools. Its automation configuration is stored in text files, and can be edited either directly or using the GUI.
Integration of multi-interface conversion channel using FPGA for modular photonic network
NASA Astrophysics Data System (ADS)
Janicki, Tomasz; Pozniak, Krzysztof T.; Romaniuk, Ryszard S.
2010-09-01
The article discusses the integration of different types of interfaces with FPGA circuits using a reconfigurable communication platform. The solution has been implemented in practice in a single node of a distributed measurement system. Construction of communication platform has been presented with its selected hardware modules, described in VHDL and implemented in FPGA circuits. The graphical user interface (GUI) has been described that allows a user to control the operation of the system. In the final part of the article selected practical solutions have been introduced. The whole measurement system resides on multi-gigabit optical network. The optical network construction is highly modular, reconfigurable and scalable.
ERIC Educational Resources Information Center
Schuyler, Michael
1994-01-01
Compares Frame Relay with digital and analog alternatives for connecting sites on a Wide Area Network. Cost considerations, the concepts on which the technology is based, its carrying capacity, the use of CD-ROM and Graphical User Interface (GUI) on Frame Relay, and engineering bandwidth limitations are covered. (KRN)
A Matlab-Based Graphical User Interface for Simulation and Control Design of a Hydrogen Mixer
NASA Technical Reports Server (NTRS)
Richter, Hanz; Figueroa, Fernando
2003-01-01
A Graphical User Interface (GUI) that facilitates prediction and control design tasks for a propellant mixer is described. The Hydrogen mixer is used in rocket test stand operations at the NASA John C. Stennis Space Center. The mixer injects gaseous hydrogen (GH2) into a stream of liquid hydrogen (LH2) to obtain a combined flow with desired thermodynamic properties. The flows of GH2 and LH2 into the mixer are regulated by two control valves, and a third control valve is installed at the exit of the mixer to regulate the combined flow. The three valves may be simultaneously operated in order to achieve any desired combination of total flow, exit temperature and mixer pressure within the range of operation. The mixer, thus, constitutes a three-input, three-output system. A mathematical model of the mixer has been obtained and validated with experimental data. The GUI presented here uses the model to predict mixer response under diverse conditions.
TmoleX--a graphical user interface for TURBOMOLE.
Steffen, Claudia; Thomas, Klaus; Huniar, Uwe; Hellweg, Arnim; Rubner, Oliver; Schroer, Alexander
2010-12-01
We herein present the graphical user interface (GUI) TmoleX for the quantum chemical program package TURBOMOLE. TmoleX allows users to execute the complete workflow of a quantum chemical investigation from the initial building of a structure to the visualization of the results in a user friendly graphical front end. The purpose of TmoleX is to make TURBOMOLE easy to use and to provide a high degree of flexibility. Hence, it should be a valuable tool for most users from beginners to experts. The program is developed in Java and runs on Linux, Windows, and Mac platforms. It can be used to run calculations on local desktops as well as on remote computers. © 2010 Wiley Periodicals, Inc.
How Formal Dynamic Verification Tools Facilitate Novel Concurrency Visualizations
NASA Astrophysics Data System (ADS)
Aananthakrishnan, Sriram; Delisi, Michael; Vakkalanka, Sarvani; Vo, Anh; Gopalakrishnan, Ganesh; Kirby, Robert M.; Thakur, Rajeev
With the exploding scale of concurrency, presenting valuable pieces of information collected by formal verification tools intuitively and graphically can greatly enhance concurrent system debugging. Traditional MPI program debuggers present trace views of MPI program executions. Such views are redundant, often containing equivalent traces that permute independent MPI calls. In our ISP formal dynamic verifier for MPI programs, we present a collection of alternate views made possible by the use of formal dynamic verification. Some of ISP’s views help pinpoint errors, some facilitate discerning errors by eliminating redundancy, while others help understand the program better by displaying concurrent even orderings that must be respected by all MPI implementations, in the form of completes-before graphs. In this paper, we describe ISP’s graphical user interface (GUI) capabilities in all these areas which are currently supported by a portable Java based GUI, a Microsoft Visual Studio GUI, and an Eclipse based GUI whose development is in progress.
Battery Data MI Importer Template Quick Start Guide
NASA Technical Reports Server (NTRS)
Levinson, Laurie H.
2017-01-01
In order to ensure the persistent availability and reliability of test data generated over the course of the project, the M-SHELLS Project has decided to store acquired test data, as well as associated pedigree information, in the Granta Materials Intelligence (MI) database. To facilitate that effort, an importer template and associated graphical user interface (GUI) software have been developed, with this guide providing the operating instructions for their use. The template and automation software GUI are contained in the BatteryDataImporter.xlsm Excel workbook, and are to be used to import M-SHELLS summary, or pedigree, data and the associated raw test data results into an importer template-based file, formatted in such a way as to be ready for immediate upload to the Test Data: Battery Performance table of the Granta MI database. The provided GUI enables the user to select the appropriate summary data file(s), with each file containing the required information to identify any associated raw test data file(s) to be processed. In addition to describing the setup and operation of the importer template and GUI software, this guide also provides instructions for uploading processed data to the database and for viewing the data following upload.
TADS: A CFD-based turbomachinery and analysis design system with GUI. Volume 1: Method and results
NASA Technical Reports Server (NTRS)
Topp, D. A.; Myers, R. A.; Delaney, R. A.
1995-01-01
The primary objective of this study was the development of a CFD (Computational Fluid Dynamics) based turbomachinery airfoil analysis and design system, controlled by a GUI (Graphical User Interface). The computer codes resulting from this effort are referred to as TADS (Turbomachinery Analysis and Design System). This document is the Final Report describing the theoretical basis and analytical results from the TADS system, developed under Task 18 of NASA Contract NAS3-25950, ADPAC System Coupling to Blade Analysis & Design System GUI. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of the various programs was done in such a way that alternative solvers or grid generators could be easily incorporated into the TADS framework. Results of aerodynamic calculations using the TADS system are presented for a highly loaded fan, a compressor stator, a low speed turbine blade and a transonic turbine vane.
Development of the User Interface for AIR-Spec
NASA Astrophysics Data System (ADS)
Cervantes Alcala, E.; Guth, G.; Fedeler, S.; Samra, J.; Cheimets, P.; DeLuca, E.; Golub, L.
2016-12-01
The airborne infrared spectrometer (AIR-Spec) is an imaging spectrometer that will observe the solar corona during the 2017 total solar eclipse. This eclipse will provide a unique opportunity to observe infrared emission lines in the corona. Five spectral lines are of particular interest because they may eventually be used to measure the coronal magnetic field. To avoid infrared absorption from atmospheric water vapor, AIR-Spec will be placed on an NSF Gulfstream aircraft flying above 14.9 km. AIR-Spec must be capable of taking stable images while the plane moves. The instrument includes an image stabilization system, which uses fiber-optic gyroscopes to determine platform rotation, GPS to calculate the ephemeris of the sun, and a voltage-driven mirror to correct the line of sight. An operator monitors a white light image of the eclipse and manually corrects for residual drift. The image stabilization calculation is performed by a programmable automatic controller (PAC), which interfaces with the gyroscopes and mirror controller. The operator interfaces with a separate computer, which acquires images and computes the solar ephemeris. To ensure image stabilization is successful, a human machine interface (HMI) was developed to allow connection between the client and PAC. In order to make control of the instruments user friendly during the short eclipse observation, a graphical user interface (GUI) was also created. The GUI's functionality includes turning image stabilization on and off, allowing the user to input information about the geometric setup, calculating the solar ephemeris, refining estimates of the initial aircraft attitude, and storing data from the PAC on the operator's computer. It also displays time, location, attitude, ephemeris, gyro rates and mirror angles.
A hybrid brain-computer interface-based mail client.
Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Li, Feng
2013-01-01
Brain-computer interface-based communication plays an important role in brain-computer interface (BCI) applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG). With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI). An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method.
A Hybrid Brain-Computer Interface-Based Mail Client
Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Li, Feng
2013-01-01
Brain-computer interface-based communication plays an important role in brain-computer interface (BCI) applications; electronic mail is one of the most common communication tools. In this study, we propose a hybrid BCI-based mail client that implements electronic mail communication by means of real-time classification of multimodal features extracted from scalp electroencephalography (EEG). With this BCI mail client, users can receive, read, write, and attach files to their mail. Using a BCI mouse that utilizes hybrid brain signals, that is, motor imagery and P300 potential, the user can select and activate the function keys and links on the mail client graphical user interface (GUI). An adaptive P300 speller is employed for text input. The system has been tested with 6 subjects, and the experimental results validate the efficacy of the proposed method. PMID:23690880
Reif, David M; Sypa, Myroslav; Lock, Eric F; Wright, Fred A; Wilson, Ander; Cathey, Tommy; Judson, Richard R; Rusyn, Ivan
2013-02-01
Scientists and regulators are often faced with complex decisions, where use of scarce resources must be prioritized using collections of diverse information. The Toxicological Prioritization Index (ToxPi™) was developed to enable integration of multiple sources of evidence on exposure and/or safety, transformed into transparent visual rankings to facilitate decision making. The rankings and associated graphical profiles can be used to prioritize resources in various decision contexts, such as testing chemical toxicity or assessing similarity of predicted compound bioactivity profiles. The amount and types of information available to decision makers are increasing exponentially, while the complex decisions must rely on specialized domain knowledge across multiple criteria of varying importance. Thus, the ToxPi bridges a gap, combining rigorous aggregation of evidence with ease of communication to stakeholders. An interactive ToxPi graphical user interface (GUI) application has been implemented to allow straightforward decision support across a variety of decision-making contexts in environmental health. The GUI allows users to easily import and recombine data, then analyze, visualize, highlight, export and communicate ToxPi results. It also provides a statistical metric of stability for both individual ToxPi scores and relative prioritized ranks. The ToxPi GUI application, complete user manual and example data files are freely available from http://comptox.unc.edu/toxpi.php.
Graphical User Interface for Simulink Integrated Performance Analysis Model
NASA Technical Reports Server (NTRS)
Durham, R. Caitlyn
2009-01-01
The J-2X Engine (built by Pratt & Whitney Rocketdyne,) in the Upper Stage of the Ares I Crew Launch Vehicle, will only start within a certain range of temperature and pressure for Liquid Hydrogen and Liquid Oxygen propellants. The purpose of the Simulink Integrated Performance Analysis Model is to verify that in all reasonable conditions the temperature and pressure of the propellants are within the required J-2X engine start boxes. In order to run the simulation, test variables must be entered at all reasonable values of parameters such as heat leak and mass flow rate. To make this testing process as efficient as possible in order to save the maximum amount of time and money, and to show that the J-2X engine will start when it is required to do so, a graphical user interface (GUI) was created to allow the input of values to be used as parameters in the Simulink Model, without opening or altering the contents of the model. The GUI must allow for test data to come from Microsoft Excel files, allow those values to be edited before testing, place those values into the Simulink Model, and get the output from the Simulink Model. The GUI was built using MATLAB, and will run the Simulink simulation when the Simulate option is activated. After running the simulation, the GUI will construct a new Microsoft Excel file, as well as a MATLAB matrix file, using the output values for each test of the simulation so that they may graphed and compared to other values.
A multimodal interface to resolve the Midas-Touch problem in gaze controlled wheelchair.
Meena, Yogesh Kumar; Cecotti, Hubert; Wong-Lin, KongFatt; Prasad, Girijesh
2017-07-01
Human-computer interaction (HCI) research has been playing an essential role in the field of rehabilitation. The usability of the gaze controlled powered wheelchair is limited due to Midas-Touch problem. In this work, we propose a multimodal graphical user interface (GUI) to control a powered wheelchair that aims to help upper-limb mobility impaired people in daily living activities. The GUI was designed to include a portable and low-cost eye-tracker and a soft-switch wherein the wheelchair can be controlled in three different ways: 1) with a touchpad 2) with an eye-tracker only, and 3) eye-tracker with soft-switch. The interface includes nine different commands (eight directions and stop) and integrated within a powered wheelchair system. We evaluated the performance of the multimodal interface in terms of lap-completion time, the number of commands, and the information transfer rate (ITR) with eight healthy participants. The analysis of the results showed that the eye-tracker with soft-switch provides superior performance with an ITR of 37.77 bits/min among the three different conditions (p<;0.05). Thus, the proposed system provides an effective and economical solution to the Midas-Touch problem and extended usability for the large population of disabled users.
PBEQ-Solver for online visualization of electrostatic potential of biomolecules.
Jo, Sunhwan; Vargyas, Miklos; Vasko-Szedlar, Judit; Roux, Benoît; Im, Wonpil
2008-07-01
PBEQ-Solver provides a web-based graphical user interface to read biomolecular structures, solve the Poisson-Boltzmann (PB) equations and interactively visualize the electrostatic potential. PBEQ-Solver calculates (i) electrostatic potential and solvation free energy, (ii) protein-protein (DNA or RNA) electrostatic interaction energy and (iii) pKa of a selected titratable residue. All the calculations can be performed in both aqueous solvent and membrane environments (with a cylindrical pore in the case of membrane). PBEQ-Solver uses the PBEQ module in the biomolecular simulation program CHARMM to solve the finite-difference PB equation of molecules specified by users. Users can interactively inspect the calculated electrostatic potential on the solvent-accessible surface as well as iso-electrostatic potential contours using a novel online visualization tool based on MarvinSpace molecular visualization software, a Java applet integrated within CHARMM-GUI (http://www.charmm-gui.org). To reduce the computational time on the server, and to increase the efficiency in visualization, all the PB calculations are performed with coarse grid spacing (1.5 A before and 1 A after focusing). PBEQ-Solver suggests various physical parameters for PB calculations and users can modify them if necessary. PBEQ-Solver is available at http://www.charmm-gui.org/input/pbeqsolver.
Graphical user interface for intraoperative neuroimage updating
NASA Astrophysics Data System (ADS)
Rick, Kyle R.; Hartov, Alex; Roberts, David W.; Lunn, Karen E.; Sun, Hai; Paulsen, Keith D.
2003-05-01
Image-guided neurosurgery typically relies on preoperative imaging information that is subject to errors resulting from brain shift and deformation in the OR. A graphical user interface (GUI) has been developed to facilitate the flow of data from OR to image volume in order to provide the neurosurgeon with updated views concurrent with surgery. Upon acquisition of registration data for patient position in the OR (using fiducial markers), the Matlab GUI displays ultrasound image overlays on patient specific, preoperative MR images. Registration matrices are also applied to patient-specific anatomical models used for image updating. After displaying the re-oriented brain model in OR coordinates and digitizing the edge of the craniotomy, gravitational sagging of the brain is simulated using the finite element method. Based on this model, interpolation to the resolution of the preoperative images is performed and re-displayed to the surgeon during the procedure. These steps were completed within reasonable time limits and the interface was relatively easy to use after a brief training period. The techniques described have been developed and used retrospectively prior to this study. Based on the work described here, these steps can now be accomplished in the operating room and provide near real-time feedback to the surgeon.
NASA Astrophysics Data System (ADS)
Rivera-Ortega, Uriel; Dirckx, Joris
2015-09-01
In this manuscript a computer based simulation is proposed for teaching concepts of interference of light (under the scheme of a Michelson interferometer), phase-shifting and polarization states. The user can change some parameters of the interfering waves, such as their amplitude and phase difference in order to graphically represent the polarization state of a simulated travelling wave. Regarding to the interference simulation, the user is able to change the wavelength and type of the interfering waves by selecting combinations between planar and Gaussian profiles, as well as the optical path difference by translating or tilting one of the two mirrors in the interferometer setup, all of this via a graphical user interface (GUI) designed in MATLAB. A theoretical introduction and simulation results for each phenomenon will be shown. Due to the simulation characteristics, this GUI can be a very good non-formal learning resource.
Brainstorm: A User-Friendly Application for MEG/EEG Analysis
Tadel, François; Baillet, Sylvain; Mosher, John C.; Pantazis, Dimitrios; Leahy, Richard M.
2011-01-01
Brainstorm is a collaborative open-source application dedicated to magnetoencephalography (MEG) and electroencephalography (EEG) data visualization and processing, with an emphasis on cortical source estimation techniques and their integration with anatomical magnetic resonance imaging (MRI) data. The primary objective of the software is to connect MEG/EEG neuroscience investigators with both the best-established and cutting-edge methods through a simple and intuitive graphical user interface (GUI). PMID:21584256
Serçinoglu, Onur; Ozbek, Pemra
2018-05-25
Atomistic molecular dynamics (MD) simulations generate a wealth of information related to the dynamics of proteins. If properly analyzed, this information can lead to new insights regarding protein function and assist wet-lab experiments. Aiming to identify interactions between individual amino acid residues and the role played by each in the context of MD simulations, we present a stand-alone software called gRINN (get Residue Interaction eNergies and Networks). gRINN features graphical user interfaces (GUIs) and a command-line interface for generating and analyzing pairwise residue interaction energies and energy correlations from protein MD simulation trajectories. gRINN utilizes the features of NAMD or GROMACS MD simulation packages and automatizes the steps necessary to extract residue-residue interaction energies from user-supplied simulation trajectories, greatly simplifying the analysis for the end-user. A GUI, including an embedded molecular viewer, is provided for visualization of interaction energy time-series, distributions, an interaction energy matrix, interaction energy correlations and a residue correlation matrix. gRINN additionally offers construction and analysis of Protein Energy Networks, providing residue-based metrics such as degrees, betweenness-centralities, closeness centralities as well as shortest path analysis. gRINN is free and open to all users without login requirement at http://grinn.readthedocs.io.
Geospatial application of the Water Erosion Prediction Project (WEPP) model
USDA-ARS?s Scientific Manuscript database
At the hillslope profile and/or field scale, a simple Windows graphical user interface (GUI) is available to easily specify the slope, soil, and management inputs for application of the USDA Water Erosion Prediction Project (WEPP) model. Likewise, basic small watershed configurations of a few hillsl...
Graphical user interface for wireless sensor networks simulator
NASA Astrophysics Data System (ADS)
Paczesny, Tomasz; Paczesny, Daniel; Weremczuk, Jerzy
2008-01-01
Wireless Sensor Networks (WSN) are currently very popular area of development. It can be suited in many applications form military through environment monitoring, healthcare, home automation and others. Those networks, when working in dynamic, ad-hoc model, need effective protocols which must differ from common computer networks algorithms. Research on those protocols would be difficult without simulation tool, because real applications often use many nodes and tests on such a big networks take much effort and costs. The paper presents Graphical User Interface (GUI) for simulator which is dedicated for WSN studies, especially in routing and data link protocols evaluation.
A Graphical Operator Interface for a Telerobotic Inspection System
NASA Technical Reports Server (NTRS)
Kim, W. S.; Tso, K. S.; Hayati, S.
1993-01-01
Operator interface has recently emerged as an important element for efficient and safe operatorinteractions with the telerobotic system. Recent advances in graphical user interface (GUI) andgraphics/video merging technologies enable development of more efficient, flexible operatorinterfaces. This paper describes an advanced graphical operator interface newly developed for aremote surface inspection system at Jet Propulsion Laboratory. The interface has been designed sothat remote surface inspection can be performed by a single operator with an integrated robot controland image inspection capability. It supports three inspection strategies of teleoperated human visual inspection, human visual inspection with automated scanning, and machine-vision-based automated inspection.
Visual interface for space and terrestrial analysis
NASA Technical Reports Server (NTRS)
Dombrowski, Edmund G.; Williams, Jason R.; George, Arthur A.; Heckathorn, Harry M.; Snyder, William A.
1995-01-01
The management of large geophysical and celestial data bases is now, more than ever, the most critical path to timely data analysis. With today's large volume data sets from multiple satellite missions, analysts face the task of defining useful data bases from which data and metadata (information about data) can be extracted readily in a meaningful way. Visualization, following an object-oriented design, is a fundamental method of organizing and handling data. Humans, by nature, easily accept pictorial representations of data. Therefore graphically oriented user interfaces are appealing, as long as they remain simple to produce and use. The Visual Interface for Space and Terrestrial Analysis (VISTA) system, currently under development at the Naval Research Laboratory's Backgrounds Data Center (BDC), has been designed with these goals in mind. Its graphical user interface (GUI) allows the user to perform queries, visualization, and analysis of atmospheric and celestial backgrounds data.
Design and validation of an improved graphical user interface with the 'Tool ball'.
Lee, Kuo-Wei; Lee, Ying-Chu
2012-01-01
The purpose of this research is introduce the design of an improved graphical user interface (GUI) and verifies the operational efficiency of the proposed interface. Until now, clicking the toolbar with the mouse is the usual way to operate software functions. In our research, we designed an improved graphical user interface - a tool ball that is operated by a mouse wheel to perform software functions. Several experiments are conducted to measure the time needed to operate certain software functions with the traditional combination of "mouse click + tool button" and the proposed integration of "mouse wheel + tool ball". The results indicate that the tool ball design can accelerate the speed of operating software functions, decrease the number of icons on the screen, and enlarge the applications of the mouse wheel. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.
Evaluation of the Next-Gen Exercise Software Interface in the NEEMO Analog
NASA Technical Reports Server (NTRS)
Hanson, Andrea; Kalogera, Kent; Sandor, Aniko; Hardy, Marc; Frank, Andrew; English, Kirk; Williams, Thomas; Perera, Jeevan; Amonette, William
2017-01-01
NSBRI (National Space Biomedical Research Institute) funded research grant to develop the 'NextGen' exercise software for the NEEMO (NASA Extreme Environment Mission Operations) analog. Develop a software architecture to integrate instructional, motivational and socialization techniques into a common portal to enhance exercise countermeasures in remote environments. Increase user efficiency and satisfaction, and institute commonality across multiple exercise systems. Utilized GUI (Graphical User Interface) design principals focused on intuitive ease of use to minimize training time and realize early user efficiency. Project requirement to test the software in an analog environment. Top Level Project Aims: 1) Improve the usability of crew interface software to exercise CMS (Crew Management System) through common app-like interfaces. 2) Introduce virtual instructional motion training. 3) Use virtual environment to provide remote socialization with family and friends, improve exercise technique, adherence, motivation and ultimately performance outcomes.
ST-analyzer: a web-based user interface for simulation trajectory analysis.
Jeong, Jong Cheol; Jo, Sunhwan; Wu, Emilia L; Qi, Yifei; Monje-Galvan, Viviana; Yeom, Min Sun; Gorenstein, Lev; Chen, Feng; Klauda, Jeffery B; Im, Wonpil
2014-05-05
Molecular dynamics (MD) simulation has become one of the key tools to obtain deeper insights into biological systems using various levels of descriptions such as all-atom, united-atom, and coarse-grained models. Recent advances in computing resources and MD programs have significantly accelerated the simulation time and thus increased the amount of trajectory data. Although many laboratories routinely perform MD simulations, analyzing MD trajectories is still time consuming and often a difficult task. ST-analyzer, http://im.bioinformatics.ku.edu/st-analyzer, is a standalone graphical user interface (GUI) toolset to perform various trajectory analyses. ST-analyzer has several outstanding features compared to other existing analysis tools: (i) handling various formats of trajectory files from MD programs, such as CHARMM, NAMD, GROMACS, and Amber, (ii) intuitive web-based GUI environment--minimizing administrative load and reducing burdens on the user from adapting new software environments, (iii) platform independent design--working with any existing operating system, (iv) easy integration into job queuing systems--providing options of batch processing either on the cluster or in an interactive mode, and (v) providing independence between foreground GUI and background modules--making it easier to add personal modules or to recycle/integrate pre-existing scripts utilizing other analysis tools. The current ST-analyzer contains nine main analysis modules that together contain 18 options, including density profile, lipid deuterium order parameters, surface area per lipid, and membrane hydrophobic thickness. This article introduces ST-analyzer with its design, implementation, and features, and also illustrates practical analysis of lipid bilayer simulations. Copyright © 2014 Wiley Periodicals, Inc.
Introduction to TAFI - A Matlab® toolbox for analysis of flexural isostasy
NASA Astrophysics Data System (ADS)
Jha, S.; Harry, D. L.; Schutt, D.
2016-12-01
The isostatic response of vertical tectonic loads emplaced on thin elastic plates overlying inviscid substrate and the corresponding gravity anomalies are commonly modeled using well established theories and methodologies of flexural analysis. However, such analysis requires some mathematical and coding expertise on part of users. With that in mind, we designed a new interactive Matlab® toolbox called Toolbox for Analysis of Flexural Isostasy (TAFI). TAFI allows users to create forward models (2-D and 3-D) of flexural deformation of the lithosphere and resulting gravity anomaly. TAFI computes Green's Functions for flexure of the elastic plate subjected to point or line loads, and analytical solution for harmonic loads. Flexure due to non-impulsive, distributed 2-D or 3-D loads are computed by convolving the appropriate Green's function with a user-supplied spatially discretized load function. The gravity anomaly associated with each density interface is calculated by using the Fourier Transform of flexural deflection of these interfaces and estimating the gravity in the wavenumber domain. All models created in TAFI are based on Matlab's intrinsic functions and do not require any specialized toolbox, function or library except those distributed with TAFI. Modeling functions within TAFI can be called from Matlab workspace, from within user written programs or from the TAFI's graphical user interface (GUI). The GUI enables the user to model the flexural deflection of lithosphere interactively, enabling real time comparison of model fit with observed data constraining the flexural deformation and gravity, facilitating rapid search for best fitting flexural model. TAFI is a very useful teaching and research tool and have been tested rigorously in graduate level teaching and basic research environment.
Bieri, Michael; d'Auvergne, Edward J; Gooley, Paul R
2011-06-01
Investigation of protein dynamics on the ps-ns and μs-ms timeframes provides detailed insight into the mechanisms of enzymes and the binding properties of proteins. Nuclear magnetic resonance (NMR) is an excellent tool for studying protein dynamics at atomic resolution. Analysis of relaxation data using model-free analysis can be a tedious and time consuming process, which requires good knowledge of scripting procedures. The software relaxGUI was developed for fast and simple model-free analysis and is fully integrated into the software package relax. It is written in Python and uses wxPython to build the graphical user interface (GUI) for maximum performance and multi-platform use. This software allows the analysis of NMR relaxation data with ease and the generation of publication quality graphs as well as color coded images of molecular structures. The interface is designed for simple data analysis and management. The software was tested and validated against the command line version of relax.
2016-07-01
CAC common access card DoD Department of Defense FOUO For Official Use Only GIS geographic information systems GUI graphical user interface HISA...as per requirements of this project, is UNCLASS/For Official Use Only (FOUO), with access re- stricted to DOD common access card (CAC) users. Key...Boko Haram Fuel Dump Discovered in Maiduguru.” Available: http://saharareporters.com/2015/10/01/another-boko-haram-fuel- dump - discovered-maiduguri
CHARMM-GUI Membrane Builder toward realistic biological membrane simulations.
Wu, Emilia L; Cheng, Xi; Jo, Sunhwan; Rui, Huan; Song, Kevin C; Dávila-Contreras, Eder M; Qi, Yifei; Lee, Jumin; Monje-Galvan, Viviana; Venable, Richard M; Klauda, Jeffery B; Im, Wonpil
2014-10-15
CHARMM-GUI Membrane Builder, http://www.charmm-gui.org/input/membrane, is a web-based user interface designed to interactively build all-atom protein/membrane or membrane-only systems for molecular dynamics simulations through an automated optimized process. In this work, we describe the new features and major improvements in Membrane Builder that allow users to robustly build realistic biological membrane systems, including (1) addition of new lipid types, such as phosphoinositides, cardiolipin (CL), sphingolipids, bacterial lipids, and ergosterol, yielding more than 180 lipid types, (2) enhanced building procedure for lipid packing around protein, (3) reliable algorithm to detect lipid tail penetration to ring structures and protein surface, (4) distance-based algorithm for faster initial ion displacement, (5) CHARMM inputs for P21 image transformation, and (6) NAMD equilibration and production inputs. The robustness of these new features is illustrated by building and simulating a membrane model of the polar and septal regions of E. coli membrane, which contains five lipid types: CL lipids with two types of acyl chains and phosphatidylethanolamine lipids with three types of acyl chains. It is our hope that CHARMM-GUI Membrane Builder becomes a useful tool for simulation studies to better understand the structure and dynamics of proteins and lipids in realistic biological membrane environments. Copyright © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Smith, R.; Kasprzyk, J. R.; Zagona, E. A.
2013-12-01
Population growth and climate change, combined with difficulties in building new infrastructure, motivate portfolio-based solutions to ensuring sufficient water supply. Powerful simulation models with graphical user interfaces (GUI) are often used to evaluate infrastructure portfolios; these GUI based models require manual modification of the system parameters, such as reservoir operation rules, water transfer schemes, or system capacities. Multiobjective evolutionary algorithm (MOEA) based optimization can be employed to balance multiple objectives and automatically suggest designs for infrastructure systems, but MOEA based decision support typically uses a fixed problem formulation (i.e., a single set of objectives, decisions, and constraints). This presentation suggests a dynamic framework for linking GUI-based infrastructure models with MOEA search. The framework begins with an initial formulation which is solved using a MOEA. Then, stakeholders can interact with candidate solutions, viewing their properties in the GUI model. This is followed by changes in the formulation which represent users' evolving understanding of exigent system properties. Our case study is built using RiverWare, an object-oriented, data-centered model that facilitates the representation of a diverse array of water resources systems. Results suggest that assumptions within the initial MOEA search are violated after investigating tradeoffs and reveal how formulations should be modified to better capture stakeholders' preferences.
Applying Cognitive Work Analysis to Time Critical Targeting Functionality
2004-10-01
Cognitive Task Analysis , CTA, Cognitive Task Analysis , Human Factors, GUI, Graphical User Interface, Heuristic Evaluation... Cognitive Task Analysis MITRE Briefing January 2000 Dynamic Battle Management Functional Architecture 3-1 Section 3 Human Factors...clear distinction between Cognitive Work Analysis (CWA) and Cognitive Task Analysis (CTA), therefore this document will refer to these
A Matlab/Simulink-Based Interactive Module for Servo Systems Learning
ERIC Educational Resources Information Center
Aliane, N.
2010-01-01
This paper presents an interactive module for learning both the fundamental and practical issues of servo systems. This module, developed using Simulink in conjunction with the Matlab graphical user interface (Matlab-GUI) tool, is used to supplement conventional lectures in control engineering and robotics subjects. First, the paper introduces the…
RipleyGUI: software for analyzing spatial patterns in 3D cell distributions
Hansson, Kristin; Jafari-Mamaghani, Mehrdad; Krieger, Patrik
2013-01-01
The true revolution in the age of digital neuroanatomy is the ability to extensively quantify anatomical structures and thus investigate structure-function relationships in great detail. To facilitate the quantification of neuronal cell patterns we have developed RipleyGUI, a MATLAB-based software that can be used to detect patterns in the 3D distribution of cells. RipleyGUI uses Ripley's K-function to analyze spatial distributions. In addition the software contains statistical tools to determine quantitative statistical differences, and tools for spatial transformations that are useful for analyzing non-stationary point patterns. The software has a graphical user interface making it easy to use without programming experience, and an extensive user manual explaining the basic concepts underlying the different statistical tools used to analyze spatial point patterns. The described analysis tool can be used for determining the spatial organization of neurons that is important for a detailed study of structure-function relationships. For example, neocortex that can be subdivided into six layers based on cell density and cell types can also be analyzed in terms of organizational principles distinguishing the layers. PMID:23658544
TADS: A CFD-based turbomachinery and analysis design system with GUI. Volume 1: Method and results
NASA Technical Reports Server (NTRS)
Topp, D. A.; Myers, R. A.; Delaney, R. A.
1995-01-01
The primary objective of this study was the development of a computational fluid dynamics (CFD) based turbomachinery airfoil analysis and design system, controlled by a graphical user interface (GUI). The computer codes resulting from this effort are referred to as the Turbomachinery Analysis and Design System (TADS). This document describes the theoretical basis and analytical results from the TADS system. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) in an interactive package. Throughflow analysis capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of various programs was done in a way that alternative solvers or grid generators could be easily incorporated into the TADS framework. Results of aerodynamic calculations using the TADS system are presented for a highly loaded fan, a compressor stator, a low-speed turbine blade, and a transonic turbine vane.
Modeling Tidal Stresses on Satellites Using an Enhanced SatStressGUI
NASA Astrophysics Data System (ADS)
Patthoff, D. A.; Pappalardo, R. T.; Li, J.; Ayton, B.; Kay, J.; Kattenhorn, S. A.
2015-12-01
Icy and rocky satellites of our solar system display a wide range of geological deformation on their surfaces. Some are old and heavily cratered while other are observed to be presently active. Many of the potential sources of stress which can deform satellites are tied to the tidal deformation the moons experience as they orbit their parent planets. Other plausible sources of global-scale stress include a change in orbital parameters, nonsynchronous rotation, or volume change induced by the melting or freezing of a subsurface layer. We turn to computer modeling to correlate observed geologic features to the possible stresses that created them. One model is the SatStress open-source program developed by Z. Selvans (Wahr et al.,2009) to compute viscoelastic diurnal and nonsynchronous rotation stresses using a four-layer viscoelastic satellite model. Kay and Katternhorn (2010) expanded on this work by developing SatStressGUI, which integrated SatStress's original features into a graphical user interface. SatStressGUI computes stress vectors and Love numbers, and generates stress plots and lineaments. We have expanded on SatStressGUI by adding features such as the ability to generate cycloid-style lineaments, calculate stresses resulting from obliquity, and more efficient batch the processing of data. Users may also define their own Love numbers to propagate through further calculations. Here we demonstrate our recent enhancements to SatStressGUI and its abilities, by comparing observed features on Enceladus and Europa to modeled diurnal, nonsynchronous, and obliquity stresses.
The Evolvable Advanced Multi-Mission Operations System (AMMOS): Making Systems Interoperable
NASA Technical Reports Server (NTRS)
Ko, Adans Y.; Maldague, Pierre F.; Bui, Tung; Lam, Doris T.; McKinney, John C.
2010-01-01
The Advanced Multi-Mission Operations System (AMMOS) provides a common Mission Operation System (MOS) infrastructure to NASA deep space missions. The evolution of AMMOS has been driven by two factors: increasingly challenging requirements from space missions, and the emergence of new IT technology. The work described in this paper focuses on three key tasks related to IT technology requirements: first, to eliminate duplicate functionality; second, to promote the use of loosely coupled application programming interfaces, text based file interfaces, web-based frameworks and integrated Graphical User Interfaces (GUI) to connect users, data, and core functionality; and third, to build, develop, and deploy AMMOS services that are reusable, agile, adaptive to project MOS configurations, and responsive to industrially endorsed information technology standards.
Overview of GSE as a multifunctional GUI
NASA Astrophysics Data System (ADS)
Kurtovich, Boyan; Malangone, Fabio; Voss, David L.; Carssow, Douglas B.; Fritz, Theodore A.; Mavretic, Anton
2009-08-01
Ground Support Equipment (GSE) [1] is a versatile and multifunctional graphical user interface (GUI) and a software/hardware platform. It is a custom-designed system executed in the LabVIEW programming language to serve as an instrument health monitor for the Loss Cone Imager (LCI) satellite project. GSE mimics the behavior of the onboard Experiment Computer System (ECS). Its functions comprise the measurement of voltage, current, and power, as well as acting as a safety mechanism in case of any anomalous condition (e.g., over-current and/or over-voltage situation). Individual log files record the sessions during which data is gathered and analyzed. Safety/warning alarm flags shall be 'visible' from any individual window/tab. Analog-to-Digital Conversion (ADC) particle group measurements will be displayed on six individual panels. GSE will be supplemented with a comprehensive user's manual for added clarity.
A Flexible System for Simulating Aeronautical Telecommunication Network
NASA Technical Reports Server (NTRS)
Maly, Kurt; Overstreet, C. M.; Andey, R.
1998-01-01
At Old Dominion University, we have built Aeronautical Telecommunication Network (ATN) Simulator with NASA being the fund provider. It provides a means to evaluate the impact of modified router scheduling algorithms on the network efficiency, to perform capacity studies on various network topologies and to monitor and study various aspects of ATN through graphical user interface (GUI). In this paper we describe briefly about the proposed ATN model and our abstraction of this model. Later we describe our simulator architecture highlighting some of the design specifications, scheduling algorithms and user interface. At the end, we have provided the results of performance studies on this simulator.
Improvements to NASA's Debris Assessment Software
NASA Technical Reports Server (NTRS)
Opiela, J.; Johnson, Nicholas L.
2007-01-01
NASA's Debris Assessment Software (DAS) has been substantially revised and expanded. DAS is designed to assist NASA programs in performing orbital debris assessments, as described in NASA s Guidelines and Assessment Procedures for Limiting Orbital Debris. The extensive upgrade of DAS was undertaken to reflect changes in the debris mitigation guidelines, to incorporate recommendations from DAS users, and to take advantage of recent software capabilities for greater user utility. DAS 2.0 includes an updated environment model and enhanced orbital propagators and reentry-survivability models. The ORDEM96 debris environment model has been replaced by ORDEM2000 in DAS 2.0, which is also designed to accept anticipated revisions to the environment definition. Numerous upgrades have also been applied to the assessment of human casualty potential due to reentering debris. Routines derived from the Object Reentry Survival Analysis Tool, Version 6 (ORSAT 6), determine which objects are assessed to survive reentry, and the resulting risk of human casualty is calculated directly based upon the orbital inclination and a future world population database. When evaluating reentry risks, the user may enter up to 200 unique hardware components for each launched object, in up to four nested levels. This last feature allows the software to more accurately model components that are exposed below the initial breakup altitude. The new DAS 2.0 provides an updated set of tools for users to assess their mission s compliance with the NASA Safety Standard and does so with a clear and easy-to-understand interface. The new native Microsoft Windows graphical user interface (GUI) is a vast improvement over the previous DOS-based interface. In the new version, functions are more-clearly laid out, and the GUI includes the standard Windows-style Help functions. The underlying routines within the DAS code are also improved.
Scalable Unix tools on parallel processors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gropp, W.; Lusk, E.
1994-12-31
The introduction of parallel processors that run a separate copy of Unix on each process has introduced new problems in managing the user`s environment. This paper discusses some generalizations of common Unix commands for managing files (e.g. 1s) and processes (e.g. ps) that are convenient and scalable. These basic tools, just like their Unix counterparts, are text-based. We also discuss a way to use these with a graphical user interface (GUI). Some notes on the implementation are provided. Prototypes of these commands are publicly available.
Parallax visualization of full motion video using the Pursuer GUI
NASA Astrophysics Data System (ADS)
Mayhew, Christopher A.; Forgues, Mark B.
2014-06-01
In 2013, the Authors reported to the SPIE on the Phase 1 development of a Parallax Visualization (PV) plug-in toolset for Wide Area Motion Imaging (WAMI) data using the Pursuer Graphical User Interface (GUI).1 In addition to the ability to PV WAMI data, the Phase 1 plug-in toolset also featured a limited ability to visualize Full Motion video (FMV) data. The ability to visualize both WAMI and FMV data is highly advantageous capability for an Electric Light Table (ELT) toolset. This paper reports on the Phase 2 development and addition of a full featured FMV capability to the Pursuer WAMI PV Plug-in.
A Graphical User Interface for a Method to Infer Kinetics and Network Architecture (MIKANA)
Mourão, Márcio A.; Srividhya, Jeyaraman; McSharry, Patrick E.; Crampin, Edmund J.; Schnell, Santiago
2011-01-01
One of the main challenges in the biomedical sciences is the determination of reaction mechanisms that constitute a biochemical pathway. During the last decades, advances have been made in building complex diagrams showing the static interactions of proteins. The challenge for systems biologists is to build realistic models of the dynamical behavior of reactants, intermediates and products. For this purpose, several methods have been recently proposed to deduce the reaction mechanisms or to estimate the kinetic parameters of the elementary reactions that constitute the pathway. One such method is MIKANA: Method to Infer Kinetics And Network Architecture. MIKANA is a computational method to infer both reaction mechanisms and estimate the kinetic parameters of biochemical pathways from time course data. To make it available to the scientific community, we developed a Graphical User Interface (GUI) for MIKANA. Among other features, the GUI validates and processes an input time course data, displays the inferred reactions, generates the differential equations for the chemical species in the pathway and plots the prediction curves on top of the input time course data. We also added a new feature to MIKANA that allows the user to exclude a priori known reactions from the inferred mechanism. This addition improves the performance of the method. In this article, we illustrate the GUI for MIKANA with three examples: an irreversible Michaelis–Menten reaction mechanism; the interaction map of chemical species of the muscle glycolytic pathway; and the glycolytic pathway of Lactococcus lactis. We also describe the code and methods in sufficient detail to allow researchers to further develop the code or reproduce the experiments described. The code for MIKANA is open source, free for academic and non-academic use and is available for download (Information S1). PMID:22096591
A graphical user interface for a method to infer kinetics and network architecture (MIKANA).
Mourão, Márcio A; Srividhya, Jeyaraman; McSharry, Patrick E; Crampin, Edmund J; Schnell, Santiago
2011-01-01
One of the main challenges in the biomedical sciences is the determination of reaction mechanisms that constitute a biochemical pathway. During the last decades, advances have been made in building complex diagrams showing the static interactions of proteins. The challenge for systems biologists is to build realistic models of the dynamical behavior of reactants, intermediates and products. For this purpose, several methods have been recently proposed to deduce the reaction mechanisms or to estimate the kinetic parameters of the elementary reactions that constitute the pathway. One such method is MIKANA: Method to Infer Kinetics And Network Architecture. MIKANA is a computational method to infer both reaction mechanisms and estimate the kinetic parameters of biochemical pathways from time course data. To make it available to the scientific community, we developed a Graphical User Interface (GUI) for MIKANA. Among other features, the GUI validates and processes an input time course data, displays the inferred reactions, generates the differential equations for the chemical species in the pathway and plots the prediction curves on top of the input time course data. We also added a new feature to MIKANA that allows the user to exclude a priori known reactions from the inferred mechanism. This addition improves the performance of the method. In this article, we illustrate the GUI for MIKANA with three examples: an irreversible Michaelis-Menten reaction mechanism; the interaction map of chemical species of the muscle glycolytic pathway; and the glycolytic pathway of Lactococcus lactis. We also describe the code and methods in sufficient detail to allow researchers to further develop the code or reproduce the experiments described. The code for MIKANA is open source, free for academic and non-academic use and is available for download (Information S1).
User's Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS)
NASA Technical Reports Server (NTRS)
Frederick, Dean K.; DeCastro, Jonathan A.; Litt, Jonathan S.
2007-01-01
This report is a Users Guide for the NASA-developed Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) software, which is a transient simulation of a large commercial turbofan engine (up to 90,000-lb thrust) with a realistic engine control system. The software supports easy access to health, control, and engine parameters through a graphical user interface (GUI). C-MAPSS provides the user with a graphical turbofan engine simulation environment in which advanced algorithms can be implemented and tested. C-MAPSS can run user-specified transient simulations, and it can generate state-space linear models of the nonlinear engine model at an operating point. The code has a number of GUI screens that allow point-and-click operation, and have editable fields for user-specified input. The software includes an atmospheric model which allows simulation of engine operation at altitudes from sea level to 40,000 ft, Mach numbers from 0 to 0.90, and ambient temperatures from -60 to 103 F. The package also includes a power-management system that allows the engine to be operated over a wide range of thrust levels throughout the full range of flight conditions.
Teaching Tool for a Control Systems Laboratory Using a Quadrotor as a Plant in MATLAB
ERIC Educational Resources Information Center
Khan, Subhan; Jaffery, Mujtaba Hussain; Hanif, Athar; Asif, Muhammad Rizwan
2017-01-01
This paper presents a MATLAB-based application to teach the guidance, navigation, and control concepts of a quadrotor to undergraduate students, using a graphical user interface (GUI) and 3-D animations. The Simulink quadrotor model is controlled by a proportional integral derivative controller and a linear quadratic regulator controller. The GUI…
Fluidica CFD software for fluids instruction
NASA Astrophysics Data System (ADS)
Colonius, Tim
2008-11-01
Fluidica is an open-source freely available Matlab graphical user interface (GUI) to to an immersed-boundary Navier- Stokes solver. The algorithm is programmed in Fortran and compiled into Matlab as mex-function. The user can create external flows about arbitrarily complex bodies and collections of free vortices. The code runs fast enough for complex 2D flows to be computed and visualized in real-time on the screen. This facilitates its use in homework and in the classroom for demonstrations of various potential-flow and viscous flow phenomena. The GUI has been written with the goal of allowing the student to learn how to use the software as she goes along. The user can select which quantities are viewed on the screen, including contours of various scalars, velocity vectors, streamlines, particle trajectories, streaklines, and finite-time Lyapunov exponents. In this talk, we demonstrate the software in the context of worked classroom examples demonstrating lift and drag, starting vortices, separation, and vortex dynamics.
Supporting geoscience with graphical-user-interface Internet tools for the Macintosh
NASA Astrophysics Data System (ADS)
Robin, Bernard
1995-07-01
This paper describes a suite of Macintosh graphical-user-interface (GUI) software programs that can be used in conjunction with the Internet to support geoscience education. These software programs allow science educators to access and retrieve a large body of resources from an increasing number of network sites, taking advantage of the intuitive, simple-to-use Macintosh operating system. With these tools, educators easily can locate, download, and exchange not only text files but also sound resources, video movie clips, and software application files from their desktop computers. Another major advantage of these software tools is that they are available at no cost and may be distributed freely. The following GUI software tools are described including examples of how they can be used in an educational setting: ∗ Eudora—an e-mail program ∗ NewsWatcher—a newsreader ∗ TurboGopher—a Gopher program ∗ Fetch—a software application for easy File Transfer Protocol (FTP) ∗ NCSA Mosaic—a worldwide hypertext browsing program. An explosive growth of online archives currently is underway as new electronic sites are being added continuously to the Internet. Many of these resources may be of interest to science educators who learn they can share not only ASCII text files, but also graphic image files, sound resources, QuickTime movie clips, and hypermedia projects with colleagues from locations around the world. These powerful, yet simple to learn GUI software tools are providing a revolution in how knowledge can be accessed, retrieved, and shared.
Conversion of the Forces Mobilization Model (FORCEMOB) from FORTRAN to C
2015-08-01
300 K !’"vale Data 18.192 K 136 K Slack 2.560 K 84 K Mapped File 412 K 412 K Sharel!ble 5.444 K 4.440 K Managed Heap - r age Table l.klusable...the C version of FORCEMOB is ready for operational use. This page is intentionally blank. v Contents 1. Introduction...without a graphical user interface (GUI): once run, FORCEMOB reads user-created input files, performs mathematical operations upon them, and outputs text
TADS: A CFD-Based Turbomachinery Analysis and Design System with GUI: Methods and Results. 2.0
NASA Technical Reports Server (NTRS)
Koiro, M. J.; Myers, R. A.; Delaney, R. A.
1999-01-01
The primary objective of this study was the development of a Computational Fluid Dynamics (CFD) based turbomachinery airfoil analysis and design system, controlled by a Graphical User Interface (GUI). The computer codes resulting from this effort are referred to as TADS (Turbomachinery Analysis and Design System). This document is the Final Report describing the theoretical basis and analytical results from the TADS system developed under Task 10 of NASA Contract NAS3-27394, ADPAC System Coupling to Blade Analysis & Design System GUI, Phase II-Loss, Design and. Multi-stage Analysis. TADS couples a throughflow solver (ADPAC) with a quasi-3D blade-to-blade solver (RVCQ3D) or a 3-D solver with slip condition on the end walls (B2BADPAC) in an interactive package. Throughflow analysis and design capability was developed in ADPAC through the addition of blade force and blockage terms to the governing equations. A GUI was developed to simplify user input and automate the many tasks required to perform turbomachinery analysis and design. The coupling of the various programs was done in such a way that alternative solvers or grid generators could be easily incorporated into the TADS framework. Results of aerodynamic calculations using the TADS system are presented for a multistage compressor, a multistage turbine, two highly loaded fans, and several single stage compressor and turbine example cases.
Calabria, Andrea; Spinozzi, Giulio; Benedicenti, Fabrizio; Tenderini, Erika; Montini, Eugenio
2015-01-01
Many biological laboratories that deal with genomic samples are facing the problem of sample tracking, both for pure laboratory management and for efficiency. Our laboratory exploits PCR techniques and Next Generation Sequencing (NGS) methods to perform high-throughput integration site monitoring in different clinical trials and scientific projects. Because of the huge amount of samples that we process every year, which result in hundreds of millions of sequencing reads, we need to standardize data management and tracking systems, building up a scalable and flexible structure with web-based interfaces, which are usually called Laboratory Information Management System (LIMS). We started collecting end-users' requirements, composed of desired functionalities of the system and Graphical User Interfaces (GUI), and then we evaluated available tools that could address our requirements, spanning from pure LIMS to Content Management Systems (CMS) up to enterprise information systems. Our analysis identified ADempiere ERP, an open source Enterprise Resource Planning written in Java J2EE, as the best software that also natively implements some highly desirable technological advances, such as the high usability and modularity that grants high use-case flexibility and software scalability for custom solutions. We extended and customized ADempiere ERP to fulfil LIMS requirements and we developed adLIMS. It has been validated by our end-users verifying functionalities and GUIs through test cases for PCRs samples and pre-sequencing data and it is currently in use in our laboratories. adLIMS implements authorization and authentication policies, allowing multiple users management and roles definition that enables specific permissions, operations and data views to each user. For example, adLIMS allows creating sample sheets from stored data using available exporting operations. This simplicity and process standardization may avoid manual errors and information backtracking, features that are not granted using track recording on files or spreadsheets. adLIMS aims to combine sample tracking and data reporting features with higher accessibility and usability of GUIs, thus allowing time to be saved on doing repetitive laboratory tasks, and reducing errors with respect to manual data collection methods. Moreover, adLIMS implements automated data entry, exploiting sample data multiplexing and parallel/transactional processing. adLIMS is natively extensible to cope with laboratory automation through platform-dependent API interfaces, and could be extended to genomic facilities due to the ERP functionalities.
Ahlbrandt, Janko; Henrich, Michael; Hartmann, Bernd A; Bundschuh, Bettina B; Schwarz, Julia; Klasen, Joachim; Röhrig, Rainer
2012-01-01
In Germany the core data set for anesthesia version 3.0 was recently introduced for external quality assurance, which includes five surgical tracer procedures. We found a low rate of correctly documented tracers when compared to procedure data (OPS-Codes) documented separately. Examination revealed that the graphical user interface (GUI) contravened the dialogue principles as defined in EN ISO 9241-110. We worked with the manufacturer to implement small improvements and roll out the software. A crossover study was conducted at a university hospital and a municipal hospital chain with five hospitals. All study sites and surgical tracer procedures combined, we found an improvement from 42% to 65% (p<0.001; N=34,610) correctly documented anesthesias. We also saw improvements for most of the observed surgical tracer procedures at all hospitals. Our results show the big effect small changes to the GUI can have on data quality. They also raise the question, if highly flexible and parameterized clinical documentation systems are suited to achieve high usability. Finding the right balance between GUIs designed by usability experts and the flexibility of parameterization by administrators will be a difficult task for the future and subject to further research.
Mueller, David S.
2013-01-01
profiles from the entire cross section and multiple transects to determine a mean profile for the measurement. The use of an exponent derived from normalized data from the entire cross section is shown to be valid for application of the power velocity distribution law in the computation of the unmeasured discharge in a cross section. Selected statistics are combined with empirically derived criteria to automatically select the appropriate extrapolation methods. A graphical user interface (GUI) provides the user tools to visually evaluate the automatically selected extrapolation methods and manually change them, as necessary. The sensitivity of the total discharge to available extrapolation methods is presented in the GUI. Use of extrap by field hydrographers has demonstrated that extrap is a more accurate and efficient method of determining the appropriate extrapolation methods compared with tools currently (2012) provided in the ADCP manufacturers’ software.
Gokhin, David S.; Fowler, Velia M.
2016-01-01
The periodically arranged thin filaments within the striated myofibrils of skeletal and cardiac muscle have precisely regulated lengths, which can change in response to developmental adaptations, pathophysiological states, and genetic perturbations. We have developed a user-friendly, open-source ImageJ plugin that provides a graphical user interface (GUI) for super-resolution measurement of thin filament lengths by applying Distributed Deconvolution (DDecon) analysis to periodic line scans collected from fluorescence images. In the workflow presented here, we demonstrate thin filament length measurement using a phalloidin-stained cryosection of mouse skeletal muscle. The DDecon plugin is also capable of measuring distances of any periodically localized fluorescent signal from the Z- or M-line, as well as distances between successive Z- or M-lines, providing a broadly applicable tool for quantitative analysis of muscle cytoarchitecture. These functionalities can also be used to analyze periodic fluorescence signals in nonmuscle cells. PMID:27644080
SEM (Symmetry Equivalent Molecules): a web-based GUI to generate and visualize the macromolecules
Hussain, A. S. Z.; Kumar, Ch. Kiran; Rajesh, C. K.; Sheik, S. S.; Sekar, K.
2003-01-01
SEM, Symmetry Equivalent Molecules, is a web-based graphical user interface to generate and visualize the symmetry equivalent molecules (proteins and nucleic acids). In addition, the program allows the users to save the three-dimensional atomic coordinates of the symmetry equivalent molecules in the local machine. The widely recognized graphics program RasMol has been deployed to visualize the reference (input atomic coordinates) and the symmetry equivalent molecules. This program is written using CGI/Perl scripts and has been interfaced with all the three-dimensional structures (solved using X-ray crystallography) available in the Protein Data Bank. The program, SEM, can be accessed over the World Wide Web interface at http://dicsoft2.physics.iisc.ernet.in/sem/ or http://144.16.71.11/sem/. PMID:12824326
NASA Astrophysics Data System (ADS)
Gualda, G. A.; Ghiorso, M. S.
2013-12-01
The thermodynamic modeling software MELTS (and its derivatives) is a powerful and much utilized tool for investigating crystallization and melting in natural magmatic systems. Rhyolite-MELTS (Gualda et al. 2012, J. Petrol. 53:875-890) is a recent recalibration of MELTS aimed at better capturing the evolution of magmas present in the upper crust (up to ~400 MPa pressure). Currently, most users of rhyolite-MELTS rely on a graphical user interface (GUI), which can be run on UNIX/LINUX and Mac OS X computers. While the interface is powerful and flexible, it can be somewhat cumbersome for the novice and the output is in the form of text files that need to be processed offline. This situation is probably the main reason why MELTS - despite great potential - has not been used more frequently for teaching purposes. We are currently developing an alternative GUI for rhyolite-MELTS using web services consumed by a VBA backend in Microsoft Excel©. The goal is to create a much more interactive tool, that is easy to use that can be made available to a widespread audience, and that will be useful for both research and teaching. The interface is contained within a macro-enabled workbook, which includes editable cells where the user can insert the model input information. Interface buttons initiate computations that are executed on a central server at OFM Research in Seattle (WA). Results of simple calculations are shown immediately within the interface itself. For instance, a user can very rapidly determine the temperature at which a magma of a given composition is completely molten (i.e. find the liquidus); or determine which phases are present, in what abundances, their compositions, and their physical properties (e.g. density, viscosity) at any given combination of temperature, pressure and oxygen fugacity. We expect that using the interface in this mode will greatly facilitate building intuition about magmas and their properties. It is also possible to combine a sequence of calculations into an evolutionary path. The user can input starting and ending temperatures and pressures, temperature and pressure steps, and the prevailing oxidation conditions, and the program will perform the calculations showing the magma properties at every step; at the conclusion of the calculations, a series of data sheets and diagrams are created in a separate workbook, which can be saved independently of the interface. Additionally, the user can specify a grid of temperatures and pressures and calculate a phase diagram showing the conditions at which different phases are present. We envision a host of exercises that can be tackled by students of all levels exploring the varied evolution of natural magma compositions. The main advantages of this new platform are that it is simple to use and flexible. Workbooks can be created for specific exercises, facilitating their use in classroom assignments. The Excel GUI interface is built on a popular platform, which is widely available, requires no installation, and is distributed for free from melts.ofm-research.org. The main drawback is that operation of the workbook requires an internet connection. The web services used are currently only accessible by Excel 2010 and 2013 for Windows.
A Web-based vital sign telemonitor and recorder for telemedicine applications.
Mendoza, Patricia; Gonzalez, Perla; Villanueva, Brenda; Haltiwanger, Emily; Nazeran, Homer
2004-01-01
We describe a vital sign telemonitor (VST) that acquires, records, displays, and provides readings such as: electrocardiograms (ECGs), temperature (T), and oxygen saturation (SaO2) over the Internet to any site. The design of this system consisted of three parts: sensors, analog signal processing circuits, and a user-friendly graphical user interface (GUI). The first part involved selection of appropriate sensors. For ECG, disposable Ag/AgCl electrodes; for temperature, LM35 precision temperature sensor; and for SaO2 the Nonin Oximetry Development Kit equipped with a finger clip were selected. The second part consisted of processing the analog signals obtained from these sensors. This was achieved by implementing suitable amplifiers and filters for the vital signs. The final part focused on development of a GUI to display the vital signs in the LabVIEW environment. From these measurements, important values such as heart rate (HR), beat-to-beat (RR) intervals, SaO2 percentages, and T in both degrees Celsius and Fahrenheit were calculated The GUI could be accessed through the Internet in a Web-page facilitating the possibility of real-time patient telemonitoring. The final system was completed and tested on volunteers with satisfactory results.
International Disability Educational Alliance (IDEAnet)
2011-03-23
scientists who have graduated from the Field Epidemiology Training Program (FELTP) GUI: Graphical User Interface GIS : Global Implementation Solutions...how to participate in IDEAnet programs, and background information. 47 “Materials for Download ” is used here to denote materials that will be provided...for download and use by interested parties. The materials may include: written/pictorial instructions, articles, videos, images, and other materials
A collection of open source applications for mass spectrometry data mining.
Gallardo, Óscar; Ovelleiro, David; Gay, Marina; Carrascal, Montserrat; Abian, Joaquin
2014-10-01
We present several bioinformatics applications for the identification and quantification of phosphoproteome components by MS. These applications include a front-end graphical user interface that combines several Thermo RAW formats to MASCOT™ Generic Format extractors (EasierMgf), two graphical user interfaces for search engines OMSSA and SEQUEST (OmssaGui and SequestGui), and three applications, one for the management of databases in FASTA format (FastaTools), another for the integration of search results from up to three search engines (Integrator), and another one for the visualization of mass spectra and their corresponding database search results (JsonVisor). These applications were developed to solve some of the common problems found in proteomic and phosphoproteomic data analysis and were integrated in the workflow for data processing and feeding on our LymPHOS database. Applications were designed modularly and can be used standalone. These tools are written in Perl and Python programming languages and are supported on Windows platforms. They are all released under an Open Source Software license and can be freely downloaded from our software repository hosted at GoogleCode. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aspey, R A; McDermid, I S; Leblanc, T; Howe, J W; Walsh, T D
2008-09-01
The Jet Propulsion Laboratory operates lidar systems at Table Mountain Facility (TMF), California (34.4 degrees N, 117.7 degrees W) and Mauna Loa Observatory, Hawaii (19.5 degrees N, 155.6 degrees W) under the framework of the Network for the Detection of Atmospheric Composition Change. To complement these systems a new Raman lidar has been developed at TMF with particular attention given to optimizing water vapor profile measurements up to the tropopause and lower stratosphere. The lidar has been designed for accuracies of 5% up to 12 km in the free troposphere and a detection capability of <5 ppmv. One important feature of the lidar is a precision alignment system using range resolved data from eight Licel transient recorders, allowing fully configurable alignment via a LABVIEW/C++ graphical user interface (GUI). This allows the lidar to be aligned on any channel while simultaneously displaying signals from other channels at configurable altitude/bin combinations. The general lidar instrumental setup and the details of the alignment control system, data acquisition, and GUI alignment software are described. Preliminary validation results using radiosonde and lidar intercomparisons are briefly presented.
NASA Technical Reports Server (NTRS)
Clark, Kenneth; Watney, Garth; Murray, Alexander; Benowitz, Edward
2007-01-01
A computer program translates Unified Modeling Language (UML) representations of state charts into source code in the C, C++, and Python computing languages. ( State charts signifies graphical descriptions of states and state transitions of a spacecraft or other complex system.) The UML representations constituting the input to this program are generated by using a UML-compliant graphical design program to draw the state charts. The generated source code is consistent with the "quantum programming" approach, which is so named because it involves discrete states and state transitions that have features in common with states and state transitions in quantum mechanics. Quantum programming enables efficient implementation of state charts, suitable for real-time embedded flight software. In addition to source code, the autocoder program generates a graphical-user-interface (GUI) program that, in turn, generates a display of state transitions in response to events triggered by the user. The GUI program is wrapped around, and can be used to exercise the state-chart behavior of, the generated source code. Once the expected state-chart behavior is confirmed, the generated source code can be augmented with a software interface to the rest of the software with which the source code is required to interact.
Buehler, S; Lozano-Zahonero, S; Schumann, S; Guttmann, J
2014-12-01
In mechanical ventilation, a careful setting of the ventilation parameters in accordance with the current individual state of the lung is crucial to minimize ventilator induced lung injury. Positive end-expiratory pressure (PEEP) has to be set to prevent collapse of the alveoli, however at the same time overdistension should be avoided. Classic approaches of analyzing static respiratory system mechanics fail in particular if lung injury already prevails. A new approach of analyzing dynamic respiratory system mechanics to set PEEP uses the intratidal, volume-dependent compliance which is believed to stay relatively constant during one breath only if neither atelectasis nor overdistension occurs. To test the success of this dynamic approach systematically at bedside or in an animal study, automation of the computing steps is necessary. A decision support system for optimizing PEEP in form of a Graphical User Interface (GUI) was targeted. Respiratory system mechanics were analyzed using the gliding SLICE method. The resulting shapes of the intratidal compliance-volume curve were classified into one of six categories, each associated with a PEEP-suggestion. The GUI should include a graphical representation of the results as well as a quality check to judge the reliability of the suggestion. The implementation of a user-friendly GUI was successfully realized. The agreement between modelled and measured pressure data [expressed as root-mean-square (RMS)] tested during the implementation phase with real respiratory data from two patient studies was below 0.2 mbar for data taken in volume controlled mode and below 0.4 mbar for data taken in pressure controlled mode except for two cases with RMS < 0.6 mbar. Visual inspections showed, that good and medium quality data could be reliably identified. The new GUI allows visualization of intratidal compliance-volume curves on a breath-by-breath basis. The automatic categorisation of curve shape into one of six shape-categories provides the rational decision-making model for PEEP-titration.
The Water SWITCH-ON Spatial Information Platform (SIP)
NASA Astrophysics Data System (ADS)
Sala Calero, J., Sr.; Boot, G., Sr.; Dihé, P., Sr.; Arheimer, B.
2017-12-01
The amount of hydrological open data is continually growing and providing opportunities to the scientific community. Although the existing data portals (GEOSS Portal, INSPIRE community geoportal and others) enable access to open data, many users still find browsing through them difficult. Moreover, the time spent on gathering and preparing data usually is more significant than the time spent on the experiment itself. Thus, any improvement on searching, understanding, accessing or using open data is greatly beneficial. The Spatial Information Platform (SIP) has been developed to tackle these issues within the SWITCH-ON European Commission funded FP7 project. The SIP has been designed as a set of tools based on open standards that provide to the user all the necessary functionalities as described in the Publish-Find-Bind (PFB) pattern. In other words, this means that the SIP helps users to locate relevant and suitable data for their experiments analysis, to access and transform it (filtering, extraction, selection, conversion, aggregation). Moreover, the SIP can be used to provide descriptive information about the data and to publish it so others can find and use it. The SIP is based on existing open data protocols such as the OGC/CSW, OGC/WMS, OpenDAP and open-source components like PostgreSQL/PostGIS, GeoServer and pyCSW. The SIP is divided in three main user interfaces: the BYOD (Browse your open dataset) web interface, the Expert GUI tool and the Upload Data and Metadata web interface. The BYOD HTML5 client is the main entry point for users that want to browse through open data in the SIP. The BYOD has a map interface based on Leaflet JavaScript libraries so that the users can search more efficiently. The web-based Open Data Registration Tool is a user-friendly upload and metadata description interface (geographical extent, license, DOI generation). The Expert GUI is a desktop application that provides full metadata editing capabilities for the metadata moderators of the project. In conclusion, the Spatial Information Platform (SIP) provides to its community a set of tools for better understanding and ease of use of hydrological open-data. Moreover, the SIP has been based on well-known OGC standards that will allow the connection and data harvesting from popular open data portals such as the GEOSS system of systems.
Quantifying Therapeutic and Diagnostic Efficacy in 2D Microvascular Images
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia; Vickerman, Mary B.; Keith, Patricia A.
2009-01-01
VESGEN is a newly automated, user-interactive program that maps and quantifies the effects of vascular therapeutics and regulators on microvascular form and function. VESGEN analyzes two-dimensional, black and white vascular images by measuring important vessel morphology parameters. This software guides the user through each required step of the analysis process via a concise graphical user interface (GUI). Primary applications of the VESGEN code are 2D vascular images acquired as clinical diagnostic images of the human retina and as experimental studies of the effects of vascular regulators and therapeutics on vessel remodeling.
NASA Astrophysics Data System (ADS)
Bourrion, O.; Boyer, B.; Derome, L.; Pignol, G.
2016-06-01
We developed a highly integrated and versatile electronic module to equip small nuclear physics experiments and lab teaching classes: the User friendly Configurable Trigger, scaler and delay Module for nuclear and particle physics (UCTM). It is configurable through a Graphical User Interface (GUI) and provides a large number of possible trigger conditions without any Hardware Description Language (HDL) required knowledge. This new version significantly enhances the previous capabilities by providing two additional features: signal digitization and time measurements. The design, performances and a typical application are presented.
Development and deployment of a Desktop and Mobile application on grid for GPS studie
NASA Astrophysics Data System (ADS)
Ntumba, Patient; Lotoy, Vianney; Djungu, Saint Jean; Fleury, Rolland; Petitdidier, Monique; Gemünd, André; Schwichtenberg, Horst
2013-04-01
GPS networks for scientific studies are developed all other the world and large databases, regularly updated, like IGS are also available. Many GPS have been installed in West and Central Africa during AMMA (African Monsoon Multiplidisciplinary Analysis), IHY (International heliophysical Year)and many other projects since 2005. African scientists have been educated to use those data especially for meteorological and ionospheric studies. The annual variations of ionospheric parameters for a given station or map of a given region are very intensive computing. Then grid or cloud computing may be a solution to obtain results in a relatively short time. Real time At the University of Kinshasa the chosen solution is a grid of several PCs. It has been deployed by using Globus Toolkit on a Condor pool in order to support the processing of GPS data for ionospheric studies. To be user-friendly, graphical user interfaces(GUI) have been developed to help the user to prepare and submit jobs. One is a java GUI for desktop client, the other is an Android GUI for mobile client. The interest of a grid is the possibility to send a bunch of jobs with an adequate agent control in order to survey the job execution and result storage. After the feasibility study the grid will be extended to a larger number of PCs. Other solutions will be in parallel explored.
Sanges, Remo; Cordero, Francesca; Calogero, Raffaele A
2007-12-15
OneChannelGUI is an add-on Bioconductor package providing a new set of functions extending the capability of the affylmGUI package. This library provides a graphical interface (GUI) for Bioconductor libraries to be used for quality control, normalization, filtering, statistical validation and data mining for single channel microarrays. Affymetrix 3' expression (IVT) arrays as well as the new whole transcript expression arrays, i.e. gene/exon 1.0 ST, are actually implemented. oneChannelGUI is available for most platforms on which R runs, i.e. Windows and Unix-like machines. http://www.bioconductor.org/packages/2.0/bioc/html/oneChannelGUI.html
MAPA: an interactive accelerator design code with GUI
NASA Astrophysics Data System (ADS)
Bruhwiler, David L.; Cary, John R.; Shasharina, Svetlana G.
1999-06-01
The MAPA code is an interactive accelerator modeling and design tool with an X/Motif GUI. MAPA has been developed in C++ and makes full use of object-oriented features. We present an overview of its features and describe how users can independently extend the capabilities of the entire application, including the GUI. For example, a user can define a new model for a focusing or accelerating element. If the appropriate form is followed, and the new element is "registered" with a single line in the specified file, then the GUI will fully support this user-defined element type after it has been compiled and then linked to the existing application. In particular, the GUI will bring up windows for modifying any relevant parameters of the new element type. At present, one can use the GUI for phase space tracking, finding fixed points and generating line plots for the Twiss parameters, the dispersion and the accelerator geometry. The user can define new types of simulations which the GUI will automatically support by providing a menu option to execute the simulation and subsequently rendering line plots of the resulting data.
Analysis of different image-based biofeedback models for improving cycling performances
NASA Astrophysics Data System (ADS)
Bibbo, D.; Conforto, S.; Bernabucci, I.; Carli, M.; Schmid, M.; D'Alessio, T.
2012-03-01
Sport practice can take advantage from the quantitative assessment of task execution, which is strictly connected to the implementation of optimized training procedures. To this aim, it is interesting to explore the effectiveness of biofeedback training techniques. This implies a complete chain for information extraction containing instrumented devices, processing algorithms and graphical user interfaces (GUIs) to extract valuable information (i.e. kinematics, dynamics, and electrophysiology) to be presented in real-time to the athlete. In cycling, performance indexes displayed in a simple and perceivable way can help the cyclist optimize the pedaling. To this purpose, in this study four different GUIs have been designed and used in order to understand if and how a graphical biofeedback can influence the cycling performance. In particular, information related to the mechanical efficiency of pedaling is represented in each of the designed interfaces and then displayed to the user. This index is real-time calculated on the basis of the force signals exerted on the pedals during cycling. Instrumented pedals for bikes, already designed and implemented in our laboratory, have been used to measure those force components. A group of subjects underwent an experimental protocol and pedaled with (the interfaces have been used in a randomized order) and without graphical biofeedback. Preliminary results show how the effective perception of the biofeedback influences the motor performance.
NASA Astrophysics Data System (ADS)
Milani, G.; Milani, F.
A GUI software (GURU) for experimental data fitting of rheometer curves in Natural Rubber (NR) vulcanized with sulphur at different curing temperatures is presented. Experimental data are automatically loaded in GURU from an Excel spreadsheet coming from the output of the experimental machine (moving die rheometer). To fit the experimental data, the general reaction scheme proposed by Han and co-workers for NR vulcanized with sulphur is considered. From the simplified kinetic scheme adopted, a closed form solution can be found for the crosslink density, with the only limitation that the induction period is excluded from computations. Three kinetic constants must be determined in such a way to minimize the absolute error between normalized experimental data and numerical prediction. Usually, this result is achieved by means of standard least-squares data fitting. On the contrary, GURU works interactively by means of a Graphical User Interface (GUI) to minimize the error and allows an interactive calibration of the kinetic constants by means of sliders. A simple mouse click on the sliders allows the assignment of a value for each kinetic constant and a visual comparison between numerical and experimental curves. Users will thus find optimal values of the constants by means of a classic trial and error strategy. An experimental case of technical relevance is shown as benchmark.
Abdalaoui Slimani, Faical Alaoui; Bentourkia, M'hamed
2018-01-01
There are several computer programs or combination of programs for radiation tracking and other information in tissues by using Monte Carlo simulation [1]. Among these are GEANT4 [2] programs provided as classes that can be incorporated in C++ codes to achieve different tasks in radiation interactions with matter. GEANT4 made the physics easier but requires often a long learning-curve that implies a good knowledge of C++ and the Geant4 architecture. GAMOS [3], the Geant4-based Architecture for Medicine-Oriented Simulations, facilitates the use of Geant4 by providing a script language that covers almost all the needs of a radiotherapy simulation but it is obviously out of reach of biological researchers. The aim of the present work was to report the design and development of a Graphical User Interface (GUI) for absorbed dose calculation and for particle tracking in humans, small animals and phantoms. The GUI is based on the open source GEANT4 for the physics of particle interactions, on the QT cross-platform application for combining programming commands and for display. The calculation of the absorbed dose can be performed based on 3D CT images in DICOM format, from images of phantoms or from solid volumes that can be made from any pure or composite material to be specified by its molecular formulas. The GUI has several menus relative to the emitting source which can have different shapes, positions, energy as mono- or poly-energy such as X-ray spectra; the types of particles and particle interactions; energy deposition and absorbed dose; and the output results as histograms. In conclusion, the GUI we developed can be easily used by any researcher without the need to be familiar with computer programming, and it will be freely proposed as an open source. Copyright © 2017.
The Solution to Pollution is Distribution: Design Your Own Chaotic Flow
NASA Astrophysics Data System (ADS)
Tigera, R. G.; Roth, E. J.; Neupauer, R.; Mays, D. C.
2015-12-01
Plume spreading promotes the molecular mixing that drives chemical reactions in porous media in general, and remediation reactions in groundwater aquifers in particular. Theoretical analysis suggests that engineered injection and extraction, a specific sequence of pumping through wells surrounding a contaminant plume, can improve groundwater remediation through chaotic advection. Selection of an engineered injection and extraction scheme is difficult, however, because the engineer is faced with the difficulty of recommending a pumping scheme for a contaminated site without having any previous knowledge of how the scheme will perform. To address this difficulty, this presentation describes a Graphical User Interface (GUI) designed to help engineers develop, test, and observe pumping schemes as described in previous research (Mays, D.C. and Neupauer, R.M., 2012, Plume spreading in groundwater by stretching and folding, Water Resour. Res., 48, W07501, doi:10.1029/2011WR011567). The inputs allow the user to manipulate the model conditions such as number of wells, plume size, and pumping scheme. Plume evolution is modeled, assuming no diffusion or dispersion, using analytical solutions for injection or extraction through individual wells or pairs or wells (i.e., dipoles). Using the GUI, an engineered injection and extraction scheme can be determined that best fits the remediation needs of the contaminated site. By creating multiple injection and extraction schemes, the user can learn about the plume shapes created from different schemes and, ultimately, recommend a pumping scheme based on some experience of fluid flow as shown in the GUI. The pumping schemes developed through this GUI are expected to guide more advanced modeling and laboratory studies that account for the crucial role of dispersion in groundwater remediation.
Graphical user interface for image acquisition and processing
Goldberg, Kenneth A.
2002-01-01
An event-driven GUI-based image acquisition interface for the IDL programming environment designed for CCD camera control and image acquisition directly into the IDL environment where image manipulation and data analysis can be performed, and a toolbox of real-time analysis applications. Running the image acquisition hardware directly from IDL removes the necessity of first saving images in one program and then importing the data into IDL for analysis in a second step. Bringing the data directly into IDL creates an opportunity for the implementation of IDL image processing and display functions in real-time. program allows control over the available charge coupled device (CCD) detector parameters, data acquisition, file saving and loading, and image manipulation and processing, all from within IDL. The program is built using IDL's widget libraries to control the on-screen display and user interface.
Transient Heat Transfer Properties in a Pulse Detonation Combustor
2011-03-01
strategies for future systems. 15. NUMBER OF PAGES 89 14. SUBJECT TERMS Pulse Detonation Engines, PDE , Heat Transfer 16. PRICE CODE 17. SECURITY...GUI Graphical User Interface NPS Naval Postgraduate School PDC Pulse Detonation Combustion PDE Pulse Detonation Engine RPL Rocket...a tactical missile with a Pulse Detonation Engine ( PDE ) and provide greater range for the same amount of fuel as compared to other current
Combined Linear and Nonlinear Radar: Waveform Generation and Capture
2013-04-01
Instrument Control Toolbox in MATLAB (v7.0.0.19920, R14). The graphical user interface (GUI) in figure 11 was created using MATLAB’s “ guide ” function. The...filtered second harmonic of the captured Vtrans: 16 2trans BPF transV t h t V t , (21) and hBPF is a bandpass filter with
NASA Technical Reports Server (NTRS)
Desautel, Richard
1993-01-01
The objectives of this research include supporting the Aerothermodynamics Branch's research by developing graphical visualization tools for both the branch's adaptive grid code and flow field ray tracing code. The completed research for the reporting period includes development of a graphical user interface (GUI) and its implementation into the NAS Flowfield Analysis Software Tool kit (FAST), for both the adaptive grid code (SAGE) and the flow field ray tracing code (CISS).
Bang, Magnus; Timpka, Toomas
2007-06-01
Co-located teams often use material objects to communicate messages in collaboration. Modern desktop computing systems with abstract graphical user interface (GUIs) fail to support this material dimension of inter-personal communication. The aim of this study is to investigate how tangible user interfaces can be used in computer systems to better support collaborative routines among co-located clinical teams. The semiotics of physical objects used in team collaboration was analyzed from data collected during 1 month of observations at an emergency room. The resulting set of communication patterns was used as a framework when designing an experimental system. Following the principles of augmented reality, physical objects were mapped into a physical user interface with the goal of maintaining the symbolic value of those objects. NOSTOS is an experimental ubiquitous computing environment that takes advantage of interaction devices integrated into the traditional clinical environment, including digital pens, walk-up displays, and a digital desk. The design uses familiar workplace tools to function as user interfaces to the computer in order to exploit established cognitive and collaborative routines. Paper-based tangible user interfaces and digital desks are promising technologies for co-located clinical teams. A key issue that needs to be solved before employing such solutions in practice is associated with limited feedback from the passive paper interfaces.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Gendy, Atef; Saleeb, Atef F.; Mark, John; Wilt, Thomas E.
2007-01-01
Two reports discuss, respectively, (1) the generalized viscoplasticity with potential structure (GVIPS) class of mathematical models and (2) the Constitutive Material Parameter Estimator (COMPARE) computer program. GVIPS models are constructed within a thermodynamics- and potential-based theoretical framework, wherein one uses internal state variables and derives constitutive equations for both the reversible (elastic) and the irreversible (viscoplastic) behaviors of materials. Because of the underlying potential structure, GVIPS models not only capture a variety of material behaviors but also are very computationally efficient. COMPARE comprises (1) an analysis core and (2) a C++-language subprogram that implements a Windows-based graphical user interface (GUI) for controlling the core. The GUI relieves the user of the sometimes tedious task of preparing data for the analysis core, freeing the user to concentrate on the task of fitting experimental data and ultimately obtaining a set of material parameters. The analysis core consists of three modules: one for GVIPS material models, an analysis module containing a specialized finite-element solution algorithm, and an optimization module. COMPARE solves the problem of finding GVIPS material parameters in the manner of a design-optimization problem in which the parameters are the design variables.
The Virtual Solar Observatory: Still a Small Box
NASA Technical Reports Server (NTRS)
Gurman, J. B.; Bogart, R. S.; Davey, A. R.; Dimitoglou, G.; Hill, F.; Hourcle, J. A.; Martens, P. C.; Surez-Sola, I.; Tian, K. Q.; Wampler, S.
2005-01-01
Two and a half years after a design study began, and a year and a half after development commenced, version 1.0 of the Virtual Solar Observatory (VSO) was released at the 2004 Fall AGU meeting. Although internal elements of the VSO have changed, the basic design has remained the same, reflecting the team's belief in the importance of a simple, robust mechanism for registering data provider holdings, initiating queries at the appropriate provider sites, aggregating the responses, allowing the user to iterate before making a final selection, and enabling the delivery of data directly from the providers. In order to make the VSO transparent, lightweight, and portable, the developers employed XML for the registry, SOAP for communication between a VSO instance and data services, and HTML for the graphic user interface (GUI's). We discuss the internal data model, the API, and user responses to various trial GUI's as typical design issues for any virtual observatory. We also discuss the role of the "small box" of data search, identification, and delivery services provided by the VSO in the larger, Sun-Solar System Connection virtual observatory (VxO) scheme.
GuiTope: an application for mapping random-sequence peptides to protein sequences.
Halperin, Rebecca F; Stafford, Phillip; Emery, Jack S; Navalkar, Krupa Arun; Johnston, Stephen Albert
2012-01-03
Random-sequence peptide libraries are a commonly used tool to identify novel ligands for binding antibodies, other proteins, and small molecules. It is often of interest to compare the selected peptide sequences to the natural protein binding partners to infer the exact binding site or the importance of particular residues. The ability to search a set of sequences for similarity to a set of peptides may sometimes enable the prediction of an antibody epitope or a novel binding partner. We have developed a software application designed specifically for this task. GuiTope provides a graphical user interface for aligning peptide sequences to protein sequences. All alignment parameters are accessible to the user including the ability to specify the amino acid frequency in the peptide library; these frequencies often differ significantly from those assumed by popular alignment programs. It also includes a novel feature to align di-peptide inversions, which we have found improves the accuracy of antibody epitope prediction from peptide microarray data and shows utility in analyzing phage display datasets. Finally, GuiTope can randomly select peptides from a given library to estimate a null distribution of scores and calculate statistical significance. GuiTope provides a convenient method for comparing selected peptide sequences to protein sequences, including flexible alignment parameters, novel alignment features, ability to search a database, and statistical significance of results. The software is available as an executable (for PC) at http://www.immunosignature.com/software and ongoing updates and source code will be available at sourceforge.net.
Development of Matlab GUI educational software to assist a laboratory of physical optics
NASA Astrophysics Data System (ADS)
Fernández, Elena; Fuentes, Rosa; García, Celia; Pascual, Inmaculada
2014-07-01
Physical optics is one of the subjects in the Grade of Optics and Optometry in Spanish universities. The students who come to this degree often have difficulties to understand subjects that are related to physics. For this reason, the aim of this work is to develop optics simulation software that provides a virtual laboratory for studying the effects of different aspects of physical optics phenomena. This software can let optical undergraduates simulate many optical systems for a better understanding of the practical competences associated with the theoretical concepts studied in class. This interactive environment unifies the information that brings the manual of the practices, provides the visualization of the physical phenomena and allows users to vary the values of the parameters that come into play to check its effect. So, this virtual tool is the perfect complement to learning more about the practices developed in the laboratory. This software will be developed through the choices which have the Matlab to generate Graphical User Interfaces or GUIs. A set of knobs, buttons and handles will be included in the GUI's in order to control the parameters of the different physics phenomena. Graphics can also be inserted in the GUIs to show the behavior of such phenomena. Specifically, by using this software, the student is able to analyze the behaviour of the transmittance and reflectance of the TE and TM modes, the polarized light through of the Malus'Law or degree of polarization.
DAnTE: a statistical tool for quantitative analysis of –omics data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polpitiya, Ashoka D.; Qian, Weijun; Jaitly, Navdeep
2008-05-03
DAnTE (Data Analysis Tool Extension) is a statistical tool designed to address challenges unique to quantitative bottom-up, shotgun proteomics data. This tool has also been demonstrated for microarray data and can easily be extended to other high-throughput data types. DAnTE features selected normalization methods, missing value imputation algorithms, peptide to protein rollup methods, an extensive array of plotting functions, and a comprehensive ANOVA scheme that can handle unbalanced data and random effects. The Graphical User Interface (GUI) is designed to be very intuitive and user friendly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myronakis, M; Cai, W; Dhou, S
Purpose: To design a comprehensive open-source, publicly available, graphical user interface (GUI) to facilitate the configuration, generation, processing and use of the 4D Extended Cardiac-Torso (XCAT) phantom. Methods: The XCAT phantom includes over 9000 anatomical objects as well as respiratory, cardiac and tumor motion. It is widely used for research studies in medical imaging and radiotherapy. The phantom generation process involves the configuration of a text script to parameterize the geometry, motion, and composition of the whole body and objects within it, and to generate simulated PET or CT images. To avoid the need for manual editing or script writing,more » our MATLAB-based GUI uses slider controls, drop-down lists, buttons and graphical text input to parameterize and process the phantom. Results: Our GUI can be used to: a) generate parameter files; b) generate the voxelized phantom; c) combine the phantom with a lesion; d) display the phantom; e) produce average and maximum intensity images from the phantom output files; f) incorporate irregular patient breathing patterns; and f) generate DICOM files containing phantom images. The GUI provides local help information using tool-tip strings on the currently selected phantom, minimizing the need for external documentation. The DICOM generation feature is intended to simplify the process of importing the phantom images into radiotherapy treatment planning systems or other clinical software. Conclusion: The GUI simplifies and automates the use of the XCAT phantom for imaging-based research projects in medical imaging or radiotherapy. This has the potential to accelerate research conducted with the XCAT phantom, or to ease the learning curve for new users. This tool does not include the XCAT phantom software itself. We would like to acknowledge funding from MRA, Varian Medical Systems Inc.« less
LabVIEW Serial Driver Software for an Electronic Load
NASA Technical Reports Server (NTRS)
Scullin, Vincent; Garcia, Christopher
2003-01-01
A LabVIEW-language computer program enables monitoring and control of a Transistor Devices, Inc., Dynaload WCL232 (or equivalent) electronic load via an RS-232 serial communication link between the electronic load and a remote personal computer. (The electronic load can operate at constant voltage, current, power consumption, or resistance.) The program generates a graphical user interface (GUI) at the computer that looks and acts like the front panel of the electronic load. Once the electronic load has been placed in remote-control mode, this program first queries the electronic load for the present values of all its operational and limit settings, and then drops into a cycle in which it reports the instantaneous voltage, current, and power values in displays that resemble those on the electronic load while monitoring the GUI images of pushbuttons for control actions by the user. By means of the pushbutton images and associated prompts, the user can perform such operations as changing limit values, the operating mode, or the set point. The benefit of this software is that it relieves the user of the need to learn one method for operating the electronic load locally and another method for operating it remotely via a personal computer.
Hoeck, W G
1994-06-01
InfoTrac TFD provides a graphical user interface (GUI) for viewing and manipulating datasets in the Transcription Factor Database, TFD. The interface was developed in Filemaker Pro 2.0 by Claris Corporation, which provides cross platform compatibility between Apple Macintosh computers running System 7.0 and higher and IBM-compatibles running Microsoft Windows 3.0 and higher. TFD ASCII-tables were formatted to fit data into several custom data tables using Add/Strip, a shareware utility and Filemaker Pro's lookup feature. The lookup feature was also put to use to allow TFD data tables to become linked within a flat-file database management system. The 'Navigator', consisting of several pop-up menus listing transcription factor abbreviations, facilitates the search for transcription factor entries. Data are presented onscreen in several layouts, that can be further customized by the user. InfoTrac TFD makes the transcription factor database accessible to a much wider community of scientists by making it available on two popular microcomputer platforms.
A Software Upgrade of the NASA Aeroheating Code "MINIVER"
NASA Technical Reports Server (NTRS)
Louderback, Pierce Mathew
2013-01-01
Computational Fluid Dynamics (CFD) is a powerful and versatile tool simulating fluid and thermal environments of launch and re-entry vehicles alike. Where it excels in power and accuracy, however, it lacks in speed. An alternative tool for this purpose is known as MINIVER, an aeroheating code widely used by NASA and within the aerospace industry. Capable of providing swift, reasonably accurate approximations of the fluid and thermal environment of launch vehicles, MINIVER is used where time is of the essence and accuracy need not be exact. However, MINIVER is an old, aging tool: running on a user-unfriendly, legacy command-line interface, it is difficult for it to keep pace with more modem software tools. Florida Institute of Technology was tasked with the construction of a new Graphical User Interface (GUI) that implemented the legacy version's capabilities and enhanced them with new tools and utilities. This thesis provides background to the legacy version of the program, the progression and final version of a modem user interface, and benchmarks to demonstrate its usefulness.
Power plant fault detection using artificial neural network
NASA Astrophysics Data System (ADS)
Thanakodi, Suresh; Nazar, Nazatul Shiema Moh; Joini, Nur Fazriana; Hidzir, Hidzrin Dayana Mohd; Awira, Mohammad Zulfikar Khairul
2018-02-01
The fault that commonly occurs in power plants is due to various factors that affect the system outage. There are many types of faults in power plants such as single line to ground fault, double line to ground fault, and line to line fault. The primary aim of this paper is to diagnose the fault in 14 buses power plants by using an Artificial Neural Network (ANN). The Multilayered Perceptron Network (MLP) that detection trained utilized the offline training methods such as Gradient Descent Backpropagation (GDBP), Levenberg-Marquardt (LM), and Bayesian Regularization (BR). The best method is used to build the Graphical User Interface (GUI). The modelling of 14 buses power plant, network training, and GUI used the MATLAB software.
Integration of instrumentation and processing software of a laser speckle contrast imaging system
NASA Astrophysics Data System (ADS)
Carrick, Jacob J.
Laser speckle contrast imaging (LSCI) has the potential to be a powerful tool in medicine, but more research in the field is required so it can be used properly. To help in the progression of Michigan Tech's research in the field, a graphical user interface (GUI) was designed in Matlab to control the instrumentation of the experiments as well as process the raw speckle images into contrast images while they are being acquired. The design of the system was successful and is currently being used by Michigan Tech's Biomedical Engineering department. This thesis describes the development of the LSCI GUI as well as offering a full introduction into the history, theory and applications of LSCI.
Novel Virtual User Models of Mild Cognitive Impairment for Simulating Dementia
Segkouli, Sofia; Tzovaras, Dimitrios; Tsakiris, Thanos; Tsolaki, Magda; Karagiannidis, Charalampos
2015-01-01
Virtual user modeling research has attempted to address critical issues of human-computer interaction (HCI) such as usability and utility through a large number of analytic, usability-oriented approaches as cognitive models in order to provide users with experiences fitting to their specific needs. However, there is demand for more specific modules embodied in cognitive architecture that will detect abnormal cognitive decline across new synthetic task environments. Also, accessibility evaluation of graphical user interfaces (GUIs) requires considerable effort for enhancing ICT products accessibility for older adults. The main aim of this study is to develop and test virtual user models (VUM) simulating mild cognitive impairment (MCI) through novel specific modules, embodied at cognitive models and defined by estimations of cognitive parameters. Well-established MCI detection tests assessed users' cognition, elaborated their ability to perform multitasks, and monitored the performance of infotainment related tasks to provide more accurate simulation results on existing conceptual frameworks and enhanced predictive validity in interfaces' design supported by increased tasks' complexity to capture a more detailed profile of users' capabilities and limitations. The final outcome is a more robust cognitive prediction model, accurately fitted to human data to be used for more reliable interfaces' evaluation through simulation on the basis of virtual models of MCI users. PMID:26339282
A graphic user interface for efficient 3D photo-reconstruction based on free software
NASA Astrophysics Data System (ADS)
Castillo, Carlos; James, Michael; Gómez, Jose A.
2015-04-01
Recently, different studies have stressed the applicability of 3D photo-reconstruction based on Structure from Motion algorithms in a wide range of geoscience applications. For the purpose of image photo-reconstruction, a number of commercial and freely available software packages have been developed (e.g. Agisoft Photoscan, VisualSFM). The workflow involves typically different stages such as image matching, sparse and dense photo-reconstruction, point cloud filtering and georeferencing. For approaches using open and free software, each of these stages usually require different applications. In this communication, we present an easy-to-use graphic user interface (GUI) developed in Matlab® code as a tool for efficient 3D photo-reconstruction making use of powerful existing software: VisualSFM (Wu, 2015) for photo-reconstruction and CloudCompare (Girardeau-Montaut, 2015) for point cloud processing. The GUI performs as a manager of configurations and algorithms, taking advantage of the command line modes of existing software, which allows an intuitive and automated processing workflow for the geoscience user. The GUI includes several additional features: a) a routine for significantly reducing the duration of the image matching operation, normally the most time consuming stage; b) graphical outputs for understanding the overall performance of the algorithm (e.g. camera connectivity, point cloud density); c) a number of useful options typically performed before and after the photo-reconstruction stage (e.g. removal of blurry images, image renaming, vegetation filtering); d) a manager of batch processing for the automated reconstruction of different image datasets. In this study we explore the advantages of this new tool by testing its performance using imagery collected in several soil erosion applications. References Girardeau-Montaut, D. 2015. CloudCompare documentation accessed at http://cloudcompare.org/ Wu, C. 2015. VisualSFM documentation access at http://ccwu.me/vsfm/doc.html#.
Prony Ringdown GUI (CERTS Prony Ringdown, part of the DSI Tool Box)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuffner, Francis; Marinovici, PNNL Laurentiu; Hauer, PNNL John
2014-02-21
The PNNL Prony Ringdown graphical user interface is one analysis tool included in the Dynamic System Identification toolbox (DSI Toolbox). The Dynamic System Identification toolbox is a MATLAB-based collection of tools for parsing and analyzing phasor measurement unit data, especially in regards to small signal stability. It includes tools to read the data, preprocess it, and perform small signal analysis. 5. Method of Solution: The Dynamic System Identification Toolbox (DSI Toolbox) is designed to provide a research environment for examining phasor measurement unit data and performing small signal stability analysis. The software uses a series of text-driven menus to helpmore » guide users and organize the toolbox features. Methods for reading in populate phasor measurement unit data are provided, with appropriate preprocessing options for small-signal-stability analysis. The toolbox includes the Prony Ringdown GUI and basic algorithms to estimate information on oscillatory modes of the system, such as modal frequency and damping ratio.« less
Development and operations of the Astrophysics Data System
NASA Technical Reports Server (NTRS)
Murray, S. S.
1993-01-01
The main effort in October 1992 was for the development and of the Astrophysics Data System (ADS) 3.1 graphical interface (GUI) and the preparation for its release. The beta-release for the GUI was made available to the nodes for testing. Development of the Abstract Server progressed satisfactorily. A test version was prepared for the ADASS meeting. Another major effort was the preparation for the user and nodes meetings on 5 and 6 November and for the ADASS conference on 2-4 November. February 1993 was highlighted by the preparation for the update release and its associated problems. We have the okay from the Commerce Department to export ADS. Foreign users can now sign on and receive the software. The main event during June was the AAS meeting. In the summer, the project decided on a new release schedule. The next major release is scheduled for January 1994 and will include major architectural improvements. In late spring 1994, a major release will include the new networking software.
Visualization for Hyper-Heuristics: Back-End Processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simon, Luke
Modern society is faced with increasingly complex problems, many of which can be formulated as generate-and-test optimization problems. Yet, general-purpose optimization algorithms may sometimes require too much computational time. In these instances, hyperheuristics may be used. Hyper-heuristics automate the design of algorithms to create a custom algorithm for a particular scenario, finding the solution significantly faster than its predecessor. However, it may be difficult to understand exactly how a design was derived and why it should be trusted. This project aims to address these issues by creating an easy-to-use graphical user interface (GUI) for hyper-heuristics and an easy-to-understand scientific visualizationmore » for the produced solutions. To support the development of this GUI, my portion of the research involved developing algorithms that would allow for parsing of the data produced by the hyper-heuristics. This data would then be sent to the front-end, where it would be displayed to the end user.« less
Evaluation of interaction dynamics of concurrent processes
NASA Astrophysics Data System (ADS)
Sobecki, Piotr; Białasiewicz, Jan T.; Gross, Nicholas
2017-03-01
The purpose of this paper is to present the wavelet tools that enable the detection of temporal interactions of concurrent processes. In particular, the determination of interaction coherence of time-varying signals is achieved using a complex continuous wavelet transform. This paper has used electrocardiogram (ECG) and seismocardiogram (SCG) data set to show multiple continuous wavelet analysis techniques based on Morlet wavelet transform. MATLAB Graphical User Interface (GUI), developed in the reported research to assist in quick and simple data analysis, is presented. These software tools can discover the interaction dynamics of time-varying signals, hence they can reveal their correlation in phase and amplitude, as well as their non-linear interconnections. The user-friendly MATLAB GUI enables effective use of the developed software what enables to load two processes under investigation, make choice of the required processing parameters, and then perform the analysis. The software developed is a useful tool for researchers who have a need for investigation of interaction dynamics of concurrent processes.
The impact of visual layout factors on performance in Web pages: a cross-language study.
Parush, Avi; Shwarts, Yonit; Shtub, Avy; Chandra, M Jeya
2005-01-01
Visual layout has a strong impact on performance and is a critical factor in the design of graphical user interfaces (GUIs) and Web pages. Many design guidelines employed in Web page design were inherited from human performance literature and GUI design studies and practices. However, few studies have investigated the more specific patterns of performance with Web pages that may reflect some differences between Web page and GUI design. We investigated interactions among four visual layout factors in Web page design (quantity of links, alignment, grouping indications, and density) in two experiments: one with pages in Hebrew, entailing right-to-left reading, and the other with English pages, entailing left-to-right reading. Some performance patterns (measured by search times and eye movements) were similar between languages. Performance was particularly poor in pages with many links and variable densities, but it improved with the presence of uniform density. Alignment was not shown to be a performance-enhancing factor. The findings are discussed in terms of the similarities and differences in the impact of layout factors between GUIs and Web pages. Actual or potential applications of this research include specific guidelines for Web page design.
Monitor Network Traffic with Packet Capture (pcap) on an Android Device
2015-09-01
administrative privileges . Under the current design Android development requirement, an Android Graphical User Interface (GUI) application cannot directly...build an Android application to monitor network traffic using open source packet capture (pcap) libraries. 15. SUBJECT TERMS ELIDe, Android , pcap 16...Building Application with Native Codes 5 8.1 Calling Native Codes Using JNI 5 8.2 Calling Native Codes from an Android Application 8 9. Retrieve Live
2006-09-01
Chaum , 2006a). 84 Figure 42. The JTC Chart/Map provides a Graphic User Interface (GUI) for common situational awareness and maritime...through either individual or collaborative effort and subsequent published to the JC3IEDM data store ( Chaum , 2006a). 85 Operational Node Connection...an available service site ( Chaum , 2006b). Operational Threads COP Monitoring Collaborative Planning Deliberate Individual Planning / Approval
2014-03-27
Fault Detection and Isolation GUI Graphical User Interface IGRF International Geomagnetic Reference Field IMU Inertial Measurement Unit IR infrared xv...ADCS hardware components were either commercially purchased or built in-house and include an Inertial Measurement Unit ( IMU ), external magnetometer, 4...3.2.1.3 IMU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2.1.4 External Magnetometer . . . . . . . . . . . . . . . . . . 48 3.2.2
2015-06-01
GEOINT geospatial intelligence GFC ground force commander GPS global positioning system GUI graphical user interface HA/DR humanitarian...transport stream UAS unmanned aerial system . See UAV. UAV unmanned aerial vehicle. See UAS. VM virtual machine VMU Marine Unmanned Aerial Vehicle... Unmanned Air Systems (UASs). Current programs promise to dramatically increase the number of FMV feeds in the near future. However, there are too
Android Based Behavioral Biometric Authentication via Multi-Modal Fusion
2014-06-12
such as the way he or she uses the mouse, or interacts with the Graphical User Interface (GUI) [9]. Described simply, standard biometrics is determined...as a login screen on a standard computer. Active authentication is authentication that occurs dynamically throughout interaction with the device. A...because they are higher level constructs in themselves. The Android framework was specifically used for capturing the multitouch gestures: pinch and zoom
Franck, D; de Carlan, L; Pierrat, N; Broggio, D; Lamart, S
2007-01-01
Although great efforts have been made to improve the physical phantoms used to calibrate in vivo measurement systems, these phantoms represent a single average counting geometry and usually contain a uniform distribution of the radionuclide over the tissue substitute. As a matter of fact, significant corrections must be made to phantom-based calibration factors in order to obtain absolute calibration efficiencies applicable to a given individual. The importance of these corrections is particularly crucial when considering in vivo measurements of low energy photons emitted by radionuclides deposited in the lung such as actinides. Thus, it was desirable to develop a method for calibrating in vivo measurement systems that is more sensitive to these types of variability. Previous works have demonstrated the possibility of such a calibration using the Monte Carlo technique. Our research programme extended such investigations to the reconstruction of numerical anthropomorphic phantoms based on personal physiological data obtained by computed tomography. New procedures based on a new graphical user interface (GUI) for development of computational phantoms for Monte Carlo calculations and data analysis are being developed to take advantage of recent progress in image-processing codes. This paper presents the principal features of this new GUI. Results of calculations and comparison with experimental data are also presented and discussed in this work.
AstroImageJ: Image Processing and Photometric Extraction for Ultra-precise Astronomical Light Curves
NASA Astrophysics Data System (ADS)
Collins, Karen A.; Kielkopf, John F.; Stassun, Keivan G.; Hessman, Frederic V.
2017-02-01
ImageJ is a graphical user interface (GUI) driven, public domain, Java-based, software package for general image processing traditionally used mainly in life sciences fields. The image processing capabilities of ImageJ are useful and extendable to other scientific fields. Here we present AstroImageJ (AIJ), which provides an astronomy specific image display environment and tools for astronomy specific image calibration and data reduction. Although AIJ maintains the general purpose image processing capabilities of ImageJ, AIJ is streamlined for time-series differential photometry, light curve detrending and fitting, and light curve plotting, especially for applications requiring ultra-precise light curves (e.g., exoplanet transits). AIJ reads and writes standard Flexible Image Transport System (FITS) files, as well as other common image formats, provides FITS header viewing and editing, and is World Coordinate System aware, including an automated interface to the astrometry.net web portal for plate solving images. AIJ provides research grade image calibration and analysis tools with a GUI driven approach, and easily installed cross-platform compatibility. It enables new users, even at the level of undergraduate student, high school student, or amateur astronomer, to quickly start processing, modeling, and plotting astronomical image data with one tightly integrated software package.
Embedded Web Technology: Internet Technology Applied to Real-Time System Control
NASA Technical Reports Server (NTRS)
Daniele, Carl J.
1998-01-01
The NASA Lewis Research Center is developing software tools to bridge the gap between the traditionally non-real-time Internet technology and the real-time, embedded-controls environment for space applications. Internet technology has been expanding at a phenomenal rate. The simple World Wide Web browsers (such as earlier versions of Netscape, Mosaic, and Internet Explorer) that resided on personal computers just a few years ago only enabled users to log into and view a remote computer site. With current browsers, users not only view but also interact with remote sites. In addition, the technology now supports numerous computer platforms (PC's, MAC's, and Unix platforms), thereby providing platform independence.In contrast, the development of software to interact with a microprocessor (embedded controller) that is used to monitor and control a space experiment has generally been a unique development effort. For each experiment, a specific graphical user interface (GUI) has been developed. This procedure works well for a single-user environment. However, the interface for the International Space Station (ISS) Fluids and Combustion Facility will have to enable scientists throughout the world and astronauts onboard the ISS, using different computer platforms, to interact with their experiments in the Fluids and Combustion Facility. Developing a specific GUI for all these users would be cost prohibitive. An innovative solution to this requirement, developed at Lewis, is to use Internet technology, where the general problem of platform independence has already been partially solved, and to leverage this expanding technology as new products are developed. This approach led to the development of the Embedded Web Technology (EWT) program at Lewis, which has the potential to significantly reduce software development costs for both flight and ground software.
A Python-based interface to examine motions in time series of solar images
NASA Astrophysics Data System (ADS)
Campos-Rozo, J. I.; Vargas Domínguez, S.
2017-10-01
Python is considered to be a mature programming language, besides of being widely accepted as an engaging option for scientific analysis in multiple areas, as will be presented in this work for the particular case of solar physics research. SunPy is an open-source library based on Python that has been recently developed to furnish software tools to solar data analysis and visualization. In this work we present a graphical user interface (GUI) based on Python and Qt to effectively compute proper motions for the analysis of time series of solar data. This user-friendly computing interface, that is intended to be incorporated to the Sunpy library, uses a local correlation tracking technique and some extra tools that allows the selection of different parameters to calculate, vizualize and analyze vector velocity fields of solar data, i.e. time series of solar filtergrams and magnetograms.
Development of a platform-independent receiver control system for SISIFOS
NASA Astrophysics Data System (ADS)
Lemke, Roland; Olberg, Michael
1998-05-01
Up to now receiver control software was a time consuming development usually written by receiver engineers who had mainly the hardware in mind. We are presenting a low-cost and very flexible system which uses a minimal interface to the real hardware, and which makes it easy to adapt to new receivers. Our system uses Tcl/Tk as a graphical user interface (GUI), SpecTcl as a GUI builder, Pgplot as plotting software, a simple query language (SQL) database for information storage and retrieval, Ethernet socket to socket communication and SCPI as a command control language. The complete system is in principal platform independent but for cost saving reasons we are using it actually on a PC486 running Linux 2.0.30, which is a copylefted Unix. The only hardware dependent part are the digital input/output boards, analog to digital and digital to analog convertors. In the case of the Linux PC we are using a device driver development kit to integrate the boards fully into the kernel of the operating system, which indeed makes them look like an ordinary device. The advantage of this system is firstly the low price and secondly the clear separation between the different software components which are available for many operating systems. If it is not possible, due to CPU performance limitations, to run all the software in a single machine,the SQL-database or the graphical user interface could be installed on separate computers.
Anderson, Jeffrey R; Barrett, Steven F
2009-01-01
Image segmentation is the process of isolating distinct objects within an image. Computer algorithms have been developed to aid in the process of object segmentation, but a completely autonomous segmentation algorithm has yet to be developed [1]. This is because computers do not have the capability to understand images and recognize complex objects within the image. However, computer segmentation methods [2], requiring user input, have been developed to quickly segment objects in serial sectioned images, such as magnetic resonance images (MRI) and confocal laser scanning microscope (CLSM) images. In these cases, the segmentation process becomes a powerful tool in visualizing the 3D nature of an object. The user input is an important part of improving the performance of many segmentation methods. A double threshold segmentation method has been investigated [3] to separate objects in gray scaled images, where the gray level of the object is among the gray levels of the background. In order to best determine the threshold values for this segmentation method the image must be manipulated for optimal contrast. The same is true of other segmentation and edge detection methods as well. Typically, the better the image contrast, the better the segmentation results. This paper describes a graphical user interface (GUI) that allows the user to easily change image contrast parameters that will optimize the performance of subsequent object segmentation. This approach makes use of the fact that the human brain is extremely effective in object recognition and understanding. The GUI provides the user with the ability to define the gray scale range of the object of interest. These lower and upper bounds of this range are used in a histogram stretching process to improve image contrast. Also, the user can interactively modify the gamma correction factor that provides a non-linear distribution of gray scale values, while observing the corresponding changes to the image. This interactive approach gives the user the power to make optimal choices in the contrast enhancement parameters.
Modeling biochemical transformation processes and information processing with Narrator.
Mandel, Johannes J; Fuss, Hendrik; Palfreyman, Niall M; Dubitzky, Werner
2007-03-27
Software tools that model and simulate the dynamics of biological processes and systems are becoming increasingly important. Some of these tools offer sophisticated graphical user interfaces (GUIs), which greatly enhance their acceptance by users. Such GUIs are based on symbolic or graphical notations used to describe, interact and communicate the developed models. Typically, these graphical notations are geared towards conventional biochemical pathway diagrams. They permit the user to represent the transport and transformation of chemical species and to define inhibitory and stimulatory dependencies. A critical weakness of existing tools is their lack of supporting an integrative representation of transport, transformation as well as biological information processing. Narrator is a software tool facilitating the development and simulation of biological systems as Co-dependence models. The Co-dependence Methodology complements the representation of species transport and transformation together with an explicit mechanism to express biological information processing. Thus, Co-dependence models explicitly capture, for instance, signal processing structures and the influence of exogenous factors or events affecting certain parts of a biological system or process. This combined set of features provides the system biologist with a powerful tool to describe and explore the dynamics of life phenomena. Narrator's GUI is based on an expressive graphical notation which forms an integral part of the Co-dependence Methodology. Behind the user-friendly GUI, Narrator hides a flexible feature which makes it relatively easy to map models defined via the graphical notation to mathematical formalisms and languages such as ordinary differential equations, the Systems Biology Markup Language or Gillespie's direct method. This powerful feature facilitates reuse, interoperability and conceptual model development. Narrator is a flexible and intuitive systems biology tool. It is specifically intended for users aiming to construct and simulate dynamic models of biology without recourse to extensive mathematical detail. Its design facilitates mappings to different formal languages and frameworks. The combined set of features makes Narrator unique among tools of its kind. Narrator is implemented as Java software program and available as open-source from http://www.narrator-tool.org.
Modeling biochemical transformation processes and information processing with Narrator
Mandel, Johannes J; Fuß, Hendrik; Palfreyman, Niall M; Dubitzky, Werner
2007-01-01
Background Software tools that model and simulate the dynamics of biological processes and systems are becoming increasingly important. Some of these tools offer sophisticated graphical user interfaces (GUIs), which greatly enhance their acceptance by users. Such GUIs are based on symbolic or graphical notations used to describe, interact and communicate the developed models. Typically, these graphical notations are geared towards conventional biochemical pathway diagrams. They permit the user to represent the transport and transformation of chemical species and to define inhibitory and stimulatory dependencies. A critical weakness of existing tools is their lack of supporting an integrative representation of transport, transformation as well as biological information processing. Results Narrator is a software tool facilitating the development and simulation of biological systems as Co-dependence models. The Co-dependence Methodology complements the representation of species transport and transformation together with an explicit mechanism to express biological information processing. Thus, Co-dependence models explicitly capture, for instance, signal processing structures and the influence of exogenous factors or events affecting certain parts of a biological system or process. This combined set of features provides the system biologist with a powerful tool to describe and explore the dynamics of life phenomena. Narrator's GUI is based on an expressive graphical notation which forms an integral part of the Co-dependence Methodology. Behind the user-friendly GUI, Narrator hides a flexible feature which makes it relatively easy to map models defined via the graphical notation to mathematical formalisms and languages such as ordinary differential equations, the Systems Biology Markup Language or Gillespie's direct method. This powerful feature facilitates reuse, interoperability and conceptual model development. Conclusion Narrator is a flexible and intuitive systems biology tool. It is specifically intended for users aiming to construct and simulate dynamic models of biology without recourse to extensive mathematical detail. Its design facilitates mappings to different formal languages and frameworks. The combined set of features makes Narrator unique among tools of its kind. Narrator is implemented as Java software program and available as open-source from . PMID:17389034
An application programming interface for CellNetAnalyzer.
Klamt, Steffen; von Kamp, Axel
2011-08-01
CellNetAnalyzer (CNA) is a MATLAB toolbox providing computational methods for studying structure and function of metabolic and cellular signaling networks. In order to allow non-experts to use these methods easily, CNA provides GUI-based interactive network maps as a means of parameter input and result visualization. However, with the availability of high-throughput data, there is a need to make CNA's functionality also accessible in batch mode for automatic data processing. Furthermore, as some algorithms of CNA are of general relevance for network analysis it would be desirable if they could be called as sub-routines by other applications. For this purpose, we developed an API (application programming interface) for CNA allowing users (i) to access the content of network models in CNA, (ii) to use CNA's network analysis capabilities independent of the GUI, and (iii) to interact with the GUI to facilitate the development of graphical plugins. Here we describe the organization of network projects in CNA and the application of the new API functions to these projects. This includes the creation of network projects from scratch, loading and saving of projects and scenarios, and the application of the actual analysis methods. Furthermore, API functions for the import/export of metabolic models in SBML format and for accessing the GUI are described. Lastly, two example applications demonstrate the use and versatile applicability of CNA's API. CNA is freely available for academic use and can be downloaded from http://www.mpi-magdeburg.mpg.de/projects/cna/cna.html. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Raible, E.
1994-01-01
The Panel Library and Editor is a graphical user interface (GUI) builder for the Silicon Graphics IRIS workstation family. The toolkit creates "widgets" which can be manipulated by the user. Its appearance is similar to that of the X-Windows System. The Panel Library is written in C and is used by programmers writing user-friendly mouse-driven applications for the IRIS. GUIs built using the Panel Library consist of "actuators" and "panels." Actuators are buttons, dials, sliders, or other mouse-driven symbols. Panels are groups of actuators that occupy separate windows on the IRIS workstation. The application user can alter variables in the graphics program, or fire off functions with a click on a button. The evolution of data values can be tracked with meters and strip charts, and dialog boxes with text processing can be built. Panels can be stored as icons when not in use. The Panel Editor is a program used to interactively create and test panel library interfaces in a simple and efficient way. The Panel Editor itself uses a panel library interface, so all actions are mouse driven. Extensive context-sensitive on-line help is provided. Programmers can graphically create and test the user interface without writing a single line of code. Once an interface is judged satisfactory, the Panel Editor will dump it out as a file of C code that can be used in an application. The Panel Library (v9.8) and Editor (v1.1) are written in C-Language (63%) and Scheme, a dialect of LISP, (37%) for Silicon Graphics 4D series workstations running IRIX 3.2 or higher. Approximately 10Mb of disk space is required once compiled. 1.5Mb of main memory is required to execute the panel editor. This program is available on a .25 inch streaming magnetic tape cartridge in UNIX tar format for an IRIS, and includes a copy of XScheme, the public-domain Scheme interpreter used by the Panel Editor. The Panel Library Programmer's Manual is included on the distribution media. The Panel Library and Editor were released to COSMIC in 1991. Silicon Graphics, IRIS, and IRIX are trademarks of Silicon Graphics, Inc. X-Window System is a trademark of Massachusetts Institute of Technology.
Bradley, D. Nathan
2012-01-01
The slope-area method is a technique for estimating the peak discharge of a flood after the water has receded (Dalrymple and Benson, 1967). This type of discharge estimate is called an “indirect measurement” because it relies on evidence left behind by the flood, such as high-water marks (HWMs) on trees or buildings. These indicators of flood stage are combined with measurements of the cross-sectional geometry of the stream, estimates of channel roughness, and a mathematical model that balances the total energy of the flow between cross sections. This is in contrast to a “direct” measurement of discharge during the flood where cross-sectional area is measured and a current meter or acoustic equipment is used to measure the water velocity. When a direct discharge measurement cannot be made at a gage during high flows because of logistics or safety reasons, an indirect measurement of a peak discharge is useful for defining the high-flow section of the stage-discharge relation (rating curve) at the stream gage, resulting in more accurate computation of high flows. The Slope-Area Computation program (SAC; Fulford, 1994) is an implementation of the slope-area method that computes a peak-discharge estimate from inputs of water-surface slope (from surveyed HWMs), channel geometry, and estimated channel roughness. SAC is a command line program written in Fortran that reads input data from a formatted text file and prints results to another formatted text file. Preparing the input file can be time-consuming and prone to errors. This document describes the SAC graphical user interface (GUI), a crossplatform “wrapper” application that prepares the SAC input file, executes the program, and helps the user interpret the output. The SAC GUI is an update and enhancement of the slope-area method (SAM; Hortness, 2004; Berenbrock, 1996), an earlier spreadsheet tool used to aid field personnel in the completion of a slope-area measurement. The SAC GUI reads survey data, develops a plan-view plot, water-surface profile, cross-section plots, and develops the SAC input file. The SAC GUI also develops HEC-2 files that can be imported into HEC–RAS.
NASA Technical Reports Server (NTRS)
Edmonds, Karina
2008-01-01
This toolkit provides a common interface for displaying graphical user interface (GUI) components in stereo using either specialized stereo display hardware (e.g., liquid crystal shutter or polarized glasses) or anaglyph display (red/blue glasses) on standard workstation displays. An application using this toolkit will work without modification in either environment, allowing stereo software to reach a wider audience without sacrificing high-quality display on dedicated hardware. The toolkit is written in Java for use with the Swing GUI Toolkit and has cross-platform compatibility. It hooks into the graphics system, allowing any standard Swing component to be displayed in stereo. It uses the OpenGL graphics library to control the stereo hardware and to perform the rendering. It also supports anaglyph and special stereo hardware using the same API (application-program interface), and has the ability to simulate color stereo in anaglyph mode by combining the red band of the left image with the green/blue bands of the right image. This is a low-level toolkit that accomplishes simply the display of components (including the JadeDisplay image display component). It does not include higher-level functions such as disparity adjustment, 3D cursor, or overlays all of which can be built using this toolkit.
Simulation Control Graphical User Interface Logging Report
NASA Technical Reports Server (NTRS)
Hewling, Karl B., Jr.
2012-01-01
One of the many tasks of my project was to revise the code of the Simulation Control Graphical User Interface (SIM GUI) to enable logging functionality to a file. I was also tasked with developing a script that directed the startup and initialization flow of the various LCS software components. This makes sure that a software component will not spin up until all the appropriate dependencies have been configured properly. Also I was able to assist hardware modelers in verifying the configuration of models after they have been upgraded to a new software version. I developed some code that analyzes the MDL files to determine if any error were generated due to the upgrade process. Another one of the projects assigned to me was supporting the End-to-End Hardware/Software Daily Tag-up meeting.
siGnum: graphical user interface for EMG signal analysis.
Kaur, Manvinder; Mathur, Shilpi; Bhatia, Dinesh; Verma, Suresh
2015-01-01
Electromyography (EMG) signals that represent the electrical activity of muscles can be used for various clinical and biomedical applications. These are complicated and highly varying signals that are dependent on anatomical location and physiological properties of the muscles. EMG signals acquired from the muscles require advanced methods for detection, decomposition and processing. This paper proposes a novel Graphical User Interface (GUI) siGnum developed in MATLAB that will apply efficient and effective techniques on processing of the raw EMG signals and decompose it in a simpler manner. It could be used independent of MATLAB software by employing a deploy tool. This would enable researcher's to gain good understanding of EMG signal and its analysis procedures that can be utilized for more powerful, flexible and efficient applications in near future.
Applied Meteorology Unit (AMU) Quarterly Report - Fourth Quarter FY-10
NASA Technical Reports Server (NTRS)
Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark
2010-01-01
Three AMU tasks were completed in this Quarter, each resulting in a forecast tool now being used in operations and a final report documenting how the work was done. AMU personnel completed the following tasks (1) Phase II of the Peak Wind Tool for General Forecasting task by delivering an improved wind forecasting tool to operations and providing training on its use; (2) a graphical user interface (GUI) she updated with new scripts to complete the ADAS Update and Maintainability task, and delivered the scripts to the Spaceflight Meteorology Group on Johnson Space Center, Texas and National Weather Service in Melbourne, Fla.; and (3) the Verify MesoNAM Performance task after we created and delivered a GUI that forecasters will use to determine the performance of the operational MesoNAM weather model forecast.
Liya Thomas; R. Edward Thomas
2011-01-01
We have developed an automated defect detection system and a state-of-the-art Graphic User Interface (GUI) for hardwood logs. The algorithm identifies defects at least 0.5 inch high and at least 3 inches in diameter on barked hardwood log and stem surfaces. To summarize defect features and to build a knowledge base, hundreds of defects were measured, photographed, and...
Two-Way Pattern Design for Distributed Subarray Antennas
2012-09-01
GUI Graphical User Interface HPBW Half-power Beamwidth MFR Multifunction Radar RCS Radar Cross Section RRE Radar Range Equation...The Aegis ships in the US Navy use phased arrays for the AN/SPY-1 multifunction radar ( MFR ) [2]. The phased array for the AN/SPY-1 radar is shown in...arrays. This is a challenge for design of antenna apertures for shipboard radar systems. One design approach is to use multi-function subarray
Virtual experiment of optical spatial filtering in Matlab environment
NASA Astrophysics Data System (ADS)
Ji, Yunjing; Wang, Chunyong; Song, Yang; Lai, Jiancheng; Wang, Qinghua; Qi, Jing; Shen, Zhonghua
2017-08-01
The principle of spatial filtering experiment has been introduced, and the computer simulation platform with graphical user interface (GUI) has been made out in Matlab environment. Using it various filtering processes for different input image or different filtering purpose will be completed accurately, and filtering effect can be observed clearly with adjusting experimental parameters. The physical nature of the optical spatial filtering can be showed vividly, and so experimental teaching effect will be promoted.
CHARMM-GUI 10 Years for Biomolecular Modeling and Simulation
Jo, Sunhwan; Cheng, Xi; Lee, Jumin; Kim, Seonghoon; Park, Sang-Jun; Patel, Dhilon S.; Beaven, Andrew H.; Lee, Kyu Il; Rui, Huan; Roux, Benoît; MacKerell, Alexander D.; Klauda, Jeffrey B.; Qi, Yifei
2017-01-01
CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface that prepares complex biomolecular systems for molecular simulations. CHARMM-GUI creates input files for a number of programs including CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Since its original development in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to set up a broad range of simulations: (1) PDB Reader & Manipulator, Glycan Reader, and Ligand Reader & Modeler for reading and modifying molecules; (2) Quick MD Simulator, Membrane Builder, Nanodisc Builder, HMMM Builder, Monolayer Builder, Micelle Builder, and Hex Phase Builder for building all-atom simulation systems in various environments; (3) PACE CG Builder and Martini Maker for building coarse-grained simulation systems; (4) DEER Facilitator and MDFF/xMDFF Utilizer for experimentally guided simulations; (5) Implicit Solvent Modeler, PBEQ-Solver, and GCMC/BD Ion Simulator for implicit solvent related calculations; (6) Ligand Binder for ligand solvation and binding free energy simulations; and (7) Drude Prepper for preparation of simulations with the CHARMM Drude polarizable force field. Recently, new modules have been integrated into CHARMM-GUI, such as Glycolipid Modeler for generation of various glycolipid structures, and LPS Modeler for generation of lipopolysaccharide structures from various Gram-negative bacteria. These new features together with existing modules are expected to facilitate advanced molecular modeling and simulation thereby leading to an improved understanding of the molecular details of the structure and dynamics of complex biomolecular systems. Here, we briefly review these capabilities and discuss potential future directions in the CHARMM-GUI development project. PMID:27862047
CHARMM-GUI 10 years for biomolecular modeling and simulation.
Jo, Sunhwan; Cheng, Xi; Lee, Jumin; Kim, Seonghoon; Park, Sang-Jun; Patel, Dhilon S; Beaven, Andrew H; Lee, Kyu Il; Rui, Huan; Park, Soohyung; Lee, Hui Sun; Roux, Benoît; MacKerell, Alexander D; Klauda, Jeffrey B; Qi, Yifei; Im, Wonpil
2017-06-05
CHARMM-GUI, http://www.charmm-gui.org, is a web-based graphical user interface that prepares complex biomolecular systems for molecular simulations. CHARMM-GUI creates input files for a number of programs including CHARMM, NAMD, GROMACS, AMBER, GENESIS, LAMMPS, Desmond, OpenMM, and CHARMM/OpenMM. Since its original development in 2006, CHARMM-GUI has been widely adopted for various purposes and now contains a number of different modules designed to set up a broad range of simulations: (1) PDB Reader & Manipulator, Glycan Reader, and Ligand Reader & Modeler for reading and modifying molecules; (2) Quick MD Simulator, Membrane Builder, Nanodisc Builder, HMMM Builder, Monolayer Builder, Micelle Builder, and Hex Phase Builder for building all-atom simulation systems in various environments; (3) PACE CG Builder and Martini Maker for building coarse-grained simulation systems; (4) DEER Facilitator and MDFF/xMDFF Utilizer for experimentally guided simulations; (5) Implicit Solvent Modeler, PBEQ-Solver, and GCMC/BD Ion Simulator for implicit solvent related calculations; (6) Ligand Binder for ligand solvation and binding free energy simulations; and (7) Drude Prepper for preparation of simulations with the CHARMM Drude polarizable force field. Recently, new modules have been integrated into CHARMM-GUI, such as Glycolipid Modeler for generation of various glycolipid structures, and LPS Modeler for generation of lipopolysaccharide structures from various Gram-negative bacteria. These new features together with existing modules are expected to facilitate advanced molecular modeling and simulation thereby leading to an improved understanding of the structure and dynamics of complex biomolecular systems. Here, we briefly review these capabilities and discuss potential future directions in the CHARMM-GUI development project. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Automated DICOM metadata and volumetric anatomical information extraction for radiation dosimetry
NASA Astrophysics Data System (ADS)
Papamichail, D.; Ploussi, A.; Kordolaimi, S.; Karavasilis, E.; Papadimitroulas, P.; Syrgiamiotis, V.; Efstathopoulos, E.
2015-09-01
Patient-specific dosimetry calculations based on simulation techniques have as a prerequisite the modeling of the modality system and the creation of voxelized phantoms. This procedure requires the knowledge of scanning parameters and patients’ information included in a DICOM file as well as image segmentation. However, the extraction of this information is complicated and time-consuming. The objective of this study was to develop a simple graphical user interface (GUI) to (i) automatically extract metadata from every slice image of a DICOM file in a single query and (ii) interactively specify the regions of interest (ROI) without explicit access to the radiology information system. The user-friendly application developed in Matlab environment. The user can select a series of DICOM files and manage their text and graphical data. The metadata are automatically formatted and presented to the user as a Microsoft Excel file. The volumetric maps are formed by interactively specifying the ROIs and by assigning a specific value in every ROI. The result is stored in DICOM format, for data and trend analysis. The developed GUI is easy, fast and and constitutes a very useful tool for individualized dosimetry. One of the future goals is to incorporate a remote access to a PACS server functionality.
Multi-Mission Automated Task Invocation Subsystem
NASA Technical Reports Server (NTRS)
Cheng, Cecilia S.; Patel, Rajesh R.; Sayfi, Elias M.; Lee, Hyun H.
2009-01-01
Multi-Mission Automated Task Invocation Subsystem (MATIS) is software that establishes a distributed data-processing framework for automated generation of instrument data products from a spacecraft mission. Each mission may set up a set of MATIS servers for processing its data products. MATIS embodies lessons learned in experience with prior instrument- data-product-generation software. MATIS is an event-driven workflow manager that interprets project-specific, user-defined rules for managing processes. It executes programs in response to specific events under specific conditions according to the rules. Because requirements of different missions are too diverse to be satisfied by one program, MATIS accommodates plug-in programs. MATIS is flexible in that users can control such processing parameters as how many pipelines to run and on which computing machines to run them. MATIS has a fail-safe capability. At each step, MATIS captures and retains pertinent information needed to complete the step and start the next step. In the event of a restart, this information is retrieved so that processing can be resumed appropriately. At this writing, it is planned to develop a graphical user interface (GUI) for monitoring and controlling a product generation engine in MATIS. The GUI would enable users to schedule multiple processes and manage the data products produced in the processes. Although MATIS was initially designed for instrument data product generation,
The Modular Aero-Propulsion System Simulation (MAPSS) Users' Guide
NASA Technical Reports Server (NTRS)
Parker, Khary I.; Melcher, Kevin J.
2004-01-01
The Modular Aero-Propulsion System Simulation is a flexible turbofan engine simulation environment that provides the user a platform to develop advanced control algorithms. It is capable of testing the performance of control designs on a validated and verified generic engine model. In addition, it is able to generate state-space linear models of the engine model to aid in controller design. The engine model used in MAPSS is a generic high-pressure ratio, dual-spool, lowbypass, military-type, variable cycle turbofan engine with a digital controller. MAPSS is controlled by a graphical user interface (GUI) and this guide explains how to use it to take advantage of the capabilities of MAPSS.
MultiElec: A MATLAB Based Application for MEA Data Analysis.
Georgiadis, Vassilis; Stephanou, Anastasis; Townsend, Paul A; Jackson, Thomas R
2015-01-01
We present MultiElec, an open source MATLAB based application for data analysis of microelectrode array (MEA) recordings. MultiElec displays an extremely user-friendly graphic user interface (GUI) that allows the simultaneous display and analysis of voltage traces for 60 electrodes and includes functions for activation-time determination, the production of activation-time heat maps with activation time and isoline display. Furthermore, local conduction velocities are semi-automatically calculated along with their corresponding vector plots. MultiElec allows ad hoc signal suppression, enabling the user to easily and efficiently handle signal artefacts and for incomplete data sets to be analysed. Voltage traces and heat maps can be simply exported for figure production and presentation. In addition, our platform is able to produce 3D videos of signal progression over all 60 electrodes. Functions are controlled entirely by a single GUI with no need for command line input or any understanding of MATLAB code. MultiElec is open source under the terms of the GNU General Public License as published by the Free Software Foundation, version 3. Both the program and source code are available to download from http://www.cancer.manchester.ac.uk/MultiElec/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The system is developed to collect, process, store and present the information provided by the radio frequency identification (RFID) devices. The system contains three parts, the application software, the database and the web page. The application software manages multiple RFID devices, such as readers and portals, simultaneously. It communicates with the devices through application programming interface (API) provided by the device vendor. The application software converts data collected by the RFID readers and portals to readable information. It is capable of encrypting data using 256 bits advanced encryption standard (AES). The application software has a graphical user interface (GUI). Themore » GUI mimics the configurations of the nucler material storage sites or transport vehicles. The GUI gives the user and system administrator an intuitive way to read the information and/or configure the devices. The application software is capable of sending the information to a remote, dedicated and secured web and database server. Two captured screen samples, one for storage and transport, are attached. The database is constructed to handle a large number of RFID tag readers and portals. A SQL server is employed for this purpose. An XML script is used to update the database once the information is sent from the application software. The design of the web page imitates the design of the application software. The web page retrieves data from the database and presents it in different panels. The user needs a user name combined with a password to access the web page. The web page is capable of sending e-mail and text messages based on preset criteria, such as when alarm thresholds are excceeded. A captured screen sample is attached. The application software is designed to be installed on a local computer. The local computer is directly connected to the RFID devices and can be controlled locally or remotely. There are multiple local computers managing different sites or transport vehicles. The control from remote sites and information transmitted to a central database server is through secured internet. The information stored in the central databaser server is shown on the web page. The users can view the web page on the internet. A dedicated and secured web and database server (https) is used to provide information security.« less
APBSmem: A Graphical Interface for Electrostatic Calculations at the Membrane
Callenberg, Keith M.; Choudhary, Om P.; de Forest, Gabriel L.; Gohara, David W.; Baker, Nathan A.; Grabe, Michael
2010-01-01
Electrostatic forces are one of the primary determinants of molecular interactions. They help guide the folding of proteins, increase the binding of one protein to another and facilitate protein-DNA and protein-ligand binding. A popular method for computing the electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation, and there are several easy-to-use software packages available that solve the PB equation for soluble proteins. Here we present a freely available program, called APBSmem, for carrying out these calculations in the presence of a membrane. The Adaptive Poisson-Boltzmann Solver (APBS) is used as a back-end for solving the PB equation, and a Java-based graphical user interface (GUI) coordinates a set of routines that introduce the influence of the membrane, determine its placement relative to the protein, and set the membrane potential. The software Jmol is embedded in the GUI to visualize the protein inserted in the membrane before the calculation and the electrostatic potential after completing the computation. We expect that the ease with which the GUI allows one to carry out these calculations will make this software a useful resource for experimenters and computational researchers alike. Three examples of membrane protein electrostatic calculations are carried out to illustrate how to use APBSmem and to highlight the different quantities of interest that can be calculated. PMID:20949122
APBSmem: a graphical interface for electrostatic calculations at the membrane.
Callenberg, Keith M; Choudhary, Om P; de Forest, Gabriel L; Gohara, David W; Baker, Nathan A; Grabe, Michael
2010-09-29
Electrostatic forces are one of the primary determinants of molecular interactions. They help guide the folding of proteins, increase the binding of one protein to another and facilitate protein-DNA and protein-ligand binding. A popular method for computing the electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation, and there are several easy-to-use software packages available that solve the PB equation for soluble proteins. Here we present a freely available program, called APBSmem, for carrying out these calculations in the presence of a membrane. The Adaptive Poisson-Boltzmann Solver (APBS) is used as a back-end for solving the PB equation, and a Java-based graphical user interface (GUI) coordinates a set of routines that introduce the influence of the membrane, determine its placement relative to the protein, and set the membrane potential. The software Jmol is embedded in the GUI to visualize the protein inserted in the membrane before the calculation and the electrostatic potential after completing the computation. We expect that the ease with which the GUI allows one to carry out these calculations will make this software a useful resource for experimenters and computational researchers alike. Three examples of membrane protein electrostatic calculations are carried out to illustrate how to use APBSmem and to highlight the different quantities of interest that can be calculated.
CMS Configuration Editor: GUI based application for user analysis job
NASA Astrophysics Data System (ADS)
de Cosa, A.
2011-12-01
We present the user interface and the software architecture of the Configuration Editor for the CMS experiment. The analysis workflow is organized in a modular way integrated within the CMS framework that organizes in a flexible way user analysis code. The Python scripting language is adopted to define the job configuration that drives the analysis workflow. It could be a challenging task for users, especially for newcomers, to develop analysis jobs managing the configuration of many required modules. For this reason a graphical tool has been conceived in order to edit and inspect configuration files. A set of common analysis tools defined in the CMS Physics Analysis Toolkit (PAT) can be steered and configured using the Config Editor. A user-defined analysis workflow can be produced starting from a standard configuration file, applying and configuring PAT tools according to the specific user requirements. CMS users can adopt this tool, the Config Editor, to create their analysis visualizing in real time which are the effects of their actions. They can visualize the structure of their configuration, look at the modules included in the workflow, inspect the dependences existing among the modules and check the data flow. They can visualize at which values parameters are set and change them according to what is required by their analysis task. The integration of common tools in the GUI needed to adopt an object-oriented structure in the Python definition of the PAT tools and the definition of a layer of abstraction from which all PAT tools inherit.
User's Guide for the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS): Version 2
NASA Technical Reports Server (NTRS)
Liu, Yuan; Frederick, Dean K.; DeCastro, Jonathan A.; Litt, Jonathan S.; Chan, William W.
2012-01-01
This report is a Users Guide for version 2 of the NASA-developed Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) software, which is a transient simulation of a large commercial turbofan engine (up to 90,000-lb thrust) with a realistic engine control system. The software supports easy access to health, control, and engine parameters through a graphical user interface (GUI). C-MAPSS v.2 has some enhancements over the original, including three actuators rather than one, the addition of actuator and sensor dynamics, and an improved controller, while retaining or improving on the convenience and user-friendliness of the original. C-MAPSS v.2 provides the user with a graphical turbofan engine simulation environment in which advanced algorithms can be implemented and tested. C-MAPSS can run user-specified transient simulations, and it can generate state-space linear models of the nonlinear engine model at an operating point. The code has a number of GUI screens that allow point-and-click operation, and have editable fields for user-specified input. The software includes an atmospheric model which allows simulation of engine operation at altitudes from sea level to 40,000 ft, Mach numbers from 0 to 0.90, and ambient temperatures from -60 to 103 F. The package also includes a power-management system that allows the engine to be operated over a wide range of thrust levels throughout the full range of flight conditions.
Perceptual grouping effects on cursor movement expectations.
Dorneich, Michael C; Hamblin, Christopher J; Lancaster, Jeff A; Olofinboba, Olu
2014-05-01
Two studies were conducted to develop an understanding of factors that drive user expectations when navigating between discrete elements on a display via a limited degree-of-freedom cursor control device. For the Orion Crew Exploration Vehicle spacecraft, a free-floating cursor with a graphical user interface (GUI) would require an unachievable level of accuracy due to expected acceleration and vibration conditions during dynamic phases of flight. Therefore, Orion program proposed using a "caged" cursor to "jump" from one controllable element (node) on the GUI to another. However, nodes are not likely to be arranged on a rectilinear grid, and so movements between nodes are not obvious. Proximity between nodes, direction of nodes relative to each other, and context features may all contribute to user cursor movement expectations. In an initial study, we examined user expectations based on the nodes themselves. In a second study, we examined the effect of context features on user expectations. The studies established that perceptual grouping effects influence expectations to varying degrees. Based on these results, a simple rule set was developed to support users in building a straightforward mental model that closely matches their natural expectations for cursor movement. The results will help designers of display formats take advantage of the natural context-driven cursor movement expectations of users to reduce navigation errors, increase usability, and decrease access time. The rules set and guidelines tie theory to practice and can be applied in environments where vibration or acceleration are significant, including spacecraft, aircraft, and automobiles.
Shieh, Fwu-Shan; Jongeneel, Patrick; Steffen, Jamin D; Lin, Selena; Jain, Surbhi; Song, Wei; Su, Ying-Hsiu
2017-01-01
Identification of viral integration sites has been important in understanding the pathogenesis and progression of diseases associated with particular viral infections. The advent of next-generation sequencing (NGS) has enabled researchers to understand the impact that viral integration has on the host, such as tumorigenesis. Current computational methods to analyze NGS data of virus-host junction sites have been limited in terms of their accessibility to a broad user base. In this study, we developed a software application (named ChimericSeq), that is the first program of its kind to offer a graphical user interface, compatibility with both Windows and Mac operating systems, and optimized for effectively identifying and annotating virus-host chimeric reads within NGS data. In addition, ChimericSeq's pipeline implements custom filtering to remove artifacts and detect reads with quantitative analytical reporting to provide functional significance to discovered integration sites. The improved accessibility of ChimericSeq through a GUI interface in both Windows and Mac has potential to expand NGS analytical support to a broader spectrum of the scientific community.
Shieh, Fwu-Shan; Jongeneel, Patrick; Steffen, Jamin D.; Lin, Selena; Jain, Surbhi; Song, Wei
2017-01-01
Identification of viral integration sites has been important in understanding the pathogenesis and progression of diseases associated with particular viral infections. The advent of next-generation sequencing (NGS) has enabled researchers to understand the impact that viral integration has on the host, such as tumorigenesis. Current computational methods to analyze NGS data of virus-host junction sites have been limited in terms of their accessibility to a broad user base. In this study, we developed a software application (named ChimericSeq), that is the first program of its kind to offer a graphical user interface, compatibility with both Windows and Mac operating systems, and optimized for effectively identifying and annotating virus-host chimeric reads within NGS data. In addition, ChimericSeq’s pipeline implements custom filtering to remove artifacts and detect reads with quantitative analytical reporting to provide functional significance to discovered integration sites. The improved accessibility of ChimericSeq through a GUI interface in both Windows and Mac has potential to expand NGS analytical support to a broader spectrum of the scientific community. PMID:28829778
Yeung, Ka Yee
2016-01-01
Reproducibility is vital in science. For complex computational methods, it is often necessary, not just to recreate the code, but also the software and hardware environment to reproduce results. Virtual machines, and container software such as Docker, make it possible to reproduce the exact environment regardless of the underlying hardware and operating system. However, workflows that use Graphical User Interfaces (GUIs) remain difficult to replicate on different host systems as there is no high level graphical software layer common to all platforms. GUIdock allows for the facile distribution of a systems biology application along with its graphics environment. Complex graphics based workflows, ubiquitous in systems biology, can now be easily exported and reproduced on many different platforms. GUIdock uses Docker, an open source project that provides a container with only the absolutely necessary software dependencies and configures a common X Windows (X11) graphic interface on Linux, Macintosh and Windows platforms. As proof of concept, we present a Docker package that contains a Bioconductor application written in R and C++ called networkBMA for gene network inference. Our package also includes Cytoscape, a java-based platform with a graphical user interface for visualizing and analyzing gene networks, and the CyNetworkBMA app, a Cytoscape app that allows the use of networkBMA via the user-friendly Cytoscape interface. PMID:27045593
Hung, Ling-Hong; Kristiyanto, Daniel; Lee, Sung Bong; Yeung, Ka Yee
2016-01-01
Reproducibility is vital in science. For complex computational methods, it is often necessary, not just to recreate the code, but also the software and hardware environment to reproduce results. Virtual machines, and container software such as Docker, make it possible to reproduce the exact environment regardless of the underlying hardware and operating system. However, workflows that use Graphical User Interfaces (GUIs) remain difficult to replicate on different host systems as there is no high level graphical software layer common to all platforms. GUIdock allows for the facile distribution of a systems biology application along with its graphics environment. Complex graphics based workflows, ubiquitous in systems biology, can now be easily exported and reproduced on many different platforms. GUIdock uses Docker, an open source project that provides a container with only the absolutely necessary software dependencies and configures a common X Windows (X11) graphic interface on Linux, Macintosh and Windows platforms. As proof of concept, we present a Docker package that contains a Bioconductor application written in R and C++ called networkBMA for gene network inference. Our package also includes Cytoscape, a java-based platform with a graphical user interface for visualizing and analyzing gene networks, and the CyNetworkBMA app, a Cytoscape app that allows the use of networkBMA via the user-friendly Cytoscape interface.
Rizvi, Rubina F; Marquard, Jenna L; Hultman, Gretchen M; Adam, Terrence J; Harder, Kathleen A; Melton, Genevieve B
2017-10-01
Background A substantial gap exists between current Electronic Health Record (EHR) usability and potential optimal usability. One of the fundamental reasons for this discrepancy is poor incorporation of a User-Centered Design (UCD) approach during the Graphical User Interface (GUI) development process. Objective To evaluate usability strengths and weaknesses of two widely implemented EHR GUIs for critical clinical notes usage tasks. Methods Twelve Internal Medicine resident physicians interacting with one of the two EHR systems (System-1 at Location-A and System-2 at Location-B) were observed by two usability evaluators employing an ethnographic approach. User comments and observer findings were analyzed for two critical tasks: (1) clinical notes entry and (2) related information-seeking tasks. Data were analyzed from two standpoints: (1) usability references categorized by usability evaluators as positive, negative, or equivocal and (2) usability impact of each feature measured through a 7-point severity rating scale. Findings were also validated by user responses to a post observation questionnaire. Results For clinical notes entry, System-1 surpassed System-2 with more positive (26% vs. 12%) than negative (12% vs. 34%) usability references. Greatest impact features on EHR usability (severity score pertaining to each feature) for clinical notes entry were: autopopulation (6), screen options (5.5), communication (5), copy pasting (4.5), error prevention (4.5), edit ability (4), and dictation and transcription (3.5). Both systems performed equally well on information-seeking tasks and features with greatest impacts on EHR usability were navigation for notes (7) and others (e.g., looking for ancillary data; 5.5). Ethnographic observations were supported by follow-up questionnaire responses. Conclusion This study provides usability-specific insights to inform future, improved, EHR interface that is better aligned with UCD approach.
Glenn Heat Transfer Simulation and Solver Graphical User Interface: Development and Testing
NASA Technical Reports Server (NTRS)
Kardamis, Joseph R.
2004-01-01
In the Tui ine Branch of the Turbomachinery and Propulsion Systems Division, researching and developing efficient turbine aerothermodynamics technologies is the main objective. Creating effective turbines for jet engines is a process which, if based purely on physical experimental testing, would be extremely expensive. It is for this reason, and also for the reasons of speed and ease, that the Turbine Branch spends a large amount of effort working with simulations of turbines. Specifically, they focus their work on two main fields: Computational Field Dynamics (CFD), and Experimental data analysis. The experimental field involves comparing experimental results to simulated results, whereas the CFD field involves running these simulations. The simulations are applied to aerodynamics and heat transfer cases, for both steady and unsteady flow conditions. By and large this work is applied to the domain of flow and heat transfer in axial turbines. The main application used to run these heat flow simulations is GlennHT. This program, recently rewritten in FORTRAN 90, allows the user to input a job file which specifies all the necessary parameters needed to simulate flow through a user-defined grid. There are several other executables used as well, ranging in application from converting grid files to and from particular formats, to merging blocks in a connectivity file, to converting connectivity files to a GlennHT compatible format. All of these executables are run from the command line in a terminal; some of them have interactive prompts where the user must specify the files to be manipulated after the program starts, while others take all of their parameters from the command line. With this amount of variation comes a good deal of commands and formats to memorize, which can cause slower and less efficient work, as users may forget how to execute a certain program, or not remember the pathnames of the files they wish to use. Two years ago, steps were made to expedite this process with a graphical user interface (GUI) that combines the functionality of all the executables along with adding some new functionality, such as residuals graphing and boundary conditions creation. Upon my beginning here at Glenn, many parts of the GUI, which was developed in Java, were nonfunctional. There were also issues with cross-platforming, as systems in the branch were transitioning from Silicon Graphics (SGI) machines to Linux machines. My goals this summer are to finish the parts of the GUI that are not yet completed, fix parts that did not work correctly, expand the functionality to include other useful features, such as grid surface highlighting, and make the system compatible with both Linux and SGI. I will also be heavily testing the system and providing sufficient documentation on how to use the GUI, as no such documentation existed previously.
2014-01-01
Background Myotis species of bats such as the Indiana Bat and Little Brown Bat are facing population declines because of White-nose syndrome (WNS). These species also face threats from anthropogenic activities such as wind energy development. Population models may be used to provide insights into threats facing these species. We developed a population model, BatTool, as an R package to help decision makers and natural resource managers examine factors influencing the dynamics of these species. The R package includes two components: 1) a deterministic and stochastic model that are accessible from the command line and 2) a graphical user interface (GUI). Results BatTool is an R package allowing natural resource managers and decision makers to understand Myotis spp. population dynamics. Through the use of a GUI, the model allows users to understand how WNS and other take events may affect the population. The results are saved both graphically and as data files. Additionally, R-savvy users may access the population functions through the command line and reuse the code as part of future research. This R package could also be used as part of a population dynamics or wildlife management course. Conclusions BatTool provides access to a Myotis spp. population model. This tool can help natural resource managers and decision makers with the Endangered Species Act deliberations for these species and with issuing take permits as part of regulatory decision making. The tool is available online as part of this publication. PMID:24955110
Erickson, Richard A.; Thogmartin, Wayne E.; Szymanski, Jennifer A.
2014-01-01
Background: Myotis species of bats such as the Indiana Bat and Little Brown Bat are facing population declines because of White-nose syndrome (WNS). These species also face threats from anthropogenic activities such as wind energy development. Population models may be used to provide insights into threats facing these species. We developed a population model, BatTool, as an R package to help decision makers and natural resource managers examine factors influencing the dynamics of these species. The R package includes two components: 1) a deterministic and stochastic model that are accessible from the command line and 2) a graphical user interface (GUI). Results: BatTool is an R package allowing natural resource managers and decision makers to understand Myotis spp. population dynamics. Through the use of a GUI, the model allows users to understand how WNS and other take events may affect the population. The results are saved both graphically and as data files. Additionally, R-savvy users may access the population functions through the command line and reuse the code as part of future research. This R package could also be used as part of a population dynamics or wildlife management course. Conclusions: BatTool provides access to a Myotis spp. population model. This tool can help natural resource managers and decision makers with the Endangered Species Act deliberations for these species and with issuing take permits as part of regulatory decision making. The tool is available online as part of this publication.
Erickson, Richard A; Thogmartin, Wayne E; Szymanski, Jennifer A
2014-01-01
Myotis species of bats such as the Indiana Bat and Little Brown Bat are facing population declines because of White-nose syndrome (WNS). These species also face threats from anthropogenic activities such as wind energy development. Population models may be used to provide insights into threats facing these species. We developed a population model, BatTool, as an R package to help decision makers and natural resource managers examine factors influencing the dynamics of these species. The R package includes two components: 1) a deterministic and stochastic model that are accessible from the command line and 2) a graphical user interface (GUI). BatTool is an R package allowing natural resource managers and decision makers to understand Myotis spp. population dynamics. Through the use of a GUI, the model allows users to understand how WNS and other take events may affect the population. The results are saved both graphically and as data files. Additionally, R-savvy users may access the population functions through the command line and reuse the code as part of future research. This R package could also be used as part of a population dynamics or wildlife management course. BatTool provides access to a Myotis spp. population model. This tool can help natural resource managers and decision makers with the Endangered Species Act deliberations for these species and with issuing take permits as part of regulatory decision making. The tool is available online as part of this publication.
Lange, Kristian; Kühn, Simone; Filevich, Elisa
2015-01-01
We present here “Just Another Tool for Online Studies” (JATOS): an open source, cross-platform web application with a graphical user interface (GUI) that greatly simplifies setting up and communicating with a web server to host online studies that are written in JavaScript. JATOS is easy to install in all three major platforms (Microsoft Windows, Mac OS X, and Linux), and seamlessly pairs with a database for secure data storage. It can be installed on a server or locally, allowing researchers to try the application and feasibility of their studies within a browser environment, before engaging in setting up a server. All communication with the JATOS server takes place via a GUI (with no need to use a command line interface), making JATOS an especially accessible tool for researchers without a strong IT background. We describe JATOS’ main features and implementation and provide a detailed tutorial along with example studies to help interested researchers to set up their online studies. JATOS can be found under the Internet address: www.jatos.org. PMID:26114751
NASA Astrophysics Data System (ADS)
von Ruette, Jonas; Lehmann, Peter; Fan, Linfeng; Bickel, Samuel; Or, Dani
2017-04-01
Landslides and subsequent debris-flows initiated by rainfall represent a ubiquitous natural hazard in steep mountainous regions. We integrated a landslide hydro-mechanical triggering model and associated debris flow runout pathways with a graphical user interface (GUI) to represent these natural hazards in a wide range of catchments over the globe. The STEP-TRAMM GUI provides process-based locations and sizes of landslides patterns using digital elevation models (DEM) from SRTM database (30 m resolution) linked with soil maps from global database SoilGrids (250 m resolution) and satellite based information on rainfall statistics for the selected region. In a preprocessing step STEP-TRAMM models soil depth distribution and complements soil information that jointly capture key hydrological and mechanical properties relevant to local soil failure representation. In the presentation we will discuss feature of this publicly available platform and compare landslide and debris flow patterns for different regions considering representative intense rainfall events. Model outcomes will be compared for different spatial and temporal resolutions to test applicability of web-based information on elevation and rainfall for hazard assessment.
NASA Astrophysics Data System (ADS)
Hussmann, Stephan; Lau, Wing Y.; Chu, Terry; Grothof, Markus
2003-07-01
Traditionally, the measuring or monitoring system of manufacturing industries uses sensors, computers and screens for their quality control (Q.C.). The acquired information is fed back to the control room by wires, which - for obvious reason - are not suitable in many environments. This paper describes a method to solve this problem by employing the new Bluetooth technology to set up a complete new system, where a total wireless solution is made feasible. This new Q.C. system allows several line scan cameras to be connected at once to a graphical user interface (GUI) that can monitor the production process. There are many Bluetooth devices available on the market such as cell-phones, headsets, printers, PDA etc. However, the detailed application is a novel implementation in the industrial Q.C. area. This paper will contain more details about the Bluetooth standard and why it is used (nework topologies, host controller interface, data rates, etc.), the Bluetooth implemetation in the microcontroller of the line scan camera, and the GUI and its features.
2011-07-25
testing, the EFTR must be keyed with the same key used to encrypt the Enhanced Flight Termination Systems ( EFTS ) message. To ensure identical keys...required to verify the proper state. e. Procedure. (1) Pull up EFTS graphic user interface (GUI) (Figure 3). (2) Click “Receiver Power On...commanded mode steady state input currents will not exceed their specified values. TOP 05-2-543 25 July 2011 19 Figure 3. EFTS GUIa
2006-11-01
WPSM system worn by future Warfighters, the medic will have a personal digital assistant (PDA) equipped with the Battlefield Medical Information...has been hit by a bullet or some other projectile. This information is sent wirelessly to a personal digital assistant (PDA) held by the medic...likely to view this vital sign information on a personal digital assistant (PDA) equipped with the Battlefield Medical Information System – Tactical
Jing Jin; Dauwels, Justin; Cash, Sydney; Westover, M Brandon
2014-01-01
Detection of interictal discharges is a key element of interpreting EEGs during the diagnosis and management of epilepsy. Because interpretation of clinical EEG data is time-intensive and reliant on experts who are in short supply, there is a great need for automated spike detectors. However, attempts to develop general-purpose spike detectors have so far been severely limited by a lack of expert-annotated data. Huge databases of interictal discharges are therefore in great demand for the development of general-purpose detectors. Detailed manual annotation of interictal discharges is time consuming, which severely limits the willingness of experts to participate. To address such problems, a graphical user interface "SpikeGUI" was developed in our work for the purposes of EEG viewing and rapid interictal discharge annotation. "SpikeGUI" substantially speeds up the task of annotating interictal discharges using a custom-built algorithm based on a combination of template matching and online machine learning techniques. While the algorithm is currently tailored to annotation of interictal epileptiform discharges, it can easily be generalized to other waveforms and signal types.
Semi-automated based ground-truthing GUI for airborne imagery
NASA Astrophysics Data System (ADS)
Phan, Chung; Lydic, Rich; Moore, Tim; Trang, Anh; Agarwal, Sanjeev; Tiwari, Spandan
2005-06-01
Over the past several years, an enormous amount of airborne imagery consisting of various formats has been collected and will continue into the future to support airborne mine/minefield detection processes, improve algorithm development, and aid in imaging sensor development. The ground-truthing of imagery is a very essential part of the algorithm development process to help validate the detection performance of the sensor and improving algorithm techniques. The GUI (Graphical User Interface) called SemiTruth was developed using Matlab software incorporating signal processing, image processing, and statistics toolboxes to aid in ground-truthing imagery. The semi-automated ground-truthing GUI is made possible with the current data collection method, that is including UTM/GPS (Universal Transverse Mercator/Global Positioning System) coordinate measurements for the mine target and fiducial locations on the given minefield layout to support in identification of the targets on the raw imagery. This semi-automated ground-truthing effort has developed by the US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD), Countermine Division, Airborne Application Branch with some support by the University of Missouri-Rolla.
Kirkpatrick, Andrew W; McKee, Ian; McKee, Jessica L; Ma, Irene; McBeth, Paul B; Roberts, Derek J; Wurster, Charles L; Parfitt, Robbie; Ball, Chad G; Oberg, Scott; Sevcik, William; Hamilton, Douglas R
2016-05-01
Remote-telementored ultrasound involves novice examiners being remotely guided by experts using informatic-technologies. However, requiring a novice to perform ultrasound is a cognitively demanding task exacerbated by unfamiliarity with ultrasound-machine controls. We incorporated a randomized evaluation of using remote control of the ultrasound functionality (knobology) within a study in which the images generated by distant naive examiners were viewed on an ultrasound graphic user interface (GUI) display viewed on laptop computers by mentors in different cities. Fire-fighters in Edmonton (101) were remotely mentored from Calgary (n = 65), Nanaimo (n = 19), and Memphis (n = 17) to examine an ultrasound phantom randomized to contain free fluid or not. Remote mentors (2 surgeons, 1 internist, and 1 ED physician) were randomly assigned to use GUI knobology control during mentoring (GUIK+/GUIK-). Remote-telementored ultrasound was feasible in all cases. Overall accuracy for fluid detection was 97% (confidence interval = 91 to 99%) with 3 false negatives (FNs). Positive/negative likelihood ratios were infinity/0.0625. One FN occurred with the GUIK+ and 2 without (GUIK-). There were no statistical test performance differences in either group (GUIK+ and GUIK-). Ultrasound-naive 1st responders can be remotely mentored with high accuracy, although providing basic remote control of the knobology did not affect outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.
Butler, William E.; Atai, Nadia; Carter, Bob; Hochberg, Fred
2014-01-01
The Richard Floor Biorepository supports collaborative studies of extracellular vesicles (EVs) found in human fluids and tissue specimens. The current emphasis is on biomarkers for central nervous system neoplasms but its structure may serve as a template for collaborative EV translational studies in other fields. The informatic system provides specimen inventory tracking with bar codes assigned to specimens and containers and projects, is hosted on globalized cloud computing resources, and embeds a suite of shared documents, calendars, and video-conferencing features. Clinical data are recorded in relation to molecular EV attributes and may be tagged with terms drawn from a network of externally maintained ontologies thus offering expansion of the system as the field matures. We fashioned the graphical user interface (GUI) around a web-based data visualization package. This system is now in an early stage of deployment, mainly focused on specimen tracking and clinical, laboratory, and imaging data capture in support of studies to optimize detection and analysis of brain tumour–specific mutations. It currently includes 4,392 specimens drawn from 611 subjects, the majority with brain tumours. As EV science evolves, we plan biorepository changes which may reflect multi-institutional collaborations, proteomic interfaces, additional biofluids, changes in operating procedures and kits for specimen handling, novel procedures for detection of tumour-specific EVs, and for RNA extraction and changes in the taxonomy of EVs. We have used an ontology-driven data model and web-based architecture with a graph theory–driven GUI to accommodate and stimulate the semantic web of EV science. PMID:25317275
TVB-EduPack—An Interactive Learning and Scripting Platform for The Virtual Brain
Matzke, Henrik; Schirner, Michael; Vollbrecht, Daniel; Rothmeier, Simon; Llarena, Adalberto; Rojas, Raúl; Triebkorn, Paul; Domide, Lia; Mersmann, Jochen; Solodkin, Ana; Jirsa, Viktor K.; McIntosh, Anthony Randal; Ritter, Petra
2015-01-01
The Virtual Brain (TVB; thevirtualbrain.org) is a neuroinformatics platform for full brain network simulation based on individual anatomical connectivity data. The framework addresses clinical and neuroscientific questions by simulating multi-scale neural dynamics that range from local population activity to large-scale brain function and related macroscopic signals like electroencephalography and functional magnetic resonance imaging. TVB is equipped with a graphical and a command-line interface to create models that capture the characteristic biological variability to predict the brain activity of individual subjects. To enable researchers from various backgrounds a quick start into TVB and brain network modeling in general, we developed an educational module: TVB-EduPack. EduPack offers two educational functionalities that seamlessly integrate into TVB's graphical user interface (GUI): (i) interactive tutorials introduce GUI elements, guide through the basic mechanics of software usage and develop complex use-case scenarios; animations, videos and textual descriptions transport essential principles of computational neuroscience and brain modeling; (ii) an automatic script generator records model parameters and produces input files for TVB's Python programming interface; thereby, simulation configurations can be exported as scripts that allow flexible customization of the modeling process and self-defined batch- and post-processing applications while benefitting from the full power of the Python language and its toolboxes. This article covers the implementation of TVB-EduPack and its integration into TVB architecture. Like TVB, EduPack is an open source community project that lives from the participation and contribution of its users. TVB-EduPack can be obtained as part of TVB from thevirtualbrain.org. PMID:26635597
Butler, William E; Atai, Nadia; Carter, Bob; Hochberg, Fred
2014-01-01
The Richard Floor Biorepository supports collaborative studies of extracellular vesicles (EVs) found in human fluids and tissue specimens. The current emphasis is on biomarkers for central nervous system neoplasms but its structure may serve as a template for collaborative EV translational studies in other fields. The informatic system provides specimen inventory tracking with bar codes assigned to specimens and containers and projects, is hosted on globalized cloud computing resources, and embeds a suite of shared documents, calendars, and video-conferencing features. Clinical data are recorded in relation to molecular EV attributes and may be tagged with terms drawn from a network of externally maintained ontologies thus offering expansion of the system as the field matures. We fashioned the graphical user interface (GUI) around a web-based data visualization package. This system is now in an early stage of deployment, mainly focused on specimen tracking and clinical, laboratory, and imaging data capture in support of studies to optimize detection and analysis of brain tumour-specific mutations. It currently includes 4,392 specimens drawn from 611 subjects, the majority with brain tumours. As EV science evolves, we plan biorepository changes which may reflect multi-institutional collaborations, proteomic interfaces, additional biofluids, changes in operating procedures and kits for specimen handling, novel procedures for detection of tumour-specific EVs, and for RNA extraction and changes in the taxonomy of EVs. We have used an ontology-driven data model and web-based architecture with a graph theory-driven GUI to accommodate and stimulate the semantic web of EV science.
Self-powered wireless sensor networks for telemedicine applications
NASA Astrophysics Data System (ADS)
Polk, Todd William
Technology advances in wireless sensor networks have made it possible for these tiny systems to enter the realm of ubiquitous or pervasive computing which has been forecast for several years. These nodes, or motes as they are known, typically run off of battery power and when used sparingly can operate in excess of one year. When requirements necessitate higher usage, battery monitoring and replacement becomes a major issue. Large systems can quickly become cost prohibitive. To combat this issue, researchers have looked to energy harvesting to power these motes. However, this research has mainly centered on outdoor solar harvesting to take advantage of higher energy levels provided by the sun. Indoor harvesting has been presented in the past as not feasible. In this dissertation, we present a system that utilizes energy harvested from overhead fluorescent lights to power the infrastructure (routing) nodes of an indoor telemedicine based wireless network. The limitations of indoor harvesting are exploited and leveraged through creative hardware design. A unique message routing protocol has been developed to control these routing nodes and allow continual operation. Standard medical devices have been interfaced to the system to allow wireless transmission of patient data to a central collection point where the data is organized, stored and presented to the user via a graphical user interface (GUI). The range of the system has been extended by interfacing a cellular modem to the system to allow two-way communication between the GUI and a remote healthcare provider. Extensive physical testing has been done to determine the robustness of the system, and the boundary conditions for extremely large networks were tested via simulation.
Viger, Roland J.
2008-01-01
This fact sheet provides a high-level description of the GIS Weasel, a software system designed to aid users in preparing spatial information as input to lumped and distributed parameter environmental simulation models (ESMs). The GIS Weasel provides geographic information system (GIS) tools to help create maps of geographic features relevant to the application of a user?s ESM and to generate parameters from those maps. The operation of the GIS Weasel does not require a user to be a GIS expert, only that a user has an understanding of the spatial information requirements of the model. The GIS Weasel software system provides a GIS-based graphical user interface (GUI), C programming language executables, and general utility scripts. The software will run on any computing platform where ArcInfo Workstation (version 8.1 or later) and the GRID extension are accessible. The user controls the GIS Weasel by interacting with menus, maps, and tables.
AIMBAT: A Python/Matplotlib Tool for Measuring Teleseismic Arrival Times
NASA Astrophysics Data System (ADS)
Lou, X.; van der Lee, S.; Lloyd, S.
2013-12-01
Python is an open-source, platform-independent, and object-oriented scripting language. It became more popular in the seismologist community since the appearance of ObsPy (Beyreuther et al. 2010, Megies et al. 2011), which provides a powerful framework for seismic data access and processing. This study introduces a new Python-based tool named AIMBAT (Automated and Interactive Measurement of Body-wave Arrival Times) for measuring teleseismic body-wave arrival times on large-scale seismic event data (Lou et al. 2013). Compared to ObsPy, AIMBAT is a lighter tool that is more focused on a particular aspect of seismic data processing. It originates from the widely used MCCC (Multi-Channel Cross-Correlation) method developed by VanDecar and Crosson (1990). On top of the original MCCC procedure, AIMBAT is automated in initial phase picking and is interactive in quality control. The core cross-correlation function is implemented in Fortran to boost up performance in addition to Python. The GUI (graphical user interface) of AIMBAT depends on Matplotlib's GUI-neutral widgets and event-handling API. A number of sorting and (de)selecting options are designed to facilitate the quality control of seismograms. By using AIMBAT, both relative and absolute teleseismic body-wave arrival times are measured. AIMBAT significantly improves efficiency and quality of the measurements. User interaction is needed only to pick the target phase arrival and to set a time window on the array stack. The package is easy to install and use, open-source, and is publicly available. Graphical user interface of AIMBAT.
TkPl_SU: An Open-source Perl Script Builder for Seismic Unix
NASA Astrophysics Data System (ADS)
Lorenzo, J. M.
2017-12-01
TkPl_SU (beta) is a graphical user interface (GUI) to select parameters for Seismic Unix (SU) modules. Seismic Unix (Stockwell, 1999) is a widely distributed free software package for processing seismic reflection and signal processing. Perl/Tk is a mature, well-documented and free object-oriented graphical user interface for Perl. In a classroom environment, shell scripting of SU modules engages students and helps focus on the theoretical limitations and strengths of signal processing. However, complex interactive processing stages, e.g., selection of optimal stacking velocities, killing bad data traces, or spectral analysis requires advanced flows beyond the scope of introductory classes. In a research setting, special functionality from other free seismic processing software such as SioSeis (UCSD-NSF) can be incorporated readily via an object-oriented style to programming. An object oriented approach is a first step toward efficient extensible programming of multi-step processes, and a simple GUI simplifies parameter selection and decision making. Currently, in TkPl_SU, Perl 5 packages wrap 19 of the most common SU modules that are used in teaching undergraduate and first-year graduate student classes (e.g., filtering, display, velocity analysis and stacking). Perl packages (classes) can advantageously add new functionality around each module and clarify parameter names for easier usage. For example, through the use of methods, packages can isolate the user from repetitive control structures, as well as replace the names of abbreviated parameters with self-describing names. Moose, an extension of the Perl 5 object system, greatly facilitates an object-oriented style. Perl wrappers are self-documenting via Perl programming document markup language.
ModelMuse - A Graphical User Interface for MODFLOW-2005 and PHAST
Winston, Richard B.
2009-01-01
ModelMuse is a graphical user interface (GUI) for the U.S. Geological Survey (USGS) models MODFLOW-2005 and PHAST. This software package provides a GUI for creating the flow and transport input file for PHAST and the input files for MODFLOW-2005. In ModelMuse, the spatial data for the model is independent of the grid, and the temporal data is independent of the stress periods. Being able to input these data independently allows the user to redefine the spatial and temporal discretization at will. This report describes the basic concepts required to work with ModelMuse. These basic concepts include the model grid, data sets, formulas, objects, the method used to assign values to data sets, and model features. The ModelMuse main window has a top, front, and side view of the model that can be used for editing the model, and a 3-D view of the model that can be used to display properties of the model. ModelMuse has tools to generate and edit the model grid. It also has a variety of interpolation methods and geographic functions that can be used to help define the spatial variability of the model. ModelMuse can be used to execute both MODFLOW-2005 and PHAST and can also display the results of MODFLOW-2005 models. An example of using ModelMuse with MODFLOW-2005 is included in this report. Several additional examples are described in the help system for ModelMuse, which can be accessed from the Help menu.
MPBEC, a Matlab Program for Biomolecular Electrostatic Calculations
NASA Astrophysics Data System (ADS)
Vergara-Perez, Sandra; Marucho, Marcelo
2016-01-01
One of the most used and efficient approaches to compute electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation. There are several software packages available that solve the PB equation for molecules in aqueous electrolyte solutions. Most of these software packages are useful for scientists with specialized training and expertise in computational biophysics. However, the user is usually required to manually take several important choices, depending on the complexity of the biological system, to successfully obtain the numerical solution of the PB equation. This may become an obstacle for researchers, experimentalists, even students with no special training in computational methodologies. Aiming to overcome this limitation, in this article we present MPBEC, a free, cross-platform, open-source software that provides non-experts in the field an easy and efficient way to perform biomolecular electrostatic calculations on single processor computers. MPBEC is a Matlab script based on the Adaptative Poisson-Boltzmann Solver, one of the most popular approaches used to solve the PB equation. MPBEC does not require any user programming, text editing or extensive statistical skills, and comes with detailed user-guide documentation. As a unique feature, MPBEC includes a useful graphical user interface (GUI) application which helps and guides users to configure and setup the optimal parameters and approximations to successfully perform the required biomolecular electrostatic calculations. The GUI also incorporates visualization tools to facilitate users pre- and post-analysis of structural and electrical properties of biomolecules.
MPBEC, a Matlab Program for Biomolecular Electrostatic Calculations
Vergara-Perez, Sandra; Marucho, Marcelo
2015-01-01
One of the most used and efficient approaches to compute electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation. There are several software packages available that solve the PB equation for molecules in aqueous electrolyte solutions. Most of these software packages are useful for scientists with specialized training and expertise in computational biophysics. However, the user is usually required to manually take several important choices, depending on the complexity of the biological system, to successfully obtain the numerical solution of the PB equation. This may become an obstacle for researchers, experimentalists, even students with no special training in computational methodologies. Aiming to overcome this limitation, in this article we present MPBEC, a free, cross-platform, open-source software that provides non-experts in the field an easy and efficient way to perform biomolecular electrostatic calculations on single processor computers. MPBEC is a Matlab script based on the Adaptative Poisson Boltzmann Solver, one of the most popular approaches used to solve the PB equation. MPBEC does not require any user programming, text editing or extensive statistical skills, and comes with detailed user-guide documentation. As a unique feature, MPBEC includes a useful graphical user interface (GUI) application which helps and guides users to configure and setup the optimal parameters and approximations to successfully perform the required biomolecular electrostatic calculations. The GUI also incorporates visualization tools to facilitate users pre- and post- analysis of structural and electrical properties of biomolecules. PMID:26924848
MPBEC, a Matlab Program for Biomolecular Electrostatic Calculations.
Vergara-Perez, Sandra; Marucho, Marcelo
2016-01-01
One of the most used and efficient approaches to compute electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation. There are several software packages available that solve the PB equation for molecules in aqueous electrolyte solutions. Most of these software packages are useful for scientists with specialized training and expertise in computational biophysics. However, the user is usually required to manually take several important choices, depending on the complexity of the biological system, to successfully obtain the numerical solution of the PB equation. This may become an obstacle for researchers, experimentalists, even students with no special training in computational methodologies. Aiming to overcome this limitation, in this article we present MPBEC, a free, cross-platform, open-source software that provides non-experts in the field an easy and efficient way to perform biomolecular electrostatic calculations on single processor computers. MPBEC is a Matlab script based on the Adaptative Poisson Boltzmann Solver, one of the most popular approaches used to solve the PB equation. MPBEC does not require any user programming, text editing or extensive statistical skills, and comes with detailed user-guide documentation. As a unique feature, MPBEC includes a useful graphical user interface (GUI) application which helps and guides users to configure and setup the optimal parameters and approximations to successfully perform the required biomolecular electrostatic calculations. The GUI also incorporates visualization tools to facilitate users pre- and post- analysis of structural and electrical properties of biomolecules.
Integrating macromolecular X-ray diffraction data with the graphical user interface iMOSFLM
Powell, Harold R; Battye, T Geoff G; Kontogiannis, Luke; Johnson, Owen; Leslie, Andrew GW
2017-01-01
X-ray crystallography is the overwhelmingly dominant source of structural information for biological macromolecules, providing fundamental insights into biological function. Collection of X-ray diffraction data underlies the technique, and robust and user-friendly software to process the diffraction images makes the technique accessible to a wider range of scientists. iMosflm/MOSFLM (www.mrc-lmb.cam.ac.uk/harry/imosflm) is a software package designed to achieve this goal. The graphical user interface (GUI) version of MOSFLM (called iMosflm) is designed to guide inexperienced users through the steps of data integration, while retaining powerful features for more experienced users. Images from almost all commercially available X-ray detectors can be handled. Although the program only utilizes two-dimensional profile fitting, it can readily integrate data collected in “fine phi-slicing” mode (where the rotation angle per image is less than the crystal mosaic spread by a factor of at least 2) that is commonly employed with modern very fast readout detectors. The graphical user interface provides real-time feedback on the success of the indexing step and the progress of data processing. This feedback includes the ability to monitor detector and crystal parameter refinement and to display the average spot shape in different regions of the detector. Data scaling and merging tasks can be initiated directly from the interface. Using this protocol, a dataset of 360 images with ~2000 reflections per image can be processed in approximately four minutes. PMID:28569763
[Statistical analysis using freely-available "EZR (Easy R)" software].
Kanda, Yoshinobu
2015-10-01
Clinicians must often perform statistical analyses for purposes such evaluating preexisting evidence and designing or executing clinical studies. R is a free software environment for statistical computing. R supports many statistical analysis functions, but does not incorporate a statistical graphical user interface (GUI). The R commander provides an easy-to-use basic-statistics GUI for R. However, the statistical function of the R commander is limited, especially in the field of biostatistics. Therefore, the author added several important statistical functions to the R commander and named it "EZR (Easy R)", which is now being distributed on the following website: http://www.jichi.ac.jp/saitama-sct/. EZR allows the application of statistical functions that are frequently used in clinical studies, such as survival analyses, including competing risk analyses and the use of time-dependent covariates and so on, by point-and-click access. In addition, by saving the script automatically created by EZR, users can learn R script writing, maintain the traceability of the analysis, and assure that the statistical process is overseen by a supervisor.
NASA Astrophysics Data System (ADS)
Mueller, David S.
2013-04-01
Selection of the appropriate extrapolation methods for computing the discharge in the unmeasured top and bottom parts of a moving-boat acoustic Doppler current profiler (ADCP) streamflow measurement is critical to the total discharge computation. The software tool, extrap, combines normalized velocity profiles from the entire cross section and multiple transects to determine a mean profile for the measurement. The use of an exponent derived from normalized data from the entire cross section is shown to be valid for application of the power velocity distribution law in the computation of the unmeasured discharge in a cross section. Selected statistics are combined with empirically derived criteria to automatically select the appropriate extrapolation methods. A graphical user interface (GUI) provides the user tools to visually evaluate the automatically selected extrapolation methods and manually change them, as necessary. The sensitivity of the total discharge to available extrapolation methods is presented in the GUI. Use of extrap by field hydrographers has demonstrated that extrap is a more accurate and efficient method of determining the appropriate extrapolation methods compared with tools currently (2012) provided in the ADCP manufacturers' software.
Tiede, Dirk; Baraldi, Andrea; Sudmanns, Martin; Belgiu, Mariana; Lang, Stefan
2017-01-01
ABSTRACT Spatiotemporal analytics of multi-source Earth observation (EO) big data is a pre-condition for semantic content-based image retrieval (SCBIR). As a proof of concept, an innovative EO semantic querying (EO-SQ) subsystem was designed and prototypically implemented in series with an EO image understanding (EO-IU) subsystem. The EO-IU subsystem is automatically generating ESA Level 2 products (scene classification map, up to basic land cover units) from optical satellite data. The EO-SQ subsystem comprises a graphical user interface (GUI) and an array database embedded in a client server model. In the array database, all EO images are stored as a space-time data cube together with their Level 2 products generated by the EO-IU subsystem. The GUI allows users to (a) develop a conceptual world model based on a graphically supported query pipeline as a combination of spatial and temporal operators and/or standard algorithms and (b) create, save and share within the client-server architecture complex semantic queries/decision rules, suitable for SCBIR and/or spatiotemporal EO image analytics, consistent with the conceptual world model. PMID:29098143
ORIGAMI Automator Primer. Automated ORIGEN Source Terms and Spent Fuel Storage Pool Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wieselquist, William A.; Thompson, Adam B.; Bowman, Stephen M.
2016-04-01
Source terms and spent nuclear fuel (SNF) storage pool decay heat load analyses for operating nuclear power plants require a large number of Oak Ridge Isotope Generation and Depletion (ORIGEN) calculations. SNF source term calculations also require a significant amount of bookkeeping to track quantities such as core and assembly operating histories, spent fuel pool (SFP) residence times, heavy metal masses, and enrichments. The ORIGEN Assembly Isotopics (ORIGAMI) module in the SCALE code system provides a simple scheme for entering these data. However, given the large scope of the analysis, extensive scripting is necessary to convert formats and process datamore » to create thousands of ORIGAMI input files (one per assembly) and to process the results into formats readily usable by follow-on analysis tools. This primer describes a project within the SCALE Fulcrum graphical user interface (GUI) called ORIGAMI Automator that was developed to automate the scripting and bookkeeping in large-scale source term analyses. The ORIGAMI Automator enables the analyst to (1) easily create, view, and edit the reactor site and assembly information, (2) automatically create and run ORIGAMI inputs, and (3) analyze the results from ORIGAMI. ORIGAMI Automator uses the standard ORIGEN binary concentrations files produced by ORIGAMI, with concentrations available at all time points in each assembly’s life. The GUI plots results such as mass, concentration, activity, and decay heat using a powerful new ORIGEN Post-Processing Utility for SCALE (OPUS) GUI component. This document includes a description and user guide for the GUI, a step-by-step tutorial for a simplified scenario, and appendices that document the file structures used.« less
A NEO population generation and observation simulation software tool
NASA Astrophysics Data System (ADS)
Müller, Sven; Gelhaus, Johannes; Hahn, Gerhard; Franco, Raffaella
One of the main targets of ESA's Space Situational Awareness (SSA) program is to build a wide knowledge base about objects that can potentially harm Earth (Near-Earth Objects, NEOs). An important part of this effort is to create the Small Bodies Data Centre (SBDC) which is going to aggregate measurement data from a fully-integrated NEO observation sensor network. Until this network is developed, artificial NEO measurement data is needed in order to validate SBDC algorithms. Moreover, to establish a functioning NEO observation sensor network, it has to be determined where to place sensors, what technical requirements have to be met in order to be able to detect NEOs and which observation strategies work the best. Because of this, a sensor simulation software was needed. This paper presents a software tool which allows users to create and analyse NEO populations and to simulate and analyse population observations. It is a console program written in Fortran and comes with a Graphical User Interface (GUI) written in Java and C. The tool can be distinguished into the components ``Population Generator'' and ``Observation Simulator''. The Population Generator component is responsible for generating and analysing a NEO population. Users can choose between creating fictitious (random) and synthetic populations. The latter are based on one of two models describing the orbital and size distribution of observed NEOs: The existing socalled ``Bottke Model'' (Bottke et al. 2000, 2002) and the new ``Granvik Model'' (Granvik et al. 2014, in preparation) which has been developed in parallel to the tool. Generated populations can be analysed by defining 2D, 3D and scatter plots using various NEO attributes. As a result, the tool creates the appropiate files for the plotting tool ``gnuplot''. The tool's Observation Simulator component yields the Observation Simulation and Observation Analysis functions. Users can define sensor systems using ground- or space-based locations as well as optical or radar sensors and simulate observation campaigns. The tool outputs field-of-view crossings and actual detections of the selected NEO population objects. Using the Observation Analysis users are able to process and plot the results of the Observation Simulation. In order to enable end-users to handle the tool in a user-intuitive and comfortable way, a GUI has been created based on the modular Eclipse Rich Client Platform (RCP) technology. Through the GUI users can easily enter input data for the tool, execute it and view its output data in a clear way. Additionally, the GUI runs gnuplot to create plot pictures and presents them to the user. Furthermore, users can create projects to organise executions of the tool.
User's Guide for Mixed-Size Sediment Transport Model for Networks of One-Dimensional Open Channels
Bennett, James P.
2001-01-01
This user's guide describes a mathematical model for predicting the transport of mixed sizes of sediment by flow in networks of one-dimensional open channels. The simulation package is useful for general sediment routing problems, prediction of erosion and deposition following dam removal, and scour in channels at road embankment crossings or other artificial structures. The model treats input hydrographs as stepwise steady-state, and the flow computation algorithm automatically switches between sub- and supercritical flow as dictated by channel geometry and discharge. A variety of boundary conditions including weirs and rating curves may be applied both external and internal to the flow network. The model may be used to compute flow around islands and through multiple openings in embankments, but the network must be 'simple' in the sense that the flow directions in all channels can be specified before simulation commences. The location and shape of channel banks are user specified, and all bedelevation changes take place between these banks and above a user-specified bedrock elevation. Computation of sediment-transport emphasizes the sand-size range (0.0625-2.0 millimeter) but the user may select any desired range of particle diameters including silt and finer (<0.0625 millimeter). As part of data input, the user may set the original bed-sediment composition of any number of layers of known thickness. The model computes the time evolution of total transport and the size composition of bed- and suspended-load sand through any cross section of interest. It also tracks bed -surface elevation and size composition. The model is written in the FORTRAN programming language for implementation on personal computers using the WINDOWS operating system and, along with certain graphical output display capability, is accessed from a graphical user interface (GUI). The GUI provides a framework for selecting input files and parameters of a number of components of the sediment-transport process. There are no restrictions in the use of the model as to numbers of channels, channel junctions, cross sections per channel, or points defining the cross sections. Following completion of the simulation computations, the GUI accommodates display of longitudinal plots of either bed elevation and size composition, or of transport rate and size composition of the various components, for individual channels and selected times during the simulation period. For individual cross sections, the GUI also allows display of time series of transport rate and size composition of the various components and of bed elevation and size composition.
The GRIDView Visualization Package
NASA Astrophysics Data System (ADS)
Kent, B. R.
2011-07-01
Large three-dimensional data cubes, catalogs, and spectral line archives are increasingly important elements of the data discovery process in astronomy. Visualization of large data volumes is of vital importance for the success of large spectral line surveys. Examples of data reduction utilizing the GRIDView software package are shown. The package allows users to manipulate data cubes, extract spectral profiles, and measure line properties. The package and included graphical user interfaces (GUIs) are designed with pipeline infrastructure in mind. The software has been used with great success analyzing spectral line and continuum data sets obtained from large radio survey collaborations. The tools are also important for multi-wavelength cross-correlation studies and incorporate Virtual Observatory client applications for overlaying database information in real time as cubes are examined by users.
The Use of Smartphones in Norwegian Social Care Services.
Hansen, Linda Iren Mihaila; Fruhling, Ann; Fossum, Mariann
2016-01-01
This study aims to understand how smartphone technology was perceived by social workers responsible for piloting social services software and the experiences of involving end-users as co-developers. The pilot resulted in an improved match between the smartphone software and workflow as well as mutual learning experiences among the social workers, clients, and the vendor. The pilot study revealed several graphical user interface (GUI) and functionality challenges. Implementing an ICT social service smartphone application may further improve efficiencies for social workers serving citizens, however; this study validates the importance to study end-users' experiences with communication and the real-time use of the system in order reap the anticipated benefits of ICT capabilities for smart phone social service applications.
Visualization for Hyper-Heuristics. Front-End Graphical User Interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroenung, Lauren
Modern society is faced with ever more complex problems, many of which can be formulated as generate-and-test optimization problems. General-purpose optimization algorithms are not well suited for real-world scenarios where many instances of the same problem class need to be repeatedly and efficiently solved because they are not targeted to a particular scenario. Hyper-heuristics automate the design of algorithms to create a custom algorithm for a particular scenario. While such automated design has great advantages, it can often be difficult to understand exactly how a design was derived and why it should be trusted. This project aims to address thesemore » issues of usability by creating an easy-to-use graphical user interface (GUI) for hyper-heuristics to support practitioners, as well as scientific visualization of the produced automated designs. My contributions to this project are exhibited in the user-facing portion of the developed system and the detailed scientific visualizations created from back-end data.« less
AirShow 1.0 CFD Software Users' Guide
NASA Technical Reports Server (NTRS)
Mohler, Stanley R., Jr.
2005-01-01
AirShow is visualization post-processing software for Computational Fluid Dynamics (CFD). Upon reading binary PLOT3D grid and solution files into AirShow, the engineer can quickly see how hundreds of complex 3-D structured blocks are arranged and numbered. Additionally, chosen grid planes can be displayed and colored according to various aerodynamic flow quantities such as Mach number and pressure. The user may interactively rotate and translate the graphical objects using the mouse. The software source code was written in cross-platform Java, C++, and OpenGL, and runs on Unix, Linux, and Windows. The graphical user interface (GUI) was written using Java Swing. Java also provides multiple synchronized threads. The Java Native Interface (JNI) provides a bridge between the Java code and the C++ code where the PLOT3D files are read, the OpenGL graphics are rendered, and numerical calculations are performed. AirShow is easy to learn and simple to use. The source code is available for free from the NASA Technology Transfer and Partnership Office.
Tele-rehabilitation using in-house wearable ankle rehabilitation robot.
Jamwal, Prashant K; Hussain, Shahid; Mir-Nasiri, Nazim; Ghayesh, Mergen H; Xie, Sheng Q
2018-01-01
This article explores wide-ranging potential of the wearable ankle robot for in-house rehabilitation. The presented robot has been conceptualized following a brief analysis of the existing technologies, systems, and solutions for in-house physical ankle rehabilitation. Configuration design analysis and component selection for ankle robot have been discussed as part of the conceptual design. The complexities of human robot interaction are closely encountered while maneuvering a rehabilitation robot. We present a fuzzy logic-based controller to perform the required robot-assisted ankle rehabilitation treatment. Designs of visual haptic interfaces have also been discussed, which will make the treatment interesting, and the subject will be motivated to exert more and regain lost functions rapidly. The complex nature of web-based communication between user and remotely sitting physiotherapy staff has also been discussed. A high-level software architecture appended with robot ensures user-friendly operations. This software is made up of three important components: patient-related database, graphical user interface (GUI), and a library of exercises creating virtual reality-specifically developed for ankle rehabilitation.
NASA Technical Reports Server (NTRS)
Ables, Brett
2014-01-01
Multi-stage launch vehicles with solid rocket motors (SRMs) face design optimization challenges, especially when the mission scope changes frequently. Significant performance benefits can be realized if the solid rocket motors are optimized to the changing requirements. While SRMs represent a fixed performance at launch, rapid design iterations enable flexibility at design time, yielding significant performance gains. The streamlining and integration of SRM design and analysis can be achieved with improved analysis tools. While powerful and versatile, the Solid Performance Program (SPP) is not conducive to rapid design iteration. Performing a design iteration with SPP and a trajectory solver is a labor intensive process. To enable a better workflow, SPP, the Program to Optimize Simulated Trajectories (POST), and the interfaces between them have been improved and automated, and a graphical user interface (GUI) has been developed. The GUI enables real-time visual feedback of grain and nozzle design inputs, enforces parameter dependencies, removes redundancies, and simplifies manipulation of SPP and POST's numerous options. Automating the analysis also simplifies batch analyses and trade studies. Finally, the GUI provides post-processing, visualization, and comparison of results. Wrapping legacy high-fidelity analysis codes with modern software provides the improved interface necessary to enable rapid coupled SRM ballistics and vehicle trajectory analysis. Low cost trade studies demonstrate the sensitivities of flight performance metrics to propulsion characteristics. Incorporating high fidelity analysis from SPP into vehicle design reduces performance margins and improves reliability. By flying an SRM designed with the same assumptions as the rest of the vehicle, accurate comparisons can be made between competing architectures. In summary, this flexible workflow is a critical component to designing a versatile launch vehicle model that can accommodate a volatile mission scope.
NASA Astrophysics Data System (ADS)
Niblack, Carlton W.; Zhu, Xiaoming; Hafner, James L.; Breuel, Tom; Ponceleon, Dulce B.; Petkovic, Dragutin; Flickner, Myron D.; Upfal, Eli; Nin, Sigfredo I.; Sull, Sanghoon; Dom, Byron E.; Yeo, Boon-Lock; Srinivasan, Savitha; Zivkovic, Dan; Penner, Mike
1997-12-01
QBICTM (Query By Image Content) is a set of technologies and associated software that allows a user to search, browse, and retrieve image, graphic, and video data from large on-line collections. This paper discusses current research directions of the QBIC project such as indexing for high-dimensional multimedia data, retrieval of gray level images, and storyboard generation suitable for video. It describes aspects of QBIC software including scripting tools, application interfaces, and available GUIs, and gives examples of applications and demonstration systems using it.
CompHEP: developments and applications
NASA Astrophysics Data System (ADS)
Boos, E. E.; Bunichev, V. E.; Dubinin, M. N.; Ilyin, V. A.; Savrin, V. I.; CompHEP Collaboration
2017-11-01
New developments of the CompHEP package and its applications to the top quark and the Higgs boson physics at the LHC collider are reviewed. These developments were motivated mainly by the needs of experimental searches of DO (Tevatron) and CMS (LHC) collaborations where identification of the top quark and the Higgs boson in the framework of the Standard Model (SM) or possible extensions of the SM played an important role. New useful features of the CompHEP Graphics User Interface (GUI) are described.
Software-Based Visual Loan Calculator For Banking Industry
NASA Astrophysics Data System (ADS)
Isizoh, A. N.; Anazia, A. E.; Okide, S. O. 3; Onyeyili, T. I.; Okwaraoka, C. A. P.
2012-03-01
industry is very necessary in modern day banking system using many design techniques for security reasons. This paper thus presents the software-based design and implementation of a Visual Loan calculator for banking industry using Visual Basic .Net (VB.Net). The fundamental approach to this is to develop a Graphical User Interface (GUI) using VB.Net operating tools, and then developing a working program which calculates the interest of any loan obtained. The VB.Net programming was done, implemented and the software proved satisfactory.
Multichannel Networked Phasemeter Readout and Analysis
NASA Technical Reports Server (NTRS)
Edmonds, Karina
2008-01-01
Netmeter software reads a data stream from up to 250 networked phasemeters, synchronizes the data, saves the reduced data to disk (after applying a low-pass filter), and provides a Web server interface for remote control. Unlike older phasemeter software that requires a special, real-time operating system, this program can run on any general-purpose computer. It needs about five percent of the CPU (central processing unit) to process 20 channels because it adds built-in data logging and network-based GUIs (graphical user interfaces) that are implemented in Scalable Vector Graphics (SVG). Netmeter runs on Linux and Windows. It displays the instantaneous displacements measured by several phasemeters at a user-selectable rate, up to 1 kHz. The program monitors the measure and reference channel frequencies. For ease of use, levels of status in Netmeter are color coded: green for normal operation, yellow for network errors, and red for optical misalignment problems. Netmeter includes user-selectable filters up to 4 k samples, and user-selectable averaging windows (after filtering). Before filtering, the program saves raw data to disk using a burst-write technique.
Water Quality Analysis Tool (WQAT) | Science Inventory | US ...
The purpose of the Water Quality Analysis Tool (WQAT) software is to provide a means for analyzing and producing useful remotely sensed data products for an entire estuary, a particular point or area of interest (AOI or POI) in estuaries, or water bodies of interest where pre-processed and geographically gridded remotely sensed images are available. A graphical user interface (GUI), was created to enable the user to select and display imagery from a variety of remote sensing data sources. The user can select a date (or date range) and location to extract pixels from the remotely sensed imagery. The GUI is used to obtain all available pixel values (i.e. pixel from all available bands of all available satellites) for a given location on a given date and time. The resultant data set can be analyzed or saved to a file for future use. The WQAT software provides users with a way to establish algorithms between remote sensing reflectance (Rrs) and any available in situ parameters, as well as statistical and regression analysis. The combined data sets can be used to improve water quality research and studies. Satellites provide spatially synoptic data at high frequency (daily to weekly). These characteristics are desirable for supplementing existing water quality observations and for providing information for large aquatic ecosystems that are historically under-sampled by field programs. Thus, the Water Quality Assessment Tool (WQAT) software tool was developed to suppo
Partial Automation of Requirements Tracing
NASA Technical Reports Server (NTRS)
Hayes, Jane; Dekhtyar, Alex; Sundaram, Senthil; Vadlamudi, Sravanthi
2006-01-01
Requirements Tracing on Target (RETRO) is software for after-the-fact tracing of textual requirements to support independent verification and validation of software. RETRO applies one of three user-selectable information-retrieval techniques: (1) term frequency/inverse document frequency (TF/IDF) vector retrieval, (2) TF/IDF vector retrieval with simple thesaurus, or (3) keyword extraction. One component of RETRO is the graphical user interface (GUI) for use in initiating a requirements-tracing project (a pair of artifacts to be traced to each other, such as a requirements spec and a design spec). Once the artifacts have been specified and the IR technique chosen, another component constructs a representation of the artifact elements and stores it on disk. Next, the IR technique is used to produce a first list of candidate links (potential matches between the two artifact levels). This list, encoded in Extensible Markup Language (XML), is optionally processed by a filtering component designed to make the list somewhat smaller without sacrificing accuracy. Through the GUI, the user examines a number of links and returns decisions (yes, these are links; no, these are not links). Coded in XML, these decisions are provided to a "feedback processor" component that prepares the data for the next application of the IR technique. The feedback reduces the incidence of erroneous candidate links. Unlike related prior software, RETRO does not require the user to assign keywords, and automatically builds a document index.
Turning publicly available gene expression data into discoveries using gene set context analysis.
Ji, Zhicheng; Vokes, Steven A; Dang, Chi V; Ji, Hongkai
2016-01-08
Gene Set Context Analysis (GSCA) is an open source software package to help researchers use massive amounts of publicly available gene expression data (PED) to make discoveries. Users can interactively visualize and explore gene and gene set activities in 25,000+ consistently normalized human and mouse gene expression samples representing diverse biological contexts (e.g. different cells, tissues and disease types, etc.). By providing one or multiple genes or gene sets as input and specifying a gene set activity pattern of interest, users can query the expression compendium to systematically identify biological contexts associated with the specified gene set activity pattern. In this way, researchers with new gene sets from their own experiments may discover previously unknown contexts of gene set functions and hence increase the value of their experiments. GSCA has a graphical user interface (GUI). The GUI makes the analysis convenient and customizable. Analysis results can be conveniently exported as publication quality figures and tables. GSCA is available at https://github.com/zji90/GSCA. This software significantly lowers the bar for biomedical investigators to use PED in their daily research for generating and screening hypotheses, which was previously difficult because of the complexity, heterogeneity and size of the data. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Experimental Internet Environment Software Development
NASA Technical Reports Server (NTRS)
Maddux, Gary A.
1998-01-01
Geographically distributed project teams need an Internet based collaborative work environment or "Intranet." The Virtual Research Center (VRC) is an experimental Intranet server that combines several services such as desktop conferencing, file archives, on-line publishing, and security. Using the World Wide Web (WWW) as a shared space paradigm, the Graphical User Interface (GUI) presents users with images of a lunar colony. Each project has a wing of the colony and each wing has a conference room, library, laboratory, and mail station. In FY95, the VRC development team proved the feasibility of this shared space concept by building a prototype using a Netscape commerce server and several public domain programs. Successful demonstrations of the prototype resulted in approval for a second phase. Phase 2, documented by this report, will produce a seamlessly integrated environment by introducing new technologies such as Java and Adobe Web Links to replace less efficient interface software.
Design of Instrument Control Software for Solar Vector Magnetograph at Udaipur Solar Observatory
NASA Astrophysics Data System (ADS)
Gosain, Sanjay; Venkatakrishnan, P.; Venugopalan, K.
2004-04-01
A magnetograph is an instrument which makes measurement of solar magnetic field by measuring Zeeman induced polarization in solar spectral lines. In a typical filter based magnetograph there are three main modules namely, polarimeter, narrow-band spectrometer (filter), and imager(CCD camera). For a successful operation of magnetograph it is essential that these modules work in synchronization with each other. Here, we describe the design of instrument control system implemented for the Solar Vector Magnetograph under development at Udaipur Solar Observatory. The control software is written in Visual Basic and exploits the Component Object Model (COM) components for a fast and flexible application development. The user can interact with the instrument modules through a Graphical User Interface (GUI) and can program the sequence of magnetograph operations. The integration of Interactive Data Language (IDL) ActiveX components in the interface provides a powerful tool for online visualization, analysis and processing of images.
Cercenelli, Laura; Tiberi, Guido; Corazza, Ivan; Giannaccare, Giuseppe; Fresina, Michela; Marcelli, Emanuela
2017-01-01
Many open source software packages have been recently developed to expand the usability of eye tracking systems to study oculomotor behavior, but none of these is specifically designed to encompass all the main functions required for creating eye tracking tests and for providing the automatic analysis of saccadic eye movements. The aim of this study is to introduce SacLab, an intuitive, freely-available MATLAB toolbox based on Graphical User Interfaces (GUIs) that we have developed to increase the usability of the ViewPoint EyeTracker (Arrington Research, Scottsdale, AZ, USA) in clinical ophthalmology practice. SacLab consists of four processing modules that enable the user to easily create visual stimuli tests (Test Designer), record saccadic eye movements (Data Recorder), analyze the recorded data to automatically extract saccadic parameters of clinical interest (Data Analyzer) and provide an aggregate analysis from multiple eye movements recordings (Saccade Analyzer), without requiring any programming effort by the user. A demo application of SacLab to carry out eye tracking tests for the analysis of horizontal saccades was reported. We tested the usability of SacLab toolbox with three ophthalmologists who had no programming experience; the ophthalmologists were briefly trained in the use of SacLab GUIs and were asked to perform the demo application. The toolbox gained an enthusiastic feedback from all the clinicians in terms of intuitiveness, ease of use and flexibility. Test creation and data processing were accomplished in 52±21s and 46±19s, respectively, using the SacLab GUIs. SacLab may represent a useful tool to ease the application of the ViewPoint EyeTracker system in clinical routine in ophthalmology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alview: Portable Software for Viewing Sequence Reads in BAM Formatted Files.
Finney, Richard P; Chen, Qing-Rong; Nguyen, Cu V; Hsu, Chih Hao; Yan, Chunhua; Hu, Ying; Abawi, Massih; Bian, Xiaopeng; Meerzaman, Daoud M
2015-01-01
The name Alview is a contraction of the term Alignment Viewer. Alview is a compiled to native architecture software tool for visualizing the alignment of sequencing data. Inputs are files of short-read sequences aligned to a reference genome in the SAM/BAM format and files containing reference genome data. Outputs are visualizations of these aligned short reads. Alview is written in portable C with optional graphical user interface (GUI) code written in C, C++, and Objective-C. The application can run in three different ways: as a web server, as a command line tool, or as a native, GUI program. Alview is compatible with Microsoft Windows, Linux, and Apple OS X. It is available as a web demo at https://cgwb.nci.nih.gov/cgi-bin/alview. The source code and Windows/Mac/Linux executables are available via https://github.com/NCIP/alview.
NASA Technical Reports Server (NTRS)
Harvey, Jason; Moore, Michael
2013-01-01
The General-Use Nodal Network Solver (GUNNS) is a modeling software package that combines nodal analysis and the hydraulic-electric analogy to simulate fluid, electrical, and thermal flow systems. GUNNS is developed by L-3 Communications under the TS21 (Training Systems for the 21st Century) project for NASA Johnson Space Center (JSC), primarily for use in space vehicle training simulators at JSC. It has sufficient compactness and fidelity to model the fluid, electrical, and thermal aspects of space vehicles in real-time simulations running on commodity workstations, for vehicle crew and flight controller training. It has a reusable and flexible component and system design, and a Graphical User Interface (GUI), providing capability for rapid GUI-based simulator development, ease of maintenance, and associated cost savings. GUNNS is optimized for NASA's Trick simulation environment, but can be run independently of Trick.
Web mapping system for complex processing and visualization of environmental geospatial datasets
NASA Astrophysics Data System (ADS)
Titov, Alexander; Gordov, Evgeny; Okladnikov, Igor
2016-04-01
Environmental geospatial datasets (meteorological observations, modeling and reanalysis results, etc.) are used in numerous research applications. Due to a number of objective reasons such as inherent heterogeneity of environmental datasets, big dataset volume, complexity of data models used, syntactic and semantic differences that complicate creation and use of unified terminology, the development of environmental geodata access, processing and visualization services as well as client applications turns out to be quite a sophisticated task. According to general INSPIRE requirements to data visualization geoportal web applications have to provide such standard functionality as data overview, image navigation, scrolling, scaling and graphical overlay, displaying map legends and corresponding metadata information. It should be noted that modern web mapping systems as integrated geoportal applications are developed based on the SOA and might be considered as complexes of interconnected software tools for working with geospatial data. In the report a complex web mapping system including GIS web client and corresponding OGC services for working with geospatial (NetCDF, PostGIS) dataset archive is presented. There are three basic tiers of the GIS web client in it: 1. Tier of geospatial metadata retrieved from central MySQL repository and represented in JSON format 2. Tier of JavaScript objects implementing methods handling: --- NetCDF metadata --- Task XML object for configuring user calculations, input and output formats --- OGC WMS/WFS cartographical services 3. Graphical user interface (GUI) tier representing JavaScript objects realizing web application business logic Metadata tier consists of a number of JSON objects containing technical information describing geospatial datasets (such as spatio-temporal resolution, meteorological parameters, valid processing methods, etc). The middleware tier of JavaScript objects implementing methods for handling geospatial metadata, task XML object, and WMS/WFS cartographical services interconnects metadata and GUI tiers. The methods include such procedures as JSON metadata downloading and update, launching and tracking of the calculation task running on the remote servers as well as working with WMS/WFS cartographical services including: obtaining the list of available layers, visualizing layers on the map, exporting layers in graphical (PNG, JPG, GeoTIFF), vector (KML, GML, Shape) and digital (NetCDF) formats. Graphical user interface tier is based on the bundle of JavaScript libraries (OpenLayers, GeoExt and ExtJS) and represents a set of software components implementing web mapping application business logic (complex menus, toolbars, wizards, event handlers, etc.). GUI provides two basic capabilities for the end user: configuring the task XML object functionality and cartographical information visualizing. The web interface developed is similar to the interface of such popular desktop GIS applications, as uDIG, QuantumGIS etc. Web mapping system developed has shown its effectiveness in the process of solving real climate change research problems and disseminating investigation results in cartographical form. The work is supported by SB RAS Basic Program Projects VIII.80.2.1 and IV.38.1.7.
NASA Technical Reports Server (NTRS)
Chimiak, Reine; Harris, Bernard; Williams, Phillip
2013-01-01
Basic Common Data Format (CDF) tools (e.g., cdfedit) provide no specific support for creating International Solar-Terrestrial Physics/Space Physics Data Facility (ISTP/SPDF) standard files. While it is possible for someone who is familiar with the ISTP/SPDF metadata guidelines to create compliant files using just the basic tools, the process is error-prone and unreasonable for someone without ISTP/SPDF expertise. The key problem is the lack of a tool with specific support for creating files that comply with the ISTP/SPDF guidelines. There are basic CDF tools such as cdfedit and skeletoncdf for creating CDF files, but these have no specific support for creating ISTP/ SPDF compliant files. The SPDF ISTP CDF skeleton editor is a cross-platform, Java-based GUI editor program that allows someone with only a basic understanding of the ISTP/SPDF guidelines to easily create compliant files. The editor is a simple graphical user interface (GUI) application for creating and editing ISTP/SPDF guideline-compliant skeleton CDF files. The SPDF ISTP CDF skeleton editor consists of the following components: A swing-based Java GUI program, JavaHelp-based manual/ tutorial, Image/Icon files, and HTML Web page for distribution. The editor is available as a traditional Java desktop application as well as a Java Network Launching Protocol (JNLP) application. Once started, it functions like a typical Java GUI file editor application for creating/editing application-unique files.
A prototype for communitising technology: Development of a smart salt water desalination device
NASA Astrophysics Data System (ADS)
Fakharuddin, F. M.; Fatchurrohman, N.; Puteh, S.; Puteri, H. M. A. R.
2018-04-01
Desalination is defined as the process that removes minerals from saline water or commonly known as salt water. Seawater desalination is becoming an attractive source of drinking water in coastal states as the costs for desalination declines. The purpose of this study is to develop a small scale desalination device and able to do an analysis of the process flow by using suitable sensors. Thermal technology was used to aid the desalination process. A graphical user interface (GUI) for the interface was made to enable the real time data analysis of the desalination device. ArduinoTM microcontroller was used in this device in order to develop an automatic device.
Documentation for MeshKit - Reactor Geometry (&mesh) Generator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Rajeev; Mahadevan, Vijay
2015-09-30
This report gives documentation for using MeshKit’s Reactor Geometry (and mesh) Generator (RGG) GUI and also briefly documents other algorithms and tools available in MeshKit. RGG is a program designed to aid in modeling and meshing of complex/large hexagonal and rectilinear reactor cores. RGG uses Argonne’s SIGMA interfaces, Qt and VTK to produce an intuitive user interface. By integrating a 3D view of the reactor with the meshing tools and combining them into one user interface, RGG streamlines the task of preparing a simulation mesh and enables real-time feedback that reduces accidental scripting mistakes that could waste hours of meshing.more » RGG interfaces with MeshKit tools to consolidate the meshing process, meaning that going from model to mesh is as easy as a button click. This report is designed to explain RGG v 2.0 interface and provide users with the knowledge and skills to pilot RGG successfully. Brief documentation of MeshKit source code, tools and other algorithms available are also presented for developers to extend and add new algorithms to MeshKit. RGG tools work in serial and parallel and have been used to model complex reactor core models consisting of conical pins, load pads, several thousands of axially varying material properties of instrumentation pins and other interstices meshes.« less
Lee, Kyu Il; Jo, Sunhwan; Rui, Huan; Egwolf, Bernhard; Roux, Benoît; Pastor, Richard W; Im, Wonpil
2012-01-30
Brownian dynamics (BD) based on accurate potential of mean force is an efficient and accurate method for simulating ion transport through wide ion channels. Here, a web-based graphical user interface (GUI) is presented for carrying out grand canonical Monte Carlo (GCMC) BD simulations of channel proteins: http://www.charmm-gui.org/input/gcmcbd. The webserver is designed to help users avoid most of the technical difficulties and issues encountered in setting up and simulating complex pore systems. GCMC/BD simulation results for three proteins, the voltage dependent anion channel (VDAC), α-Hemolysin (α-HL), and the protective antigen pore of the anthrax toxin (PA), are presented to illustrate the system setup, input preparation, and typical output (conductance, ion density profile, ion selectivity, and ion asymmetry). Two models for the input diffusion constants for potassium and chloride ions in the pore are compared: scaling of the bulk diffusion constants by 0.5, as deduced from previous all-atom molecular dynamics simulations of VDAC, and a hydrodynamics based model (HD) of diffusion through a tube. The HD model yields excellent agreement with experimental conductances for VDAC and α-HL, while scaling bulk diffusion constants by 0.5 leads to underestimates of 10-20%. For PA, simulated ion conduction values overestimate experimental values by a factor of 1.5-7 (depending on His protonation state and the transmembrane potential), implying that the currently available computational model of this protein requires further structural refinement. Copyright © 2011 Wiley Periodicals, Inc.
Lee, Kyu Il; Jo, Sunhwan; Rui, Huan; Egwolf, Bernhard; Roux, Benoît; Pastor, Richard W.; Im, Wonpil
2011-01-01
Brownian dynamics (BD) in a suitably constructed potential of mean force is an efficient and accurate method for simulating ion transport through wide ion channels. Here, a web-based graphical user interface (GUI) is presented for grand canonical Monte Carlo (GCMC) BD simulations of channel proteins: http://www.charmm-gui.org/input/gcmcbd. The webserver is designed to help users avoid most of the technical difficulties and issues encountered in setting up and simulating complex pore systems. GCMC/BD simulation results for three proteins, the voltage dependent anion channel (VDAC), α-Hemolysin, and the protective antigen pore of the anthrax toxin (PA), are presented to illustrate system setup, input preparation, and typical output (conductance, ion density profile, ion selectivity, and ion asymmetry). Two models for the input diffusion constants for potassium and chloride ions in the pore are compared: scaling of the bulk diffusion constants by 0.5, as deduced from previous all-atom molecular dynamics simulations of VDAC; and a hydrodynamics based model (HD) of diffusion through a tube. The HD model yields excellent agreement with experimental conductances for VDAC and α-Hemolysin, while scaling bulk diffusion constants by 0.5 leads to underestimates of 10–20%. For PA, simulated ion conduction values overestimate experimental values by a factor of 1.5 to 7 (depending on His protonation state and the transmembrane potential), implying that the currently available computational model of this protein requires further structural refinement. PMID:22102176
Advanced Query and Data Mining Capabilities for MaROS
NASA Technical Reports Server (NTRS)
Wang, Paul; Wallick, Michael N.; Allard, Daniel A.; Gladden, Roy E.; Hy, Franklin H.
2013-01-01
The Mars Relay Operational Service (MaROS) comprises a number of tools to coordinate, plan, and visualize various aspects of the Mars Relay network. These levels include a Web-based user interface, a back-end "ReSTlet" built in Java, and databases that store the data as it is received from the network. As part of MaROS, the innovators have developed and implemented a feature set that operates on several levels of the software architecture. This new feature is an advanced querying capability through either the Web-based user interface, or through a back-end REST interface to access all of the data gathered from the network. This software is not meant to replace the REST interface, but to augment and expand the range of available data. The current REST interface provides specific data that is used by the MaROS Web application to display and visualize the information; however, the returned information from the REST interface has typically been pre-processed to return only a subset of the entire information within the repository, particularly only the information that is of interest to the GUI (graphical user interface). The new, advanced query and data mining capabilities allow users to retrieve the raw data and/or to perform their own data processing. The query language used to access the repository is a restricted subset of the structured query language (SQL) that can be built safely from the Web user interface, or entered as freeform SQL by a user. The results are returned in a CSV (Comma Separated Values) format for easy exporting to third party tools and applications that can be used for data mining or user-defined visualization and interpretation. This is the first time that a service is capable of providing access to all cross-project relay data from a single Web resource. Because MaROS contains the data for a variety of missions from the Mars network, which span both NASA and ESA, the software also establishes an access control list (ACL) on each data record in the database repository to enforce user access permissions through a multilayered approach.
X-Windows Widget for Image Display
NASA Technical Reports Server (NTRS)
Deen, Robert G.
2011-01-01
XvicImage is a high-performance XWindows (Motif-compliant) user interface widget for displaying images. It handles all aspects of low-level image display. The fully Motif-compliant image display widget handles the following tasks: (1) Image display, including dithering as needed (2) Zoom (3) Pan (4) Stretch (contrast enhancement, via lookup table) (5) Display of single-band or color data (6) Display of non-byte data (ints, floats) (7) Pseudocolor display (8) Full overlay support (drawing graphics on image) (9) Mouse-based panning (10) Cursor handling, shaping, and planting (disconnecting cursor from mouse) (11) Support for all user interaction events (passed to application) (12) Background loading and display of images (doesn't freeze the GUI) (13) Tiling of images.
Cscibox: A Software System for Age-Model Construction and Evaluation
NASA Astrophysics Data System (ADS)
Bradley, E.; Anderson, K. A.; Marchitto, T. M., Jr.; de Vesine, L. R.; White, J. W. C.; Anderson, D. M.
2014-12-01
CSciBox is an integrated software system for the construction and evaluation of age models of paleo-environmetal archives, both directly dated and cross dated. The time has come to encourage cross-pollinization between earth science and computer science in dating paleorecords. This project addresses that need. The CSciBox code, which is being developed by a team of computer scientists and geoscientists, is open source and freely available on github. The system employs modern database technology to store paleoclimate proxy data and analysis results in an easily accessible and searchable form. This makes it possible to do analysis on the whole core at once, in an interactive fashion, or to tailor the analysis to a subset of the core without loading the entire data file. CSciBox provides a number of 'components' that perform the common steps in age-model construction and evaluation: calibrations, reservoir-age correction, interpolations, statistics, and so on. The user employs these components via a graphical user interface (GUI) to go from raw data to finished age model in a single tool: e.g., an IntCal09 calibration of 14C data from a marine sediment core, followed by a piecewise-linear interpolation. CSciBox's GUI supports plotting of any measurement in the core against any other measurement, or against any of the variables in the calculation of the age model-with or without explicit error representations. Using the GUI, CSciBox's user can import a new calibration curve or other background data set and define a new module that employs that information. Users can also incorporate other software (e.g., Calib, BACON) as 'plug ins.' In the case of truly large data or significant computational effort, CSciBox is parallelizable across modern multicore processors, or clusters, or even the cloud. The next generation of the CSciBox code, currently in the testing stages, includes an automated reasoning engine that supports a more-thorough exploration of plausible age models and cross-dating scenarios.
SCORPION II persistent surveillance system update
NASA Astrophysics Data System (ADS)
Coster, Michael; Chambers, Jon
2010-04-01
This paper updates the improvements and benefits demonstrated in the next generation Northrop Grumman SCORPION II family of persistent surveillance and target recognition systems produced by the Xetron Campus in Cincinnati, Ohio. SCORPION II reduces the size, weight, and cost of all SCORPION components in a flexible, field programmable system that is easier to conceal and enables integration of over fifty different Unattended Ground Sensor (UGS) and camera types from a variety of manufacturers, with a modular approach to supporting multiple Line of Sight (LOS) and Beyond Line of Sight (BLOS) communications interfaces. Since 1998 Northrop Grumman has been integrating best in class sensors with its proven universal modular Gateway to provide encrypted data exfiltration to Common Operational Picture (COP) systems and remote sensor command and control. In addition to feeding COP systems, SCORPION and SCORPION II data can be directly processed using a common sensor status graphical user interface (GUI) that allows for viewing and analysis of images and sensor data from up to seven hundred SCORPION system gateways on single or multiple displays. This GUI enables a large amount of sensor data and imagery to be used for actionable intelligence as well as remote sensor command and control by a minimum number of analysts.
MulRF: a software package for phylogenetic analysis using multi-copy gene trees.
Chaudhary, Ruchi; Fernández-Baca, David; Burleigh, John Gordon
2015-02-01
MulRF is a platform-independent software package for phylogenetic analysis using multi-copy gene trees. It seeks the species tree that minimizes the Robinson-Foulds (RF) distance to the input trees using a generalization of the RF distance to multi-labeled trees. The underlying generic tree distance measure and fast running time make MulRF useful for inferring phylogenies from large collections of gene trees, in which multiple evolutionary processes as well as phylogenetic error may contribute to gene tree discord. MulRF implements several features for customizing the species tree search and assessing the results, and it provides a user-friendly graphical user interface (GUI) with tree visualization. The species tree search is implemented in C++ and the GUI in Java Swing. MulRF's executable as well as sample datasets and manual are available at http://genome.cs.iastate.edu/CBL/MulRF/, and the source code is available at https://github.com/ruchiherself/MulRFRepo. ruchic@ufl.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Online Access to Weather Satellite Imagery Through the World Wide Web
NASA Technical Reports Server (NTRS)
Emery, W.; Baldwin, D.
1998-01-01
Both global area coverage (GAC) and high-resolution picture transmission (HRTP) data from the Advanced Very High Resolution Radiometer (AVHRR) are made available to laternet users through an online data access system. Older GOES-7 data am also available. Created as a "testbed" data system for NASA's future Earth Observing System Data and Information System (EOSDIS), this testbed provides an opportunity to test both the technical requirements of an onune'd;ta system and the different ways in which the -general user, community would employ such a system. Initiated in December 1991, the basic data system experienced five major evolutionary changes In response to user requests and requirements. Features added with these changes were the addition of online browse, user subsetting, dynamic image Processing/navigation, a stand-alone data storage system, and movement,from an X-windows graphical user Interface (GUI) to a World Wide Web (WWW) interface. Over Its lifetime, the system has had as many as 2500 registered users. The system on the WWW has had over 2500 hits since October 1995. Many of these hits are by casual users that only take the GIF images directly from the interface screens and do not specifically order digital data. Still, there b a consistent stream of users ordering the navigated image data and related products (maps and so forth). We have recently added a real-time, seven- day, northwestern United States normalized difference vegetation index (NDVI) composite that has generated considerable Interest. Index Terms-Data system, earth science, online access, satellite data.
Remote Sensing Time Series Product Tool
NASA Technical Reports Server (NTRS)
Predos, Don; Ryan, Robert E.; Ross, Kenton W.
2006-01-01
The TSPT (Time Series Product Tool) software was custom-designed for NASA to rapidly create and display single-band and band-combination time series, such as NDVI (Normalized Difference Vegetation Index) images, for wide-area crop surveillance and for other time-critical applications. The TSPT, developed in MATLAB, allows users to create and display various MODIS (Moderate Resolution Imaging Spectroradiometer) or simulated VIIRS (Visible/Infrared Imager Radiometer Suite) products as single images, as time series plots at a selected location, or as temporally processed image videos. Manually creating these types of products is extremely labor intensive; however, the TSPT development tool makes the process simplified and efficient. MODIS is ideal for monitoring large crop areas because of its wide swath (2330 km), its relatively small ground sample distance (250 m), and its high temporal revisit time (twice daily). Furthermore, because MODIS imagery is acquired daily, rapid changes in vegetative health can potentially be detected. The new TSPT technology provides users with the ability to temporally process high-revisit-rate satellite imagery, such as that acquired from MODIS and from its successor, the VIIRS. The TSPT features the important capability of fusing data from both MODIS instruments onboard the Terra and Aqua satellites, which drastically improves cloud statistics. With the TSPT, MODIS metadata is used to find and optionally remove bad and suspect data. Noise removal and temporal processing techniques allow users to create low-noise time series plots and image videos and to select settings and thresholds that tailor particular output products. The TSPT GUI (graphical user interface) provides an interactive environment for crafting what-if scenarios by enabling a user to repeat product generation using different settings and thresholds. The TSPT Application Programming Interface provides more fine-tuned control of product generation, allowing experienced programmers to bypass the GUI and to create more user-specific output products, such as comparison time plots or images. This type of time series analysis tool for remotely sensed imagery could be the basis of a large-area vegetation surveillance system. The TSPT has been used to generate NDVI time series over growing seasons in California and Argentina and for hurricane events, such as Hurricane Katrina.
2012-03-01
graphical user interface (GUI) called ALPINE© [18]. Then, it will be converted into a 10 MAT-file that can be read into MATLAB®. At this point...breathing [3]. For comparison purposes, Balocchi et al. recorded the respiratory signal simultaneously with the tachogram (or EKG ) signal. As previously...primary authors, worked to create his own code for implementing the method proposed by Rilling et al. Through reading the BEMD paper and proceeding to
PC-Based systems for experiments in optical characterization of materials
NASA Astrophysics Data System (ADS)
López-Mora, C. C.; Trejo-Duran, M.; Alvarado-Méndez, E.; Rojas-Laguna, R.; Vargas-Rodríguez, E.; Estudillo-Ayala, J. M.; Mata-Chavez, R.; Sukhoivanov, I.; García-Pérez, A.; Ibarra-Manzano, O. G.; Andrade-Lucio, J. A.
2011-01-01
An automatic control for applications of optical characterization of materials using the optical Z-Scan technique is presented in this work. The emphasis is placed in the design of the graphical user interface (GUI) and the automation process. For this purpose, we use a USB data acquisition module with programmable I/O ports for control and signals acquisition for the complete system. The control software was developed using the graphical programming language LabVIEW® and compiled in order to obtain a portable system with the hardware used in this work.
Development of Educational Support System for Algorithm using Flowchart
NASA Astrophysics Data System (ADS)
Ohchi, Masashi; Aoki, Noriyuki; Furukawa, Tatsuya; Takayama, Kanta
Recently, an information technology is indispensable for the business and industrial developments. However, it has been a social problem that the number of software developers has been insufficient. To solve the problem, it is necessary to develop and implement the environment for learning the algorithm and programming language. In the paper, we will describe the algorithm study support system for a programmer using the flowchart. Since the proposed system uses Graphical User Interface(GUI), it will become easy for a programmer to understand the algorithm in programs.
2011-03-01
sensors, the hardware may impose amplification and filtering on the input signal prior to the A/D conversion process. The third component in the...Assessment by FTIR – A Case Study on HEMM in Indian Mines”, Industrial Lubrication and Tribology , Vol. 152, pp. 61-66, 2000. [7] KarisAllen, K.J...and Engine Oil Condition”, Industrial Lubrication and Tribology , April 2005. [16] Jakoby, B., Eisenschmid, H., Schatz, O., “On-Board Evaluation of
Hailey, P A; Doherty, P; Tapsell, P; Oliver, T; Aldridge, P K
1996-03-01
An automated system for the on-line monitoring of powder blending processes is described. The system employs near-infrared (NIR) spectroscopy using fibre-optics and a graphical user interface (GUI) developed in the LabVIEW environment. The complete supervisory control and data analysis (SCADA) software controls blender and spectrophotometer operation and performs statistical spectral data analysis in real time. A data analysis routine using standard deviation is described to demonstrate an approach to the real-time determination of blend homogeneity.
CyBy(2): a structure-based data management tool for chemical and biological data.
Höck, Stefan; Riedl, Rainer
2012-01-01
We report the development of a powerful data management tool for chemical and biological data: CyBy(2). CyBy(2) is a structure-based information management tool used to store and visualize structural data alongside additional information such as project assignment, physical information, spectroscopic data, biological activity, functional data and synthetic procedures. The application consists of a database, an application server, used to query and update the database, and a client application with a rich graphical user interface (GUI) used to interact with the server.
Atluri, Sravya; Frehlich, Matthew; Mei, Ye; Garcia Dominguez, Luis; Rogasch, Nigel C; Wong, Willy; Daskalakis, Zafiris J; Farzan, Faranak
2016-01-01
Concurrent recording of electroencephalography (EEG) during transcranial magnetic stimulation (TMS) is an emerging and powerful tool for studying brain health and function. Despite a growing interest in adaptation of TMS-EEG across neuroscience disciplines, its widespread utility is limited by signal processing challenges. These challenges arise due to the nature of TMS and the sensitivity of EEG to artifacts that often mask TMS-evoked potentials (TEP)s. With an increase in the complexity of data processing methods and a growing interest in multi-site data integration, analysis of TMS-EEG data requires the development of a standardized method to recover TEPs from various sources of artifacts. This article introduces TMSEEG, an open-source MATLAB application comprised of multiple algorithms organized to facilitate a step-by-step procedure for TMS-EEG signal processing. Using a modular design and interactive graphical user interface (GUI), this toolbox aims to streamline TMS-EEG signal processing for both novice and experienced users. Specifically, TMSEEG provides: (i) targeted removal of TMS-induced and general EEG artifacts; (ii) a step-by-step modular workflow with flexibility to modify existing algorithms and add customized algorithms; (iii) a comprehensive display and quantification of artifacts; (iv) quality control check points with visual feedback of TEPs throughout the data processing workflow; and (v) capability to label and store a database of artifacts. In addition to these features, the software architecture of TMSEEG ensures minimal user effort in initial setup and configuration of parameters for each processing step. This is partly accomplished through a close integration with EEGLAB, a widely used open-source toolbox for EEG signal processing. In this article, we introduce TMSEEG, validate its features and demonstrate its application in extracting TEPs across several single- and multi-pulse TMS protocols. As the first open-source GUI-based pipeline for TMS-EEG signal processing, this toolbox intends to promote the widespread utility and standardization of an emerging technology in brain research.
Atluri, Sravya; Frehlich, Matthew; Mei, Ye; Garcia Dominguez, Luis; Rogasch, Nigel C.; Wong, Willy; Daskalakis, Zafiris J.; Farzan, Faranak
2016-01-01
Concurrent recording of electroencephalography (EEG) during transcranial magnetic stimulation (TMS) is an emerging and powerful tool for studying brain health and function. Despite a growing interest in adaptation of TMS-EEG across neuroscience disciplines, its widespread utility is limited by signal processing challenges. These challenges arise due to the nature of TMS and the sensitivity of EEG to artifacts that often mask TMS-evoked potentials (TEP)s. With an increase in the complexity of data processing methods and a growing interest in multi-site data integration, analysis of TMS-EEG data requires the development of a standardized method to recover TEPs from various sources of artifacts. This article introduces TMSEEG, an open-source MATLAB application comprised of multiple algorithms organized to facilitate a step-by-step procedure for TMS-EEG signal processing. Using a modular design and interactive graphical user interface (GUI), this toolbox aims to streamline TMS-EEG signal processing for both novice and experienced users. Specifically, TMSEEG provides: (i) targeted removal of TMS-induced and general EEG artifacts; (ii) a step-by-step modular workflow with flexibility to modify existing algorithms and add customized algorithms; (iii) a comprehensive display and quantification of artifacts; (iv) quality control check points with visual feedback of TEPs throughout the data processing workflow; and (v) capability to label and store a database of artifacts. In addition to these features, the software architecture of TMSEEG ensures minimal user effort in initial setup and configuration of parameters for each processing step. This is partly accomplished through a close integration with EEGLAB, a widely used open-source toolbox for EEG signal processing. In this article, we introduce TMSEEG, validate its features and demonstrate its application in extracting TEPs across several single- and multi-pulse TMS protocols. As the first open-source GUI-based pipeline for TMS-EEG signal processing, this toolbox intends to promote the widespread utility and standardization of an emerging technology in brain research. PMID:27774054
A methodological approach for designing a usable ontology-based GUI in healthcare.
Lasierra, N; Kushniruk, A; Alesanco, A; Borycki, E; García, J
2013-01-01
This paper presents a methodological approach to the design and evaluation of an interface for an ontology-based system used for designing care plans for monitoring patients at home. In order to define the care plans, physicians need a tool for creating instances of the ontology and configuring some rules. Our purpose is to develop an interface to allow clinicians to interact with the ontology. Although ontology-driven applications do not necessarily present the ontology in the user interface, it is our hypothesis that showing selected parts of the ontology in a "usable" way could enhance clinician's understanding and make easier the definition of the care plans. Based on prototyping and iterative testing, this methodology combines visualization techniques and usability methods. Preliminary results obtained after a formative evaluation indicate the effectiveness of suggested combination.
The Software Architecture of the Upgraded ESA DRAMA Software Suite
NASA Astrophysics Data System (ADS)
Kebschull, Christopher; Flegel, Sven; Gelhaus, Johannes; Mockel, Marek; Braun, Vitali; Radtke, Jonas; Wiedemann, Carsten; Vorsmann, Peter; Sanchez-Ortiz, Noelia; Krag, Holger
2013-08-01
In the beginnings of man's space flight activities there was the belief that space is so big that everybody could use it without any repercussions. However during the last six decades the increasing use of Earth's orbits has lead to a rapid growth in the space debris environment, which has a big influence on current and future space missions. For this reason ESA issued the "Requirements on Space Debris Mitigation for ESA Projects" [1] in 2008, which apply to all ESA missions henceforth. The DRAMA (Debris Risk Assessment and Mitigation Analysis) software suite had been developed to support the planning of space missions to comply with these requirements. During the last year the DRAMA software suite has been upgraded under ESA contract by TUBS and DEIMOS to include additional tools and increase the performance of existing ones. This paper describes the overall software architecture of the ESA DRAMA software suite. Specifically the new graphical user interface, which manages the five main tools ARES (Assessment of Risk Event Statistics), MIDAS (MASTER-based Impact Flux and Damage Assessment Software), OSCAR (Orbital Spacecraft Active Removal), CROC (Cross Section of Complex Bodies) and SARA (Re-entry Survival and Risk Analysis) is being discussed. The advancements are highlighted as well as the challenges that arise from the integration of the five tool interfaces. A framework had been developed at the ILR and was used for MASTER-2009 and PROOF-2009. The Java based GUI framework, enables the cross-platform deployment, and its underlying model-view-presenter (MVP) software pattern, meet strict design requirements necessary to ensure a robust and reliable method of operation in an environment where the GUI is separated from the processing back-end. While the GUI framework evolved with each project, allowing an increasing degree of integration of services like validators for input fields, it has also increased in complexity. The paper will conclude with an outlook on the future development of the GUI framework, where the potential for advancements will be shown.
Collaborative SDOCT Segmentation and Analysis Software.
Yun, Yeyi; Carass, Aaron; Lang, Andrew; Prince, Jerry L; Antony, Bhavna J
2017-02-01
Spectral domain optical coherence tomography (SDOCT) is routinely used in the management and diagnosis of a variety of ocular diseases. This imaging modality also finds widespread use in research, where quantitative measurements obtained from the images are used to track disease progression. In recent years, the number of available scanners and imaging protocols grown and there is a distinct absence of a unified tool that is capable of visualizing, segmenting, and analyzing the data. This is especially noteworthy in longitudinal studies, where data from older scanners and/or protocols may need to be analyzed. Here, we present a graphical user interface (GUI) that allows users to visualize and analyze SDOCT images obtained from two commonly used scanners. The retinal surfaces in the scans can be segmented using a previously described method, and the retinal layer thicknesses can be compared to a normative database. If necessary, the segmented surfaces can also be corrected and the changes applied. The interface also allows users to import and export retinal layer thickness data to an SQL database, thereby allowing for the collation of data from a number of collaborating sites.
Demonstration of a Spoken Dialogue Interface for Planning Activities of a Semi-autonomous Robot
NASA Technical Reports Server (NTRS)
Dowding, John; Frank, Jeremy; Hockey, Beth Ann; Jonsson, Ari; Aist, Gregory
2002-01-01
Planning and scheduling in the face of uncertainty and change pushes the capabilities of both planning and dialogue technologies by requiring complex negotiation to arrive at a workable plan. Planning for use of semi-autonomous robots involves negotiation among multiple participants with competing scientific and engineering goals to co-construct a complex plan. In NASA applications this plan construction is done under severe time pressure so having a dialogue interface to the plan construction tools can aid rapid completion of the process. But, this will put significant demands on spoken dialogue technology, particularly in the areas of dialogue management and generation. The dialogue interface will need to be able to handle the complex dialogue strategies that occur in negotiation dialogues, including hypotheticals and revisions, and the generation component will require an ability to summarize complex plans. This demonstration will describe a work in progress towards building a spoken dialogue interface to the EUROPA planner for the purposes of planning and scheduling the activities of a semi-autonomous robot. A prototype interface has been built for planning the schedule of the Personal Satellite Assistant (PSA), a mobile robot designed for micro-gravity environments that is intended for use on the Space Shuttle and International Space Station. The spoken dialogue interface gives the user the capability to ask for a description of the plan, ask specific questions about the plan, and update or modify the plan. We anticipate that a spoken dialogue interface to the planner will provide a natural augmentation or alternative to the visualization interface, in situations in which the user needs very targeted information about the plan, in situations where natural language can express complex ideas more concisely than GUI actions, or in situations in which a graphical user interface is not appropriate.
Adaptive smart simulator for characterization and MPPT construction of PV array
NASA Astrophysics Data System (ADS)
Ouada, Mehdi; Meridjet, Mohamed Salah; Dib, Djalel
2016-07-01
Partial shading conditions are among the most important problems in large photovoltaic array. Many works of literature are interested in modeling, control and optimization of photovoltaic conversion of solar energy under partial shading conditions, The aim of this study is to build a software simulator similar to hard simulator and to produce a shading pattern of the proposed photovoltaic array in order to use the delivered information to obtain an optimal configuration of the PV array and construct MPPT algorithm. Graphical user interfaces (Matlab GUI) are built using a developed script, this tool is easy to use, simple, and has a rapid of responsiveness, the simulator supports large array simulations that can be interfaced with MPPT and power electronic converters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirokawa, Takako; /U. Colorado, Boulder /SLAC
In this paper, we examine data acquisition in a high harmonic generation (HHG) lab and preliminary data analysis with the Cyclohexadiene Collaboration at the Linac Coherent Lightsource (LCLS) at SLAC National Accelerator Laboratory. HHG experiments have a large number of parameters that need to be monitored constantly. In particular, the pressure of the target is critical to HHG yield. However, this pressure can fluctuate wildly and without a tool to monitor it, it is difficult to analyze the correlation between HHG yield and the pressure. I used the Arduino microcontroller board and created a complementary MATLAB graphical user interface (GUI),more » thereby enhancing the ease with which users can acquire time-stamped parameter data. Using the Arduino, it is much easier to match the pressure to the corresponding HHG yield. Collecting data by using the Arduino and the GUI is flexible, user-friendly, and cost-effective. In the future, we hope to be able to control and monitor parts of the lab with the Arduino alone. While more parameter information is needed in the HHG lab, we needed to reduce the amount of data during the cyclohexadiene collaboration. This was achieved by sorting the data into bins and filtering out unnecessary details. This method was highly effective in that it minimized the amount of data without losing any valuable information. This effective preliminary data analysis technique will continue to be used to decrease the size of the collected data.« less
Hill, Jon; Davis, Katie E
2014-01-01
Building large supertrees involves the collection, storage, and processing of thousands of individual phylogenies to create large phylogenies with thousands to tens of thousands of taxa. Such large phylogenies are useful for macroevolutionary studies, comparative biology and in conservation and biodiversity. No easy to use and fully integrated software package currently exists to carry out this task. Here, we present a new Python-based software package that uses well defined XML schema to manage both data and metadata. It builds on previous versions by 1) including new processing steps, such as Safe Taxonomic Reduction, 2) using a user-friendly GUI that guides the user to complete at least the minimum information required and includes context-sensitive documentation, and 3) a revised storage format that integrates both tree- and meta-data into a single file. These data can then be manipulated according to a well-defined, but flexible, processing pipeline using either the GUI or a command-line based tool. Processing steps include standardising names, deleting or replacing taxa, ensuring adequate taxonomic overlap, ensuring data independence, and safe taxonomic reduction. This software has been successfully used to store and process data consisting of over 1000 trees ready for analyses using standard supertree methods. This software makes large supertree creation a much easier task and provides far greater flexibility for further work.
Automated UAV-based video exploitation using service oriented architecture framework
NASA Astrophysics Data System (ADS)
Se, Stephen; Nadeau, Christian; Wood, Scott
2011-05-01
Airborne surveillance and reconnaissance are essential for successful military missions. Such capabilities are critical for troop protection, situational awareness, mission planning, damage assessment, and others. Unmanned Aerial Vehicles (UAVs) gather huge amounts of video data but it is extremely labour-intensive for operators to analyze hours and hours of received data. At MDA, we have developed a suite of tools that can process the UAV video data automatically, including mosaicking, change detection and 3D reconstruction, which have been integrated within a standard GIS framework. In addition, the mosaicking and 3D reconstruction tools have also been integrated in a Service Oriented Architecture (SOA) framework. The Visualization and Exploitation Workstation (VIEW) integrates 2D and 3D visualization, processing, and analysis capabilities developed for UAV video exploitation. Visualization capabilities are supported through a thick-client Graphical User Interface (GUI), which allows visualization of 2D imagery, video, and 3D models. The GUI interacts with the VIEW server, which provides video mosaicking and 3D reconstruction exploitation services through the SOA framework. The SOA framework allows multiple users to perform video exploitation by running a GUI client on the operator's computer and invoking the video exploitation functionalities residing on the server. This allows the exploitation services to be upgraded easily and allows the intensive video processing to run on powerful workstations. MDA provides UAV services to the Canadian and Australian forces in Afghanistan with the Heron, a Medium Altitude Long Endurance (MALE) UAV system. On-going flight operations service provides important intelligence, surveillance, and reconnaissance information to commanders and front-line soldiers.
XML-Based Generator of C++ Code for Integration With GUIs
NASA Technical Reports Server (NTRS)
Hua, Hook; Oyafuso, Fabiano; Klimeck, Gerhard
2003-01-01
An open source computer program has been developed to satisfy a need for simplified organization of structured input data for scientific simulation programs. Typically, such input data are parsed in from a flat American Standard Code for Information Interchange (ASCII) text file into computational data structures. Also typically, when a graphical user interface (GUI) is used, there is a need to completely duplicate the input information while providing it to a user in a more structured form. Heretofore, the duplication of the input information has entailed duplication of software efforts and increases in susceptibility to software errors because of the concomitant need to maintain two independent input-handling mechanisms. The present program implements a method in which the input data for a simulation program are completely specified in an Extensible Markup Language (XML)-based text file. The key benefit for XML is storing input data in a structured manner. More importantly, XML allows not just storing of data but also describing what each of the data items are. That XML file contains information useful for rendering the data by other applications. It also then generates data structures in the C++ language that are to be used in the simulation program. In this method, all input data are specified in one place only, and it is easy to integrate the data structures into both the simulation program and the GUI. XML-to-C is useful in two ways: 1. As an executable, it generates the corresponding C++ classes and 2. As a library, it automatically fills the objects with the input data values.
An Interface for Specifying Rigid-Body Motions for CFD Applications
NASA Technical Reports Server (NTRS)
Murman, Scott M.; Chan, William; Aftosmis, Michael; Meakin, Robert L.; Kwak, Dochan (Technical Monitor)
2003-01-01
An interface for specifying rigid-body motions for CFD applications is presented. This interface provides a means of describing a component hierarchy in a geometric configuration, as well as the motion (prescribed or six-degree-of-freedom) associated with any component. The interface consists of a general set of datatypes, along with rules for their interaction, and is designed to be flexible in order to evolve as future needs dictate. The specification is currently implemented with an XML file format which is portable across platforms and applications. The motion specification is capable of describing general rigid body motions, and eliminates the need to write and compile new code within the application software for each dynamic configuration, allowing client software to automate dynamic simulations. The interface is integrated with a GUI tool which allows rigid body motions to be prescribed and verified interactively, promoting access to non-expert users. Illustrative examples, as well as the raw XML source of the file specifications, are included.
Dennerlein, J T; Yang, M C
2001-01-01
Pointing devices, essential input tools for the graphical user interface (GUI) of desktop computers, require precise motor control and dexterity to use. Haptic force-feedback devices provide the human operator with tactile cues, adding the sense of touch to existing visual and auditory interfaces. However, the performance enhancements, comfort, and possible musculoskeletal loading of using a force-feedback device in an office environment are unknown. Hypothesizing that the time to perform a task and the self-reported pain and discomfort of the task improve with the addition of force feedback, 26 people ranging in age from 22 to 44 years performed a point-and-click task 540 times with and without an attractive force field surrounding the desired target. The point-and-click movements were approximately 25% faster with the addition of force feedback (paired t-tests, p < 0.001). Perceived user discomfort and pain, as measured through a questionnaire, were also smaller with the addition of force feedback (p < 0.001). However, this difference decreased as additional distracting force fields were added to the task environment, simulating a more realistic work situation. These results suggest that for a given task, use of a force-feedback device improves performance, and potentially reduces musculoskeletal loading during mouse use. Actual or potential applications of this research include human-computer interface design, specifically that of the pointing device extensively used for the graphical user interface.
Development of critical dimension measurement scanning electron microscope for ULSI (S-8000 series)
NASA Astrophysics Data System (ADS)
Ezumi, Makoto; Otaka, Tadashi; Mori, Hiroyoshi; Todokoro, Hideo; Ose, Yoichi
1996-05-01
The semiconductor industry is moving from half-micron to quarter-micron design rules. To support this evolution, Hitachi has developed a new critical dimension measurement scanning electron microscope (CD-SEM), the model S-8800 series, for quality control of quarter- micron process lines. The new CD-SEM provides detailed examination of process conditions with 5 nm resolution and 5 nm repeatability (3 sigma) at accelerating voltage 800 V using secondary electron imaging. In addition, a newly developed load-lock system has a capability of achieving a high sample throughput of 20 wafers/hour (5 point measurements per wafer) under continuous operation. To support user friendliness, the system incorporates a graphical user interface (GUI), an automated pattern recognition system which helps locating measurement points, both manual and semi-automated operation, and user-programmable operating parameters.
Developing sustainable software solutions for bioinformatics by the “ Butterfly” paradigm
Ahmed, Zeeshan; Zeeshan, Saman; Dandekar, Thomas
2014-01-01
Software design and sustainable software engineering are essential for the long-term development of bioinformatics software. Typical challenges in an academic environment are short-term contracts, island solutions, pragmatic approaches and loose documentation. Upcoming new challenges are big data, complex data sets, software compatibility and rapid changes in data representation. Our approach to cope with these challenges consists of iterative intertwined cycles of development (“ Butterfly” paradigm) for key steps in scientific software engineering. User feedback is valued as well as software planning in a sustainable and interoperable way. Tool usage should be easy and intuitive. A middleware supports a user-friendly Graphical User Interface (GUI) as well as a database/tool development independently. We validated the approach of our own software development and compared the different design paradigms in various software solutions. PMID:25383181
Castaño-Díez, Daniel; Kudryashev, Mikhail; Arheit, Marcel; Stahlberg, Henning
2012-05-01
Dynamo is a new software package for subtomogram averaging of cryo Electron Tomography (cryo-ET) data with three main goals: first, Dynamo allows user-transparent adaptation to a variety of high-performance computing platforms such as GPUs or CPU clusters. Second, Dynamo implements user-friendliness through GUI interfaces and scripting resources. Third, Dynamo offers user-flexibility through a plugin API. Besides the alignment and averaging procedures, Dynamo includes native tools for visualization and analysis of results and data, as well as support for third party visualization software, such as Chimera UCSF or EMAN2. As a demonstration of these functionalities, we studied bacterial flagellar motors and showed automatically detected classes with absent and present C-rings. Subtomogram averaging is a common task in current cryo-ET pipelines, which requires extensive computational resources and follows a well-established workflow. However, due to the data diversity, many existing packages offer slight variations of the same algorithm to improve results. One of the main purposes behind Dynamo is to provide explicit tools to allow the user the insertion of custom designed procedures - or plugins - to replace or complement the native algorithms in the different steps of the processing pipeline for subtomogram averaging without the burden of handling parallelization. Custom scripts that implement new approaches devised by the user are integrated into the Dynamo data management system, so that they can be controlled by the GUI or the scripting capacities. Dynamo executables do not require licenses for third party commercial software. Sources, executables and documentation are freely distributed on http://www.dynamo-em.org. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Sorenson, Reese L.; Mccann, Karen
1992-01-01
A proven 3-D multiple-block elliptic grid generator, designed to run in 'batch mode' on a supercomputer, is improved by the creation of a modern graphical user interface (GUI) running on a workstation. The two parts are connected in real time by a network. The resultant system offers a significant speedup in the process of preparing and formatting input data and the ability to watch the grid solution converge by replotting the grid at each iteration step. The result is a reduction in user time and CPU time required to generate the grid and an enhanced understanding of the elliptic solution process. This software system, called GRAPEVINE, is described, and certain observations are made concerning the creation of such software.
Cyber-Attack Methods, Why They Work on Us, and What to Do
NASA Technical Reports Server (NTRS)
Byrne, DJ
2015-01-01
Basic cyber-attack methods are well documented, and even automated with user-friendly GUIs (Graphical User Interfaces). Entire suites of attack tools are legal, conveniently packaged, and freely downloadable to anyone; more polished versions are sold with vendor support. Our team ran some of these against a selected set of projects within our organization to understand what the attacks do so that we can design and validate defenses against them. Some existing defenses were effective against the attacks, some less so. On average, every machine had twelve easily identifiable vulnerabilities, two of them "critical". Roughly 5% of passwords in use were easily crack-able. We identified a clear set of recommendations for each project, and some common patterns that emerged among them all.
Segmentation and analysis of mouse pituitary cells with graphic user interface (GUI)
NASA Astrophysics Data System (ADS)
González, Erika; Medina, Lucía.; Hautefeuille, Mathieu; Fiordelisio, Tatiana
2018-02-01
In this work we present a method to perform pituitary cell segmentation in image stacks acquired by fluorescence microscopy from pituitary slice preparations. Although there exist many procedures developed to achieve cell segmentation tasks, they are generally based on the edge detection and require high resolution images. However in the biological preparations that we worked on, the cells are not well defined as experts identify their intracellular calcium activity due to fluorescence intensity changes in different regions over time. This intensity changes were associated with time series over regions, and because they present a particular behavior they were used into a classification procedure in order to perform cell segmentation. Two logistic regression classifiers were implemented for the time series classification task using as features the area under the curve and skewness in the first classifier and skewness and kurtosis in the second classifier. Once we have found both decision boundaries in two different feature spaces by training using 120 time series, the decision boundaries were tested over 12 image stacks through a python graphical user interface (GUI), generating binary images where white pixels correspond to cells and the black ones to background. Results show that area-skewness classifier reduces the time an expert dedicates in locating cells by up to 75% in some stacks versus a 92% for the kurtosis-skewness classifier, this evaluated on the number of regions the method found. Due to the promising results, we expect that this method will be improved adding more relevant features to the classifier.
Software framework for the upcoming MMT Observatory primary mirror re-aluminization
NASA Astrophysics Data System (ADS)
Gibson, J. Duane; Clark, Dusty; Porter, Dallan
2014-07-01
Details of the software framework for the upcoming in-situ re-aluminization of the 6.5m MMT Observatory (MMTO) primary mirror are presented. This framework includes: 1) a centralized key-value store and data structure server for data exchange between software modules, 2) a newly developed hardware-software interface for faster data sampling and better hardware control, 3) automated control algorithms that are based upon empirical testing, modeling, and simulation of the aluminization process, 4) re-engineered graphical user interfaces (GUI's) that use state-of-the-art web technologies, and 5) redundant relational databases for data logging. Redesign of the software framework has several objectives: 1) automated process control to provide more consistent and uniform mirror coatings, 2) optional manual control of the aluminization process, 3) modular design to allow flexibility in process control and software implementation, 4) faster data sampling and logging rates to better characterize the approximately 100-second aluminization event, and 5) synchronized "real-time" web application GUI's to provide all users with exactly the same data. The framework has been implemented as four modules interconnected by a data store/server. The four modules are integrated into two Linux system services that start automatically at boot-time and remain running at all times. Performance of the software framework is assessed through extensive testing within 2.0 meter and smaller coating chambers at the Sunnyside Test Facility. The redesigned software framework helps ensure that a better performing and longer lasting coating will be achieved during the re-aluminization of the MMTO primary mirror.
ISPyB for BioSAXS, the gateway to user autonomy in solution scattering experiments.
De Maria Antolinos, Alejandro; Pernot, Petra; Brennich, Martha E; Kieffer, Jérôme; Bowler, Matthew W; Delageniere, Solange; Ohlsson, Staffan; Malbet Monaco, Stephanie; Ashton, Alun; Franke, Daniel; Svergun, Dmitri; McSweeney, Sean; Gordon, Elspeth; Round, Adam
2015-01-01
Logging experiments with the laboratory-information management system ISPyB (Information System for Protein crystallography Beamlines) enhances the automation of small-angle X-ray scattering of biological macromolecules in solution (BioSAXS) experiments. The ISPyB interface provides immediate user-oriented online feedback and enables data cross-checking and downstream analysis. To optimize data quality and completeness, ISPyBB (ISPyB for BioSAXS) makes it simple for users to compare the results from new measurements with previous acquisitions from the same day or earlier experiments in order to maximize the ability to collect all data required in a single synchrotron visit. The graphical user interface (GUI) of ISPyBB has been designed to guide users in the preparation of an experiment. The input of sample information and the ability to outline the experimental aims in advance provides feedback on the number of measurements required, calculation of expected sample volumes and time needed to collect the data: all of this information aids the users to better prepare for their trip to the synchrotron. A prototype version of the ISPyBB database is now available at the European Synchrotron Radiation Facility (ESRF) beamline BM29 and is already greatly appreciated by academic users and industrial clients. It will soon be available at the PETRA III beamline P12 and the Diamond Light Source beamlines I22 and B21.
ISPyB for BioSAXS, the gateway to user autonomy in solution scattering experiments
De Maria Antolinos, Alejandro; Pernot, Petra; Brennich, Martha E.; Kieffer, Jérôme; Bowler, Matthew W.; Delageniere, Solange; Ohlsson, Staffan; Malbet Monaco, Stephanie; Ashton, Alun; Franke, Daniel; Svergun, Dmitri; McSweeney, Sean; Gordon, Elspeth; Round, Adam
2015-01-01
Logging experiments with the laboratory-information management system ISPyB (Information System for Protein crystallography Beamlines) enhances the automation of small-angle X-ray scattering of biological macromolecules in solution (BioSAXS) experiments. The ISPyB interface provides immediate user-oriented online feedback and enables data cross-checking and downstream analysis. To optimize data quality and completeness, ISPyBB (ISPyB for BioSAXS) makes it simple for users to compare the results from new measurements with previous acquisitions from the same day or earlier experiments in order to maximize the ability to collect all data required in a single synchrotron visit. The graphical user interface (GUI) of ISPyBB has been designed to guide users in the preparation of an experiment. The input of sample information and the ability to outline the experimental aims in advance provides feedback on the number of measurements required, calculation of expected sample volumes and time needed to collect the data: all of this information aids the users to better prepare for their trip to the synchrotron. A prototype version of the ISPyBB database is now available at the European Synchrotron Radiation Facility (ESRF) beamline BM29 and is already greatly appreciated by academic users and industrial clients. It will soon be available at the PETRA III beamline P12 and the Diamond Light Source beamlines I22 and B21. PMID:25615862
NASA Astrophysics Data System (ADS)
Keleshis, C.; Ioannou, S.; Vrekoussis, M.; Levin, Z.; Lange, M. A.
2014-08-01
Continuous advances in unmanned aerial vehicles (UAV) and the increased complexity of their applications raise the demand for improved data acquisition systems (DAQ). These improvements may comprise low power consumption, low volume and weight, robustness, modularity and capability to interface with various sensors and peripherals while maintaining the high sampling rates and processing speeds. Such a system has been designed and developed and is currently integrated on the Autonomous Flying Platforms for Atmospheric and Earth Surface Observations (APAESO/NEA-YΠOΔOMH/NEKΠ/0308/09) however, it can be easily adapted to any UAV or any other mobile vehicle. The system consists of a single-board computer with a dual-core processor, rugged surface-mount memory and storage device, analog and digital input-output ports and many other peripherals that enhance its connectivity with various sensors, imagers and on-board devices. The system is powered by a high efficiency power supply board. Additional boards such as frame-grabbers, differential global positioning system (DGPS) satellite receivers, general packet radio service (3G-4G-GPRS) modems for communication redundancy have been interfaced to the core system and are used whenever there is a mission need. The onboard DAQ system can be preprogrammed for automatic data acquisition or it can be remotely operated during the flight from the ground control station (GCS) using a graphical user interface (GUI) which has been developed and will also be presented in this paper. The unique design of the GUI and the DAQ system enables the synchronized acquisition of a variety of scientific and UAV flight data in a single core location. The new DAQ system and the GUI have been successfully utilized in several scientific UAV missions. In conclusion, the novel DAQ system provides the UAV and the remote-sensing community with a new tool capable of reliably acquiring, processing, storing and transmitting data from any sensor integrated on an UAV.
Development of the Software for 30 inch Telescope Control System at KHAO
NASA Astrophysics Data System (ADS)
Mun, B.-S.; Kim, S.-J.; Jang, M.; Min, S.-W.; Seol, K.-H.; Moon, K.-S.
2006-12-01
Even though 30inch optical telescope at Kyung Hee Astronomy Observatory has been used to produce a series of scientific achievements since its first light in 1992, numerous difficulties in the operation of the telescope have hindered the precise observations needed for further researches. Since the currently used PC-TCS (Personal Computer based Telescope Control system) software based on ISA-bus type is outdated, it doesn't have a user friendly interface and make it impossible to scale. Also accumulated errors which are generated by discordance from input and output signals into a motion controller required new control system. Thus we have improved the telescope control system by updating software and modifying mechanical parts. We applied a new BLDC (brushless DC) servo motor system to the mechanical parts of the telescope and developed a control software using Visual Basic 6.0. As a result, we could achieve a high accuracy in controlling of the telescope and use the userfriendly GUI (Graphic User Interface).
smRithm: Graphical user interface for heart rate variability analysis.
Nara, Sanjeev; Kaur, Manvinder; Datta, Saurav
2015-01-01
Over the past 25 years, Heart rate variability (HRV) has become a non-invasive research and clinical tool for indirectly carrying out investigation of both cardiac and autonomic system function in both healthy and diseased. It provides valuable information about a wide range of cardiovascular disorders, pulmonary diseases, neurological diseases, etc. Its primary purpose is to access the functioning of the nervous system. The source of information for HRV analysis is the continuous beat to beat measurement of inter-beat intervals. The electrocardiography (ECG or EKG) is considered as the best way to measure inter-beat intervals. This paper proposes an open source Graphical User Interface (GUI): smRithm developed in MATLAB for HRV analysis that will apply effective techniques on the raw ECG signals to process and decompose it in a simpler manner to obtain more useful information out of signals that can be utilized for more powerful and efficient applications in the near future related to HRV.
Na, Hyuntae; Lee, Seung-Yub; Üstündag, Ersan; ...
2013-01-01
This paper introduces a recent development and application of a noncommercial artificial neural network (ANN) simulator with graphical user interface (GUI) to assist in rapid data modeling and analysis in the engineering diffraction field. The real-time network training/simulation monitoring tool has been customized for the study of constitutive behavior of engineering materials, and it has improved data mining and forecasting capabilities of neural networks. This software has been used to train and simulate the finite element modeling (FEM) data for a fiber composite system, both forward and inverse. The forward neural network simulation precisely reduplicates FEM results several orders ofmore » magnitude faster than the slow original FEM. The inverse simulation is more challenging; yet, material parameters can be meaningfully determined with the aid of parameter sensitivity information. The simulator GUI also reveals that output node size for materials parameter and input normalization method for strain data are critical train conditions in inverse network. The successful use of ANN modeling and simulator GUI has been validated through engineering neutron diffraction experimental data by determining constitutive laws of the real fiber composite materials via a mathematically rigorous and physically meaningful parameter search process, once the networks are successfully trained from the FEM database.« less
NASA Astrophysics Data System (ADS)
Coffey, Stephen; Connell, Joseph
2005-06-01
This paper presents a development platform for real-time image processing based on the ADSP-BF533 Blackfin processor and the MicroC/OS-II real-time operating system (RTOS). MicroC/OS-II is a completely portable, ROMable, pre-emptive, real-time kernel. The Blackfin Digital Signal Processors (DSPs), incorporating the Analog Devices/Intel Micro Signal Architecture (MSA), are a broad family of 16-bit fixed-point products with a dual Multiply Accumulate (MAC) core. In addition, they have a rich instruction set with variable instruction length and both DSP and MCU functionality thus making them ideal for media based applications. Using the MicroC/OS-II for task scheduling and management, the proposed system can capture and process raw RGB data from any standard 8-bit greyscale image sensor in soft real-time and then display the processed result using a simple PC graphical user interface (GUI). Additionally, the GUI allows configuration of the image capture rate and the system and core DSP clock rates thereby allowing connectivity to a selection of image sensors and memory devices. The GUI also allows selection from a set of image processing algorithms based in the embedded operating system.
Initial experience with a nuclear medicine viewing workstation
NASA Astrophysics Data System (ADS)
Witt, Robert M.; Burt, Robert W.
1992-07-01
Graphical User Interfaced (GUI) workstations are now available from commercial vendors. We recently installed a GUI workstation in our nuclear medicine reading room for exclusive use of staff and resident physicians. The system is built upon a Macintosh platform and has been available as a DELTAmanager from MedImage and more recently as an ICON V from Siemens Medical Systems. The workstation provides only display functions and connects to our existing nuclear medicine imaging system via ethernet. The system has some processing capabilities to create oblique, sagittal and coronal views from transverse tomographic views. Hard copy output is via a screen save device and a thermal color printer. The DELTAmanager replaced a MicroDELTA workstation which had both process and view functions. The mouse activated GUI has made remarkable changes to physicians'' use of the nuclear medicine viewing system. Training time to view and review studies has been reduced from hours to about 30-minutes. Generation of oblique views and display of brain and heart tomographic studies has been reduced from about 30-minutes of technician''s time to about 5-minutes of physician''s time. Overall operator functionality has been increased so that resident physicians with little prior computer experience can access all images on the image server and display pertinent patient images when consulting with other staff.
SIMA: Python software for analysis of dynamic fluorescence imaging data.
Kaifosh, Patrick; Zaremba, Jeffrey D; Danielson, Nathan B; Losonczy, Attila
2014-01-01
Fluorescence imaging is a powerful method for monitoring dynamic signals in the nervous system. However, analysis of dynamic fluorescence imaging data remains burdensome, in part due to the shortage of available software tools. To address this need, we have developed SIMA, an open source Python package that facilitates common analysis tasks related to fluorescence imaging. Functionality of this package includes correction of motion artifacts occurring during in vivo imaging with laser-scanning microscopy, segmentation of imaged fields into regions of interest (ROIs), and extraction of signals from the segmented ROIs. We have also developed a graphical user interface (GUI) for manual editing of the automatically segmented ROIs and automated registration of ROIs across multiple imaging datasets. This software has been designed with flexibility in mind to allow for future extension with different analysis methods and potential integration with other packages. Software, documentation, and source code for the SIMA package and ROI Buddy GUI are freely available at http://www.losonczylab.org/sima/.
NASA Technical Reports Server (NTRS)
Barrett, Joe H., III; Roeder, William P.
2010-01-01
Peak wind speed is important element in 24-Hour and Weekly Planning Forecasts issued by 45th Weather Squadron (45 WS). Forecasts issued for planning operations at KSC/CCAFS. 45 WS wind advisories issued for wind gusts greater than or equal to 25 kt. 35 kt and 50 kt from surface to 300 ft. AMU developed cool-season (Oct - Apr) tool to help 45 WS forecast: daily peak wind speed, 5-minute average speed at time of peak wind, and probability peak speed greater than or equal to 25 kt, 35 kt, 50 kt. AMU tool also forecasts daily average wind speed from 30 ft to 60 ft. Phase I and II tools delivered as a Microsoft Excel graphical user interface (GUI). Phase II tool also delivered as Meteorological Interactive Data Display System (MIDDS) GUI. Phase I and II forecast methods were compared to climatology, 45 WS wind advisories and North American Mesoscale model (MesoNAM) forecasts in a verification data set.
NASA Technical Reports Server (NTRS)
Muniz, R.; Martinez, El; Szafran, J.; Dalton, A.
2011-01-01
The Function Point Analysis (FPA) Depot is a web application originally designed by one of the NE-C3 branch's engineers, Jamie Szafran, and created specifically for the Software Development team of the Launch Control Systems (LCS) project. The application consists of evaluating the work of each developer to be able to get a real estimate of the hours that is going to be assigned to a specific task of development. The Architect Team had made design change requests for the depot to change the schema of the application's information; that information, changed in the database, needed to be changed in the graphical user interface (GUI) (written in Ruby on Rails (RoR and the web service/server side in Java to match the database changes. These changes were made by two interns from NE-C, Ricardo Muniz from NE-C3, who made all the schema changes for the GUI in RoR and Edwin Martinez, from NE-C2, who made all the changes in the Java side.
Scripting MODFLOW model development using Python and FloPy
Bakker, Mark; Post, Vincent E. A.; Langevin, Christian D.; Hughes, Joseph D.; White, Jeremy; Starn, Jeffrey; Fienen, Michael N.
2016-01-01
Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development with the programming language Python is presented here as an alternative approach. One advantage of Python is that there are many packages available to facilitate the model development process, including packages for plotting, array manipulation, optimization, and data analysis. For MODFLOW-based models, the FloPy package was developed by the authors to construct model input files, run the model, and read and plot simulation results. Use of Python with the available scientific packages and FloPy facilitates data exploration, alternative model evaluations, and model analyses that can be difficult to perform with GUIs. Furthermore, Python scripts are a complete, transparent, and repeatable record of the modeling process. The approach is introduced with a simple FloPy example to create and postprocess a MODFLOW model. A more complicated capture-fraction analysis with a real-world model is presented to demonstrate the types of analyses that can be performed using Python and FloPy.
3D mapping of existing observing capabilities in the frame of GAIA-CLIM H2020 project
NASA Astrophysics Data System (ADS)
Emanuele, Tramutola; Madonna, Fabio; Marco, Rosoldi; Francesco, Amato
2017-04-01
The aim of the Gap Analysis for Integrated Atmospheric ECV CLImate Monitoring (GAIA-CLIM) project is to improve our ability to use ground-based and sub-orbital observations to characterise satellite observations for a number of atmospheric Essential Climate Variables (ECVs). The key outcomes will be a "Virtual Observatory" (VO) facility of co-locations and their uncertainties and a report on gaps in capabilities or understanding, which shall be used to inform subsequent Horizon 2020 activities. In particular, Work Package 1 (WP1) of the GAIA-CLIM project is devoted to the geographical mapping of existing non-satellite measurement capabilities for a number of ECVs in the atmospheric, oceanic and terrestrial domains. The work carried out within WP1 has allowed to provide the users with an up-to-date geographical identification, at the European and global scales, of current surface-based, balloon-based and oceanic (floats) observing capabilities on an ECV by ECV basis for several parameters which can be obtained using space-based observations from past, present and planned satellite missions. Having alighted on a set of metadata schema to follow, a consistent collection of discovery metadata has been provided into a common structure and will be made available to users through the GAIA-CLIM VO in 2018. Metadata can be interactively visualized through a 3D Graphical User Interface. The metadataset includes 54 plausible networks and 2 aircraft permanent infrastructures for EO Characterisation in the context of GAIA-CLIM currently operating on different spatial domains and measuring different ECVs using one or more measurement techniques. Each classified network has in addition been assessed for suitability against metrological criteria to identifyy those with a level of maturity which enables closure on a comparison with satellite measurements. The metadata GUI is based on Cesium, a virtual globe freeware and open source written in Javascript. It allows users to apply different filters to the data displayed on the globe, selecting data per ECV, network, measurements type and level of maturity. Filtering is operated with a query to GeoServer web application through the WFS interface on a data layer configured on our DB Postgres with PostGIS extension; filters set on the GUI are expressed using ECQL (Extended Common Query Language). The GUI allows to visualize in real-time the current non-satellite observing capabilities along with the satellite platforms measuring the same ECVs. Satellite ground track and footprint of the instruments on board can be also visualized. This work contributes to improve metadata and web map services and to facilitate users' experience in the spatio-temporal analysis of Earth Observation data.
SCORPION II persistent surveillance system with universal gateway
NASA Astrophysics Data System (ADS)
Coster, Michael; Chambers, Jonathan; Brunck, Albert
2009-05-01
This paper addresses improvements and benefits derived from the next generation Northrop Grumman SCORPION II family of persistent surveillance and target recognition systems produced by the Xetron campus in Cincinnati, Ohio. SCORPION II reduces the size, weight, and cost of all SCORPION components in a flexible, field programmable system that is easier to conceal, backward compatible, and enables integration of over forty Unattended Ground Sensor (UGS) and camera types from a variety of manufacturers, with a modular approach to supporting multiple Line of Sight (LOS) and Beyond Line of Sight (BLOS) communications interfaces. Since 1998 Northrop Grumman has been integrating best in class sensors with its proven universal modular Gateway to provide encrypted data exfiltration to Common Operational Picture (COP) systems and remote sensor command and control. In addition to being fed to COP systems, SCORPION and SCORPION II data can be directly processed using a common sensor status graphical user interface (GUI) that allows for viewing and analysis of images and sensor data from up to seven hundred SCORPION system Gateways on single or multiple displays. This GUI enables a large amount of sensor data and imagery to be used for actionable intelligence as well as remote sensor command and control by a minimum number of analysts.
DICOM implementation on online tape library storage system
NASA Astrophysics Data System (ADS)
Komo, Darmadi; Dai, Hailei L.; Elghammer, David; Levine, Betty A.; Mun, Seong K.
1998-07-01
The main purpose of this project is to implement a Digital Image and Communications (DICOM) compliant online tape library system over the Internet. Once finished, the system will be used to store medical exams generated from U.S. ARMY Mobile ARMY Surgical Hospital (MASH) in Tuzla, Bosnia. A modified UC Davis implementation of DICOM storage class is used for this project. DICOM storage class user and provider are implemented as the system's interface to the Internet. The DICOM software provides flexible configuration options such as types of modalities and trusted remote DICOM hosts. Metadata is extracted from each exam and indexed in a relational database for query and retrieve purposes. The medical images are stored inside the Wolfcreek-9360 tape library system from StorageTek Corporation. The tape library system has nearline access to more than 1000 tapes. Each tape has a capacity of 800 megabytes making the total nearline tape access of around 1 terabyte. The tape library uses the Application Storage Manager (ASM) which provides cost-effective file management, storage, archival, and retrieval services. ASM automatically and transparently copies files from expensive magnetic disk to less expensive nearline tape library, and restores the files back when they are needed. The ASM also provides a crash recovery tool, which enable an entire file system restore in a short time. A graphical user interface (GUI) function is used to view the contents of the storage systems. This GUI also allows user to retrieve the stored exams and send the exams to anywhere on the Internet using DICOM protocols. With the integration of different components of the system, we have implemented a high capacity online tape library storage system that is flexible and easy to use. Using tape as an alternative storage media as opposed to the magnetic disk has the great potential of cost savings in terms of dollars per megabyte of storage. As this system matures, the Hospital Information Systems/Radiology Information Systems (HIS/RIS) or other components can be developed potentially as interfaces to the outside world thus widen the usage of the tape library system.
The Chandra Source Catalog: User Interface
NASA Astrophysics Data System (ADS)
Bonaventura, Nina; Evans, I. N.; Harbo, P. N.; Rots, A. H.; Tibbetts, M. S.; Van Stone, D. W.; Zografou, P.; Anderson, C. S.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, J. D.; Fabbiano, G.; Galle, E.; Gibbs, D. G.; Glotfelty, K. J.; Grier, J. D.; Hain, R.; Hall, D. M.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McCollough, M. L.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Primini, F. A.; Refsdal, B. L.; Siemiginowska, A. L.; Sundheim, B. A.; Winkelman, S. L.
2009-01-01
The Chandra Source Catalog (CSC) is the definitive catalog of all X-ray sources detected by Chandra. The CSC is presented to the user in two tables: the Master Chandra Source Table and the Table of Individual Source Observations. Each distinct X-ray source identified in the CSC is represented by a single master source entry and one or more individual source entries. If a source is unaffected by confusion and pile-up in multiple observations, the individual source observations are merged to produce a master source. In each table, a row represents a source, and each column a quantity that is officially part of the catalog. The CSC contains positions and multi-band fluxes for the sources, as well as derived spatial, spectral, and temporal source properties. The CSC also includes associated source region and full-field data products for each source, including images, photon event lists, light curves, and spectra. The master source properties represent the best estimates of the properties of a source, and are presented in the following categories: Position and Position Errors, Source Flags, Source Extent and Errors, Source Fluxes, Source Significance, Spectral Properties, and Source Variability. The CSC Data Access GUI provides direct access to the source properties and data products contained in the catalog. The user may query the catalog database via a web-style search or an SQL command-line query. Each query returns a table of source properties, along with the option to browse and download associated data products. The GUI is designed to run in a web browser with Java version 1.5 or higher, and may be accessed via a link on the CSC website homepage (http://cxc.harvard.edu/csc/). As an alternative to the GUI, the contents of the CSC may be accessed directly through a URL, using the command-line tool, cURL. Support: NASA contract NAS8-03060 (CXC).
Ground System Architectures Workshop GMSEC SERVICES SUITE (GSS): an Agile Development Story
NASA Technical Reports Server (NTRS)
Ly, Vuong
2017-01-01
The GMSEC (Goddard Mission Services Evolution Center) Services Suite (GSS) is a collection of tools and software services along with a robust customizable web-based portal that enables the user to capture, monitor, report, and analyze system-wide GMSEC data. Given our plug-and-play architecture and the needs for rapid system development, we opted to follow the Scrum Agile Methodology for software development. Being one of the first few projects to implement the Agile methodology at NASA GSFC, in this presentation we will present our approaches, tools, successes, and challenges in implementing this methodology. The GMSEC architecture provides a scalable, extensible ground and flight system for existing and future missions. GMSEC comes with a robust Application Programming Interface (GMSEC API) and a core set of Java-based GMSEC components that facilitate the development of a GMSEC-based ground system. Over the past few years, we have seen an upbeat in the number of customers who are moving from a native desktop application environment to a web based environment particularly for data monitoring and analysis. We also see a need to provide separation of the business logic from the GUI display for our Java-based components and also to consolidate all the GUI displays into one interface. This combination of separation and consolidation brings immediate value to a GMSEC-based ground system through increased ease of data access via a uniform interface, built-in security measures, centralized configuration management, and ease of feature extensibility.
Retrieving high-resolution images over the Internet from an anatomical image database
NASA Astrophysics Data System (ADS)
Strupp-Adams, Annette; Henderson, Earl
1999-12-01
The Visible Human Data set is an important contribution to the national collection of anatomical images. To enhance the availability of these images, the National Library of Medicine has supported the design and development of a prototype object-oriented image database which imports, stores, and distributes high resolution anatomical images in both pixel and voxel formats. One of the key database modules is its client-server Internet interface. This Web interface provides a query engine with retrieval access to high-resolution anatomical images that range in size from 100KB for browser viewable rendered images, to 1GB for anatomical structures in voxel file formats. The Web query and retrieval client-server system is composed of applet GUIs, servlets, and RMI application modules which communicate with each other to allow users to query for specific anatomical structures, and retrieve image data as well as associated anatomical images from the database. Selected images can be downloaded individually as single files via HTTP or downloaded in batch-mode over the Internet to the user's machine through an applet that uses Netscape's Object Signing mechanism. The image database uses ObjectDesign's object-oriented DBMS, ObjectStore that has a Java interface. The query and retrieval systems has been tested with a Java-CDE window system, and on the x86 architecture using Windows NT 4.0. This paper describes the Java applet client search engine that queries the database; the Java client module that enables users to view anatomical images online; the Java application server interface to the database which organizes data returned to the user, and its distribution engine that allow users to download image files individually and/or in batch-mode.
Mukumoto, Nobutaka; Tsujii, Katsutomo; Saito, Susumu; Yasunaga, Masayoshi; Takegawa, Hideki; Yamamoto, Tokihiro; Numasaki, Hodaka; Teshima, Teruki
2009-10-01
To develop an infrastructure for the integrated Monte Carlo verification system (MCVS) to verify the accuracy of conventional dose calculations, which often fail to accurately predict dose distributions, mainly due to inhomogeneities in the patient's anatomy, for example, in lung and bone. The MCVS consists of the graphical user interface (GUI) based on a computational environment for radiotherapy research (CERR) with MATLAB language. The MCVS GUI acts as an interface between the MCVS and a commercial treatment planning system to import the treatment plan, create MC input files, and analyze MC output dose files. The MCVS consists of the EGSnrc MC codes, which include EGSnrc/BEAMnrc to simulate the treatment head and EGSnrc/DOSXYZnrc to calculate the dose distributions in the patient/phantom. In order to improve computation time without approximations, an in-house cluster system was constructed. The phase-space data of a 6-MV photon beam from a Varian Clinac unit was developed and used to establish several benchmarks under homogeneous conditions. The MC results agreed with the ionization chamber measurements to within 1%. The MCVS GUI could import and display the radiotherapy treatment plan created by the MC method and various treatment planning systems, such as RTOG and DICOM-RT formats. Dose distributions could be analyzed by using dose profiles and dose volume histograms and compared on the same platform. With the cluster system, calculation time was improved in line with the increase in the number of central processing units (CPUs) at a computation efficiency of more than 98%. Development of the MCVS was successful for performing MC simulations and analyzing dose distributions.
Mechanical Models of Fault-Related Folding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, A. M.
2003-01-09
The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).
Craniofacial Reconstruction Using Rational Cubic Ball Curves
Majeed, Abdul; Mt Piah, Abd Rahni; Gobithaasan, R. U.; Yahya, Zainor Ridzuan
2015-01-01
This paper proposes the reconstruction of craniofacial fracture using rational cubic Ball curve. The idea of choosing Ball curve is based on its robustness of computing efficiency over Bezier curve. The main steps are conversion of Digital Imaging and Communications in Medicine (Dicom) images to binary images, boundary extraction and corner point detection, Ball curve fitting with genetic algorithm and final solution conversion to Dicom format. The last section illustrates a real case of craniofacial reconstruction using the proposed method which clearly indicates the applicability of this method. A Graphical User Interface (GUI) has also been developed for practical application. PMID:25880632
Model-Based GUI Testing Using Uppaal at Novo Nordisk
NASA Astrophysics Data System (ADS)
Hjort, Ulrik H.; Illum, Jacob; Larsen, Kim G.; Petersen, Michael A.; Skou, Arne
This paper details a collaboration between Aalborg University and Novo Nordiskin developing an automatic model-based test generation tool for system testing of the graphical user interface of a medical device on an embedded platform. The tool takes as input an UML Statemachine model and generates a test suite satisfying some testing criterion, such as edge or state coverage, and converts the individual test case into a scripting language that can be automatically executed against the target. The tool has significantly reduced the time required for test construction and generation, and reduced the number of test scripts while increasing the coverage.
NASA Technical Reports Server (NTRS)
Phillips, Shaun
1996-01-01
The Graphical Observation Scheduling System (GROSS) and its functionality and editing capabilities are reported on. The GROSS system was developed as a replacement for a suite of existing programs and associated processes with the aim of: providing a software tool that combines the functionality of several of the existing programs, and provides a Graphical User Interface (GUI) that gives greater data visibility and editing capabilities. It is considered that the improved editing capability provided by this approach enhanced the efficiency of the second astronomical Spacelab mission's (ASTRO-2) mission planning.
A software architecture for automating operations processes
NASA Technical Reports Server (NTRS)
Miller, Kevin J.
1994-01-01
The Operations Engineering Lab (OEL) at JPL has developed a software architecture based on an integrated toolkit approach for simplifying and automating mission operations tasks. The toolkit approach is based on building adaptable, reusable graphical tools that are integrated through a combination of libraries, scripts, and system-level user interface shells. The graphical interface shells are designed to integrate and visually guide a user through the complex steps in an operations process. They provide a user with an integrated system-level picture of an overall process, defining the required inputs and possible output through interactive on-screen graphics. The OEL has developed the software for building these process-oriented graphical user interface (GUI) shells. The OEL Shell development system (OEL Shell) is an extension of JPL's Widget Creation Library (WCL). The OEL Shell system can be used to easily build user interfaces for running complex processes, applications with extensive command-line interfaces, and tool-integration tasks. The interface shells display a logical process flow using arrows and box graphics. They also allow a user to select which output products are desired and which input sources are needed, eliminating the need to know which program and its associated command-line parameters must be executed in each case. The shells have also proved valuable for use as operations training tools because of the OEL Shell hypertext help environment. The OEL toolkit approach is guided by several principles, including the use of ASCII text file interfaces with a multimission format, Perl scripts for mission-specific adaptation code, and programs that include a simple command-line interface for batch mode processing. Projects can adapt the interface shells by simple changes to the resources configuration file. This approach has allowed the development of sophisticated, automated software systems that are easy, cheap, and fast to build. This paper will discuss our toolkit approach and the OEL Shell interface builder in the context of a real operations process example. The paper will discuss the design and implementation of a Ulysses toolkit for generating the mission sequence of events. The Sequence of Events Generation (SEG) system provides an adaptable multimission toolkit for producing a time-ordered listing and timeline display of spacecraft commands, state changes, and required ground activities.
CSciBox: An Intelligent Assistant for Dating Ice and Sediment Cores
NASA Astrophysics Data System (ADS)
Finlinson, K.; Bradley, E.; White, J. W. C.; Anderson, K. A.; Marchitto, T. M., Jr.; de Vesine, L. R.; Jones, T. R.; Lindsay, C. M.; Israelsen, B.
2015-12-01
CSciBox is an integrated software system for the construction and evaluation of age models of paleo-environmental archives. It incorporates a number of data-processing and visualization facilities, ranging from simple interpolation to reservoir-age correction and 14C calibration via the Calib algorithm, as well as a number of firn and ice-flow models. It employs modern database technology to store paleoclimate proxy data and analysis results in an easily accessible and searchable form, and offers the user access to those data and computational elements via a modern graphical user interface (GUI). In the case of truly large data or computations, CSciBox is parallelizable across modern multi-core processors, or clusters, or even the cloud. The code is open source and freely available on github, as are one-click installers for various versions of Windows and Mac OSX. The system's architecture allows users to incorporate their own software in the form of computational components that can be built smoothly into CSciBox workflows, taking advantage of CSciBox's GUI, data importing facilities, and plotting capabilities. To date, BACON and StratiCounter have been integrated into CSciBox as embedded components. The user can manipulate and compose all of these tools and facilities as she sees fit. Alternatively, she can employ CSciBox's automated reasoning engine, which uses artificial intelligence techniques to explore the gamut of age models and cross-dating scenarios automatically. The automated reasoning engine captures the knowledge of expert geoscientists, and can output a description of its reasoning.
50 years of computer simulation of the human thermoregulatory system.
Hensley, Daniel W; Mark, Andrew E; Abella, Jayvee R; Netscher, George M; Wissler, Eugene H; Diller, Kenneth R
2013-02-01
This paper presents an updated and augmented version of the Wissler human thermoregulation model that has been developed continuously over the past 50 years. The existing Fortran code is translated into C with extensive embedded commentary. A graphical user interface (GUI) has been developed in Python to facilitate convenient user designation of input and output variables and formatting of data presentation. Use of the code with the GUI is described and demonstrated. New physiological elements were added to the model to represent the hands and feet, including the unique vascular structures adapted for heat transfer associated with glabrous skin. The heat transfer function and efficacy of glabrous skin is unique within the entire body based on the capacity for a very high rate of blood perfusion and the novel capability for dynamic regulation of blood flow. The model was applied to quantify the absolute and relative contributions of glabrous skin flow to thermoregulation for varying levels of blood perfusion. The model also was used to demonstrate how the unique features of glabrous skin blood flow may be recruited to implement thermal therapeutic procedures. We have developed proprietary methods to manipulate the control of glabrous skin blood flow in conjunction with therapeutic devices and simulated the effect of these methods with the model.
AIRNOISE: A Tool for Preliminary Noise-Abatement Terminal Approach Route Design
NASA Technical Reports Server (NTRS)
Li, Jinhua; Sridhar, Banavar; Xue, Min; Ng, Hok
2016-01-01
Noise from aircraft in the airport vicinity is one of the leading aviation-induced environmental issues. The FAA developed the Integrated Noise Model (INM) and its replacement Aviation Environmental Design Tool (AEDT) software to assess noise impact resulting from all aviation activities. However, a software tool is needed that is simple to use for terminal route modification, quick and reasonably accurate for preliminary noise impact evaluation and flexible to be used for iterative design of optimal noise-abatement terminal routes. In this paper, we extend our previous work on developing a noise-abatement terminal approach route design tool, named AIRNOISE, to satisfy this criterion. First, software efficiency has been significantly increased by over tenfold using the C programming language instead of MATLAB. Moreover, a state-of-the-art high performance GPU-accelerated computing module is implemented that was tested to be hundreds time faster than the C implementation. Secondly, a Graphical User Interface (GUI) was developed allowing users to import current terminal approach routes and modify the routes interactively to design new terminal approach routes. The corresponding noise impacts are then calculated and displayed in the GUI in seconds. Finally, AIRNOISE was applied to Baltimore-Washington International Airport terminal approach route to demonstrate its usage.
Adaptive smart simulator for characterization and MPPT construction of PV array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ouada, Mehdi, E-mail: mehdi.ouada@univ-annaba.org; Meridjet, Mohamed Salah; Dib, Djalel
2016-07-25
Partial shading conditions are among the most important problems in large photovoltaic array. Many works of literature are interested in modeling, control and optimization of photovoltaic conversion of solar energy under partial shading conditions, The aim of this study is to build a software simulator similar to hard simulator and to produce a shading pattern of the proposed photovoltaic array in order to use the delivered information to obtain an optimal configuration of the PV array and construct MPPT algorithm. Graphical user interfaces (Matlab GUI) are built using a developed script, this tool is easy to use, simple, and hasmore » a rapid of responsiveness, the simulator supports large array simulations that can be interfaced with MPPT and power electronic converters.« less
NASA Technical Reports Server (NTRS)
Clark, David A.
1998-01-01
In light of the escalation of terrorism, the Department of Defense spearheaded the development of new antiterrorist software for all Government agencies by issuing a Broad Agency Announcement to solicit proposals. This Government-wide competition resulted in a team that includes NASA Lewis Research Center's Computer Services Division, who will develop the graphical user interface (GUI) and test it in their usability lab. The team launched a program entitled Joint Sphere of Security (JSOS), crafted a design architecture (see the following figure), and is testing the interface. This software system has a state-ofthe- art, object-oriented architecture, with a main kernel composed of the Dynamic Information Architecture System (DIAS) developed by Argonne National Laboratory. DIAS will be used as the software "breadboard" for assembling the components of explosions, such as blast and collapse simulations.
RDNAnalyzer: A tool for DNA secondary structure prediction and sequence analysis.
Afzal, Muhammad; Shahid, Ahmad Ali; Shehzadi, Abida; Nadeem, Shahid; Husnain, Tayyab
2012-01-01
RDNAnalyzer is an innovative computer based tool designed for DNA secondary structure prediction and sequence analysis. It can randomly generate the DNA sequence or user can upload the sequences of their own interest in RAW format. It uses and extends the Nussinov dynamic programming algorithm and has various application for the sequence analysis. It predicts the DNA secondary structure and base pairings. It also provides the tools for routinely performed sequence analysis by the biological scientists such as DNA replication, reverse compliment generation, transcription, translation, sequence specific information as total number of nucleotide bases, ATGC base contents along with their respective percentages and sequence cleaner. RDNAnalyzer is a unique tool developed in Microsoft Visual Studio 2008 using Microsoft Visual C# and Windows Presentation Foundation and provides user friendly environment for sequence analysis. It is freely available. http://www.cemb.edu.pk/sw.html RDNAnalyzer - Random DNA Analyser, GUI - Graphical user interface, XAML - Extensible Application Markup Language.
NASA Technical Reports Server (NTRS)
Aghazarian, Hrand
2009-01-01
The R4SA GUI mentioned in the immediately preceding article is a userfriendly interface for controlling one or more robot(s). This GUI makes it possible to perform meaningful real-time field experiments and research in robotics at an unmatched level of fidelity, within minutes of setup. It provides such powerful graphing modes as that of a digitizing oscilloscope that displays up to 250 variables at rates between 1 and 200 Hz. This GUI can be configured as multiple intuitive interfaces for acquisition of data, command, and control to enable rapid testing of subsystems or an entire robot system while simultaneously performing analysis of data. The R4SA software establishes an intuitive component-based design environment that can be easily reconfigured for any robotic platform by creating or editing setup configuration files. The R4SA GUI enables event-driven and conditional sequencing similar to those of Mars Exploration Rover (MER) operations. It has been certified as part of the MER ground support equipment and, therefore, is allowed to be utilized in conjunction with MER flight hardware. The R4SA GUI could also be adapted to use in embedded computing systems, other than that of the MER, for commanding and real-time analysis of data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, P; Varian Medical Systems, Palo Alto, CA; Lewis, J
2014-06-15
Purpose: To address the challenges of creating delivery trajectories and imaging sequences with TrueBeam Developer Mode, a new open-source graphical XML builder, Veritas, has been developed, tested and made freely available. Veritas eliminates most of the need to understand the underlying schema and write XML scripts, by providing a graphical menu for each control point specifying the state of 30 mechanical/dose axes. All capabilities of Developer Mode are accessible in Veritas. Methods: Veritas was designed using QT Designer, a ‘what-you-is-what-you-get’ (WYSIWIG) tool for building graphical user interfaces (GUI). Different components of the GUI are integrated using QT's signals and slotsmore » mechanism. Functionalities are added using PySide, an open source, cross platform Python binding for the QT framework. The XML code generated is immediately visible, making it an interactive learning tool. A user starts from an anonymized DICOM file or XML example and introduces delivery modifications, or begins their experiment from scratch, then uses the GUI to modify control points as desired. The software automatically generates XML plans following the appropriate schema. Results: Veritas was tested by generating and delivering two XML plans at Brigham and Women's Hospital. The first example was created to irradiate the letter ‘B’ with a narrow MV beam using dynamic couch movements. The second was created to acquire 4D CBCT projections for four minutes. The delivery of the letter ‘B’ was observed using a 2D array of ionization chambers. Both deliveries were generated quickly in Veritas by non-expert Developer Mode users. Conclusion: We introduced a new open source tool Veritas for generating XML plans (delivery trajectories and imaging sequences). Veritas makes Developer Mode more accessible by reducing the learning curve for quick translation of research ideas into XML plans. Veritas is an open source initiative, creating the possibility for future developments and collaboration with other researchers. I am an employee of Varian Medical Systems.« less
Telemetry and Science Data Software System
NASA Technical Reports Server (NTRS)
Bates, Lakesha; Hong, Liang
2011-01-01
The Telemetry and Science Data Software System (TSDSS) was designed to validate the operational health of a spacecraft, ease test verification, assist in debugging system anomalies, and provide trending data and advanced science analysis. In doing so, the system parses, processes, and organizes raw data from the Aquarius instrument both on the ground and while in space. In addition, it provides a user-friendly telemetry viewer, and an instant pushbutton test report generator. Existing ground data systems can parse and provide simple data processing, but have limitations in advanced science analysis and instant report generation. The TSDSS functions as an offline data analysis system during I&T (integration and test) and mission operations phases. After raw data are downloaded from an instrument, TSDSS ingests the data files, parses, converts telemetry to engineering units, and applies advanced algorithms to produce science level 0, 1, and 2 data products. Meanwhile, it automatically schedules upload of the raw data to a remote server and archives all intermediate and final values in a MySQL database in time order. All data saved in the system can be straightforwardly retrieved, exported, and migrated. Using TSDSS s interactive data visualization tool, a user can conveniently choose any combination and mathematical computation of interesting telemetry points from a large range of time periods (life cycle of mission ground data and mission operations testing), and display a graphical and statistical view of the data. With this graphical user interface (GUI), the data queried graphs can be exported and saved in multiple formats. This GUI is especially useful in trending data analysis, debugging anomalies, and advanced data analysis. At the request of the user, mission-specific instrument performance assessment reports can be generated with a simple click of a button on the GUI. From instrument level to observatory level, the TSDSS has been operating supporting functional and performance tests and refining system calibration algorithms and coefficients, in sync with the Aquarius/SAC-D spacecraft. At the time of this reporting, it was prepared and set up to perform anomaly investigation for mission operations preceding the Aquarius/SAC-D spacecraft launch on June 10, 2011.
RAVEN: a GUI and an Artificial Intelligence Engine in a Dynamic PRA Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Rabiti; D. Mandelli; A. Alfonsi
Increases in computational power and pressure for more accurate simulations and estimations of accident scenario consequences are driving the need for Dynamic Probabilistic Risk Assessment (PRA) [1] of very complex models. While more sophisticated algorithms and computational power address the back end of this challenge, the front end is still handled by engineers that need to extract meaningful information from the large amount of data and build these complex models. Compounding this problem is the difficulty in knowledge transfer and retention, and the increasing speed of software development. The above-described issues would have negatively impacted deployment of the new highmore » fidelity plant simulator RELAP-7 (Reactor Excursion and Leak Analysis Program) at Idaho National Laboratory. Therefore, RAVEN that was initially focused to be the plant controller for RELAP-7 will help mitigate future RELAP-7 software engineering risks. In order to accomplish this task, Reactor Analysis and Virtual Control Environment (RAVEN) has been designed to provide an easy to use Graphical User Interface (GUI) for building plant models and to leverage artificial intelligence algorithms in order to reduce computational time, improve results, and help the user to identify the behavioral pattern of the Nuclear Power Plants (NPPs). In this paper we will present the GUI implementation and its current capability status. We will also introduce the support vector machine algorithms and show our evaluation of their potentiality in increasing the accuracy and reducing the computational costs of PRA analysis. In this evaluation we will refer to preliminary studies performed under the Risk Informed Safety Margins Characterization (RISMC) project of the Light Water Reactors Sustainability (LWRS) campaign [3]. RISMC simulation needs and algorithm testing are currently used as a guidance to prioritize RAVEN developments relevant to PRA.« less
SearchGUI: A Highly Adaptable Common Interface for Proteomics Search and de Novo Engines.
Barsnes, Harald; Vaudel, Marc
2018-05-25
Mass-spectrometry-based proteomics has become the standard approach for identifying and quantifying proteins. A vital step consists of analyzing experimentally generated mass spectra to identify the underlying peptide sequences for later mapping to the originating proteins. We here present the latest developments in SearchGUI, a common open-source interface for the most frequently used freely available proteomics search and de novo engines that has evolved into a central component in numerous bioinformatics workflows.
International Cancer Genome Consortium Data Portal--a one-stop shop for cancer genomics data.
Zhang, Junjun; Baran, Joachim; Cros, A; Guberman, Jonathan M; Haider, Syed; Hsu, Jack; Liang, Yong; Rivkin, Elena; Wang, Jianxin; Whitty, Brett; Wong-Erasmus, Marie; Yao, Long; Kasprzyk, Arek
2011-01-01
The International Cancer Genome Consortium (ICGC) is a collaborative effort to characterize genomic abnormalities in 50 different cancer types. To make this data available, the ICGC has created the ICGC Data Portal. Powered by the BioMart software, the Data Portal allows each ICGC member institution to manage and maintain its own databases locally, while seamlessly presenting all the data in a single access point for users. The Data Portal currently contains data from 24 cancer projects, including ICGC, The Cancer Genome Atlas (TCGA), Johns Hopkins University, and the Tumor Sequencing Project. It consists of 3478 genomes and 13 cancer types and subtypes. Available open access data types include simple somatic mutations, copy number alterations, structural rearrangements, gene expression, microRNAs, DNA methylation and exon junctions. Additionally, simple germline variations are available as controlled access data. The Data Portal uses a web-based graphical user interface (GUI) to offer researchers multiple ways to quickly and easily search and analyze the available data. The web interface can assist in constructing complicated queries across multiple data sets. Several application programming interfaces are also available for programmatic access. Here we describe the organization, functionality, and capabilities of the ICGC Data Portal.
A Generic Ground Framework for Image Expertise Centres and Small-Sized Production Centres
NASA Astrophysics Data System (ADS)
Sellé, A.
2009-05-01
Initiated by the Pleiadas Earth Observation Program, the CNES (French Space Agency) has developed a generic collaborative framework for its image quality centre, highly customisable for any upcoming expertise centre. This collaborative framework has been design to be used by a group of experts or scientists that want to share data and processings and manage interfaces with external entities. Its flexible and scalable architecture complies with the core requirements: defining a user data model with no impact on the software (generic access data), integrating user processings with a GUI builder and built-in APIs, and offering a scalable architecture to fit any preformance requirement and accompany growing projects. The CNES jas given licensing grants for two software companies that will be able to redistribute this framework to any customer.
2014-01-01
Abstract Building large supertrees involves the collection, storage, and processing of thousands of individual phylogenies to create large phylogenies with thousands to tens of thousands of taxa. Such large phylogenies are useful for macroevolutionary studies, comparative biology and in conservation and biodiversity. No easy to use and fully integrated software package currently exists to carry out this task. Here, we present a new Python-based software package that uses well defined XML schema to manage both data and metadata. It builds on previous versions by 1) including new processing steps, such as Safe Taxonomic Reduction, 2) using a user-friendly GUI that guides the user to complete at least the minimum information required and includes context-sensitive documentation, and 3) a revised storage format that integrates both tree- and meta-data into a single file. These data can then be manipulated according to a well-defined, but flexible, processing pipeline using either the GUI or a command-line based tool. Processing steps include standardising names, deleting or replacing taxa, ensuring adequate taxonomic overlap, ensuring data independence, and safe taxonomic reduction. This software has been successfully used to store and process data consisting of over 1000 trees ready for analyses using standard supertree methods. This software makes large supertree creation a much easier task and provides far greater flexibility for further work. PMID:24891820
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Larry K.; Allwine, K Jerry; Rutz, Frederick C.
2004-08-23
A new modeling system has been developed to provide a non-meteorologist with tools to predict air pollution transport in regions of complex terrain. This system couples the Penn State/NCAR Mesoscale Model 5 (MM5) with Earth Tech’s CALMET-CALPUFF system using a unique Graphical User Interface (GUI) developed at Pacific Northwest National Laboratory. This system is most useful in data-sparse regions, where there are limited observations to initialize the CALMET model. The user is able to define the domain of interest, provide details about the source term, and enter a surface weather observation through the GUI. The system then generates initial conditionsmore » and time constant boundary conditions for use by MM5. MM5 is run and the results are piped to CALPUFF for the dispersion calculations. Contour plots of pollutant concentration are prepared for the user. The primary advantages of the system are the streamlined application of MM5 and CALMET, limited data requirements, and the ability to run the coupled system on a desktop or laptop computer. In comparison with data collected as part of a field campaign, the new modeling system shows promise that a full-physics mesoscale model can be used in an applied modeling system to effectively simulate locally thermally-driven winds with minimal observations as input. An unexpected outcome of this research was how well CALMET represented the locally thermally-driven flows.« less
NASA Astrophysics Data System (ADS)
Wrobel, P. M.; Bogovac, M.; Sghaier, H.; Leani, J. J.; Migliori, A.; Padilla-Alvarez, R.; Czyzycki, M.; Osan, J.; Kaiser, R. B.; Karydas, A. G.
2016-10-01
A new synchrotron beamline end-station for multipurpose X-ray spectrometry applications has been recently commissioned and it is currently accessible by end-users at the XRF beamline of Elettra Sincrotrone Trieste. The end-station consists of an ultra-high vacuum chamber that includes as main instrument a seven-axis motorized manipulator for sample and detectors positioning, different kinds of X-ray detectors and optical cameras. The beamline end-station allows performing measurements in different X-ray spectrometry techniques such as Microscopic X-Ray Fluorescence analysis (μXRF), Total Reflection X-Ray Fluorescence analysis (TXRF), Grazing Incidence/Exit X-Ray Fluorescence analysis (GI-XRF/GE-XRF), X-Ray Reflectometry (XRR), and X-Ray Absorption Spectroscopy (XAS). A LabVIEW Graphical User Interface (GUI) bound with Tango control system consisted of many custom made software modules is utilized as a user-friendly tool for control of the entire end-station hardware components. The present work describes this advanced Tango and LabVIEW software platform that utilizes in an optimal synergistic manner the merits and functionality of these well-established programming and equipment control tools.
NASA Technical Reports Server (NTRS)
Reil, Robin
2011-01-01
The success of JPL's Next Generation Imaging Spectrometer (NGIS) in Earth remote sensing has inspired a follow-on instrument project, the MaRSPlus Sensor System (MSS). One of JPL's responsibilities in the MSS project involves updating the documentation from the previous JPL airborne imagers to provide all the information necessary for an outside customer to operate the instrument independently. As part of this documentation update, I created detailed electrical cabling diagrams to provide JPL technicians with clear and concise build instructions and a database to track the status of cables from order to build to delivery. Simultaneously, a distributed motor control system is being developed for potential use on the proposed 2018 Mars rover mission. This system would significantly reduce the mass necessary for rover motor control, making more mass space available to other important spacecraft systems. The current stage of the project consists of a desktop computer talking to a single "cold box" unit containing the electronics to drive a motor. In order to test the electronics, I developed a graphical user interface (GUI) using MATLAB to allow a user to send simple commands to the cold box and display the responses received in a user-friendly format.
Section 4. The GIS Weasel User's Manual
Viger, Roland J.; Leavesley, George H.
2007-01-01
INTRODUCTION The GIS Weasel was designed to aid in the preparation of spatial information for input to lumped and distributed parameter hydrologic or other environmental models. The GIS Weasel provides geographic information system (GIS) tools to help create maps of geographic features relevant to a user's model and to generate parameters from those maps. The operation of the GIS Weasel does not require the user to be a GIS expert, only that the user have an understanding of the spatial information requirements of the environmental simulation model being used. The GIS Weasel software system uses a GIS-based graphical user interface (GUI), the C programming language, and external scripting languages. The software will run on any computing platform where ArcInfo Workstation (version 8.0.2 or later) and the GRID extension are accessible. The user controls the processing of the GIS Weasel by interacting with menus, maps, and tables. The purpose of this document is to describe the operation of the software. This document is not intended to describe the usage of this software in support of any particular environmental simulation model. Such guides are published separately.
NASA Orbital Debris Engineering Model ORDEM2008 (Beta Version)
NASA Technical Reports Server (NTRS)
Stansbery, Eugene G.; Krisko, Paula H.
2009-01-01
This is an interim document intended to accompany the beta-release of the ORDEM2008 model. As such it provides the user with a guide for its use, a list of its capabilities, a brief summary of model development, and appendices included to educate the user as to typical runtimes for different orbit configurations. More detailed documentation will be delivered with the final product. ORDEM2008 supersedes NASA's previous model - ORDEM2000. The availability of new sensor and in situ data, the re-analysis of older data, and the development of new analytical techniques, has enabled the construction of this more comprehensive and sophisticated model. Integrated with the software is an upgraded graphical user interface (GUI), which uses project-oriented organization and provides the user with graphical representations of numerous output data products. These range from the conventional average debris size vs. flux magnitude for chosen analysis orbits, to the more complex color-contoured two-dimensional (2-D) directional flux diagrams in terms of local spacecraft pitch and yaw.
The Ultracool Typing Kit - An Open-Source, Qualitative Spectral Typing GUI for L Dwarfs
NASA Astrophysics Data System (ADS)
Schwab, Ellianna; Cruz, Kelle; Núñez, Alejandro; Burgasser, Adam J.; Rice, Emily; Reid, Neill; Faherty, Jacqueline K.; BDNYC
2018-01-01
The Ultracool Typing Kit (UTK) is an open-source graphical user interface for classifying the NIR spectral types of L dwarfs, including field and low-gravity dwarfs spanning L0-L9. The user is able to input an NIR spectrum and qualitatively compare the input spectrum to a full suite of spectral templates, including low-gravity beta and gamma templates. The user can choose to view the input spectrum as both a band-by-band comparison with the templates and a full bandwidth comparison with NIR spectral standards. Once an optimal qualitative comparison is selected, the user can save their spectral type selection both graphically and to a database. Using UTK to classify 78 previously typed L dwarfs, we show that a band-by-band classification method more accurately agrees with optical spectral typing systems than previous L dwarf NIR classification schemes. UTK is written in python, released on Zenodo with a BSD-3 clause license and publicly available on the BDNYC Github page.
Cryogenic Propellant Feed System Analytical Tool Development
NASA Technical Reports Server (NTRS)
Lusby, Brian S.; Miranda, Bruno M.; Collins, Jacob A.
2011-01-01
The Propulsion Systems Branch at NASA s Lyndon B. Johnson Space Center (JSC) has developed a parametric analytical tool to address the need to rapidly predict heat leak into propellant distribution lines based on insulation type, installation technique, line supports, penetrations, and instrumentation. The Propellant Feed System Analytical Tool (PFSAT) will also determine the optimum orifice diameter for an optional thermodynamic vent system (TVS) to counteract heat leak into the feed line and ensure temperature constraints at the end of the feed line are met. PFSAT was developed primarily using Fortran 90 code because of its number crunching power and the capability to directly access real fluid property subroutines in the Reference Fluid Thermodynamic and Transport Properties (REFPROP) Database developed by NIST. A Microsoft Excel front end user interface was implemented to provide convenient portability of PFSAT among a wide variety of potential users and its ability to utilize a user-friendly graphical user interface (GUI) developed in Visual Basic for Applications (VBA). The focus of PFSAT is on-orbit reaction control systems and orbital maneuvering systems, but it may be used to predict heat leak into ground-based transfer lines as well. PFSAT is expected to be used for rapid initial design of cryogenic propellant distribution lines and thermodynamic vent systems. Once validated, PFSAT will support concept trades for a variety of cryogenic fluid transfer systems on spacecraft, including planetary landers, transfer vehicles, and propellant depots, as well as surface-based transfer systems. The details of the development of PFSAT, its user interface, and the program structure will be presented.
An Interative Grahical User Interface for Maritime Security Services
NASA Astrophysics Data System (ADS)
Reize, T.; Müller, R.; Kiefl, R.
2013-10-01
In order to analyse optical satellite images for maritime security issues in Near-Real-Time (NRT) an interactive graphical user interface (GUI) based on NASA World Wind was developed and is presented in this article. Targets or activities can be detected, measured and classified with this tool simply and quickly. The service uses optical satellite images, currently taken from 6 sensors: Worldview-1 and Worldview-2, Ikonos, Quickbird, GeoEye-1 and EROS-B. The GUI can also handle SAR-images, air-borne images or UAV images. Software configurations are provided in a job-order file and thus all preparation tasks, such as image installation are performed fully automatically. The imagery can be overlaid with vessels derived by an automatic detection processor. These potential vessel layers can be zoomed in by a single click and sorted with an adapted method. Further object properties, such as vessel type or confidence level of identification, can be added by the operator manually. The heading angle can be refined by dragging the vessel's head or switching it to 180° with a single click. Further vessels or other relevant objects can be added. The objects length, width, heading and position are calculated automatically from three clicks on top, bottom and an arbitrary point at one of the object's longer side. In case of an Activity Detection, the detected objects can be grouped in area of interests (AOI) and classified, according to the ordered activities. All relevant information is finally written to an exchange file, after quality control and necessary correction procedures are performed. If required, image thumbnails can be cut around objects or around whole areas of interest and saved as separated, geo-referenced images.
[Universal electrogustometer EG-2].
Wałkanis, Andrzej; Czesak, Michał; Pleskacz, Witold A
2011-01-01
Electrogustometry is a method for taste diagnosis and measurement. The EG-2 project is being developed in cooperation between Warsaw University of Technology and Military institute of Medicine in Warsaw. The device is an evolution of the recent universal electrogustometer EG-1 prototype. Due to considerations and experiences acquired during prototype usage, many enhancements have been incorporated into device. The aim was to create an easy-to-use, portable, battery powered device, enabled for fast measurements. Developed electrogustometer is using innovative, low-power microprocessor system, which control whole device. User interface is based on 5.7" graphical LCD (Liquid Crystal Display) and touchscreen. It can be directly operated by finger or with optional stylus. Dedicated GUI (Graphical User Interface) offers simple, predefined measurements and advance settings of signal parameters. It is also possible to store measurements results and patients data in an internal memory. User interface is multilanguage. Signals for patients examinations, supplied with bipolar electrode, are generated by an on-board circuit using DDS (Direct-Digital Synthesis) and DAC (Digital-to-Analog Converter). Electrogustometer is able to generate DC, sinus, triangle or rectangle signals with current amplitude from 0 to 500 pA and frequency form 0 to 500 Hz. Device is designed for manual and automeasurement modes. By using USB (Universal Serial Bus) port it is possible to retrieve data stored in internal memory and charging of built-in Li-lon battery as a source of power.
The GIS weasel - An interface for the development of spatial information in modeling
Viger, R.J.; Markstrom, S.M.; Leavesley, G.H.; ,
2005-01-01
The GIS Weasel is a map and Graphical User Interface (GUI) driven tool that has been developed as an aid to modelers in the delineation, characterization of geographic features, and their parameterization for use in distributed or lumped parameter physical process models. The interface does not require user expertise in geographic information systems (GIS). The user does need knowledge of how the model will use the output from the GIS Weasel. The GIS Weasel uses Workstation ArcInfo and its the Grid extension. The GIS Weasel will run on all platforms that Workstation ArcInfo runs (i.e. numerous flavors of Unix and Microsoft Windows).The GIS Weasel requires an input ArcInfo grid of some topographical description of the Area of Interest (AOI). This is normally a digital elevation model, but can be the surface of a ground water table or any other data that flow direction can be resolved from. The user may define the AOI as a custom drainage area based on an interactively specified watershed outlet point, or use a previously created map. The user is then able to use any combination of the GIS Weasel's tool set to create one or more maps for depicting different kinds of geographic features. Once the spatial feature maps have been prepared, then the GIS Weasel s many parameterization routines can be used to create descriptions of each element in each of the user s created maps. Over 200 parameterization routines currently exist, generating information about shape, area, and topological association with other features of the same or different maps, as well many types of information based on ancillary data layers such as soil and vegetation properties. These tools easily integrate other similarly formatted data sets.
Specialized Binary Analysis for Vetting Android APPS Using GUI Logic
2016-04-01
the use of high- level reasoning based on the GUI design logic of an app to enable a security analyst to diagnose and triage the potentially sensitive...execution paths of an app. Levels of Inconsistency We have identified three- levels of logical inconsistencies: Event- level inconsistency A sensitive...operation (e.g., taking a picture) is not trigged by user action on a GUI component. Layout- level inconsistency A sensitive operation is triggered by
van der Linden, Helma; Austin, Tony; Talmon, Jan
2009-09-01
Future-proof EHR systems must be capable of interpreting information structures for medical concepts that were not available at the build-time of the system. The two-model approach of CEN 13606/openEHR using archetypes achieves this by separating generic clinical knowledge from domain-related knowledge. The presentation of this information can either itself be generic, or require design time awareness of the domain knowledge being employed. To develop a Graphical User Interface (GUI) that would be capable of displaying previously unencountered clinical data structures in a meaningful way. Through "reasoning by analogy" we defined an approach for the representation and implementation of "presentational knowledge". A proof-of-concept implementation was built to validate its implementability and to test for unanticipated issues. A two-model approach to specifying and generating a screen representation for archetype-based information, inspired by the two-model approach of archetypes, was developed. There is a separation between software-related display knowledge and domain-related display knowledge and the toolkit is designed with the reuse of components in mind. The approach leads to a flexible GUI that can adapt not only to information structures that had not been predefined within the receiving system, but also to novel ways of displaying the information. We also found that, ideally, the openEHR Archetype Definition Language should receive minor adjustments to allow for generic binding.
User's guide for mapIMG 3--Map image re-projection software package
Finn, Michael P.; Mattli, David M.
2012-01-01
Version 0.0 (1995), Dan Steinwand, U.S. Geological Survey (USGS)/Earth Resources Observation Systems (EROS) Data Center (EDC)--Version 0.0 was a command line version for UNIX that required four arguments: the input metadata, the output metadata, the input data file, and the output destination path. Version 1.0 (2003), Stephen Posch and Michael P. Finn, USGS/Mid-Continent Mapping Center (MCMC--Version 1.0 added a GUI interface that was built using the Qt library for cross platform development. Version 1.01 (2004), Jason Trent and Michael P. Finn, USGS/MCMC--Version 1.01 suggested bounds for the parameters of each projection. Support was added for larger input files, storage of the last used input and output folders, and for TIFF/ GeoTIFF input images. Version 2.0 (2005), Robert Buehler, Jason Trent, and Michael P. Finn, USGS/National Geospatial Technical Operations Center (NGTOC)--Version 2.0 added Resampling Methods (Mean, Mode, Min, Max, and Sum), updated the GUI design, and added the viewer/pre-viewer. The metadata style was changed to XML and was switched to a new naming convention. Version 3.0 (2009), David Mattli and Michael P. Finn, USGS/Center of Excellence for Geospatial Information Science (CEGIS)--Version 3.0 brings optimized resampling methods, an updated GUI, support for less than global datasets, UTM support and the whole codebase was ported to Qt4.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snow, Dr., Joel
This final report is presented by Langston University (LU) for the project entitled "Langston University High Energy Physics" (LUHEP) under the direction of principal investigator (PI) and project director Professor Joel Snow. The project encompassed high energy physics research performed at hadron colliders. The PI is a collaborator on the DZero experiment at Fermi National Accelerator Laboratory in Batavia, IL, USA and the ATLAS experiment at CERN in Geneva, Switzerland and was during the entire project period from April 1, 1999 until May 14, 2012. Both experiments seek to understand the fundamental constituents of the physical universe and the forcesmore » that govern their interactions. In 1999 as member of the Online Systems group for Run 2 the PI developed a cross-platform Python-based, Graphical User Interface (GUI) application for monitoring and control of EPICS based devices for control room use. This served as a model for other developers to enhance and build on for further monitoring and control tasks written in Python. Subsequently the PI created and developed a cross-platform C++ GUI utilizing a networked client-server paradigm and based on ROOT, the object oriented analysis framework from CERN. The GUI served as a user interface to the Examine tasks running in the D\\O\\ control room which monitored the status and integrity of data taking for Run 2. The PI developed the histogram server/control interface to the GUI client for the EXAMINE processes. The histogram server was built from the ROOT framework and was integrated into the D\\O\\ framework used for online monitoring programs and offline analysis. The PI developed the first implementation of displaying histograms dynamically generated by ROOT in a Web Browser. The PI's work resulted in several talks and papers at international conferences and workshops. The PI established computing software infrastructure at LU and U. Oklahoma (OU) to do analysis of DZero production data and produce simulation data for the experiment. Eventually this included the FNAL SAM data grid system, the SAMGrid (SG) infrastructure, and the Open Science Grid software stacks for computing and storage elements. At the end of 2003 Snow took on the role of global Monte Carlo production coordinator for the DØ experiment. A role which continues til this day. In January of 2004 Snow started working with the SAMGrid development team to help debug, deploy, and integrate SAMGrid with DØ Monte Carlo production. Snow installed and configured SG execution and client sites at LUHEP and OUHEP, and a SG scheduler site at LUHEP. The PI developed a python based GUI (DAJ) that acts as a front end for job submission to SAMGrid. The GUI interfaces to the DZero Mone Carlo (MC) request system that uses SAM to manage MC requests by the physics analysis groups. DAJ significantly simplified SG job submission and was deployed in DZero in an effort to increase the user base of SG. The following year was the advent of SAMGrid job submission to the Open Science Grid (OSG) and LHC Computing Grid (LCG) through a forwarding mechanism. The PI oversaw the integration of these grids into the existing production infrastructure. The PI developed an automatic MC (Automc) request processing system capable of operating without user intervention (other than getting grid credentials), and able to submit to any number of sites on various grids. The system manages production at all but 2 sites. The system was deployed at Fermilab and remains operating there today. The PI's work in distributed computing resulted in several talks at international conferences. UTA, OU, and LU were chosen as the collaborating institutions that form the Southwest Tier 2 Center (SWT2) for ATLAS. During the project period the PI contributed to the online and offline software infrastructure through his work with the Run 2 online group, and played a major role in Monte Carlo production for DZero. During the part of the project period in which the PI served as MC production coordinator MC production increased very significantly. In the first year of the PI's tenure as production coordinator production was 159M events and 6.7~TB of data. During the last year of the project period production was 2,342~M events and 262~TB of data. That is a factor of 15 increase in events and 39 in data volume. The increase occurred with improvements in computer hardware and networks, through the use of grid technology on diverse resources, and through increased automation and efficiency of the production process. LU HEP developed and deployed the automatic MC request processing system in use at FNAL. The complementary strategies of automation and grid production served DZero well. Fermilab has recognized LU HEP's contribution to DZero by allowing the PI to devote full time to research activities by appointing him a guest scientist for the last six years of the project period.« less
Cone-beam micro-CT system based on LabVIEW software.
Ionita, Ciprian N; Hoffmann, Keneth R; Bednarek, Daniel R; Chityala, Ravishankar; Rudin, Stephen
2008-09-01
Construction of a cone-beam computed tomography (CBCT) system for laboratory research usually requires integration of different software and hardware components. As a result, building and operating such a complex system require the expertise of researchers with significantly different backgrounds. Additionally, writing flexible code to control the hardware components of a CBCT system combined with designing a friendly graphical user interface (GUI) can be cumbersome and time consuming. An intuitive and flexible program structure, as well as the program GUI for CBCT acquisition, is presented in this note. The program was developed in National Instrument's Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) graphical language and is designed to control a custom-built CBCT system but has been also used in a standard angiographic suite. The hardware components are commercially available to researchers and are in general provided with software drivers which are LabVIEW compatible. The program structure was designed as a sequential chain. Each step in the chain takes care of one or two hardware commands at a time; the execution of the sequence can be modified according to the CBCT system design. We have scanned and reconstructed over 200 specimens using this interface and present three examples which cover different areas of interest encountered in laboratory research. The resulting 3D data are rendered using a commercial workstation. The program described in this paper is available for use or improvement by other researchers.
Journal and Wave Bearing Impedance Calculation Software
NASA Technical Reports Server (NTRS)
Hanford, Amanda; Campbell, Robert
2012-01-01
The wave bearing software suite is a MALTA application that computes bearing properties for user-specified wave bearing conditions, as well as plain journal bearings. Wave bearings are fluid film journal bearings with multi-lobed wave patterns around the circumference of the bearing surface. In this software suite, the dynamic coefficients are outputted in a way for easy implementation in a finite element model used in rotor dynamics analysis. The software has a graphical user interface (GUI) for inputting bearing geometry parameters, and uses MATLAB s structure interface for ease of interpreting data. This innovation was developed to provide the stiffness and damping components of wave bearing impedances. The computational method for computing bearing coefficients was originally designed for plain journal bearings and tilting pad bearings. Modifications to include a wave bearing profile consisted of changing the film thickness profile given by an equation, and writing an algorithm to locate the integration limits for each fluid region. Careful consideration was needed to implement the correct integration limits while computing the dynamic coefficients, depending on the form of the input/output variables specified in the algorithm.
Talbert, Colin; Maloney, Kelly O.; Holmquist-Johnson, Chris; Hanson, Leanne
2014-01-01
Between 2002 and 2006, the Fort Collins Science Center (FORT) at the U.S. Geological Survey (USGS) conducted field surveys, organized workshops, and performed analysis of habitat for trout and shad in the Upper Delaware River Basin. This work culminated in the development of decision support system software (the Delaware River DSS–DRDSS, Bovee and others, 2007) that works in conjunction with the Delaware River Basin Commission’s reservoir operations model, OASIS, to facilitate comparison of the habitat and water-delivery effects of alternative operating scenarios for the Basin. This original DRDSS application was developed in Microsoft Excel and is available to all interested parties through the FORT web site (http://www.fort.usgs.gov/Products/Software/DRDSS/). Initial user feedback on the original Excel-based DSS highlighted the need for a more user-friendly and powerful interface to effectively deliver the complex data and analyses encapsulated in the DSS. In order to meet this need, the USGS FORT and Northern Appalachian Research Branch (NARB) developed an entirely new graphical user interface (GUI) application. Support for this research was through the DOI WaterSmart program (http://www.doi.gov/watersmart/html/index.php) of which the USGS component is the National Water Census (http://water.usgs.gov/watercensus/WaterSMART.html). The content and methodology of the new GUI interface emulates those of the original DSS with a few exceptions listed below. Refer to Bovee and others (2007) for the original information. Significant alterations to the original DSS include: • We moved from Excel-based data storage and processing to a more powerful database back end powered by SQLite. The most notable effect of this is that the previous maximum temporal extent of 10 years has been replaced by a dynamic extent that can now cover the entire period of record for which we have data (1928–2000). • We incorporated interactive geographic information system (GIS) visualization and dynamic data processing. Previous habitat maps were generated outside of the DSS in an ad hoc process that the end user could not update or investigate. • The original bathymetric data collected in 2005 at the three main stem reaches was augmented with a higher resolution dataset collected in 2010. This new dataset was collected in order to conduct higher resolution (finer pixel size) two-dimensional (2D) hydrodynamic modeling for evaluating dwarf wedgemussel (DWM, Alasmidonta heterodon) habitat. • Results charts are now substantially more interactive, dynamic, and accessible, which allows users to more easily focus on their particular topics of interest as well as drill down to the source data used to calculate given results.
Avionics System Architecture Tool
NASA Technical Reports Server (NTRS)
Chau, Savio; Hall, Ronald; Traylor, marcus; Whitfield, Adrian
2005-01-01
Avionics System Architecture Tool (ASAT) is a computer program intended for use during the avionics-system-architecture- design phase of the process of designing a spacecraft for a specific mission. ASAT enables simulation of the dynamics of the command-and-data-handling functions of the spacecraft avionics in the scenarios in which the spacecraft is expected to operate. ASAT is built upon I-Logix Statemate MAGNUM, providing a complement of dynamic system modeling tools, including a graphical user interface (GUI), modeling checking capabilities, and a simulation engine. ASAT augments this with a library of predefined avionics components and additional software to support building and analyzing avionics hardware architectures using these components.
SBEToolbox: A Matlab Toolbox for Biological Network Analysis
Konganti, Kranti; Wang, Gang; Yang, Ence; Cai, James J.
2013-01-01
We present SBEToolbox (Systems Biology and Evolution Toolbox), an open-source Matlab toolbox for biological network analysis. It takes a network file as input, calculates a variety of centralities and topological metrics, clusters nodes into modules, and displays the network using different graph layout algorithms. Straightforward implementation and the inclusion of high-level functions allow the functionality to be easily extended or tailored through developing custom plugins. SBEGUI, a menu-driven graphical user interface (GUI) of SBEToolbox, enables easy access to various network and graph algorithms for programmers and non-programmers alike. All source code and sample data are freely available at https://github.com/biocoder/SBEToolbox/releases. PMID:24027418
SBEToolbox: A Matlab Toolbox for Biological Network Analysis.
Konganti, Kranti; Wang, Gang; Yang, Ence; Cai, James J
2013-01-01
We present SBEToolbox (Systems Biology and Evolution Toolbox), an open-source Matlab toolbox for biological network analysis. It takes a network file as input, calculates a variety of centralities and topological metrics, clusters nodes into modules, and displays the network using different graph layout algorithms. Straightforward implementation and the inclusion of high-level functions allow the functionality to be easily extended or tailored through developing custom plugins. SBEGUI, a menu-driven graphical user interface (GUI) of SBEToolbox, enables easy access to various network and graph algorithms for programmers and non-programmers alike. All source code and sample data are freely available at https://github.com/biocoder/SBEToolbox/releases.
Software Development for Remote Control and Firing Room Displays
NASA Technical Reports Server (NTRS)
Zambrano Pena, Jessica
2014-01-01
The Launch Control System (LCS) developed at NASA's Kennedy Space Center (KSC) will be used to launch future spacecraft. Two of the many components of this system are the Application Control Language (ACL) and remote displays. ACL is a high level domain specific language that is used to write remote control applications for LCS. Remote displays are graphical user interfaces (GUIs) developed to display vehicle and Ground Support Equipment (GSE) data, they also provide the ability to send commands to control GSE and the vehicle. The remote displays and the control applications have many facets and this internship experience dealt with several of them.
NASA Technical Reports Server (NTRS)
Colton, Andrew
2012-01-01
I am finishing up my internship with the Application & Simulation group at NASA Kennedy Space Center (KSC). During this internship I was working with the Plant Habitat development team. The Plant Habitat provides a large enclosed, environmentally controlled chamber designed to support commercial and fundamental plant research onboard the International Space Station (ISS). The work that I did was for the prototype of the Graphical User Interface (GUI) display. This display is used by the scientists to monitor the system health, start new experiment configurations, and get real-time information about the experiment as its being run. This display is developed using the Qt Framework Integrated Development Environment (IDE) and the programming language C++.
NASA Astrophysics Data System (ADS)
Huanqin, Wu; Yasheng, Jin; Yugang, Dai
2017-06-01
Under the current situation where Internet technology develops rapidly, mobile E-commerce technology has brought great convenience to our life. Now, the graphical user interface (GUI) of most E-commerce platforms only supports Chinese. Thus, the development of Android client of E-commerce that supports ethnic languages owns a great prospect. The principle that combines front end design and database technology is adopted in this paper to construct the Android client system of E-commerce platforms that supports ethnic languages, which realizes the displaying, browsing, querying, searching, trading and other functions of ethnic characteristic agricultural products on android platforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Alfonsi; C. Rabiti; D. Mandelli
The Reactor Analysis and Virtual control ENviroment (RAVEN) code is a software tool that acts as the control logic driver and post-processing engine for the newly developed Thermal-Hydraulic code RELAP-7. RAVEN is now a multi-purpose Probabilistic Risk Assessment (PRA) software framework that allows dispatching different functionalities: Derive and actuate the control logic required to simulate the plant control system and operator actions (guided procedures), allowing on-line monitoring/controlling in the Phase Space Perform both Monte-Carlo sampling of random distributed events and Dynamic Event Tree based analysis Facilitate the input/output handling through a Graphical User Interface (GUI) and a post-processing data miningmore » module« less
NASA Interactive Forms Type Interface - NIFTI
NASA Technical Reports Server (NTRS)
Jain, Bobby; Morris, Bill
2005-01-01
A flexible database query, update, modify, and delete tool was developed that provides an easy interface to Oracle forms. This tool - the NASA interactive forms type interface, or NIFTI - features on-the- fly forms creation, forms sharing among users, the capability to query the database from user-entered criteria on forms, traversal of query results, an ability to generate tab-delimited reports, viewing and downloading of reports to the user s workstation, and a hypertext-based help system. NIFTI is a very powerful ad hoc query tool that was developed using C++, X-Windows by a Motif application framework. A unique tool, NIFTI s capabilities appear in no other known commercial-off-the- shelf (COTS) tool, because NIFTI, which can be launched from the user s desktop, is a simple yet very powerful tool with a highly intuitive, easy-to-use graphical user interface (GUI) that will expedite the creation of database query/update forms. NIFTI, therefore, can be used in NASA s International Space Station (ISS) as well as within government and industry - indeed by all users of the widely disseminated Oracle base. And it will provide significant cost savings in the areas of user training and scalability while advancing the art over current COTS browsers. No COTS browser performs all the functions NIFTI does, and NIFTI is easier to use. NIFTI s cost savings are very significant considering the very large database with which it is used and the large user community with varying data requirements it will support. Its ease of use means that personnel unfamiliar with databases (e.g., managers, supervisors, clerks, and others) can develop their own personal reports. For NASA, a tool such as NIFTI was needed to query, update, modify, and make deletions within the ISS vehicle master database (VMDB), a repository of engineering data that includes an indentured parts list and associated resource data (power, thermal, volume, weight, and the like). Since the VMDB is used both as a collection point for data and as a common repository for engineering, integration, and operations teams, a tool such as NIFTI had to be designed that could expedite the creation of database query/update forms which could then be shared among users.
High-resolution, continuous field-of-view (FOV), non-rotating imaging system
NASA Technical Reports Server (NTRS)
Huntsberger, Terrance L. (Inventor); Stirbl, Robert C. (Inventor); Aghazarian, Hrand (Inventor); Padgett, Curtis W. (Inventor)
2010-01-01
A high resolution CMOS imaging system especially suitable for use in a periscope head. The imaging system includes a sensor head for scene acquisition, and a control apparatus inclusive of distributed processors and software for device-control, data handling, and display. The sensor head encloses a combination of wide field-of-view CMOS imagers and narrow field-of-view CMOS imagers. Each bank of imagers is controlled by a dedicated processing module in order to handle information flow and image analysis of the outputs of the camera system. The imaging system also includes automated or manually controlled display system and software for providing an interactive graphical user interface (GUI) that displays a full 360-degree field of view and allows the user or automated ATR system to select regions for higher resolution inspection.
Flat Surface Damage Detection System (FSDDS)
NASA Technical Reports Server (NTRS)
Williams, Martha; Lewis, Mark; Gibson, Tracy; Lane, John; Medelius, Pedro; Snyder, Sarah; Ciarlariello, Dan; Parks, Steve; Carrejo, Danny; Rojdev, Kristina
2013-01-01
The Flat Surface Damage Detection system (FSDDS} is a sensory system that is capable of detecting impact damages to surfaces utilizing a novel sensor system. This system will provide the ability to monitor the integrity of an inflatable habitat during in situ system health monitoring. The system consists of three main custom designed subsystems: the multi-layer sensing panel, the embedded monitoring system, and the graphical user interface (GUI). The GUI LABVIEW software uses a custom developed damage detection algorithm to determine the damage location based on the sequence of broken sensing lines. It estimates the damage size, the maximum depth, and plots the damage location on a graph. Successfully demonstrated as a stand alone technology during 2011 D-RATS. Software modification also allowed for communication with HDU avionics crew display which was demonstrated remotely (KSC to JSC} during 2012 integration testing. Integrated FSDDS system and stand alone multi-panel systems were demonstrated remotely and at JSC, Mission Operations Test using Space Network Research Federation (SNRF} network in 2012. FY13, FSDDS multi-panel integration with JSC and SNRF network Technology can allow for integration with other complementary damage detection systems.
NASA Technical Reports Server (NTRS)
Dreher, Joseph G.
2009-01-01
For expedience in delivering dispersion guidance in the diversity of operational situations, National Weather Service Melbourne (MLB) and Spaceflight Meteorology Group (SMG) are becoming increasingly reliant on the PC-based version of the HYSPLIT model run through a graphical user interface (GUI). While the GUI offers unique advantages when compared to traditional methods, it is difficult for forecasters to run and manage in an operational environment. To alleviate the difficulty in providing scheduled real-time trajectory and concentration guidance, the Applied Meteorology Unit (AMU) configured a Linux version of the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) (HYSPLIT) model that ingests the National Centers for Environmental Prediction (NCEP) guidance, such as the North American Mesoscale (NAM) and the Rapid Update Cycle (RUC) models. The AMU configured the HYSPLIT system to automatically download the NCEP model products, convert the meteorological grids into HYSPLIT binary format, run the model from several pre-selected latitude/longitude sites, and post-process the data to create output graphics. In addition, the AMU configured several software programs to convert local Weather Research and Forecast (WRF) model output into HYSPLIT format.
GUI to Facilitate Research on Biological Damage from Radiation
NASA Technical Reports Server (NTRS)
Cucinotta, Frances A.; Ponomarev, Artem Lvovich
2010-01-01
A graphical-user-interface (GUI) computer program has been developed to facilitate research on the damage caused by highly energetic particles and photons impinging on living organisms. The program brings together, into one computational workspace, computer codes that have been developed over the years, plus codes that will be developed during the foreseeable future, to address diverse aspects of radiation damage. These include codes that implement radiation-track models, codes for biophysical models of breakage of deoxyribonucleic acid (DNA) by radiation, pattern-recognition programs for extracting quantitative information from biological assays, and image-processing programs that aid visualization of DNA breaks. The radiation-track models are based on transport models of interactions of radiation with matter and solution of the Boltzmann transport equation by use of both theoretical and numerical models. The biophysical models of breakage of DNA by radiation include biopolymer coarse-grained and atomistic models of DNA, stochastic- process models of deposition of energy, and Markov-based probabilistic models of placement of double-strand breaks in DNA. The program is designed for use in the NT, 95, 98, 2000, ME, and XP variants of the Windows operating system.
Scripting MODFLOW Model Development Using Python and FloPy.
Bakker, M; Post, V; Langevin, C D; Hughes, J D; White, J T; Starn, J J; Fienen, M N
2016-09-01
Graphical user interfaces (GUIs) are commonly used to construct and postprocess numerical groundwater flow and transport models. Scripting model development with the programming language Python is presented here as an alternative approach. One advantage of Python is that there are many packages available to facilitate the model development process, including packages for plotting, array manipulation, optimization, and data analysis. For MODFLOW-based models, the FloPy package was developed by the authors to construct model input files, run the model, and read and plot simulation results. Use of Python with the available scientific packages and FloPy facilitates data exploration, alternative model evaluations, and model analyses that can be difficult to perform with GUIs. Furthermore, Python scripts are a complete, transparent, and repeatable record of the modeling process. The approach is introduced with a simple FloPy example to create and postprocess a MODFLOW model. A more complicated capture-fraction analysis with a real-world model is presented to demonstrate the types of analyses that can be performed using Python and FloPy. © 2016, National Ground Water Association.
Usability Considerations in Developing a Graphic Interface for Intra Office Communications
NASA Astrophysics Data System (ADS)
Yammiyavar, Pradeep; Jain, Piyush
This paper outlines the basis of incorporating functional features in a new GUI based software under development for addressing comprehensive communication and interaction needs within an office environment. Bench marking of features in existing communication software products such as Microsoft Outlook, IBM Lotusnotes, Office Communicator, Mozilla Thunderbird etc. was done by asking a set of questions related to the usage of these existing softwares. Usability issues were identified through a user survey involving 30 subjects of varied profiles (domain, designation, age etc.) in a corporate office. It is posited that existing software products that have been developed for a universal market may be highly underutilized or have redundant features especially for use as an intra office (within the same office) communication medium. Simultaneously they may not cater to some very contextual requirements of intra office communications. Based on the findings of the survey of feature preferences & usability of existing products, a simple 'person to person' communicating medium for intra office situations was visualized with a new interactive GUI. Usability issues that need to be considered for a new intra-office product have been brought out.
IPMP Global Fit - A one-step direct data analysis tool for predictive microbiology.
Huang, Lihan
2017-12-04
The objective of this work is to develop and validate a unified optimization algorithm for performing one-step global regression analysis of isothermal growth and survival curves for determination of kinetic parameters in predictive microbiology. The algorithm is incorporated with user-friendly graphical interfaces (GUIs) to develop a data analysis tool, the USDA IPMP-Global Fit. The GUIs are designed to guide the users to easily navigate through the data analysis process and properly select the initial parameters for different combinations of mathematical models. The software is developed for one-step kinetic analysis to directly construct tertiary models by minimizing the global error between the experimental observations and mathematical models. The current version of the software is specifically designed for constructing tertiary models with time and temperature as the independent model parameters in the package. The software is tested with a total of 9 different combinations of primary and secondary models for growth and survival of various microorganisms. The results of data analysis show that this software provides accurate estimates of kinetic parameters. In addition, it can be used to improve the experimental design and data collection for more accurate estimation of kinetic parameters. IPMP-Global Fit can be used in combination with the regular USDA-IPMP for solving the inverse problems and developing tertiary models in predictive microbiology. Published by Elsevier B.V.
Development of decision support system for oil spill management in the Mediterranean Sea
NASA Astrophysics Data System (ADS)
Liubartseva, Svitlana; Coppini, Giovanni; Pinardi, Nadia; De Dominicis, Michela; Marra, Palmalisa; Lecci, Rita; Turrisi, Giuseppe; Creti, Sergio; Martinelli, Sara; Agostini, Paola; Palermo, Francesco
2016-04-01
Possible oil spill accidents and operational pollution could have severe impacts on the Mediterranean basin. It is therefore crucial to provide decision makers, stakeholders, and public with trustworthy DSS (Decision Support System) based on the environmental monitoring, state-of-the-art modeling and innovative technology platforms. Innovative web-based decision support system, called WITOL (Where Is The Oil http://www.witoil.com), has been developed to maintain emergency management in case of oil spill accidents. WITOIL embraces (1) Lagrangian oil spill model MEDSLIK-II (De Dominicis et al., 2013 http://medslikii.bo.ingv.it) coupled with the basin-scale and regional operational oceanographic services; (2) two-modular block of oil spill forecast and uncertainty evaluation; (3) user visualization tool including web and mobile interface with visualization of geospatial information by means of Google Maps. Service-oriented approach plays a key role in the WITOIL DSS development. The system meets the real-time requirements in terms of performance and in dynamic service delivery. Client part of WITOIL is presented by a 8-language GUI (Graphical User Interface) supplied with a great variety of user services including a video tutorial (https://www.youtube.com/watch?v=qj_GokYy8MU). GUI allows users to configure and activate the system, visualize the results using Google Maps, and save them afterwards. Not only does a new generation of DSS require the oil spill forecast, but it also needs the evaluation of uncertainty, which is critical for efficient response, recovery, and mitigation. Uncertainty in prediction of the oil transport and transformation stems from the uncertain environment and data-sparse. A new methodology of uncertainty calculation with respect to initial conditions is incorporated in WITOIL DSS. The results are presented in probability terms. Special application to Android has been implemented to support users involved in the field operations. The system is developed as a part of TESSA Project portfolio providing the unified access to others services. Thus, SEACONDITIONS (http://www.sea-conditions.com) performs visualization and on-line delivery of forecast of surface currents, sea surface temperature, significant wave height and direction, wave period and direction; air temperature, surface pressure, precipitation, cloud coverage, wind speed, etc. Apart from the basin scale visualization SEACONDITIONS supports the zooming capability. User feedback reports from fishermen, port authorities including Coast Guard, offshore companies, aquatic and coastal tourism managers, and academia have been collected and used for the system improvements. User-friendliness of GUI, tooltips, an opportunity to vary the advanced parameters, efficiency of the visualization tool, and a help section were appreciated in these reports. In accordance with the users' requirements, a to-do list is composed for the further development of WITOIL. This work was performed in the framework of the TESSA Project (Sviluppo di TEcnologie per la Situational Sea Awareness) supported by PON (Ricerca & Competitività 2007-2013) cofunded by UE (Fondo Europeo di sviluppo regionale), MIUR (Ministero Italiano dell'Università e della Ricerca), and MSE (Ministero dello Sviluppo Economico). References De Dominicis, M., Pinardi, N., Zodiatis, G., and Lardner, R., 2013. MEDSLIK-II, a Lagrangian marine surface oil spill model for short term forecasting - Part 1: Theory. Geosci. Model Dev. 6, 1851-1869.
NASA Astrophysics Data System (ADS)
Klawon, Kevin; Gold, Josh; Bachman, Kristen
2013-05-01
The DIA, in conjunction with the Army Research Lab (ARL), wants to create an Unmanned Ground Sensor (UGS) controller that is (a) interoperable across all controller platforms, (b) capable of easily adding new sensors, radios, and processes and (c) backward compatible with existing UGS systems. To achieve this, a Terra Harvest controller was created that used Java JRE 1.6 and an Open Services Gateway initiative (OSGi) platform, named Terra Harvest Open Software Environment (THOSE). OSGi is an extensible framework that provides a modularized environment for deploying functionality in "bundles". These bundles can publish, discover, and share services available from other external bundles or bundles provided by the controller core. With the addition of a web GUI used for interacting with THOSE, a natural step was then to create a common remote interface that allows 3rd party real-time interaction with the controller. This paper provides an overview of the THOSE system and its components as well as a description of the architectural structure of the remote interface, highlighting the interactions occurring between the controller and the remote interface and its role in providing a positive user experience for managing UGSS functions.
Flexible Decision Support in Device-Saturated Environments
2003-10-01
also output tuples to a remote MySQL or Postgres database. 3.3 GUI The GUI allows the user to pose queries using SQL and to display query...DatabaseConnection.java – handles connections to an external database (such as MySQL or Postgres ). • Debug.java – contains the code for printing out Debug messages...also provided. It is possible to output the results of queries to a MySQL or Postgres database for archival and the GUI can query those results
ISPyB for BioSAXS, the gateway to user autonomy in solution scattering experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Maria Antolinos, Alejandro; Pernot, Petra; Brennich, Martha E.
The ISPyB information-management system for crystallography has been adapted to include data from small-angle X-ray scattering of macromolecules in solution experiments. Logging experiments with the laboratory-information management system ISPyB (Information System for Protein crystallography Beamlines) enhances the automation of small-angle X-ray scattering of biological macromolecules in solution (BioSAXS) experiments. The ISPyB interface provides immediate user-oriented online feedback and enables data cross-checking and downstream analysis. To optimize data quality and completeness, ISPyBB (ISPyB for BioSAXS) makes it simple for users to compare the results from new measurements with previous acquisitions from the same day or earlier experiments in order to maximizemore » the ability to collect all data required in a single synchrotron visit. The graphical user interface (GUI) of ISPyBB has been designed to guide users in the preparation of an experiment. The input of sample information and the ability to outline the experimental aims in advance provides feedback on the number of measurements required, calculation of expected sample volumes and time needed to collect the data: all of this information aids the users to better prepare for their trip to the synchrotron. A prototype version of the ISPyBB database is now available at the European Synchrotron Radiation Facility (ESRF) beamline BM29 and is already greatly appreciated by academic users and industrial clients. It will soon be available at the PETRA III beamline P12 and the Diamond Light Source beamlines I22 and B21.« less